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Editorial on the Research Topic

Computational Tools in Inferring Cancer Tissue-of-Origin and Molecular Classification

Towards Personalized Cancer Therapy, Volume II

With the advancement of sequencing technologies, there has been a rapid accumulation of
data making it difficult to decipher the key genetic elements, their nature, and alterations
for progression or regression of cancers. Further, enlightening an optimum gene set for
optimal classification, diagnosis, and prognosis of cancer types is difficult without reliable and
efficient computational tools. Progress in bioinformatics tools is parallel with sequencing data
accumulation. Computational tools are being continuously refined and developed to meet specific
challenges in cancer biology, the primary problem with them is that their accuracy is often
insufficient for clinical use (Kui et al., 2021). As the molecular classification, appropriate diagnosis
and prognosis, and markers for cancer improve better, more strategic novel drugs and efficient
cancer treatments can be developed. Computation tools would play a great role in this direction.

In this editorial, we presented an account of how computational tools have greatly facilitated in
unearthing the classification, prognosis, and therapeutic treatments of different cancer types. This
editorial is based on 12 research articles, which sheds light on the power of computational tools to
reveal the novel targets for cancer therapy and enhance the survival of patients with but not limited
to glioblastoma, ciliated muconodular papillary tumors, adenosquamous carcinoma (ASC), breast
cancer, esophageal cancer (EC), in colorectal cancer (CRC), metastatic melanoma, and multiple
myeloma. The computational pipelines developed in these studies have a great potential to be
extended to uncover novel therapeutic targets of other cancer types.

Four studies focused on the usage of specific computational approaches to address diverse
problems. Chen et al. proposed to use machine learning algorithms to identify primary lesions for
primary metastatic tumors. The fundamental idea behind their model is that different tumor types
exhibit specific expression profiles for certain genes, which could be captured through machine
learning models to classify the primary lesions. In essence, they used gene expression data from
TCGA and GEO, analyzed and processed it to obtain a relatively suitable machine learning model
followed by evaluation of the efficiency of diagnosis of primary lesions. They used XGBoost for
classification and their results revealed that by combining tumor data with machine learning
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methods, the classification of different cancers can be achieved
with specific accuracy, which can be used to predict the location
of primary metastatic tumors. Cui et al. developed a novel
pipeline, which not only compares two single-cell clusters but
also calls for differential gene expression, coexpression network
modules, etc. They used two single-cell data sets; Usoskin from
the GEO database and Xin dataset of the human pancreas.
Different types of analysis were then performed sequentially
through a variety of computational tools to create a smooth
pipeline. The pipeline implements DEsingle and SigEMD for
differential gene expression analysis, DGCA for differential
correlation analysis, WGCNA for network analysis, and DNA
for differential network analysis. This pipeline is very effective
to unravel the key differences between cell clusters and cell
types and provides one place for easy computational analysis of
single-cell data sets. Zhao et al. designed an Autoencoder-based
computational framework, which could capture both intrinsic
and extrinsic features of melanoma. They used the expression
data of the TCGA metastatic melanoma gene RNA-seq dataset
from Firehose and decomposed it into a small number of
representative nodes. Further, microarray datasets from GEO
for melanoma were used for prognosis analysis. They identified
many nodes that were significantly associated with the prognosis
of melanoma patients using Cox proportional hazard models.
A tumor-intrinsic (TI) signature and a tumor-extrinsic (TE)
signature were established from the two most prognostic nodes.
Both these signatures highly predicted the patient’s overall
survival. In addition, the TE signature successfully predicted the
response of patients to immunotherapy techniques. Using an
integrative approach of somatic mutations and gene expression
data, Jiang and Jin proposed a novel method for the identification
of breast cancer-associated mutated genes. The fundamental
theme behind their analysis is to first create a mutation matrix
data and evaluating mutation frequency for each gene, then to
create a gene expression matrix with expression values for each
gene. Finally, both data sets are mapped to identify the co-
expression profile. Their results indicated that this integrative
approach is effective in breast cancer classification.

Two studies focused on the classification and prognosis of
glioblastoma multiform (GBM), which lacks accurate prognostic
markers and drug targets. Yuan et al. aimed to create a new
molecular classification and to provide new therapeutic targets
for GBM. They performed an integrated analysis based on the
SNPs, DNA copy, DNA methylation, and mRNA expression
profile data of 117 patients. The data was obtained from the
TCGA database and Genomic Data Commons database (GDC).
MutSigCV and GISTIC modules from GenePattern were used
in the analysis of driver genes and landmark CNV events in
GBM, respectively. Using the cluster of cluster analysis (CoCA),
they found two novel subtypes, HX-1 and HX-2 depicting
three variable methylation positions and fifteen gene mutations.
These subtypes may act as potential prognostic biomarkers
for patients with glioblastoma. Zhang et al. tried to classify
glioblastoma subtypes on the basis of different degrees of
gene methylation. They used the methylation datasets from
Gene Expression Omnibus (GEO), identified the methylation
loci, which served as potential biomarkers to classify and

annotate the different GBM subgroups. They used powerful
machine learning algorithms to achieve their goals. Monte
Carlo feature selection (MCFS) and incremental feature selection
(IFS) methods were used to extract 4,100 essential methylation
sites and support vector machine (SVM), random forest (RF)
metaclassifier, and repeated incremental pruning to produce
error reduction (RIPPER) were used during classification.
Functional enrichment analysis of these dysmethylated genes
using GO and KEGG databases revealed several biological
functions related to GBM classification.

Three studies aimed to reveal the novel prognosis-related
signatures in different cancers. Esophageal cancer (EC) is a global
fatal disease with a poor prognosis. Huang et al. aimed to evaluate
the significance of genetic alteration (CDK4 amplification) in the
prognosis of esophageal squamous cell cancer (ESCC). Through
tissue microarray and fluorescence in situ hybridization they
found that among the investigated 520 patients with ESCC, 8.5%
exhibiting CDK4 amplification showed a negative correlation
with disease progression and significantly better survival. Thus,
they declared CDK4 amplification as an independent prognostic
factor for the survival of patients with ESCC. With the aim of
identifying the novel DNA damage and repair-related prognostic
genes in colorectal cancer (CRC), Wang et al. identified 1,545
genes related to DNA damage and repair. They used gene
expression data of 471 COAD (Colon adenocarcinoma) and
41 normal samples from The Cancer Genome Atlas-Colon
adenocarcinoma (TCGA-COAD) and 4 datasets of colon cancer
from the GEO database. Following the gene set enrichment
analysis (GSEA), the prognostic relevance of the individual genes
was evaluated through Cox regression analysis on the TCGA-
COAD dataset. A set of 12 genes related to DNA damage-and-
repair were identified, which classified COAD patients into high
and low-risk groups. Genes co-expressing with these 12 genes
were identified through Pearson’s correlation method. WGCNA
with Topological Overlap Matrix (TOM) was used to construct
the gene-coexpression network. Functional annotation of the
functional gene modules was carried out using Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
The gene set identified in this study has great potential in the
prognosis, and treatment of CRC. Further, using The Cancer
Genome Atlas (TCGA)-Multiple Myeloma Research Foundation
(MMRF) dataset as a training dataset, Wang et al. analyzed
the expression profiles through R package limma and evaluated
the prognostic relevance of each gene through univariate Cox
regression. Risk predictions were established through Lasso and
stepwise Cox regressions followed by validation using GEO
datasets. A set of eight RBP hub genes were identified, which
classified multiple myeloma patients into high- and low-score
groups. Functional analysis through Gene Ontology, KEGG
Enrichment Analysis, and Gene Set Enrichment Analysis (GSEA)
revealed that the major pathway through which RBP’s could lead
the development of myeloma may be the spliceosome pathway.

Two studies identifiedmutations in driving cancers. Yang et al.
used the whole exon sequencing and immune checkpoint analysis
of five patients with ciliated muconodular papillary tumors
(CMPT) to elucidate the molecular details and histogenesis
in CMPT. They observed 77 gene mutations in the patient’s

Frontiers in Genetics | www.frontiersin.org 2 August 2021 | Volume 12 | Article 7351035

https://doi.org/10.3389/fgene.2021.648898
https://doi.org/10.3389/fgene.2021.665065
https://doi.org/10.3389/fgene.2021.629946
https://doi.org/10.3389/fgene.2020.565341
https://doi.org/10.3389/fgene.2020.604336
https://doi.org/10.3389/fgene.2021.616110
https://doi.org/10.3389/fgene.2021.635863
https://doi.org/10.3389/fgene.2021.665173
https://doi.org/10.3389/fgene.2020.579737
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kui et al. Editorial: Cancer Tissue-of-Origin

tumor tissue and 31 mutations in the border tissue. Interestingly,
CMPT shared the same phylogeny with cancer tissue. These
results suggest the CMPT indeed are neoplastic processes with
immune escape and have malignant potential. Recent studies
have revealed that the clinical outcome of multiple cancers
could be predicted through tumor mutational burden (TMB). To
ascertain the relationship between TMB level and clinical features
and outcomes of lung Adenosquamous carcinoma (ASC), Cheng
et al. used NGS and immunohistochemistry approach and
identified 95 unique genes with somatic variations from a total
of 475 genes evaluated. TMB was found to be associated with
pathological stages, invasion of lymph node, and overall survival
but not with age, sex, smoking history, and tumor size in lung
ASC. Moreover, no correlation between TMB and mutations in
TP53 and EGFR was observed. This study, therefore, provided
an evidence that higher TMP correspond to lesser survival and
higher lymph node invasion.

One study focused its interest on improving the existing
medical imaging technology, which is a commonly useful
approach in disease diagnosis and progression. With rapid
advancements in deep learning, medical imaging technology
has been revolutionized. Most medical imaging techniques
involve encoder-decoder system, the classical architecture of
which is implemented in U-Net. Several modified versions of
U-Net have been introduced till now, all of which have two
major limitations; loss of diversity features caused by fixed
receptive field of the convolution kernel and loss of information
when a single convolutional sequence is used in extracting
features at each scale. With the aim of overcoming these
limitations, Su et al. developed a new version of U-Net called
multiscale U-Net (MSU-Net), which employed a new image
segmentation architecture. It is based on Multi-scale blocks
composed of convolution sequences with different receptive
fields, which facilitates extraction of more information with

diversified features. Their results showed that MSU-Net enabled
significant improvement of semantic segmentation. MSU-Net
integrates multiple convolution sequences having receptive fields
of different sizes, which produces more conspicuous object
features during forward propagation. Besides, MSU-Net is
flexible enough to be integrated with other network structures.
MSU-Net showed improved results, with 5-fold cross validation
when applied on five biomedical image segmentation datasets;
(1) 30 serial section Transmission Electron Microscopy (ssTEM)
images (512 × 512 pixels) of the first instar larva ventral
nerve cord (VNC) of the Drosophila, (2) The Breast Ultrasound
Dataset B (BUL) comprising of 163 ultrasound images (760
× 570 pixels) of breast lesions, (3) 800 Chest X-ray (CXR)
images (4,456 × 4,456 pixels) from the standard digital image
database for Tuberculosis, (4) 2,594 RGB images of skin lesions
(2,166× 3,188 pixels), and (5) Nuclei Segmentation (NS) dataset
from The Cancer Genome Atlas (TCGA) comprising of 30
digitized Hematoxylin and Eosin-stained frozen sections (512
× 512 pixels). This imaging technology may perform better in
tracing, diagnosis, prognosis, and possible treatment of different
cancer types.
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Ciliated Muconodular Papillary
Tumors of the Lung: Distinct
Molecular Features of an Insidious
Tumor
Xinxin Yang1, Yunjing Hou1, Jiashi Geng2, Jingshu Geng1 and Hongxue Meng1*

1 Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China, 2 Department of Radiology, Harbin
Medical University Cancer Hospital, Harbin, China

Introduction: Ciliated muconodular papillary tumors (CMPTs) are rare special peripheral
pulmonary nodule composed of different cell proportions, characterized by papillary
structures and significant alveolar mucus. Because of their rarity, underrecognized
processes, the full range clinical course and histogenesis of CMPTs remains uncertain.

Methods: Molecular features of 5 CMPTs cases (one case with mucinous
adenocarcinoma simultaneously) were observed by whole exon gene detection. The
histological features of CMPTs and the development trends of three major constituent
cells were studied by immunohistochemistry and PCR.

Results: NGS revealed 77 gene mutations in the patient’s tumor tissue and 31
mutations in the border tissue. TMB of CMPT tends to TMB of cancer tissues, and both
are higher than normal tissues, CMPT share the same phylogenetic tree with cancer
tissues. Moreover, PDL1, B7H3, and B7H4 were overexpressed in high columnar cells
and eosinophilic ciliated cells of CMPT, tends to cancer tissues, while LAG3 and siglec15
were not found in CMPT.

Conclusion: The high prevalence of driver gene mutations in CMPTs, similar TMB
and phylogenetic tree with cancer tissues indicate their malignant potential. Distinct
molecular and immune check point features of each component support the notion that
ciliated columnar cells in CMPT are insidious with immune escape.

Keywords: ciliated muconodular papillary tumors, molecular analysis, histogenesis, immune escape, whole exon
gene detection

INTRODUCTION

Ciliated muconodular papillary tumors (CMPTs) are rare peripheral pulmonary nodules
characterized by papillary structures and significant alveolar mucus in different proportions.
They are composed of a mixture of proliferating ciliated columnar cells, goblet cells, and basal
cells surrounded by intra-alveolar mucin pools in the peripheral lung (Kamata et al., 2015;

Abbreviations: CMPTs, ciliated muconodular papillary tumors; FFPE, formalin-fixed paraffin-embedded; GGO, ground
glass opaque; TMB, Tumor Mutational Burden; TTF-1, thyroid transcription factor-1.
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Liu et al., 2016; Taguchi et al., 2017; Chang et al., 2018; Kataoka
et al., 2018). Only about 70 cases have been reported worldwide,
and the clinicopathological characteristics and histogenesis have
not yet been defined in detail. One case of CMPT coexisting
with mucinous adenocarcinoma was reported in our cases, it
may be a basis for the malignant potential of a CMPT. Through
the detection of immune checkpoints, perhaps we can find
out the similarities between CMPT and immune escape of
malignant tumors.

Recent genetic studies revealed mutations in some driver
oncogenes (BRAF, EGFR, KRAS, AKT1, or ALK), and they
supported the notion that the lesion tends to be a neoplastic
lesion with malignant potential (Chuang et al., 2014; Kamata
et al., 2015, 2016; Jin et al., 2017; Kim et al., 2017; Taguchi et al.,
2017; Udo et al., 2017; Chang et al., 2018; Kataoka et al., 2018).
In particular, mutations in BRAF (40%) and EGFR (30%), as
identified by Kamata, support the development of a CMPT as a
true tumor process rather than a response or metaplastic disease
(Kamata et al., 2016; Table 2). Here, we performed whole exon
gene sequencing and immune check point analysis on five CMPT
patients to clarify the molecular features and histogenesis of each
cell component in CMPT.

MATERIALS AND METHODS

Patients
This study was approved by the institutional review board
of Harbin Medical University Cancer Hospital (Harbin,
China). Five cases with characteristic features of CMPT were
identified between 2016 and 2019. Their clinical and pathologic
information were reviewed (Table 1). Tumor tissues and tissues
adjacent to cancer were obtained by pathological sampling after
surgery. In addition, border tissues beside tumor were enucleated
by macrodissection under a stereo microscope.

Immunohistochemistry
Immunohistochemical analysis was performed on formalin-
fixed paraffin-embedded (FFPE) sections (4 µm thick) using a
fully automated system (Ventana Medical Systems, Tucson, AZ,
United States). The slides were stained with antibodies against
CK5/6 (clone CK5/6.007, ZSJ-bio, China), thyroid transcription
factor-1 (TTF-1) (clone SPT24, Maixin, China), p40 (clone ZR8,
Maixin, China), PD-L1 (clone sp22C3, Dako, Japan), B7H3
(Abcam, United States) and B7H4 (Abcam, United States).

Next-Generation Sequencing
Genomic DNA was sheared into fragments with the size
of ∼200 bp. The adapters were added to both ends then
were purified with Agencourt AMPure SPRI beads (Beckman
Coulter, Inc., Brea, CA, United States). Ligation-mediated
PCR was performed to amplify the extracted DNA. For
enrichment the PCR products was hybridized to the SureSelect
biotinylated RNA library (Agilent Technologies, Santa Clara,
CA, United States) according to the manufacturer’s instructions.
Paired-end multiplex samples were sequenced with the Illumina
HiSeq 2000 System. Sequencing depth was∼100× per sample.

PCR
Total RNA was extracted using an RNeasy Micro kit (Qiagen,
Hilden, Germany), then treated according to the manufacturer’s
instructions. Complementary DNA (cDNA) was synthesized
using a QuantiTect Reverse Transcription Kit (Qiagen). The
PCR was performed using cDNA as a template. PCR products
were analyzed by 4% agarose gel electrophoresis and stained by
ethidium bromide. We used PCR to detect the expression of
LAG3 and siglec15 in tissues.

RESULTS

Clinical Findings
The patients had a ground glass opacity (GGO) nodule in the lung
by chest CT examination, and the size of the nodule in the five
patients was generally less than 1 cm. The clinical staging (one
case with mucinous adenocarcinoma simultaneously) of the five
patients are both T1M0N0. One of them underwent pulmonary
lobectomy, and the remaining four cases received wedge excision
(Table 1 and Supplementary Figure S1).

Histologic Findings
Microscopic observation of the tumor reveals a hyperplastic zone
with unclear boundaries, and a mucus lake could be seen in the
alveolar cavity. Three main components could be seen under a
high powered microscope: basal cells, high columnar cells, and
eosinophilic ciliated cells (Figure 1).

Immunohistochemical Findings
Transcription factor-1 of basal cells and columnar cells was
stained, and these cells were stained more than eosinophilic
ciliated cells. CK7 staining coloration was continuous in basal
cells, and the Ki67 index was less than 5%. Five patients had a
positive expression of B7H3, B7H4, PDL1, and OFD1, mainly in
high columnar cells and eosinophilic ciliated cells. Among them,
adenocarcinoma and CMPT coexisted in the tissue of patient 2,
which showed high expression of PDL1 in the CMPT compared
to the other four patients, which prompted the activity of immune
escape Figure 1 and Table 2).

Molecular Findings
Molecular analysis of NGS revealed 77 gene mutations in
the patient’s tumor tissue and 31 mutations in the border
tissue (Supplementary Figure S2). We performed a functional
enrichment analysis of the tumor variant gene. According to
the functional enrichment analysis (Supplementary Figure S3),
the first three enriched signal pathways were (1) negative
regulation of apoptosis, (2) processing of O-glycogen, and (3)
positive regulation of GTPase activity. Both (1) and (3) are
associated with excessive proliferation of cells. Furthermore,
there were six genes (EGR1, MUC20, MUC3A, NBPF19, NOL4L,
and OR4L1) that were simultaneously mutated in the tumor
tissues and junction tissues (Supplementary Figure S4 and
Table 3). By analyzing the evolutionary relationship of the
taxa, it can be seen that there are three pairs of genes in
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TABLE 1 | Characteristics of CMPT patients.

Number Age Smoking Family history Location CT finding Size (mm) Treatment

1 40–45 – + RUL Ground glass opaque (GGO) nodule 10 Wedge excision

2 60–65 – – RLL Ground glass opaque (GGO) nodule 10 pulmonary lobectomy

3 60–65 + – RLL Ground glass opaque (GGO) nodule 7 Wedge excision

4 60–65 – – LLL Ground glass opaque (GGO) nodule 8 Wedge excision

5 55–60 – – RLL Ground glass opaque (GGO) nodule 10 Wedge excision

RUL, Right upper lobe; RLL, Right lower lobe; and LLL, Left lower lobe.

FIGURE 1 | Representative histopathological findings and immunophenotype of CMPTs. (A) Microscopic observation revealed a hyperplastic zone with unclear
boundaries, and a mucus lake in the alveolar cavity (H&E staining). (B) A tubular papillary growth was observed under a medium magnification microscope with
chronic inflammatory cell infiltration. (C) The microscope was highly magnified, and three main components can be seen in the lesion: basal cells, high columnar
cells, and eosinophilic ciliated cells. The triangles are marked as high columnar cells, the arrows are marked mucous cells, and the dashed lines are marked as basal
cells. (D) TTF-1 of basal cells and columnar cells was stained, and stained stronger than eosinophilic ciliated cells according to immunohistochemistry. (E) CK7
staining showed continuous coloring in the basal cells surrounding the adenoid structure and the papillary structure. (F) The Ki67 index was less than 5%.
Immunohistochemistry for panel (G) PDL1 (negative in normal issue); (H) PDL1 (positive mainly on high columnar cells and eosinophilic ciliated cells in CMPT); and
(I) PDL1 (positive in carcinoma). Immunohistochemical analyses of panel (J) B7H3, (K) B7H4, and (L) OFD1 in the CMPTs.

the same branch of the phylogenetic tree in the CMPT and
adenocarcinoma tissues for patient 2. By comparing the TMB in
normal tissues and CMPT and adenocarcinoma tissues, it can

be seen that the TMB of CMPT is similar to the TMB of
cancer tissues, and both are higher than the TMB of normal
tissues (Figure 2).
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TABLE 3 | Summary of the detected gene mutations from past reports and
the present cases.

Authors EGFR BRAF KRAS Others

Taguchi et al., 2017 0a/1b 0/1 0/1 Alk 1/1

Kataoka et al., 2018 2/4 1/4 1/4 –

Chang et al., 2018 5/21 6/21 4/21 HRAS 1/21

Kamata et al., 2015 – 1/1 – AKT1 1/1

Jin et al., 2017 – – – ALK 1/1

Udo et al., 2017 – 1/4 1/4 AKT1 1/4

Kim et al., 2017 – 1/1 – –

Chuang et al., 2014 0/1 – 0/1 –

Kamata et al., 2016 3/10 5/10 – –

Our series 1/5 – – EGR1, MUC20, MUC3A,
NBPF19, NOL4L, OR4L1

–, not available. a Positive number. b Number of people surveyed.

DISCUSSION

In this study, we identified a high prevalence of driver gene
mutations in the CMPTs; a similar TMB and phylogenetic tree
with cancer tissues and an adenocarcinoma coexisted in one case.
Distinct molecular and immune check point features of each
component provided evidence that these enigmatic lesions are
indeed neoplastic processes with immune escape.

Five cases had characteristic features of CMPT, and one
of them had mucinous adenocarcinoma simultaneously. Chang
et al. (2018) reported one case of CMPT coexisting with
adenocarcinoma, and they showed that CMPT may be malignant.
The CMPT population has features similar to malignant
features, including alveolar structural damage and elastic fiber
aggregation, tumor cells proliferating along the alveolar wall,
jumping lesions, no capsules, and CEA positivity (Kamata
et al., 2015; Kon et al., 2016; Taguchi et al., 2017). Because
histology is invasive, a CMPT is easily misdiagnosed as
adenocarcinoma with a diagnosis based on frozen pathology.
Therefore, we should conduct in-depth research on the
cellular components, composition, and developmental trend of
CMPT to provide more accurate guidance for clinical work.
Chuang et al. (2014) suggested that although CMPT does
not meet the criteria for ciliated adenocarcinoma, it has the
characteristics of pre-mutation, including goblet (mucus) cell
metaplasia and goblet cell TTF-1 staining loss. According to
the immunohistochemistry results reported in previous studies,
in many cases, CK7/CEA/TTF-1 expressions were positive,
and most CK20 expressions were negative. These findings are
very similar to those for adenocarcinoma (Sato et al., 2010;
Chuang et al., 2014; Ishikawa et al., 2016; Kamata et al.,
2016; Kon et al., 2016; Lau et al., 2016; Jin et al., 2017;
Kim et al., 2017; Taguchi et al., 2017; Udo et al., 2017;
Miyai et al., 2018) and indicate that CMPTs are potential
malignant tumors.

Nonetheless, the long-term biological behavior of CMPTs
could not be established by the present study, which had a
limited follow-up, and larger studies with longer follow-ups
are necessary to accurately determine the course of CPMTs
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FIGURE 2 | Evolutionary relationships of the taxa and the TMB in different
tissues. (A) Evolutionary relationships of the taxa. The evolutionary history was
inferred using the neighbor-joining method. The optimal tree with the sum of
branch length = 2.65875810 is shown. The evolutionary distances were
computed using the Poisson correction method and are in the units of the
number of amino acid substitutions per site. The analysis involved six amino
acid sequences. All positions containing gaps and missing data were
eliminated. There were a total of 117 positions in the final dataset.
Evolutionary analyses were conducted with MEGA7. (B) The TMB (mut/Mbp)
in normal tissue, CMPTs, and lung carcinoma. The TMB of CMPT tends to be
similar to the TMB of cancer tissues, and both are higher than that in normal
tissues. *p < 0.05.

(Kamata et al., 2015). Among the five cases, one had a family
history of lung cancer, which was her mother (Patient 1), and
one case coexisted with lung cancer (Patient 2). This allows
us to question whether CMPT really has a malignant potential
and whether its subsequent process is lung cancer. Through
genetic testing, we identified a high prevalence of driver gene
mutations in all CMPTs by whole exon sequencing, and we
also found a non-frame shift insertion mutation in exon 20 of
EGFR in the tumor tissues, which has been considered to be a
key driving gene for lung cancer (Supplementary Figure S5).
According to the functional enrichment analysis of the tumor

variant gene, enriched signal pathways are associated with
the excessive proliferation of cells. MUC20 and MUC3A co-
mutated at the junction of the tumor and tumor tissues are
mucin family genes that are involved in the development of
various adenocarcinomas, including lung cancer. Many studies
have shown that mucins can be misexpressed in malignant
tumors (Zheng et al., 2018). Is this related to the formation
of mucus lakes in CMPT? Exploration of more cases is
necessary. These results provide a good basis for the tumor
properties of CMPT.

Similarly, inconclusive here is whether CMPTs have any
potential for malignant transformation with immune escape. We
observed the specific influence structure of a CMPT malignant
potential and the mechanism of a CMPT malignant potential.
We tested the CD28 family of immune escape targets on CMPTs.
The expression of PD-L1 (B7H1/CD274), B7H3 (CD276), and
B7H4 in tissues was observed in all five patients (Table 2). It is
well known that PDL1, B7H3, and B7H4 are highly expressed
in tumor tissues to achieve immune escape and promote
tumorigenesis (Wiegering et al., 2019). It is notable that PDL1,
B7H3, B7H4, and other indicators are mostly expressed in mucus
cells of CMPTs. Moreover, we found PDL1 overexpression in
CMPTs with adenocarcinoma coexisting compared with other
CMPT cases, prompting the presence of immune escape. There is
a growing consensus on the importance of PDL1 as a diagnostic
biomarker or favorable prognostic factor in CMPTs.

In addition, we also found the high expression of OFD1
in CMPTs by immunohistochemistry, which is an important
inhibitor of primary cilia in cancer cells (Wiegering et al.,
2019). The elevation of OFD1 indicates a decrease in autophagy
and the disappearance of cilia, and studies have shown a
close relationship between the disappearance of cilia and
tumorigenesis (Tang et al., 2013). The test results for these
indicators support CMPTs having a certain malignant potential.

In addition to the CD28 family, we also observed the
expression of LAG3 and siglec15 on CMPT tissue, both of which
were negative. LAG3 and Siglec15 are novel immunomodulatory
targets that inhibit antigen-specific T cell responses, and siglec15
is a major immunosuppressive molecule of PDL1-negative
tumors (Nguyen and Ohashi, 2015; Wang et al., 2019). Combined
with the CD28 family of immune escape target results, siglec15
negativity coincided with our expectations, and these results
support the view that CMPT has malignant potential (Janakiram
et al., 2017). Moreover, through biological tree evolution analysis,
we found that CMPT and mucinous adenocarcinoma genes share
a common evolutionary direction. At the same time, CMPT has
the same TMB as adenocarcinoma, and it is higher than that in
normal tissue. Among them, high TMB may have a relationship
with the gene mutations we detected. This may suggest that
mucus cells in CMPT may become cancerous and develop into
mucinous adenocarcinoma.

We identified a high prevalence of driver gene mutations
in all the CMPTs, a similar TMB and phylogenetic tree as
with cancer tissues, and adenocarcinoma coexisted in one case.
Distinct molecular and immune check point features of each
component provided evidence that these enigmatic lesions are
indeed neoplastic processes with immune escape.
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CONCLUSION

The high prevalence of driver gene mutations in CMPTs, similar
TMB and phylogenetic tree with cancer tissues indicate their
malignant potential. Distinct molecular and immune check point
features of each component support the notion that ciliated
columnar cells in CMPT are insidious with immune escape.
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FIGURE S1 | Clinical findings. (A) A representative image of gray-whitish tumor
was observed in the peripheral lung (arrows) (Patient 1). (B) Chest CT shows the
right lower lobe ground glass-like nodules (1 × 1 × 1 cm).

FIGURE S2 | Mutant genes of tumor and junctional tissues (SNV and Indel).

FIGURE S3 | Functional enrichment analysis of mutant genes in tumors.

FIGURE S4 | Gene mutation map. Gene mutation map (A) EGR1, (B) MUC20,
MUC3A, (C) NOL4L, and (D) OR4L1.

FIGURE S5 | Mutation site map. Mutation site map of the (A) U2AF1.p34F
mutation and (B) EGFR 20 exon non-frame shift insertion mutation.

FIGURE S6 | The mRNA content of PDL1, B7H3 and B7H4 in CMPT and normal
tissues. mRNA content (A) PDL1, (B) B7H3, (C) B7H4. *p < 0.05.

FIGURE S7 | Negative control. Negative control (A) PDL1, (B) B7H3, (C) B7H4.
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Glioblastoma, also called glioblastoma multiform (GBM), is the most aggressive cancer
that initiates within the brain. GBM is produced in the central nervous system.
Cancer cells in GBM are similar to stem cells. Several different schemes for GBM
stratification exist. These schemes are based on intertumoral molecular heterogeneity,
preoperative images, and integrated tumor characteristics. Although the formation of
glioblastoma is remarkably related to gene methylation, GBM has been poorly classified
by epigenetics. To classify glioblastoma subtypes on the basis of different degrees of
genes’ methylation, we adopted several powerful machine learning algorithms to identify
numerous methylation features (sites) associated with the classification of GBM. The
features were first analyzed by an excellent feature selection method, Monte Carlo
feature selection (MCFS), resulting in a feature list. Then, such list was fed into the
incremental feature selection (IFS), incorporating one classification algorithm, to extract
essential sites. These sites can be annotated onto coding genes, such as CXCR4,
TBX18, SP5, and TMEM22, and enriched in relevant biological functions related to
GBM classification (e.g., subtype-specific functions). Representative functions, such
as nervous system development, intrinsic plasma membrane component, calcium
ion binding, systemic lupus erythematosus, and alcoholism, are potential pathogenic
functions that participate in the initiation and progression of glioblastoma and its
subtypes. With these sites, an efficient model can be built to classify the subtypes
of glioblastoma.

Keywords: glioblastoma, methylation, signature, subtype, classification

INTRODUCTION

Glioblastoma, also called as glioblastoma multiform (GBM), is the most aggressive cancer that
initiates within the brain. The cause of this disease is unclear. The risk factors of GBM include
genetic factors and environmental factors, such as smoking and exposure to pesticides. Similar to
other brain cancers, GBM can cause epilepsy, nausea, vomiting, headaches, and mild hemiplegia.
The typical symptoms of glioblastoma are deteriorating memory and personality or decline in
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neurological function. Most symptoms are caused by the
destruction of the temporal lobes and the frontal lobes. Different
subspecies of glioblastomas are produced in the central nervous
system, and cancer cells in GBM are similar to stem cells.

Several different schemes for glioblastoma stratification exist.
One is based on intertumoral molecular heterogeneity in
GBM. This scheme identities the subtypes of procedural and
mesenchymal glioblastoma on the basis of the biomarker genes
VEGF-A, VEGF-B, ANG1, and ANG2 (Sharma et al., 2017).
The second technique involves the use of preoperative images
as predictive markers of GBM subtypes; in this approach,
the distinctive imaging phenotypes and imaging patterns of
glioblastoma subtypes are detected by employing machine-
learning techniques (Macyszyn et al., 2016). The third technique
is based on integrated tumor subtypes, which have been
discovered through an integrative subtype analysis of the GBM
dataset from the cancer genome atlas (TCGA) (Shen et al., 2012).

