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Editorial on the Research Topic

Habitat and distribution models of marine and estuarine species:
Advances for a sustainable future
The physical and biological characterization of suitable habitats and species-specific

models to estimate their extent are valuable for conservation and fisheries management.

As exploited species and habitats face challenges from anthropogenic influences, such as

fishing and climate change, the identification and protection of habitats becomes

increasingly important. Most of the papers within this special topic issue used some

form of species distribution model (SDM) to identify habitats used by fishes (Asch et al.;

Crear et al.; Fabrizio et al.; Freidland et al.; Zydlewski et al.), marine mammals (Astarloa

et al.), nearshore invertebrates (Cristiani et al.; Behan et al.), or deep-sea communities

(Bowden et al.; Saunders et al.). A few papers focused on developing methods to better

describe habitats (Griffin et al.; Henderson et al.; Cecino et al.), while other papers

investigated model performance and incorporation of new statistical methods to improve

model accuracy (Asch et al.; Behan et al.; Bowden et al.). Below we provide a synthesis of

these papers under the topics of data sources used for analyses, statistical methods,

stationarity and model performance, connectivity, and management implications; we

conclude with a consideration of opportunities for advancing this field of study.
Data sources used for analyses

Most SDMs used presence/absence information to describe relationships between

taxa and habitat features; only a few SDMs were informed by estimates of relative
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abundance, density, or biomass (Astarloa et al.; Behan et al.;

Fabrizio et al.; Freidland et al.). Occurrence and abundance

information were commonly derived from stratified random

surveys using bottom trawls, dredges, or epibenthic sleds.

Transect sampling with ROV video and still cameras was used in

three papers, suggesting that new methods to automate image

analysis allow researchers to obtain rich datasets from habitats that

are otherwise poorly sampled. Two papers in this issue used

acoustic telemetry (Crear et al.; Griffin et al.) to develop habitat

models for marine fishes.

Data sources to describe spatio-temporal variation in

environmental conditions comprised outputs from a variety of

numerical models, including ocean circulation models, coupled

physical-biogeochemical models, and earth system models

(Asch et al.; Behan et al.; Cecino et al.; Crear et al.; Cristiani et

al.; Fabrizio et al.; Henderson et al.). A few of these authors noted

the need to rescale (simplify or summarize) biotic data to be

consistent with the spatial resolution of oceanographic models

(Asch et al.; Cecino et al.; Cristiani et al.). Physico-chemical

models were also used to project habitat conditions under one or

more future climate scenarios that typically included the ‘status

quo.’ Resource-specific attributes (e.g., life history, distribution,

length of time series, and so forth) appeared to influence the choice

of projection years, as these varied among studies. Remotely sensed

environmental conditions and chlorophyll-a concentrations were

also incorporated into habitat models (Freidland et al.). In most

papers, however, SDMs were often informed by readily available

habitat descriptors (e.g., depth, temperature, salinity, dissolved

oxygen) that were typically collected at the time of sampling of

the biota. Biotic variables, such as prey abundance and primary

productivity, were sometimes used to describe habitats (Asch et al.;

Astarloa et al.; Freidland et al.). When relatively long time series (>

35 years) of observations of marine biota were available,

atmospheric indices such as the PDO, AMO, and NAO were

considered as climate indicators (Asch et al.; Astarloa et al.).
Statistical methods

Statistical modelling corresponds to an ensemble of steps

that considers the sampling design, the covariates and their

quality, the model type, and the fitting procedure. All these

aspects were addressed by the papers in this special topic issue.

In particular, presence-only data are a problem for model fitting

(Winship et al.) so analysts are often forced to use pseudo-

absences generated by random resampling across the area

(Griffin et al.). Zero-inflated data may require hurdle models

to estimate the probability of occurrence and the conditional

positive catch component (Astarloa et al.; Lowman et al.).

This collection of papers exemplifies the now widely accepted

use of machine learning procedures that go beyond classical

statistical methods. In particular, random forest approaches and

regression trees (boosted by an iterative procedure) were used to
Frontiers in Marine Science 02
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identify covariates and their ranges of values and interactions that

best explainedobserved species distributions (Cecino et al.; Fabrizio

et al.; Freidland et al.; Griffin et al.; Henderson et al.; Saunders et al.).

Suitable ranges for covariates can be envisaged using physiological

principles (Crear et al.) or inferred from a histogram approach

(Fabrizio et al.). Approaches to model species occurrence

probability included logistic regression (Henderson et al.),

resource selection functions (Griffin et al.), generalized linear or

additive models, and generalized linear mixed-effects models

(GLMM; Astarloa et al.; Lowman et al.). GLMMs were used to

model space-time interactions and thus evidence of change in

spatial distributions across time.

Multiple papers used recently developed numerical

computing methods to efficiently incorporate spatial and

temporal autocorrelation with a Bayesian approach. For

example, two papers used Vector Autoregressive Spatio-

Temporal (VAST) models to examine changes in animal

densities and distributions through time (Astarloa et al.;

Lowman et al.). VAST models treat the space-time correlation

function as a time-varying spatial component so the remaining

variance can be estimated as a fixed effect (Thorson and Barnett

2017). A similar approach was used to account for spatial

autocorrelation in an analysis of associations between fish and

deep-sea corals (Henderson et al.).
Stationarity and model performance

Because SDMs are based on correlative relationships

between species occurrence and covariates, model projections

outside the range of values, time frame, or area used to fit the

SDM must assume that the correlative relationships are valid

under conditions that were not considered in model fitting.

Thus, stationarity of relationships is a critical assumption when

making projections under future climate scenarios. Asch et al.

questioned the temporal stationarity assumption by fitting

SDMs for multiple time periods and Behan et al. address the

spatial stationarity assumption by fitting models for multiple

sub-areas. For some species, the assumption of stationarity is

questionable and depends on the covariates.

Model performance refers to the ability of the model to

reliably predict species distributions using values within the

fitting conditions. In most of the papers in this special topic

issue, data were split into a set for model fitting and another for

model testing. Model performance is assessed by cross-

validation using the test set. Yet, uncertainty in the covariates

is seldom considered. Bowden et al. tackle this question and

show that current cross-validation procedures may lead to

overestimation of model performance. They also show that in

general, presence/absence is estimated more reliably than

abundance, and that model performance relies on the

precision and spatio-temporal resolution of covariates.
frontiersin.org
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Connectivity

The importance of considering connectivity when evaluating

habitat occupancy has been long discussed (Bryan-Brown et al.,

2017). The transport and movement abilities of individuals,

combined with the spatial distribution of habitats, determine the

dispersal patterns of key life stages of many coastal and marine

species (Cowen and Sponaugle, 2009). Closing the life cycle by

linkingpost-settlement larvae to juveniles andadults is valuable and

informs a species’ spatial distribution (Beck et al., 2001).

Connectivity also plays a critical role in the theme of “seascapes”

(Pittman, 2017). Twopapers in this special topic issue (Cecino et al.,

Cristiani et al.) specifically focused on connectivity.

The effect of connectivityonpredictionsof speciesdistributions

canbequantifiedexplicitly by incorporatingconnectivitymetrics as

covariates in SDMs. Cecino et al. offered a new approach to bridge

standard SDMswithmethods that assess connectivity. They found

that centrality measures, which characterize connectivity,

influenced the geographic structure of predicted habitat quality.

Using a particle-tracking approach and network analysis, Cristiani

et al. reported that topography acted to limit dispersal of benthic

larvae among seagrass beds, and that subregions with limited

exchange could be identified.

Management implications

Effective management and conservation require knowledge of

species habitat use and the ecosystem effects of anthropogenic

change. Multiple papers raised the issue of using SDMs to identify

habitats that could be targeted for protection and species

conservation, particularly with the potential for habitat

degradation as the climate changes (Griffin et al.; Fabrizio et al.;

Cecino et al.). In addition to using SDMs to identify suitable

habitats, other papers within this issue used SDMs to assess

anthropogenic impacts from dams, fisheries, and wind farms

(Zydlewski et al.; Lowman et al.; Freidland et al.). A common

message across these papers was the importance of reporting

accurate measures of uncertainty alongside predictions to ensure

proper interpretation.

Considerations for the future

(1) A theme common to all papers in this special topic issue is

thenecessityofmergingmultipledatasets fromunrelated sources to

assemble a more complete understanding of the modeled system.

Most habitat assessments involve themerging of information from

physical oceanography models, biogeochemistry models, and

marine ecological observations including information on trophic

interactions and connectivity. To the extent practical, resolution of

differences in spatial and temporal scales required to address

ecological questions and those typical of hydrodynamic models

would allow the exploration and application of habitat models to

additional species and systems (e.g., Behan et al.).
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(2) Habitat assessments, especially those for mobile life

stages, should incorporate concepts and results from the

rapidly expanding field of movement ecology (Nathan et al.,

2008; Abrahms et al., 2021). In particular, estimates of

connectivity can be improved by considering movements of

organisms, which are often elicited in response to the key

constituents of habitat quality. Movement and connectivity

information can be valuable for assessing the actual use (i.e.,

realized habitat) of potential habitats predicted by SDMs.

(3) Increasing refinement of the biological characteristics of

individuals represented in particle-tracking andmovementmodels

would improve predictions and allow for species and regional

differences to emerge. For example, Cristiani et al. defaulted to

using a single mortality rate for their community-level analysis

because species-specific information was lacking.

(4) Studies that consider habitat and connectivity effects at the

population and ecosystem levels and over the entire life cycle of

organisms can provide insight on the cumulative life-time effects of

directional changes in habitat such as loss of spawning and rearing

areas (e.g., Zydlewski et al.). Agent-based modeling approaches

offer a viable approach to explore such effects.

(5) Results from habitat models, and SDMs in particular,

should be expressed in a manner to ensure proper interpretation.

Two major considerations are the proper reporting of the

confidence in model predictions (e.g., confidence intervals), and

distinguishing between habitat capacity, potential habitat, and

realized habitat when interpreting model results. Additionally, all

data and code from these analyses should be made available to aid

in reproducibility.

(6) Habitat models could be improved by considering

stakeholder and local knowledge (e.g., Lowman et al.). Such

information could increase the understanding of past and

present conditions, movement and migration patterns of

organisms, and locations and environmental conditions under

which organisms were previously found.

(7) Finally, practitioners should identify and examine key

assumptions of models and data used to describe relationships

between habitats and biota, including stationarity (e.g., Asch

et al.). Additional comparison of methods and sensitivities

of models to input data would also be valuable (e.g.,

Bowden et al.).
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Estimating Shifts in Phenology and
Habitat Use of Cobia in Chesapeake
Bay Under Climate Change
Daniel P. Crear* , Brian E. Watkins, Marjorie A. M. Friedrichs, Pierre St-Laurent and
Kevin C. Weng

Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States

Cobia (Rachycentron canadum) is a large coastal pelagic fish species that represents
an important fishery in many coastal Atlantic states of the U.S. They are heavily fished in
Virginia when they migrate into Chesapeake Bay during the summer to spawn and feed.
These coastal habitats have been subjected to warming and increased hypoxia which in
turn could impact the timing of migration and the habitat suitability of Chesapeake Bay.
With conditions expected to worsen, we project current and future habitat suitability of
Chesapeake Bay for cobia and predict changes in their arrival and departure times as
conditions shift. To do this we developed a depth integrated habitat model from archival
tagging and physiology data from cobia that used Chesapeake Bay, and applied the
model to contemporary and future temperature and oxygen output from a coupled
hydrodynamic-biogeochemical model of Chesapeake Bay. We found that estimated
arrival occurs earlier and estimated departure time occurs later when temperatures
are warmer and that by mid- and end-of-century cobia may spend on average up to
30 and 65 more days, respectively, in Chesapeake Bay. By mid-century we do not
expect habitat suitability to change substantially for cobia, but by end-of-century we
project it will significantly decline and shift closer to the mouth of Chesapeake Bay.
Our study provides evidence that cobia will have the capacity to withstand near term
impacts of climate change, but that their migration phenology varies from year to year
with changing temperatures. These findings emphasize the need to incorporate the
relationship between fishes and their environment into how fisheries are managed. This
information can also help guide managers when deciding the timing and allocation of
a fishery.

Keywords: archival tags, fisheries management, habitat modeling, recreational fishery, warming, hypoxia

INTRODUCTION

Cobia (Rachycentron canadum) is a large coastal pelagic fish species that uses waters along the
mid- and south- Atlantic regions of the U.S. east coast throughout the year. Along the east coast
of the U.S., cobia migrate into bays and estuaries, such as Chesapeake Bay, in late spring/early
summer to spawn and feed (Joseph et al., 1964; Smith, 1995; Perkinson et al., 2019). They remain in
these habitats until late summer/early fall when they migrate primarily offshore to the shelf waters
ranging from North Carolina to Florida (Crear et al., 2020b). The exact timing of both inshore and
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offshore migrations fluctuate each year and are thought to be
driven by temperature cues (Smith, 1995; Lefebvre and Denson,
2012). Anecdotal evidence from fishermen suggests that cobia
have been entering Chesapeake Bay earlier in recent years,
consistent with habitat suitability models suggesting that future
climate warming will result in arrival into inshore habitats, like
Chesapeake Bay, earlier in the spring (Crear et al., 2020b).

Cobia support a valuable recreational fishery on the U.S. east
coast from Florida to Virginia. Estimated cobia landings from the
recreational fishery occur primarily in Virginia or North Carolina
state waters (SEDAR, 2020). With an average of approximately
225,000 cobia trips occurring annually in Virginia alone, valued
between $488–$685 per trip (Scheld et al., 2020), the cobia fishery
is extremely important for coastal states like Virginia. In recent
years, estimated landings exceeded the Atlantic cobia allowable
catch limits, which led the National Marine Fisheries Service
(NMFS) to close the fishery in federal waters (NCDENR, 2016;
NMFS, 2017). Despite the closure in federal waters, the cobia
fishery remained open in state waters (within 3 nautical miles
of the coast) because of the importance of the cobia fishery to
many coastal states.

Warming within these ecologically and economically
important inshore habitats has been occurring and is expected
to intensify in the future with climate change (Najjar et al.,
2010). As a result of atmospheric warming we expect to see an
approximately 2◦C increase by mid-century and a 5◦C increase
by end-of-century in Chesapeake Bay inferred from Saba et al.
(2016) and Muhling et al. (2018).

Being adjacent to human populations, coastal habitats like
Chesapeake Bay are often impacted by anthropogenic inputs
(Brown et al., 2018). Specifically, anthropogenic nutrient inputs
combined with warming waters has led to an increase in the
extent and severity of hypoxic regions within Chesapeake Bay
(Hagy et al., 2004; Rabalais et al., 2009; Najjar et al., 2010).
We expect that as climate change continues these impacts
will be exacerbated. Irby et al. (2018) project that the largest
increase in cumulative hypoxic volume in Chesapeake Bay
will occur between oxygen concentrations of 2–5 mg l−1.
With an increase in 2 and 5◦C and corresponding solubility
changes, phytoplankton growth rates, and organic matter
remineralization, Chesapeake Bay is expected to see estimated
reductions in dissolved oxygen of 0.5 and 1.5 mg l−1 by mid-
century and end-of-century, respectively (Irby et al., 2018). These
environmental changes may impact the suitability of Chesapeake
Bay for cobia and could affect their arrival and departure time, a
trend that has been seen in other migratory species (Sims et al.,
2004; Jansen and Gislason, 2011).

The relationship between fish physiology and the environment
is one way to understand the impacts of climate change on fish.
A recent physiology study found that cobia are able to withstand
temperatures as warm as 32◦C; however, when exercised to
exhaustion in these conditions, 30% of individuals suffered
mortality (Crear et al., 2020a). Furthermore, this study showed
cobia had a very high hypoxia tolerance, where individuals could
tolerate oxygen levels as low as 1.7–2.4 mg l−1 at temperatures
between 24 and 32◦C (Crear et al., 2020a). Based on these results,
it appears cobia are more hypoxia tolerant than many active

predatory species and therefore might be less impacted by future
decreases in dissolved oxygen concentration.

Habitat modeling has been used to assess the impacts of
climate change on a number of marine species (Pinsky et al.,
2013; Muhling et al., 2016; Kleisner et al., 2017; Morley et al.,
2018; McHenry et al., 2019; Crear et al., 2020c). These studies
have been used to identify both habitat reductions and range
shifts. Although a recent study assessed climate impacts on cobia
distribution along the U.S. east coast (Crear et al., 2020b), the
spatial resolution of the analysis was too coarse to assess the
changes in the habitat quality of Chesapeake Bay.

To predict future changes in phenology and habitat suitability
for cobia within the Chesapeake Bay, we developed a habitat
model parameterized with our physiology data (Crear et al.,
2020a) and archival tagging data. This model was used to project
the current arrival and departure times of cobia into Chesapeake
Bay and the changes to this phenology in the future under climate
change. In addition, our model was used to project changes in
habitat suitability in Chesapeake Bay as a function of temperature
and oxygen concentration.

MATERIALS AND METHODS

Tagging
Cobia were caught on rod and reel using typical recreational
methods in Chesapeake Bay during the 2017–2018 summer
months. Cobia were placed upside down in a V-board, and a
hose with water pumping through it was inserted into the mouth.
Cobia were measured and tagged by making a 2 cm incision
in the abdominal wall, and inserting two tags. The first tag was
an acoustic transmitter (V16-4L/4H coded transmitter, 16 mm
diameter x 68 mm long, pulse interval 30–120 s, estimated battery
life 1,613–3,650 days, 152–158 dB, 24 g in air, Vemco Inc., herein
referred to as an “acoustic tag”). The second tag was a data storage
tag (G5 data storage tag, 8 mm diameter x 31 mm long, 2.7 g
in air, Cefas Technology Limited, herein referred to as a “data
logger”), which was programmed to record temperature every
20 min and depth every 1 min for 2 years. A conventional tag
was fixed to the data logger and designed to protrude from the
incision to alert fishers that caught a tagged fish that a data logger
was present inside the fish and that a monetary reward would
be given if the tag was returned. The incision was closed with 3
interrupted sutures (PDS II) or 5–8 staples (Conmed Reflex One
Skin). An external dart tag was inserted at the base of the dorsal
fin. Fish were immediately released following tagging unless the
fish appeared lethargic. When this occurred, we held the fish
underwater as the boat moved forward slowly to irrigate the gills
until the fish was able to swim off on its own. All fish capture,
handling, and surgical procedures were approved by the College
of William & Mary Institutional Animal Care and Use Committee
(protocol no. IACUC-2017-05-26 133-kcweng).

Habitat Model
The habitat model followed similar methods described in
Eveson et al. (2015) and Crear et al. (2020b), which uses
the ratio between habitat use and habitat availability to
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determine habitat suitability of the fish species. Habitat use
was characterized by the temperatures utilized by tagged
cobia (section “Habitat Use Densities” below) and habitat
availability was the thermal distribution of the environment,
as predicted via biogeochemical modeling (section “Habitat
Availability Densities” below). A value greater than 1 indicates
suitable conditions (i.e., the conditions the fish occupied
occurred in a greater proportion than those conditions in the
available habitat data), below 1 indicates unsuitable conditions,
and equal to 1 represents no difference than random. In
addition to the data from the data loggers, we used the
environmental conditions simulated by the three-dimensional
(3D) ChesROMS-Estuarine-Carbon-Biogeochemistry (ECB)
model. This coupled hydrodynamic-biogeochemical model had
a horizontal resolution of approximately 1 km × 1 km and 20
terrain-following vertical levels (i.e., depth levels that follow
the contour of the bottom) (Shchepetkin and McWilliams,
2005) that have a higher vertical resolution near the surface
and bottom of the water column (Feng et al., 2015; Da et al.,
2018; Irby et al., 2018). The results from the ChesROMS-ECB
model had three uses: estimates of habitat availability (daily
outputs), for predictions of arrival and departure time of cobia
to and from Chesapeake Bay over contemporary and future time
periods (daily outputs), and for habitat suitability predictions
over contemporary and future time periods (across summer
averages). Details of the complete habitat model are described
below in six steps (Figure 1).

1. Habitat Use Densities
Habitat use data came from the data loggers and was defined
as the temperatures occupied by tagged cobia when the fish
were in Chesapeake Bay. Presence inside and outside Chesapeake
Bay was determined using the acoustic detections from these
fish that were detected on acoustic receiver stations at the
mouth of Chesapeake Bay (75.98◦W). A fish was deemed inside
Chesapeake Bay from when the fish was first detected west of
75.98◦W to the last time the fish was detected west of 75.98◦W.
This method was selected because there was not an acoustic
array with a fine enough resolution to determine when the
fish was outside Chesapeake Bay. Data within the first 24 h of
tagging and during the day of recapture were removed from each
fish’s dataset to disregard handling and tagging stress behaviors.
Temperature and depth data were summarized by hour for each
fish over a specified time range. Densities were extracted from
temperature histograms with 0.5◦C bins ranging from 1.5 to
33.5◦C for each fish. The densities for each temperature were
averaged over all fish present in Chesapeake Bay over a specified
time range. These histograms and densities were generated
for the months cobia arrive to (May and June) and depart
from (August and September) Chesapeake Bay, as well as over
all 5 months of Chesapeake Bay occupancy (May–September)
combined. These densities were considered habitat use for cobia
in Chesapeake Bay.

2. Habitat Availability Densities
Habitat availability information for Chesapeake Bay were
temperatures and oxygen derived daily from the ChesROMS-
ECB model for the time cobia are typically found in Chesapeake

Bay (May 15–September 30) over the summers tagged cobia were
at-liberty (2017–2019). We did not want to include all of May
because the available temperatures would be skewed lower than
what is actually available to cobia during the second half of May.
Because the vertical levels in the model are not equally spaced, we
generated eight depth bins at 3 m intervals (0–3 m, 3–6 m, 6–9
m, 9–12 m, 12–15 m, 15–18 m, 18–21 m, 21+ m). To allow each
depth to be treated equally, all temperatures for a given latitude
and longitude from levels within a depth bin were averaged
over each day. To integrate cobia hypoxia tolerance quantified
in Crear et al. (2020a), we removed those portions of the
dataset corresponding to physiologically uninhabitable waters.
These experiments showed that hypoxia tolerance declines in
warmer waters (Crear et al., 2020a). To remove those portions
where habitats were physiologically unavailable to cobia, we
adjusted cells from depth bins to not available values (NAs) where
temperatures were between 24 and 28◦C and dissolved oxygen
levels were less than or equal to 1.7 mg l−1, where temperatures
were greater than 28◦C and less than 32◦C and dissolved oxygen
levels were less than or equal to 2 mg l−1, and where temperatures
exceeded 32◦C and dissolved oxygen levels were less than
2.4 mg l−1 (Crear et al., 2020a). Because salinity preference
is unknown for adult cobia while inhabiting Chesapeake Bay,
we generated an area based on where cobia are caught while
in Chesapeake Bay. This area extended slightly north of the
mouth of the Potomac River (38.10◦N) and excluded all areas
in Chesapeake Bay tributaries (James, York, Rappahannock, and
Potomac Rivers). We also excluded ocean waters, i.e., those east of
the Chesapeake Bay mouth at 75.98◦W. From here on, this region
will be referred to as “Chesapeake Bay.” The accuracy of the
ChesROMS-ECB model has not been well-evaluated in shallow
depths; therefore, any cells where bottom depths were less than
3 m were not included in these data. All temperatures over all
eight depth bins for a specified time period were combined and
a histogram and accompanying densities were created from 1.5
to 33.5◦C with 0.5◦C bins. These densities were generated for the
months cobia arrive to (May and June) and depart from (August
and September) Chesapeake Bay, as well as over all 5 months
(May 15–September) combined. These densities were considered
habitat availability for cobia in Chesapeake Bay.

3. Create Ratios
Ratios were calculated for each arrival month (May and June)
and departure month (August and September) by dividing the
corresponding habitat use densities by the habitat availability
densities for those months. Ratios were also calculated from
habitat use and habitat availability densities for all 5 months
combined. Together this resulted in five sets of ratios (May, June,
August, September, and all months combined).

4. Apply Ratios to 3D Habitat
The contemporary and future Chesapeake Bay habitats to predict
over were derived from the ChesROMS-ECB model simulation.
Daily 3D gridded arrays of temperature and oxygen over a
20-year time period (2000–2019) were considered to represent
the contemporary habitat. We generated two future habitat
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FIGURE 1 | Schematic of the habitat model and how Chesapeake Bay temperature data for specific time periods were run through it. Step 1: Histogram of habitat
use densities from data loggers of tagged fish in Chesapeake Bay averaged over a specified time period; 2 arrival months (May, Jun.), 2 departure months (Aug.,
Sept.), and all 5 summer months combined (May–Sept.). Step 2: Histogram of habitat availability densities generated from daily 3D temperature arrays from
Chesapeake Bay (ChesROMS-ECB model), summarized vertically into eight depth bins combined for each of the aforementioned time periods. Step 3: Ratios
generated by dividing habitat use densities by habitat availability densities for each time period. Step 4: Either daily 3D arrays (for arrival and departure months) or 3D
arrays averaged across two summer periods (May 15–Sept. 30 and Jun. 1–Aug. 31) were extracted from the ChesROMS-ECB model and ratios from Step 3 were
assigned to each grid cell at each depth bin based on temperature in that grid cell. Step 5: The vertical habitat distribution of fish in Chesapeake Bay from data
loggers was used to generate a depth weighting factor for the above eight depth bins, for each time period. The ratios generated in Step 4 were then multiplied (*) by
the appropriate depth weighting factor based on each ratio’s depth in each grid cell for each time period. Step 6: Sum the weighted ratios through the water column
to get daily 2D surfaces of weighted ratios for arrival months (May, Jun.) and departure months (Aug., Sept.) for each year and yearly 2D surfaces of weighted ratios
for the two summer periods (May 15–Sept. 30 and Jun. 1–Aug. 31).

scenarios predicted to occur by mid-century and end-of-century
within Chesapeake Bay by adding deltas to the contemporary
habitat data. We selected the mid-century deltas to be +2◦C
and −0.5 mg/l and the end-of-century deltas to be +5◦C and
−1.5 mg/l (based on Irby et al., 2018). It is important to mention
that, similar to Irby et al. (2018), deltas were not selected
to reflect any particular Representative Concentration Pathway
(RCP) scenario or global climate model (GCM), but to more
generally represent what is believed will occur by mid- and
end-of-century and thus understand cobia’s sensitivity to these
changes. Deltas were applied to all 20 years and evenly over
horizontal space and throughout the entire water column since
observations suggest that climate change impacts temperatures
along the north/south gradient and the temperature of the surface
and bottom waters of Chesapeake Bay similarly (Preston, 2004;
Irby et al., 2018; Hinson et al., in review). These 3D arrays were
then summarized into the eight predefined depth bins and the
other adjustments to the arrays described above (section “Habitat
Availability Densities”) were also done here. This resulted in

daily 3D gridded arrays for three different 20-year timeseries, for
contemporary, mid-century, and end-of-century.

To represent arrival (May and June) and departure months
(August and September) daily 3D temperature arrays for each
year were used. To represent the summer in Chesapeake Bay, the
temperature arrays were averaged across days for all 5 months
(May 15–September 30) and averaged across days for June 1–
August 31 (months when cobia most heavily occupy Chesapeake
Bay) for each year. Ratios for the arrival and departure months
were then assigned to each grid cell at each depth bin based on
the daily temperature in that grid cell and given month for all
20 years. Ratios for the 5 months combined were applied to the
two average temperature arrays (5 months combined and June–
August combined) based on the temperature in that grid cell at
each depth bin for each year.

5. Weight Ratios by Depth
To produce a single ratio value for each latitude and longitude,
depth weighting factors were generated for the arrival and
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departure months and for all 5 months when cobia were present
in Chesapeake Bay. The depth weighting factor was calculated
by taking the proportion of hourly depth observations from the
data loggers at each of the eight depth bins for the arrival and
departure months and for all 5 months combined. Based on
specified time period and the depth bin the ratio was in, the ratio
was multiplied by the appropriate depth weighting factor. For
example, if the ratio at a specific latitude and longitude was 2 at
the 3–6 m depth bin in June and the depth weighting factor at
3–6 m was 0.5 in June, then the new weighted ratio would be 1.0
at the 3–6 m depth bin in June.

6. Sum Ratios Through Water Column
Once all ratios were weighted, the eight weighted ratios were
summed through the water column at each grid cell for each
month (May, June, August, and September) and the two arrays of
combined months. This resulted in daily 2D surfaces of weighted
ratios for May, June, August, September for each year and yearly
2D surfaces of weighted ratios for the May 15–September 30
time period and June 1–August 31 time period. Suitable habitat
was considered to be any cell within the Chesapeake Bay habitat
where the predicted ratio was greater than 1. Any predicted ratios
below 1 were considered unsuitable habitat and any equal to 1
were considered no preference.

Arrival/Departure Analysis
To determine arrival and departure time of cobia in Chesapeake
Bay we calculated available suitable habitat in Chesapeake Bay
each day from May 1 to June 30 (for arrival) and August 1
to September 30 (for departure) for each year (2000–2019). To
do this, the number of grid cells in the Chesapeake Bay area
with predicted ratio values greater than 1 were tallied. Arrival
day was considered the first date in May or June where greater
than 50% of the cells were deemed suitable (>1). Departure day
was considered the first date in August or September where less
than 50% of the habitat was deemed suitable. We selected a 50%
threshold because it estimated dates that fell within one standard
deviation of the mean arrival and departure dates for cobia that
were acoustically tagged. Specifically, we focused on departures in
2018 and arrivals in 2019 when there were 33 and 32 acoustically
tagged cobia that left and entered Chesapeake Bay, respectively.
To accommodate expected warming in our future scenarios, we
extended Chesapeake Bay cobia habitat projections into April
(for arrival) and October (for departure). There were very little
or no contemporary habitat use data for cobia in Chesapeake
Bay for the months of April and October; therefore ratios and
depth weighting factors from May and September were used to
predict over mid-century and end-of-century habitat in April and
October, respectively.

To assess if arrival or departure day significantly changed over
the current 20 year period (2000–2019) or over temperature we
ran two linear models. The response variables were estimated
yearly arrival day relative to May 1st and estimated yearly
departure day relative to September 1st, for the arrival and
departure model, respectively. The fixed effects for the arrival
model were overall mean May water temperature in Chesapeake
Bay each year and year, while the fixed effects for the departure

model were overall mean September water temperature in
Chesapeake Bay each year and year. Linear mixed effects models
were run to determine if arrival and departure dates differed
over the contemporary, mid-century, and end-of-century time
periods using the nlme package (Pinheiro et al., 2013). For these
models, the response variables were again estimated arrival day
and estimated departure day for each year, for the arrival and
departure model, respectively. The fixed effect was time period,
while the random effect was year (2000–2019) in these models.
Tukey’s post-hoc tests were run to determine differences among
the time periods. All statistics were evaluated at a significance
level of α= 0.05.

Habitat Suitability
The yearly 2D predicted ratio surfaces generated from the two
summer periods (May 15–September 30; June 1–August 31)
for each of the three time periods (contemporary, mid-century,
and end-of-century) were used to calculate habitat suitability
values for Chesapeake Bay. The predicted ratio values greater
than 1 were summed over Chesapeake Bay for each year of
each time period for each summer period to get yearly total
habitat suitability index values. A linear mixed effects model
was used to determine whether total habitat suitability index
changed through each long term time period (contemporary,
mid-century, and end-of-century) for the two summer periods
(May 15–September 30; June 1–August 31). An interaction was
used between these two fixed effects, long term time period and
the two summer time periods, while the response variable was
total habitat suitability index each year. Year was a random
effect in this model. All R code for modeling and statistical
analyses can be found in the Supplementary Material.

RESULTS

Data Retrieval
We received eight data loggers from fishermen. These eight
fish ranged from 78.7 to 139.7 cm total length (mean ± SD:
106.0± 18 cm) (Table 1). Days-at-liberty within Chesapeake Bay
ranged from 26 to 151 days (92 ± 46) days, yielding a total of
736 days of data.

TABLE 1 | Tag information for cobia tagged with a G5 data storage tag (Cefas),
including total length when tagged, tagging date, and days-at-liberty
in Chesapeake Bay.

Animal # Total length (cm) Date tagged Days-at-liberty

A14128 78.7 2017-07-08 57

A14158 139.7 2018-06-01 26

A14135 100 2018-06-28 151

A14144 120.1* 2018-08-05 104

A14148 104.1 2018-08-05 114

A14149 108 2018-08-05 98

A14152 110 2018-08-15 143

A14164 101.6 2018-09-26 43

*Calculated from measured fork length using unpublished total length-fork length
conversion equation.
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Habitat Model
Habitat suitability ratios were generated for each arrival month
(May and June), for each departure month (August and
September), and for all summer months combined. During
arrival and departure months, cobia preferred temperatures from
21.5 to 27◦C and 24.5 to 31◦C, respectively. Over the entirety
of the summer cobia preferred 22.5–28◦C (Figure 2). Depth
weighting factors were generated for each arrival and departure
month and for all summer months combined. During early
arrival (May) cobia preferred 0–6 m, but later into June cobia
selected 0–9 m. During early departures (August) cobia were
observed between 0 and 9 m, but during September cobia were
most common at slightly deeper depths (0–12 m). When all
summer months were combined, cobia were observed most
frequently at depths between 0 and 9 m (Figure 3).

Arrival/Departure
Estimated cobia arrival time fluctuated over the last 20 years.
Although there was no significant trend (t = −0.52, p > 0.05),
in more recent years it appears that cobia have been arriving
earlier in the year. For example, the mean estimated arrival time
between earlier years (2000–2004) was 29.2 days since May 1st
(all arrival values from here on are relative to May 1st), but
23.0 days for later years (2015–2019) (Figure 4A). Estimated
arrival time significantly decreased (t = −5.4, p < 0.001) as
average May temperature increased. Specifically, for every ◦C
increase, arrival time occurred 8.6 days earlier in the Spring
(Figure 4B). Arrival time significantly differed [F(2, 38) = 106.6,
p < 0.001] among time periods (contemporary, mid-century,
end-of-century; Figure 4C), where contemporary mean arrival
time (mean ± SD; 27.8 ± 9.0 days) significantly differed from
mid-century arrival time (16.0 ± 7.9 days; p < 0.05) and end-of-
century arrival time (−1.5 ± 7.0 days; p < 0.05). Arrival times
for mid-century and end-of-century also significantly differed
(p < 0.05).

Similar to arrival time, estimated departure time relative to
September 1st (all departure values from here on are relative
to September 1st) also varied over the last 20 years, and
there was no significant trend (t = 0.23, p > 0.05). Despite
this, the mean estimated departure time between earlier years
was 3.0 days since September 1st, but 15.4 days for later
years (Figure 5A). As average September temperature increased,
estimated departure time significantly increased (t = 6.0,
p < 0.001), where for every ◦C increase, departure time occurred
9.4 days later in the Fall (Figure 5B). Estimated departure
time also significantly differed among time periods [F(2,

38) = 154.6, p < 0.001; Figure 5C]. Specifically, contemporary
mean departure time (10.1 ± 8.3 days) significantly differed
from mid-century (27.7 ± 10.6 days; p < 0.05) and end-
of-century (45.2 ± 6.7 days; p < 0.05). Departure times for
mid-century and end-of-century significantly differed as well
(p < 0.05).

Habitat Suitability
An interaction between long term time period (contemporary,
mid-century, end-of-century) and the two summer time periods

FIGURE 2 | Habitat suitability ratios from 16 to 32◦C for each arrival month
(May and June), departure month (August–September), and all summer
months combined for when cobia were inside Chesapeake Bay
(May–September). The ratios were developed from dividing the habitat use
densities (red lines) by the habitat availability densities (blue lines) at each
temperature during times when cobia were inside Chesapeake Bay. Dashed
lines is at a ratio of 1.0.

(May 15–September 30; June 1–August 31) significantly affected
total habitat suitability index [F(2, 95) = 25.1, p < 0.001].
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FIGURE 3 | Depth weighting factors for each 3 m depth bin for each arrival month (May and June), departure month (August and September), and all summer
months combined (May–September).

FIGURE 4 | Estimated arrival plots. (A) Estimated arrival time of cobia each year from 2000 to 2019. (B) The dots represent estimated cobia arrival times over mean
May temperatures in Chesapeake Bay, while the line and shaded region represent model output and uncertainty. (C) Mean estimated cobia arrival time among
climatology (i.e., contemporary), mid-century (MC), and end-of-century (EC) time periods. Different lower case letters indicate a statistical difference between time
periods.

The most suitable habitat during June-August for cobia in
Chesapeake Bay spans from north of the James River all the
way to the northern extent of the study region (north of the
Potomac River) for the contemporary time period (Figure 6A).
Despite the lack of a significant difference between the total
habitat suitability index for the two summer time periods
(p > 0.05; Figure 7), mean habitat suitability does appear
to decline slightly throughout most of the Chesapeake Bay
cobia region when we incorporated days in May and all of
September (Figure 6D). Mean habitat suitability from June-
August, during mid-century shifted further south, closer to the
mouth compared to the contemporary period (Figure 6B). In
addition, the total habitat suitability index significantly decreased
between the contemporary and mid-century periods for June-
August (p < 0.05; Figure 7). However, when assessing May

15–September 30 during mid-century, total habitat suitability
index did not decline relative to the contemporary period.
Although there is no significant difference, it does appear
that total habitat suitability index increased slightly by mid-
century (p > 0.05; Figure 7). This is also reflected in habitat
improvements over much of Chesapeake Bay (Figure 6E). Total
habitat suitability index also significantly differed between the
two summer periods during mid-century (p < 0.05; Figure 7).
For end-of-century, we project a significant decrease in suitable
cobia relative to mid-century for June-August (p > 0.05) and
May 15–September 30 (p > 0.05; Figure 7). This is reflected
in habitat loss throughout most of Chesapeake Bay and a shift
toward the bay’s mouth (Figures 6C,F). Total habitat suitability
index was also significantly lower for June-August compared to
May 15–September 30 (p < 0.05; Figure 7).
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FIGURE 5 | Estimated departure plots. (A) Estimated departure time of cobia each year from 2000 to 2019. (B) The dots represent estimated cobia departure times
over mean September temperatures in Chesapeake Bay, while the line and shaded region represent model output and uncertainty. (C) Mean estimated cobia
departure time among climatology (i.e., contemporary), mid-century (MC), and end-of-century (EC) time periods. Different lower case letters indicate a statistical
difference between time periods.

FIGURE 6 | Cobia habitat suitability within Chesapeake Bay averaged over years for the contemporary (A,D), mid-century (B,E), and end-of-century (C,F) time
periods. The first row is mean habitat suitability for June-August (a-c) and the second row is mean habitat suitability for May 15–September 30 (D–F).
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FIGURE 7 | Total habitat suitability index for cobia in Chesapeake Bay during contemporary, mid-century, and end-of-century time periods for each summer period
(Jun–Aug and May 15–Sep 30). Error bars represent standard deviation. Black symbols represent the mean total habitat suitability index values for June–August and
red symbols represent the mean total habitat suitability index values for May 15–September 30. Different lower case letters indicate a statistical difference among
time periods within a summer period. For example, in the Jun-Aug summer period all three times periods are different from one another. An * indicates a statistical
difference between summer periods within a time period.

DISCUSSION

This study presents the first attempt at describing the distribution
of cobia within Chesapeake Bay. We generated a depth integrated
habitat model to predict contemporary and future distributions
of cobia within Chesapeake Bay using temperature, dissolved
oxygen, and depth. By developing a novel model incorporating
3D habitat and physiology, we limit our model variables to those
that are available in 3D, but we felt it was more important
to incorporate depth than include other variables (many of
which are not available at a fine enough resolution) because
cobia use the entire water column. Although weighting and
summarizing by depth has its benefits (e.g., two-dimensional
output; patterns more easily discernable), the approach does have
some limitations. For example, there may be small pockets of
more suitable habitat at various depths (sub-gridscale) that are
not expressed in our results and thus could potentially lead to
an underestimation in some suitable habitat predictions. While
inhabiting Chesapeake Bay, cobia are highly driven by biotic
factors, like spawning and feeding, which were not included
in our model; however, we believe environmental variables
constrain cobia to certain areas in Chesapeake Bay, which
are expressed in our model output. Because of this, we only
assessed habitat suitability for the entire summer as a whole.
The phenology of cobia arrival and departure to Chesapeake Bay

appears to be cued by temperature, which then leads to inshore
spawning and foraging. Therefore, we believe our temperature
driven habitat model is justified in describing cobia phenology.
It is important to note that another limitation of this study is the
low sample size of cobia used in the model and that individuals
used in our model may not be a full representation of cobia
that summer Chesapeake Bay. An increase in sample size may
lead to shifts in estimated phenology and habitat suitability.
Despite this, our phenology estimates fell within one standard
deviation of actual departure and arrival days based on over 30
acoustic tagged cobia. Lastly, we also would like to reiterate that
the trends estimated from climate change projections are not
intended to represent shifts under any RCP scenario or GCM, but
more generally demonstrate cobia’s sensitivity to future oxygen
and temperature conditions likely to occur around mid- and
end-of-century.

Contemporary Trends
It is clear temperature is a major driver of cobia arrival to and
departure from Chesapeake Bay. Over the last 20 years, when
temperatures were warmer in May, cobia arrived earlier. Tag
pop off locations and modeling suggest that cobia overwinter
offshore along the U.S. shelf from North Carolina to Florida
(Crear et al., 2020b; Jensen and Graves, 2020). Although cobia
are unaware of the temperature in Chesapeake Bay when they
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are in their overwintering offshore waters, warm temperature
cues on the shelf are most likely reflected in Chesapeake Bay
as well. This has been observed in mackerel, which arrived to
their spawning grounds earlier when sea surface temperature was
warmer at a rate of −15 ± 12.1 days/◦C (Jansen and Gislason,
2011). Although the trend was not significant, it does appear that
when comparing estimated arrival time approximately 20 years
ago to today, cobia may be migrating into Chesapeake Bay earlier
in recent years. Earlier migrations have been recorded in various
tuna species as well, which have migrated to feeding grounds up
to 14 days earlier over a 25 year period (Dufour et al., 2010).

Once cobia enter Chesapeake Bay in May, the occurrence
of high ratio values generated from the habitat use and habitat
availability densities and the use of shallower habitats suggest that
cobia are likely seeking out the warm shallow habitats until some
of the deeper areas (>6 m) warm up. During the main summer
months in Chesapeake Bay (June–August), most of the areas in
southern Chesapeake Bay appear to be suitable for cobia. The
suitability of most of these areas allow cobia to spawn and feed
freely without being restricted by less optimal conditions, except
for areas that are excluded as a result of low oxygen. However,
because cobia have a high hypoxia tolerance the negative impacts
of low oxygen is likely minimal. These favorable conditions are
ideal for cobia, which are indeterminate batch spawners and are
capable of spawning multiple times over the spawning season
(Brown-Peterson et al., 2001; Lefebvre and Denson, 2012). To
further define cobia habitat use in estuaries, it would be useful
for future studies to examine the relationships between cobia
and the location of bathymetric features, manmade structure
(e.g., buoys and pilings), salinity, tidal currents, and bait schools
(e.g., menhaden) all of which are thought (based on anecdotal
evidence) to influence cobia movements while inshore.

Typically, once spawning is complete, individuals have
foraged, and temperatures cool in Chesapeake Bay, cobia begin
their migration out onto the shelf. However, when temperatures
in September are warmer than usual, cobia remain in Chesapeake
Bay longer. Similar to arrivals, despite no significant trend
over time, it appears that in recent years cobia are leaving
Chesapeake Bay later compared to 20 years ago. Although we
did not directly look at changes in dissolved oxygen levels
on cobia phenology, it is likely not a major driver because
of cobia’s hypoxia tolerance and the lack of large hypoxic
zones during the months they arrive and depart to and
from Chesapeake Bay. Overall, these results suggest that cobia
phenology has already been impacted by climate change over
the last 20 years.

Future Trends
Phenology trends observed over the last 20 years are projected
to extend more rapidly in the future as climate change
contributes to even warmer conditions. By mid-century and
end-of-century, conditions in Chesapeake Bay may allow cobia
to arrive by mid-May and late April/early May on average,
respectively. Furthermore, departure time is predicted to extend
to the end of September and mid-October by mid-century and
end-of-century, respectively. When combining the estimated
earlier arrival and later departure, our results indicate that

cobia may increase their residence time in Chesapeake Bay
by an extra 30 days by mid-century and 65 days by end-of-
century. Despite this large increase in the number of days,
cobia may be faced with more unsuitable habitat during the
months when temperatures are the warmest. When combining
more favorable conditions during the last 2 weeks of May and
all of September, suitable habitat does not change much by
mid-century. If climate change continues at its current rate,
suitable habitat is expected to decrease significantly and shift
closer to the Chesapeake Bay mouth by the end-of-century,
even when incorporating the second half of May and all
of September. Further, these trends should be interpreted as
the average summer cobia distribution, which in turn, could
potentially hide periodic marine heatwave events that could
result in displacement and further habitat reduction. Future
decline in suitable habitat has similarly been projected for
many other coastal species (Albouy et al., 2013; Brown et al.,
2016). For example, an increase in sublethal temperatures in
the San Francisco Estuary as a result of climate change will
likely cause behavioral avoidance of these temperatures and
considerable habitat reduction for the Delta smelt (Hypomesus
transpacificus) (Brown et al., 2016).

Although habitat shifts and community composition has
favored warm-adapted species (Howell and Auster, 2012), the
predicted occurrence of more extreme temperatures has the
capability to negatively impact warm-adapted species like cobia.
For example, if cobia migrate into Chesapeake Bay earlier,
spawning may occur earlier. This could impact the survival
of eggs and larvae, which depend on the timing of specific
temperatures and favorable primary production conditions
(Durant et al., 2007). On the other hand, if spawning duration
is extended and phytoplankton blooms align, larval survival
may improve (Kristiansen et al., 2011). If substantial spawning
habitat is lost for estuarine species like cobia, we may see
populations decline. We may also see species shift their spawning
habitat to more poleward estuaries or offshore habitat where
conditions are more favorable for spawning adults and larvae.
Recent genetic studies suggest that cobia already have a separate
offshore spawning group (Darden et al., 2014; Perkinson et al.,
2019), meaning cobia have the ability to spawn in offshore
waters. Furthermore, Crear et al. (2020b) found that over the
next 60–80 years, there will continue to be an increase in
the proportion of suitable cobia habitat in state waters (within
3 nautical miles of shore) from Maryland to Massachusetts
during the summer spawning months. Likewise, non-warm-
adapted species like, Northeast Artic cod (Gadus morhua)
have already shifted their spawning habitat further north over
the last half a century, a behavior likely linked to climate
change (Sandø et al., 2020). If cobia shift their spawning
habitat further north or extend their time inshore, they may
subsequently shift their overwintering grounds to be closer to
their spawning habitat. Because cobia offshore migrations are
driven by temperature, we hypothesize that their overwintering
grounds are likely plastic. Therefore, although suitable habitat
may still be available further south in the winter (Crear et al.,
2020b), it may be less energetically costly to migrate off the
shelf toward the Gulf Stream instead of migrating to shelf waters
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between North Carolina and Florida. If further migrations are
made, females may be required to divert energy away from egg
production to compensate. Although we talk about these impacts
being decades away, some of these hypotheses can be tested
today as marine heatwaves become more prevalent along the
Northeast Shelf.

Cobia may have the ability to behaviorally adapt to
climate change within Chesapeake Bay. The fact that cobia
could withstand water temperatures as warm as 32◦C (Crear
et al., 2020a), suggests that if waters warmed throughout
Chesapeake Bay, areas with water temperatures up to 32◦C
could still be habitable or maybe even suitable. Meaning,
temperatures between 22.5 and 28◦C may be preferred, but
if unavailable, cobia could still inhabit warmer temperatures.
If this is the case, our projected future habitat suitability
maps may underestimate the amount of suitable habitat in
Chesapeake Bay. If this is possible, it is still unknown whether
other essential functions like growth or reproduction could
be compromised.

Management Implications
Hundreds of thousands of recreational fishermen enjoy fishing
for cobia each year in Virginia alone and it appears this number
has increased in recent years (B. Watkins pers. comm.). As
the amount of time cobia spend in Chesapeake Bay increases
with climate change, management will need to be prepared
for catch increases. In recent years, the fishery in Virginia has
been open from June 1 to various dates in September. If the
fishing season dates remain the same, we may expect to see
an increase in the catch and release of more cobia in May
and more cobia retained later in the season. Our study and
a previous study (Crear et al., 2020a) suggest cobia have the
capacity to withstand near term (+30 years) impacts of climate
change, which is a good sign for a fishery that has grown over
the last decade.

A dynamic approach to management may prepare managers
for the early migrations to or late departures from Chesapeake
Bay. Dynamic management provides managers with the
opportunity to adjust managed areas temporally and spatially
in time when our coastal waters are changing faster than we
are accustomed to (Maxwell et al., 2015; Dunn et al., 2016;
Welch et al., 2019). Specifically, as the predictability of coastal
ocean models improve, we will have the capacity to couple them
with our cobia habitat model to project the timing of cobia
migrations months to seasons in advance. This information
could be used to guide the timing of the fishing season in
Virginia and also influence allocation of cobia among states
on a broader scale. As fish behaviorally adapt to changing
water conditions, it is critical that management be prepared
to adapt as well.
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Fishes are known to use deep-sea coral and sponge (DSCS) species as habitat, but
it is uncertain whether this relationship is facultative (circumstantial and not restricted
to a particular function) or obligate (necessary to sustain fish populations). To explore
whether DSCS provide essential habitats for demersal fishes, we analyzed 10 years of
submersible survey video transect data, documenting the locations and abundance of
DSCS and demersal fishes in the Southern California Bight (SCB). We first classified
the different habitats in which fishes and DSCS taxa occurred using cluster analysis,
which revealed four distinct DSCS assemblages based on depth and substratum. We
then used logistic regression and gradient forest analysis to identify the ecological
correlates most associated with the presence of rockfish taxa (Sebastes spp.) and
biodiversity. After accounting for spatial autocorrelation, the factors most related to
the presence of rockfishes were depth, coral height, and the abundance of a few key
DSCS taxa. Of particular interest, we found that young-of-the-year rockfishes were more
likely to be present in locations with taller coral and increased densities of Plumarella
longispina, Lophelia pertusa, and two sponge taxa. This suggests these DSCS taxa may
serve as important rearing habitat for rockfishes. Similarly, the gradient forest analysis
found the most important ecological correlates for fish biodiversity were depth, coral
cover, coral height, and a subset of DSCS taxa. Of the 10 top-ranked DSCS taxa
in the gradient forest (out of 39 potential DSCS taxa), 6 also were associated with
increased probability of fish presence in the logistic regression. The weight of evidence
from these multiple analytical methods suggests that this subset of DSCS taxa are
important fish habitats. In this paper we describe methods to characterize demersal
communities and highlight which DSCS taxa provide habitat to demersal fishes, which
is valuable information to fisheries agencies tasked to manage these fishes and their
essential habitats.

Keywords: essential fish habitat, multivariate analysis, indicator species, submersible survey, rockfishes
(Sebastes), spatial autocorrelation
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INTRODUCTION

It is well established that fishes co-occur with deep-sea corals
and sponges (DSCS), but it is debated whether this relationship
is facultative (circumstantial and not restricted to a particular
function) or obligate (necessary for sustainability because fishes
use them for spawning, breeding, feeding, or growth to maturity).
If it is the latter, then DSCS meet the definition of essential fish
habitat (Rosenberg et al., 2000), and these sensitive taxa would
require protection from human activities that may cause them
damage (e.g., benthic trawling). Some researchers have concluded
that fishes are found among DSCS species in the same proportion
as other structures, suggesting that DSCS are simply facultative
habitat (Freese and Wing, 2003; Auster, 2005; Tissot et al., 2006;
Edinger et al., 2007). In contrast, others have suggested that
some DSCS species are essential fish habitat because they provide
fishes nursery and rearing grounds (Stone, 2006; Harter et al.,
2009; Baillon et al., 2012), trophic interactions (George et al.,
2007; Quattrini et al., 2012), shelter (Du Preez and Tunnicliffe,
2011; Stone, 2014), and increased population growth (Foley et al.,
2010). These conflicting conclusions have resulted in a call for
more quantitative analyses designed to compare the associations
between demersal fishes and DSCS species while controlling for
important covariates such as depth and substratum type (Auster,
2005; Tissot et al., 2006).

Due to the difficulty in observing ecological interactions
in deep-sea habitats, it is a challenge to examine associations
between fishes and structure-forming invertebrates (i.e., coral
and sponges) on the appropriate scale. Without the ability
to observe in situ ecological interactions, a few studies have
defined associations between fishes and DSCS as co-occurrence
in trawl catches (Edinger et al., 2007; D’Onghia et al., 2010).
This definition can be overly broad because trawls integrate
catches through large areas, potentially with different substratum
types, and do not provide any information on the proximity
of the fishes and DSCS species. In addition, trawling focuses
on low-relief mud and sand sediments, while most corals and
sponges occur in high-relief rocky substrata. Other catch data,
such as from long-lines and gillnets, can yield information on the
distribution and abundance of fishes in deep-sea coral habitats
(Husebø et al., 2002; D’Onghia et al., 2012). These capture
techniques have the benefit of being more spatially explicit if the
lines also coincidentally snag a piece of coral. However, these
sampling methodologies are much more size selective for fishes
and depend on species movement and foraging behaviors. As
a result, catch data only reveal a limited sample of the fishes
residing within rocky habitat.

More recently, scientists have gained the ability to observe
deep-sea habitats in situ using video collected with occupied
submersibles, remotely operated vehicles (ROVs), and other
camera systems. Underwater video collected with these platforms
is a vast improvement over previous collection methods, because
we can observe the locations of fishes and DSCS relative to one
another. These data generally are collected along line transects
through habitats and, like many sampling methods, provide
only a ‘snapshot’ of the associations between fishes and DSCS
(Sward et al., 2019). These data required a new definition of

what constitutes an association between fishes and structure-
forming invertebrates. Because proximity is the most apparent
evidence of association, many studies have defined the association
between fishes and DSCS as being located within 1 m of each
other (Krieger and Wing, 2002; Stone, 2006). This definition
may be overly restrictive as fishes generally have home ranges
thousands of times larger than 1 m. For example, blue (Sebastes
mystinus) and black (S. melanops) rockfishes observed with
acoustic telemetry had home ranges of approximately 0.2–
0.25 km2 (Green et al., 2014). Thus, we propose a broader
definition of fish-invertebrate associations, which comprises
fishes and DSCS found within the same patch of habitat, defined
as having the same primary (>50% cover) and secondary (>20%
cover) substratum type. This less restrictive definition assumes
that fishes may be using the DSCS within the same habitat
even if they were not observed in close proximity during the
relatively brief observation period of the survey. Two potential
explanations for why this definition may be more reasonable are:
(1) some fishes may have a core area within their home range and
use DSCS taxa only for a specific function (e.g., predator refuge
or feeding) (Jorgensen et al., 2006), (2) fishes may be constantly
moving throughout their home range looking for food resources
(Reese, 1989), which makes the probability of observing them
near an individual DSCS during a survey rather low.

Another challenge in examining associations between fishes
and structure- forming invertebrates has been interpreting
complex datasets that comprise multiple fish and invertebrate
species. The need to reduce complexity has often led researchers
to focus on individual species of interest (Fosså et al., 2002;
Costello et al., 2005; Harter et al., 2009) or to ignore individual
species and instead look at species assemblages and species
diversity (Krieger and Wing, 2002; Auster, 2005; Ross and
Quattrini, 2009). While both of these approaches provide
valuable results, they can miss potentially important relationships
between individual fish and invertebrate species. Focusing on
individual “charismatic” coral species such as the reef-building
Lophelia pertusa [(syn. Desmophyllum pertussum, Addamo et al.,
2016); Fosså et al., 2002; Costello et al., 2005; Lessard-Pilon et al.,
2010; Addamo et al., 2016] and Oculina varicosa (Harter et al.,
2009) is intuitive because these are often the dominant structure-
forming deep-sea invertebrate taxa resident in many habitats.
However, restricting the analyses to these species results in
overlooking many other structure-forming taxa such as sponges.
Sponges can be the most abundant invertebrate megafauna in
areas of the deep sea (Stone, 2006; Buhl-Mortensen et al., 2010;
Baillon et al., 2012), and could therefore provide important
habitat to various fish populations.

In this study, we used multiple analytical techniques to
examine the associations between fishes and DSCS taxa, observed
with in situ video collected by submersible in the Southern
California Bight (SCB). Our first objective was to classify
the SCB demersal habitat into different groups based on the
predominant demersal DSCS communities. We used several
multivariate methods to classify habitats into different DSCS
assemblages. Classifying the different community assemblages is
valuable to provide a measure of how much connectivity there
is between different habitat types (Bowden et al., 2016). Our
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second objective was to identify which DSCS taxa co-occurred
with demersal fish taxa of management and conservation concern
while controlling for potential confounding variables, such as
depth and substratum type. To achieve this objective, we used
two approaches: (1) logistic regression analysis that allowed
us to look at individual relationships between fish taxa and
DSCS taxa while controlling for spatial autocorrelation and (2)
gradient forest analysis that allowed us to look at how DSCS
taxa affected fish biodiversity. For both of these methods we
also included additional ecological covariates to account for the
effect of depth and substratum type. This approach provided
a means to test the hypothesis that the relationship between
DSCS and demersal fishes was either obligate or facultative. If
the relationship was facultative, we would not expect any DSCS
taxa to be associated with demersal fishes after controlling for
the other ecological covariates. In contrast, if the relationship
was obligate, this approach allowed us to identify the DSCS taxa
that specific demersal fish taxa were associating with more than
would be expected based on the observed depth and substratum
type. Identifying which DSCS taxa might provide essential fish
habitats makes it more feasible to locate those areas that are
most vulnerable to potential damaging activities such as bottom

trawling, petroleum exploitation, and cable laying (Sundahl et al.,
2020), and to prioritize these areas for protection.

MATERIALS AND METHODS

Data Collection
The SCB is one of the most heavily exploited areas on the
west coast of North America, having been commercially and
recreationally fished over the past 100 years (Love, 2006). More
than 5,000 benthic invertebrate species and approximately 500
fish species inhabit this region, likely because the SCB comprises
ocean conditions representative of both the northern Oregonian
and southern San Diegan zoogeographic provinces and because
a wide variety of marine habitats are found in this area (Dailey
et al., 1993). Much of the fish diversity within the SCB is
dominated by rockfishes (Love et al., 2002), which are also heavily
targeted by both recreational and commercial fishers. To protect
this diversity of life, many areas within the SCB are now protected
from some, or all, types of fishing.

We conducted 497 underwater video transect surveys of
demersal communities throughout the SCB (Figure 1) using

FIGURE 1 | Map of the study area of the Southern California Bight off the coast of California (United States), with dive locations (red points) and 200 m depth
contours (gray lines).
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human occupied submersibles (Delta and Dual Deepworker)
during autumn (September, October, and November) between
2002 and 2011 (Supplementary Table 1; see Tissot et al., 2006;
Love et al., 2009 for detailed methods). We used the Delta (n = 398
transects, depths: 22–342 m) and the Dual Deepworker (n = 99
transects, depths: 95–437 m) submersibles to conduct transects
within 1 m of the seafloor at speeds of 0.5–1.0 knot. We restricted
our analysis to transects deeper than 50 m, which is how Roberts
et al. (2009) defined deep water. The scientific observer within
the submersible verbally recorded the identification, number, and
size of all fishes occurring within a strip 2–2.5 m along each
transect in real time onto an externally mounted video camera
oriented in the same direction as the observer. The video camera
on the Delta submersible was a Sony TR-81 Hi-8 camcorder with
400 TVL resolution. The video camera on the Dual Deepworker
was a Sony HVR Z1U digital camera with 1080i resolution.
The video footage for each transect was later reviewed in the
laboratory, and sponges and corals were identified, counted, and
measured along the transects. Size of fishes (total length, cm)
and DSCS (total height and width, cm) were estimated using
reference light points from two parallel lasers installed 20 cm
apart on either side of the externally mounted video camera
positioned above the middle viewing-porthole on the starboard
side of the submersible.

Seafloor habitat was characterized during the subsequent
video analysis as the extent of substratum types and depth along
each transect. Substratum types, comprised of pinnacle rock,
boulder, rugose rock, cobble, gravel, pebble, flat rock, sand,
and mud, were characterized along each transect by recording
primary (>50% of the area) and secondary (>20% of the area)
percent cover of each type based on review of the seafloor habitat
visible in the video footage. We refer to each unique combination
of primary and secondary substratum types along each transect
as a patch. For the analyses, we also quantified the substratum
types into a relative measure of “relief” based on the rough
approximations used to classify each habitat. To do this, we
extracted the minimum relief for each substratum type based on
Greene et al. (1999; Supplementary Table 2) and summed the
values of the primary and secondary habitat relief weighted by
their percent cover (i.e., 0.5 for primary and 0.2 for secondary).
Thus, we converted the categorical habitat classifications into a
relative continuous substratum relief measurement.

Analysis Overview
To characterize associations between DSCS assemblages and
demersal fishes, we conducted a series of multivariate analyses
followed by fitting logistic regressions and gradient forest models
to examine ecological correlates of fish presence. All analyses
were conducted using the R programming language (R Core
Team, 2019). We first used a cluster analysis to group habitats
based on their DSCS assemblages. We then used both an
indicator species analysis developed by Dufrene and Legendre
(1997) and the “NbClust” package (Charrad et al., 2014) in
R to determine the appropriate number of clusters necessary
to describe the DSCS and fish assemblages. We then used a
combination of random forest and logistic regression models
to identify which physical and biological factors had the most

influence on rockfishes (Sebastes spp.) density, distribution, and
presence as well as to determine if any DSCS and fish taxa were
statistically associated with each other while accounting for other
physical (e.g., depth and substratum type) covariates. Finally, we
used a gradient forest analysis to identify which of the ecological
correlates used in the logistic regression analysis had the largest
influence on fish biodiversity.

Cluster Analysis
To describe the DSCS assemblages, and improve the
interpretability of the cluster analysis, we combined DSCS
abundances for all patches of the same substratum type within 50
m depth bins. This unique combination of primary substratum
(>50%), secondary substratum (>20%), and depth (hereafter
referred to as a habitat unit) was the cluster analysis sample
unit. For example, all patches that had boulder as a primary
substratum type, rock as a secondary type, and were located at a
depth between 100 and 150 m comprised the BR100 habitat unit.
These habitat units were not spatially or temporally explicit (i.e.,
they were comprised of patches dispersed throughout the sample
area and sampled anytime between 2002 and 2011), therefore we
did not account for spatial or temporal autocorrelation at this
stage in our analysis.

We then conducted a hierarchical cluster analysis on
the Hellinger-transformed DSCS density data (Legendre and
Gallagher, 2001). We calculated the density of DSCS by
dividing the number of observed DSCS by patch area. Patch
area was estimated as the length of each patch multiplied
by transect width. Prior to conducting this cluster analysis,
we removed four DSCS taxa that were not identified to a
sufficient taxonomic level to contain any useful information
(Supplementary Table 3). We used the Hellinger transformation
for the cluster analysis because it had the best properties
compared with other common multivariate transformations such
as Wisconsin, frequency, range, and ubiquity (McCune et al.,
2002). This conclusion was based on the “rankindex” function in
the R package “vegan” using the Morista-Horn distance metric
(Oksanen et al., 2017). Legendre and Gallagher (2001) showed
that the Hellinger transformation had good statistical properties
when compared to other common transformations used in
multivariate transformation. The Morista-Horn distance metric
is the recommended distance measure for ecological data due to
its relative independence from sample size (Wolda, 1981). We
conducted the cluster analysis using the “gaverage” agglomerative
clustering algorithm in the R package “cluster” (Belbin et al.,
1992; Maechler et al., 2017). The “gaverage” algorithm was
referred to by Belbin et al. (1992) as the “flexible beta” and
uses the Lance-Williams formula to specify how dissimilarities
are computed. We used the default beta value of −0.1 as
recommended by Belbin et al. (1992) for a general agglomerative
hierarchical clustering strategy.

We next employed both the indicator species method and
the “NbClust” package (Charrad et al., 2014) to determine how
many clusters most appropriately described our observed data.
We used the indicator species method of Dufrene and Legendre
(1997) to determine which species were more often associated
with a given cluster of habitat units then would be expected
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by chance. From the indicator species method, we were able
to identify species found primarily in one cluster and present
within the majority of habitat units of that cluster. Although
taxa could be present in multiple clusters, they could only be
an indicator species for a single cluster. This method can be
used to select an appropriate number of clusters by sequentially
increasing the number of clusters and quantifying the total
number of indicator species that have a significant (p < 0.05, via
Monte Carlo) association with any single cluster (McCune et al.,
2002). Because our primary interest was identifying associations
between fishes and DSCS assemblages, we quantified the number
of fish taxa that were indicator species for a cluster of habitat
units defined by the DSCS assemblages. As with the DSCS, prior
to the analysis we removed fish taxa that were not demersal or
were not identified to a sufficient taxonomic level to contain any
useful information (n = 14, Supplementary Table 3). We then
selected the number of habitat unit clusters that had the most
significant indicator species (McCune et al., 2002). This analysis
was conducted using the “multipatt” function in the R package
“indicspecies” (De Caceres and Legendre, 2009).

We also used the “NbClust” function (Charrad et al., 2014)
to explore the number of clusters recommended by other
indices. The “NbClust” function uses 30 indices for determining
the number of clusters by varying different combinations of
clusters, distance measures, and clustering methods. We used
the “kmeans” cluster method because (1) “gaverage” method was
not available in “NbClust” and (2) it is an iterative approach to
forming clusters and therefore less susceptible to chaining, or
forming large clusters from poorly separated groups.

Logistic Regression
Our next objective was to identify which DSCS and rockfish
taxa were associated with each other, and our first step was
to use logistic regression models to estimate the probability of
presence for individual fish taxa as a function of biotic and
abiotic covariates in each habitat patch. In contrast to the cluster
analysis, where our goal was to identify broad-scale assemblage
associations, we used each individual patch as the sample unit
for this analysis to ensure that any observed relationships were
among fishes and DSCS in relatively close spatial proximity.
When examining fish-habitat associations, both the spatial scale
of the experimental unit and the choice of statistical model are
important in determining the outcome (Sharma et al., 2012).

Because individual patches were our sample unit, we wanted
to account for any potential spatial autocorrelation in fish
distributions. Therefore, we fit our models using a hierarchical
Bayesian framework that easily allowed us to add complexity
and determine if the added complexity improved model fit. We
fit our logistic regression models using the integrated nested
Laplace approximation implemented with the R-INLA package
(Lindgren and Rue, 2015). The R-INLA package uses the Matérn
correlation function to estimate a spatial covariance matrix based
on the distance between two sample locations and two estimated
parameters (Zuur et al., 2017). The two estimated parameters
are k, which is related to the range of spatial dependency, and
s, which is a spatial variance parameter. To determine if spatial
autocorrelation improved model fit, we compared the global

model (the full model with all potential ecological covariates)
with and without spatial autocorrelation using Watanabe’s
information criterion (WAIC; Watanabe, 2013). The WAIC value
of the model that included spatial autocorrelation had to be more
than 4 units lower than the non-spatial model for the spatial
model to be selected as the most parsimonious.

Potential ecological covariates included in the model were
specific to each patch and included depth, temperature, salinity,
substratum, percent DSCS cover, DSCS density, mean DSCS
height, and the density of each DSCS taxon. Each of these
covariates was selected a priori based on their hypothesized
influence on fish presence. Percent DSCS cover was calculated
as the total width of all DSCS species observed within a patch
divided by the patch area. Although it is common to include
measures of bathymetry to derive seafloor characteristics, such
as the bathymetric position index (BPI), we chose to only use
observations collected in situ and, thus, used our estimate of
“relief” from the primary and secondary substratum type. Prior
to fitting models, we examined the densities of all DSCS within
the patches to determine if there was a minimum habitat patch
size where DSCS densities might be biased. Based on this analysis,
we removed all patches smaller than 3 m2 (Supplementary
Figure 1). Also prior to fitting models, we used pairwise Pearson
correlations to quantify collinearity among variables and selected
a single variable from any pair with a correlation over 0.7.
Based on this analysis, we excluded temperature and salinity
as covariates because they were collinear with depth. We also
excluded any DSCS taxa that were observed in less than 1% of
patches to avoid potential analysis issues that could be caused by
small sample sizes.

Due to the large number of potential DSCS taxa that were
candidates, we decided to use a random forest analysis as an
initial screening method to eliminate ecological covariates that
had a low likelihood of association with fish presence. To quote
from Ellis et al. (2012), “a random forest (Breiman, 2001) is
an ensemble of a large number of regression (or classification)
trees, in which each tree is fit to a bootstrap sample (i.e., with
replacement) of the observations, and each partition within a
tree is split on the best of a random subsample of the predictor
variables.” Random forests have generally performed better than
other approaches to examine species distributions (Prasad et al.,
2006) as well as fish-habitat relationships (Knudby et al., 2010).
To account for the spatial nature of our analysis, we used a
recently developed spatial extension of the random forest that
accounts for the spatial dependency and heterogeneity in the data
(Georganos et al., 2019). Although random forest is a valuable
method for ranking relative variable importance, it is difficult
to identify individual relationships between taxa. Because our
ultimate goal was to provide managers with a prioritized list of
DSCS taxa that were associated with fish taxa, we decided to
use the random forest as an initial screening and use the logistic
regression to identify the specific taxa that were most associated
with the presence of individual fish taxa. After some preliminary
examination of the data, we arbitrarily used two criteria to screen
variables based on the spatial random forest results: (1) the
maximum increase in mean squared error (MSE) was greater
than 20 and (2) the percent increase in MSE (calculated as the
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increase in MSE multiplied by 100 divided by the MSE standard
deviation) was greater than 15%.

The response of the logistic regression model was whether or
not an individual fish taxon was present or absent within that
patch. Thus, for each taxon (i) in each patch (j) our global model
without spatial autocorrelation was:

Logit(fish pres)ij = Depthij + Substratumij + Coverij

+Heightij + Densityij + εij

Where the response was the logit transformed binomial of
whether or not a fish was observed within a patch, depth was
the mean depth of that patch measured along the transect,
substratum was the continuous relative relief as calculated from
the primary and secondary substratum types, Cover was the
percent DSCS cover, Height was the mean height of all DSCS in
each patch, Density was the densities of the DSCS taxa that could
be associated with that fish taxa after the random forest screening,
and e was the residual error. All fixed covariates were scaled (i.e.,
z-transformed) so that the model coefficient estimates were on
a similar scale.

Our global model with spatial autocorrelation was nearly
identical, but included an additional random effect (u) to account
for spatial autocorrelation:

Logit
(
fish pres

)
ij = Depthij + Substratumij + Coverij

+Heightij + Densityij + uij + εij

uij ∼ GMRF(0, 6)

The spatial autocorrelation term (u) is assumed to have a
random intercept and come from a Gaussian Markov random
field (GMRF) with mean 0 and covariance matrix S. The
covariance matrix (σ) is calculated using the two parameters (κ
and σ) estimated by the Matérn correlation function.

We used WAIC to conduct model selection and used area
under the curve to assess model performance. We conducted
our model selection in two stages to ensure that we accounted
for depth- and substratum-related covariates. Our first model
selection stage included only depth, substratum, DSCS height,
and DSCS cover (i.e., we excluded DSCS densities) and, thus,
compared a maximum of 16 models. The purpose of this
stage was to identify the physical and biological covariates that
accounted for as much variation in fish presence as possible prior
to including individual DSCS taxa. We selected the model with
the fewest covariates and a delta WAIC values less than 4. We
used Bayesian model averaging (Hoeting et al., 1999) if more than
one model was selected based on those criteria. In the second
model selection stage, we included all potential DSCS taxa in
addition to the physical and biological covariates selected in the
first stage. Covariate were considered important in estimating
whether or not a fish was present within a habitat patch based
on whether the 90% credible interval (90% CrI) of that covariate
included zero, indicating there was no effect of that covariate on
the response. The 90% CrI is the interval in which there is a 90%
probability that the true (unknown) parameter estimate exists,

given the observed data. During the second model selection stage,
we removed any covariates that had 90% CrI that overlapped with
zero. We refit the model after removing covariates with 90% CrIs
that included zero, and repeated this process until all covariates
had 90% CrIs that did not include zero or until there were no
significant covariates remaining. We used the area under the
receiver operating characteristic curve (AUC) method to gauge
the adequacy of the model relative to the observed data (Hosmer
et al., 2013).

We chose a subset of nine rockfish taxa that were either
of high commercial value or conservation concern to present
our logistic regression results. We downloaded commercial
landing data for 2000–2017 from the National Oceanic and
Atmospheric Administration website: https://foss.nmfs.noaa.
gov/apexfoss/. We calculated the average landings in California
for each species over that time period and merged those data
with our dataset. We then selected the top five most landed
rockfish species by pounds. In addition to those species, we
included bocaccio (S. paucispinis), canary rockfish (S. pinniger),
cowcod (S. levis), and young-of-year rockfish, as these taxa were
of conservation interest due to current (or recent) protection
status and the importance of young-of-year growth to maturity
in the definition of essential fish habitat. To visualize the effect of
each covariate, we calculated the probability of fish presence over
the observed range (1–99% quantiles) of an individual covariate
based on the logistic regression coefficient estimates and plotted
these values against the individual covariate. To isolate the effect
of that covariate on individual taxa, we constrained the other
covariates to median values. We refer to these figures as “response
plots.”

Gradient Forest Analysis
In addition to identifying the ecological covariates that are
associated with an increased probability of fish presence, we also
were interested in determining the covariates that increased fish
biodiversity. We used gradient forest analysis (Ellis et al., 2012),
which is a multivariate extension of the random forest method, to
quantify multispecies responses to environmental gradients and
to understand the drivers of differences in biodiversity (Pitcher
et al., 2012). This method first uses a random forest to determine
which covariates improve fit of the observations, and then uses a
novel algorithm to determine the importance of each predicator
for all species within a data set (Ellis et al., 2012; Pitcher et al.,
2012). The gradient forest component collates the splits from
each random forest along the gradient of each predictor (Ellis
et al., 2012; Pitcher et al., 2012). See Ellis et al. (2012) for further
statistical details regarding this approach. We ran the gradient
forest for all observed fish taxa in the same patches as the logistic
regression to determine which physical and biological variables
had the largest influence fish biodiversity.

RESULTS

Data Summary
There were general trends of primary substratum type and
biological community with depth. After removing 51 small
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patches (<3 m2) from the dataset, and 29 habitat patches that
were repeated in multiple surveys, we were left with 5144
habitat patches. We observed a mean of 10.53 ± 0.77 habitat
patches on each transect and the mean size of each patch was
72.00 ± 3.42 m2. The ratio of hard to soft primary substratum
types declined from 57% at 50 m to 33% at 200 m (Figure 2).
Between 200 and 350 m, the ratio of hard to soft substrata was
approximately 50%.

The number of observed DSCS taxa was dependent on both
substratum type and depth (Figure 3A). The highest number of
DSCS taxa occurred when both primary and secondary substrata
were hard. In these patches, the number of DSCS taxa peaked
between 250 and 300 m. Soft habitat patches had lower numbers
of DSCS taxa and did not co-vary with depth. There was a
similar relationship between percent DSCS cover and substratum
type and depth, although percent cover declined at deeper
depths, whereas the number of species stayed relatively constant
(Figure 3B). Patches dominated by hard substrata had the lowest
DSCS cover at shallow and deep depths, with the peak DSCS
cover between 200 and 250 m (Figure 3B). In contrast, DSCS
height was greatest in soft substratum patches and declined with
depth in all substratum types (Figure 3C). This was primarily the
result of sea pens (Pennatulacea), which were among the tallest
DSCS taxa observed (Table 1) and were abundant in the soft
substratum patches. The density of fishes was greatest at shallow
depths in hard substrata. As with DSCS height, fish density
declined with depth (Figure 3D).

Cluster Analysis
The indicator species and “NbClust” methods suggested that our
data was best described by four to six clusters (Figure 4). Clusters

were defined by the density of DSCS taxa (matrix columns,
n = 32) within each habitat unit (matrix rows, n = 213). Using the
indicator species method, the maximum number of species was
observed with either four or five clusters (Figure 4A). Eight of the
indices from “NbClust” indicated that two clusters best describe
our data, which we suspect was driven by difference between
shallow and deep DSCS communities (Figure 4B). However,
based on our ecological knowledge, we believe there are more
differences in DSCS communities than those based simply on
depth. The second mode from “NbClust” was at six clusters
(Figure 4B), which was similar to that from the indicator species
approach. Upon further examination, there was no ecological
difference between the clusters formed when there was either
four, five, or six clusters. The difference between four and five
clusters was that some of the habitat units were removed from
Cluster 1 and put into a separate cluster. However, this new
cluster had no associated indicator species for fishes or DSCS, and
therefore does not change our interpretation ecologically. The
addition of a sixth cluster split the soft bottom habitat units into
two separate clusters: one with thinner sea pens (Pennatulacea)
as the indicator species and the other with thicker sea pens
(Pennatulidae) as the indicator species. We think these two
types of habitats were ecologically similar and should be in
the same cluster. Therefore, we selected four clusters as most
representative of the SCB.

Habitat clusters were primarily differentiated by their depth
and substratum, and they contained a wide range of indicator
species in different taxa (Table 2). Clusters 1 and 2 primarily
consisted of hard or mixed substratum types found within the
100–300 m depth range (Table 2). Cluster 3 comprised hard and
mixed substratum types in the shallowest depths (50 m). Fishes in

FIGURE 2 | Area of soft (orange hues) and hard (purple hues) primary substratum types within 50-m depth bins. We standardized substratum areas (m2) by the
number of survey hours (h) within each depth bin. Standardization was used because time at depth was variable. Substrata include sand (S), mud (M), cobble (C),
boulder (B), rock (R). Three rarely observed substratum types were grouped with their closest substratum category based on relief. We categorized pinnacles with
rock, and both pebbles and gravel with cobble.
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FIGURE 3 | The (A) number of Deep-sea coral and sponge (DSCS) species, (B) percent DSCS cover, (C) mean DSCS height, and (D) fish density by depth in
habitats with hard (pinnacle rock, boulder, rugose rock, cobble, gravel, pebble, flat rock) and soft (mud and sand) primary substratum types.

the Sebastes genus dominated the significant indicator fish species
in the first three clusters. The DSCS taxa in the first three clusters
primarily were gorgonians from the order Alcyonacea. Notably,
Cluster 2 also contained a single species of black coral and a
single species of Scleractinian coral, Antipathes dendrochristos
(Christmas tree coral) and Lophelia pertusa (white cup coral),
respectively. Cluster 4 primarily comprised soft substrata at
depths from 100 to 300 m. The fish indicator species in Cluster 4
were primarily flatfish, sculpins, combfish, eelpout, poachers, and
pricklebacks. The two indicator DSCS species for this cluster were
both corals commonly known as sea pens (order Pennatulacea).

The four clusters were defined both by the density of DSCS
within the habitat units and the density of DSCS taxa within
the cluster (Figure 5). Clusters 3 and 4 were clearly defined
by their indicator DSCS taxa, whereas the indicator species in
Clusters 1 and 2 were less dominant throughout the habitat
units in those clusters. However, Cluster 2 had the most DSCS
indicator species of any cluster. Cluster 3 included the shallowest
habitat units and was well defined by five indicator DSCS taxa
that were found in much higher abundance in the habitat units

within this cluster than in any other habitat units: Plexauridae
#2 (sea fan), Placogorgia sp. (primnoid), Adelogorgia phyllosclera
(Orange gorgonian), Eugorgia rubens (Purple gorgonian), and
Leptogorgia chilensis (Red gorgonian). Likewise, the soft bottom
Cluster 4 was well defined by Pennatulidae and Pennatulacea,
which are both sea pen taxa. In contrast, there were some sponges
(Porifera #2, #3, and #5) that were found in both Clusters 1 and 2
(the deeper clusters with high substratum relief) in nearly equal
abundances. Table 1 provides descriptions of the observed size,
depth, and abundances of these DSCS taxa.

Logistic Regression
From the logistic regression analysis, depth and coral height
were the primary ecological covariates correlated with the
increased probability of fish presence within habitat patches.
The vast majority (43 of 45; 96%) of the fish taxa were better
represented by models that included a spatial correlation term.
Thus, fishes within these taxa were more likely to be present
in patches closer to one another. Water depth was included
as an important covariate in 76% (34 of 45) of the models
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TABLE 1 | Summary of observations of DSCS and fish taxa mentioned throughout text.

Group Taxon Common name Number observed (patches) Density (num m−2) Mean size (cm) Mean Depth (m)

Coral Acanthogorgia spp. Gold coral 837 (82) 0.103 23.46 191

Adelogorgia phyllosclera Orange gorgonian 610 (42) 0.219 20.58 83

Antipathes dendrochristos Christmas tree coral 1,187 (464) 0.027 26.35 250

Eugorgia rubens Purple gorgonian 813 (99) 0.066 32.86 85

Lophelia pertusa White cup coral 554 (55) 0.085 8.19 197

Pennatulacea Thin sea pen 5,350 (338) 0.055 32.92 179

Pennatulidae Thick sea pen 41 (25) 0.003 23.05 133

Placogorgia spp. Primnoid 33 (26) 0.007 31.82 114

Plexauridae #1 Sea fan (swiftia type) 876 (177) 0.050 22.52 203

Plexauridae #2 Sea fan (swiftia type) 549 (53) 0.086 13.76 104

Plumarella longispina Primnoid 1,791 (383) 0.046 14.89 205

Sponge Farrea occa Lace foliose sponge 225 (115) 0.019 10.99 257

Haliclona (gellius) Trumpet sponge 625 (164) 0.031 15.30 149

Porifera #1 Foliose sponge 4,353 (621) 0.072 12.87 188

Porifera #2 Upright flat sponge 548 (264) 0.019 14.10 209

Porifera #3 Barrel sponge 3,423 (935) 0.037 14.02 183

Porifera #5 Vase sponge 895 (338) 0.025 14.10 220

Rhabdocalyptus dawsoni Brown barrel sponge 301 (151) 0.015 28.85 147

Fish Ophiodon elongatus Lingcod 255 (187) 0.011 46.29 111

Sebastes chlorstictus Greenspotted rockfish 815 (406) 0.018 20.56 117

Sebastes constellatus Starry rockfish 766 (422) 0.017 21.11 105

Sebastes diploproa Splitnose rockfish 1,349 (195) 0.063 19.41 345

Sebastes ensifer Swordspine rockfish 8,577 (1,014) 0.080 15.64 142

Sebastes entomelas Widow rockfish 570 (84) 0.052 24.75 113

Sebastes hopkinsi Squarespot rockfish 41,377 (898) 0.518 15.33 103

Sebastes jordani Shortbelly rockfish 3,841 (325) 0.087 18.29 253

Sebastes levis Cowcod 251 (201) 0.008 42.28 149

Sebastes melanostomus Blackgill rockfish 104 (65) 0.010 20.50 336

Sebastes miniatus Vermilion rockfish 408 (126) 0.026 34.8 97

Sebastes ovalis Speckled rockfish 701 (202) 0.032 26.45 109

Sebastes paucispinis Bocaccio 1,400 (390) 0.033 35.63 111

Sebastes pinniger Canary rockfish 9 (7) 0.008 36.67 101

Sebastes rubrivinctus Flag rockfish 156 (126) 0.008 20.91 122

Sebastes rufus Bank rockfish 2,682 (489) 0.056 25.09 230

Sebastes semicinctus Halfbanded rockfish 11,352 (671) 0.142 12.71 122

Sebastes simulator Pinkrose rockfish 1,680 (495) 0.029 18.13 219

Sebastes umbrosus Honeycomb rockfish 57 (39) 0.017 18.98 75

Sebastes wilsoni Pygmy rockfish 23,674 (802) 0.298 11.06 112

Sebastes young-of-year YOY rockfish 20,102 (624) 0.273 5.00 110

Sebastolobus spp. Thornyhead rockfish 215 (112) 0.016 20.05 356

The number observed is the total number of individuals observed, which is followed in parentheses by the number of patches in which at least one individual of that taxa
was observed. The density is the number (num) per square meter within the observed habitats. The mean size is either the height (coral and sponges) or fork length (fish)
of the measured taxa.

(Supplementary Table 4). As expected, the fish taxa could be
categorized into fishes found in deeper water (positive depth
odds ratio) or fishes in shallower water (negative depth odds
ratio). DSCS height also was included in a large percentage (30
of 45; 67%) of fish taxa models. In contrast to water depth, all of
the fishes had positive DSCS height odds ratios, indicating that
fishes were more likely to be present in patches with taller-than-
average DSCS. Interestingly, this correlation only became clear
after we included the spatial correlation term in the models. The
correlation between DSCS height and fish presence depended on

which cluster the fishes were associated with. The vast majority
of models (86%) for fishes in Cluster 4 included the DSCS
height term, whereas only 36% of models for fishes in Cluster
2 included this term. Because Cluster 4 represents habitats with
softer sediments without much relief except the exceptionally
tall sea pens, it is intuitive that fishes in these habitats would
more likely associate with taller corals. Although substratum was
included in 58% of the logistic regression models, there was
not an obvious pattern of how substratum was related to fish
presence. Only 10 of the 45 fishes (22%) had models with a
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FIGURE 4 | (A) The number of significant indicator fish species as a function of the number of clusters. The error bars were calculated by a Monte Carlo resampling
approach to determine which taxa are indicator species for each cluster. (B) A histogram of the number of indices from the NbClust library that selected various
number of clusters as the most appropriate based on the habitat unit data.

TABLE 2 | Description of the fish and substratum types found within each of four DSCS clusters.

Cluster Coral
indicator
species

Sponge
indicator
species

Rockfish
indicator
species

Other fish
indicator
species

Substratum type Mean
relief
(m)

Mean
depth

(m)Rock Boulder Cobble Flatrock Sand Mud

1 1 0 1 0 10 (12) 16 (13) 30 (25) 15 (5) 5 (13) 10 (8) 0.18 139

2 7 16 9 3 24 (13) 20 (22) 16 (18) 1 (1) 4 (3) 14 (14) 0.26 217

3 5 0 13 5 4 (2) 6 (5) 4 (6) 3 (3) 2 (4) 7 (4) 0.12 84

4 2 0 2 12 0 (0) 0 (1) 0 (10) 0 (1) 16 (10) 16 (10) 0.00 159

Substratum type represents the number of habitat units with rock, boulder, cobble, flatrock, sand, and mud as the primary and secondary (in parentheses) substratum
type. For the purposes of this summary table we categorized three rarely observed substratum types with their closest substratum category based on relief. We categorized
Pinnacles with Rock, and both Pebbles and Gravel with Cobble.

positive odds ratio for substratum, implying that our measure
of substratum relief was not a major driving factor in predicting
fish presence for most taxa. There also were 16 taxa that had a
negative substratum odds ratio, and 11 of those fishes (69%) were
in Cluster 4. DSCS cover was only included in 22% of logistic
regression models and had a negative odds ratio in all the models
it was found in except one (Supplementary Table 4). As with
substratum, the majority (67%) of fishes with logistic regression
models that included DSCS cover were in Cluster 4.

A few key DSCS taxa were associated with fish presence, after
accounting for depth, DSCS height, DSCS cover, and substratum
(Table 3). The DSCS taxa that recurred in the most logistic
regression models were sponges in the phylum Porifera. These
sponges were important for multiple rockfish species (Table 2) as
well as lingcod (Ophiodon elongatus) (Supplementary Table 4).
Multiple coral taxa were positively associated with the increased
probability of fish presence. In contrast to the sponge taxa,
the coral taxa tended to be associated with only one or two
fish taxa (Table 2). The results from the logistic regression
models also suggest that the densities of DSCS taxa were
less likely to affect the presence of rockfish taxa in deeper

habitats. Most (11 of 14, 79%) of the rockfish taxa that had
a negative depth odds ratio in their logistic regression models
(i.e., they were more likely to be found in shallower depths)
also had a positive association with the densities of at least
one DSCS taxa. In contrast, none of the seven rockfish taxa
that had positive depth odds ratios had a positive association
with any DSCS taxa.

The top five rockfish taxa landed by pounds in commercial
fisheries, and observed within at least 1% of patches in our
dataset, were thornyhead (Sebastolobus spp.) (846,152 lbs),
blackgill rockfish (S. melanostomus) (214,554 lbs), widow
rockfish (S. entomelas) (152,604 lbs), bank rockfish (S. rufus)
(137,770 lbs), and splitnose rockfish (S. diploproa) (98,722
lbs). Bank rockfish was the only one of these top commercially
landed taxa that was positively associated with any DSCS taxa
(Table 3). Both bank rockfish and widow rockfish were the
only two of these five taxa found in shallower depths (i.e.,
negative depth odds ratios). As previously mentioned, the
deeper rockfish taxa generally were not positively associated
with DSCS taxa. The taxa of conservation interest we selected
were young-of-year rockfish, cowcod, bocaccio, and canary

Frontiers in Marine Science | www.frontiersin.org 10 November 2020 | Volume 7 | Article 59384431

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-593844 November 17, 2020 Time: 18:41 # 11

Henderson et al. Deep-Sea Coral, Sponge, and Fish Associations

FIGURE 5 | Density (darker colors represent higher densities) of DSCS taxa within each of four clusters. Dendrograms on the left-hand side represent the
classification of the habitat units (defined as the combination of primary and secondary substratum type together with 50 m depth bin). The large number of habitat
units cannot be individually labeled, but the general classifications for each cluster are described in the text.

rockfish. We were unable to fit a reasonable model for
canary rockfish using these ecological covariates. For the
other three conservation taxa, DSCS height was positively
correlated with the probability of fish presence, where
substratum was only correlated with bocaccio (Figure 6
and Table 4). Both young-of-year rockfish and cowcod were

positively associated with multiple DSCS taxa (Figure 6 and
Table 4).

Gradient Forest
The gradient forest analysis generally supported the results
from the logistic regression and indicated that depth and
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TABLE 3 | Associated DSCS and Sebastes taxa and the percent increase in the
probability of fish presence with a standard deviation increase in DSCS
abundance based on the logistic regression models.

Type DSCS species Associated fish species %
increase

Coral Acanthogorgia spp. Sebastes rufus 15%

Adelogorgia phyllosclera Sebastes miniatus
Sebastes wilsoni

Sebastes umbrosus

12%
11%
10%

Eugorgia rubens Sebastes chlorstictus 11%

Farrea occa Sebastes simulator 14%

Lophelia pertusa Sebastes spp. YOY
Sebastes rufus

7%
9%

Plumarella longispina Sebastes spp. YOY 9%

Sponge Haliclona (gellius) Sebastes rufus
Sebastes ensifer
Sebastes wilsoni

12%
12%
10%

Plexauridae #1 Sebastes semicinctus 31%

Porifera sp. #1 Sebastes miniatus
Sebastes ovalis
Sebastes wilsoni

20%
23%
29%

Porifera sp. #2 Sebastes spp. YOY
Sebastes levis

Sebastes simulator
Sebastes constellatus

Sebastes hopkinsi
Sebastes wilsoni

15%
16%
11%
20%
28%
35%

Porifera sp. #3 Sebastes spp. YOY
Sebastes rufus
Sebastes levis

Sebastes miniatus
Sebastes rubrivinctus

9%
12%
13%
22%
14%

Porifera sp. #5 Sebastes jordani 26%

Rhabdocalyptus dawsoni Sebastes rufus
Sebastes ensifer

24%
7%

Sebastes taxa of management and conservation concern are identified in bold.

ecological covariates related to DSCS were the primary factors
that influenced the biodiversity of demersal taxa throughout the
SCB. Using the gradient forest method, the importance of each
predictor can be evaluated based on their contributions to the
accuracy importance (R2) for each random forest and averaged
across all species to provide an overall importance (see Ellis et al.,
2012 for statistical details). Although we originally hypothesized
that depth and substratum would be the strongest predictors
of biodiversity, it was actually depth and percent DSCS cover
that were the strongest predictors (Figure 7). Many of the same
DSCS taxa that were associated with increased presence of fish
taxa based on the logistic regression models also were associated
with increased fish biodiversity based on the gradient forest.
In fact, 6 of the top 10 DSCS taxa from the gradient forest
(selected out of 39 potential DSCS taxa) were those also associated
with increased probability of fish presence based on the logistic
regression (Table 3 and Figure 7).

Interesting patterns relative to depth and coral height
were evident from a plot of the ratio of forest splits to
observed data along the gradient of these variables (Figure 8).

Locations on the gradient where splits density was greater
than data density (Figure 8: blue line ratio > 1) indicate
higher relative importance for species composition change
(Pitcher et al., 2012). Note that because these values are
standardized by the observed data, they represent the density
of the random forest splits corrected for sampling bias.
The depth results indicate that shallow depths (<100 m)
and deeper depths (>250 m) have the greatest relative
importance for species compositional change (Figure 8A).
Likewise, DSCS taxa between 5 and 60 cm have the
greatest relative importance for compositional change
(Figure 8C). No clear patterns were apparent for percent
DSCS cover or substratum.

The cumulative importance plots revealed varying levels of
association between various rockfish taxa and each of the DSCS
taxa (Figure 9). Some rockfish taxa were strongly associated
with one DSCS taxon well beyond any of the other rockfish
taxa. For example, bank rockfish and swordspine rockfish
(S. ensifer) exhibited a strong association with Acanthogorgia
spp. (gold coral). Although both fish taxa responded strongly
to Acanthogorgia spp., it took larger densities of this DSCS
taxa before the probability of bank rockfish presence increased
compared with swordspine rockfish. This was indicated by
a steep cumulative importance curve as the density of
Acanthogorgia spp. increased, while most other fish taxa
cumulative importance curves remained close to zero and
relatively constant (Figure 9A). In contrast, the probability
of fish presence increased for most fish taxa with increasing
densities of Porifera #2 (Figure 9B). For most taxa, this
increase occurred as Porifera #2 densities reached 0.05–0.15
individuals per m2. Note there is an order of magnitude
difference in the y-axis scale for the plots of these two
DSCS taxa. This illustrates why Porifera #2 was ranked as
the 4th most important DSCS taxa while Acanthogorgia spp.
was the 19th most important DSCS taxa and does not even
appear in Figure 7.

DISCUSSION

We described four communities of deep-sea coral, sponge,
and fish assemblages in the SCB, and demonstrated that the
density of DSCS taxa increased the probability of presence for
multiple fish taxa and increased fish biodiversity. The results
from two different analytical approaches indicated the same
DSCS taxa were correlated with fish taxa in the SCB, which
strongly suggests that these DSCS taxa play an important role
in the ecosystem. From the logistic regression analysis, it was
evident that increased densities of DSCS taxa increased the
probability of at least three rockfish taxa of management and
conservation interest, including young-of-year rockfish. These
fish taxa occupy DSCS habitat potentially because DSCS provide
benefits such as increased prey density (Quattrini et al., 2012),
predation refuge (Krieger and Wing, 2002; Costello et al., 2005),
and nursery habitat (Stone, 2006, 2014; Baillon et al., 2012).

Our finding that young-of-the-year rockfish are more likely to
occur in habitat patches with taller DSCS supports the suggestion
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FIGURE 6 | Response plots of the probability of fish presence relative to (A) Mean Depth, (B) Substratum Relief, (C) Mean DSCS Height, and (D) DSCS density
based on results from the covariates included in the logistic regression. No line is shown if a covariate was not included in the best model for that fish taxon. In (D)
we only plot the relationship for DSCS taxa with the largest response greater than zero, because we were interested only in taxa that increased the probability of
taxon presence.

that DSCS can provide important nursery habitats for these taxa
(Edinger et al., 2007; Harter et al., 2009; Baillon et al., 2012).
Specifically, our results suggest that young-of-the-year rockfish
were more likely to be present in habitat patches with increased
densities of Lophelia pertusa (7%), Plumarella longispina (9%),
Porifera #2 (15%), and Porifera #3 (9%). In addition to the
association with these specific taxa, the model also indicated
that young-of-the-year rockfish were more likely to be present
in patches with taller corals. Baillon et al. (2012) also observed
Atlantic Sebastes larvae associated with deep-sea coral, implying
that they use these habitats as nursery grounds. Multiple authors
have noted the presence of gravid Sebastes near Lophelia reefs
(Fosså et al., 2000 cited in Husebø et al., 2002; Costello et al.,
2005), suggesting they may release their young near these reefs.
However, we note that Lophelia has a much different reef-forming
pattern in the Atlantic (where these previous studies were
conducted) than in the Pacific so it is best not to assume that fishes
are using these corals in the same way. The use of DSCS by gravid

Sebastes may be due to the protection these corals provide from
predators (Krieger and Wing, 2002; Costello et al., 2005) or the
additional feeding opportunities, because researchers anecdotally
have noted that zooplankton abundances are higher near DSCS
(Costello et al., 2005). Although our study cannot establish
why young-of-year rockfish are using these DSCS habitats, our
results imply that DSCS are important to these fishes growth to
maturity, which supports the classification of DSCS as essential
fish habitat (Rosenberg et al., 2000). Similarly, a modeling study
in the Northeast Atlantic (Foley et al., 2010) also concluded that
Sebastes population dynamics were important to the intrinsic
growth rate of the stock. Their results were consistent with corals
serving as essential fish habitat and suggested that coral removal
would result in the decline, and potential extirpation, of some
Sebastes populations.

Our analytical approach also identified some specific DSCS
taxa that were associated with demersal fishes, and we suggest
species distribution maps should be developed for these taxa
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TABLE 4 | Results of logistic regression showing the percent increase (black), or decrease (red), in the probability of fish presence with a standard deviation increase
in each covariate.

Taxon (common name) n Depth Substratum DSCS cover DSCS height DSCS density AUC

Sebastolobus spp. (Thornyhead) 145 911 (579, 1,471) −36 (−56, −9) 0.96 (0.95, 0.97)

Sebastes melanostomus
(Blackgill rockfish)

84 589(383, 913) 0.96(0.95, 0.97)

Sebastes entomelas
(Widow rockfish)

92 −91 (−97, −75) 33(14, 53) 20(−3, 46) 0.89(0.86, 0.92)

Sebastes spp. YOY
(young-of-year rockfish)

722 −81 (−88, −70) 33(20, 48) Plumarella: 9 (−1, 19)
Lophelia: 7 (−1, 15)
Porifera #2: 15 (4, 27)
Porifera #3: 9 (0, 18)

0.87(0.86, 0.88)

Sebastes rufus
(Bank rockfish)

638 −39 (−57, −13) 99(78, 123) 29(14, 45) Acanthogorgia: 15 (7, 25)
Lophelia: 9 (1, 19)
Haliclona (gellius): 12 (1, 24)
Plumarella: −11 (−21, −2)
Antipathes: −8 (−15, 0)
Rhabdocalyptus: 24 (13, 36)
Porifera #3: 12 (4, 21)

0.90(0.89, 0.91)

Sebastes paucipinis
(Bocaccio)

460 −69 (−78, −57) 32(22, 43) 31(16, 48) Pennatulacea: −99 (−100, −78) 0.84(0.83, 0.86)

Sebastes diploproa
(Splitnose rockfish)

294 962(681, 1,396) Porifera #5: −24 (−46, 1) 0.97(0.97, 0.98)

Sebastes levis
(Cowcod)

230 27(11, 44) Porifera #2: 16 (3, 29)
Porifera #3: 13 (3, 22)

0.79(0.76, 0.81)

These are calculated by subtracting 1 from the logistic regression odds ratio (exponentiated model coefficients) and multiplying by 100. The upper and lower 95% credible
interval for each estimate is shown in parentheses under, or next to, each estimate. The value n is the number of habitat patches (out of 5,144 patches) where a fish taxon
was observed. The area under the curve (AUC) is a measure of model fit (see text).

FIGURE 7 | Gradient forest estimated relative importance of physical and
biological covariates for predicting biodiversity of fish taxa in the SCB. Note
that for clarity we have displayed only the top 20 covariates out of a total of
43.

to ensure they are protected from future damaging human
practices (e.g., benthic trawling). Deep-sea coral taxa are slow
growing, so it can take a long time for them to recover once

they have been damaged (Roberts et al., 2006; Althaus et al.,
2009). Consequently, it is important to identify locations where
these taxa may be found in the highest densities, validate
their presence, and provide protection to these areas before
any further damage is inflicted. Species distribution models are
one method to identify the areas where taxa are expected to
be found based on sample observations. Species distribution
models have been developed for multiple DSCS taxa to examine
the factors that influence habitat suitability at a variety of
scales. Multiple authors have developed species distribution
models to predict global habitat suitability for various DSCS
taxa (Tittensor et al., 2009; Davies and Guinotte, 2011; Yesson
et al., 2012). In general, these models have predicted that the
majority of suitable coral habitat was on the continental shelves
and slopes of the Atlantic, South Pacific, and Indian Oceans
as well as seamounts along the northern Mid-Atlantic Ridge
and in the South Pacific Ocean. Models developed at finer
scales are perhaps more useful to identify areas that could be
protected from anthropogenic practices that may potentially
damage these fragile DSCS taxa (Rengstorf et al., 2013; Gullage
et al., 2017; Sundahl et al., 2020). For example, Huff et al.
(2013) found that the distribution of the Christmas tree coral
in the SCB (Antipathes dendrochristos) was positively affected
by a combination of persistently high surface productivity,
water current velocity and direction near the seafloor, warmer
temperature and shallow depth. Developing similar distribution
maps for the other DSCS taxa associated with demersal fishes
would be invaluable to fisheries managers seeking to protect
these vulnerable fish habitats as they seek to rebuild overfished
populations (Rosenberg et al., 2000).
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FIGURE 8 | Gradient forest output showing the locations of the random forest splits (gray bars), densities of splits (black line), densities of observations (red line), and
the ratio of splits standardized by observation density (blue line). Ratio > 1 indicate locations of relative greater change in composition. Note that the panels are on
different scales based on the number of bins the data is split between for each variable.

The logistic regression analysis indicated that the probability
of fishes being associated with DSCS was primarily related to
depth, and we did not find that this association was as highly
related to substratum relief as we anticipated. All the fish taxa that
had positive relationships with DSCS taxa were found in depths
shallower than 230 m, while all the fish taxa at mean depths
greater than 300 m generally had no, or negative, relationships
with DSCS taxa. One explanation for this is that at deeper depths
DSCS cover decreases (Figure 3). Therefore, we are less likely to
see fishes and DSCS on the same transect, or in the same patch,
unless we have a sufficiently high sample size. Unfortunately, the
fish taxa with deeper mean depths had smaller sample sizes, thus
we cannot say if there was an ecological reason why fishes at
deeper depths were not associated with DSCS taxa (e.g., reduced
need for predation refuge at depth) or if this was an artifact due
to reduced sampling effort at deeper depths. We suspect that the
probability of fish presence was correlated with relief for only
a few taxa was likely due to the way we calculated relief from
visual estimates of the primary and secondary substratum. Future
surveys should consider simultaneously collecting bathymetry

data (e.g., side-scan or multibeam sonar) to better correlate relief
to fishes and invertebrate habitat.

Results from the gradient forest analysis revealed both
expected and surprising relationships between fish biodiversity
and various physical and biological covariates. Depth and DSCS
cover had the largest influence on rockfish biodiversity in habitat
patches. It was not surprising that depth was important, as we
know that various taxa have specific depth preferences. Based
on the results of the logistic regression, it was surprising that
DSCS cover was considerably more important than either DSCS
height or substratum type. This may have been due to the
taxa that were included in this analysis (all 111 fish taxa were
included in the gradient forest biodiversity analysis while just
the significant indicator species were included in the logistic
regression analysis), the fact that the gradient forest did not
explicitly account for spatial autocorrelation as was done in
the logistic regression, or simply that the two analyses were
measuring different responses (univariate vs. multivariate). In
any case, it is intuitive that fish diversity would increase as coral
cover increases, as fishes generally associate with habitats having
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FIGURE 9 | Cumulative importance distributions of standardized random
forest splits for each fish taxa (individual lines) along the observed density
gradient for (A) Acanthogorgia spp. and (B) Porifera #2.

increased cover. It also is noteworthy that six of the top ten
DSCS taxa selected from the gradient forest analysis (out of 39
possible taxa) also increased the probability of rockfish presence
based on the results from the logistic regressions (Table 3).
This suggests that some of the other DSCS taxa that were near
the top of the gradient forest analysis (e.g., Pennatulacea and
Antipathes dendrochristos) also may have important habitat roles
for other taxa that were not included in our logistic regression
models. Habitats with persistent localized upwelling resulting
from complex seafloor topography are areas where Antipathes
dendrochristos are denser (Huff et al., 2013), and also may
comprise the most important benthic habitats for other DSCS
and fishes in the SCB.

As with any survey method, there are weaknesses of
using submersible observations to record species data that
can potentially bias results. Behavioral reactions of fishes
to submersibles have been documented, including avoidance,
attraction, and no reaction (Stoner et al., 2008; Laidig et al., 2012;
Sward et al., 2019). As Sward et al. (2019) state in their review
of ROV surveys for visually assessing fish assemblages: “the
type and severity of the reaction to the ROV can be influenced
by a variety of factors, including the species, trophic position,
and the body size and position of the individual relative to the
seafloor as well as to different aspects of the ROV system (i.e.,
artificial lighting, thruster noise, speed).” Laidig et al. (2012)
found that a smaller percentage of fishes (11%) reacted to the
larger, manned submersibles (as we used in this study) than
to ROVs (57%). Those fishes that did react to the manned
submersibles tended to be smaller fishes, suggesting that it is
more difficult to accurately count these smaller fishes (Laidig

et al., 2012). Likewise, it is likely that the observers overlooked
cryptic species that were able to hide among rocks, DSCS, and
sediment. We would expect this bias to increase relative to the
complexity of the habitat, although we are unaware of any studies
that have conducted experiments to quantify this potential bias.
Stoner et al. (2008) qualitatively noted that the reaction of most
rockfish species was relatively low and concluded that bias was
probably minimal. Finally, although the distribution of many
species is influenced by time of day (Hart et al., 2010), our
study only examined movement during the day. In their review,
Sward et al. (2019) found that very few submersible studies
(∼2%) were conducted at night. Telemetry studies have indicated
that home ranges and behavior of Pacific rockfishes change
both diurnally and seasonally (Tolimieri et al., 2009; Zhang
et al., 2015). A quantitative comparison of diel habitat use using
submersible video surveys would be an excellent future study.

Another area of future research is understanding the trophic
dynamics of these DSCS habitats. Our results indicate that
DSCS provide important habitat for multiple rockfish taxa,
but we cannot identify what functional benefit these structure-
forming invertebrates provide to the associated fishes. These
DSCS may be found in areas where the hydrodynamics enhance
the density of zooplankton and other potential prey items,
some of which may be reliant on the DSCS (Husebø et al.,
2002; George et al., 2007; Lessard-Pilon et al., 2010; Huff
et al., 2013). Based on simplified trophic ecosystem models for
deep-sea coral reef ecosystems, George et al. (2007) concluded
that the degradation of corals and sponges would negatively
impact populations of commercially important fish species.
Thus, to understand the functional benefit of DSCS to fish
populations, it would be valuable to compare diets of fishes
in areas of high DSCS density and nearby habitats that have
lower DSCS densities, such as those that have been disturbed by
trawl fisheries.

Furthermore, future research could improve upon our results
by incorporating a temporal component to the associations
between fishes and DSCS taxa and by incorporating a measure
of fishing impact as an additional covariate. Although DSCS
generally are long-lived, and thus large changes in their
distribution would not be expected over a short time scale,
regional climatic variations (e.g., El Nino and ocean warming)
can affect fish recruitment and distribution. These changes in
the distribution and abundance of fishes could influence the
interpretation of the observed associations between fishes and
DSCS. Additionally, acute and rapid change in DSCS distribution
can be caused by the impacts of benthic trawling (Yoklavich et al.,
2018). For example, Clark and Rowden (2009) found differences
in macro-invertebrate assemblages between fished and unfished
seamounts in New Zealand. Future development of habitat
suitability models could include amount of benthic trawling as
a measure of habitat alteration. Continuing to collect long-term
datasets of these deep-sea habitats and associated assemblages
will help to understand the ecological importance of DSCS.

This study has provided evidence of the importance
of DSCS as habitat for multiple taxa of fishes, including
some with commercial importance, and re-enforces the
importance of conserving these important structure-forming
invertebrates. Previous research on structure-forming
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deep-sea invertebrates primarily focused on larger species, and
our results highlight the importance of sponges that are generally
overlooked as habitat forming invertebrates. Sponges are often
the largest structure-forming invertebrates in their associated
habitats, and provide considerable biotic complexity, predator
refuge, and enhanced food supply (Tissot et al., 2006; Buhl-
Mortensen et al., 2010).

DSCS taxa throughout the world’s seas are threatened by
multiple factors. The impacts of fishing gear, primarily benthic
trawling, have been documented on deep-sea reefs along the
West Ireland continental shelf break (Hall-Spencer et al., 2002),
Norway (Fosså et al., 2002), Tasmania (Koslow et al., 2001),
and Alaska (Krieger and Wing, 2002; Heifetz et al., 2009).
DSCS also are threatened due to climate change. A recent
study estimated there would be no suitable habitat for deep-
sea coral by 2099 assuming an upper temperature tolerance of
7◦C (Thresher et al., 2015). Likewise, ocean acidification due
to an increasing production of anthropogenic CO2 has resulted
in declining aragonite and calcite saturation states, which may
impair the ability of DSCS taxa to build sufficiently robust
skeletons (Guinotte et al., 2006). In the face of these potential
threats, further conservation efforts are essential to protect these
ecologically important DSCS.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

Ethical review and approval was not required for the animal study
because it was an observation only study.

AUTHOR CONTRIBUTIONS

MY contributed the data and essential background for the study.
MH and DH conceived the analysis. MH conducted the statistical
analysis and prepared result figures. All authors conceived
the study, contributed to writing, editing, and approved the
submitted manuscript.

FUNDING

The authors would like to acknowledge the NMFS Office of
Habitat Conservation Deep Sea Coral Research and Technology
Program for funding portions of this research.

ACKNOWLEDGMENTS

We thank Tom Laidig, Linda Snook, and Mary Nishimoto
for analyzing the visual surveys, and Tom Laidig and Diana
Watters for maintaining the databases used in this study. We
also thank Tom Hourigan, Chris Rooper, and four reviewers for
reviewing early drafts of the manuscript and providing comments
that greatly improved the final product. We appreciate the
assistance of many experts in the identification of deep-sea corals
and sponges. Any use of trade, product, or firm names is for
descriptive purposes only and does not imply endorsement by the
U.S. Government.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2020.593844/full#supplementary-material

REFERENCES
Addamo, A. M., Vertino, A., Stolarski, J., García-Jiménez, R., Taviani,

M., and Machordom, A. (2016). Merging scleractinian genera: the
overwhelming genetic similarity between solitary Desmophyllum
and colonial Lophelia. BMC Evol. Biol. 16:108. doi: 10.1186/s1
2862-016-0654-8

Althaus, F., William, A., Schlacher, T. A., Kloser, R. J., Green, M. A., Barker,
B. A., et al. (2009). Impacts of bottom trawling on deep-coral ecosystems of
seamounts are long-lasting. Mar. Ecol. Prog. Ser. 397, 279–294. doi: 10.3354/
meps08248

Auster, P. J. (2005). “Are deep-water corals important habitats for fishes?,” in Cold-
water corals and ecosystems, eds A. Freiwald and J. M. Roberts (Berlin: Springer),
747–760. doi: 10.1007/3-540-27673-4_39

Baillon, S., Hamel, J.-F., Wareham, V. E., and Mercier, A. (2012). Deep cold-
water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356.
doi: 10.1890/120022

Belbin, L., Faith, D. P., and Milligan, G. W. (1992). A comparison of two approaches
to beta-flexible clustering. Multivar. Behav. Res. 27, 417–433. doi: 10.1207/
s15327906mbr2703_6

Bowden, D. A., Rowden, A. A., Leduc, D., Beaumont, J., and Clark,
M. R. (2016). Deep-sea seabed habitats: Do they support distinct
mega-epifaunal communitites that have different vulnerabilities to

anthropogenic disturbance? Deep Sea Res. I 107, 31–47. doi: 10.1016/j.dsr.
2015.10.011

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
Buhl-Mortensen, L., Vareusel, A., Gooday, A. J., Levin, L. A., Priede, I. G.,

Buhl-Mortensen, P., et al. (2010). Biological structures as a source of habitat
heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50.
doi: 10.1111/j.1439-0485.2010.00359.x

Charrad, M., Ghazzali, N., Bioteau, V., and Niknafs, A. (2014). NbClust: An R
package for determining the relevant number of clusters in a data set. J. Statist.
Soft. 61, 1–36.

Clark, M. R., and Rowden, A. A. (2009). Effect of deepwater trawling on the macro-
invertebrate assemblages of seamounts on the Chatham Rise. N Z. Deep Sea Res.
I 56, 1540–1554. doi: 10.1016/j.dsr.2009.04.015

Core Team. (2019). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. Vienna: R Core Team.

Costello, M. J., McCrea, M., Freiwald, A., Lundalv, T., Jonsson, L., Brett, B. J., et al.
(2005). “Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE
Atlantic,” in Cold-water corals and ecosystems, eds A. Freiwald and J. M. Roberts
(Berlin: Springer), 771–805. doi: 10.1007/3-540-27673-4_41

D’Onghia, G., Maiorana, P., Sion, L., Giove, A., Capezzuto, F., Carlucci, R., et al.
(2010). Effects of deep-water coral banks on the abundance and size structure
of the megafauna in the Mediterranean Sea. Deep Sea Res. II 57, 397–411.
doi: 10.1016/j.dsr2.2009.08.022

Frontiers in Marine Science | www.frontiersin.org 17 November 2020 | Volume 7 | Article 59384438

https://www.frontiersin.org/articles/10.3389/fmars.2020.593844/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2020.593844/full#supplementary-material
https://doi.org/10.1186/s12862-016-0654-8
https://doi.org/10.1186/s12862-016-0654-8
https://doi.org/10.3354/meps08248
https://doi.org/10.3354/meps08248
https://doi.org/10.1007/3-540-27673-4_39
https://doi.org/10.1890/120022
https://doi.org/10.1207/s15327906mbr2703_6
https://doi.org/10.1207/s15327906mbr2703_6
https://doi.org/10.1016/j.dsr.2015.10.011
https://doi.org/10.1016/j.dsr.2015.10.011
https://doi.org/10.1111/j.1439-0485.2010.00359.x
https://doi.org/10.1016/j.dsr.2009.04.015
https://doi.org/10.1007/3-540-27673-4_41
https://doi.org/10.1016/j.dsr2.2009.08.022
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-593844 November 17, 2020 Time: 18:41 # 18

Henderson et al. Deep-Sea Coral, Sponge, and Fish Associations

D’Onghia, G., Maiorano, P., Carlucci, R., Capezzuto, F., Carluccio, A., Tursi,
A., et al. (2012). Comparing deep-sea fish fauna between coral and
non-coral ‘megahabitats’ in the Santa Maria di Leuca cold-water coral
province (Mediterranean Sea). PLoS One 7:e44509. doi: 10.1371/journal.p
one.0044509

Dailey, M. D., Reish, D. J., and Anderson, J. W. (1993). Ecology of the Southern
California Bight: a synthesis and interpretation. Berkeley, CA: University of
California Press.

Davies, A. J., and Guinotte, J. M. (2011). Global habitat suitability for framework-
forming cold-water corals. PLoS One 6:e18483. doi: 10.1371/journal.pone.
0018483

De Caceres, M., and Legendre, P. (2009). Associations between species and groups
of sites: indices and statistical inference. Ecology 90, 3566–3574. doi: 10.1890/
08-1823.1

Du Preez, C., and Tunnicliffe, V. (2011). Shortspine thornyhead and rockfish
(Scorpaenidae) distribution in response to substratum, biogenic structures and
trawling. Mar. Ecol. Prog. Ser. 425, 217–231. doi: 10.3354/meps09005

Dufrene, M., and Legendre, P. (1997). Species assemblages and indicator species:
the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366.
doi: 10.2307/2963459

Edinger, E. N., Wareham, V. E., and Haedrich, R. L. (2007). Patterns of
groundfish diversity and abundance in relation to deep-sea coral distributions
in Newfoundland and Labrador waters. Bull. Mar. Sci. 81, 101–122.

Ellis, N., Smith, S. J., and Pitcher, R. (2012). Gradient forests: calculating
importance gradients on physical predictors. Ecology 93, 156–168. doi: 10.1890/
11-0252.1

Foley, N. S., Kahui, V., Armstrong, C. W., and van Rensburg, T. M. (2010).
Estimating linkages between redfish and cold water coral on the Norwegian
coast. Mar. Resour. Econom. 25, 105–120. doi: 10.5950/0738-1360-25.1.105

Fosså, J. H., Mortensen, P. B., and Furevik, D. M. (2000). Lophelia-korallrev langs
norskekysten. Forekomst og tilstand. Fisken og Havet 2:94.

Fosså, J. H., Mortenson, P. B., and Furevik, D. M. (2002). The deep-water
coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts.
Hydrobiologia 471, 1–12.

Freese, J. L., and Wing, B. (2003). Juvenile red rockfish. Sebastes sp., associations
with sponges in the Gulf of Alaska. Mar. Fish. Rev. 65, 38–42.

Georganos, S., Grippa, T., Gadiaga, A. N., Linard, C., Lennert, M., Vanhuysse,
S., et al. (2019). Geographical random forest: a spatial extension of the
random forest algorithm to address spatial heterogeneity in remote sensing and
population modelling. Geocarto Int. 2019, 1–16. doi: 10.1080/10106049.2019.
1595177

George, R. Y., Okey, T. A., Reed, J. K., and Stone, R. P. (2007). “Ecosystem-based
fisheries management of seamount and deep-sea coral reefs in U.S. waters:
conceptual models for proactive decisions,” in Conservation and adaptive
management of seamount and deep-sea coral ecosystems, eds R. Y. George and
S. D. Cairns (Florida, FL: University of Miami).

Green, K. M., Greenley, A. P., and Starr, R. M. (2014). Movements of blue rockfish
(Sebastes mystinus) off Central California with comparisons to similar species.
PLoS One 9:e98976. doi: 10.1371/journal.pone.0098976

Greene, G., Yoklavich, M. M., Starr, R. M., O’Connell, V. M., Wakefield, W. W.,
Sullivan, D. E., et al. (1999). A classification scheme for deep seafloor habitats.
Oceanol. Acta 22, 663–678. doi: 10.1016/s0399-1784(00)88957-4

Guinotte, J., Orr, J., Cairns, S., Freiwald, A., Morgan, L., and George, R. (2006). Will
human-induced changes in seawater chemistry alter the distribution of deep-
sea scleractinian corals? Front. Ecol. Environ. 4, 141–146. doi: 10.1890/1540-
92952006004[0141:WHCISC]2.0.CO;2

Gullage, L., Devillers, R., and Edinger, E. (2017). Predictive distribution modelling
of cold-water corals in the Newfoundland and Labrador region. Mar. Ecol. Prog.
Ser. 582, 57–77. doi: 10.3354/meps12307

Hall-Spencer, J. M., Allain, V., and Fosså, J. (2002). Trawling damage to Northeast
Atlantic ancient coral reefs. Proc. R. Soc. B Biol. Sci. 269, 507–511. doi: 10.1098/
rspb.2001.1910

Hart, T. D., Clemons, J. E. R., Wakefield, W. W., and Heppell, S. S. (2010). Day
and night abundance, distribution, and activity patterns of demersal fishes on
Heceta Bank. Oregon. Fish. Bull. 108, 466–477.

Harter, S. L., Ribera, M. M., Shepard, A. N., and Reed, J. K. (2009). Assessment of
fish populations and habitat on Oculina Bank, a deep-sea coral marine protected
area off eastern Florida. Fish. Bull. 107, 195–206.

Heifetz, J., Stone, R., and Shotwell, S. K. (2009). Damage and disturbance to coral
and sponge habitat of the Aleutian Archipelago. Mar. Ecol. Prog. Ser. 397,
295–303. doi: 10.3354/meps08304

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.
(1999). Bayesian Model Averaging: A Tutorial. Statist. Sci. 14,
382–401.

Hosmer, D. W. Jr., Lemshow, S., and Sturdivant, R. X. (2013). Applied Logistic
Regression, 3rd Edn, New Jersey. John Wiley & Sons, Inc.

Huff, D. D., Yoklavich, M. M., Love, M. S., Watters, D. L., Chai, F., and Lindley,
S. T. (2013). Environmental factors that influence the distribution, size, and
biotic relationships of the Christmas tree coral Antipathes dendrochristos in
the Southern California Bight. Mar. Ecol. Prog. Ser. 494, 159–177. doi: 10.3354/
meps10591

Husebø, A., Nøttestad, L., Fosså, J. H., Furevik, D. M., and Jørgensen, S. B. (2002).
Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia
471, 91–99.

Jorgensen, S. J., Kaplan, D. M., Klimley, A. P., Morgan, S. G., O’Farrell, M. R., and
Botsford, L. W. (2006). Limited movement in blue rockfish Sebastes mystinus
internal structure of home range. Mar. Ecol. Prog. Ser. 327, 157–170. doi: 10.
3354/meps327157

Knudby, A., Brenning, A., and LeDrew, E. (2010). New approaches to modelling
fish-habitat relationships. Ecol. Modell. 221, 503–511. doi: 10.1016/j.ecolmodel.
2009.11.008

Koslow, J. A., Gowlett-Holmes, K., Lowry, J. K., O’Hara, T., Poore, G. C. B., and
Williams, A. (2001). Seamount benthic macrofauna off southern Tasmania:
community structure and impacts of trawling. Mar. Ecol. Prog. Ser. 213, 111–
125. doi: 10.3354/meps213111

Krieger, K. J., and Wing, B. L. (2002). Megafauna associations with deepwater
corals (Primnoa spp.) in the Gulf of Alaska. 1st International Deep-Sea Coral
Symposium. Hydrobiologica 471, 83–90.

Laidig, T. E., Krigsman, L. M., and Yoklavich, M. M. (2012). Reactions of fishes to
two underwater survey tools, a manned submersible and a remotely operated
vehicle. Fish. Bull. 111:67.

Legendre, P., and Gallagher, E. D. (2001). Ecologically meaningful transformations
for ordination of species data. Oecologia 129, 271–280. doi: 10.1007/
s004420100716

Lessard-Pilon, S. A., Podowski, E. L., Cordes, E. E., and Fisher, C. R. (2010).
Megafauna community composition associated with Lophelia pertusa colonies
in the Gulf of Mexico. Deep Sea Res. II 57, 1882–1890. doi: 10.1016/j.dsr2.2010.
05.013

Lindgren, F., and Rue, H. (2015). Bayesian spatial modelling with R-INLA. J. Statist.
Soft. 63, 1–25. doi: 10.1002/9781118950203.ch1

Love, M. S. (2006). “Subsistence, Commercial, and Recreational Fisheries. 567-594,”
in The Ecology of Marine Fishes: California and Adjacent Waters, eds Allen,
Horn, and Pondella (California: University of California Press).

Love, M. S., Yoklavich, M., and Schroeder, D. M. (2009). Demersal fish assemblages
in the Southern California Bight based on visual surveys in deep water. Environ.
Biol. Fishes 84, 55–68. doi: 10.1007/s10641-008-9389-8

Love, M. S., Yoklavich, M., and Thorsteinson, L. (2002). The Rockfishes
of the Northeast Pacific. California, CA: University of California Press,
405.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2017). cluster:
Cluster analysis basics and extensions. R package version 2.0.6.

McCune, B., Grace, J. B., and Urban, D. L. (2002). Analysis of ecological
communities. Gleneden Beach, OR: MJM Software Design.

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., et al. (2017). vegan: Community Ecology Package. R package version 2.4-5.
Available Online at: https://CRAN.R-project.org/package=vegan

Pitcher, C. R., Lawton, P., Ellis, N., Smith, S. J., Incze, L. S., Wei, C.-L., et al.
(2012). Exploring the role of environmental variables in shaping patterns of
seabed biodiversity composition in regional-scale ecosystems. J. Appl. Ecol. 49,
670–679. doi: 10.1111/j.1365-2664.2012.02148.x

Prasad, A. M., Iverson, L. R., and Liaw, A. (2006). Newer classification
and regression tree techniques: Bagging and random forests for ecological
prediction. Ecosystems 9, 181–199. doi: 10.1007/s10021-005-0054-1

Quattrini, A. M., Ross, S. W., Carlson, M. C. T., and Nizinski, M. S. (2012).
Megafaunal-habitat associations at a deep-sea coral mound off North Carolina.
U S A. Mar. Biol. 159, 1079–1094. doi: 10.1007/s00227-012-1888-7

Frontiers in Marine Science | www.frontiersin.org 18 November 2020 | Volume 7 | Article 59384439

https://doi.org/10.1371/journal.pone.0044509
https://doi.org/10.1371/journal.pone.0044509
https://doi.org/10.1371/journal.pone.0018483
https://doi.org/10.1371/journal.pone.0018483
https://doi.org/10.1890/08-1823.1
https://doi.org/10.1890/08-1823.1
https://doi.org/10.3354/meps09005
https://doi.org/10.2307/2963459
https://doi.org/10.1890/11-0252.1
https://doi.org/10.1890/11-0252.1
https://doi.org/10.5950/0738-1360-25.1.105
https://doi.org/10.1080/10106049.2019.1595177
https://doi.org/10.1080/10106049.2019.1595177
https://doi.org/10.1371/journal.pone.0098976
https://doi.org/10.1016/s0399-1784(00)88957-4
https://doi.org/10.1890/1540-92952006004[0141:WHCISC]2.0.CO;2
https://doi.org/10.1890/1540-92952006004[0141:WHCISC]2.0.CO;2
https://doi.org/10.3354/meps12307
https://doi.org/10.1098/rspb.2001.1910
https://doi.org/10.1098/rspb.2001.1910
https://doi.org/10.3354/meps08304
https://doi.org/10.3354/meps10591
https://doi.org/10.3354/meps10591
https://doi.org/10.3354/meps327157
https://doi.org/10.3354/meps327157
https://doi.org/10.1016/j.ecolmodel.2009.11.008
https://doi.org/10.1016/j.ecolmodel.2009.11.008
https://doi.org/10.3354/meps213111
https://doi.org/10.1007/s004420100716
https://doi.org/10.1007/s004420100716
https://doi.org/10.1016/j.dsr2.2010.05.013
https://doi.org/10.1016/j.dsr2.2010.05.013
https://doi.org/10.1002/9781118950203.ch1
https://doi.org/10.1007/s10641-008-9389-8
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1111/j.1365-2664.2012.02148.x
https://doi.org/10.1007/s10021-005-0054-1
https://doi.org/10.1007/s00227-012-1888-7
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-593844 November 17, 2020 Time: 18:41 # 19

Henderson et al. Deep-Sea Coral, Sponge, and Fish Associations

Reese, E. (1989). Orientation behavior of behavior of butterflyfishes (family
Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and
cognitive maps. Environ. Biol. Fish. 25, 79–86. doi: 10.1007/bf00002202

Rengstorf, A. M., Yesson, C., Brown, C., and Grehan, A. J. (2013). High-resolution
habitat suitability modelling can improve conservation of vulnerable marine
ecosystems in the deep sea. J. Biogeogr. 40, 1702–1714. doi: 10.1111/jbi.12123

Roberts, J. M., Wheeler, A. J., and Freiwald, A. (2006). Reefs of the deep: the
biology and geology of cold-water coral ecosystems. Science 312, 543–547.
doi: 10.1126/science.1119861

Roberts, J. M., Wheeler, A., Freiwald, A., and Cairns, S. (2009). Cold Water Corals:
The Biology and Geology of Deep-Sea Coral Habitats. Cambridge University
Press, Cambridge. doi: 10.1017/CBO9780511581588

Rosenberg, A., Bigford, T. E., Leathery, S., Hill, R. L., and Bickers, K. (2000).
Ecosystem approaches to fishery management through essential fish habitat.
Bull. Mar. Sci. 66, 535–542.

Ross, S. W., and Quattrini, A. M. (2009). Deep-sea reef fish assemblage patterns
on the Blake Plateau (Western North Atlantic Ocean). Mar. Ecol. 30, 74–92.
doi: 10.1111/j.1439-0485.2008.00260.x

Sharma, S., Legendre, P., Boisclair, D., and Gauthier, S. (2012). Effects of spatial
scale and choice of statistical model (linear versus tree-based) on determining
species-habitat relationships. Can. J. Fish. Aqua. Sci. 69, 2095–2111. doi: 10.
1139/cjfas-2011-0505

Stone, R. P. (2006). Coral habitat in the Aleutian Islands of Alaska: depth
distribution, fine-scale species associations, and fisheries interactions. Coral
Reefs 25, 229–238. doi: 10.1007/s00338-006-0091-z

Stone, R. P. (2014). The ecology of deep-sea coral and sponge habitats of the central
Aleutian Islands of Alaska. Washington, DC: U.S. Department of Commerce,
1–52.

Stoner, A. W., Clifford, H. R., Parker, S. J., Auster, P. J., and Wakefield,
W. W. (2008). Evaluating the role of fish behavior in surveys conducted with
underwater vehicles. Can. J. Fish. Aqua. Sci. 65, 1230–1243. doi: 10.1139/f08-
032

Sundahl, H., Buhl-Mortensen, P., and Buhl-Mortensen, L. (2020). Distribution and
suitable habitat of the cold-water corals Lophelia pertusa. Paragorgia arborea,
and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar.
Sci. 7:213. doi: 10.3389/fmars.2020.00213

Sward, D., Monk, J., and Barrett, N. (2019). A systematic review of remotely
operated vehicle surveys for visually assessing fish assemblages. Front. Mar. Sci.
6:134. doi: 10.3389/fmars.2019.00134

Thresher, R. E., Guinotte, J. M., Matear, R. J., and Hobday, A. J. (2015). Options
for managing impacts of climate change on a deep-sea community. Nat. Clim.
Change 5, 635–639. doi: 10.1038/nclimate2611

Tissot, B. N., Yoklavich, M. M., Love, M. S., York, K., and Amend,
M. (2006). Benthic invertebrates that form habitat on deep banks off
southern California, with special reference to deep-sea coral. Fish. Bull. 104,
167–181.

Tittensor, D. P., Baco, A. R., Brewin, P. E., Clark, M. R., Consalvey, M., Hall-
Spencer, J., et al. (2009). Predicting global habitat suitability for stony corals
on seamounts. J. Biogeogr. 36, 1111–1128. doi: 10.1111/j.1365-2699.2008.
02062.x

Tolimieri, N., Andrews, K., Williams, G., Katz, S., and Levin, P. S. (2009). Home
range size and patterns of space use by lingcod, copper rockfish and quillback
rockfish in relation to diel and tidal cycles. Mar. Ecol. Prog. Ser. 380, 229–243.
doi: 10.3354/meps07930

Watanabe, S. (2013). A widely applicable Bayesian information criterion.
J. Machine Learning Res. 14, 867–897.

Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50,
296–302. doi: 10.1007/bf00344966

Yesson, C., Taylor, M. L., Tittensor, D. P., Davies, A. J., Guinotte, J., Baco, A.,
et al. (2012). Global habitat suitability of cold-water octocorals. J. Biogeogr. 39,
1278–1292. doi: 10.1111/j.1365-2699.2011.02681.x

Yoklavich, M. M., Laidig, T. E., Graiff, K., Clarke, M. E., and Whitmire,
C. E. (2018). Incidence of disturbance and damage to deep-sea corals and
sponges in areas of high trawl bycatch near the California and Oregon
border. Deep Sea Res. Part II 150, 156–163. doi: 10.1016/j.dsr2.2017.
08.005

Zhang, Y., Xu, Q., Alós, J., Liu, H., Xu, Q., and Yang, H. (2015). Short-term fidelity,
habitat use and vertical movement behavior of the black rockfish Sebastes
schlegelii as determined by acoustic telemetry. PLoS One 10:e0134381. doi:
10.1371/journal pone.0134381

Zuur, A., Ieno, E. N., and Saveliev, A. A. (2017). Beginner’s guide to spatial, temporal,
and spatial-temporal ecological data analysis with R-INLA. Volume I: Using GLM
and GLMM. Newburgh: Highland Statistics Ltd.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Henderson, Huff and Yoklavich. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 19 November 2020 | Volume 7 | Article 59384440

https://doi.org/10.1007/bf00002202
https://doi.org/10.1111/jbi.12123
https://doi.org/10.1126/science.1119861
https://doi.org/10.1017/CBO9780511581588
https://doi.org/10.1111/j.1439-0485.2008.00260.x
https://doi.org/10.1139/cjfas-2011-0505
https://doi.org/10.1139/cjfas-2011-0505
https://doi.org/10.1007/s00338-006-0091-z
https://doi.org/10.1139/f08-032
https://doi.org/10.1139/f08-032
https://doi.org/10.3389/fmars.2020.00213
https://doi.org/10.3389/fmars.2019.00134
https://doi.org/10.1038/nclimate2611
https://doi.org/10.1111/j.1365-2699.2008.02062.x
https://doi.org/10.1111/j.1365-2699.2008.02062.x
https://doi.org/10.3354/meps07930
https://doi.org/10.1007/bf00344966
https://doi.org/10.1111/j.1365-2699.2011.02681.x
https://doi.org/10.1016/j.dsr2.2017.08.005
https://doi.org/10.1016/j.dsr2.2017.08.005
https://doi.org/10.1371/journal
https://doi.org/10.1371/journal
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-631657 February 17, 2021 Time: 20:19 # 1

ORIGINAL RESEARCH
published: 23 February 2021

doi: 10.3389/fmars.2021.631657

Edited by:
Mark J. Henderson,

U.S. Geological Survey, United States

Reviewed by:
Francois Bastardie,

Technical University of Denmark,
Denmark

Stephanie Brodie,
University of California, Santa Cruz,

United States

*Correspondence:
Brooke A. Lowman

brooke.lowman@noaa.gov

Specialty section:
This article was submitted to

Marine Conservation
and Sustainability,

a section of the journal
Frontiers in Marine Science

Received: 20 November 2020
Accepted: 21 January 2021

Published: 23 February 2021

Citation:
Lowman BA, Jones AW,
Pessutti JP, Mercer AM,

Manderson JP and Galuardi B (2021)
Northern Shortfin Squid (Illex

illecebrosus) Fishery Footprint on
the Northeast US Continental Shelf.

Front. Mar. Sci. 8:631657.
doi: 10.3389/fmars.2021.631657

Northern Shortfin Squid (Illex
illecebrosus) Fishery Footprint on the
Northeast US Continental Shelf
Brooke A. Lowman1,2* , Andrew W. Jones3, Jeffrey P. Pessutti3, Anna M. Mercer3,
John P. Manderson4 and Benjamin Galuardi2,5

1 ERT, Inc. under Contract to Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic
and Atmospheric Administration, Narragansett, RI, United States, 2 School for Marine Science and Technology, University
of Massachusetts Dartmouth, New Bedford, MA, United States, 3 Northeast Fisheries Science Center, National Marine
Fisheries Service, National Oceanic and Atmospheric Administration, Narragansett, RI, United States, 4 OpenOcean
Research, Philadelphia, PA, United States, 5 Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service,
National Oceanic and Atmospheric Administration, Gloucester, MA, United States

Northern shortfin squid (Illex illecebrosus) have presented a challenge for US fishery
management because of their life history traits and broad population distribution. They
are characterized by a short semelparous lifespan and high interannual variability in
recruitment. Much of the stock resides outside of the boundaries of existing US
fisheries surveys and US fishing effort. Based on the annual migration pattern and broad
geographic distribution of shortfin squid, it is believed that the US squid fishery in the
Mid-Atlantic has not had a substantial impact on the stock; however, recent catches are
viewed as tightly constrained by quotas. To better estimate the potential impact of fishing
on the resource, we worked with industry representatives, scientists, and managers to
estimate the availability of the northern shortfin squid stock on the US continental shelf to
the US fishery. Taking a novel analytical approach, we combine a model-based estimate
of the area occupied by northern shortfin squid with the empirical US commercial
shortfin squid fishery footprint to produce estimates of the area of overlap. Because
our method overestimates the fishery footprint and underestimates the full distribution
of the stock, we suggest that our estimates of the overlap between the area occupied
by the squid and the fishery footprint is a way to develop a conservative estimate of
the potential fishery impact on the stock. Our findings suggest a limited degree of
overlap between the US fishery and the modeled area occupied by the squid on the
US continental shelf, with a range of 1.4–36.3%. The work demonstrates the value of
using high-resolution, spatially explicit catch and effort data in a species distribution
model to inform management of short-lived and broadly distributed species, such as
the northern shortfin squid.

Keywords: Illex illecebrosus, fishery footprint, northern shortfin squid, species distribution model, spatiotemporal
model

INTRODUCTION

There are many uncertainties inherent in fisheries science and management. For example, natural
mortality, catchability, and recruitment dynamics are often unknown. These uncertainties are
exacerbated when surveys are not designed for the species of interest, its lifespan is very short,
and recruitment is highly variable. Fishery footprints (i.e., the geographical area exposed to
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fishing effort) have been used as a means of quantifying the
potential impact of fishing on a population (Swartz et al., 2010;
Jennings et al., 2012; Amoroso et al., 2018; Kroodsma et al., 2018).
Species distribution modeling allows for the identification and
estimation of areas critical to species’ populations and is often
used for management applications such as designing spatial or
spatiotemporal fishery closures (Tserpes et al., 2008; Jalali et al.,
2015; Rooper et al., 2019). Together, these two quantities can
provide insight into the relative severity of fishing pressure. We
propose to use the proportion of the occupied area on the US
continental shelf as estimated by a species distribution model
overlapped by the US fishery footprint to calculate a conservative
estimate of stock availability to the fishery as an approximation of
the potential impact of the fishery.

Northern shortfin squid (hereafter shortfin squid), Illex
illecebrosus, live <1 year, die soon after spawning, and have
highly variable recruitment that is believed to be environmentally
controlled (Dawe and Beck, 1997; Hendrickson, 2004). Since
1996, assessments of this squid stock have recommended in-
season assessment and fishery management to ensure sufficient
spawner escapement from the US fishery to provide adequate
recruitment levels in the subsequent year (Hendrickson et al.,
1996). Subsequent stock assessments applied depletion-based
models (using a weekly time step) using tow-based shortfin squid
fishery catch per unit effort (CPUE) data, reported electronically
by shortfin squid harvesters in real time (Hendrickson et al.,
2003), to demonstrate the utility of this type of management
regime (Northeast Fisheries Science Center [NEFSC], 1999, 2003,
2006). However, the depletion-based methods have not been
effective due, in part, to the continuous immigration of cohorts
into the relatively small US fishery in some years. Given the
limited information available, US fisheries management has set
the acceptable biological catch based on biomass and catch
history because an overfishing limit cannot be determined by
the stock assessment (Federal Register, 2012, 2018). Maximum
fishery catches have been limited by quotas during the late 1990s
and early 2000s and during recent years. Methods for estimating
possible levels of fishing mortality and spawner escapement
for the squid would be valuable for informing specifications of
acceptable biological catch.

The shortfin squid stock ranges from Florida (approximately
25◦ N) to southern Labrador (approximately 52◦ N) in the
Northwest Atlantic Ocean and occupies continental shelf to
slope sea habitats, which they use as spawning, nursery, and
feeding grounds (Dawe and Hendrickson, 1998; Roper et al.,
2010; O’Dor and Dawe, 2013). In the spring, some proportion
of the shortfin squid stock migrates inshore from the shelf
edge to occupy summer and fall feeding and spawning habitats
(Hendrickson, 2004) on the US and Canadian continental shelf
and in waters managed by the Northwest Atlantic Fisheries
Organization (NAFO), while the remaining proportion of adults
and juveniles remain in the shelf slope sea (e.g., Rathjen, 1981;
Roper et al., 2010; Shea et al., 2017). In the fall, the inshore
portion of the stock migrates off-shelf (Hendrickson and Holmes,
2004). Analyses of spatial patterns of sexual maturity using
US and Canadian shelf-wide surveys and fisheries-dependent
biosampling collections indicate that shortfin squid migrate

onto and off of the continental shelf at approximately the
same maturity stages and sizes in US and Canadian waters
at approximately the same time (Northeast Fisheries Science
Center [NEFSC], 1999). The US and Canadian fisheries operate
exclusively on the continental shelf (Hendrickson and Showell,
2019; Figure 1).

Under the assumption that shortfin squid move onto and
off of the shelf over a broad area of the US and Canadian
continental shelf as noted above (Northeast Fisheries Science
Center [NEFSC], 1999), the vulnerability of shortfin squid to the
fishery can be roughly approximated in two dimensions by the
ratio of the area fished, Af , to the area occupied by the stock,
Ao. This spatial overlap can be considered an index of availability
ρ = Af /Ao of the stock to the fishery. The complement of ρ (i.e.,
1 - ρ) is the proportion of the area occupied by the stock that is
not fished. This statistic can be viewed as an index of proportional
area of escapement from the fishery.

Shortfin squid occupy an area much larger than the Northeast
US continental shelf, including Labrador, the Flemish cap, Baffin
Island, and Southern Greenland, and shelf slope sea (Roper et al.,
2010). However, the current analysis focuses on the southern
component of the stock that constitutes the US management unit.
We adopted a conservative approach to develop estimates of the
availability of shortfin squid to the fishery (ρ) and proportional
escapement (1 - ρ) by confining analysis to fishery-dependent
and fishery-independent survey data collected in US continental
shelf waters. The shelf slope sea has not routinely been surveyed,
and although shelf-wide bottom trawl surveys are conducted
in northern waters, including the Scotian Shelf, Bay of Fundy,
and Flemish Cap where shortfin squid are abundant, effort
data are unavailable for the small Canadian inshore jig fishery
(Hendrickson and Showell, 2019). Therefore, we did not include
the shelf slope sea and northern shelf waters in our analysis of the
area occupied. Our estimates of fishery overlap (ρ) are therefore
overestimated, while estimates of proportional escapement (1 - ρ)
are underestimated.

In this paper, we quantify the area occupied by the southern
component of the shortfin squid stock on the US shelf available
to the fishery and describe how the area of squid occupancy and
overlap with the fishery has changed through time. We illustrate
how the proportional availability of the stock varies with differing
thresholds of probability of occurrence used to characterize
occupancy. We then discuss the value of our approach and
findings to precautionary fisheries management.

MATERIALS AND METHODS

Data Sets
We used shortfin squid catch data from bottom trawl surveys
conducted in the fall in offshore waters by the Northeast Fishery
Science Center (NEFSC) and inshore waters by the Northeast
Area Monitoring and Assessment Program (NEAMAP) and state
agencies of Maine and New Hampshire (MENH) as well as
commercial fishery data from a cooperative study fleet in this
analysis (Figure 2 and Table 1).
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FIGURE 1 | Map of study area with 50, 100, 300, 500, and 1,000 m isobaths. Locations of fishing effort aggregated to 5-min squares are shown in red. Note that
some areas of fishing effort have been excluded from the figure to maintain confidentiality.

The NEFSC fall bottom trawl survey is conducted in
September–November, and tows are made during both day and
night. The survey follows a stratified random design and used a
standardized Yankee 36 trawl prior to 2009 and a three-bridle,
four-seam trawl thereafter. The vessel used for conducting the
survey transitioned from the Albatross to the Bigelow in 2009,
following a calibration study in 2008 (Miller et al., 2010). The

NEFSC bottom trawl survey gear and protocols are described
in Politis et al. (2014). The NEAMAP fall bottom trawl survey
is conducted from September to October, and tows are made
during the day. The NEAMAP survey follows a stratified random
design and uses a trawl with the same design as used in the
surveys conducted by the Bigelow but with a 3-in cookie sweep
instead of a rockhopper sweep. Full details of the survey protocols
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FIGURE 2 | Map of fishery-independent surveys [bottom trawls conducted by the Northeast Fishery Science Center (NEFSC), Northeast Area Monitoring and
Assessment Program (NEAMAP), and the Maine Department of Marine Resources and New Hampshire Fish and Game Department (MENH)] and Study Fleet
coverage 2000–2018. Data from the two research vessels (Albatros and Bigelow) that have been used in the NEFSC bottom trawl are shown separately.

are described in Bonzek et al. (2017). The MENH fall bottom
trawl survey is conducted from October to November, and
tows are made during the day. The survey follows a stratified
random design and uses a modified shrimp net design. For a
complete description of the MENH survey sampling protocols,
see Sherman et al. (2005). We analyzed data collected on the Fall
MENH survey from 2000 to 2018 (Table 1). We used Fall NEFSC
bottom trawl survey data from 2000 to 2018. We used NEAMAP
survey data from 2007 (the first year of the survey) to 2018.

The surveys used for this analysis have limited spatial overlap,
which could be problematic for teasing apart differences in
spatial effects versus vessel effects on catch abundance. For
this application, however, we considered only the presence and
absence of shortfin squid. We used this approach to minimize
the impacts of variable shortfin squid detectability in the survey
resulting from differences in survey vessel characteristics and
net efficiencies.

All bottom trawl survey data were filtered to account for
variations in shortfin squid detectability, as described below. Each
of the surveys are designed for multispecies sampling and, thus,
use different gear than the shortfin squid fishery. Since shortfin
squid probably have a low detectability in gears used in the
fishery-independent surveys, catch information was reclassified
as presence/absence data for this analysis. Furthermore, shortfin
squid exhibit diel vertical migration and are typically associated
with bottom water during the day. Thus, we only used bottom
trawl survey data from “daytime” tows in this analysis. Following
the method of Jacobson et al. (2015), we used the astrocalc
function in the fishmethods package (Nelson, 2019) to derive
the solar zenith angle at the time and geographic position of
each tow. The solar zenith angle is 90◦ when the sun is at the
horizon (i.e., local sunrise and sunset), so tows that correspond

to solar zenith angles of <90◦ occurred during the day. The
final factor considered when filtering data was seasonality. Fall
bottom trawl surveys are conducted near the end of the shortfin
squid fishing season, while spring bottom trawl surveys occur
during the period of inshore migration of shortfin squid from
the slope sea. Thus, the proportion of positive shortfin squid
tows and relative abundance indices for the spring survey are
much lower than for the fall survey (Northeast Fisheries Science
Center [NEFSC], 2006). As a result, only fall bottom trawl survey
data are used in assessments to estimate shortfin squid stock
size (Northeast Fisheries Science Center [NEFSC], 1999). For
consistency with assessments, we also only used data from fall
surveys that are more closely aligned with the fishing season.

After filtering the survey data using these criteria, we were
left with a data set of 2,836 tows from the NEFSC surveys,
2,227 NEAMAP tows, and 3,284 tows from the MENH survey
(Table 1). Along with the fishery-independent survey data, we
included 5,170 tows from the NEFSC Study Fleet.

The NEFSC Study Fleet began in 2006 and is comprised
of approximately 50 commercial fishing vessels (Bell et al.,
2017; Blackburn, 2017). The captains join the program
voluntarily and are paid for their participation. Captains report
tow-specific effort, location, gear characteristics, catch, bycatch,
and environmental conditions (e.g., bottom temperature) during
their normal fishing operations, and the data are collected
through an electronic logbook system. Our current analysis uses
data from 2013 to 2018 because there were few shortfin squid
trips reported in earlier years.

We include the Study Fleet data in the habitat model along
with fishery-independent data to provide temporal and spatial
representation of shortfin squid across the shelf during the fishing
season. The shortfin squid fishery operates primarily in the
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TABLE 1 | Fishery-independent surveys used for building shortfin squid habitat map.

Survey Years Months Maximum depth (m) Number of hauls Number of shortfin squid positive hauls

NEFSC fall bottom trawl 2000–2018 Sept–Nov >183 2,836 1,461

NEAMAP 2007–2018 Sept–Oct >36.6 2,227 73

MENH 2000–2018 Oct–Nov >102 3,284 747

Only fall surveys were used, and tows were filtered for daylight hours based on solar zenith angle <90◦.

summer months, while the surveys are conducted in the fall.
Depending on the productivity of the fishery, there may be little
to no temporal overlap with the surveys (e.g., in some highly
productive years, the fishery has closed in August). Given the
goal of determining fishery footprint overlap with habitat, it
is important to incorporate data from the fishing season, and
model results based on the surveys alone become difficult to
interpret across years when there is temporal overlap between
the fishery and surveys in some years and no temporal overlap
in others. The authors recognize that using commercial fishing
data to determine habitat presents the problem of nonrandom
sampling (i.e., the fishery will complete more tows in an area
where they expect to catch squid than in other areas). Moreover,
using a subset of fishery data (i.e., the Study Fleet) in both the
numerator and denominator of our fishery overlap metric is
somewhat circular (i.e., some amount of fishery/habitat overlap
is guaranteed by the mere fact that a portion of the same data
are used to define both the footprint and the habitat). However,
the logistical considerations described above justify the use of
the Study Fleet data in the habitat model. Finally, the potential
direction of bias introduced by the inclusion of Study Fleet data
in the habitat model would err on the side of conservatism by
tending to increase the degree of fishery/habitat overlap. For
these reasons, it is the authors’ belief that the benefits gained by
including the Study Fleet data in the habitat model outweigh the
complications created by using it.

The Fishery and the US Fishery Footprint
The US fishery targets shortfin squid during the warm summer
months primarily at depths of 109–365 m on the outer edge of
the southern New England and Mid-Atlantic Bight continental
shelf. Shortfin squid are a highly perishable seafood product
that sells for relatively low prices. To be profitable, the vessels
must catch large volumes of squid and process them quickly at
shoreside plants and at sea (Manderson, 2019). Since 1999, the US
fishery has accounted for approximately 97% of the annual catch
of shortfin squid in the Northwest Atlantic (Hendrickson and
Showell, 2019). The fishery uses large mesh bottom trawls towed
primarily during daylight hours when the squid, which migrate
diurnally, are usually concentrated near the seabed. Fishermen
report that squid abundance on the shelf break varies at length
scales of 10–20 km along the shelf, 0.09–0.5 km cross-shelf, and
at time scales of 1–2 days (Manderson, 2019). These space–time
scales are similar to those characterizing the dynamics of the shelf
slope front (Chen and He, 2010; Todd et al., 2012; Gawarkiewicz
et al., 2018). The fishing area is largely determined by technical
and regulatory constraints. The fleet is currently prevented from
fishing in water deeper than 400–600 m in the mid-Atlantic and

New England by coral protection areas, including the Frank R.
Lautenberg Deep-Sea Coral Protection Area. Furthermore, the
current fleet of vessels is generally not capable of fishing in waters
deeper than about 700 m, and capital investments required for
deep water trawling in the slope sea are not justified by the current
market economics of the fishery.

To develop the fishery footprint, we used Vessel Trip Report
(VTR) data provided by the US Greater Atlantic Regional
Fisheries Office (GARFO). Records of fishing locations for trips
that reported any shortfin squid landings were aggregated to 5-
min squares (∼9.25 × 6.90 km = 63.8 km2 at 42◦N) for each
year from 2000 to 2019 (Figure 1). This approach is at a finer
scale than the 10-min square regularly used to characterize the
spatial dynamics of the shortfin squid fishery (Hendrickson,
2019). Each 5-min square was attributed as presence/absence of
fishing. Vessel Monitoring System (VMS) data were considered
for this analysis but ultimately were not used because complete
years were only available from 2017 to 2019.

Species Distribution Model
The area shortfin squid occupied within the surveyed portion
of the shelf was estimated with a Vector Autoregressive
Spatiotemporal (VAST version 3.3.0) model (Thorson J.T., 2019)
in R version 3.6.2 (R Core Team, 2019). VAST is a spatiotemporal
generalized linear mixed model (GLMM), which by default is
a delta style model to model probability of occurrence and a
conditional positive catch component. Following the methods
of Grüss et al. (2017, 2018), we used only the probability of
occurrence model component by turning off all parameters used
in the conditional abundance equation (Thorson J., 2019). The
probability of occurrence model uses a binomial distribution and
logit link. We used 500 spatial knots to fit the model, and we
built an extrapolation grid based on the NEFSC survey strata with
prediction points placed on a 3× 3 nautical mile (5.56× 5.56 km)
grid. Area swept is accounted for directly, and we allowed for
overdispersion by turning on random effects of vessels on the
catchability. The probability of occurrence (pi) for each sample
i was estimated by the binomial GLMM as:

pi =
[(

logit
)](−1)

(β (ti)+ ω (si)+ ε (si, ti)+ η (vi))

where β(ti) is an intercept for year ti, ω(si) is a random spatial
effect at location si, ε(si,ti) is a random spatiotemporal effect at
location si in year ti, and η(vi) is a random effect of vessel vi.

The NEAMAP, MENH, and NEFSC fall surveys and NEFSC
Study Fleet catch data were used in the model to determine
the area of the US shelf waters occupied by the shortfin
squid southern stock component based on the probability of
occurrence. We did not include environmental covariates, such as
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bottom temperature in the VAST model because measurements
were unavailable for a large number of stations in each of the
surveys. We considered filling data gaps with model estimates
from the Regional Oceanographic Modeling System (ROMS;
Wilkin et al., 2005) but found model-based estimates to be
inaccurate compared with in situ measurement.

The output prediction points were converted to Voronoi
polygons, then joined to form polygons based on the probability
of occurrence (i.e., <20%, 20–39.9%, 40–59.9%, 60–79.9%, and
>80% probability of occurrence) using the sf package (Pebesma,
2018). These areas of binned probability of occurrence from the
VAST model analysis were annual estimates of US continental
shelf area occupied by the southern stock component of shortfin
squid (Ao), which served as the denominator in computations of
the US shortfin squid fishery overlap.

Overlap of Fishery Footprint and SDM
Raster files of shortfin squid fishing effort were converted to
polygons, then intersected with the habitat areas using the
sf (Pebesma, 2018) and raster (Hijmans, 2020) packages. The
habitat area overlapping with fishing effort divided by the total
habitat area (at each threshold) is the metric of availability of
the shortfin squid stock to the fishery such that the spatial
estimate of the overlap of the fishery with the stock is given
as ρ = Af /Ao, where Af is the area fished and Ao is the area
occupied by the stock.

RESULTS

Species Distribution Model
Model diagnostics showed no evidence that the model did not
converge: parameter estimates did not approach upper or lower
bounds, the final gradient for all parameters was close to zero
(maximum gradient = 9.3 × 10−9), and the Hessian matrix was
positive definite (Appendix A). Observed encounter frequencies
were within the 95% confidence interval for nearly all predicted
probabilities <0.8, and the observed encounter frequencies
at high predicted probabilities tended to be greater than the
predicted value and slightly outside the 95% CI (Appendix A).
Pearson residual values did not suggest spatial or temporal trends
in errors for probability of occurrence (Appendix A).

Differences in spatial patterns of occurrence did not vary
systematically between years of high (e.g., 2004, 2017, 2018)
and low landings (e.g., 2001, 2002, 2013, 2015) (Figures 3, 4).
Model-based estimates of areas occupied by shortfin squid were
broadly similar across time in the Mid-Atlantic region but
were more variable in the Gulf of Maine and Georges Bank
(Figure 4). Much of the Gulf of Maine is characterized by
relatively low probabilities of occurrence (mostly <40%) in 2000
and 2002, with areas of intermediate probability of occurrence
(40–79%) increasing through 2007. Concurrently, the probability
of occurrence remained slightly higher on much of Georges Bank
(except for the center of the bank, which remains an area of low
probability, likely due to lack of sampling). From 2007 to 2019,
the probability of occurrence is high in most of the Gulf of Maine
and Georges Bank area, except in 2010 and 2015–2016. The

FIGURE 3 | Shortfin squid landings in the US fishery from 1996 to 2018.

highest probabilities of occurrence over the largest area occurred
in 2007 and 2018 (Figure 4).

The shortfin squid habitat area on the Northeast US
continental shelf ranged from 4,262 to 22,656 km2 using the
80% probability threshold of habitat area and from 51,311 to
151,382 km2 using the 40% threshold (Figure 5). The wide range
of habitat area reflects the highly variable nature of shortfin
squid catch. The area occupied by squid based on the 40 and
60% thresholds increased from 2000 to 2007. This was followed
by a decrease and then a period of lower variability from 2010
to 2016. The area occupied increased at the end of the time
series (Figure 5). The habitat area based on the 80% threshold
is relatively constant throughout the series.

Fishing Footprint
The spatial distribution of shortfin squid fishing effort is
consistent at the shelf break in the Mid-Atlantic where the
commercial fishery has traditionally been located (Figure 4).
Fishing effort was more widespread, covering more inshore areas
in early years (2000–2004). From 2005 to 2019, fishing effort is
mostly confined to a narrow band along the shelf break. In a
few years, fishing effort was evident inshore in the Gulf of Maine
and on Georges Bank (e.g., 2012 and 2014); however, these areas
are not typical for directed shortfin squid trips and appear to
be indicative of incidental catch since the squid are targeted in
the Mid-Atlantic.

Overlap of Fishery Footprint and SDM
The proportion of shortfin squid habitat on the US continental
shelf that is accessed by the fishery (i.e., proportion of fished
area overlapping with habitat area) varied each year probability
threshold chosen to define habitat area (the largest difference is
approximately 30 percentage points, and the average difference is
approximately 11 percentage points) (Figure 5C). Across years,
the minimum estimate for the percent of fishery/habitat overlap
was 1.4% (2007 based on 40% threshold), and the maximum
estimate for the percent of fishery/habitat overlap was 36.3%
(2016 based on 80% threshold). The estimates of proportional
area of shortfin squid escapement ranged from a maximum of
98.6% to a minimum of 63.7%.
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FIGURE 4 | Shortfin squid probability of occurrence map. Quintiles of probability of occurrence are shown in shading. Locations of fishing effort aggregated to 5-min
squares are shown in green. Note that some areas of fishing effort have been excluded from the figure to maintain confidentiality.

DISCUSSION

We developed estimates of availability (ρ) and proportional
escapement (1 – ρ) for the southern stock component of
shortfin squid by confining our analysis to US continental shelf
waters where the fishery is well monitored and routine fishery-
independent bottom trawl surveys are conducted. Results suggest
that even when considering only the US shelf as habitat, a
relatively small proportion of the resource (1.4–36.3%) interacts
with the fishery, regardless of the threshold chosen to indicate
habitat. Given that (1) shortfin squid are known to occupy waters
in the shelf slope sea much deeper than those sampled in the
available surveys (Rathjen, 1981; Vecchione and Pohle, 2002;
Roper et al., 2010; Harrop et al., 2014: Shea et al., 2017) as well
as areas beyond the northern and southern extent of surveys
considered here (Dawe and Beck, 1985; Hendrickson and Hart,
2006; Roper et al., 2010) and (2) fishing effort is aggregated to a

coarse scale representing a much larger area than the actual tow
path, the results of this research provide a conservative estimate
of habitat with an overestimate of fishing footprint.

The shortfin squid habitat estimated by this research is
conservative for several reasons. First, the geographic range of
shortfin squid extends far beyond the spatial domain of this
research, from South of Cape Hatteras, North Carolina in the
Florida Straits (Dawe and Beck, 1985; Hendrickson and Hart,
2006; Roper et al., 2010), Northeast to Labrador, the Flemish
cap, Baffin Island, and Southern Greenland. There are confirmed
reports of shortfin squid farther east in Iceland, the Azores,
and in the Bristol Channel, England (O’Dor and Lipinski, 1998;
Roper et al., 1998; O’Dor and Dawe, 2013). In addition, the
squid occupy shelf slope sea habitats as adults as well as in
the juvenile and larval phases. Bottom and midwater trawl and
submersible surveys of the shelf slope sea have documented high
concentrations of shortfin squid to bottom depths up to 2,000 m
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FIGURE 5 | (A) Approximate area fished based on Vessel Trip Reports (VTR) aggregated to 5 minute squares. (B) Shortfin squid habitat area on the US continental
shelf and (C) US fishery overlap based on 40%, 60%, and 80% probability of occurrence threshold for defining habitat.

(Rathjen, 1981; Vecchione and Pohle, 2002; Roper et al., 2010;
Harrop et al., 2014; Shea et al., 2017), far beyond the domains of
fishery-independent bottom trawl surveys of the US continental
shelf (max depth = 542 m; Politis et al., 2014). Stomach content
analysis of large pelagic fishes caught in the central Atlantic
showed that ommastrephid squids appeared to be the primary
food source for these fishes in this region of the ocean (Logan
et al., 2013). Thus, the geographic area occupied by shortfin squid

is far larger than the area included in this analysis, leading to a
conservative estimate of habitat.

Shortfin squid also spend significant amounts of time in
pelagic habitats on the continental shelf and the shelf slope sea.
Submersible as well as mid-water trawl surveys of the slope sea
have observed large concentrations of adult shortfin squid in
the water column (Vecchione and Pohle, 2002; Harrop et al.,
2014; Shea et al., 2017). There is also evidence that shortfin
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squid occupy the pelagic environment on the US and Canadian
continental shelf (Froerman, 1981; Brodziak and Hendrickson,
1998; Roper et al., 2010). The pelagic lifestyle of shortfin squid
makes its space use volumetric rather than areal. However, this
analysis used daytime data when shortfin squid are more closely
associated with the seafloor. A volumetric calculation of the
availability (ρ) of the squid to these fisheries may be different than
the value we calculated using surface areas occupied by shortfin
squid and the fishery.

The shortfin squid fishing footprint estimated by this research
is likely overestimated, as the scale of fishing effort data is far
coarser than actual tow paths. Quantifying fishery footprints
has become an increasingly common exercise in recent years
on regional (e.g., Jennings et al., 2012; Amoroso et al., 2018)
as well as global scales (Kroodsma et al., 2018) as a means
to approximate the impacts of fishing. Amoroso et al. (2018)
quantified fishery footprints on two dozen shelf/slope areas using
VMS and logbook data and found that trawling footprints tended

TABLE 2 | Indices ofshortfin squid abundance (mean kilogram per tow, mean number per tow) from fishery-independent bottom trawls surveys: Fall North East Fisheries
Science Center (US NEFSC), Fall southern Gulf of St. Lawrence (Div4t StLau), July Scotian Shelf and Bay of Fundy (DFO SS), Fall Grand Banks (3LNO GB), and July
Flemish Cap.

Year Fall US NEFSC Fall Div4t StLau July DFO SS Fall 3LNO GB July Flemish Cap

2010 0.05, 8.70 0.18, 0.88 1.08, 19.60 0.00, 0.00 43, NA

2011 0.50, 10.00 0.10, 0.86 1.90, 23.00 0.00, 0.00 89, NA

2012 0.05, 6.30 0.12, 0.88 1.50, 16.90 0.03, 0.22 38, NA

2013 0.40, 8.00 0.01, 0.11 0.10, 1.4 0.00, 0.01 0, NA

2014 0.60, 8.30 0.06, 0.28 1.10, 10.10 3, NA

2015 0.50, 9.50 0.00, 0.00 0.20, 2.40 0.01, 0.09 0.001, NA

2016 0.66, 7.60 0.03, 0.39 0.40, 10.90 0.0185, 0.117 3, NA

2017 0.28, 1.35 16.10, 119.90 0.162, 0.907 2,359, NA

2018 1.30, 15.80 0.89, 5.07 0.2794, 1.648 49, NA

2019 32.10, 196.00 363, NA

Median: 2000–present 0.60, 8.7 0.10, 0.495 1.5, 16.15 0.03, 0.117 79, NA

Data from Hendrickson and Showell (2019).

TABLE 3 | Shortfin squid landings (in metric tons, MT) and percent of total landings in US (NAFO 5&6), and Canadian waters (NAFO 3&4) since 1999 when Canadians
ceased licensing foreign fishing on the Nova Scotia Shelf.

Total US waters Gulf St Lawrence/ Newfoundland– Total allowable

landings Scotian NAFO 5&6 Shelf NAFO 4 Flemish Cap NAFO 3 catch MT

Year MT MT % Total MT % MT % CAN (NAFO 3 + 4) US (NAFO 5–6)

1999 7,693 7,388 96 286 4 19 0 75,000 19,000

2000 9,377 9,011 96 38 0 328 3 34,000 24,000

2001 4,066 4,009 99 34 1 23 1 34,000 24,000

2002 3,010 2,750 91 30 1 230 8 34,000 24,000

2003 7,524 6,391 85 46 1 1,087 14 34,000 24,000

2004 28,671 26,097 91 34 0 2,540 9 34,000 24,000

2005 12,591 12,013 95 30 0 548 4 34,000 24,000

2006 20,924 13,943 67 24 0 6,957 33 34,000 24,000

2007 9,268 9,022 97 16 0 230 2 34,000 24,000

2008 16,434 15,900 97 11 0 523 3 34,000 24,000

2009 19,136 18,418 96 42 0 676 4 34,000 24,000

2010 15,945 15,825 99 18 0 102 1 34,000 24,000

2011 18,935 18,797 99 50 0 88 0 34,000 23,328

2012 11,756 11,709 100 29 0 18 0 34,000 22,915

2013 3,819 3,792 99 27 1 0 0 34,000 22,915

2014 8,788 8,767 100 21 0 0 0 34,000 22,915

2015 2,437 2,422 99 14 1 0 0 34,000 22,915

2016 6,836 6,682 98 18 0 134 2 34,000 22,915

2017 22,881 22,516 98 52 0 313 1 34,000 22,915

2018 25,663 24,117 94 70 0 1,476 6 34,000 22,915

2019 26,922 34,000 24,825
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to be smaller in areas where fishery management reference
points were being met. Jennings et al. (2012) estimated fishing
area and landings by VMS records assigned to a 3 × 3-km
grid. They found that the total fishing footprint (i.e., the area
that accounted for 100% of fishing effort) ranged from about
43 to 51% of the total study area and included “core areas”
where much of the effort was concentrated as well as large
“margins” that contained areas with much less of the effort.
Similarly, our finding that the proportion of fishing effort overlap
is considerably greater based on the 80% threshold relative to
the 60 and 40% thresholds (Figure 5) suggests that captains are
able to identify and target prime shortfin squid habitat within
the study area. Even with this targeting behavior, the impact of
the fishing fleet on the population is limited to approximately
one-third of the “best” habitat within our study area on the US
continental shelf.

This research suggests that shortfin squid have ample
opportunity for escapement from the fishery on the northeast
continental shelf. Additional opportunities for escapement may
be provided in the northern stock area and areas closed to
fishing, as explained below. We limited our analysis to US
waters, despite the availability of Canadian fishery-independent
survey data (Table 2) because the Canadian commercial
fishery and recreational fishery are not as well monitored as
the US fishery (Hendrickson and Showell, 2019). However,
examination of available fishery statistics indicates that the
capacity of the Canadian commercial fishery is currently quite
small when compared with the US fishery (Table 3). Since
the prohibition of foreign vessels in the Canadian Fishery
in 1999, the US summer bottom trawl fishery has accounted
for approximately 97% of the total landings of shortfin squid
in the Northwest Atlantic (Table 3). Fisheries operating in
the Gulf of Saint Laurence, Scotian Shelf, and Newfoundland
have been responsible for approximately 3% of the landings.
The Canadian fishery has achieved only about 1% of the
Total Allowable Catch for NAFO areas 3 and 4 (range,
0–21%) since 2000. Thus, the northern shortfin squid stock
area, which is not included in our analysis, represents an
additional portion of the species range that provides for
escapement of potential spawners because the Canadian fishery
has remained small in capacity (Hendrickson and Showell, 2019;
Table 3).

US fishery regulations that prevent fishing in areas on the
outer continental shelf and slope sea also provide shortfin
squid with permanent regions of escapement from the fishery.
These areas include the Frank R. Lautenberg Deep-Sea Coral
Protection Area, the tilefish and lobster gear-restricted areas,
and other regulated mesh areas in Gulf of Maine and Georges
Bank that prohibit the use of fine mesh trawls used by
the squid fishery. The Coral Protection Area occurs along
the shelf break at depths >450 m, covers 38,000 square
nautical miles including a large area of the slope sea, and
15 canyon areas where the fishery cannot operate. Large
concentrations of shortfin squid have also been observed in
the slope sea near seamounts within the 4,913 square mile
Monument Area that is now closed to mobile fishing gear (Shea
et al., 2017). Given these areas of squid occupancy outside

of our current study area, our results may overestimate the
availability of shortfin squid to the fishery despite our fishery
footprint area being based on presence/absence and unscaled to
catch or effort.

A clear next step for this research is to incorporate
environmental factors in the shortfin squid habitat model.
A study of 67 cephalopod time series indicated population
increases from the 1950s through the 2010s across various taxa
and life histories, suggesting that common large-scale processes
drive the increase, aided by biological aspects of cephalopods
(Doubleday et al., 2016). Similarly, an examination of the
relationship between oceanographic characteristics and spatial
distribution of cephalopods in the Yellow Sea suggested that
shifts in spatial distribution of cephalopods over the study period
was consistent with environmental drivers rather than fishing
pressure (Jin et al., 2020).

In conclusion, our findings are consistent with advice to
regional management that the shortfin squid stock is unlikely to
be negatively impacted by a modest increase in catch (Didden,
2018) because the US fishery overlaps a small portion of the
area occupied by the southern stock component. The overlap
of fishing area with areas where shortfin squid are likely to
occur does not account for the variations in density. Fishing is
concentrated on the shelf break because this is where squid are
concentrated prior to their subsequent use of shoreward habitats.
In some years, these areas may have had sufficient densities or
detectability by the fishing fleets to support commercial harvest.
In view of the limited understanding of recruitment dynamics
of shortfin squid, the potential impacts of harvests on spawning
stock escapement are not known. By the same measure, there is
no direct evidence of recruitment overfishing for shortfin squid.
However, several lines of evidence suggest low potential effects
of fishing activity. The near absence of fishing activity in the
known historical range of shortfin squid in the US and Canada
and the occurrence of shortfin squid at depths and distances
well offshore suggest a large region of unfished resource. A high
fishing mortality on the entire resource would be possible only
if a large fraction of the resource passed through the actual
fishing areas of the US. Thus, it is unlikely that the US fishery
has had a substantial impact on the southern stock component
of shortfin squid.
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Methods that predict the distributions of species and habitats by developing statistical
relationships between observed occurrences and environmental gradients have become
common tools in environmental research, resource management, and conservation.
The uptake of model predictions in practical applications remains limited, however,
because validation against independent sample data is rarely practical, especially at
larger spatial scales and in poorly sampled environments. Here, we use a quantitative
dataset of benthic invertebrate faunal distributions from seabed photographic surveys
of an important fisheries area in New Zealand as independent data against which to
assess the usefulness of 47 habitat suitability models from eight published studies in
the region. When assessed against the independent data, model performance was
lower than in published cross-validation values, a trend of increasing performance over
time seen in published metrics was not supported, and while 74% of the models were
potentially useful for predicting presence or absence, correlations with prevalence and
density were weak. We investigate the reasons underlying these results, using recently
proposed standards to identify areas in which improvements can best be made. We
conclude that commonly used cross-validation methods can yield inflated values of
prediction success even when spatial structure in the input data is allowed for, and that
the main impediments to prediction success are likely to include unquantified uncertainty
in available predictor variables, lack of some ecologically important variables, lack of
confirmed absence data for most taxa, and modeling at coarse taxonomic resolution.

Keywords: habitat suitability, species-environment models, distributions, deep sea, benthos, epifauna, predictive
models, AUC

INTRODUCTION

Understanding and managing ecosystem effects of human activities, such as bottom-contact fishing
and mineral extraction in the deep sea (depths greater than ca. 200 m), requires quantitative
information on the distributions of benthic habitats and fauna (Kaiser et al., 2016; Pitcher et al.,
2017). Because such information is generally sparse in waters beyond coastal areas, management
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decision-making relies increasingly on outputs from habitat
suitability models (also known as species distribution models),
which develop correlations between point-sampled faunal
occurrence records and spatially continuous environmental
variables to predict probabilities of suitable habitat or taxon
occurrence across unsampled environmental space (Guisan and
Zimmermann, 2000; Elith and Leathwick, 2009; Guisan et al.,
2013; Vierod et al., 2014; Reiss et al., 2015). Methods commonly
in use include Boosted Regression Trees (BRT, Friedman et al.,
2000; Leathwick et al., 2006; De’ath, 2007), Generalized Additive
Models (GAM), Maximum Entropy (MaxEnt, Phillips et al.,
2006), and Random Forests (RF, Breiman, 2001). These and other
types of habitat suitability models are in constant development
(e.g., Warton et al., 2015) and are used increasingly in a broad
range of applications (Guisan et al., 2013; Robinson et al.,
2017; Araujo et al., 2019). The fundamental requirements of all
methods, however, are the same: accurate and sufficient point-
sample data about where a taxon has been recorded and, ideally,
where it is has been confirmed to be absent, and accurate and
ecologically relevant environmental data as continuous layers
spanning the region of interest.

The relative paucity, patchiness, and taxonomic selectivity of
available faunal sample data in the deep sea, a lack of spatial
resolution and local validation of environmental layers, and
limited understanding of biotic interactions and historical factors
that might influence present distributions, in combination, can
result in high levels of uncertainty being associated with the
outputs from habitat suitability models (Fielding and Bell, 1997;
Araujo and Guisan, 2006; Vierod et al., 2014; Reiss et al., 2015;
Anderson et al., 2016a). This uncertainty is exacerbated by the
cross-validation methods commonly used to evaluate model
performance, in which subsets of the input taxon occurrence
data are withheld from the model and used as test sites to assess
predictions. While this approach is practical, it can generate
overly optimistic values of model performance (Bahn and Mcgill,
2013; Ploton et al., 2020) that may not be supported by field
validation (Anderson et al., 2016a) because the data used in cross-
validation methods are not independent from those used to build
the model itself and are likely to be spatially biased (e.g., Lobo
et al., 2008; Ploton et al., 2020).

Evaluation against data collected independently of those used
in the modeling process is the most convincing approach to
model assessment because it is directly relevant to the way
in which model predictions are used in practice: if we are to
have confidence in the model outputs, we need to know how
reliable they are in relation to independent observations of the
target taxa (Verbyla and Litvaitis, 1989; Fielding and Bell, 1997;
Pearce and Ferrier, 2000; Araujo et al., 2019). An important
point here is that such independent observations should be
made using methods that detect the taxa of interest reliably. In
most studies of benthic invertebrate taxa in the deep sea, taxon
occurrence data are compiled from sampling methods, typically
demersal fish trawls, that are not efficient at catching benthos,
leading to unquantified uncertainty in relation to detection and
selectivity. Evaluation against independent data is rare, however,
for the same reasons that habitat suitability modeling itself is a
useful tool. That is, sample data about species’ occurrences are

usually sparse because such data are time-consuming, logistically
challenging, and expensive to collect and habitat suitability
modeling approaches have been developed as a more pragmatic,
rapid, and affordable way to map distributions. However,
because independent validation of models is rarely undertaken,
confidence in their predictions can be low, limiting their
credibility for use in environmental management (Anderson
et al., 2016a; Winship et al., 2020). Model uncertainty can
be reduced by development of more sophisticated modeling
methods or by increasing the quality and quantity of data inputs
but without evaluation of performance against independent data,
we cannot be sure that such developments translate into practical
gains. Therefore, in places where successive models have been
developed, with progressive updates to input data and modeling
techniques, it is important to understand whether more recent
models represent improvements in terms of increased prediction
accuracy and thereby build confidence in their use for fisheries
and other management purposes.

In New Zealand and the wider southwest Pacific region,
growing concern about the ecosystem effects of fisheries and
potential seabed mineral extraction operations has stimulated
interest in improving knowledge about the distributions of
seafloor fauna (Rowden et al., 2019). Habitat suitability modeling
has been used in several studies of seafloor faunal distributions,
mostly for sessile invertebrate taxa such as corals and sponges
that are recognized as being particularly sensitive or vulnerable
to anthropogenic disturbances (e.g., Tracey et al., 2011; Anderson
et al., 2014) but also for demersal fishes (Leathwick et al., 2006)
and mobile benthic fauna (Compton et al., 2013; Bowden et al.,
2019a). The potential of habitat suitability modeling methods
to predict distributions across unsampled space is of particular
appeal in the region because, despite being rich in biological and
mineral resources, relatively little of its seafloor has been surveyed
in detail, other than in areas of particular interest for fisheries
research. Many of the broad-scale habitat suitability modeling
initiatives in this region arose as direct or indirect consequences
of concerns about the seabed impacts of commercial bottom-
contact fisheries. Bottom trawl fisheries target hoki (Macruronus
novaezelandiae) and other demersal species on smooth substrata
over large areas of New Zealand’s Exclusive Economic Zone
(EEZ) in depths of 300–1,400 m and deep-sea species including
orange roughy (Hoplostethus atlanticus), oreo (Oreosomatidae),
and alfonsino (primarily Beryx splendens) on seamounts and
other underwater topographic features throughout the region
(Fisheries New Zealand, 2020). Much of what is known about
the distributions of non-target seafloor taxa comes from bycatch
records from these fisheries and the research trawl surveys that
inform catch advice for them (O’Driscoll et al., 2011), and most
habitat suitability models in the region have been based on
occurrence data from these records in combination with records
from museum and other specimen collection databases.

The only evaluation of deep-sea habitat suitability model
predictions using data collected independently and by methods
designed to detect the target taxa to date in the region is
the study of Anderson et al. (2016a), in which the authors
of the present paper first developed models for cold-water
coral taxa, then designed and ran a seabed photographic
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survey specifically to test their predictions on the Louisville
Seamount Chain to the east of New Zealand. We found that
the models performed poorly in practice and attributed this
to a number of potential factors, including a lack of reliably
supported taxon absence records, low precision of available
environmental variables, particularly bathymetry, and lack of
ecologically relevant variables, such as substrate type, which are
key determinants of benthic taxon distributions. In light of these
results and a general lack of confidence in modeled distributions
for use in environmental management, Fisheries New Zealand
and the National Institute of Water and Atmospheric Research
initiated a project to independently assess the predictive
performance of existing models and improve confidence in future
predictions. Focusing on a major fisheries area in New Zealand,
Chatham Rise, the first stage of this project was to generate a fully
independent, quantitative, dataset of seabed faunal distributions
derived from photographic surveys that would enable objective
assessment of existing habitat suitability models for the region
(Bowden et al., 2019b).

Here, we use this independent dataset to assess the usefulness
of outputs from published habitat suitability models for the
region. We first use best-practice model building standards
proposed by Araujo et al. (2019) to rank the existing models
in order of their expected predictive performance, then by
comparing model predictions against the independent data, we
generate five metrics describing performance: area under the
receiver operating characteristic curve (AUC); true skill statistic
(TSS); results from t-tests comparing the mean of published
model probability values for all locations at which a taxon was
present in the independent test data against the mean value
for locations at which it was absent; and correlation strength
between predicted probability of suitable habitat for a given
taxon and both its prevalence in the test data (R2

prev) and its
standardized population density in the test data (R2

dens). We use
these metrics to assess how well each model performs in absolute
terms, and to rank them in order of realized performance, which
we hypothesize should match the expected ranking based on the
Araujo et al. (2019) criteria. We then refer to the Araujo et al.
(2019) criteria to discuss which aspects of model development
have the greatest influence on realized model performance.

MATERIALS AND METHODS

Study Area
The study focuses on Chatham Rise because this part of
New Zealand’s EEZ has the highest density of seafloor
photographic survey data available for use in model evaluation,
is physically central to many of the habitat suitability models
available for evaluation in the region, and is the source of
much of the specimen data that informed development of
these models (Figure 1). Chatham Rise is a continental rise
that extends eastward from the South Island of New Zealand
for approximately 1,000 km, with the Chatham Islands toward
the eastern end. The Sub-Tropical Front coincides with and is
partially constrained by the rise, making it the most biologically
productive fisheries region in the EEZ (McClatchie et al., 1997;

Clark et al., 2000; Marchal et al., 2009; Nodder et al., 2012). Recent
summaries of bottom-contact trawl history across Chatham Rise
(Black et al., 2013; Black and Tilney, 2015; Baird and Mules, 2019)
show high trawling intensity, primarily from the hoki fishery, at
a 450–700-m depth west of Mernoo Bank and on the southern
and northern central flanks of Chatham Rise, with locally very
high intensities of trawling for orange roughy, oreo, and alfonsino
on seamount and knoll features on the northern, eastern, and
southern flanks. At present, initiatives to protect benthic habitats
and fauna are limited to closures to fishing on some seamounts
in the “Graveyard” and “Andes” regions (since 2001) on the
northwest and southeast flanks of the rise, respectively (Brodie
and Clark, 2003; Clark and Dunn, 2012), and establishment in
2007 of two benthic protection areas (BPAs): the Mid Chatham
Rise BPA and the East Chatham Rise BPA (Helson et al., 2010).

Existing Models
Predictive models of habitat suitability for benthic epifaunal
invertebrate taxa that encompass Chatham Rise have been
published, primarily, in eight separate studies by our research
team since 2011 (Tracey et al., 2011; Baird et al., 2013; Compton
et al., 2013; Anderson et al., 2014, 2015, 2016a,b; Georgian et al.,
2019). Most of these studies have focused on protected corals
(Tracey et al., 2011; Baird et al., 2013; Anderson et al., 2014,
2015) and vulnerable marine ecosystem (VME, sensu FAO, 2009)
indicator taxa (Anderson et al., 2016a,b; Georgian et al., 2019),
with only one study producing models for individual species
across a wide range of taxonomic groups (Compton et al., 2013).
We selected models for taxa that were well represented in our
independent dataset (see below), with presence records at nine
or more sites within the spatial domain of the model. Across the
eight studies, 47 individual models spanning 31 taxa (Table 1)
were suitable for assessment against the independent dataset.

All of the studies were undertaken with the principal aim of
predicting occurrence across unsampled geographic space within
the geographic range of their input faunal data (Prediction,
sensu Araujo and Guisan, 2006; Araujo et al., 2019). Three
modeling techniques were used across the studies: BRT, RF,
and MaxEnt, with BRT being the most commonly used. The
treatment of input data varied across studies, particularly in
the approach to defining absence records. Five studies worked
with presence–background data, using either randomly selected
or spatially structured background points from the study area
as assumed “pseudo-absences” (Tracey et al., 2011; Baird et al.,
2013; Anderson et al., 2014, 2016a; Georgian et al., 2019), while
the others used presence–absence data, deriving absence sites
either from a combination of research trawl bycatch and museum
databases or, in the case of Compton et al. (2013), from the
source photographic survey data. Presence–absence models give
an indication of the probability of a taxon being present, whereas
models using pseudo-absences provide only a measure of the
probability of suitable habitat being present.

The spatial extents of the studies range from the entire South
Pacific Regional Fisheries Management Organisation (SPRFMO)
Convention area (Anderson et al., 2016a) down to a section
of the central part of the New Zealand EEZ (Compton et al.,
2013), but all are centered on Chatham Rise (Figure 1).
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FIGURE 1 | (Top) areas of eight published studies from which predictive models were assessed: A, Tracey et al. (2011); B, Baird et al. (2013); C, Compton et al.
(2013); D, Anderson et al. (2014); E, Anderson et al. (2015); F, Anderson et al. (2016a), G, Anderson et al. (2016b); and H, Georgian et al. (2019). Boundary B is the
New Zealand Exclusive Economic Zone (EEZ). Also showing New Zealand’s Extended Continental Shelf boundary (red polygon), the 1,000-m isobath, and Chatham
Rise (bold black rectangle). (Bottom) Chatham Rise showing the location of DTIS photographic transect stations (color-coded points, see legend) for the five
surveys from which the independent test dataset was developed. The Graveyard and Andes seamount complexes are indicated, isobaths show 250-, 500-, 1, 000-,
and 1,500-m depths, and red polygons show Benthic Protection Areas (BPAs), which are protected from seabed trawl fishing.

Spatial resolution for all studies was constrained to 1 km2

by the resolution of available environmental predictor data.
This resolution approximates to that of most of the methods
used to collect the underlying sample data—primarily towed
sampling gear including trawls, dredges, and epibenthic sleds—
and matches closely the length of photographic transects from
which the independent data were compiled.

All but one of the published studies were trained on benthic
invertebrate sample data from physical specimens from research
trawl surveys, fisheries bycatch, and museum collections, with
most occurrence records coming from within the New Zealand

EEZ, and many of these from Chatham Rise itself. Compton et al.
(2013), by contrast, used observation data from photographic
transects and epibenthic sled samples collected during two
dedicated surveys of benthic biodiversity, one of which was
TAN0705 (see below for relevance). All studies used k-fold
cross-validation to evaluate model performance, a technique
in which portions of the available sample data are iteratively
withheld from the model training phase and then used to generate
performance metrics based on how well the model predicts
their values. The detail of how this validation was performed
varied across studies, from random withholding of sites across
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TABLE 1 | Summary details of the eight existing SDM studies and the individual models suitable for assessment against the independent dataset.

Name Spatial extent Model type Assessed taxa Model resolution

Tracey et al., 2011 New Zealand ECS BRT Goniocorella dumosa 1 km

Baird et al., 2013 New Zealand EEZ BRT Coral-reef, solitary small, Gorgonacea, Stylasteridae,
Antipatharia, Scleractinia

1 km

Compton et al.,
2013

Central
New Zealand
region

BRT Anthomastus robustus, Corallimorpharia, Flabellum spp.,
Galatheidae, Hyalinoecia tubicola, Metanephrops
challengeri, Radicipes spp., Scaphopoda, Serolidae,
Spatangidae, Taiaroa tauhou, Volutidae, Zoantharia,
Paguridae, Gracilechinus multidentatus, Echinothuroida

1 km

Anderson et al.,
2014

New Zealand EEZ BRT Coral-reef, Goniocorella dumosa, Antipatharia 1 km

Anderson et al.,
2015

New Zealand
region

BRT Coral-reef, Goniocorella dumosa, Antipatharia 1 km

Anderson et al.,
2016a

SPRFMO
convention area
and EEZ

BRT and MaxEnt Coral-reef (REEF; BRT and MaxEnt), Goniocorella dumosa
(MaxEnt)

30 arc-seconds
(ca. 1 km N-S)

Anderson et al.,
2016b

New Zealand
region

Ensemble
(BRT + MaxEnt)

Goniocorella dumosa, Brisingidae, Antipatharia,
Stylasteridae, Crinoidea, Demospongiae, Hexactinellida,
Pennatulacea

1 km

Georgian et al.,
2019

South West Pacific
Ocean

Ensemble: Goniocorella dumosa, Antipatharia, Stylasteridae,
Demospongiae, Hexactinellida, Pennatulacea, Alcyonacea

1 km

(BRT+ RF+MaxEnt)

ECS, extended continental shelf; EEZ, exclusive economic zone; Coral-reef, scleractinian branching corals Goniocorella dumosa, Enallopsammia rostrata, Solenosmilia
variabilis, and Madrepora oculata combined; solitary small = hydrocorals and cup corals.

the entire model domain (e.g., Tracey et al., 2011) to selection
within longitudinal bands to compensate for spatial structuring
of sample data (Anderson et al., 2016b). Spatial autocorrelation
in the input sample data was addressed explicitly only in the
most recent study (Georgian et al., 2019), by inclusion of a
residual auto-covariate (RAC) predictor variable in their models
(Crase et al., 2012). All of the studies used the area under
the receiver-operating characteristic curve (AUC, Hanley and
Mcneil, 1982; Swets, 1988; Bradley, 1997) as their metric of
model predictive success.

Expected Performance
Before evaluating the published models against the independent
dataset, we ranked the eight studies in order of their expected
performance by applying the standards for best practice in habitat
suitability modeling proposed by Araujo et al. (2019). The aim of
this ranking was to place our results in the context of an objective
framework that might subsequently help identify which aspects
of the models contributed most to their predictive performance
when assessed against independent data. The standards span
the four broad components of model design: response variables,
predictor variables, model building, and model evaluation,
nested within which there are 15 “issues” (Table 2), each with
guidelines allowing a given model to be ranked as either “Gold”
(best practice), “Silver,” “Bronze,” or “Deficient.” Each author
in the present paper scored each study for each of the 15
issues independently. Scores were then discussed, adjusted by
consensus, and the studies ranked in order of overall score, with
the expectation that models from higher-ranking studies should
perform better against the independent data than those from
lower-ranking ones.

Independent Dataset
Source Data
A dataset of benthic mega-epifauna density records from
Chatham Rise was assembled from quantitative analyses of
seabed video and still-image transects from five research surveys
conducted between 2007 and 2017 (Figure 1). Voyages TAN0705
(Bowden, 2011; Compton et al., 2013), TAN1701 (Bowden et al.,
2017), and TAN1306 (Bowden and Leduc, 2017) were broad-
scale surveys of benthic biodiversity following stratified random
designs, while voyage TAN1503 was focused on seamounts, with
multiple summit-to-base camera transects on features in the
Graveyard and Andes seamount complexes (Clark et al., 2019).
Voyage CRP2012 (Rowden et al., 2014) focused on areas of
phosphorite-rich sediments on the central crest area of Chatham
Rise, using a design with replicate transects within multiple
survey blocks. Data derived from these surveys are independent
from those used to train the published models in that they were
collected without reference to the original source data or the
surveys from which they were compiled. They are, however, from
a region of the published model domains that has the highest
density of sample data and, thus, are spatially interspersed with
the original training data.

Quantitative data on the occurrence of benthic invertebrate
fauna were extracted from imagery from each survey under
separate research projects over a period of 10 years (see survey
references above), but the data extraction methods used were
similar throughout, being run by the same team of researchers
(DB, AR, and MC). These methods, and the auditing procedures
that were used to create a combined dataset of faunal occurrences,
are described in detail by Bowden et al. (2019b). In brief, seafloor
photographic transects of approximately 1 km distance were
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TABLE 2 | Predictive model assessment criteria (1–4) and issues (A–E) proposed by Araujo et al. (2019).

1 – Response variables 2 – Predictor variables 3 – Model building 4 – Model evaluation

A Sampling Selection Complexity Evaluation of model assumptions

B Identification of taxa Spatial resolution Treatment of bias and noise in response variables Evaluation of model outputs

C Spatial accuracy Uncertainty Treatment of collinearity Measures of model performance

D Environmental extent Dealing with modeling and parameter uncertainty

E Geographic extent

run at each survey site, recording either high-definition digital
color video (HD1080 format), digital still images (at 8-, 10-, 12-,
or 24-megapixel resolution, depending on survey), or, for most
surveys, both formats simultaneously. Four of the surveys used
the same towed camera system (NIWA’s Deep Towed Imaging
System, DTIS, Hill, 2009; Bowden and Jones, 2016), which
records continuous HD video with intermittent high-resolution
still images captured simultaneously at 15-s intervals and was
deployed using the same operating procedures and methods for
logging navigational and observational data on all surveys. The
CRP2012 survey was conducted by remotely operated vehicle
(ROV) on the central Chatham Rise crest. It was designed by
the same research group (AR and DB) specifically to generate
data compatible with standard DTIS surveys but the ROV used
lower-resolution video and still-image cameras.

For surveys TAN0705, TAN1306, and TAN1701, the full
length of each video transect was reviewed by analysts using
Ocean Floor Observation Protocol (OFOP, Huetten and Greinert,
2008) software to record the occurrence and taxonomic identities
of all fauna visible (larger than ca. 5 cm) on the seabed and
referring to the high-resolution still images to confirm taxonomic
identifications in consultation with taxonomic experts. In this
method, each occurrence is referenced by spatial coordinates and
time, enabling direct retrospective audit of individual records
by examination of the original imagery. For surveys CRP2012
and TAN1503, still images were analyzed, rather than video;
for the former because video quality was too low, and for the
latter, to be comparable with data from earlier surveys (Clark
et al., 2019). Merging data from the five surveys involved three
stages: (1) checking and aligning taxon identities to ensure
consistency of identifications and nomenclature; (2) comparing
taxon presence and counts in areas of survey overlap to check
for systematic survey or analyst bias; and (3) aggregating taxa
into higher groupings where necessary to match those used
in the nine published models under evaluation. For example,
several of the modeling studies produced models for all reef-
forming stony coral species combined; therefore, observations
of Goniocorella dumosa, Enallopsammia rostrata, Solenosmilia
variabilis, and Madrepora oculata in the independent data were
combined under a single taxon label “coral-reef” or “REEF” for
comparison with these models. Similarly, records of comatulid
and stalked crinoids were combined to match model predictions
which did not differentiate between these forms.

The independent test dataset spanned the full extent of
Chatham Rise from 172◦ 50′ E to 173◦ 53′ W and 42◦ 29′
S to 45◦ 5′ S and from 40- to 1,850-m depth. It consisted
of 125,658 observations of individual benthic organisms from

analyses of 358 seabed photographic transects, with 109,161
records from analyses of video, and 15,795 from still images.
In the full dataset, there were 354 taxa across 13 phyla,
with taxonomic level ranging from phylum to species, and
the initial taxon aggregation process yielded a set of 79
“aggregated” taxa, ranging in taxonomic level from species level
for distinctive taxa (e.g., the decapod crustacean Metanephrops
challengeri), to family (e.g., Primnoidae and Brisingidae), order
(e.g., Ceriantharia), class (e.g., Asteroidea and Holothuroidea),
and phylum (e.g., Brachiopoda and Bryozoa). Full details of the
data are given in Bowden et al. (2019b).

Density and Prevalence Measures
Standardized population density estimates (as individuals 1,000
m−2 of seafloor) for each taxon recorded in the photographic
surveys were derived from the observation data, using seafloor
swept areas calculated as the product of transect length and
average image frame width for video (see Bowden et al., 2019b
for details), and summed areas of all individual images for
still photographs. While density estimates are ideally suited for
assessment of predictions from abundance-based models, they
are not strictly comparable with the probability values generated
by models based on presence–absence data. Because none of the
existing models available for evaluation were based on abundance
data, we also calculated prevalence (i.e., occurrence rate, see
Anderson et al., 2016a) for each taxon at each site, which more
closely approximates to measures of probability of occurrence
or suitable habitat. Prevalence was calculated in two ways,
depending on the type of imagery. For the video-based analyses
(surveys TAN0705, TAN1306, and TAN1701), each transect was
divided into 1-, 5-, and 10-min time segments (three alternative
values chosen to allow for a segment-length effect). Time, rather
than distance, was used here for simplicity of calculation, but
as tow speeds during individual transects are relatively constant,
differences in resulting distance at the seabed are minor. The
number of segments in which the taxon was recorded at least once
was then divided by the total number of segments in the transect
to calculate its prevalence at the site (Supplementary Figure 1).
For the still-image-based analyses (CRP2012 and TAN1503),
prevalence in each transect was estimated simply by calculating
the proportion of the total number of images analyzed in which
the taxon of interest was identified.

Habitat suitability values associated with the midpoint
location of each photographic transect were extracted from the
model grids of each of the published models for each taxon, using
functions in the raster and rgdal packages in R (R Core Team
2017). Because transects were approximately 1 km long and the
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environmental predictors were gridded at 1 km, it is likely that a
proportion of the transects cross boundaries between grid cells.
However, because the spatial domains of the models were large
in relation to the grid size, and because the 1-km grid of the
predictor variables is a convenient minimum scaling that does not
necessarily reflect the native resolution of the data that inform
them, fine-scale adjustments to allow for boundary crossing are
unlikely to affect our results or to yield reliable insights at the
scale of the study.

Model Assessment
The level of agreement between model predictions and the
independent data was assessed using five metrics, three based on
ability to predict presence–absence correctly and two on ability to
predict abundance correctly:

(1) AUCind—area under the receiver operating characteristic
curve, using predicted probabilities of occurrence from
the existing models against presence in the independent
dataset. This is a presence–absence comparison, with AUC
yielding a single metric of discrimination across all possible
thresholds for predicted presence (Fielding and Bell, 1997;
Lobo et al., 2008). AUC is a standard measure of predictive
model performance and in this context can be defined as
the area under a plot of the proportion of true positives
versus the proportion of false positives; a value of 0.5
indicates a model with no discriminatory power, and
a value of 1 indicates a model that correctly identifies
all records. There are no formally agreed thresholds for
interpreting AUC values but there is some consensus that
models with values greater than 0.7 can be considered
useful and those with values greater than 0.85 reliable
(Swets, 1988; Fielding and Bell, 1997; Wiley et al., 2003;
Glover and Vaughn, 2010).

(2) TSS—true skill statistic (Allouche et al., 2006). This is
a presence–absence comparison, calculated as sensitivity
(i.e., the probability of predicting presences correctly) plus
specificity (the probability of predicting absences correctly)
minus one. It is proposed as a prevalence-independent
measure of model success. TSS takes into account both
omission and commission errors, and scales from −1 to
1. A value of 1 indicates perfect prediction success, while
values of 0 or less indicate a performance no better than
random or a systematically incorrect prediction. Models
with TSS values 0.6 or more are considered to be useful
(Allouche et al., 2006).

(3) t-test—results from one-tailed independent sample t-tests
comparing the mean of published model probability values
for all locations at which a taxon was present in the
independent test data (x̄P) against the mean value for all
locations at which it was absent (x̄A). Prior to testing,
distributions of the model probabilities for each taxon were
examined and log transformations applied in some cases
to reduce skewness in the data and better approximate the
normal distribution. This test is also a presence–absence
comparison, based on the simple expectation that modeled
probabilities should, on average, be greater at sampled sites

where a taxon is present than at sites where it is absent
(i.e., x̄P > x̄A) in the independent dataset. The resulting
p-values are presented as three categories: not supported
(p ≥ 0.05, “NS”); true (0.05 > p > 0.01, “T”); or significant
(p < 0.01, “TS”).

(4) R2
prev—correlation strength from a linear model fitting the

published model probabilities to prevalence values from
the independent dataset. Separate fits were assessed for
taxon prevalence calculated from the 1-, 5-, and 10-min
time segments, and results presented as the mean and
standard deviation of these. This is a test of prediction
success against a measure that is intermediate between
presence–absence and density.

(5) R2
dens—correlation strength from a linear model fitting the

published model probabilities to measured taxon density
values from the independent dataset. This is a test of
prediction success against the full quantitative detail of the
independent data.

The challenge associated with correct prediction increases
with the level of information demanded of the prediction, with
prediction of presence or absence being a simpler task than
prediction of relative or absolute abundance (Bahn and Mcgill,
2013). Therefore, we expected better performance against the
three presence–absence metrics (AUC, TSS, and t-tests) than
against the prevalence and abundance metrics (R2

prev and R2
dens)

but still with the expectation that more recent models and models
ranked higher in our initial qualitative assessment would perform
better than earlier and lower ranked models.

AUC is the most widely used metric of prediction performance
and was used in all the existing published studies as the primary
metric. Therefore, calculation of AUC using the independent
data here enabled direct comparison against the published AUC
values calculated by k-fold cross-validation (AUCkcv). Both AUC
and TSS are considered to be largely independent of differences
in prevalence (the proportion of sites at which a target taxon
is present) and might be expected to yield comparable results
because the underlying logic of their calculation is similar
(Allouche et al., 2006; Somodi et al., 2017). The t-test comparison
also reduces the required predictions to presence–absence and
thus was expected to yield results comparable to those from
AUC and TSS. The two quantitative metrics here, R2

prev and
R2

dens, are intended to evaluate predictive performance in terms
of how these habitat suitability model outputs are likely to be
used in practice: to answer questions about both where taxa are
likely to be encountered and at what relative densities (Bahn and
Mcgill, 2007). Strictly interpreted, presence-only models predict
only the probability of suitable habitat for a taxon being present
and thus should not be expected to predict the occurrence of a
taxon or its population density. We include a density comparison
here, however, because the outputs from presence-only models
are often intuitively interpreted as predictions of distribution,
particularly in environmental management scenarios, and the
availability of fully quantitative independent evaluation data here
affords a rare opportunity to demonstrate in practice what the
consequences of inferring population density from predictions of
habitat suitability might be.
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For most models, the performance metrics were calculated by
comparing against the full independent dataset (i.e., including
data from all five of the Chatham Rise photographic surveys),
with modeled taxa being considered for assessment only if they
could be matched reliably with taxon names in the independent
dataset and were present at 10 or more sites. However, because
most of the models developed by Compton et al. (2013) were
constructed using taxon occurrence data from TAN0705, data
from this voyage were excluded from the test set for assessment
of models from this study, with the exception of those for Taiaroa
tauhou, Hyalinoecia tubicola, and Serolidae, which were based
solely on physical specimen data.

We generated two graphs to compare AUCind against AUCkcv.
First, we plotted all AUC values in chronological order of the
studies, together with mean values for AUCkcv and AUCind
per study. Second, we plotted AUCind against AUCkcv, with
results viewed in the context of how similar the two values
were (proximity to a 1:1 regression line) and how they placed
in relation to a threshold value of 0.7. For Anderson et al.
(2016b), we plotted both of the AUC values reported for each
of the 8 taxa they modeled: one calculated using random
cross-validation sites, the other using spatially discrete (i.e.,
in longitudinal bands) sets of sites. We also visualized trends
in model performance in relation to taxonomic resolution by
plotting AUCkvc and AUCind values against taxon level (Class,
Order, Family, Genus, and Species), and by plotting model
sensitivity (true positive rate) and specificity (true negative rate)
in relation to the independent data against taxon level. In this
analysis, the combined reef-forming coral grouping (REEF) was
assigned to Family, and Scaphopoda was assigned to Genus,
rather than Class because all recent specimen records from
Chatham Rise are of Fissidentatum spp. (NIWA Invertebrate
Collection, unpublished data).

To compare model performance against the expected rank
performance generated using the Araujo et al. (2019) criteria,
and to assess potential trends of improving model performance
(prediction success) with time, we generated a “realized”
ranking of the models by comparing the mean values of each
model’s rank scores across the five assessment metrics listed
above. The expectation, again, was that models with higher
expected performance should also rank higher in terms of
realized performance.

RESULTS

Expected Performance
Against the standards of Araujo et al. (2019), the two most
recent studies, Anderson et al. (2016b) and Georgian et al.
(2019), ranked highest. Below these, however, there was no
clear temporal trend in expected performance (Supplementary
Table 1). All studies were assessed as being “deficient” against
standards for dealing with uncertainty in predictor variables
(Issue 2C), while later models were assessed to be improvements
in terms of treatment of bias and noise in response variables
(Issue 3B), treatment of collinearity (Issue 3C), dealing with
modeling and parameter uncertainty (Issue 3D), and measures

FIGURE 2 | AUC values generated using internal cross-validation (blue) and
independent test data (red) for individual habitat suitability models in eight
published studies (S1–S8, see Table 1 for details) in order of time of
publication from 2011 to 2019 (Left), and a priori ranking of expected model
performance based on the criteria of Araujo et al. (2019) (Right). Cross bars
show mean values for each study.

of model performance (Issue 4C). It was also noted that the two
most recent studies made allowance for spatial autocorrelation,
which is not listed explicitly in the Araujo et al. (2019) criteria
(Supplementary Table 1). The final consensus rank order of
the studies from highest to lowest was Georgian et al. (2019) >
Anderson et al. (2016b) > Anderson et al. (2016a) = Compton
et al. (2013) > Tracey et al. (2011) > Anderson et al. (2015) =
Anderson et al. (2014) = Baird et al. (2013).

Model Assessment
AUC and TSS
AUC values from cross validation in the published studies
(AUCkcv) increased both with time and when ordered by expected
rank performance, with all but one model (“REEF” in Anderson
et al., 2014) scoring at least 0.7 and all models in the two most
recent studies scoring higher than 0.85 (Figure 2). AUC values
based on the independent test data (AUCind), by contrast, did
not show matching increases over time and were lower than
corresponding AUCkcv values for all but two of the models, and
values of 0.7 or higher were recorded for only 18 of the 47 models
(38.3%), nine of these coming from a single study (Compton
et al., 2013) (Figure 3).

The two models that scored more highly against the
independent test data (AUCind > AUCkcv) were those for the
molluscan class Scaphopoda in Compton et al. (2013) and the
stony coral G. dumosa in Anderson et al. (2016b). For the
latter model, however, this was only the case when AUCkcv
was calculated using spatial banding in cross validation. Of
the remaining 29 models, 22 had AUCind values of less than
0.65, despite all but one of these (REEF in Anderson et al.,
2014) scoring higher than 0.7 by internal cross-validation. The
exceptions here, again, were the models in Anderson et al.
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FIGURE 3 | Model assessment. Comparison of benthic invertebrate species-distribution model performance (as area under the receiver operator curve, AUC) when
assessed against sample data withheld from the original dataset used to build the models (internal AUC) and an independent dataset of faunal distributions derived
from photographic surveys (independent AUC). The 48 models are from eight published studies (see text for details) and cover 29 taxa: Alcyonacea (Alc);
Anthomastus robustus (Ar); Antipatharia (Ant); Brisingidae (Bri); coral reef-forming taxa (REEF); Corallimorpharia (Cor); Crinoidea (Cri); Demospongiae (Dem);
Gracilechinus multidentatus (Ech); Echinothuroida (TAM); Flabellum spp. (Fla); Galatheidae (Gal); Goniocorella dumosa; Hexactinellida (Hex); Gorgonacea (Gor);
Hexactinellida (Hex); Hyalinoecia tubicola (Hya); Metanephrops challengeri (Met); Paguridae (Pag); Pennatulacea (Pen); Radicipes spp. (Rad); Scaphopoda (Sca);
Scleractinia (Scl); Serolidae (Ser); small solitary corals (Sma); Spatangidae (Spa); Stylasteridae (Sty); Taiaroa tauhou (Tai); Volutidae (Vol), and Zoanthidae (Zoa).
Anderson et al. (2016a) modeled REEF and G. dumosa with BRT and MaxEnt separately; MaxEnt results are indicated with a cross. Anderson et al. (2016b)
calculated AUC in two ways: random selection of sites (black plots) and in longitudinal bands (white plots). Gray line shows a 1:1 relationship between internal and
independent AUC scores, and gray shading indicates independent AUC scores less than 0.7, a value above which models are considered to be potentially useful for
prediction, with darker shading to highlight the largest discrepancies between internal and independent AUC values.

(2016b) in which spatial banding was used to generate AUCkcv.
For these models, AUCkcv values were less than 0.7 and closer to,
but still higher than, their AUCind values.