The promoter region is a functional part of the genome that
is regulated by methylation and contributes to the regulation
of gene expression during the pathogenesis of glioblastoma.
Such genomic modification affects the expression of a group
of important proteins, including MGMT, GATA6, and CASP8;
the dysmethylation of these genes is remarkable in glioblastoma
(Skiriute et al., 2012). For example, through whole-genome wide
methylation screening, a study found that 5 m-dC level is the best
discriminant among methylation classes, and the upregulation of
LINE1 methylation is an independent prognostic factor in GBM
diseases (Lai et al., 2014). Although the formation of glioblastoma
is related to gene methylation, glioblastoma has been poorly
classified on the basis of epigenetics.

Preliminary attempts on clustering GBMs using epigenetic
biomarkers have already started. According to a systematic
analysis on the DNA methylation-based classification of central
nervous system tumors (Guardiola Bagán et al., 2017; Capper
et al., 2018), central nerve system (CNS) tumors can be further
classified into multiple subgroups based on the whole-genome
wide methylation status. As one important part of the CNS
tumors, GBM can be further classified into eight classes, which
is DMG K27, GBM G34, GBM MES, GBM RTK I, GBM RTK II,
GBM RTK III, GBM MID, and GBM MYCN. Researchers tried
to use unsupervised clustering of reference samples using t-SNE
dimensionality reduction. According to the original publications,
group DMG K27 can be easily distinguished from other seven
groups based on the results of t-SNE based separation. However,
the differences between the other seven subgroups cannot
be clarified clearly and the specific methylation locus that
contribute to the separation have not been identified. Therefore,
in this study, we used methylation datasets downloaded from
Gene Expression Omnibus (GEO) database to identify specific
methylation locus/biomarkers that contribute to the classification
and annotation of different GBM subgroups (Capper et al., 2018).

We aimed to identify essential methylation sites (features)
in this study, on which the subtypes of glioblastoma can be
efficiently classified. To this end, we employed two datasets
collected in GEO. One dataset was termed as the training
dataset, whereas the other was treated as the independent test
dataset. A powerful feature selection method, Monte Carlo

feature selection (MCFS) (Dramiński et al., 2007), was applied on
the training dataset. A feature list, indicating the importance of
features, was produced. After that, incremental feature selection
(IFS) (Liu and Setiono, 1998) was executed on this list, which
incorporated one classification algorithm, to extract essential
methylation sites. As a result, we found 4100 methylation sites
(features) associated with the classification of GBM. These
sites can be annotated onto coding genes, such as CXCR4,
TBX18, SP5, and TMEM22. Through the further functional
enrichment analysis of these dysmethylated genes using GO
and KEGG databases, we identified several biological functions
related to GBM classification (e.g., subtype-specific functions).
Also, with these methylation sites, an efficient model with
support vector machine (SVM) (Cortes and Vapnik, 1995)
as the prediction engine can be built to classify subtypes
of glioblastoma. In summary, on the basis of the powerful
computational approaches, we identified various novel potential
pathogenic genes at the epigenetics level and revealed several
potential pathogenic functions that participate in the initiation
and progression of glioblastoma and its subtypes with wide
support from recent reports.

MATERIALS AND METHODS

Dataset
Two sets of methylation profiles of patients with GBM were
downloaded from GEO with the accession numbers GSE90496
and GSE109379 (Capper et al., 2018). The first dataset
included 347 GBM cases and the second dataset contained
324 GBM cases. These two datasets were used as the training
dataset and independent test dataset, respectively. All GBM
cases are classified into seven categories. The distribution of
GBM cases on seven categories is listed in Table 1. The
methylation levels of 42,383 probes were used to represent each
patient. The goal was to identify discriminative methylation
features (e.g., dysmethylated sites or genes) corresponding to
different GBM subtypes.

Feature Selection
In this study, we first used MCFS (Dramiński et al., 2007)
to identify the general interpretable information of features
(methylation sites) in tumor samples from the central nervous
system. Then, we applied IFS (Liu and Setiono, 1998) to

TABLE 1 | Breakdown of the GBM samples in the training and independent
datasets.

Category Training dataset Independent dataset

G34 41 13

MES 56 104

MID 14 19

MYCN 16 17

RTK 64 44

RTK II 143 118

RTK III 13 9
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improve classification performance by obtaining a group of
optimal features with the strong recognition ability of central
nervous system tumors.

MCFS
Monte Carlo feature selection is a classical and powerful
feature selection method wherein decision trees are used to find
distinguishable features for classification (Dramiński et al., 2007).
It is quite suitable to analyze datasets with features much more
than samples. The datasets described in section “Dataset” are
in such type. Thus, we adopted MCFS to analyze the training
dataset, aiming to extract essential features. Furthermore, such
feature selection method can deeply investigate complicated
relationship between features or class labels, extracting essential
features in deep levels.

The MCFS method evaluates the importance of features by
constructing lots of decision trees. Given a dataset with M
features, randomly construct s feature subsets consisting of m
features, where m is much smaller than M. For each feature
dataset, t bootstrap sample sets are constructed from the original
dataset, in which samples are represented by features in such
feature subset. Accordingly, t decision trees are built. After all
feature subsets are processed by the above procedures, s·t decision
trees are constructed. Based on these trees, a feature g is assigned
a relative importance (RI) value, which can be calculated by

RIg =

st∑
τ=1

(wAcc)u
∑
ng (τ)

IG(ng(τ))

(
no. in ng(τ)

no. in τ

)v
, (1)

where IG(ng(τ)) stands for the gain information of node ng(τ),
(no. in ng(τ)) represents the number of samples in node ng(τ),
(no. in τ) denotes the number of samples in tree τ, wAcc indicates
the weighted accuracy of the tree. u and v are the regular factors,
which were suggested to set to one (Dramiński et al., 2007). All
investigated features are ranked in a list with the decreasing order
of their RI values. Clearly, features with high ranks are more
important than those with low ranks.

In present study, we used the MCFS program retrieved from
http://www.ipipan.eu/staff/m.draminski/mcfs.html. Default
parameters were adopted.

IFS
Incremental feature selection is a feature selection method
used to distinguish between samples from different classes
(e.g., normal and diseased) (Liu and Setiono, 1998). In this
study, different classes of samples were discerned by a set
of optimal features screened by IFS performed in a rank-
descending feature list. We set candidate high-performance
feature subsets as feature subsets with large interval sizes (e.g.,
10 features) from the ranked feature list. Suppose N candidate
feature subsets F = [F1, F2, . . . , FN

] exist. The i-th feature subset
includes 10 ∗ i features yielding Fi

= [f1, f2, . . . , fi∗N]. We
construct and evaluate the classifier on each candidate feature
subset. The candidate feature subset with the maximal prediction
performance is the optimal feature subset, and the classifier
constructed from these optimal features is the optimal classifier.

Classification Algorithm
Support Vector Machine
The classifier acts as a classification model that maps data samples
to a given category for data class prediction. We use support
vector machine (SVM) (Cortes and Vapnik, 1995) based on
statistical learning theory for supervised data classification. It
has wide application for tackling different biological problems
(Muthukrishnan et al., 2014; Chen et al., 2017, 2020; Liu et al.,
2020; Sang et al., 2020; Zhou et al., 2020a,b). The basic principle is
to use a given kernel function (e.g., Gaussian kernel) to transform
data from a low-dimensional space to a high-dimensional space.
The SVM model can separate the samples of each class/category
by maximizing the data interval and also predicts (new) sample
categories on the basis of the interval where this sample falls
in. For two-class classification, the largest margin between the
two categories of samples can be inferred by SVM, where
large margins are associated with small generalization error. For
multiclass classification, SVM uses the “One Versus the Rest”
strategy. In this study, we solved the optimization problem of
SVM by using the sequence minimization optimization (SMO)
algorithm (Platt, 1998; Keerthi et al., 2001) implemented by
the tool “SMO” in Weka software (Frank et al., 2004; Witten
and Frank, 2005), which can be downloaded at https://www.cs.
waikato.ac.nz/ml/weka/. For convenience, the default parameters
were adopted, where the kernel was a polynomial function and
the regularization parameter C was set to one.

Random Forest
A random forest (RF) (Breiman, 2001) is a metaclassifier that
contains a large number of tree classifiers for establishing
final joint classification, which determines the output
categories/classes by summarizing votes from different decision
trees (Breiman, 2001). The RF is a commonly used method
in machine learning and is widely applied in computational
biology (Pan et al., 2010; Zhao et al., 2018; Jia et al., 2020; Liang
et al., 2020; Yuan et al., 2020). Notably, a slight difference exists
between each decision tree and other decision trees in a RF.
Thus, the predictions of all decision trees are averaged to obtain
the final decision of RF. This approach can avoid over-fitting
and improve the performance of the integrated model. However,
it slightly increases the bias of the overall model and causes
the loss of some interpretability. In this study, we used the tool
“RandomForest” in Weka (Frank et al., 2004; Witten and Frank,
2005), which implemented the above RF. The number of decision
trees was set to ten.

Rule Learning
In this study, we used the rule learner known as repeated
incremental pruning to produce error reduction (RIPPER) to
generate classification rules for classifying samples from different
GBM subtypes (Cohen, 1995). RIPPER learns interpretable
classification rules consisting of IF–ELSE rules. Briefly, RIPPER
learns the rules of one class and then moves to learn the next
class in a given order, e.g., it learns from the first minority
class to the next until the dominant class. To quickly implement
the RIPPER algorithm, we directly employed the tool “JRip”
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in Weka (Frank et al., 2004; Witten and Frank, 2005). Default
parameters were used.

Functional Enrichment Analysis
The selected optimal methylation probes (features) were mapped
onto genes on the basis of the annotation files of GPL13534
downloaded from GEO. The enrichments of these genes on GO
terms and KEGG pathways were evaluated with hypergeometric
tests measured by phyper function in R1. The cutoff of the
adjusted hypergeometric test p-values, i.e., FDR (false discovery
rate), was set to 0.05. In other words, only the GO terms
and KEGG pathways with FDR < 0.05 were considered to be
statistically significant.

Performance Measurement
We employed Matthew Correlation Coefficients (MCC)
(Matthews, 1975; Gorodkin, 2004) to evaluate the performance
metrics of different kinds of classifiers. The MCC accounts
for true and false positives and true and false negatives, and
this measurement has values ranging from −1 and +1. It is
a common method for calculating the correlation between
target and prediction classes. Applying 10-fold cross-validation
(Kohavi, 1995), we used MCC to evaluate the performance of
different training models for glioblastoma classification.

RESULTS

In this study, we investigated the methylation profiles of GBM
patients. The entire procedures are illustrated in Figure 1.

Results of MCFS Method on the Training
Dataset
We first used MCFS to analyze the training dataset. Each feature
was evaluated by a RI value. Accordingly, all features were ranked
in the decreasing order of their RI values. Obtained feature list is
provided in Supplementary Table 1.

IFS Results
Next, we generated a series of feature subsets from the MCFS
feature list and then subjected them to IFS with SVM, RF,

1http://finzi.psych.upenn.edu/R/library/stats/html/Hypergeometric.html

and RIPPER to obtain the best features for classifying different
categories of GBM samples. The complete results of the three
classifiers using different number of features are given in
Supplementary Table 2. For an easy observation, an IFS curve
was plotted with number of used features as X-axis and MCC
as the Y-axis for each classification algorithm, as shown in
Figure 2, in which the highest MCC of each classification is
marked. It can be observed that the highest value of MCC
generated by SVM was 0.939 when using the top-ranked 4100
features. Accordingly, we constructed the optimal SVM classifier
with these 4100 features. For RF, when using the top-ranked
1690 features, the largest MCC value of 0.882 was achieved.
These 1690 features were used to build the optimal RF classifier.
When using the top-ranked 1180 features, the highest MCC
value of 0.737 was obtained by RIPPER. The optimal RIPPER
classifier was built based on these 1180 features. The overall
accuracies of above-mentioned classifiers are listed in Table 2
and the accuracies on seven categories are shown in Figure 3.
As shown by these results, the optimal classifier was SVM,
which was superior to RIPPER and RF although it used
additional features.

Performance of Optimal Classifiers on
the Test Dataset
To show the generalizability of our pipeline, we also evaluated
above-constructed classifiers on a completely independent test
dataset. The MCCs generated by the optimal SVM, RF, and
RIPPER classifiers were 0.798, 0.832, and 0.937. These results
are summarized in Table 3, in which the corresponding overall
accuracies are also listed. The detailed performance on each
category is shown in Figure 4. The results indicated that
the RIPPER classifier had better generalizability than other
two algorithms, and SVM shown the worst generalizability
performance in this study.

Results of Enrichment Analysis
On the training dataset, the optimal SVM classifier gave the
best performance, which adopted 4100 top-ranked features
(methylation sites). These sites were mapped onto genes based on
the annotation file of Illumina HumanMethylation450 BeadChip
from GEO with platform number of GPL135342, resulting

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534

FIGURE 1 | Flowchart of the analysis performed in this study. The training dataset is first analyzed by the Monte Carlo feature selection (MCFS) method. Features are
ranked in a list, which is fed into the incremental feature selection (IFS) with one of three classification algorithms. The optimal classifiers based on different
classification algorithms are built and further evaluated their performance on a test dataset.
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FIGURE 2 | IFS curves with support vector machine, random forest, and RIPPER on the training set. The support vector machine can yield the highest MCC (0.939)
when top 4100 features are used, while the highest MCCs of random forest and RIPPER are 0.882 and 0.737, respectively, when top 1690 and 1180, features
respectively, are adopted.

in 1813 coding genes, which are provided in Supplementary
Table 3. For consistency, these genes were called optimal genes
in the following text.

The enrichment analysis was done on the above 1813 genes.
The results are listed in Supplementary Table 4. Several GO
terms and KEGG pathways with FDR < 0.05 were obtained. In
detail, we obtained 167 biological process (BP) GO terms, 28
cellular component (CC) GO terms, 26 molecular function (MF)
GO terms and four KEGG pathways. Some of them would be
analyzed in section “Biological Functions Relevant to GBM Based
on Optimal Genes” and “Biological Pathways Relevant to GBM
Based on Optimal Genes.”

DISCUSSION

Optimal Genes Relevant to GBM
As mentioned in section “Results of Enrichment Analysis,” 1813
optimal genes were obtained. We selected some of them for
analysis in this section. These genes are targeted by probes
with high RI values.

The first gene is CXCR4 (targeted by probe cg02902079
and cg10824187), which is a lymphocyte activity regulation
molecule and acts as an alpha-chemokine receptor specific
for stromal-derived-factor-1. Chemokines play important
autocrine and paracrine roles during tumor initiation and
progression. Generally, the in vivo secretion of chemokines

TABLE 2 | 10-fold cross-validation performance of the optimal SVM, RF, and
RIPPER classifiers on the training set.

Classification algorithm Number of features Overall accuracy MCC

SVM 4100 0.954 0.939

RF 1690 0.911 0.882

RIPPER 1180 0.804 0.737

regulates the biological effects of various components in the
microenvironment of CXCR4 (Würth et al., 2014). In cancer
stem cells, CXCR4 is upregulated and plays an irreplaceable
role in perivascular invasion, a specific tumor behavior in
GBM (Yadav et al., 2016). In addition, CXCR4 is an effective
target for improving tumor sensitivity in GBM in conjunction
with radiation therapy (Yadav et al., 2016). Moreover, CXCR4
is suppressed by PATZ1, which is enriched in the proneural
subtype and colocalizes with stemness markers of GBMs
(Guadagno et al., 2017).

The next identified probe turns out to be cg26558485,
targeting the 5′UTR of CYP4X1. As a member of the cytochrome
P450 superfamily of enzyme, such gene has been generally
reported to participate in neurovascular function in the brain
(Bylund et al., 2002). As for its correlations with GBM, recently,
two successive related publications (Wang et al., 2018, 2019)
confirmed that CYP4X1 contributes to the inhibition of glioma
angiogenesis. Glioma vasculature is quite significant for the
initiation and progression of such disease (Hardee and Zagzag,
2012). The methylation of related functional regions of such gene
definitely affect its biological functions, which further plays an
irreplaceable role for GBM pathogenesis. Therefore, such target
gene can be an effective GBM associated gene.

Apart from probe cg26558485, another probe named as
cg07028914 targets a transcription factor named as TBX18.
According to recent publications, an independent study in 2015
confirmed that microRNA miR-205 prevent the invasion of
glioma by targeting TBX18 (Zheng et al., 2015), reflecting the
potential regulatory role of TBX18 during glioma pathogenesis.
Most of microRNAs’ biological effects on glioma pathogenesis
relied on the regulation on gene expression, which is similar
with methylation mediated biological processes. Therefore, the
methylation status of such gene may also play a potential
regulatory role for the invasion of glioma.

The next gene, SP5 is targeted by multiple probes including
cg26766005 and cg14768335. According to recent publications,
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FIGURE 3 | Performance of the optimal SVM, RF, and RIPPER classifiers on different categories in the training dataset. The optimal SVM and RF classifiers are much
superior to the optimal RIPPER classifier, and the optimal SVM classifier is slightly superior to the optimal RF classifier.

SP5 has been shown to be therapeutic target and a prognostic
biomarker for multiple cancer subtypes, including glioma (Safe
and Abdelrahim, 2005; Safe et al., 2014). Considering that
methylation can regulate the expression level and biological
effects of a target gene, the methylation status of the regulatory
region of such gene may also probably affect the pathogenesis of
glioma and have different pathological effects in different glioma
subgroups indirectly.

As for TMEM22, also known as SLC35G2, which is targeted by
the optimal features cg25836094, cg13383019, and cg22304507,
it has been generally reported to participate in cell proliferation
and tumorigenesis with few publications (Dobashi et al., 2009).
Although such gene has not been directly reported to be
functionally correlated with glioma, it has been widely reported
to be associated with renal cell carcinoma and its homolog which
shared similar biological functions, TMEM97 has been directly
confirmed to be correlated with glioma at transcriptomics level.
Considering that methylation at gene body is correlated with gene
transcription, it is reasonable for us to regard TMEM22 associated
probes as potential glioma associated probes.

The next identified probe turns out to be cg11823511,
targeting gene BARHL2. According to two independent studies
reported by researchers from University of Birmingham
(Dunwell et al., 2010) and Memorial Sloan-Kettering Cancer

TABLE 3 | Performance of the optimal SVM, RF, and RIPPER classifiers on the
independent test dataset.

Classification algorithm Overall accuracy MCC

SVM 0.852 0.798

RF 0.877 0.832

RIPPER 0.954 0.937

Center (Shen et al., 2012), respectively, the methylation of
BARHL2 is not only related to hematological and epithelial
cancers, but nerve system malignancies including glioma and
may play a specific role for the integrative subgrouping of glioma
(Shen et al., 2012).

RASGRF2 targeted by probe cg06829830 has also been
predicted to be contribute to the pathogenesis of glioma at
methylation level. According to recent publications, in 2019, a
systematic review (Wu et al., 2014) on the cancer methylation
biomarkers confirmed that such gene is a specific biomarker for
aggressive gliomas at methylation level using liquid biopsy.

Apart from such gene, the next identified biomarker is TLX3,
targeted by probe cg26844246. The methylation alteration of
such gene has been identified in multiple tumor subtypes, like
thyroid cancer (Kikuchi et al., 2013), bladder cancer and lung
adenocarcinoma (Pradhan et al., 2013). In a systematic study
on the whole-genome wide glioma methylation status, TLX3 has
been shown with specific methylation status in level II and III
gliomas (Suzuki et al., 2015).

As for gene ANKRD34A (correlated with probes cg10178263,
cg18280463, and cg13947666), according to related methylation
studies (Giri and Aittokallio, 2018; Ding et al., 2020), such
gene has shown to have methylation changes during the
initiation and progression of multiple tumor subtypes, including
lung, colon, bladder, lymphoma, breast and ovarian cancer.
Therefore, it is reasonable for us to connect the methylation
status of ANKRD34A with glioma. Apart from that, a recent
publication (Ding et al., 2020) in 2020 also indicated that the
transcript of such gene, which is regulated by methylation
status, may participate in the RNA regulatory network in
low grade glioma. Therefore, the methylation of such gene
may be correlated with glioma and performed differentially in
different subgroups.
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FIGURE 4 | Performance of the optimal SVM, RF, and RIPPER classifiers on different categories in the independent test dataset. The optimal RIPPER classifier gives
the best generalizability on the independent test dataset, followed by the optimal RF and SVM classifier.

The last target of the optimal probes is MARCH11 (targeted
by probe cg09017434), regulating the intracellular transport of
lysines. As for its correlations with GBM, according to recent
publications, such gene has shown to be correlated with the
carcinogenic transformation of cells with different expression
levels (Yang et al., 2020). Considering the correlations between
gene region methylation and gene expression, it is reasonable
for us to speculate that the methylation status of such gene may
be correlated with potential malignant alterations, supporting its
correlations with GBM.

Biological Functions Relevant to GBM
Based on Optimal Genes
Here, to summarize the specific biological functions that may
contribute to revealing the differences between different GBM
subgroups at methylation level, we performed GO enrichment
analyses and pathway analyses on the optimal genes associated
with GBM related probes (see Supplementary Table 4).

For the GO enrichment analyses results, firstly nervous
system development has been screened out. Nervous system
development is a biological process related to GBM. The
malignant transformation and invasive migration of glioma
cells rely on basic cellular components and physical anatomical
structure. Therefore, the nervous system may contain proteins
that are crucial for GBM. A recent publication confirmed that
MT1-MMP, a major component of nervous system development,
plays an important role during the pathogenesis of GBM (Beliën
et al., 1999). Nervous system development is also associated with
DNA methylation. Specific patterns have been seen at the DNA
methylation level in the nervous system during the development
and pathogenesis of GBM. Some patterns are even shared by
two groups (Numata et al., 2012). Therefore, nervous system
development, as an effective biological process, can be predicted

to contribute to the description of GBM, validating the efficacy
and accuracy of our prediction.

Apart from that, the next enriched term calcium ion binding
has also been shown to be related to GBM. Various important
cells in the central nervous system and the pathogenesis
of GBM-like astrocytes participate in complicated metabolite
transportation from the blood to the brain. Under pathogenic
conditions, glioma cells seize control of the regulation of vascular
tone through the Ca+-dependent release of K+, suggesting that
calcium ion binding and blood stream in the brain in pathogenic
status have important clinical implications (Watkins et al., 2014).
Calcium ion binding is also related to methylation. An increase
in the ionic strength and a decrease in the methylation reduce the
amount of calcium required for the gelation of pectin–calcium
systems (Garnier et al., 1993).

Biological Pathways Relevant to GBM
Based on Optimal Genes
Apart from GO enrichment analyses, we also performed KEGG
pathway analyses on such optimal genes (see Supplementary
Table 4). The results of this study indicated that alcoholism
is related to glioblastoma. Repurposing disulfiram (DSF) is a
drug that has been widely used over the past several years to
control alcoholism. DSF can inhibit the growth of GBM cells
with TMZ resistance without affecting normal cells in the human
central nervous system. DSF can suppress the growth and self-
renewal of primary cells from GBM tumors, suggesting that an
association exists between alcoholism and GBM (Triscott et al.,
2012). Alcoholism is also related to the methylation alteration
of transporter genes. Methylation status is further affected by
alcoholism. The methylation of DAT in peripheral blood has also
been validated to be a biomarker for alcohol-dependent patients
(Wiers et al., 2015).
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CONCLUSION

We found several methylation features (sites) associated with the
classification of GBM using our newly presented computational
method for classifying glioblastoma subtypes on the basis of gene
methylation level. Through the further functional enrichment
analysis of dysmethylated genes, such as CXCR4, TBX18,
SP5, and TMEM22, several potential pathogenic functions
are found to participate in the initiation and progression
of glioblastoma. These functions include nervous system
development, intrinsic plasma membrane component, systemic
lupus erythematosus, and alcoholism.
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Glioblastoma is the most lethal malignant primary brain tumor; nevertheless, there
remains a lack of accurate prognostic markers and drug targets. In this study, we
analyzed 117 primary glioblastoma patients’ data that contained SNP, DNA copy, DNA
methylation, mRNA expression, and clinical information. After the quality of control
examination, we conducted the single nucleotide polymorphism (SNP) analysis, copy
number variation (CNV) analysis, and infiltrated immune cells estimate. And moreover,
by using the cluster of cluster analysis (CoCA) methods, we finally divided these
GBM patients into two novel subtypes, HX-1 (Cluster 1) and HX-2 (Cluster 2), which
could be co-characterized by 3 methylation variable positions [cg16957313(DUSP1),
cg17783509(PHOX2B), cg23432345(HOXA7)] and 15 (PCDH1, CYP27B1, LPIN3,
GPR32, BCL6, OR4Q3, MAGI3, SKIV2L, PCSK5, AKAP12, UBE3B, MAP4, TP53BP1,
F5, RHOBTB1) gene mutations pattern. Compared to HX-1 subtype, the HX-2 subtype
was identified with higher gene co-occurring events, tumor mutation burden (TBM), and
poor median overall survival [231.5 days (HX-2) vs. 445 days (HX-1), P-value = 0.00053].
We believe that HX-1 and HX-2 subtypes may make sense as the potential prognostic
biomarkers for patients with glioblastoma.

Keywords: multi-omics analysis, copy number variation, DNA methylation, mRNA expression, glioblastoma

INTRODUCTION

Gliomas are most common malignant brain tumors which derive from neuroepithelial cells
(Rivera et al., 2008). Most patients underwent tumor resection surgery with standard follow-up
chemotherapy/radiotherapy, and based on molecular neuropathology diagnosis, they may survive
from months to decades (median survival from 1 year to 15 years) (Marton et al., 2019). High-grade
gliomas’ recurrence was due to their invasive nature. Recent studies on molecular pathology of
glioma has outlined some valuable prognosis biomarkers such as IDH1, 1q-19p co-deletion, h3k27,
TERT (Killela et al., 2014; Marton et al., 2019; Zhang Z. Y. et al., 2019), but the existed biomarkers
still cannot fully predict the overall survival for all glioblastoma patients, such as IDH1 wild-type
in WHO grade 2 gliomas or in recurrent gliomas; moreover, we know a little about of the MGMT
demethylation status in glioma patients. Unlike many other types of malignant tumor, glioblastoma
lacks of effective treatment measures and drug targets (Snape and Warr, 2015; Higashijima and
Kanki, 2019; Ruta et al., 2019). Recent phase II/III clinical trials on glioblastoma were all failed,
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including immune checkpoint inhibitor PD-1 or PD-L1
(Berghoff and Preusser, 2016; Charoentong et al., 2017; Kurz
et al., 2018) or anti-angiogenic drugs like bevacizumab (Kurz
et al., 2018; Moriya et al., 2018). Life is composed of complicated
regulator control system, the cancer happened normally involved
in gene mutation, change of epigenetics and gain of fusion-
gene (Liang et al., 2019). Thus, through integrating analysis
of multi-omics data on glioblastoma is meaningful, which
could systematically study the negative molecular event like
genomic instability and somatic mutation (Song et al., 2019;
Zhang Z. Y. et al., 2019). In this study, we performed integrated
analysis via TCGA database of glioblastoma [(NIH), Genomic
Data Commons database (GDC)1], aimed to complete a new
molecular classification and provide some new treatment targets
for GBM. As a result, we enrolled 117patients that all contained
SNP, DNA copy, DNA methylation and mRNA expression
profile data. After combined the multidimensional data with
clinical information and cluster of clusters analysis steps, we
divided theses GBM samples into two novel subtypes (HX-1 and
HX-2), among the two subtypes, we identified 15 genes and 3
methylation variable position which are associated with overall
survival, and the subtype HX-2 has an obvious higher mutation
frequency than subtype HX-1, moreover, the NK cells activated
rate in HX-2 is also higher than HX-1 group.

RESULTS

Mutation Analysis Reveals
As the first step, we performed statistical analysis for the enrolled
117GBM samples, annotated the mutation types, depicted
proportion of different types of base changes and the top 10
mutation genes. Among these patients, the median age at initial
diagnosis was 62(from 21 to 89), and 44 of them are female, more
details of each patients could find in Supplementary Table 1.
The overall description of the results is revealed in Figure 1A.
In glioblastoma, the most common mutation type is C > T.
Figures 1A,B have displayed the 20 most mutated genes and
metadata information such as molecular subtypes information.
Figure 1C disclosed the frequency distribution of the top20 gene
mutations in GBM, the gene with the highest mutation rate is
PTEN, 56% of samples had gene mutation on PTEN.

We separately counted the number of somatic mutations
in each GBM sample and matched the clinical characteristics
of these samples, the clinical features including survival status,
tumor recurrence, etc. The analysis results indicated that the
somatic mutations between tumor recurrence and progression of
disease existed huge difference, and the recurrence samples has a
higher number of mutations (Figure 1D).

Somatic mutations are widespread events in tumorigenesis,
a few of gene mutations could directly cause tumor happening,
and those genes are called driver genes (Higashijima and Kanki,
2019). We used MutSigCV to predict driver gene of the samples
based on mutation data. When the significance threshold was
q < 0.01, a total of 925 candidate genes were obtained.

1https://gdc.cancer.gov/

Considering the mutation site of each sample and the bases at
1 bp position upstream and downstream of the mutation site, we
divided the mutation into 96 types according to the upstream and
downstream mutation site, calculated the frequency distribution
of the 96 mutation types of the 117 sample (Figure 1E). Moreover,
somatic mutations are present in all cells of the human body
and occur throughout life. They are the consequence of multiple
mutational processes, including the intrinsic slight infidelity
of the DNA replication machinery, exogenous or endogenous
mutagen exposures, enzymatic modification of DNA and
defective DNA repair. Different mutational processes generate
unique combinations of mutation types, termed “Mutational
Signatures”2. In this study, to figure out the relationship between
the mutation spectrum distribution of GBM samples and
mutational signatures in cosmic, we subsequently conducted non-
negative matrix factorization analysis based on 96 mutation types
of the 117 sample, and extracted three somatic point mutations
(Figure 1F). We found that the glioblastoma mutation spectrums
are mainly related to signature_27 like, signature_1 like and
signature_10 like.

Copy Number Variation Analysis
A total of 117 samples were conducted by GISTIC analysis.
The results suggested that 7q,7p,19p amplification and 10q,10p,
22q deletion are most notable, and Figure 2A revealed
the chromosome arms when GISTIC test significant (Q-
value < 10−5). In all tumor samples, there were 10 amplifications
and 21 copy number deletions in minimal common regions
(MCRs), these MCRs are showed in Figures 2B,C, among them,
the most significant amplification position are 7p11.2, 12q14.1,
the most significant deletion position are 9p21.3,10q23.31.
Figure 2D revealed the minimal common regions (MCRs) and
the genes within the MRCs (the deletion genes in the region is
represented by a negative value).

We then used ABSOLUTE software to evaluate the tumor
purity and ploidy based on copy number variation (CNV), as
showed in Figures 2E,F, the tumor purity ranged from 0.16–
1, and the tumor cell genome ploidy was ranged from 1.82–
10.13, which suggested that genomic disorder is a common event
in tumorigenesis.

Clustering by Integrated Platforms
We utilized four single platform data (SNP,DNA copy,DNA
methylation,mRNA expression profile) to integrate with
clinical information. When the significance threshold is set to
0.01(q < 0.01), 333 gene mutations, 60 DNA methylation sites,
and 123 mRNAs are associated with prognosis of GBM patients;
however, there were no significant CNV position with prognosis
in our array. According to the expression of 123 mRNAs, the
samples can be divided into 3 categories (Figure 3A). According
to the information of 60 methylation sites, the samples can be
divided into 2 subtypes (Figure 3B). According to the mutation
information of 333 genes the samples can be divided into 2
subtypes (Figure 3C).

2https://cancer.sanger.ac.uk/cosmic/signatures
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FIGURE 1 | Mutation analysis for enrolled samples. (A) Tumor mutation profile of glioblastoma samples. (B) Oncoplot with the top 20 most mutated genes.
(C) Frequency distribution of the top 20 gene mutations in glioblastoma. (D) Mutation and clinical feature correlation. (E) Distribution of mutation profile. (F) Mutation
correlation of character and cosmic mutation signature.

FIGURE 2 | Copy number variation analysis. (A) GISTIC analysis for enrolled samples, upper panel: amplification of chromosome arm, lower panel: deletion of
chromosome arm. (B,C) Distribution of minimal common regions (MCRs). (D) The number of genes in minimal common regions (the number of genes in the missing
region is represented by a negative value). (E,F) Purity and ploidy analysis.
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FIGURE 3 | Identification of subtype with cluster of different platforms. (A) Clustering mRNA expression profile. (B) Clustering of DNA methylation. (C) Clustering of
gene mutation. (D,E) CoCA cluster analysis, all samples can be divided into 2 subtypes, K = 2, HX-1(Cluster 1) and HX-2 (Cluster 2) subtype. (F) Subtype
classification with single platform clustering results display.