The highest published cross-validation values (AUCkcv > 0.9)
were all from the three most recent studies (Anderson et al.,
2016a,b; Georgian et al., 2019) but the corresponding AUCind
values for these studies ranged widely, including both the highest
(0.86 for G. dumosa) and lowest (0.52 for Alcyonacea) scores.
Only two of the seven models from Georgian et al. (2019) and
three of the eight from Anderson et al. (2016b) scored AUCind
values of 0.7 or higher (G. dumosa and Antipatharia in both
studies, and Stylasteridae in Anderson et al., 2016b) but both the
MaxEnt and BRT models for REEF from Anderson et al. (2016a)
scored above 0.7. There was a trend for AUCind to increase at
finer taxonomic resolution but this was not matched in AUCkvc
values (Supplementary Figure 1), with strongly divergent values

at Class level becoming more similar to AUCind values at finer
resolutions. The increasing trend in AUCind at finer taxonomic
resolution was associated with increases in the true positive rate
(sensitivity), rather than the true negative rate, which showed no
trend across taxonomic levels.

True skill statistic was strongly correlated with AUCind
(R2 = 0.92). Only six models yielded TSS values greater
than 0.5, three of these scoring 0.6 or higher (Table 3), and
the best-performing models were the same as identified by
the AUC analysis.

t-Tests
For 35 of the 47 published models (74.5%), mean predicted
probability of suitable habitat was significantly higher (TS,
p < 0.01) at sites where the modeled taxon was present,
rather than absent, in the independent data, with another four
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TABLE 3 | Model assessment results.

Study Taxon AUC TSS t-test Goodness-of-fit Sites

Cross validation Independent x̄P > x̄A Prevalence R2 Density R2 All Presence

(mean ± 1 sd)

Tracey et al., 2011 Goniocorella dumosa 0.87 ± 0.012 0.79 0.55 TS 0.074 ± 0.008 0.071 237 53

Baird et al., 2013 Antipatharia 0.84 0.60 0.22 T 0.1 ± 0.03 0.022 296 31

Stylasteridae 0.70 0.66 0.27 TS 0.057 ± 0.015 0.081 341 85

Gorgonacea 0.81 0.48 0.05 NS 0.007 ± 0.004 0.019 341 149

Scleractinia 0.76 0.64 0.30 TS 0.082 ± 0.040 0.182 341 232

Coral-reef 0.86 0.75 0.41 TS 0.090 ± 0.008 0.235 238 65

Small solitary 0.73 0.62 0.19 TS 0.049 ± 0.008 0.230 288 178

Compton et al., 2013 Anthomastus robustus 0.755 ± 0.043 0.71 0.42 TS 0.086 ± 0.021 0.040 204 61

Corallimorpharia 0.849 ± 0.071 0.56 0.19 NS 0.030 ± 0.001 0.010 243 25

Flabellum spp. 0.795 ± 0.042 0.55 0.10 NS 0.005 ± 0.003 <0.001 237 142

Galatheidae 0.852 ± 0.041 0.82 0.50 TS 0.183 ± 0.030 0.070 243 180

Hyalinoecia tubicola 0.760 ± 0.027 0.52 0.15 NS 0.011 ± 0.005 0.001 237 88

Metanephrops challengeri 0.888 ± 0.031 0.70 0.39 TS 0.080 ± 0.002 0.077 237 76

Radicipes spp. 0.798 ± 0.031 0.64 0.29 TS 0.046 ± 0.019 0.002 243 43

Scaphopoda 0.814 ± 0.043 0.85 0.75 TS 0.099 ± 0.035 0.037 145 9

Serolidae 0.808 ± 0.054 0.73 0.42 TS 0.174 ± 0.018 0.143 198 66

Spatangidae 0.745 ± 0.042 0.69 0.32 TS 0.093 ± 0.021 <0.001 237 133

Taiaroa tauhou 0.843 ± 0.042 0.70 0.43 TS 0.065 ± 0.031 <0.001 198 88

Volutidae 0.760 ± 0.037 0.70 0.38 TS 0.055 ± 0.023 0.028 243 114

Zoantharia 0.795 ± 0.042 0.72 0.38 TS 0.051 ± 0.014 0.068 204 42

Paguridae 0.789 ± 0.048 0.61 0.22 T 0.021 ± 0.008 0.026 184 152

Gracilechinus multidentatus 0.832 ± 0.038 0.81 0.59 TS 0.420 ± 0.034 0.186 190 48

Echinothurioida 0.841 ± 0.054 0.59 0.27 TS 0.013 ± 0.002 0.038 204 79

Anderson et al., 2014 Coral-reef 0.68 0.63 0.33 TS 0.037 ± 0.001 0.023 236 63

Goniocorella dumosa 0.97 0.77 0.54 TS 0.083 ± 0.004 0.069 232 53

Antipatharia 0.98 0.55 0.26 NS 0.011 ± 0.005 0.021 296 31

Anderson et al., 2015 Coral-reef 0.884 0.76 0.48 TS 0.115 ± 0.027 0.105 237 65

Goniocorella dumosa 0.876 0.75 0.43 TS 0.111 ± 0.011 0.144 231 53

Antipatharia 0.800 0.63 0.33 TS 0.240 ± 0.038 0.339 295 30

Anderson et al., 2016a Coral-reef (MXE) 0.880 0.72 0.43 TS 0.016 ± 0.021 0.027 237 65

Coral-reef (BRT) 0.950 0.74 0.36 TS 0.014 ± 0.024 0.027 236 64

Goniocorella dumosa (MXE) 0.97 0.76 0.50 TS 0.032 ± 0.006 0.050 231 53

Anderson et al., 2016b Brisingidae 0.860 (0.680) 0.64 0.27 TS 0.013 ± 0.010 0.090 339 99

Antipatharia 0.965 (0.803) 0.70 0.34 TS 0.043 ± 0.009 0.014 294 29

Stylasteridae 0.950 (0.733) 0.70 0.31 TS 0.069 ± 0.011 0.067 339 83

Crinoidea 0.942 (0.772) 0.55 0.11 NS 0.081 ± 0.071 0.708 339 70

Demospongiae 0.965 (0.622) 0.59 0.16 TS 0.099 ± 0.019 0.201 339 234

Goniocorella dumosa 0.963 (0.659) 0.86 0.61 TS 0.122 ± 0.033 0.208 230 53

Hexactinellida 0.887 (0.696) 0.56 0.13 T 0.040 ± 0.018 0.079 339 116

Pennatulacea 0.901 (0.674) 0.61 0.22 TS 0.121 ± 0.015 0.020 294 157

Georgian et al., 2019 Antipatharia 0.959 0.75 0.45 TS 0.089 ± 0.007 0.043 294 29

Stylasteridae 0.956 0.68 0.27 TS 0.134 ± 0.006 0.097 339 82

Demospongiae 0.962 0.55 0.11 NS 0.020 ± 0.006 0.071 339 233

Goniocorella dumosa 0.942 0.86 0.60 TS 0.161 ± 0.013 0.105 229 53

Hexactinellida 0.914 0.62 0.20 TS 0.046 ± 0.007 0.040 339 115

Pennatulacea 0.872 0.58 0.17 T 0.071 ± 0.004 0.080 294 157

Alcyonacea 0.972 0.48 0.03 NS 0.006 ± 0.004 0.030 339 233

Original cross validation AUC values extracted from the published studies; AUC values calculated against the independent dataset; correlation strength between predicted
probability of presence and prevalence values from the independent dataset (R2 mean ± 1sd calculated from prevalence results from three transect segment lengths; 1,
5, and 10 min); correlation strength between predicted probability of presence and population density values from the independent dataset (density R2); significance of
t-tests for the hypothesis that a taxon is more likely to be present than absent at sites where the published studies predict it to be present (x̄ P > x̄A: NS, p ≥ 0.05; T,
0.05 ≥ p ≥ 0.01; TS, p ≤ 0.01); the total number of sites available for each comparison (All), and the total number of sites at which each taxon was present in the test
dataset (presence). Cross validation AUC values from Tracey et al. (2011) and Compton et al. (2013) are shown as means ± 1 standard error, and for Anderson et al.
(2016b) as results of both random sample cross-validation and spatially banded cross-validation (in parentheses).
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models included at the lower significance level (T, p < 0.05)
(Table 3). For the remaining 8 models (“NS” results), the mean
predicted probability of suitable habitat was never higher for
absence sites than for presence sites. Twelve of the TS models
were from Compton et al. (2013) but there were significant
(TS) results for models in all studies and the proportions of
significant results in each of the studies that modeled more
than 3 taxa were broadly comparable: Baird et al. (2013), 66.6%;
Compton et al. (2013), 75.0%; Anderson et al. (2016b), 75.0%,
and Georgian et al. (2019), 57.1%. The models that scored
as TS spanned a range of taxonomic levels, including species
(Goniocorella dumosa, Anthomastus robustus, Metanephrops
challengeri, Taiaroa tauhou, and Gracilechinus multidentatus),
Genus (Radicipes), Family (Galatheidae, Serolidae, Spatangidae,
Volutidae, and Stylasteridae), Order (Scleractinia, Alcyonacea,
Antipatharia, Brisingida, Zoantharia, and Pennatulacea), and
Class (Demospongiae and Hexactinellida). However, except for
G. dumosa, which was modeled in six of the eight studies,
all of the species-level models and the models for Radicipes,
Galatheidae, Serolidae, Spatangoida, Volutidae, and Brisingida
were from the Compton et al. (2013) study, which used
occurrence data primarily from photographic sampling.

Correlations With Taxon Prevalence and Density
Correlations between predicted probability of suitable habitat
in the published models and values of both prevalence and
population density in the independent dataset were weak
(R2

prev < 0.25 for 46 of the 47 models, and R2
dens < 0.25 for

45 of the 47 models). The three cases where correlation strength
exceeded 0.25 were models for the echinoid G. multidentatus
(R2

prev = 0.42 in Compton et al., 2013), the black coral
Order Antipatharia (R2

dens = 0.34 in Anderson et al., 2014),
and the Order Crinoidea (R2

dens = 0.71 in Anderson et al.,
2016b). Across all other models, the mean correlation strength
against both prevalence and density values in the independent
dataset was less than 0.1 (mean ± sd: R2

prev = 0.071 ± 0.052,
R2

dens = 0.078 ± 0.121). The high R2
dens value for Crinoidea

in Anderson et al. (2016b) was driven by very high densities of
crinoids on the Graveyard seamounts, which were within the area
of high predicted probability of suitable habitat in this model.

Realized Rank Performance
When the models were ranked by their average rank results across
all evaluation metrics, there was a broad spread of performance
within and among studies. The 10 highest-ranked models were
spread across 6 studies from 2013 to 2019, the 10 lowest-
ranked models included two from the most recent study, and
mean ranking by study showed no indication of a general trend
of improvement over time (Figure 4). Of the four taxa that
were modeled in more than two studies (G. dumosa, Coral
reef, Stylasteridae, and Antipatharia), G. dumosa was the most
consistently highly ranked, with five of its six models in the
top fifteen. G. dumosa models also showed some indication of
improving performance over time, as did Stylasteridae, with
models from the two most recent studies ranking higher than
those from earlier studies (Figure 4).

FIGURE 4 | Rank performance of 47 predictive models, showing average
rank across four evaluation measures (TSS, t-test, R2

prev, and R2
dens) for

each model (blue dots), and the mean (black bars) and median (gray bars)
ranking for each study (S1–S8). (Left) studies in chronological order, asterisks
indicate models for which the average predicted probability of suitable habitat
for the target taxon was significantly higher (t-test, p < 0.01, “TS”) at sites
where that taxon was present in the independent dataset than at those where
it was absent. Four taxa that were modeled in more than two studies are
linked by lines (see Figure 3 for full names). (Right) with studies ordered by
their expected rankings as assessed by reference to the standards of Araujo
et al. (2019).

The spread of high- and low-ranked models across studies was
such that no overall ranking of the studies could be assigned with
confidence (Figure 4). There was, however, neither evidence for
substantially improved performance from earlier to later models
nor support for the rankings assigned by reference to Araujo et al.
(2019) prior to the evaluation exercise.

DISCUSSION

In this study, we have used independent data from seabed
photographic surveys to explore the general utility of habitat
suitability models that we have developed over more than 10 years
with the aim of predicting distributions of seafloor taxa in the
southwest Pacific, centered on New Zealand. The key results
of our assessment are that (1) measured model performance
was lower when assessed against independent data than by
k-fold cross-validation for all but two of 47 models; (2) a trend
of increasing model performance with time, which is seen in
published cross-validation (AUCkcv) values and is anticipated
when the methods used in these studies are judged against
objective criteria, is not supported when the models are tested
against independent data; (3) for approximately 72% of the
models, predicted probability of suitable habitat in the models
was significantly higher at sites where a taxon was present in the
independent data than where it was absent; and (4) correlation
strengths between predicted probability of presence and observed
taxon prevalence and density were weak.

While the third result here is the only statistic that offers
support for the expectation that such models might be reliable for
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predicting distributions, and then only at the level of prediction
of presence, the results overall should also be viewed in the
context of how realistic our expectations of such models are.
A key aspect here is that Chatham Rise is in a highly dynamic
oceanographic environment and encompasses a wide range of
seafloor topographies within a relatively confined spatial extent
(Nodder et al., 2012). Thus, although the Rise is one of the
areas within New Zealand’s EEZ that we are most interested
in predicting to, because of its importance to commercial
fisheries (Fisheries New Zealand, 2020) and potential mineral
interests (Von Rad and Kudrass, 1987), it is also likely to
be one of the most challenging. Perhaps more importantly
for future work in this field, the evaluation exercise affords
the chance to review our expectations and to explore which
aspects of the models, in terms of input data, spatial scope, and
modeling methods, contribute most to the observed differences
in performance against the independent data. We use this
evaluation to suggest future directions for model building that
should produce models that can be used with greater confidence
for environmental management.

Cross-Validation and Non-independence
of Data
Several studies have demonstrated that model performance
metrics generated by the common practice of cross-validation
using withheld subsets of the input sample data will yield inflated
values (e.g., Bahn and Mcgill, 2013; Valavi et al., 2019) because
the withheld data are not independent of those used to train
the model, particularly with respect to spatial autocorrelation
(Bahn and Mcgill, 2007; Ploton et al., 2020). It is interesting
here, however, that AUC values for most models in the two
studies that made explicit allowance for spatial structure in the
sample data, whether by withholding data in longitudinal bands
(Anderson et al., 2016b) or by including spatial autocorrelation
as a predictor variable (Georgian et al., 2019), were still inflated
by comparison with those calculated against the independent
data. This finding suggests that neither of these methods entirely
overcame the issue of non-independence of data and, thus, that
issues associated with using cross validation as a primary method
for model performance are not easily overcome. Awareness of
the need to account for spatial structuring of data in habitat
suitability models is increasing, and availability of new, more
flexible, tools now allows for more nuanced approaches that
are likely to improve estimation of predictive performance by
cross-validation (Valavi et al., 2019).

Regardless of the absolute values obtained from AUC analyses,
our finding that the trend of increasing model performance
with time was not supported against the independent data
is concerning for two reasons: firstly, because our results
show that we do not appear to be getting substantially better
at describing distributions and, more importantly, because if
apparent increases in performance encourage overconfidence in
predictions from more recent models, it could lead to poor
environmental management decisions (Regan et al., 2005). If our
modeling methods have, indeed, improved over time, however,
this result is also revealing because it suggests that the main
impediments to accurate prediction are associated primarily with
the quality and quantity of the input sample and environmental

data, rather than with the details of specific modeling methods.
This suggestion is further supported by the broad spread of
AUCind values within individual studies in our results, with both
the highest and lowest values being for models generated in
the most recent, most technically sophisticated study (Georgian
et al., 2019), and comparably high and low values recorded from
earlier studies.

In our initial assessment of the studies against the standards of
Araujo et al. (2019), the principal areas we characterized as being
either “deficient” or “bronze” in all studies were understanding
variability and uncertainty in the predictor variables (Issue 2C),
and dealing with modeling and parameter uncertainty (Issue 3D).
It was also clear, however, that the reliability and precision of
taxon identification (Issue 1B) were likely to influence model
performance. Thus, although our ranking was at the level of
study, any assessment of how well taxon identification had been
addressed in studies that covered multiple taxa would ideally be
at the level of individual models, rather than the whole study,
because of wide differences in how taxa were grouped.

Uncertainty in Predictor Variables
Uncertainty associated with the predictor variables used in
the models was the area of greatest concern in the initial
model assessments, with questions around the lack of some key
ecologically relevant variables, limitations of spatial resolution,
and the reliability of predictor layers that are themselves outputs
from spatial modeling or interpolation processes (Davies and
Guinotte, 2011). These issues affect all broad-scale habitat
suitability modeling initiatives in the deep sea and present
unique challenges by comparison with terrestrial studies,
which often have the benefit of greater accessibility for direct
sampling and full-coverage, high-resolution, remote sensing by
satellite (e.g., Pearce and Ferrier, 2001; Parmentier et al., 2011;
Ploton et al., 2020).

The lack of key variables is a fundamental issue affecting
prediction of the distributions of seabed fauna. Substrate type
in particular is a determinant of realized distributions for
most benthic taxa, but our knowledge about the occurrence of
substrate types in the deep sea at anything beyond highly local
scales is of qualitatively the same type as our knowledge of the
fauna we are interested in predicting: patchy, spatially auto-
correlated, point sample records collated from multiple sources.
Despite recent initiatives to generate continuous substrate-type
layers by interpolation among point samples in our region (e.g.,
Bostock et al., 2019), these characteristics currently render such
layers unreliable for use in predictive models (Georgian et al.,
2019). In a study area that has been subject to modification by
bottom-contact trawl fisheries for decades (Bowden and Leduc,
2017; Baird and Mules, 2019; Clark et al., 2019), it is also of
note that none of the models assessed here included fishing effort
as a predictor variable. While fishing might be expected to vary
in location and intensity over finer spatial and temporal scales
than most environmental variables, and thus have inconsistent
influence on realized faunal distributions, it is also likely that
any influence it does exert is likely to be strong in some
habitats. The present distributions of cold-water scleractinian
corals on seamounts and other topographic features that have
been targeted by trawling, for instance, have been modified from
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their natural state (Williams et al., 2010, 2020; Clark et al., 2019)
and thus are unlikely to be predicted accurately by models that do
not incorporate fishing effort as a predictor of presence.

While some environmental variables commonly used in deep-
sea habitat suitability models are derived directly from full-
coverage satellite remote sensing (e.g., sea surface temperature,
chlorophyll a concentration), or acoustic remote sensing [e.g.,
multibeam echosounder (MBES) for smaller-scale studies], many
others are derived indirectly from discrete sample data (e.g.,
single-beam acoustic soundings, CTD casts, and Argo floats),
either by spatial interpolation (regional bathymetry and, thus,
all topographic variables derived from it, including seabed slope,
curvature, rugosity, and position index) or via modeling of
physical (e.g., seabed currents and temperature), chemical (e.g.,
salinity and aragonite saturation), or biogeochemical (organic
carbon flux to the seabed) processes. Furthermore, in modeling
studies of seafloor fauna, values for individual grid cells are
necessarily extracted by reference to the bathymetry layer (Davies
and Guinotte, 2011), which as noted above, at spatial scales
greater than local MBES surveys, carries its own unquantified
uncertainty. Thus, all of the environmental data layers relied
upon as predictor variables in habitat suitability modeling
initiatives in the deep sea introduce some degree of additional,
usually unquantified, uncertainty into the final predictions.

Formal analysis of the influence of inaccuracies in
environmental variable layers used as predictors in SDM
models is beyond the scope of this study, but some of the issues
are illustrated by one of the studies assessed here (Anderson
et al., 2016a), in which we ran a purpose-designed photographic
survey of seamount features in the Louisville Seamount Chain
to assess the reliability of predictions from habitat suitability
models we had generated for the entire SPRFMO Convention
Area. We found that our models were not successful at
predicting occurrence of scleractinian corals at the scale of
the survey, despite high AUC values for the models from
internal cross-validation. We attributed this failure primarily
to inaccuracies in the bathymetry layer at the spatial resolution
of the model and to the lack of a predictor variable describing
substratum type. Inaccuracies in the bathymetry later were
compounded in all other predictor variables derived from it,
including seafloor slope and rugosity, while the absence of hard
substrata across large proportions of the seamount summits
confounded predictions of high habitat suitability because
hard substrata are a fundamental habitat requirement for the
corals we were predicting. While these factors were probably
exacerbated by the steep topography and isolated oceanic context
of the Louisville seamounts, results in the present assessment
indicate that the Anderson et al. (2016a) models fare no better
against survey data from Chatham Rise, where bathymetric data
are much more reliable and where much of their input faunal
occurrence data were collected.

Modeling and Parameter Uncertainty
Acknowledging uncertainty in the predictor variables leads
to the issue of how to deal with modeling and parameter
uncertainty (Issue 3D in Araujo et al., 2019) because in deep-
sea models the predictor variables are likely to be the largest
source of uncertainty, for the reasons discussed above. Modeling

uncertainty was considered explicitly in only three of the eight
studies considered here (Anderson et al., 2016a,b; Georgian
et al., 2019), but in each case it was quantified only in terms
of the influence either of using different subsets of the response
variable (taxon) data, or of using different modeling methods, or
both, with no quantification of the uncertainty associated with
the environmental predictor layers used. Thus, for all studies
considered here, the largest potential source of uncertainty
in the final model predictions remained unquantified. Our
current inability to account for the uncertainty associated
with the environmental layers used as predictors in habitat
suitability models for the deep sea is a major impediment
to increasing confidence in the predictions of such models
(e.g., Kenchington et al., 2019).

Another rarely acknowledged source of uncertainty in habitat
suitability models for the deep sea is that taxon occurrence data
are, in most cases, compiled from sources that span periods
of years, decades, or even centuries. This is a practical way to
compensate for the general paucity of data available from deep-
sea environments, which results from the logistical difficulty and
cost of sampling at depth (Clark et al., 2016). All but one of the
studies assessed here used data compiled over extended periods
(e.g., Tracey et al., 2011 used coral occurrence data from 1955 to
2009), the exception being the study of Compton et al. (2013),
in which models were trained on data from surveys conducted
within 2 years of each other and only 2 years before the modeling
work was undertaken. Two important assumptions are implicit
when occurrence data are accumulated over extended periods:
first, that patterns of occurrence will not have changed materially
during the entire period from the date of the first occurrence
record to production of the model predictions, and second,
that the environmental characteristics used as predictors (the
summaries for which are likely to represent somewhat different
periods to those over which taxon records are accumulated)
will not have changed materially either. For long-lived sessile
taxa, such as cold-water corals, the first assumption might be
reasonable in many cases. However, with increasing evidence of
the effects of bottom-contact fishing and other anthropogenic
and natural disturbances on realized occurrences (e.g., Clark
et al., 2000, 2019, Mountjoy et al., 2018), and parallel increases
in our understanding of the rates of large-scale environmental
change resulting from global warming (Smith et al., 2009; Hoegh-
Guldberg and Bruno, 2010; Doney et al., 2012), such assumptions
become increasingly tenuous.

Taxonomic Resolution
Our study showed that there was a tendency for models of
finer taxonomic levels to perform better against the independent
data than those at a coarser level (Supplementary Figure 2).
Aggregating records to coarser taxonomic groupings is common
in studies of deep-sea benthic invertebrate distributions, where
records are often collated from multiple sources at differing
levels of identification and where available records at finer
levels (species or genus) can be too sparse to inform habitat
suitability models. This issue is not covered explicitly by Araujo
et al. (2019) but is likely to have a strong influence on
the predictive success of models because coarser taxonomic
groupings encompass taxa with different adaptations and
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environmental tolerances, which, when combined in a single
model, may lead to predicted distributions that are too general
to be useful. Effects of aggregating to coarser taxonomic levels
are evident in our results, with the broadest groups modeled,
including Alcyonacea (soft corals), Gorgonacea (gorgonian
corals), Demospongiae (sponges), and Hexactinellida (glass
sponges), generating among the lowest AUCind values and
overall rank performances. An important observation here is
that the models for these taxonomic groups are also potentially
the most misleading because, in contrast to their performance
against the independent data, they scored highly when assessed
by cross validation—all models for the VME indicator taxa
Demospongiae and Hexactinellida in the most recent studies
(Anderson et al., 2016b; Georgian et al., 2019), for instance,
yielding AUCkcv values greater than 0.87, indicating “reliable”
or “excellent” performance. While these contrasting patterns
of model performance in relation to taxonomic resolution
are intriguing and suggest an important direction for further
investigation, the results here should be viewed with some
caution because of confounding factors in the data available to
this study. For instance: the numbers of taxa within taxonomic
levels are unequal; taxonomic levels are not represented evenly
across studies, thus introducing potential methodological bias;
some reported taxonomic levels are potentially inaccurate (as
we determined for the group Scaphopoda), and most of the
species-level models are for a single taxon, G. dumosa, which
was modeled using essentially the same response variable
data in all models.

These issues notwithstanding, comparison between two taxa
with the highest- and lowest-ranked models in our analysis, the
scleractinian coral G. dumosa and sponges (Porifera, modeled
as two Classes: Demospongiae and Hexactinellida, in Anderson
et al., 2016b; Georgian et al., 2019), illustrates the probable
influence of taxonomic resolution on model performance.
G. dumosa is consistently identified to species level because it has
a protected status in New Zealand and is of high conservation
interest due to its provision of complex biogenic habitat.
However, G. dumosa occurrence records are also clustered within
relatively narrow environmental and spatial bounds, with the
highest density of records used to inform all of the models
assessed here coming from Chatham Rise itself (e.g., Tracey et al.,
2011; Anderson et al., 2016b). Sponges, by contrast, are highly
diverse and difficult to identify to species and thus are typically
modeled at the coarse taxonomic level of Class (Demospongiae
and Hexactinellida). Grouped at this level, occurrence records
for sponges are spread much more widely across environmental
gradients than would be the case for individual species. Given
these differences in their input data, the task of modeling
distributions is clearly simpler for G. dumosa than for the sponge
classes and it is not surprising that their respective models ranked
as they did, despite being modeled using the same methods and
the same predictor variables.

The study of Compton et al. (2013) is interesting here
because, unlike all the other studies, its models were based on
data from two surveys designed specifically to sample seafloor
invertebrate communities using high-resolution photographic
transects and epibenthic sled samples. Only one of the surveys
covered Chatham Rise (TAN0705), and the resulting density of

sample points for both presences and absences was, therefore,
lower than for the other studies. However, because photographic
survey methods yield close to 100% detection of epibenthic
invertebrates, a high proportion of taxa were identified reliably
and consistently to species or genus level and it was possible to
use true absence data, rather than random background absences,
target-group absences, or pseudo-absences. We expected the fine
taxonomic resolution and availability of true absence data to yield
improvements in model predictions compared to other studies,
but while some models from the study are among the highest
ranked in our assessment (e.g., Scaphopoda, Galatheidae, and
Gracilechinus multidentatus), others are among the lowest (e.g.,
Hyalinoecia tubicola, Flabellum spp.) and the overall range of
results is comparable with other studies. Given that the sampling
methods and taxonomic resolution scored highly against the
evaluation criteria, the two key aspects remaining that might
explain the overall performance are, again, uncertainty in the
environmental predictor variables and the relatively low density
of sampling for the response variables.

Measuring Prediction Success
The metrics used to evaluate models here were chosen to assess
how useful the model predictions are likely to be in practical
applications, the primary intended use for such predictions being
to inform management and conservation decisions across a range
of spatial scales (km to 100s km) within the model domain
(Anderson et al., 2016a; Araujo et al., 2019; Winship et al., 2020).
Thus, in addition to the well-established AUC and TSS metrics,
we used the three simpler measures that were intended to reflect
naïve questions about a taxon’s distribution at differing levels of
predictive skill: is it likely to be present at a given site? (t-tests);
what is its prevalence likely to be at that site? (R2

prev), and what
is its abundance likely to be at that site? (R2

dens). While these
are simplistic measures of model performance, not least because
any relationship between predicted probabilities and measured
occurrences is unlikely to be linear and realized occurrences and
densities are likely to be influenced by historical events, ecological
interactions, and stochastic processes (Dayton and Hessler, 1972;
Connell and Slatyer, 1977; Connolly and Roughgarden, 1999),
they provide intuitively interpretable measures of how well the
model predictions match the independent observations and, thus,
our expectations of a model’s predictive ability.

The models evaluated here can only predict the probability of
suitable habitat being present at a given site, which in itself is of
limited use for most applications (Bahn and Mcgill, 2013), but
continuous maps based on these probabilities inevitably invite
the interpretation that higher predicted habitat suitability should
correspond with higher population densities of the target taxon
(Lobo et al., 2008). This interpretation is not justifiable from
a theoretical perspective, but it is, arguably, the way in which
outputs from habitat suitability models are often viewed. Indeed,
it is arguable that if such an interpretation is not at least partially
justified, we should question what purpose such predictions
serve, if not to indicate where a taxon is most likely to be found.
In this context, an important result here is that most correlations
between predicted probability of suitable habitat being present
and observed densities of taxa on the seabed were weak. This is
a practical demonstration that inferring the likelihood of taxon
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FIGURE 5 | Probability of suitable habitat for the branching scleractinian coral Goniocorella dumosa on Chatham Rise, as predicted by habitat-suitability models in
five published studies. Probability values are scaled at right, and prediction maps are overlaid with presence (red dots) and absence (gray circles) locations from the
independent photographic observation dataset. AUC values from testing against the independent dataset are shown for each model (AUCind ).
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FIGURE 6 | Probability of suitable habitat for all thicket- or reef-building Scleractinian corals (Solenosmilia variabilis, Madrepora oculata, Enallopsammia rostrata, and
Goniocorella dumosa) on Chatham Rise, as predicted by habitat-suitability models in four published studies. Anderson et al. (2016a) produced two models for
reef-building corals, one using BRT, the other MaxEnt (MXE). Probability values are scaled at right, and prediction maps are overlaid with presence (red dots) and
absence (gray circles) locations from the independent photographic observation dataset.
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occurrence or population density from predictions of suitable
habitat being present is, indeed, unlikely to be justified.

Prediction of presence or absence is less demanding than
prediction of relative or absolute density (Bahn and Mcgill,
2013), so it is not surprising that models generally performed
better against the presence–absence tests (AUC, TSS, and
t-tests) than against the quantitative ones (R2

prev, and R2
dens),

the most encouraging results being from tests of the simple
expectation that modeled probabilities of suitable habitat would
be significantly higher at sites where a given taxon was present
in the independent data than at those where it was absent. At
this level of predictive skill, 72% of models met the expectation
at the more conservative level (TS, p = 0.01), offering some
support for the utility of existing models in practical applications
that require only prediction of likelihood of presence. However,
that there was no pattern of general improvement against
this test with increasing sophistication of modeling methods
suggests that performance is limited more by the quality and
quantity of input data than by analytical methods, and for the
more interesting and potentially useful task of predicting taxon
densities, there is no support.

Despite all but a few of the models performing less well than
was anticipated from their original cross-validation scores, some
emerge as being potentially useful for reliable prediction of taxon
occurrence at unsampled sites. Thus, models that performed
well against the independent data and predicted the occurrence
of suitable habitat for taxa that have high management or
conservation status might be used with some confidence in
spatial management (Moilanen et al., 2006). In our case, these
criteria would limit the set of potentially useful predictions to
those for the scleractinian coral G. dumosa (Figure 5), and the
combined grouping of reef-forming scleractinian corals (REEF,
Figure 6). For the few taxa that have been modeled in more
than one study, notably G. dumosa, models from the most
recent studies (Anderson et al., 2016b; Georgian et al., 2019)
performed better than earlier ones. However, the difference in
performance between the earliest (Tracey et al., 2011) and latest
(Georgian et al., 2019) models for G. dumosa was relatively
minor, and the most recent studies also included some of
the lowest-ranked models in our comparison. This finding
suggests, again, that any benefits gained from refinement of
modeling methods may be small by comparison with other
aspects of the model-development process, including the quantity
and spatial distribution of occurrence data, the taxonomic
level and consistency of identifications, and the availability of
reliable and appropriate environmental layers at ecologically
relevant spatial scales.

CONCLUSION

For habitat suitability models to be useful in deep-sea
environmental management applications, we need to have
confidence that their predictions are reliable at appropriate
spatial scales and taxonomic resolutions. A first step toward
this should be routine use of cross-validation methods that
account for spatial structuring in the input data. Reliability can

only be confirmed, however, by assessing model predictions
against independent data using methods that sample the target
taxa effectively, our results demonstrating that such assessments
can yield a very different picture of prediction success than is
gained from cross-validation methods. While it is concerning
that most of our current model predictions are apparently of
limited use for their intended applications in management, the
process of objective assessment helps to identify which aspects
of the modeling process are most in need of improvement.
Limitations in the quality and quantity of input data, for both
response and predictor variables, appear to be the primary factors
affecting prediction success, rather than details of the modeling
methods used. If this is the case, increased confidence in the
outputs from future models will probably be achieved only by
greater investment in data collection and in quantifying the
uncertainty associated with these data, for both response and
predictor variables. Generating more reliable environmental data,
particularly bathymetry, at spatial resolutions relevant to the
habitat preferences of target taxa will be a critical component
of this, with initiatives such as the Irish National Seabed Survey
(O’toole et al., 2020) and Seabed 2030 Project (Mayer et al., 2018),
exemplifying the scale of commitment required. In parallel with
this, it seems likely that dedicated surveys of taxon distributions
will always be necessary, both to validate existing models and to
enhance data inputs for their successors.

Despite the generally disappointing performance of our
models in this assessment, they can serve as useful heuristics if
viewed as hypotheses to be tested. Approached in this way, we
suggest that a practical long-term strategy to reduce uncertainty
in model predictions can be structured around iterations of a 4-
step cycle in which (1) initial habitat suitability modeling based
on all available taxon occurrence data generates predictions, (2)
these predictions are used to structure field validation surveys,
(3) survey data are used for objective evaluation of prediction
success, and (4) the survey data are then integrated with
existing data and used to develop revised models. Predicting to
overlapping seabed areas at each iteration of the cycle would
progressively expand the environmental and spatial scope of the
models while staying within the bounds of ecological credibility.
The present study represents stage 3 of the first iteration of this
cycle in New Zealand but as we note above, our results show that
major sources of uncertainty in our models, including the quality,
spatial resolution, and ecological relevance of the environmental
predictor variables, have yet to be addressed adequately.
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Supplementary Figure 1 | Illustration of prevalence calculation, showing the
seabed track of a video transect (Voyage TAN0705, station 170) divided into
10-min segments (alternating blue–red), with individual observations of the taxon
Paguridae (hermit crabs) indicated by black circles. Prevalence is calculated as the
proportion of the total number of segments in which the taxon was observed, in
this case 8/12 = 0.66. Also shown are the density of Paguridae as individuals
1,000 m−2, and the probability of suitable habitat as predicted by the BRT
model of Compton et al. (2013).

Supplementary Figure 2 | Variation in AUC and Sensitivity (true positive rate) with
taxonomic resolution. (Left) AUCkvc (by cross validation, blue) and AUCind (against
independent data, red) values as described in Figure 3, plotted by taxonomic
level. (Right) Sensitivity (true positive rate) for all models when assessed against
the independent data. Horizontal bars show mean values in each taxonomic level.

Supplementary Table 1 | Author’s ranking of eight published SDM studies by
reference to assessment criteria and issues proposed by Araujo et al. (2019). DB,
David Bowden; OA, Owen Anderson; AR, Ashley Rowden; FS, Fabrice
Stephenson. Rankings from best to worst are: gold (G); silver (S); bronze (B), and
deficient (D).
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States in the Northeast United States have the ambitious goal of producing more than
22 GW of offshore wind energy in the coming decades. The infrastructure associated
with offshore wind energy development is expected to modify marine habitats
and potentially alter the ecosystem services. Species distribution models were
constructed for a group of fish and macroinvertebrate taxa resident in the Northeast
US Continental Shelf marine ecosystem. These models were analyzed to provide
baseline context for impact assessment of lease areas in the Middle Atlantic Bight
designated for renewable wind energy installations. Using random forest machine
learning, models based on occurrence and biomass were constructed for 93 species
providing seasonal depictions of their habitat distributions. We developed a scoring
index to characterize lease area habitat use for each species. Subsequently, groups of
species were identified that reflect varying levels of lease area habitat use ranging across
high, moderate, low, and no reliance on the lease area habitats. Among the species
with high to moderate reliance were black sea bass (Centropristis striata), summer
flounder (Paralichthys dentatus), and Atlantic menhaden (Brevoortia tyrannus), which
are important fisheries species in the region. Potential for impact was characterized
by the number of species with habitat dependencies associated with lease areas and
these varied with a number of continuous gradients. Habitats that support high biomass
were distributed more to the northeast, while high occupancy habitats appeared to be
further from the coast. There was no obvious effect of the size of the lease area on
the importance of associated habitats. Model results indicated that physical drivers and
lower trophic level indicators might strongly control the habitat distribution of ecologically
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and commercially important species in the wind lease areas. Therefore, physical and
biological oceanography on the continental shelf proximate to wind energy infrastructure
development should be monitored for changes in water column structure and the
productivity of phytoplankton and zooplankton and the effects of these changes on
the trophic system.

Keywords: wind energy, fisheries, habitat, monitoring, temperature, zooplankton

INTRODUCTION

The provision of ecosystem goods and services is intersecting
with the rapid development of the offshore wind industry in
continental shelf seas, an effort in energy generation designed
in part to ameliorate the effects of climate change (Causon and
Gill, 2018; UNEP, 2019). Shelf seas account for the majority of
seafood production of the World Ocean (Costanza et al., 2014),
which raises particular concern about the impacts that energy
infrastructure will have on fisheries and dependent communities
(Hooper et al., 2015; Carpenter, 2020). Therefore, we have a
growing need to develop assessment methods to understand
the intersection of fisheries resources with potential offshore
wind energy areas.

Interactions between wind energy production and fisheries
resources occur across trophic levels and life stages, during
each phase of energy infrastructure development, and through
biotic and abiotic pathways (Boehlert and Gill, 2010; Pezy et al.,
2020). The exploration and construction phases of offshore wind
development bring periodic elevated noise levels to the marine
environment through increased vessel traffic, seismic survey
methods, and, in most cases of fixed foundation turbines, impulse
pile driving (Wahlberg and Westerberg, 2005; Hatch et al., 2008).
Acoustic changes to the marine environment can cause sublethal
physiological effects (Popper and Hawkins, 2019) and mortality,
as well as changes in movement, behavior, habitat utilization,
and migration patterns for numerous marine taxa (Boehlert and
Gill, 2010; Brandt et al., 2018). Once installed and operating,
wind turbine foundations create new hard bottom habitats
that enhance the recruitment of native and non-native benthic
invertebrates (De Mesel et al., 2015). The resulting artificial
reefs attract fish species seeking food and refuge (Wilhelmsson
et al., 2006). Shells and other biogenic materials associated with
reef organisms are deposited in the surrounding environment,
increasing sediment organic content and nutrient concentrations,
and thus modifying benthic community composition (Wilding,
2014). Furthermore, the network of power cables associated with
wind farms emits electromagnetic fields, which have the potential
to affect behavior and movement of commercially valued and
migratory species (Hutchison et al., 2020).

Localized hydrodynamic regime changes at the scale of
individual turbines and wind farms occur as currents pass
structures, modifying downstream turbulence, surface wave
energy, and upwelling patterns (Bakhoday-Paskyabi et al.,
2018). Much larger scale effects (∼80 km from structures) on
hydrodynamics and vertical stratification are possible through
the impact of wind wakes and dynamic coupling of the ocean
and atmospheric systems (Carpenter et al., 2016). Physical and

biological oceanographic processes are directly linked through
numerous mechanisms, including the vertical and horizontal
transport of macro- and micro- nutrients to primary producers,
and changes in the distribution of suspended particulates, and the
effect of this suspended matter on the depth of the photic zone.
Altered hydrodynamic patterns could affect primary production
as well as upper trophic levels. These conceptual linkages have
been demonstrated with empirical data in the southern North
Sea that revealed increased vertical mixing at an offshore wind
farm resulting in the transport of nutrients to the surface mixed
layer and subsequent uptake by phytoplankton in the photic
zone (Floeter et al., 2017). Changes in water column properties
(water temperature, dissolved oxygen, and suspended matter
concentration) have also been linked to altered zooplankton
community structure at offshore wind farms in China (Wang
et al., 2018). Increased primary production could have important
implications for the productivity of bivalves and other macro-
benthic suspension feeders, representing a major component of
artificial reef communities that form on turbine foundations
(Slavik et al., 2019; Mavraki et al., 2020). In total, these effects may
propagate to upper trophic levels, particularly predatory fish on
and around the turbines (Pezy et al., 2020).

Assessing the effects of offshore wind on fisheries resources
requires that we know what to measure, what survey designs
to use, and how to coordinate that information with existing
surveys that support regional stock assessments (Wilding, 2014;
Methratta, 2020). Our traditional view of how fish habitat
is defined is rapidly changing; there is expanding evidence
suggesting that fish habitats can be determined by biological
variables related to primary and secondary production patterns
(Weber et al., 2018; Mazur et al., 2020). This highlights the need to
continue, or expand, current sampling efforts related to the water
column parameters such as phytoplankton and zooplankton and
suspended sediment material.

Currently in the United States, the offshore wind energy
developers are required by the Federal Agency responsible for
permitting and management of the offshore waters [the Bureau
of Ocean Management (BOEM)], to consider essential fish
habitat (EFH) designations developed by the National Marine
Fisheries Service (NMFS) for fishery management plans to help
assess species and habitat impacts. While EFH has benefits
in its availability and mostly standardized development across
species, it is a comparatively coarse representation of a given
species’ distribution and habitat reliance, and can be based on
sparse or discontinuously collected observations (Moore et al.,
2016). EFH may encompass the broad range of a species’
distribution and its habitats, but does not generally discern if
there are focal or highly preferred habitat areas within that
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distribution, or if there are seasonal shifts in distribution.
Species distribution models (SDMs) can complement EFH by
providing higher resolution distribution probabilities within EFH
and identify influential environmental parameters and habitat
suitability. Various types of SDMs have been developed using
fishery-dependent or -independent data to both hindcast and
forecast species distributions and habitat suitability relative
to spatial fisheries management needs (Hazen et al., 2018;
Crear et al., 2020).

Offshore wind energy capacity is developing rapidly across
the Northeast US Continental Shelf ecosystem (NES), with most
projects currently in a pre-construction planning and assessment
phase. There are considerable data gaps and a need for additional
baseline information to support the assessment of these impacts
on marine resources in this highly productive region. The
goal of this study was to characterize the use of wind energy
lease areas by fish and macroinvertebrate species sampled in
resource abundance surveys on the NES and identify species
with a high dependency on lease area habitats. These species
might be considered for prioritized attention and research by
fisheries management. The characterization was based on habitat
or SDMs developed using machine learning techniques. These
models provided species occurrence probability and biomass
productivity at spatial scales related to BOEM lease areas. The
relative importance of habitats was characterized for use by
each species, including the change in dependency on these
habitats over time, and the biological and physical aspects of the
ecosystem that shaped habitat. The models in this study draw
on a range of lower trophic level variables to provide context

for identifying ecosystem properties that would merit monitoring
before, during, and after installing energy-generating structures.

MATERIALS AND METHODS

Study System
We studied the distribution of fish and macroinvertebrates
occurring in the NES, a well-studied marine system along the
western boundary of the North Atlantic Ocean. We fit SDMs
estimating occupancy and biomass habitats onto a 0.1-degree
grid, termed the estimation grid (Figure 1A). The boundaries
of eleven wind energy lease areas are identified as either existing
lease areas, E1–E7, or proposed areas, P1–P4. Each lease area will
be composed of a number of parcels of varying size (boundaries
as of May 2020). A single convex hull was drawn around the
parcels of each lease area and was the basis for spatial data
extraction representing that area; hence, this was exclusive of
any cable corridors. Since depth distribution is an important
factor, bathymetric relief and key depth contours are shown
in Figure 1B, along with identifying areas within the NES
commonly referred to in the text.

Survey Data Response Variables
The basis of the study was a series of SDMs incorporating habitat
features for taxa captured in a fishery-independent bottom trawl
survey conducted in the NES. The bottom trawl survey has
been conducted by the Northeast Fisheries Science Center each
year since 1963 in the fall and spring since 1968, occupying

FIGURE 1 | Map of the study system showing the estimation grid (red dots) for habitat models (A) and bathymetry (B). Existing (black outlines) and proposed (red
outlines) energy lease sites on the Northeast US Shelf are labels E1 through E7 and P1 through P4, respectively. Bathymetric relief, key depth contours, areas of
significance within the NES are also presented.
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upward of 300 stations during each season and is based on a
random stratified design (Desprespatanjo et al., 1988). Catches
were standardized for various correction factors related to vessels
and gears used in the time series (Miller et al., 2010). The survey
catch provided the binary response of presence or absence for
each taxa as the response variable in classification models, and
catch per unit (log10[CPUE kg tow−1 + 1]) of biomass used as
continuous variables in the regression models that can be thought
of as a biomass habitat metric (see Data Availability Statement).
Though time series of catch data extend back to the 1960s, the
time series of the analysis was limited to the period 1976–2018
due the availability of other data described below.

Predictor Variables
Physical and biological environmental data used as predictor
variables included dynamic variables that changed annually with
recurring sampling and static variables that were held constant
over time. The suite of predictors can be summarized over five
general categories (Table 1). Physical environmental variables,
including surface and bottom water temperature and salinity
were collected contemporaneously with survey trawl samples
with Conductivity/Temperature/Depth (CTD) instruments (see
Data Availability Statement). Temperature and salinity were
initially tested as dynamics variables; however, salinity was found
to be a weak predictor and was applied as a static variable,
which enabled training and fitting the models over the period
1976–2018. Depth of the survey station (meters) was a static
variable in the analysis.

In addition to the dynamic station temperature variables,
remote sensing sea surface temperature (SST) fields were used
to derive a complementary set of static physical environment
variables. SST fields from the MODIS Terra sensor were used
to generate monthly mean SST data and monthly gradient
magnitude, or frontal fields of the SST (see Data Availability
Statement). There are many methods used to identify fronts
(Belkin and O’Reilly, 2009) in oceanographic data that usually
utilize some focal filter to reduce noise and then identify gradient
magnitude with a Sobel filter. Calculations were performed
in R using the “raster” package (version 2.6-7) by applying
a three by three mean focal filter and a Sobel filter to

generate x and y derivatives, which were then used to calculate
gradient magnitude.

Benthic terrain descriptors included a series of static variables
that characterize the shape and complexity of the substrate.
Most benthic terrain variables were derived from the depth
measurements, such as vector ruggedness, rugosity, and slope
(Table 2). Other variables described the substrate itself, such as
benthic sediment grain size. The vorticity of benthic currents was
also considered a benthic terrain variable. These variables were
sampled to match the position of a survey trawl.

Biological covariates included predictor variables representing
lower trophic level primary and secondary production. Primary
production variables were monthly chlorophyll concentration
static variables developed from a multi-sensor remote sensing
data source. These data were merged using the Garver, Siegel,
Maritorena Model algorithm (Maritorena et al., 2010) obtained
from the Hermes GlobColour website and provided data over the
period of 1997–2016 (see Data Availability Statement). As with
the remote sensing SST data, monthly gradient magnitude (i.e.,
chlorophyll frontal fields) were also developed. Both the SST and
chlorophyll concentration variables were sampled to match the
position of a survey trawl.

Secondary production variables were based on zooplankton
abundances measured by the Ecosystem Monitoring Program
(EcoMon), which conducts shelf-wide bimonthly random-
stratified surveys of the NES (Kane, 2007). Zooplankton are
collected obliquely through the water column to a maximum
depth of 200 m using paired 61-cm Bongo samplers equipped
with 333-micron mesh nets (see Data Availability Statement).
We used the density estimates (number per 100 m3) of
the 18 most abundant taxonomic categories and a biomass
indicator (settled bio-volume) as potential predictor variables
(Table 3). The zooplankton time series has some missing values,
which were ameliorated by summing data over 5-year time
steps for each seasonal period and interpolating a complete
field using ordinary kriging. For example, zooplankton data
for spring 2000 would include the available data from tows
made during the period 1998–2002. The zooplankton variables
were sampled to match the date (season) and position of
the survey trawl.

TABLE 1 | Summary of predictor variables used in the development of spring and fall presence/absence and biomass habitat models.

Predictor variable categories Description Number

Physical environment variables Physical and oceanographic variables including depth (DEPTH), surface and bottom temperature
(ST_SD, BT_SD), and surface and bottom salinity (SS_SD, BS_SD) derived from surveys.

5

Benthic terrain descriptors A series of variables that characterize the structure of benthic habitats, most of which are based on
bathymetry data. See Table 2 for details.

19

Secondary production variables Abundance of zooplankton taxa and a zooplankton biomass index (settled bio-volume) composed
mostly of copepod species. Some taxa only identified to family or others to a general category. See
Table 3 for details.

19

Remote sensing Primary production variables Remote sensed measurements of monthly mean chlorophyll concentration; and, the gradient
magnitude or frontal data for the same fields [CHL_(R for raw data, F for frontal gradient magnitude)_(XX
from 01 to 12 for month)].

24

Remote sensing Physical environment variables Remote sensed measurements of monthly mean SST; and, the gradient magnitude or frontal data for
the same fields [SST_(R for raw data, F for frontal gradient magnitude)_(XX from 01 to 12 for month)].

24

Number refers to number of variables.
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TABLE 2 | Summary of benthic terrain predictor variables used in the development of spring and fall presence/absence and biomass habitat models.

Variable Notes References

COMPLEXITY Terrain Ruggedness Index, the difference in elevation values from a center cell and
the eight cells immediately surrounding it. Each of the difference values are squared
to make them all positive and averaged. The index is the square root of this average.

Riley et al., 1999

NAMERA_BPI BPI is a second order derivative of the surface depth using the TNC Northwest
Atlantic Marine Ecoregional Assessment (“NAMERA”) data with an inner radius = 5
and outer radius = 50.

Lundblad et al., 2006

NAMERA_VRM Vector Ruggedness Measure (VRM) measures terrain ruggedness as the variation in
three-dimensional orientation of grid cells within a neighborhood based the TNC
Northwest Atlantic Marine Ecoregional Assessment (“NAMERA”) data.

Hobson, 1972

PRCURV2KM,
PRCURV10KM
PRCURV 20KM

Benthic profile curvature at 2, 10, and 20 km spatial scales was derived from depth
data.

Winship et al., 2018

RUGOSITY A measure of small-scale variations of amplitude in the height of a surface, the ratio
of the real to the geometric surface area.

Friedman et al., 2012

SEABEDFORMS Seabed topography as measured by a combination of seabed position and slope. http://www.northeastoceandata.org/

SLP2KM
SLP10KM
SLP20KM

Benthic slope at 2, 10, and 20 km spatial scales. Winship et al., 2018

SLPSLP2KM
SLPSLP10KM
SLPSLP20KM

Benthic slope of slope at 2, 10, and 20 km spatial scales Winship et al., 2018

SOFT_SED Soft-sediments is based on grain size distribution from the USGS usSeabed:
Atlantic coast offshore surficial sediment data.

http://www.northeastoceandata.org/

VORTFA
VORTSP
VORTSU
VORTWI

Benthic current vorticity at a 1/6 degree (approx. 19 km) spatial scale in fall (fa),
spring (sp), summer (su), and winter (wi).

Kinlan et al., 2016

TABLE 3 | Summary of zooplankton predictor variables used in the development
of spring and fall presence/absence and biomass habitat models.

Variable name Full name

ACARSP Acartia spp.

CALFIN Calanus finmarchicus

CHAETO Chaetognatha

CHAMZZ Centropages hamatus

CIRRZZ Cirripedia

CTYPZZ Centropages typicus

ECHINO Echinodermata

EVADNE Evadne spp.

GASZZZ Gastropoda

HYPERZ Hyperiidea

LARVAC Appendicularians

MLUCEN Metridia lucens

OITHSP Oithona spp.

PARAZZ Paracalanus parvus

PENILE Penilia spp.

PSEUDO Pseudocalanus spp.

SALPSZ Salpa

TLONGZ Temora longicornis

VOLUME Plankton bio-volume

Occupancy and Biomass Habitat Models
Seasonal SDMs were developed using the approach as reported
in Friedland et al. (2020); however, salinity variables were
static fields as opposed to dynamic. Random Forest models
based on occurrence were fit as classification models of the

presence or absence of taxa in a trawl tow and yielded an
occurrence probability; hereafter, these models are referred to
as presence/absence models and the estimates of habitat from
these models is referred to as occupancy habitat. Random
Forest models based on biomass were fit as regression models
of the catch rate of taxa in weight and yielded an index of
biomass; hereafter, these models are referred to as biomass
models and their output as biomass habitat. Random forest
machine learning models were fit (Cutler et al., 2007) using
the “randomForest” R package (version 4.6-14). Random forest
models can achieve comparable predictive power to other
statistical methods (Smolinski and Radtke, 2017). Prior to
fitting the model, the independent variables were tested for
multi-collinearity among the predictors using the multi-collinear
command from R package “rfUtilities” (version 2.1-5) with a
p-level of 0.1; highly correlated variables were eliminated from
the analysis. From this reduced set of predictors, the final model
variables were selected utilizing the model selection criteria
of Murphy et al. (2010) as implemented in rfUtilities. This
procedure ranks the importance of model variables based on
the change in mean squared error as a ratio of the maximum
model improvement error (termed MIR). A range of models
are fit and all variables with MIRs above a given threshold are
retained; the threshold is selected to minimize the number of
variables in the model while minimizing the mean squared error
and maximizing the variation explained (see Supplementary
Material for example R code). The presence/absence models were
evaluated for fit based on out-of-bag classification accuracy using
the AUC or Area Under the ROC Curve index using the “irr”
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package in R (version 0.84.1), applying an optimized classification
threshold probability. Models with an AUC of at least 0.73
were deemed satisfactory, a level associated with the lowest
performing model that was included in the study. Biomass model
regressions were evaluated for fit using the root mean squared log
error statistic based on the R package “Metrics” (version 0.1.4).
The 96 candidate species selected were consistently abundant
taxa from the survey, occurring in at least 150 trawl tows;
separate seasonal (spring and fall/autumn) models were fit
reflecting the two seasonal surveys. From this candidate list, a
subgroup of species with satisfactory presence/absence model
fits were used to estimate occupancy and biomass habitats
over the estimation grid for the same period of the training
data, 1976–2018.

Analysis Strategy
The study had four goals: (1) identify the species with habitats
overlapping the wind energy lease areas; (2) characterize the
relative importance of lease areas to species modeled in the study;
(3) characterize the change over time in habitat value to species in
the lease areas; and (4) determine which aspects of the ecosystem
were critical in shaping habitat in the lease areas.

To achieve the first goal, an index representing the reliance of
a species on lease area habitats was developed that utilized both
seasonal habitat scores (limited to the occurrence probabilities
only) for species and a relative score based on the ratio of
habitat scores within a lease area to overall habitat score for
the NES. A habitat score for a lease area was the median of
occurrence probability for a species that fell within a convex hull
that circumscribed a lease area, while the habitat score for the
NES was the median of occurrence probability over the entire
NES. Within a season, the index was incremented by one if
the median habitat score across the lease areas averaged >0.1, by
one if the average habitat score plus the 95% confidence interval
was >0.1, and by one if the habitat scores in at least one lease
area was >0.1. The 0.1 threshold was selected to represent those
species with a clear presence in an area. Similarly, the index was
incremented by one if the median ratio across the lease areas
averaged >1, by one if the average ratio plus the 95% confidence
interval was >1, and by one if the ratio in at least one lease area
was >1. For a species with a satisfactory model fit in a single
season, the index could range from 0 to 6, and for a species
with satisfactory models in both seasons, the index could range
from 0 to 12. The species were divided by their index scores
into four groups: “high reliance” for species with indices from 12
to 10; “moderate reliance” for species with indices from 9 to 6;
“low reliance” for species with indices from 5 to 1; “no reliance”
for species with indices of 0. High reliance species consistently
showed high utilization of lease areas in both seasons, moderate
reliance species generally showed high utilization in at least one
season, low reliance species generally showed low utilization in
both seasons, and no reliance species did not show utilization
in either season.

For the second goal, species occupancy and biomass habitat
were compared across lease areas and with respect to the
geographical position and size of the lease areas. For each lease
area, the number of species for which the ratio exceeded 0.7 was

summed, with the same exercise repeated for biomass habitat.
The threshold value of 0.7 was determined by testing values
from 1 to 0.5; the 0.7 level represented a breakpoint where lower
thresholds did not dramatically increase the number of species
included. The numbers of spring and fall species were averaged
to represent the relative roles of lease areas in respect to species
occurrence and biomass. In addition, species counts by model
and season were associated with four properties of the lease
areas: latitude, longitude, distance to the coast, and area of the
lease area. The correlations between species number and the four
properties were tested with Spearman rank order correlation.

For the third goal, trend in habitat use was evaluated using
a non-parametric test of time series (1976–2018) trend using
the R package “zyp” (version 0.10-1.1). We used the Yue et al.
(2002) method to estimate Theil-Sen slopes and performed an
auto-correlation corrected Mann–Kendall test of trend. The trend
in occupancy and biomass habitat was evaluated for the high
reliance species grouping and plotted against median occurrence
probability and biomass habitat scores.

For the fourth goal, variable importance in the
presence/absence models were evaluated for the models
associated with the species in the high reliance grouping.
Importance was based on five performance measures: the
number of times a variable was the root variable (i.e., variable
associated with the root node); the mean minimum node
depth for the variable; Gini index of node impurity decreases;
prediction accuracy decrease; and, the proportion of models
for which the variable was among the 10 highest ranked
variables. The first four of these indices was computed using
the “randomForestExplainer” R package (version 0.10.0); as
customary, the times a root variable was plotted against the mean
minimum depth variable and the Gini index was plotted against
the accuracy decrease variable. All the performance measures
were used in a principal components (PCs) analysis to provide
an overall rank of variables across species based on PC 1.

RESULTS

Species Models Included in the Analysis
The species modeled in this study included both finfish and
macroinvertebrate taxa. Of the initial candidate species, 93 taxa
had a seasonal presence/absence model with an AUC score of at
least 0.73 and were thus included in the study (Table 4). Based
on the performance of the seasonal presence/absence model,
complementary biomass model results were also considered. Not
all species with a satisfactory model fit in one season (i.e., spring
or fall) had a satisfactory fit in the other season. Hence, we had
model results for 83 taxa in the spring and 89 in the fall, with 80
taxa having models in both seasons.

Identification of Species Associated With
Wind Lease Areas
Using our index based on habitat scores and ratios of habitat
scores, we identified four groupings of species that reflected
the importance of the lease area habitats. Twenty species fell
within the criteria for the high reliance grouping (Table 5 and
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TABLE 4 | Species with presence/absence and biomass habitat models based on spring and fall survey data.

AUC RMSLE AUC RMSLE

Species Abbr Spring Fall Spring Fall Species Abbr Spring Fall Spring Fall

Sebastes fasciatus ACARED 0.93 0.94 0.15 0.14 Lophius americanus MONKFH 0.76 0.77 0.16 0.18

Alosa pseudoharengus ALEWIF 0.75 0.87 0.15 0.10 Triglops murrayi MOUSCL 0.84 0.84 0.01 0.02

Aspidophoroides
monopterygius

ALLFSH 0.85 0.85 0.00 0.00 Prionotus carolinus NORSEA 0.85 0.85 0.11 0.11

Hippoglossoides
platessoides

AMEPLA 0.91 0.94 0.10 0.10 Sphoeroides maculatus NPUFFR 0.87 0.90 0.00 0.03

Alosa sapidissima AMESHA 0.81 0.06 Macrozoarces americanus OCPOUT 0.79 0.82 0.15 0.08

Homarus americanus AMLOBS 0.79 0.77 0.15 0.17 Merluccius albidus OFFHAK 0.91 0.93 0.05 0.04

Squatina dumeril ANGSHR 0.93 0.91 0.05 0.08 Pollachius virens POLLOC 0.82 0.86 0.19 0.17

Peristedion miniatum ARMSEA 0.88 0.88 0.02 0.02 Cancer irroratus RCKCRA 0.80 0.76 0.06 0.04

Argentina silus ATLARG 0.88 0.84 0.04 0.02 Decapterus punctatus RDSCAD 0.83 0.03

Gadus morhua ATLCOD 0.84 0.89 0.22 0.18 Geryon quinquedens REDCRA 0.84 0.84 0.03 0.03

Micropogonias
undulatus

ATLCRO 0.89 0.95 0.04 0.15 Urophycis chuss REDHAK 0.80 0.82 0.15 0.16

Hippoglossus
hippoglossus

ATLHAL 0.84 0.84 0.07 0.07 Etrumeus teres RHERRI 0.80 0.13

Clupea harengus ATLHER 0.76 0.90 0.21 0.14 Trachurus lathami ROSCAD 0.84 0.03

Scomber scombrus ATLMAC 0.77 0.77 0.19 0.10 Leucoraja garmani ROSSKA 0.93 0.93 0.04 0.04

Brevoortia tyrannus ATLMEN 0.85 0.85 0.04 0.03 Dasyatis centroura RTSTIG 0.83 0.14

Melanostigma
atlanticum

ATLPOU 0.86 0.84 0.01 0.00 Ammodytes dubius SANDLA 0.82 0.75 0.09 0.05

Menidia menidia ATLSIL 0.89 0.01 Stenotomus chrysops SCUPZZ 0.90 0.91 0.10 0.16

Anarhichas lupus ATLWOL 0.85 0.86 0.09 0.06 Hemitripterus americanus SEARAV 0.80 0.81 0.14 0.11

Dipturus laevis BARSKA 0.89 0.88 0.09 0.11 Placopecten magellanicus SEASCA 0.84 0.84 0.11 0.13

Anchoa mitchilli BAYANC 0.94 0.92 0.04 0.11 Lumpenus maculatus SHANNY 0.90 0.01

Centropristis striata BLABAS 0.86 0.86 0.07 0.07 Chlorophthalmus agassizi SHORTP 0.90 0.93 0.01 0.01

Helicolenus
dactylopterus

BLAROS 0.90 0.90 0.06 0.06 Illex illecebrosus SHTSQD 0.88 0.81 0.06 0.16

Callinectes sapidus BLUCRA 0.74 0.89 0.00 0.02 Merluccius bilinearis SILHAK 0.81 0.82 0.17 0.17

Pomatomus saltatrix BLUEFI 0.88 0.85 0.05 0.18 Etropus microstomus SMAFLO 0.87 0.79 0.01 0.01

Alosa aestivalis BLUHER 0.76 0.88 0.09 0.05 Mustelus canis SMODOG 0.92 0.89 0.09 0.17

Zenopsis conchifera BUCDOR 0.89 0.91 0.04 0.04 Malacoraja senta SMOSKA 0.89 0.88 0.07 0.07

Peprilus triacanthus BUTTER 0.86 0.77 0.12 0.23 Majidae SPICRA 0.73 0.01

Scyliorhinus retifer CHADOG 0.95 0.94 0.04 0.04 Squalus acanthias SPIDOG 0.79 0.80 0.32 0.28

Scomber japonicus CHUBMA 0.74 0.00 Urophycis regia SPOHAK 0.88 0.84 0.09 0.13

Raja eglanteria CLESKA 0.92 0.92 0.07 0.09 Leiostomus xanthurus SPOTZZ 0.84 0.94 0.02 0.13

Conger oceanicus CONGEL 0.82 0.03 Anchoa hepsetus STRANC 0.93 0.10

Tautogolabrus
adspersus

CUNNER 0.84 0.87 0.05 0.05 Morone saxatilis STRBAS 0.90 0.87 0.10 0.08

Brosme brosme CUSKZZ 0.89 0.88 0.09 0.09 Prionotus evolans STRSEA 0.89 0.89 0.06 0.08

Lepophidium
profundorum

FAWMEL 0.89 0.89 0.04 0.04 Paralichthys dentatus SUMFLO 0.84 0.90 0.11 0.13

Monacanthus hispidus FILEFS 0.75 0.01 Tautoga onitis TAUTOG 0.84 0.03

Paralichthys oblongus FOUFLO 0.87 0.83 0.11 0.13 Amblyraja radiata THOSKA 0.88 0.89 0.12 0.14

Enchelyopus cimbrius FRBERO 0.89 0.88 0.03 0.02 Lopholatilus
chamaeleonticeps

TILEFI 0.92 0.85 0.03 0.01

Citharichthys arctifrons GULFLO 0.87 0.86 0.02 0.03 Cynoscion regalis WEAKFI 0.84 0.93 0.03 0.12

Melanogrammus
aeglefinus

HADDOC 0.85 0.84 0.20 0.21 Maurolicus weitzmani WEITZP 0.78 0.75 0.01 0.01

Myxine glutinosa HAGFIS 0.84 0.87 0.02 0.02 Urophycis tenuis WHIHAK 0.87 0.88 0.13 0.14

Cancer borealis JONCRA 0.74 0.74 0.05 0.05 Scophthalmus aquosus WINDOW 0.83 0.85 0.12 0.13

Ovalipes ocellatus LADCRA 0.86 0.87 0.01 0.04 Pseudopleuronectes
americanus

WINFLO 0.88 0.87 0.13 0.14

(Continued)
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TABLE 4 | Continued

AUC RMSLE AUC RMSLE

Species Abbr Spring Fall Spring Fall Species Abbr Spring Fall Spring Fall

Urophycis chesteri LGFINH 0.92 0.92 0.02 0.02 Leucoraja ocellata WINSKA 0.81 0.88 0.23 0.17

Leucoraja erinacea LITSKA 0.83 0.86 0.23 0.19 Glyptocephalus
cynoglossus

WITFLO 0.84 0.90 0.09 0.09

Myoxocephalus
octodecemspinosus

LONSCU 0.89 0.88 0.13 0.13 Cryptacanthodes
maculatus

WRYMOU 0.88 0.88 0.02 0.02

Doryteuthis pealeii LONSQD 0.89 0.85 0.12 0.22 Limanda ferruginea YELFLO 0.87 0.88 0.12 0.12

Cyclopterus lumpus LUMPFI 0.79 0.83 0.04 0.04

Presence/absence model performance statistic is Area under the ROC curve (AUC) index, biomass model performance statistic is Root Mean Squared Log Error (RMSLE)
index. Species name abbreviations (Abbr) referred to elsewhere.

see Supplementary Material). Since the minimum score for
this grouping was 10, all high reliance species had both spring
and fall model data included in the study. The high reliance
grouping included demersal and pelagic fish and invertebrate
species, including cephalopods (squid) and decapods (crab).
There were 31 species in the moderate reliance group, some
of which were only considered for one season. Like the high
reliance group, there were finfish and invertebrates among the
taxa in the moderate reliance group and many of the single season
species were small pelagic taxa. Twenty-six species were in the
low use grouping, many of which fell within the single season
category. Finally, there were 16 taxa in the no-reliance group;
while they can occur in the lease areas their reliance was below
the required threshold.

Utilization of Lease Areas
Habitat in the lease areas varied widely between depictions based
on the output of the presence/absence and biomass models.
Averaged over season and lease areas and with ratios exceeding
0.7, approximately 38 species used the lease areas as occupancy
habitat compared to 42 species that utilized the areas as biomass
habitat (Figures 2A,B). The areas with the highest number
of species making use of the lease areas as occupancy habitat
included E1 and P3 and among the lowest were areas E2 through
E5, which were located inshore. The areas with the highest
number of species using the lease areas as biomass habitat
included E1 and P1, two of the more northerly lease areas. The
lease areas with the lowest number of species making use of
the lease areas as biomass habitat included E2 through E5, the
same areas with low numbers of species using the lease areas as
occupancy habitat.

When species counts were related to parameters reflecting the
position and size of the lease areas, distinct trends emerged. The
number of species with ratios > 0.7 for presence/absence models
were uncorrelated with latitude in the spring but correlated
in the fall season (Figures 3A,C). However, there appears
to be a stronger relationship between the number of species
and latitude for the biomass habitat, which is significant in
both seasons (Figures 3B,D). Though not explicitly tested with
the correlation coefficient, biomass model responses appeared
non-linear and suggested lower counts at middle latitudes.
There was significant correlation with longitude of the lease

areas for both presence/absence and biomass models in both
seasons (Figures 4A–D), suggesting higher species counts with
more eastern lease areas. Counts from spring presence/absence
models were positively correlated with distance to the coast
of the lease areas (Figures 5A,C); however, the relationship
in the fall data is less developed. The biomass model counts
were also positively related to distance to the coast, although
these relationships were non-significant (Figures 5B,D). Size of
the lease area may be playing a role in species counts; however,
the correlations for presence/absence and biomass models were
relatively weak (Figure 6).

Retrospective Change in Lease Area
Habitat Use by Species
Most taxa classified as high reliance species with respect to
lease area utilization were also increasingly dependent on the
lease area habitats. For presence/absence model output, 80 and
89% of species had medians of significant habitat time series
trends that were positive for spring and fall models, respectively
(Figures 7A,B). Notably, among the species with the greatest
increases in occurrence probability in the spring were Urophycis
regia, Leucoraja ocellata, Paralichthys dentatus, and Squalus
acanthias; in fall, Citharichthys arctifrons, Raja eglanteria, U.
regia, and Centropristis striata were among the species with
the greatest increases in occurrence probability. In both spring
and fall, Glyptocephalus cynoglossus and Limanda ferruginea had
negative trends in occurrence probability. For biomass model
output, 65 and 60% of species in spring and fall, respectively, had
increasing trends in biomass habitat index scores (Figures 8A,B).
In spring, there were exceptional increases in biomass habitat for
Leucoraja erinacea and S. acanthias; however, many species had
moderate increases in biomass habitat scores in fall, including
L. erinacea, P. carolinus, S. acanthias, R. eglanteria, P. dentatus,
Placopecten magellanicus, and U. regia.

Model Variable Importance as Indicators
of Habitat
The different variable classes contributed to presence/absence
models in a hierarchical fashion when considering the times
a root, mean minimum depth, Gini decreases, and accuracy
decrease variable performance measures. Physical and biological
variables had a larger influence on the model fits than benthic
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TABLE 5 | Species groups and their relative reliance on wind lease areas, based on the sum of habitat indices where Spring is the sum of habitat score indices triggered
for spring distributions and Fall, likewise to spring.

High Moderate Low No

Species Spring Fall Total Species Spring Fall Total Species Spring Fall Total Species Spring Fall Total

BUTTER 6 6 12 ATLCRO 3 6 9 ATLSIL 5 0 5 ACARED 0 0 0

CLESKA 6 6 12 ATLMEN 6 3 9 RTSTIG 0 5 5 ALLFSH 0 0 0

FOUFLO 6 6 12 LADCRA 3 6 9 SPICRA 0 5 5 AMEPLA 0 0 0

GULFLO 6 6 12 OCPOUT 6 3 9 BLUCRA 1 3 4 ATLHAL 0 0 0

LITSKA 6 6 12 SCUPZZ 3 6 9 FAWMEL 1 3 4 ATLWOL 0 0 0

LONSQD 6 6 12 SMAFLO 5 4 9 JONCRA 1 3 4 CUSKZZ 0 0 0

NORSEA 6 6 12 NPUFFR 2 6 8 OFFHAK 1 3 4 HAGFIS 0 0 0

RCKCRA 6 6 12 SILHAK 4 4 8 ROSCAD 0 4 4 LUMPFI 0 0 0

SPOHAK 6 6 12 SPOTZZ 2 6 8 TILEFI 3 1 4 MOUSCL 0 0 0

SUMFLO 6 6 12 AMLOBS 3 4 7 ATLPOU 0 3 3 POLLOC 0 0 0

WINDOW 6 6 12 ATLHER 6 1 7 BARSKA 1 2 3 REDCRA 0 0 0

WINFLO 6 6 12 ATLMAC 6 1 7 CHUBMA 3 0 3 SHANNY 0 0 0

WINSKA 6 6 12 BLUEFI 1 6 7 ATLCOD 2 0 2 SMOSKA 0 0 0

BAYANC 5 6 11 BLUHER 6 1 7 CONGEL 2 0 2 THOSKA 0 0 0

BLABAS 5 6 11 LONSCU 4 3 7 RDSCAD 0 2 2 WHIHAK 0 0 0

SANDLA 6 5 11 MONKFH 4 3 7 WEITZP 2 0 2 WITFLO 0 0 0

YELFLO 6 5 11 REDHAK 4 3 7 WRYMOU 1 1 2

SEASCA 5 5 10 SHTSQD 4 3 7 AMESHA 0 1 1

SMODOG 4 6 10 STRSEA 1 6 7 ATLARG 0 1 1

SPIDOG 6 4 10 ALEWIF 5 1 6 BLAROS 0 1 1

ANGSHR 0 6 6 CUNNER 0 1 1

ARMSEA 3 3 6 FILEFS 0 1 1

BUCDOR 3 3 6 FRBERO 1 0 1

CHADOG 3 3 6 HADDOC 0 1 1

RHERRI 0 6 6 LGFINH 1 0 1

ROSSKA 3 3 6 TAUTOG 0 1 1

SEARAV 4 2 6

SHORTP 3 3 6

STRANC 0 6 6

STRBAS 6 0 6

WEAKFI 0 6 6

Total is the sum of spring and fall indices. Groupings from high to no reliance are divisions intended to reflect the role of lease area habitats to individual species.

FIGURE 2 | Mean of spring and fall species counts with lease area to NES
ecosystem ratio of >0.7 for occurrence (A) and biomass (B) model output.
See Figure 1 for area abbreviations.

terrain variables. Variable classes with a higher times a root
and lower mean minimum depth score (upper left quadrant,
Figure 9A) are indicative of variables of greater importance.
Likewise, variable classes with large Gini decrease and accuracy
decrease values (upper right quadrant, Figure 9B), are indicative
of variables that are more important in explaining species’
variation in occupancy. The spring models suggest physical,
primary production, and secondary production variable classes
were more important than the benthic terrain habitat variables.
For the fall models, however, primary and secondary production
variables were of greater significance than the physical variables
since they occur more frequently in the key quadrants
(Figures 9C,D). For both sets of seasonal models, the terrain
variables made the lowest contribution.

The PC analysis supported the role of temperature and
depth in defining fish and macroinvertebrate habitat, but also
suggested primary and secondary production variables were
critical. The first dimension of the spring and fall PCAs
explained 76.9 and 83.2% of the variance in variable importance
indices, respectively. For both models, the second dimension
explained <15% of the variance, and was not considered in

Frontiers in Marine Science | www.frontiersin.org 9 April 2021 | Volume 8 | Article 62923081

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-629230 April 21, 2021 Time: 12:59 # 10

Friedland et al. Wind Energy Area Fish Habitat

FIGURE 3 | Species counts with lease area to ecosystem ratio of >0.7 versus centroid latitude of the respective lease area for spring occurrence (A) and biomass
(B) models and fall occurrence (C) and biomass (D) models. Spearman rank order correlations, rs, noted in panel titles with significant correlations marked with
asterisk. See Figure 1 for area abbreviations.

further analyses. For spring models, the highest PC scores
were found with bottom temperature and depth; however,
among the top twenty variables were 15 primary and secondary
production variables (Figure 10A). Only one terrain variable
was among the top variables. For fall models, depth and
bottom temperature were the top variables, with 17 primary
and secondary production variables among the top 20 variables
(Figure 10B). No terrain variables were among the top 20
variables from the fall models.

DISCUSSION

The characterization of occupancy and biomass habitat of fish
and macroinvertebrate species allowed the identification of taxa
with high dependency on habitats that overlap the wind lease
areas in the NES ecosystem. This raises the potential for impact
of offshore wind development on these candidate taxa, where
impact is broadly defined as the potential direct effects for
some species on their habitat and subsequently their growth and
reproduction (Stenberg et al., 2015; Raoux et al., 2017). However,

it may also represent indirect effects in that wind farms may
change use patterns in the lease areas, such as limiting fishery
access and thus reducing fishing mortality for select species
(Ashley et al., 2014; Coates et al., 2016). Among the species with
the highest fisheries landings in the Middle Atlantic Bight (MAB)
in the most recent decade were Atlantic menhaden (B. tyrannus),
sea scallops (P. magellanicus), squids (Doryteuthis pealeii, Illex
illecebrosus), Atlantic croaker (Micropogonias undulatus), scup
(Stenotomus chrysops), spiny dogfish (S. acanthias), summer
flounder (P. dentatus), and striped bass (Morone saxatilis),
which were all species with a high to moderate reliance on the
lease area habitats. This information can aid ongoing efforts
to characterize cumulative risk to fishery species by a range
of environmental factors and human activities, including non-
fisheries uses (Hobday et al., 2011; Holsman et al., 2017). In
particular, summer flounder, scup, and spiny dogfish are among
federally managed species evaluated annually in an ecosystem-
level risk assessment, and summer flounder fisheries have been
found to face multiple other risks (Gaichas et al., 2018).

Despite the importance of multiple species to specific fisheries
in the MAB, some were not reliant on the lease areas. For
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FIGURE 4 | Species counts with lease area to ecosystem ratio of >0.7 versus centroid longitude of the respective lease area for spring occurrence (A) and biomass
(B) models and fall occurrence (C) and biomass (D) models. Spearman rank order correlations, rs, noted in panel titles with significant correlations marked with
asterisk. See Figure 1 for area abbreviations.

example, three taxa with high landings in the MAB, blue crab
(Callinectes sapidus), surf clam (Spisula solidissima), and ocean
quahogs (Arctica islandica), occur in the lease areas, but do not
appear in either the high or moderate reliance use groups. This
is likely because the clam species are infauna and not effectively
sampled in bottom trawl surveys, and blue crab provide high
regional landings, but are mostly an inshore estuarine taxon.
Despite low habitat use across most of the lease areas, some
taxa play pivotal roles in the NES ecosystem. For example,
Atlantic cod (Gadus morhua), which only meets the criteria of
low reliance, has been an ecologically pivotal species supporting
regional groundfish fisheries and has declined in recent years
due to overfishing and changing climate conditions (Pershing
et al., 2015). Hence, even if cod interactions were limited to a
small segment of the overall lease area, it would seem prudent to
monitor and study the effects of habitat change on cod biology.

Ongoing monitoring is comprehensive in the lease areas for
specific fisheries species and ecosystem aspects; however, other
components are characterized less well, such as benthic infauna,
birds, bats, marine mammals, or highly migratory megafauna.
Results here for finfish could potentially be expanded using data
from other dedicated surveys. Advances in acoustic and satellite

tracking can now identify important foraging and migration
habitats for highly migratory tunas, billfishes, and sharks (Wilson
et al., 2005; Curtis et al., 2018) and multiple species of seabirds
(Montevecchi et al., 2012), and bats, which have been detected
up to 21 km offshore (Sjollema et al., 2014). Expanding analyses
could be particularly valuable for cetaceans, which were found
to occur in higher than expected numbers in lease areas off
southern New England (Stone et al., 2017). Habitat models
provide critical baselines for assessing potential overlap of many
species with wind lease areas (Roberts et al., 2016); in particular,
understanding habitat use by endangered North Atlantic right
whales in proximity to lease areas (Davis et al., 2017). In the
absence of standardized fishery-independent survey data, fishery-
dependent catch data may be a useful alternative for developing
distribution models for species not well-represented in this study
(Hazen et al., 2018).

Climate-driven changes in species distribution may play an
important role in changing dependency of species on lease
area habitats over time. Center of gravity distribution for most
species on the NES have shifted to higher latitudes, which in
a practical sense, represents an along-shelf movement from
the southwest to the northeast (Nye et al., 2009; Kleisner et al.,
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FIGURE 5 | Species counts with lease area to ecosystem ratio of >0.7 versus centroid distance to the coast of the respective lease area for spring occurrence (A)
and biomass (B) models and fall occurrence (C) and biomass (D) models. Spearman rank order correlations, rs, noted in panel titles with significant correlations
marked with asterisk. See Figure 1 for area abbreviations.

2016). Concomitant with shifting distributions, habitat use for
most taxa have expanded over recent decades (Friedland et al.,
2020), suggesting changing climate conditions have expanded
the range of useful, or at least tolerable, habitat for many
species. Occupancy habitat, reflected by the change in occurrence
probability, has increased for most high reliance species within
the lease areas. The increasing importance of these habitats is
likely the result of ranging dynamic environmental variables like
SST and secondary productivity that likely represent currently
optimal climate refugia (Poloczanska et al., 2013; Ban et al.,
2016). Moreover, these changes could shift more southerly species
into these communities (Lurgi et al., 2012; Barceló et al., 2016).
Secondary production variables reflect climatological production
zones, with some taxa displaying similar distribution shifts as fish.
Specifically, many copepod species have experienced a shift in
their center of gravity to the northeast, which would reinforce
the putative effects of temperature in increased habitat values
on a latitudinal basis (Friedland et al., 2019). Finally, factors
further complicating our understanding of climate impacts are
changes to the habitat and the related ecosystem components
within the lease blocks due to energy development itself that will
have species-specific outcomes (Langhamer, 2012).

Current marine spatial planning for offshore wind considers
the wind resource, the seabed type for installation, the location
of designated areas and other key marine users, such as
navigation and military uses. Fisheries grounds and vessel
transit routes are considered to varying degrees. However, the
relative importance of those locations to the actual fisheries
species (as demonstrated here) and life history association
(Barbut et al., 2020) is generally lacking. As more offshore
wind locations are chosen and the extent of the lease
areas increases, there will be a need to also understand
the temporal use of the areas by the fisheries species and the
life stage that may be dependent on the areas (Birchenough
and Degraer, 2020). The migratory connections between life
history stage habitats (Buscher et al., 2016) and the availability
of alternative habitat require consideration when assessing
potentially significant impact on species, such as population
or community change (Boehlert and Gill, 2010). Determining
the changes that do occur will need to be considered over
the appropriate time scale for cohort recruitment of species
and spatially may be within the jurisdiction of other states,
or countries. Larger developments will necessarily have more
subsea cables, longer installation times and larger turbine
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FIGURE 6 | Species counts with lease area to ecosystem ratio of >0.7 versus area of the respective lease area for spring occurrence (A) and biomass (B) models
and fall occurrence (C) and biomass (D) models. Spearman rank order correlations, rs, noted in panel titles with significant correlations marked with asterisk. See
Figure 1 for area abbreviations.

structures, spaced further apart than currently sized turbines.
Hence, the installation of the offshore wind infrastructure will
need to be incorporated into the future analysis of habitat
association and productivity of fisheries species in terms
of spatial extent and the length of time that the fisheries
may be affected.

With the advent of floating turbines, the future interactions
between marine resources and energy development may change
more toward offshore fisheries, particularly in the Gulf of Maine.
With moving offshore, there will be gradients of potential
habitat importance and perhaps differential impacts. With
this in mind, the assessment of occurrence and productivity
of fisheries species will remain a requirement to provide
explanatory variables that determine the species association
in these new offshore areas. Fish attraction (of different life
stages) to the structures and connectivity linked to prevailing
currents will likely need determination and occurrence of pelagic
predators would be expected. Moving wind turbine structures
offshore also increases the likelihood of cables intersecting with
migratory species routes, including electromagnetically sensitive
fauna such as elasmobranchs, sturgeons, and marine turtles
(Hutchison et al., 2020).

Physical (temperature and depth) and biological (primary and
secondary production) oceanographic variables were important
for determining habitat occupancy for upper trophic level species
in this study. Temperature and depth are well known to be
strong determinants of fish distribution and abundance in marine
ecosystems (Murawski and Finn, 1988). Primary and secondary
production form the base of the marine food web and are
associated with fisheries yields (Friedland et al., 2012; Stock et al.,
2017). Both physical and biological oceanographic variables are
likely to be affected by the operation of offshore wind farms
(Floeter et al., 2017; Bakhoday-Paskyabi et al., 2018). However,
few studies have directly demonstrated linkages between physical
and biological oceanographic variables at these facilities. One of
the first studies to empirically take on these questions reported
increased vertical mixing, doming of the thermocline (i.e., rising
of the thermocline to replace the surface mixed layer), and
transport of nutrients to the surface mixed layer followed by
uptake by phytoplankton in the photic zone (Floeter et al., 2017).
Coupled with our findings, this would suggest that wind farm
effects on phytoplankton and zooplankton might extend to upper
trophic level impacts, potentially modifying the distribution and
abundance of finfish and invertebrates. The spatial scale of
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FIGURE 7 | Median occurrence probability of species during the study period versus change in probability as Theil–Sen slope for essential species in existing and
proposed lease areas during spring (A) and fall (B). Only data associated with significant slopes were used in the calculations; sample size expressed with the size of
plotting symbol with maximum of 11 reflecting total number of lease areas in the study. See Table 4 for species abbreviations.

these effects remains unknown but could range from localized
within individual farms to broader spatial scales (Carpenter
et al., 2016; Bakhoday-Paskyabi et al., 2018). The implications
of these effects for fisheries production and commercial fisheries
economics could be significant; hence, we suggest that the effect
of wind farms on oceanographic variables be considered in
environmental impact analyses.

A well-designed regional wind farm monitoring program
is essential to understanding how offshore wind development
affects marine ecosystems, and the design of strategic and
meaningful assessments to properly contextualize impacts is
required (Lindeboom et al., 2015). With respect to our case
study, there is currently much discussion about how to conduct
monitoring focusing on variables that are sensitive to change,
that are sampled with current gear and technologies, and that
are indicative of wind farm effects on the biological community
and the ecosystem as a whole. To date, limited attention in
the research community has been given to how changes in
oceanographic variables due to offshore wind farm operation are
linked to effects on biological processes. Given the importance
of oceanographic variables in determining habitat occupancy
of upper trophic levels revealed in our study, we recommend
that comprehensive monitoring of these variables be conducted
in conjunction with biological monitoring. Specifically, to be
cognizant of the factors related to primary and secondary
production and how they are linked to patterns of natural
resource abundance and distribution.

In addition to regional monitoring, research programs are also
under development in the Northeast US led by a new science
entity, the Responsible Offshore Science Alliance, which seeks
to address research questions through cross-sector collaboration
and hypothesis-driven questions development (Dannheim et al.,
2020). The findings of this study could inform the development
of such research priorities and questions. For example, we
can foresee questions related to feeding behavior and diet
of species at various life stages and sizes and the associated
impacts of wind farm structures. The results of this study show
black sea bass (Centropristis striata) are highly dependent on
habitat in wind areas in both the spring and fall. Because of
its attraction to structural habitat and reef formations, black
sea bass has previously garnered attention as a species that
may benefit from the installation of turbine foundations. As
phytoplankton and zooplankton are important drivers of habitat
occupancy, species that are planktivorous such as Atlantic
menhaden (Brevoortia tyrannus), may be sensitive to any changes
in biological oceanography caused by wind farm operation. These
findings could be used to develop ecosystem simulation models
that couple changes in physical and biological oceanography
to explore a range of bottom up forcing scenarios caused
by wind farm operation and how they might affect upper
trophic levels (Pezy et al., 2020). Knowing how the range of
primary and secondary productivity values are linked to upper
trophic levels would be extremely useful in parameterizing and
testing such models.
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FIGURE 8 | Median biomass index during the study period versus change in biomass index as Theil–Sen slope for essential species in existing and proposed lease
areas during spring (A) and fall (B). Only data associated with significant slopes were used in the calculations; sample size expressed with the size of plotting symbol
with maximum of 11 reflecting total number of lease areas in the study. See Table 4 for species abbreviations.

Species’ occupancy and biomass spatial predictions provide
a basis for quantifying baseline conditions for wind energy
areas of the NES. However, our methodological framework
could have broad applicability to other parts of the world
with comparable data availability that are also experiencing
similar growth in offshore energy development or other
impacts. As part of developers’ construction plans, they are
charged with understanding the environment they plan to
utilize. Their pre-construction monitoring needs to take into
account the variability in baseline estimates (Witt et al.,
2012). The model predictions in our study provide a method
for testing the tradeoffs of defining baseline year lengths
for species of high exploitation and ecosystem significance.
The results also highlight how the relationship between areas
and species can change through time, as many of the
high reliance species have increased dependency over time
(Figure 7). Many of these taxa are experiencing regional
shifts, often northeastward (Bell et al., 2015; Kleisner et al.,
2017), suggesting that the historical significance of these
areas for species should not be the sole metric used to
understand prospective wind farm impacts. Using SDMs with
forecasted environmental data and fit with the appropriate
rigor (Briscoe et al., 2019), may provide increased insight into
future interactions between offshore wind development and
the fish community.

The study presented here utilized data from NOAA’s
long-term bottom trawl survey and ecosystem monitoring
programs. In the Northeast US, wind development areas
overlap with these, and a number of scientific surveys
representing more than 315 years of cumulative survey
effort, which are executed by NOAA ships and aircraft.
Information gathered from these surveys represents one of the
most comprehensive data sets on marine ecosystems in the
world (Desprespatanjo et al., 1988). In addition to making
predictive modeling studies such as this one possible, these
surveys support fisheries assessment and management process,
protected species assessment and remediation, ecosystem-
based fisheries management, and regional and national climate
assessments, as well as a number of regional, national, and
international science activities (Smith, 2008). Within offshore
wind facility areas, survey operations will be curtailed or
eliminated under current vessel and aircraft capacities, safety
requirements, and monitoring protocols. For example, in the
case of the bottom-trawl survey, a stratified-random sampling
methodology will no longer be possible because wind energy
areas will not be sampled with the current vessel and gear
specifications. The same limitation will affect ecosystem survey
work. The inability to conduct sampling inside of wind
areas will lead to survey bias, a reduction in information,
increased uncertainty in stock assessments, and poorly informed
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FIGURE 9 | The mean number of times a variable was the root node variable versus the mean minimum depth of a variable in a tree for spring (A) and fall (C)
models; and, the mean decrease in the Gini index of node impurity versus the mean accuracy decrease if a variable were to be removed for spring (B) and fall (D)
models. Variables are color coded by their class: physical (black), primary production (green), secondary production (blue), and benthic terrain complexity (red).
Symbol size is scaled by the number of species models the variable was selected.

FIGURE 10 | The top twenty variables across all spring (A) and fall (B) models of high reliance species based on principal component 1 variable scores as an index
of importance. Physical, primary production, secondary production, and terrain variables are represented in black, green, blue, and red, respectively. See Tables 1–3
for variable abbreviations.
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management decisions (Boenish et al., 2020). Maintaining
the integrity of long-term scientific assessments through
development and implementation of novel survey design and
gear types is essential to ensure the compatibility of data collected
inside and outside of wind farms and of historical data with
future data sets.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

KF led the analysis with primary drafting of the manuscript by
KF, EM, AG, SG, and TC. EA, JM, DC, MM, and DB contributed
to the drafting and editing of the manuscript. All authors
contributed to the article and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2021.629230/full#supplementary-material

REFERENCES
Ashley, M. C., Mangi, S. C., and Rodwell, L. D. (2014). The potential of

offshore windfarms to act as marine protected areas – A systematic review
of current evidence. Mar. Policy 45, 301–309. doi: 10.1016/j.marpol.2013.
09.002

Bakhoday-Paskyabi, M., Fer, I., and Reuder, J. (2018). Current and turbulence
measurements at the FINO1 offshore wind energy site: analysis using 5-beam
ADCPs. Ocean Dyn. 68, 109–130. doi: 10.1007/s10236-017-1109-5

Ban, S. S., Alidina, H. M., Okey, T. A., Gregg, R. M., and Ban, N. C. (2016).
Identifying potential marine climate change refugia: a case study in Canada’s
Pacific marine ecosystems. Glob. Ecol. Conserv. 8, 41–54. doi: 10.1016/j.gecco.
2016.07.004

Barbut, L., Vastenhoud, B., Vigin, L., Degraer, S., Volckaert, F. A. M., and Lacroix,
G. (2020). The proportion of flatfish recruitment in the North Sea potentially
affected by offshore windfarms. ICES J. Mar. Sci. 77, 1227–1237. doi: 10.1093/
icesjms/fsz050

Barceló, C., Ciannelli, L., Olsen, E. M., Johannessen, T., and Knutsen, H. (2016).
Eight decades of sampling reveal a contemporary novel fish assemblage in
coastal nursery habitats. Glob. Change Biol. 22, 1155–1167. doi: 10.1111/gcb.
13047

Belkin, I. M., and O’Reilly, J. E. (2009). An algorithm for oceanic front detection in
chlorophyll and SST satellite imagery. J. Mar. Syst. 78, 319–326. doi: 10.1016/j.
jmarsys.2008.11.018

Bell, R. J., Richardson, D. E., Hare, J. A., Lynch, P. D., and Fratantoni, P. S. (2015).
Disentangling the effects of climate, abundance, and size on the distribution of
marine fish: an example based on four stocks from the Northeast US shelf. ICES
J. Mar. Sci. 72, 1311–1322. doi: 10.1093/icesjms/fsu217

Birchenough, S. N. R., and Degraer, S. (2020). Science in support of ecologically
sound decommissioning strategies for offshore man-made structures: taking
stock of current knowledge and considering future challenges. ICES J. Mar. Sci.
77, 1075–1078. doi: 10.1093/icesjms/fsaa039

Boehlert, G., and Gill, A. (2010). Environmental and ecological effects of ocean
renewable energy development – a current synthesis. Oceanog 23, 68–81. doi:
10.5670/oceanog.2010.46

Boenish, R., Willard, D., Kritzer, J. P., and Reardon, K. (2020). Fisheries
monitoring: perspectives from the United States. Aquac. Fish. 5, 131–138. doi:
10.1016/j.aaf.2019.10.002

Brandt, M. J., Dragon, A.-C., Diederichs, A., Bellmann, M. A., Wahl, V., Piper,
W., et al. (2018). Disturbance of harbour porpoises during construction of the
first seven offshore wind farms in Germany. Mar. Ecol. Prog. Ser. 596, 213–232.
doi: 10.3354/meps12560

Briscoe, N. J., Elith, J., Salguero−Gómez, R., Lahoz−Monfort, J. J., Camac,
J. S., Giljohann, K. M., et al. (2019). Forecasting species range dynamics
with process-explicit models: matching methods to applications. Ecol. Lett. 22,
1940–1956. doi: 10.1111/ele.13348

Buscher, E., Olson, A. M., Pascoe, E. S., Weil, J., and Juanes, F. (2016). David H.
Secor: migration ecology of marine fishes. Rev. Fish. Biol. Fish. 26, 609–610.
doi: 10.1007/s11160-016-9423-4

Carpenter, J. R., Merckelbach, L., Callies, U., Clark, S., Gaslikova, L., and Baschek,
B. (2016). Potential impacts of offshore wind farms on North Sea Stratification.
PLoS One 11:e0160830. doi: 10.1371/journal.pone.0160830

Carpenter, S. (2020). Offshore Wind Companies Are Racing To Develop America’s
East Coast. First They Must Appease The Fishermen. Forbes. Available online
at: https://www.forbes.com/sites/scottcarpenter/2020/06/16/offshore-wind-
companies-are-racing-to-develop-americas-east-coast-first-they-must-
appease-the-fishermen/(accessed July 7, 2020).

Causon, P. D., and Gill, A. B. (2018). Linking ecosystem services with epibenthic
biodiversity change following installation of offshore wind farms. Environ. Sci.
Policy 89, 340–347. doi: 10.1016/j.envsci.2018.08.013

Coates, D. A., Kapasakali, D.-A., Vincx, M., and Vanaverbeke, J. (2016). Short-term
effects of fishery exclusion in offshore wind farms on macrofaunal communities
in the Belgian part of the North Sea. Fish. Res. 179, 131–138. doi: 10.1016/j.
fishres.2016.02.019

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J.,
Kubiszewski, I., et al. (2014). Changes in the global value of ecosystem services.
Glob. Environ. Change 26, 152–158. doi: 10.1016/j.gloenvcha.2014.04.002

Crear, D. P., Watkins, B. E., Saba, V. S., Graves, J. E., Jensen, D. R., Hobday, A. J.,
et al. (2020). Contemporary and future distributions of cobia, Rachycentron
canadum. Divers. Distrib. 26, 1002–1015. doi: 10.1111/ddi.13079

Curtis, T. H., Metzger, G., Fischer, C., McBride, B., McCallister, M., Winn, L. J.,
et al. (2018). First insights into the movements of young-of-the-year white
sharks (Carcharodon carcharias) in the western North Atlantic Ocean. Sci. Rep.
8:10794. doi: 10.1038/s41598-018-29180-5

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., and Hess, K. T. (2007).
Random forests for classification in ecology. Ecology 88, 2783–2792. doi: 10.
1890/07-0539.1

Dannheim, J., Bergström, L., Birchenough, S. N. R., Brzana, R., Boon, A. R., Coolen,
J. W. P., et al. (2020). Benthic effects of offshore renewables: identification of
knowledge gaps and urgently needed research. ICES J. Mar. Sci. 77, 1092–1108.
doi: 10.1093/icesjms/fsz018

Davis, G. E., Baumgartner, M. F., Bonnell, J. M., Bell, J., Berchok, C., Bort Thornton,
J., et al. (2017). Long-term passive acoustic recordings track the changing
distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to
2014. Sci. Rep. 7:13460. doi: 10.1038/s41598-017-13359-3

De Mesel, I., Kerckhof, F., Norro, A., Rumes, B., and Degraer, S. (2015). Succession
and seasonal dynamics of the epifauna community on offshore wind farm
foundations and their role as stepping stones for non-indigenous species.
Hydrobiologia 756, 37–50. doi: 10.1007/s10750-014-2157-1

Desprespatanjo, L. I., Azarovitz, T. R., and Byrne, C. J. (1988). 25 years of fish
surveys in the northwest atlantic - the NMFS northeast fisheries centers bottom
trawl survey program. Mar. Fish. Rev. 50, 69–71.

Floeter, J., van Beusekom, J. E. E., Auch, D., Callies, U., Carpenter, J., Dudeck,
T., et al. (2017). Pelagic effects of offshore wind farm foundations in the
stratified North Sea. Prog. Oceanog. 156, 154–173. doi: 10.1016/j.pocean.2017.
07.003

Friedland, K. D., Langan, J. A., Large, S. I., Selden, R. L., Link, J. S., Watson, R. A.,
et al. (2020). Changes in higher trophic level productivity, diversity and niche

Frontiers in Marine Science | www.frontiersin.org 17 April 2021 | Volume 8 | Article 62923089

https://www.frontiersin.org/articles/10.3389/fmars.2021.629230/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2021.629230/full#supplementary-material
https://doi.org/10.1016/j.marpol.2013.09.002
https://doi.org/10.1016/j.marpol.2013.09.002
https://doi.org/10.1007/s10236-017-1109-5
https://doi.org/10.1016/j.gecco.2016.07.004
https://doi.org/10.1016/j.gecco.2016.07.004
https://doi.org/10.1093/icesjms/fsz050
https://doi.org/10.1093/icesjms/fsz050
https://doi.org/10.1111/gcb.13047
https://doi.org/10.1111/gcb.13047
https://doi.org/10.1016/j.jmarsys.2008.11.018
https://doi.org/10.1016/j.jmarsys.2008.11.018
https://doi.org/10.1093/icesjms/fsu217
https://doi.org/10.1093/icesjms/fsaa039
https://doi.org/10.5670/oceanog.2010.46
https://doi.org/10.5670/oceanog.2010.46
https://doi.org/10.1016/j.aaf.2019.10.002
https://doi.org/10.1016/j.aaf.2019.10.002
https://doi.org/10.3354/meps12560
https://doi.org/10.1111/ele.13348
https://doi.org/10.1007/s11160-016-9423-4
https://doi.org/10.1371/journal.pone.0160830
https://www.forbes.com/sites/scottcarpenter/2020/06/16/offshore-wind-companies-are-racing-to-develop-americas-east-coast-first-they-must-appease-the-fishermen/
https://www.forbes.com/sites/scottcarpenter/2020/06/16/offshore-wind-companies-are-racing-to-develop-americas-east-coast-first-they-must-appease-the-fishermen/
https://www.forbes.com/sites/scottcarpenter/2020/06/16/offshore-wind-companies-are-racing-to-develop-americas-east-coast-first-they-must-appease-the-fishermen/
https://doi.org/10.1016/j.envsci.2018.08.013
https://doi.org/10.1016/j.fishres.2016.02.019
https://doi.org/10.1016/j.fishres.2016.02.019
https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.1111/ddi.13079
https://doi.org/10.1038/s41598-018-29180-5
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1093/icesjms/fsz018
https://doi.org/10.1038/s41598-017-13359-3
https://doi.org/10.1007/s10750-014-2157-1
https://doi.org/10.1016/j.pocean.2017.07.003
https://doi.org/10.1016/j.pocean.2017.07.003
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-629230 April 21, 2021 Time: 12:59 # 18

Friedland et al. Wind Energy Area Fish Habitat

space in a rapidly warming continental shelf ecosystem. Sci. Total Environ.
704:135270. doi: 10.1016/j.scitotenv.2019.135270

Friedland, K. D., McManus, M. C., Morse, R. E., and Link, J. S. (2019). Event
scale and persistent drivers of fish and macroinvertebrate distributions on the
Northeast US Shelf. ICES J. Mar. Sci. 76, 1316–1334. doi: 10.1093/icesjms/
fsy167

Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S., Leaf, R. T., Shank,
B. V., et al. (2012). Pathways between primary production and fisheries yields
of large marine ecosystems. PLoS One 7:e0028945. doi: 10.1371/journal.pone.
0028945

Friedman, A., Pizarro, O., Williams, S. B., and Johnson-Roberson, M. (2012).
Multi-scale measures of rugosity, slope and aspect from benthic stereo image
reconstructions. PLoS One 7:e0050440. doi: 10.1371/journal.pone.0050440

Gaichas, S. K., DePiper, G. S., Seagraves, R. J., Muffley, B. W., Sabo, M. G.,
Colburn, L. L., et al. (2018). Implementing ecosystem approaches to fishery
management: risk assessment in the US Mid-Atlantic. Front. Mar. Sci. 5:442.
doi: 10.3389/fmars.2018.00442

Hatch, L., Clark, C., Merrick, R., Van Parijs, S., Ponirakis, D., Schwehr, K., et al.
(2008). Characterizing the relative contributions of large vessels to total ocean
noise fields: a case study using the Gerry E. Studds Stellwagen Bank National
Marine Sanctuary. Environ. Manag. 42, 735–752. doi: 10.1007/s00267-008-
9169-4

Hazen, E. L., Scales, K. L., Maxwell, S. M., Briscoe, D. K., Welch, H., Bograd, S. J.,
et al. (2018). A dynamic ocean management tool to reduce bycatch and support
sustainable fisheries. Sci. Adv. 4:eaar3001. doi: 10.1126/sciadv.aar3001

Hobday, A. J., Smith, A. D. M., Stobutzki, I. C., Bulman, C., Daley, R., Dambacher,
J. M., et al. (2011). Ecological risk assessment for the effects of fishing. Fish. Res.
108, 372–384. doi: 10.1016/j.fishres.2011.01.013

Hobson, R. D. (1972). “Surface roughness in topography: quantitative approach,”
in Spatial Analysis in Geomorphology, ed. R. J. Chorley (New York, NY: Harper
and Row), 221–245. doi: 10.4324/9780429273346-8

Holsman, K., Samhouri, J., Cook, G., Hazen, E., Olsen, E., Dillard, M., et al. (2017).
An ecosystem-based approach to marine risk assessment. Ecosyst. Health Sust.
3:e01256. doi: 10.1002/ehs2.1256

Hooper, T., Ashley, M., and Austen, M. (2015). Perceptions of fishers and
developers on the co-location of offshore wind farms and decapod fisheries in
the UK. Mar. Policy 61, 16–22. doi: 10.1016/j.marpol.2015.06.031

Hutchison, Z. L., Gill, A. B., Sigray, P., He, H., and King, J. W. (2020).
Anthropogenic electromagnetic fields (EMF) influence the behaviour of
bottom-dwelling marine species. Sci. Rep. 10:4219. doi: 10.1038/s41598-020-
60793-x

Kane, J. (2007). Zooplankton abundance trends on Georges Bank, 1977-2004. ICES
J. Mar. Sci. 64, 909–919. doi: 10.1093/icesjms/fsm066

Kinlan, B. P., Winship, A. J., White, T. P., and Christensen, J. (2016). Modeling
At-Sea Occurrence and Abundance of Marine Birds to Support Atlantic Marine
Renewable Energy Planning: Phase I Report. Washington, DC: U.S. Department
of the Interior, xvii+113. OCS Study BOEM 2016-039.