We next used CoCA cluster analysis method to conduct
cluster analysis again, the data was derived from SNP, DNA
methylation and mRNA platform, finally, we obtained two novel
subtypes from all GBM samples, and we named these subtypes as
HX-1 and HX-2 (Figure 3D). Figure 3E represents the delta area
curve of consensus clustering, indicating the relative change in
area under the cumulative distribution function (CDF) curve for
each category number k compared with k-1. When the subtypes
were classified into two groups (K = 2), the area under the cure
is biggest. We also plot the information of the subtypes with
each platform (Figure 3F). It suggests that HX1 and HX2 are
more correlated to SNP1, SNP2, and SNP3, but not correlated to
methylation subgroups or mRNA subgroups.

Subtype Analysis
Firstly, we analyzed the clinical features for each subtype, such
as gender, tumor status, survival status and the median survival
time etc. (Figure 4A and Table 1), the median survival time
between each group (HX-1 and HX-2) has significant differences
(P = 0.00053), the data indicated that the HX-2 had an obviously
poor OS (Figure 4B), the median OS for HX-1 is 445 days, and
the median OS for HX-2 is 231.5 days, P-value is 0.00053.

We further want to identify whether each subtype differs
in the type of mutation, as shown in Figures 4C,D, HX-1
and HX-2 were mainly happened as C > T mutation, and
Ti (transition) frequency was higher than TV (transversion)
frequency (Figures 4C,D).

Many genes that cause cancers often with mutually exclusive
or co-occurring events, in order to determine which genes
will happen with mutually exclusive or co-occurring events, we

conduct Fisher’s exact test for any two gene mutations, and we
found a plenty of gene co-occurring events in HX-2 subtype
instead of HX-1 (Figures 4E,F).

APOBEC (“apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like”) is a family of evolutionarily conserved cytidine
deaminases. In humans, they help protect from viral infections.
These enzymes, when misregulated, are a major source of
mutation in numerous cancer types (Rebhandl et al., 2015). We
used R package maftools to proceed APOBEC analysis. As shown
in Figure 4G, only subtype HX-2 had APOBEC cluster samples,
the genes with mutation rate which significantly high were
revealed in Figure 4G, the box plot shows differences in mutation
load between APOBEC-enriched and non-enriched samples,
donut plots display the proportion of mutations in tCw context,
bar plots show the top 10 differentially mutated genes between
APOBEC-enriched and non-APOBEC- enriched samples.

We also compared the 96 signatures collected in cosmic
with each subtype; as a result, the mutational signatures in
each subtype were both associated with signature1 (Figure 4H),
but the HX-1 had high similarity with signature6 subtype
independently; the HX-2 subtype also had high similarity with
signature10 and signature 27 (Figure 4I).

In order to identify the gene mutations for each subtype,
we counted the total amount of mutations in each subgroup
of each gene, and then conduct chi-square test. Finally,
we identified 727 different mutations in reach subtypes, the
subtype HX-2 had an obvious higher mutation rate than HX-
1 (Figure 4J). We subsequent counted the tumor mutation
burden (TBM) for each subtype, the result confirmed the
TBM in HX-2 (TBM = 55.4) is significantly higher than HX-1
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FIGURE 4 | Analysis of subtypes. (A) Clinical characters of subtypes. (B) Survival curve between subtypes. (C) Distribution of mutation types of HX-1.
(D) Distribution of mutation types of HX-2. (E) Mutually exclusive or co-occurring events in HX-1. (F) Mutually exclusive or co-occurring events in HX-2. (G) Cluster of
APOBEC (“apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like”) analysis of HX-2. (H) Mutation signatures of HX-1. (I) Mutation signatures of HX-2.
(J) Distribution of significant difference genes between HX-1 and HX-2. (K) Distribution of immune cells. (L) Tumor mutation burden comparison. (M,N) Purity and
ploidy analysis between HX-1 and HX-2. (O) Fusion genes events in HX-1 and HX-2. (P) Distribution of T cells CD4 memory activated between HX-1 and HX-2.
(Q) Distribution of mast cells activated between HX-1 and HX-2.

(TMB = 5.7, P = 3.881e-06, Figure 4L). There was no significant
difference of each subtype on tumor ploidy (Figure 4M) and
purity (Figure 4N).

We download fusion gene baseline from http://54.84.12.177/
PanCanFusV2/database. In total, we identified 144 fusion genes
in HX-1 cluster and 284 fusion gene in HX-2 (Figure 4O,

TABLE 1 | Clinical features for each subtype.

HX-1 HX-2 P-value

Female 16 28 0.5072

Male 32 40

Not available 1 0

Alive 18 12 0.0285

Dead 30 56

Not available 1 0

Progression of disease 24 25 0.6217

Recurrence 8 5

Not available 17 38

Tumor free 6 4 0.4655

With tumor 39 53

Not available 4 11

Supplementary Table 2). We uploaded the expression data of
117 GBM samples to cibersort website, calculated the proportion
of 22 immune cells in these samples (Figure 4K). Then, the
distribution of the proportion of each immune cell between
the two subgroups was calculated separately, we determined
that proportion of T cells CD4 memory activated (Figure 4P)
and mast cells activated (Figure 4Q) was significant different
between HX-1 and HX-2.

Prognostic Marker Identification and
Validation
In order to further identify of the prognostic markers
for the subtypes, we conjointly analyzed the 19 DE
genes, 27 DE methylation position and 727 DE genes
between HX-1 and HX-2. The analysis results show
that when the significance threshold is set to 0.05, there
had three methylation positions [cg16957313(DUSP1),
cg17783509(PHOX2B),cg23432345(HOXA7)] and 21 genes
were associated with prognosis, in which 15 genes were same
as in Mut2SigCV analysis. In addition, the distribution of all
GBM cases based on TCGA is displayed in Supplementary
Figure 1 according to the mutation signature of these 15 genes.
The survival curve of these 21 associated prognosis factors
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FIGURE 5 | Display of landscape between HX-1 and HX-2, the clinical features and mutation status of 15 driver gene were integrated into subtypes, it can be clearly
seen from the figure that the frequency of gene mutations in HX-2 subtype is much higher than that of HX-1.

were showed in Supplementary Figure 2 We also described the
landscape of the 15 genes between the two subtypes (Figure 5).

Moreover, to validate the outcome of our analysis, the 15
mutant genes mutation signature genes used to develop a cancer-
related risk signature. Samples from the Chinese Glioma Genome
Atlas (CGGA) dataset were divided into high risk group and low
risk group. These samples carrying mutations within 15 genes
were defined as high-risk group (n = 11) in CGGA primary GBM
cohort; while the others were defined as low-risk group (n = 42).
According to the Kaplan-Meier survival analysis, the prognosis of
high-risk group was strikingly worse than that of low-risk group
(Supplementary Figure 3A, P = 0.032). Moreover, the 15 gene
signature in the CGGA primary GBM cohort showed a high area
under the receiver operating characteristic curve (AUC = 0.632)
(Supplementary Figure 3B), close to that in the TCGA GBM
cohort (AUC = 0.756) (Supplementary Figure3C).

DISCUSSION

Glioblastomas (GBM) is the most invasive and prevalent
types of glioma with extremely poor prognosis and limited
treatment options (Rebhandl et al., 2015). In recent years,
tremendous articles reported the molecular characterization of
GBM, make us better understanding of how to use the key
molecules to predict the OS for glioma patients (Colaprico
et al., 2016; Holdhoff, 2018; Higashijima and Kanki, 2019;
Marton et al., 2019). However, most of the published articles
were based on single platform analysis, which is hard to

explain why the similar molecular pattern may induce diverse
prognosis in GBM patients sometimes. In order to make a
comprehensive understanding on molecular characteristic of
GBM, we used the unsupervised clustering method to cluster
the data from four different platforms (SNP,DNA copy,DNA
methylation,mRNA expression) and subsequently used the
cluster of clusters analysis (CoCA) method to further identify
the subtypes of GBM. Therefore, through systematic studying
of the integrated multi-omics analysis, genomic instability,
somatic mutation and the molecular characteristics of each
GBM subgroup, we hope we can provide new ideas and novel
theoretical basis for early diagnosis and individualized treatment
for GBM patients.

We conducted the SNP associated analysis in the first
step, our result showed the glioblastoma was characterized
by prominence of C > T. The signatures of mutational
processes in human cancer was firstly reported by Michael
R. Stratton and his colleagues, they concluded more than
20 distinct mutational signatures from 4,938,362 mutations
from 7,042 cancers (Wu et al., 2019). We extracted the
mutation characteristics of somatic point mutations, the
result showed that the mutation spectrum of glioblastoma
is similar to signature27,signature1 and signature10 which
collected in cosmic. As reported, the Signature 1A/B is
probably related to the relatively elevated rate of spontaneous
deamination of 5-methyl-cytosine which results in C > T
transitions and which predominantly occurs at NpCpG
trinucleotides, and signature10 was the associated with altered
activity of the error-prone polymerase Pol ε consequent on
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mutations in the gene. However, the reason for signature 27
is still unknown.

We next use clusters analysis (CoCA) method to
classified the subtype of enrolled glioblastoma samples
as HX-1 and HX-2, the main mutation signature of the
two subtypes are the same as C > T, however, there were
a plenty of gene co-mutation events in HX-2 but not
shown in HX-1, the Tumor mutation burden in HX-2
was significant higher that HX-1, and the median survival
forHX-2 is 231.5 days, much shorter than HX-1 445 days,
suggested that the HX-2 subtype is more aggressive than
HX-1 subtype, and HX-2 occurred from high frequency
of gene mutation.

The proportion of T cells CD4 memory activated and mast
cells activated were determined significant difference between
HX-1 and HX-2 in our result. Dongrui Wang et al. found that
maintenance of the CD4 + subset was positively correlated
with the recursive killing ability of CAR T cell products
derived from GBM patients (Alexandrov et al., 2013). His
finding identified CD4 + CAR T cells as a highly potent and
clinically important T cell subset for effective CAR therapy.
This may probably explain why the HX-1 had the better
prognosis. Moreover, recent research indicated that mast cells
(MCs) upon activation by glioma cells produce soluble factors
including IL-6, which are documented to be involved in cancer-
related activities and promoted glioma cell differentiation and
growth (Wang et al., 2018). It was also figured out that MCs
exert their effect via inactivation of STAT3 through GSK3β

downregulation. This could probably explain why the HX-2
cluster had the shorter OS.

We further analyzed the negatively regulative biomarkers
which may distinguish the OS of HX-2 from HX-1, and we
identified 3 methylation variable positions [cg16957313(DUSP1),
cg17783509(PHOX2B), cg23432345(HOXA7)] and 15 genes
(PCDH1, CYP27B1, LPIN3, GPR32, BCL6, OR4Q3, MAGI3,
SKIV2L, PCSK5, AKAP12, UBE3B, MAP4, TP53BP1, F5,
RHOBTB1) that may induce poor overall survival for HX-2.
Some of these genes have been reported to be associated with
the malignant behavior of glioblastoma. For example, studies
have shown that BCL6 is essential for the survival of GBM cells
(Attarha et al., 2017), the overexpression of BCL6 is associated
with poor prognosis for glioma patients, BCL6 gene could
inhibits the expression of wild-type p53 and its target genes in
GBM cells. In gliomas, the expression levels of MAGI3 and PTEN
were reported significantly down-regulated, and for glioma C6
cell line, overexpressed MAGI3 will inhibits Akt phosphorylation,
and inhibits cell proliferation (Xu et al., 2017). We also identified
some novel genes which are still not been reported, such as
PCDH1, LPIN3, GPR32, SKIV2L, PCSK5.

In this study, we used a comprehensive bioinformatics
method to integrate 4 platform data of glioblastoma, and
further identified two novel subtypes of glioblastoma which
could be characterized by the cluster of 3 methylation
variable position and 15 gene mutation, the multi-omic
signatures for the prognosis of glioblastoma developed by
us were also be validate in CGGA independent dataset. We
hope that our research could provide potential stratification

marker for clinical outcome and new theoretical basis
for glioblastoma.

MATERIALS AND METHODS

TCGA Data Acquisition
The TCGAbiolinks R package was used to help us obtain patients
data from the National Institutes of Health (NIH), Genomic
Data Commons database (GDC)3 (Holdhoff, 2018). Briefly, we
get 577 SNP6 Copy Number segment GBM samples data and
411 samples methylation microarrays data from the website http:
//firebrowse.org/, and we also downloaded 154 GBM samples
mRNA expression data from https://portal.gdc.cancer.gov/. After
filtrate these data and link sample information, there are 117
sample contained multi-omics data, which means all the filtered
samples contained gene mutation data, CNV data, methylation
data and mRNA expression data. Our subsequent analysis was
based on these data. The fusion gene result subsequently used
was acquired from TUMOR FUSION GENE DATA PORTAL
database4.

Single Nucleotide Polymorphism (SNP)
Analysis
MutSigCV module in GenePattern was used to analysis the driver
gene in GBM5 (Ma et al., 2015). There are strong correlations
between somatic mutation frequencies in cancers and both gene
expression level and replication time of a DNA region during
the cell cycle, MutsigCV analysis could substantially reduce the
number of false positives, especially when applied to tumor
samples that have high mutation rates.

We use the maftools R package6 (Lawrence et al., 2013)
and SomaticSignatures7 (Mayakonda et al., 2018) to conduct
mutation analysis and plot the mutation spectrum and
characteristics.

Copy Number Variation Analysis
GISTIC module in GenePattern was also used to extract the
landmark CNV events in GBM, the parameters in GISTIC
algorithm were set as follows: Q-value < 0.05 as statistics
significance, confidence levels were set as 95% to confirm
peak region. Chromosome arm length was set as 0.98 when
analyzed the chromosome arm mutation. Tumor purity and
ploidy character were analyzed by the R package R ABSOLUTE8.

Subtype Identification of Glioblastoma
Unsupervised clustering was proceeded based on the three
different platforms (SNP, DNA methylation, and mRNA
expression profile) and molecules associated of overall survival,
the we conduct the clustering again based on a method called

3https://gdc.cancer.gov/
4https://tumorfusions.org/PanCanFusV2/
5https://cloud.genepattern.org/gp/pages/index.jsf
6https://bioconductor.org/packages/release/bioc/html/maftools.html
7https://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
8https://software.broadinstitute.org/cancer/cga/absolute_download

Frontiers in Genetics | www.frontiersin.org 7 November 2020 | Volume 11 | Article 56534129

http://firebrowse.org/
http://firebrowse.org/
https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/
https://tumorfusions.org/PanCanFusV2/
https://cloud.genepattern.org/gp/pages/index.jsf
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
https://software.broadinstitute.org/cancer/cga/absolute_download
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-565341 November 20, 2020 Time: 22:40 # 8

Yuan et al. Multi-Omics Analysis for Glioblastoma

cluster of clusters analysis (CoCA) (Hoadley et al., 2014;
Gehring et al., 2015). Briefly, Subtype calls from each of the
4 platforms analyzed for subtypes within each data type were
used to identify relationships between the different classifications.
Subtypes defined from each platform were coded into a series
of indicator variables for each subtype. The matrix of 1 and 0s
was used in ConsensusClusterPlus R package (Gehring et al.,
2015) to identify structure and relationship of the samples.
Parameters for Consensus cluster were 80% sample resampling
with 1000 iterations of hierarchical clustering based on a Pearson
correlation distance metric. and ultimately, we acquired the two
subtypes result from glioblastoma that integrated the data of
different platforms. We named these two subtypes as subtype
HX-1 and subtype HX-2.

Characteristic Analysis of Subtypes
Chi-square test was used to the characteristic analysis of GBM
subtypes, including survival state and progression of disease.

R package limma9 (Smaglo et al., 2015) was conduct to screen
the valuable biomarkers within the subgroups, we tried to filter
the difference expressed (DE) mRNA and methylation variable
positions (MVPs), and finally proceed KEEG and GO analysis for
those DE mRNA and MVPs.

We also utilized the maftools to map the gene mutation
characteristic in GBM subtypes, including C>T, T>C, C>A,
T>G, C>G, T>A, Ti(transition) and TV (transversion).
Moreover, mutation signature analysis and APOBEC enrichment
analysis (apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like) were also conduct between the subtypes.

Infiltrated Immune Cells Estimate
Tumor immune cell infiltration refers to the migration of
immune cells from the blood to the tumor tissue and begins
to exert its effects. The infiltration of immune cells in tumor
directly affects the overall survival in GBM patients. Thus,
to quantify the proportion of immune cells in the enrolled
samples, we used CIBERSORT algorithm (Ritchie et al., 2015;
Chen et al., 2018; Zhang L. et al., 2019) and LM22 algorithm
(Charoentong et al., 2017), and calculated the percentage of
9 https://bioconductor.org/packages/release/bioc/html/limma.html

22 types of human immune cells in GBM, concluding the B cells,
T cells, natural killer cells, macrophages and dendritic cells.
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Purpose: Establish a suitable machine learning model to identify its primary lesions for
primary metastatic tumors in an integrated learning approach, making it more accurate
to improve primary lesions’ diagnostic efficiency.

Methods: After deleting the features whose expression level is lower than the threshold,
we use two methods to perform feature selection and use XGBoost for classification.
After the optimal model is selected through 10-fold cross-validation, it is verified on an
independent test set.

Results: Selecting features with around 800 genes for training, the R2-score of a 10-fold
CV of training data can reach 96.38%, and the R2-score of test data can reach 83.3%.

Conclusion: These findings suggest that by combining tumor data with machine
learning methods, each cancer has its corresponding classification accuracy, which can
be used to predict primary metastatic tumors’ location. The machine-learning-based
method can be used as an orthogonal diagnostic method to judge the machine learning
model processing and clinical actual pathological conditions.

Keywords: tumor tissue-of-origin, gene expression, XGBoost, feature selection, CUP

INTRODUCTION

Metastatic cancer is a metastatic malignant tumor that has been confirmed by biopsy, but the
primary site cannot be found. The cancer cells from the primary site are brought into other organs
by invading the lymph, blood, or other means (Pavlidis and Pentheroudakis, 2012). The cause of
the tumor is that the focus is small, the position is hidden, or the site of the disease is in the lower
part of the mucous membrane and the like, the focus is not easy to find, and the biological behavior
of the tumor is worse, leading to the early metastasis of the tumor (Smith et al., 1967).

It is particularly important to find the primary focus in the clinical stage of cancer treatment.
Only by finding the primary focus can the clinical cure rate of the patient be improved. Because the
biological features often vary with the type of tumor tissue, we can make a pathological diagnosis
based on the existing biological knowledge and established pathological methods. Due to the
limited tissue and diagnostic staining of tumors and the influence of doctors’ professional level,
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there are still some loopholes and shortcomings in the thorough
search at this stage (Medeiros et al., 2010; Eti et al., 2012;
Angela et al., 2017).

The transfer of cancer means that the tumor cells are taken to
it from the primary site into the lymphatic vessel, the blood vessel,
or other means to continue to grow to form the same type of
tumor as the primary site. Common methods of transfer include
lymphatic metastasis, vascular metastasis, and the like. About
50% of the lung cancer will have multiple bone metastasis sites,
28–33% of the liver metastasis, and 17–20% of the transfer of the
kidney and the epinephrine. The auxiliary imaging examination
is usually diagnosed by a biochemical indicator. In the liver
metastases, the biochemical biopsy of the liver micro metastases
may cause confusion due to the stability of the biochemical
indicators; and in the imaging ultrasound examination, the
lesions of 1–2 cm could be detected in random tests. The error
of uncertain factors in a practical application will accumulate and
magnify, resulting in diagnostic confusion.

We aim to establish an automatic processing method to solve
this problem. We selected data from gene expression profiles. By
analyzing and processing the existing data, a relatively suitable
machine learning model is obtained (Fei et al., 2020), and
the efficiency of diagnosis of primary lesions can be improved
to be more accurate. Different tumorous types have distinct
expression profiles on specific genes, and the difference could be
captured by the machine learning models and used to classify the
primary lesions.

In essence, machine learning trains computers to simulate or
realize human learning behavior to acquire new knowledge and
skills and reorganize the existing knowledge structure to improve
its own performance continuously. The application of medical
treatment is also a process of comprehensive doctor diagnosis
experience to treat patients. Many machine learning algorithms
have been developed for classification problems. It can judge the
unknown information by learning from the known information.
By studying the existing tumor samples’ features, the computer
has a certain decision-making ability to judge and evaluate the
unknown cancer pathology directly.

XGBoost based on tree boosting is a scalable end-to-
end tree boosting system, which was first proposed by Chen
and Guestrin (2016). This system is an open-source system
available at https://github.com/dmlc/xgboost and is widely used
in bioinformatics. Mendik et al. (2018) use XGBoost for analyzing
protein translocation between cellular organelles; Li et al. (2019)
use XGBoost for predicting gene expression values; Danciu et al.
(2020) use XGBoost for predicting early-stage prostate cancer in
veterans. We describe the algorithm mechanism in detail in the
methods section.

MATERIALS AND METHODS

Data Preparation
Training Set and Oversampling
Data of 5,759 samples, each containing 20,501 gene
characteristics, were downloaded from TCGA. After extracting
effective information, we normalized the gene expression

by the sum of all the sample gene expressions. We use
oversampling with stable results to solve the problem of data
imbalance, then we select and train the optimal model 10-fold
cross-validation on TCGA data.

Test Set
We conduct retrospective testing on a GEO test set containing
42 samples covering five cancers. The trained model predicts the
test data, and the results were compared with the true labels of
the samples. The specific number of samples per cancer is shown
in Table 1.

Feature Selection Method
In the training set and the independent verification set, a part of
the gene expression level was very low. We set the expression level
threshold value as 0.00005, 0.00001, and 0.000001, respectively,
for screening. After the intersection of the training set’s gene
characteristics and the independent verification set, the following
feature selection was conducted.

We choose the Chi-Square test and Random Forest in the
filtering method for feature selection. The Chi-Square calculates
the correlation of qualitative independent variables to qualitative
dependent variables. First, we take each gene as an independent
hypothesis and then calculate the degree of deviation D between

TABLE 1 | Data size and proportion.

Training data from TCGA

Cancer type Amount Percent

BRCA 1,056 0.13687622

KIRC 526 0.06817887

UCEC 516 0.0668827

THCA 500 0.06480881

LUAD 486 0.06299417

HNSC 480 0.06221646

COAD 451 0.05845755

LGG 439 0.05690214

STAD 415 0.05379132

PRAD 379 0.04912508

BLCA 301 0.03901491

LIHC 294 0.03810758

OV 261 0.0338302

CESC 258 0.03344135

KIRP 222 0.02877511

LAML 173 0.02242385

GBM 153 0.0198315

READ 153 0.0198315

PAAD 142 0.0184057

SKCM 80 0.01036941

Unknown 430 0.05573558

Testing data from GEO

BRCA 13 0.27659574

COADREAD 2 0.04255319

LIHC 5 0.10638298

LUAD 15 0.31914894

OV 12 0.25531915
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TABLE 2 | Parameters of model evaluation and parameters in the results.

R2 score 1-MSE(ŷ,y)/Var(y)

Precision TP /(TP+FP)

Recall rate TP /(TP+FN)

F1score ·(Precision· Recall)/(Precision+Recall)

Relevant No relevant

Retrieved True positives
(TP)

False positives
(FP)

Not
retrieved

False negatives
(FN)

True negatives
(TN)

Precision TP / (TP + FP)
Recall rate
TP / (TP + FN) F-Score=(1+β 2)· (Precision· Recall)/(β 2

· Precision+Recall)

the observed value and the theoretical value. If the deviation is
small enough, accept the null hypothesis; otherwise, reject the
null hypothesis, and accept the alternative hypothesis. Therefore,
the larger the deviation value D, the greater the deviation from the
original hypothesis. That is, the more relevant it is, the better the
selection process becomes at calculating the deviation value D of
each gene and the type of cancer, and to order them from large to
small, and to take the first k genes.

The application of random forest in feature selection needs
to calculate the feature importance. The specific steps are
as follows: First, we calculate each feature’s importance and
sort it in descending order. After that, we determine the
proportion to be eliminated and get a new feature set by
eliminating the corresponding proportion of features according
to their importance. Repeat the process with the new feature
set until there are m features left, which is the preset value.
Finally, we select the feature set with the lowest out-of-
bag error rate according to each feature set obtained in the
above process and the corresponding out-of-bag error rate of
the feature set.

Training Method
XGBoost is based on gradient tree boosting. Unlike traditional
trees, which only do the first-order Taylor expansion, XGBoost
performs the second-order Taylor expansion, which realizes the
parallel computation (Li et al., 2019). It can use the combination
of weak learners to create a single strong learner to reach a fast
execution speed and a good model performance. Its main idea
is to continuously add a tree and continuously perform feature
splitting to grow a tree. Each time a tree is added, it is learning a
new function to fit the last prediction residuals. If we get k-trees
after training, we need to predict the score of a sample. In fact,
according to the characteristics of this sample, each tree will fall

FIGURE 1 | (a) The training set was downloaded from TCGA, which obtains 5,759 samples, each containing 20,501 gene characteristics on 21 cancers. (b) The test
set was downloaded from GEO, which obtains 42 samples, each containing 19,584 gene characteristics on five cancers. (c) The characteristic intersection of
training data and test data deletes the features whose expression is lower than the threshold. (d) We normalize the gene expression by the sum of all the gene
expressions in each sample. (e) Model selection by the result of 10-fold cross-validation. (f) We oversample the train set, and then we have data for 854 samples of
each tumor. (j) We train the model on the overall training set, with optimal features and an optimal model. (k) We test the model and output the result included
precision, recall rate, F1-score, and R2-score of each cancer. (l) We do an enrichment analysis of the top 800 genes with KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO (Gene Ontology) by metascape, and explain the top 16 genes from feature selection, which include biological function.
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TABLE 3 | 10-fold CV results of variety with the number of features in Chi-Square
and Random Forest.

Feature
number

10-fold CV result of using the
Chi-Square in feature selection

10-fold CV result of using
Random Forest in feature

selection

100 0.929750576 0.936357298

200 0.947377573 0.951911924

300 0.957487752 0.956577824

400 0.956709878 0.961505816

500 0.960339005 0.960726262

600 0.961894081 0.960854956

700 0.961894081 0.962541414

800 0.961890889 0.963838431

900 0.962538726 0.963707385

1,000 0.962278986 0.963448150

The bold values in each column are the optimal results for this method.

to a corresponding leaf node, and each leaf node corresponds to
a score. It is necessary to add up the scores corresponding to each
tree to be the predicted value of the sample. Chen and Guestrin
(2016) descript the mathematical formula of gradient tree boost
and XGBoost with scientific rigor. And Li et al. (2019) described
the parameters of XGBoost.

We fine-tuned three hyperparameters within the 10-fold
cross-validation. The parameter “n estimators” is the number
of trees to be used in the forest. The parameter “max depth”
is the deepest depth of all trees. The parameter “min child

weight parameter” in XGBoost is the minimum sum of instance
weight (hessian) needed in a child. If the tree partition step
results in a leaf node with the sum of instances weighing less
than the min child weight, the building process will give up
further partitioning. This parameter is used to avoid overfitting.
When its value is large, the model can be prevented from
learning from outliers. But if this value is too high, it will
cause under-fitting. The max depth is also used to avoid
overfitting. The greater the max depth, the more outliers the
model will learn.

Parameters of Model Evaluation and
Parameters in the Results
Use the R2 score as an indicator of the evaluation model. At
the same time, the test results are output, which included the
R2 score, precision, recall rate, and the F1 score of each cancer
calculation result shown in Table 2.

The predicted value is ŷ and the true value is y. R2 score the
problem that MSE (Mean Absolute Error), RMSE (Root Mean
Squared Error), and MAE (Mean Absolute Error) cannot solve
when dimensions are different, and it is difficult to measure the
effectiveness of the model. R2 score = 1, reaches the maximum
value, and then MSE as the molecule is 0, which means that
the predicted value and the true value in the sample are the
same, without any error. In other words, the model that has
been established perfectly fits all the real data, which is the
model with the best effect and where the R2 score value reaches
the maximum. The model is usually not so perfect; there are

FIGURE 2 | The results of variety with the number of features in different methods.
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A B

C D

FIGURE 3 | (A–C) shows 21 cancers’ ROC curve of the optimal 10-fold CV’s results. (D) shows the average ROC curve.

always errors; when the error is small, the numerator is less
than the denominator; when the model tends to 1, it is still
a good model. Precision is defined as (true-positives)/(true
positives + false- positives). Recall rate is defined as (true-
positives)/(true-positives + false-negatives), which intuitively
represents the classifier’s ability to identify all positive cases
correctly. F1 score is the harmonic mean of precision and recall.
Precision and Recall do not have much of a relationship with
the formula, but they are mutually restricted in practice. We
all hope that the model is accurate, and the recall rate is high,
but when the precision rate is high, the recall rate is often low.
When β = 1, it becomes the F1-score, in which case both recall,
and accuracy are important and have the same weight. In some
cases, if we think accuracy is more important, we adjust the
β value to be less than 1, and if we think the recall is more
important, we adjust the β value to be greater than 1, such
as the F2-score.

We determined the data list as the first 800 genes from the
feature selection list. We used software: Cytoscape and metascape
for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of
Gene and Genomes) Enrichment Analysis.

RESULTS

Genes Selected by Random Forest Were
More Informative Than Chi-Square
We used 10-fold cross-validation in the training set to
evaluate the performance of the feature selection methods.

TABLE 4 | The model test result (precision, recall, F1-score, and R2-score) on 9
cancers on the GEO dataset.

Abbreviation Precision Recall F1-score R2-score Support

BRCA 1 0.75 0.86 0.75 12

COADREAD 1 1 1 1 1

LIHC 1 1 1 1 5

LUAD 0.85 0.92 0.88 0.92 12

OV 1 0.82 0.9 0.82 11

Avg/total 0.93 0.83 0.87 0.83 42

With leave-one-out cross-validation, the algorithm is repeatedly
retrained, which included oversampling, feature selection, and
classification model, leaving out one sample in each round and
testing each sample on a classifier that was trained without
this sample. The framework of the 10-fold CV is shown in
Figure 1.

The results are shown in Table 3. The average R2-score of
10-fold cross-validation of the two feature selection methods is
very high. The average R2-score was 96.23 and 96.38% (95%
confidence interval) for the chi-square test as feature selection
and random forest as feature selection. Although these two
results are very close, the R2-score of Random Forest is slightly
higher than the Chi-Square within the same feature number
range, and the Rise of R2-score of random forest is more
stable, as shown in Figure 2. Considering all the results of the
average R2-score, the Random Forest is used for feature selection
in the next flow.
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A B

FIGURE 4 | (A) The model test result (R2-score) on five cancers on GEO. (B) The confusion matrix on testing data. Our trainer contained 21 cancer tags, but only
five cancers in the test set. There was a partial error in the classifier’s prediction outside of the five cancers.

TABLE 5 | The basic information of top 16 genes on feature selection.

Mark rank Gene symbol Gene name RefSeq DNA sequence UniProtKB/Swiss-Prot

1 AFAP1L2 Actin filament associated protein 1 like 2 NC_000010.11 Q8N4 × 5-AF1L2_HUMAN

2 CREB3L4 CAMP responsive element binding protein 3 like 4 NC_000001.11 Q8TEY5-CR3L4_HUMAN

3 HOXB13 Homeobox B13 NC_000017.11 Q92826-HXB13_HUMAN

4 KLK3 Kallikrein related peptidase 3 NC_000019.10 P07288-KLK3_HUMAN

5 PLCB2 Phospholipase C beta 2 NC_000015.10 Q00722-PLCB2_HUMAN

6 RC3H1 Ring finger and CCCH-type domains 1 NC_000001.11 Q5TC82-RC3H1_HUMAN

7 TMEM176A Transmembrane protein 176A NC_000007.14 Q96HP8-T176A_HUMAN

8 TMPRSS2 Transmembrane serine protease 2 NC_000021.9 O15393-TMPS2_HUMAN

9 WT1 WT1 transcription factor NC_000011.10 P19544-WT1_HUMAN

10 CCL16 C-C motif chemokine ligand 16 NC_000017.11 NT_187614.1 O15467-CCL16_HUMAN

11 CDH17 Cadherin 17 NC_000008.11 Q12864-CAD17_HUMAN

12 H3F3C Histone variant H3.5 NC_000012.12 Q6NXT2-H3C_HUMAN

13 HNF1A HNF1 homeobox A NC_000012.12 P20823-HNF1A_HUMAN

14 KLK2 Kallikrein related peptidase 2 NC_000019.10 P20151-KLK2_HUMAN

15 SLC45A3 Solute carrier family 45 member 3 NC_000001.11 Q96JT2-S45A3_HUMAN

16 STEAP2 STEAP2 metalloreductase NC_000007.14 Q8NFT2-STEA2_HUMAN

A B

FIGURE 5 | Heatmap representing the expressions of 16 genes for each cancer sample in the training set and test set, averaged, and then logarithmic. Cool colors
represent a higher expression level, and warm colors a lower expression level. (A,B) Represent the expression levels of 16 genes in the training set and the test set
respectively.
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FIGURE 6 | KEGG enrichment analysis of the 800 selected genes.

FIGURE 7 | GO enrichment analysis of the 800 selected genes.

The XGBoost Algorithm Showed Good
Generalization Performance on the
GEO Dataset
We selected 800 genes with Random Forest characteristics,
using XGBoost as a classifier. Taking the R2-score as the model
evaluation index, 10-fold CV was carried out in the training data,
and finally, the parameters, n estimators = 250, max depth = 7,
min child weight = 1, in the optimal model of XGBoost were
obtained. The results of this model in leaving out one data are
shown in Figure 2.

For each sample, the type of tumor predicted was compared
with the type diagnosed. When the predicted tumor type
matches the reference diagnosis, it is a true positive. When
the predicted tumor type does not match the diagnosis, the
sample is considered a false-positive. For each cancer, sensitivity
was defined as the ratio of true positive results to the total
positive samples analyzed, and specificity was defined as the ratio
of (1- false positive) to (total test results - total positive). To
better measure the classification results, we took sensitivity and
specificity as the horizontal axis and the vertical axis, respectively,

and drew the ROC (Receiver Operating Characteristic) curve to
the results as shown in Figure 3.

The model was trained according to N estimators = 250, Max
depth = 7, and min child weight = 1 in the whole training data for
independent testing. The R2-score average of independent testing
results is 83.3%, which obtained 42 samples cover five cancers.
The trainer had good generalization for COADREAD (Colon
Adenocarcinoma and Rectum Adenocarcinoma), LIHC (Liver
Hepatocellular Carcinoma), LUAD (Lung Adenocarcinoma),
and OV (Ovarian Serous Cystadenocarcinoma), and the R2-
score respectively was 1, 1, 0.92 and 0.82, shown in Table 4
and Figure 4A. For BRCA (Breast Invasive Carcinoma), we
can see from Figure 4B that it is often incorrectly predicted
for CESC (Csquamous Cell Carcinoma and Endocervical
Adenocarcinoma) and LUAD.

Top 16 Genes on Feature Selection
We often use molecular experiments to distinguish the origin
of metastatic cancer. Our supporting results combined with the
literature review found that the accuracy of cancer classification

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 12 | Article 63276138

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-632761 January 28, 2021 Time: 18:13 # 8

Chen et al. Infer the Primary Lesion

FIGURE 8 | Protein-protein interaction network. The MCODE algorithm was then applied to this network to identify neighborhoods where proteins are densely
connected. Each MCODE network is assigned a unique color. The GO enrichment analysis was applied to each MCODE network to assign “meanings” to the
network component.

was low for fixed cancer types, which was similar to other data
methods. We selected 16 genes, shown in Table 5, with high
expression levels, to analyze the potential relationship between
these genes and cancer. The heat maps of the expressions of 16
genes in the training set and the test set are shown in Figure 5.

Genes control protein expression. A gene contains introns and
exons, in which the coding region of the protein is encoded. Gene
coding of a protein is a DNA-mRNA- protein process. The genes
we analyzed are all protein-coding genes.

WT1 is a tumor suppressor gene associated with the
development of a Wilms’ Tumor, for which it was named. This
gene encodes a transcription factor that contains four zinc-
finger motifs at the C-terminus and a proline/glutamine-rich
DNA-binding domain at the N-terminus. CCL16 is one of
several cytokine genes clustered on the q-arm of chromosome
17. Cytokines are a family of secreted proteins involved in
immunoregulatory and inflammatory processes. The CC
cytokines are proteins characterized by two adjacent cysteines.
The cytokine encoded by this gene displays chemotactic activity
for lymphocytes and monocytes but not for neutrophils. This
cytokine also shows a potent myelosuppressive activity and
suppresses the proliferation of myeloid progenitor cells. The
expression of this gene is upregulated by IL-10. The CDH17
gene is a member of the cadherin superfamily, genes encoding
calcium-dependent, membrane-associated glycoproteins.
Diseases associated with CDH17 include Metanephric Adenoma
and Cleft Lip/Palate-Ectodermal Dysplasia Syndrome, which is
provided by RefSeq et al. Histones are basic nuclear proteins that
are responsible for the nucleosome structure of the chromosomal
fiber in eukaryotes. Nucleosomes consist of approximately 146 bp
of DNA wrapped around a histone octamer composed of pairs of

each of the four core histones (H2A, H2B, H3, and H4). Among
its related pathways are Transcriptional misregulation in cancer
and Activated PKN1, which stimulates transcription of AR
(androgen receptor) regulated genes KLK2 and KLK3. HNF1A
encodes a transcription factor required for the expression of
several liver-specific genes. Diseases associated with HNF1A
include Maturity-Onset Diabetes of the Young, Type 3 and
Diabetes Mellitus, and Insulin-Dependent 20.

Enrichment Analysis
To better understand why those genes could tell the origin of the
primary lesion, we performed the enrichment analysis using the
800 selected genes. The results of KEGG (Kyoto Encyclopedia
of Gene and Genomes) (Figure 6) and GO (Gene Ontology)
(Figure 7) are shown in Figures 8, 9.

The 800 selected genes were significantly enriched in
some cancer-related pathways. Cell adhesion molecules (CAM)
(Okegawa et al., 2004) played important roles in invasive and
metastasis and cancer progression. Loss of the tumor cells’
intercellular adhesion might result in cells escaping from the
primary lesion and metastasizing. CAM is also involved in
various functions such as cell growth, differentiation, site-
specific gene expression, and morphogenesis, which could
explain why the different tissues have different expression profiles
among those genes.

The 800 genes were also significantly enriched in some
organ-specific pathways. The selected genes were representative
in thyroid hormone synthesis, pancreatic secretion, and fat
digestion—absorption pathways. Since those pathways were
organ-specific, we could show that the random forest algorithm
found the differentially expressed genes among different organs.
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FIGURE 9 | PPI MCODE components.

DISCUSSION

Nowadays, CUP cases are characterized by small primary tumors
(difficult to be detected by existing technologies) (Hainsworth
and Greco, 2018), primary tumors being eliminated by the
body’s autoimmune system, and primary tumors being excised
during surgery (without histological examination), which makes
it difficult to find the primary tumors, leading to generally poor
prognosis of patients treated with chemotherapy. Our study
hopes to help doctors clinically identify the primary of CUP
and to use more effective targeted therapies for CUP patients
according to these identification results.

In this paper, we show that our result is better than in
recent studies. Our average R2-score of the classification based
on XGBoost can reach 96.38%, while the average accuracy of
the support vector machine (SVM) classifier is 82–89% (Tothill

et al., 2005; Ma et al., 2006). We train a classifier, selected feature
by random forests, classified by XGBoost, on data containing
7,715 samples and 19,854 genes from TCGA, and test it on data
including 42 samples and five cancers. Currently, the prediction
for CUP cancer is between 80%–95% (Sarah, 2010; Greco et al.,
2012; Meiri et al., 2012; Conway et al., 2019), and this data
fluctuation is related to the different evaluation indicators and
sample types of each model. In the test R2-score of 83.3% in
particular, our classifier was relatively accurate in predicting
LIHC (liver hepatocellular carcinoma) which is, LUAD (lung
adenocarcinoma), OV (ovarian serous cystadenocarcinoma).

Although we have made progress in these studies, there are
also limitations. Our test data are collected from 8 series, and
there was some detection method between each series. This may
be due to the fact that our test results are not as high as the
cross-validation results.
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Further studies could be done in several main aspects. First,
the SNP (single nucleotide polymorphism) or methylation data
may be combined with expression profiles to further improve
the prediction utilities to infer primary lesions for metastatic
tumors. Second, the eQTL (expression Quantitative Trait
Loci), which supplies us with new insights between expression
profile and mutation profile, might also help determine the
primary lesions.

CONCLUSION

These findings suggest that by combining multiple tumor
data with machine learning methods, each cancer has its
corresponding classification accuracy, which can be used to
predict primary metastatic tumors’ location. At the same time,
it can also be used as an orthogonal diagnostic method to
utilize the machine learning model processing for auxiliary
diagnosis methods.
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Aiming at the limitation of the convolution kernel with a fixed receptive field and unknown

prior to optimal network width in U-Net, multi-scale U-Net (MSU-Net) is proposed by us

for medical image segmentation. First, multiple convolution sequence is used to extract

more semantic features from the images. Second, the convolution kernel with different

receptive fields is used to make features more diverse. The problem of unknown network

width is alleviated by efficient integration of convolution kernel with different receptive

fields. In addition, the multi-scale block is extended to other variants of the original U-Net

to verify its universality. Five different medical image segmentation datasets are used

to evaluate MSU-Net. A variety of imaging modalities are included in these datasets,

such as electron microscopy, dermoscope, ultrasound, etc. Intersection over Union (IoU)

of MSU-Net on each dataset are 0.771, 0.867, 0.708, 0.900, and 0.702, respectively.

Experimental results show that MSU-Net achieves the best performance on different

datasets. Our implementation is available at https://github.com/CN-zdy/MSU_Net.

Keywords: multi-scale block, U-net, medical image segmentation, convolution kernel, receptive field

1. INTRODUCTION

Medical imaging analysis has made a significant breakthrough with the rapid progress of deep
learning (Long et al., 2015; Chen et al., 2018a; Salehi et al., 2018; Wang et al., 2019b). Among these
techniques, encoder-decoder architecture has been widely used in the medical image segmentation
task (Salehi et al., 2017; Xiao et al., 2018; Guan et al., 2019). U-Net (Ronneberger et al., 2015) is
the most classic encoder-decoder structure for medical image segmentation. In recent years, the
original U-Net has been modified by many researchers. As a result, many variants of the original
U-Net have been proposed (Poudel et al., 2016; Oktay et al., 2018; Roth et al., 2018).

However, the variants of the original U-Net come with two limitations. First, the diversity of
features is lost due to the fixed receptive field of the convolution kernel. The same scale featuremaps
extracted from the convolution kernel with different receptive fields are semantically different.
As a result, the performance of the network may vary with the size of the receptive field, and
the performance depends on the size of the receptive field in the convolution kernel. Redundant
features will be extracted when the receptive field of the convolution kernel is too small. Smaller
targets are ignored when the receptive field of the convolution kernel is too large. For example, in
the pulmonary lesion or multi-organ segmentation task, the edge detail of the smaller lesion/organ
is not fine by the large receptor field and the structure of the lesion/organ is not obvious by the
small receptor field. Therefore, it is very important to use the convolution kernel with different
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receptive fields to process the image (Luo et al., 2016; Peng et al.,
2017; Shen et al., 2019). In the natural image processing task,
satisfactory results are obtained by combining the convolution
of different receptive fields (Seif and Androutsos, 2018). To
the best of our knowledge, there are few reports based
on different receptive fields in medical image segmentation
tasks. Second, some information may be lost using a single
convolutional sequence to extract features at each scale. More
feature information can be obtained by multiple convolutional
sequences. The loss of feature information can be reduced by
the structure of multiple convolutional sequences in the process
of down-sampling and up-sampling. Therefore, the learning
capacity of the network is aided by multiple convolutional
sequences (He et al., 2015).

In this paper, a new image segmentation architecture (multi-
scale U-Net) is proposed by us to overcome the above limitations.
This architecture is a generalization segmentation architecture.
Multi-scale U-Net (MSU-Net) consists of blocks of multi-scale
whose multi-scale blocks are composed of convolution sequences
with different receptive fields. The multi-scale block introduced
in MSU-Net achieves the following advantages. First, more
feature information can be obtained because of the multiple
convolutional sequences structure embedded in the network.
The input of the convolution sequence is all the same, while
their convolution kernel is not shared. This design not only
improves the performance of segmentation but also facilitates
the learning of network in the training process. Second, the
features extracted from the multi-scale block are diversified. This
is caused by the multiple convolution sequences with different
receptive fields in multi-scale block. This is helpful for intensive
forecasting tasks that require detailed spatial information. The
semantics extracted from the convolution sequence with different
receptive fields are different on the same scale feature map.
This structure enables the encoder of the network to extract
features better and the decoder to restore features better. We
construct different types of multi-scale blocks with several
commonly used convolution kernels. An extensive evaluation
of different types of multi-scale blocks is performed on three
segmentation datasets. Our results demonstrate that MSU-Net
built by integrated multiple convolution sequences with different
receptive fields enables significant improvement of semantic
segmentation. Compared with the traditional U-Net architecture,
the main improvement of MSU-Net is the integration of
multiple convolution sequences with different sizes of receptive
fields. This improvement enables the object features to become
more conspicuous with forward propagation. In addition, the
proposed multi-scale block can be easily integrated into other
network structures.

In summary, the main contributions of this paper are
summarized as follows:

(1) Multi-scale blocks are proposed by us based on several
commonly used convolution kernel. More diverse feature
information and better feature maps are captured from the
images through multi-scale block.

(2) MSU-Net, a new segmentation architecture for medical
image, is proposed for medical image segmentation. This is an
improvement on the basic structure of U-Net. Compared to the

existing algorithms, the proposed method has a stronger ability
to overcome the problems of class-imbalance and overwhelmed.

(3) Different receptive fields are crucial for dense prediction
tasks requiring detailed spatial information. It can stimulates
learning capacity of network and make the network more robust.
Experimental results demonstrate that the proposed method
is outperforms the state-of-the-art methods in medical image
segmentation task under different imaging modalities.

2. RELATED WORKS

With the development of convolutional neural network (CNN) in
the field of natural image processing and medical image analysis,
automatic feature learning algorithm using deep learning has
become a feasible method for biomedical image segmentation (Le
et al., 2019, 2020; Sua et al., 2020). Segmentation method based
on deep learning is a learning method with pixel-classification,
which is different from the traditional pixel or superpixel
classification method (Abramoff et al., 2007; Kitrungrotsakul
et al., 2015; Tian et al., 2015) using hand-made features. The
limitations of hand-made features are overcome when deep
learning approaches are used to learn features. The limitations
of hand-made features are overcome when deep learning
approaches are used to learn features. Early deep learning
methods for medical image segmentation are mostly based
on patch. The strategy based on plaque and sliding window
was proposed by Ciresan et al. (2012) to segment neuronal
membranes from microscopic images. Kamnitsas et al. (2017)
adopted a multi-scale 3D CNN architecture with fully connected
conditional random field (CRF) to enhance patch based brain
leasion segmentation. Pereira et al. (2016) proposed an automatic
segmentation method based on CNN to segment brain tumors.
Obviously, two main drawbacks are introduced by this solution:
the redundant computation caused by sliding window and the
global feature cannot be learned.

With the emerging of end-to-end FCN (Long et al., 2015),
Ronneberger et al. (2015) proposed U-Net for biomedical image
segmentation. U-Net has shown good performance in fields of
medical image segmentation. It has become a popular neural
network architecture for biomedical image segmentation tasks
(LaLonde and Bagci, 2018; Fan et al., 2019; Song et al., 2019).
Li et al. (2019) proposed a new dual-U-Net architecture to
solve the problem of nuclei segmentation. Milletari et al. (2016)
proposed a 3D image segmentation method based on U-Net to
perform end-to-end training on prostate MRI. Guan et al. (2019)
proposed an improved CNN structure for removing artifact
from 2D PAT images reconstructed. Many variants of U-Net has
been appeared for different medical image segmentation tasks.
In order to improve the learning ability of feature, some new
modules are proposed to replace the original modules. Seo et al.
(2019) proposed an up-sampling method based on an object
and redesigned the remaining paths and skip-connection. The
limitation of the traditional U-Net algorithm was overcome in
this way. Ge et al. (2019) proposed a k-shaped network of end-
to-end deep neural network. The network was used for multi-
view segmentation and multi-dimensional quantification of LV
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FIGURE 1 | Detailed description of MSU-Net and multi-scale block (37). Panel (A) is the architecture of MSU-Net. The overall architecture is similar to the original

U-Net. The dimensions of the network are represented by numbers on the block structure. Panel (B) is the architecture of multi-scale block (37). This module is

embedded in the original U-Net to get MSU-Net.

FIGURE 2 | The type of convolution kernel used in this article. Combining the above seven convolution kernels, different types of multi-scale blocks are proposed.

in PEAV sequences. Myronenko (2018) proposed a semantic
segmentation method for 3D brain tumor segmentation from
multimodal 3D MRIs. An asymmetric encoder was used to
extract features, and then two decoders segment the brain
tumor and reconstruct the input image, respectively. Oktay et al.
(2018) proposed AttU-Net in combination with attention gate.
Alom et al. (2018) integrated the structure of Recurrent Neural
Network (RNN) and ResNet into the original U-Net. RNN

could make the network extract better features. ResNet enables
the training of deeper networks. Liu et al. (2020) proposed a
ψ-shaped depth neural network (ψ-Net). In the deep stage,
semantic information was featured by selective aggregation. In
the shallow stage, the semantic information obtained in the deep
stage was used to improve the detailed information. Therefore,
discriminative features were obtained to provide the basis for
accurate subcortical segmentation of brain structures. In addition
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FIGURE 3 | An overview of 31 multi-scale blocks. m-s block represents the multi-scale block. Different multi-scale blocks are designed according to several

commonly used convolution kernels. More richer and diverse features can be extracted through this design. Meanwhile, the problem of unknown network width can

be alleviated by this design. Conducive to intensive prediction tasks that require detailed spatial information.

to the above achievements in medical image segmentation
based on U-Net, some researchers have also improved U-Net
to apply in general image segmentation. Zhang et al. (2018)
proposed a semantic segmentation neural network based on
residual learning and U-Net for road area extraction. Kohl et al.
(2018) proposed a generative segmentation model based on a
combination of a U-Net with a conditional variational auto-
encoder. A new Recurrent U-Net had been proposed by Wang
et al. (2019a). Thismodel not only retained the compactness of U-
Net, but also achieved a good performance improvement in some
benchmarks. TernausNet was proposed by Iglovikov and Shvets
(2018). The network replaces the encoder in U-Net with VGG11
and conducts pre-training on ImageNet. TernausNet achieved
the best results in the Kaggle Carvana Image Masking Challenge.

Although the architecture of U-Net has been widely used, the
most basic architecture has not changed. The convolution blocks
of the original U-Net network are adjusted by us to improve
the efficiency of the segmentation algorithm. The convolution
blocks are arranged in parallel to form a multiple convolution
sequence. Richer semantic information is provided by this design.
In addition, the convolution kernel of the multiple convolution
sequence is adjusted to have different receptive fields. The
convolution kernel with different receptive fields enables the
network to better extract and restore features.

3. METHOD

The proposed MSU-Net consists of major part: multi-scale block
(37), as shown in Figure 1. In the following, we first trace the
types of multi-scale block and then explain the structure of
MSU-Net and extended work of multi-scale block.

3.1. Multi-Scale Block
The multi-scale block is proposed by us, which is composed of
multiple convolution sequences with different receptive fields.
More diverse semantic information is extracted by this module

and more detailed feature maps are generated. The widely used
convolution kernel is shown in Figure 2.

The convolution kernel with different receptive fields is
matched to obtain a multi-scale block. We designed 31 kinds
of multi-scale blocks according to the above several convolution
kernels. The multi-scale block evolved from the different
convolution kernels is shown in Figure 3.

The 3× 3 convolution kernel has been used in all experiments.
The features of the input multi-scale block are processed by
the convolution kernel with different receptive fields, and then
the obtained features are output after 1 × 1 convolution.
A comprehensive ablation experiment is used to verify the
performance of different types of multi-scale blocks. In the
experiment, three datasets are used by us. The datasets are
EM, BUL, and CXR, respectively (detailed in section 4.1). The
experiments are carried out after integrated each multi-scale
block into the original U-Net. The experimental results are
illustrated in Table 1. The performance of multi-scale block (37)
is the best. The details of multi-scale block (37) are shown in
Figure 4.

x represents the characteristics of the input. x1 and x2
represent the characteristics obtained by the convolution kernel
of different sizes. F is the output result of multi-scale block. F is
computed as follows:

x1 = w32(w31x+ b31)+ b32 (1)

x2 = w72(w71x+ b71)+ b72 (2)

X = Cat[x1, x2] (3)

F = wfX + bf (4)

Feature fusion needs to be used in multi-scale block before 1X1
convolution. Therefore, different fusion methods are validated
by us (results in Table 2). MSU-Net (37+sum) uses element

Frontiers in Genetics | www.frontiersin.org 4 February 2021 | Volume 12 | Article 63993045

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Su et al. MSU-Net for Medical Image Segmentation

TABLE 1 | Ablation study on MSU-Nets of the convolution kernel with different

receptive fields.

Applications BUL EM NS

M ± SD M ± SD M ± SD

MSU-Net (13) 0.548 ± 0.076 0.871 ± 0.002 0.678 ± 0.017

MSU-Net (23) 0.610 ± 0.029 0.840 ± 0.035 0.661 ± 0.028

MSU-Net (35) 0.690 ± 0.047 0.884 ± 0.017 0.670 ± 0.036

MSU-Net (37) 0.708 ± 0.011 0.900 ± 0.001 0.702 ± 0.010

MSU-Net (39) 0.699 ± 0.016 0.895 ± 0.009 0.660 ± 0.011

MSU-Net (123) 0.547 ± 0.067 0.862 ± 0.012 0.672 ± 0.015

MSU-Net (135) 0.679 ± 0.005 0.883 ± 0.010 0.676 ± 0.021

MSU-Net (137) 0.696 ± 0.018 0.890 ± 0.015 0.684 ± 0.025

MSU-Net (139) 0.682 ± 0.037 0.880 ± 0.015 0.674 ± 0.020

MSU-Net (235) 0.673 ± 0.036 0.873 ± 0.023 0.684 ± 0.025

MSU-Net (237) 0.703 ± 0.042 0.888 ± 0.017 0.687 ± 0.019

MSU-Net (239) 0.664 ± 0.029 0.893 ± 0.011 0.672 ± 0.023

MSU-Net (357) 0.679 ± 0.018 0.888 ± 0.016 0.682 ± 0.015

MSU-Net (359) 0.693 ± 0.007 0.894 ± 0.006 0.686 ± 0.020

MSU-Net (379) 0.705 ± 0.008 0.894 ± 0.011 0.671 ± 0.023

MSU-Net (1,235) 0.652 ± 0.015 0.877 ± 0.015 0.662 ± 0.038

MSU-Net (1,237) 0.655 ± 0.008 0.886 ± 0.009 0.693 ± 0.025

MSU-Net (1,239) 0.699 ± 0.017 0.885 ± 0.014 0.687 ± 0.031

MSU-Net (1,357) 0.689 ± 0.033 0.895 ± 0.005 0.673 ± 0.023

MSU-Net (1,359) 0.700 ± 0.028 0.898 ± 0.002 0.689 ± 0.015

MSU-Net (1,379) 0.702 ± 0.025 0.898 ± 0.003 0.692 ± 0.017

MSU-Net (2,357) 0.694 ± 0.040 0.894 ± 0.004 0.687 ± 0.023

MSU-Net (2,359) 0.681 ± 0.023 0.884 ± 0.014 0.702 ± 0.018

MSU-Net (2,379) 0.694 ± 0.036 0.882 ± 0.014 0.675 ± 0.013

MSU-Net (3,579) 0.696 ± 0.338 0.893 ± 0.010 0.695 ± 0.011

MSU-Net (12,357) 0.680 ± 0.017 0.893 ± 0.005 0.696 ± 0.027

MSU-Net (12,359) 0.705 ± 0.014 0.892 ± 0.006 0.687 ± 0.040

MSU-Net (12,379) 0.667 ± 0.023 0.893 ± 0.002 0.695 ± 0.021

MSU-Net (13,579) 0.697 ± 0.032 0.899 ± 0.001 0.685 ± 0.025

MSU-Net (23,579) 0.705 ± 0.020 0.889 ± 0.014 0.697 ± 0.008

MSU-Net (123,579) 0.693 ± 0.028 0.896 ± 0.002 0.696 ± 0.017

The numbers in brackets represent the size of receptive field in MSU-Net. This is

corresponds to the different multi-scale blocks in Figure 3. Intersection over Union (IoU)

is used as the evaluation metric for comparative. Bold values represent the best results.

summation for feature fusion. MSU-Net (37) uses concatenation
for feature fusion.

The dilated convolution is introduced into the multi-scale
block after the optimal convolution kernel is obtained. The
dilated convolution used in the experiment is described in
Figure 2. Convolution kernels with different receptive fields
are concatenated to verify the effectiveness of the multiple
convolution sequence. The details are shown in Figure 5. The
experimental results are shown in Table 2.

3.2. Network Architecture
The architecture of MSU-Net is illustrated in Figure 1. MSU-
Net has a contraction path and an expansion path. The network
architecture follows encoder-decoder. In original U-Net, each
block consists of two convolutional layers. However, there is still

a drawback in this block. Due to the limitation of the receptive
field, the network does not achieve better performance in feature
extraction and feature restoration. The convolution blocks in
encoder of the original U-Net are replaced with multi-scale
blocks to obtain MSU-Net (encoder). The convolution blocks
in decoder of the original U-Net are replaced with multi-scale
blocks to obtain MSU-Net (decoder). The experimental results
are illustrated in Table 2. In MSU-Net, the multi-scale block (37)
is used to replace the all convolution block in the original U-
Net. Multi-scale block enables encoder to extract more detailed
information. Multi-scale block makes the features of decoder
restoration more complete.

3.3. Extension of Model
Residual (He et al., 2016) is expanded into our model. The
residual multi-scale block is shown in Figure 6. In addition,
multi-scale blocks are also extended to variants of U-Net.

3.3.1. Residual Multi-Scale Block

The idea of residual is introduced with multi-scale blocks to
obtain residual multi-scale block (0) and residual multi-scale
block (1). Residual multi-scale block (0) and residual multi-scale
block (1) are shown in Figures 6A,B, respectively. The original
convolution block in U-Net was replaced by residual multi-scale
block (0) and residual multi-scale block (1) to get Res MSU-Net
(0) and Res MSU-Net (1). The experimental results are described
in Table 4. In Table 4, the performance of residual multi-scale
block (0) is better than residual multi-scale block (1).

The structure of residual multi-scale block (1) is described
below. xr represents the characteristics of the input. xr1 and
xr2 represent the characteristics obtained by the convolution
kernel of different receptive fields. FR is the output result of the
multi-scale block. FR is computed as follows:

xr1 = wr32(wr31xr + br31)+ br32 (5)

xr2 = wr72(wr71xr + br71)+ br72 (6)

XR = Cat[xr , xr1, xr2] (7)

FR = wrfXR + brf (8)

Residual connection can make the forward and backward
propagation of multi-scale block smoother. In forward
propagation, the input signal can be propagated directly
from the bottom to the top. The problem of network degradation
can be alleviated. In back propagation, the error signal can be
propagated directly to the lower layer without any intermediate
weight matrix transformation. The problem of gradient
dispersion can be alleviated. In addition, the generalization
capacity of the network can be enhanced by the structure.

3.3.2. Other Structures

In addition to combining the structure with our proposed
multi-scale block, we also extend our multi-scale block on the
variants of original U-Net. The convolution blocks in AttU-
Net (Oktay et al., 2018) and U-Net++ (Zhou et al., 2020)
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FIGURE 4 | Detailed description of multi-scale block. First, two 3X3 and 7X7 convolution kernels are used to extract features. Second, the extracted features are

merged by the feature by cat. Finally, the fused features are output after dimensionality reduction by 1X1 convolution.

TABLE 2 | Ablation study for MSU-Net and its variants.

Architecture BUL EM NS

M ± SD M ± SD M ± SD

MSU-Net 0.708 ± 0.011 0.900 ± 0.001 0.702 ± 0.010

MSU-Net(37+sum) 0.694 ± 0.020 0.894 ± 0.013 0.683 ± 0.017

MSU-Net(encoder) 0.646 ± 0.061 0.889 ± 0.013 0.679 ± 0.021

MSU-Net(decoder) 0.656 ± 0.027 0.883 ± 0.018 0.661 ± 0.024

MSU-Net(37+concatenated) 0.642 ± 0.036 0.899 ± 0.004 0.674 ± 0.024

MSU-Net(73+concatenated) 0.707 ± 0.061 0.900 ± 0.001 0.667 ± 0.022

MSU-Net(37+dilated) 0.640 ± 0.033 0.877 ± 0.005 0.662 ± 0.013

MSU-Net is MSU-Net (37) in Table 1. MSU-Net (37+ sum) is an MSU-Net with feature

fusion by adding. MSU-Net (encoder) and MSU-Net (decoder) are obtained by using

multi-scale block to replace the convolution block between encoder and decoder in U-

Net. MSU-Net (73+concatenated) and MSU-Net (37+concatenated) are obtained after

concatenated the convolution kernel with different receptive fields. MSU-Net (37+dilated)

is obtained by dilated convolution. Intersection over Union (IoU) is used as the evaluation

metric for comparison. Bold values represent the best results.

are replaced with multi-scale block, namely MSAttU-Net and
MSU-Net++, respectively.

4. EXPERIMENT

4.1. Dataset
Table 3 summarizes the five biomedical image segmentation
datasets used in this study. These lesions/organs are derived
from the most common medical imaging modalities, such as
microscopy, X-ray, B-mode ultrasound, etc. The dataset was
randomly divided into six subsets. Five of six are used as
a training-validation dataset, and the remaining data as a
test dataset. Five-fold cross validation is applied by randomly
dividing training-validation into five subsets. The training
process alternates with a fixed ratio of 4:1 between the training
dataset and the validation dataset.

(1) Electron Microscopy (EM): The dataset is provided by the
EM segmentation challenge (Cardona et al., 2010), which is a
part of ISBI 2012. The dataset contains 30 images (512 × 512
pixels) from a serial section Transmission Electron Microscopy
(ssTEM) dataset of the Drosophila first instar larva ventral nerve
cord (VNC). The images has not been resized. The images size of
the input network is 512 × 512. An example of dataset is shown

in Figure 7. Each image has a completely annotated ground
truth segmentation map of the corresponding cell (white) and
membranes (black).

(2) Breast Ultrasound Lesions (BUL): The Breast Ultrasound
Dataset B (BUL) open-sourced in (Yap et al., 2017) is used in
this study. This dataset includes 163 ultrasound images of breast
lesions from different women. The image size of average is 760
× 570 pixels where each of the images presented one or more
lesions. For our experiments, the data is resampled to 128 × 128
pixels. The ground truths provided in the BUL are in the form of
binary masks of the lesions, as illustrated in Figure 7.

(3) Chest X-ray (CXR): The standard digital image database
for Tuberculosis (Candemir et al., 2013; Jaeger et al., 2013) is
created by the National Library of Medicine, Maryland, USA in
collaboration with Shenzhen No.3 People’s Hospital, Guangdong
Medical College, Shenzhen, China. The Chest X-rays are from
out-patient clinics. There are 800 images in the Chest X-rays
dataset. However, the ground truth of 96 images is unknown.
Seven hundred and four images of corresponding GT in the
dataset were used by us. The image size of average is 4456
× 4456 pixels. The images are rescaled to 128 × 128 for this
implementation. Referring to the example in Figure 7.

(4) Skin Lesions (SL): The dataset is provided by the ISIC
2018: Skin Lesion Analysis Toward Melanoma Detection
grand challenge dataset (Tschandl et al., 2018; Codella
et al., 2019). This dataset consists of 2594 RGB images of
skin lesions with an average image size of 2166 × 3188
pixels. For our experiments, the dataset is resampled to 256
× 256 pixels with cross validation. The training samples
include the original image and the binary image containing
the lesion. Pixels outside the target lesion are represented
by 0.