Kleisner, K. M., Fogarty, M. J., McGee, S., Barnette, A., Fratantoni, P., Greene, J.,
et al. (2016). The effects of sub-regional climate velocity on the distribution
and spatial extent of marine species assemblages. PLoS One 11:e0149220. doi:
10.1371/journal.pone.0149220

Kleisner, K. M., Fogarty, M. J., McGee, S., Hare, J. A., Moret, S., Perretti, C. T., et al.
(2017). Marine species distribution shifts on the US northeast continental shelf
under continued ocean warming. Prog. Oceanogr. 153, 24–36. doi: 10.1016/j.
pocean.2017.04.001

Langhamer, O. (2012). Artificial reef effect in relation to offshore renewable energy
conversion: state of the art. Sci. World J. 2012:e386713. doi: 10.1100/2012/
386713

Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. B., and Wilhelmsson, D.
(2015). Offshore wind park monitoring programmes, lessons learned and
recommendations for the future. Hydrobiologia 756, 169–180. doi: 10.1007/
s10750-015-2267-4

Lundblad, E., Wright, D. J., Miller, J., Larkin, E. M., Rinehart, R., Anderson, S. M.,
et al. (2006). A Benthic Terrain Classification Scheme for American Samoa.
Mar. Geod. 29, 89–111. doi: 10.1080/01490410600738021

Lurgi, M., López, B. C., and Montoya, J. M. (2012). Novel communities from
climate change. Philos. Trans. R. Soci. B Biol. Sci. 367, 2913–2922. doi: 10.1098/
rstb.2012.0238

Maritorena, S., d’Andon, O. H. F., Mangin, A., and Siegel, D. A. (2010). Merged
satellite ocean color data products using a bio-optical model: characteristics,
benefits and issues. Remote Sens. Environ. 114, 1791–1804. doi: 10.1016/j.rse.
2010.04.002

Mavraki, N., De Mesel, I., Degraer, S., Moens, T., and Vanaverbeke, J. (2020).
Resource niches of Co-occurring invertebrate species at an offshore wind
turbine indicate a substantial degree of trophic plasticity. Front. Mar. Sci. 7:379.
doi: 10.3389/fmars.2020.00379

Mazur, M. D., Friedland, K. D., McManus, M. C., and Goode, A. G. (2020).
Dynamic changes in American lobster suitable habitat distribution on the
Northeast U.S. Shelf linked to oceanographic conditions. Fish. Oceanogr. 29,
349–365. doi: 10.1111/fog.12476

Methratta, E. T. (2020). Monitoring fisheries resources at offshore wind farms:
BACI vs. BAG designs. ICES J. Mar. Sci. 77, 890–900. doi: 10.1093/icesjms/
fsaa026

Miller, T. J., Das, C., Politis, P. J., Miller, A. S., Lucey, S. M., Legault, C. M.,
et al. (2010). Estimation of Albatross IV to Henry B. Bigelow calibration factors.
Northeast Fisheries Science Center Reference Document 10-05. Washington,
DC: NOAA, 238.

Montevecchi, W. A., Hedd, A., McFarlane Tranquilla, L., Fifield, D. A., Burke,
C. M., Regular, P. M., et al. (2012). Tracking seabirds to identify ecologically
important and high risk marine areas in the western North Atlantic. Biol.
Conserv. 156, 62–71. doi: 10.1016/j.biocon.2011.12.001

Moore, C., Drazen, J. C., Radford, B. T., Kelley, C., and Newman, S. J. (2016).
Improving essential fish habitat designation to support sustainable ecosystem-
based fisheries management. Mar. Policy 69, 32–41. doi: 10.1016/j.marpol.2016.
03.021

Murawski, S. A., and Finn, J. T. (1988). Biological bases for mixed-species fisheries:
species co-distribution in relation to environmental and biotic variables. Can. J.
Fish. Aquat. Sci. 45, 1720–1735. doi: 10.1139/f88-204

Murphy, M. A., Evans, J. S., and Storfer, A. (2010). Quantifying Bufo boreas
connectivity in Yellowstone National Park with landscape genetics. Ecology 91,
252–261. doi: 10.1890/08-0879.1

Nye, J. A., Link, J. S., Hare, J. A., and Overholtz, W. J. (2009). Changing spatial
distribution of fish stocks in relation to climate and population size on the
Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129.
doi: 10.3354/Meps08220

Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills,
K. E., et al. (2015). Slow adaptation in the face of rapid warming leads to collapse
of the Gulf of Maine cod fishery. Science 350, 809–812. doi: 10.1126/science.
aac9819

Pezy, J.-P., Raoux, A., and Dauvin, J.-C. (2020). An ecosystem approach for
studying the impact of offshore wind farms: a French case study. ICES J. Mar.
Sci. 77, 1238–1246. doi: 10.1093/icesjms/fsy125

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S.,
Moore, P. J., et al. (2013). Global imprint of climate change on marine life. Nat.
Clim. Chang. 3, 919–925. doi: 10.1038/Nclimate1958

Popper, A. N., and Hawkins, A. D. (2019). An overview of fish bioacoustics and
the impacts of anthropogenic sounds on fishes. J. Fish Biol. 94, 692–713. doi:
10.1111/jfb.13948

Raoux, A., Tecchio, S., Pezy, J.-P., Lassalle, G., Degraer, S., Wilhelmsson, D., et al.
(2017). Benthic and fish aggregation inside an offshore wind farm: which effects
on the trophic web functioning? Ecol. Ind. 72, 33–46. doi: 10.1016/j.ecolind.
2016.07.037

Riley, S. J., DeGloria, S. D., and Elliot, R. (1999). A terrain ruggedness index that
quantifies topographic heterogeneity. Int. J. Sci. 5, 23–27.

Roberts, J. J., Best, B. D., Mannocci, L., Fujioka, E., Halpin, P. N., Palka, D. L., et al.
(2016). Habitat-based cetacean density models for the U.S. Atlantic and Gulf of
Mexico. Sci. Rep. 6:22615. doi: 10.1038/srep22615

Sjollema, A. L., Gates, J. E., Hilderbrand, R. H., and Sherwell, J. (2014). Offshore
activity of bats along the mid-atlantic coast. Northeast. Nat. 21, 154–163. doi:
10.1656/045.021.0201

Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K., and Wirtz, K. W.
(2019). The large-scale impact of offshore wind farm structures on pelagic
primary productivity in the southern North Sea. Hydrobiologia 845, 35–53.
doi: 10.1007/s10750-018-3653-5

Smith, T. D. (2008). “A History of fisheries and their science and management,” in
Handbook of Fish Biology and Fisheries, eds P. J. B. Hart and J. D. Reynolds

Frontiers in Marine Science | www.frontiersin.org 18 April 2021 | Volume 8 | Article 62923090

https://doi.org/10.1016/j.scitotenv.2019.135270
https://doi.org/10.1093/icesjms/fsy167
https://doi.org/10.1093/icesjms/fsy167
https://doi.org/10.1371/journal.pone.0028945
https://doi.org/10.1371/journal.pone.0028945
https://doi.org/10.1371/journal.pone.0050440
https://doi.org/10.3389/fmars.2018.00442
https://doi.org/10.1007/s00267-008-9169-4
https://doi.org/10.1007/s00267-008-9169-4
https://doi.org/10.1126/sciadv.aar3001
https://doi.org/10.1016/j.fishres.2011.01.013
https://doi.org/10.4324/9780429273346-8
https://doi.org/10.1002/ehs2.1256
https://doi.org/10.1016/j.marpol.2015.06.031
https://doi.org/10.1038/s41598-020-60793-x
https://doi.org/10.1038/s41598-020-60793-x
https://doi.org/10.1093/icesjms/fsm066
https://doi.org/10.1371/journal.pone.0149220
https://doi.org/10.1371/journal.pone.0149220
https://doi.org/10.1016/j.pocean.2017.04.001
https://doi.org/10.1016/j.pocean.2017.04.001
https://doi.org/10.1100/2012/386713
https://doi.org/10.1100/2012/386713
https://doi.org/10.1007/s10750-015-2267-4
https://doi.org/10.1007/s10750-015-2267-4
https://doi.org/10.1080/01490410600738021
https://doi.org/10.1098/rstb.2012.0238
https://doi.org/10.1098/rstb.2012.0238
https://doi.org/10.1016/j.rse.2010.04.002
https://doi.org/10.1016/j.rse.2010.04.002
https://doi.org/10.3389/fmars.2020.00379
https://doi.org/10.1111/fog.12476
https://doi.org/10.1093/icesjms/fsaa026
https://doi.org/10.1093/icesjms/fsaa026
https://doi.org/10.1016/j.biocon.2011.12.001
https://doi.org/10.1016/j.marpol.2016.03.021
https://doi.org/10.1016/j.marpol.2016.03.021
https://doi.org/10.1139/f88-204
https://doi.org/10.1890/08-0879.1
https://doi.org/10.3354/Meps08220
https://doi.org/10.1126/science.aac9819
https://doi.org/10.1126/science.aac9819
https://doi.org/10.1093/icesjms/fsy125
https://doi.org/10.1038/Nclimate1958
https://doi.org/10.1111/jfb.13948
https://doi.org/10.1111/jfb.13948
https://doi.org/10.1016/j.ecolind.2016.07.037
https://doi.org/10.1016/j.ecolind.2016.07.037
https://doi.org/10.1038/srep22615
https://doi.org/10.1656/045.021.0201
https://doi.org/10.1656/045.021.0201
https://doi.org/10.1007/s10750-018-3653-5
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-629230 April 21, 2021 Time: 12:59 # 19

Friedland et al. Wind Energy Area Fish Habitat

(Hoboken, NJ: John Wiley & Sons, Ltd), 61–83. doi: 10.1002/978047069
3919.ch4

Smolinski, S., and Radtke, K. (2017). Spatial prediction of demersal fish
diversity in the Baltic Sea: comparison of machine learning and regression-
based techniques. ICES J. Mar. Sci. 74, 102–111. doi: 10.1093/icesjms/
fsw136

Stenberg, C., Støttrup, J. G., van Deurs, M., Berg, C. W., Dinesen, G. E., Mosegaard,
H., et al. (2015). Long-term effects of an offshore wind farm in the North Sea on
fish communities. Mar. Ecol. Prog. Ser. 528, 257–265. doi: 10.3354/meps11261

Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W. L., Dunne,
J. P., et al. (2017). Reconciling fisheries catch and ocean productivity. Proc. Natl.
Acad. Sci. U.S.A. 114, E1441–E1449. doi: 10.1073/pnas.1610238114

Stone, K. M., Leiter, S. M., Kenney, R. D., Wikgren, B. C., Thompson, J. L., Taylor,
J. K. D., et al. (2017). Distribution and abundance of cetaceans in a wind
energy development area offshore of Massachusetts and Rhode Island. J. Coas.t
Conserv. 21, 527–543. doi: 10.1007/s11852-017-0526-4

UNEP (2019). Global Trends in Renewable Energy Investment 2019. Nairobi:
UNEP-UN Environment Program.

Wahlberg, M., and Westerberg, H. (2005). Hearing in fish and their reactions
to sounds from offshore wind farms. Mar. Ecol. Prog. Ser. 288, 295–309. doi:
10.3354/meps288295

Wang, T., Yu, W., Zou, X., Zhang, D., Li, B., Wang, J., et al. (2018).
Zooplankton community responses and the relation to environmental factors
from established offshore wind farms within the Rudong Coastal Area of China.
J. Coast. Res. 34, 843–855. doi: 10.2112/JCOASTRES-D-17-00058.1

Weber, E. D., Chao, Y., and Chai, F. (2018). Performance of fish-habitat classifiers
based on derived predictors from a coupled biophysical model. J. Mar. Syst. 186,
105–114. doi: 10.1016/j.jmarsys.2018.06.012

Wilding, T. A. (2014). Effects of man-made structures on sedimentary oxygenation:
extent, seasonality and implications for offshore renewables. Mar. Environ. Res.
97, 39–47. doi: 10.1016/j.marenvres.2014.01.011

Wilhelmsson, D., Malm, T., and Öhman, M. C. (2006). The influence of offshore
windpower on demersal fish. ICES J. Mar. Sci. 63, 775–784. doi: 10.1016/j.
icesjms.2006.02.001

Wilson, S. G., Lutcavage, M. E., Brill, R. W., Genovese, M. P., Cooper,
A. B., and Everly, A. W. (2005). Movements of bluefin tuna (Thunnus
thynnus) in the northwestern Atlantic Ocean recorded by pop-up
satellite archival tags. Mar. Biol. 146, 409–423. doi: 10.1007/s00227-004-
1445-0

Winship, A. J., Kinlan, B. P., White, T. P., Leirness, J. B., and Christensen, J.
(2018). Modeling At-Sea Density of Marine Birds to Support Atlantic Marine
Renewable Energy Planning: Final Report. Washington, DC: U.S. Department
of the Interior, x+67. OCS Study BOEM 2018-010.

Witt, M. J., Sheehan, E. V., Bearhop, S., Broderick, A. C., Conley, D. C., Cotterell,
S. P., et al. (2012). Assessing wave energy effects on biodiversity: the Wave
Hub experience. Philos. Trans. R. So. A Math. Phys. Eng. Sci. 370, 502–529.
doi: 10.1098/rsta.2011.0265

Yue, S., Pilon, P., Phinney, B., and Cavadias, G. (2002). The influence of
autocorrelation on the ability to detect trend in hydrological series. Hydrol.
Process. 16, 1807–1829. doi: 10.1002/hyp.1095

Disclaimer: The views expressed herein are those of the authors and do not
necessarily reflect those of their agencies.

Conflict of Interest: DC was employed by ECS Federal, and EM was employed by
IBSS Corporation.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Friedland, Methratta, Gill, Gaichas, Curtis, Adams, Morano,
Crear, McManus and Brady. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 19 April 2021 | Volume 8 | Article 62923091

https://doi.org/10.1002/9780470693919.ch4
https://doi.org/10.1002/9780470693919.ch4
https://doi.org/10.1093/icesjms/fsw136
https://doi.org/10.1093/icesjms/fsw136
https://doi.org/10.3354/meps11261
https://doi.org/10.1073/pnas.1610238114
https://doi.org/10.1007/s11852-017-0526-4
https://doi.org/10.3354/meps288295
https://doi.org/10.3354/meps288295
https://doi.org/10.2112/JCOASTRES-D-17-00058.1
https://doi.org/10.1016/j.jmarsys.2018.06.012
https://doi.org/10.1016/j.marenvres.2014.01.011
https://doi.org/10.1016/j.icesjms.2006.02.001
https://doi.org/10.1016/j.icesjms.2006.02.001
https://doi.org/10.1007/s00227-004-1445-0
https://doi.org/10.1007/s00227-004-1445-0
https://doi.org/10.1098/rsta.2011.0265
https://doi.org/10.1002/hyp.1095
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-631262 April 23, 2021 Time: 15:59 # 1

ORIGINAL RESEARCH
published: 29 April 2021

doi: 10.3389/fmars.2021.631262

Edited by:
Mark J. Henderson,

United States Geological Survey,
United States

Reviewed by:
Ross Dwyer,

University of the Sunshine Coast,
Australia

Vinay Udyawer,
Australian Institute of Marine Science

(AIMS), Australia

*Correspondence:
Lucas P. Griffin

lucaspgriffin@gmail.com

†These authors have contributed
equally to this work and share last

authorship

Specialty section:
This article was submitted to
Marine Ecosystem Ecology,

a section of the journal
Frontiers in Marine Science

Received: 19 November 2020
Accepted: 19 March 2021

Published: 29 April 2021

Citation:
Griffin LP, Casselberry GA,

Hart KM, Jordaan A, Becker SL,
Novak AJ, DeAngelis BM, Pollock CG,

Lundgren I, Hillis-Starr Z,
Danylchuk AJ and Skomal GB (2021)

A Novel Framework to Predict
Relative Habitat Selection in Aquatic

Systems: Applying Machine Learning
and Resource Selection Functions

to Acoustic Telemetry Data From
Multiple Shark Species.

Front. Mar. Sci. 8:631262.
doi: 10.3389/fmars.2021.631262

A Novel Framework to Predict
Relative Habitat Selection in Aquatic
Systems: Applying Machine Learning
and Resource Selection Functions to
Acoustic Telemetry Data From
Multiple Shark Species
Lucas P. Griffin1* , Grace A. Casselberry1, Kristen M. Hart2, Adrian Jordaan1,
Sarah L. Becker1, Ashleigh J. Novak1, Bryan M. DeAngelis3, Clayton G. Pollock4,
Ian Lundgren5, Zandy Hillis-Starr6, Andy J. Danylchuk1† and Gregory B. Skomal7†

1 Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, United States, 2 Wetland
and Aquatic Research Center, United States Geological Survey, Davie, FL, United States, 3 The Nature Conservancy,
Narragansett, RI, United States, 4 National Park Service, Key West, FL, United States, 5 Office of Habitat Conservation,
NOAA Fisheries, Silver Spring, MD, United States, 6 National Park Service, Christiansted, US Virgin Islands, 7 Massachusetts
Division of Marine Fisheries, New Bedford, MA, United States

Resource selection functions (RSFs) have been widely applied to animal tracking data
to examine relative habitat selection and to help guide management and conservation
strategies. While readily used in terrestrial ecology, RSFs have yet to be extensively used
within marine systems. As acoustic telemetry continues to be a pervasive approach
within marine environments, incorporation of RSFs can provide new insights to help
prioritize habitat protection and restoration to meet conservation goals. To overcome
statistical hurdles and achieve high prediction accuracy, machine learning algorithms
could be paired with RSFs to predict relative habitat selection for a species within and
even outside the monitoring range of acoustic receiver arrays, making this a valuable
tool for marine ecologists and resource managers. Here, we apply RSFs using machine
learning to an acoustic telemetry dataset of four shark species to explore and predict
species-specific habitat selection within a marine protected area. In addition, we also
apply this RSF-machine learning approach to investigate predator-prey relationships
by comparing and averaging tiger shark relative selection values with the relative
selection values derived for eight potential prey-species. We provide methodological
considerations along with a framework and flexible approach to apply RSFs with
machine learning algorithms to acoustic telemetry data and suggest marine ecologists
and resource managers consider adopting such tools to help guide both conservation
and management strategies.

Keywords: resource selection, space use, acoustic telemetry, machine learning, random forest, marine protected
area, sharks, predator-prey

Abbreviations: BIRNM, Buck Island Reef National Monument; BBMM, Brownian bridge movement model; COAs, centers
of activity; GLMM, generalized linear mixed model; MPA, marine protected area; RF, random forest; RSF, resource selection
function.
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INTRODUCTION

Habitat loss and degradation are two of the largest drivers
of loss in global biodiversity (Hoekstra et al., 2005), making
identifying important habitats critical for resource managers to
prioritize habitat protection for species of concern (Morris and
Kingston, 2002; Chetkiewicz and Boyce, 2009; Heinrichs et al.,
2017). Habitat selection is driven by the physical, chemical, and
biological composition and condition of an area that is occupied
by a given animal (Block and Brennan, 1993). Thus, behavioral
choices related to selection are ultimately determined by a wide
range of coupled and uncoupled abiotic and biotic factors, such
as energetic demands and tradeoffs from foraging opportunities,
predation risk, and competition (Rosenzweig, 1974; Craig and
Crowder, 2002). Understanding how species select habitats across
heterogeneous landscapes provides key information regarding
occupancy patterns that contribute to survival and reproductive
success (Kramer et al., 1997; McGarigal et al., 2016). Such
information could then be used to identify, protect, and restore
specific ecologically valuable habitats and corridors (Kramer
and Chapman, 1999; Beier et al., 2008; Fraschetti et al., 2009;
Zeller et al., 2017).

Resource selection functions (RSFs), defined as a function
that produces values that are proportional to the probability
of use by an animal (Manly et al., 2007), are a popular
method to determine and predict relative habitat selection
by animals (e.g., Nielsen et al., 2003; Johnson et al., 2004;
Ciarniello et al., 2007). These functions evaluate the relationships
between resource use (i.e., the units of area selected by an
animal) and the environmental characteristics associated with
each unit of area (Boyce et al., 2002). Animal spatial data,
from sources such as telemetry, can be incorporated into RSFs
to define the relative habitat selection strengths among animal
space use and a given set of environmental covariates, such
as habitat type, substrate, elevation, or water depth (Boyce
and McDonald, 1999). When the true absences are unknown,
as generated by presence only data derived from sources
such as telemetry approaches, RSFs are implemented within
a use/availability framework where known presences (1) are
compared with a random sample across ‘available’ resource
units, also known as pseudo-absences or background points
(0) (Boyce, 2006; Pearce and Boyce, 2006). Alternative to
use/availability (e.g., from telemetry), data from observations
collected from survey methods, often without timestamps, are
typically referred to as presence-background and are fitted as
species distribution models (Fieberg et al., 2018). Using RSFs
to derive the relative probability of selection, rather than the
absolute probability (see Lele et al., 2013; Avgar et al., 2017),
telemetry data are then typically fitted using logistic regression
models (Johnson et al., 2006; Manly et al., 2007) or, as of
more recently, with machine learning algorithms [e.g., random
forest (RF), boosted regression trees] (Shoemaker et al., 2018;
Heffelfinger et al., 2020).

While RSFs have been largely applied in terrestrial ecology,
such as with wolves (Ordiz et al., 2020), birds (Meager et al.,
2012), grizzly bears (McLoughlin et al., 2002), and deer (Godvik
et al., 2009), the application of RSFs within aquatic environments

has been limited comparatively, likely due to technological
challenges related to continuously tracking animals through
water (Hussey et al., 2015). Today, passive acoustic telemetry
has become one of the most common practices to quantify
aquatic animal space use (Cooke et al., 2004; Donaldson et al.,
2014; Hussey et al., 2015). This technique involves tagging
an animal with an acoustic transmitter that periodically emits
an ultrasonic ping with a unique identification number (ID
code). When in range and with sufficient detection efficiency
the ping is detected by an acoustic receiver that registers both
the unique ID code and the time the transmitter was detected
(Hussey et al., 2015). Depending on the scope and extent of
both research questions and available funding, acoustic receivers
are strategically arranged in fixed locations with either non-
overlapping detection ranges (Heupel et al., 2006; Brownscombe
et al., 2019b), or with overlapping detection ranges that can
produce high resolution positioning estimates of space use
(Espinoza et al., 2011). While both methods are limited to the
available detection coverage (presence only data), the former is
often used to examine space use across a given study area at
much larger spatial extents (Carlisle et al., 2019) and, thus, is well
catered to exploring relative habitat selection.

Although the application of RSFs in combination with
acoustic telemetry has been limited (see Freitas et al., 2016;
Harrison et al., 2016; Gutowsky et al., 2017; Selby et al.,
2019; Griffin et al., 2020), much needed information on
animal habitat selection in the marine environment can be
derived. For example, Selby et al. (2019) and Griffin et al.
(2020) applied RSFs to acoustic telemetry data for hawksbill
(Eretmochelys imbricata) and juvenile green turtle (Chelonia
mydas), respectively, from St. Croix, United States Virgin Islands,
and determined that the size and extent of a marine protected
area (MPA) being used by these sea turtles was sufficient to
meet conservation goals. In addition to providing insights on
potential drivers of relative habitat selection, RSFs were also
extended to predict movements in areas that did not have
acoustic receivers to provide potential locations where fine-
scale habitat protection may be further prioritized (Griffin
et al., 2020). Such results have important implications within
marine environments especially for resource managers seeking
to incorporate animal movement data to generate effective
conservation strategies (Cooke, 2008; Knip et al., 2012; Allen
and Singh, 2016; Hays et al., 2016, 2019; Lea et al., 2016).
Since management and conservation efforts often rely on spatial
management techniques (Peel and Lloyd, 2004; Sequeira et al.,
2019), including MPAs (Gell and Roberts, 2003; Lubchenco et al.,
2003; Gleason et al., 2010; Lubchenco and Grorud-Colvert, 2015;
Weeks et al., 2017; Feeley et al., 2018; Keller et al., 2020; Gallagher
et al., 2021), habitat selection predictions should help managers
meet conservation endpoints and play a role in evaluating
management alternative strategies for both species and for the
habitats on which they rely on.

In this study, we provide a framework to implement
RSFs using machine learning algorithms to examine and
accurately predict relative habitat selection for tracking data
collected using acoustic telemetry. Specifically, we apply RSFs
to evaluate the relative habitat and resource selection of four
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shark species: Caribbean reef (Carcharhinus perezi), lemon
(Negaprion brevirostris), nurse (Ginglymostoma cirratum), and
tiger (Galeocerdo cuvier) sharks within a Caribbean MPA. In
the Caribbean Sea, these four species occupy a wide range
of environments from nearshore reef and seagrass habitats to
offshore pelagic habitats (Pikitch et al., 2005; Legare et al., 2015;
Pickard et al., 2016; Casselberry et al., 2020; Gallagher et al., 2021).
Considering Caribbean reef sharks are listed as “Endangered”
by the IUCN Red List (Carlson et al., 2021a), lemon and
nurse sharks are listed as “Vulnerable” (Carlson et al., 2021b,c),
and tiger sharks are listed as “Near Threatened” (Ferreira and
Simpfendorfer, 2019), all with decreasing population trends,
conservation and management efforts would benefit from
understanding and incorporating findings surrounding their
spatial ecology.

Successful management is especially needed since it has been
suggested losses in shark abundance may disrupt food web
dynamics that would lead to reduced ecosystem health (Baum
and Worm, 2009; Ferretti et al., 2010; Heupel et al., 2014;
Hammerschlag et al., 2019). Indeed, food web simulations for
Caribbean coral reefs show sharks, as top predators, are members
of strongly interacting tri-trophic food chains whose loss could
result in trophic cascades (Bascompte et al., 2005). This is
supported by in situ studies of mesopredator fish populations
in Australia that found shark-depleted coral reefs have reduced
fish diversity, species abundance, and biomass, with individual
species showing changes in diet and body condition when
compared to reefs with healthy shark populations (Barley et al.,
2017a,b). Information about shark habitat use and selection
could lead to proactive management strategies to mitigate non-
sustainable or illegal harvest (White et al., 2017; Jacoby et al.,
2020) and/or protect and restore important habitat (Speed et al.,
2016; Daly et al., 2018). Because spatial management techniques,
such as MPAs, can provide protection for multiple species across
a variety of life stages, understanding resource selection across
species should help to tailor effective conservation strategies
and, specifically, ensure adequate coverage of ecologically vital
habitats and areas (Lea et al., 2016).

Considering MPA design may benefit from the inclusion
and understanding of predator-prey dynamics (Micheli et al.,
2004; Cashion et al., 2020), we also demonstrate how RSFs can
be extended to examine spatially explicit relationships between
marine predators and their prey. This was accomplished by
deriving and averaging overlapping selection values from tiger
sharks and from their potential prey, including juvenile green
turtles, juvenile Caribbean reef sharks, juvenile lemon sharks,
great barracuda (Sphyraena barracuda), horse-eye jack (Caranx
latus), yellowtail snapper (Ocyurus chrysurus), and mutton
snapper (Lutjanus analis) (Lowe et al., 1996; Simpfendorfer et al.,
2001; O’Shea et al., 2015; Aines et al., 2018; Gallagher et al., 2021).
Herein, we provide a framework for studies wishing to investigate
animal relative habitat selection and predator-prey relationships
with acoustic telemetry in marine environments.

Ultimately, these collective RSF findings provide insights
into shark spatial ecology and is useful for the conservation
of Caribbean reef, lemon, nurse, and tiger sharks and their
habitats. In addition, we have included an R code vignette

(Appendix A), to improve accessibility and application of RSFs
and machine learning.

MATERIALS AND METHODS

Study Area and Field Data Collection
Buck Island Reef National Monument (BIRNM), a 77 km2

no-take MPA, is located on the northeast shelf of St. Croix,
United States Virgin Islands (Pittman et al., 2008). Buck Island is
an uninhabited, 0.7 km2 island that is situated in the middle of the
MPA, and 2.5 km northeast of St. Croix. This MPA ranges from
shallow-water habitats (<10 m) near the island to deep-water
habitats (>1,000 m) off the continental shelf. Generally, benthic
habitats range from lagoon habitat (50–150 m wide, around the
island excluding the west and southwest sides of the island),
linear reef (south side of island and wrapping toward northwest
corner), patch reef systems (northwest and north of the island,
and south of the southern linear reef), seagrass patches (Thalassia
sp., Syringodium sp., and Halophila sp.) and sand flats (south and
southwest) (Pittman et al., 2008; Costa et al., 2012).

Between 2011 and 2019, a total of 147 VEMCO VR2W
receivers (Innovasea Systems Inc., Nova Scotia, Canada) were
deployed as a passive acoustic receiver array within BIRNM to
study multiple species (Becker et al., 2016, 2020; Bryan et al.,
2019; Selby et al., 2019; Casselberry et al., 2020; Griffin et al.,
2020; Novak et al., 2020a,b) (Supplementary). Receivers were
deployed, in depths ranging from 2 to 40 m, either on sand
screws or cement block anchors around the island with receiver
downloads occurring twice a year (see Becker et al., 2016;
Selby et al., 2016; Casselberry et al., 2020 for mooring details).
Among years, the receiver array design changed in extent through
the addition of new receiver stations or decommissioning old
stations, due to the availability of receivers and evolving project
goals, while maintaining a core set of receiver stations through
the duration of the project. The array began with 17 receivers
in 2011 and reached its greatest coverage with 147 receivers
in 2017. For this study, we collected and analyzed acoustic
telemetry data from only 2013–2019 when detection coverage
and tag deployment was most substantial across BIRNM. Animal
tracking data were collected from surgically implanted V13 or
V16 transmitters (delay 60–180 s, battery life 360–3,217 days,
Innovasea Systems Inc., Nova Scotia, Canada) in 14 Caribbean
reef sharks (between 2013 and 2019), 10 lemon sharks (between
2013 and 2019), 11 nurse sharks (between 2013 and 2019),
and eight tiger sharks (between 2015 and 2019). In addition,
to examine prey habitat selection in relation to tiger shark
selection, data were also collected from 58 juvenile green turtles
(between 2013 and 2014), 25 great barracuda (hereinafter referred
to as barracuda) (between 2014 and 2015), five horse-eye jack
(between 2016 and 2017), eight yellowtail snapper (between 2015
and 2017), and four mutton snapper (between 2015 and 2016).
All detection data were reviewed and filtered to remove false
detections (Simpfendorfer et al., 2015), including detections that
occurred within 60 s of each other for a given individual, singular
detections occurring within 12 h, and detections that indicated
unrealistic movements (>3 m per second). Tagging locations
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and methods, including additional specific detection filtering
processes, can be found for sharks in Casselberry et al. (2020),
barracuda in Becker et al. (2016), horse-eye jack in Novak et al.
(2020a), yellowtail snapper in Novak et al. (2020b), and for green
turtles in Griffin et al. (2020).

Framework to Apply RSFs Using
Acoustic Telemetry and Machine
Learning
To derive and predict relative selection values of each species,
we describe four important components that include defining
available resource units, aggregating habitat information,
implementing, evaluating, and interpreting RSFs with machine
learning algorithms, and, ultimately, predicting habitat selection
for sharks across BIRNM. All analyses were conducted in R
version 3.6.2 (R Core Team, 2019). We describe each step in
detail below and in the included R code vignette (Appendix A).

Defining Available Resource Units and
Presence/Background Points
To estimate fine resolution space use away from the exact location
of receivers, detection data was first converted into short-term
centers of activity (COAs) using the mean position algorithm
(Simpfendorfer et al., 2002). To disaggregate detection data
from receiver locations, this method, using the detections across
multiple receivers, provides position estimates that are based
on the weighted means of the number of detections among
each receiver during a specified time window (Simpfendorfer
et al., 2002). Here, using the VTRACK package (Campbell
et al., 2012), this algorithm was implemented with 90-min time
bins to provide animal positioning data across BIRNM (Selby
et al., 2019; Griffin et al., 2020). In addition to disaggregating
data from receiver locations, constructed COAs provide an
approach to potentially reduce issues with autocorrelation by
subsampling data into defined time steps (e.g., 90-min bins)
(Matley et al., 2017). Autocorrelation, an inherent problem with
tracking data, occurs when sequential locations are obtained from
the same individual and can lead to biased parameter estimates
of animal habitat/space use (Legendre, 1993; Johnson et al., 2013;
Fleming et al., 2015).

Consistent with Selby et al. (2019) and Griffin et al. (2020),
we defined our available resource units by deriving 400 m
buffers around each receiver for each year it was deployed (i.e.,
2013–2019) (Supplementary Figure 1). While detection range
was variable across BIRNM habitats with an average of 58.2%
(95% confidence interval: 44–73% CI) probability of detection
at 100 m distance from a receiver (Selby et al., 2016), we
decided to extend the buffer size to 400 m since COAs are able
to provide approximate positioning estimates even outside of
receiver detection range.

To implement RSFs within a use/availability framework
and to account for variable receiver coverage across years,
we restricted both the COAs (presences) and the randomly
distributed background points (pseudo-absences) to our defined
available resource units (400 m receiver buffers at the year level)
only. Background points were randomly distributed equal to

the number of observed COAs (see Barbet-Massin et al., 2012)
per individual, diel period (night vs. day), and year across all
available resource units (Figure 1). Diel period was calculated
using the maptools package (Bivand and Lewin-Koh, 2013).
Only using COAs and background points that were within the
400 m buffer from any receiver, they were then collapsed into
200 m × 200 m raster cells.

Aggregating Habitat Information
Using habitat mapping data provided by the National Oceanic
and Atmospheric Administration (NOAA) (Costa et al.,
2012), we converted available and relevant shapefile data into
200 m × 200 m raster cells using the raster (Hijmans et al.,
2015) and the sp (Pebesma et al., 2012) packages. Derived
habitat raster files included classifications aggregated by zone
(fore reef, reef flat, lagoon, etc.) (Supplementary Figure 2A),
fine-scale structure (aggregate reef, sand, pavement with sand
channels, etc.) (Supplementary Figure 2B), fine-scale cover
[seagrass patchy (10%–<50%), seagrass patchy (50–<90%),
seagrass continuous (90–100%), etc.], broad-scale cover (algae,
live coral, seagrass, etc.), and percent coral cover (i.e., 0–<10%,
10–<50%). In addition, we generated two relevant habitat raster
files including distance to land (m) (Buck Island) and depth (m)
(Supplementary Figure 3).

Subsequently, corresponding habitat and depth information
were extracted from each raster cell and assigned to each COA
and background point using the rasterize function from the
raster package (Hijmans et al., 2015) (see Appendix A). Habitat
information was converted into factors with depth (m) and
distance to land (m) remaining as continuous variables.

Applying RSFs With Machine Learning
Resource selection functions were applied using RF models,
a commonly utilized machine learning algorithm, to evaluate
the relative habitat selection of each species within BIRNM.
RF, using binary recursive partitioning to fit multiple data
trees with randomly selected predictor subsets (Breiman,
2001), effectively reduces variance and model overfitting while
optimizing predictive accuracy (James et al., 2013; Hengl et al.,
2018; Schratz et al., 2018). To increase the prediction of the
response variable (presences/background points), RF models
were fit for each species with 500 trees, replacement, and with
60% of the data. The 40% remainder of each dataset, known as
the holdout dataset, were then used to test model performance.
RF models were implemented in the ranger (Wright and Ziegler,
2015) and mlr (Bischl et al., 2016) packages.

Characteristic of RF models, a user may tune how trees are
generated and fitted from the data. These controls, referred
to as hyperparameters, are set prior to fitting an RF by
running multiple iterations of values (see Probst et al., 2019).
While default values for hyperparameters lead to relatively
high performance alone, tuning can often lead to overall
model improvement (Lovelace et al., 2019; Probst et al.,
2019). Ultimately, hyperparameter settings control the degree
of randomness across trees and may include the number
of predictors that should be used in each tree (mtry), the
fraction of observations to be used in each tree (sample.fraction)
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FIGURE 1 | Conceptual diagram to implement resource selection functions with acoustic telemetry and machine learning algorithms; from generated centers of
activities and background points, deriving available resource units, model development, model performance and interpretation, and, ultimately, predicting and
extrapolating relative selection.

with lower fractions leading to lower correlation across trees,
and the number of observations a terminal node (within a
tree) should at least have (min.node.size) (Lovelace et al.,
2019). To find the optimal hyperparameter values, we first

partitioned the training dataset into five distinct geographic
sections and then for each partition, we generated 50 random
combinations of hyperparameters and subsequently chose the
optimal combination (see Lovelace et al., 2019) using the
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tuneParams function from the mlr package (Bischl et al., 2016).
Thus, 50 iterations of random hyperparameter values across each
of the five partitions resulted in 250 models in total. Subsequently,
the optimal hyperparameter combinations were used to tune and
train the final RF for each species, using the 60% training dataset.

Performance, Interpretation, and Prediction
With the trained model, we predicted across the 40%
holdout dataset to evaluate performance. The functions
calculateConfusionMatrix and calculateROCMeasures from the
mlr package (Bischl et al., 2016) were used to determine overall
and class (present versus background point) accuracy, error
rate, and performance of each RF. Specifically, performance
measures were derived from the confusion matrix table that
compared the true observations versus the model predictions,
these metrics included overall accuracy, i.e., correct number of
predictions/total number of predictions, sensitivity (true positive
rate), specificity (true negative rate), fall-out (false positive rate),
miss rate (false negative rate), and precision (positive predictive
value). Predictor, also known as feature, importance was also
assessed using the permutation importance method (mean
decrease in accuracy) where predictors were evaluated based on
the increase or decrease in prediction error after permutation
(Breiman, 2001). For interpretation across RF models, all
importance values were normalized (min-max normalization).
To identify which variables generated the greatest two-way
interaction strengths, we derived the H-statistic (Friedman and
Popescu, 2008) using the Interaction function from the iml
package (Molnar et al., 2018). This calculation, which can be
extremely computationally intensive when examining every
possible interaction, was implemented after rerunning each RF
model but with only 25% of the training dataset. After identifying
the top three variables that led to the greatest interaction
strengths, this function was used again to assess those other
variables with which each top variable interacted. However,
this was performed using the original model, with the entire
training dataset, since computation times were greatly reduced
when examining single two-way interactions as opposed to each
possible interaction.

To assess the marginal effect of covariates on the predicted
outcome (ŷ), i.e., predictor probabilities for each RF, we
constructed partial dependency plots, using the pdp package
(Greenwell, 2017), for the most important feature as identified
by the mean decrease in accuracy approach. Partial dependency
plots were also generated for the top three two-way interactions
as identified from the calculated H-statistic values. Discrete
and continuous predictors were shown with 95% confidence
intervals. To visualize marginal effect variation within each
continuous predictor, we used a generalized additive model
smoother via the ggplot2 package (Wickham, 2011). All partial
dependency plots were restricted to depths of 50 m or less
so to avoid extrapolating outside the shelf of BIRNM where
no receivers were located. Finally, the trained RFs were then
used to predict relative habitat selection at the species level in
BIRNM. Model extrapolation across the MPA was constrained
to the maximum depth observed for the given species based on
acoustic detections.

RSFs and Predator-Prey Relationships
Resource selection functions were also extended to explore
selection overlap values between large juvenile and mature tiger
sharks (n = 8, >200 cm FL) and their potential prey species,
including juvenile green turtles, juvenile Caribbean reef sharks
(n = 12, <120 cm FL), juvenile lemon sharks (8, <120 cm
FL), barracuda, horse-eye jacks, yellowtail snapper, and mutton
snapper. First, relative habitat selection values were calculated
and extrapolated across BIRNM for each potential prey species
following the steps outlined in Sections “Defining Available
Resource Units and Presence/Background Points,” “Aggregating
Habitat Information,” “Applying RSFs With Machine Learning,”
and “Performance, Interpretation, and Prediction.” Second, to
explore areas of potential predator-prey overlap, relative habitat
selection values across BIRNM were averaged between tiger
sharks and each potential prey species. Lastly, by removing raster
cells where relative selection values of potential prey were <0.5,
we examined specific high overlap areas between tiger sharks and
each potential prey species.

Kernel Density Estimates
To compare the predicted relative habitat selection values to
observed animal space use, we fit kernel utilization distributions
to the COAs at the species level. Each species’ kernel utilization
distribution, representing a bivariate probability density function
of animal use (Worton, 1989; Lichti and Swihart, 2011), was
then used to extract the 50 and 95% kernel density estimates to
produce space use estimates. Kernel utilization distributions and
subsequent kernel density estimates were constructed using the
adehabitatHR package (Calenge, 2006) with 200 m smoothing
parameters. While species level kernel density estimates were
plotted along with all predicted relative habitat selection values, it
should be noted these estimates were used for broad comparison
since they are likely biased to some extent due to unequal sample
sizes across individuals.

Additional Methodological
Considerations
To explore model sensitivity to varying parameter inputs,
we also implemented RF models using COA data binned
at 60-min timesteps. These models and their outputs were
derived from using the same procedures as outlined in Sections
“Defining Available Resource Units and Presence/Background
Points,” “Aggregating Habitat Information,” “Applying RSFs
With Machine Learning,” and “Performance, Interpretation,
and Prediction.” To examine how models performed under
different available habitat extents, we again ran RF models
but with available habitat defined using either 200 or 600 m
buffers. Hyperparameter inputs were kept consistent with
original respective models. Further, to avoid extrapolating
predictive models beyond the range of our measured data
(Mesgaran et al., 2014), we explored and mapped extrapolation
reliability in BIRNM using the dsmextra package (Bouchet
et al., 2020). Using the presence/background locations and
their depth (m) and distance to land (m) values, the
compute_extrapolation function evaluated areas across BIRNM
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that fell within the sampled covariate space (Mesgaran et al.,
2014; Bouchet et al., 2019, 2020). This multivariate statistical tool
highlighted areas of univariate extrapolation (when predictions
are considered outside the range of covariates), combinational
extrapolation (predications made within range of covariates but
in novel combinations), and areas of geographical interpolation
[predications made within our range of covariates and in
analogous conditional space (see Mesgaran et al., 2014)].
Subsequently, using the map_extrapolation function (Bouchet
et al., 2020), we visually assessed extrapolation reliability within
BIRNM (see Appendix A).

Lastly, we examined individual shark space use variation
by constructing Brownian bridge movement models (BBMMs)
(Horne et al., 2007) and by implementing RSFs using generalized
linear mixed models (GLMMs) with individual as the random
effect. BBMMs incorporate movement paths into the modeling
process (Horne et al., 2007) and has been recommended when
evaluating individual space use with COAs since it can better
account for temporal autocorrelation (Udyawer et al., 2018).
Here, using all available detection data, we constructed individual
BBMMs and plotted individual space use within BIRNM.

While BBMMs highlight variation in space use across
individuals, RF models are currently unable to easily incorporate
random effects to account for individual level effects, thus, model
outputs are potentially biased to some extent. Alternatively,
RSFs used in-combination with mixed effect models, can include
a random effect for individual ID to explicitly account for
individual variability and, in turn, provide measures of inference
for the entire population (Gillies et al., 2006; Aarts et al., 2008;
Hebblewhite and Merrill, 2008). Here, we implemented RSF
GLMMs with individual ID as the random effect for each shark
species using the top three most important variables as fixed
effects that were identified by RF models. All variables were
examined for correlation issues using variance inflation scores
and continuous variables were standardized. As a simplified
approach and for the purpose of examining the relative
contribution of individual ID on each model, no temporal or
spatial autocorrelation dependency structures, interaction terms,
or non-linear relationships were included. All models were
implemented and assessed using 60% of the dataset via the
glmmTMB (Magnusson et al., 2017) and performance (Lüdecke
et al., 2019) packages. Two goodness-of-fit metrics, marginal
R2 and conditional R2, were calculated for each model. While
marginal R2 evaluates the variance explained by fixed effects,
conditional R2 evaluates the variance explained by both fixed and
random effects, allowing us to assess the relative contribution
of the random effect on each model (Nakagawa and Schielzeth,
2013). In addition to both goodness-of-fit metrics, we also used
the 40% holdout datasets to test GLMM performance, as was
done with the RF models above.

RESULTS

Using the converted COA tracking data (Table 1), RF model
accuracy and model performance varied across species with
overall accuracy ranging from 80 to 95% and sensitivity (true TA
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TABLE 2 | Confusion matrix performance metrics derived from using the trained random forest model to predict across the 40% holdout dataset.

Species Accuracy Sensitivity (true
positive rate)

Specificity (true
negative rate)

Fall-out (false
positive rate)

Miss rate (false
negative rate)

Precision (positive
predictive value)

Caribbean reef 0.90 0.90 0.89 0.11 0.10 0.89

Lemon 0.94 0.97 0.91 0.09 0.03 0.92

Nurse 0.85 0.91 0.79 0.21 0.09 0.81

Tiger 0.83 0.91 0.76 0.24 0.09 0.79

Caribbean ref (juv.) 0.89 0.90 0.89 0.11 0.10 0.89

Great brracuda 0.87 0.85 0.89 0.11 0.15 0.89

Green turtle 0.95 0.97 0.93 0.07 0.03 0.94

Horse-eye jack 0.80 0.89 0.72 0.28 0.11 0.76

Lemon (juv.) 0.94 0.97 0.91 0.09 0.03 0.91

Mutton snapper 0.88 0.98 0.78 0.22 0.02 0.81

Yellowtail snapper 0.92 0.92 0.93 0.07 0.08 0.93

Accuracy (i.e., correct number of predictions/total number of predictions), sensitivity (i.e., true positive rate), specificity (i.e., true negative rate), fall-out (i.e., false positive
rate), miss rate (i.e., false negative rate), and precision (i.e., positive predictive value) were reported for shark species and the potential prey species for tiger sharks,
including a subset of juvenile Caribbean reef and lemon sharks, monitored within Buck Island National Monument.

positive rate) from 85 to 98% (Table 2). Predictor importance
and rank varied across shark species, with depth (m) as either
the most important or within the top two most important
predictors for all four species (Figure 2). Overall, ŷ values
generally decreased as depth increased for all sharks (Figure 3).
While ŷ values decreased for Caribbean reef, nurse, and tiger
sharks in areas >3 km from Buck Island, tiger sharks appeared
to have higher ŷ values farther away from the island at distances
approximately between 500 and 2,000 m. Lemon shark ŷ values
decreased rapidly as distance from land increased, with lowest
values occurring >1,000 m.

Caribbean reef sharks were more likely to select for coral or
coral-containing habitats with higher ŷ values observed within
coral habitats (sand with scattered coral and rock, aggregate
reef, and aggregated patch reefs) (Figure 3A). Caribbean reef
shark two-way predictor interactions highlighted relatively high
ŷ values in depths of 20–30 m, areas <2 km away from land,
and in areas of sand with scattered coral and rock (Figure 4A).
Lemon sharks were more likely to select for shallow areas directly
adjacent to land, specifically in shallow (0–5 m) habitats classified
as channel, lagoon, and reef crest (Figures 3B, 4B). While nurse
sharks followed a similar pattern, ŷ values indicated they were
more likely to select for habitats between 0 and 2,000 m away
from land but within <15 and 25–30 m of depth. In addition, ŷ
values were higher in areas of sand with scattered coral and rock
located within bank/shelf, bank/shelf escarpment, fore reef, and
reef crest zones (Figures 3C, 4C). Lastly, tiger sharks exhibited
the greatest ŷ values away from land (500–2,000 m), in <30 m
depth, and in aggregate reef, sand, sand with scattered coral and
rock, and pavement habitats (Figures 3D, 4D).

Extrapolated relative habitat selection values across BIRNM,
as computed from the trained RF models, followed similar
patterns to kernel density estimates (Figure 5). Specifically, 50%
kernel density estimates largely overlapped with extrapolated
areas of high relative selection. However, for Caribbean reef,
nurse, and tiger sharks, levels of high extrapolated relative
selection also extended beyond 50% kernel density estimates
along the western shelf and the eastern side of BIRNM, where

receiver coverage was limited. While Caribbean reef, lemon, and
tiger sharks exhibited more targeted habitat selection with greater
affinities to specific areas and habitats, nurse sharks exhibited
a more generalist approach to relative habitat selection across
BIRNM (Figure 5). Caribbean reef sharks showed strong affinity
to habitats with reef-containing structure, including areas of
linear reef around the island and in the aggregated patch reef
system that is characteristic north of the island (Figure 5A).
In addition, Caribbean reef sharks exhibited higher relative
selection values along the western shelf near adjacent deep water
habitats (>50 m). Alternatively, lemon shark relative habitat
selection values were tightly located around the island, within
the reef sheltered lagoon, with lower values along the southwest
side of the island where less lagoon and structure habitat exist
(Figure 5B). Nurse shark extrapolated relative selection values
were wide ranging with the densest cluster of higher values
surrounding the island (reef habitats), to the southwest of the
island along the bank (sand and seagrass habitats), and to the
far eastern side of BIRNM (reef, pavement, and sand habitats)
(Figure 5D). Lastly, similar to nurse sharks, tiger sharks primarily
have highest selection values extrapolated south of the island
along banks containing both seagrass and sand habitats, leading
to the continental shelf break in the west. Relative selection values
were also expected to be high along the western shelf and in some
locations around the north/northwest shelf. While low relative
selection values were expected for tiger sharks in the network of
highly rugose patch reefs north of the island, higher selections
values existed on eastern side of BIRNM habitats containing
mainly reef, pavement, and sand (Figure 5D).

Predator-Prey Relationships
Resource selection functions were also extended to examine
potential areas of relative selection overlap between tiger sharks
and their potential prey sources. Depending on the species,
overlap selections varied in location and intensity. For example,
juvenile green turtles (Figure 6A) and tiger sharks were most
likely to overlap in selection south of the island where seagrass
beds along bank habitats were most abundant. For juvenile
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FIGURE 2 | Feature importance, indicating how important each predictor variable is within each shark random forest model for (A) Caribbean reef sharks, (B) lemon
sharks, (C) nurse sharks, and (D) tiger sharks. Higher values and darker colors indicate greater relative importance. Values were calculated using the mean decrease
in accuracy method and, subsequently, all importance values were normalized from 0 to 1 for comparison across species.

Caribbean reef sharks and tiger sharks, averaged overlap selection
values were greatest along the western shelf and in the southwest
portion of BIRNM (Figure 6B). Juvenile Caribbean reef sharks
also had high relative selection values north of the island,
averaged overlap was comparatively lower in this area to
the western shelf due to reduced tiger shark selection values
(Figure 5D). The averaged overlap selection values between
barracuda and tiger sharks followed a similar pattern with
higher barracuda relative selection values north of the island
but averages reduced due to lower tiger shark relative selection
values (Figure 6C). Horse-eye jacks, with the most similar
relative selection values of tiger sharks, had the greatest averaged
overlap values along the western shelf, south of the island,
and in the southeastern portion of BIRNM (Figure 6D). When
tiger shark relative selection values were averaged across the
other three species, including juvenile lemon sharks, mutton
snapper, and yellowtail snapper, they followed similar patterns
with higher averaged relative selection overlap values where
the potential prey species had higher selection values unless it
was directly north of the island where patch reef systems exist
(Supplementary Figure 4).

Additional Methodological Considerations
The RF models using COA data of 60-min bins produced
similar results to models that used COA data of 90-min
bins (Appendix B). The top two most important variables
remained unchanged for all shark species (Appendix Figure B1)
and pdps and associated ŷ values only changed slightly
(Appendix Figure B2). Most notably, the new 60-min binned
RF models indicated ŷ values generally increased (rather than
decreased) with depth for Caribbean reef sharks and ŷ values
for aggregate reef were lower for tiger sharks (Appendix
Figures B2, B3). However, for Caribbean reef sharks, ŷ values
related to depth remained similar across the interaction of depth
and distance to land.

While accuracy metrics were similar for all species across the
60- and 90-min RF models (∼1–2% differences), some varied
substantially (e.g., 5–7%) (Table 2 and Appendix Table B1).
The use of 60-min time bins led to a decrease in overall
accuracy for nurse sharks (85–80%) but an increase in overall
accuracy for barracuda (87–92%), horse-eye jack (80–90%),
and mutton snapper (88–96%). Subsequently, model predictions
and extrapolations within BIRNM reflected these discrepancies
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FIGURE 3 | Random forest partial dependency (marginal effects, ŷ) plots for the top three most important (ordered from top to bottom) predictors for (A) Caribbean
reef sharks, (B) lemon sharks, (C) nurse sharks, and (D) tiger sharks. The marginal effects indicate the relative selection strength for the given variable with greater ŷ
values indicating high relative selection probabilities and lesser values indicating low relative selection probabilities. Discrete predictors are displayed with bar plots
and continuous predictors are displayed using a generalized additive model smoother with 95% confidence intervals. Partial dependency plots involving depth were
restricted to 50 m depth for each species.

with lower accuracy scores producing more homogenous
and generalized relative habitat selection patterns than when
models produced higher predictive accuracies (Figures 5, 6 and
Appendix Figures B4, B5).

RF models using 200 m buffers for available habitat
construction scored lower accuracy measurements and also
predicted higher relative selection homogeneously across
BIRNM (Supplementary Figure 5 and Supplementary
Table 1). Alternatively, models using 600 m buffers for available
habitat construction produced similar accuracy measures
and predictions across BIRNM as compared to the original
models (Supplementary Figure 5 and Supplementary Table 1).
Interestingly, relative selection predictions for tiger sharks
were higher along the northeastern shelf edge (Supplementary
Figure 5) than in the original model (Figure 5), matching
Casselberry et al. (2020) findings.

When assessing extrapolation reliability across BIRNM,
extrapolation space became unreliable (univariate extrapolation)
in areas off the shelf in deeper and further areas from land
(Appendix A). However, areas within the MPA that remained
in shallower water (<50 m) were analogous to the range of
our covariates as measured by depth (m) and distance to land
(m), confirming our approach to limiting extrapolations to the
maximum observed depth was warranted.

While BBMMs highlighted individual level variation in space
use across BIRNM (see examples, Supplementary Figure 6),

GLMMs and respective marginal and conditional R2 values
indicated variance was largely explained by the fixed effects
(marginal R2) alone (Supplementary Table 2). However, the
GLMM involving lemon sharks appeared to have substantial
variance explained by both the fixed and random effects
combined (conditional R2), suggesting individual variation may
be higher within this species dataset. Interestingly, GLMM
accuracy for lemon sharks was also nearly as accurate as the
RF model (92% versus 94%, respectively). Accuracy metrics for
the other GLMMs were substantially lower than respective RF
models (Table 2 and Supplementary Table 2).

DISCUSSION

The Approach and Ecological
Implications
Using acoustic telemetry data for four shark species, we
demonstrate the utility of RSFs with machine learning to
accurately predict and understand complex environmental
drivers of marine species. Across species, we found variable
patterns of relative habitat selection within the MPA, ranging
from habitat specialists to generalists. Overall, as depth increased,
relative selection decreased for all shark species. While relative
selection probabilities for Caribbean reef, lemon, and nurse
sharks decreased as distances from land increased, tiger sharks
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FIGURE 4 | Top three two-way interactions (ordered from top to bottom) displayed and extracted from random forest models for (A) Caribbean reef sharks, (B)
lemon sharks, (C) nurse sharks, and (D) tiger sharks. Mean marginal effects (ŷ) are shown in each two-way interaction partial dependency plot with colors indicating
a continuum from high (blue) to low (white) probabilities of relative selection. Partial dependency plots involving depth were restricted to 50 m depth for each species.
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FIGURE 5 | Derived from random forest models, the predicted and extrapolated probability of relative selection across Buck Island National Reef Monument
(designated by red dashed line) for (A) Caribbean reef sharks, (B) lemon sharks, (C) nurse sharks, and (D) tiger sharks. Higher and darker values indicate higher
relative selection values. Model extrapolation across the study areas restricted to the maximum observed depth for each species. 50% (green) and 95% (blue) kernel
density estimates shown in the upper right corner of each plot.

FIGURE 6 | (Left) Derived from random forest models, the predicted and extrapolated probability of relative selection across Buck Island National Reef Monument
(designated by red dashed line) for (A) juvenile green turtles (B) juvenile Caribbean reef sharks, (C) great barracuda, and (D) horse-eye jacks. 50% (green) and 95%
(blue) kernel density estimates shown in the upper right corner of each plot. (Middle) Relative selection values averaged between tiger sharks and each
corresponding species on the left. (Right) Relative selection values averaged between tiger sharks and each corresponding species on the left after the removal of
cells where potential prey relative selection values were <.5. In all plots, higher and darker values indicate higher relative selection values or their averages.
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showed highest affinities for areas between 500 and 2,000 m
away from land. Top interactions along with predicted relative
selection values highlighted the differences and preferences
across species in terms of habitat types, structures, and depths.
Finally, using the relative selection values of tiger sharks and
their potential prey, we highlight the ability of this framework
to generate multiple species selection values that could provide
insights into predator-prey relationships when averaged and
overlaid with one another.

The results for shark habitat selection presented herein
are largely consistent with those presented by Casselberry
et al. (2020) that used GLMMs and detection data from
fixed receiver locations to model presence in BIRNM habitats,
but with improved model accuracy (83–94%) and additional
covariates. While GLMMs in Casselberry et al. (2020) were
limited by unequal receiver distribution, requiring aggregation
across habitat types, the analyses presented here (use/availability
framework with COAs and background points) were able to
sample across multiple habitats and at finer scales. Further, while
GLMMs were limited to a single generalized habitat covariate
(factor levels including: unconsolidated sediments, submerged
vegetation, and coral, rock, and colonized hardbottom) and
depth, RSFs paired with machine learning algorithms were
able to easily assess five separate habitat covariates that ranged
from two and 10 factor levels each along with two additional
continuous predictors. Ultimately, RSFs confirmed use of
shallow water habitats near land for lemon sharks and the
use of sand and coral associated habitats at mid-depths for
nurse sharks, while highlighting tiger sharks’ affinity for the
continental shelf break and southern sand and seagrass beds.
The added analytical flexibility of RSFs and machine learning
greatly improved predictions of habitat use for Caribbean reef
sharks, whose space use changes dramatically with age across
BIRNM’s varied landscape (Casselberry et al., 2020). Previous
models showed low probability of presence in the acoustic array
across habitats and depths compared to the other three shark
species, while RSFs highlight specialized use of multiple highly
rugose reef habitats at mid-depths. However, GLMMs produced
in Casselberry et al. (2020) and the RSF models produced
here differed when predicting tiger shark depth preference.
Casselberry et al. (2020) showed probability of presence in the
acoustic array increasing with depth across habitat types (coral,
rock, and colonized hardbottom, submerged vegetation, and
unconsolidated sediments), while ŷ values consistently decreased
with depths beyond 30 m in RSF models.

Examining the tiger shark partial dependency plots reveals
high interactions between depth and distance to land at depths
between 10–15 and 25–30 m (Figure 4). These same depth bins
(10–15 and 25–30 m) also had higher ŷ values when combined
with aggregate reef, pavement, sand, and sand with scattered coral
and rock habitats (Figure 4). These habitat types and distance
to land achieved higher ŷ values alone than depth in tiger shark
models indicating that these variables have a stronger influence
on tiger shark habitat use (Figure 3). However, tiger sharks are
known to use depths greater than 50 m in and around BIRNM
that are beyond the depths of acoustic array coverage (Casselberry
unpublished data). This, again, highlighted the need to assess

extrapolation reliability (Mesgaran et al., 2014) of RSFs prior
to model interpretation since they may have limited ability to
extrapolate outside of observed conditions of a given array, for
example in areas of BIRNM where depths were greater than 50 m.

When predictions were made within our range of covariates
in analogous conditional space (less than 50 m depth), the
application of RSFs, as opposed to more traditional use of COAs
alone, kernel density estimates, or network analyses, highlighted
potentially favorable habitats in BIRNM with limited receiver
coverage. The eastern portion of BIRNM has had limited acoustic
receiver coverage in part because of the complexity of the
coral reef structure in the area. Receiver moorings were not
established there in order to avoid damaging the protected reef
structure. The RSFs show that favorable habitats exist in this
low coverage region for nurse, Caribbean reef, and tiger sharks,
particularly at intersections between reef, pavement, and sand
habitats. This further highlights the suitability of this MPA for
shark conservation and management in St. Croix (Figure 5;
Casselberry et al., 2020).

Examining overlapping RSFs between tiger sharks and their
potential prey highlights regions of potential foraging success
for sharks, high predation vulnerability for prey, and areas
of ecological importance for managers. Areas of high tiger
shark-prey overlap coincide mainly with the seagrass beds south
of Buck Island and the western continental shelf break, while
many potential prey species also have high selection potential
in areas north of Buck Island. This could be a reflection of tiger
sharks selectively using areas with higher potential for foraging
success (Heithaus et al., 2002). Areas north of the Buck Island are
occupied by highly complex coral reef habitats, offering ample
areas to refuge or escape from predators (Hixon and Beets, 1993),
while habitats south and west of Buck Island are more open at
depths of ∼12 m. These waters could be more maneuverable for
large juvenile and adult tiger sharks when compared to more
structurally complex environments (Fu et al., 2016), perhaps with
an increased possibility of foraging success (Heithaus and Dill,
2002; Heithaus et al., 2007; Wirsing et al., 2007). Alternatively,
these areas could be a reflection of similar habitat preferences
and ecologies among apex and mesopredators in a tropical reef
system (Ledee et al., 2016; Heupel et al., 2019). Regardless, areas
of high averaged relative selection highlight important regions in
BRINM that could be used to inform future habitat monitoring
or restoration studies, particularly with the potential for habitat
degradation as the climate changes (Graham et al., 2020; Hastings
et al., 2020).

As technological tools continue to advance our ability to
monitor aquatic animal space use, ecologists are beginning
to answer some of the most pressing questions to help
direct and prioritize resource management and conservation
strategies. Habitat destruction remains on the forefront of
decreases in biodiversity, from climate change (Pratchett et al.,
2011; Descombes et al., 2015) to destructive landscape use
(Rothschild et al., 1994; Coverdale et al., 2013). With calls to
protect at least 30% of the ocean by 2030 through establishing
MPAs (O’Leary et al., 2016; Sala et al., 2018), an accurate
understanding of how marine animals use space and select
habitats is increasingly imperative for well informed and effective
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marine spatial planning (Foley et al., 2010; Ogburn et al., 2017;
Lowerre-Barbieri et al., 2019; Gallagher et al., 2021; Roberts
et al., 2021). The RSF modeling framework provided here can
produce high accuracy models of relative habitat selection for
multiple species of differing ecologies and can be averaged
across species to highlight overlapping potential space use or
selection. These models can then be used to extrapolate to
areas lacking acoustic receiver coverage, as long as within the
original measured parameters, accounting for a common issue
in acoustic telemetry with incomplete coverage of the study site
due to logistic or budgetary limitations. Assuming a sufficient
number of individuals are tagged for a given species and age
class, the outputs of these models can produce easily interpretable
maps for highlighting regions of importance and communicating
results to stakeholders, which could result in greater acceptance
of study findings given committed stakeholder engagement
(Nguyen et al., 2019).

Benefits, Challenges, and Considerations
As technological advancements (e.g., from remote sensing to
acoustic telemetry data) allow for high-resolution datasets,
machine learning approaches have become increasingly
adopted by ecologists because of their ability to handle large
datasets and complex non-linear hierarchical relationships and
statistical assumptions that are typically violated by conventional
parametric approaches, e.g., multiple correlated predictors
(Olden et al., 2008; Peters et al., 2014; Durden et al., 2017;
Brownscombe et al., 2020). While RSFs have typically been
applied within a classical statistical framework (e.g., logistic and
linear models) (Johnson et al., 2006; Manly et al., 2007), machine
learning does not require non-linear predictor relationships and
their interactions to be specified prior to implementing. Thus,
allowing for a flexible, realistic, and accessible application when
applying RSFs to animal space use in relation to multiple and
complex environmental gradients across a landscape (Shoemaker
et al., 2018). Further, implementing machine learning with
ecological data can also provide highly accurate predictive
models (Cutler et al., 2007; Elith et al., 2008; Olden et al.,
2008). For instance, Shoemaker et al. (2018) applying RSFs with
mule deer (Odocoileus hemionus) telemetry data demonstrated
machine learning algorithms outperformed the traditional
approach of logistic regression with higher prediction accuracy.
In another example, although not directly comparable, when
implementing a RF using the juvenile green turtle data in this
study, we found a higher accuracy compared to that as reported
by Griffin et al. (2020) (0.95 versus 0.77, respectively), who
also applied RSFs on juvenile green turtle acoustic telemetry
data from BIRNM but were fitted with GLMMs and fewer
predictor variables.

While machine learning algorithms offer some advantages as
an accurate non-parametric technique, the difficulty to account
for spatial-temporal autocorrelation and individual level effects
presents additional challenges. Whereas RF models are unable to
easily incorporate, RSF GLMMs can explicitly include individual
ID as a random effect (Gillies et al., 2006). Further, generalized
models can incorporate autocorrelation dependency structures
(Zuur et al., 2017; Winton et al., 2018a; Griffin et al., 2019;

Gutowsky et al., 2020), however, it is worth noting that defining
the correct correlation structure still remains challenging within
a use/availability (presences/pseudo-absences) sampling design
(see Koper and Manseau, 2009; Fieberg et al., 2010). In this study,
while BBMMs highlighted individual variation in space use,
simplified GLMMs indicated including individual as a random
effect contributed relatively less to explaining overall variance
than the fixed effects alone. However, this was not the case for
lemon sharks, suggesting larger potential differences in relative
habitat selection across individuals. Confirmed by individual
BBMMs and network analyses from Casselberry et al. (2020),
some lemon sharks were consistently close to the island while
others used areas farther away and at greater depths. While
approaches are being developed to incorporate mixed effects
into machine learning algorithms (Hajjem et al., 2014), it is
still relatively inaccessible due to its complexity. Future studies
using RSFs and machine learning algorithms should attempt
to measure or address random variation across individuals
and sample size biases either within the approach and/or with
complimentary analyses. For example, using test datasets that
contain individuals not used in the training dataset may better
help to assess model performance and transferability (Buston
and Elith, 2011; Raymond et al., 2015). Further, running models
for each individual and, subsequently, collectively deriving the
95% confidence interval estimates across the computed marginal
effects for all individuals may be a viable approach to assess
population level effects. Alternatively, using both mixed effects
models and machine learning approaches in tandem may
be the most appropriate (see Shoemaker et al., 2018). With
consideration to this caveat, machine learning algorithms provide
useful and flexible advantages to deal with complex ecological
datasets and to obtain accurate results.

Beyond the application of RSFs with machine learning
algorithms, by design, passive acoustic telemetry arrays provide
an intuitive approach for implementing RSFs since available
resource units can easily be defined based upon receiver
positioning. Constraining COAs and background points to the
available resource units, defined by acoustic receiver location
at the year level, allows for the incorporation or removal of
additional receivers across a study period. This flexibility is ideal
as arrays often change over time due to funding constraints
or adapting research questions. However, to safeguard against
biased relative selection estimates, it is important to ensure
receiver arrays, including their modifications, are designed to
capture space use that is representative of the habitat available
(Selby et al., 2019; Griffin et al., 2020). For future studies aimed
at examining relative selection, we suggest grid array designs
(Heupel et al., 2006; Kraus et al., 2018) to achieve proportionally
representative coverage of areas rather than deployments guided
by a priori beliefs of animal space use (Brownscombe et al.,
2019b). In addition, detection range and efficiency, should
be considered during the array design (Brownscombe et al.,
2019b), when constructing COAs (Winton et al., 2018b), when
defining available resource units around receivers, or even
explicitly in the modeling process (see Brownscombe et al.,
2019a). Detection efficiency and range, often limited by physical
structure, wind, currents, animal noise, or by human activities

Frontiers in Marine Science | www.frontiersin.org 14 April 2021 | Volume 8 | Article 631262105

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-631262 April 23, 2021 Time: 15:59 # 15

Griffin et al. Resource Selection and Acoustic Telemetry

may vary greatly across a given study area (Gjelland and Hedger,
2013; Kessel et al., 2014).

Here, while potentially incorporating biases due to variable
detection ranges (see Selby et al., 2016), we chose a 400 m
buffer around each receiver to allow for COAs and associated
background points to extend beyond observed detection ranges.
However, we recommend testing a wide range of parameter
inputs from COA time bin selection to available habitat buffer
size. Such inputs should be guided by ecological knowledge,
acoustic telemetry coverage, and model accuracy metrics. While
COA time bins of 60-min provided more accurate measures
for some species and refined predictions, we opted for 90-min
bins for all species since this would potentially reduce issues
with autocorrelation by subsampling further (Swihart and Slade,
1985). Further, COA time bin selection should consider both
the programmed tag delay and the speed of tagged animals,
with smaller time bins for faster moving species and larger time
bins for slow moving animals. In this example, we found a
smaller available habitat buffer produced lower accuracy metrics
and led to unreliable predictions across BIRNM. Alternatively,
applying a larger available habitat buffer provided similar results
to the original models that used 400 m buffers and also captured
relative selection for tiger sharks in areas (northeast shelf)
where we expected higher values. While 400 m buffers were
chosen for consistency to Selby et al. (2019) and Griffin et al.
(2020), future researchers should explore and evaluate multiple
extents for a given species, study area, and array. Along with
variable detection range and efficiency, future RSF studies using
acoustic telemetry should also investigate the role of spatial
and/or temporal scales on selection modeling (McGarigal et al.,
2016); this is especially relevant when collapsing habitat and
presences/background points for model implementation.

Conclusion
In summary, we highlight the utility of combining acoustic
telemetry, RSFs, and machine learning to understand and
accurately predict the relative habitat selection of marine animals
across both monitored and unmonitored areas. While RSFs
have been used extensively within terrestrial environments, we
suggest marine ecologists should also adopt these methods to
improve resource management actions. Such applications could
help to prioritize habitat protection and restoration in the
face of continued anthropogenic threats (Millennium Ecosystem
Assessment, 2003). This may have particular advantages centered
around MPA design. Here, applied to four shark species within an
MPA, we found accurate models that could extrapolate to areas
where receiver coverage was limited. Further, when these RSF
values were extended to examine predator-prey relationships,
we found areas that varied in mutual selection, highlighting the
potential overlap of predators and their prey.
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The Gulf of Maine (GOM) is a highly complex environment and previous studies
have suggested the need to account for spatial nonstationarity in species distribution
models (SDMs) for the American lobster (Homarus americanus). To explore impacts of
spatial nonstationarity on species distribution, we compared models with the following
three assumptions : (1) large-scale and stationary relationships between species
distributions and environmental variables; (2) meso-scale models where estimated
relationships differ between eastern and western GOM, and (3) finer-scale models
where estimated relationships vary across eastern, central, and western regions of the
GOM. The spatial scales used in these models were largely determined by the GOM
coastal currents. Lobster data were sourced from the Maine-New Hampshire Inshore
Bottom Trawl Survey from years 2000–2019. We considered spatial and environmental
variables including latitude and longitude, bottom temperature, bottom salinity, distance
from shore, and sediment grain size in the study. We forecasted distributions
for the period 2028–2055 using each of these models under the Representative
Concentration Pathway (RCP) 8.5 “business as usual” climate warming scenario. We
found that the model with the third assumption (i.e., finest scale) performed best. This
suggests that accounting for spatial nonstationarity in the GOM leads to improved
distribution estimates. Large-scale models revealed a tendency to estimate global
relationships that better represented a specific location within the study area, rather than
estimating relationships appropriate across all spatial areas. Forecasted distributions
revealed that the largest scale models tended to comparatively overestimate most
season × sex × size group lobster abundances in western GOM, underestimate in the
western portion of central GOM, and overestimate in the eastern portion of central GOM,
with slightly less consistent and patchy trends amongst groups in eastern GOM. The
differences between model estimates were greatest between the largest and finest scale
models, suggesting that fine-scale models may be useful for capturing effects of unique
dependencies that may operate at localized scales. We demonstrate how estimates of
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season-, sex-, and size- specific American lobster spatial distribution would vary based
on the spatial scale assumption of nonstationarity in the GOM. This information may
help develop appropriate local adaptation measures in a region that is susceptible to
climate change.

Keywords: nonstationary, spatial distribution, American lobster, Gulf of Maine, scale-dependent, climate change,
generalized additive models

INTRODUCTION

American lobster (Homarus americanus) is the most valuable
fishery in the United States [National Oceanographic and
Atmospheric Administration (NOAA), 2018]. The American
lobster fishery in the state of Maine was worth 486 million
dollars in 2019, which comprised roughly 77.1% of the total
worth of the entire lobster fishery on the Atlantic coast in
that year (∼=$630 million, ACCSP, 2019). The Gulf of Maine
(GOM) and Georges Bank (GBK) stock contributes to more
than 90% of the American lobster landings in the United States
(ASMFC, 2020). Additionally, the GOM has been thought to
be warming 99% faster than the global ocean (Pershing et al.,
2015). Knowing that the American lobster fishery is the most
valuable fishery and that species’ distributions commonly shift in
pursuit of ideal habitat conditions (Pinsky et al., 2013; Greenan
et al., 2019), it is important to understand and accurately estimate
the spatial distribution of this species, especially in a rapidly
changing environment.

Although the GOM/GBK lobster stock is not overfished and
overfishing is not occurring (ASMFC, 2020), lobster abundance
throughout the GOM is not uniformly or randomly distributed
(Steneck and Wilson, 2001). Environmental factors contribute
to the spatial distribution of lobster abundance, and evidence
of temperature, salinity, and productivity gradients that range
from northeast to southwest GOM have been observed (Lynch
et al., 1997; Pettigrew et al., 1998; Chang et al., 2016). These
gradients may be attributed in part by the Gulf of Maine Coastal
Currents (GMCC), which form cyclonic currents across the
GOM (Townsend et al., 2015; Chang et al., 2016). The GMCC
can be further distinguished as two sub currents; the Eastern
Maine Coastal Current (EMCC) and the Western Maine Coastal
Current (WMCC), where the EMCC diverges offshore in the
Penobscot Bay area and the WMCC begins along the coast
(Xue et al., 2008; Chang et al., 2016). These currents can affect
environmental variables as well as processes and interactions such
as primary production levels, stock-recruitment relationships,
and vertical mixing (Incze et al., 2010; Chang et al., 2016).

Species distribution models are widely used to estimate
and predict organisms’ spatial and/or temporal distributions
across the world (Bakka et al., 2016; Diarra et al., 2018;
Becker et al., 2020). Spatial and/or temporal nonstationarity is
often present in ecological systems when relationships between
response and explanatory variables vary across space and/or
time, which means that the association between response
and explanatory variables decrease with increasing distance

Abbreviations: FLFA, fall female adults; FLMA, fall male adults; FLFJ, fall female
juveniles; FLMJ, fall male juveniles; SPFA, spring female adults; SPMA, spring male
adults; SPFJ, spring female juveniles; SPMJ, spring male juveniles.

(Brunsdon et al., 1996; Fotheringham et al., 2002). Past literature
has demonstrated evidence of spatial nonstationarity in the
GOM region (Li et al., 2018; Staples et al., 2019). Accounting
for nonstationarity in SDMs allows for the incorporation
of spatial and/or temporal dependencies that cannot be
explained by environmental variables alone (Bakka et al., 2016).
However, past literature often have not compared differences
in species distribution estimates between models applied at
various spatial scales.

Generalized linear models (GLMs, Nelder and Wedderburn,
1972), generalized additive models (GAMs) (GAMs; Hastie and
Tibshirani, 1986), and geographically weighted regression (GWR;
Brunsdon et al., 1996) are a few commonly used models for
estimating species distributions. Inherently, GLMs and GAMs
are stationary models because they estimate global relationships
between the response and explanatory variables that are applied
to all locations. In contrast, GWR models can estimate unique
parameters at each location across space, thus allowing for the
assumption of spatial nonstationarity to be met (Charlton and
Fotheringham, 2009). However, a limitation of GWR models is
that they cannot be used to make estimations outside the study
area (extrapolation) or for forecasting to novel periods, as doing
so would violate the assumption of nonstationarity one is trying
to meet (Osborne et al., 2007; Hothorn et al., 2011; Li et al.,
2018). Since extrapolation and forecasted estimations are often
desired when modeling species distributions, one recommended
approach is to utilize multiple stationary models across a region
of interest (Fotheringham et al., 2002; Windle et al., 2009). This
approach will not only allow for extrapolation and forecasting
procedures, but will also better account for assumptions of
nonstationarity as using more than one model will result in
multiple unique parameters estimated across localized areas.

Using American lobster in the GOM as a case study,
we explore the effects of nonstationary modeling on lobster
spatial distributions and compare the results to those of a
stationary model. To test the effects of spatial nonstationarity,
we develop season-, sex-, and size- specific models that predict
the spatial distribution of American lobsters using GAMs of
varying spatial scales and extents. Variation in spatial distribution
between the models is evaluated and potential management
implications are discussed.

MATERIALS AND METHODS

Study Area and Data Sources
American lobster abundance data were sourced from the Maine-
New Hampshire Inshore Bottom Trawl Survey. The Maine-New
Hampshire Inshore Bottom Trawl Survey will be referenced as
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the bottom trawl survey. The bottom trawl survey is conducted
by the Maine Department of Marine Resources (DMR) since
the fall of 2000. This survey is semiannual, where separate
surveys are conducted in the fall and spring seasons of each
year. The bottom trawl survey spans 4,665 squared nautical miles
(16000.5 km2) (Sherman et al., 2005) and is subdivided into five
regions (Figure 1). The five regions include (1) New Hampshire
and Southern Maine, (2) Mid-Coast Maine, (3) Penobscot Bay,
(4) Mt. Desert Island, and (5) Downeast Maine (Figure 1).

The survey area extends 12 nautical miles (22.22 km) offshore
and is broken up into 4 different depth strata (Figure 1). A target
of 115 stations is set for each survey, creating a sampling density
of roughly one station for every 40 NM2 (137.20 km2). Random
stations in this survey are chosen by dividing the survey area into
a 1 NM2 (3.43 km2) grid, where cells are chosen at random using
an Excel random number generator (Sherman et al., 2005). Each
survey aims for a target tow of 20 min at a speed of 2.2–2.3 knots
(4.1–4.3 km/h), which covers approximately 0.8 NM (1.48 km,
Sherman et al., 2005). Data from 486,971 individual lobsters were
included in this study. See Supplementary Figures 1, 2 for mean
catch trends in the bottom trawl survey data by region.

This study utilizes data from the 2000–2019 bottom trawl
surveys. Biological data taken on each lobster include carapace
length (mm), sex, presence of eggs or v-notches, and if any
noticeable damage is present. Lobsters are then sorted into
baskets by sex and baskets are weighed once filled (Sherman
et al., 2005). Data have been standardized to 20-min tows to
ensure all catch, weight, and length frequency information is
comparable. In addition to biological data, bottom water salinity,
bottom water temperature, and depth data were collected during
each tow by using a Sea-Bird ElectronicsTM 19plus SEACAT
profiler, which was attached to the starboard door wire, turned
on and lowered overboard (Sherman et al., 2005). Bottom
trawl survey bottom temperature and bottom salinity data were
recorded at a single point along each tow transect and do
not represent an average across each tow length, The net used
for this survey is a type of modified shrimp net that is used
for “near-bottom dwelling species,” although not intended for
any single species in particular (Sherman et al., 2005). More
information about the Maine-New Hampshire Inshore Bottom
Trawl survey procedures, protocols, or specifics can be found
in Sherman et al. (2005). This survey has been found to yield
informative data for studying lobster distributions and habitats
in the GOM (Tanaka and Chen, 2016; Tanaka et al., 2019;
Hodgdon et al., 2020).

Bottom water temperature, bottom water salinity, average
depth, latitude, and longitude information from each tow were
used from the bottom trawl survey to inform the models.
Distance from shore and median sediment size were also
estimated and included in the models. Distance from shore
was estimated using the “distances” function from the package
“distances” (Savje, 2019) in R, which finds the shortest distance
between points, in this case, the distance between the midpoint
latitude and longitude of a tow and the closest point on the
coast. Sediment data were sourced from the East Coast Sediment
Texture Database which is run by the United States Geological
Survey (U.S. Geological Survey, 2014). This survey was last
updated in 2014 and contains information such as location,

description, texture, and size (phi, −log of grain size) taken
by different marine sampling programs across various locations
around the world. Both mean and median sediment size values
are supplied in this dataset, but median sediment size was
used over mean sediment size, as the former is more robust to
outliers (Tůmová et al., 2019). The median grain size at each
survey location was estimated using thin plate splines. These data
can be found at https://woodshole.er.usgs.gov/openfile/of2005-
1001/htmldocs/datacatalog.htm and more information about the
East Coast Sediment Texture Database can be found in U.S.
Geological Survey (2014).

Although models were built using bottom trawl survey
bottom temperature and bottom salinity data, additional bottom
temperature and bottom salinity data were needed to create
interpolated distribution plots. These additional data were not
used to inform the models, but rather served as data that
the models used to be able to estimate lobster density at
unsampled locations. Thus, bottom temperature and bottom
salinity data throughout the study area were obtained by
spatially interpolating Finite-Volume Community Ocean Model
(FVCOM) data. The FVCOM is an advanced ocean circulation
model that uses an unstructured grid format, making it highly
applicable for use in regions with complex coastlines and
bathymetry (Chen et al., 2006; Li et al., 2017). The FVCOM
was developed by University of Massachusetts Dartmouth and
Woods Hole Oceanographic Institution. More information about
the FVCOM can be found in Chen et al. (2006).

Forecasted distributions were made for the period 2028–
2055. The forecasted bottom temperature and bottom salinity
data were sourced from the National Oceanic and Atmospheric
Administration (NOAA) and represent an ensemble projection
of all models used to create the Intergovernmental Panel
on Climate Change’s (IPCC) Coupled Model Intercomparison
Project Phase 5 (CMIP5) data (NOAA Physical Science
Laboratory, n.d.). Data for the Representative Concentration
Pathway (RCP) 8.5 “business as usual” scenario were used. These
data are forecasted anomalies based on the reference time period
1956–2005 and are estimated for the period 2006–2055. These
data are anomalies, and thus hindcasted bottom temperature and
bottom salinity data must be used in tandem from the same
reference period. The anomalies were added to the corresponding
reference period FVCOM data. However, the earliest available
FVCOM data begins in 1978 rather than 1956, limiting the
available reference period in this study to 1978–2005. With
the reference period reduced from 50 to 27 years, the CMIP5
forecasting period must also be reduced, respectively, from the
initial 2006–2055 to 2028–2055 for this study. The forecasting
period 2028–2055 is used because it represents the maximum
amount of FVCOM data than can be used while also confidently
applying IPCC forecasted anomalies. Delta downscaling methods
were also applied so that forecasted anomalies could be applied
to the same scale as the FVCOM data. Specifically, bivariate
spline interpolation was applied using the package “akima” in R
(Akima and Gebhardt, 2016).

Model Development
Lobster densities were standardized per tow and divided into
eight groups based on season (fall and spring), sex (female
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FIGURE 1 | Maine-New Hampshire Inshore Bottom Trawl Survey regions and depth strata. This survey is subdivided into five regions which include (1) New
Hampshire and Southern Maine, (2) Mid-Coast Maine, (3) Penobscot Bay, (4) Mt. Desert Island, and (5) Downeast Maine. Missing white areas within the 12-mile
survey grid area are non-surveyable locations due to the topography of the ocean floor at those locations.

and male), and size (adult and juvenile; Li et al., 2018; Chang
et al., 2010). Juvenile lobsters were distinguished as lobsters
with carapace lengths <50 mm due to differences in activity
patterns (Lawton and Lavalli, 1995). Each of the eight groups
were modeled independently under three different techniques:
(1) a GAM that assumes stationary relationships between
species distributions and environmental variables (GOM–GAM);
(2) a GAM that assumes nonstationary relationships between
eastern and western GOM (West-GAM, East1-GAM), and (3) a
GAM that assumes nonstationary relationships between eastern,
central, and western GOM (West-GAM, Central-GAM, and
East2-GAM). Partitioning of data for these models can be
visualized in Figure 2.

Previous literature in the GOM have estimated species
distributions using stationary models at a large spatial scale
(Chang et al., 2010; Becker et al., 2020). This technique is
represented in this study by the “GOM–GAM” model, which
assumes no nonstationarity and is applied at the largest spatial
scale. This technique also assumes that nonlinear (but stationary)
relationships between lobster density and environmental factors
are sufficient to accurately predict a species spatial distribution
across an ecologically complex region. Other literature has
highlighted differences in environment-abundance relationships
between localized regions (Li et al., 2018; Liu et al., 2019). Thus,
the bisected (comprized of West-GAM and East1-GAM) and

trisected (comprized of West-GAM, Central-GAM, and East2-
GAM) models were constructed at smaller spatial scales to
capture evidence of these differences. The purpose of this study
is to explore how spatial distribution predictions change under
models with varying assumptions of nonstationarity (or lack
thereof) in hindcasting and forecasting scenarios.

The first set of localized models (West-GAM and East1-
GAM) broke up the data into east and west zones. The
West-GAM used data that were west of −69.27457 degrees
longitude. The East1-GAM was represented by data east of
−69.27457 degrees longitude. The decision to split the data
up along the −69.27457 degree longitude line was in part
because regions one and two of the bottom trawl survey
are west of the Penobscot Bay region and −69.27457 is
the approximate longitudinal line where region two of the
bottom trawl survey intersects the coastline. This decision
was also driven by the GOM coastal currents and the
supporting literature that states the southern extent of the
EMCC includes the Penobscot Bay region (Xue et al., 2008;
Chang et al., 2016).

Although some literature supports this decision, it is difficult
to exactly pinpoint a fine line of where the EMCC diverges and
the WMCC begins. Thus, another argument can be made in
which the Penobscot Bay area (∼=region three in the bottom
trawl survey) could act as a potential buffer zone, in which this
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FIGURE 2 | Visual representation of each model utilized in this study. Each colored quadrilateral represents a separate GAM that was ran on the observed data
points contained within that area. Red lines designate bottom trawl survey regional boundaries.

area of possible mixing between currents could throw off GAM
relationship curves if the this area were to be included into
a particular side. One previous study used a similar trisected
approach to view relationships between initial intra-annual molts
of American lobster and bottom temperatures in the GOM
(Staples et al., 2019). Consequently, the second set of localized
models (West-GAM, Central-GAM, and East2-GAM) are built
in in such a way that the West-GAM is the same in spatial
area and extent as previously described, but the Central-GAM
is comprised of data between −69.27457 and −68.58246 degrees
longitude, and the East2-GAM is comprised of data east of
−68.58246 degrees longitude.

Prior to model construction, covariance matrices and
variance inflation factor (VIF) tests were run to check for
variable independence and multicollinearity. Running multiple
covariance metrics showed a high dependence between distance
from shore and average depth variables. Distance from shore was
kept over average depth because distance from shore had a lower
covariance value amongst the rest of the variables than average
depth. VIFs quantify the multicollinearity amongst variables.
Variables with VIF numbers >3 were excluded from the model
(Zuur et al., 2009), supporting the decision to remove average
depth as a variable when building the models. The following
variables were shown to be significant in every GAM: latitude
and longitude combined as an interaction term, and bottom
temperature. Bottom salinity, distance from shore, and sediment
size were found to be significant in some models, but not all.
Significant variables and deviance explained for each group are
summarized in Tables 1, 2, respectively.

Generalized Additive Models were used to evaluate the
relationships between lobster abundance and environmental
variables. A GAM is an extension of a generalized linear model,
with a smoothing function added. GAMs follow the assumptions
that the functions are additive, and the components of the
functions are smooth (Guisan et al., 2002). A separate GAM
was created for each group of lobsters that differs in season, sex,

TABLE 1 | Non-Significant variables for each model and group type.

Group GOM–GAM East1-GAM West-GAM East2-GAM Central-GAM

FLFJ Salinity Salinity Sediment Salinity Salinity, DFS

FLMJ AS Salinity Sediment Salinity Salinity

FLFA Salinity Salinity Sediment AS Salinity, DFS,
sediment

FMLA Salinity AS Sediment AS Salinity, DFS

SPFJ AS AS AS AS Salinity,
sediment

SPMJ AS AS Sediment AS Salinity,
sediment

SPFA AS AS AS AS Salinity,
sediment

SPMA AS AS AS AS Salinity, DFS

Group acronyms are denoted as follows: FL, fall; SP, spring; FJ, female juvenile;
FA, female adult; MJ, male juvenile; MA, male adult. Such that for example FLFJ
represents data taken from female juvenile lobsters in the fall season. Possible
significant variables in each model include bottom temperature, bottom salinity,
latitude and longitude, distance from shore, and sediment grain size. “AS”, all
significant; meaning all tested variables were significant to that particular model
and group. “DFS”, distance from shore variable. “Sediment”, median sediment size
variable; and “Salinity,” bottom salinity variable.
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TABLE 2 | Deviance explained for each model and group type.

Group GOM–GAM Average of
West-East1-GAMs

East1-GAM West-GAM Average of West-
Central-East2-GAMs

East2-GAM Central-GAM

FLFJ 40.0% 52.5% 52.8% 52.2% 62.1% 62.3% 71.8%

FLMJ 40.7% 52.5% 52.8% 52.2% 63.2% 63.7% 73.6%

FLFA 42.6% 51.8% 47.9% 55.6% 56.3% 57.7% 55.7%

FLMA 41.7% 51.9% 49.2% 54.6% 55.6% 56.6% 55.5%

SPFJ 41.7% 51.9% 47.6% 56.1% 56.8% 48.5% 65.8%

SPMJ 44.0% 52.5% 50.5% 54.5% 58.1% 52.6% 67.1%

SPFA 34.4% 36.2% 35.0% 37.3% 40.9% 37.3% 48.2%

SPMA 38.8% 39.8% 41.8% 37.7% 44.5% 45.7% 50.6%

See Table 1 for group acronym explanation.

and size, based on the assumption that males, females, juveniles,
and adults will all respond to environmental variables differently,
and that seasons will also impact the relationships with the
environment differently. We used a tweedie GAM to estimate
lobster abundance (y). GAMs were built using a backward fitting
technique based on covariate significance (p < 0.05; Chang et al.,
2010). A GAM using all potential environmental variables can be
written as:

Lobster abundance (y)

= s(La, Lo)+ s(Bt)+ s(Bs)+ s(DFS)+ s(Ss)

where s is a spline smoother, La, Lo is an interaction term
between latitude and longitude, Bt is bottom temperature (◦C),
BS is bottom salinity (PSU), DFS is distance from shore (decimal
degrees), and Ss is median sediment size (phi).

Hindcasted distribution plots were created for each lobster
season × sex × size group and for each model approach for
the years 2000, 2006, 2012, and 2017 for a total of 96 plots.
Although there are bottom trawl survey data available from 2000–
2019 to inform the models, environmental FVCOM data used
for interpolation are only available until 2017, limiting the most
recent available hindcasting year that can be spatially interpolated
to 2017. Additionally, these years were chosen because they are
roughly evenly spaced throughout the hindcast period of interest,
albeit these methods could be applied to any year(s) 2000–2017.
Forecast distribution plots were also estimated for the 2028–
2055 years period, for a total of 24 forecast distribution plots
(eight lobster groups ×3 model approaches). Model fitting was
accomplished by using all survey data between the years 2000–
2019 and predictions were estimated for each tested year (2000,
2006, 2012, 2017, and the forecast period 2028–2055) separately,
by using the corresponding annual FVCOM data. Differences
between GOM–GAM and localized approaches were determined
by calculating relative differences between density distribution
estimates. Relative differences were estimated using the equation

Relative difference (i)

=

localized estimated density (i)
− “GOM − GAM” estimated density (i)
“GOM − GAM” estimated density (i)

× 100

where i is a location within the study area and “localized”
represents the estimated lobster density at location i
from a localized model (West-GAM, East2-GAM, etc.).
Relative difference plots were generated for each lobster
season× sex× size group and for the same years as the hindcast
and forecast distribution plots. These plots demonstrate the
magnitude and location of where the GOM–GAM models tend
to over or under predict abundances in relation to the localized
approaches. All distribution and relative difference plots were
interpolated using bivariate splines using the package “akima”
in R in order to achieve high resolution smooth distributions
(Akima and Gebhardt, 2016).

Model Fitting and Validation
Root Mean Square Error (RMSE), Akaike Information Criterion
(AIC), and Moran’s I were used to access model fit for all models.
RMSE measures the differences between predicted and observed
values where values closer to zero represent better model fit
(Stow et al., 2009). AIC is another method to test goodness of
fit and model complexity with a model having smaller returned
AIC value being the better model (Zuur et al., 2009). Moran’s I
tests for spatial autocorrelation in residuals where a significant
Moran’s I of −1 signifies perfect clustering of dissimilar values, a
significant Moran’s I value of 0 signifies no autocorrelation, and
a significant Moran’s I of+1 signifies perfect clustering of similar
values. If values are found to be spatially autocorrelated, this is
an issue as it violates the assumption of independence of data
(Zuur et al., 2009; Stephanie, 2016). Additionally, two-fold cross
validation was performed by separating each of the eight groups’
(2 season × 2 sexes × 2 sizes) data into random training and a
testing subset to calibrate the model and validate its predictions
(Li et al., 2018). The percentage of data allocated for the testing
portion was determined by the equation

1/(1+
√

P − 1)

where P is the number of predictor variables (Franklin, 2010;
Li et al., 2018). Cross validation allows visualization of model
performance to examine if model predictions are on average, over
or under predicting abundance compared to observed values. 100
iterations of cross validation were repeated for each model group
and average performance was estimated.
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RESULTS

Model Performance and Validation
Significant variables differed between model types and between
groups. Under the GOM–GAM, only salinity was found to
be non-significant in some groups, whereas both salinity and
sediment size were found to be non-significant in some West-
GAM and East1-GAM groups. Moreover, salinity, sediment,
and distance from shore were found to be non-significant
in some West-GAM, Central-GAM, and East2-GAM groups.
Table 1 summarizes the non-significant variables which were not
included in the final model for each group and spatial scale. The
deviance explained for lobster abundance varied between 34.4
and 44.0% for each group of the GOM–GAM, 36.2–52.5% for the
average West-GAM and East1-GAM group, and 40.9–63.2% for
the average West-GAM, Central-GAM, and East2-GAM group.
Full deviance explained for each specific group can be found in
Table 2. Likewise, the RMSE, AIC and Moran’s I tests showed
similar trends in model fit, with the GOM–GAM demonstrating
the lowest model fit estimates, the West- and East1-GAM
approach demonstrating intermediate model fits, and the West-,
Central-, and East2-GAM approach demonstrating the greatest
model fits (Table 3).

The two-fold cross validation results from 100 iterations
revealed that the models had reasonable prediction skill, as
the average between the 100 iterations was near the 1:1
prediction line for most groups and models. These tests revealed
that most models tended to slightly underpredict abundance,
with exception of the average spring female adult (SPFA)
West- and East1-GAM approach which revealed average slight
overpredictions. The West-, Central-, and East2-GAM approach
cross validation results demonstrated more precision than West-
and East1-GAM or GOM–GAM results. Results from the two-
fold cross validation can be found in the Supplementary
Material section (Supplementary Figures 1–3).

Environmental and Spatial Variables
Environmental and spatial variables were also explored via GAM
response curves for each significant predictor variable. Latitude
and longitude variables were combined as an interaction term
in each model to help account for spatial autocorrelation (Siegel
and Volk, 2019). Response curves varied greatly depending
on independent variable, season, sex, size, and spatial scale of
the model. For bottom temperature, highest partial effect on
abundance was seen between 6 and 10◦C in the spring and
around 10–14◦C in the fall for GOM–GAMs, and between 4
and 10◦C in the spring and 10–14◦C in the fall for the localized
model approaches. For bottom salinity, highest abundance was
seen between 31 and 33 psu for both spring and fall across
all models. The relationship spring male adult (SPMA), spring
female juvenile (SPFJ), and spring male juvenile (SPMJ) groups
had with salinity was unique, compared to other groups. These
group’s response curves demonstrated a higher partial effect on
abundance at salinity levels >32 psu in the west. This may
help explain the distinctive relative difference trends generally
observed in western GOM for the SPMA group. This difference

did not seem to affect the spring juvenile groups, as juvenile
lobster tend to stay in more nearshore waters (Lawton and
Lavalli, 1995), where FVCOM data has shown salinity levels
are generally lower in western GOM. For distance offshore,
highest partial effect on abundance was seen generally between
0.00 and 0.1 decimal degrees (∼=0–6 nautical miles offshore),
and then gradually declined with increasing distance from shore
across most models. For sediment size, highest partial effect on
abundance was seen between 2 and 6 phi (silt – medium grain
sand) across most models. Some season, sex, and size group
curves changed more in shape across spatial extents than others,
but variation was apparent and supports evidence of spatial
nonstationarity in this region. Figure 3 depicts the response
curves between lobster abundance and bottom temperature for
SPMAs (Figures 3A,B) and fall female juveniles (Figures 3C,D).
These figures show how the response curves change, depending
on the spatial scale and location of the testing data. These
figure panels also show where estimated relationship curves
overlap, if at all. For example, in Figure 3B, one can see high
overlap between most model response curves between 5 and
7◦C. However, at temperatures greater than 7◦C, the relationship
curve for the GOM–GAM more closely resembles that of the
response curve for the East2-GAM than for the West- or Central-
GAM. This suggests that if a large-scale model were used to
represent SPMA lobster data, it would better represent eastern
GOM data than central or western GOM data in that temperature
range, and in a climate warming scenario, would underestimate
western GOM abundances. In a region which is expected to
continue experiencing warming temperatures, the implications
of subordinate model spatial scale selection may increase. Many
lobster groupings (season × sex × size) tended to show similar
patterns, where the GOM–GAM response curve for a variable,
more closely resembled the response curve of one localized region
of the GOM more than the other regions.

Model Prediction and Distribution Plots
Fall distribution plots showed greater abundance estimates than
spring plots, which correlates with observations in raw trawl
survey data. Raw fall trawl survey trends show slight declines in
catch in regions three and four since 2015 and in region five since
2016 (Supplementary Figure 4), with trends of offshore catch
increasing overtime. All three model estimates demonstrated
offshore abundance estimates increasing from the 2012–2017
hindcasts, but only the East2-GAM showed indications of a
slight decrease in eastern GOM abundance. Model estimates in
central GOM were most distinctive between models. A trend
emerged in all tested years which demonstrated that as model
spatial scale became finer, clear “hot” and “cold” spots emerged
within the Penobscot Bay area. The Central-GAM showed this
pattern well, with a “hotspot” emerging along the southwest
mouth of Penobscot Bay, and a “coldspot” in the northeast
Penobscot Bay region (Figures 4–7). These patterns correlate well
with American lobster settlement patterns found in Steneck and
Wilson (2001).

The GOM–GAM tended to overpredict the 2017 hindcast
distributions in western GOM, apart from the SPMA group
(Figure 8). In central GOM, the GOM–GAM models tended to
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TABLE 3 | RMSE, Moran’s I, and AIC values for each model and group type.

Group GG RMSE WEG RMSE WCEG
RMSE

GG
Moran’s I

WEG
Moran’s I

WCEG
Moran’s I

GG AIC Average
WEG AIC

Average
WCEG AIC

FLFJ 1.67 1.53 1.44 0.51 0.42 0.16 9,009 4,341 2,757

FLMJ 1.67 1.54 1.43 0.49 0.38 0.14 8,978 4,327 2,736

FLFA 1.29 1.17 1.09 0.45 0.32 0.07 14,398 7,064 4,585

FLMA 1.24 1.12 1.06 0.43 0.30 0.07 14,428 7,069 4,597

SPFJ 1.68 1.57 1.51 0.51 0.41 0.17 10,256 4,950 3,121

SPMJ 1.67 1.58 1.52 0.46 0.37 0.15 10,011 4,884 3,060

SPFA 1.49 1.37 1.32 0.29 0.22 0.09 19,279 9,548 6,087

SPMA 1.41 1.32 1.28 0.28 0.22 0.09 19,124 9,480 6,055

“GG”, “GOM–GAM”; “WEG”, West- and East1-GAM approach; and “WCEG”, West-, Central-, and East2-GAM approach. See Table 1 for group acronym explanation.
RMSE values closer to zero represent better model fit. Moran’s I tests for spatial autocorrelation in residuals where significant values closer to 0 signifies no autocorrelation.
All reported Moran’s I values were significant (p < 0.05). Smallest AIC values also indicate a better model.

FIGURE 3 | A comparison of spring male adult (SPMA) and fall female juvenile (FLFJ) lobster GAM bottom temperature response curves by spatial location in the
GOM. Each plot shows the response curve of bottom temperature (◦C) on the x-axis, against the partial effect of lobster density on the y-axis. Figures (A,C)
compare response curves estimated for the GOM–GAM, West-GAM, and East1-GAM, while figures (B,D) compare response curves estimated for the GOM–GAM,
West-GAM, Central-GAM, and East2-GAM. Shaded regions on either side of the response curve line indicate the standard error confidence intervals. Rug plot lines
along the x-axis of each plot indicate distribution of the bottom temperature data. These response curves were estimated using 2000–2019 ME-NH Inshore Bottom
Trawl survey data and are applicable to all years tested.

comparatively underpredict in the western part of Penobscot Bay
and overpredict in the eastern part of Penobscot Bay. This was
evident across all years in both relative difference comparisons
when the GOM–GAM estimates were compared to the West-
and East1-GAM approach, as well as in the West-, Central-,
and East2-GAM approach (Figure 8). In eastern GOM, many
GOM–GAMs estimated less abundance approximately between
−68.5◦ and −67.5◦ W, and higher abundance estimates between

−67.5◦ and −67◦ W when compared to West- and East1-GAM
approaches (Figures 8, 9). These trends were present across
all tested years.