(5) Nuclei Segmentation (NS): This dataset is provided by The
Cancer Genome Atlas (TCGA). This dataset can be downloaded
from Kaggle. The dataset comprising 30 digitized Hematoxylin
and Eosin (H&E)-stained frozen sections (512 × 512 pixels)
derived from 10 different human organs. The dataset were
selected from different laboratories to maximize the staining
variability in the data set. Image tiles (3 per tissue) were
extracted from adrenal gland, larynx, lymph nodes, mediastinum,
pancreas, pleura, skin, testes, thymus, and thyroid gland. Like
the EM dataset, this dataset was not sampled prior to input. The
image size of the input is 512× 512.
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FIGURE 5 | Arrangement of convolution kernel with different receptive fields and dilated convolution. Panels (A,B) lay out the convolution kernel in different order,

respectively. In (C), the large convolution kernel in the multi-scale block (37) is replaced by dilated convolution. The receptive field of the convolution kernel is enlarged

without increasing the number of parameters.

FIGURE 6 | Residual multi-scale block. Panel (A) is the first structure designed to incorporate residual thinking. Panel (B) is the second. Experimental results show

that the performance of (A) structure is better than (B). Panel (C) describes (A) in detail. The different multi-scale blocks are described in Figure 3. The information of

the input features is directly transmitted to the deep layer of the network through the residual connection.

4.2. Baselines and Implementation
For comparison, the original U-Net is used to implement the
segmentation task. U-Net is a common performance baseline for
medical image segmentation. In addition, a wide U-Net with a
similar number of parameters to our proposed architecture was
designed. This is to ensure that the performance gain yielded
by our architecture is not simply due to the increased number
of parameters.

In this experiment, the program was based on the Pytorch
(Paszke et al., 2019) framework. SGD (Robbins and Monro,
1951) was used as the optimizer with the learning rate of 1e-2.
Both networks were constructed from the original U-Net. All the

experiments are performed using an NVIDIAGeForce RTX 2080
Ti GPUs with 11 GB memory.

4.3. Evaluation Measures
In this paper, the Intersection over Union (IoU) is used as the
main evaluation indicator to evaluate the results. Alternative
measurement metrics could be found in Table 6, such as dice
coefficient, precision, area Under Curve (AUC), and statistical
analysis. These metrics were calculated as follows:

IoU =

TP

TP + FP + FN
(9)
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TABLE 3 | Summary of biomedical image segmentation datasets used in our experiments.

Applications Images Input size Modality Provider

EM 30 512 × 512 Microscopy ISBI 2012 (Cardona et al., 2010)

BUL 163 128 × 128 Ultrasound Breast Ultrasound Lesions Dataset (Yap et al., 2017)

CXR 704 128 × 128 X-ray Chest X-ray Database (Candemir et al., 2013; Jaeger et al., 2013)

SL 2594 256 × 256 Demoscopy ISIC 2018 (Tschandl et al., 2018; Codella et al., 2019)

NS 30 512 × 512 Digitize Kaggle

TABLE 4 | Ablation study for U-Net, wide U-Net, MSU-Net, Res MSU-Net(0), and

Res MSU-Net(1).

Architecture BUL EM NS

M ± SD M ± SD M ± SD

U-Net (Ronneberger

et al., 2015)

0.608 ± 0.037 0.884 ± 0.007 0.675 ± 0.018

wide U-Net (Ours) 0.643 ± 0.025 0.889 ± 0.016 0.677 ± 0.012

MSU-Net (Ours) 0.708 ± 0.011 0.900 ± 0.001 0.702 ± 0.010

Res MSU-Net (0) (Ours) 0.713 ± 0.032 0.900 ± 0.001 0.704 ± 0.010

Res MSU-Net (1) (Ours) 0.628 ± 0.025 0.848 ± 0.056 0.675 ± 0.022

Wide U-Net is obtained by extending the width of the U-Net network. The wide U-Net

has the same number of parameters as the MSU-Net. Res MSU-Net (0)/Res MSU-Net

(1) are proposed based on Residual multi-block. Intersection over Union (IoU) is used as

the evaluation metric for comparison. Bold values represent the best results.

Dice =
2TP

2TP + FP + FN
(10)

Precision =

TP

TP + FP
(11)

where TP, FP, and FN represent the number of true positive,
false positive, and false negative, respectively. In addition, the
area under receiver operation characteristic curve (AUC) is used
to measure the segmentation performance. The closer the AUC
is to 1.0, the higher authenticity of the segmentation method.
When it is equal to 0.5, it has the lowest authenticity and no
application value.

5. RESULTS

5.1. Selection of Multi-Scale Block
31 kinds of multi-scale blocks were designed by combining
the convolution kernel with different receptive fields. The
different multi-scale blocks are shown in Figure 3. All multi-
scale blocks were embedded into the original U-Net respectively.
Subsequently, an ablation analysis of multi-scale block is made on
three datasets. The experimental results of different multi-scale
blocks on the dataset are illustrated in Table 1. Two key findings
are illustrated in our results: (1) The wider network structure
is not always better, (2) The optimal width of the network
depends on the difficulty and size of the dataset. Although these
findings may facilitate the automatic search of neural structures,
this approach is hampered by limited computational resources
(Elsken et al., 2018; Liu et al., 2018, 2019; Zoph et al., 2018).

The influence of the difference receptive field on the network
performance is shown inTable 1. Among them,multi-scale block
(37) achieves the best performance on datasets.

Different arrangements of convolution blocks and different
convolution kernels are verified in Table 2. The robustness
of the multiple convolution sequence is demonstrated by
experimental results.

5.2. Results of the Extended Model
The multi-scale block was extended by us. First, the idea of
residuals was introduced into the proposed module. Two multi-
scale blocks based on residuals were constructed. The structure
is shown in Figure 6. Second, the proposed multi-scale block
was extended to the existing U-Net variants. Convolution kernel
in AttU-Net and U-Net++ was replaced by multi-scale block.
The experimental results are shown in Tables 4, 5. Experimental
results show that the proposed method has good scalability
and compatibility.

It can be seen from the experimental results that the
performance of wide U-Net is better than U-Net. The main
reason is that there are more parameters in wide U-Net. When
the residual idea is not introduced,MSU-Net achieves very robust
performance on all three data sets. Compared with U-Net, MSU-
Net is higher than 0.1, 0.016, and 0.027 on the three datasets. The
performance of the network is improved by introducing residual
ideas. In addition, the extended experiment on U-Net variants
also confirmed the effectiveness and universality of multi-scale
block. By comparing the performance ofMSU-Net (37+encoder)
and U-Net, we found that the ability of network to extract
features was enhanced by combining multi-scale blocks.

5.3. Semantic Segmentation Results
In order to verify the performance of the network, MSU-Net
was compared with the current more advanced segmentation
network (Ronneberger et al., 2015; Badrinarayanan et al., 2017;
Chen et al., 2018b; Zhou et al., 2020). In addition, chest X-ray and
skin lesion segmentation datasets were added to the experiment.
These two datasets are larger than the three previouslymentioned
datasets. Figure 7 depicts a qualitative comparison of the results
between the different split schemas. Compared with other
architectures, the segmentation results of MSU-Net are more
detailed. SegNet cannot be trained on EM datasets. Therefore,
SegNet has not experimented on the EM dataset.

Table 6 shows the segmentation performance of the
architectures on different datasets. A statistical analysis based
on independent two-sample t-tests is performed by us for each
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FIGURE 7 | Qualitative comparison among SegNet, DeepLabV3+, U-Net, U-Net++, and MSU-Net. It shows the segmentation application of the architectures on five

different biomedical image datasets. The red arrows indicate areas of incorrect segmentation. SegNet can not be trained on EM datasets. Therefore, the result of

SegNet on the EM dataset is vacant. The ground truth is illustrated in the second column (from left to right).

TABLE 5 | Ablation study for AttU-Net, MSAttU-Net, U-Net++, and MSU-Net++.

Architecture BUL EM NS

M ± SD M ± SD M ± SD

AttU-Net (Oktay et al., 2018) 0.607 ± 0.039 0.853 ± 0.043 0.655 ± 0.020

MSAttU-Net (Ours) 0.674 ± 0.005 0.895 ± 0.004 0.677 ± 0.010

U-Net++ (Zhou et al., 2020) 0.670 ± 0.020 0.885 ± 0.013 0.665 ± 0.012

MSU-Net++ (Ours) 0.687 ± 0.009 0.895 ± 0.002 0.691 ± 0.022

MSAttU-Net and MSU-Net ++ are extended versions of AttU-Net and U-Net ++.

Intersection over Union (IoU) is used as the evaluation metric for comparison.

pair of data between different structures. Our results show that
MSU-Net is an effective network structure.

The results in Table 5 suggest that our proposed MSU-Net
is more robust in semantic segmentation. Compared with the
U-Net, MSU-Net achieves a significant IoU gain over both

architectures for all the five tasks of SL (↑0.01), CXR (↑0.01),
BUL (↑0.1), EM (↑0.016), NS (↑0.027) segmentation. AUC of
different architectures on the data set is illustrated in Figure 8.
Figure 8 shows the ROC curve of different architectures on the
datasets. Our model achieves the best performance in all datasets.
Fine Precision is not captured by our model on the SL dataset.
However, the high sensitivity of our model is shown in Figure 8.
This allows false positives and false negatives in the data to be
better balanced by our model. It is mainly due to the multiple
convolution sequence with different receptive fields. This design
makes the features in the network richer and more diverse.

6. DISCUSSION

Medical image segmentation plays an important role in
diagnosis, treatment and prognosis evaluation. In the process
of diagnosis, the main applications include morphological
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TABLE 6 | Semantic segmentation results measured by different metrics for different network architectures.

Metric Architecture
SL CXR BUL EM NS

M ± SD p-value M ± SD p-value M ± SD p-value M ± SD p-value M ± SD p-value

IoU

SegNet (Badrinarayanan

et al., 2017)

0.752 ± 0.007 9.824e-4 0.832 ± 0.008 6.179e-5 0.630 ± 0.033 0.001 — — 0.586 ± 0.021 4.084e-6

DeepLabV3+ (Chen et al.,

2018b)

0.762 ± 0.002 2.202e-3 0.847 ± 0.005 3.261e-4 0.558 ± 0.034 1.761e-5 0.837 ± 0.015 1.582e-5 0.582 ± 0.019 1.717e-6

U-Net (Ronneberger et al.,

2015)

0.751 ± 0.005 1.872e-4 0.857 ± 0.005 0.020 0.608 ± 0.037 4.789e-4 0.884 ± 0.007 6.873e-4 0.675 ± 0.018 0.020

U-Ne++ (Zhou et al., 2020) 0.746 ± 0.008 2.725e-4 0.863 ± 0.004 0.232 0.670 ± 0.020 0.013 0.885 ± 0.013 0.031 0.665 ± 0.012 8.243e-4

MSU-Net(Ours) 0.771 ± 0.004 — 0.867 ± 0.006 — 0.708 ± 0.011 — 0.900 ± 0.001 — 0.702 ± 0.011 —

Dice

SegNet (Badrinarayanan

et al., 2017)

0.852 ± 0.006 0.002 0.908 ± 0.005 6.393e-5 0.770 ± 0.026 0.002 — — 0.738 ± 0.017 5.941e-6

DeepLabV3+ (Chen et al.,

2018b)

0.857 ± 0.003 0.002 0.917 ± 0.003 3.123e-4 0.713 ± 0.029 3.215e-5 0.911 ± 0.009 2.104e-5 0.734 ± 0.016 2.830e-6

U-Net (Ronneberger et al.,

2015)

0.850 ± 0.004 1.696e-4 0.923 ± 0.003 0.020 0.753 ± 0.029 6.919e-4 0.938 ± 0.004 7.314e-4 0.805 ± 0.013 0.022

U-Ne++ (Zhou et al., 2020) 0.847 ± 0.006 2.892e-4 0.926 ± 0.002 0.230 0.800 ± 0.014 0.015 0.939 ± 0.007 0.032 0.797 ± 0.008 5.129e-4

MSU-Net(Ours) 0.865 ± 0.003 — 0.929 ± 0.004 — 0.827 ± 0.008 — 0.947 ± 0.001 — 0.824 ± 0.007 —

Precision

SegNet (Badrinarayanan

et al., 2017)

0.886 ± 0.010 0.161 0.856 ± 0.009 4.465e-4 0.725 ± 0.040 0.115 — — 0.873 ± 0.008 0.203

DeepLabV3+ (Chen et al.,

2018b)

0.892 ± 0.008 0.037 0.875 ± 0.005 0.029 0.798 ± 0.054 2.227e-4 0.864 ± 0.029 6.076e-4 0.860 ± 0.019 0.065

U-Net (Ronneberger et al.,

2015)

0.899 ± 0.014 0.024 0.878 ± 0.006 0.079 0.760 ± 0.061 0.018 0.913 ± 0.014 0.007 0.888 ± 0.019 0.917

U-Net++ (Zhou et al., 2020) 0.895 ± 0.010 0.030 0.882 ± 0.005 0.274 0.786 ± 0.043 0.011 0.919 ± 0.025 0.196 0.853 ± 0.059 0.267

MSU-Net(Ours) 0.873 ± 0.015 — 0.887 ± 0.009 — 0.842 ± 0.006 — 0.935 ± 0.003 — 0.887 ± 0.021 —

We have performed independent two sample t-test between and highlighted boxes in red when the differences are statistically significant (p<0.05). Bold values represent the best results.
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FIGURE 8 | ROC curves for different architectures. AUC is the area under the curve.

analysis, volume calculation, anatomical structure analysis, etc.
In surgical treatment planning, the commonly used methods
include preoperative biopsy guidance, target area planning of
radiotherapy, image registration fusion and path planning,
and target tracking in medical robot, etc. In the prognostic
assessment, the most important segmentation is the analysis
of lesion volume change and the analysis of lesion histological
characteristics. In addition, medical image segmentation can
be applied to three-dimensional reconstruction visualization,
which can provide clinicians with more intuitive pathological
morphology and spatial anatomy. In recent years, the method
based on deep learning has been widely used in medical image
segmentation. However, the performance of segmentation is
greatly affected by the network architecture and the ability to
acquire features in learning process.

U-Net is a very classical network architecture in the field of
medical image segmentation. At present, U-Net is widely used
in medical image segmentation. However, the basic architecture
of U-Net has not been significantly modified by the researchers.
Large receptive fields play an important role when we need
to make dense per-pixel predictions. In order to improve the
existing segmentation model, multi-scale blocks are constructed
by convolution sequence and multiple convolution kernel with
different receptive fields. The different types of multi-scale
blocks are illustrated in Figure 3. In addition, MSU-Net is
proposed after all the convolution blocks in the original U-
Net are replaced by multi-scale block. The details of the MSU-
Net are illustrated in Figure 1. Multiple convolution sequences
are used to extract more semantic features from images. In

addition, convolution kernels with different receptive fields are
used to make features more diverse. The problem of unknown
network width is alleviated by effective integration of multiple
convolution sequences with different receptive fields.

The most important innovation described in this paper
is the combination of multiple convolution sequences and
convolution kernel with different receptive fields to improve the
segmentation performance. It can be seen from the Table 1 that
the performance of the network is affected by different receptive
fields. Good performance was achieved by combining advanced
ideas with multi-scale blocks. In addition, multi-scale blocks
are extended to the variants of original U-Net. The results in
Tables 4, 5 describes that the segmentation performance of the
network is improved by combining the multiple convolution
sequence and the convolution kernel with the different receptive
fields. The strategies of our proposed strategy has the following
advantages: (1) More diverse features are extracted through
the convolution kernel of different receptive fields. This is
useful for intensive forecasting tasks that require detailed spatial
information. At the same time, the problem of unknown
network width can be alleviated. (2) More feature information
is extracted by multi-convolution sequence, which is helpful
to the segmentation task. Our method has obtained the best
performance compared with the advanced models through the
demonstration of multiple medical image segmentation datasets
(see in Table 6). The highest AUC is obtained by our architecture
(see in Figure 8). This suggests that our model has a stronger
ability to balance false positives and false negatives in the
data. In general, the proposed method is useful for intensive
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forecasting tasks requiring detailed spatial information. Different
receptive fields can provide diverse semantic information for
tasks, which is beneficial to the segmentation of lesions. More
detailed segmentation results can provide doctors with more
detailed lesion areas, which is helpful for the diagnosis of disease
and the formulation of treatment plan.

Although we have widely evaluated the performance of the
network on different datasets, there are still some deficiencies
in our network. First, the convolution kernels with a larger
receptive field are not attempted due to objective factors. The
performance of the network may be improved through greater
receptive field. Second, the dilated convolution can increase
the receptive field of the convolution kernel without increasing
the number of parameters. Unfortunately, dilated convolution
was not attempted in our experiment. Third, our network has
not been validated against the 3D medical image segmentation
dataset. The above work may be completed by us in the future.

7. CONCLUSION

In order to obtain more accurate segmentation image, a new
structure called multi-scale block was proposed by us. The
convolution blocks in the original U-Net are replaced by multi-
scale blocks to obtain MSU-Net. The improvement of MSU-
Net performance is attributed to multiple convolution sequence
and convolution kernels with different receptive fields. Two
key issues are addressed by this design: (1) The diversity of
features is lost due to the fixed size of the convolution kernel.
(2) Feature information may be lost at each scale using a single
convolutional sequence to extract features. Five different public

datasets were used to conduct an extensive evaluation of MSU-
Net. The experimental results show that MSU-Net achieves the
best performance.
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The poor prognosis and fewer treatment option is a current clinical challenge for patients

with lung adenosquamous carcinoma (ASC). The previous studies reported that tumor

mutational burden (TMB, numbers of mutation per Megabase) is a predictor of clinical

response in trials of multiple cancer types, while fewer studies assessed the relationship

between TMB level and clinical features and outcomes of lung ASC. Herein, the present

study enrolled Chinese patients with lung ASC. DNA was extracted from formalin-fixed

paraffin-embedded tumor samples and subjected to next generation sequencing (NGS),

and the 457 cancer related genes were evaluated. The results demonstrated that 95

unique genes with somatic variations were identified in the enrolled patients. The top

three of high frequency gene mutations were TP53, EGFR, PIK3CA with rates of 62%

(13 cases), 48% (10 cases), and 14% (3 cases), respectively. We identified TMB value was

significantly correlated with pathological stages (p < 0.05) and invasion of lymph node (p

< 0.05). However, TMB value was not significantly correlated to other clinicopathologic

indexes, for examples, age, sex, smoking history, tumor size, as well as TP53 and EGFR

mutations in lung ASC. Moreover, TMB value was associated with the overall survival

(p < 0.01), but not with the relapse-free survival (p = 0.23). In conclusion, this study

indicated that lung ASC with high TMB might be associated with the invasion of lymph

node and short overall survival. Immunotherapy might be a promising treatment option

for lung ASC patients with high TMB.

Keywords: adenosquamous carcinoma, EGFR, lung, next generation sequencing, PD-L1, somatic variations, TMB

INTRODUCTION

Worldwide, lung cancer is the most prevalent cause of cancer related death (Siegel et al., 2018).
Adenosquamous carcinoma (ASC) is a small subtype of non-small-cell lung cancer (NSCLC),
accounting for <4% of all patients with NSCLC (Uramoto et al., 2010; Li and Lu, 2018). It is
defined that lung ASC is a mixed-type tumor, comprised of adenocarcinoma and squamous cell
carcinoma. Each component accounts for at least 10% of the total tumor cells, according to the
tumor classification by the fifth edition of world health organization (WHO) (Travis et al., 2015).
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It is reported that lung ASC displays the worse prognosis than
other types of NSCLC. Lung ASC is resistant to the treatment
of adjuvant chemotherapy, and more probably to occur local
recurrence or distant metastasis in comparison with other
histologic types of NSCLC (Hsia et al., 1999; Nakagawa et al.,
2003; Maeda et al., 2012).

In recent years, the important advancements have been
achieved in NSCLC treatments (Herbst et al., 2018; Testa
et al., 2018). For example, the small molecule tyrosine kinase
inhibitors (TKIs) were effective for patients with advanced lung
adenocarcinoma with the somatic mutation of epidermal growth
factor receptor (EGFR) and the rearrangement of echinoderm
microtubule-associated protein-like 4 (EML4) with anaplastic
lymphoma kinase (ALK) (Paez et al., 2004; Soda et al., 2007;
Robichaux et al., 2018; Ramalingam et al., 2020). Interestingly,
a few case reports and retrospective studies have demonstrated
that EGFR-TKIs therapies were effective for the selected patients
with advanced ASC of the lung (Song et al., 2013; Kurishima
et al., 2014; Fan et al., 2017; Zhang et al., 2018; Lin et al., 2020).
Therefore, besides of EGFR mutation, the continued research is
required to identify more cancer-related gene mutations and the
corresponding targeted agents or combined therapies to improve
outcomes for lung ASC.

Immune checkpoint inhibitor (ICI) therapies have shown
significant benefit in treatment of patients with NSCLC
(Herbst et al., 2018), for example, pembrolizumab treatment
achieved better clinical outcomes compared to platinum-based
chemotherapy in advanced NSCLC patients with high expression
of programmed death ligand 1 (PD-L1) in tumor cells (Herbst
et al., 2016; Reck et al., 2016). Besides of programmed death
1 (PD-1) and its ligand PD-L1, the resent studies indicated
that tumor mutational burden (TMB) could predict clinical
outcomes inmultiple cancer types, including lung cancer patients
receiving immunotherapy (Rizvi et al., 2015, 2018; Samstein
et al., 2019). However, there is still lack of prospective data
and retrospective study to comprehensively depict the genomic
landscape and immune biomarkers, as well as their association
with the clinicopathologic features in patients with lung ASC.

To address the limited knowledge, we performed this study
in patients with surgically resected lung ASC to evaluate (1)
the genomic variations and its correlation with TMB and
PD-L1 expression and (2) the clinical relevance of TMB and
PD-L1 expression, including clinicopathologic features, relapse-
free survival (RFS), and overall survival (OS). Meanwhile,
we compared the data of lung ASC to other ethnicities as
well as other subtypes such as adenocarcinoma and squamous
cell carcinoma.

MATERIALS AND METHODS

Patients and Samples
All the enrolled patients with lung adenosquamous carcinoma
(ASC) underwent surgical resection from the Second Affiliated
Hospital of Nanchang University between April, 2014 and May,
2019. The criteria of the enrolled patients were as follows: (1)
pathological diagnosis of lung ASC according to the tumor
classification in the fifth edition of WHO, each component of

adenocarcinoma and squamous cell carcinoma at least 10% of
the tumor cells; (2) patients without anticancer treatment before
surgery; (3) availability of complete medical records, including
patient’s age, gender, smoking history, immunohistochemistry
results, pathological reports, operation time and surgical
approach, medication records, tumor response assessment. All
the enrolled patients accepted and signed the informed consent,
the protocol was approved by the Ethics Committee of medical
research, the Second Affiliated Hospital of Nanchang University.

FFPE Preparation and Genomic DNA
Extraction
After surgical resection, tumor tissues and normal tissues
(incision margin 5 cm away from the tumor) were fixed with
formalin, subsequently embedded in paraffin (FFPE). Genomic
DNA was extracted from each FFPE sample using the GeneRead
DNA FFPE Kit (Qiagen, USA) according to the manufacturer’s
protocol, respectively.

NGS Based Large-Gene Panel Test
To construct the pre-library, genomic DNA was digested into
∼200 bp fragments by enzymatic method, then subjected to end
repairing, A-tailing, adapter ligation and universal amplification.
Purified pre-library was hybridized with a customized biotin
probe pool (the 457 genes panel, Berry Oncology, Peking,
China) to capture target fragments (Supplementary Table 1).
Captured fragments were amplified with universal primers and
purified to acquire the final library. The library of paired-
end multiplex samples were sequenced with the NovaSeq 6000
System. Sequencing depth was∼2,000 x per sample.

The generated sequences were trimmed, low-quality-filtered,
and subjected for variant calling. Variants was filtered for
nonsynonymous SNPs, indels and spliced variants. Somatic
variations were identified with variant allele frequency (cutoff
≥ 3%) and cancer hotspots were screened with variant allele
frequency (cutoff≥ 1%) and at least 20 high-quality reads.

The tumor mutation burden (TMB) was determined by the
number of all the nonsynonymous mutation and indel variants
per magabase of coding regions. The 457 gene panels cover
the coding region of 1,141,951 bp. Hence, TMB was calculated
with the number of all the nonsynonymous mutations and indel
variants/1.14Mb. The threshold of high TMB was set to 10
according to the previous studies (Hellmann et al., 2018; Barroso-
Sousa et al., 2020).

Immunohistochemistry Assays
Immunohistochemistry assays were performed on FFPE sections
using a primary anti-PD-L1 (SP263) rabbit monoclonal antibody
(Roche) and a secondary anti-rabbit-IgG antibody (ZSGB-
BIO, Beijing, China), then detected with DBA detection kit
(ZSGB-BIO, Beijing, China). PD-L1-positive was determined if
membrane staining exhibited in ≥ 25% of tumor cells in the
tumor sample, as described in the previous study (Shi et al., 2017).

Statistics
R Foundation for Statistics Computing, R script (v3.6.0) was
used to perform the statistics analysis. Fisher’s exact test was
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TABLE 1 | The overview of clinical information of enrolled patients.

Patients (n = 21)

Age

Median 63

Range 49-75

Sex (%)

Male 11 (52.4%)

Female 10 (47.6%)

Smoking history (%)

Current 7 (33.3%)

Former 0

Never 14 (66.7%)

Pathological stage (%)

I 9 (42.9%)

II 3 (14.3)

III 9 (42.9%)

Histologic type

Adeno cells accounted for 10–50% 10

Adeno cells accounted for 51–90% 11

used to analyze the relationship between TMB and clinical
indexes. Kaplane-Meier method was used to estimate progress-
free survival and overall survival. p < 0.05 was defined as
statistically significant.

RESULTS

Clinicopathological Characteristics of the
Enrolled Patients
In total, 21 patients with lung adenosquamous carcinoma (ASC)
were finally enrolled in this study. The median age at diagnosis
was 63 years (range: 49–75), eleven were male and ten were
female, seven were smokers and 14 were non-smokers. The
tumors were stage I, II, and III in nine (42.9%), three (14.3%), and
nine (42.9%) cases, respectively. Ten patients were with adeno
cells accounted for 10%-50% and eleven patients were with adeno
cells accounted for 51–90%. The clinical information of patients
was overviewed in Table 1. The characteristics of each patient
were listed in Supplementary Table 2.

Somatic Variation Detection
To discover somatic variation in ASC, DNA was extracted from
formalin-fixed paraffin-embedded samples and subjected to NGS
based large-gene panel test. The somatic mutations of each
tumor sample were analyzed and summarized in Figure 1 and
Supplemental Table 3. Our study identified 95 unique genes with
somatic variations. Among those, the top three of high frequency
gene mutations were TP53, EGFR, PIK3CA with rates of 61.9%
(13 cases), 47.6% (10 cases), and 14.3% (3 cases), respectively.
Coexisting mutations were detected in TP53 and EGFR with rate
of 33.3% (7 cases), EGFR, and PIK3CA with rate of 4.8% (1 case).

Mutations of the TP53 gene are universal in lung cancer,
with mutation rate of about 50% in NSCLC (Mogi and Kuwano,

2011). In lung ASC, our study indicated TP53 was a highest
frequency mutation gene, with a mutation rate of 62%. The
common mutation was detected in exon 8 (5 cases), exon 7
(4 cases), exon 6 (2 cases), and exon 4 (1 case). The hotspot
mutations of TP53 p.R248Q and TP53 p.R248Wwere detected in
p11 and p19, respectively, which are the target of APR-246 drug.
At present, FDA has approved APR-246 in combination therapies
to treat myelodysplastic syndromes with TP53 mutation, while
more clinical trials are required to prove the efficacy of the drug
in treating patients with lung cancer.

For EGFR gene, deletion in exon 19 was the most common
mutation (7 cases), and the single nucleotide variation in exon
21 resulting in EGFR p.L858R variant was observed only in one
case. These mutations are related to the increase of sensitivity
to tyrosine kinase inhibitors. The drug resistant mutation was
detected in one case harboring insertion mutation in exon 20,
while none of T790M variant was observed in this study. Two
variants of in-frame deletion in exon 19 and single nucleotide
variation resulting in EGFR p.E758D were coexisted in one case,
as shown in Figure 1 and Supplemental Table 3.

In addition to EGFR mutations, a set of genes involved in the
PI3K signaling pathway were observed in seven lung ACS cases
in our study. Two cases (p2 and p16) harbored a single nucleotide
variation in exon 9 of PIK3CA, resulting in a p.E545K variant
in the helical region, and one case (p14) harbored a mutation in
exon 21 of PIK3CAwhich generated a p.H1047L variant in p110α
catalytic subunit. The variant of PTEN p.H123Y was present in
one case (p13). These variants were sensitive to class I PI3K
inhibitor. We also found PIK3C2B p.E545K variant in one case
(p9), and PIK3C2G p.M1047I variant in another case (p3), both
variants belong to class II PI3K. In addition, gene mutations were
observed in CDKN2A in two cases (p18 and p21), NF1 in two
cases (p6 and p20), DDR2 in two cases (p8 and p13), PBRM1 in
two cases (p9 and p13),WHSC1L1 in one case (p10), IRF4 in one
case (p16), and HRAS in one case (p21).

The rearrangement of anaplastic lymphoma kinase (ALK), c-
ros oncogene 1, receptor tyrosine kinase (ROS1), and ret proto-
oncogene (RET) play a role on driving the occurrence and
development of NSCLC (Takeuchi et al., 2012; Cancer Genome
Atlas Research, 2014). These gene translocations were detected
by NGS based large-gene panel test and RNA amplification assays
in the present study. However, none of ALK, ROS1, and RET
rearrangements were detected in the enrolled patients with lung
ASC (data not shown).

Detection of Somatic Copy Number
Alterations in Lung ASC
The somatic copy number alterations (CNA) play an important
role in the development of lung cancer. In this study, CNA was
detected in the enrolled patients with lung ASC. The results
indicated that the amplification of six genes in tumor tissues were
at least twice than in the normal tissues (Figure 2 and Table 2).
Among those, the amplification of cyclin dependent kinase 4
(CDK4) was observed in two cases (p7 and p12). Meanwhile, the
coexisting amplification of cyclin D1 (CCND1) and CDK4 were
detected in one case (p12). CDK4 andCCND1 are very important

Frontiers in Genetics | www.frontiersin.org 3 February 2021 | Volume 11 | Article 60940558

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cheng et al. Analyses of TMB Level in Lung ASC

FIGURE 1 | Somatic mutation landscape for 21 patients with lung ASC. The top 30 mutant genes are displayed. The frequency of mutated genes are shown in a

histogram on the right. Tumor mutation burden (TMB) and clinical features are illustrated in the upper two panels. SNV+INDEL represents the case carrying both of

mutation types of SNV and INDEL.

FIGURE 2 | The profiles of somatic copy number alterations for the enrolled

patients. Cases with somatic copy number alterations (CNA) are shown.

Patient numbers are displayed in the upper lane. Gene names are listed on the

left. The frequency of CNA are shown in a histogram on the right.

components involved in regulating the progress of G1/S phase in
cell cycle. The complex of CKD4 and CCND1 has been studied as
a therapeutic target for cancer (Malumbres and Barbacid, 2009;
Musgrove et al., 2011). In addition, the tyrosine kinase receptors
EGFR and FGFR1 were amplified for eleven times in p8 and p10

TABLE 2 | Copy number alterations of enrolled patients detected by targeted

NGS panel.

Patient ID CCND1 CDK4 EGFR FGFR1 MDM2 MYCN

P1 6.1

P7 6.9 6.1

P8 11.6

P10 11.9

P12 6.9 4

cases, respectively. The present study also indicated p1 and p7
cases harboring MDM2 and MYCN with copy number gains,
respectively. Overexpression or amplification of MDM2 occurs
in a variety of cancer types.

Association of Tumor Mutations Burden
With Clinicopathological Characteristics
Immune checkpoint inhibitor (ICI) therapies have earned its
spurs in the treatment of malignant tumors in recent years
(Gandhi et al., 2018). Tumor mutation burden (TMB) is a
promising marker to predict survival after immunotherapy
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FIGURE 3 | Histogram of proportion of adenocarcinoma cells in lung ASC.

Red column represents patients with the low level of TMB, blue column

represents patients with the high level of TMB.

TABLE 3 | Relationship between TMB index and clinicopathological

characteristics of lung ASC.