Estimates for the 2028–2055 period from localized and
large-scale approaches exemplify similar spatial patterns seen
in the corresponding distributions from 2000 to 2017. Some
season × sex × size groups estimated abundances that
extend further offshore than their hindcast counterparts (see
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FIGURE 4 | 2017 Fall American lobster estimated spatial distribution. Legend colors increase in abundance estimates from pale yellow to dark red. Each column
represents a season × sex × size group. Each row represents the modeling approach used to generate the abundance estimations. Adult abundance legend
corresponds with adult lobster group estimates. Juvenile abundance legend corresponds with juvenile lobster group estimates.

FIGURE 5 | Forecasted fall American lobster estimated spatial distribution for the time period 2028–2055. See Figure 4 for figure details.

Figures 4–7). Spring abundance estimates demonstrate an
increase in central and eastern GOM from 2017 to 2028–
2055, although this is more notable in the localized models
than the GOM–GAMs (see Figures 6, 7). These forecasted
estimates correlate with raw spring bottom trawl survey data
thus far for regions 3–5, which have all demonstrated general
increasing average catch rates (number/tow) from 2000–2019
(Supplementary Figure 5).

In general, relative differences between the GOM–GAM
and the West-Central-East2-GAM approach resulted in larger

differences when compared to the relative differences between
the GOM–GAM and the West-East1-GAM approach. This trend
was apparent across all tested years. These observations correlate
with observations in model fit, as the West-Central-East2-GAM
approach showed highest model fits, and the West-East1-GAM
approach showed model fits more similar to that of the GOM–
GAMs. Fall relative difference plots revealed that the GOM–
GAMs were likely to estimate higher abundance in western GOM
when compared to the West-GAM (Figure 10). In the spring,
the GOM–GAM comparatively estimated lower abundance in
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FIGURE 6 | 2017 spring American lobster estimated spatial distribution. See Figure 4 for figure details.

FIGURE 7 | Forecasted spring American lobster estimated spatial distribution for the time period 2028–2055. See Figure 4 for figure details.

western GOM for spring adult males in the 2028–2055 period
(Figure 10). For adult females in both fall and spring, however,
GOM–GAMs estimated higher abundance in western GOM than
the West-GAMs did in that same region for the 2028–2055 period
(Figure 10). Forecasted GOM–GAM abundance plots estimated
lower abundance in the western portion of central GOM (≈−69.3
to −68.9◦ W) and estimated higher abundance in the eastern
portion of central GOM (≈−68.9 to−68.1◦ W), when compared
with distribution estimates derived from the East1-GAM in that
same area (Figure 10). This trend was also apparent in GOM–
GAM and Central-GAM forecasted relative difference plots, but

differences were slightly more polarized. There were slightly
less consistent and patchy trends in relative differences amongst
groups in eastern GOM for the 2028–2055 forecasted period,
where both higher and lower estimates were evident (Figure 10).

DISCUSSION

We developed a modeling approach to explore and demonstrate
how estimates of season-, sex-, and size- specific American
lobster spatial distribution and abundance would vary based
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FIGURE 8 | 2017 American lobster relative differences in model abundance estimates. Legend numbers represent relative differences (%) between either the
West-East1-GAM (WEG) or the West-Central-East2-GAM (WCEG) approach and the GOM–GAM. Red legend colors indicate areas where the GOM–GAM is
predicting higher lobster abundance than the model in comparison. Blue legend colors indicate areas where the GOM–GAM is predicting lower lobster abundance
then the localized model approach in comparison. Pale yellow colors indicate similar abundance estimates between the GOM–GAM and localized models. Each
column represents a lobster season × sex × size group. Each row represents the season and localized model approach compared to the corresponding
GOM–GAM.

FIGURE 9 | 2012 American lobster relative differences in model abundance estimates. See Figure 8 for figure details.

on the spatial scale and extent of the area being modeled
in the GOM. Validation tests run for each model type and
season× sex× size group suggested reasonable predictive ability.
Nonsignificant variables varied by model and spatial location.

These results correspond with the notion that local patterns
may get masked by global statistics, if stationary assumptions
are made (Brunsdon et al., 1996; Windle et al., 2012). Stationary
assumptions are likely to be violated in the GOM, where
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FIGURE 10 | Forecasted American lobster relative differences in model abundance estimates for the period 2028–2055. Legend numbers represent relative
differences (%) between the West-East1-GAM (WEG) approach or the West-Central-East2-GAM (WCEG) approach and the GOM–GAM. Red legend colors indicate
areas where the GOM–GAM model is predicting higher lobster abundance than the localized model approach in comparison. Blue legend colors indicate areas
where the GOM–GAM model is predicting lower lobster abundance then the localized model approach in comparison. Pale yellow colors indicate similar abundance
estimates between the large-scale and localized models. Each column represents a lobster season × sex × size group. Each row represents the season and model
type compared to the corresponding GOM–GAM.

northeast to southwest gradients of bottom water temperature,
salinity, and productivity have been observed (Lynch et al., 1997;
Pettigrew et al., 1998; Chang et al., 2016), as well as spatial
differences in American lobster stock-recruitment relationships
(Chang et al., 2016), and spatially varying patterns in initial molt
timing and suddenness (Staples et al., 2019).

A trend in model fit was observed in which as the spatial
scale of models became more localized, model fit increased. The
West-Central-East2-GAM approach demonstrated the greatest
model fit to the bottom trawl survey data and showed the
most correlation in abundance estimates with raw bottom
trawl survey data, indicating greater distribution estimation
capabilities. The West-East1-GAM approach demonstrated the
next highest model fit and estimation capabilities, while the
GOM–GAM model demonstrated the lowest model fit to the
data. We speculate that the West-Central-East2-GAM approach
shows the greatest model fit and potential predictive capabilities
because of the modeling technique used on these data. By taking
into consideration the oceanographic processes in the GOM to
determine which localized areas are likely to be the most and least
similar in relationships between American lobster abundance
and environmental variables, the amount of data used for model
estimation can be maximized, while limitations of large-scale
models over a biologically complex region can be minimized.
Out of the localized scale model approaches, the results of West-
Central-East2-GAM approach suggest an improvement upon
the West-East1-GAM approach. Although these approaches are
similar, the evidence of the West-Central-East2-GAM approach

being an improvement upon the West-East1-GAM approach
suggests that enough nonstationary exists between central
and eastern GOM to make the tripartite model subdivision
worthwhile and that this technique may be more biologically
reflective. Spatial distribution estimates of the West-Central-
East2-GAM approach also seem to correlate well with raw bottom
trawl survey data and past literature, especially in central GOM
which has shown high increases in average catch over the course
of the survey, and where localized “hot” and “cold” spots may be
reflective of lobster settlement patterns observed in that region
(Steneck and Wilson, 2001).

Most lobster groups demonstrated similar spatial patterns
or temporal trends in model results and analysis, with the
frequent exception of SPMA groups. We speculate the SPMA
lobster groups often did not respond in the same way due
to differences in both bottom temperature and bottom salinity
response curves. Although each group had more than one
significant environmental variable across model techniques,
bottom temperature was a significant variable in all models,
and spring adult (male and female) bottom temperature
response curves were most distinct among groups. Most other
season × sex × size groups displayed a relationship with
bottom temperature was similar to that of the FLFJ group
(Figure 3D), where the partial effect of bottom temperature on
abundance generally increased then plateaued with increasing
temperature. Spring adult lobster often did not follow this
pattern, as exemplified in Figure 3C, where spring adult curves
were typically domed-shaped. This dome-shaped pattern was
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present in both female and male spring adult groups, however, so
it is likely that other influences, such as salinity, may be a potential
factor. The relationship spring adult males had with salinity was
unique, compared to spring adult females, which demonstrated
a similar pattern to the other season, sex, and size groups. The
spring adult male group response curve demonstrated a higher
partial effect on abundance at salinity levels >32 psu in the west,
which may explain why the GOM–GAMs were more likely to
comparatively underestimate lobster abundance in that region.

The West-Central-East2-GAM approach demonstrated the
greatest relative differences across all years when comparing its
spatial abundance predictions to those of the GOM–GAM. This
observation is the result of the multiple unique GAMs run on
localized data, and thus assumptions of spatial nonstationarity
are better satisfied. However, it is important to recognize that the
largest difference from the GOM–GAM does not automatically
equate to the best model, as it is difficult to determine the starting
biological accuracy of the GOM–GAM. Results from the three
modeling techniques at bottom trawl survey locations could be
compared to raw bottom trawl data at those same locations
to get a better understanding of how biologically accurate
each technique is at producing estimates. However, between
evidence of model fit and validation, distribution plot results,
and correlation with raw survey data, we conclude that applying
model techniques that better account for spatial nonstationarity
will result in increased model performance.

While the West-Central-East2-GAM approach demonstrated
the best model fit out of the tested models, it is important
to acknowledge some of the limitations of this model and
the techniques used. First, all models tested only included
environmental variables. No biological variables were included
in the models; thus, these models are working under the
assumption that lobster abundance is dependent solely upon
environmental variables and spatial scale. Future studies may
benefit from including biological variables, such as predator
and/or prey abundance, into the models to see how the
results would differ. Secondly, the subdivision of data technique
used for the localized models (West-East1 and West-Central-
East2 GAMs) sometimes resulted in variegated or “patchwork”
spatial distribution estimates. Such abrupt changes in abundance
estimates along the model extent lines are not likely to be
biologically representative of true American lobster spatial
distributions in the GOM. Consequently, this piecewise, localized
modeling approach should only be used to observe trends in
spatial distribution estimates, and not for precise estimations
of “true” abundance, especially near the model extent lines.
Thirdly, future studies may also benefit from exploring how
different ways of subdividing data can impact model results, and
if model fit can be further improved with more data partitions.
Lastly, it is likely that the relationships explored in this study
do not only vary across space, but over time as well. This study
only considers spatial nonstationarity in model development,
as gradients in environmental conditions throughout the study
area have been observed. We did not consider temporal
autocorrelation in this study. Based on the results from this
study, it is likely that accounting for temporal autocorrelation
could impact species distribution results as well and that
excluding temporal autocorrelation may have introduced biases

into the forecasts. However, this is beyond the scope of
this study.

This study indicates that SDM estimations are dependent
upon spatial scale and assumptions of nonstationarity. Results
from a model that implicitly assumes spatial stationarity would
differ from results of a model that better accounts for spatial
nonstationary processes. Thus, using results generated by large-
scale, stationary models could lead to different, or potentially
even ill-informed management decisions which may result in
less effective management results. Moreover, accounting for
localized processes may be essential when devising localized
regulations, as indications of change or unique dependencies of a
species may be masked when using global statistics. Management
decisions informed by large-scale, stationary models could result
in regulations being more effective in one local area and less
in others, if the relationship curves that drive the predictions
are more representative of a particular area of the study area,
rather than well represented throughout. If the West-Central-
East2-GAM model distribution estimates are more biologically
realistic as the analyses suggest, then comparatively, under
an RCP 8.5 “business as usual” climate scenario prediction
for the years 2028–2055, large-scale, stationary models could
overestimate lobster abundances in western GOM, with the
exception of spring adult males. In such case, it is important local
heterogeneity is considered in American lobster management
in the GOM because false overestimations of abundance
could lead to relaxed regulations or ill-informed biological
reference point calculations, which could potentially lead to
overfishing in western GOM.

Using large-scale, stationary modeling techniques to forecast
American lobster spatial distribution could result in subordinate
perceptions of where lobster populations will be spatially, and
to what extent. More accurate predictions of American lobster
spatial distributions will help stakeholders prepare and employ
best practice measures to ensure the sustainability and longevity
of the industry.
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The dispersal of marine organisms is a critical process for the maintenance of
biodiversity and ecosystem functioning across a seascape. Understanding the patterns
of habitat connectivity that arise from the movement of multiple species can highlight
the role of regional processes in maintaining local community structure. However,
quantifying the probability and scale of dispersal for marine organisms remains a
challenge. Here, we use a biophysical model to simulate dispersal, and we conduct
a network analysis to predict connectivity patterns across scales for the community
of invertebrates associated with seagrass habitat in British Columbia, Canada. We
found many possible connections and few isolated habitat meadows, but the probability
of most connections was low. Most habitat connections occurred within 3 days of
dispersal time over short distances, indicating potential limits to long distance dispersal
and little effect of species-specific dispersal abilities on the potential spatial extent
of habitat connectivity. We then highlight the different roles that individual seagrass
meadows can play in maintaining network connectivity. We also identify clusters of
connected meadows and use these clusters to estimate the spatial scale of community
dynamics. The connectivity patterns generated by our dispersal simulations highlight the
importance of considering marine communities in their broad seascape context, with
applications for the prioritization and conservation of habitat that maintains connectivity.

Keywords: community connectivity, biophysical modeling, Salish Sea, eelgrass (Zostera marina), Lagrangian
particle tracking, network analysis, community detection, marine spatial planning

INTRODUCTION

A key challenge in marine ecology and conservation science is to identify the spatial scale of
biodiversity patterns and the relative role of the complex oceanographic processes that may
influence these patterns. This requires moving beyond the study of biodiversity in single habitat
patches to instead considering the seascape as a mosaic of habitat patches connected by dispersal
(Boström et al., 2011; Pittman et al., 2011). Dispersal, a foundational process in metacommunity
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theory, has been shown to be a key driver determining diversity
patterns at local and regional scales (Kneitel and Miller,
2003; Loreau et al., 2003; Mouquet and Loreau, 2003; Massol
et al., 2017; Thompson et al., 2020). In coastal systems, the
diversity of a region or any habitat within the region can
depend on the spatial arrangement of habitats and the variation
among organisms’ abilities to move between them (Cowen and
Sponaugle, 2009; Boström et al., 2010). Therefore, understanding
the ecological consequences of movement requires spatially
explicit knowledge of functional connectivity – how dispersal
behavior and habitat configuration combine to influence the
movement of an individual across the seascape (Kindlmann and
Burel, 2008; Kool et al., 2013).

Spatially explicit movement information facilitates the
analysis of dispersal patterns as a network in the context of
meta-population/community theory (Hanski, 2001; Leibold and
Chase, 2018), which can reveal emergent spatial properties of
the seascape and focal communities that would otherwise not
be evident without a network perspective (Urban et al., 2009).
A disconnected network would indicate isolated communities
that do not interact, whereas a highly connected network of
habitat patches may operate as a single regional community.
Furthermore, identifying patches of habitat that are central, in
terms of how they link populations in other patches through
dispersal and colonization, indicates areas of habitat that may
provide stepping stones that are important for maintaining
regional connectivity and thus maintaining biodiversity patterns
(Saura et al., 2014; Albert et al., 2017). A network analysis can also
identify clusters of patches based on higher levels of ecological
exchange within than outside the cluster (Thomas et al., 2014;
Gilarranz et al., 2017). This can identify dispersal barriers and
subsequently reveal the spatial scale of metapopulations or
provide a first prediction of the scale of metacommunities in
the absence of local biological and environmental influences
on persistence. These and other seascape-scale patterns that
have consequences for biodiversity only emerge from a network
approach that can consider movement rates among many
patches simultaneously.

Marine connectivity research has primarily focused on the
connectivity of coral reefs or pelagic species, but the connectivity
of other patchy nearshore habitat types and the species that
disperse among them remains poorly understood (Bryan-Brown
et al., 2017). Seagrass, like coral, provides foundational biogenic
habitat for a high level of biodiversity (Orth et al., 1984),
including communities of epifaunal invertebrates (Heck and
Thoman, 1984; Duffy et al., 2015). The patchy distribution of
seagrass meadows across the seascape may create the structure
for a metacommunity of seagrass-associated species that are
connected by animal movement (Bell, 2006; Boström et al.,
2006; Whippo et al., 2018). There are a variety of life histories
present in this community which results in a range of dispersal
abilities. These species may move as larvae, juveniles or adults
through mostly passive transportation in ocean currents and
settle on distant meadows of seagrass (Boström et al., 2010).
Dispersal and connectivity have been suggested as one of the
important drivers of local and regional biodiversity patterns
in eelgrass-associated communities (France and Duffy, 2006;

Yamada et al., 2014; Whippo et al., 2018; Stark et al.,
2020). These inferences were based on spatial biodiversity
patterns and in the absence of oceanographically informed
estimates of potential connectivity. Consequently, spatially
explicit dispersal information is essential to gain further insight
into how these communities are structured across spatially
heterogeneous seascapes.

In the nearshore seascape, connectivity patterns are
determined by physical oceanographic processes (e.g., tidal,
wind, and freshwater forcing), dispersal ecology (dispersal and
post settlement survival), and the physical arrangement of habitat
(Werner et al., 2007). A biophysical model that incorporates
hydrodynamic models and biological properties can be an
effective tool for predicting movement pathways and quantifying
connectivity between habitats in the form of probabilities linking
a matrix of habitat (Siegel et al., 2003; Treml et al., 2012; Sunday
et al., 2014; Schill et al., 2015; Wren et al., 2016). However,
modeling nearshore dynamics is difficult compared to pelagic
studies. While we know the broad-scale movement of ocean
currents adjacent to the coast of a continent (e.g., California
current, Alaska current), predicting connectivity for spatially
complex coastal areas and for species with low dispersal abilities
requires high resolution hydrodynamic models and spatial
habitat data (Werner et al., 2007).

A biophysical model for nearshore habitat would allow
for the quantification of connectivity at the smaller spatial
and temporal scales relevant to ecological processes. While
genetic studies can support inferences of connectivity from
parentage analysis, logistical constraints limit the spatial scope
of these studies (D’Aloia et al., 2015; Bode et al., 2019), they
may only be applicable at very large scales (Riginos et al.,
2019), and regional genetic structure may not reflect the levels
of connectivity that influence the population dynamics that
maintain biodiversity at the community level. For example, in
areas influenced by past glaciation, genetic structure may still
be detectable from historical gene flow patterns and may not
reflect current pathways of exchange (Hedgecock et al., 2003;
Sunday et al., 2014; Selkoe et al., 2016). However, biophysical
modeling can still predict what may be considered weak
connections but genetically significant dispersal events (e.g.,
one migrant per generation), as even minimal levels of gene
flow can homogenize populations (Waples, 1998; Jenkins and
Stevens, 2018). Therefore, “ecological connectivity” is the level
of exchange of individuals that can influence population and
community dynamics at non-evolutionary time scales (Treml
et al., 2012). In addition, an ecological connectivity analysis based
on a biophysical modeling approach can supply the information
most relevant to conservation and the design of a network of
connected protected areas, such as population rescue effects,
source sink dynamics, and trophic dynamics (Burgess et al., 2014;
Guzman et al., 2019).

The objective of this study is to quantify potential connectivity
among communities inhabiting seagrass (Zostera marina) habitat
on the British Columbia (BC) coast of Canada in the form
of the functional connectivity that is generated by the varying
dispersal abilities of different species of the seagrass associated
epifaunal invertebrate community. We expect that asymmetric
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ocean currents, dispersal ability, and the spatial arrangement
of habitat create patterns of connectivity that vary spatially
across the region. We use a biophysical modeling and network
analysis approach to answer the following questions: (1) To
what degree is an invertebrate community, consisting of multiple
life-history strategies, likely connected by dispersal among
seagrass meadows? (2) Do increases in dispersal potential result
in higher habitat connectivity? (3) Which seagrass meadows
are important for maintaining network connectivity, and does
habitat location and/or size determine this importance? (4) Do
coastal topography and water currents create distinct clusters
of meadows likely to be ecologically connected? Together, these
questions allow us to assess patterns of connectivity across spatial
scales and for multiple taxa.

MATERIALS AND METHODS

We used a biophysical modeling approach to simulate dispersal
and estimate potential connectivity of the community of seagrass
associated invertebrate fauna (i.e., “community connectivity”;
Table 1). The model consists of five components: (1) seascape
physical structure information, (2) invertebrate community
trait data that influences dispersal ability, (3) hydrodynamic
model results that contain ocean current velocities, (4) an
individual-based particle tracking model (IBM) to estimate
dispersal trajectories with the influence of dispersal traits,
(5) and a network and cluster detection analysis to interpret
the connectivity of the dispersal trajectories in an ecological
context (Figure 1).

Study System
We focused on the Salish Sea region of the BC and Washington
coast. The Salish Sea is a semi-enclosed system bounded by
Vancouver Island, and connected to the Pacific Ocean through
the Juan de Fuca Strait in the south and narrow channels to
the north (Figure 2). The topographic complexity and glacial
history of BC’s coastline, that likely influence species distributions
(Pielou, 1991), creates unique challenges for modeling and as
a result nearshore connectivity is poorly understood. In this
region, there are also two important climatic changes that drive
strong seasonal differences in hydrodynamics and have ecological
relevance: (1) the spring transition between Aleutian Low and
North Pacific High pressure dominance over the northeast Pacific
that suppresses winter storm activity resulting in phytoplankton
blooms (Kathleen Collins et al., 2009; Bakri and Jackson, 2019),
and (2) the summer freshet, dominated by the undammed Fraser
River that increases the stratification and reduces the residence
time of the surface layer (Pawlowicz et al., 2007).

The dominant habitat-forming seagrass is eelgrass (Z. marina)
which is patchily distributed along the entire coast of BC in
sheltered intertidal and subtidal areas. Eelgrass occurs to a
maximum depth of 10 m depending on turbidity (Christiaen
et al., 2015) and can form meadows that range in size from a
few seasonally intermittent shoots to more permanent meadows
greater than 30 km2 (Murphy G. E. P. et al., 2021). As a primary
producer and coastal habitat forming species, eelgrass provides

habitat and a productive algal food source for multiple trophic
levels (Heck et al., 2008; Amundrud et al., 2015; Duffy et al.,
2015; Huang et al., 2015). Eelgrass has also been identified as an
ecological conservation priority for current marine conservation
planning efforts in BC (Gale et al., 2019; Rubidge et al., 2020).

Eelgrass provides biogenic habitat for a variety of epifaunal
and infaunal invertebrates. Common taxa include Amphipoda,
Isopoda, Decapoda, Polychaeta, and Bivalvia, and may include
the full life cycle of a species or just the juvenile or adult
stages. While not all species within these groups are eelgrass
habitat specialists, together they constitute a unique assemblage
distinct from communities in the surrounding substrates,
and we are focusing on their probabilities of connecting
spatially distinct habitat as a possible route of dispersal. In
general, most species in this community are direct developers
or planktotrophic/lecithotrophic, and they are semi-mobile
or sessile as adults (Boström et al., 2010). In addition to
larval drifting, pelagic dispersal may also occur by rafting
on seagrass and epiphytic algae which has been shown as
a viable mode of transport for small invertebrates and can
enable kilometer-scale dispersal for sessile species (Worcester,
1994; Brooks and Bell, 2001). Reproductive eelgrass shoots
can remain buoyant for up to 26 days (Harwell and Orth,
2002; Källström et al., 2008). While species with a multi-day
pelagic larval phase may have the greatest dispersal distance
potential, species that are direct developers may still make
short movements through rafting that can be more influential
to population dynamics than longer distance low probability
dispersal (Johannesson, 1988). Therefore, we included all
sampled species in the community regardless of development
type and mobility.

Seascape Structure Spatial Data
The first component of the biophysical model is the structural
data of the seascape, consisting of coastline and seagrass spatial
data. A coastline vector dataset was derived from a 1:20,000
scale provincial government dataset which provided the sufficient
detail to represent nearshore features. Small islands (<0.01 km2)
were removed to reduce the complexity of the dataset. Eelgrass
spatial data was obtained from multiple government and
non-governmental sources, which used a variety of survey
methods. While the dataset achieves near coastwide coverage,
only presences were consistently documented and there are
likely areas of incomplete sampling effort which means there
are likely meadows that exist that are not included in our
analysis. However, much of the data have been ground truthed,
and we are confident that most major meadows are included.
The seagrass dataset was simplified to more closely match the
resolution of the oceanographic model (0.5 km). Primarily,
this involved aggregating seagrass polygons that were within
100 m of each other.

Parameterize Model With Dispersal Trait
Values
To simulate the dispersal of the seagrass invertebrate community
we compiled dispersal related traits from a literature search for 63

Frontiers in Marine Science | www.frontiersin.org 3 August 2021 | Volume 8 | Article 717469129

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-717469 August 27, 2021 Time: 12:2 # 4

Cristiani et al. Connectivity of a Seagrass Associated Invertebrate Community

TABLE 1 | Glossary of key terms.

General connectivity

Community connectivity The movement of multiple species (that co-occur and interact) among a spatially distinct habitat type (Carr et al., 2017).

Ecologically relevant connectivity The level of exchange of individuals that can influence population and community dynamics at non-evolutionary time scales
(Treml et al., 2012).

Dispersal A once in a lifetime movement to a new habitat patch, which may occur in a gamete or larval phase, or by chance as a juvenile
or adult on marine debris, and is distinct from migration and foraging movements (Guzman et al., 2019).

Biophysical model

Pelagic propagule duration (PD) The maximum time that a species can disperse by drifting in the pelagic environment. This term is generalized to include
dispersal at all life stages of an organism and is inclusive of planktonic larval duration (PLD) and rafting on seagrass and algal
debris (Shanks, 2009). We simulated PD times of 1, 3, 7, 21, and 60 days. For species that do not have a planktonic larval
phase, we considered them capable of rafting on seagrass debris, which can remain buoyant for up to 3 weeks.

Mortality rate The daily probability of mortality during dispersal. This was set at 15% per day.

Settlement behavior If an organism drifts over another seagrass meadow, it will stop drifting and settle on that meadow.

Stranding behavior If an organism drifts into the coastline during dispersal, it will remain at that position for the remainder of the simulation.

Time period The experimental range when we ran a dispersal simulation with date-specific hydrodynamic data. The selected times are
intended to capture variation in connectivity by year, season, and tidal cycle. We ran simulations over 3 years (2011, 2014, and
2017), and for 3 seasons within each year (winter: Jan-Mar, spring: May-Jul, and summer: Aug-Oct). In each simulation, we
released particles every 4 h for 2 weeks.

Network analysis

Node A point in a graph that represents a habitat patch (i.e., seagrass meadow).

Connection probability A link between two nodes in a graph that results from the dispersal between seagrass meadows. The probability of a
connection is directional and is calculated as the number of particles that settle on a distant meadow divided by the total
amount of particles released from the origin meadow (×100).

Community averaged connectivity A connectivity network that is averaged across all PD levels and time periods to represent multi-species connectivity (Melià
et al., 2016; D’Aloia et al., 2017). For each connection, we averaged the connectivity established by each PD level within a time
period, and then averaged across all time periods.

Probability of Connectivity (PC) A graph-wide metric that quantifies the total amount of habitat connected by dispersal. It combines the habitat area available for
movement within a patch (intraconnectivity) with the area made available by connections between patches (interconnectivity).
The area of habitat connected by inter-patch movement is weighted by connection probability (Saura and Rubio, 2010).

dPC (intra, flux, and connect) The contribution of each node to the overall PC metric. It is calculated by removing a node and calculating the percent change
in PC. It is comprised of three fractions: intra, flux, and connect. Intra represents the intra-connectivity of a patch (i.e., the area
available for within patch movement). Flux quantifies all the area-weighted connections in and out of that patch. Connector
measures how much a patch is included in the paths between other patches and therefore acting as a stepping stone in the
system (Saura and Rubio, 2010).

Cluster detection

Cluster Groups of nodes that are strongly connected to each other and weakly connected to other nodes

Weighted connectivity length scale The average connectivity length scaled by connection probability within a cluster, used to compare the variation in connectivity
among clusters (Thomas et al., 2014). Calculated as:∑

all connections connection prob. × length∑
all connections connection prob.

species that were identified in biodiversity surveys of meadows
along the coast of BC (Whippo et al., 2018; Stark et al., 2020).
We considered the potential pelagic propagule duration (PD) and
a daily mortality rate in the biophysical model. PD is inclusive
of larval drift, adult movement, and rafting (Shanks, 2009). In
addition, all species were assumed to have a settlement behavior
trait, which simply means that they will settle if they drift over
suitable seagrass habitat (see Figure 3 for a diagram of processes
that influence connectivity). We binned PD values into five levels,
and to achieve equal width bins we used values of en days, where
n = 0, 1, 2, 3, 4, which we rounded to 1, 3, 7, 21, and 60 days on a
linear scale (Supplementary Figure 1). Although some species
have a PD longer than 60 days, early testing showed that the
coastal boundary constraints of the Salish Sea prevent most larvae
from drifting longer than 60 days before stranding. For species
that do not have a planktonic larval phase, we considered them

capable of rafting on seagrass debris, which can remain buoyant
for up to 3 weeks (Harwell and Orth, 2002; Källström et al., 2008).

We applied a single instantaneous mortality rate for all species
due to a lack of information for individual species. Frequently
used rates of invertebrate larvae mortality range between 0.15 and
0.23 day−1 depending on methodology (Rumrill, 1990). White
et al. (2014) revisited the Rumrill (1990) data and estimated
mortality rates of <0.15 day−1 using a different methodology.
Therefore, we used 0.15 day−1 to ensure that an adequate
mortality rate was still represented for all species but that it was
not set unrealistically high.

We did not include active or directed swimming behavior
in the biophysical model. There is limited information on
swimming speed of invertebrate larvae for many of these species.
In addition, the sustained swimming speeds of small larvae are
usually much less than current speeds (Orth, 1992; Daigle et al.,
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FIGURE 1 | Flow chart of the biophysical model and network analysis. Seascape structure data, dispersal trait data, and hydrodynamic model results are used in the
OpenDrift dispersal simulation. The biology module applies settlement and mortality to the resulting trajectories and creates weighted and directional connections.
The drift simulations are run for up to 60 days and for 9 date ranges. We then average the connectivity for different pelagic propagule durations (PD). Finally, we
calculate connectivity metrics on the entire graph for the Salish Sea and for each meadow (node), and we detect connectivity-defined communities across time.
Graphics: Sylvia Heredia.

2016). Therefore, we make the assumption that modeling passive
dispersal as influenced by advection and diffusion is adequate
when considering large-scale movements.

Hydrodynamic Model
The hydrodynamic fields used to force the dispersal simulations
were obtained from the SalishSeaCast configuration of the
Nucleus for European Modelling of the Ocean, a finite-difference,

hydrostatic, community ocean model (Gurvan et al., 2017).
SalishSeaCast is described in detail by Soontiens et al. (2016),
Soontiens and Allen (2017), and Olson et al. (2020). Briefly, the
configuration uses approximately 0.5 km horizontal resolution
and 40 z-coordinate layers ranging in thickness from 1 m
near the surface to 27 m at depth. Hourly surface wind and
meteorological forcing fields are sourced from the 2.5 km
High Resolution Deterministic Prediction System maintained by
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FIGURE 2 | The Salish Sea and seagrass meadows. The basin boundary and major rivers are highlighted to show the significant freshwater inputs in this estuarine
system. The SalishSeaCast oceanographic model extends from Puget Sound in the south to Johnstone Strait in the north, with open boundaries to the Pacific
Ocean at Johnstone Strait and Juan de Fuca Strait. The model has a near-uniform grid spacing of 440 m × 500 m and a 1-h temporal resolution. Seagrass
meadows range in size from <0.001 to 50 km2, with a total area of 519 km2. Seagrass polygon size is exaggerated in this map for visualization.

Environment and Climate Change Canada (ECCC; Milbrandt
et al., 2016). Runoff at 150 rivers is prescribed using monthly
watershed climatologies (Morrison et al., 2012) along with daily
observations from the ECCC Fraser River flow gage at Hope,
BC. Oceanic forcing of temperature, salinity, and eight tidal
constituents is implemented at open boundaries in Juan de Fuca
Strait and Johnstone Strait.

SalishSeaCast is optimized for the Strait of Georgia and
reproduces extensive observations of water level (Soontiens
et al., 2016) and temperature and salinity (Olson et al., 2020)
in that portion of the domain with competitive skill relative
to similar models of the region (e.g., Khangaonkar et al.,
2018). This skill was achieved through careful tuning of tides,
bathymetry, and sub-grid scale physics to accurately resolve

several important features of the circulation, including mixing
over sills and annual flushing of the deep Strait of Georgia
(Soontiens and Allen, 2017). While the SalishSeaCast velocity
fields have not been directly evaluated against observations, the
lack of significant temperature and salinity bias in the presence
of strong spatial gradients suggests that near-surface currents are
statistically accurate. Aside from model tuning, this accuracy is
primarily owed to the high-resolution wind forcing as wind is a
dominant driver of surface currents along with rivers and tides
(Halverson and Pawlowicz, 2016).

We used hourly current velocities from the SalishSeaCast
model for 3 years (2011, 2014, and 2017). Within each year we
considered three distinct time periods that may have ecological
significance: January–March (winter), May–July (spring), and
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FIGURE 3 | Examples of dispersal scenarios and the processes that contribute to connectivity. Each numbered scenario represents a potential fate of a particle.
Four representative species are shown, but a scenario is not specific to any one species. In a simulation, particles are released from a seagrass meadow.
RELEASE VARIABLES: The timing of release varies by year, season, and hour within a tidal cycle. The abundance released is proportional to meadow size. Particles
can drift as pelagic larvae or by rafting on seagrass as a juvenile or adult (if rafting, pelagic duration = 21 days). TRANSPORT VARIABLES: During transport, particles
are advected and diffused by the hydrodynamic model and they experience a 15% daily mortality rate (randomly applied), thus reducing density and abundance
through time. When a particle drifts over another seagrass meadow, it settles and is removed from the simulation. If a particle encounters the coastline, it strands
and is unable to drift further. A particle can drift for as long as its pelagic propagule duration (PD). We do not model any swimming behavior, but for our species it is
negligible compared to the advection speeds. SCENARIOS: In scenario 1, the particles experience mortality before reaching suitable habitat. In scenario 2, a particle
reaches its maximum PD before drifting over any suitable habitat. In scenario 3, a particle reaches suitable habitat before experiencing mortality or reaching its max
PD. Reaching this stage is considered “potential connectivity.” Full “realized connectivity” requires the individual to reproduce to establish a genetic connection. In our
simulations, we only model up to potential connectivity. In scenario 4, a particle is advected back to its meadow of origin. Graphics: Sylvia Heredia.

August–October (summer). Pawlowicz et al. (2019) noted
distinct differences in circulation between winter and summer as
a result of differences in freshwater inputs and upwelling over
the outer shelf. In addition, peak seagrass reproduction occurs
during August, followed by senescence in the fall when shoots
are most likely to break (Källström et al., 2008), which may be
a time when more rafting occurs. Only the surface layer of the
model was used for our dispersal simulations. We justify this
assumption because seagrass is a shallow subtidal habitat and we
are interested in successful connections between meadows and
not the fate of particles that sink.

Despite the high resolution of the model, there were still areas
of the Salish Sea too narrow to be resolved (e.g., inlets, passages).
The hydrodynamic model criteria requires a modeled area to
be at least two grid points wide, and narrow areas were either
widened or not considered (Soontiens et al., 2016). Therefore,
we removed seagrass meadows that overlap with any narrow area

not considered in the hydrodynamic model. This resulted in the
removal of only 24 out of 994 meadows.

Dispersal Simulation
The dispersal of eelgrass-associated invertebrates was simulated
using the Python-based framework OpenDrift – an IBM for
Lagrangian particle tracking (Dagestad et al., 2018). In addition
to the Forward–Euler numerical integration scheme provided
by OpenDrift, we wrote a custom module to incorporate PD,
mortality, and settlement. The basic description of a simulation
is as follows: for each of the nine experimental time periods
(3 seasons × 3 years), particles are released simultaneously
from all seagrass meadows every 4 h for the first 2 weeks to
account for tidal variation, they are tracked as they are advected
and diffused across the seascape, daily mortality is applied
by randomly selecting particles and removing them from the
simulation, if a particle drifts over another seagrass meadow
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or returns to the same meadow it is considered settled and
removed from the simulation, the simulation is run until the
end of the PD or until all particles have settled or stranded
on the coast (Figure 3). These simulations model potential
connectivity (transport and settlement only), whereas realized
connectivity requires the individual to reproduce and establish a
genetic connection.

The number of particles released per meadow scales with
meadow area and release locations are spaced evenly within
a meadow. In total, 3.8 million particles were released per
period, which was sufficient to capture the variation of particle
destinations while scaling within the computing resources
available. The position of particles was updated every 30 s
in the simulation. A 1.5 m2/s diffusion rate (K) was used to
represent the effect of subgrid-scale turbulent motions on particle
displacement. We implemented this diffusion using a statistical
relationship between K and the particle velocity variance V2

V2 =
2K
dt

where dt is the time step (LaCasce, 2008). A random walk was
then applied to the particle displacements using a Gaussian
distribution defined by the velocity variance.

Network Analysis
We conducted a network analysis to answer our first
three questions on quantifying and characterizing potential
connectivity. Network methods analyze connections resulting
from the dispersal simulation in graphical form to study
their topological relationships and uncover spatial patterns of
connectivity. With a graphical approach, seagrass meadows are
nodes and dispersal connections are edges in a graph, which are
directional and weighted by connection probability (Minor and
Urban, 2007). Connection probabilities were calculated as the
percentage of particles released from the origin meadow that
settle on a destination meadow.

To answer our first question on the connection probabilities
of whole seagrass invertebrate communities, we averaged
connectivity across PD scenarios and across time to move from
population-level to community-level estimates of connectivity.
This approach is useful for characterizing the functional role
of habitat to multi-species patterns of movement (Melià et al.,
2016; D’Aloia et al., 2017). In the averaging scheme, we weighted
connections by how common they were across all PD scenarios
and time periods. For example, if a connection between two
meadows was made in just the 60-day PD scenario in only 1 of
the 9 time periods, then it would be considered less important
to overall community connectivity than a connection made at
multiple PD levels and in every time period.

To answer our second question on the relationship between
dispersal ability and overall habitat connectivity, we calculated
the Probability of Connectivity (PC) metrics from the Conefor
software package for each PD level (Saura and Torné, 2009; Saura
and Rubio, 2010). PC incorporates dispersal probabilities and
weights them by an additional patch attribute, typically area,
to calculate a measurement of “habitat availability,” indicating
how well connected (i.e., available for movement) the entire

system is. By incorporating patch area, we start with the
assumption that a patch itself provides area for movement,
which may be important for seagrass-associated invertebrates
with limited dispersal abilities. Then, any connections made
between patches add to the area available for an organism
to move between. For instance, a connection probability
of 10% between two large patches connects more habitat
than the same strength connection between two smaller
patches. Thus, the intraconnectivity of a network provides
a baseline measurement of connectivity to compare to the
additional area made accessible by interconnectivity. This allows
us to move beyond simply knowing a quantity of nodes
connected which may not be as informative for understanding
the importance of a patch to the overall network. An
additional benefit of considering intraconnectivity is to avoid
characterizing isolated meadows as having no functional role
in supporting animal movement, and therefore in supporting
community diversity.

By weighting connections by area as the patch attribute in
the PC calculation, we are using area as a proxy for intrapatch
movement. However, we also intend area to be a general proxy
for other patch importance metrics that may scale with area,
but non-linearly, such as habitat quality, local retention, and
species diversity (Minor and Urban, 2007; Saura and Rubio, 2010;
Pereira et al., 2011; Engelhard et al., 2017). Since our patch areas
spanned 7 orders of magnitude with a right-skewed distribution,
we log-transformed areas to achieve a normal distribution of
patch areas, so as not to overweight the importance of large
patches or deem small patches as completely insignificant to
the multiple functional roles that they may play in influencing
connectivity patterns.

To answer our third question on characterizing the
contribution of individual seagrass meadows to the overall
connectivity, we calculated the change in PC (dPC) when that
meadow is removed, indicating the importance of that node to
contributing to and maintaining connectivity. We calculated
dPC for each dispersal scenario and averaged the results. dPC is
comprised of three component parts: intra, flux, and connector.
These components represent the different ways a node can
contribute to connectivity. They are non-overlapping properties
of the network and provide a more comprehensive assessment
of connectivity than just considering traditional connectivity
metrics separately (e.g., betweenness centrality, node degree).
Intra represents the intra-connectivity of a patch (i.e., the area
available for within patch movement and local retention). Flux
represents how much a patch is connected to other patches by
considering all the area-weighted connections in and out of that
patch. Connector measures how much a patch is included in the
multi-step paths between other patches and therefore acting as a
stepping-stone to link the system.

Together, these metrics show the different ways that a seagrass
patch can contribute to the overall connectivity of the network
(Saura and Rubio, 2010). Given that we are interested in dispersal
as a fundamental ecological process, it was important to use
ecologically relevant metrics that have both a structural and
functional basis and relate pattern and process (Pittman, 2018).
The PC metric and its component parts allow us to interpret the
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functional role of seagrass habitat connectivity patterns in the
context of the invertebrate dispersal process.

Cluster Detection
To answer our fourth question on identifying distinct clusters
of connected seagrass habitat that may arise from topography
and ocean currents, we used “community detection” methods.
Community detection algorithms identify clusters of nodes that
are strongly connected to each other and weakly connected to
other nodes in the network (a “community” refers to a graphical
property and not an ecological community of species, to avoid
confusion with an ecological community, we refer to a graph
theoretical “community” as a cluster). This allows us to quantify
the spatial scale of dispersal between interacting clusters and
potentially identifies ecologically distinct regions.

We used the CPM function in the Leidenalg Python package
to identify meadow clusters of varying clustering strength (Traag
et al., 2019). CPM gives the user control over a resolution
parameter that sets a threshold of connectivity for community
membership. Maintaining control over the resolution parameter
allows for different ecological interpretations of the network
clustering, as opposed to just identifying the one mathematically
optimal partitioning which may not be ecologically interpretable.
For instance, setting a low threshold value will select for large
clusters which will identify where the strongest barriers to
dispersal are in the system as only very rare connections would
connect clusters. Alternatively, setting a high threshold value
will select fewer nodes per cluster and identify the strongest
connected clusters of nodes, but the boundaries of a cluster are
more permeable (Thomas et al., 2014).

We used a temporal cluster detection method to identify
meadows potentially clustered across time periods (Mucha
et al., 2010; Traag et al., 2019). Using this multidimensional
method, nodes could take on membership in multiple clusters
which allowed us to identify how variable seagrass meadow
clusters are through time. To implement this method, the user
provides “interslice” weightings to indicate how similar the
overall connectivity results between time periods should be
considered. Knowing that hydrodynamics vary seasonally in the
Salish Sea with less interannual variation, and with evidence
that community composition and abundance for meadows can
vary seasonally (Lefcheck et al., 2016a; Whippo et al., 2018), we
chose to focus on seasonal variation. Therefore, we weighted our
interslices so that between-season membership could vary more
compared to year-to-year variation. This allows the seasonal
dynamics to be more prevalent.

We followed similar methodology to Thomas et al. (2014) and
calculated a range of temporal cluster configurations by varying
the connectivity probability threshold. To identify potentially
unique configurations from this range, we plotted the amount of
connectivity occurring between clusters against the connectivity
threshold. At threshold values where the connectivity between
clusters plateaus or scales inconsistently, this indicates a stable
configuration where a barrier allows the connectivity within
the cluster to increase but not the connectivity between
clusters (Supplementary Figure 2). For the configurations at
the plateaus, we then calculated the weighted connectivity

length scale for each cluster (see Table 1) and compared
these values between clusters. This comparison assesses if
connectivity probability scales with distance consistently across
the region. Configurations with highly varying weighted
connection lengths among detected clusters indicate unique
dispersal patterns that may be the result of spatially distinct
hydrodynamic/topographic features that are only evident at
that resolution.

Ultimately, our approach analyzes connectivity at three
graphical levels: a graph-wide level (PC metric), a node level
(dPC metric), and a regional cluster level (temporal community
detection) (Figure 1). The multi-level approach allows us to
assess multi-species dispersal as it relates to the Salish Sea,
individual seagrass meadows, and to sub-regional dynamics (i.e.,
sub-sections of the Salish Sea).

RESULTS

Community-Level Connectivity
An overall average of community connectivity probabilities is
presented when averaged by PD and through time (Figure 4),
which highlights the relative importance of a connection to
all species in the community. The biophysical model predicted
many possible connections and few isolated meadows, but
the probability of most connections was low. Connection
probabilities ranged from 0.0001 to 84% (median: 0.03%, mean:
3.9%), and connection probability got weaker as distance between
meadows increased (Figure 5). Dispersal was not limited to
immediately adjacent meadows. While the strongest connections
were made among meadows nearby on the same section of
coastline, there was significant cross-basin movement (Figure 4).
Only 35 of 970 meadows were completely isolated throughout
all simulations and these were primarily located in sheltered
channels or bays. Most of these isolated meadows were in
Johnstone Strait toward the northern end of the model domain
and therefore may not be isolated if the model boundary was
extended. The meadows in the north are technically not part
of the Salish Sea.

In all iterations of the simulation, >99% of particles either
(1) settled on another seagrass meadow, (2) were retained by
the source meadow, (3) stranded on the coastline, (4) or were
selected for mortality. The remainder of active particles after
60 days were at the model boundary at the exit of Juan de Fuca
Strait. This indicates that the Salish Sea operates as a mostly
closed system when considering regular ecological exchange for
nearshore habitat.

Dispersal Potential and Habitat
Connectivity
We used the graph-wide metric, PC, to answer the question of
how overall connectivity of the network changes with dispersal
potential. We compared the percentages of connectivity that
are attributable to interconnectivity, as intraconnectivity (i.e.,
the total seagrass area of the network) is the same for all
dispersal abilities and provides a baseline of connected area
(Figure 6). The relatively small amount of area attributable
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FIGURE 4 | Averaged community connectivity and individual pelagic propagule duration (PD) level connectivity. Connection probability is the percentage of particles
released from the origin meadow that successfully settled on another meadow. The individual PD scenarios are for one period to show differences of connectivity for
one run of the model. The overall connectivity results from averaging the PD scenarios within each period and then averaging across all time periods. Most
connections will decrease in probability because not all connections were common among PDs and time periods. This prevents weighting the network toward higher
dispersing species and it represents community connectivity.

to inter-meadow movement (∼4.0–4.7%) is due to the low
dispersal probabilities connecting most meadows. The total
area made available from inter-meadow movement increased
with PD, as species that were able to drift longer were able
to travel further to reach more meadows, but a limit was
reached at higher values. 1-day of dispersal resulted in the
largest increase in interconnectivity (4.0%), and most habitat

connectivity was achieved by 3 days of dispersal time (4.6%).
After 1 day, increases in PD resulted in only small increases
in habitat availability because the new connections established
were relatively weak (Figure 5). This indicates that there is a
limitation to longer distance dispersal most likely caused by
the constraints of the Salish Sea topography. Lastly, although
differences in connectivity between seasons were minimal
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FIGURE 5 | The relationship of connection probability and distance. Probability decreased with increasing distance. Each point represents a directional connection
between seagrass meadows. Connection probability is the percentage of particles released from the origin meadow that successfully settled on another meadow.
An exponential curve was fitted to the data, y = -0.52 × 0.38, R2 = 0.46. Connections are symbolized by the pelagic propagule duration (PD) interval in which the
connection was made. Generally, longer distance connections are made by species with longer PDs.

(∼0.2–0.4%), connectivity was consistently lower in the winter
than in the spring/summer.

Meadow-Level Connectivity and
Importance
To answer our third question about which meadows contribute
most to connectivity patterns, we used the dPC metric and its
component parts (intra, flux, and connect) to estimate each
meadow’s contribution as well as its functional role in the type
of connectivity it maintains. In the Salish Sea, the meadows
with the highest dPC values were primarily large meadows.
This is expected when the system is connected by mostly low
dispersal probabilities and most of the connectivity is represented
by the intraconnectivity of meadows. However, the flux and
connect values still combined to influence the overall dPC score,
indicating that a meadow’s position in a network can influence its
importance (Figure 7).

With so many meadows in the network and with dispersal
among them on relatively short (days) time scales, our analysis
suggests that the overall connectivity patterns are robust to
excluding any one meadow from the system. A meadow’s connect
value plays the smallest role in a meadow’s importance due to

no one meadow standing out as a sole stepping-stone connecting
groups of meadows (Figure 7D). In addition, the meadows with
the most flux are not necessarily the largest (which would be
expected because they release the most particles), indicating that
dispersal is restricted to some degree (Figure 7C). If there were no
barriers to movement (e.g., asymmetric currents, land barriers),
then flux would scale with area.

Meadow Clustering
Using temporal cluster detection and the relationship between
intra and inter cluster connectivity (Supplementary Figure 2),
we uncovered unique and stable configurations, of which we
present two configurations that may provide ecologically relevant
information (Figure 8). In Figure 8A, the connection probability
required for cluster membership is extremely low (∼10−4). This
results in large clusters with minimal movement between them
(0.4% of total connectivity), indicating where strong barriers to
dispersal may exist.

In Figure 8B, the connection probability required for cluster
membership is high (∼10−1), which creates smaller clusters. The
connectivity of these clusters is more certain, but the boundaries
are more permeable (11.3% of total connectivity). This resolution
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FIGURE 6 | The percent of weighted habitat area (as derived from the PC metric) connected by inter-meadow movement for each PD. For reference, 100%
interconnectivity would occur if the particles from every meadow settled on another meadow. The natural log of the pelagic duration (PD) levels (i.e., 1, 3, 7, 21, and
60 days) is used to display the data in equal intervals. The black line is the mean and the gray shading indicates the 95% confidence interval.

level showed the most variation in average weighted connectivity
lengths between clusters indicating unique dispersal patterns that
may be the result of spatially distinct hydrodynamic/topographic
features that are only evident at this resolution.

In both configurations, a node can be part of up to three
different clusters because the temporal community detection
analysis was set up so that dynamics could vary between three
seasons. In both configurations, many nodes on the boundaries
of their clusters will vary in membership. Even with high barriers
to dispersal (Figure 8A), nodes have membership in more than
1 cluster due to the strong seasonal changes in connectivity. In
Figure 8B, while many of the nodes are part of more than one
cluster, this is mostly due to a cluster being subset into different
parts and not as much from large-scale boundary overlap.

DISCUSSION

Scales of Connectivity Analysis
We posed four questions to characterize seascape patterns of
connectivity from the local to regional scale. This involved
analyzing connectivity at three spatial scales: the entire Salish Sea
(PC metric), individual meadows (dPC metric), and clusters of

meadows (temporal community detection). By using ecologically
relevant metrics, we can interpret the functional role of an
individual seagrass meadow or characterize the entire network
in the context of dispersal ability, thus relating pattern to
process across scales.

The individual and averaged PD results (Figures 4–6) quantify
community-level connectivity and describe how connectivity
increases with PD. The establishment of many connections after
just 1 day of dispersal indicates that the relevant spatial scale for
understanding seagrass community dynamics extends beyond an
individual meadow scale since most species in any given meadow
can likely reach other meadows. In an open system with more
symmetric movement and without mortality, we would expect
PC to continue to increase linearly with PD. However, we find
that most connectivity is established by 3 days. Beyond this level,
the topography of the Salish Sea and mortality restrict longer
distance movement and most of the connectivity established is
through weak connections. Pawlowicz et al. (2019) also found
that the mean time to drifter stranding was 3.5 days and was
not very sensitive to source location. Lastly, at each PD level,
connectivity was consistently lower in the winter than in the
spring/summer. Pawlowicz et al. (2019) estimated that water
traveling from the Fraser River to the Pacific takes 23 days in
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FIGURE 7 | (A) dPC of each node. The change in the PC metric that results from removing a node indicates the importance of that node to maintaining the
connectivity of the network. dPC considers intra meadow movement (dPCintra) and inter meadow movement (dPCflux and dPCconnect). Generally, (B) intra scales
with the area of the meadow, (C) flux indicates how well the meadow is connected to other meadows, (D) and connect places more emphasis on the topological
position of the meadow and its use as a stepping stone. Only meadows greater than 0.001 are shown for flux and connect. The range of values is different for each
component and equal intervals are used to symbolize which nodes stand out for that component.

the summer and 53 days in winter. This is driven by changes in
coastal upwelling and freshwater inflow.

The node level analysis reveals the different roles that
individual seagrass meadows play in maintaining network
connectivity and allows us to rank meadows by their contribution

to connectivity (Figure 7). We can understand our results by
comparing them to two predictions for species with varying
dispersal abilities. (1) A species with a very low dispersal
ability would primarily rely on intrapatch movement and local
retention, whereas a species with a very high dispersal ability
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FIGURE 8 | Two seagrass network community configurations obtained from the temporal community detection analysis. A node can be a part of multiple
communities through time as connectivity changes seasonally, and therefore some of the polygon boundaries overlap. Configurations were obtained by varying the
threshold of connectivity probability required for community membership, and then calculating among community connectivity characteristics to select two
configurations that potentially have ecological significance. (A) A low connectivity threshold results in large communities and indicates where barriers to dispersal
occur between groups of meadows within the Salish Sea. (B) A higher threshold results in smaller communities but a higher certainty of where regular exchange
occurs.

could make a direct connection to every patch and the network
would essentially act as one large patch. Thus, in both scenarios
the largest area patches would be selected as the most important
for low and high dispersing species. (2) At intermediate levels
of dispersal where a network is not uniformly connected, the
topological position of a node (e.g., stepping stone meadows)
becomes more important to maintaining connectivity (Saura and
Rubio, 2010). We found that the Salish Sea is not lacking in
connections, although most connections have a low probability.
Therefore, large meadows are mostly selected as important, but
the spatial position of a meadow is also important, as the flux and
connector values combined to influence importance (Figure 7).
This is to be expected since we are considering a community of
species with a range of dispersal abilities, and stepping-stones
and flux quantity may matter to overall connectivity at the low-
intermediate level of dispersal ability.

Lastly, we identified clusters of nodes where hydrodynamics
and topography create distinct clusters of connectivity. This
allowed us to characterize connectivity at a sub-regional level.
There are limitations to interpreting connectivity at the regional
and local scales depending on the relative scale of analysis.
Therefore, it is useful to also know the sub-regional clustering
of meadows to narrow research and management considerations.

For instance, a field study may need to know where regular
exchange occurs to compare populations inside or outside
of these subregions. In addition, to underpin marine spatial
management, one may be interested in where potential barriers
to dispersal exist to designate planning subregions.

The Biophysical Modeling Approach for
Understanding Ecological Connectivity
We used a multi-species individual-based biophysical modeling
approach to quantify the connectivity of seagrass habitat in
the Salish Sea. By using an IBM, we were able to obtain
spatially explicit movement information, which allowed us to
uncover the actual pathways of movement. By basing our study
on a spatially distinct habitat type, we were able to build
understanding of the seascape-scale dynamics of an invertebrate
community that would otherwise be difficult to track and
characterize if not linked to habitat. In addition, by classifying
the seascape as a series of transfer probabilities, we not only
uncovered direct individual movement, but from this we can
also predict the probabilities of multi-generational stepping-
stone movement among multiple patches (Crandall et al., 2012;
Hock and Mumby, 2015).
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We found the extent of the Salish Sea to be an appropriate
spatial scale for assessing ecologically relevant connectivity with
a biophysical model. The fates of most particles indicate that the
Salish Sea is mostly operating as a closed system. However, a small
percentage of particles would have exited the system at Juan de
Fuca Strait (∼<0.005%). This amount is trivial when considering
population dynamics, but it may be relevant to understanding
connectivity at evolutionary time scales (Treml et al., 2012).
A drift card study found similar patterns (Pawlowicz et al., 2019).
When cards were released from various locations the majority
stranded within the Salish Sea. However, a few cards were found
on the west coast of Vancouver Island and four cards were found
6 months later in Alaska, although mortality and drift time makes
this an extremely unlikely scenario for a real organism.

Seagrass Metacommunity Dynamics
Our study is a necessary first step toward uncovering the
spatially explicit scale that seagrass communities are functionally
connected. Our results complement recent studies of seagrass-
associated invertebrate communities in BC that have investigated
the drivers of observed spatial biodiversity patterns. In the
absence of direct estimates of connectivity that can include
oceanographic currents, these studies have inferred dispersal
limitation from comparisons of community composition over
Euclidean distances. Stark et al. (2020) found low turnover
in community composition over 1,000 km of coastline which
suggests that dispersal is not limiting the presence of species in
seagrass meadows in this region and that most meadows are
likely connected by dispersal at least often enough to rescue
populations from stochastic extinction. While our results show
low probabilities for long distance connections, we found a
large number of possible short-distance connections and few
completely isolated meadows. Therefore, much of the Salish
Sea could be connected through multi-generational stepping-
stone dispersal to connect distant meadows, which could explain
the community composition patterns found in Stark et al.
(2020). Additionally, Stark et al. (2020) found that the subset
of taxa present in all sampled meadows represented multiple
dispersal strategies, and no one strategy dominated cosmopolitan
taxa. Our results are consistent with this finding in that any
species that can disperse as larvae or rafting on debris for at
least 1+ days could connect most of the Salish Sea through
stepping-stone dispersal, and generalists utilizing other habitat
types could potentially accomplish this even more efficiently.
Another study in BC found that a salinity gradient correlated
with abundance patterns of common species (Whippo et al.,
2018). However, this gradient did not explain patterns for all
groups of species, and some meadows in close proximity and
with similar environments had significantly different community
compositions. Whippo et al. (2018) speculated that varying
dispersal rates influenced by directional hydrodynamics could
be structuring these patterns. While our study area did not
extend to Barkley Sound, we did find that connection probability
can vary substantially (0.0001–99%) over short distances (0–
30 km; the maximum distance between meadows in Whippo
et al., 2018), suggesting that not all meadows in close proximity
are equally connected. Our study provides the first estimates

of dispersal for these eelgrass associated organisms that reflect
the water currents of the region, going beyond previous, less
direct inferences about the possible scales of dispersal limitation
in this system (Whippo et al., 2018; Stark et al., 2020).
Together, these studies imply that regional biodiversity processes,
in addition to local habitat conditions, likely play a role in
eelgrass biodiversity.

Our results can be used to generate predictions concerning
how the spatiotemporal variation in species’ dispersal patterns
structure local and regional diversity. These predictions can
then be tested with empirical data from field sampling and
genetic analysis to indicate if other processes besides those
included in the biophysical model are influencing successful
dispersal and settlement. While transport is an important part
of connectivity (Cowen and Sponaugle, 2009), it is still largely
unknown how exchange at the spatial and temporal scale in our
model relate to observed biodiversity patterns. Upon arrival in
a patch, local environmental conditions and biotic interactions
may determine if an individual can actually settle and persist. For
instance, biodiversity patterns in seagrass have been shown to be
structured by salinity (Whippo et al., 2018), water temperature,
seagrass cover, algal biomass (Murphy C. E. et al., 2021), and
metrics of fragmentation (Yeager et al., 2019). In addition,
microsite selection may occur among nearby meadows (e.g.,
within a bay) suggesting that transport alone does not determine
the final location of an individual (Orth, 1992). A necessary
future research direction will be to link transport quantities,
abiotic conditions and biotic interactions using metacommunity
modeling (e.g., Thompson et al., 2020) to understand realized
patterns of seagrass biodiversity.

Lastly, our temporal clustering data can be used when
considering the complexities of the shifting spatial scale of
metacommunity dynamics through time. Due to environmental
variation through time, a static analysis of a metacommunity
may not adequately link processes to observed patterns (Stier
et al., 2019; Jabot et al., 2020). Seasonal changes to abiotic
conditions may alter biotic interactions and reproduction rates
which may influence dispersal rates for select species, thus
changing community composition through time. While the
variation in our clusters is only the result of changing physical
ocean dynamics, they once again provide a first prediction for
how aspects of the abiotic environment may influence the spatial
scale of a metacommunity.

Conservation and Management
Applications
A multi-scale, multi-species approach is necessary for the
effective management of natural resources across a seascape
(Guichard et al., 2004; Pittman, 2018). Dispersal in the
context of seagrass habitat requires us to think beyond
a single-patch approach to conservation and consider that
the true objective may be managing ecological communities
through space and time. Functional connectivity is one of
the primary design principles for marine protected areas
(Aichi Biodiversity Target 11). Reserves that are connected
through functional linkages create redundancy and resilience
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for important ecosystems, communities, and populations. This
ensures that the flow of materials, individuals, and genes is
considered across scales (Carr et al., 2017). In BC, eelgrass
is a conservation priority that has been targeted for inclusion
in the MPA network planning process (Rubidge et al.,
2020; Martone et al., 2021), and our connectivity results
can be included in future planning efforts for designing a
nearshore reserve.

Additional management-related applications of our
biophysical model include predicting the consequences of
disturbance (e.g., climate change, pollution, habitat loss, and
invasive species) on connectivity patterns. Through changes in
temperature, climate change can alter larval development and
mortality rates (O’Connor et al., 2007; Lawlor and Arellano,
2020), thus reducing functional connectivity and potentially
preventing a species from tracking their environment (Gerber
et al., 2014). The parameters in our model can be altered to
predict the potential outcome. Pollution can also create barriers
to dispersal through increased mortality during dispersal (Puritz
and Toonen, 2011), and identifying reductions in connectivity
will be crucial for understanding the broader regional effects
to what may initially seem like a localized problem (Jonsson
et al., 2020). In addition, seagrass worldwide is being lost at an
alarming rate (Waycott et al., 2009; Dunic et al., 2021), and the
consequences of habitat loss for biodiversity will depend on the
specific connectivity characteristics of the remaining habitat
(Thompson et al., 2016). By quantifying the contribution of each
meadow or set of meadows to network connectivity, we can
predict the consequences of losing a seagrass meadow. Lastly, the
degree of direct connectivity and modularity of a network can
determine how fast an invasive species with passive dispersal can
spread. Variance in connectivity and a high degree of clustering
can slow the spread of an invasive (Morel-Journel et al., 2018).
Currently in the Salish Sea, the spread of the invasive European
green crab among seagrass meadows will provide an interesting
case study.

Limitations
The interpretive power of the biophysical model could be
improved by addressing some of its key assumptions and
limitations. (1) We assume passive surface dispersal, and
although we believe surface movement captures successful
transport between coastal shallow areas, the absolute quantities
could be improved with 3D hydrodynamic data and vertical
swimming behavior. This would also address the influence
that vertical migration may have on connectivity (Metaxas and
Saunders, 2009; Snauffer et al., 2014), because diel vertical
movement may alter the distance traveled during pelagic
dispersal (Paris et al., 2007; Daigle et al., 2016). (2) We
assumed that the quality of all seagrass habitat was equal,
and that abundance of individuals scaled with area. Future
iterations of the model could recognize differences in meadow
characteristics and the implications for invertebrate abundance
and reproduction. (3) We used a constant daily mortality rate
due to a lack of data, but other rates and distributions may more
accurately model mortality (e.g., Weibull distribution; Treml
et al., 2015). (4) We did not include larval precompetency

values (the minimum required time of development before larvae
can settle), although the functionality to do so was included
in the model. Data on the precompetency period for most
species do not exist. While this increases the uncertainty of
the timing of settlement on suitable habitat, we found that
most settlement occurred in conjunction with coastal stranding.
Therefore, the spatial position would remain accurate and only
the exact timing of successful settlement would be uncertain.
(5) Due to a lack of species-specific data, we assumed that
rafting on seagrass and algal debris is a primary mode of passive
dispersal for species without a pelagic life-stage. However, for
many of these species the exact mode of transport between
seagrass meadows is largely unknown (Lefcheck et al., 2016b).
(6) The spatial scale of the hydrodynamic model does not
match the scale of the smallest meadows (∼30 × 30 m).
Although velocities are interpolated between points, a higher
resolution model would be beneficial for reducing uncertainty
in these areas. (7) We only modeled potential transport and
settlement. A full measure of connectivity requires an individual
surviving and reproducing in its destination meadow. Our
dispersal results could be combined with population modeling
to predict successful connectivity. (8) Lastly, we modeled
connectivity between just seagrass habitat. Not all the species
we considered are seagrass specialists and some may utilize
other habitat types for movement. We view our results as
providing a baseline of minimum movement required for
seagrass habitat to be connected, but the model could be
improved by including other habitat types in the simulation
(e.g., kelp).

The model is also limited by the difficulty in validating
the results. Physical oceanography studies can partially validate
the accuracy of movement by comparing drifter tracks in
the Salish Sea to simulated data (Pawlowicz et al., 2019).
However, validation of ecological connectivity is more difficult.
Genetic similarity data have been used to validate differences in
connectivity across large scales (Sunday et al., 2014), but at the
spatial scale of the Salish Sea, differences in allele frequencies
may not be sufficient to detect differences in regular ecological
exchange (Waples, 1998; Riginos et al., 2019). Despite the
difficulty in validating our results, we feel we have adequately
accounted for the variation that may be present in the system by
releasing a large number of particles, incorporating a diffusion
value, and averaging across seasons and years.
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Quantifying Patterns in Fish
Assemblages and Habitat Use Along
a Deep Submarine Canyon-Valley
Feature Using a Remotely Operated
Vehicle
Benjamin J. Saunders1* , Ronen Galaiduk2, Karina Inostroza3, Elisabeth M. V. Myers4,
Jordan S. Goetze1,5, Mark Westera3, Luke Twomey6, Denise McCorry7 and
Euan S. Harvey1

1 School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia, 2 Australian Institute of Marine Science,
Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Crawley, WA, Australia, 3 BMT
Commercial Australia, Osborne Park, WA, Australia, 4 New Zealand Institute for Advanced Study, Massey University, Albany,
New Zealand, 5 Department of Biodiversity, Conservation and Attractions, Marine Science Program, Biodiversity
and Conservation Science, Kensington, WA, Australia, 6 Western Australian Marine Science Institution, Crawley, WA,
Australia, 7 Woodside Energy Ltd., Perth, WA, Australia

The aim of this study was to document the composition and distribution of deep-
water fishes associated with a submarine canyon-valley feature. A work-class Remotely
Operated Vehicle (ROV) fitted with stereo-video cameras was used to record fish
abundance and assemblage composition along transects at water depths between
300 and 900 metres. Three areas (A, B, C) were sampled along a submarine canyon-
valley feature on the continental slope of tropical north-western Australia. Water
conductivity/salinity, temperature, and depth were also collected using an ROV mounted
Conductivity Temperature and Depth (CTD) instrument. Multivariate analyses were used
to investigate fish assemblage composition, and species distribution models were fitted
using boosted regression trees. These models were used to generate predictive maps
of the occurrence of four abundant taxa over the survey areas. CTD data identified
three water masses, tropical surface water, South Indian Central Water (centred ∼200 m
depth), and a lower salinity Antarctic Intermediate Water (AAIW) ∼550 m depth. Distinct
fish assemblages were found among areas and between canyon-valley and non-canyon
habitats. The canyon-valley habitats supported more fish and taxa than non-canyon
habitats. The fish assemblages of the deeper location (∼700–900 m, Area A) were
different to that of the shallower locations (∼400–700 m, Areas B and C). Deep-water
habitats were characterised by a Paraliparis (snail fish) species, while shallower habitats
were characterised by the family Macrouridae (rat tails). Species distribution models
highlighted the fine-scale environmental niche associations of the four most abundant
taxa. The survey area had a high diversity of fish taxa and was dominated by the family
Macrouridae. The deepest habitat had a different fish fauna to the shallower areas.
This faunal break can be attributed to the influence of AAIW. ROVs provide a platform
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on which multiple instruments can be mounted and complementary streams of data
collected simultaneously. By surveying fish in situ along transects of defined dimensions
it is possible to produce species distribution models that will facilitate a greater insight
into the ecology of deep-water marine systems.

Keywords: deep-water, habitat, ROV, stereo-video, CTD, species distribution model, submarine canyon, north-
western Australia

INTRODUCTION

The deep sea is the largest environment on earth (Levin et al.,
2001) and plays a pivotal role in cycling nutrients and water
at global scales. It is also a major source of chemosynthetic
primary productivity (Armstrong et al., 2012; Danovaro et al.,
2014; Jobstvogt et al., 2014), and it plays a major role in
climate regulation by absorbing heat from the atmosphere and
sequestering carbon at the seafloor (Armstrong et al., 2012;
Rogers, 2015). A number of commercially important industries
such as fisheries, oil and gas, minerals and pharmaceuticals
operate in deep-sea ecosystems (Armstrong et al., 2012). Deep-
sea environments are characterised by a complex suit of
geomorphic features such as underwater shoals, banks and
canyons (Agapova et al., 1979; Heap and Harris, 2008) which
provide diverse and structurally complex environments for
marine organisms. The ocean is a major source of undocumented
biodiversity, with experts predicting that between one to two-
thirds of all marine species are undescribed, many of which reside
in the deep sea (Appeltans et al., 2012).

Conducting research in deep-sea environments is particularly
challenging due to a lack of natural light, high water pressure,
low temperature, low oxygen levels and the need for large vessels
and advanced technologies to reach these depths. Despite their
remoteness, deep-water habitats are susceptible to numerous
anthropogenic impacts on global and local scales, including
climate change (Hoegh-Guldberg and Bruno, 2010; Rogers,
2015), overfishing (Clark, 2001), plastic pollution (Woodall et al.,
2014), exploration and development activities such as drilling
(Jones, 2009) or accidents such as oil spills (White et al., 2012). It
is therefore important that quantitative data on these ecosystems
is obtained in order to assess their vulnerability and ability to
recover from disturbance, and to mitigate anthropogenic impacts
on these ecosystems.

Much of the research on deep-water fish populations has
utilised destructive sampling methods such as bottom trawling
(Williams et al., 2001; Tolimieri and Anderson, 2010; Cruz-
Acevedo et al., 2018). Trawl surveys are often completed across
large spatial scales and work to aggregate samples, resulting in a
decreased ability to provide fine-scale descriptions of organisms
and their habitat associations (Cappo et al., 2004). A combination
of improved technology and concerns over the use of destructive
sampling techniques, has increased the use of non-destructive,
camera-based surveys. Methods such as landers and baited
remote underwater video (BRUV) are well suited to sampling
deep-water fish assemblages given they are not limited by depth
and use bait to attract fish to the camera system (Priede and
Bagley, 2000; Zintzen et al., 2012; McLean et al., 2015). While

remote video is a cost effective and statistically powerful way of
sampling fish diversity across a gradient of habitats and depths,
it is less suitable for finer scale sampling (<100 s of m) and
only provides relative estimates of abundance due to variation in
the distance a bait plume travels and the attraction of different
fish species to the bait (Cappo et al., 2004; Watson et al., 2010;
Galaiduk et al., 2017b). Technologies involved with the use of
remote operated vehicles (ROVs) have also developed rapidly,
allowing time efficient data collection at a fine-spatial resolution,
across a wide range of depths (Jones, 2009; Sward et al., 2019;
McLean et al., 2020). They also provide a platform on which
multiple scientific instruments can be mounted, to facilitate
multi-purpose surveys.

Observations made using ROVs provide contextual
information about fishes that relate aspects of their population
structure and function to habitat, which traditional trawl
methods would otherwise overlook (Adams et al., 1995;
Macreadie et al., 2018). ROVs have been used to study the
impact of deep-water fishing (Puig et al., 2012; Bo et al., 2014),
assess benthic associations of fishes with oil and gas structures
(Hudson et al., 2005; Jones, 2009; Bond et al., 2018; McLean
et al., 2018b; Schramm et al., 2020a, 2021), provide behavioural
observations (Lorance and Trenkel, 2006; Gates et al., 2017), and
to collect fragile specimens (Macreadie et al., 2018). Stereo-video,
the use of two cameras to facilitate accurate estimates of the
length of fish (Harvey et al., 2001) and to standardise a sampling
area (Harvey et al., 2004), has also developed rapidly and it is
now possible to attach a stereo-video system to an ROV and
complete transect based fauna surveys (Schramm et al., 2020b).
In addition, GPS position overlay can provide information
on the precise location of observations. These complementary
data streams are well suited to a spatial analysis framework
such as species distribution modelling (SDMs), which allows
the fitted models to be extrapolated into un-sampled locations
using benthic environmental predictors derived from acoustic
surveys. These models can help us to understand the ecology of
these understudied species and map their environmental niche
associations for future studies and management applications.

Although many studies have examined the biodiversity
patterns of shallow water fishes, comparatively little is known
about how these patterns change with increasing depth. It is
common to observe a decrease in species richness of fishes
with increasing depth (Moranta et al., 1998; Lorance et al.,
2002; Tolimieri, 2007; Wellington et al., 2018), though this
pattern can be reversed depending on the scale of depth
examined (e.g., McClatchie et al., 1997; Mindel et al., 2016).
Our study area was a canyon-valley feature located on the
continental slope in the northwest shelf region of Western
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Australia. The study area traversed two Key Ecological Features
(KEFs): (1) Canyons linking the Cuvier Abyssal Plain and the
Cape Range Peninsula, and (2) Continental Slope Demersal
Fish Communities (DSEWPaC, 2012). KEFs are elements of
the Australian Commonwealth marine environment that are
considered to be of regional importance for either a region’s
biodiversity or its ecosystem function and integrity (DSEWPaC,
2012). Previous deep water research in Northwest Australia
has identified high fish species and family level richness when
compared to assemblages across similar depth ranges elsewhere
in the world (Williams et al., 2001), and in a pattern similar to
previous studies fish species richness declined with increasing
depth from 78 to 825 m (McLean et al., 2018b). Our study
set out to assess fish distribution and diversity, to better define
these patterns and to add to our understanding of the deep-
water ecology of the Northwest system, and the canyon and
fish community KEFs.

To increase efficiency in the field, we used a multi-task
stereo-ROV platform to survey fish assemblages in the northwest
of Australia between the depths of 420–870 m. To the best
of our knowledge, there have been no published studies that
combine stereo-video technology with ROV transects to assess
fish assemblages in deeper continental slope waters. Using a
stereo-ROV we collected data on habitat, fish assemblages and
water quality simultaneously. Our objective was to describe the
abundance, composition and size of deep-water fish assemblages
in three areas along a canyon-valley feature. We also fitted SDMs
to document environmental niche associations of the four most
abundant fish taxa and assessed the applicability of this approach
to improve our understanding of the spatial ecology of deep-
sea fishes.

MATERIALS AND METHODS

Site Description
The study was conducted on the continental slope in the Greater
Enfield region, located approximately 45 km from the North
West Cape of Western Australia (Figure 1) at depths between
420 and 870 m. Three areas (A, B, C) ranging from deepest (A,
870 m maximum) to shallowest (C, 420 m minimum depth) were
surveyed along a continuous submarine canyon-valley feature.
The feature is not included in the National Submarine Canyon
Database, and in comparison to those listed in the database
is a relatively small tributary to the north of the Cape Range
Canyon KEF. Area A was the deepest site (between 790 and
870 m) and had a wide (250–500 m) and topographically shallow
(20–50 m) valley feature. The valley feature at Area B was
narrower (600–250 m wide), topographically shallow (50–80 m)
and traversed water depths of between 590 and 690 m. Area
C was the shallowest survey site, in water depths ranging from
420 to 560 m, and where the canyon was more pronounced,
being the narrowest of the three canyons and topographically
the deepest (250–300 m wide, 200–250 m deep). The survey
encompassed flat seabed and canyon-valley features as identified
a priori from multi-beam bathymetry and derivatives. Following
the criteria described in Huang et al. (2018) at Area C the

feature is a shelf incising canyon, which is narrow, steep walled
and deep. However, at areas B and C the feature is wider and
topographically shallower, so at these areas it has transitioned
into a valley on the continental slope (Huang et al., 2018). All
three areas surveyed were predominantly soft sediment bottom,
with sparse higher rugosity hard bottom features. For simplicity
when describing statistical analysis, the term “canyon” is used
to describe both the canyon and valley sections of the feature
throughout the methods and results sections.

Survey Method
The study was conducted over three consecutive days from
31 October to 2 November 2015. The survey was conducted
using a Centurion QX 312 work class ROV fitted with
stereo-video cameras to conduct transects with a standardised
width of 5 m. A single downward facing video camera was
used to simultaneously record benthic habitat. Water quality
data (conductivity/salinity, temperature, and depth; CTD) was
collected with a Sea-Bird Electronics (SBE) 19plus V2 SeaCAT
Profiler CTD, mounted to the ROV platform. The ROV operated
at approximately 1.5 m above the seabed and at a forward speed
of approximately 0.5 knots. The total transect length covered
by the ROV at Area A was approximately 11,330 m, Area B
3,470 m, and C 5,990 m.

The stereo-video system was made up of two Sony HDR
CX550 handycams within custom built underwater housings with
a depth rating to 2,000 m. The stereo-cameras were mounted
onto a rigid base bar with a separation of 700 mm between the
cameras and were inwardly converged at an angle of 8◦, following
the principles outlined by Harvey and Shortis (1995) and Goetze
et al. (2019). This configuration provided an overlapping field
of view from approximately 0.5 m in front of the cameras and
accurate length measurements out to 8 m (Harvey et al., 2010).
Stereo-video footage was recorded at high definition with a
1,920 × 1,080 resolution. A second stereo-video system was also
fitted as redundancy in case of failure of the primary system.
The stereo-video systems were mounted as low as possible onto
the ROV (Figure 2), and camera systems were interfaced with
and powered from the ROV systems. The ROV communication
channels allowed the systems to be remotely controlled, and a
live standard definition video stream from each camera was fed
to the surface with live position, depth, date, and time overlays.
To maximise illumination of the field of view, a combination
of high output Light Emitting Diode (LED) and High Intensity
Displacement (HID) lighting was used. These were placed as
high as possible above the camera system on the ROV to reduce
backscatter from suspended particles in the water column.

Identification of Taxa, Three Dimensional
Positioning and Length Measurements
Video footage was analysed using EventMeasure Stereo software
(SeaGIS, 2014). Identifications of fish were made by one
experienced researcher based upon morphological features. In
some cases, identification to species level was not possible as
identifying features could not be distinguished on the video
footage. In such cases, a precautionary approach was taken and
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FIGURE 1 | Context map illustrating the geographical location of the Greater Enfield survey area. Inset map illustrating the transect layout at each of the three survey
Areas along a canyon-valley feature. Submarine canyons that are included in the Australian national submarine canyon database (Huang et al., 2014) are highlighted
in cross-hatch (Source: Geoscience Australia).

taxa were identified to the lowest taxonomic resolution possible.
Distinct taxa were given a unique number, which facilitated the
assessment of diversity.

The calibrated stereo-video system (see Boutros et al., 2015)
allowed accurate and precise measurements of the fork length
(tip of nose to the middle caudal fin rays) of fishes, and the
identification of the three dimensional position of each fish in
relation to the ROV. To ensure fish were within the transect
area (a 5 m belt), length measurements further than 2.5 m to
either side or greater than 7 m in front of the ROV (based
on the minimum visibility), were automatically rejected by the
EventMeasure software.

Data Presentation and Statistical
Analysis
The collection of data over transects of known position and
dimensions allowed the use of two statistical approaches: Firstly, a
multivariate analysis of variance approach was used to investigate
differences in the fish assemblage structure between the three
areas, and between canyon and non-canyon habitats. Secondly, a
species distribution modelling approach was used to investigate

environmental drivers of the distribution of taxa that were
characteristic of each area, and to identify one taxa that was
common and widely distributed over all three areas. These
models were used to generate continuous predictive maps of the
occurrence of these taxa over the survey areas.

Approach 1, Assemblage Patterns
Definition of canyon and non-canyon sections
Using bathymetry and slope data and the known depth profile
of the ROV track log, transects were separated into two habitat
types: canyon and non-canyon. Canyon habitats were defined as
benthic habitat with increased depth, slope and structure, while
the flat seabed surrounding the feature was classified as non-
canyon habitat. Where a transect crossed over a canyon-valley
habitat, the depth was noted outside of the canyon on both
sides and the maximum depth inside the canyon-valley feature
was also recorded (depths labelled A, B, and C, respectively,
on Supplementary Figure 1.1). Taking a conservative approach
and to avoid areas of transition between the two habitat types,
a buffer section between canyon-valley and non-canyon was
excluded from analyses. This buffer was calculated as 10% of the
difference between the maximum canyon-valley depth and the
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FIGURE 2 | Front view of the QX312 ROV showing the position of the stereo-video camera systems and the lighting used during the survey. CTD was mounted to
the rear of the ROV.

depths outside the canyon-valley feature (C - A and C - B on
Supplementary Figure 1.1). Video footage from the remaining
depth of the canyon-valley feature (orange line in Supplementary
Figure 1.1) was used to determine fish assemblage structure
inside canyon-valley habitats.

Within each surveyed area (A, B, C), every time the transect
crossed a canyon-valley feature, the video footage within the
canyon-valley habitat was treated as a single replicate. As such,
Area A had six replicate transect sections within canyon-valley
habitat (Supplementary Figure 1.2), while Areas B and C both
had five replicate transect sections within canyon-valley habitat
(Supplementary Figure 1.2). To ensure comparability between
habitats, similar replication occurred for non-canyon habitats
such that Area A had six replicate transect sections and Area
B had five. However, much of the area surveyed at Area C was
steeply sloping and only two sections could be classified as non-
canyon (Supplementary Figure 1.2; Supplementary Table 1.1).

Standardisation of data for assemblage analysis
To ensure that transect sections were statistically comparable,
transect length and densities of fishes underwent three levels
of standardisation prior to statistical analyses: Firstly, sections

of transect were removed when the seabed was not within the
field of view (Supplementary Figure 1.2). Secondly, the length of
transects between canyon-valley and non-canyon habitats were
standardised to one another. To achieve this, the total length of
transect within each habitat was determined within each area,
and then averaged. A note was taken of the habitat type with the
shortest average transect length at each area. This shorter average
length was then used to randomly select replicate segments of
transects of that length in the other habitat in that area. If a
transect section was shorter than the average length, its original
length was used (Supplementary Table 1.1). Lastly, measures of
fish assemblages from each transect section (as defined above)
were standardised to a 250 m length by 5 m wide transect, or
1,250 m2. This transect length was used to increase the number
of observations per transect for deep-sea fishes that are relatively
sparse compared to shallower water fishes, but is similar to the
length used other studies (Watson and Ormond, 1994; Newman
et al., 1997; Westera et al., 2003). This allowed for fish assemblages
within canyon-valley features of different sizes to be compared
to each other and to non-canyon habitats. These standardised
transects formed the replicates of the “canyon” and “non-canyon”
levels within the factor “Habitats” in the statistical analysis design.
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The fish assemblage abundance data and the total number of
fish for each transect were standardised in this way. However,
the number of taxa for each transect was not standardised to
a 1,250 m2 transect area. This was to avoid artificially inflating
the number of taxa observed in any transect. The influence of
varying transect length on the number of taxa was assessed by
including transect length as a covariate in the initial analysis.
The interactions between transect length and the factors of Area
and Habitat were not significant (all p > 0.20). Therefore we
considered that transect length was not a confounding variable
for tests of the number of taxa, and was not included in further
statistical analysis.

Assemblage analysis approach
To investigate whether there were differences in the fish
assemblage composition between the areas and habitats, a two-
factor statistical design was used. The two factors tested were
Areas (fixed factor, orthogonal; Area A vs. Area B vs. Area
C) and Habitats (fixed factor, orthogonal; canyon vs. non-
canyon). The standardised fish assemblage composition data
was analysed using PERMANOVA (non-parametric analysis
of variance; Anderson et al., 2008) add-in to the PRIMER
v6 statistical software (Clarke and Gorley, 2006). The data
were investigated for homogeneity of variance for the factors
Habitat and Area using PERMDISP (permutational analysis
of multivariate dispersions, Anderson, 2006). No taxa were
numerically dominant and data was not transformed as the data
met the assumption of homogeneity of variance. The multivariate
fish assemblage composition was tested using PERMANOVA
based upon a Bray Curtis similarity matrix. Number of taxa
and the total number of fish were analysed separately using
a univariate PERMANOVA based on a Euclidean distance
resemblance matrix (Anderson, 2006; Clarke et al., 2006a,b).
Where a significant difference (p < 0.05) was detected for the
factor Area, post hoc tests were conducted to determine which of
the Areas were significantly different.

To illustrate the multivariate patterns in the fish assemblage,
a Principle Coordinate Ordination (PCO) was presented with
vectors overlaid (Anderson et al., 2008). The vectors illustrate
the strength and direction of the spearman rank correlation
between the density of the taxa and the PCO axes. Taxa with a
correlation stronger than 0.4 to either PCO axes were plotted.
Results of the univariate analyses (number of taxa and total
number of fish) were presented using bar graphs of means and
standard error (SE).

Approach 2, Species Distribution Models
We developed individual Species Distribution Models (SDMs)
for four fish taxa that were observed most frequently in the
ROV videos. These models can help understand the ecology
of these understudied taxa and map their environmental niche
associations for future studies. The SDMs were developed using
boosted regression trees (BRT) and “gbm” package applied in
R software (R Core Team, 2014). BRT is a machine learning
algorithm for additive numerical optimisation of the loss
function to iteratively increase the predictive performance of
the final model while gradually emphasising poorly modelled
observations in the existing collection of trees (Elith et al., 2006).

In the last decade, it has gained popularity within the marine
spatial community because it is insensitive to outliers, missing
data, or monotone transformations, and can be easily used
with any type of predictors such as numeric, binary, categorical
(Pittman et al., 2007; Oyafuso et al., 2017; Stamoulis et al., 2018).
Fitted values in the final model are computed as the sum of
all trees multiplied by the learning rate and are much more
stable and accurate than those from a single decision tree model
(Elith et al., 2006).

The occurrence data for each of the four taxa was extracted
from direct observations of each occurrence from the underwater
video recording along the ROV tracks and were using in BRT
fitting as records of taxa presence. As BRT models also require a
sample of observations to characterise the available environment
to discriminate used from available habitat (pseudo-absences,
Boyce et al., 2002; Phillips et al., 2009; Franklin, 2010) we
derived pseudo-absences for all taxa by randomly sampling
all the available data points along the ROV tracks where the
study taxa were not recorded. Because presence records for
all study taxa were low, we created a final ratio of 1:1 of the
observed presences and pseudo-absences of each study taxa
along the tracks to effectively estimate unbiased parameters
for rare populations (Fielding and Bell, 1997; Franklin, 2010;
Galaiduk et al., 2017b). The final datasets were partitioned into
training (75%) and testing (25%) data for individual modelled
taxa and tested for spatial autocorrelation between observations.
The explanatory variables were a set of 9 functionally relevant
environmental predictors with Spearman’s rank correlation
between them <0.7 which is considered to be acceptable for
spatial models (Moore et al., 2011; Galaiduk et al., 2017a;
Table 1) that describe the structure, complexity and type of
benthic habitat derived from the bathymetry data using Spatial
Analyst toolkit in ArcGIS 10.3. The 10th variable, “Habitat type,”
was categorical, and described occurrence of benthic biota and
signs of bioturbation. This was derived through unsupervised
classification procedures in ERDAS using direct observation
along the ROV transects and post processed with the Spatial
Analyst toolkit in ArcGIS (Table 1).

To determine the effect of environmental predictors and their
importance on the probability of occurrence of four fish taxa, we
fitted BRT models on training datasets for these taxa following
the procedures outlined in Elith et al. (2008). Optimal model
settings were chosen using 10-fold cross-validation by optimising
learning rate, bagging rate and tree complexity (Leathwick et al.,
2006). The optimal model was considered a model that produced
the lowest cross-validated residual deviance with at least 1,000
fitted trees. Selected models were then simplified to remove
less informative predictors which achieved more parsimonious
models without degradation of model fits (Elith et al., 2008). The
importance of predictor variables in the simplified BRT models
was determined using the variable importance score based on
the improvements of all splits associated with a given variable
across all trees when this variable was added in the model
(Leathwick et al., 2006).

To assess the predictive performance, and discrimination and
accuracy of fitted models, a set of common evaluation metrics
of predictive performance was calculated on the test datasets.
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TABLE 1 | Summary of the environmental predictors extracted from the hydroacoustic survey used for fitting boosted regression trees.

Environmental
predictor

Description

Depth Elevation in metres relative to the Australian Height Datum.

Eastness Trigonometric transformation of a circular azimuthal direction of the slope [sin(aspect)]. Values close to 1 represent
east-facing slope, close to −1 if the aspect is westward.

Northness Trigonometric transformation of a circular azimuthal direction of the slope [cos(aspect)]. Values close to 1 represent
north-facing slope, close to −1 if the aspect is southward.

Slope First derivative of elevation. Average change in elevation, steepness of the terrain, % rise.

Plan curvature Secondary derivative of elevation. Measure of concave/convexity perpendicular to the slope.

Profile curvature Secondary derivative of elevation. Measure of concave/convexity parallel to the slope.

Curvature Combined index of profile (parallel to the slope) and plan (perpendicular to the slope) curvature relative to the
analysis window.

Range 5, 50 Maximum minus the minimum elevation in the local neighbourhood (fine and coarse scale local relief). Calculated at
radii of 5 and 50 cells.

Habitat A spatial polygons layer with 3 categories: presence of biota/presence of biota and bioturbation/bare seafloor.

We used Receiver Operating Characteristic (ROC) and the area
under the curve (AUC) as graphical means to test the sensitivity
(true positive rate) and specificity (false positive rate) of a model
output (Fielding and Bell, 1997). The AUC is a measure of the
ability of a model to discriminate between a presence or absence
observation (Elith et al., 2006). In addition, we calculated a
threshold dependent Kappa statistic which is commonly used in
ecological studies with presence-absence data and provides an
index between 0 and 1 of how much a model predicted actual
classes versus a guess (Cohen, 1960). A probability threshold
that balances sensitivity and specificity was chosen as it provides
a measure of how well the model predicts both presences and
absences (Liu et al., 2005). After evaluation, the final models
for individual taxa were predicted on 4 × 4 m grid using all
available observations.

RESULTS

Oceanographic Situation
The CTD profiles revealed a steady decline in water temperature
with depth across all Areas, from ∼25◦C at the surface to ∼6◦C at
the deepest point (∼800 m) (Figure 3A). Salinity increased from
∼35 ppt at the surface to a maximum of ∼35.5 ppt at ∼150–
200 m, and then decreased to a minimum of ∼34.6 ppt at depths
greater than ∼500 m across all three surveyed Areas (Figure 3A).

The relationship between temperature and salinity (T-S plot;
Figure 3B) at the deepest site (Area A) was used to evaluate
the localised water masses, with reference to recent evaluations
of deep-water hydrography off the Gascoyne region (Woo and
Pattiaratchi, 2008). Based on the analyses of Woo and Pattiaratchi
(2008), three water masses were identified. Firstly, a lower
salinity tropical surface water (TSW) with a temperature range
of ∼22–25◦C was found in the upper ∼100 m of water column.
Secondly, a higher salinity South Indian Central Water (SICW)
with a temperature range of 12–22◦C was centred on ∼200 m
depth. Lastly, a lower salinity Antarctic Intermediate Water
(AAIW) with a temperature range of ∼6–9◦C was identified
∼550 m depth.

Near-bottom time series profile from Area A (depths ∼800–
875 m) showed a temperature range of ∼5.7–6.3◦C and relatively
uniform salinity (∼34.6; Figure 4). At Area B, near-bottom
(∼560–680 m) temperatures ranged ∼6.6–7.8◦C and salinity was
relatively uniform (∼34.6; Figure 4). The shallowest transect
(∼350–560 m) in Area C showed a temperature range of ∼6.7–
13◦C and a salinity range of ∼34.6–35.1 (Figure 4). In general,
the coldest, most dense water was found as the ROV traversed
the deepest portions of the canyon-valley features.

General Description of Fish Assemblages
Across the three areas surveyed, the total transect length was
∼20,790 m giving a total transect area of 103,950 m2 or 10.4
hectares. Along the entire transect, a total of 610 individual fish
were recorded belonging to 80 unique taxa and 41 families. A full
list of the taxa recorded by area, the total number of each taxa
and their mean lengths are shown in Supplementary Table 1.2.
Many of the taxa and individual fish recorded were small bodied
(<30 cm fork length; Supplementary Table 1.2), however, a large
63 cm morid cod (Moridae sp3), was recorded, along with a
number of larger bodied elasmobranchs. A 1.3 m whaler shark
(Carcharhinus sp1) was the largest elasmobranch identified. The
western gulper shark (Centrophorus westraliensis) had the largest
mean fork length (86 ± 2.5 cm SE). The indigo legskate (Sinobatis
caerulea) was the second largest taxa recorded on average at
74 ± 11.3 cm disc length (excluding the tail). One large 71 cm
Chimaera Hydrolagus lemures (blackfin ghost shark) was also
measured (Supplementary Table 1.2).

Approach 1, Assemblage Analysis
For total number of fish, a significant difference was found (at
α = 0.05) between Areas and between Habitats, but there was
no interaction between the two factors (Table 2). On average,
the greatest number of fish per transect (1,250 m2) was recorded
at Area B (Figure 5; Area B vs. Area A t(18) = 2.56, p = 0.003,
Area B vs. Area C t(12) = 2.20, p = 0.04). The total number
of fish recorded per transect were similar at Areas A and C
(Figure 5, t(14) = 1.59, p = 0.134). On average, a significantly
greater number of fish were recorded in canyon-valley Habitats
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FIGURE 3 | (A) Vertical profiles of temperature and salinity across all Areas, and (B) temperature-salinity measured on the downcast at Area A.

compared to non-canyon Habitats (Table 2; Figure 5). Canyon-
valley Habitats were also found to support a significantly greater
number of taxa on average than non-canyon Habitats (Table 2;
Figure 5). No significant difference was found in number of taxa
between the survey Areas (Table 2), although the composition of
the assemblages did vary.

Significant differences in the multivariate fish assemblage
composition were found between both Areas and Habitats, but
no interaction between these factors (Table 2). Post hoc tests on
the factor Area revealed that all Areas differed to one another
(all t > 1.14, all p < 0.03). The multivariate PCO showed
three distinct groupings (Figure 6). The PCO shows transects
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FIGURE 4 | Time series of near-bottom data collected along Area A transect
(A), Area B transect (B), and Area C transect (C).

at Area A clustered to the left of the plot were correlated to
unidentified anguilliform (eel-like) fishes, and Paraliparis sp1 (a
snail fish), as both fish were abundant in this area. In comparison,
Paraliparis sp1 made up only 2% of the individuals recorded at
Area B and were absent at Area C (Supplementary Table 1.2).

TABLE 2 | PERMANOVA test results for the statistical analysis of the fish
assemblage composition between Areas (A, B, C) and Habitat (canyon,
non-canyon).

df SS MS Pseudo-F P(perm) Permutations

Number of fish

Area 2 496.90 248.45 5.482 0.016 9941

Habitat 1 431.56 431.56 9.522 0.008 9866

Area × Habitat 2 31.84 15.92 0.351 0.753 9958

Residual 22 997.07 45.32

Total 27 2033.40

Number of taxa

Area 2 24.52 12.26 1.654 0.211 9951

Habitat 1 55.42 55.42 7.478 0.012 9810

Area × Habitat 2 16.67 8.33 1.125 0.340 9956

Residual 22 163.03 7.41

Total 27 282.11

Fish assemblage composition

Area 2 21340.00 10670.00 3.618 < 0.001 9915

Habitat 1 5793.40 5793.40 1.964 0.023 9932

Area × Habitat 2 6921.50 3460.70 1.173 0.250 9870

Residual 22 64888.00 2949.40

Total 27 99509.00

Statistically significant P values (p < 0.05) are highlighted in bold.

Samples to the right side of the PCO plot are arranged into two
clusters (Figure 6). The bottom grouping is characterised by four
Macrouridae (rat tail) taxa which were characteristic of Areas
B and C. The grouping toward the upper right side of the plot
is characterised by a mixed grouping of taxa. Chaunax sp1 (a
coffin fish) were more abundant at both Areas B and C than at
Area A. Ariosoma sp1 (a conger eel), Coelorinchus sp1 (a rat tail),
and Moridae sp2 (a morid cod) were recorded only at Area B
(Supplementary Table 1.2). One sample from Area C is grouped
to the left of the plot with Area A samples. This transect contained
a single fish, an unidentified anguilliform fish.

Approach 2, Species Distribution Models
Model Performance
Boosted regression trees models provided “good” model
predictions (AUC = 0.80–0.89) for two taxa and “poor”
predictions (AUC = 0.60–0.69; Table 3) for the other two
taxa according to the criteria of Hosmer et al. (2013).
Similar trends in the performance of fitted models were
evident for all the other evaluation metrics with sensitivity,
specificity and the total proportion of correct predictions
being highest for the Macrouridae sp5 and Paraliparis sp1.
These performance measures were further corroborated
by Kappa statistics with models for Macrouridae sp2 and
Macrouridae sp4 performing “fair” (Kappa = 0.21–0.40) and
models developed for Macrouridae sp5 and Paraliparis sp1
providing “substantial” (Kappa = 0.61–0.80; Table 3) predictions
(Landis and Koch, 1977).

Habitat Associations
Depth had the greatest influence on the probability of occurrence
of all taxa (Figure 7). For Macrouridae sp2, Macrouridae sp5 and
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FIGURE 5 | The mean ± SE of (A) number of fish recorded (1,250 m-2) at
each Area, (B) the number of fish recorded (1,250 m-2) in each Habitat, and
(C) number of taxa recorded (transect−1) in each Habitat.

Paraliparis sp1, higher probability of occurrence was associated
with water depth over 600 m. In contrast, Macrouridae sp4 was
predicted to be most likely to occur at depths between 500 and
600 m (Figure 7). Various indices of topographic complexity
of the relief (plan, profile, curvature and range 50) were
also important in influencing the probability of occurrence of
Macrouridae sp2, Macrouridae sp4 and Macrouridae sp5. Higher
probability of occurrence of Macrouridae sp2 and Macrouridae
sp4 was predicted on the seabed surrounding the canyon-valley
slopes, whereas Macrouridae sp5 was predicted to be deeper and
associated with both flat areas of low structural complexity, and
within the feature on canyon-valley slopes and the canyon floor
(Figures 7, 8). A higher probability of occurrence of Paraliparis
sp1 was predicted on deep non-canyon habitats (Figures 7, 8).

Spatial Patterns of Distributions
A high probability of occurrence of Macrouridae sp2, Paraliparis
sp1 and Macrouridae sp5 was predicted in the deepest area A
(Figure 8; Supplementary Material 2, 3, 5). A high probability
of occurrence of Macrouridae sp5 was predicted in Area A, and
also over the deeper areas (>500 m) and within the canyon-
valley of Area B. In contrast, higher probability of occurrence of
Macrouridae sp2 and Macrouridae sp4 in area B was predicted for
regions outside the canyon-valley and on its slopes, respectively
(Figure 8). Macrouridae sp4 was also predicted to occur within
the deeper canyon-valley of Area C and the shallower regions of
Area A, reflecting its predicted relationship with depth (Figure 8;
Supplementary Material 4).

DISCUSSION

Deep-water environments and subsea canyons support diverse
fish assemblages which are different to nearby shallow water
assemblages (Williams et al., 2001; Fernandez-Arcaya et al.,
2017). Here, we combined novel survey methods and advanced
analytical approaches to document patterns of deep-water
fish assemblage composition and spatial distributions. We
also showed that subsea canyon environments support fish
assemblages characterised by a higher number of taxa and
overall number of individuals when compared to the areas
outside the canyon, which likely reflects the heterogeneity
of habitat and oceanographic conditions within the canyon
(Klinck, 1996; McClain and Barry, 2010). A combination of
non-extractive survey methods and SDMs provided a useful
tool for improving our understanding of fine-scale spatial
distribution patterns of deep-water fishes and the associated
environmental drivers.

The survey area had a high diversity of taxa for a deep-sea
environment with 80 taxa of fish from 41 families recorded, which
is consistent with previous observations of fish diversity in this
region (Williams et al., 1996, 2001). The family Macrouridae (rat
tails) dominated the fish assemblage across the survey area, which
is also supported by earlier research (Williams et al., 1996, 2001).
We recorded 11 Macrouridae taxa whereas Williams et al. (1996)
reported 16 species of Macrouridae using trawls within the same
latitudinal and depth range (21–22◦S, 300–900 m depth). There
was a consistent pattern between areas in that the canyon-valley
features supported a greater number of fish and a higher diversity
of taxa than non-canyon habitat. This is likely due to variation
in the habitat structure of the canyon-valley feature (McClain
and Barry, 2010). At Areas A and B, the canyon-valley habitat
was wide (250–500 m) and topographically shallow (20–50 m) in
comparison to Area C which was a more typical canyon feature.
Submarine canyon habitats can support higher abundances of
benthic feeding fishes than nearby continental shelf slopes (De
Leo et al., 2010). Greater prey availability in sediment infauna
and epifauna may support the increased abundance of fishes,
particularly Macrouridae, which were characteristic of canyon-
valley habitats (De Leo et al., 2010).

A different fauna characterised the deeper Area A compared
to Areas B and C. This was likely to be due to the influence of
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FIGURE 6 | Principle component ordination (PCO) illustrating the variation between transects by Area. The overlaid vectors illustrate the strength and the direction of
the correlation to the PCO axes of influential fish species.

TABLE 3 | Summary of model predictive performance for each fish species.

Model Threshold AUC Omission rate Sensitivity Specificity Proportion correct Kappa

Macrouridae sp2 0.46 0.66 0.38 0.62 0.7 0.65 0.28

Macrouridae sp4 0.57 0.69 0.33 0.67 0.67 0.67 0.32

Macrouridae sp2 0.49 0.84 0.17 0.83 0.8 0.82 0.63

Paraliparis sp1 0.56 0.89 0.1 0.89 0.87 0.88 0.74

Presences and absences for assessing sensitivity and specificity were determined using a threshold that balances sensitivity and specificity.

the AAIW deep water current at area A. Submarine canyons are
important in linking continental slope and shelf areas and water
masses. Canyon features change nutrient dynamics through
increased upwelling and interactions with alongshore currents
(Klinck, 1996), and are important for supplying nutrients to
deep ocean through down-canyon transport (Fernandez-Arcaya
et al., 2017). Area A was differentiated from Areas B and C
by a higher abundance of the species group of unidentified
anguilliform fishes and also a higher abundance of Paraliparis
sp1 (a snail fish). Species from the genus Paraliparis generally
inhabit the deep sea, and have been recorded in this region
at depths of 1,030 m (Williams et al., 1996), and 2,821 m
in New Zealand (Roberts et al., 2015). A similar pattern of
a faunal break between fish assemblages on the upper and
the mid-slope was reported by Last et al. (2011), which can
be attributed to the influence of the AAIW (Williams et al.,
2001). This deep-water current has a significant influence
on the distribution of fish communities in the south-west
region between the Great Australian Bight and north of the

Ningaloo Reef where its core is known to fluctuate with
depth from approximately 875 m at 27.50◦S to 520 m around
21.50◦S (Williams et al., 1996, 2001; Woo and Pattiaratchi,
2008). A full assessment of the influence of this current on
fish assemblages within our study area would require further
specifically targetted research.

Our study contributes additional information to
understanding fish communities and their relationship to
benthic habitats in two KEFs for the Australian northwest
marine region; Canyons linking the Cuvier Abyssal Plain and
the Cape Range Peninsula and Continental Slope Demersal
Fish Communities (DSEWPaC, 2012). Deep-sea KEFs are often
data-poor and their definition is often based on limited data
(Falkner et al., 2009). The Canyons linking the Cuvier Abyssal
Plain and the Cape Range Peninsula are representative features
of the region but are not unique in a wider Australian context
(Falkner et al., 2009). In terms of the Continental Slope Demersal
Fish Communities KEF, Last et al. (2005) recorded 500 species
making it the most biodiverse slope region in Australia. In
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FIGURE 7 | Partial dependence plots for Boosted Regression Tree (BRT) analyses relating species occurrence to the environmental predictors. The relative
importance of each variable is shown in parentheses on the x-axis.

comparison, we recorded 80 taxa, but our study focus was on a
tributary to a canyon system, and not the entire continental slope
assessed by Last et al. (2005).

We elucidated the distribution patterns of the four most
abundant taxa within the assemblages using SDMs. SDMs are a
useful tool for exploring habitat associations of the deep-sea fishes
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FIGURE 8 | Predicted probability of occurrence for each species across 3 Areas as a result of Boosted Regression Trees analysis. Higher probability of occurrence is
in red. For high resolution images please see Supplementary Materials 2 through 5.

because they provide insights into the ecology of these rarely
observed taxa and data can be extrapolated into unsurveyed
areas. Often depth and habitat complexity drive environmental
niche associations of demersal fishes (Monk et al., 2010; Moore
et al., 2013; Galaiduk et al., 2018). This was observed in our study,
where depth was the most important environmental predictor
for all modelled taxa. Our models identified Paraliparis sp1 to be
primarily associated with water depth over 800 m. In contrast,
the three other taxa were predicted to occur at water depth
greater than 500 m with Macrouridae sp4 predicted to mainly
occupy depths between 500 and 600 m. Habitat complexity
calculated at different scales was also an important predictor
of habitat associations of the modelled taxa, suggesting that
these taxa use various sized nooks and crevices (as estimated
from the bathymetry derivatives) for shelter and protection
from predation (Kelley et al., 2006). Macrouridae sp2 and
Macrouridae sp4 were predicted to occupy the canyon slopes,
whereas Macrouridae sp5 was predicted to be more associated
with areas within the canyon and the canyon floor, suggesting
within-family partitioning of the available environmental niche
space to avoid resource overlap (Ross, 1986).

Biological data collection in deep-sea environments is
expensive and labour-intensive. Large vessels capable of
deploying multiple data collection platforms (e.g., ROVs, CTD

probes, sediment corers, and camera systems) through the water
column to the seabed, often to depths of 1,000’s of metres, are
required (McLean et al., 2020). In this study, we streamlined
the collection of multiple data types simultaneously (stereo-
video imagery of fishes, benthic habitat imagery, and CTD) by
deploying multiple instruments on a single ROV platform. This
efficient configuration is recommended for future environmental
studies of both shallow and deep seas as it minimises the
time required to collect data. The methods are particularly
applicable to baseline studies that support environmental impact
assessments for offshore facilities (e.g., oil and gas) and inform
the planning and management of marine reserves.

Remotely Operated Vehicle operated surveys are an industry-
supported method with potential for large data collection in
remote marine environments rarely accessible to researchers
(McLean et al., 2017, 2018a; Macreadie et al., 2018). ROVs
present a platform which can be fitted with multiple tools to
collect a variety of environmental data from challenging remote
environments (McLean et al., 2017, 2018a; Macreadie et al.,
2018). Previously, sampling has relied on extractive trawls, or
more recently deep-water baited cameras (Priede and Bagley,
2000; Jamieson et al., 2009; Marouchos et al., 2011; Wellington
et al., 2021). These techniques are better suited to describing
broader-scale spatial patterns (100 s of m) than the fine-scale
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sampling (<10 s of m) using the transect and SDM approach
described in this study. The ROV transect approach allows for
the in situ observation of fishes (Macreadie et al., 2018), and
the investigation of fine-scale fish-habitat relationships through
SDMs. It also eliminates the bias associated with the use of
baited video systems (i.e., the bait plume effect; see Galaiduk
et al. (2017b) and Monk et al. (2012) for a comparison between
methods and applications in SDMs).

The ROV, however, has its own biases associated with noise,
and the bright lighting required to collect quality video footage
in dark environments which may affect the behaviour of mobile
fauna (Ryer et al., 2009). We did not observe adverse behavioural
reactions or fleeing, however, it is possible that certain taxa
may simply avoid the ROV entirely and were thus not recorded
(Linley et al., 2013). It is likely that avoidance by mobile fauna
is greatest over soft sediment habitats such as those sampled
during this study (Schramm et al., 2020a). These artefacts and
avoidance may have implications for SDMs, however, they were
consistent throughout the survey and should not affect statistical
comparisons between Habitats or Areas. Traditional extractive
methods for sampling deep-sea environments have biases and
limitations relating to the gear and the spatial resolution of
samples obtained. Previous studies from the region used a
large netted paired-warp trawl rig (Williams et al., 1996, 2001)
that may have under-sampled small species (Williams et al.,
2001). Smaller meshed nets used in this region have caught a
different suite of fishes, including more Ophidiidae (cusk eels)
and Congridae (conger eels) (Williams et al., 2001). Many of
the fishes measured during our ROV survey were between 10
and 30 cm in length, and so may have been under represented
in previous trawl surveys. Similarly, in our stereo-video ROV
survey the positive identification of many small bodied (<10 cm)
individuals was difficult because morphological features were
indistinct. Therefore, both stereo-video ROV and trawl methods
may under sample the diversity of small bodied fishes.

CONCLUSION

The submarine canyon-valley feature sampled here supports a
characteristically rich fish assemblage with a greater number
of taxa and individuals than areas outside the feature. This
canyon-valley feature is a tributary to the larger Cape Range
canyon system which may play an ecological role in linking

the Cuvier Abyssal Plain and the Cape Range Peninsula
(Huang et al., 2018). Here, we present a novel application of ROV
stereo-video transects in deep water, demonstrating the utility of
this technique for facilitating fine-scale fish species distribution
modelling that has the potential to feed into spatial management
of deeper offshore waters.
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The Extent of Seasonally Suitable
Habitats May Limit Forage Fish
Production in a Temperate Estuary
Mary C. Fabrizio1* , Troy D. Tuckey1, Aaron J. Bever2 and Michael L. MacWilliams2

1 Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States,
2 Anchor QEA, LLC, San Francisco, CA, United States

The sustained production of sufficient forage is critical to advancing ecosystem-based
management, yet factors that affect local abundances and habitat conditions necessary
to support aggregate forage production remain largely unexplored. We quantified
suitable habitat in the Chesapeake Bay and its tidal tributaries for four key forage fishes:
juvenile spotted hake Urophycis regia, juvenile spot Leiostomus xanthurus, juvenile
weakfish Cynoscion regalis, and bay anchovy Anchoa mitchilli. We used information
from monthly fisheries surveys from 2000 to 2016 coupled with hindcasts from a
spatially interpolated model of dissolved oxygen and a 3-D hydrodynamic model of
the Chesapeake Bay to identify influential covariates and construct habitat suitability
models for each species. Suitable habitat conditions resulted from a complex interplay
between water quality and geophysical properties of the environment and varied
among species. Habitat suitability indices ranging between 0 (poor) and 1 (superior)
were used to estimate seasonal and annual extents of suitable habitats. Seasonal
variations in suitable habitat extents in Chesapeake Bay, which were more pronounced
than annual variations during 2000–2016, reflected the phenology of estuarine use
by these species. Areas near shorelines served as suitable habitats in spring for
juvenile spot and in summer for juvenile weakfish, indicating the importance of these
shallow areas for production. Tributaries were more suitable for bay anchovy in spring
than during other seasons. The relative baywide abundances of juvenile spot and
bay anchovy were significantly related to the extent of suitable habitats in summer
and winter, respectively, indicating that Chesapeake Bay habitats may be limiting for
these species. In contrast, the relative baywide abundances of juvenile weakfish and
juvenile spotted hake varied independently of the spatial extent of suitable habitats. In
an ecosystem-based approach, areas that persistently provide suitable conditions for
forage species such as shoreline and tributary habitats may be targeted for protection
or restoration, thereby promoting sufficient production of forage for predators. Further,
quantitative habitat targets or spatial thresholds may be developed for habitat-limited
species using estimates of the minimum habitat area required to produce a desired
abundance or biomass; such targets or thresholds may serve as spatial reference points
for management.

Keywords: habitat suitability, abundance, Chesapeake Bay, weakfish, spot, bay anchovy, spotted hake, boosted
regression trees
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INTRODUCTION

Trophic interactions among aquatic predators and prey are rarely
incorporated in stock assessments (Skern-Mauritzen et al., 2016),
yet quantification of such interactions is critical to advancing
ecosystem-based management. In the mid-Atlantic, predators
such as summer flounder Paralichthys dentatus, striped bass
Morone saxatilis, and bluefish Pomatomus saltatrix use estuarine
and offshore habitats to support their critical life functions,
and their seasonal migrations and trophic interactions maintain
connectivity between coastal and offshore ecosystems (Scharf
et al., 2004; Latour et al., 2008; Overton et al., 2008). Although
feeding habits of many predators are well studied, the distribution
and abundance of prey species that comprise the forage base
have received less attention (but see Arbeider et al., 2019;
Woodland et al., 2021). Estuaries that support relatively high
forage production offer spatially extensive habitat conditions
that sustain recruitment, growth, and survival; conversely, forage
production may be low in estuaries where habitat conditions are
degraded. The relationship between population abundance and
the extent of suitable habitats has been reported for many species
(Holbrook et al., 2000; Parsons et al., 2014; Sundblad et al., 2014;
Weber et al., 2017), but has not been widely explored for forage
species. Such a relationship, however, may reveal conditions
under which habitats limit forage production.

In this study, we focused on forage fishes in Chesapeake
Bay because of the availability of temporally and spatially rich
data for these taxa and because ecosystem-based approaches
to management are currently pursued in the region (Atlantic
States Marine Fisheries Commission [ASMFC], 2018; Freitag
et al., 2018; Leslie, 2018). The health and sustainability of
iconic fisheries in this system depend on sufficient production
and availability of forage as well as effective management and
protection from anthropogenic degradation of habitats. With
the exception of Woodland et al. (2021), habitat conditions
necessary to support forage production in this system are not
well understood. Our objectives were to (1) quantify suitable
habitats for several forage fishes in Chesapeake Bay, and (2)
assess the relationship between the extent of suitable habitats
and annual abundance of these species. We considered four
numerically dominant forage fishes (Tuckey and Fabrizio, 2020):
juvenile (age 0) spotted hake Urophycis regia, juvenile spot
Leiostomus xanthurus, juvenile weakfish Cynoscion regalis and
bay anchovy Anchoa mitchilli. Small-bodied fishes such as
these are important components of the diets of resident and
transient predators in Chesapeake Bay (Buchheister and Latour,
2011, 2015). Because we selected taxonomically and ecologically
disparate species, we expected that suitable habitats would be
defined by habitat features that differed among species. If the
extent of suitable habitats limits the production of forage fishes
in Chesapeake Bay, then we would expect annual patterns in
forage fish abundances to exhibit patterns similar to those for
suitable habitats.

Static features such as substrate type are often used to
characterize fish habitats because such features affect distribution
and habitat use (Day et al., 1989; Fabrizio et al., 2013).
Dynamic environmental conditions such as salinity, temperature,

dissolved oxygen (DO), and depth also contribute to variations
in the distribution and abundance of estuarine and coastal
species. In river-dominated estuaries, river flow affects salinity
and alters the extent of suitable habitats for juvenile fishes
(Kostecki et al., 2010), many of which may serve as forage
for predators. Temperature is a key determinant of habitat
suitability for ectotherms because temperature governs critical
processes such as metabolic rates, movement, and growth
(Little et al., 2020). Low DO conditions are believed to limit
suitable habitats for fishes, especially during summer when
some estuarine and coastal systems exhibit prolonged seasonal
hypoxia. In particular, abundance of fish is low in hypoxic
(<2 mg O2/l) waters (Craig and Crowder, 2005; Tyler and
Targett, 2007; Zhang et al., 2009; Buchheister et al., 2013; Glaspie
et al., 2019), suggesting that individuals actively avoid hypoxic
habitats. Other habitat features such as bottom-current velocities,
water column stability, and salinity stratification contribute to
hydrodynamic complexity of estuarine systems and as such, may
shape variations in the spatial distribution and abundance of
estuarine organisms (Manderson et al., 2011; Jenkins et al., 2015;
Bever et al., 2016). Indeed, hydrodynamic models can be used
to estimate habitat volume for estuarine species when coupled
with information on physiological tolerances and bioenergetics
requirements (e.g., Schlenger et al., 2013). Hydrodynamic models
have also been used to assess the effect of sea-level rise on
fishes that depend on marsh habitats for juvenile growth and
survival (Fulford et al., 2014), to assess the extent of suitable
habitats for fishes in coastal environments (e.g., Le Pape et al.,
2003; Bever et al., 2016; MacWilliams et al., 2016), and to
evaluate potential impacts of climate change on extent of habitats
(Crear et al., 2020a,b).

Fish-habitat relationships are best derived from observations
across broad spatial scales and long time periods (Gray et al.,
2011; Lecours et al., 2015), thus, we quantified these relationships
for each of the four species in Chesapeake Bay and its subestuaries
during the 17-year period, 2000–2016. We developed an
integrated modeling framework to couple information on the
abundance of forage fishes with environmental conditions
estimated from two models of Chesapeake Bay, rather than
considering only those habitat features measured at the time
of fish sampling. The primary data were monthly catches
from fishery-independent surveys of forage fishes, hindcasts
of dynamic environmental conditions (covariates describing
salinity, temperature, current speed, depth, and DO conditions),
and estimates of static habitat conditions (sediment composition
and distance to shore). We applied a data-driven approach,
boosted regression tree analysis (Elith et al., 2008), to select
a subset of habitat covariates that were most influential in
explaining fish relative abundance. Non-parametric suitability
models using the histogram approach (Tanaka and Chen,
2015; Guan et al., 2016) were then constructed using the
selected influential environmental covariates. Higher suitability is
ascribed to conditions in which greater abundances of organisms
are observed, and as such, habitat suitability models are process-
based models. We used spatial distributions of the environmental
covariates to examine seasonal habitat suitability throughout
Chesapeake Bay and tributaries during 2000–2016, because most
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of the species we studied are seasonal migrants; all of the species
studied use the Chesapeake Bay as a nursery, but the nursery
function is temporally restricted. Finally, we assessed the role
of habitat area in driving forage fish abundance across the
17 years of study.

MATERIALS AND METHODS

Estimation of Relative Abundance
Geo-referenced catches of forage fishes were obtained from two
bottom-trawl surveys: the Virginia Institute of Marine Science
Juvenile Fish Trawl Survey (hereafter, Virginia survey) and the

Maryland Department of Natural Resources Blue Crab Summer
Trawl Survey (hereafter, Maryland survey). The sampling domain
of the Virginia survey includes waters greater than 1.2 m
throughout Virginia tidal waters of the Chesapeake Bay and
its major tributaries (Figure 1). Each month, from January to
December, the Virginia survey sampled fishes from 111 stations
selected from a random stratified survey design (Supplementary
Table 1). A 30′ semi-balloon bottom trawl was deployed for 5 min
at each site; protocol details are available in Tuckey and Fabrizio
(2016). The Maryland survey is primarily a shallow-water survey
(mean depth = 2.1 m; 99.7% of sites < 5 m deep) that samples
fishes from fixed sites in tributaries and sounds of the Maryland
portion of the Chesapeake Bay (Figure 1). A 16′ semi-balloon

FIGURE 1 | Sites (filled circles) sampled to assess relative abundance of forage fishes in Chesapeake Bay, 2000–2016. Sites in Virginia waters were sampled
monthly from a random stratified survey design; sites depicted in the figure are from a representative month and year (October 2020). Fixed sites were sampled
monthly between May and October in Maryland waters of Chesapeake Bay.
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otter trawl is towed for 6 min at each site. In 2000 and 2001,
sampling was conducted monthly from May through October
at 37 sites in the Chester River, Choptank River, Eastern Bay,
Patuxent River, Pocomoke Sound, and Tangier Sound. In 2002
and thereafter, 16 additional sites were sampled in Fishing Bay,
the Little Choptank River, and the Nanticoke River (57 sites total;
Figure 1 and Supplementary Table 1). No sampling occurred in
Maryland waters in May 2006.

For each trawl tow, we expressed the relative index of
abundance of juvenile (age-0) spotted hake, juvenile spot, juvenile
weakfish, and all life stages of bay anchovy as the catch per
unit effort (CPUE), where effort was estimated by the area
swept by the net. Area swept was calculated by multiplying the
geodetic distance of the tow by the effective net width, estimated
as 55% of the headline spread based on gear tests performed
in a flume tank. To relate forage fish abundance to suitable
habitat areas and to ensure that CPUE best represented relative
abundance, we restricted consideration of CPUE measures to
those seasons in which individuals were available to the gear:
spring (March, April, May) for juvenile spotted hake; summer
(June, July, August) and fall (September, October, November)
for juvenile spot and juvenile weakfish; and spring, summer, fall,
and winter (December, January, February) for bay anchovy. Note
that no sampling was completed in Maryland in winter, thus the
bay anchovy CPUE index in winter was based on catches from
Virginia waters only.

A Bayesian hierarchical method (Conn, 2010) was used to
estimate baywide relative abundance for each species using the
survey CPUEs. This method uses the coefficient of variation to
weight the individual data sources and extracts a single annual
index to represent the pattern exhibited by the multiple indices
under the assumption that component indices are subject to
process error (from variation in catchability, spatial distribution,
etc.) and sampling error (i.e., within-survey variance; Conn,
2010). Annual baywide indices of relative abundance and
their associated 95% credible intervals were estimated for the
season(s) of interest for each forage species. We used WinBugs
accessed through an R script (R Core Team, 2019) to perform
these calculations.

Habitat Covariates
Static Habitat Covariates
Two static variables, distance to shore (km) and percent fine
sediment, were determined for locations at the midpoint of each
trawl tow (Table 1). Fringing marsh and other shallow water
areas may provide resources that enhance survival and growth
of forage fish (e.g., refuge from predators and provisioning of
food; Manderson et al., 2004; França et al., 2009; Boutin and
Targett, 2019), and as such, distance to shore may influence fish
habitat use. The shortest distance to the nearest shoreline was
calculated, and in some cases, the nearest shoreline was an in-
Bay island (Figure 2A). Seabed percent fine sediment, a key
feature of fish habitat (Kritzer et al., 2016), was determined from
a baywide surface grain-size distribution map (Figure 2B) based
on observed surface seabed grain size (Moncure and Nichols,
1968; Byrne et al., 1983; Kerhin et al., 1988; Velinsky et al., 1994;
Maryland Geological Survey, 1996; Reid et al., 2005).

TABLE 1 | Static and dynamic habitat features considered for optimization of
boosted regression trees (BRTs) for forage fishes in Chesapeake Bay, 2010–2012.

Type Habitat covariate Units

Static Sediment composition (percent fine sediment) %

Static Distance to shore m

Dynamic Water depth m

Dynamic Bottom dissolved oxygen mg O2/l

Dynamic Tidal-averaged depth-averaged salinity PSU

Dynamic Tidal-averaged surface salinity PSU

Dynamic Tidal-averaged bottom salinity PSU

Dynamic Tidal-averaged salinity stratification PSU

Dynamic Tidal-averaged depth-averaged temperature ◦C

Dynamic Tidal-averaged bottom temperature ◦C

Dynamic Tidal-averaged surface temperature ◦C

Dynamic Tidal-averaged temperature stratification ◦C

Dynamic Tidal-averaged depth-averaged current speed m/s

Dynamic Maximum depth-averaged current speed m/s

Dynamic Tidal-averaged surface current 1 m below surface m/s

Dynamic Tidal-averaged bottom current, 1 m above bottom m/s

Dynamic Tidal-averaged vertical stratification in current speed m/s

Dynamic Tidal-averaged horizontal gradient in current speed m/s/m

Dynamic Percent of time bottom waters < 10◦C %

Dynamic Percent of time bottom waters between 10◦ and 20◦C %

Dynamic Percent of time bottom waters > 20◦C %

Dynamic Percent of time bottom waters < 10 PSU %

Dynamic Percent of time bottom waters between 10 and 20 PSU %

Dynamic Percent of time bottom waters > 20 PSU %

With the exception of the six ‘percent time’ covariates, the same covariates were
used to fit the BRTs to the 2000–2016 observations.

Bottom-Water Dissolved Oxygen
Dissolved oxygen concentrations (mg O2/l) were hindcast for
bottom waters of the Chesapeake Bay and its tributaries using the
methods of Du and Shen (2014) modified to include observations
from monthly fisheries surveys, quarter-hourly records from
Maryland data buoys (Maryland Eyes on the Bay), quarter-hourly
records from the Virginia Estuarine and Coastal Observing
System (VECOS), and monthly to bi-monthly surveys from the
Chesapeake Bay Program’s Water Quality Monitoring Program.
Monthly mean bottom DO conditions were calculated for each
observed location in each year; we used these values at a 1-km2

resolution to represent bottom DO conditions and then spatially
interpolated values for grid cells that did not have estimated
DO values. Using a 5-km search radius, we assigned bottom DO
values to each 1-km2 grid cell in one of two ways: if only a single
grid cell in the search radius had an estimated DO value, that
value was used; if more than one grid cell in the search radius had
estimated DO values, then inverse distance weighting was used to
obtain a value for the grid cell in question. The search expanded
to 10 km in cases where no bottom DO values were available
within 5 km. Daily interpolated bottom DO values were then
estimated for 2000 to 2016 by linear regression through time
in each grid cell using the monthly bottom DO values. Bottom
DO observations from a subset of fisheries surveys (2010–2012;
n = 4,604) used to develop the model revealed that at least
98% of hindcasts were reliable, that is, values in the normoxic
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FIGURE 2 | Distance to shoreline (km) (A) and sediment composition (% fines) (B) of the seabed in Chesapeake Bay.

range (DO > 5 mg O2/l) were hindcast at 99% of locations
where normoxic conditions were observed, and values indicating
hypoxia (DO < 2 mg O2/l) were hindcast at 98.4% of locations
with observed hypoxic conditions.

Dynamic Habitat Covariates
Estimates of temperature, salinity, depth, and current speed were
obtained from a three-dimensional model of the Chesapeake
Bay developed using the UnTRIM hydrodynamic model (Casulli
and Zanolli, 2002, 2005). This model takes advantage of the
grid flexibility allowed in an unstructured mesh by gradually
varying grid cell sizes, beginning with large grid cells in the
Atlantic Ocean and transitioning to finer grid resolution in the
smaller channels of the tributaries and the northern portion
of the estuary (Figure 3). This approach allows for the model
to accurately capture the bathymetry and shoreline at multiple
spatial scales while maintaining suitable simulation times using
a single high-end workstation computer. Further description of
the inputs for the hydrodynamic model are provided in the
Supplementary Material, along with a summary of the model

validation to the data most relevant to this study. This validation
demonstrated that the model accurately estimated temperature
and salinity in the Bay and major tributaries under a wide range of
environmental conditions (Supplementary Figures 1, 2); model
accuracy was similar to that reported for a suite of Chesapeake
Bay models evaluated by Irby et al. (2016).

A large number of environmental variables were initially
considered for use in developing fish habitat suitability models
to eliminate a priori specification of environmental conditions
that may be important for describing abundance and distribution
of forage fishes. Twenty-two dynamic environmental variables
were calculated, along with sediment composition and distance
to shore (Table 1). Environmental covariates were extracted from
the hydrodynamic model and the DO model at the time and
location of the individual tows (midpoint of the tow) to allow us
to couple fisheries observations with hindcasts of environmental
covariates. We considered hindcasts of environmental covariates
at multiple temporal and spatial scales because such measures
may provide more accurate predictions of habitat suitability
(Lecours et al., 2015). Dynamic variables were extracted from
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FIGURE 3 | Model domain and boundary conditions for the 3-dimensional UnTRIM Chesapeake Bay model used to hindcast dynamic environmental conditions for
forage fishes, 2000–2016.

the hydrodynamic model as instantaneous values at the time of
each tow (i.e., the time of capture), and as the tidal-averaged
(24.8 h) values in the tidal cycle preceding the capture event.
Conditions preceding capture may influence the distribution of
fishes (e.g., Jaonalison et al., 2020), and preliminary investigations
with boosted regression trees suggested that models that
considered tidal-averaged conditions performed better than
those with comparable instantaneous values; henceforth, we
considered tidal-averaged conditions. Depth-averaged conditions
were obtained for salinity, temperature, and current speed
(Table 1). Tidal-averaged current speeds provide a metric of
flow which may be used by some species to aid movements
within the estuary (Brady and Targett, 2013). We also considered
covariates describing near-bed conditions (1 m above the seabed),
and maximum depth-averaged current speed. Because vertical

or horizontal gradients in current speed may act to aggregate
food near complex currents or fronts, we also considered
these covariates. The vertical gradient in the current speed
was calculated as the difference between the current speed one
meter above the bottom and one meter below the surface;
the horizontal gradient in the current speed was calculated
as the maximum difference in current speed between adjacent
model grid cells divided by the distance between the model
grid cells.

Although habitat conditions near the seabed may be most
relevant for understanding fish-habitat relationships for demersal
species such as spotted hake, habitat use may also reflect overall
conditions in the water-column because even demersal fishes
are not confined to near-bed habitats. For example, salinity
stratification may influence the supply of food or DO to the
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near-bed region sampled by the trawl, and may be an indicator
of forage fish occurrence. Thus, we used covariates describing
salinity and temperature stratification, that were calculated as
the difference between instantaneous surface (top 1 m) and
near-bed (1 m above seabed) conditions. In addition, because
favorable habitats may be characterized by a range of conditions,
we considered covariates based on the percent of time that near-
bed conditions fell within a given range, for example, the percent
of time that salinity exceeded 20 PSU. The percent of time
within a given salinity or temperature range was calculated over
the same time interval used for tidal averaging. We identified
three salinity ranges (<10 PSU; 10–20 PSU; >20 PSU), and
three temperature ranges (<10◦C; 10–20◦C; >20◦C) consistent
with observed patterns in fish communities in Chesapeake Bay
(Tuckey and Fabrizio, personal observation).

Selection of Influential Habitat
Covariates
Boosted regression trees (BRTs) were used to select a subset
of influential habitat covariates that explained variations in the
nominal catch rates of fish (Breiman et al., 1984). The regression
tree algorithm uses recursive partitioning to explain variation
in the response (nominal catch rates), that is, observations are
repeatedly split into increasingly homogeneous groups based on
threshold values of the predictors (habitat covariates; Breiman
et al., 1984). Cross-validation was used to assess model fit
and to ensure that the resultant trees were applicable to
out-of-sample observations; cross-validation was achieved by
fitting the tree to a subset of the data (the training set)
and fit was assessed using the remaining data (the test set).
Furthermore, the performance of regression tree algorithms
may be improved with ensemble methods such as boosting,
which aggregates multiple trees to enhance the stability of the
resultant model (Knudby et al., 2010). We used a Poisson
response to model the number of fish captured per tow with
the gbm.step procedure (R package ‘dismo,’ Elith et al., 2008;
Elith and Leathwick, 2017; R Core Team, 2019). Catches from
the Virginia survey were used without modification (numbers
per 5-min tow), but catches from the Maryland survey were
expressed in 5-min-tow equivalencies rounded to the nearest
integer. All habitat covariates were standardized to permit direct
comparison of covariate importance (Schielzeth, 2010).

Optimization of Boosted Regression Tree Models
Prior to fitting the BRTs to the 2000–2016 observations,
we optimized the model-fitting parameters of the BRTs by
exploring the combination of parameter values that produced
the lowest deviance of the cross-validated data sets (Elith
et al., 2008; Cameron et al., 2014). To determine optimal
parameters values for the BRTs and because optimization is
computationally intensive, we used a subset of observations
(2010–2012; n = 4,604 tows) that represented notably different
environmental conditions (2011 was a wet year compared with
2010) as well as large differences in the observed relative
abundance of forage species. BRT parameters were optimized
separately for spotted hake, spot, weakfish, and bay anchovy
using the gbm.step procedure in R (dismo package, R Core Team,

2019). Model fitting failed to produce at least 1,000 trees for bay
anchovy using all of the 2010-2012 observations, so we optimized
BRT parameters using data from each season separately. For
bay anchovy in fall, BRT modeling yielded less than 1,000
trees and was thus unreliable (Elith et al., 2008) and not
considered further.

Optimization focused on selection of the learning rate and
tree complexity, two model-fitting parameters assigned by the
analyst. The learning rate determines how quickly the model
approximates the observed data (Miller et al., 2016), and the
tree complexity represents the level of interaction possible among
the predictors. The third parameter selected by the analyst
is the bag fraction, or the proportion of observations used
to train the model. Observations in the training subset are
selected randomly without replacement for each model run
and the remaining observations are used for cross-validation.
Preliminary investigations suggested that a bag fraction of 0.75
was reasonable. Using this bag fraction, we fitted a series
of trees to a range of learning rates (lr = 0.0005, 0.0050,
0.0075, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0750) and tree
complexities (tc = 1, 3, 5, 10), similar to Cameron et al.
(2014). For each species, we considered only those BRTs for
which at least 1,000 trees were fit and selected parameter values
that reduced the cross-validated deviance (Elith et al., 2008).
We identified the optimal tree complexity for each species by
graphically examining the change in cross-validated deviance
across learning rates. Next, using the selected tree complexity,
we identified the learning rate that produced the minimum
cross-validated deviance.

To select influential habitat covariates, we fitted BRT models
for each species for the period 2000–2016 (Ntotal = 25,333 tows;
NVirginia = 20,326 tows, NMaryland = 5,007 tows) using a bag
fraction of 0.75 and values of the optimized species-specific
learning rates and tree complexities determined by optimization.
Optimized model-fitting parameters (lr and tc) varied among
species: juvenile spotted hake lr = 0.01 and tc = 10; juvenile
spot lr = 0.02 and tc = 10; juvenile weakfish lr = 0.005 and
tc = 10; and bay anchovy (spring, summer, winter) lr = 0.02
and tc = 3. In addition, optimization runs indicated that the six
covariates describing percent time were least informative, so these
were not considered further. Therefore, a suite of 18 covariates
(16 dynamic, 2 static; Table 1) were considered for the BRT
models. Estimates of variable influence and scree plots produced
by the gbm.step procedure (R Core Team, 2019) allowed us to
identify and select a subset of influential covariates for each
species, and for bay anchovy for each season (spring, summer,
winter). Care was taken to consider only those covariates that
did not exhibit high correlations with other influential covariates,
that is, only those covariates with r2 < 0.8 were considered in
the subsequent calculation of habitat suitability indices (HSIs).
This approach avoids overweighting of the HSI for a particular
habitat condition.

Habitat Suitability Models
Habitat suitability models were used to assign habitat suitability
scores and to quantify the extent of suitable habitat for
forage fishes throughout the Chesapeake Bay and its tributaries
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from 2000 to 2016 for each season. Habitat suitability
models were estimated with the non-parametric histogram
approach because this approach makes no assumption about
the nature of the relationship between environmental features
and fish abundance (Guan et al., 2016). Briefly, thresholds of
environmental conditions that resulted in a gradient of suitability
from least suitable (0) to most suitable (1) were identified for each
influential habitat covariate for each species. The HSI, calculated
as the mean of two or more covariate-specific suitability indices
(SIs), also ranged between 0 and 1 to ease interpretation.

Suitability Indices
We estimated SIs for the range of observed values for each of
the influential habitat covariates identified by the species-specific
BRTs. We used the Tanaka and Chen (2015) approach to estimate
SIs but applied a disjoint clustering method to identify ‘natural
clusters’ of the habitat covariates for the histogram approach;
we implemented this method with the FastClus procedure in
SAS/STAT R©. Tanaka and Chen (2015) fixed the number of
individual bins to 10 for each habitat covariate, but we found
that this resulted in bins with few observations (<5) or narrowly
defined environmental limits (e.g., bottom temperature between
16.2 and 16.3◦C). Thus, we allowed the number of bins to vary
(but not exceed 10), and restricted cluster sizes to a minimum
of 40 observations; in all cases, the smallest cluster included at
least 54 observations, allowing a reasonable description of average
abundance (and hence, relative suitability) in each cluster. SIs
were estimated for each cluster and habitat covariate using

SIij =
CPUEij − CPUEi,min

CPUEi,max − CPUEi,min

where SIij is the suitability index for cluster j of habitat covariate
i, CPUEij is the average catch (fish/km2) observed in cluster j
of habitat covariate i, and CPUEi,min and CPUEi,max are the
minimum and maximum average catches observed across all
clusters of habitat covariate i (Tian et al., 2009; Chang et al., 2012).
This formulation allows the SIs to range between 0 and 1.0, with
1.0 indicating the most suitable condition and 0 the least. More
explicitly, each covariate cluster, defined by a range of values, was
associated with an SI score.

Habitat Suitability Indices
Habitat suitability indices were calculated by expressing the HSI
as an average of multiple covariate-specific SIs; we restricted
the number of covariates in the HSI to those that were most
influential as determined by BRTs (Table 2). The HSI for a given
set of covariates may be expressed as an arithmetic or geometric
mean of the individual SIs (e.g., Brown et al., 2000; Tanaka and
Chen, 2015). A single averaging approach to estimate the HSIs,
however, may not be appropriate for all species (e.g., Yu et al.,
2019), so we explored both models of the mean. The arithmetic
mean model for the HSI is

HSIam =
SI1 + SI2 + SI3 + · · · SIp

p

where SI1 is the suitability index for habitat covariate 1, SI2 is the
suitability index for covariate 2, and so forth; and p is the number

of covariates considered (e.g., Hess and Bay, 2000). The geometric
mean model for the HSI is

HSIgm = p
√

SI1 × SI2 × SI3 × · · · SIp

(e.g., Layher and Maughan, 1985; Lauver et al., 2002; Tian
et al., 2009). The geometric mean index applies the concept of
a ‘limiting factor’ whereby a low SI for a single covariate results in
a low HSIgm (Zajac et al., 2015). HSI calculations were performed
in SAS R© or Matlab (MathWorks Inc.).

Habitat suitability index models were calibrated by using
fish catches at each tow location and graphically examining
the relationship between the HSIs and the average relative
abundance for each species-season combination (e.g., Tanaka
and Chen, 2015). We used the 5% trimmed mean as a
measure of the average because trimmed means are insensitive
to the occasional extreme catches observed for some species.
For a properly calibrated HSI, the mean relative abundance
of forage fish is expected to increase as habitat conditions
approach optimal for the species, that is, as the HSI increases
from 0 to 1.0.

Verification of Modeling Approach
We verified the use of BRTs for selection of covariates and
evaluated the reliability of the two averaging formulations of
HSI for forage fishes using bootstrap resampling (Efron and
Tibshirani, 1986). About 70% of the fisheries observations
(N = 18,121) comprised the training data set, and the remaining
∼30% (N = 7,212) was used as the test (or verification) data set.
The SurveySelect procedure in SAS/STAT R© was implemented to
randomly select samples without replacement using a stratified
design to ensure representation across years, seasons, and
geographic areas (Maryland and Virginia). Training and test
data sets were constructed separately for each species, and bay
anchovy sets were constructed separately for spring, summer,
and winter. For each training data set, we fitted BRTs using the
same bag fraction and species-specific lr and tc as before; we
then selected influential covariates, and modeled the HSIam and
HSIgm. Note that the BRTs for each data set may have indicated a
different number of influential covariates, as well as a different
suite of influential covariates, than what was identified by the
original BRT model fitted to observations from 25,333 tows. The
resulting HSI models were applied to each of the test data sets
to estimate the predicted HSIs. Due to computational intensity,
10 cross-validation data sets were generated (consistent with
Pennino et al., 2020). The expected performance of the HSIam
and HSIgm for each species across all seasons was evaluated
with the root mean square error (RMSE), calculated as the
standard deviation of the residuals (where residuals represent
the difference between the predicted HSI and observed HSI for
each location where fish were sampled). For bay anchovy, we
estimated RMSEs for spring, summer, and winter individually.
We used a paired t-test implemented in the glm procedure
in SAS R© to assess differences in mean RMSEs, and retained
the HSI formulation that exhibited the lower mean RMSE for
further analyses.
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TABLE 2 | Summary of key results for juvenile spotted hake, juvenile spot, juvenile weakfish, and bay anchovy from Chesapeake Bay, 2000–2016; only those seasons
during which fish were available to the gear are shown.

Influential habitat covariates Season Mean extent of suitable
habitat, km2 (SE) [range]

Change in extent
of suitable habitat
from 2000 to 2016

Relationship between
abundance and extent

of suitable habitat?

Juvenile spotted hake

• Water depth
• Tidal-averaged bottom temperature
• Tidal-averaged salinity vertical stratification
• Maximum depth-averaged current speed

Spring 2,046.0
(60.9)

[1,512.4–2,471.5]

No change No

Juvenile spot

• Distance to shore
• Water depth
• Tidal-averaged temperature stratification
• Bottom DO
• Tidal-averaged current speed horizontal gradient

Summer 4,650.7
(113.6)

[4,107.6–5,670.0]

No change Yes

Fall 775.4
(54.2)

[491.7–1,310.8]

No change No

Juvenile weakfish

• Distance to shore
• Water depth
• Tidal-averaged bottom temperature
• Tidal-averaged current speed stratification

Summer 4,394.8
(186.0)

[3,080.5–5,559.7]

Increase No

Fall 2,914.0
(59.7)

[2,457.9–3,271.5]

Increase No

Bay anchovy

• Distance to shore
• Percent fine sediment
• Water depth
• Tidal-averaged temperature stratification
• Bottom DO

Spring 4,976.9
(88.6)

[4,368.1–5,748.0]

Increase No

• Distance to shore
• Percent fine sediment
• Water depth
• Tidal-averaged bottom temperature
• Tidal-averaged surface salinity
• Tidal-averaged salinity vertical stratification
• Tidal-averaged current speed horizontal gradient

Summer 3,809.0
(97.9)

[3,071.7–4,373.0]

Increase No

• Distance to shore
• Percent fine sediment
• Water depth
• Tidal-averaged surface salinity
• Bottom DO
• Tidal-averaged current speed horizontal gradient

Winter 2.906.3
(146.8)

[2,082.2–4,283.1]

No change Yes

Model fitting failed for bay anchovy when data were considered across seasons, so we fit boosted regression trees (BRTs) for each season separately; for bay anchovy in
fall, BRT modeling failed to produce at least 1,000 trees and was thus not considered further. DO is dissolved oxygen. Extent of suitable habitat was calculated for each
season as the sum of the areas throughout Chesapeake Bay with habitat suitability indices ≥ 0.5; SE is the standard error of the mean. The change in extent of suitable
habitats evaluates the monotonic change (increase, decrease, no change) from 2000 to 2016; the relationship between abundance and extent of suitable habitat is based
on results from a nonparametric regression (see Table 3).

Estimation of the Extent of Suitable
Habitat
The extent of suitable habitat for each species was quantified
(objective 1) by calculating HSIs from the environmental
covariates at each hydrodynamic model grid cell for each
season from 2000 through 2016. To facilitate GIS visualization
of seasonal habitat conditions and calculation of the area of

suitable habitat for each species, we used the median of the
daily values of the covariates to represent the seasonal average
for a given model grid cell, season, and year. Median values for
each habitat covariate at each model grid cell were then used to
estimate the HSIs for each species. In this manner, we mapped
the species-specific seasonal HSIs at the spatial resolution of
the hydrodynamic model because processes operating at small
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TABLE 3 | Non-parametric regression analysis results for juvenile spotted hake,
juvenile spot, juvenile weakfish, and bay anchovy from Chesapeake
Bay, 2000–2016.

Species – season N Relative abundance
(Y) and suitable

habitat extent (X1)

Suitable habitat
extent (Y) and

time (X1)

F P F P

Juvenile spotted hake – spring 17 0.01 0.91 0.21 0.65

Juvenile spot – summer 17 4.57 0.05 0.01 0.93

Juvenile spot – fall 17 0.01 0.93 1.11 0.31

Juvenile weakfish – summer 17 2.75 0.12 10.39 <0.01

Juvenile weakfish – fall 17 0.12 0.73 8.68 0.01

Bay anchovy – spring 17 0.67 0.43 10.12 <0.01

Bay anchovy – summer 17 0.06 0.80 24.37 <0.01

Bay anchovy – winter 16 19.98 <0.01 0.17 0.69

The model fitted to the data was Yi = β0 + β1X1i + εi where Yi is the rank-
transformed response, i = 1 to N, N is the sample size, β0 is the overall average
response (intercept), β1 is the regression coefficient (slope), X1i is the value of
the predictor for observation i, and εi is the unexplained random error. Extent of
suitable habitat was calculated for each season as the sum of the areas throughout
Chesapeake Bay with HSI values ≥ 0.5.

spatial scales may be masked when environmental conditions
are averaged over large spatial scales (Windle et al., 2012).
The areas of the individual grid cells where HSI exceeded
a given threshold of suitability (i.e., HSI ≥ 0.5, HSI ≥ 0.6,
HSI ≥ 0.7, HSI ≥ 0.8) were summed to obtain an estimate of
the extent of ‘suitable’ habitat throughout the Chesapeake Bay
and its tributaries for each species, season, and year. Preliminary
graphical investigations revealed that annual patterns in suitable
habitat extents were similar among the 0.5, 0.6, and 0.7
thresholds; the 0.8 threshold yielded values that were too low to
be useful. The 0.5 threshold, used to describe habitat suitability
for the eastern oyster Crassostrea virginica in Chesapeake Bay
(Theuerkauf and Lipcius, 2016) and for pelagic sharks in
Australia (Birkmanis et al., 2020), was used for subsequent
analyses and presentation.

Relationship Between Suitable Habitat
Extent and Relative Abundance of
Forage Species
We hypothesized that annual and seasonal changes in the area
of suitable habitat affect the abundance of forage species in this
temperate ecosystem. To address this hypothesis, we related the
annual time series of suitable habitat with annual estimates of
baywide relative abundance for each species (objective 2). We
limited the exploration of these relationships to the season during
which a particular species was most vulnerable to the trawl gear:
juvenile spotted hake in spring, juvenile spot in summer and fall,
juvenile weakfish in summer and fall, and bay anchovy in spring,
summer, and winter. We rank transformed abundance indices
because of the small number of observations (n = 17 years except
for bay anchovy in winter when n = 16) and fit non-parametric
regressions to model the relationship between rank abundance
and extent of suitable habitat. For this analysis, we assumed the
relationship was stationary, that is, the effect of suitable habitat

extent on the abundance of forage fishes remained stable from
2000 to 2016 (e.g., Zeng et al., 2018). In addition, we tested the
null hypothesis that the seasonal extent of suitable habitat was
constant in Chesapeake Bay between 2000 and 2016; as before, we
rank transformed the extent of suitable habitat (defined as areas
with HSI ≥ 0.5). Computations for non-parametric regression
analyses were performed with the rank and glm procedures
in SAS R©. Residual plots indicated a reasonable fit of the rank
regression model to the data.

RESULTS

Influential Habitat Covariates
Environmental conditions and habitat features that comprised
suitable habitats varied among species and ranged between four
and seven, depending on species (Table 2). Water depth and
one of the current speed metrics were consistently identified
as influential covariates for all species; one of the temperature
covariates was influential in describing suitable habitats for
forage fishes in spring, summer, and fall, but was not selected
for describing suitable habitats in winter (Table 2). At least
one salinity metric defined suitable habitats for juvenile spotted
hake and bay anchovy, and distance to shore explained suitable
habitats for juvenile spot, juvenile weakfish, and bay anchovy
(Table 2). Bottom DO conditions delineated suitable habitats
for juvenile spot in winter and bay anchovy in winter and
spring (Table 2). Conditions at sites sampled in Maryland
waters differed from those in Virginia waters: in Maryland,
sampled habitats tended to be shallower, closer to shore,
warmer in summer, and cooler in fall than habitats sampled
in Virginia (Supplementary Figure 3). Most notably, Maryland
sites exhibited lower bottom DO concentrations in summer than
Virginia sites (Supplementary Figure 3). In addition, relative
to sites in Virginia, Maryland sites exhibited lower surface
salinities, less stratification in terms of salinity and temperature,
lower current speeds and less stratification in current speeds
(Supplementary Figure 3).

Verification and Calibration of the Habitat
Suitability Index Modeling Approach
Bootstrap analyses verified that BRTs were useful for selection of
influential covariates; in general, the same or similar covariates
were identified as most influential among the 10 bootstrap
realizations. For juvenile spotted hake, the HSI formulation based
on the geometric mean (HSIgm) provided the best approximation
to the original HSI estimated for each sample as indicated by
the significantly lower RMSE (t = 4.56, P < 0.01). Unlike results
for juvenile spotted hake, the HSI based on the arithmetic mean
(HSIam) performed better for bay anchovy, regardless of season
(tspring = –3.08, Pspring < 0.01; tsummer = –4.01, Psummer < 0.01;
twinter = –3.27, Pwinter < 0.01). Although we found no evidence
for a difference in the mean RMSEs of the HSIam and the HSIgm
for juvenile spot and juvenile weakfish (tspot = –1.13, P = 0.27;
tweakfish = –1.65, P = 0.12), we used the HSIam for these species
because the mean RMSE of the HSIam was consistently less than
the mean RMSE of the HSIgm.
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FIGURE 4 | Relationship between HSI and trimmed mean catches of juvenile spotted hake, juvenile spot, juvenile weakfish, and bay anchovy in Chesapeake Bay,
2000–2016. For juvenile spotted hake, the HSIgm is shown, whereas the HSIam is shown for other species. HSI values were binned for ease of plotting such that bin
0.0 includes all observations where 0 ≤ HSI < 0.2, bin 0.2 includes all observations where 0.2 ≤ HSI < 0.4, and so forth. Note differences in y-axes.

Relative abundance as measured by the trimmed mean of the
four species increased with increasing values of HSIs (Figure 4),
indicating proper calibration of habitat suitability models. The
ranges of observed HSI values across years were 0–0.95 for
juvenile spotted hake in spring; 0.12–0.98 for juvenile spot in
summer; 0.04–0.86 for juvenile spot in fall; 0.09–0.99 for juvenile
weakfish in summer; 0–0.89 for juvenile weakfish in fall; 0–0.92
for bay anchovy in spring; 0–0.92 for bay anchovy in summer;
and 0.04–0.98 for bay anchovy in winter.

Suitable Habitat Extent for Forage Fishes
Juvenile Spotted Hake
We detected a strong seasonal pattern in the extent of suitable
habitats for juvenile spotted hake in Chesapeake Bay: little to
no suitable habitat was available in summer and fall, increased
in winter (meanwinter = 467.0 km2 or 4.3% of the total area
modeled), and was greatest in spring (meanspring = 2,046.0 km2 or

18.8% of the total area; Table 2, Figure 5A, and Supplementary
Figure 4A). In spring, the extent of suitable habitat was greater
in the Virginia portion of the Chesapeake Bay system than
in the Maryland portion (Supplementary Figure 5A). Suitable
habitats for spotted hake in spring were relatively deep, away
from shorelines, and where salinity stratification was greater
than 4.9 psu (Figure 5A); these habitats were characterized by
tidal-averaged bottom temperatures ranging between 5.3 and
14.2◦C. Annual changes in the extent of suitable habitats varied
by as much as 90.3% in winter (Figure 6A) and as much as 38.8%
in spring (Figure 6B) across the time period of study. The extent
of suitable winter habitat was higher during years when waters in
the region began to warm earlier in the year (e.g., 2012) and was
lower when warming was delayed (e.g., 2011; Figure 6A).

Juvenile Spot
The extent of suitable habitat for juvenile spot displayed a
persistent seasonal pattern, with relatively greater extents of
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FIGURE 5 | Representative examples of seasonal variation in habitat suitability for (A) juvenile spotted hake, (B) juvenile spot, (C) juvenile weakfish, and (D) bay
anchovy in Chesapeake Bay. The habitat suitability index ranges from 0 (red) indicating poor habitat to 1 (blue) indicating most suitable habitat.
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FIGURE 6 | Annual variation in extent of suitable habitats for juvenile spotted
hake in Chesapeake Bay: (A) winter 2011 vs. 2012 (90.3% increase), and (B)
spring 2002 vs. 2012 (38.8% increase). The habitat suitability index ranges
from 0 (red) indicating poor habitat to 1 (blue) indicating most suitable habitat.

suitable habitats in spring (meanspring = 3,169.4 km2 or 29.1%
of the total area) and summer (meansummer = 4,650.7 km2 or
42.6% of the total area) and relatively little suitable habitat in
fall and winter (meanfall = 775.4 km2 or 7.1% of the total area;
meanwinter = 864.0 km2 or 7.9% of the total area; Table 2,
Figure 5B, and Supplementary Figure 4B). Suitable habitats
for juvenile spot were primarily found in shallow areas near
shorelines in spring, and in the deeper portions of the Chesapeake
Bay and its tributaries in summer (Figure 5B). In tributaries
and embayments such as Mobjack Bay, the extent of suitable

habitat for juvenile spot in spring was greater than that in summer
by as much as 47.2%. Suitable habitat extents in spring and
summer were greater in the Maryland portion of the Chesapeake
Bay system compared with the Virginia portion (Supplementary
Figure 5B). The extent of suitable habitats for spot was driven
by distance to shore, depth, temperature stratification, bottom
DO, and horizontal gradients in current speed, and was not well
described by a single covariate (Table 2). Nevertheless, suitable
habitats exhibited bottom DO levels less than 4.0 mg O2/l in
summer and less than 5.3 mg O2/l in fall, suggesting that juvenile
spot used habitats that may be considered marginal or unsuitable
for other species. Low bottom DO conditions are associated with
stratified water column conditions and indeed, juvenile spot were
more likely to occur in habitats where tidal-averaged temperature
stratification exceeded 2.2◦C in summer and 2.7◦C in fall.

Juvenile Weakfish
A notable seasonal pattern was evident in the amount of suitable
habitat available for juvenile weakfish: little suitable habitat was
available in winter (meanwinter = 667.3 km2 or 6.1% of the total
area), increased in spring (meanspring = 2,446.3 or 22.4% of the
total area) and was greatest in summer (meansummer = 4,394.8 or
40.3% of the total area; Table 2, Figure 5C, and Supplementary
Figure 4C). Throughout the Chesapeake Bay system, the extent
of suitable habitat in fall was, on average, 19.1% greater than
in spring, but this pattern was not observed in 2000, 2010, and
2012 (Supplementary Figure 4C). In summer, suitable habitats
for juvenile weakfish were found close to shorelines; in fall,
suitable habitats were away from shore, near the mouth of the
Potomac River and the lower Chesapeake Bay (Figure 5C). In
Virginia waters, we observed similar extents of suitable habitats
in summer (meansummer = 2,056.7 km2 or 18.9% of the total
area) and fall (meanfall = 2,007.7 km2 or 18.4% of the total
area), but in Maryland waters, suitable habitat extents declined
by an average of 61.2% from summer (meansummer = 2,338.0 km2

or 21.4% of the total area) to fall (meanfall = 906.3 km2 or
8.3% of the total area; Supplementary Figure 5C). Regional
differences in fall were clearly depicted by seasonal maps: HSI
values in the mainstem of the bay were greater in waters south
of the Rappahannock River than north of the Rappahannock
River (Figure 5C). Suitable habitats for juvenile weakfish were
characterized by distance to shore, depth, bottom temperature,
and current speed stratification (Table 2).

Bay Anchovy
The estimated extent of suitable habitat for bay anchovy
varied seasonally, with the greatest extent of suitable
habitat area in the Chesapeake Bay system in spring
(meanspring = 4,976.9 km2 or 45.6% of the total area), followed
by summer (meansummer = 3,809.0 km2 or 34.9% of the
total area) and winter (meanwinter = 2,906.3 km2 or 26.6%
of the total area; Table 2, Figure 5D, and Supplementary
Figure 4D). Although this seasonal pattern was also observed
for Virginia waters (meanspring = 3,117.2 km2 or 28.6%;
meansummer = 2,774.4 km2 or 25.4%; meanwinter = 1,839.8 km2

or 17.0%), suitable habitat extents in Maryland waters were
greatest in spring (meanspring = 1,859.7 km2 or 17.0%) and lower
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but similar in summer and winter (meansummer = 1,034.6 km2

or 9.5%; meanwinter = 1,066.5 km2 or 9.8%; Supplementary
Figure 5D). The greatest extents of suitable habitats in tributaries
occurred in spring; in summer and winter, the upper reaches of
major tributaries were particularly unsuitable for bay anchovy
(Figure 5D). Suitable habitat conditions occurred in areas that
reflected complex relationships between multiple environmental
and geophysical covariates and consistently included sediment
composition, depth, and distance to shore.

Relative Baywide Abundance and
Relationship to Extent of Suitable Habitat
Seasonal indices of relative abundance for forage fishes in
Chesapeake Bay varied across years, and interannual patterns
were generally similar for the Virginia and Maryland surveys,
particularly for juvenile spotted hake in spring, juvenile
spot in summer and fall, and juvenile weakfish in summer
(Figure 7). Inconsistent patterns in interannual changes in
relative abundance between Virginia and Maryland waters were
observed for juvenile weakfish in fall and bay anchovy in spring
and summer (Figure 7), suggesting that seasonal processes
affecting the distribution of these species varied across regions
of the Chesapeake Bay. We note that the mean index of
relative abundance for juvenile weakfish in fall was several
orders of magnitude lower in Maryland waters than in Virginia.
Similarly, the mean indices of relative abundance for bay
anchovy in spring and summer were an order of magnitude
lower in Maryland waters than in Virginia. Spatial differences
in relative abundance reflected the geographic differences in
the extents of suitable habitats which were notably lower in
Maryland than in Virginia for these species-season combinations
(Supplementary Figures 5C,D).

Two contrasting relationships were detected between the
ranked baywide relative abundance index and the extent of
suitable habitat for forage fishes. We observed a significant
positive relationship between seasonal ranked baywide relative
abundance and extent of suitable habitat for juvenile spot in
summer (Tables 2, 3 and Figure 8A). The baywide relative
abundance index for juvenile spot in summer was highly variable
with contrasting periods of low and high abundance (Figure 9A).
Extents of suitable summer habitat for juvenile spot exhibited
no significant linear pattern across time (Tables 2, 3 and
Figure 9A). We observed a similar relationship for bay anchovy
in winter: the extent of suitable habitat in winter was a significant
determinant of the ranked relative abundance of bay anchovy
(Table 3 and Figure 8B). The baywide relative abundance of
bay anchovy varied widely in winter and exhibited no obvious
temporal pattern (Figure 9B); extents of suitable winter habitat
for bay anchovy showed no systematic change through time
(Tables 2, 3 and Figure 9B).

More commonly, we were unable to detect a significant
relationship between the area of suitable habitat and the rank-
transformed estimate of baywide relative abundance of forage
fishes (Tables 2, 3). For juvenile spotted hake in spring, we found
no indication that the extent of suitable habitat was limiting,
except perhaps in 2002 when the area of suitable habitat declined

below 1,600 km2 and the ranked abundance index was among
the lowest observed in the time series. This, however, may be
coincidental. The extent of suitable spring habitat for spotted
hake varied without trend since 2000 (Tables 2, 3). We found
no evidence of an effect of the extent of suitable habitat on the
ranked relative abundance of juvenile spot in fall (Tables 2, 3).
The extent of suitable habitat for juvenile spot in fall exhibited no
trend through time (Tables 2, 3) and was markedly less than in
summer. Between 2000 and 2016, the extent of suitable habitat
for juvenile weakfish increased significantly in summer and fall
(Tables 2, 3 and Figures 10A,B). The relative abundance of
juvenile weakfish, however, exhibited no detectable response to
increases in the extent of suitable habitats in either summer or fall
during the study period (Tables 2, 3). Relative abundances of bay
anchovy in spring and summer were highly variable (Figure 7)
and annual estimates were imprecise. Although the extent of
suitable spring and summer habitats for bay anchovy increased
significantly since 2000 (Tables 2, 3 and Figures 10C,D), we did
not detect a response in the ranked relative abundance of bay
anchovy to changes in the extent of suitable habitats in spring or
summer (Tables 2, 3).

DISCUSSION

Our modeling framework combined the power of machine
learning to identify influential habitat covariates with the
flexibility of non-parametric approaches to characterize habitat
suitability and the capabilities of GIS to quantify and depict
suitable (and unsuitable) habitats for forage fishes in Chesapeake
Bay from 2000 to 2016. We coupled catch information from
fishery surveys with static features of the environment and
outputs from models of dynamic conditions to depict suitable
habitats in Chesapeake Bay. In an ecosystem-based approach,
these habitats may be targeted for protection (e.g., by limiting
habitat alterations or other human activities that may incidentally
kill or injure forage fishes) or restoration (e.g., by improving
water quality conditions), thereby promoting production of
sufficient forage for predators. Importantly, our modeling
approach for building forage-fish habitat suitability models for
the Chesapeake Bay was calibrated and verified, thereby allowing
estimation of habitat suitability for tributaries and embayments
in Chesapeake Bay that are not routinely sampled by fishery
surveys (e.g., Mobjack Bay, Potomac River). Furthermore, our
results allow resource managers to focus protective measures on
critical habitat areas in Chesapeake Bay, for example, shallow
areas near coastlines in spring and summer which persistently
support suitable habitats for multiple forage species. Our finding
that shallow areas near coastlines are important habitats for
some forage species is consistent with the observed ontogenetic
habitat shift of juvenile weakfish, which move from salt marsh
tributaries to shallow habitats near coastlines in summer (Boutin
and Targett, 2019). We found annual patterns in suitable habitat
extent that mirrored those of baywide relative abundance for
two of the species examined, juvenile spot in summer and bay
anchovy in winter; as such, estimates of the minimum habitat
area required to produce a desired abundance (or biomass) of
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FIGURE 7 | Seasonal standardized abundance indices for forage fishes in Maryland (blue) and Virginia (red) waters of Chesapeake Bay, 2000–2016: juvenile spotted
hake in spring, juvenile spot in summer and fall, juvenile weakfish in summer and fall, and bay anchovy in spring, summer, and winter. Seasons were March–May for
spring, June–August for summer, September–November for fall, and December–February for winter. Seasonal relative abundance indices (mean catch per unit effort
expressed as number of fish/km2) were standardized to a mean of 1.0 across the 17 years, thus, patterns of abundance can be compared between states, but
these standardized abundance indices do not reflect differences in estimated mean catch rates within a given year. Note that bay anchovy were not sampled in
Maryland in winter, and thus, only the standardized index for Virginia is depicted.

forage fish can be used to establish quantitative habitat targets
(Kritzer et al., 2016) or spatial thresholds that may serve as spatial
reference points for management (Reuchlin-Hugenholtz et al.,
2016). Quantitative habitat targets and spatial reference points

for bay anchovy and juvenile spot in the Chesapeake Bay warrant
further consideration.

Suitable seasonal habitat extents for forage species exhibited
annual changes reflecting annual-scale heterogeneity in habitat
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FIGURE 8 | Non-parametric relationship between rank abundance and extent of suitable habitat (km2) for (A) juvenile spot in summer and (B) bay anchovy in winter
in Chesapeake Bay, 2000–2016. Observations are depicted by filled circles; the solid line is the nonparametric regression fit to the observations, and the dashed line
is the 95% prediction limit. The Spearman correlation coefficients were 0.54 for spot in summer and 0.80 for bay anchovy in winter. Values of HSIam ≥ 0.5 were
considered suitable habitat.

conditions in Chesapeake Bay, with persistent seasonal signals
that varied among species. Current speed, water depth, and
either temperature or DO were important covariates for the four
species we examined, and distance to shore was important for
three species; thus, suitable habitat conditions resulted from a
complex interplay between water quality and the geophysical

properties of the habitat. Variations in seasonal extents were
more pronounced than annual variations in suitable habitat
extent, supporting the notion that the Chesapeake Bay serves as
a nursery area for juvenile fishes and that the nursery function
is temporally restricted and varies among species (e.g., spring
for juvenile spotted hake, and summer for juvenile spot and
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FIGURE 9 | Relative abundance (scaled index) and extent of suitable habitat (km2) for (A) juvenile spot in summer and (B) bay anchovy in winter in Chesapeake Bay,
2000–2016. Relative abundance (solid polygon) is depicted with a 95% credible interval; area of suitable habitat is denoted by filled squares. Values of HSIam ≥ 0.5
were considered suitable habitat.

weakfish). For some species, the extent of suitable seasonal habitat
increased since 2000 (summer and fall habitats for juvenile
weakfish, and spring and summer habitats for bay anchovy),
whereas for other species, extents varied annually with no clear
trend. None of the species examined were at the southern limit
of their geographic range, and as waters of the Chesapeake
Bay continue to warm (Hinson et al., 2021), we expect that
suitable habitat extent may increase for species with broad
thermal tolerances such as spot, weakfish, and bay anchovy.
Other climate-related effects predicted for the region include
increased precipitation and sea-level rise, both of which may alter
salinity and salinity stratification. Salinity mediates the thermal

tolerances of some fishes (e.g., Lankford and Targett, 1994; Nepal
and Fabrizio, 2020) and could serve to limit suitable habitats in
the future. When coupled with field observations, laboratory-
based investigations of the interactive effects of salinity on the
thermal tolerances for these forage species could be informative
(e.g., Lankford and Targett, 1994).

The relationship between the extent of suitable habitat and
relative abundance of forage species was species-dependent and
when present, varied seasonally. Such relationships have not
been widely explored for aquatic species. Although manipulative
field experiments permit exploration of these relationships on
small spatial scales (e.g., Parsons et al., 2014), only a few
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FIGURE 10 | Pattern of change in the extent of suitable habitat for (A) juvenile weakfish in summer, (B) juvenile weakfish in fall, (C) bay anchovy in spring, and (D)
bay anchovy in summer in Chesapeake Bay, 2000–2016. The extent of suitable habitat was rank-transformed due to the low sample size (n = 17), and the
regression line estimates the nonparametric fit to the data. Regression slopes were positive and significantly different from 0 at the α = 0.05 level (Table 3). Values of
HSIam ≥ 0.5 were considered suitable habitat.

studies attempted to relate extent of suitable habitat and relative
abundance of aquatic species using large-scale, field-based
observations (e.g., Holbrook et al., 2000; Le Pape et al., 2003;
Sundblad et al., 2014; French et al., 2018; Yu et al., 2019). For
example, Yu et al. (2019) used a graphical assessment to note the
consistency between declines in the relative abundance of neon
flying squid Ommastrephes bartramii and the spatial shrinkage of
suitable habitats in the northwest Pacific Ocean. Sundblad et al.
(2014) used linear regression to examine relationships between
relative adult abundance and the percent of the study area that
was suitable nursery habitat for 12 populations of pikeperch
Sander lucioperca and European perch Perca fluviatilis. Here,
we used non-parametric regression to statistically evaluate the
strength of such relationships for forage fishes in Chesapeake
Bay during 17 years and found a positive relationship between
suitable habitat extent and baywide relative abundance of juvenile
spot in summer and bay anchovy in winter, indicating that
environmental and geophysical conditions affect the carrying
capacity of the Chesapeake Bay for these species during a portion
of the year. As such, our results are consistent with the findings

of a meta-analysis of the correlation between abundance and
indicators of habitat suitability (Weber et al., 2017).

We found no evidence that suitable habitat extents were
limiting in Chesapeake Bay for juvenile spotted hake in spring,
juvenile spot in fall, juvenile weakfish in summer and fall,
and bay anchovy in spring and summer. These results suggest
that seasonal suitable habitat extent exceeded that necessary
to support these populations, and that other factors such as
predation mortality (e.g., Minello et al., 1989), food availability
(e.g., Tableau et al., 2016), or degradation of egg and larval
habitats (e.g., Sundblad et al., 2014) may have contributed to
changes in relative abundances. For example, suitable habitat
extent for juvenile weakfish in summer and fall increased
significantly since 2000, but was not significantly related to
changes in relative abundance of juvenile weakfish, suggesting
that factors other than those considered in the suitability
model exerted a greater role in driving annual fluctuations
in abundance. Indeed, abundance and growth of juvenile
weakfish are greatest in habitats that contain abundant mysid
resources and that are found adjacent to large expanses of
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salt marsh (Boutin and Targett, 2019). Consideration of the
spatial distribution and annual variation in mysid abundance
may be required to further delineate suitable habitats for
juvenile weakfish in Chesapeake Bay. Additionally, the lack of
a significant relationship between annual relative abundance
of juvenile weakfish and suitable habitat extent may have
resulted from changes in predation mortality of juvenile
weakfish. This hypothesis is consistent with the observed
increase in natural mortality rates for this species in the 2000s
(Atlantic States Marine Fisheries Commission [ASMFC], 2019;
Krause et al., 2020); although the sources of increased natural
mortality in weakfish remain unclear, increased predation is
believed to have played a role (Atlantic States Marine Fisheries
Commission [ASMFC], 2019). Abundances of other forage
fishes may be limited by similar trophic interactions with their
predators or prey, or by unsuitable egg and larval habitats
in Chesapeake Bay.

Although habitat extents limited the relative abundance of
juvenile spot in summer, no such limitation occurred in fall.
We hypothesize that the summer-to-fall decoupling of the
relationship between habitat extent and relative abundance of
juvenile spot may be partly explained by temperature. Mean
water temperatures in Chesapeake Bay are greatest in late
August-early September and the increased metabolic rates and
energy demands of predators during this time may increase
predation mortality on juvenile spot. Rising water temperatures
during this time may also affect the phenology of spot emigration
resulting in earlier emigration and fewer juvenile spot remaining
in the estuary during fall in warmer years. We were unable to
detect a change in the extent of suitable fall habitats for juvenile
spot between 2000 and 2016, but warming water temperatures in
fall associated with directional climate change may alter future
habitat conditions in fall for this species. Continued monitoring
of fall abundances and a better understanding of the cues that
trigger spot emigration in fall will be necessary to address
this hypothesis.

Another possible reason for our inability to detect a
relationship between suitable habitat area and baywide relative
abundance of some forage fishes is that the suite of static and
dynamic habitat covariates we considered failed to adequately
describe suitable habitat conditions. For example, the abundance
of predators, availability of prey, and proximity to biogenic
habitats such as seagrass or oyster reefs may help to shape the
distribution and abundance of forage fishes. In addition, seasonal
relative abundance indices for many of the forage species were
imprecise and hence were statistically invariable across time
(based on 95% credible intervals of the baywide hierarchical
index). Thus, a ‘good’ year with a relatively high mean index
of abundance was not statistically discernible from a ‘poor’
year with a relatively low index; this lack of contrast may have
hampered our ability to uncover a relationship between relative
abundance indices and suitable habitat extents. These results
suggest that if the abundance of forage fishes in Chesapeake
Bay is changing, the temporal and spatial intensity of sampling
by current fisheries surveys is insufficient to detect changes.
Alternatively, and more likely, abundance may be stable but
highly variable across years, as is typically exhibited by forage

fishes (Hilborn et al., 2017). Continued monitoring will be critical
to detect directional changes in abundance.

Seasonal variation in the geographic location of suitable
estuarine habitats may be linked to variation in freshwater
input (e.g., Rubec et al., 2019). In Chesapeake Bay, freshwater
input influences salinity and salinity stratification; however,
we identified additional hydrodynamic covariates such as
temperature stratification and current speed that contributed to
variation in suitable habitats. For example, for bay anchovy, the
suitability of winter habitats was partly determined by bottom
DO and the horizontal gradient in tidal-averaged current speeds.
Water temperature was not considered in the HSI model for
bay anchovy in winter, however, we cannot rule out temperature
as an important covariate describing habitat conditions for bay
anchovy in winter because bottom temperature and DO were
correlated. Interestingly, the HSI model for juvenile spot also
included bottom DO and a measure of temperature stratification,
suggesting that multiple hydrodynamic factors are required to
describe suitable habitats.

In this study, we considered information from two fishery-
independent surveys, one of which yielded fewer annual
observations but sampled shallow-water habitats across a large
portion of the estuarine salinity gradient. Overall, our fisheries
observations were collected at a relatively fine spatial resolution
(>100 sites sampled/month) and high temporal intensity
(monthly), thereby minimizing biases due to seasonal or short-
term habitat use (e.g., by sampling only one or two months
each year). By using fisheries observations from multiple surveys,
we were able to detect the effect of bottom DO on the relative
baywide abundance of juvenile spot in summer. Low bottom
DO conditions in summer are more prevalent and persistent in
Maryland waters of the Chesapeake Bay; in particular, the Chester
River, Eastern Bay, Choptank River, Little Choptank River, and
Patuxent River exhibited bottom DO levels in summer that were
markedly lower than what was observed in Virginia waters.
These observations extended the range of bottom DO conditions
over which these effects could be investigated. In addition, the
Maryland survey sampled sites in shallow habitats close to shore,
and these conditions were not well sampled in Virginia waters.
Together, the two surveys provided observations from a greater
range of environmental and bathymetric conditions commonly
encountered in the Chesapeake Bay region.

Hydrodynamic models and other numerical models of
environmental conditions can provide information on dynamic
habitat features that are not measured at the time of sampling
and represent a significant advancement toward refining spatial
relationships between fish and their environment (e.g., Crear
et al., 2020a). Consideration of such information may yield
habitat models with greater predictive accuracy (Scales et al.,
2017). In our study, we used tidal-averaged conditions to
develop habitat suitability models that reasonably reflected
the relationship between (daily) environmental conditions
and relative abundance (at the tow level) of forage fishes
in Chesapeake Bay. This fine-scale approach is preferable
to one that uses seasonal averages of habitat conditions to
build habitat suitability models (Scales et al., 2017). Indeed,
the temporal resolution of environmental covariates used to
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build the suitability model affects the scale of inference. For
example, Woodland et al. (2021) described annual patterns
in the distribution and abundance of forage fishes and
invertebrates relative to patterns of predation and environmental
conditions in the Chesapeake Bay and its major tributaries.
Seasonal changes, however, could not be addressed because
several habitat conditions were represented by annual means
(e.g., average discharge from tributaries, and the Atlantic
Multidecadal Oscillation [AMO] index). Large-scale climatic
changes as indexed by the AMO affect mean abundances of
bay anchovy and juvenile spot (Woodland et al., 2021), and
our findings for bay anchovy in winter and juvenile spot
in summer are consistent with findings in Woodland et al.
(2021). Specifically, our results suggested that variations in
environmental conditions contributed to the observed variation
in relative abundance of these forage species. Although we did not
consider large-scale climate indices per se, we did examine small-
scale environmental indicators of climate change (temperature,
salinity) and demonstrated how these changes affect habitat
suitability and relative baywide indices of abundance for juvenile
spot in summer and bay anchovy in winter. Unlike Woodland
et al. (2021) who found greater relative abundance of bay
anchovy in the upper bay than in the lower bay, our indices
of relative abundance for bay anchovy in summer were an
order of magnitude lower in Maryland than those observed in
Virginia waters, likely because we lacked samples from deep sites
(>2.7 m) in Maryland which were considered in Woodland et al.
(2021). Also, the time scale of our studies differed. Similar to
Woodland et al. (2021), we found that bay anchovy and juvenile
spot exhibited higher relative abundances in southern tributaries
than in northern tributaries of the Chesapeake Bay, but our
spatial depiction of suitable habitat conditions throughout the
system allowed us to examine the fine-scale spatial distribution
of suitable habitats. Such depictions are helpful for identifying
the geographic scale at which habitat protection or restoration
must be implemented.

As the number of habitat descriptors available to researchers
increases, variable reduction techniques are critical to the
selection of covariates that help explain the variation in observed
abundance and distribution of aquatic organisms. For example,
satellite imagery, ocean observing systems, and hydrodynamic
models yield a multitude of environmental descriptors of habitat
and these data are commonly used to inform fish habitat
models. Similar to Georgian et al. (2019), we used BRTs to
identify influential covariates from a large suite of possible
covariates. Because tree complexity can play a large role in
improving the outcome of cross-validation and BRT model
fitting, BRT parameters should be optimized using the data
under consideration. Many researchers either fail to optimize
regression trees or when optimization is implemented, only
a single parameter is optimized (typically learning rate; e.g.,
Georgian et al., 2019; Yu et al., 2020) after using the default bag
fraction (0.75) and selecting an arbitrary value for tree complexity
(typically between 2 and 5; e.g., Georgian et al., 2019; Pennino
et al., 2020; Yu et al., 2020). We recommend optimization of BRTs
using the approach we applied here or the R package gbm.auto
(Dedman et al., 2017).

Across the four species we examined, the geometric mean
formulation of the HSI was best for only a single species –
juvenile spotted hake. Although the HSIgm is widely used, this
formulation may penalize the index too harshly for mobile
species that can tolerate broad variations in environmental
conditions, including sub-optimal conditions for limited periods
of time. For instance, in areas where bottom temperature
exceeds a given species’ thermal tolerance, the SI for bottom
temperature may be close to 0; in this case, the value of
the HSIgm will also be close to 0, but other environmental
conditions in these areas may be suitable, even optimal,
and thus, the overall suitability may not be well indexed
by the HSIgm. Because the appropriate HSI formulation
depends on species, we recommend use of data-driven analyses
and assessment of model performance to inform selection
(Chang et al., 2012; Tanaka and Chen, 2015; Yu et al.,
2019; this study).

Our fisheries observations from two surveys that sampled
across a broad geographic area of the largest estuary in the
United States represented 17 years of monthly sampling and
reflected the breadth of habitat conditions that fishes were
likely to encounter in Chesapeake Bay. Although survey
designs differed (stratified random design in Virginia, and
fixed-site design in Maryland), the integration of information
from such surveys can provide models with good predictive
performance as long as observations are spatially extensive
(Soranno et al., 2020). Furthermore, when the number of
observations used to fit the model is sufficiently large, then
projections for unsampled areas within the same time frame
are considered valid interpolations (Elith and Leathwick,
2009; Soranno et al., 2020). Our projections of HSIs in
areas not sampled by the Maryland or Virginia surveys
(e.g., Mobjack Bay, Potomac River) were based on 25,333
observations, and as such, were valid interpolations for
assessment of habitat conditions in non-sampled areas during
the timeframe of the study (2000–2016). Our interpolations
did not ‘extend beyond the conditions represented by the data
used to fit the model,’ and thus we avoided extrapolations
to areas where novel combinations of predictors occur
(Conn et al., 2015).

Finally, we note that the uncertainties associated with
habitat suitability modeling and resulting projections are not
typically assessed (Elith and Leathwick, 2009), although such
uncertainties are useful for understanding the limitations of
model-based results for conservation and fisheries management.
Uncertainties may arise from model specification (e.g., the type
of model used, or covariates omitted from the model) and
from the observations used to fit the model (e.g., samples
may not represent the population of interest, or sample
size may be inadequate). Ensemble approaches have been
used to partially mitigate model uncertainty, but ensemble
models do not fully overcome the limitations of the individual
component models (Elith et al., 2010). Model and observational
uncertainties may affect habitat suitability projections in different
ways, and uncertainty analysis for HSI models warrants
further research (Zajac et al., 2015) and engagement with
environmental statisticians.
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American shad (Alosa sapidissima) are native to the east coast of North America from
the St. Johns River, Florida, to the St. Lawrence River region in Canada. Since the
1800s, dams have reduced access to spawning habitat. To assess the impact of dams,
we estimated the historically accessed spawning habitat in coastal rivers (485,618 river
segments with 21,113 current dams) based on (i) width, (ii) distance from seawater,
and (iii) slope (to exclude natural barriers to migration) combined with local knowledge.
Estimated habitat available prior to dam construction (2,752 km2) was 41% greater
than current fully accessible habitat (1,639 km2). River-specific population models were
developed using habitat estimates and latitudinally appropriate life history parameters
(e.g., size at age, maturity, iteroparity). Estimated coast-wide annual production potential
was 69.1 million spawners compared with a dammed scenario (41.8 million spawners).
Even with optimistic fish passage performance assumed for all dams (even if passage
is completely absent), the dam-imposed deficit was alleviated by fewer than 3 million
spawners. We estimate that in rivers modeled without dams, 98,000 metric tons of
marine sourced biomass and nutrients were annually delivered, 60% of which was
retained through carcasses, gametes and metabolic waste. Damming is estimated to
have reduced this by more than one third. Based on our results, dams represent a
significant and acute constraint to the population and, with other human impacts, reduce
the fishery potential and ecological services attributed to the species.

Keywords: American shad, Alosa sapidissima, diadromous fish, migration, dam, fish passage, marine derived
nutrients

INTRODUCTION

The migration of animals remains one of the most recognizable and ecologically spectacular
occurrences in nature. Animals from diverse evolutionary lineages share a behavioral solution
to the seasonal and ephemeral nature of habitat suitability for different phases of their life
histories (Dingle and Drake, 2007). These may occur across wide expanses of aerial, terrestrial
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and aquatic habitat, and the flux of these organisms spans and
inextricably links disparate and sometimes distant ecosystems
(Weaver et al., 2018). Organisms transport biomass and nutrients
(Kelt and Van Vuren, 2001), sometimes over great distance
and large geographic scales. The timing of movements, the
food-web function and life-history strategies may all influence
ecological significance (Rosenzweig, 1971). These phenomena
fundamentally shift interlinked systems from marine to inland
ecosystems with annual regularity (Doughty et al., 2016).

Migration in sea-run or diadromous fishes is illustrative
of seasonal movements that links the ocean with fresh water
habitat. The global patterns of diadromy have been well described
(McDowall, 1987) and the general trends have been linked to
productivity differences between inland and marine habitats
(Gross, 1987) in complex ways (Dodson et al., 2009). These fish
species have been important to humans prior to colonization of
North America, through to the present day.

Wilcove (2010) describes the four great threats to migratory
animals, each of which is a result of human population
growth: habitat destruction, overexploitation, climate change and
barriers to migration. In coastal regions, all of these threats are
evident, but impoundments represent a conservation challenge
that results from both complementary and contradictory
socioeconomic tradeoffs that directly influence fish populations
(Roy et al., 2018; Song et al., 2019; Roy et al., 2020).
Migratory fish have declined, somewhat predictably, through
the loss of connectivity to habitat critical for the expression
of their life history. Damming fundamentally alters the
longitudinal connectivity of freshwater ecosystems, particularly
for anadromous fish (Hall et al., 2011; Liermann et al.,
2012), a fact that has been effectively revealed through the
removal of dams in coastal systems (e.g., Watson et al., 2018;
Wippelhauser, 2021).

American shad (Alosa sapidissima) are native to the east
coast of North America and demonstrate the human toll on
migratory organisms. This anadromous clupeid has an extensive
native range, from the St. Johns River, Florida, to the St.
Lawrence River region in Canada. Adults must enter freshwater
to spawn as a critical part of their life history (Zydlewski and
McCormick, 1997b; Zydlewski and Wilkie, 2012). While some
populations have flourished outside of their native range (e.g.,
the Columbia River; Petersen et al., 2003), native populations
have been, and remain, depleted (Atlantic States Marine Fisheries
Commission (ASMFC), 2020). Since the late 1800s, the four great
threats to migratory animals have driven precipitous population
declines range wide (Bilkovic et al., 2002; Limburg and Waldman,
2009; Hasselman and Limburg, 2012) and remain continuing
and persistent threats to this fish (Burdick, 1954; Talbot, 1954;
Bradley, 1959; Chittenden, 1969).

The development of American shad fisheries in the 1700s grew
to a pattern of over exploitation by the late 19th century that,
combined with habitat loss into the 20th century, resulted in a
functional collapse of fisheries and fishery closures in the late
20th and early 21st centuries. Historically abundant, this species
supported commercial fisheries with coast-wide landings that
exceeded 20,000 metric tons (MT) in the late 1890s (Walburg
and Nichols, 1967; Hightower et al., 1996; Limburg et al., 2003,

Atlantic States Marine Fisheries Commission (ASMFC), 2007).
The ability to access upriver habitat permitted great population
potential in river systems and provided sustainable human
value (Limburg et al., 2003). Early settlers of Cooperstown,
New York, were said to have avoided starvation by American
shad reaching Otsego Lake, the Susquehanna River’s source,
more than 1,000 km from the coast (Taylor, 1995). In the Gulf
of Saint Lawrence, American shad reached the Ottawa River,
a distance of over 1,100 km (Provost, 1987). Modern fishery
impacts are mollified by stricter harvest regulations such as
moratoria (Olney and Hoenig, 2001; Atlantic States Marine
Fisheries Commission (ASMFC), 2007) but much of the historic
human value (economic, recreational and cultural) for this
species has been lost with its absence or reduction in coastal rivers
due to persistent anthropogenic influences.

Most notably, dam construction greatly restricted access of
American shad to spawning and rearing habitat, directly limiting
the scope for population and spawner abundance (Rulifson,
1994; Limburg et al., 2003). Dams may provide critical societal
functions to meet needs for electricity, water supply, and flood
control (Roy et al., 2018) but these dams, their operations,
and impoundments may also conflict with fish conservation
goals (Song et al., 2019). Fish passage is often a requested and
implemented strategy through the Federal Energy Regulatory
Commission (FERC) in the United States, but implementation
levels can vary widely for these multi decade permits (Vogel and
Jansujwicz, 2021).

Latitudinal differences in the life histories of American
shad have shaped the influence imposed by dams through
their range. Early and influential assessments of these clinal
variations in life history traits (i.e., Carscadden and Leggett,
1975; Leggett and Carscadden, 1978; Glebe and Leggett, 1981a)
remain heavily relied upon by both researchers and managers.
American shad are entirely semelparous (and more fecund)
in the southern rivers with a lower length at age (Leggett
and Carscadden, 1978; Gilligan-Lunda et al., 2021) than in
northerly populations. North of the Cape Fear River in North
Carolina, some level of repeat spawning is observed, and
the proportion increases in rivers to the north. Northern
American shad are larger and are observed to spawn in
as many as five (Grote et al., 2014; McBride et al., 2016)
and even seven seasons (Provost, 1987). The degree to
which this clinal life history variation reflects phenotypic
plasticity (versus genotypic differences) remains an important
management interest.

American shad exhibit spawning fidelity to their natal rivers
(Talbot, 1954; Hill, 1959; Nichols, 1966; Carscadden and Leggett,
1975) with moderate levels of straying (Mansueti and Kolb,
1953; Williams and Daborn, 1984; Melvin et al., 1986). While
divergence among rivers in Canada is notable (Hasselman
et al., 2010), human mediated transfers among rivers are
likely causal to diminished apparent divergence among some
populations within the United States (Hasselman et al., 2013).
Thus, while genetic discrimination at a river level may be most
appropriate, categorization of three main eco-regions (Northern
Iteroparous [NI], Southern Iteroparous [SI] and Semelparous
[SM]) provides a convenient and logistically functional division
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of American shad rivers (Figure 1; Atlantic States Marine
Fisheries Commission (ASMFC), 2020).

Habitat obstruction or inadequate dam passage may influence
populations in these three eco-regions differently. For all eco-
regions, access to spawning habitat represents a significant
outcome of effective upstream fish passage through dams. The
survival of both juveniles and adult migrants during downstream
migration is important for population dynamics (Castro-Santos
and Letcher, 2010; Stich et al., 2019), albeit to varying degrees
for each eco-region. In the SM eco-region, downstream adult
passage is not required as they will have made their terminal
migration. For the SI and NI eco-regions, the importance of
downstream passage for adults is of obvious importance. Failure
to provide downstream passage results in an ecological trap that
truncates the age distribution of the population (Stich et al.,
2019). This is important as repeat spawners have increased
reproductive potential (higher fecundity) and provide a buffer
against poor recruitment years (Carscadden and Leggett, 1975).
The progeny of adult spawners that successfully ascend a dam
in all eco-regions, also must all pass downstream as juveniles to
reach the ocean.

Together, differences in the life histories among eco-regions
may differentially influence the delivery of biomass and nutrients
to a river. Semelparous Pacific Salmon (Oncorhynchus spp.;
Cederholm et al., 1999; Naiman et al., 2002; and Schindler et al.,
2003) and sea lamprey (Petromyzon marinus; Weaver et al.,
2016) deliver significant nutrients subsidies through the decay of
carcasses. With northern populations displaying lower spawning
mortality rates and a greater instance of repeat spawning than
southern populations, nutrient delivery through excretion and
spawning (gametes) may be most important. American shad
generally do not feed upon entering rivers, but their mass
loss during the run can be considerable (Glebe and Leggett,
1981a,b; Leonard and McCormick, 1999; Walter and Olney,
2003). Regardless of the source, the level to which the historical
delivery of marine nutrients, and the seaward return of nutrients
by juveniles, has shifted because of dams.

Conservation efforts on the Gulf of Maine’s Penobscot River
resulted in the removal of two main-stem dams (Opperman
et al., 2011) and spurred interest in understanding the restoration
potential of American shad for this river which historically
had supported an abundant population. Annual landings of
over 2 million adults were reported in the 1860s (Foster and
Atkins, 1867) and American shad had been a critical fishery
for the Penobscot Nation. Trinko Lake et al. (2012) defined
the spatial extent of American shad habitat in this system
and characterized connectivity. The development of a simple
population model provided a means of assessing the influence
of dam removals on the production potential of a newly opened
river (Bailey and Zydlewski, 2013) but fell short in providing a
tool that incorporated fish passage. Stich et al. (2019) developed
a generalizable model platform that could be applied to any
river system based on management needs. This approach allowed
for the assessment of upstream and downstream passage on
river-specific productivity. The importance of understanding fish
passage in light of both upstream and downstream efficiencies
and survival was made evident. This approach was then applied

to a series of rivers, range wide, based on informed habitat
assessments (Gilligan-Lunda et al., 2021). Similar work by
Barber et al. (2018) used this population modeling approach
to characterize the delivery of nutrient by another alosine,
the alewife (Alosa pseudoharengus), by employing estimates of
nutrient loss, delivery, and exodus.

In this paper we aspire to implement these complementary
approaches of spatial analysis, river specific population modeling
and assessment of nutrient dynamics to address the lament of
Limburg et al. (2003):

We can only imagine today what full Atlantic coastal ecosystems
(rivers, estuaries, and coastal marine areas) looked like, but one
thing is clear, shad played a far more important role then than
they do today. To plan for a sustainable future for American shad,
we should reenvision those systems and strive to balance fisheries
demands with their ecological function. To do this will require better
modeling, better data, and above all, renewed commitment.

To estimate the opportunity cost realized by this species
through dam construction throughout its range, we sought to first
estimate habitat that was historically and currently exploited by
American shad for spawning in Atlantic coastal rivers. This was
accomplished by characterizing 485,618 river reaches and 21,113
dams. We identified potential spawning habitat based on criteria
of (i) river width, (ii) distance from seawater intrusion and
(iii) slope (to exclude natural barriers to migration) combined
with local knowledge. The areas of potential spawning habitat
were aggregated to estimate historic habitat available prior to
the construction of dams and impoundments for each coastal
river. Each river was then assessed using a life history-based
population model incorporating latitudinally appropriate life
history parameters (e.g., clines in size at age, maturity rates,
iteroparity, and maximum age). In aggregate this approach
allowed a direct assessment of the theoretical spawning potential
lost coast-wide to the construction of dams and allowed us to
estimate the historic and current capacities for biomass and
nutrient delivery.

METHODS

Characterization of American Shad
Habitat Through Their Native Range
We estimated American shad habitat based on available
knowledge of habitat extent, area, and accessibility. These data
were collected for the entire historic geographic extent of
American shad, spanning eastern United States and Canada
using a two-step approach. First, we used the United States
National Hydrography Dataset (USGS, 2019) and Canadian
National Hydrographic Network (Natural Resources Canada,
2019) to determine the potential freshwater networks available
for migration, spawning, and rearing. The data were organized
as a series of flowline segments, representing interconnected
stream and river reach segments (Figure 2). To simplify this
analysis, we assumed initially that American shad would not
migrate to reach segments with a mean channel width of less
than 15 m, in accordance with pre-existing habitat suitability
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FIGURE 1 | Estimated American shad habitat through a combination of local knowledge and a priori modeling along the eastern coast of North America (a), the full
extent of their historic range. In the full panel (b), gray lines indicate suitable riverine habitat. Only the first dam on each river or tributary is shown (black circles) for
clarity. Dashed lines indicate divisions between northern iteroparous (NI), southern iteroparous (SI) and semelparous SM) eco-regions Insets provide greater detail for
four rivers; Penobscot River (c), Connecticut River (d), Susquehanna River (e), Cooper River and (f) the Santee River, indicating the numerous impoundments that
constrain the migration of American shad in these watersheds.
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models (Stier and Crance, 1985; Harris and Hightower, 2012).
Second, we validated our a priori assessment of historic
habitat extent of American shad with the help of local
experts from each state or province in our study region
(see section “ACKNOWLEDGMENTS”). The experts modified
historic extents based on the presence of natural barriers
(e.g., steep rapids, waterfalls) or environmental conditions
(e.g., temperature, salinity, and reach segment width) that are
unsuitable for American shad spawning.

Empirically determined stream discharge-width relationships
were used to calculate potential habitat area from the flowline
data (e.g., Leopold and Maddock, 1953). This approach allowed
for the estimation of horizontal surface area at any reach segment
based on drainage area, geographic location, and nearby stream
gage data. We first used the enhanced unit runoff method
(EROM; McKay et al., 2012) to estimate mean annual discharge,
then estimated mean reach segment width (w) using the power
law equation:

w = kQb (1)

where Q is discharge, k was a derived width coefficient, and b
was a derived exponent. Values for k and b vary by region but are
typically close to 10 and 0.5, respectively (Bray, 1982; Sweet and
Geratz, 2003; Dudley, 2004; Mohamoud and Parmar, 2006; Bent
and Waite, 2013). Horizontal surface area was then calculated as:

A = 0.8 × wl (2)

where l is segment reach length. We assumed that fluctuations in
discharge cause 20% of this area to be periodically dry along the
shorelines and therefore inadequate for migration and spawning
(sensu NOAA, 2009). This approach allowed us to specifically
exclude dam impoundments from any analyses. Additionally we
excluded lake and pond areas in the watershed assessments as
American shad avoid lacustrine habitat (Stier and Crance, 1985).

We then calculated cumulative habitat areas segmented by
the presence of dams by combining our habitat flowline data
with a congruent dam geodatabase compiled from multiple
sources (Martin and Apse, 2011; Martin, 2013, 2019; Natural
Resources Canada, 2019). We summed habitat area for all reach
segments upstream of each dam point, in addition to each coastal
outlet point of streams and rivers (Figure 1). These point data
were also vetted by local experts. Sums were taken iteratively
by starting at the reach segment where the point was located,
then adding upstream neighbor reaches until upstream dam
points or headwater points were found. This search was recursive
to avoid summing overestimations due to downstream flow
bifurcations (Figure 2). Finally, we tagged individual streams
and rivers with common names used by the Atlantic States
Marine Fisheries Commission (Atlantic States Marine Fisheries
Commission (ASMFC), 2007) for United States rivers and
best available names for Canadian Rivers (Natural Resources
Canada, 2019). In the end, this analysis produced a range wide
assessment of putative American shad habitat as influenced by
each impoundment found within the identified area. Data are
compiled for the three eco-regions based on regional spawning
strategies (Northern Iteroparous [NI], Southern Iteroparous [SI],
and Semelparous [SM]) as delineated by Hasselman et al. (2013)

and adopted by Atlantic States Marine Fisheries Commission
(ASMFC) (2020).

Population Model
In order to assess the theoretical impact of dams on American
shad range wide, we simulated the population potential for each
of 164 identified systems. This approach allowed us to compare
three broad scale scenarios (i) historical or intact “Undammed”
rivers, (ii) “Dammed”, with current dams in place with no fish
passage, and (iii) dams with favorable upstream and downstream
passage to reflect the “Current” condition (Figure 3). All
modeling routines were implemented in the ‘anadrofish’ package
(Stich et al., 2020) for R (R Core Team, 2019) to provide a user
interface for reproducibility and further exploration.

The river specific population modeling effort was based on
Stich et al. (2019), who applied a stochastic life-history based
simulation model to assess the theoretical effects of dam passage
and migratory delay on abundance, population demographics,
and spatial distribution of spawning adults over time. However,
we followed Harris and Hightower (2012) and Bailey and
Zydlewski (2013) in adopting an age-structured (rather than
individual) approach to migration dynamics to generalize the
modeling framework across the known range for American shad.
This general model structure facilitated the incorporation of
geographically appropriate life history parameters. Because these
fish are iteroparous in the northern extent of their range and
semelparous in the southern extent, downstream migration of
both juveniles and adults was considered important for coast-
wide population dynamics. Each river was identified as being
in the NI, SI or SM region and assigned life history parameters
estimated for each eco-region (Atlantic States Marine Fisheries
Commission (ASMFC), 2020). As this population model has been
described previously, the description and equations are included
as Supplementary Material 1 and available as open source code1.

Dam passage probabilities were assigned based on each of the
passage scenarios. For the Undammed scenario, the dams exerted
no influence on passage (upstream and downstream passage
probabilities were 1.00), whereas for the Dammed scenario,
upstream passage probability was set to zero. For the Current
scenario, upstream passage was assigned based on available
estimates (Table 1), assuming a passage probability of 0.40 (the
unweighted mean of reported values). Separate downstream
survival probabilities were used for adults (SDA = 0.80) and
juveniles (SDJ = 0.95) and were based on available estimates or
recent modeling efforts (e.g., USFWS, 2019). These values reflect
reportedly “excellent” upstream passage rates for American shad
(Haro and Castro-Santos, 2012) and are intended to represent the
most optimistic assessment of American shad passage at all dams
(even when there are fish ways). Downstream values are averages
of reported values from sources in Table 1.

For each scenario, upstream and downstream passage
probabilities were fixed across all dams. In all cases, upstream
passage probabilities restricted the number of adults reaching
spawning areas while downstream passage rates were applied
as cumulative, catchment-wide mortality risks for juveniles and

1https://github.com/danStich/anadrofish
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FIGURE 2 | Example of our approach to habitat area calculation. (A) Habitat was calculated for all reach segments. We then summed habitat groups that occurred
between point features (e.g., habitat between a coastal outlet point and the first upstream dams in that river, habitat between a dam and other dams immediately
upstream). (B) Rivers that bifurcated along the coast were summed as a single habitat group due to their upstream connection. Reach segments deemed
inaccessible or unsuitable by experts were excluded from the habitat calculation, in addition to pond and lake areas. (C) We included downstream bifurcations in our
habitat group calculations. Dams located on a bifurcation obstructed habitat only to the end of the bifurcation when other dominant flow paths were unobstructed.

adults based on their locations above dams. The probability of
fish reaching each habitat segment (PAccess) was calculated as
the cumulative product of PUP through the number of dams
(ORDER) downstream of that segment (PORDERi

UP ). The amount
of available habitat (km2) in each ith habitat segment (HS) was
pro-rated based on this product, and the resulting “functional”
habitat (HF) was summed throughout the catchment to yield over
n habitat units an estimate of total habitat (HT):

HT =

n∑
i=1

HFi , HFi = HSi × PORDERi
UP (3)

The available habitat for returning adults and the simulated
population of spawning fish were used to develop a river- and
scenario-specific life history-based population model. Survival of
adult fish to spawn was randomly drawn for each simulation.
We used a Beta distribution (a = 90 and b = 10) to achieve
a distribution of pre-spawn survival (mean of 0.90, standard
deviation of 0.025, constrained on the interval [0, 1]). Based
on the scenario-specific habitat (area) available in each river,
we applied carrying capacity (k) to catchment-wide larval
production (r) from a vector of age-structured spawners (s)
using a Beverton and Holt (1957) recruitment curve with density

dependence and a multiplicative error structure:

loge r = loge

(
a× s

1+ b′ × s

)
(4)

The density dependent parameter (b′) was tuned to impose a
k of 24,711 adult fish per square kilometer (100 adult fish/acre),
an often used production potential for stock assessment (Atlantic
States Marine Fisheries Commission (ASMFC), 2020) based on
Stevenson (1899). This resulted in b = 0.340297 when mean
fecundity was used for the value of a (density-independent
parameter, specified as Ft):

b′ =
b

HT ×
S∑tmax

t=1 NSt

(5)

Because HT was summed across all units, this approach
includes the implicit assumption that spawning fish distribute
in the river according to proportional availability of habitat at
the reach scale. Likewise, this assumption is also implicit in
density-dependent recruitment due to the inclusion of HT in the
denominator of the function describing b′ (density dependence
in larval recruitment at the catchment level).
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FIGURE 3 | Conceptual diagrams of the three scenarios used to assess the impact of lost habitat and reduced connectivity on the coast-wide production potential
of American shad due to dams. The Undammed scenario represents habitat accessibility in the historically undammed rivers. The Dammed scenario depicts the
access to habitat that is not impacted by extant impoundments (assuming worst case, non-existing passage). The Current scenario depicts the status quo, where
the current array of dams is in place, but upstream and downstream passage is applied at levels that represent the “best case” for American shad.

We assigned the larval-to-outmigrant survival (SJ) as a
random draw from a normal distribution with a mean of
0.007535 and a standard deviation of 0.04 [70-d survival based
on daily mortality rates reported by Crecco et al. (1983)] to
estimate juvenile migrants from each river (Njuv) for each
habitat unit. This quantity was simulated on the loge-scale
and back-transformed to avoid negative values. Adults incurred
post-spawn mortality based on the difference between natural
mortality (M) and the projected degree of iteroparity as derived
from Leggett and Carscadden (1978) and applied by Bailey
and Zydlewski (2013). Iteroparity (I) was simulated from river-
specific latitude using the equation developed by Leggett and
Carscadden (1978):

I =
5.08× Latitude− 165

100
(6)

We assumed that natural annual survival (S = 1 – A) was
the joint product of surviving the spawning period (Spost) and
surviving the duration of the year. We assumed there was no
fishing mortality in all systems. Therefore, we simulated post-
spawn survival as the quotient of I and S:

Spost =
I
S

(7)

For populations in which I was predicted to be negative based
on the equation from Leggett and Carscadden (1978) we set I = 0,
and therefore Spost was likewise zero (semelparous populations
in extreme southern extent). Likewise, if the value of Spost was
greater than one, we set Spost = 1 (iteroparous populations in
extreme northern extent).

For an assumed 2-month residence time in freshwater (based
on Leggett, 1972 [40-100 days] and Chittenden, 1976 [ > 60 days];
Table 1), survival in freshwater during the spawning run (Sspawn)
was calculated as the product of two components:

Sspawn = Spost × S2month (8)

Where S2month is 2-month interval survival (S) applied as an
instantaneous rate of mortality over 2 months and calculated by
using the relationship between annual interval mortality (A) and
instantaneous mortality Z12 (for a 12-month period; Miranda
et al., 2007) to calculate Z for a 2-month interval (Z2) as:

Z2 = −0.167× ln (1− A) (9)

So that monthly interval survival is calculated as:

S2month = e−Z2 (10)

For semelparous populations, Sspawn is determined by Spost
(which is set to zero), while for the northern iteroparous
populations, in river mortality is determined by natural annual
survival (S2month) that is the same survival as for fish remaining
in the ocean. Mortalities were imposed at the end of this period
and therefore did not influence spawning.

Downstream mortality of juveniles or adults through dams
was based on proportional distribution of available habitat
as appropriate to each scenario. The total mortality incurred
through downstream dam passage was estimated as a function
of the imposed downstream survival probability through dams
(for both juvenile [SDJ] and adults [SDA]) and the proportional
distribution of available habitat with respect to dam order. First,
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TABLE 1 | Parameter values for shad population model used to estimate the potential spawning run size for each river in the natural range of American shad.

Parameter
name

Value Description References

N01 N. Binomial (µ = 4 × 105, θ = 10) Initial number of age-1 fish Venables and Ripley (2002)

N0t N01 lx Age-structured starting population Derived

NSt Binomial (p = Rt, n = N0t ) Age-structured spawning adults Atlantic States Marine Fisheries Commission
(ASMFC) (2020)

lx (1 – A)t Lifetime survivorship to age t Derived

tmax NI = 13
SI = 13
SM = 11

Maximum age by region Atlantic States Marine Fisheries Commission
(ASMFC) (2020)

M 4.899 × tmax
−0.916 Instantaneous natural mortality Then et al. (2015)

A 1− e(−M) Annual mortality Derived

Rt NI = (0, 0, 0, 0.04, 0.69, 0.69, 0.9, 1,
1, 1, 1, 1, 1)
SI = (0, 0, 0, 0.04, 0.27, 0.64, 0.81,
0.9, 1, 1, 1, 1, 1)
SM = (0, 0, 0.01, 0.09, 0.33, 0.63,
0.92, 1, 1)

Recruitment to first spawn by region Atlantic States Marine Fisheries Commission
(ASMFC), 2020; Zydlewski, unpublished

Lt Lt = L∞
(
1− e−K·(t−t0)

)
Fork length (mm) von Bertalanffy (1938)

L∞, K, t0 Drawn from correlated region-specific
posterior estimates

von Bertalanffy growth parameters Gilligan-Lunda et al. (2021)

Wt aLt
b Female fish mass (g) Derived

a NI = 0.00017929
SI = 0.0000357
SM = 0.00000015600

Intercept of log10 length-log10weight relationship for females Atlantic States Marine Fisheries Commission
(ASMFC) (2020)

b NI = 2.591912
SI = 2.872063
SM = 3.761322

Region-specific slope of log10 length-log10weight
relationship for females

Atlantic States Marine Fisheries Commission
(ASMFC) (2020)

BFt 10α + β × Wt Batch fecundity Olney and McBride (2003)

α NI = 0.239
SI = -0.540
SM = −1.450

Region-specific intercepts for log10mass-log10fecundity
relationships

Olney and McBride (2003)

β NI = 1.39
SI = 1.64
SM = 1.96

Region-specific slopes for log10mass-log10fecundity
relationships

Olney and McBride (2003)

PAF BFt × BS Potential annual fecundity Hyle et al. (2014); McBride et al. (2016)

BS Normal(µ = 6.1, σ = 1) Number of batches spawned McBride et al. (2016)

PUP Dammed = 0.00
Current = 0.40
Undammed = 1.00

Upstream passage probabilities through dams. Dammed
and Undammed are defined, Current based on citations.

Weaver et al., 1972; Larinier and Travade, 2002;
Sullivan, 2004; Haro and Castro-Santos, 2012;
Groux et al., 2015; Castro-Santos et al., 2016

SDA Dammed = 0.00
Current = 0.80
Undammed = 1.00

Adult downstream survival probabilities through dams.
Dammed and Undammed are defined, Current based on
citations.

Bell and Kynard, 1985; Hogans and Melvin,
1985; Heisey et al., 1992; Exelon, 2012;
Dadswell et al., 2018; USFWS, 2019

SDJ Dammed = 0.00
Current = 0.95
Undammed = 1.00

Juvenile downstream survival probabilities through dams.
Dammed and Undammed are defined, Current based on
citations.