Characteristics Numbers of

patients

(percentage)

TMB (cutoff = 10) p value

Low High

Age 0.58

< 70 15 (71.4%) 11 4

≥ 70 6 (28.6%) 4 2

Sex 0.63

Male 11 (52.4%) 8 3

Female 10 (47.6%) 7 3

Smoking history 0.30

Smokers 7 (33.3%) 4 3

Non-smokers 14 (66.7%) 11 3

Pathological stage 0.03

I-II 12 (57.1%) 11 1

III 9 (42.9%) 4 5

Tumor size (cm) 0.31

≤ 3 7 (33.3%) 6 1

> 3 14 (66.7%) 9 5

Lymph node 0.03

N0 12 (57.1%) 11 1

N1-N2 9 (42.9%) 4 5

TP53 mutation 0.59

w/t 8 (38.1%) 6 2

With 13 (61.9%) 9 4

EGFR mutation 0.27

w/t 11 (52.4%) 9 2

With 10 (47.6%) 6 4

across multiple cancer types (Samstein et al., 2019). In our
study, TMB value was determined in the enrolled patients. The
results indicated that the median TMB was 5.25 mutations per
megabases, with a range from 0.88 to 16.64 (Figure 1). We
analyzed the association between TMB value and the proportion

of adeno and squamous cells carcinoma of ASC (Figure 3). The
results indicated that the high level of TMB was not significantly
related to the high proportion of squamous cells in ASC of the
lung. Meanwhile, the relationships between TMB level and the
clinicopathologic features of adenosquamous cell carcinoma of
the lung were analyzed. The results demonstrated that TMB
value correlated significantly with pathological stages (p = 0.03)
and lymph node (p = 0.03). The higher TMB value (cutoff ≥

10 mut/Mb) was related to invasion of lymph node, while the
lower TMB value (cutoff < 10 mut/Mb) was related to none
of invasion of lymph node. However, there was no significant
relationship between TMB and other clinicopathologic indexes,
for instances, age, sex, smoking history, as well as TP53 and
EGFR mutations in lung ASC (Table 3). It was no distant
metastasis in the enrolled patients. Therefore, we did not
analyze the relationship between TMB level and the index of
distant metastasis.

Relationships Between TMB and Clinical
Outcomes
In this study, the enrolled patients underwent operation to
completely resect the primary tumor tissues and accomplish
the lymphadenectomy. In total, five (23.8 %) of 21 patients
did not occur disease recurrence, 14 (66.7%) of 21 patients
had local recurrence or distant metastasis, two (9.5) of 21
patients were out of contact. The Kaplan–Meier survival
curves of relapse-free survival, and overall survival were
displayed in Figure 4, with the median of 6 and 10 months,
respectively. Among the enrolled patients, one case (p8)
harboring EGFR exon 19del and amplification of EGFR,
received the EGFR-TKI therapy. The patient developed brain
metastases after 14 months of treatment with gefitinib. None
of the enrolled patients treated with immune checkpoint
inhibitor therapies.

We analyzed the relationship between TMB and survival
time. The results demonstrated that TMB value was significantly
correlated with the overall survival (p = 0.0078, Figure 4A),
but not with the relapse-free survival (p = 0.23, Figure 4B). As
shown in Figure 4, the high level of TMB was related to the short
survival time. Therefore, immunotherapy might be a promising
treatment option to improve the outcomes in lung ASC patients
with high TMB.

DISCUSSION

The poor prognosis and fewer treatment option is still a clinical
challenge for lung ASC. So far, a few studies introduced the
mutational profile of lung ASC (Sasaki et al., 2007; Tochigi et al.,
2011; Morodomi et al., 2015; Vassella et al., 2015; Shi et al., 2016;
Lin et al., 2020), while most analyses were restricted to small
gene panels. The continued studies are required to investigate
genetic alterations and explore the potential therapies for lung
ASC. The present study displayed the comprehensive analyses of
somatic variations in lung ASC. In addition, it is the first study to
reveal the clinical relevance of TMB level and PD-L1 expression
in lung ASC.
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FIGURE 4 | Kaplan–Meier survival curves of patients with lung ASC. (A) Overall survival of lung ASCs with high TMB and low TMB are shown. (B) Relapse-free

survival of lung ASCs with high TMB and low TMB are displayed. Red solid line represents patients with low TMB, blue solid line represents patients with high TMB.

Our study showed a high frequency of EGFR mutations in
lung ASC, themutation rate was 48%. However, in contrast to our
observation, a lower prevalence of EGFRmutations was reported
in lung ASC of Caucasian ethnic group, with a mutation rate of
13% (Tochigi et al., 2011). That might be due to the ethnicity
differences between Asians and Caucasians. Moreover, consistent
with the incidence of EGFR mutation in lung adenocarcinoma,
the mutation rate was 46.7% in the Asian population and 15% in
the white population (Liu et al., 2017). Furthermore, the current
study revealed that the landscape of somatic variations of ASC
was similar to that of lung adenocarcinomas, and supported the
hypothesis that adenocarcinoma components and squamous cell
carcinoma components of ASC shared a monoclonal origin (Lin
et al., 2020). Therefore, considering the similar profile of somatic
variations in ASC and lung adenocarcinoma, TKI might be an
effective targeted agents for lung ASC with EGFR mutations. In
our study, one resectable patient (pT2aN2M0) received EGFR-
TKI therapy after four cycles of adjuvant chemotherapy, and had
a clinical benefit from the treatment of gefitinib, with progress-
free survival (PFS) of 14 months. In line with the observation, a
current multicenter retrospective study also indicated that EGFR-
TKIs were effective for patients with advanced ASC of lung, with
the median PSF being 10.1 months (Lin et al., 2020). None of
ALK, ROS1, and RET rearrangements were detected in our study.
In line with our results, the previous study also did not find gene
rearrangements in Caucasian patients with lung ASC (Vassella
et al., 2015). That might be due to the lower prevalence of gene
translocations in lung cancers and the small size of enrolled
patients with lung ASC.

In addition, ICI therapies have been applied in treatment of
malignant tumors in recent years. We valuated PD-L1 expression
in tumor cells of the enrolled patients, while there were no
significant associations between PD-L1 expression and the
clinicopathologic features of lung ASC (Supplemental Table 4).
Besides of PD-L1, TMB is a promising marker to predict
clinical outcomes of patients with NSCLC to immunotherapy

(Carbone et al., 2017; Hellmann et al., 2018; Samstein et al.,
2019). The previous studies indicated lung squamous cell
carcinoma harboring higher TMB than other solid cancer
types (Vogelstein et al., 2013; Zhang et al., 2019). However,
our results indicated that the high level of TMB was not
significantly related to the high proportion of squamous
cells in lung ASC. The current study displayed that TMB
was lower in adenocarcinoma component than in squamous
cell carcinoma component, with the median of 6.5 and
7.2 mutations/Mb, respectively (Lin et al., 2020). However,
it is difficult to distinguish such small differences of TMB
value in adenocarcinoma component and squamous cell
carcinoma component.

In the present study, we also evaluated the relationships
between TMB level and the clinicopathologic features and
outcomes of lung ASC, though none of enrolled patients received
ICI therapy. Our results indicated that the high level of TMB
was related to the invasion of lymph node and the short survival
time. Patients with the short survival time might be due to the
invasion of lymph node. In line with the results, the previous
study indicated that high TMB is a poor prognostic factor
for the advanced NSCLC, as well as patient in early stage
(Owada-Ozaki et al., 2018). However, as the limited numbers of
enrolled patients, we did not obtain lung ASC with high TMB in
early stage.

In conclusion, the lung ASC with high TMB might be
associated with invasion of lymph node and short overall
survival. Therefore, immunotherapy might be a potential
treatment option for lung ASC patients with the high level
of TMB.
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of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China, 2 Key Laboratory 
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3 Wenzhou Medical University, Wenzhou, China, 4 Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to 
Wenzhou Medical University, Linhai, China, 5 Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated 
to Wenzhou Medical University, Linhai, China

Backgrounds: Colorectal cancer (CRC) with high incidence, has the third highest mortality 
of tumors. DNA damage and repair influence a variety of tumors. However, the role of 
these genes in colon cancer prognosis has been less systematically investigated. Here, 
we aim to establish a corresponding prognostic signature providing new therapeutic 
opportunities for CRC.

Method: After related genes were collected from GSEA, univariate Cox regression was 
performed to evaluate each gene’s prognostic relevance through the TCGA-COAD dataset. 
Stepwise COX regression was used to establish a risk prediction model through the 
training sets randomly separated from the TCGA cohort and validated in the remaining 
testing sets and two GEO datasets (GSE17538 and GSE38832). A 12-DNA-damage-
and-repair-related gene-based signature able to classify COAD patients into high and 
low-risk groups was developed. The predictive ability of the risk model or nomogram were 
evaluated by different bioinformatics‐ methods. Gene functional enrichment analysis was 
performed to analyze the co-expressed genes of the risk-based genes.

Result: A 12-gene based prognostic signature established within 160 significant survival-
related genes from DNA damage and repair related gene sets performed well with an 
AUC of ROC 0.80 for 5 years in the TCGA-CODA dataset. The signature includes CCNB3, 
ISY1, CDC25C, SMC1B, MC1R, LSP1P4, RIN2, TPM1, ELL3, POLG, CD36, and NEK4. 
Kaplan-Meier survival curves showed that the prognosis of the risk status owns more 
significant differences than T, M, N, and stage prognostic parameters. A nomogram was 
constructed by LASSO regression analysis with T, M, N, age, and risk as prognostic 
parameters. ROC curve, C-index, Calibration analysis, and Decision Curve Analysis 
showed the risk module and nomogram performed best in years 1, 3, and 5. KEGG, GO, 
and GSEA enrichment analyses suggest the risk involved in a variety of important biological 
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INTRODUCTION

Colon cancer is a malignant intestinal disease with the highest 
incidence among gastrointestinal diseases. Colorectal cancer is 
the third most common cancer and one of the major cancers 
for mortality all over the world (Bray et al., 2018). The application 
of combined drugs, including adjuvant chemotherapy and 
radiotherapy (Dekker and Rex, 2018), is currently a worldwide 
accepted standard treatment for colon cancer. Besides, early 
diagnosis of primary or recurrent colon cancer is one of the 
key factors for the prognosis. Unfortunately, how to diagnose 
colon cancer early remains one of the most difficult issues in 
cancer treatment. The study reported in-depth research on the 
diagnosis and treatment of colon cancer, such as endoscopic 
diagnosis (Dekker and Rex, 2018), tumor markers (Sveen et al., 
2020), and molecular targeted therapy (Ganesh et  al., 2019). 
The American Joint Committee on Cancer divided the patients 
into stages I, IIa, IIb, IIIa, IIIb, IIIc, and IV according to the 
tumor-node-metastasis (TNM). The TNM staging can distinguish 
patients with different prognoses (O’Connell et al., 2004). There 
is still a possibility of recurrence in stage I  to III patients who 
underwent curative resection, and the likelihood of recurrence 
increases with time and stage. However, due to complex 
pathogenesis and high metastasis rate, the diagnosis is still 
unsatisfactory, and the prognosis is poor (Kobayashi et  al., 
2007). Therefore, there is an urgent need to identify new 
diagnostic and prognostic biomarkers, therapeutic targets, and 
look into the potential molecular mechanisms of CRC. Today, 
the revolution helps to identify disease-related biomarkers through 
more novel bioinformatics analysis and the use of next-generation 
sequencing technology (Moody et  al., 2017), which will help 
the early identification of colon cancer and the development 
of personalized treatment plans to benefit more patients.

There is an increasing interest in the search for new genes 
and the construction of multi-gene prediction models recently. 
Genome analysis based on the TCGA network project containing 
276 patients’ CRC samples and corresponding germline DNA 
samples showed that some genes have been shown to 
be  associated with highly mutated CRC (Ganesh et  al., 2019). 
In hypermutated cancers, APC, TGFBR2, BRAF, MSH3, MSH6, 
SLC9A9, and TCF7L2 were highly mutated, in particular the 
frequent mutations of BRAF (V600E). On the contrary, the 
mutation rate of TP53 and APC was lower. In non-hypermutated 
cancer, APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, and 

NRAS were frequently mutated. Based on the mutation status, 
CRC could be divided into the non-hypermutated group (84%) 
and the hypermutated group (16%; Moody et al., 2017). Different 
studies have identified that CDX2, LC3B, ULBP2, SEMA5A, 
VEGF-D, and SMAD7 are potential biomarkers for the prognosis 
of colon cancer (Lord and Ashworth, 2017; Gourley et  al., 
2019; Mauri et  al., 2020). However, the prognostic value of a 
single-gene related clinical prognostic model for CRC patients 
based on these genes is still not ideal. Yang et al. have constructed 
a 20 gene signature based on the expression profile of GSE44076 
about colon cancer, which were considered as diagnosis targets 
for colon cancer (Chen et  al., 2014).

In recent years, research on new therapeutic targets for 
different cancer types has gradually focused on genomic changes 
in the DNA damage response (DDR) pathway (Mauri et  al., 
2020). The current research on anti-tumor drugs mainly focuses 
on two main types: Platinum compounds and poly ADP-ribose 
polymerase inhibitors (Lord and Ashworth, 2017; Gourley et al., 
2019). DDR changes were originally found in breast cancer 
and ovarian cancer, while it has now expanded to prostate 
and pancreatic cancer (Mauri et  al., 2020). The role of DDR 
alterations in colorectal cancer is still not fully studied. There 
are only a few studies on its clinical impact and no orderly 
study system has been established (Chen et al., 2014; Lei et al., 
2019; Sun et  al., 2019; Karpov et  al., 2020; Mauri et  al., 2020; 
Scagliarini et  al., 2020; Yu et  al., 2020).

In our study, we  aimed to construct a DNA damage and 
repair related gene-based signature and nomogram to make 
an improvement on the prognostic value of CRC through 
comprehensive bioinformatics methods.

MATERIALS AND METHODS

Data Collection
The DNA damage and DNA repair related genes list were 
collected from GSEA gene sets1 by the keyword “DNA AND 
damage” or “DNA AND repair.” At last, 1545 genes related 
to DNA damage and repair were included in the analysis 
(Supplementary Table 1).

The gene expression data of HTseq RNA profiles FPKM 
(fragments per kilobase of exon per million reads mapped) 

1 https://www.gsea-msigdb.org/gsea/index.jsp

processes and well-known cancer-related pathways. These differences may be the key 
factors affecting the final prognosis.

Conclusion: The established gene signature for CRC prognosis provides a new molecular 
tool for clinical evaluation of prognosis, individualized diagnosis, and treatment. Therapies 
based on targeted DNA damage and repair mechanisms may formulate more sensitive 
and potential chemotherapy regimens, thereby expanding treatment options and potentially 
improving the clinical outcome of CRC patients.

Keywords: mRNA signature, DNA damage, DNA repair, prediction, prognosis, colon cancer
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of 471 COAD and 41 compared normal samples were extracted 
from The Cancer Genome Atlas-Colon adenocarcinoma (TCGA-
COAD).2 Survival endpoint (vital status, days to the last follow-up, 
and days to death), age, stage, and histological type of primary 
of each patient were also retrieved.

The public expression profiles data of colon cancer were 
extracted from the GEO database3 by the keywords [“Colonic 
Neoplasms” (MeSH)]. The selected data must meet the following 
inclusion criteria: human gene expression profiles data of solid 
tissues of colon cancer, the datasets contained prognosis survival 
information, and enough samples for analysis. Four eligible 
data (GSE17538 and GSE38832, GSE44861 and GSE44076), 
based on the platform of Affymetrix-GPL570, Affymetrix-GPL570, 
Affymetrix-GPL, and Affymetrix-GPL13667 respectively, that 
met the above criteria were annotated based on the annotation 
platform and enrolled in this study, each GEO data set was 
checked the gene expression distribution was through the 
histogram and normalization. Furthermore, the related clinical 
data of the four datasets were retrieved.

Construction of the DNA Damage and DNA 
Repair Related Gene Signature
All analyses in this study conducted in R language used R 
version 4.03. Univariate Cox regression analysis (Cox, 1972) 
was first performed with DNA damage and DNA repair related 
genes, and genes with a p value of less than 0.05 were considered 
a statistically significant difference. After randomly separating 
samples into the training set and testing set, genes that were 
strongly associated with OS of COAD patients were used for 
multivariate Cox hazards regression base based on the training 
set with the stepwise method in My.stepwise package (Hu, 
2017). The process and results are shown in the 
Supplementary Material. Then a multivariate cox hazards 
regression model was built to assess the prognostic value 
for COAD.

The hazards model was established by the selected final 
gene signature, and the risk score was generated according to 
the following formula:

 

Risk score i Ei
i

N
 = ∗

=
∑

1

b

(N represents the total number of signature genes, βi and 
Ei represent the coefficient index, and the gene expression 
level of each gene, respectively)

Based on the risk score of each patient, samples were grouped 
into high risk and low-risk groups based on the risk score of 
each patient, and the relationship between risk and clinical 
data was then investigated.

The Nomogram Establishing
All clinical prognostic factors T, M, N, age, and stage together 
with risk group were used for the selection of the prognostic 

2 https://cancergenome.nih.gov/
3 https://www.ncbi.nlm.nih.gov/geo/

parameters by Least Absolute Shrinkage and Selection Operator 
(LASSO; Friedman et  al., 2010) regression analysis. And a 
related prognostic nomogram to assess the probability of 0.5-, 
1-, and 3-year OS for COAD patients were built by “rms” R 
package. Calibration plots were used to evaluate the discriminative 
ability of the nomogram.

Validation of the Multi-Gene Prognostic 
Signature
Firstly, survival analysis between high and low groups combined 
with clinical stage and the histological type was evaluated by 
the Kaplan-Meier curve (Ranstam and Cook, 2017) and log-rank 
test (Kleinbaum, 1998). The ROC curve (Kamarudin et  al., 
2017) and the AUC, C-index, Calibration analysis, and Decision 
Curve Analysis (Vickers and Elkin, 2006) were performed by 
“timeROC,” “rmda,” and “survcomp” packages to evaluate the 
risk model and the nomogram. Similarly, we  evaluated the 
prediction efficiencies of the risk score system in the testing 
sets and GEO validation sets too.

The Cutoff Value of the Km Curve
To better evaluate the validation model and the whole cohort 
model, we  obtained a relatively fixed cutoff value by “Surv_
cutpoint” function through the training cohort. This can ensure 
that the corresponding cutoff value will not be  biased after 
different groups, and the verification of the model will 
be  relatively more accurate. This cutoff value is only the best 
cutoff value obtained by the training group. This cutoff value 
will vary with the sample changes. Each cohort was divided 
into high-risk groups and low-risk groups according to their 
respective cutoff value.

Gene Co-expression Network and Gene 
Functional Enrichment Analysis
Genes which co-expressed with the 12 risk-related genes were 
selected by the Pearson correlation method in TCGA-COAD 
high-risk group, low-risk group, and normal samples, and p < 0.05 
were considered as significant. The co-expressed genes with 
Pearson correlation coefficient |R|  >  0.6 were converted into a 
Topological Overlap Matrix (TOM) by “plotNetworkHeatmap” 
in the “WGCNA” package (Friedman et  al., 2010), and the 
co-expressed genes with Pearson correlation coefficient |R| > 0.7 
were converted into gene co-expression network by “network_plot” 
in the “correlate” package.

Gene ontology (GO) term analysis, Kyoto Encyclopedia of 
Genes and Genomes (KEGG, http://www.genome.jp/kegg/) 
pathway enrichment analyses were then performed with the 
“clusterprofiler” package to investigate the biological functions 
and pathway of the genes list used in the TOM heatmap. 
Gene set enrichment analysis (GSEA, https://software.
broadinstitute.org/gsea/index.jsp) was used to analyze signaling 
pathway enrichment in high‐ and low-risk groups. The result 
of the enrichment analysis of biological functions and pathways 
were displayed by visual graphics. The top  10 most significant 
results of BP (biological process), CC (cellular components), 
MF (molecular function), and KEGG were selected, respectively. 
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The GSEA analysis was performed with the following settings: 
FDR  <  0.25, NOM value of p  <  0.05, and |NES|  >  1.

RESULT

Characteristics of COAD Patients in the 
TCGA Dataset and GEO Dataset
We enrolled 439 patients with follow-up time >30  days in total 
as the discovery set for construction and validation of the model. 
263 and 176 patients were separated by random into two groups: 
the training group and the testing group. The patient characteristics 
of the training set and test set were in balance (p  >  0.1). The 
average age in years was 66.8  ±  12.2, and 119 females (45.2%) 
in the training set; while the average age in years was 65.4 ± 13.4, 
85 females (48.2%) in the testing set (Table  1).

Meanwhile, we downloaded four eligible datasets (GSE17538, 
GSE38832, GSE44861, and GSE44076) from GEO. However, 
two datasets (GSE44861 and GSE44076) were discarded for 
containing only 8 of 12 related genes we  screened out, and 
the other two datasets (GSE17538 and GSE38832) containing 
11 of 12 related genes are kept as validation datasets. Using 
the same exclusion criteria of the training group, 232 colon 
cancer patients out of a total of 238 samples were selected 
from GSE17583 datasets [average age in years was 64.7 ± 13.4, 
110 females (47.4%)]. GSE38832 contains 122 colon cancer 
patients with disease-free survival and disease-specific  
survival information, but not overall survival information. 

Characteristics of patients in the training set, testing set of 
TCGA, GSE17583, and GSE38832 are summarized in Table 2.

Selection of DNA Damage and DNA Repair 
Related Genes and Construction of the 
Signature
In the training set, univariate Cox regression analysis was 
performed for all the DNA damage and repair related genes 
selected from GSEA. As shown in Figure 1A, 27 DNA damage 
and repair related genes play a favorable role for COAD 
patients’ survival (blue, Hazard Ratio (HR)  <  1, p  <  0.05), 
and 133 genes were in risk roles (red, HR  >  1, p  <  0.05), 
while 1,385 gene showed no significance. Twelve genes were 
selected by stepwise multivariate regression analysis as reliable 
predictors, including CCNB3, ISY1, CDC25C, SMC1B, MC1R, 
LSP1P4, RIN4, TPM1, ELL3, POLG, CD36, and NEK4 
(Figure  1B). All the above genes except CDC25C show an 
independent prognostic manner (p  <  0.05). Among them, 
CCNB3, ISY1, SMC1B, MC1R, LSP1P4, RIN2, ELL3, POLG, 
and CD36 may be considered as oncogenes, whereas CDC25C, 
TPM1, and NEK4 may be  tumor suppressor genes. The 
coefficients of these DNAs indicated their impact on survival 
prediction. Subsequently, the risk score system for TCGA-
CAOD samples based on the expression level and the 
corresponding beta value of each gene was constructed by 
the following formula:

RS  =  (3.5)  ×  ExpCCNB3  +  (0.27)  ×  ExpISY1  +  (−0.081)   
×  ExpCDC25C  +  (0.48)  ×  ExpSMC1B  +  (0.26)  ×   
ExpMC1R  +  (0.34)  ×  ExpLSP1P4  +  (0.11)  ×  ExpRIN4  +   
(−0.039)  ×  ExpTPM1  +  (0.3)  ×  ExpELL3  +  (0.11)  ×   
ExpPOLG  +  (0.19)  ×  ExpCD36  +  (−0.46)  ×  ExpNEK4.

According to the optimal cutoff value of 2.95 simulated by 
“Surv_cutpoint” function in “survminer” package, the TCGA-
COAD patients were classified into high‐ and low-risk sets 
(Figure  2A). The patients’ status, survival time, and DNA 
expression levels of the test TCGA set, total TCGA set, and 
training TCGA set are shown in Figures  2B–G.

The survival analysis presented that the OS of the low-risk 
set was better than that of the high-risk set in the training 
set of TCGA (hazard ratio, HR = 0.16, 95% confidence interval, 
95% CI (0.1–0.24; Figure  2H). The results were consistent in 
the TCGA total set (HR = 0.138, 95% CI (0.079–0.24); p < 0.001; 
Figure  2I) and testing set (HR  =  0.234, 95% CI (0.12–0.44); 
p  <  0.001; Figure  2J). The 5-year survival rate for high and 
low risk is 11 and 79%, respectively, (Figure  2I). The area 
under the ROC curve (AUC) for 1-, 3-, 5-, and 10-year OS 
were all above 0.8  in the TCGA training set (Figure  2K), and 
in the TGCA total set (Figure  2L) and TCGA testing set 
(Figure 2M), they were all above 0.75. Meanwhile, we investigated 
the relationship between risk score and clinicopathologic features 
including T, N, M, and stage in the TCGA total cohort. As 
shown in Figures  3A–D, respectively comparing the clinical 
data of patients of the same T, N, M, and stage in the high-
risk and low-risk groups, the prognosis of patients was 
significantly different. Under the same T, N, M, or stage, the 

TABLE 1 | TGCA patient characteristics.

Variable
Number

Total set Training 
set

Testing 
set

p value

Case 439 263 176 /
Gender Female 204 119 85

0.396
Male 235 144 91

Survival 
status

Alive 346 210 136
0.811

Dead 93 53 40
Endpoint 
time

2.4 ± 2.0 2.5 ± 2.2 2.3 ± 1.8 0.943

Age 66.3 ± 12.7 66.8 ± 12.2 65.5 ± 13.4 0.649
M M0 324 194 130

0.994M1 61 39 22
MX 49 27 22

N N0 258 149 109
0.574N1 103 65 38

N2 78 49 29
T T1 11 6 4

0.313
T2 78 42 36
T3 299 174 125
T4 51 40 11
NA 11 6 5

Stage STAGE I 75 41 34

0.499
STAGE II 167 100 67
STAGE III 125 77 48
STAGE IV 61 39 22

NA, not reported.
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survival time of patients in the low-risk group was longer 
than that of the high-risk group.

Validation of the Genes Signature in GEO 
Dataset
GSE17538 and GSE38832 datasets both based on the platform 
of Affymetrix-GPL570 included the 11 above risk-related genes 
except LSP1P4 were used for the following analysis. The 
results showed that though the new gene signature missing 
a significant gene, the 11-gene based signature still had a 
significant performance for OS, DFS, and DSS prediction in 
the two GEO validation datasets (Figures  4A,D,G,I,J,L). The 
relationship between risk score of “ajcc_stage” and tumor 
differentiated grade was also investigated in the two sets, 
which showed that in the same stage or differentiated level, 
the survival time of patients in the low-risk group was 
apparently longer than that of the high-risk group 
(Figures  4B,C,H,K), similar to the results in the training 
set. Together, we  considered that the 11-gene signature had 
a prominent prognostic ability not only for OS prediction 
but also DFS and DSS prediction.

Comparison of the Prognostic 
Performance of Genes Signature With 
Clinical Predictive Factors
Given the fact that T, N, M, and stage have been thought to 
be  predictive factors of the prognosis of COAD in the past, 
we  managed to compare the prognostic performance of these 
clinicopathologic features with our 12-gene signature. Survival 
analysis of the above clinical indicators was completed, 
respectively, in the high-risk and low-risk groups (Figures  2L, 
3E-H). The survival analysis presented that these 
clinicopathologic features showed less satisfactory performance 
for OS prediction than that of 12-gene signature. The area 
under the ROC curve (AUC) for 1-, 3-, 5-, and 10-year OS 
of T (the size of the tumor) were 0.67, 0.634, 0.576, and 
0.543  in the total TCGA set, comparing with the AUC of 

12-gene signature in the total TCGA set (0.832, 0.797, 0.843, 
and 0.797). The results were consistent in the GEO colon 
cancer validation sets containing not only COAD patients 
(Figure  4). Combining the above results, a 12-gene signature 
can be used as a satisfactory indicator to predict the prognosis 
of COAD patients or the whole colon cancer types.

Establishment and Validation of the 
Nomogram Survival Model
By the usage of multivariable Cox regression analyses, pathologic 
M, pathologic T, pathologic N, stage, age, gender, and risk 
score status were selected to assess the independent prognostic 
manner in the COAD samples. Based on the result shown 
in Figure  1C, the risk score can be  used as an independent 
prognostic factor without being affected by clinicopathologic 
features. And the HR of the high-risk group is 4.56 (2.87–7.25) 
times danger than that of the low-risk group (Figure  1C) 
The result of the multivariable Cox regression analysis of 12 
genes along with clinicopathologic features was revealed in 
Figure  1D, indicating that most of these genes except MC1R 
can also act as independent prognostic factors, and may have 
an excellent suggestive effect on predicting the survival of 
COAD patients. Among these genes, CCNB3, ELL3, LSP1P4, 
and SMC1B showed a significant harmful effect on COAD 
OS (HR  >  1.5, p  <  0.05).

To establish a clinical method to predict the survival probability 
of COAD patients, we created a nomogram by LASSO regression 
analysis based on the TCGA cohort to estimate the probability 
of the 1-, 3-, and 5-year OS with T, N, M, age, gender, stage, 
and risk group status (Figure  5A). LASSO regression analysis 
established that the nomogram contained 5 prognostic factors 
including age, T, M, N, and risk (Figures  5C,D). The AUC 
of 1-, 3-, and 5-year OS predictions all above 0.8 (Figure  5G).

Calibration curves were used to evaluate the consistency 
between actual and predicted survival rates. As shown in 
Figure  5B, the accuracy of this model in predicting a 5-year 
survival rate is low, but in predicting a 1‐ and 3-year survival 

TABLE 2 | GEO patient characteristics.

GSE17583 GSE38832

Case 232 Case 122

Gender Female 110
dfs time (year) 3.84 ± 2.77

Male 122

Survival status Alive 139
dfs status

no recurrence 83

recurrence 9

NA 30Dead 93
Endpoint time (year) 3.95 ± 2.56 dss status no death 94
Age 64.73 ± 13.43 death from cancer 28
Ajcc stage 1 28 Ajcc atage 1 18

2 72 2 35
3 76 3 39
4 56 4 30

Tumor differentiation WD 17
/MD 235

PD 30

NA, not reported; WD, well differentiated; MD, moderately differentiated; PD, poorly differentiated.
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rate it is high, showing that the nomogram was best for 
predicting 1-, 3-year OS in COAD patients. The concordance 
index (C-index) was calculated to evaluate the model prognosis 
capability. The values of 0.5 and 1.0 represent a random 
probability and an excellent performance for predicting survival 
with the model. The C-index of the risk score and nomogram 
were all above 0.75 between the 1–5  years OS prediction, 
which was much better than any other independent predictor 
(Figure  5E). We  used DCA analysis to confirm a range of 
threshold probabilities for a prediction mode, as shown in 
Figure  5F, the nomogram threshold probability based on 
12-gene combinations was significantly better than the default 

strategies of treating all or none at a threshold probability 
more than 0.1, and the results come better than any other 
predictor used in this study.