Stokesbury and Dadswell, 1991; Heisey et al.,
1992; Mathur et al., 1994; Gibson and Meyers,
2002; FirstLight, 2016; TransCanada, 2016

PAccess PORDERi
UP Cumulative upstream passage probability to habitat

segment i
Derived

HSi km2 Total habitat in segment i of selected river Derived, see methods

HFi HFi = HSi × PORDERi
UP Functional in habitat segment i, pro-rated for cumulative

upstream passage probability.
Derived

HT HT =
∑n

i=1 HFi Total habitat accessible in selected river Derived

r loge r = loge

(
a × s

1 + b′ × s

)
Catchment-wide larval recruitment Beverton and Holt (1957)

a BS Density-independent parameter of Beverton-Holt
recruitment curve

Beverton and Holt (1957)

b 0.340297 Density-dependent parameter of Beverton-Holt recruitment
curve

Beverton and Holt (1957)

(Continued)
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TABLE 1 | (Continued)

Parameter
name

Value Description Reference

b′ b′ = b
HT×

S∑tmax
t=1 NSt

Density-dependent parameter of Beverton-Holt recruitment
curve tuned to adult k of about 100 fish per acre

Beverton and Holt (1957)

I I = 5.08×Latitude−165
100 Iteroparity Leggett and Carscadden (1978)

Spost Spost =
I
S Post-spawn survival Bailey and Zydlewski (2013)

SDCi Juveniles = PORDERi
UP

Adults = PORDERi
UP

Cumulative downstream survival probability through dams
from the ith habitat segment

Derived

PHi PHi =
HFi∑n
i=1 HFi

Proportion of functional habitat catchment-wide that occurs
in the ith habitat segment

Derived

SDT SDT =
∑n

i=1 PHi × SDCi Catchment-wide downstream survival for juveniles or adults
(calculated separately)

Derived

See section “METHODS” and Supplementary Materials (1) for a description of the population model application.

downstream survival from each ith river segment to the ocean
was calculated as the cumulative probability of downstream dam
survival (SDCi ) separately for juveniles (SDCJ ) and adults (SDCA )
based on the number of dams downstream of each segment. Next,
the total proportion of accessible habitat (PHi ) in each ith river
segment was calculated as the quotient of prorated habitat in each
segment (HS−P) and the sum of all available habitat:

PHi =
HS−Pi∑n
i=1 HS−Pi

(11)

We then calculated the catchment-wide survival during
downstream migration for adults,

SDTA =

n∑
i=1

PHi × SDCA,i (12)

or juveniles as the weighted sum of SDCi (sum of the products of
PHi and SDCi ):

SDTJ =

n∑
i=1

PHi × SDCJ,i (13)

Age-structured out-migrants were then added back into the
non-spawning (ocean) population, the population was projected
one time-step based on instantaneous mortality (M in the absence
of fishery impacts or Z otherwise) and the simulation continued
for a total of 50 years to ensure stabilization of abundance
estimates within rivers. We repeated this simulation for each
river and each passage scenario by randomly sampling the river,
passage scenario (Dammed, Undammed, Current) and each of
the stochastic parameters during each simulation. This resulted in
approximately 2,000 simulations per passage scenario per river.
For each of the 164 river and scenario combinations, the output
for the last year (50) was collected for the number of age specific
spawners and juvenile emigrants.

Biomass and Nutrient Delivery
To estimate changes in biomass, total N and total P delivery
to the freshwater environment (by adults) and to the marine
environment (by juveniles), we used the average outputs from the

simulations from each river. The average age specific numbers
of spawners returning to each river and passage scenario
combination were used to estimate the total spawner biomass
seasonally entering each river:

Spawner BiomassRiver =

n∑
t=1

PM × Nt ×Wt,M

+

n∑
t=1

PF × Nt ×Wt,F (14)

where P is the proportion of male (M) or females (F), N is the
average number of spawners of age t and Wt ,F or Wt,M is the
sex specific mass at age t. Sex-specific mass for an individual fish
was calculated by calculating average length at age and mass as a
function of length described in Supplementary Equations 4, 5,
using region-specific parameters.

Juvenile biomass leaving each river was calculated as the
summation of the number of juveniles produced from all habitat
units in each river (NJUV ) multiplied by the average, weighted
survival downstream to the ocean (SDTJ , Equation 13).

Juvenile BiomassRiver = NJUV × SDTJ ×WJUV (15)

The total river output (JuvenileBiomassRiver) was simply the
sum of juvenile biomass reaching the ocean from each habitat
unit. The estimated mass of a juvenile emigrant, WJUV , was based
on reported juvenile masses ranging from 2.0 to 4.5 g (Zydlewski
and McCormick, 1997a; Haskell, 2018); we applied an average
WJUV of 3.36 g (Table 2).

The delivery (and retention) of marine derived biomass
(Biomassdelivered) and nutrients into each river during the
spawning migration was estimated as a function of: (i) the initial
biomass of adults arriving in freshwater (SpawnerBiomassRiver),
(ii) the probability of death during spawning, and (iii) if surviving
and returning to the ocean (for rivers in the NI and SI regions),
the estimated biomass lost during the spawning migration
through spawning and metabolic loss.

Biomassdelivered = (Biomasscarcass + Biomassmetabolic) (16)
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TABLE 2 | Parameter used to estimate annual, river specific nutrient input (via adult carcasses, spawning, and metabolism) and nutrient output (juvenile emigration).

Parameter Unit Value Used Reported values and references

Phosphorus (P) male % (g · g wet mass−1) 0.666 Haskell, 2018

Phosphorus (P) female % (g · g wet mass−1) 0.673 Haskell, 2018

Phosphorus (P) juvenile % (g · g wet mass−1) 0.887 Haskell, 2018

Nitrogen (N) male adult pre spawn % (g · g wet mass−1) 2.941 Haskell, 2018

Nitrogen (N) female adult pre spawn % (g · g wet mass−1) 2.958 Haskell, 2018

Nitrogen (N) juvenile % (g · g wet mass−1) 2.803 Haskell, 2018

Juvenile mass mass (g) 3.36 2.03, 3.54 (Haskell, 2018) 4.5 (Zydlewski and McCormick, 1997a)

Proportional loss in mass during
migration (male)

– 0.3584 0.18, 0.44 (Haskell, 2018), 0.09-0.26 (Raabe and Hightower, 2014), 0.45
(Chittenden, 1976), 0.51 (Leggett, 1972)

Proportional loss in mass during
migration (female)

– 0.456 0.33, 0.44 (Haskell, 2018), 0.38-0.48 (Raabe and Hightower, 2014), 0.57
(Chittenden, 1976), 0.53 (Leggett, 1972)

Biomasscarcass represents the overall biomass of presumptive
spawners and successful spawners that die in the river (this
includes the contribution from fish carcasses, gametes and
metabolism of fish that ultimately die in fresh water). Biomass
carcass is calculated as:

Biomasscarcass =

n∑
t=1

(
1− Sspawn

)
× PM × Nt ×WM,t

+

n∑
t=1

(
1− Sspawn

)
× PF × Nt ×WF,t (17)

Where Sspawn is probability of survival through the spawning
migration (Equation 8), N is the number of spawners at age t, P
is the proportion of males (M) or females (F) in a given river, and
W is the mass of an individual returning male (or female) adult
at age t.

Biomassmetabolic is the sum of metabolism expenditures in
freshwater and shed biomass in the form of gametes for spawners
who successfully enter a river as a presumptive spawner and
return to the ocean. This biomass lost in river by surviving fish
(gonadal and metabolic) is calculated as:

Biomassmetabolic =

n∑
t=1

(
Sspawn

)
× PM × Nt ×WM,t ×1M

+

n∑
t=1

(
Sspawn

)
× PF × Nt ×WF,t ×1F (18)

All parameters are defined as described in Equation 17.
Biomass lost during the spawning run for surviving migrants (1)
is the proportional sex specific loss of mass due to metabolic
expenditure and gametic release. These values are based on
empirical data reported by Leggett (1972), Chittenden (1976),
Raabe and Hightower (2014), and Haskell (2018) that range 18–
51% observed mass loss for males and 33–57% for females. We
applied average values of 36 % and 46% mass loss for males (1M)
and females (1F) respectively (Table 2). We acknowledge this as a
simplifying assumption as it is well-known that distance traveled
(Leonard and McCormick, 1999), temperature experience (Glebe
and Leggett, 1981b; Raabe and Hightower, 2014) and residence

time (Raabe and Hightower, 2014) all influence the extent of
individual mass lost in freshwater.

Marine derived nutrient transport (phosphorus or nitrogen)
was calculated using estimated nutrient density (grams of
nutrient per gram of fish wet mass) applied to estimated of
Biomassdelivered. Several simplifying assumptions were applied.
We used nutrient density values 0.670 g/g wet mass for
phosphorus and 2.950 g/g wet mass for nitrogen (based on
averaged male and female data from Haskell, 2018). We assumed
nutrient density was the same for males and females, and
across tissues (i.e., nutrient density for gonads, metabolic tissue
loss and whole-body densities did not differ). Thus, pre-spawn
estimates of nutrient density are assumed to be representative
of the nutrients shed through gonadal and metabolic loss.
This is generally the case as whole body nutrient densities
differ by < 1% from male to female (Haskell, 2018). For the
gonads, however, we note that the testes are enriched in both
N and P (∼10 % over other tissues) while the ovaries are
enriched in N (∼10%) but depleted in P (∼50%), resulting
in an over estimate for P. However, because female gonadal
mass represents approximately 10 % of the mass of a pre-
spawn female (Leonard and McCormick, 1999), and the applied
mass loss based on observations is more than four-fold greater
(46% mass loss during spawning), the influence on phosphorus
estimates is minimal.

RESULTS

Habitat
Historic American shad habitat was estimated to be 2,287 km2

for the entire range and comprised 164 rivers that were
identified to have suitable habitat based on the identified criteria.
This assessment was based on a combination of a priori
assumptions and informed by local knowledge through most
of the United States and part of Canada. For some of the
assessment in Canada, estimates are based solely on the a priori
model and our inability to locate appropriate experts. The habitat
was divided fairly evenly among eco-regions with 30, 38, and
32% identified in the NI, SI and SM eco-regions, respectively
(Figure 4). In the NI eco-region, 18% of the habitat was found in
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Canada while 12% was found in the United States (see also Table
in Supplementary Material 2).

The presence of dams on 68 rivers throughout the range of
American shad fully or partially blocks access to an estimated 41%
of their coast-wide habitat (Figure 4). The constraint of access to
habitat found upstream of at least one barrier is comparably high
for all eco-regions, with 37, 44, and 39% loss of habitat due to
first main-stem dams for NI, SI and SM, respectively. It is notable
that habitat in the Canadian jurisdiction of the NI eco-region
has remained comparably intact with an estimated 19% loss. In
contrast, the United States NI region is heavily impounded, with
a loss of connectivity to 65% of the habitat.

Throughout their range, ten rivers account for more than
half (52%) of riverine habitat of American shad (Susquehanna
[11.0%], St. Lawrence [8.3%], Altamaha [6.5%], Delaware [4.7%],
Savannah [4.3%], James [4.3%], Roanoke [3.4%], Cape Fear
[3.0%], Connecticut [3.0%], Congaree [2.9%]; Figure 5; Table in
Supplementary Material 2). Dams on these rivers have resulted
in the reduction of habitat access from a minimum of 14% loss in
the Delaware River to complete habitat blockage in the Congaree
River. Dam blockage at these ten rivers accounts for the loss

FIGURE 4 | Graphic representation of the Undammed (outer) and Dammed
(inner) scenario freshwater spawning habitat available to American shad
throughout their native range. The size of the circles is proportional to the area
of historic unimpounded habitat (2,752 km2) and current habitat access
(1,639 km2), indicating that American shad are impeded from reaching nearly
41% of their historic habitat.

of 575 km2 of habitat, nearly 62% of the coast-wide loss in
habitat for this species. On the Susquehanna River alone, dams
block 243 km2 of habitat, 10.6% of total historically accessible
habitat coast-wide.

Population
Historic American shad population potential was estimated to be
69.1 million adults for the entire range. While historic habitat
area is roughly equal for each of the eco-regions, the modeled
spawner density is heavily skewed to the NI and SI eco-regions.
We calculated an estimated historic potential of 37.5 million
(54%) and 27.2 million (39%) spawners for the NI and SI regions,
respectively (Figure 6). Historical abundance in the Canadian NI
ecoregion was estimated at 24.0 million fish (35% of the coastal
run) while the United States portion of the NI eco-region was
13.6 million (20% of the coastal run; See also Supplementary
Material 2). The entire SM was estimated at only 4.3 million
spawning fish for the entire region, accounting for only 6% of
the spawner potential. When considering the potential for all
164 rivers to support spawning runs of adult American shad,
estimates of spawner potential are directly linked to estimates
of available habitat (Figure 7). However, latitudinal variation
in growth, maturation, and post-spawn survival (Leggett and
Carscadden, 1978; Gilligan-Lunda et al., 2021) all influence the
relative differences observed in population potential. On average,
a square km of habitat results in 55,200 spawners in the NI
eco-region but only 31,000 in the SI eco-region. Because of the
lack of additive age classes in the SM eco-region (i.e., no repeat
spawners), a square kilometer of area is modeled to support
only 5,900 spawners.

Coast-wide, there is an estimated 39% loss in population
potential, directly attributable to lost habitat between the
Undammed and Dammed scenarios (Figure 8). Regional
population potential is diminished by 35, 46, and 40% reductions
in abundance for NI, SI and SM regions, respectively. Population
potential loss in the Canadian jurisdiction of the NI eco-region is
18% while the United States NI region is reduced by 65%.

Under the Current scenario, where we applied upstream
passage probabilities that represent some of the most favorable
conditions reported in the literature, there was limited increase
in spawning potential of 9% coast-wide from the Dammed
scenario (from 41.8 to 44.6 million). Thus, the most optimistic
application of dam passage parameters to each of the hundreds of
dams that block access to American spawning habitat provides a
theoretical benefit of restoring only 4% of the historic spawning
potential that is diminished by 39% due to dams. This limited
alleviation of population potential influence is lowest in the
SI eco-region (2.7% increase), and is comparable in the NI
(4.9%) and SM (5.4%). Passage mediated alleviation of population
potential in the Canadian jurisdiction of the NI eco-region is 4.1%
while the United States NI region is 6.2%, suggesting a greater
potential for recovery.

Biomass and Nutrients
Historic American shad populations supported an estimated
average of 69.1 million spawners coast-wide, delivering 98,000
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FIGURE 5 | Total habitat available to American shad upstream and downstream of the first dam by river throughout their native range. Dotted lines indicate
transitions between eco-regions. Rivers (y-axis) are ordered in descending latitude.

MT of biomass to undammed freshwater coastal systems on an
annual basis. We estimate that 59,100 MT (more than 60%)
of the delivered biomass remained in the river systems in the
form of carcasses, tissues shed during spawning, and metabolic
loss. Historic biomass delivered to the NI was 51,500 MT (with
25,800 MT retained) and 41,200 MT delivered to the SI eco-
region (with 35,500 MT retained; Figure 9). For the SM eco-
region, a much smaller 5,200 MT biomass was delivered, but
all would be retained as part of the semelparous life history
in the region. Differences among eco-regions are driven by
competing trends of lower potential spawner numbers in the
southern latitudes, greater spawner number due to iteroparity
in the north and reduced individual spawner sizes (due to a
truncated age distribution as repeat spawning declines in the SI
and the SM eco-regions).

Under an Undammed scenario, juvenile migration from fresh
water transports an estimated 6,600 MT of biomass to the
ocean coast-wide, with comparable transport from each of the
eco-regions (1,900, 2,900 and 1,800 MT respectively for NI, SI
and SM eco-regions). Estimated biomass export to the ocean is
considerably lower than the biomass import into freshwater. We
estimate 13-fold greater import in the NI eco-region, 12-fold in
the SI, but only 3-fold greater in the SM (Figure 9).

For the Dammed and the Current scenarios, the relative
relations between import and export remain similar among
eco-regions and coast-wide, however the magnitudes of both
import and export reflect the reduced population under habitat
access restriction. Coast-wide, retained biomass is reduced from
59,100 MT for the No Dam scenario to 38,900 MT for the No
Passage scenario. Under the Current Scenario, biomass delivered
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FIGURE 6 | Modeled spawner abundance potential of American shad under
the no passage (“Dammed”), status quo (“Current”), and no dam
(“Undammed”) passage scenarios by eco-region through their native range
from Canada to Florida.

is slightly increased to 41,400 MT. These represent a 34% and 30%
reduction in biomass delivered for the No Passage and Current
scenarios respectively, compared to the No Dam scenario. Similar
reductions in retained biomass import for the Dammed (37,
45, and 40%) and Current scenarios (32, 42, and 34%) were
observed in each of the three eco-regions (NI, SI, and SM).
Juvenile nutrient export was reduced from 6,600 to 3,500 MT
for the Dammed scenario, and modestly recovered to 3,900 MT
under the Current scenario (37 and 42% reductions, respectively).

Because the inputs we used for nitrogen and phosphorus
densities are not markedly different between males, females
and juveniles (Table 2) patterns of nutrient delivery match the
trends observed for biomass by eco-region. Under an Undammed
scenario, coast-wide retained nitrogen is estimated at 1,963 MT
(761, 1,048 and 154 MT for NI, SI and SM) and retained
phosphorus is estimated as 446 MT (173, 238 and 35 MT for NI,
SI and SM). Under an Undammed scenario, juvenile migration
from fresh water exports an estimated 186 MT of nitrogen (54, 82,
and 49 MT for NI, SI and SM) and 59 MT of phosphorus (17, 26
and 16 MT for NI, SI and SM). The patterns of reduced nutrient
delivery under No Passage and Current Conditions match the
trends observed for biomass by eco-region.

Coast-wide, retained N delivery is reduced from 1,963 MT to
1,147 for the Dammed scenario (478, 576, and 93 MT for NI, SI
and SM), and modestly recovered to 1,221 MT under the Current
scenarios (515, 605, and 102 MT for NI, SI and SM; Figure 9).
Parallel reduction in retained P delivery is reduced from 446 to
260 MT for the Dammed scenario (108, 131, and 21 MT for NI,
SI and SM), and boosted to 277 MT under the Current scenarios
(117, 137, and 23 MT for NI, SI and SM; Figure 9). Juvenile
nitrogen export was reduced from 186 to 110 for the Dammed
scenario (34, 46, and 30 for NI, SI and SM), and grew to 119 MT
under the Current scenario (38, 48, and 33 for NI, SI and SM).
Juvenile phosphorus export was reduced from 59 to 35 MT for the

Dammed scenario (11, 14, and 9 for NI, SI and SM), and grew to
37 MT under the Current scenario (12, 15, 10 for NI, SI and SM).

DISCUSSION

Based on a priori modeling and local knowledge, the historic
habitat availability for American shad spanning the east coast
of North America approached 2,300 km2. While our estimation
was derived from 164 coastal rivers, it is likely that American
shad may spawn in additional smaller systems, though these
would contribute minimally to the overall coastal population. The
estimate of 41% loss of habitat connectivity through damming
of coastal systems corroborates assertions that loss of spawning
habitat access is likely the major cause of population declines in
this species (Limburg et al., 2003; Atlantic States Marine Fisheries
Commission (ASMFC), 2020). The proportional distribution
of accessible habitat is relatively constant among the three
eco-regions (when governmental borders are not considered).
This indicates that, while impacts are regionally variable,
dam construction has negatively influenced habitat access by
American shad, similarly, throughout their range.

Because the recruitment function we used incorporates habitat
area directly (see Stich et al., 2019), it is unsurprising that
theoretical capacity to support runs of adult American shad
into rivers mirrors this assumption. Despite the fact that total
available habitat was divided fairly evenly among eco-regions,
the relative scope for population size is substantially greater
in the NI, decreased in the SI and lowest in the SM eco-
region due to differences in life history. While this is intuitive
based on the degree of iteroparity, growth rates, and maximum
sizes (Gilligan-Lunda et al., 2021), it highlights the difference
between relative and absolute losses of spawner potential due
to dams. The SM eco-region’s lost scope of 1.74 million fish
is dwarfed by the loss of more than 13 million in the NI eco-
region, suggesting that parallel differences in fisheries potential
also exist. While the historic spawner production potential is
higher in the north and lower to the south, it is notable that
each of the regions generally lost comparably high proportions
of production habitat. Thus, the fish in southern rivers may
be viewed as having the highest conservation vulnerability,
particularly at the southern end of the range where climate
change may impose additional ecological constraints. Based on
this modeling exercise, coast-wide production potential is more
than 69.1 million spawners per year without dams compared
with the Dammed scenario of just under 41.8 million spawners, a
reduction of 39 %.

The intent is of this modeling exercise has been to provide
a realistic quantification of the lost potential for American shad
that has altered coastal ecosystems and reduced commercial
and recreational fisheries opportunities over the species’ native
range. We paint a clear picture of the relative loss of potential
coast-wide, but a cautionary note is warranted. Population
estimation is a challenge even when the input parameters
are well characterized, and that is not the case here. We
are aware that American shad select areas for spawning
based on temperature, water velocity, depth and substrate
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FIGURE 7 | Estimated spawning potential of American shad for each river through their native range from Canada to Florida. Dotted lines indicate transitions
between Eco-regions regions. Rivers (y-axes) are ordered in descending latitude. The stacked bars depict estimated potential for the No Passage, Current and
Undammed scenarios.

(Hightower et al., 2012), evidence that some habitats are more
suitable than others. Additionally, juvenile alosine recruitment
from reaches of a watershed likely differs based on migratory
distance and conditions (Tommasi et al., 2015), yet we have
made the implicit assumption of equal habitat quality. Models
such as the ones presented here are built with considerable
uncertainty, and assumptions in the model parameters. This has
been well highlighted here, and elsewhere (Castro-Santos and
Letcher, 2010; Bailey and Zydlewski, 2013; Stich et al., 2019). For
American shad, there remain many fundamental relations that
are poorly characterized (e.g., passage, reproduction, survival and
juvenile recruitment), a condition common in such model efforts
(Goethel et al., 2011).

It is self-evident that the parameterization of the system
we imposed defined the boundaries of our outcomes, and we

anticipate that continued research efforts will aid in refining our
estimates. However, our estimates are likely to be conservatively
low based on model construction, parameter values applied, and
assumptions made. Specifically, the Beverton-Holt recruitment
curve we have employed is derived from Stevenson (1899),
an approach that may grossly under estimate capacity. These
cautions withstanding, the values of spawners we generated
are realistic in magnitude and represent the best available
information. Our estimate of 98,000 MT of spawners returning to
all rivers is congruent with historic commercial fisheries landings
that exceeded 20,000 MT annually (Walburg and Nichols,
1967; Limburg et al., 2003). Undammed potentials for specific
rivers (Supplementary Material 2) are generally consistent with
historic annual landings harvest from Walburg and Nichols
(1967), the data suggest a high fisheries exploitation rate of
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FIGURE 8 | Coast-wide spawning potential of American shad under the no
passage (“Dammed”), status quo (“Current”), and no dam (“Undammed”)
passage scenarios. Boxes indicate 25th to 75th interquartile range and
whiskers indicate 95% CI.

nearly 20% of the average entire run in the Neuse, James, and
Delaware Rivers, 50% in the Potomac and 70% in the York River.
A reported harvest of over 2 million adults in the Penobscot River
in the 1860s (Foster and Atkins, 1867) would represent a harvest
of 65% (of our average estimated run of 3.1 million fish). Harvest
data from other rivers indicate that our model may significantly
undervalue spawner potential. Reported annual harvest in the
Nanticote and Choptank Rivers (Walburg and Nichols, 1967)
were two- and three-fold greater than our average undammed
population projections. Such difference are undoubtedly due to
both population stochasticity and model underestimation. Thus,
the most robust value of this exercise is the relative influence
of dams which provides an unambiguous relative index of the
impact of impaired habitat access.

The inability for current realistic fish passage measures to
restore any more than 9% of the estimated spawning potential
coast-wide is troubling news for the restoration of these fish.
Our results indicate that the application of current upstream
and downstream passage rates at all dams affords a remarkably
small increase in the theoretical production potential relative
to rivers that are wholly inaccessible upstream of the first
dam. We estimate that fishway passage coast-wide at dams
represents a fixed constraint of about 35% on the spawning
run potential of American shad. It is possible that as advances
in fish passage engineering, other protective measures, and
understanding of fish behavior continue to evolve, passage
efficacy may improve beyond our optimistic estimates. The use
of fish passage performance criteria (e.g., Stich et al., 2019;
CRASC, 2020) may also facilitate fish passage improvements by
providing biologically relevant targets. These potential advances
withstanding, the low theoretical return on investment of
fishways is heavily influenced by the presence of multiple
dams on rivers, resulting in a compounding influence on
passage and survival.

FIGURE 9 | Estimates of annual import (IMP: positive from the zero line) and
export (EXP: negative from the zero line) of biomass, nitrogen and phosphorus
delivered to each eco-region by American shad through their native range
from Canada to Florida under the no passage (“Dammed”), status quo
(“Current”), and no dam (“Undammed”) passage scenarios.

It is notable that this significant imposition on theoretical
spawning potential results from a model that estimates
contemporary passage values considered to be “excellent”
compared to those typically achieved (Haro and Castro-Santos,
2012). True impacts of dams in systems with poor fish passage
may be – and are likely to be – greater. Even when significant
engineering efforts are made to construct fishways to allow
upstream migration, effective connection to upstream habitat
can be illusory (Noonan et al., 2012; Bunt et al., 2012, 2016).
It is notoriously challenging to provide safe, effective and
timely upstream passage past dams for American shad, and the
poor passage performance of this species has long been noted
(Stevenson, 1899). Challenges associated with dams (beyond
passage and survival) have not been incorporated in our
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model. Flow disruptions, temperature, and changed community
composition could further increase the negative impacts of dams
on American shad populations. Loss through coastal commercial
and recreational fisheries continues in states where Fisheries
Management Plans (or alternatives) are in place (Atlantic States
Marine Fisheries Commission (ASMFC), 2020). Lastly, other
factors (e.g., habitat degradation) may impose further loss of
production potential on river- and region-specific levels.

Fishway design continues to be a critical interface of biology
and engineering with significant advances in concepts and
application (Silva et al., 2018). However, though fishways have
been constructed at some of the numerous dams that many
American shad encounter in their migration, many, if not most,
are largely or wholly ineffective (Haro and Castro-Santos, 2012).
Other dams simply have no specific passage accommodations
(e.g., Roanoke River; Hightower and Sparks, 2003), yet for this
exercise we attributed optimistic values of fishway performance.
Because the time course for hydropower relicensing through
the FERC process is 40 years or more (Vogel and Jansujwicz,
2021) the current state of fish passage has a long sustained effect.
Managers may only experience one opportunity to shape passage
at a dam once during their professional careers. For these reasons,
poor utilization of fishways is likely to remain a substantial, if not
dominant, culprit for diminishing American shad spawning runs
(Atlantic States Marine Fisheries Commission (ASMFC), 2020).

Fish passage is often assessed as a binary event, but even
successful dam passage may still exact a toll that is not revealed
through modeling. Even when fish passage opportunities are
available, dams restrict the timing of access to spawning habitat
(e.g., Grote et al., 2014). Dams may therefore increase a migrant’s
vulnerability to predation (Andrews et al., 2018) or a fishery
(Atlantic States Marine Fisheries Commission (ASMFC), 2020),
as well as depleting energy stores by imposing delay. The
sustained delay below a dam may, however, may preclude
successfully passing fish from reaching their reproductive
potential (Leonard and McCormick, 1999). Among teleosts,
American shad display an elevated basal metabolic rate that is
likely causal to their upstream migration being more energetically
costly than anadromous salmon (Leonard and McCormick,
1999). Metabolism is determined by water temperature through
its effects on enzymatic, metabolic, and cardiac processes (Lennox
et al., 2018) so that accelerated energetic depletion occurs in the
warmed water near dams (Martin et al., 2015).

Reduction in energy reserves may result in reduced individual
fitness (Nadeau et al., 2010) by impairing spawning behaviors and
gamete production (Brett, 1962; Rand and Hinch, 1998; Martin
et al., 2015). Migrating adults passing a dam do experience an
advantage in gaining access to habitat with fewer conspecific
competitors. This may afford an advantage in cases where
the juvenile rearing carrying capacity is reached, resulting in
greater per capita recruitment to the juvenile stage (Walters
and Korman, 1999). This advantage, if realized, comes at a
significant cost for American shad in the iteroparous eco-
regions. In order for spawning adults to spawn again, they
must retain enough energy to reach the ocean. Fish must not
only reach their spawning habitat in time to spawn, but also
must maintain energy stores sufficient to return to the marine

environment where they will recommence feeding and growth
(Doucett et al., 1999). After spawning, adults leave spawning
areas and move into the estuary (Grote et al., 2014) to feed
and recondition (Walter and Olney, 2003). Delays at dams
are commonly observed in downstream migrating adult shad
(Weaver et al., 2019) and undoubtedly exacerbate energy loss
at a time when stores are at their lowest. Impediments to the
resumption of feeding may therefore increase mortality through
prolonged energy loss (Castro-Santos and Letcher, 2010) or
reduced performance (Leggett, 1972; Chittenden, 1976; Raabe
and Hightower, 2014). Based on comparisons of iteroparous
and semelparous populations, it has been suggested that a
depletion of greater than 60% of energy reserves may serve as
a constraint to an iteroparous life history (Glebe and Leggett,
1981b), while the threshold for post-spawn survival may be as
low as 30-40% (Leonard and McCormick, 1999). In addition to
a physiological constraint, these fish face high risks of mortality
passing dams, particularly if passing through a turbine or other
unsafe route (Bell and Kynard, 1985; Hogans and Melvin, 1985;
Haro and Castro-Santos, 2012).

The population impact of an impoundment may be amplified
by a sequence of dams that must be navigated twice by
iteroparous adults to reach spawning habitat, thereby imposing
compounding mortality risk on spawners. It is useful to
differentiate between the latitudinal cline that is observed in
American shad (semelparity in the south to iteroparity in the
north) from reduced post-spawn adult survival in the southern
and northern iteroparous eco-regions. The degree to which these
life history differences reflect population level characteristics
versus phenotypic plasticity is poorly characterized. Populations
accessing suitable spawning habitat through anthropogenic
facilities are subject to an adult mortality akin to an intercept
fishery on size and age distributions and results in the systematic
loss of “big old fat female fish” (Hixon et al., 2014). This has been
well characterized in the Connecticut River where the proportion
of repeat spawners declined from 49% in the late 1950s (Walburg
and Nichols, 1967; Carscadden and Leggett, 1975; Limburg et al.,
2003), to a mean of 5 % for the period 2006-2015 (Atlantic
States Marine Fisheries Commission (ASMFC), 2020). Failure
to recognize the important role of passage has led to the
unlikely assertion that upstream passage may be detrimental to a
population because of energetic constraints (Leggett et al., 2004)
rather than poor downstream passage. In order to repeat spawn,
adults in the SI and NI eco-regions need both access to habitat
and an effective exit strategy or “forced semelparity” may result.

Whether parents are semelparous or iteroparous, the progeny
of American shad spawned upstream of dams suffer the risk
of mortality when moving downstream. Young American shad
generally remain in freshwater until migrating downstream in
the fall associated with declining river temperature (Leggett and
Whitney, 1972; O’Leary and Kynard, 1986). Downstream passage
at dams may entail delay, confinement and turbulence during a
period of time when these fish exhibit a heightened sensitivity to
stress (Shrimpton et al., 2001) and an environmentally influenced
loss of ion regulatory ability in freshwater (Zydlewski and
McCormick, 1997b). Juvenile shad, being far smaller than adults,
are generally not effectively excluded from turbines. These fish
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have less individual risk than entrained adults (Heisey et al.,
1992; Mathur et al., 1994) though it is biologically significant.
The impacts of dams through injury or delay may shape the
disposition of migrants. Their success (or failure) depends on
phenology of their physiological development (Zydlewski et al.,
2003) in conjunction with biotic and abiotic environmental
factors (McCormick et al., 1998; Limburg, 2001).

Prior to the construction of dams range wide, American shad
delivered considerable biomass and nutrient loads to freshwater
systems (Limburg et al., 2003; Figure 9). It is difficult to fully
appreciate the ecological significance or magnitude of delivery
of 1,963 MT of nitrogen and 446 MT of phosphorus on
an annual basis. The seasonal influx driven by the carcasses,
gametic release and metabolism would undoubtedly change
the freshwater system as has been observed for other species
(Weaver et al., 2018). The estimated 34% reduction in nutrient
delivery associated with dams is significant. As Haskell (2018)
asserts, for American shad, spatial context is of particular
importance because shad are broadcast spawners using open
water rather than being associated with substrate as is the case
for sea lamprey (Weaver et al., 2018) and salmon (Rex and
Petticrew, 2008). Spawner distribution in a natural river results
in distribution that is punctuated over time and space. Therefore
the reduction in spawner potential associated with dams is
not only a reduction in the magnitude of nutrient delivered,
but a curtailment of the spatial distribution of marine derived
nutrient incursions.

In the context of nutrient spiraling theory, in streams and
rivers, downstream nutrient changes are driven by delivery, up-
take and flushing (Newbold et al., 1982). As such, American
shad represent only one broken link in the chain that has
historically connected the marine and freshwater ecosystems
through the seasons (Limburg et al., 2003). The interruption of
ecological connectivity is common for many coastal ecosystems;
in the Pacific Northwest nutrient delivery by Pacific salmon is
estimated to be only 6-7 % of historical levels (Gresh et al.,
2000). The nature of these connections likely changes over the
range of the American shad, as anadromous species have a
greater scope for influence in freshwater systems with nutrient
limitation (nitrogen, phosphorus or co-limited) that influences
the degree of nutrient incorporation (Cederholm et al., 1999;
Chaloner et al., 2002; Bellmore et al., 2014; Samways and Cunjak,
2015). Increased N and P availability leads to increased primary
production, but these effects may be swamped by nutrients
generated from anthropogenic land use practices (Twining
et al., 2013). The nutrient dynamics of American shad are less
comprehensively explored than other alosines (Durbin et al.,
1979; Post and Walters, 2009; Walters et al., 2009; West et al.,
2010) offering an important direction of future research.

The presence of dams greatly curtails estimated nutrient
transport (both import and export) and, in parallel with spawner
estimates, fish passage provides a low level of restoration of this
ecological function. The dynamics and magnitude of nutrient
exchange are strongly influenced by population size and life
history differences among the three eco-regions in the natural
range. Our models project that in the NI and SI ranges, where
iteroparity results in greater spawner potential, delivery is tilted

towards import. Haskell (2018) also assessed American shad
to be net importers of N and P in the Columbia River where
iteroparity levels are 32% (Petersen et al., 2003). In the SM
eco-region, despite the higher proportion of carcasses delivered
during migration, we estimate that the net flux of nutrients in
the southern part of their range to be significantly lower than the
northern regions. The nature of delivery among regions differs as
well. Carcasses of migrating fish can break down over days and
weeks (Garman, 1992; Weaver et al., 2015) so nutrients are not
immediately liberated whereas nutrients released via gametes and
metabolic processes are more readily available.

Our presentation of average spawner escapement and juvenile
transport likely obscures a more nuanced story of nutrient
delivery that has been altered by the imposition of dams on
the landscape. The complex role of nutrients delivered by
alosine species is largely driven by levels of escapement (Barber
et al., 2018), allowing locally disparate net nutrient balance. At
high levels of spawner escapement, as occurs in our stabilized
population models, biomass delivery (and resulting nitrogen and
phosphorus delivery) are markedly skewed to import, particularly
in the NI and SI regions (Figure 9) where spawner numbers are
higher (Figure 6). In cases where adult dam passage is poor, the
juvenile recruits produced per spawner can be expected to be
higher than average, resulting in a more equitable exchange, or
even a net export (Barber et al., 2018). In such cases, with reduced
competition, larger migrating juveniles may further shift the net
balance in favor of export (Moore and Schindler, 2004; Moore
et al., 2011). Such a localized patchwork of nutrient balance may
also occur in natural systems with impediments to migration
(e.g., natural falls) or simply due to the attrition of spawners over
the length of a river (Meixler et al., 2009; Hall et al., 2011; Pess
et al., 2014). Even when a river is producing spawners, failure to
connect these fish to their habitat can result in a lower import or
net export in nutrient limited systems.

As juvenile American shad develop and grow, they are directly
embedded into pelagic, littoral, benthic, and terrestrial systems
(Limburg et al., 2003). Feeding – or being preyed upon – directly
links these fish to food webs. As is the case for many anadromous
species, juvenile American shad (and adults) may be directly
consumed through aquatic (Willson and Halupka, 1995; Jaecks
and Quinn, 2014), terrestrial and avian predators (Dalton et al.,
2009; DeBruyne et al., 2012). Aquatic macroinvertebrates also
actively feed on carcasses during their freshwater residency,
serving as further conduit of nutrients between the terrestrial and
aquatic environments (Polis et al., 1997; Vanni, 2002; Hocking
and Reimchen, 2009). Both bottom-up and top-down pathways
of nutrient incorporation may result from the influence that
American shad likely have in the freshwater ecosystem.

The restriction of American shad to lower reaches of
the coastal rivers is part of a fundamental shift in the
riverine communities due to impoundment (Kiraly et al.,
2015; Watson et al., 2018). Fish communities in these altered
systems have both winners and losers, often favoring native
and non-native “invaders” (sensu Carey et al., 2012) such as
black bass (Micropterus spp.). By presenting an obstacle to
migrations, dams may make American shad and other alosines
increasingly vulnerable to novel predators (such blue catfish and
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[Ictalurus furcatus] and flathead catfish [Pylodictis olivarisast] in
the Chesapeake Bay region; Schmitt et al., 2017).

In addition to the impacts on the freshwater environment,
the dam mediated loss of connectivity also affects estuarine and
coastal systems. The presence of adult and juvenile American
shad in coastal systems benefit estuarine and marine organisms.
The exodus of juvenile shad from freshwater is protracted from
the summer into the fall (Williams and Bruger, 1972; O’Leary and
Kynard, 1986; Zydlewski and McCormick, 1997b), overlapping
with the migration of other alosines. Such migrations attract
predators (Davis et al., 2012; McDermott et al., 2015), but at
the same time reduce individual risk. Many predatory species
depend on the seasonal pulses of prey species (Willson and
Womble, 2006; Richardson et al., 2014; Furey and Hinch, 2017).
As such, patterns in alosine migration may shape both current
and historic distributions of marine fish species (Baird, 1883;
Ames, 2004). Specialized detection of relatively high frequency
sounds by American shad may also indicate evolutionary
predatory pressures, suggesting that changes in abundance may
influence the foraging success of echolocating marine mammals
(Mann et al., 1998).

We have considered the influence of dams on American
shad through their coastal range and used the best available
data to quantify the dam-mediated impact on habitat loss,
spawner production potential and nutrient transport range
wide. The ecological potential and human value of these fish
has been markedly reduced through the partial and complete
occlusion of access to spawning and juvenile rearing habitat.
Historically these fish have linked freshwater systems to the
marine environment, from the mangrove estuaries of Florida
to the boreal forests of Canada. More than 100 years ago
Stevenson (1899) asserted that “There is no species of fish
more important to residents of the Atlantic seaboard than the
shad.” The fisheries, and the human connections to the fish,
have diminished in spite of fisheries closures and extensive
passage efforts (Atlantic States Marine Fisheries Commission
(ASMFC), 2020). The data suggest that dams remain the most
significant impediment to restoration of the “founding fish”
(McPhee, 2003). While contemporary passage rates fail to achieve
even modest population recovery, dam removal appears to
remain a viable solution (Raabe and Hightower, 2014; Izzo
et al., 2016; Moser and Paradis, 2017; Watson et al., 2018).
The recolonization of newly accessible habitat by migratory
fish is well-documented (e.g., Burdick and Hightower, 2006;
Hogg et al., 2013). While decision-making at dams involves
a wide range of stakeholders with diverse and sometimes
conflicting objectives (Roy et al., 2018), “active restoration”
has been framed as a balanced approach that integrates both
values and science (Hart et al., 2002). There is a growing

appreciation for the biological and economic benefits of restoring
coastal connectivity (Dias et al., 2019), thereby regaining that
which we have lost.
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Marine mammals have been proposed as ecosystem sentinels due to their conspicuous
nature, wide ranging distribution, and capacity to respond to changes in ecosystem
structure and functioning. In southern European Atlantic waters, their response to
climate variability has been little explored, partly because of the inherent difficulty of
investigating higher trophic levels and long lifespan animals. Here, we analyzed spatio-
temporal patterns from 1994 to 2018 of one of the most abundant cetaceans in
the area, the common dolphin (Delphinus delphis), in order to (1) explore changes
in its abundance and distribution, and (2) identify the underlying drivers. For that, we
estimated the density of the species and the center of gravity of its distribution in the
Bay of Biscay (BoB) and tested the effect of three sets of potential drivers (climate
indices, oceanographic conditions, and prey biomasses) with a Vector Autoregressive
Spatio Temporal (VAST) model that accounts for changes in sampling effort resulting
from the combination of multiple datasets. Our results showed that the common dolphin
significantly increased in abundance in the BoB during the study period. These changes
were best explained by climate indices such as the North Atlantic Oscillation (NAO) and
by prey species biomass. Oceanographic variables such as chlorophyll a concentration
and temperature were less useful or not related. In addition, we found high variability
in the geographic center of gravity of the species within the study region, with shifts
between the inner (southeast) and the outer (northwest) part of the BoB, although the
majority of this variability could not be attributed to the drivers considered in the study.
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Overall, these findings indicate that considering temperature alone for projecting spatio-
temporal patterns of highly mobile predators is insufficient in this region and suggest
important influences from prey and climate indices that integrate multiple ecological
influences. Further integration of existing observational datasets to understand the
causes of past shifts will be important for making accurate projections into the future.

Keywords: common dolphin, center of gravity, climate indices, predator-prey, environmental variability, time
series, Bay of Biscay, VAST

INTRODUCTION

The global mean surface temperature has increased by
approximately 1◦C from pre-industrial levels (IPCC, 2019),
triggering shifts in the abundance, phenology and distribution of
organisms worldwide (Parmesan and Yohe, 2003; Poloczanska
et al., 2013). Marine ecosystems, despite having experienced a
slower warming, show comparable or even greater shift rates
and vulnerability than terrestrial systems (Burrows et al., 2011;
Poloczanska et al., 2013; Pinsky et al., 2019), with seagrasses,
corals, cephalopods and marine mammals exhibiting the most
abrupt changes (Trisos et al., 2020).

Marine mammals, as wide ranging top predators, amplify
trophic information across multiple spatiotemporal scales and
can therefore act as sentinels of ecosystems’ responses to
climate variability and change (Hazen et al., 2019). However,
assessing climate change impacts in higher trophic levels and
long lifespan animals such as marine mammals is challenging,
as their relationships to climate may be non-linear and affected
by time lags (Simmonds and Isaac, 2007; Barlow et al., 2021).
In addition, identifying spatio-temporal trends in the context of
climate change requires analyzing decadal or longer time series
(Thorson et al., 2016), which are rarely available for marine
mammal observation data.

Combining data from multiple sampling programs can help
overcome this problem (Waggitt et al., 2020; Maureaud et al.,
2021), but also increases the intrinsic variability related to
observers’ skills, sampling design and protocols, which may
result in confounding species range shifts with variations in the
distribution and intensity of the sampling effort (Thorson et al.,
2016). For that reason, separating the observation process from
the true underlying spatial distribution is essential to accurately
identify range shifts over time (Chust et al., 2014b) and to
identify potential drivers (Erauskin-Extramiana et al., 2019b).
Recently, a species distribution function (SDF) able to distinguish
between sampling variation and true geographic variability has
been developed (Thorson et al., 2016). Unlike conventional
estimators such as the abundance-weighted average, the SDF
is applied through a Vector Autoregressive Spatio Temporal
(VAST) model that allows the estimation of species distribution
over predicted locations rather than sampled locations, while
also estimating a standard error that allows one to distinguish
between sampling variation and significant variability (Thorson
et al., 2016). Although model-based approaches had been used
before to estimate shifts in the distribution of species, VAST
typically involves estimating a Gaussian Markov random field
(GMRF) representing latent variation in density that is constant

over time (a “spatial” term), as well as a GMRF representing
latent variation that changes among years (a “spatio-temporal”
term), which is expected to improve predictions of species density
and distribution compared with using only measured habitat
variables (Thorson, 2019).

Until now, this estimator has been mainly applied to
commercially important fish stocks (Godefroid et al., 2019;
Perretti and Thorson, 2019; Xu et al., 2019), although the
fragmented and methodologically variable nature of marine
mammal observations suggest the method could be highly useful
for analyzing the spatio-temporal patterns of marine megafauna
too. Within that context, the Bay of Biscay (BoB hereafter),
located in the Northeast Atlantic, off the coasts of France and
Spain (Figure 1), represents an interesting study area since
numerous marine mammal species (e.g., cetaceans) cohabit there,
attracted by a highly diverse and abundant community of pelagic
fish species (Astarloa et al., 2019; Louzao et al., 2019).

Such productivity and diversity, however, might be altered by
climate change in the near future, as rising temperatures (0.26◦C
per decade; Costoya et al., 2015) are expected to increase ocean
stratification and reduce primary production and zooplankton
biomass in the area (Chust et al., 2014a). In recent years, losses
in fisheries production have already been reported (Free et al.,
2019), together with changes in the composition, distribution,
and phenology of fish species (Blanchard and Vandermeirsch,
2005; Chust et al., 2019; Baudron et al., 2020). Cetacean spatio-
temporal variability, in contrast, has been mainly assessed by
exploring changes in their relative abundance (Hemery et al.,
2007; Castège et al., 2013; Authier et al., 2018), although
both abundance and distribution are considered key criteria
by the European Marine Strategy Framework Directive (MSFD;
Directive 2008/56/EC) aiming to assess the environmental status
of species and ecosystems in European Union waters.

Advancement of both MSFD criteria in this region is therefore
necessary, especially when it is known that projections of climate
change impacts on cetaceans at large spatial scales (e.g., global;
MacLeod, 2009) do not always match with those at regional
scales (Hazen et al., 2012). In the Northeast Atlantic, for example,
warm-water cetaceans were predicted to expand poleward
(MacLeod, 2009; Lambert et al., 2011, 2014), although the south-
eastward shift detected for some Northeast Atlantic fish species
in the BoB could indicate the opposite pattern in this particular
area (Baudron et al., 2020). Indeed, some of the fish species
(e.g., horse mackerel Trachurus trachurus, anchovy Engraulis
encrasicolus, and sprat Sprattus sprattus) analyzed by Baudron
et al. (2020) constitute an important food resource for many
cetaceans in the BoB (Meynier et al., 2008;Spitz et al., 2018),
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FIGURE 1 | Spatial distribution of common dolphin sightings (displayed in segments of up to 10 km) over the BoB for the 1994–2018 period. Circle sizes are
proportional to group size, while solid gray lines indicate the isobaths. Sightings in yellow represent the ferry data used to check model fit.

which can heavily influence the spatial movements of their
predators (Díaz López and Methion, 2019; Díaz López et al., 2019;
Giralt Paradell et al., 2019).

The hypothesis that climate change may affect top predators
through climate influences on their ectothermic prey has been
often suggested (Robinson et al., 2005; Simmonds and Isaac,
2007; Evans and Waggitt, 2020). Most studies, however, examine
environmental conditions (e.g., temperature) as proxies of prey
distribution rather than studying prey data directly (Torres et al.,
2008; Díaz López and Methion, 2019; Giralt Paradell et al.,
2019) while others focus on exploring the effects of climate
indices on the grounds that they act as an integrated measure
of multiple variables (Hallett et al., 2004; Hemery et al., 2007).
In the Northeast Atlantic, the North Atlantic Oscillation (NAO)
is the dominant mode of climate variability, although additional
climate indices such as the Atlantic Multidecadal Oscillation
(AMO), the East Atlantic pattern (EA), or the South Biscay
Climate (SBC) have been also found to exert strong influence,
direct or indirectly, on both fish and cetacean species (Guisande
et al., 2004; Hemery et al., 2007; Borja et al., 2008; Evans
and Waggitt, 2020) through changes in ocean temperature and
salinity, vertical mixing and circulation patterns (Drinkwater
et al., 2003; Hurrell and Deser, 2009).

Given the multiple drivers potentially influencing cetacean
spatio-temporal patterns, understanding the role of each of them
is key for a better anticipating of future responses. For that
reason, in this study we used a 25-year-long temporal series
(1994–2018) to test the effect of prey biomasses, oceanographic
conditions and climate indices on the abundance and distribution
of the common dolphin (Delphinus delphis), one of the most
abundant cetaceans inhabiting the BoB waters (Hammond et al.,
2017). We used the VAST model (Thorson and Barnett, 2017)
and the spatio-temporal species data compiled by Waggitt et al.
(2020) to address two main research questions: (1) Has the
abundance or the distribution of the common dolphin in the BoB

experienced significant changes over the last two decades? (2)
If so, are changes best explained by climatic, oceanographic, or
prey variables? By answering these questions, this study intends
to provide insights that will help understand past and future
trends in the distribution and abundance of common dolphin
in the BoB while contributing to the management for this
species through the development of MSFD criteria in the context
of climate change.

MATERIALS AND METHODS

Data Collection and Standardization
Cetacean data analyzed in this study, despite focusing on the BoB,
belong to a large compilation made by Waggitt et al. (2020) that
included observations collected on aerial and vessel (dedicated
and opportunistic) surveys conducted in the Northeast Atlantic
between 1980 and 2018. Although the data analyzed here (data
providers in Supplementary Table 1) is a more updated version
that includes higher-resolution tracklines (meaning that fewer
data were omitted due to overlap with land-masses and more
accurate measurements of distance traveled were obtained), the
steps taken in the data processing and standardization stage
were the same as in Waggitt et al. (2020), in which they (1)
assessed differences in protocols by grouping data according to
the (a) survey transect design (line transects, strip transects,
and an intermediate method called ESAS, European Seabirds At
Sea) and (b) the platform-type (vessel vs. aircraft) and (2) fitted
detection functions using platform height and Beaufort sea-state
as explanatory variables to estimate the proportion of animals
missed by the observers (Marques and Buckland, 2004). They
also assessed response bias (when animals react to the presence
of the platform) through double-platform surveys that enabled
the detection of animals before responsive movements. This
correction was applicable to vessel surveys and is particularly
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relevant to common dolphins, which typically show a positive
response to vessels (Cañadas et al., 2004). Finally, they calculated
the effective strip half-width (ESW) which considers the decline
in the detection probability as a function of distance and
covariates and serves to estimate the area effectively covered
(Area covered = ESW∗s∗L) when including the number of
observation sides (s) and transect length (L). Full details can be
found in Waggitt et al. (2020).

Spatio-Temporal Pattern Detection
Sampling Effort
In order to match with the spatial resolution of the environmental
data that we examined in later steps (see “Identification of Main
Drivers” section), we divided larger transects into 10 km segments
(García-Barón et al., 2019). Then, we examined the spatio-
temporal coverage of surveys by summing the effort comprised
in all segments per month and per year. In addition, we checked
whether compiling data had led to a non-uniform distribution
of sampling in space and time by exploring the annual latitudinal
and longitudinal mean distributions and the corresponding linear
regression trends.

Baseline Spatio-Temporal Model
Observations of common dolphin were analyzed by means of
a spatio-temporal delta-generalized linear mixed model (delta-
GLMM), referred to here as a VAST model (Thorson and
Barnett, 2017) and available in R.1 This model is a flexible
variant of the classical delta models that decompose density
into two components (Stefánsson, 1996): (1) the probability of
encountering the species at a given location and time; and (2)
the expected density of the species when encountered. This
two-part approach, also known as a hurdle model, helps combat
statistical problems with zero-inflation and overdispersion in the
original data (Martin et al., 2005) and is therefore suitable for use
with cetacean survey data that usually show patchy distributions
(Waggitt et al., 2020).

Another feature of the VAST model is that it decomposes
spatio-temporal patterns in available point-count data into
multiple additive components:

1. A temporal main effect (“intercepts”) representing changes
in median abundance over time;

2. A spatial main effect (“spatial component”) representing
the average spatial distribution during the modeled
interval;

3. An interaction of space and time (“spatio-temporal
component”) representing variation in distribution among
years;

4. Density covariates, representing the impact of
environmental conditions on expected density;

5. Catchability (a.k.a. detectability) covariates, representing
the impact of environmental and/or sampling conditions
on expected sampling data, but which do not reflect
variation in population density and hence are “partialled
out” prior to predicting densities.

1https://github.com/james-thorson/VAST

Each of these components can be included in each of two
linear predictors, and these two linear predictors are then
transformed via inverse-link functions to predict the value of
a response variable (in this case, dolphin samples). Spatial and
spatio-temporal components are estimated as a Gaussian Markov
random field (GMRF) and treated as a random effect. To improve
computational speed, the value of these GMRFs is predicted
at a fixed set of “knots” that defines a mesh of triangles that
covers the entire modeled spatial domain. The value of the
GMRF at any location within this domain is then predicted from
the value of three knots surrounding that location. We use the
stochastic partial different equation (SPDE) approximation to
calculate the probability of GMRFs (Lindgren et al., 2011), and
the projection from knots to locations is accomplished using
bilinear interpolation as computed using R-INLA (Lindgren,
2012). The value of fixed effects are estimated using maximum
likelihood techniques while integrating across the probability of
random effects (Kristensen et al., 2016), and standard errors are
calculated using a generalization of the delta method (Tierney
et al., 1989). For further details, please see the VAST user manual.2

In our case, we treated year as a fixed effect (default VAST
setting), such that there is no shrinkage in overall abundance
across years. We modeled spatial and spatio-temporal variation
as random effects to help account for multidimensional factors
that are not included directly in the model but that can affect the
density and distribution of the modeled species (Carroll et al.,
2019). In particular, we estimated first-order autocorrelation
among years in the spatio-temporal component, such that
predicted hotspots in density decay slowly over time; this
treatment allows spatio-temporal patterns to be predicted (with
associated uncertainty) even in locations with sporadic sampling.

Detectability covariates were not considered here, because
Beaufort sea-state and platform height were included in Waggitt
et al. (2020). Density covariates were also omitted for our initial
investigation of trends (but see “Identification of Main Drivers”
section). As a response variable, the density of common dolphin
was analyzed, after truncating the highest 5% to control outliers
(Buckland et al., 2001). The spatio-temporal model was fitted
assuming a lognormal error distribution and a Poisson-linked
delta model such that the sum of both linear predictors is
predicted log-density; this structure, was selected based on the
lowest Akaike Information Criterion (AIC) (Sakamoto et al.,
1986). Model parameters, as well as spatio-temporal components,
were estimated using 200 knots (Supplementary Figure 1) based
on previous studies that applied this same resolution in bigger
areas (Carroll et al., 2019; Thorson, 2019), while confirming that
results are qualitatively similar when increasing the number of
knots (Supplementary Table 2). Species density was predicted at
each knot by multiplying the predicted probability of occurrence
by the predicted density. Density estimates for each knot were
then interpolated to a standard grid of 0.1◦ spatial resolution
(latitudinal range: 43◦–49◦N; longitudinal range: 1◦–10◦W) to
match with the spatial resolution of the environmental data (see
“Identification of Main Drivers” section) and multiplied by the

2https://github.com/James-Thorson-NOAA/VAST/blob/main/manual/VAST_
model_structure.pdf
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area of the grid cell to create annual surfaces of common dolphin
abundances across the BoB.

The annual abundances of common dolphin predicted for the
study area were then analyzed by means of a linear regression
to identify significant temporal trends and compared by means
of a correlation test with an observed abundance index to check
model fit. The observed abundance index was based on the
encounter rate (individuals/km) of common dolphin estimated
from monthly at-sea observations taken by a team of experienced
observers in a constant effort-based systematic sampling scheme,
i.e., the Pride of Bilbao ferry (Louzao et al., 2015; Robbins
et al., 2020). This survey consistently crosses the BoB using the
same route every year (Figure 1), and although it was also used
as input for the baseline model, it only forms the 8% of the
whole data set. Thus, we believe it can be used to compare the
observed (ferry) and predicted (VAST) abundance indices and
to determine whether the model predictions have been biased by
differences in the effort.

An additional analysis with predicted abundances was also
conducted to identify areas in which significant spatio-temporal
changes occurred over the study period. For that, predicted
abundances per grid cell were analyzed as a function of year by
means of a linear regression. The slope and the p-value obtained
in each cell, as indicators of change rate and its significance, were
then plotted over the standard grid covering the study area.

Distribution Shift Metrics
Shifts in distribution were summarized by calculating the
centroid of the distribution for a given year (termed center
of gravity, CoG) after having predicted the density associated
with every knot and year in the previous step. By means of the
SDF estimator implemented in the VAST model, the CoG was
calculated for the BoB population domain and standardized by
the total abundance predicted for the study area, so that our
analysis focused on changes in distribution after controlling for
changes in total abundance (Thorson et al., 2016). Shifts in CoG
were displayed in terms of “Eastings” and “Northings,” meaning
km from the most western point of the study area and km from
the Equator, respectively. Significant trends were identified using
a linear regression against year.

Identification of Main Drivers
To understand spatio-temporal patterns, three main groups of
drivers were analyzed (Table 1), classified into local and regional
covariates according to their spatio-temporal structure (a local
covariate varies across space while a regional covariate is a
univariate time series representing the covariate over the entire
study area; Thorson, 2019):

(1) Local oceanographic conditions integrated at 100 m depth,
specifically temperature and chlorophyll a concentration
(Chl-a), based on their direct relationship with climate
change and their importance for predicting top predators
distribution (Hazen et al., 2012; García-Barón et al., 2020).

(2) Regional climate indices, specifically North Atlantic
Oscillation (NAO), East Atlantic Pattern (EA), and Atlantic
Multidecadal Oscillation (AMO) climate indices (details in
Table 1), due to their ability to extract the leading pattern

in weather and climate variability over the North Atlantic
and their relationship to cetacean and prey populations
(Simmonds and Isaac, 2007; Borja et al., 2008; Evans et al.,
2010; Evans and Waggitt, 2020).

(3) Regional biomasses of potential prey species, based on
the assumption that climate change will affect cetaceans
distribution through changes in their prey (Robinson et al.,
2005; Simmonds and Isaac, 2007; Evans and Waggitt, 2020).

Temperature and Chl-a values were sourced from the Iberian
Biscay Irish Ocean Reanalysis Model available at the Marine
Environmental Monitoring Systems,3 providing values at a 0.08◦

spatial resolution, a 1-month temporal resolution and at 22
discrete depth intervals ranging from surface to 100 m depth. To
test their effect on the annual estimates predicted by the baseline
spatio-temporal model, the annual mean of both temperature
and Chl-a was estimated integrating the data available in the
first 100 m of the water column and then resampled with the
raster package (Hijmans et al., 2017) at 0.1◦ (∼10 km) resolution
(Waggitt et al., 2020). The three climate indices were downloaded
from the National Oceanic and Atmospheric Administration
(NOAA) at a monthly scale and averaged to obtain annual
values,4 while the biomass of prey species was acquired from the
International Council for The Exploration of Seas (ICES) website
at annual scale.5 We selected prey species based on their relative
importance in the common dolphin’s diet in the BoB (Meynier
et al., 2008; Santos et al., 2013) as well as data availability and
suitability because not every potential prey species (e.g., sprat,
myctophids) was available for the spatio-temporal scale defined
in this study. European anchovy (Engraulis encrasicolus) was the
only prey species whose biomass had been estimated exclusively
for the BoB. Horse mackerel (Trachurus trachurus) estimates
were for the Northeast Atlantic, Atlantic mackerel (Scomber
scombrus) and blue whiting (Micromesistius poutassou) for the
Northeast Atlantic and adjacent waters and sardine (Sardina
pilchardus) estimates for the Cantabrian-Atlantic Iberian waters
(for information on the extent of stocks see Table 1). Although
there is an assessment for the sardine stock of the BoB, data were
only available from 2000 onward (ICES, 2019c), so we decided
to use the biomass estimations from the Cantabrian sea and
Atlantic Iberian waters instead after having checked that both
indices were highly correlated (r = 0.87) and followed similar
trends (Supplementary Figure 2). Finally, the biomasses of all
species were summed and used as a proxy for total prey biomass
available in the BoB.

For modeling purposes, local temperature and Chl-a variables
were included as quadratic forms in the model to allow for
non-linear responses (Perretti and Thorson, 2019). Regional
climate indices were included as “spatially varying coefficients”
as in Thorson (2019), which means that instead of estimating a
single slope parameter presenting the effect of an oceanographic
index on density, the model estimates a separate slope parameter
for every modeled location (every knot). The biomass of each

3www.ncdc.noaa.gov
4https://marine.copernicus.eu/
5https://standardgraphs.ices.dk/
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TABLE 1 | Summary of the local oceanographic, regional climatic and regional prey variables used in this study accompanied by a little description and the source from
which they were obtained.

Variable Measure Description Source

Local oceanographic conditions Temperature ◦C Mean annual temperature between 0 and 100 m depth The Iberian Biscay Irish
Ocean Reanalysis
Model

Chlorophyll a Mg/m3 Mean annual chlorophyll between 0 and 100 m depth

Regional climatic indices NAO − Both NAO and EA are estimated from the difference of
atmospheric pressure at sea level between the Icelandic
Low and Azores High, but the anomaly centers of the EA
pattern are displaced southeastward to the approximate
nodal lines of the NAO pattern

NOAA (National
Oceanic and
Atmospheric
Administration)

EA −

AMO − Average anomalies of sea surface temperatures

Regional prey biomasses Anchovy Tons Mean spawning stock biomass in subarea 8 (Bay of Biscay) ICES (International
Council for The
Exploration of Seas):
stock assessment
models

Sardine Tons Mean spawning stock biomass in division 8.c and 9.a
(Cantabrian Sea and Atlantic Iberian waters)

Mackerel Tons Mean spawning stock in subareas 1–8 and 14, and in
Division 9.a (the Northeast Atlantic and adjacent waters)

Horse mackerel Tons Mean spawning stock biomass in Subarea 8 and divisions
2.a, 4.a, 5.b, 6.a, 7.a–c., and 7.e–k (the Northeast Atlantic)

Blue whiting Tons Mean spawning stock biomass in subareas 1–9, 12, and 14
(Northeast Atlantic and adjacent waters)

prey species, as well as the total biomass index, were first log
transformed and then included as spatially varying coefficients
since they were also available as a single regional time-series.

As a preliminary analysis, potential drivers were correlated
with the abundance and CoG of common dolphin obtained in
the previous baseline spatio-temporal model. Then, covariates-
based modeling was performed in two different ways to identify
the most parsimonious drivers and to uncover the relative
contribution of covariates:

(1) Univariate spatio-temporal models were fitted for each
variable using the same configuration as in the baseline
spatio-temporal model. Univariate models were then
compared with the baseline model by means of the AIC
(Sakamoto et al., 1986). Only a decrease in the AIC > 2
in relation to the baseline spatio-temporal model was
considered an improvement. When models differed by less
than 2 units of AIC (1AIC ≤ 2), they were considered
statistically equivalent (Arnold, 2010). The way in which
covariates were related to the spatio-temporal patterns
of common dolphin was also explored by plotting the
functional relationships from the model parameters.

(2) Univariate models were fitted for each variable after setting
the spatio-temporal variation (i.e., spatio-temporal random
effects) to 0. This was done to remove the contribution
of random effects and isolate the effect of the covariates
since in VAST, random fields can also account for changes
in distribution over time by capturing the residual spatial
patterns that cannot be attributed to the fixed effect
(Thorson et al., 2017). The abundances and CoG obtained
from these models were then compared with those from the
baseline spatio-temporal model to determine the amount of
variation attributable to covariates.

RESULTS

Spatio-Temporal Patterns
Sampling Effort
A total of 1728 sightings of common dolphin collected
in 21 different surveys were analyzed (Figure 1 and
Supplementary Table 1). Those surveys mainly covered
spring-summer months and showed a peak of maximum
effort between the 2007 and 2012 period (Supplementary
Figure 3). The mean latitude of sampling also varied and
shifted significantly south over time (p = 0.001), while no
significant change was observed in the mean longitude of
sampling (Figure 2).

Common Dolphin
The common dolphin abundance estimated by the baseline
spatio-temporal model showed a significant increase (p < 0.001)
throughout the study period, accompanied by high variability
(Figure 3 and Supplementary Table 3). This increase was
most pronounced over the more recent years (2011–2017) and
mainly occurred in the southeast corner of the BoB (Figure 4).
These results agreed with the ferry data, which also showed
an increasing trend and a significant correlation (r = 0.7,
p = 0.003) with the predicted abundances (Supplementary
Figures 4, 5).

The CoG also showed a high interannual variability,
but no significant trend was found over time in either of
the two axes (Figures 5A,B). In contrast, the correlation
between eastings and northings showed as significant pattern
(p = 0.005) in the direction of the shift, indicating that the
distribution of common dolphins generally varied between
the inner (southeast) and the outer part (northwest) of the
BoB (Figure 5C).
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FIGURE 2 | Sampling effort (number of segments of up to 10 km) as a function of year and longitude (A), and year and latitude (B). In both figures the size of the
circle is proportional to the sampling effort; the black line indicates the mean value and the dotted line the linear temporal trend.

Drivers and Covariate Contributions
Neither the annual temperature nor the Chl-a concentration
integrated at 100 m depth revealed a significant (p > 0.05)
temporal trend across the full BoB (Supplementary Figure 6).
The climate index AMO has remained in a positive phase
since 1997, whereas NAO and EA indices have shown a
higher variability with alternation between positive and negative
phases (Supplementary Figure 7). Both anchovy and mackerel
biomasses showed a significant (p ≤ 0.05) recovery after a period
of low abundance, while sardine and horse mackerel underwent a
severe decline (p ≤ 0.001). In contrast, blue whiting did not show
any significant temporal trend (p = 0.2). The prey biomass index,
on the other hand, exhibited a significant increase (p = 0.003),
despite the large variability (Supplementary Figure 8).

The correlation between the potential drivers and the CoG
(easting and northings) of common dolphin only showed
weak relationships. In contrast, predicted abundance revealed
several strong relationships (r > 0.5) with prey species,

specifically mackerel and anchovy (positive correlation), and
sardine and horse mackerel (negative correlation) (Figure 6).
After prey species, only EA and NAO climate indices showed
a moderate correlation with abundance (r∼0.40). Blue whiting
was not significant (p > 0.05), while temperature, Chl-a,
AMO and the prey biomass index showed weak relationships
(r∼0.20) (Figure 6).

For covariates-based models, the AIC score showed that
the most substantial decrease was for the NAO index and
regional prey species biomasses (especially anchovy and
sardine). Local Chl-a concentration, as well as horse mackerel
and mackerel, only contributed slightly, while remaining
drivers (temperature, AMO, EA, blue whiting and prey
species biomass index) were not relevant in terms of AIC
(Table 2). Functional relationships of those important
drivers revealed positive responses for NAO, anchovy,
mackerel and negative for Chl-a, horse mackerel and sardine
(Supplementary Figure 9).
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FIGURE 3 | Abundance of common dolphin in the BoB predicted by the baseline spatio-temporal model with standard deviation (shaded area), the linear trend, and
its significance.

FIGURE 4 | Spatio-temporal changes in the abundance of common dolphin (predicted by the baseline model) illustrated by means of the change rate (the slope of
the linear regression). Hatched areas indicate those areas where change rate is not significant (p > 0.05).

Similarly, covariate-only models (with no random
effects) showed that the NAO index and prey species
biomasses were able to explain the increase in region-
wide abundance of common dolphin (Figure 7). Chl-a
concentration, despite having shown a decrease in AIC
score (Table 2), did not contribute to explain the variability
in the relative abundance (Figure 7), and neither did
temperature, AMO index, or blue whiting (Supplementary
Figure 10). EA and biomass indices did show a higher

contribution in terms of variability, but they were not
identified as important drivers according to AIC score
(Supplementary Figure 10).

In the case of CoG, only Chl-a and temperature contributed
to explain the observed variability but, even then, only in a
very small proportion (Figure 8). In fact, the variation in the
CoG explained by these variables only accounted for about
10–20 km, while the spatio-temporal model suggested variation
of 100–300 km.
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FIGURE 5 | The variation in the center of gravity (CoG) of common dolphin
expressed in eastings (A) and northings axes (B), and as a function of both
(C). Shaded area means the standard error, while the dashed line indicates
the linear trend.

DISCUSSION

The evaluation of the spatio-temporal patterns of common
dolphin in the BoB agrees with the MSFD aiming to assess
the abundance and distribution of species in European waters.
Surveys providing information on species distribution and
abundance in this region, however, have shown significant shifts
in the spatial distribution of observations, which make necessary
the application of methods such as VAST to account for uneven
sampling effort.

Spatio-Temporal Trends in Common
Dolphin Abundance
The modeling of common dolphin sightings revealed a significant
increase in abundance, which is in agreement with previous
studies conducted in the BoB (Hemery et al., 2007; Authier
et al., 2018; Saavedra et al., 2018) and in the wider Northeast
Atlantic (Hammond et al., 2017; Evans and Waggitt, 2020) that
also reported an increasing trend. In addition, data from ferry
surveys, known to perform the same route every year, showed the
same pattern and confirmed that the results were not biased by
the detected latitudinal shift in effort.

In addition, the predicted abundance estimates were found
to be quite coherent with those obtained in previous surveys
conducted in summer 2012 in the BoB (Laran et al., 2017) and
in summer 2016 in the Northeast Atlantic (ICES, 2020), in which
490,000 (95% CI: 340,000–720,000) small delphinids (common
and striped dolphins) and 634,000 (95% CI: 353,000–1,140,000)
common dolphins were estimated, respectively. Although it is not
possible to make a direct comparison with our predictions, the
ratios for common/striped dolphins and Northeast Atlantic/BoB
estimated from Hammond et al. (2017) would lead to an
approximate abundance of 360,000 (95% CI: 250,000–526,000)
and 425,000 (95% CI: 237,000–764,000) individuals of common
dolphin in the BoB for 2012–2016, respectively. These numbers
were similar to our predictions in those years (359,000 ± 49,000
and 376,000 ± 71,500 individuals, respectively; Supplementary
Table 2), and would indicate that, overall, abundance estimates
from VAST were consistent with previous studies. This good
agreement is remarkable, given the heterogeneity of the data
used in this study that comprised 21 datasets, and emphasizes
the importance of applying methods that are robust to shifts in
sampling effort. In addition, the concordance between our results
and those estimates made on summer also suggest that the spatio-
temporal patterns obtained in this study should be interpreted as
spring-summer trends, as this was the period of the year when
most data were collected (Supplementary Figure 2B).

The increasing trend in abundance found in this study for the
BoB, however, does not necessarily imply an overall population
increase at the Northeast Atlantic level (i.e., species whole
distribution range), and instead, could be due to the arrival of
individuals from unsampled areas. That is why the results found
in this study should be treated with caution and never be used to
downplay the effects of incidental capture on common dolphin,
especially when recent estimates suggest that the bycatch in the
BoB is unsustainable for the population as a whole (ICES, 2020).

Regional vs. Locally Estimated
Environmental Variables
Local environmental variables, such as temperature and Chl-
a used in this study, are often unable to capture complex
associations between environment and ecological process due
to time lags in species responses coupled with the non-linear
intrinsic nature of population dynamics (Hallett et al., 2004).

This can be particularly true for Chl-a and cetaceans species
that feed on zooplanktivorous fishes, since the abundance of the
latter has been related to a period of zooplankton grazing and
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FIGURE 6 | Pearson correlation among the common dolphin’s predicted abundance, CoG and potential drivers. Circle sizes are proportional to the correlation
coefficient, which is indicated inside the circles. Non-significant correlations (p > 0.05) are shown without a circle.

a phytoplankton decay (Díaz López et al., 2019). Under such
circumstances, many researchers working with cetaceans often
apply time-lagged Chl-a concentration for one and/or 2 months
prior to the sighting month (Tobeña et al., 2016; Prieto et al.,
2017; Pérez-Jorge et al., 2020; Barlow et al., 2021).

In this study, however, predictors were introduced at an
annual scale to match the available temporal scales of both prey
and climatic indices, which prevented its incorporation in a
lagged phase and likely led to the low contribution of Chl-a
in explaining the spatio-temporal patterns of common dolphin.
Similarly, the lack of importance shown by temperature could
be also a consequence of this annual resolution or could instead
suggest that, within the core of the species range, temperature
is not such an important variable to explain its abundance
and distribution.

On the contrary, regional indices of climate, spanning
several months and considering wider areas of influence, are
less disturbed by local variability and very often outperform
locally estimated environmental variables (Hallett et al.,
2004). In addition, they usually hold information about
several environmental factors (e.g., temperature, storms and
precipitation, mixed layer depths or circulation patterns), which
make them act as an integrated measure of meteo-oceanographic
conditions that tend to explain more of the variability of the
system than just, for example, ocean temperature (Hurrell and
Deser, 2009; Thorson, 2019).

The results found in this study are a good example of this,
as the NAO climate index was found to be the best predictor
explaining the abundance of common dolphin according to
AIC scores. Specifically, results showed a positive relationship
between both, meaning that common dolphin abundance is
enhanced during positive phases of NAO, which are characterized
by colder and drier conditions over Mediterranean regions,
central and southern Europe (e.g., BoB), and warmer and wetter
conditions in northern Europe (Visbeck et al., 2001; Aravena
et al., 2009; Hurrell and Deser, 2009).

Although the NAO index and similar climate indices have
been previously related to the abundance of wide ranging
predators in the BoB (Hemery et al., 2007; Louzao et al., 2015),
responses are likely mediated through the influence of the climate
indices on food resources rather than directly on higher trophic
predators such as cetaceans (Drinkwater et al., 2003; Lusseau
et al., 2004). Indeed, the NAO climatic index has been related
to some biologically important phenomena, such as upwelling
(Pérez et al., 2010), river run-off (Dupuis et al., 2006) and Ekman
transport (Guisande et al., 2004), which are known to influence
the recruitment of some of the main prey species (i.e., anchovy,
sardine) of common dolphin (Guisande et al., 2004; Borja et al.,
2008; Planque and Buffaz, 2008). We could therefore hypothesize
a potential bottom-up process, in which NAO affects common
dolphins through its influence on prey. In fact, bottom-up control
has been suggested for the continental shelf food web of the BoB,
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TABLE 2 | Model terms.

Model AIC 1 AIC

Baseline spatio-temporal No covariates 27814.85 0

Local oceanographic conditions Temperature 27820.78 5.93

Chlorophyll 27811.99 −2.86

Regional climate indices NAO 27806.3 −8.55

EA 27816.38 1.53

AMO 27817.57 2.72

Regional prey biomasses Anchovy 27807.76 −7.09

Sardine 27809.77 −5.08

Mackerel 27812.81 −2.04

Horse mackerel 27812.63 −2.22

Blue whiting 27816.69 1.84

Biomass index 27814.12 −0.73

Second column refers to the AIC score of each model, while the third column refers to the difference in the AIC (1AIC) resulting from the comparison of each univariate
model with the spatio-temporal model (reference model). Positive values mean that higher AIC were obtained relative to the baseline spatio-temporal model while negative
values mean that lower AIC scores were achieved. Numbers in bold mean improvement in model fitting (1AIC < −2) and hence, substantial contribution of the given
variable.

where a highly diverse and abundant community of forage fishes
regulates higher trophic levels (Lassalle et al., 2011).

The Role of Prey
Common dolphins are assumed to be opportunistic predators
that feed on a wide variety of species, although a preference for
energy-rich species, such as the anchovy, sardine, mackerel and
horse mackerel investigated in this study, has been suggested
(Meynier et al., 2008). Atlantic mackerel, however, is only present
in large quantities during the first half of the year in the
BoB, coinciding with its spawning period (Uriarte and Lucio,
2001), while Atlantic horse mackerel and the Iberian sardine
are currently in serious decline (ICES, 2018, 2019b). European
anchovy, in contrast, has been at a sustainable level since 2010,
with an overall increasing trend that reached its maximum in
2019 (ICES, 2019a). The importance of prey species in common
dolphin diet has been found to be related to their availability
in terms of abundance (Santos et al., 2004; Meynier et al.,
2008), which could explain the negative responses shown by
species with low abundances (e.g., Iberian sardine and Atlantic
horse mackerel) and the positive and larger contribution in
terms of AIC made by those species with higher abundance
(i.e., European anchovy). Blue whiting, on the other hand,
did not seem to be relevant in explaining the variability of
common dolphin over the study period, despite being more
abundant than, for example, anchovy or mackerel. Evidence
of blue whiting in the diet of the common dolphin was
found in the BoB in the 1980s (Desportes, 1985), which could
mean that it was important in the past but less so now, or
that it is only important, given its poorer energetic condition
(4.4 kJ g−1), in the absence of other remarkable prey species
(Santos et al., 2013).

However, not all potential prey species were included
and differences in the distribution of stocks may have also
affected the results. In fact, only anchovy’s biomass had
been estimated exclusively for the BoB. Remaining species
biomasses were either estimated using adjacent areas (i.e., Iberian

sardine) or distribution areas that extended considerably the
observations range of common dolphin (i.e., blue whiting,
mackerel and in a lesser extent horse mackerel), which could have
contributed, for example, to the higher prominence of anchovy
detected in this study.

Distributional Shifts
The common dolphin is considered a warm-temperate species,
and accordingly, its range is expected to expand in response to
increasing water temperature (MacLeod, 2009). This northward
expansion seems to be already happening, at least at the northern
limit of the species range, as evidenced by a higher frequency
of strandings and sightings in northern Britain and southern
Scandinavia (MacLeod et al., 2005; Evans and Waggitt, 2020). The
BoB, however, does not constitute a range edge within common
dolphin’s distribution, which can explain why we did not find
a northward shift in its CoG, but instead, switches between the
inner (i.e., southeast) and the outer (i.e., northwest) part of the
BoB. This pattern has also been detected when forecasting the
future distribution of anchovy’s egg density in the BoB for spring
(Erauskin-Extramiana et al., 2019a) and was associated to the
contraction (southeast) and expansion (northwest) of anchovy
population (Motos et al., 1996). A prey driven distribution was
already suggested for albacore tuna in the area (Lezama-Ochoa
et al., 2010), so we could hypothesize that the distributional
shifts of common dolphins in the BoB are also driven by the
distribution of their main prey. Similarly, the increase in common
dolphin abundance detected in the southeast corner of the BoB
could be also related to a higher prey availability. Indeed, other
important prey species of the diet of common dolphin (e.g., horse
mackerel, sprat) also shifted to the southeast of the BoB in the past
30 years (Baudron et al., 2020).

The prey variables considered in this study, however, could
not explain much of the observed spatio-temporal variability
of the CoG as a result of being introduced as a biomass index
that changed across time but not across space, and hence, could
not confirm or reject the hypothesized prey-driven distribution.
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FIGURE 7 | Abundance estimates predicted by the baseline spatio-temporal model (black line) and by the covariates-based model (with no random effects, colored
line) so that the contribution made by each variable (A–F) can be visualized. Only drivers identified as relevant by AIC score are shown.

Whether top predator abundance and distribution is driven by
the environment or prey is a much debated question in ecology
(Grinnell, 1917; Elton, 1927; Torres et al., 2008). However,
acquiring co-occurring top predator and prey data in space and
time to test these hypotheses is challenging. In this study, we
have taken advantage of a large spatio-temporal compilation of
top predator sightings, but in contrast, we have only been able to
incorporate annual, non-spatial biomass indices of prey. Future
work, therefore, should focus on improving prey data inputs to
better understand their role in driving top predator distributional
shifts in the BoB, a question that remains open. Climate indices,
as for prey biomasses, were regional time-series rather than
spatio-temporal datasets (i.e., changed across time but not across
space), so their effect on the CoG is also difficult to understand.
Local oceanographic variables did account for spatio-temporal

changes, but even so, only explained a very small proportion of
spatial shifts, which means that most of the distributional shifts
occurred due to unidentified sources. This inability to attribute a
source to distributional shifts was also found in previous studies
with fishes (Thorson et al., 2017; Perretti and Thorson, 2019),
and suggests that more effort must be made to understand when
distributional shifts can be attributed to covariates in spatial
random effects models (Hodges and Reich, 2010).

CONCLUSION

Climate change is believed to affect marine mammals through
changes in their physical environment but also in their prey.
However, many studies aimed at understanding climate impacts
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A B

FIGURE 8 | Center of gravity estimates predicted by the baseline spatio-temporal model (black line) and by the temperature and chlorophyll-based models (with no
random effects, colored line), expressed in easting (A) and northings (B) axes.

often employ environmental characteristics as proxies for prey
distribution. In this study, we incorporated both environmental
and prey variables estimated at local and regional scale and
explored the relative importance of each of them in explaining the
spatio-temporal variability in common dolphin data. Although
we could not attribute much of the detected distributional shifts
to the variables considered in this study, we could conclude
that, in the BoB, climate indices and prey species biomasses can
play an important role in driving the abundance patterns of
the common dolphin.

Further research on climate change effects on common
dolphin, however, should focus on comprising the whole
distribution range of the species, given the increasingly feasible
possibility for combining surveys across areas and regions
provided by methods such as those used here. This way, we could
address important knowledge gaps that have not been solved
here, for example, if the increasing trend found in abundance is
due to the arrival of new individuals or it is the result of an overall
population growth. Answering to this question will undoubtedly
help understand population dynamics and bycatch implications,
but meanwhile, we reiterate our call for caution when interpreting
the abundance patterns predicted in this study.
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Species distribution models (SDMs) are commonly used in ecology to predict species
occurrence probability and how species are geographically distributed. Here, we
propose innovative predictive factors to efficiently integrate information on connectivity
into SDMs, a key element of population dynamics strongly influencing how species
are distributed across seascapes. We also quantify the influence of species-specific
connectivity estimates (i.e., larval dispersal vs. adult movement) on the marine-
based SDMs outcomes. For illustration, seascape connectivity was modeled for
two common, yet contrasting, marine species occurring in southeast Australian
waters, the purple sea urchin, Heliocidaris erythrogramma, and the Australasian
snapper, Chrysophrys auratus. Our models illustrate how different species-specific
larval dispersal and adult movement can be efficiently accommodated. We used
network-based centrality metrics to compute patch-level importance values and include
these metrics in the group of predictors of correlative SDMs. We employed boosted
regression trees (BRT) to fit our models, calculating the predictive performance,
comparing spatial predictions and evaluating the relative influence of connectivity-
based metrics among other predictors. Network-based metrics provide a flexible
tool to quantify seascape connectivity that can be efficiently incorporated into
SDMs. Connectivity across larval and adult stages was found to contribute to
SDMs predictions and model performance was not negatively influenced from
including these connectivity measures. Degree centrality, quantifying incoming and
outgoing connections with habitat patches, was the most influential centrality
metric. Pairwise interactions between predictors revealed that the species were
predominantly found around hubs of connectivity and in warm, high-oxygenated,
shallow waters. Additional research is needed to quantify the complex role that habitat
network structure and temporal dynamics may have on SDM spatial predictions and
explanatory power.

Keywords: centrality measures, fragmented habitat, graph theory, machine learning, predictive model, seascape
connectivity
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INTRODUCTION

Conservation of biodiversity is a priority in management plans
for conservation scientists and managers. Understanding species’
spatial distribution patterns is critical to identify important
habitats and improve management strategies (Monk et al., 2010;
Foltête et al., 2012). Classic strategies used in conservation to
manage species include the establishment of protected areas and
reserves around key habitats. Today, connectivity is considered
essential, and plays a fundamental role in characterizing the
importance of protected areas within a broader network of
habitat patches (Agardy, 1994). The movement of individuals
among habitat patches (either as larvae or as adults), or
connectivity, ensures species persistence and is critical to
determine population dynamics, particularly when species are
distributed across fragmented habitat patches (Hanski, 1998).

Species distribution models (SDMs) represent a key tool for
the prediction of species distributions, driven by environmental
parameters. SDMs have been applied to marine, freshwater and
terrestrial species and demonstrated to perform well in predicting
the geographic distribution of species in various contexts (Elith
and Leathwick, 2009). Distribution modeling techniques have
developed using presence/absence or abundance data, but recent
research has focused on proposing methods which perform well
when presence-only data are available (Elith et al., 2006). Though
it can be hard to detect model errors and uncertainties in these
cases, best practices are necessary to ensure that SDMs have
strong predictive capability (Robinson et al., 2017). Correlative
SDMs provide a valuable approach to predict distribution across
a land/seascape, broadly applicable across diverse fields such as
ecology, evolutionary biology and conservation biology (Pearson,
2007). Species distribution modeling approaches have been used
to address different marine-related research goals (Robinson
et al., 2017), for instance describing essential fish habitat (Monk
et al., 2010), assessing the impact of climate change (Jones
and Cheung, 2015), understanding habitat distribution shifts
(Gormley et al., 2015), studying the spread of invasive species
(Báez et al., 2010) or better designing conservation strategies
(Adams et al., 2016).

Appropriate environmental parameters are crucial for the
robust development and realistic predictions of SDMs, but
global marine environmental datasets are often of coarse
spatial resolution and coastal data are often missing or
inaccurate. However, extensive work has been done to make
data more reliable and available to researchers for marine
species distribution modeling, such as Bio-ORACLE global
environmental dataset (Tyberghein et al., 2012). Environmental
parameters used in SDMs most often represent static in situ
characteristics (e.g., annual mean temperature). But, the spatial
distribution of populations is often equally as dependent on
the dynamics or variability in these parameters (e.g., changes
in weekly maximum temperature). In marine systems, larval
dispersal is a critical component in population dynamics
(i.e., population connectivity), fundamental for persistence of
metapopulations inhabiting fragmented landscapes (Hanski,
1998) and in source-sink dynamics (Pulliam, 1988). Marine
connectivity results from larval dispersal or adult movement

and is governed by dynamic oceanic environmental variables
as well as life history and biological attributes (Cowen and
Sponaugle, 2009). This connectivity can largely determine the
geographic range, as well as the presence/absence within habitat
patches. As a result, when modeling the spatial distribution of
populations, it is important to consider this dispersal as well
as adult movement among habitat patches (Foltête et al., 2012).
Movements of reef fishes are associated to diel movements
within their home range and longer migrations toward spawning
sites (Meyer et al., 2010). For fish, movements are also a
density dependent process, where fish move to suboptimal
habitats in response to variations in population density (Rose
et al., 2001). Even though habitats might be suitable for
their intrinsic environmental characteristics and potential value
to the metapopulation, they might be difficult to reach and
therefore not effectively contribute to the population. Habitat
fragmentation can also impact connectivity, as well as species
distributions. Smaller or more distant patches will be less
functionally connected with surrounding habitats, increasing
the isolation and vulnerability to extinction (O’Hara, 2002).
In these isolated habitat patches, marine populations are
often demographically closed, and species’ persistence depends
on replacement through local retention of larvae, whereby
larvae are released and settled back to the natal habitat
patch (Burgess et al., 2014). SDMs rarely directly consider
dispersal of species (Robinson et al., 2011), effectively ignoring
this potentially important process. Clearly, including dispersal
dynamics and population connectivity into the study of species
distributions is critical.

Seascape connectivity, representing the functional
connectedness of marine habitat patches, combines
environmental attributes and the geographic configuration
of the seascape with information on the ability of the species
to move (Weeks, 2017). Several studies utilize cost-surfaces
incorporating the influence of ocean currents on marine
species movements to determine least-cost paths connecting
marine habitats of the same type, taking advantage of terrestrial
examples (Caldwell and Gergel, 2013; Fischer et al., 2015). An
increasingly popular approach to quantify seascape connectivity
is based on biophysical models used to determine connectivity
in marine systems, coupled with graph theory to study structure
and properties of connectivity networks. Spatial predictions
of population connectivity across the seascape are created
based on habitat characteristics, ocean currents’ velocity and
species-specific biological parameters (Treml et al., 2008).

A well-known and appropriate framework to represent and
analyze connectivity takes advantage of graph theory. Habitat
connectivity, and all of its complexities, can be summarized as
a network, where habitat patches are nodes and the presence
and strength of connections between patches are represented
by links or edges in the network (Urban and Keitt, 2001). In
landscape and seascape ecology, network algorithms have been
used in understanding and managing habitat fragmentation,
reserve design and conservation planning (Urban and Keitt,
2001; Bodin and Norberg, 2007; Minor and Urban, 2007; Estrada
and Bodin, 2008; Grober-Dunsmore et al., 2009). Few studies
in landscape ecology effectively integrated graph-based metrics
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into SDMs to summarize landscape connectivity, although these
studies have been limited to terrestrial systems and simplified
connectivity, including connectivity estimates improved the
predictive performance of the SDMs (Foltête et al., 2012).
These approaches have been used for terrestrial species impacted
by urban development (Tarabon et al., 2019) and by linear
infrastructures such as roads and railways (Clauzel et al., 2013;
Girardet et al., 2013). This method focused on connectivity
metrics such as recruitment, flux and betweenness centrality
and predicted accurate species distributions (Foltête et al.,
2012; Clauzel et al., 2013; Girardet et al., 2013). Among these
metrics, betweenness centrality demonstrated to be a relevant
SDM predictor (Clauzel et al., 2013). Throughout much of this
work, network-based centrality measures have received much
attention for summarizing patch-level connectivity attributes
and determining patch-level contributions and metapopulation
importance. Among these centrality metrics, betweenness
centrality (BC) (Freeman, 1978; Newman, 2005) has often
been used in the context of habitat prioritization and species
conservation to identify stepping-stones habitats (Urban and
Keitt, 2001; Bodin and Norberg, 2007; Estrada and Bodin,
2008; Bode et al., 2008; Bodin and Saura, 2010; Carroll
et al., 2012). BC is defined as the number of shortest paths
within an entire habitat network that pass through a given
node and may indicate common or important stepping-stones
habitats critical for maintaining network-wide connectivity.
Eigenvector centrality (Bonacich, 1987), a similar network-
wide measure of the most “influential” nodes in a network
has also been used to identify important habitat patches in
connected landscape networks (Estrada and Bodin, 2008) and
has been shown to strongly correlate with metapopulation
persistence (Watson et al., 2011). A local centrality measure,
degree centrality, quantifies the number of incoming and/or
outgoing connections and determines which habitat patches may
act as local highly connected hubs of connectivity (Minor and
Urban, 2007). These centrality measures may be ideal proxies for
a habitat’s connectivity importance and offer a useful pathway
for integrating the connectivity process into SDMs (Foltête et al.,
2012).

The main aims of this study are (i) to illustrate how
centrality metrics, suitable proxies for seascape connectivity, can
be incorporated in traditional marine-based SDMs and (ii) to
test whether including connectivity in these models influences
SDM predictions. This is the first study that uses a connectivity-
enhance SDM approach in the marine environment to evaluate
where, and to what degree, connectivity influences model
predictions. We aim to integrate graph-based network metrics
into SDMs for two types of marine species, a larval dispersing
benthic invertebrate and a highly mobile pelagic fish. Here, we
focused on two widely distributed marine species living across
the south-east coast of Australia. This region consists of a mosaic
of habitats and home to a broad group of species. We focused on
the Australasian snapper Chrysophrys auratus, a species of fish,
characterized by the ability to move across the region through the
whole lifespan, and on a marine invertebrate, purple sea urchin
Heliocidaris erythrogramma, where dispersal is limited to the
larval stage. We quantify patch-level metrics using graph theory

algorithms, defining centrality metrics for each habitat patch,
and we integrate these metrics into our marine-based SDMs. We
perform SDMs, comparing models’ results and evaluating the
contribution of seascape connectivity to models’ performance.
We assess the relative influence of centrality measures among
other predictive variables identifying which metrics mostly
influence SDMs. We investigate differences in the predicted
geographic ranges of distribution, understanding whether these
differences corresponded to critical areas for connectivity.

MATERIALS AND METHODS

Study Species
For this study we selected two representative and widely
distributed species of the south-eastern Australian coast, the
Australasian snapper, Chrysophrys auratus formerly known
as Pagrus auratus, and the purple sea urchin, Heliocidaris
erythrogramma, both usually associated with rocky reefs habitats
(Vanderklift and Kendrick, 2004; Pederson and Johnson, 2006;
Ling et al., 2010; Harasti et al., 2015; Terres et al., 2015).
Snapper represents an important resource for commercial and
recreational fisheries (Hamer et al., 2011). Purple sea urchin is
well-known because of its role in altering coastal habitat toward a
dominated urchin barren seascape (Ling et al., 2015).

Study Area
The spatial domain extends across the south-eastern coast of
Australia (Figure 1), from the south coast of New South Wales,
including Tasmania and Victoria waters, and as far west as
Kangaroo Island in South Australia. This region consists of a
mosaic of hard and soft bottom habitats, populated by a range of
diverse species. It spans from warm temperate waters in the north
to cooler waters around Tasmania. This region is also important
in terms of conservation values, including both protected species
and protected areas (Bax and Williams, 2000; Commonwealth
of Australia, 2015). Overall, the south-east Australian waters
have low productivity, however, there are localized spots of high
productivity at the edges of the continental shelf, where the
effects of currents, eddies and upwelling creates a rich habitat,
that is fished commercially and recreationally. In this work we
focused on the coastal areas of this region, which consists of rocky
reefs and soft sediments supporting a broad range of species
(Commonwealth of Australia, 2015).

We identified habitat patches using data available through
Seamap Australia National Benthic Habitat Classification Scheme
(Butler et al., 2017). Data from this dataset were downloaded at
state-resolution then merged. The extent of the study domain is
1,990 km × 1,850 km. We selected only habitats that are classified
as rocky reefs contained in the domain area, and we aggregated
habitat patches that showed a very limited size (of order of less of
1 km2) into a single patch, where possible. We defined 236 rocky
reefs patches across the whole region for an extent of 15,248 km2

of available habitat for the sea urchin and 264,050 km2 for the
snapper, which includes reefs surrounding area that could be used
by this species.
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FIGURE 1 | Map of the study area.

Seascape Connectivity for Snapper
(C. auratus)
To model adult snapper movements across the seascape and
quantify habitat connectivity, we (1) built a cost surface layer
based on magnitude and direction of oceanic currents, and
(2) completed a least-cost path analysis to quantify seascape
connectivity. The cost surface, required for the least cost path
analysis (LCP), assumed fish movement was influenced by
the magnitude and the direction of currents, with least cost
following the direction of currents. Magnitude and direction of
currents were derived from a global ocean circulation model
(HYCOM)1 using the Marine Geospatial Ecology Toolbox,
MGET (Roberts et al., 2010) in ArcGIS R© 10.5.1 (ESRI, 2017).
Data were aggregated into single annual cumulative cost layers,
representative of currents magnitude and currents direction
for the entire region (see Supplementary Figure 1). Following
examples from terrestrial habitat, first we created two cost
surfaces, one for currents’ magnitude and one currents’ direction,
quantifying the increasing relative cost of moving across the
seascape. Generally, due to the dominant eastward flow of
currents, the cost of moving in this direction was less than

1https://www.hycom.org

traveling westward (Caldwell and Gergel, 2013). We reclassified
both layers and assigned a relative score representing the cost
of traveling (Rayfield et al., 2010), ranging from 1 to 10, with a
score of 1 representing the least cost, while 10 represented the
greatest cost of travel, ten times more costly compared to cells
with a value of 1. Finally, we combined the currents magnitude
and currents direction cost surfaces, calculating the weighted
mean and defining one cumulative movement cost surface among
all study area, assuming parameters have equal weight. See
Supplementary Material for further details.

We performed LCP analysis using Linkage Mapper 2.0.0
(McRae and Kavanagh, 2011) a toolbox freely available for
ArcGIS R© 10.5.1 (ESRI, 2017). To add realism to the model, we
applied a maximum threshold of 100 km of traveled distance,
based on maximum swimming linear distances recorded from
acoustic tagging of snapper in South-east Australia (Fowler
et al., 2017). We modeled only ecologically meaningful corridors
among all habitat patches within the swimming range of
snappers. Our LCP analysis resulted in maps representing
seascape connectivity for adult snapper, with routes showing the
least costly paths among all habitat patches (nodes). This LCP
network was used to further quantify the structure of seascape
connectivity (see Supplementary Figure 3).

Frontiers in Marine Science | www.frontiersin.org 4 December 2021 | Volume 8 | Article 766915229

https://www.hycom.org
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-766915 December 8, 2021 Time: 12:59 # 5

Cecino et al. Marine SDMs and Connectivity

Seascape Connectivity for Purple Sea
Urchin (H. erythrogramma)
For marine invertebrates such as H. erythrogramma, movements
across the seascape are largely determined by the larval dispersal
phase. We modeled larval connectivity using an existing spatially
explicit biophysical marine connectivity model (Treml et al.,
2012). In this model, we used (1) a map defining suitable rocky
reef habitat patches, same data as above for snapper, where all
the habitat patches are source and destination sites for larvae, (2)
data describing the ocean currents (HYCOM), and (3) species-
specific life history traits for H. erythrogramma (Supplementary
Table 1), obtained from the literature (Okubo, 1971; Rumrill,
1987; Lamare and Barker, 1999; Huggett et al., 2008; Swanson
et al., 2012; Williams and Hastings, 2013).

We simulated larval dispersal from 1992 to 2012 at a 3-
hourly time-step, using all the available data for all spawning
times. Clouds of larvae were released from source reef patches
and the likelihood of larval settlement to all destination patches
was estimated based on species-specific biological parameters
and ocean characteristics. The model output was a dispersal
matrix, recording the cumulative quantity of larvae released
from each source patch that survived and settled to each
destination patch, summarizing across all modeled dispersal
events and years, and scaled by the size of the available
habitat area. Migration matrices are commonly used to study
larval connectivity, for this reason the dispersal matrices were
converted to migration matrices, M, representing the proportion
of settled larvae arriving at each destination (columns in the
matrix) that came from each source patch (rows in the matrix).
The migration matrix was used to build a network of seascape
connectivity, where rocky reef patches correspond to graph nodes
and presence of larval connectivity was represented as graph
edges (Supplementary Figure 4).

Network Analysis and Spatial
Generalization of Centrality Measures
The species-specific connectivity data were used to quantify
patch-level metrics representing patch importance, a common
spatial ecology approach (Estrada and Bodin, 2008; Bodin and
Saura, 2010; Carroll et al., 2012). All metrics were calculated in
R (R Core Team, 2019) with the “igraph” package (Csardi and
Nepusz, 2006). For all patches, we calculated degree centrality,
betweenness centrality and eigenvector centrality. Centrality
metrics indicate how central a node is in a network, therefore
a node with a high value of centrality is expected to have high
habitat connectivity importance. Degree centrality is the number
of outgoing and incoming links with each node in the network.
Betweenness centrality is a measure based on shortest paths, and
it is calculated as the number of shortest paths between all pairs
of nodes in the graph that pass through that node (Freeman,
1978; Newman, 2005). Eigenvector centrality is a measure of
importance of a node, essentially identifying highly connected
nodes that are also connected to other highly connected nodes.
Compared to other centrality metrics eigenvector centrality
values are defined between 0 and 1, where a value of 1 is assigned
to the most influential node in the network and 0 to the least

influential. This metric assigns relative scores to all nodes in
the network and is estimated as the principal eigenvector of the
adjacency matrix defining the network (Borgatti, 2005).

Species distribution models require continuous explanatory
variables, therefore we interpolated our centrality estimates
across the seascape domain. The interpolation technique and
distance used was dependent on each species’ capacity to move
throughout the seascape. In the case of the purple sea urchin, with
its limited ability to move great distances following settlement,
centrality values were interpolated locally only and assigned to
all habitat cells in the focal rocky reef patch. For the snapper we
assigned the corresponding centrality value to each patch cell,
and due to the likelihood of movement at greater distances, we
extrapolated the centrality measure into the neighboring seascape
using a negative exponential function with respect to distance.
Consistent with the 100 km threshold used in the LCP analysis
(Fowler et al., 2017), a maximum dispersal distance of 100 km
corresponds to a probability of presence of p = 0.05 (Urban and
Keitt, 2001; Foltête et al., 2012). We multiplied this probability
by the centrality value of the habitat patch. Where values from
two or more patches intersect, the mean centrality value was used
in these intervening areas. The results are continuous centrality
surfaces which can then be appropriately integrated into SDMs.

Species Distribution Modeling and
Comparison of Models’ Performance
We developed SDMs for both species, including and excluding
the species-specific centrality surfaces. Species occurrences data
recorded inside our spatial domain were derived from the Atlas
of Living Australia [ALA] (2019, 2020)2, and contained reliable
occurrence data for species around Australia. Environmental
parameters were extracted using the “Bio-Oracle” package in
R, which contains many marine data layers for ecological
modeling (Tyberghein et al., 2012). Given that ALA data
cover a temporal period of more than 100 years, we cleaned
the data set to remove the oldest data and duplicates to
better align to the temporal extent of the environmental
data. For both species we selected only data from 1980. The
final presence data for purple sea urchin consists of 875
observations, distributed across the study area, with the largest
concentration within Port Phillip Bay, while snapper occurrence
data consists of 780 observations, distributed across Victoria,
South Australia and northern Tasmania, reflecting the known
habitat of this species.

We selected a group of ecologically important parameters
which were believed to contribute to the distribution of both
species. Temperature, chlorophyll A concentration, primary
production (measured as net primary productivity of carbon),
current velocity, dissolved oxygen data were summarized by the
long-term monthly mean, pH, bathymetry, and salinity were
downloaded from models or summarized in situ measurements
(for additional information see Supplementary Material). In
addition to these environmental data, we included the seascape
connectivity layers of betweenness centrality, degree centrality
and eigenvector centrality (Figure 2). Collinearity among

2https://www.ala.org.au
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FIGURE 2 | Maps of environmental and connectivity predictors used in the SDMs for purple sea urchin, H. erythrogramma (top), and snapper, C. auratus (bottom).
All Maps in WGS84.

predictors was quantitatively checked, and those with a Pearson
correlation threshold of 0.7 or greater were identified and one was
eliminated leaving the most ecologically meaningful parameter
in the model. Collinearity is a known source of uncertainty, and
when collinearity increases, the efficiency and statistical power of
the model decrease (De Marco and Nóbrega, 2018).

Among the many SDMs algorithms available, we used a
popular machine learning method, boosted regression trees
(BRT) (Elith et al., 2008). BRT is a form of logistical regression
using decision trees and a boosting algorithm, an optimization
technique that reduces predictive deviance by combining
numerous trees into a single model. BRT has a powerful
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predictive performance and it has features such as handling
different type of predictors, missing data, moderate collinearity,
and complex non-linear relationships (Elith et al., 2008; Cimino
et al., 2020). BRT also performs well for presence-only data
(Elith et al., 2006). To model presence-only data with machine
learning methods, a random sample of the background landscape
is taken to represent unavailable “absence” data. In each model
we defined 10,000 pseudo-absences, distributed equally across
the coastal areas within the study area, representative of the
potential species habitat. We followed the protocol for fitting
BRT established within the “dismo” package (Hijmans et al.,
2017) in R, to understand which was the best predictive model
and compare the significance of including seascape connectivity
in the models. We built a training dataset and a test dataset
by resampling presence and background data, allocating them
to cross validation (cv) folds. Evaluation was completed at two
levels, first we used 10-folds to evaluate the models, then for each
training fold a 5-folds internal cross validation procedure was
completed for tuning the parameters of the BRT model using
the “dismo” R package (Hijmans et al., 2020). Models’ settings
(Table 1) were selected according to the recommendations in the
literature (see Elith et al., 2008). The selected settings directly
affect the number of optimal trees. As a result, by keeping the
learning rate and tree complexity constant, we can optimize the
number of trees to fit a good model. The settings were selected
to aim for a model with a high number of trees, so the model
can reliably estimate our response (Elith et al., 2008). We used
cross-validation to evaluate the predictive power of the models
and assessed performance using AUC-ROC, or area under the
curve – receiver operating characteristics curve approaches.
Then, we quantified the relative influence of seascape centrality
metrics with respect to all other environmental variables to
assess their contribution in predicting species distributions. We
also quantified pairwise interactions between environmental and
connectivity variables and environmental variables themselves,
which is useful to define the most suitable environment for the
species (Elith et al., 2008). BRT automatically models predictor
interactions, allowing their magnitude, and therefore ranking,
to be calculated (Hastie et al., 2009). Interaction results can be
visualized as three-dimensional partial dependence plots.