Function and Signaling Pathways Analysis 
of Genes in the Prognosis Module
The model constructed by 12 genes can effectively distinguish 
patients with different prognoses, which suggests that patients 
with different risk scores may be involved in different important 
pathways that cause differences in the final prognosis. Based 
on the above conjectures, we  performed GSEA analysis in 
high‐ and low-risk patients, respectively, to confirm the significant 

A B

C D

FIGURE 1 | Volcano plot of DNA damage and repair related genes and forest plot of the multivariate Cox regression analysis in TCGA cohorts. (A) Volcano plot of 
DNA damage and repair related genes: blue indicates protective genes, red indicates harmful genes and black indicates no significance genes. (B) Forrest plot of 
the multivariate Cox regression analysis OS of 12 genes. (C) Forrest plot of the multivariate Cox regression analysis OS of clinical factors and risk score. (D) Forrest 
plot of the multivariate Cox regression analysis OS of clinical factors and 12 genes. Beta values represent the coefficient index β for each gene and clinical factors.
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FIGURE 2 | Distribution of risk score, Gene expression heatmaps, Kaplan-Meieranalysis and ROC analysis of 12-gene signature in the training TGCA set, total 
TCGA set, and testing set. (A) Distribution of risk score and the cutoff point. (B–D) Gene expression heatmaps in the training TGCA cohort (B), total TCGA cohort 
(C), and testing TCGA (D; The blue color is the low-risk group and the red color is the high-risk group). (E,F) Correlation between the prognostic signature and the 
OS of patients in the training TGCA cohort (E), total TCGA cohort (F), and testing TCGA (G). (H–J) Kaplan-Meier survival analysis of the low‐ and high-risk group 
patients in the training TGCA cohort (H), total TCGA cohort (I), and testing TCGA (J). (K–M) ROC curve analysis according to the 1, 3, 5, 10-year survival of the 
area under the AUC value in the training TGCA cohort (K), total TCGA cohort (L), and testing TCGA (M).
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FIGURE 3 | Kaplan-Meier survival for OS in high-risk and low-risk group of different subgroup and ROC curve analysis of T, N, M and stage in the total TCGA 
cohort. (A) In subgroups stratified by T1, T2, T3, and T4. (B) In subgroups stratified by N0, N1, and N2. (C) In subgroups stratified by M0, M1, and MX. (D) In 
subgroups stratified by stage I, stage II, stage III, and stage IV. (E–H) ROC curve analysis of T, N, M and stage according to the 1, 3, 5, and 10-year survival of the 
area under the AUC value in the total TCGA cohort.
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FIGURE 4 | Kaplan-Meier survival and ROC curves of the 12-DNA signature, grade and stage in the two GEO sets. (A) Correlation between the 12-DNA signature 
and the overall survival of patients in the GSE 17538 set. (B,C) Kaplan-Meier survival for OS in high-risk and low-risk group of different subgroup in the GSE 17538 
set: in subgroups stratified by stage I, stage II, stage III, and stage IV, in subgroups stratified by grade MD, grade PD, and grade WD. (D–F) ROC curve analysis of 
risk score, stage and grade according to the 1, 3, 5, and 10-year survival of the area under the AUC value in the GSE 17538 set. (G) Correlation between the 12-
DNA signature and the disease specific survival of patients in the GSE 38832 set. (H) Kaplan-Meier survival for disease specific survival in stage 1, 2, and 3 
subgroups of high-risk and low-risk group in the GSE 38832 set. (I) ROC curve analysis of risk score according to the 1, 3, and 5-year disease specific survival of 
the area under the AUC value in the GSE 38832 set. (J) Correlation between the 12-DNA signature and the disease-free survival of patients in the GSE 38832 set. 
(K) Kaplan-Meier survival for disease-free survival in stage 1, 2, 3, and 4 subgroups of high-risk and low-risk group in the GSE 38832 set. (L) ROC curve analysis of 
risk score according to the 1, 3, and 5-year disease-free survival of the area under the AUC value in the GSE 38832 set.
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FIGURE 5 | Nomogram construction based on 12-gene signature and prognostic value of 12 genes. (A) The nomogram for predicting the proportion of patients 
with 1-, 3-, or 5-year OS. (B) Calibration plots of the nomogram. (C,D) LASSO regression analysis used 10-fold cross-validation via the maximum criteria. 
(E) C-index of the nomogram (F) Decision curve analysis of nomogram predicting 1-, 3-, and 5-year OS of COAD comparing age, stage, the risk score, Pathologic 
T, Pathologic N, and Pathologic M. (G) Time-dependent ROC analysis of nomogram predicting 1-, 3-, and 5-year OS of COAD.
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pathways in each group. According to the enrichment results, 
two different groups have their characteristic pathways. Multiple 
pathways such as Alzheimers disease, Huntingtons disease, 
Oocye meiosis, Proteasome, and Tight junction are downregulated 
in patients with a low-risk score (Figure  6A). On the other 
hand, in the high-risk group, two pathways, including Basal 
cell carcinoma and Melanogenesis, were up-regulated (Figure 6B).

Biological processes are often not the result of the action 
of a single gene but are often realized through the interaction 
between genes. Considering that gene expression varies in 
different individuals and different statuses, we searched for genes 
related to 12 genes in the normal group, low-risk group, and 
high-risk group and took the intersection of the three as the 
gene group of 12 genes co-expression. We  used R  =  0.6 and 
p  <  0.01 as the cutoff value and the correlation with any one 
of the 12 genes met the condition that they were included in 
the statistics. Finally, 16,505, 9,561, and 5,260 (including 12 
genes) were found in the normal group, low-risk group, and 
high-risk group, respectively (Figure 7A). The number of genes 
related to 12 genes is the largest in the normal group and the 
least in the high-risk group, which is related to tumor heterogeneity. 
The lowest number of genes in high-risk patients suggests more 
significant heterogeneity, which is consistent with the final poor 
prognosis. We  used WGCNA to build the Topological Overlap 
Matrix (TOM), which proved that the selected gene group has 
a good correlation (Figure  7C). Next, we  further screened the 
related genes with a cutoff value >  0.7, resulting in a total of 
42 genes including the genes of the module. These genes are 
roughly classified into three clusters, most of the 12 genes 
(10/12) are located in the upper left corner, and there is a 
clear correlation between the other two clusters of genes, which 

further proves the relative independence of the genes of the 
module and the reliability of the co-expressed genes (Figure 7B).

GO enrichment analysis and KEGG pathway enrichment 
analysis are performed to investigate the biological functions 
and pathways of the Co-expressed genes. The results of KEGG 
enrichment analysis showed that the co-expressed genes were 
significantly enriched in important biological pathways, such as 
RNA transport, Cell cycle, Spliceosome, and so on (Figure  7D). 
The cellular components (CC) analysis indicated that proteins 
encoded by genes were mostly located in the chromosomal 
region, nuclear speck, condensed chromosome, chromosome 
centromeric region, and spindle (Figure  7E). Those molecular 
function (MF) were significantly associated with ATPase activity, 
helicase activity, ATPase activity coupled, catalytic activity acting 
on DNA, and so on (Figure  7F). For the biological process 
(BP), genes were mainly enriched in chromosomal segregation, 
organelle fission, nuclear division, DNA replication (Figure 7G).

DISCUSSION

COAD has one of the highest fatality rates of tumors in the 
digestive system. It is more common in men over the age of 
40. However, early diagnosis of COAD was extremely difficult, 
and many patients have progressed to advanced cancer when 
they are diagnosed with COAD, leading to a bad prognosis. 
Early diagnosis and treatment of COAD can greatly improve 
the prognosis of COAD patients, which will not only reduce 
the economic burden of patients but also improve the quality 
of life. TNM staging is the one that is currently widely used, 
but this staging has certain drawbacks, and differences in treatment 

A B

FIGURE 6 | Biological pathways in two different risk groups by GSEA analysis. (A) Enriched pathways in the low-risk group. (B) Enriched pathways in the high-risk 
group.
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FIGURE 7 | Biological functions and pathways of co-expressed genes. (A) Venn diagram of overlapping genes among Normal group, Low-risk group, and High-
risk group. (B) Topological overlap heatmap of gene co-expression network. Dark colors mean high topological overlap, while Light colors mean low topological 
overlap. (C) Co-expressed genes selected by R2 > 0.7. (D) The top 10 most significant results of KEGG. (E–G) The GO enrichment analysis of co-expressed genes, 
including the CC (E), the MF (F), and the BP (G).
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options may have caused unexpected differences in survival 
outcomes. For example, patients with stage IIIA disease receiving 
chemotherapy have better survival than those with stage IIB 
disease, where the survival difference is based on the benefit 
of chemotherapy or whether the stage IIA tumor itself is unknown 
according to aggressiveness (O’Connell et al., 2004). Meanwhile, 
with the intensive research on the molecular mechanism of 
tumors, the advantage of prognosis prediction based on gene-
level is gradually exhibited. For example, colorectal cancers 
(CRCs) are classified into MMR and MMR-d based on whether 
they have normal DNA mismatch repair (MMR) function, a 
phenotype that is also an important prognostic indicator. It has 
been controversial whether the MMR-d/MSI-H phenotype benefits 
from 5-fluorouracil – based chemotherapy (Stadler, 2015). 
Therefore, the discovery, identification, and evaluation of new 
biomarkers are greatly important for COAD patients.

By consulting the previous literature, DNA damage and repair 
have been proved to be related to the proliferation and metastasis 
of CRC, but there is no research to clarify its direct relationship 
with the prognosis or consider DNA damage and repair related 
genes as prognosis predictors, which serves as the breakthrough 
point of our research. DNA is constantly on the exposure to 
endogenous and exogenous sources of damage, destroying 
genomic integrity (Hoeijmakers, 2009). Unable to repair DNA 
damage in a precise and well-timed way will lead to various 
genomic aberrations, including point mutations, chromosomal 
translocations, and the acquisition or loss of chromosomes. 
The accumulation of these aberrations will further cause changes 
in the cells, thus driving the tumorigenesis (Burrell et  al., 2013; 
Khanna, 2015; Jeggo et  al., 2016). The contrasting activity of 
multiple DNA repair pathways plays a key role in interrupting 
this accumulation and maintaining genomic integrity (Mouw 
et  al., 2017). DNA repair and damage have been described as 
being related to the occurrence and development of various 
cancers, such as breast cancer and ovarian cancer. So, 
we  legitimately speculated that DNA damage and repair were 
closely related to the development of CRC. We  used DNA 
damage and repair related gene sets collected from GSEA gene 
sets and TCGA-COAD cohort to assess their diagnostic value.

The fast development of sequencing technology produces 
massive data, which facilitates tumor biomarker identification 
and a lot of resources have been invested in corresponding 
research. For example, Yang et  al. (2019) construct a prognosis 
model based on the methylation profiles of 18 CpG that can 
help to identify new biomarkers, precise drug targets, and 
molecular subtype classification of COAD patients. Ma et  al. 
(2019) constructed a 10 differentially expressed microRNA 
prediction model that has high accuracy for OS. In this study, 
we constructed 12 DNA damage and repair related genes which 
showed a significant performance for OS prediction in the TCGA 
cohort and two GSE validation cohort. ROC, DCA, KM, and 
C-index all proved the 12-gene signature could be  an excellent 
predictor for OS prediction. Meanwhile, we  built a nomogram 
survival model to predict 1/3/5 years survival rate by combining 
Pathologic M, pathologic T, pathologic N, age, and stage.

There is a point worth making, all the samples included 
in the TCGA database were COAD, however, the samples in 

the GEO database include all types of colon cancer and the 
model constructed by TCGA has 12 genes, while the GEO 
database only contains 11 of them, which leads to the result 
that the model has an ideal prediction effect in the train and 
test groups of TCGA, while the validation effect in GEO is 
not as good as that in TCGA. We  also note that one of the 
GEO databases only have DFS and DSS information to illustrate 
our model established by COAD samples. Relapse or tumor-
induced death also has a good predictive function, but there 
is no other corresponding data to verify. In our research, 
we  also refer to a novel web analysis tool suite, TSUNAMI, 
which can be  used for data download, preprocessing and 
enrichment analysis (Huang et  al., 2019).

After reviewing the existing literature, we  found that the 12 
genes are more or less related to tumors. The cyclin B1-Cdk1 
complex is a key regulator of a large number of phosphorylated 
proteins mitotic entry. Regulation of the mitotic events is linked 
to activity control of the cyclin B1-Cdk1 complex to make 
cells enter mitosis, arrest at G2-phase, or skip mitosis (Nakayama 
and Yamaguchi, 2013). Base excision DNA repair (BER) is the 
most vital pathway to remove oxidized or mono-alkylated DNA, 
and APE1 is an important multifunctional enzyme in BER. 
Oxidative damage induces ISY1 expression. This gene promotes 
the 5'-3' endonuclease activity of APE1, thereby enhancing the 
repairability of DNA damage in the cell genome (Jaiswal et  al., 
2020). Cell Division Cycle 25C (CDC25C) plays an important 
role in the regulation of G2/M processes and mediates DNA 
damage repair by checkpoint protein regulation in case of DNA 
damage. The abnormal expression of cdc25c is related to 
tumorigenesis and development, and it is a promising therapeutic 
target (Liu et al., 2020). A large number of mitochondrial DNA 
(mtDNA) deletion is related to many human diseases and aging. 
DSB (Double-Strand Breaks) is one of the causes of mtDNA 
deletion. The exonuclease function of POLG can quickly degrade 
mtDNA fragments, which minimizes the effect of DSB on 
mtDNA deletion. The abnormality of POLG will eventually 
increase the deletion of mtDNA, which has been confirmed 
in mutant and aging individuals (Nissanka et al., 2018). SMC1B 
exists in mammalian somatic cells and is related to mitotic 
cohesion proteins, which help to maintain genome stability and 
the normal process of gene transcription (Mannini et al., 2015). 
SMC1B is found to be mutated in UBC and plays an important 
role in it (van der Lelij et  al., 2017). Ras and Rab interactor 
2 (RIN2) can associate with GTP-bound Rab5 and take part 
in early endocytosis (Syx et al., 2010). This gene and SLC22A18, 
PIGR, and GJA12 can effectively divide Barrett’s Esophagus 
into three groups with different risks and can detect dysplasia/
early-stage neoplasia (Alvi et  al., 2013).TPM1, as a tumor 
suppressor gene, was found to be  significantly downregulated 
in colorectal cancer, mainly because of epigenetic and genetic 
events, which are closely related to the occurrence of colorectal 
cancer (Mlakar et  al., 2009). ELL3 is encoded by an androgen-
response gene in the prostate, and it is homologous with ELL 
and ELL2 (Miller et  al., 2000). It was found that the lack of 
ELL significantly hindered the transcription resumption of RNA 
Pol II (RNA polymerase II) after DNA repair and increased 
the RNA Pol II retention to the chromatin, which proved to 
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be an important member of RNA Pol II restart and participated 
in the transcription recovery after DNA repair (Mourgues et al., 
2013). Through bioinformatics methods, CD36 was found to 
be associated with lipid metabolism and immune response (Hao 
et  al., 2019), and its high expression was associated with poor 
prognosis of COAD, and it was found that CD36 was the 
target of quercetin on COAD (Pang et  al., 2019). MC1R is a 
G-protein-coupled receptor, can cause increased pigmentation, 
G 1-like cell cycle arrest induced by ultraviolet B, and control 
senescence and melanoma in vivo and in vitro, which plays a 
central role in the prevention of melanoma (Chen et  al., 2017). 
The expression of CCNB3 is usually limited to the testis and 
encodes a protein with premeiotic function, CyclinB3. CCNB3 
can form a fusion gene with BCOR, BCOR-CCNB3, which 
defines a new subtype of bone sarcoma (Astolfi et  al., 2019). 
NEK4 encodes NIMA-related kinase 4. Inhibition of NEK4 can 
lead to decreased response to DNA damage and damage the 
anti-tumor activity of p53. NEK4 is expressed in different stages 
of CRC, with the highest expression in stage I  patients and 
the lowest expression in stage IV patients. It indicates that a 
low level of NEK4 is an adverse prognostic factor in CRC 
patients (Huo et al., 2017). Collectively, we suggested our 12-DNA 
signature and nomogram could be practical and reliable prognostic 
tools for COAD. In terms of COAD’s overall survival prediction, 
they can provide higher clinical value than traditional prediction 
systems and utilize treatment decisions.

Through the gene functional enrichment analysis of 12 genes 
and their co-expressed genes, we  can find that 12 genes are 
involved in the occurrence and development of COAD by 
participating in a variety of important biological pathways, 
meanwhile, through GSEA analysis, we  found that there were 
different pathways in the high‐ and low-risk group. For example, 
in the low-risk patient group, it is mainly concentrated in 
Alzheimers disease, Huntingtons disease, Oocye meiosis, 
Proteasome, and Tight junction, in which Tight junction is closely 
related to intestinal inflammation and the occurrence of intestinal 
tumor (Sharma et  al., 2018). The proteasome pathway is widely 
studied, thanks to the proteasome’s ability to control cellular 
protein quality by degrading misfolded or damaged proteins, 
which is also key to tumor cell survival (Konstantinopoulos and 
Papavassiliou, 2006). UPP (The ubiquitin-proteasome pathway) 
abnormalities play an important role in the occurrence and 
development of colon cancer. For example, APC (Adenomatous 
Polyposis Coli) gene mutations in patients with familial 
adenomatous polyposis syndrome can promote the occurrence 
of final colon cancer (Konstantinopoulos and Papavassiliou, 2006).

Although the 12-gene signature and nomogram showed excellent 
performance in the training set and test sets, it had the following 
defects. First, the gene signature was built with 12-genes but 
validated by 11-genes in the GEO cohort for the GEO database 
only contains 11 of them. A relative NRI analysis showed that 
the 12-gene model performed better than the latter model 
(Supplementary Figures 1A–C). The NRI  >  0 for the difference 
between the two model predictions of the 1, 3, and 5  year 
survival. This means that the 12-gene model has improved 
predictive ability compared to the 11-gene model. Meanwhile, 
though missing a significant gene, the predictive ability for OS, 

DFS, and DSS of the risk model was significant in the two GEO 
validation datasets, as we  have shown in the results. Second, 
although the 12-gene signature performed well in predicting the 
survival of COAD patients, it lacked the verification of large-
scale prospective trials. Third, all the samples included in the 
TCGA database were COAD, while the samples in the GEO 
database include all types of colon cancer. The TCGA data is 
gene sequencing data while the GEO data is gene chip data, 
these differences may mean that the results to come from the 
validation data may not fully reflect the real prognostic effect 
of these genes on COAD. And finally, the associated mechanisms 
had not been validated in COAD cells. Based on this, our 
follow-up research will focus on verifying the conclusions of this 
study in terms of clinical application and molecular mechanisms.

In conclusion, we  introduced a 12-gene signature which 
might be  an independent prognostic factor in COAD and a 
novel nomogram that could predict the survival of COAD patients.
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Feature Selection for Breast Cancer
Classification by Integrating Somatic
Mutation and Gene Expression
Qin Jiang and Min Jin*

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

Exploring the molecular mechanisms of breast cancer is essential for the early
prediction, diagnosis, and treatment of cancer patients. The large scale of data obtained
from the high-throughput sequencing technology makes it difficult to identify the driver
mutations and a minimal optimal set of genes that are critical to the classification of
cancer. In this study, we propose a novel method without any prior information to
identify mutated genes associated with breast cancer. For the somatic mutation data, it
is processed to a mutated matrix, from which the mutation frequency of each gene can
be obtained. By setting a reasonable threshold for the mutation frequency, a mutated
gene set is filtered from the mutated matrix. For the gene expression data, it is used
to generate the gene expression matrix, while the mutated gene set is mapped onto
the matrix to construct a co-expression profile. In the stage of feature selection, we
propose a staged feature selection algorithm, using fold change, false discovery rate
to select differentially expressed genes, mutual information to remove the irrelevant and
redundant features, and the embedded method based on gradient boosting decision
tree with Bayesian optimization to obtain an optimal model. In the stage of evaluation,
we propose a weighted metric to modify the traditional accuracy to solve the sample
imbalance problem. We apply the proposed method to The Cancer Genome Atlas
breast cancer data and identify a mutated gene set, among which the implicated
genes are oncogenes or tumor suppressors previously reported to be associated with
carcinogenesis. As a comparison with the integrative network, we also perform the
optimal model on the individual gene expression and the gold standard PMA50. The
results show that the integrative network outperforms the gene expression and PMA50
in the average of most metrics, which indicate the effectiveness of our proposed method
by integrating multiple data sources, and can discover the associated mutated genes in
breast cancer.

Keywords: breast cancer, machine learning, classification, feature selection, gradient boosted decision tree

INTRODUCTION

Breast cancer is considered to be the most prevalent cancer among women and the second
common cause of death in both developed and undeveloped countries. It is caused by multiple
factors including genomic, transcriptomic, and epigenomic involvement in its formation and
development. With the development of technology, understanding the pathogenesis of cancer from
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the perspective of molecular contributes to effective diagnosis and
treatment. The large-scale cancer genomics project, The Cancer
Genome Atlas (TCGA) (Tomczak et al., 2015), has produced a
large volume of data, providing ways to explore cancer formation
and progression.

In general, the cancer transcriptome contains gene expression,
including messenger RNA (mRNA), long non-coding RNA
(lncRNA), and microRNA (miRNA). Previous studies focused
on utilizing the gene expression profile to successfully diagnose
individuals based on the differential gene expression (Li et al.,
2017) and other clinically relevant phenotypes. Meanwhile, the
cancer genome contains many mutations. Among them, one of
the most important is somatic mutations, which include single-
nucleotide variant (SNVs) and small insertions and deletions
(indels). Some mutations that contribute to cancer progression
from normal to malignant are called driver mutations, and
others that accumulate in cells but do not contribute to
cancer development are called passengers (Bozic et al., 2010).
Distinguishing driver mutations from the passengers that
have no critical effect on cancer cells is a crucial step and
challenging task in understanding the molecular mechanisms
of cancer, which can guide effective treatment and prognosis
for cancer patients and promote the development of targeted
drugs. In earlier studies, researchers focused on detecting driver
genes that cause tumors (Merid et al., 2014). A common
approach is to identify driver genes by detecting positive
signals in tumors. Because of the complexity of the cancer
genome, driver genes contain not only driver mutations but
also passenger mutations. This makes this kind of approach
sometimes ineffective.

On the other hand, studies have shown that somatic mutations
frequently perturb the expression level of affected genes and
thus disrupt the pathways controlling normal growth (Kwong
et al., 2020). For example, mRNAs carrying a premature stop
codon, which can be introduced by truncation mutations, are
typically eliminated by the process called nonsense-mediated
mRNA decay, and thus, both the concentration of mRNA
transcripts and protein products would be decreased owing to
truncation mutations (Jia and Zhao, 2016). Considering the
association between the somatic mutation and gene expression,
several studies have emphasized the necessity of integrating
both types of data to identify candidate driver genes (Masica
and Karchin, 2011; Zhang and Wang, 2020). For cancer
analysis, many researchers construct a co-expression network
by integrating different types of data. He et al. (2017) and
Wu et al. (2019) utilized the network by integrating somatic
mutation with gene expression to identify the type of cancers
and cancer subtypes. Mamidi et al. (2019) integrated germline
and somatic mutation to discover biomarkers in triple-negative
breast cancer and identified the molecular networks and
biological pathways.

As the molecular network has been verified to be effective
for the biological discovery of cancers, current studies utilized
the network across different types of cancer or cancer subtypes.
However, the objective of most researches is the universality
of the methods, which makes it difficult to be equally effective
in all disease types. In this study, we aim to construct an

efficient method of architecture for the diagnosis of breast
cancer based on the network of somatic mutation and gene
expression. We are focused not only on finding more biomarkers
but also on the classification performance of the model. First,
the somatic mutation is used to generate a binary mutation
network; similarly, an expression network is obtained from the
gene expression profiles. Then, for the expression network, we
compute both the observed p-value and the adjusted p-value
to correct for multiple-hypothesis testing (false discovery rate,
FDR) and thus obtain the differential expression network.
Meanwhile, an integrative network is constructed by combining
the mutation network and the differential expression network.
Thirdly, we rank the genes in the integrative network by
mutual information (MI) and select the top 50 genes, which
are highly correlated with breast cancer. Finally, we use the
Bayesian optimization method to optimize the classification
model, gradient boosting decision tree (GBDT), which is further
applied to assess the features selected from the previous
step. In terms of evaluation metrics, the traditional metric
of accuracy does not consider the sample imbalance, so we
propose a simple and effective metric, balanced accuracy, to
reveal the ability of the different model to classify positive and
negative samples.

MATERIALS AND METHODS

We used statistical and machine learning methods to develop this
novel method for feature selection and classification, including
the preprocessing of data, filter method, and embedded method
for feature selection, processing of imbalanced data, and the
final classification model. Figure 1 shows the flowchart of the
proposed method.

Dataset Construction and Preprocessing
In this research, we use publicly available breast cancer datasets
(BRCA) from TCGA, including transcriptome gene expression
and somatic mutation. Considering the different structures of
these two types of data, we used different methods to preprocess
them. Table 1 shows the numbers of samples and features for
the two datasets.

The BRCA gene expression dataset comprises 1222 samples
and 57,063 genes. There are 113 normal samples and 1109 tumor
samples. We used the edgeR package to filter the genes expressed
in small amounts in most samples and normalized the data.
The gene expression data was reduced from 57,063 to 34,465 by
deleting the genes expressed in small amounts in most samples.

The somatic mutation data comes from the simple nucleotide
variation (SNV) in the TCGA-BRCA project. The data file
includes SNP, INS, and DEL, three types of mutations. The
important fields in the data file are Hugo_Symbol (gene name),
Variant_Type, and Tumor_Sample_Barcode (sample name).
Statistically, the somatic mutation data contains 18,127 genes and
986 samples. To get the mutation frequency of each gene in all
samples, we use a Perl script to process the data file. For example,
if gene A is present in sample S, that means sample S has a
mutation in gene A, then we code it as “1,” otherwise we code
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FIGURE 1 | The flowchart of the proposed method. From the somatic mutation matrix, the mutation frequency of each gene is obtained to select the highly mutated
genes, which will be integrated by mapping into the gene expression matrix to get the integrative network. After FDR, FC, and mutual information ranking, the feature
genes serve as the input to GBDT. Then, the optimal model is obtained by Bayesian optimization. During the training process, the optimal gene subset is obtained
simultaneously.

it as “0.” Supplementary Table 1 shows the coding schedule of all
genes in samples. Given the sample set S = {s1, s2, . . .sn}, n is the
total number of samples, and si represents the sample i. Gene set
G = {g1, g2, . . .gm}, m is the total number of mutation genes, and
gj represents the gene j. In the set of sample number C = {c1, c2,
. . .cm}, ck represents the number of samples with “1” in gene k.
The set C can be calculated by the number of “1” in each row in
Supplementary Table 1.

According to Supplementary Table 1 and set C, we can
obtain the frequency of mutations across patients to assess the

percentage of patients carrying a particular mutation in each
mutated gene. To further reduce the interference of genes with
low mutation rates, we set the threshold p as the percentage of the
total samples to select the genes with high mutation frequency.
The selected gene set constitutes the mutation network. In the
experiment, we compare the effects of different p on classification
accuracy by the proposed model, and the result is shown in
Supplementary Table 2. Due to the highest accuracy 97.31%
obtained by setting the threshold p as 1%, we apply this value in
the proposed method.
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The Way to Combine Somatic Mutation
and Gene Expression
Somatic mutations in cancer genomes frequently perturb the
expression level of affected genes. Then, the pathways controlling
normal growth are disrupted (Zhang et al., 2013). Similarly, the
research by Ding et al. (2015) assessed the impact of mutations on
gene expression as a means of quantifying potential phenotypic
effects and for novel cancer gene discovery. Fleck et al. (2016)
addressed the issue of cancer heterogeneity by using both somatic
mutation and gene expression data and proposed a formulation
to model the molecular progression of cancer. They discovered
that the progression of the disease was reflected in both the
accumulation of mutations and changes in gene expression levels.
Further study (Jia and Zhao, 2016) focused on the functional
footprints of somatic mutations in 12 cancer types and grouped
the mutations by mutation type, cluster, and status. This study
unraveled the effects of somatic mutation features on mRNA and
protein expression.

Our study is based on the assumption that mutations may
cause changes in the cell’s state, such as underexpression or
overexpression of different genes. Then, we combine the somatic
mutation network with the gene expression network to obtain
an integrative network. In the integrative process of the two
types of networks, we refer to the gene expression network to
obtain the expression value of the somatic mutation genes in the
mutation network. It is important to note that in the subsequent
classification task, the normal samples in the expression network
are added as the control group.

Fold Change and False Discovery Rate
Fold change (FC) is used to calculate the differential multiples
of gene expression values between cancer samples and normal
samples, which is the basic method for detecting differential
genes, and represents the expression values of feature i and
sample j in cancer samples and normal samples; FC is defined
as:

FCi =
X̄i

Ȳi
. (1)

When FC exceeds the initial set threshold, it can be considered
that the feature is different, and it is generally considered that
there is a significant difference when the difference multiple is
more than 2. FC can directly obtain the differentially expressed

TABLE 1 | Confusion matrix for statistical tests.

H0 is true H1 is true Total

Significant V S R

Not significant U T m-R

Total m0 m-m0 m

H0 is the null hypothesis, H1 is the alternative hypothesis or reject null hypothesis.
m is the number of hypothesis tests. m0 is the number of null hypotheses that are
true. m-m0 is the number of alternative hypothesis that are true. V is the number
of false-positive cases. S is the number of the true positive cases. U is the number
of true negative cases. T is the number of false negative cases. R = V + S is the
number of rejected hypotheses. FDR = E(V/R).

values, but in the absence of false-positive control, the rate of
false-positive results is relatively high.

According to statistical theory, in multiple-hypothesis testing,
it is important to control the probability of making mistakes in
multiple statistical inferences, called FDR. FDR can be used to
analyze deferentially expressed genes to control the proportion
of false positives (Reiner-Benaim, 2010). Table 2 shows the
confusion matrix for the statistical test. FDR can be defined as
follows:

FDR = E
(

V
V + S

)
= E

(
V
R

)
(R > 0) . (2)

The number of false positives in multiple-hypothesis tests can be
controlled by controlling that FDR is below the threshold q. In
general, keep FDR below 0.01, or ensure that there is at most
one false positive for every 100 positive hypotheses. Feature genes
with significant differences can be identified by FC and FDR, but
these two methods do not evaluate the classification performance
of these features.

Fold change and FDR are applied to integrative data to select
the differentially expressed genes. By comparing the classification
balanced accuracy under different FC and FDR thresholds shown
in Supplementary Tables 3, 4, the optimal value of FC and FDR
thresholds is obtained: log (FC) > 1.0, FDR < 0.05.

Mutual Information
Mutual information (Bonev et al., 2008) is a useful measure of
information in information theory and is a kind of filter method.
It refers to the correlation between two events set. The datasets
consist of tens of thousands of gene columns and one label
column. The gene column is defined as Gi, and the label column
is defined as L. MI(Gi, L) is represented as the MI between the
gene Gi and the label L. The calculation equation is Eq. 3.

MI (Gi, L) = H (Gi)+H (L)−H(Gi, L) (3)

H (Gi) is the information entropy of the gene column Gi, H (L)
is the information entropy of the label L, and H(Gi, L) is the
joint information entropy of Gi and L. According to information
theory, the information entropy is a measure of the uncertainty
of a random variable. Suppose X is a random variable, and the
range of possible values is Sx, x ∈ Sx and the probability is p(x);
the information entropy of X is defined as:

H (X) −
∑
x∈Sx

p (x) logp(x) (4)

TABLE 2 | The optimal parameters for each step in the proposed method.

Parameter p FDR | log(FC)| M

Threshold 1% 0.05 1 50

p is the percentage of the total samples, which represents the mutation frequency
of a certain gene. FDR is the false discovery rate, and FC is the fold change. M is
the number of genes that top ranking in mutual information.
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H(X,Y) is the joint information entropy, defined as:

H (X,Y) −
∑
x∈Sx

∑
y∈Sy

p
(
x, y

)
logp(x, y) (5)

p(x, y) is the joint probability density function. MI (Gi, L) can be
calculated according to Eqs 4 and 5. In our study, MI is used to
measure the dependency between a feature and the classification
type. In general, the greater value of MI indicates that the feature
contains more information for classification. Therefore, we rank
the MI values of each feature and selected the top M features
from the integrative data, respectively. The final objective of this
method is to remove irrelevant features to reduce the dimension
of integrative data. We set different values of M to compare the
classification-balanced accuracy and obtain the best value of M.
The result in Supplementary Table 5 shows that the optimal
M is 50. Table 3 shows the main parameters applied in the
proposed method.

GBDT With Bayesian Optimization
The filter methods obtain a feature subset for which the
discriminative capability is limited for classification purposes.
Embedded methods can be used to search the optimal feature
subset by a given classifier. In the training procedure, the
features with high importance can be selected by ranking and the
classification algorithm is optimized simultaneously. It is helpful
to build a strong link between the feature subset and the classifier.
The GBDT is an ensemble learning algorithm based on GBM,
which is proposed by Friedman (Friedman, 2001). During the
training process, multiple iterations are used to build multiple
trees to make joint decisions. When the square error loss function
is adopted, each regression tree learns the conclusions and
residuals of all previous trees, and a current residual regression
tree is obtained by the fitting. The meaning of residuals is as
follows:

residuals = true value−predict value

The boosting tree (Galicia et al., 2018) is an accumulation of
regression trees generated during the entire iteration process. The
optimization process of learning is realized by using an additive
model and a forward step algorithm. The GBDT was used in our
study because of its flexibility for different types of data, excellent
classification performance, and robustness for abnormal values.

TABLE 3 | Classification accuracy and balanced accuracy of proposed method.

Case Testing accuracy Testing balanced accuracy Running time

1 0.9796 0.8547 65.2642

2 0.9878 0.9111 20.7672

3 0.9878 0.9255 0.2187

4 0.9951 0.9731 0.1925

The method in case 1 without using any feature selection and the accuracy is the
lowest and is time-consuming. In case 2, using FC + FDR to select differentially
expressed genes, the results are improved by 0.84 and 6.6%. In case 3, using
FC+ FDR and MI to select the key 50 features, 1.58% improvement in the balanced
accuracy and a significant reduction in running time are obtained. The proposed
method shown in case 4, the best performance in the three metrics is obtained.
The bold values are the best results.