For each species we present results for two connectivity-
enhanced models compared to a model without connectivity.
First, we investigated the effect of connectivity adding to
the model all centrality metrics (degree, betweenness, and
eigenvector centrality) to understand which metric has the largest
influence and we compared it to the model without centrality
metrics. Then, to minimize overfitting and maximize predictive

TABLE 1 | Boosted regression trees settings applied to all models.

Model settings

Tree complexity 5

Learning rate 0.005

Bag fraction 0.75

Maximum trees 10,000

performance (Duan et al., 2014), we selected the single centrality
metric with the largest relative influence in the model to remain in
the model during fitting and we explored the SDMs results when
we included or excluded connectivity. These additional models
help to understand the role of connectivity and whether the
SDM predictions were influenced by the number of connectivity
parameters included in the model.

Finally, we mapped the spatial distribution of species across
the study area to visualize and quantify differences in spatial
predictions. To evaluate if there is a statistical relationship
between centrality measures and models’ predictions, we tested
them for correlation. Spatial indicators were used to quantify
the differences in predicted habitat suitability from integrating
connectivity or excluding connectivity. An overlay analysis
was performed to identify areas within the SDM predictions
that corresponded to critical connectivity areas revealed in the
network analysis.

RESULTS

Seascape Connectivity
We estimated seascape connectivity for both species
(Supplementary Figures 2, 3) and no consistent spatial
trend existed between species, revealing different connectivity
structures across the seascape, according to species-specific
dispersal characteristics. All centrality measures showed some
spatial consistency within species, identifying similar areas
of high and low values, revealing that hubs of connectivity
(high degree centrality), populations stepping-stones (high
betweenness centrality) and critical nodes (high eigenvector
centrality) largely matched and were clustered in similar
locations. Purple sea urchin showed well-connected areas, high
eigenvector centrality and degree centrality, across north and east
Tasmania, eastern Victoria, and New South Wales coast, while
South Australia nodes had weak connections with the rest of the
domain (Figure 2). Purple sea urchin stepping-stone habitats are
clustered in central and eastern Victoria. Snapper connectivity
revealed high values of centrality for patches along north of
Tasmania and central Victoria coasts, while areas on the eastern
and western boundaries of the domain, along South Australia and
New South Wales coasts, showed less connectivity (Figure 2).

Species Distribution Modeling and
Comparison of Models’ Performance
The final SDMs included mean sea water temperature,
chlorophyll A concentration, primary production, bathymetry,
dissolved oxygen concentration, current velocity and centrality
measures (Supplementary Table 2). Salinity and pH were
removed for both species, due to strong correlation with
other environmental variables, specifically salinity was highly
correlated with temperature while pH was highly correlated
with temperature and current velocity. Note that centrality
measures displayed low correlation with the environmental
variables included in the models, although they displayed greater
correlation between centrality metrics, especially for snapper
(Supplementary Figures 4, 5).
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The optimal models’ results are summarized in Table 2. For
both species, SDMs used a tree complexity of 5, a learning rate of
0.005, bag fraction of 0.75, 5 folds for tuning and a maximum
of 10,000 trees. The optimal model for sea urchin used 4,300
trees for the model integrating all centrality metrics, 4,700 trees
for the model including degree centrality only and 5,700 for the
model without centrality metrics. Models showed good predictive
performance with same mean AUC score (0.95 ± 0.01) for all
models (with all centrality metrics, degree centrality only and
without connectivity). The optimal model for snapper used 4,000
trees for the model integrating centrality metrics, 3,300 trees
when only degree centrality is included in the model and 3,200
trees when seascape connectivity was excluded. The mean AUC
score was 0.91 ± 0.03 for the models including all centrality
metrics and degree centrality only while it was slightly lower
(0.90 ± 0.03) in the model without connectivity.

Environmental variables emerged as the most influential
predictors for both species. For the sea urchin bathymetry showed
the largest influence in all models, respectively, contributing
between 25 and 30% to SDMs predictions, followed by
temperature and dissolved oxygen which had a relative influence
between 13 and 17% across the three sea urchin models
(Figures 3A–C). Primary production, chlorophyll A and current
velocity had a lower contribution, with relative influence varying
between 7 and 15% (Figures 3A–C). For snapper, temperature
was the most influential variable contributing between 36.5
and 40% to SDMs predictions in all the models (Figures 3D–
F). Other environmental variables that showed an important
relative influence for snapper were current velocity (13.2, 15.2,
and 17.2%), followed by chlorophyll A (10.1, 11.6, and 13.3%).
Dissolved oxygen, primary production and bathymetry were less
influential with relative influence values varying from 7 to 11.5%
(Figures 3D–F).

Centrality measures had some influence across both
species with degree centrality emerging as the most important
centrality measure. For the purple sea urchin SDM, connectivity
contributed to a total of 18.6% to the final model, with degree
centrality having the largest relative influence (8.2%), followed by
betweenness centrality (7.2%) and eigenvector centrality (3.2%)
(Figure 3A). Degree centrality was more influential than current
velocity (7.3%) and similar to chlorophyll A concentration
(9.2%). Centrality measures showed pairwise interactions with
several of the environmental variables (see three-dimensional
dependence plots Supplementary Figures 7, 8). Eigenvector
centrality had the strongest interactions with current velocity

and primary production, degree centrality had interactions
with primary production and bathymetry, while betweenness
centrality interacted with temperature and bathymetry. For
snapper, all centrality measures had a lower relative influence
than the environmental parameters, and contributed at most 17%
to SDM predictions. Degree centrality was the most influential
among the centrality metrics, with a relative influence of 6.9%,
followed by eigenvector centrality (6.4%) and betweenness
centrality (3.6%) (Figure 3D). Centrality measures interacted
with environmental variables, and the strongest interactions were
with temperature for degree centrality and eigenvector centrality,
and bathymetry for betweenness centrality (Supplementary
Figures 7, 8).

We selected only the network-based metric with the largest
influence to reduce the number of variables and increase the
predictive power. Degree centrality was selected for both species,
and we therefore compared the SDM results between models with
and without degree centrality included (Table 2). Note that a
lower number of predictors is expected to result in an overall
increase in relative influence across all variables. In the purple
sea urchin model, the relative influence of degree centrality
was maintained among models, more influential than current
velocity and similar to chlorophyll A concentration, primary
production and dissolved oxygen (Figure 3B). For the sea urchin,
the order of variables based on relative influence remained
the same for the model including all centrality measures (e.g.,
Figures 3A vs. B), and degree centrality maintained a similar
order of influence, comparable to chlorophyll A and well above
the influence of current velocity. Degree centrality had some
interactions with all the environmental parameters, but the
strongest interactions were with bathymetry and high dissolved
oxygen (Supplementary Figures 7, 8). In the snapper model
the order of influence changed when only degree centrality was
used, moving ahead of primary productivity and bathymetry
in influence. The relative influence of degree centrality, when
used as the sole connectivity metric moved in front of both
primary productivity and bathymetry, and was comparable in
influence to dissolved oxygen concentration (Figure 3E). Degree
centrality interacted with all environmental variables, particularly
with warm temperature and high bathymetry (Supplementary
Figures 7, 8). Across all models and both species, connectivity
metrics appeared to maintain a relative influence between 9.5 and
18.5% on species distributions.

We predicted species distribution and compared maps of
habitat suitability, highlighting differences in species range

TABLE 2 | Optimal SDMs models results for each species.

SDM including all
connectivity variables

SDM including degree
centrality only

SDM excluding all
connectivity variables

Purple sea urchin

Number of trees 4,300 4,700 5,700

Mean AUC score 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

Snapper

Number of trees 4,000 3,300 3,200

Mean AUC score 0.91 ± 0.03 0.91 ± 0.03 0.90 ± 0.03
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FIGURE 3 | Relative influence of environmental parameters and centrality metrics on SDM results for sea urchin H. erythrogramma (left) and snapper, C. auratus
(right). Fitting BRT including all centrality measures (A,D) or selecting only the most influential variable degree centrality (B,E), or excluding centrality (C,F). Relative
influence expressed in percentage (i.e., total influence sums up to 100%).
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(see Supplementary Figure 9 for habitat suitability predictions
for all models). Despite these models predicted somewhat
different species distribution range, when tested for pairwise
correlation, the differences in spatial distribution showed very
low correlation with the seascape centrality metrics for both
species (Supplementary Figure 10).

The impact of including (or not) connectivity in the
SDM predictions revealed geographic structure in terms of
the magnitude of increase or decrease in modeled habitat
suitability (Figure 4). For the purple sea urchin, most areas
showed a decrease in habitat suitability when connectivity was
included (i.e., these areas became less suitable in the model),
particularly for Port Phillip Bay in Victoria and Spencer Gulf
in South Australia and areas far from the coastline (Figure 4).
Areas of increased habitat suitability were smaller and focused
around “central” rocky reefs (Figure 4B). Located primarily
around high degree centrality sites in central and western
Victoria, north and east Tasmania and New South Wales
(Figure 4A). Rocky reef patches with high betweenness centrality
and eigenvector centrality did not correspond to key zones
revealed from SDMs results (Supplementary Figure 11). Snapper
habitat suitability predictions decreased for models including
connectivity, especially for areas far from the coast. Areas
associated to high degree centrality largely corresponded to
higher suitability, particularly along north Tasmania, central
Victoria and on the border between Victoria and New South
Wales and South Australia habitats (Figure 4D). Areas of
high eigenvector centrality in central Victoria and north
Tasmania also correspond to high degree centrality, while
there was no consistent spatial trend for betweenness centrality
(Supplementary Figure 11).

DISCUSSION

Seascape connectivity is essential for ensuring long term
species persistence and determining the distribution of species
(Engelhard et al., 2017; Weeks, 2017), and as a result is expected
to have a significant influence on predicting species distribution
with SDMs. Graph-based centrality metrics may influence SDMs
predictions and degree centrality appeared to be the most
important metric among the centrality measures.

Degree centrality was the most significant among the
centrality measures included in the model. Degree centrality
identifies hubs of high connectivity, and it is critically important
for benthic species dispersing only during the larval stage,
representing the quantity of larval connectivity, identifying
important sources and destinations of larvae (Treml et al.,
2015; Zamborain-Mason et al., 2017). Hotspots of connectivity
ensure persistence in marine metapopulations (Zamborain-
Mason et al., 2017; Cecino and Treml, 2021), and in this work
was also significant in defining the species spatial distribution,
showing that highly central nodes identified areas of greater
habitat suitability. Connectivity variables had interactions with
the environmental parameters revealing that the most suitable
habitat also corresponded to critical habitats for connectivity.
Quantifying interactions among variables helps to define more

clearly which is the most suitable habitat for the species (Elith
et al., 2008), showing how the effect of one environmental
predictor on a species changes according to the levels of
other predictors. Recognizing these environmental interactions
is critical to assess changing environmental conditions, and
integrating environmental and ecological interactions produces
more robust SDMs and improves understanding of causes of
species’ distributions (Guisan et al., 2006).

The results for degree centrality indicate that the sea urchin
is predicted to occur in shallow waters, around high oxygen
concentrations and in hubs of connectivity (degree centrality
values between 10 and 20 ecological linkages). Both depth and
connectivity are critical to define benthic species distribution,
while dispersal largely influences the spatial distribution and
range extension (Ling et al., 2009). Depth was found to influence
reproduction in sea urchin, where higher gonad index was
associated to individual occupying the intertidal zone compared
to sea urchins living in the subtidal zone (Basch and Tegner,
2007). The role of temperature as an influential predictor of sea
urchin distribution is particularly relevant to the management
of sea urchin species due to their range expansion along with
the tropicalization of south-eastern Australian waters and the
consequential loss of kelp. Using mechanistic species distribution
models, range shifts of sea urchins were predicted, revealing
how these shifts are driven by climate, therefore leading
to the contraction of habitat-forming species such as kelp
(Castro et al., 2020).

Snapper, in contrast, is predicted to be found around hubs
of connectivity (degree centrality of value 4 and 8), and
in warm shallow waters. Elevated temperature is associated
with increased larval size and survival influencing the snapper
adult population dynamics (McMahon et al., 2020). Adult
snapper movement appeared to concentrate around these
warmer habitats, where conditions are optimal for larval rearing
(Fielder et al., 2005). Current velocity emerged as another
influential environmental parameter influencing the snapper
SDMs (Figure 3). Current velocities proved to be critical to
distinguish between juvenile and adult habitat for New Zealand
snapper populations (Compton et al., 2012). Water column
features such as currents largely influence species distribution
predictions of south-east Australian nearshore temperate reef
fishes, while other environmental variables like bathymetry
appeared to be less important predictors (Young and Carr, 2015).

Machine learning methods such as BRT offer the advantage
of exploring not only model performance but also the extent
of each variable’s relative influence. If predictors have no
contribution, the model algorithm calculates the relative variable
influence as zero or near zero. In our species distribution
models, connectivity contributes to the model, yet the influence
on predictions was not as strong as key environmental
variables, such as temperature, currents and chlorophyll. As a
result, if centrality metrics were omitted, the resultant models
would have resulted in different habitat suitability predictions,
especially affecting their spatial range. When we included the
most influential metric, degree centrality, the influence of
connectivity on SDMs predictions increased together with the
other predictors remaining among the least influential variables,
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FIGURE 4 | Maps showing the geographic distribution of degree centrality (A,C) and differences in spatial predictions of habitat suitability (B,D) for sea urchin
H. erythrogramma (top) and snapper, C. auratus (bottom). Degree centrality (A,C) is shown as dots corresponding to the habitat patches centroids. Values of habitat
suitability are positive when predicted habitat suitability is larger for SDM incorporating connectivity compared to the SDM without connectivity. Values of habitat
suitability are negative when predicted habitat suitability is lower for SDM incorporating connectivity compared to the SDM without connectivity. Maps in WGS84.
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however, its influence showed a larger increase compared to other
environmental predictors. In both species the area under the
curve (AUC-ROC) of the models was close to one, indicating
that the model performance and predictions were very good
(Jiménez-Valverde, 2012). AUC scores were similar for models
with and without connectivity, suggesting no differences in
the models’ predictive performance, however, the spatial range
of habitat suitability predictions differed among the models,
indicating that differences between the models exist. This
apparent contradiction may be explained by the high accuracy
typical of machine-learning algorithms (Bucklin et al., 2015).
Independent to connectivity, the most influential environmental
drivers were bathymetry and temperature for purple sea urchin,
and temperature and current velocity for snapper (Figure 3),
commonly found to have large influence across many marine-
focused SDMs (Reiss et al., 2011; Tyberghein et al., 2012).

Despite the limited differences in habitat suitability
magnitude, when incorporating connectivity in SDMs’ spatial
predictions revealed reduced suitability primarily for deep
waters, defining a more restricted geographic range for snapper
and sea urchins, limiting the distributions to shallow coastal
waters. In addition, the inclusion of connectivity in the SDMs
increase to a small extent the suitability around several clusters
of connectivity hubs. Habitats with high degree centrality,
were identified in central Victoria, in proximity of Wilsons
Promontory particularly for snapper population, key habitats for
metapopulation persistence across species and corresponding
to marine protected areas and reserves (Cecino and Treml,
2021). This region significance is well known and includes
several ecological features, which define the structure of the
coastal communities. Eastern Victoria was identified as potential
biogeographic break for many taxa often associated with limits in
species’ ranges and changes in community assemblages (Colton
and Swearer, 2012). Habitat patches in northern Tasmania may
also be essential for ensuring connectivity between Tasmania
and Victoria coasts. In Eastern Tasmania, the oceanographic
mixing zone where subantarctic water masses, driven by westerly
winds, interact with eddies from the East Australian current,
lead to enhanced productivity, and phytoplankton blooms and
mass aggregations of coastal temperate taxa occur (Hosack and
Dambacher, 2012; Dambacher et al., 2012; Commonwealth
of Australia, 2015). Snapper’s hubs of connectivity in South
Australia are also consistent with key habitat sites for the snapper
fishery and for spawning grounds (Fowler and Jennings, 2003).

Both study species used for this work have somewhat limited
dispersal ability, especially in relationship to the extent of the
model domain. This choice of model domain was made to
highlight an ecologically and economically important Australian
seascape, and the influence of ocean dynamics and life histories.
However, further research effort may be needed where species
have extended home ranges, long-distance swimming capacity,
or where dispersal periods extend for many weeks or months.

Applying SDMs to marine species can be particularly
challenging. Challenges in understanding how species are
distributed across space arise when comprehensive sampling
is not possible, for example for species with high degree
of niche specialization, and/or restricted range (Araujo and

Guisan, 2006). Several issues are somewhat unique of the marine
environment. For example, a strong spatial bias in data collection,
since different effort is required to collect data in shallow
waters compared to deep waters, and the widespread spatial-
temporal bias in global satellite-derived ocean measurements,
due to unpredicted or unusual atmospheric properties affecting
the algorithm interpretation, and the lack of in situ data to
use for tuning (Robinson et al., 2011, 2017). In our models,
occurrence data collected from the Atlas of Living Australia
include data from early 1900s, while environmental data were
based on information collected from 2000 (see Supplementary
Material for details) and the connectivity models used ocean
current data for the period 1992–2012. This might result in
an underestimation of the importance of connectivity and its
influence on model predictions. Despite the large temporal extent
of the ALA data sets the oldest data largely corresponded the
distribution of occurrences recorded in recent years. However, we
focused our analysis on a cleaned and reduced data set, reducing
the temporal differences among species data, environmental
predictors and centrality metrics. The lack of true absence data
may be another limitation when developing SDMs, especially for
marine species, where presence data sampling is biased toward
coastal waters and areas near ports (Robinson et al., 2011).
Though we addressed this limitation to some degree by choosing
BRT methods, an appropriate procedure when working with
species presence and pseudo-absence data (Cerasoli et al., 2017).
We selected BRTs over presence-only methods such as Maxent
because BRTs allow for better control and quantification of
predictors interactions, allows appropriate model complexity and
tunes model parameters with internal cross-validation. Moreover,
the predictive performance of BRT are comparable to Maxent for
predicting presence-only species data (Valavi et al., 2021). BRTs
outperform other approaches like generalized linear and additive
models, as well as combine many decision trees to improve
model’s accuracy, include stochasticity, reducing variance and
improving predicting performance (Cimino et al., 2020). That
said, BRTs are often criticized for their tendency to overfit
models. Other limitations common to SDMs include changes in
habitat conditions due to climate change and human impacts,
and attempting to predict species around range shifts. For
exploited taxa like snapper, the distribution of fishing effort
likely influences species distribution and presence/absence data.
Our models could potentially be improved by including data on
fishing pressure and environmental changes to producing more
realistic spatial predictions.

Across two very different marine taxa, centrality measures
proved to be appropriate and flexible proxies to describe
seascape connectivity and can effectively identify hotspots
and stepping-stones of connectivity. Using these patch-level
metrics to describe seascape connectivity is an efficient
way to incorporate connectivity information into marine-
based SDMs. Centrality metrics proved to have a limited
contribution to SDMs, yet they contribute to define the
spatial distribution patterns and the most suitable habitat
patches. Importantly, centrality metrics interact with
other environmental predictors, highlight the suitability
of habitats combining environmental and connectivity
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characteristics. Connectivity is fundamentally important for
marine species and should be considered in models of species
distribution or abundance. Our new methods chart a pathway
forward for efficiently incorporating connectivity into marine-
based SDMs and open the door for exploring the broader
influence of dispersal and movement on species distributions.
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Assessing the reliability of
species distribution models in
the face of climate and
ecosystem regime shifts: Small
pelagic fishes in the California
Current System

Rebecca G. Asch1,2*, Joanna Sobolewska1 and Keo Chan1

1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States,
2Department of Biology, East Carolina University, Greenville, NC, United States
Species distribution models (SDMs) are a commonly used tool, which when

combined with earth systemmodels (ESMs), can project changes in organismal

occurrence, abundance, and phenology under climate change. An often

untested assumption of SDMs is that relationships between organisms and

the environment are stationary. To evaluate this assumption, we examined

whether patterns of distribution among larvae of four small pelagic fishes

(Pacific sardine Sardinops sagax, northern anchovy Engraulis mordax, jack

mackerel Trachurus symmetricus, chub mackerel Scomber japonicus) in the

California Current remained steady across time periods defined by climate

regimes, changes in secondary productivity, and breakpoints in time series of

spawning stock biomass (SSB). Generalized additive models (GAMs) were

constructed separately for each period using temperature, salinity, dissolved

oxygen (DO), and mesozooplankton volume as predictors of larval occurrence.

We assessed non-stationarity based on changes in six metrics: 1) variables

included in SDMs; 2) whether a variable exhibited a linear or non-linear form; 3)

rank order of deviance explained by variables; 4) response curve shape; 5)

degree of responsiveness of fishes to a variable; 6) range of environmental

variables associated with maximum larval occurrence. Across all species and

time periods, non-stationarity was ubiquitous, affecting at least one of the six

indicators. Rank order of environmental variables, response curve shape, and

oceanic conditions associated with peak larval occurrence were the indicators

most subject to change. Non-stationarity was most common among regimes

defined by changes in fish SSB. The relationships between larvae and DO were

somewhat more likely to change across periods, whereas the relationships

between fishes and temperature were more stable. Respectively, S. sagax, T.

symmetricus, S. japonicus, and E. mordax exhibited non-stationarity across

89%, 67%, 50%, and 50% of indicators. For all species except E. mordax, inter-

model variability had a larger impact on projected habitat suitability for larval
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fishes than differences between two climate change scenarios (SSP1-2.6 and

SSP5-8.5), implying that subtle differences in model formulation could have

amplified future effects. These results suggest that the widespread non-

stationarity in how fishes utilize their environment could hamper our ability

to reliably project how species will respond to climatic change.
KEYWORDS

species distribution models, small pelagic fish, forage fish, climate change
projections, non-stationarity, California Current
1 SPF refer to small-bodied fishes that live in the epipelagic zone (0-200

m), typically exhibit schooling behavior, and consume primarily a

planktivorous diet. The largest fisheries for SPF target species in the

order Clupeiformes, which includes sardines, anchovies, herrings,
1 Introduction

Marine fishes in many ecosystems have shifted their

distribution poleward and deeper as climate change has warmed

the oceans (Murawski, 1993; Perry et al., 2005; Hsieh et al., 2008;

Hsieh et al., 2009; Nye et al., 2009; Pinsky et al., 2013; Poloczanska

et al., 2013;Walsh et al., 2015). Many of these changes are occurring

at a rate faster than in terrestrial habitats (Sunday et al., 2012;

Poloczanska et al., 2013; Blowes et al., 2019; Pinsky et al., 2019).

Climate velocity, a measure of the rate of temperature change across

spatial gradients, has proven to be an accurate predictor of the

magnitude and direction of shifts in species distributions in many

ecosystems (Chen et al., 2011; Pinsky et al., 2013), although other

aspects of a species’ ecological niche also influence distribution

changes (McHenry et al., 2019). Throughout the 21st century,

climate models project that changes in species distribution will

continue unabated or further accelerate (Cheung et al., 2009;

Cheung et al., 2016b; Morley et al., 2018). Shifts in fish

distribution have implications for trophic interactions (Selden

et al., 2018), global biodiversity patterns (Cheung et al., 2009),

and food security (Golden et al., 2016; Free et al., 2019).

Many projections of changes in fish distribution, biomass, and

phenology under climate change are based on statistical models

referred to as species distribution models (SDMs), ecological niche

models, or bioclimate envelope models. These models link spatial

and temporal variations in organismal occurrence with

environmental variables (Elith and Leathwick, 2009). Based on

these empirical relationships, changes in environmental conditions

derived from climate models are used to project future shifts in

species occurrence or abundance. Due to the growing importance

of climate change, there has been a rise in studies using SDMs and

aligned models over the last 20 years (Figure 1).

A key assumption of SDMs is that the relationship between

organisms and environmental conditions is stationary and not

subject to changes due to variations in organismal abundance,

climate, or ecosystem state. Since statistically derived

relationship between a species and the environment form the

basis for SDM projections, non-stationarity in this relationship
02
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could result in inaccurate projections of climate change impacts.

Assumptions about stationarity in relationships between fishes

and climatic variables have rarely been investigated (Litzow

et al., 2019), but it is imperative to do so to assess the

uncertainty associated with projections about how marine

conservation initiatives will fare under climate change. Among

planktonic organisms, such as dinoflagellates, diatoms, and

copepods, SDMs developed using data from one decade failed

to accurately project in species distribution during other decades

(Brun et al., 2016). This reflects the patchy distribution of

plankters, boom-bust cycles in abundance, and the potential

for advection of plankton by currents outside their preferred

habitat. Since projections made for copepods had greater model

skill than those for primary producers, SDMs may have

improved predictability for higher trophic level organisms,

such as fishes. Nonetheless, recent work suggests that non-

stationarity might be a common, albeit understudied, feature

among SDMs that project changes in fish distribution (Litzow

et al., 2018; Litzow et al., 2019; Puerta et al., 2019; Roberts et al.,

2019; Litzow et al., 2020; Muhling et al., 2020).

At least seven ecological, climatic, and statistical

mechanisms can lead to non-stationary fish-climate

relationships. First, non-stationarity could arise if key

variables influencing a species’ ecological niche are excluded

from an SDM. For example, many SDMs neglect to account for

interspecific relationships, such as predator-prey dynamics

(Fernandes et al., 2013). Second, over-parameterization of

models can lead to the appearance of non-stationarity if this

results in a relationship between an environmental variable and

fish distribution that is solely due to a statistical artifact. Third,

non-stationarity can result from density-dependent occurrence

patterns where a fish is found in its optimal habitat at low
menhadens, and shads.
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density but, as its abundance increases, spreads to additional

habitats to reduce interspecific competition (MacCall, 1990).

Such dynamics are especially common among small pelagic

fishes (SPF)1 (Barange et al., 2009). Fourth, overfishing can

truncate fish age structure, which can increase sensitivity to

climatic variables since younger and smaller fishes often exhibit

heightened sensitivity (Anderson et al., 2008). Fifth, at times,

fish distribution has been related to basin-scale climate indices,

such as the Pacific Decadal Oscillation (PDO), North Pacific

Gyre Oscillation, and North Atlantic Oscillation. Many of these

indices represent statistical compilations of several climatic

variables. If the relationship between these indices and local

climate variables changes over time (Joyce, 2002; Litzow et al.,

2018; Litzow et al., 2020), this can lead to non-stationarity

between species distribution and climate indices (Litzow et al.,

2018; Litzow et al., 2019; Puerta et al., 2019; Litzow et al., 2020).

Also, some species have been shown to react differently to

environmental conditions, such as temperature, depending on

the phase of climate oscillations likely due to the influence of

these oscillations on larval advection or interspecific

interactions (Roberts et al., 2019). Lastly, non-stationarity

across climate oscillations could occur because some climate

indices, such as the PDO, are detrended. Sixth, the distribution

of some species may be constrained by non-climatic factors,

such as depth, reliance on biogenic habitats, or lack of dispersal

corridors (Reglero et al., 2012; Asch et al., 2019). When such

constraints exist, organisms may be retained in their historical
Frontiers in Marine Science 03
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habitats, even though the climate of those habitats has shifted.

This can result in a non-stationary relationship between

species and climate. Lastly, phenotypic plasticity, acclimation

to new conditions, or rapid adaptation could lead to changes in

how species distribution is related to climate (Donelson et al.,

2012; Anderson et al., 2013).

Despite numerous reasons why non-stationarity may occur,

there have been relatively few assessments of non-stationarity in

SDMs for marine fishes due to a paucity of spatially resolved,

long-term datasets that can be used to test historical changes in

how fish react to the environment. One such dataset that is well

suited to examine non-stationary, fish-climate relationships is

California Cooperative Ocean Fisheries Investigations

(CalCOFI). This program has surveyed ichthyoplankton along

six transects in its core region off southern California since 1951.

This region has been subject to several climate regime shifts that

affected living marine resources (McGowan et al., 2003; Di

Lorenzo et al., 2008; Peabody et al., 2018; Litzow et al., 2020),

making it a useful testbed for evaluating whether fishes react

differently to environmental variables during each phase of a

regime. Also, some of the fastest rates of species distribution

change in U.S. waters are projected to occur in this area (Morley

et al., 2018), making it an important region for studying

non-stationarity.

Our analysis of non-stationarity focuses on SPF since these

species account for approximately one-third of global fish catch

(Smith et al., 2011). Also, pelagic fishes are often more sensitive
FIGURE 1

Web of Science search examining the cumulative number of records in the scientific literature on species distribution models, habitat models,
ecological niche models, and bioclimate envelope models between 1970-2020. Five Web of Science searches were performed: (1) species AND
distribution AND model*; (2) habitat AND model*; (3) ecolog* AND niche AND model*; (4) environment* AND niche AND model*, and; (5)
bioclimate AND envelope AND model*. Results from the third and fourth search were combined in this figure.
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to climate-induced range shifts than demersal fishes (Murawski,

1993; Cheung et al., 2009; Walsh et al., 2015). SPF connect lower

trophic organisms in upwelling systems with higher trophic level

predators, such as piscivorous fishes, squid, seabirds, and marine

mammals (Cury et al., 2011; Pikitch et al., 2014; Kaplan et al.,

2017). Furthermore, their potential sensitivity to non-stationary

dynamics is likely since SPF exhibit boom-bust cycles of

abundance over multi-decadal periodicities (Schwartzlose

et al., 1999; Chavez et al., 2003; McClatchie et al., 2017).

More specifically, we focus on four species managed under

the Coastal Pelagic Species Fisheries Management Plan:

northern anchovy (Engraulis mordax), Pacific sardine

(Sardinops sagax), chub mackerel (Scomber japonicus), and

jack mackerel (Trachurus symmetricus) [PFMC (Pacific

Fishery Management Council), 2019]. Previous research has

shown that these species are sensitive to fluctuations in

oceanic conditions connected to climate variability and change

(Lluch-Belda et al., 1991; Checkley Jr et al., 2000; Reiss et al.,

2008; Rykaczewski and Checkley Jr, 2008; Weber and

McClatchie, 2010; Zwolinski et al., 2011; Weber and

McClatchie, 2012; Asch and Checkley Jr, 2013; Koslow et al.,

2013; Howard et al., 2020).

Non-stat ionary re la t ionships between SPF and

environmental conditions were observed in the California

Current System (CCS) in 2014-2017 when a marine heat

wave (MHW) resulted in sea surface temperature (SST)

anomalies exceeding three standard deviations above normal

conditions (Di Lorenzo and Mantua, 2016). Historically the

probability of adult S. sardinops occurrence declines when

temperature exceeds 18°C, but during this event the

probability of encountering S. sardinops peaked in some

areas warmer than >19°C (Muhling et al., 2020). While this

study did not detect similar incidents of non-stationarity when

examining data from 1980 through present, it was unclear

whether the rapid environmental change during the MHW was

the main cause for non-stationarity or if similar non-stationary

events might be observed if a longer time series were examined

(Muhling et al., 2020). We addressed the latter question by

determining if non-stationarity is prevalent in SDMs

developed for larval E. mordax, S. sardinops, S. japonicus,

and T. symmetricus between 1951-2015. This time series

emphasizes the period prior to the MHW. We first

determined if there were change points in time series of

climate indices, oceanic variables, and fish spawning stock

biomass (SSB). These change points are proxies for regime

shifts. For each period associated with a different regime, we

constructed a SDM for each species. Six metrics for identifying

non-stationarity were inspected to determine if the

relationships between fishes and oceanic conditions changed

across regimes. Lastly, we examined whether SDMs developed

under different regimes produce equivalent projections of

future changes in fish habitat suitability under low and high

greenhouse gas emissions.
Frontiers in Marine Science 04
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2 Materials and methods

2.1 Data sources

2.1.1 Larval fish data
CalCOFI has sampled E. mordax, S. sagax, S. japonicus, and

T. symmetricus larvae since 1951, with the highest concentration

of samples from a core region of southern California that

extends offshore from San Diego (33.0°N) to north of Point

Conception (35.1°N). CalCOFI data are publicly available from

the NOAA ERDDAP server.2 Data on oblique ring and bongo

net tows from January 1951 through April 2015 were

downloaded for CalCOFI lines 76-93.3. Study sites farther

offshore than CalCOFI Station 120 were filtered from this

dataset because these stations were sampled less consistently.

These criteria resulted in selection of 18,899 net tows. Sample

collection occurred monthly during the 1950s, near monthly

during the 1960s, 1970s, and early 1980s, albeit with substantial

gaps during the 1970s, and quarterly since 1985. The methods

for collecting and processing bongo and ring net samples were

described in Kramer et al. (1972) and changes to sampling

methodology were documented in Ohman and Smith (1995)

and Thompson et al. (2017).

2.1.2 Oceanic data
Four environmental variables were selected for inclusion in

SDMs because they were measured since 1951 concurrently at

stations where CalCOFI ichthyoplankton samples were collected

and because these variables were previously shown to influence

target species (Checkley Jr et al., 2000; Lynn, 2003; Rykaczewski

and Checkley Jr, 2008; Weber and McClatchie, 2010; Zwolinski

et al., 2011; Weber and McClatchie, 2012; Asch and Checkley Jr,

2013; Weber et al., 2018; Howard et al., 2020). These variables

included potential temperature, salinity, dissolved oxygen (DO),

and mesozooplankton displacement volume (abbreviated as

ZDV for zooplankton displacement volume). Both salinity and

DO can be interpreted as indicators of water masses with distinct

characteristics (e.g., Pacific subarctic water has low temperature

and salinity, but high DO, whereas North Pacific Central water

has high temperature and salinity, with low DO; McClatchie,

2013). Low DO can also act as a stressor affecting the physiology,

distribution, and abundance of SPF (Howard et al., 2020).

Upwelling of hypoxic and anoxic waters on the inner shelf has

been observed in the northern CCS (Chan et al., 2008). In the

southern CCS where upwelling is less vigorous, hypoxic waters

do not frequently encroach into depths where SPF larvae reside

(Dussin et al., 2019), so we interpret variations in DO primarily

as an indicator of water mass properties. Temperature, salinity,

and DO from Niskin bottles were averaged over the upper 50 m.

This depth was selected because SPF eggs are most concentrated
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across this range (Curtis et al., 2007). Environmental data were

downloaded from ERDDAP between January 1951 and February

2015 and extending between 29.7-35.3° N and 117.2-125.8° W.

This area corresponded to transects selected for fish larvae.

Within these constraints, 18,925 environmental observations

were identified for analysis.

ZDV was obtained from the same bongo and ring nets as

larval fishes. We used displacement volumes where gelatinous

organisms with biovolumes >5 cm3 were removed (Kramer et al.,

1972). Bias corrections from Ohman and Smith (1995) were

applied to account for a change in tow depth (switch from 140 m

to 210 m) and net type (switch from a 550-mm silk mesh net to a

505-mm nylon mesh net) in 1969 and a second change in net

type (switch from a 1.0-m diameter ring net to a 0.71-m

diameter bongo net) in 1977. ZDV measurements were ln(x

+1) transformed prior to analysis. As a result, measurements of

ZDV are presented with units of the log of the zooplankton

volume measured in cm3 divided by the standardized volume of

seawater filtered during a plankton net tow (1,000 m3). 18,746

observations of ZDV were available for analysis.

Oceanic and biological data were matched based on the year,

month, transect, and station number. If multiple sets of

environmental variables were matched to a single tow, data

were averaged. After matching, a final sample size of 14,767

was obtained.

During initial SDM development, we considered including

month and station number (a proxy for distance from shore)

as independent variables. While these factors improved model

fit, we decided to exclude them because they would constrain

future shifts in species distribution and phenology. Since our

research goal was to assess model performance over a

multidecadal period as a proxy to better understand how

such models would perform when detecting future shifts in

species distribution and seasonal occurrence, including

independent variables that constrain such shifts would be

counter to achieving this objective. Also, since many

environmental variables in this ecosystem exhibit onshore-

offshore gradients (McClatchie, 2013), multicollinearity

between station number and environmental variables could

also influence our abil i ty to detect non-stat ionary

relationships. Similarly, latitude and longitude were not

included in SDMs as independent variables since they would

also constrain future shifts in species distribution. Previous

studies have shown that stock size can influence the amount of

suitable habitat occupied by our target species (Weber and

McClatchie, 2010; Weber and McClatchie, 2012; Muhling

et al., 2020). However, since earth system models (ESMs)

cannot directly project future stock size, this is not a covariate

that could be easily included in a model of future changes in

species distribution or phenology. Since our goal is to provide

a framework for assessing performance of such models, we did

not include stock size as a covariate here.
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2.2 Classification of change points in
ocean ecosystems

The term regime shift describes low-frequency and high-

amplitude changes in biological and physical conditions. However,

there are disagreements about key characteristics of regime shifts.

Different authors use this term to describe stochastic processes

characterized by red noise; non-linear, alternative stable states;

changes at multiple levels of ecological organization (e.g., species,

assemblage, community, ecosystem); and processes related to both

external perturbations and internal reorganization of ecological

communities (Collie et al., 2004; Overland et al., 2008). Due to

this multiplicity of definitions, we used three approaches to

determine if relationships between fish and the environment were

stable across different regimes. Since most of our regime shifts were

defined based on changes in time series, we use the terms regime

shift and change point synonymously.
2.2.1 Pacific Decadal Oscillation
The PDO is the first principal component of detrended

winter SST in the North Pacific (Hare et al., 1999). During the

latter half of the 20th century, this index exhibited decadal

variability characterized by predominantly negative values

during 1947-1976 and positive values during 1977-1998.

Negative (positive) PDO values correspond to cool (warm)

conditions in the southern CCS. The 1976/1977 shift in PDO

sign coincided with large changes in the abundance of marine

organisms across several trophic levels (Chavez et al., 2003;

McGowan et al., 2003). In the CalCOFI region, this shift was

associated with a 1.0°C increase in temperature over the upper

50 m of the water column and a ZDV decline of 68.4 cm3/1,000

m3 (Figure S1). Statistically significant, albeit smaller, changes in

mean salinity and DO coincided with this regime shift (Figure

S1). Since 1998, the PDO has displayed oscillations at an

interannual rather than decadal scale (Peterson, 2009).

Furthermore, the PDO has recently exhibited a decreased

correlation with North Pacific climatic and ecological

indicators (Puerta et al., 2019; Litzow et al., 2020).

Consequently , we assessed whether non-stat ionary

relationships between fish and environmental variables were

evident across the 1976/1977 shift but did not consider years

after 1998.
2.2.2 Change points in oceanic variables
Beyond the PDO, we took an empirical approach to identify

change points associated with regime shifts in times series of

environmental variables and SSB. First, we estimated change

points separately for temperature, salinity, DO, and ZDV. To

accomplish this, we performed a principal component analysis

(PCA) on each variable to identify its dominant mode of
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temporal variability. Since PCA cannot be performed on datasets

with missing observations, we binned data into seven groups

that represented an onshore-offshore gradient. Our seven bins

were based on the following CalCOFI stations: ≤40 (closest to

shore), 40-50, 50-60, 60-70, 80-90, 90-100, and ≥100 (farthest

offshore). Stations in each bin were annually averaged. In cases

when no observations were available in a bin for a year, linear

interpolation across the onshore-offshore gradient was used to

fill this gap. The years 1951, 1984, and 1982 were removed due to

persistent gaps in coverage. Such gaps were more widespread for

DO than other variables, which necessitated removal of

additional years (1953-1955, 1957, 1960, 1967, 1975, 1980-

1981). PCA was performed after these data processing steps.

Change point analysis was applied to the first principal

component of each environmental variable using the Bayesian

change point detection algorithm developed by Ruggieri (2013).

Change point analysis was performed in MATLAB (version

R2017a). The Ruggieri (2013) algorithm detected changes in

time series mean, variance, or slope. We used uninformative

priors. Algorithm parameters were set such that a maximum of

three change points could be detected over a time series and

change points needed to be separated by ≥10 years. Other

parameters were set following guidance from Ruggieri (2013)

(k0 = 0.01, n0 = 2, and s 2
0 =observed variance). 500 iterations of

this algorithm were run for each time series to generate posterior

probability distributions. Subsequent analyses examining non-

stationarity across regimes were based on the number of change

points with the highest posterior probability and years with the

highest probability of a change point. In a sensitivity test,

parameters related to maximum number of change points and

minimum regime duration were varied between 2-4 and 8-12

years, respectively. This was found to affect the years of some

change points by ±3 years or less.

2.2.3 Change points in SSB
Change point analysis was also applied to assess whether

habitat use among SPF varied as a function of stock size. For this

analysis, we used stock assessment data from Thayer et al. (2017)

for 1951-2015 for E. mordax and Crone and Hill (2015) for

1983-2014 for S. japonicus. For S. sagax, we combined data from

three stock assessments to obtain information for 1951-1963

(Jacobson and MacCall, 1995), 1981-2008 (Hill et al., 2008), and

2009-2015 (Hill et al., 2018). No stock assessment was available

for T. symmetricus, so this species was excluded from this

analysis. SSB was log transformed prior to analysis since

histograms indicated SSB had a log-normal distribution.

Change point detection parameters were the same as listed

above, except the minimum duration for a regime was set to

five years for S. sagax and S. japonicus since shorter SSB time

series were available. For S. sagax, results were not sensitive to

the choice of the minimum regime duration or to the use of only

the more recent stock assessments by Hill et al. (2008; 2018).
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2.3 Species distribution modeling

We used generalized additive models (GAMs) to assess non-

stationarity across change points. While a variety of SDMs exists,

GAMs were selected because this technique has been widely used

in fisheries science (e.g., Bell et al., 2015; Morley et al., 2018;

McHenry et al., 2019). GAMs were run separately for each

species and period associated with a change point to determine if

there were differences in model characteristics across regimes.

Since our goal was to examine environmental influences on

species distribution, presence/absence of larvae was used as the

response variable. Independent variables included temperature,

salinity, DO, and log-transformed ZDV. Any bongo and ring net

tows that did not have a full suite of environmental variables

associated with them were removed from analysis. GAMs were

formulated using the binomial family and logit link. GAMs were

parameterized to have a maximum of four knots to prevent

overfitting (Weber and McClatchie, 2010; Lindegren and Eero,

2013; Tommasi et al., 2015). This step was important because an

overparameterized model is more likely to be non-stationary

when that model is applied to a different period. The decision to

limit the number of knots was a conservative choice aimed at

decreasing the likelihood of detecting non-stationarity. For each

species and regime, 16 GAMs with different combinations of

environmental variables were run. The Akaike Information

Criteria (AIC) was minimized to select which of these models

was the most parsimonious and determine the number of knots

to include in that model. If the AIC for several models differed

by ≤2, we used a multi-model approach including results from

several models (Burnham and Anderson, 2002). Akaike weights

(wi) for the selected models were examined to assess the degree

of confidence in the selection process.

GAMs can be fit using either the gam or mgcv package in R

(version 4.1.1). The latter uses a Bayesian approach for variance

estimation, which results in smaller confidence intervals than

those from the gam package (Wood, 2006). Since smaller

confidence intervals may increase the likelihood of detecting

differences across regimes, we used the gam package since it

would provide more conservative results regarding non-

stationarity. Nonetheless, a comparison of the gam and mcgv

packages for E. mordax produced similar models. Tests for

multicollinearity between independent variables, spatial

autocorrelation, and inspection of GAM residuals for outliers

are described in the Supplementary Material 1.1, Table S1 and

Figure S2.
2.4 Indicators for detecting
non-stationarity

We used six metrics to assess non-stationarity across

regimes. These metrics evaluated whether there were changes
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in: 1) variables included in SDMs; 2) linearity of partial

environmental variable responses in SDMs; 3) relative

importance of environmental variables; 4) response curve

shape; 5) degree of responsiveness of fishes to a variable, and;

6) the range of conditions associated with maximum larval

occurrence. Changes in any metrics between regimes was

interpreted as an indicator of non-stationarity. In cases where

multiple models were selected for a regime, differences needed to

be observed amongst the full suite of candidate models for

periods to be classified as non-stationary.

Each non-stationarity metric has pros and cons but when

viewed together they provide a complementary and

comprehensive picture of the occurrence of non-stationary

environmental relationships. For example, some metrics are

quantitative and can be evaluated for statistical significance,

whereas other metrics are qualitative (e.g., response curve

shape). Some metrics principally detect large changes in model

formulation, such as the lack of significance of a previously

important variable, whereas others identify subtler changes, such

as a shift in the relative ranking of variables affecting fishes. By

considering multiple metrics, one can avoid the pitfalls

associated with any one metric. For example, changes in

maximal larval occurrence or degree of responsiveness are

more likely to be affected by extrema. Shifts in rank

importance of environmental variables could be due to a small

change among two variables with similar effect sizes (Planque

et al., 2007). When using a combination of metrics, biases

affecting a single metric can be avoided, producing more

reliable results. Details on how each metric was calculated are

provided below.

2.4.1 Inclusion of variables in SDMs
Model selection was based on AIC minimization.

2.4.2 Linearity
Selected model(s) could include an environmental variable

with either one, two, or three equivalent degrees of freedom (edf)

in its partial response function. An edf of 1 was indicative of a

linear model, whereas increasing edfs indicated greater non-

linearity (Hastie, 1991). Changes in edf between regimes were

used to assess changes in linearity.

2.4.3 Relative importance of variables
To assess the relative importance of environmental variables,

we compared the change in deviance (DD) in GAM outputs

between a full model and models when one variable was

removed. DD was compared across variables to assess the rank

importance of variables. Changes in ranking between regimes

were interpreted as a qualitative indicator of non-stationarity.

This is a qualitative indicator because at times changes in rank

can reflect small differences in DD among nearly equally

ranked variables.
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2.4.4 Response curve shape
Response curve shape refers to the graphical relationship

between an environmental variable and the probability of fish

occurrence. The y-axis of response curves was presented on a

logit scale. Response curve shape was assessed in a semi-

quantitative manner in two stages. First, we qualitatively

inspected shifts in shape. This step went beyond looking at

changes in linearity, maximum value of the response curve, and

response curve amplitude. Secondly, we inspected the 95%

confidence intervals of response curves to evaluate overlap

between different periods. If the confidence intervals had a

substantial amount of overlap, periods were classified as

similar to each other regardless of qualitative differences in

response curve shape. In contrast, if confidence intervals did

not overlap in entirety and response curve shape also differed,

this was interpreted as an indication of non-stationarity.

2.4.5 Degree of responsiveness
The degree of responsiveness of a fish to an environmental

variable was estimated based on the amplitude of the SDM

response curve. A larger amplitude suggested that a fish was

more responsive to a variable. To assess whether this metric

differed between periods, we ran a bootstrap analysis in which

observations were selected randomly with replacement 1,000

times for each species and regime (Efron and Tibshirani, 1998).

The number of observations randomly selected during each

bootstrap iteration was the same as the sample size for each

SDM (Table S2). No spatio-temporal weighting was used when

resampling data during bootstrap analysis. GAMs were

recalculated for each dataset and response curves were plotted.

We performed this analysis only for the most parsimonious

model(s) selected with the AIC. Bootstrap permutations were

used to develop 95% confidence intervals for response curve

amplitude. In cases where multiple models were selected based

on AIC scores, bootstraps were run separately for each model

and confidence intervals were constructed jointly across models

by weighting each model based on wi. A lack of overlap between

confidence intervals across regimes was an indication of

non-stationarity.

2.4.6 Range of environmental variables
associated with maximum larval occurrence

The sixth non-stationarity metric was the range of an

environmental variable that maximized the probability of fish

occurrence. A bootstrap was used to determine environmental

conditions associated with maximum larval occurrence across

1,000 SDM realizations. For each bootstrap iteration, we

identified the maximum value of the response curve and the

corresponding value of the environmental variable at this

maximum. These values were sorted from smallest to largest

and we identified the lower 2.5th and upper 97.5th percentiles of

this empirical distribution. These 95% confidence intervals were
frontiersin.org

https://doi.org/10.3389/fmars.2022.711522
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Asch et al. 10.3389/fmars.2022.711522
used to assess whether the range of conditions associated with

maximum larval habitat suitability differed between regimes.

Weighted means of confidence intervals were used in cases

where multiple models were selected for a regime.
2.5 Future projections

An ESM was used to make future projections of habitat

suitability. ESM projections focused specifically on quantifying

uncertainty associated with ecological and climatic change

points and determining their importance compared to other

sources of projection uncertainty. ESM output was obtained

from the World Climate Research Programme’s Coupled Model

Intercomparison Project – Phase 6 (CMIP6). CMIP6 output is

publicly available from Lawrence Livermore National

Laboratory.3 Our criteria for model selection from the CMIP6

ensemble were that ensemble members needed to contain output

on all environmental variables used in SDMs for a historical

simulation (1980-1999) and two future simulations (2080-2099).

The historical period was selected to be 100 years earlier than the

period used for future simulations. The two future climate

change scenarios considered were Shared Socioeconomic

Pathways (SSP) 5-8.5 and 1-2.6, which corresponded,

respectively, to a high-end greenhouse gas emissions scenario

and a climate change mitigation scenario consistent with the

Paris Agreement (O’Neill et al., 2016). When data were

downloaded from the CMIP6 archive (18 December 2019),

only one ESM had full data available for all four variables, all

three simulations, and both 20-year periods. This model, known

as CNRM-CERFACS-ESM2.1 (abbreviated name: CNRM-

ESM2), was developed by the French National Centre for

Meteorological Research and couples the CNRM-CM6-1

atmosphere-ocean general circulation model with the

PISCESv2-gas ocean biogeochemistry model (Séférian et al.,

2019). The ESM has an approximately 100-km latitudinal/

longitudinal resolution and 75 depths. PISCESv2-gas tracks 26

biogeochemical state variables and four plankton functional

groups (diatoms, nanophytoplankton, microzooplankton,

and mesozooplankton).

Monthly CNRM-ESM2 data on environmental variables

were extracted from the core CalCOFI region (29.8-35.2°N

and 117.3-125.9°W). This included 63 model grid cells,

resulting in a similar number of grid cells to the number of

CalCOFI stations. CNRM-ESM2 included 19 depth layers over

the upper 50 m of the water column. Shape-preserving piecewise

cubic interpolation was used to calculate the temperature,

salinity, and DO exactly at 50 m by interpolating between the

18th and 19th model depth layers. We computed the mean of

each variable over the upper 50 m, weighting this average by the
3 https://esgf-node.llnl.gov/projects/cmip6/
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width of each depth layer. Units of DO and mesozooplankton

concentration differed between CNRM–ESM2 and CalCOFI.

Unit conversions were applied to allow CNRM-ESM2 output

to be used as independent variables in GAMs developed for SPF

species (Supplementary Material 1.2).

Many ESMs overestimate coastal temperatures and

underestimate primary production in Eastern Boundary

Upwelling Systems (Stock et al., 2011; van Oostende et al.,

2018). To compensate for this, we performed a bias correction

on variables from CNRM-ESM2 using the delta method (Hare

et al., 2012). Biases were estimated using the monthly mean

climatology from CalCOFI observations for 1980-1999. Next

separate GAMs were run for each species and regime using

CNRM-ESM2 data as independent variables. Projections were

made for 1980-1999 and 2080-2099 with the SSP5-8.5 and SSP1-

2.6 scenarios. Mean habitat suitability for SPF species was

computed for each grid cell and month, with 95% confidence

intervals based on variations between years during each period.

In this context, habitat suitability is equivalent to the modeled

probability of larval occurrence and has a range between 0 (larval

absence) and 1 (larval presence). Spatio-temporally integrated

habitat suitability (IHS) for a given year was also calculated by

summing suitability scores across CRNM-ESM2 grid cells

during spring (i.e., the peak season for occurrence of most SPF

species, Supplementary Material 1.2). IHS is unitless and its

value is dependent on the number of grid cells and months in the

integration. In cases where multiple models were selected, IHS

was calculated based on the weighted means of models. A two-

way crossed ANOVA assessed whether SSP scenario and GAM

model period had a significant effect on IHS. The mean

coefficient of variation (CV) was calculated for the historical

and SSP5-8.5 scenarios to assess if variations in IHS were

projected to increase under unmitigated climate change. Mean

CVs were calculated as a function of species, regime shift type,

environmental variables, and indicators of non-stationarity. For

environmental variables and non-stationarity indicators, CV

calculations only included GAMs where there was some

indication of non-stationarity for a particular variable or

metric. Instances of non-stationarity associated with the rank

importance of variables were not included in CV calculations

since it was not possible to attribute changes to a single

environmental variable.
3 Results

3.1 Change point detection

3.1.1 Oceanic variables
Across all oceanic variables, the first principal component

(PC1) of their time series accounted for 63.3-91.2% of variance,

whereas the second principal component (PC2) accounted for a

reduced percentage of variance (4.9-17.2%; Table 1). PC1
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captured region-wide variations in temperature, salinity, DO,

and ZDV at an interannual scale. PC2 was characterized by

onshore-offshore differences where nearshore and offshore

stations exhibited PCA loadings in different directions. This

pattern was consistent across PC2 for all variables.

Each oceanic variable’s principal component time series

exhibited distinct temporal patterns (Figure 2). PC1 for

temperature was primarily negative at the start of the time

series, exhibited mainly positive values during the warm phase

of the PDO between 1977-1998, displayed anomalies centered

around zero during much of the 2000s and early 2010s, and rose

sharply at the end of the time series in 2014-2015 coincident
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with MHW onset (Figure 2A; Di Lorenzo and Mantua, 2016). In

contrast, PC1 of salinity was less closely correlated with the

PDO, as has also been shown by Di Lorenzo et al. (2008).

Instead, this PC exhibited greater variability at the interannual

rather than decadal scale (Figure 2B). PC1 for DO was

characterized by heightened variability at the start of the time

series, with greater stability in more recent years (Figure 2C).

Similar to the results for temperature, the PDO seemed to have a

substantial influence on the zooplankton PC1 (Pearson

correlation coefficient r=-0.49, p=0.0001, d.f. = 54).

Zooplankton PC1 was characterized primarily by positive

anomalies up until the mid-to-late 1970s and experienced a
B

C D

A

FIGURE 2

Time series of the first principal component of (A) temperature, (B) salinity, (C) dissolved oxygen (DO) concentration, and (D) mesozooplankton
displacement volume from the southern California Current System. Note that there are some gaps in DO measurements during the early years
of the CalCOFI time series. Horizontal, dashed lines indicate principal component scores of zero, while thick, vertical lines represent the timing
of break points identified in time series. Gray bars show the posterior probability of a change point occurring each year in the time series of
each oceanic variable. The winter Pacific Decadal Oscillation (PDO) is included as a blue line in (A) and its inverse is included as a turquoise line
in (D) to illustrate correlations among principal components and this regional climate index.
TABLE 1 Principal components analysis (PCA) performed on environmental variables binned by onshore-offshore strata.

CalCOFI station numbers

Principal Component (PC) Variance explained (%) ≤40 40-50 50-60 60-70 70-80 80-90 >90

Temperature PC1 72.6 0.389 0.366 0.383 0.359 0.370 0.382 0.397

Temperature PC2 14.4 -0.230 -0.445 -0.320 -0.005 0.004 0.163 0.788

Salinity PC1 73.8 0.335 0.295 0.315 0.429 0.420 0.443 0.381

Salinity PC2 11.1 -0.506 -0.522 -0.237 -0.005 0.113 0.330 0.542

Oxygen PC1 63.3 0.415 0.261 0.452 0.362 0.386 0.373 0.369

Oxygen PC2 17.2 0.393 0.671 0.188 -0.306 -0.376 -0.333 -0.117

Zooplankton PC1 91.2 0.355 0.377 0.379 0.391 0.404 0.393 0.343

Zooplankton PC2 4.9 -0.576 -0.408 -0.182 0.102 0.181 0.296 0.579
frontiers
Data on the percent variance explained by each principal component (PC) and loadings of the PC on each stratum are presented above.
Strata are indicated by station numbers from California Cooperative Ocean Fisheries Investigations (CalCOFI).
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period dominated by negative anomalies after the PDO entered

its warm phase (Figure 2D).

The change point detection algorithm did not identify any

regime shifts in the PC1 time series of temperatures, salinity, or

DO. There was a 93.6% probability of zero change points

detected in the temperature time series, 99.3% probability of

zero salinity change points, and 63.7% probability of zero DO

change points. In contrast, the posterior probability distribution

indicated a 75.8% probability of two change points in the

zooplankton PC1 time series, with 24.2% chance of one

change point. The highest probabilities of change points were

detected in 1968 and 1983. Prior to 1968, the PC1 time series for

ZDV consistently exhibited positive anomalies (Figure 2D).

During 1969-1983, ZDV was characterized by highly variable

and declining abundance, while after 1983 this time series was

fairly stable with anomalies close to zero.
3.1.2 SSB
With a posterior probability of 78.1%, one change point was

detected in the time series of E. mordax SSB (Figure 3A). This

change occurred in 1963, separating a period of low, but

recovering SSB from a period when this species was fairly

abundant. A decline in E. mordax biomass was observed at the

end of this time, but there was only a 21.9% posterior probability

that this decline was associated with a second change point.

For S. sagax, there was a 99.9% probability that its time series

contained two change points, which were detected in 1963 and

1997 (Figure 3B). The 1963 change was associated with a decline

in S. sagax biomass and its subsequent recovery. The precise date

of this change is uncertain because of a discontinuity in the S.

sagax time series due to a lack of stock assessments between

1964-1980. However, the fact that E. mordax also exhibited a

change point during 1963 bolsters confidence in this result for S.

sagax and suggests asynchronous dynamics between species. The

second change point for S. sagax detected in 1997 was associated

with stable, high fish biomass, with some declines near the time

series end.

Log-transformed S. japonicus SSB was in decline throughout

most of the period when biomass estimates were available

(Figure 3C). With a posterior probability of 92.5%, no change

points were detected for S. japonicus.
3.2 Non-stationarity detection
using GAMs

Assessment of non-stationarity in models of all four species

for each of the three types of regime shifts is described in the

Supplementary Material 2.1-2.3 and Figures S3-11. Here we

provide an in-depth, illustrative summary for one species as a

case study and then compare general trends across all species

and regime shift types.
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3.2.1 Case study – changes points in
S. sagax SSB

For each SSB regime, a single model was selected for S. sagax

where the selected GAM had an Akaike weight >0.8 (Table S3).

This indicated a >80% likelihood that the selected model was the

most parsimonious choice of the candidate models.

Evidence of non-stationarity in how S. sagax relates to

oceanic variables was found across all indicators. For the first

indicator (inclusion of different variables in the selected GAM),

non-stationarity was indicated by the fact that the model

formulation changed across regimes. During the first two SSB

regimes (1951-1963 and 1964-1997), temperature, salinity, and

ZDV were included in the selected model, but DO was excluded

(Table S2). In contrast, during the regime from 1998-2015, ZDV

was excluded from the model.

The second indicator of non-stationarity was related to changes

in whether fishes had linear or non-linear relationships with oceanic

variables. In most models, the best-fit GAM included non-linear

terms, with an edf of 3 (Table S2). Evidence of non-stationarity was

observed since salinity initially had a linear relationship with larvae

occurrence, which later became non-linear (Table S2; Figure 4).

Non-stationarity changes in the ranked importance of oceanic

variables were also observed. Ranking of salinity declined over time,

while DO ranking increased (Figure 5J). Temperature and ZDV

exhibited variability in their ranking, but without long-term trends.

Changes in response curve shape was the fourth indicator of

non-stationarity. Temperature response curves had a negative,

parabolic shape during the 1951-1963 and 1964-1997 regimes.

During 1998-2015, the temperature response curve had a flatter

shape, and a higher probability of encountering S. sagax larvae at

low temperatures was observed (Figure 4). The flattened

response curve shape during the third regime may indicate a

reduced influence of temperature on sardine distribution, which

is also consistent with changes in the relative ranking of

temperature during this regime (Figure 5J). S. sagax were most

frequently encountered at higher salinities throughout all

periods, but the salinity response curve shape changed across

periods. During 1951-1963, this species had a positive, linear

relationship with salinity; during 1964-1997, this relationship

had a negative, parabolic form; from 1998-2015, S. sagax

distribution was less responsive to variations in salinity as

indicated by a flattened response curve (Figure 4). Less change

in response curve shape was observed for ZDV since it exhibited

a negative, parabolic response curve during both periods when

included in GAMs (Figure 4). Changes in curve shape could not

be assessed for DO, since this variable was only included in the

selected model during the third SSB regime.

Changes in the amplitude (or range) of the response curve

was the fifth indicator of non-stationarity. A decrease in

response curve amplitude is suggestive of a reduced influence

of a variable on larval fishes. For temperature, response curve

range was significantly larger during 1964-1997 than 1998-2015

(Figure 6I). The period when S. sagax was most sensitive to
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FIGURE 3

Time series of the natural log transformed spawning stock biomass (SSB) of (A) (E) mordax, (B) S. sagax, and (C) S. japonicus. No SSB data are
available for T. symmetricus. Dashed line indicates the time period of low S. sagax biomass when no stock assessments were conducted to
estimate this species’ SSB. Gray bars show the posterior probability of a change point in the SSB time series occurring each year. Black, vertical
lines indicate the timing of break points identified in each time series.
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temperature based on this indicator coincided with low biomass

of this species (Figure 3B). No significant changes were seen in

response curve range for salinity and ZDV. Changes could not

be assessed for DO since it was only included in the selected

model during a single regime.

Significant changes in the sixth indicator of non-stationarity

(shifts in the peak of the response curve) were observed for

several oceanic variables. For temperature, S. sagax was most

commonly found in areas with significantly cooler temperatures

during 1998-2015 compared to prior periods (Figure 7I). The

maximum likelihood of detecting larvae occurred at significantly

lower salinities in 1964-1997 than 1951-1963 (Figure 7J). Sardine

larvae were found in areas with significantly less zooplankton

during 1964-1997 than 1951-1963 (Figure 7L). Since the former

period was characterized by reduced ZDV (Figure S1), this

might reflect a change in the availability of zooplankton rather

than an active shift in habitat selection.

3.2.2 Comparisons across species and regime
shift types

Every combination of species and regime type exhibited at

least one indication of non-stationarity, implying that non-

stationarity is ubiquitous across SPF in the CCS. A summary

of patterns observed across non-stationarity indicators, oceanic

variables, species, and regime types is included below.
Frontiers in Marine Science 12
252
A change in oceanic variables included in GAMs was

observed across 60% of the combinations of species and

regime shifts (Table 2). Nearly half of the selected of the

selected models contained all four environmental variables, but

in several cases the most parsimonious model(s) excluded DO or

ZDV (Table S2). In a smaller number of cases, a simplified

model containing 1-2 environmental variables was selected.

Changes in the linearity of the relationship between fishes

and environmental variables also occurred across 60% of the

combinations of species and regime shifts (Tables 2, S2). Salinity

and DO were the most common variables to exhibit changes

in linearity.

Changes in the ranked importance of oceanic variables

were very common, with evidence of non-stationarity

occurring across all species (Figure 5). Temperature and

salinity were frequently ranked as having the greatest or

second greatest influence on fish larvae, with lower rankings

more common among DO and ZDV. Among S. sagax and T.

symmetricus, the relative ranking of DO increased during

recent periods.

Changes in response curve shape were observed across 80%

of species and regime combinations (Table 2). The only cases

where pronounced changes in response curve shape were not

detected was among shifts between PDO phases for E. mordax

and S. japonicus (Figures S3, S5). Of the four oceanic variables,
B D
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FIGURE 4

Generalized additive model (GAM) response curves for S. sagax during three different spawning stock biomass (SSB) change points: 1951-1963
(A-D; blue), 1964-1997 (E-H; green), and 1998-2015 (I-K; red). Dashed lines indicate that 95% confidence intervals for each response curve.
Missing subplots (log zooplankton during 1998-2015 and oxygen in 1951-1963 and 1964-1997) are indicative that a particular oceanic variable
was not included in the most parsimonious GAM. Rug plots are displayed at the bottom of each subplot.
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temperature was the least likely to have a change in response

curve shape, usually displaying a negative, parabolic shape

(Figures 4, S3-S11). Like temperature, ZDV often exhibited a

negative, parabolic response curve shape, especially at the start

or mid-point of time series. In many cases (e.g., Figures S6-S8,

S11), ZDV response curves displayed a flatter shape during later

periods, indicating a reduced influence of this variable. The

response curves for salinity and DO usually displayed wide

confidence intervals at extrema, indicating reduced certainty in

how fishes respond to these variables under conditions deviating

from the mean. Lastly, compared to other species, S. sagax

displayed a greater propensity for changes in response curve

shape (Figures 4, S4, S8).

The amplitude of response curves, which is an indicator of

sensitivity to oceanic variables, displayed non-stationarity across

four of the ten combinations of species and regime shifts

(Table 2). Only one significant change in this indicator was

observed across PDO and SSB regimes, whereas deviations from

stationarity were more common among zooplankton regimes

(Figure 6). Deviations from stationarity for this indicator were

most common among S. sagax.

Shifts in peak habitat use tied other indicators for the

second most incidences of non-stationarity. This indicator
Frontiers in Marine Science 13
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refers to changes in the range of environmental variables

associated with maximum larval occurrence. For 80% of

species and regime shift combinations, at least one oceanic

variable exhibited non-stationarity for this indicator (Table 2).

Multiple species exhibited changes in the temperature and

salinity at which their response curve peaked (Figure 7), but

no overarching pattern of change between periods was

identified amongst these variables. In contrast, whenever

there was a significant change in peak DO use, fishes tended

to occur in areas with higher DO in more recent years

(Figures 7G, K). In four out of five cases where there was a

significant change in peak use of ZDV, fishes occurred in areas

with less ZDV during more recent years (Figures 7D, H, L).

This may be related to long-term declines in ZDV in this

ecosystem (Roemmich and McGowan, 1995; Lavaniegos and

Ohman, 2007). Compared to other species, S. sagax was most

likely to display significant changes in this indicator.

When integrating across all indicators, S. sagaxwas the species

whose relationship with oceanic variables displayed the most signs

of non-stationarity (Table 2). S. japonicus and E. mordax

displayed the fewest indications of non-stationarity, even though

some non-stationarity was detected for them across >50% of the

indicators and regime shift types. Non-stationarity was most
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FIGURE 5

Rank order comparison between the influence of each oceanic variable on the presence/absence of larvae of E. mordax, S. sagax, S. japonicus,
and T. symmetricus. Results are shown for change points designated based on changes in the sign of the Pacific Decadal Oscillation (PDO;
A-D); break points in the mesozooplankton volume time series (E-H; the abbreviation “zoop” is used when labeling the title of these subplots),
and; break points in the time series of E. mordax and S. sagax spawning stock biomass (SSB; I, J). Unless otherwise specified, time periods for
each type of change point are the same across all species. Only the start year of a particular regime is listed here. Oceanic variables are
abbreviated as follows: T – temperature, S – salinity, O2 – dissolved oxygen concentration, Z – mesozooplankton volume. Comparisons
between variables are based on the change in deviance (DD) when one variable is removed relative to the deviance of the full model. The scale
for DD is shown in the lower, right corner of the figure. Note that DD is influenced by sample size so this metric is comparable across from a
single regime, but not across multiple regime types due to variations in sample size. The rank order of different environmental variables for each
period is shown based on circle size and color: green – 1st rank, turquoise – 2nd rank, blue – 3rd rank, purple – 4th rank.
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FIGURE 6

Changes between periods in the response curve range from generalized additive models (GAMs). Response curve range is defined as the difference
between the maximum and minimum value in a GAM response curve and is indicative of how strongly an environmental variable influences larval fish
occurrence. Median values and 95% confidence intervals from bootstrap analysis are shown. Results are shown for change points designated based on
changes in the sign of the Pacific Decadal Oscillation (PDO; A-D); break points in the mesozooplankton volume time series (E-H), and; break points in
the time series of E. mordax and S. sagax spawning stock biomass ( SSB; I-L). GAM results for different periods are displayed in groups, with the first
period represented by the left most bar in a group (dark blue color) and the last period displayed to the right (light lavendar color). Intermediate periods
are displayed in the middle of each group. Stars (*) indicate that periods are significantly different from each other for a given species and environmental
variable based on non-overlapping 95% confidence intervals. White squares indicate that a particular variable was not included in the best fit GAM
model(s). Numbers shown in some subplots indicate the maximum response curve range in a few cases where the maximum value exceeds the y-axis
limit of a graph. Species names are abbreviated based on the first letter of the genus and the first letters of the species name: Em, Engraulis mordax; Ss,
Sardinops sagax; Sj, Scomber japonicus; Ts, Trachurus symmetricus.
FIGURE 7

Changes between periods in the peak value of generalized additive model (GAM) response curves. The peak in response curves is indicative of the
environmental conditions that maximize the likelihood of occurrence of E. mordax, S. sagax, S. japonicus, and T. symmetricus. Median values and 95%
confidence intervals from bootstrap analysis are shown. Results are shown for change points designated based on changes in the sign of the Pacific
Decadal Oscillation (PDO; A-D); break points in the mesozooplankton volume time series (E-H), and; break points in the time series of E. mordax and S.
sagax spawning stock biomass (SSB; I-L). Bar colors, symbols, and species name abbreviations are the same as in Figure 6.
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common among salinity and DO, whereas the relationship

between fish presence/absence, temperature, and ZDV exhibited

slightly more stability. Among different regimes, non-stationarity

was observed most frequently for SSB regimes when integrated

across indicators (Table 2).
3.3 Future projections

CNRM-ESM2 was used to produce end of the 21st century

projections of suitable habitat for larval fishes and assess whether

these projections differed significantly depending on which

ecological or climatic regime was used to parameterize

projection models. For E. mordax, S. sagax, and S. japonicus,

habitat suitability declined during future projections, with a

steeper loss in suitable habitat under SSP5-8.5 (Figure 8). For

this scenario, decreases in mean IHS varied between 40.5-90.8%

relative to the historical baseline. Under SSP1-2.6, declines in

suitable habitat never exceeded 53.1% for any species or regime.

In contrast to other species, T. symmetricus habitat suitability

was projected to increase under SSP1-2.6 and SSP5-8.5 during

spring (Figures 8D, H).
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Two-way ANOVAs indicated that GAMmodel choice had a

significant effect on habitat suitability in most cases (Table 3).

The two exceptions to this occurred among E. mordax during

regimes defined by PDO and SSB changes. For most species and

regime shift types, F statistics from ANOVAs were larger for the

GAM effect than the SSP effect, implying that the period used to

parameterize the GAM had a larger impact on habitat suitability

than SSP scenario. Furthermore, most species exhibited

significant interactions between SSPs and GAMs from different

regimes. One common pattern among interaction terms was that

GAMs parameterized during periods with greater habitat

suitability tended to undergo larger changes under future

climate scenarios.

Changes in the mean CV between the historical and SSP5-

8.5 scenarios were assessed to determine if variability in suitable

habitat may increase under climate change. Increased variability

was observed for all species, except T. symmetricus, under SSP5-

8.5 (Table 4A). Variance in IHS was greater under regimes

defined by changes in ZDV than other types of regimes

(Table 4B). Regimes characterized by non-stationarity in

salinity and ZDV exhibited greater variability than regimes

with non-stationarity in temperature and DO (Table 4C).

However, many regimes exhibited concurrent non-stationarity

across multiple environmental variables, making it challenging

to partition these effects among variables. The largest increases

in variability under climate change were observed when there

was non-stationarity associated with shifts in which variables

were included in GAMs and changes in response curve

amplitude (Table 4D).
4 Discussion

Non-stationary relationships between organismal

distribution and climate can result in inaccurate projections of

how species respond to climate change, but this subject has not

been widely investigated across ecosystems (Litzow et al., 2019).

We found that indications of non-stationarity were nearly

ubiquitous among SPF species when models were constructed

for three types of regime shifts. Non-stationarity most frequently

resulted in changes in response curve shape, shifts in the peak

range of conditions where larvae occurred, and changes in the

relative importance of oceanic variables. Non-stationarity was

most frequently associated with changes in ecological

conditions, such as shifts in fish SSB or ZDV, rather than

changes in the PDO. Relationships between fishes and

temperature were more stable than other environmental

variables. This might partially reflect greater uncertainty in

relationships between fish distribution, salinity, and DO,

which is indicated by the large confidence intervals associated

with these variables’ response curves. For several combinations

of regimes and species, DO had a greater influence on
TABLE 2 Percent incidence of non-stationarity by indicator metric,
species, oceanic variable, and change point type for generalized
additive models (GAMs).

(A) Percent incidence of non-stationarity by metric

Variables included in model 60%

Degree of non-linearity 60%

Rank order of deviance explained 70%

Response curve shape 80%

Degree of responsiveness 40%

Peak environmental range 80%

(B) Percent incidence of non-stationarity by species

Engraulis mordax 50%

Sardinops sagax 89%

Scomber japonicus 50%

Trachurus symmetricus 67%

(C) Percent incidence of non-stationarity by oceanic variable

Temperature 25%

Salinity 33%

Dissolved oxygen 37%

Zooplankton volume 33%

(D) Percent incidence of non-stationarity by type of change point

PDO 58%

Zooplankton volume 67%

SSB 75%
In (a), (b), and (d), non-stationarity is assessed at the model level, whereas in (c) it is
assessed across each oceanic variable included in a model.
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distribution in recent years (Figures 5, 7). Often the effects of

non-stationarity on larval habitat suitability were larger than

changes projected under high and low greenhouse gas emissions.
4.1 Non-stationary fish-environment
relationships

Among fishes , non-stat ionar i ty can affect how

environmental factors influence species distribution,

recruitment, and fisheries productivity. Here we integrate our

discussion across these types of non-stationarity. While non-

stationarity has not been frequently considered in the scientific

literature, when it has been investigated, results are similar to

ours in that changes in organismal-environmental relationships

are widespread. In studies comparing whether fish and

invertebrate density, biomass, recruitment, and catch can be

best modeled with stationary or non-stationary models, there is a

pattern where the best fit model is usually non-stationary

(Ciannelli et al., 2007; Lindegren and Eero, 2013; Beggs et al.,

2014; Litzow et al., 2018; van der Sleen et al., 2018; Puerta et al.,

2019). Similar results have been seen among non-marine taxa.
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For example, among British butterflies, changes in distribution

in response to warming were not consistent across periods (Mair

et al., 2012).

Among SPF, non-stationarity has been observed in multiple

ecosystems and may be related to the boom-bust cycles of

abundance common to this functional group. In the

Northwest Atlantic, Atlantic menhaden (Brevoortia tyrannus)

occurrence has a non-stationary relationship with temperature

modulated by the North Atlantic Oscillation (Roberts et al.,

2019). Changes in sardine (S. sagax) and anchovy (E.

encrasicolus) spawning habitat preferences in the southern

Benguela could be partially, but not fully, explained by

warming, suggesting non-stationarity relationships occur

among these stocks (Mhlongo et al., 2015). Among Japanese

anchovy (E. japonicus), temperature where fish occurred as eggs

and larvae differed between 1978-1991 and 1992-2004, which is

suggestive of non-stationarity (Takasuka et al., 2008).

It is unclear whether SPF are more likely to exhibit non-

stationary dynamics than other fishes. SPF are adapted to

environments with a high degree of climate variability

(Checkley et al., 2017), which could be indicative of

resilience to fluctuating conditions. Conversely, SPF are

more subject to population collapse than other fishes (Pinsky
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FIGURE 8

Integrated habitat suitability (IHS) for larval fishes during spring months based on projections from the CNRM Earth System Model (CNRM-ESM-2-1).
Annual mean IHS scores (± 95% confidence intervals) are shown for a historical simulation for the years 1980-1999 (abbreviated as Hist) and two
future simulations (SSP1-2.6 and SSP5-8.5) for the years 2080-2099. Using the climate forcing from each CNRM-ESM-2-1 simulation, habitat
suitability was projected based on generalized additive models (GAMs) parameterized with data from different regimes and species. Results are
shown for change points designated based on changes in the sign of the Pacific Decadal Oscillation (PDO; A-D); break points in the
mesozooplankton volume time series (E-H; abbreviated as Zoop), and; break points in the time series of E. mordax and S. sagax spawning stock
biomass (SSB; I, J). GAM results for different periods are displayed in groups, with the first period represented by the left most bar in a group (green
color) and the last period displayed to the right (white color). Intermediate periods are displayed in the middle of each group (pale green color). In
cases where multiple models were selected for a particular regime, separate bars are shown for each model using the color coding described
above.
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and Byler, 2015), suggesting highly non-linear and unstable

dynamics. Fernandes et al. (2020) showed that SDMs have a

reduced capacity to predict the normalized biomass of pelagic

species compared to benthic species. However, the mechanism

behind this observation is unclear and could be due to either

greater non-stationarity among pelagic fishes or differences in

sampling efficacy.
Frontiers in Marine Science 17
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4.1.1 Non-stationarity in the California
Current System

Within the CCS, evidence has previously suggested that non-

stationarity may be common among S. sagax, but much less

research has investigated dynamics of other SPF. One early

publication indicating that S. sagax has a variable relationship

with environmental conditions is Lynn (2003) who found that
TABLE 3 Two-way crossed analysis of variance (ANOVA) examining interactions between shared socioeconomic pathway (SSP) simulations and
projections from generalized additive models (GAMs) trained during different ecological and climatic regimes.

Term Sum of squares d.f. Mean squares F p

PDO regime shifts – E. mordax

GAM 174.0 1 174.0 0.8 0.3823

SSP 98,191.9 2 49,096.0 217.1 <0.0001

GAM*SSP 47.7 2 23.8 0.1 0.9001

PDO regime shifts – S. sagax

GAM 11,829.7 1 11,829.7 366.9 <0.0001

SSP 9,735.6 2 4,867.8 151.0 <0.0001

GAM*SSP 4,363.3 2 2,181.6 67.7 <0.0001

PDO regime shifts – S. japonicus

GAM 1,723.5 1 1,723.5 265.5 <0.0001

SSP 681.7 2 340.8 52.5 <0.0001

GAM*SSP 361.7 2 180.9 27.9 <0.0001

PDO regime shifts – T. symmetricus

GAM 21,853.1 1 21,853.1 393.3 <0.0001

SSP 6,135.2 2 3,067.6 55.2 <0.0001

GAM*SSP 723.9 2 361.9 6.5 0.0021

Mesozooplankton volume regime shifts – E. mordax

GAM 5,140.4 2 2,570.2 14.5 <0.0001

SSP 112,616.6 2 56,308.3 316.6 <0.0001

GAM*SSP 7,600.6 4 1,900.2 10.7 <0.0001

Mesozooplankton volume regime shifts – S. sagax

GAM 9,920.9 2 4,960.4 943.7 <0.0001

SSP 2,697.0 2 1,348.5 256.5 <0.0001

GAM*SSP 2,011.0 4 502.8 95.6 <0.0001

Mesozooplankton volume regime shifts – S. japonicus

GAM 9,842.1 2 4,921.1 225.0 <0.0001

SSP 2,637.9 2 1,318.9 60.3 <0.0001

GAM*SSP 2,943.3 4 735.8 33.6 <0.0001

Mesozooplankton volume regime shifts – T. symmetricus

GAM 47,321.5 2 23,660.7 411.3 <0.0001

SSP 6,621.6 2 3,310.8 57.6 <0.0001

GAM*SSP 3,343.8 4 835.9 14.5 <0.0001

SSB regime shifts – E. mordax

GAM 445.5 1 445.5 2.7 0.1025

SSP 68,597.3 2 34,298.7 208.6 <0.0001

GAM*SSP 1,194.7 2 597.3 3.6 0.0295

SSB regime shifts – S. sagax

GAM 1,337.2 2 668.6 33.9 <0.0001

SSP 8,009.1 2 4,004.6 202.9 <0.0001

GAM*SSP 670.3 4 167.6 8.5 <0.0001
frontie
The ANOVA response variable is the habitat suitability for larval fish species integrated over each year of the 20-year period examined by each SSP simulation.
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SST delimits the northern extent of S. sagax spawning habitat,

but that the specific limit differs between years. Several studies

have documented that the relationship between temperature and

S. sagax recruits per spawner is sensitive to time period and

source of temperature data (Jacobson and MacCall, 1995;

McClatchie et al., 2010; Lindegren and Checkley, 2012;

Zwolinski and Demer, 2019). Muhling et al. (2020) found

indications of non-stationarity for S. sagax during the 2014-
Frontiers in Marine Science 18
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2017 MHW when fish occurred at temperatures warmer than

projected by SDMs. Our results expand upon Muhling et al.

(2020) by identifying changes in the sensitivity of S. sagax to

environmental variables during earlier periods, indicating that

non-stationarity during the MHW was not solely due to the

inability of S. sagax to avoid unfavorable habitats during rapid

change. Our results also confirm that non-stationarity among S.

sagax can occur in absence of novel environmental conditions,
TABLE 4 Mean coefficient of variation (CV) for GAM model projections of annual integrated habitat suitability (IHS) under the historical and SSP5-
8.5 climate scenarios.

(A) Species

E. mordax S. sagax S. japonicus T. symmetricus
Historical scenario

Mean
CV

0.24 0.67 0.96 0.54

SSP5-8.5

Mean
CV

0.61 0.88 1.04 0.50

(B) Change point type

PDO Zooplankton
volume

SSB

Historical scenario

Mean
CV

0.59 0.69 0.29

SSP5-8.5

Mean
CV

0.71 0.88 0.58

(C) Environmental variables

Temperature Salinity Dissolved oxygen Zooplankton volume

Historical scenario

Mean
CV

0.55 0.68 0.51 0.65

SSP5-8.5

Mean
CV

0.71 0.83 0.72 0.87

(D) Non-stationarity metric

Metric 1 (variables in
GAM)

Metric 2
(linearity)

Metric 3 (rank
order)

Metric 4 (response curve
shape)

Metric 5 (response curve
range)

Metric 6 (peak
value)

Historical scenario

Mean
CV

0.56 0.66 0.62 0.58 0.58 0.55

SSP5-8.5

Mean
CV

0.79 0.80 0.78 0.75 0.82 0.71
In (C) and (D), only models for which there is some evidence of non-stationary are included in the means.
Mean CVs are presented by (A) species, (B) change point type, (C) environmental variable, and (D) non-stationary metric.
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such as those associated with an MHW. Instead, non-

stationarity likely emerges due to interplay between multiple

factors (e.g., variations in population size, prey availability,

interactions between oceanic conditions, shifts in where and

when fish spawn).

Our results help explain some contradictions between earlier

publications on SPF spawning habitat. There is generally a

consensus that the northern stock of S. sagax spawns at 12-16°

C, with several publications indicating peak spawning at

temperatures around 13-14° C (Checkley Jr et al., 2000; Lynn,

2003; Reiss et al., 2008; Zwolinski et al., 2011; Asch and Checkley

Jr, 2013). Our results are consistent with this consensus,

although there are variations between periods in how quickly

optimal spawning habitat declines at temperatures moving away

from this peak. E. mordax generally spawn at 12-18° C, but the

exact range of temperatures occupied by this species varies

between studies, which may reflect variations in the rate at

which response curves decline moving away from peak

temperatures (Fiedler, 1983; Lluch-Belda et al., 1991; Checkley

Jr et al, 2000; Reiss et al., 2008; Weber and McClatchie, 2010;

Asch and Checkley Jr, 2013). Checkley Jr et al. (2000) and Asch

and Checkley Jr (2013) found that S. sagax eggs were most

frequently observed at intermediate salinities of 33.0-33.4 psu,

whereas Weber and McClatchie (2010) identified a

monotonically decreasing relationship between S. sagax larvae

and salinity. This contradiction likely reflects the fact that each

study considered a different period since the shape of salinity

response curves is sensitive to the years used to parameterize

SDMs. In contrast, all previous research including ours indicate

that E. mordax spawn at higher salinities in the southern CCS

(Checkley Jr et al., 2000; Weber and McClatchie, 2010; Asch and

Checkley Jr, 2013). However, given that this species resides in the

Columbia River freshwater plume in the northern CCS

(Kaltenberg et al., 2010), phenotypic plasticity or local

adaptation might influence E. mordax larval occurrence with

regard to salinity. Different studies have identified positive and

negative relationships between S. sagax and zooplankton

concentration (Checkley Jr et al., 2000; Lynn, 2003; Agostini

et al., 2007). While this might reflect differences in the life stage

of S. sagax studied, variations in zooplankton species

composition, or spurious correlations, non-stationary

relationships provide an alternative explanation.

Less research has been conducted on the relationship

between SPF and DO in the southern CCS. Koslow et al.

(2013) suggested that there was a positive relationship between

DO and S. sagax larvae, which is consistent with our results

across the majority, but not all, regimes. Howard et al. (2020)

indicated that the distribution of E. mordax is sensitive to DO,

especially at high temperatures, which is comparable to our

results from recent years, although other patterns are seen early

in the CalCOFI time series. These two papers mainly focused

mid-water column depths because projected declines in DO

concentration under climate change are maximized across this
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range (Dussin et al., 2019). Our research focused on

environmental conditions in the upper 50 m of the water

column coincident with the peak vertical distribution of SPF

eggs and larvae. Since hypoxic conditions at these depths only

occur during extreme upwelling, the reaction of SPF larvae to

DO in our study is more representative of the influence of DO as

an indicator of water mass characteristics rather than as a

physiological stressor.

Less research has been conducted on environmental

influences on the species distribution of S. japonicus and T.

symmetricus in the southern CCS. Our results are consistent with

prior studies of the influence of temperature and salinity on their

spawning distribution (Weber and McClatchie, 2012; Asch and

Checkley Jr, 2013). However, this is less so for ZDV. For S.

japonicus, Weber and McClatchie (2012) found that larvae were

most likely to be present at intermediate ZDVs of ~5-7 log cm3

1,000 m-3. While we observed a similar relationship between

ZDV and S. japonicus larvae during 1951-1968 (Figure S9), this

pattern was not apparent in other periods. Asch and Checkley Jr

(2013) identified the highest probability of T. symmetricus eggs

at low ZDV. The current study identified a similar pattern

during 1984-2015, which coincides with years examined by

Asch and Checkley Jr (2013). However, differing relationships

between T. symmetricus distribution and ZDV were observed

during earlier periods.

T. symmetricus was the only species to experience a projected

increase in IHS under SSP1-2.6 and SSP5-8.5. We hypothesize

that this increase in suitable habitat is related to a shift in

spawning phenology of T. symmetricus under climate change.

Future projections were made for March-May since an empirical

formula for converting between mesozooplankton carbon

biomass from CNRM-ESM2 to ZDV was only available for

this season (Supplementary Material 1.2). While these months

coincided with the seasonal peak in larval concentration for E.

mordax, S. sagax, and S. japonicus, maximum concentrations of

T. symmetricus are observed in June (Moser et al., 2001). Asch

(2015) identified T. symmetricus as belonging to a group offishes

whose phenology has become earlier in recent decades in

response to warming. The projected future increase in habitat

suitability for T. symmetricus during March-May likely

represents a continuation of this shift towards earlier

spawning phenology.

Since fish-environmental relationships change over time,

this emphasizes the importance of accurately detecting timing

of regime shifts. Our study analyzed change points associated

with the 1976/1977 PDO phase change, 1968/1969 and 1983/

1984 shifts in ZDV, changes in S. sagax and E. mordax SSB in

1963/1964, and a second shift in S. sagax SSB in 1997/1998. No

change points were detected in time series of temperature,

salinity, and DO, which may reflect that biological time series

often have more non-linear dynamics than physicochemical

variables (Hsieh et al., 2005). The change points detected were

well supported by other studies of the southern CCS. The 1976/
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1977 PDO transition was associated with reduced survival

young-of-year E. mordax (Nishikawa et al., 2019). The

presence of a mid-1960s regime shift was consistent with an

analysis of 35 species of CCS ichthyoplankton (Peabody et al.,

2018). Other ichthyoplankton studies have identified faunal

shifts during 1983/1984 and the late 1990s (Miller and

McGowan, 2013; Peabody et al., 2018; Thompson et al.,

2019a), which approximately coincide with our change points

in ZDV and S. sagax SSB, respectively. Unlike previous studies,

we did not detect a 1989/1990 regime shift (Miller and

McGowan, 2013; Koslow et al., 2015; Peabody et al., 2018).

This might reflect that this change point seems to be principally

associated with shifts among a few highly abundant taxa in the

southern CCS (Peabody et al., 2018). Our Bayesian change point

algorithm indicated that there was some uncertainty in the exact

year of transitions (Figures 2, 3). This uncertainty may reflect

gaps in CalCOFI time series coverage, discontinuities in stock

assessments, the decision to log-transform SSB prior to change

point detection, and uncertainty related to parameter choice

during change point detection (Overland et al., 2008; Peabody

et al., 2018). For instance, the choice of minimum regime length

affects detection of recent ecological shifts, such as the crash and

subsequent recovery of E. mordax (Thayer et al., 2017;

Thompson et al., 2019b).
4.2 Mechanisms responsible for
non-stationary dynamics

Currently there is limited capacity for predicting the

occurrence of non-linear ecosystem regime shifts. A meta-

analysis of 4,600 global change impacts concluded that such

shifts were rarely detectable in advance (Hildebrand et al., 2020).

While many regime shifts are characterized by increased time

series variance (Lenton, 2011), this signal can be obscured by

small variations in organismal responses (Hildebrand et al.,

2020). Similarly, Field et al. (2009) concluded that fluctuations

in SPF abundance in paleo-ecological time series were

characterized by red noise that was not predictable. When

combined with novel environmental conditions and changes

in how fish react to oceanic variables across regimes, these

factors challenge the ability of empirically derived models to

make accurate future projections needed for management.

However, models that incorporate physiological principles and

mechanistic ecological understanding may fare better.

While our study did not directly investigate mechanisms

responsibility for non-stationarity, some insights can be attained

and may help generate hypotheses for future research. Given the

greater amount of literature on S. sagax and E. mordax, more

hypotheses exist to explain non-stationary dynamics among

these species. Previous studies suggested that the relationships

between these fishes and SST may be a proxy for other

environmental factors (e.g., prey availability) that more
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directly influence population dynamics (Fiedler, 1983;

Jacobson and MacCall, 1995). This could lead to non-

stationarity if relationships between SST and the direct

influences on a species become decoupled. However, this

seems unlikely to explain the non-stationarity observed here

because the relationship between temperature and larval habitat

exhibited greater stationarity than other variables. Previous

studies have indicated that DO in the CCS is correlated with

variations in nutrient and chlorophyll concentration, water mass

characteristics, and geostrophic flow (Weber and McClatchie,

2010; Koslow et al., 2013). Since the relationship between DO

and larval presence/absence was subject to greater non-

stationarity, changes in the strength of these correlations could

be possibly responsible for this non-stationarity.

Changes in modes of climate variability and trophodynamic

relationships have also been hypothesized to be mechanisms

responsible for non-stationarity in SDMs (Litzow et al., 2019).

We observed slightly more non-stationarity across zooplankton

regime changes than PDO shifts, suggesting support for

trophodynamic changes as an underlying cause of non-

stationarity. Related to this point, it must be noted that an

environmental variable needs to exceed an organism’s tolerance

range to affect its distribution. Under modes of climate

variability that are favorable to an organism, this tolerance

range might not be exceeded. However, values outside of their

tolerance may be experienced by fishes during the opposite

phase of climate variability or as the climate continues to

change. This mechanism could lead to the appearance of non-

stationarity when using SDMs parameterized with data from

different periods.

Additional mechanisms for explaining non-stationarity are

related to migration and dispersal. Since larvae are subject to

advection, they do not have complete control over habitats

occupied, which could increase the likelihood of non-

stationarity (Brun et al., 2016). Conversely, movement by

adults can help fishes track favored environmental conditions

whereas less migratory species may be unable to follow such

conditions (Reglero et al., 2012). This would imply that less

migratory species may be subject to greater non-stationarity.

However, migratory species may be equipped to face a greater

variety of conditions encountered along migration pathways,

implying that their distribution may be less tightly coupled with

oceanic conditions. S. sagax displays greater seasonal migratory

behavior than E. mordax (Zwolinski et al., 2011) and exhibited a

greater incidence of non-stationarity. This suggests the latter

idea (i.e., migratory behavior is associated with fewer

environmental distribution constraints) has more support

based on our data. Our results are also consistent with

Planque et al. (2007); Weber and McClatchie (2010), and

Muhling et al. (2020) who found that E. mordax distribution

could be better fit by SDMs than S. sagax. S. sagax tends to

exhibit greater variability in distribution than E. mordax at

interannual-to-decadal scales, expanding its distribution
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offshore and northward when abundant (MacCall, 1990). This

expansion, hypothesized to be driven by density-dependent

habitat use, may be responsible for greater non-stationarity

among S. sagax.

Beyond migratory behavior, there are at least two other

hypotheses that could explain the high degree of non-

stationarity among S. sagax. This species is known to undergo

demographic changes as its abundance fluctuates. S. sagax

reaches maturity at age 1 under low biomass and matures at

age 2 at high biomass (Hill et al., 2008). Such demographic

changes can increase the sensitivity of species to environmental

variability (Anderson et al., 2008), which could generate non-

stationarity. Another potential explanation could be related to

intermixing between the U.S. and southern Baja California

stocks of S. sagax, which use distinct thermal habitats (Lynn,

2003; Dorval et al., 2011). Nonetheless, the thermal history of

habitat occupancy recorded in S. sagax otoliths from the

southern CCS suggests intermixing of stocks is somewhat rare

(Dorval et al., 2011).
4.3 Non-stationarity among
oceanic variables

Climate change projections for marine organisms may be

improved by focusing on oceanic variables less likely to exhibit

non-stationarity. Of the variables considered, temperature most

frequently exhibited stable relationships with larvae distribution

(Table 2). This reflects that temperature has a direct influence on

biological processes as diverse as gene expression, enzyme

kinet ics , metabolism, consumption, and growth in

poikilotherms (Hare et al., 2012). Most marine fishes do not

change their mean temperature of occurrence over time (Nye

et al., 2009) and track climate velocity by shifting their

distribution and depth to reflect changing temperatures

(Pinsky et al., 2013). Rates of evolution of thermal niches are

projected to be much slower than rates of future environmental

change, leading to niche conservatism (Jezkova and Wiens,

2016). Consequently, SDMs driven by thermal preferences

may be more reliable for making future projections than those

with substantial influences from other variables. Nonetheless,

multivariate SDMs generally are better at predicting historical

distribution than univariate models (McHenry et al., 2019).

Salinity and ZDV exhibited an intermediate-to-high amount

of non-stationarity. Species were often less responsive to these

variables during recent regimes as indicated by exclusion of these

variables from models, flattened response curves, or decreases in

their ranking (e.g., Figures 4, 5). For ZDV, in some cases, fishes

were less likely to display a unimodal response curve in recent

years. Some non-stationarity observed among these variables

may be related to the fact that their response curves had wider

confident intervals near the minima and maxima of observed

conditions. Due to wide confidence intervals, it was not always
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possible to determine whether changes in response curves

between regimes represented changes in larval occurrence or

solely a lack of capacity to precisely quantify responses to

infrequently observed states. Brun et al. (2016) obtained

similar results where SDMs displayed decreased skill near the

edges of a species range where conditions were more extreme. It

is important to understand how species react to such extremes

since they are projected to occur more frequent under climate

change (Frölicher et al., 2018). Laboratory experiments may be

useful since they allow for replication of extremes observed

infrequently in nature.

DO often exhibited a greater influence on SPF during recent

regimes (Figures 5, 6, S2). Under climate change, DO in the CCS

is projected to decline due to reduced solubility of oxygen in

warmer water, increased stratification, changes in deep-water

circulation causing reduced ventilation, and changes in

upwelling strength (Rykaczewski and Dunne, 2010; Dussin

et al., 2019). These changes have been documented to

influence the historical abundance of mesopelagic fishes in the

southern CCS (Koslow et al., 2011) and are projected to affect the

future persistence of E. mordax in the region (Howard et al.,

2020). Our findings are consistent with these patterns.
4.4 Projection uncertainty

For climate change impacts to be considered in fisheries

management, uncertainty in future projections must be

quantified. This is because managers will need to contemplate

both best- and worst-case scenarios in the planning process

(Cheung et al., 2016a). In ecological models, uncertainty can

result from incomplete observational records, different

approaches to conceptual and numerical model formulation,

parameter estimation, model selection, choice of spatiotemporal

scale, and adaptability of living systems (Planque et al., 2011).

Future research should consider non-stationarity in fish-

environmental relationships as another source of model

uncertainty. Here we showed that the period used to

parameterize SDMs can have a substantial impact on future

projections due to non-stationarity, with the magnitude of this

effect sometimes exceeding the effect of different climate

scenarios. One understudied area with respect to climate

change uncertainty is whether there might be interactions

between different sources of uncertainty. We found that an

interaction exists between uncertainty due to non-stationarity

and SSP scenario, with an increasing effect of non-stationarity at

higher emissions.

As with most SDMs, there are a number of qualifications

that may affect our results. To take advantage of the multi-

decadal CalCOFI time series, our analysis focused on the

southern CCS, which does not encompass the full range of

target species. Nonetheless, given the pronounced onshore-

offshore gradients sampled by CalCOFI, this dataset covers
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several oceanic water masses exhibiting different conditions

(McClatchie, 2013). Also, previous research has used CalCOFI

to understand how environmental change affects fish

distribution despite the dataset’s limited spatial extent (Hsieh

et al., 2008; Hsieh et al., 2009; Howard et al., 2020; Muhling et al.,

2020). A second qualification is that some of the changes in how

fishes respond to the environment could be related to

interactions between multiple variables influencing fish

distribution. Changes in response curve shape may reflect the

fact that partial responses from GAMs depend on the partial

response of a species to other variables. For example, the extent

to which DO is a stressor depends on temperature (Howard

et al., 2020). GAMs often do not account for such interactions,

but other SDMs do. We evaluated non-stationarity across

periods with change points in S. sagax SSB using a second

model that accounts for such interactions (the non-parametric

probabilistic ecological niche model; Beaugrand et al., 2011; R.G.

Asch unpublished data). Since non-stationarity was also

common when using this alternative SDM, the high incidence

of non-stationarity in the GAMs cannot be explained solely by

multivariate interactions. Our models purposely did not include

SSB as an independent variable because it is unlikely that future

SSB would be precisely known when projecting climate change

impacts. However, SSB can influence S. sagax and S. japonicus

larval distribution (Weber and McClatchie, 2010; Weber and

McClatchie, 2012). Models may display fewer incidences of non-

stationarity due to density dependence if different SSB scenarios

are included in long-range projections. Another critique of

SDMs is that they do not typically allow for acclimation or

adaptation to changing conditions. However, it is also unclear

how important these processes are for fishes since thermal

niches evolve slowly (Jezkova and Wiens, 2016). Also, fishes

may migrate towards preferred conditions prior to acclimation

(Habary et al., 2016).
4.5 Recommendations for improving
SDM projections for marine fishes

Moving forward, it is important to determine if the high

incidence of non-stationarity detected here is widespread or

mainly a characteristic among SPF larvae in upwelling systems.

For populations likely subject to non-stationary environmental

relationships, we recommend validating SDMs with

independent datasets whenever possible. Cross-validation with

a subset of the original dataset can result in potential

overestimation of model skill due to temporal and spatial

autocorrelation or overfitting (Araújo et al., 2005; Planque

et al., 2011). Some measures of model skill, such as the true

skill statistic, perform similarly regardless of the time lag

between datasets used for model development and testing

(Brun et al., 2016). Wider use of the true skill statistic could

help realistically assess model skill when an independent dataset
Frontiers in Marine Science 22
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is unavailable for validation. Since variables exhibiting

indications of non-stationarity were more likely to have SDM

response curves with wide confidence intervals, we recommend

that response curve confidence intervals be more frequently

reported. Nonetheless, some climate-envelope models may

underestimate confidence intervals associated with the

centroid of species distribution (Thorson, 2018).

Another suggestion for guarding against non-stationarity

and improving confidence in SDM projections is to compare

model-derived environmental niches against those from

physiological experiments (Asch and Erisman, 2018; Muhling

et al., 2020). Alternatively, physiologically based thermal

tolerances can be used to parameterize SDMs (Hare et al.,

2012). However, it is not unusual to see discrepancies between

laboratory-derived and field-based estimates of thermal niche

due to differences between fundamental and realized niches

(Henderson, 2019). Related to this, fishes may not fully occupy

suitable habitat within their realized niche during low

abundance (Planque et al., 2007), which can lead to non-

stationary relationships. Using thresholds GAMs where a

threshold is prescribed based on fish biomass is a common

way to mitigate against such dynamics (Lindegren and Eero,

2013; Beggs et al., 2014; van der Sleen et al., 2018).

Obtaining reliable projections of fish species distribution,

phenology, and population dynamics is important, because it

allows fisheries managers to better engage in adaptive

management. Networks of marine protected areas and the

timing of seasonal fishing closures may need adjustment as

fishes undergo range shifts or phenological changes (McLeod

et al., 2009; Peer and Miller, 2014). Fisheries independent

surveys can be made more efficient when relationships

between fish distribution and the environment are used to

adaptively adjust sampling (Zwolinski et al., 2011). Most stock

assessments assume population processes affecting fisheries are

stationary, which can create retrospective bias in estimates of

population parameters if there has been a change in fishery

productivity (Szuwalski and Hollowed, 2016). Stock assessments

may be improved by incorporating environmentally variable

recruitment, growth, mortality, or catchability into assessments

(Adams et al., 2015; Pershing et al., 2015; Tommasi et al., 2017).

If the productivity of stocks changes as a function of climate, it

may be necessary to adjust acceptable biological catch to meet

management objectives (Vert-pre et al., 2013). Alternative

approaches to dealing with non-stationarity when setting

management targets include adopting targets that harvest a

constant fraction of the stock and only considering the most

recent regime when parameterizing stock assessments (Vert-pre

et al., 2013; Szuwalski and Hollowed, 2016). Management

strategy evaluation also relies on robust assessments of climate

change impacts on fishes when assessing which strategies

produce resilient fisheries (Szuwalski and Hollowed, 2016).

Non-stationary relationships that create greater uncertainty in

future projections may reduce the reliability of these
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management strategies for adapting to change. However, this

challenge only further underscores the importance of adaptive

management to account for the non-stationary reactions

of fishes.

In conclusion, we determined that non-stationary

relationships between larval occurrence and environmental

variables were nearly ubiquitous in the CCS, occurring across

multiple types of indicators, regime shifts, oceanic variables, and

species. This has implications for the robustness of future

projections of species distribution changes since most

projections rely on statistical models that assume stationary

relationships. Differences between alternative projections

became amplified under climate change, suggesting this source

of uncertainty may become increasingly important in the future.

Nonetheless, the relationship between temperature and larval

occurrence was more stable than other variables, likely due to

effects of temperature on fish physiology. Non-stationarity was

especially pronounced when examining regime shifts defined by

biological changes, such as shifts in SSB and ZDV. This suggests

that density dependence and prey availability may play key roles

modulating how fishes react to oceanic conditions.
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