However, it is tedious and important work to tune the
hyperparameters when conducting the GBDT, because it greatly
affects the performance of the algorithm. Manual tuning is
time-consuming; grid and random searches (Bhat et al., 2018)
require no human effort but a long-running time. Therefore,
in this research, Bayesian optimization is adopted to find the
optimal hyperparameters, which is first proposed by Snoek et al.
(2012). Bayesian optimization seeks to minimize the value of the
objective function by establishing an alternative function based
on the objective function’s past evaluation results. The Bayesian
method is different from random or grid searches as they consider
previous estimates when testing the next set of hyperparameters,
thus saving a lot of effort.

Suppose hyperparameters set (represents a hyperparameter’s
value), the relationship between this set, and the loss function
that need to be optimized, defined as f (X). However, machine
learning just likes a black box, which means we only know the
input and output; f is hard to be sure. So we should turn our
attention to a function that can be solved. Assume function, we
need to find in:

x∗ = arg minx∈ X f (x) (6)

Here, we chose Hyperopt in Python library, which adopted
Tree Parzen Estimator (TPE), which used the Gaussian Mixture
Model (Oh et al., 2019) to learn hyperparameters. First, we
split the integrative dataset into 80% learning set and 20%
test set then divided the learning set into 60% training set
and 40% validation set. The performance of hyperparameters
was evaluated on the validation set. The Bayesian optimization
assigned a greater probability to the value of the hyperparameters
set with a lower loss in the cross-validation. Finally, the best
hyperparameters set was output.

A Weighted Metric for Imbalanced
Dataset
Class imbalance is a situation in which the number of
training samples of different categories varies greatly in the
classification task. There are many strategies to deal with the
imbalance problem, such as undersampling and oversampling.
EasyEnsemble is a method of undersampling, proposed by Li
and Liu (2014). Multiple different training sets are generated
by putting back the samples several times, and then multiple
different classifiers are trained. The final result is obtained by
combining the results of multiple classifiers. Another method
is BalanceCascade (Liu et al., 2009), which adopts the idea
of Boosting. It also uses undersampling to generate a training
set, but those correctly classified samples are not put back.
Undersampling is easy to lose information, and the way the final
result is integrated also has an impact. The most common strategy
for oversampling is SMOTE (Synthetic Minority Oversampling
Technique) (Blagus and Lusa, 2013). In this method, the new
samples are synthesized according to the nearest neighbor in
the minority samples and then added into the dataset. However,
there two main problems in this algorithm: there is some
blindness in the selection of the nearest neighbor and the problem
of distribution marginalization is easy to occur. Additionally,
undersampling and oversampling may change the distribution
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of data. For the task of cancer classification, the size of sample
is small, more than a thousand at most, and these strategies do
not seem appropriate. Therefore, in this study, we propose a
weighted metric to modify the traditional accuracy metric instead
of changing the distribution of the dataset. There are far more
cancer samples than normal samples, which will lead to the high
accuracy of the learning method if it returns a learning model that
always predicts the new sample as a cancer category. To solve this
problem, we separated the total sample set into a normal set and
tumor set. The classification accuracy of the model in the two-
sample space embodies the model’s ability to correctly classify
the positive and negative samples, named the weight for the two-
sample spaces. On the final test stage, we multiply this weight with
the accuracy of two sample spaces on the test set.

Let N and T denote the sample set of normal class and that of
tumor class, respectively. −→wn and −→wt are the accuracy of normal
samples and tumor samples of classifier clf in the validation set,
respectively. These two weights represent the different capacities
of the given classifier for different types of samples. In the final
testing stage, the optimized GBDT is conducted as the classifier
to predict the independent test set;−→wn and−→wt will be considered
in the final decision. As we split the dataset into 10 equal-sized
datasets,−→wn and−→wt are the average accuracy of the 10 validation
sets. Here, the average accuracy of normal samples and tumor
samples on the 10 test sets are represented by accn and acct . So
the final balanced accuracy is defined as:

balanced acc = accn · −→w n + acct · −→w t (7)

The core procedure of calculating the weighted metric for
balanced accuracy is described in Figure 2. The weighted metric
for the imbalanced dataset is easy to operate. It considers the
classification ability of the classifier on samples of different
categories and further revises the final test results by multiply
weights, thus reducing the impact of class imbalance.

Evaluation Criteria
The following metrics are used to evaluate the performance of
the classification model in this study:

Accuracy: ACC = TP+TN
TP+FP+TN+FN

Sensitivity: SES = TP
TP+FN

Specificity: SPC = TN
TN+FP

Precision: PRC = TP
TP+FP

F1 score: F1 =
2TP

2TP+FP+FN

In this study, the tumor sample is positive, and the normal
sample is the negative sample, where TP (true positive) is
the number of tumor samples predicted as tumor, FP (false
positive) is the number of tumor samples predicted as normal,
TN (true negative) is the number of tumor samples normal
and predicted as normal, and FN (false negative) is the number

of normal samples and predicted as tumor. Meanwhile, the
AUC is obtained.

Due to that the number of samples is much smaller than
that of the features, in this study, first, we split the dataset
into 10 equal-sized datasets. Then, we divide the datasets into
80% learning set and 20% test set and ensure that the test
set does not participate in any training process (Meng et al.,
2020). Finally, the independent test set is used to calculate the
above evaluation metrics. This procedure is repeated on the
10 datasets. The average of the results generated on the 10
datasets is used as the final performance of the proposed model
on the test set.

RESULTS

Classification Results of Proposed
Method SFS
In our experiments, the training set is used to train the classifier.
The obtained parameters are verified on the validation set. In
addition, we calculate −→wn and −→wt (normal samples’ accuracy
and tumor samples’ accuracy in the validation set). Moreover,
balanced accuracy was calculated by Eq. 6. The proposed method
adopts FC, FDR, MI, and GBDT with Bayesian optimization. The
parameters are applied as follows:

(1) FC: |log(FC)| > 1.0
(2) FDR: FDR 0.05
(3) MI: select the top 50 features of MI value ranking
(4) Bayesian optimization: tuning the parameters of GBDT

with Bayesian optimization using the 50 features to get
the optimal model.

These methods are combined in the ways shown in Table 4.
Case 1: None of the above methods are used.
Case 2: FC and FDR are used to obtain the differentially

expressed genes.
Case 3: FC+ FDR, MI are used to select informative features.
Case 4: FC+ FDR, MI, and Bayesian optimization are adopted

to optimize GBDT, and this case is the proposed method.
The testing accuracy is obtained by the classifier GBDT on

the independent test set. The results shown in case 1 are the
classification accuracy using GBDT without any feature selection.
It can be observed that the GBDT without any feature selection
obtains a testing accuracy of about 97.96%, but the testing
balanced accuracy is only about 85.47%, which implied the
learning efficiency of the GBDT without feature selection is not
much high. In case 2, although FC and FDR effectively reduce
the running time, it does not improve the accuracy significantly,
because they ignore the correlation between features. In case
3, we add MI to further select key features, and the results
show that there is an improvement (1.58%) in balance accuracy
and a significant reduction in running time. In case 4, we use
Bayesian optimization to optimize GBDT to obtain the optimal
model. According to the results, we conclude that the accuracy
and balanced accuracy are improved by 0.74 and 5.14%, which
were compared with case 3. Particularly, the proposed method
shown in case 4 obtains the highest testing accuracy and balanced
accuracy. The performance of testing balanced accuracy is
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FIGURE 2 | The calculation procedure of balanced accuracy. The raw dataset is split into 10 equal datasets. The diagram shows the procedure on one of the 10
datasets. First, the integrative dataset is derived into a learning set and an independent test set. The learning set is derived into a training set and a validation set.
The training set is used to train the GBDT model and the validation set is used to obtain the weight for normal and tumor space (ωn and ωt), which is represented by
the accuracy of normal and tumor space. Finally, when the optimal model is tested on the test set, ωn and ωt will be used to modify the final accuracy to obtain the
balanced accuracy.

TABLE 4 | The mean values of seven evaluation metrics obtained from four
methods on integrative dataset.

Classifier B_ACC ACC SES SPC PRC F1 AUC

SVM 0.9413 0.9865 0.9910 0.9435 0.9941 0.9926 0.9672

RF 0.9208 0.9902 0.9968 0.9261 0.9924 0.9946 0.9615

KNN 0.9480 0.9914 0.9955 0.9522 0.9950 0.9953 0.9738

Proposed 0.9731 0.9951 0.9964 0.9826 0.9982 0.9973 0.9895

In the experiments, we randomly split the dataset into 10 equal-sized datasets. The
mean values of the seven metrics are obtained on the 10 test sets. The proposed
method outperforms other methods in balanced accuracy, accuracy, specificity,
precision, F1 score, and AUC. The bold values are the best results.

improved by 13.85%, compared with the method in case 1. From
the perspective of vertical comparison, the features selected by the
proposed method have better classification performance. From
the perspective of horizontal comparison, balanced accuracy
improves more than traditional accuracy, which indicates that
the proposed model shows greater advantages when the sample
balance is considered.

The Hyperparameters of GBDT Adjusted
by Bayesian Optimization
Bayesian optimization aims to find the minimum value of the
objective function by establishing a proxy function (probabilistic
model). The proxy function is easier to optimize than the
objective function (Victoria and Maragatham, 2020), so the next
input value to be evaluated is selected by applying some criterion.
For hyperparameter optimization, the objective function is the
validation error of the machine learning model using a set

of hyperparameters. Its goal is to find the hyperparameters
that produce the minimum error on the validation set and to
generalize these results to the test set. The cost of evaluating
an objective function is significant because it requires the
training of a machine learning model with a specific set
of hyperparameters. Bayesian hyperparameter tuning uses a
constantly updated probabilistic model to “focus” the search
process on the hyperparameters that are likely to be optimal
by reasoning from past results. In this study, for the objective
function, the input was a set of hyperparameters, and the
output was the fivefold cross-validation loss with classifier GBDT.
We chose Tree Parzen Estimation (TPE) as the optimization
algorithm. Figure 3 shows the best sets of hyperparameters
obtained by Bayesian optimization and random search with
300 iterations. The balanced accuracy gained on the test set
by using the best two sets of hyperparameters in GBDT was
97.31 and 96.8%, respectively. The results indicated that Bayesian
optimization outperforms random search in the respect of
hyperparameter tuning.

In the comparative experiments, we select three other
classifiers, SVM, KNN, and RF. Supplementary Tables 6, 7
and Supplementary Figure 2 show the procedure of tuning
parameters for the three classifiers. According to the balanced
accuracy obtained in those models, the optimal parameters are
as follows:

(1) SVM: C = 1, kernel = “linear”
(2) KNN: n_neighbor = 7, metric = “manhattan”
(3) RF: max_depth: 46, min_sample_leaf: 2, min_sample_split:

94, n_estimators: 75
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FIGURE 3 | (A) Bayesian optimization for hyperparameters of GBDT. The best hyperparameters set: {“learning_rate”: 0.53732209, “max_depth”: 29,
“min_samples_leaf”: 88, “min_samples_split”: 12, “n_estimators”: 374, “subsample”: 0.84620375}, testing accuracy: 0.995102041, testing balanced accuracy:
0.973135976. The best hyperparameter set was obtained by comparing the average metrics on 10 test sets. The detailed results obtained by every test are shown
in Supplementary Datasheet 1. (B) Random search for hyperparameters of GBDT. The best hyperparameters set: {“learning_rate”: 0.0829095, “max_depth”: 23,
“min_samples_leaf”: 94, “min_samples_split”: 54, “n_estimators”: 130, “subsample”: 0.817617081}, testing accuracy: 0.994693878, testing balanced accuracy:
0.968032706. The best hyperparameter set was obtained by comparing the average metrics on 10 test sets. The detailed results obtained by every test are shown
in Supplementary Datasheet 1.

Table 5 shows the mean values of seven evaluation metrics
obtained from four methods on the integrative dataset. The
results indicate that the proposed method outperforms SVM,
KNN, and RF by 3.4, 5.7, and 2.6% with balanced accuracy.
Particularly, the AUC obtained by the proposed method is 2.3,
2.9, and 1.6% higher than the above three classifiers, respectively.
We can conclude that the proposed method achieves the best
performance on the integrative dataset in terms of balanced
accuracy (97.31%), accuracy (99.51%), specificity (98.26%),
precision (99.82%), F1 score (99.73%), and AUC (98.95%).
Supplementary Datasheet 2 shows the average and variance of
each metric, and the proposed method gets the smallest variance
in accuracy, balanced accuracy, and F1 score in TCGA-BRCA.
Other metrics are the second smallest. It can be seen from the
variance table that the proposed method has certain robustness.

The Effect of Integrative Dataset
To explore the effect of the integrative dataset, we apply
the proposed method to individual gene expression and
integrative dataset, respectively. Besides, we choose PMA50 as
the control model. PMA50 refers to a set of 50 genes selected
by Parker et al. (2009), which are with a good diagnostic
performance that are regarded to be highly related to breast
cancer. In Table 6, for the gene expression and PMA50,
the proposed method achieves the best testing accuracy.
The blue and orange bars in Figures 4A,B intuitively
reflect the results. However, for the integrative dataset,
the proposed method obtains 99.51% testing accuracy and
97.31% balanced accuracy, which outperforms the gene
expression model and PMA50 model. This fact indicates
that the features selected by the proposed model have better
classification performance.

The results in Table 6 and Figure 4 also show the results
obtained by the other classifiers. The SVM classifier gives the
accuracy of 98.78% on the gene expression dataset, which is
higher than that on the integrative dataset. However, the balanced
accuracy is higher on the integrative dataset (94.93%). On the

other hand, RF and KNN give a higher testing accuracy on
the integrative dataset than that on the gene expression dataset,
which is illustrated by the blue bars in Figure 4A. However, in
Figure 4A, the proposed model obtains the highest three bars,
which reveals that the proposed method performs better than
other classifiers in all three types of datasets. For a balanced
accuracy in Figure 4B, SVM and the proposed model obtain
the best results on the integrative dataset, and RF and KNN
obtain the best ones on gene expression and PMA50, respectively.
The reason for this difference lies in the sensitivity of different
classifiers to data distribution. The feature genes in the PMA50
model and the integrative model obtain higher balanced accuracy
97.4% (KNN) and 97.3% (proposed method) than that in the
gene expression model, which illustrates that KNN and the
proposed method provide the better capability to classify the
minority sample class.

Biomarkers and GO/Pathway Analysis
The 50 genes (listed in the Supplementary Table 8) discovered
by the proposed model include 16 genes, IQGAP3 (Hu et al.,
2019), KIF4A (Xue et al., 2018), TSHZ2 (Yamamoto et al.,
2011), MKI67 (Schmidt et al., 2007), TNXB (Hu et al.,
2009), KIFC1 (Ogden et al., 2017), KDM5B (Catchpole et al.,
2011), PPEF1 (Ye et al., 2020), RYR3 (Shrestha et al., 2012),
TMEM132C (Zhang et al., 2020), FANCD2 (Barroso et al.,
2006), ATAD2 (Kalashnikova et al., 2010), KIF26B (Wang et al.,
2013), BRCA2 (Wooster et al., 1995), BLM (Arora et al., 2015),
and ARFGEF (Kim et al., 2011), which are reported to be
directly associated with breast cancer by previous researches.
Although the other 14 genes have not been verified by biological
experiments, we further analyze the Gene Ontology and pathway
enrichment to explore their impact on the tumor formation
and progression.

Gene Ontology and pathway analysis produces biological
function and pathway enriched for mutation genes. The result
reveals that BRCA2, KDM5B, and IQGAP3 are associated
with mammary gland epithelial cell proliferation and gland
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TABLE 5 | Comparison of related works.

Work Method Dataset resource Evaluation metric Performance

Mavaddat et al., 2019 Polygenic risk scores (PRSs) Breast Cancer Association Consortium (BCAC) AUC 0.63

Chaurasia et al., 2018 Naive Bayes Breast Cancer Wisconsin dataset Accuracy 97.36%

Ai et al., 2020 Pearson correlation coefficient
(PCC) + SVM

GEO Accuracy 96.92%

Huang et al., 2017 SVM ensembles UCI and ACM SIGKDD Cup 2008 Accuracy
AUC

F-measure

96.85%
0.967
0.988

TABLE 6 | Comparison between the results of different datasets on four classifiers.

Data category Testing accuracy Testing balanced accuracy

SVM RF KNN Proposed SVM RF KNN Proposed

Gene 0.9878 0.9918 0.9878 0.9918 0.8995 0.9707 0.9619 0.9481

PMA50 0.9743 0.9869 0.9824 0.9910 0.8831 0.8980 0.9736 0.9342

Integrative dataset 0.9865 0.9902 0.9914 0.9951 0.9413 0.9208 0.9408 0.9731

For the gene expression, the proposed method obtains the highest accuracy, but the balanced accuracy is highest in RF. For the PMA50, the proposed method obtains
the best accuracy. For the integrative dataset, the proposed method obtains the highest accuracy and balanced accuracy, which illustrates that the integrative dataset
contains more useful information after feature selection. The bold values are the best results.

FIGURE 4 | Comparison of the results of different datasets on four classifiers. (A) The average testing accuracy obtained by the four methods. (B) The average
balanced testing accuracy obtained by the four methods. The left data is the accuracy; the height of the blue and red bars represent the performance of each
method on gene data and combine data. The red bar obtained by the proposed method in A is the highest. The red bar obtained by the proposed method in B is
also the highest. That means the proposed method performs best in the accuracy and balanced accuracy on the integrative data.

development; BLM, BRCA2, CENPE, CENPF, KIFC1, CKAP, CIT,
TTC28, KIF4A, and ASPM are associated with cell division;
BRCA, CENPE, CENPF, FANCD2, KIFC1, MKI67, KIF4A, and
ASPM are associated with organelle fission; BLM, BRCA2,
CENPE, CENPF, EGFR, FANCD2, MKI67, CKAP5, and TTC28
are associated with regulation of the mitotic cell cycle; ABCA10,
ABCA9, ABCA8, and ABCA6 enrich in the pathway of ABC
transporters; and EGFR, FN1, RELN, and TNXB enrich in the
pathway of human papillomavirus infection. The main GO and
pathway are shown in Figure 5. The comprehensive analysis
of the whole 50 genes is shown in Supplementary Datasheet
3. Overall, the investigation reveals oncogenic interactions and
cooperation among mutation genes.

DISCUSSION

This research presents a Staged Feature Selection method
for breast cancer classification based on gene expression and
somatic mutation datasets. In the proposed method, FC and
FDR were used to select differentially expressed genes, MI was
adopted to remove the irrelevant and redundant features, and an
embedded method based on GBDT with Bayesian optimization
was presented to obtain the informative features. Besides, the
weighted metric was proposed to evaluate the classification
accuracy, which could avoid the impact of sample imbalance on
classification. The experiment results showed that the proposed
method selected 50 feature genes and achieved the accuracy of
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FIGURE 5 | Heatmap of selected Gene Ontology.

99.51%, the balanced accuracy of 97.31% and the sensitivity of
99.64%, the specificity of 98.26%, the precision of 99.82%, the
F1 score of above 99.73%, and the AUC of 98.95%, which was
superior to the other three classifiers. It was verified that the
proposed method was an efficient tool for feature selection in
breast cancer classification.

The results presented the effectiveness of integration with
gene expression and somatic mutation data for breast cancer
classification, which indicated that it could provide more useful
information for cancer classification by integrating multiple
information. However, this study only focused on breast
cancer, and the scalability of the proposed method on other
types of cancers remained to be further explored, which will
provide helpful information for cancer prevention and treatment.
Therefore, in future work, we will apply the approach to classify
other types of cancer, explore ways to incorporate more relevant
data, and introduce other techniques to boost our method.
Besides, the pathogenesis of some biomarkers discovered by the
proposed model still has to be verified by biological experiments.
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Single-cell sequencing technology can not only view the heterogeneity of cells from

a molecular perspective, but also discover new cell types. Although there are many

effective methods on dropout imputation, cell clustering, and lineage reconstruction

based on single cell RNA sequencing (RNA-seq) data, there is no systemic pipeline

on how to compare two single cell clusters at the molecular level. In the study, we

present a novel pipeline on comparing two single cell clusters, including calling differential

gene expression, coexpression network modules, and so on. The pipeline could reveal

mechanisms behind the biological difference between cell clusters and cell types, and

identify cell type specific molecular mechanisms. We applied the pipeline to two famous

single-cell databases, Usoskin from mouse brain and Xin from human pancreas, which

contained 622 and 1,600 cells, respectively, both of which were composed of four

types of cells. As a result, we identified many significant differential genes, differential

gene coexpression and network modules among the cell clusters, which confirmed that

different cell clusters might perform different functions.

Keywords: scRNA-seq, differential gene expression analysis, differential correlation analysis, network analysis,

differential network analysis

INTRODUCTION

The fundamental unit of an organism is the cell. Coordinated gene expression in each cell is
essential to biological functions, and aberrations often cause illness. Consequently, the genome-
wide quantification of RNA experiments help to understand the growth and development of
organism as well as pathogenesis of disease. One traditional technology of mRNA abundance
measured at cell line or tissue level averaged over thousands or millions of cells, which is also
called bulk RNA-seq (Stark et al., 2019). The bulk RNA-seq experiments has been successfully
applied to a multitude of studies, and improved our biology knowledge. However, the disadvantage
of bulk RNA-seq is that cell-specific mRNA abundance could not been provided, and some
important gene expression signals might be unobserved. Our current knowledge related with
cell types and there dynamic changes in biological system remains highly incomplete. Owing
to resolution in sequencing technology, single-cell RNA-seq (scRNA-seq) at genome-wide level
was first invented by Tang et al. (2009), and has been under rapidly booming development. The
scRNA-seq technology makes some very important and challenging scientific research possible.
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For instance, unknown cell types were identified (Trombetta
et al., 2014; Buettner et al., 2015). How to dissect gene expression
changes during dynamic development (Tang et al., 2010; Xue
et al., 2013; Yan et al., 2013). Study uncovered how tumorgenesis
and cancer cell immune escape and tumor cell heterogeneity
(Chung et al., 2017; Zhao et al., 2020). scRNA-seq was also used to
predict therapeutic response in patients and understanding drug
resistance mechanism (Lee et al., 2014; Liang et al., 2020), and
clarify the pathophysiology of complex diseases and guide the
successful treatment and intervention of patients with intractable
diseases (Shalek and Benson, 2017; Kim et al., 2020). Collectively,
the scRNA-seq technology has significantly promoted basic
biological research and clinical personalized medicine. At the
same time, the analysis of scRNA-seq data is challenging due to a
number of problems such as sparsity caused by technical dropout,
bimodal and multi-modal expression distributions (Korthauer
et al., 2016), and highly biological and technical cell-to-cell
variability (Vallejos et al., 2017; Hicks et al., 2018) giving rise
to cellular heterogeneity. One very important step of scRNA-
seq data analysis is to identify gene-specific expression pattern
and/or a gene-gene interacting network within a population of
cells or a biological condition in studies. Although numerous
computational methods have been developed and applied during
the past few years, most of them focused on difference in single
gene-level differentiation (Finak et al., 2015; Korthauer et al.,
2016; Butler et al., 2018; Miao et al., 2018; Stuart et al., 2019).
In the present study, we integrated a variety of computational
methods into a variance analysis workflow.

A fundamental question raised of expression data is
what genes differentially expressed across conditions and
circumstances. Despite technological revolution for scRNA-seq
in recent years, technical stability of RNA quantification by
scRNA-seq is still worse than that in bulk RNA-seq. Thus, the
numerous variation computational tool established for bulk RNA
do not work well for single-cell RNA-seq. During the past few
years, a couple of computational methods have been designed
particularly for single-cell RNA-seq data (Soneson and Robinson,
2018). For example, MAST based on Generalized linear model
(Finak et al., 2015); DEsingle based on Zero inflated negative
binomial (Miao et al., 2018); D3E based on Cramér-von Mises
test, Kolmogorov-Smirnov test, likelihood ratio test (Delmans
and Hemberg, 2016); SCDE based on Poisson and negative
binomial model (Kharchenko et al., 2014); SigEMD based on
Non-parametric earth mover’s distance (Wang and Nabavi, 2018)
and so on. Marker genes found by differential expression analysis
play important role in cell type identification and discovery.
It is also essential for downstream drug targets prediction and
thus to prevent or treat disease. In addition to analyzing single
gene, analyzing the relationship between genes is also crucial for
construction of biological networks. For instance, the R package
DGCA offers a suite of tools for computing and analyzing
differential correlations between genes acrossmultiple conditions
(McKenzie et al., 2016).

If some genes always have similar expression patterns in a
physiological process or metabolic process, then we can consider
these genes to be functionally dependency, so they can be defined
as a functional module. If a gene module is identified, then

numerous researches would be done based of which, such as
screening the core genes of relevant trait modules, modeling
metabolic pathways, and establishing gene interaction networks.
Weighted correlation network analysis (WGCNA) is a typical
analysis tool at the network co-expression level (Langfelder and
Horvath, 2008). Since WGCNA is an analysis tool designed for
bulk sequencing data, almost no one uses it to analyze scRNA-seq
data. Based the correlation between the analyzed module and the
sample characteristics we can quickly extract gene co-expression
modules related to the sample characteristics from the complex
data for subsequent analysis. WGCNA builds a bridge between
sample characteristics and gene expression changes (Iancu et al.,
2012; Xue et al., 2013).

In the present study, we performed differential expression
genes (DEGs) analysis for each two categories in the scRNA-
seq data from a single gene level. Based the level of gene
pairs, differential correlation analysis for each two categories
were analyzed for the purpose of digging deeper biological
information. The gene pair with the most significant difference
in each category pair was obtained. The results of this analysis
provide theoretical support for medical staff. Based the level of
gene network, we used WGCNA to perform network analysis
on scRNA-seq data, and in order to explore the difference in
gene expression of each module, we used DiffCoEx (Tesson et al.,
2010) to analyze the difference network module. The results of
analysis from different levels of single cells, cell pairs, and cell
networks showed that such a complete system is more capable
of mining the underlying information contained in the scRNA-
seq data. The study provided a comprehensive analysis approach
for scRNA-seq researches in future.

MATERIALS AND METHODS

In recent years, with the microfluidic technology that can
separate individual cells from a piece of tissue, researchers have
made it more accurate to predict the diversity of biological
tissues and target drugs for related diseases. Compared with bulk
sequencing technology, the resolution of scRNA-seq technology
is very accurate for single-cell level analysis, so scRNA-seq
technology has developed rapidly. Although a series of work on
single-cell sequencing technology has been developed in recent
years, most of them are tested and verified in a single field, and
there is no complete system to mine the potentially valuable
information in single-cell data. Ignore some algorithms that
have been developed in bulk sequencing technology, such as
WGCNA. In this work, we have established a set of procedures for
analyzing scRNA-seq data, including differential gene expression
analysis (DEsingle, SigEMD), differential correlation analysis
(DGCA), network analysis (WGCNA), differential network
analysis (DNA). The specific flow chart is shown in Figure 1.
These processes are described in detail below.

Data Information
In this work, we used two single-cell data sets. One of them is
Usoskin [622 (cells) ∗ 25335 (genes)], which comes from the GEO
database (GSE59739) (Usoskin et al., 2015). This data is mainly
divided into 4 categories: NF, NP, PEP, and TH. We performed
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FIGURE 1 | Flow chart of scRNA-seq data analysis. Cat. is the abbreviation of category, cat.1–4, respectively represent four cell types. Note that the gene filtering

method in each method is different, please refer to the specific introduction in each section for details.

TABLE 1 | Brief information about Usoskin data.

Usoskin (622) Num. of

cells

Num. of

genes

Description of cell groups

NF 139 25333 Neurofilament containing

NP 169 Non-peptidergic nociceptors

PEP 81 Peptidergic nociceptors

TH 233 Tyrosine hydroxylase containing

a concise preprocessing of the data, the gene filter removes
genes/transcripts that are expressed in <3 cells, and the cell filter
removes cells that are expressed in <500 genes, the number of
remaining samples is 622, and the gene dimension is 25333.
Table 1 summarizes the basic information of Usoskin data.

The other data used in this article is from human pancreas,
named Xin [1600 (cells) ∗ 39851 (genes)], which comes from
the GEO database (GSE81608) (Xin et al., 2016). Xin is also
divided into four categories: α, β , δ, and PP. The data uses
the same preprocessing method as Usoskin data, the number of
remaining samples is 1492, and the gene dimension is 28403.
Table 2 summarizes the basic information of Xin data.

TABLE 2 | Brief information about Xin data.

Xin (1492) Num. of cells Num. of genes Description of cell groups

α cells 886 28403 Produce glucagon

β cells 472 Insulin

δ cells 49 Somatostatin

PP cells 85 Pancreatic polypeptide

Differential Gene Expression Analysis
We performed pairwise difference expression genes (DEG)
analysis on the four types of cells in these two data sets. The
methods used for DEGs are DEsingle (Miao et al., 2018) and
SigEMD (Wang and Nabavi, 2018), both of which are methods
for scRNA-seq data.

One of the biggest features of scRNA-seq data is that it
contains a high proportion of 0 values, which is mainly due
to two reasons: on the one hand, these “true” 0 values are
the natural expression values of genes; on the other hand, due
to the reverse transcription and sequencing process, there are
too many “false” 0 values caused by the technical noise of
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the company, we call the latter “dropout.” In response to this
phenomenon, most of the current differential analysis methods
cannot separate the two situations, so DEsingle was developed to
solve the differential analysis that contains the dropout problem
data. DEsingle employed Zero-Inflated Negative Binomial
model to estimate the proportion of real and dropout zeros
and detect three types of DEGs in scRNA-seq data with
higher accuracy.

The SigEMD method also takes into account the “dropout”
problem. Using a logistic regression model and a non-parametric
method based on the distance of the earth mover can accurately
and effectively identify the DEGs in the scRNA-seq data.
Regression models and data imputation are used to reduce
the impact of a large number of zero counts, and non-
parametric methods are used to improve the sensitivity of
detecting DEGs from multimodal scRNAseq data. And used
simulated data sets and real data sets to verify the accuracy of
this method.

Differential Gene Correlation Analysis
The key step to establish a biological system prediction model
is to analyze the regulatory relationship between genes, so an
effective solution is to study the difference in correlation between
gene pairs. Differential Gene Correlation Analysis (DGCA) is
proposed to solve such problems (McKenzie et al., 2016). In order
to minimize parameter assumptions, DGCA calculates empirical
p-values through permutation tests. In order to understand the
differential correlation at the system level, DGCA conducted a
higher-level analysis through simulation research. The simple
method based on Z score adopted by DGCA is significantly
better than the existing alternative methods of calculating
differential correlation.

Network Analysis
Weighted correlation network analysis (WGCNA) is a systems
biology method used to describe gene association patterns
between different samples (Liu et al., 2017). WGCNA can be
used to identify highly coordinated gene sets, and identify
candidate biomarker genes or therapeutic targets based on
the interconnectivity of gene sets and the association between
gene sets and phenotypes. Compared with only focusing on
differentially expressed genes, WGCNA uses the information
of thousands or tens of thousands of genes with the greatest
changes or all genes to identify the gene set of interest, and
conducts significant association analysis with the phenotype.
It not only makes full use of information, but also converts
the associations between thousands of genes and phenotypes
into associations between multiple genomes and phenotypes,
eliminating the problems of multiple hypothesis testing
and correction.

Differential Network Analysis
In scRNA-seq data, if certain genes always have similar
expression changes in a physiological process or in different
tissues, then we have reason to believe that these genes are
functionally related and can be defined as a module. When
the gene module is defined, we can use these results to do

a lot of further work. For example, we use DiffCoEx for
differential network analysis (Tesson et al., 2010), which is a
method for identifying changes in association patterns. This
method is based on the commonly used WGCNA framework
for co-expression analysis. Prove its usefulness by identifying
biologically relevant, differentially co-expressed modules in the
mouse dataset.

SOFTWARE AVAILABILITY

The codes for the two methods of differential gene expression
analysis are freely available (DEsingle: https://bioconductor.org/
packages/DEsingle, SigEMD: https://github.com/NabaviLab/
SigEMD); This article uses the DAVID website for feature
enrichment analysis. The website is available for free in https://
david.ncifcrf.gov/ Difference correlation analysis is freely
available in https://github.com/andymckenzie/DGCA WGCNA
is freely available in https://cran.r-project.org/web/packages/
WGCNA/index.html DiffCoEx is freely available in https://
bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-
2105-11-497.

RESULTS

DEGs Between Two Categories
With the development of high-throughput technology, the field
of biomedical related research has entered the omics era, and
the research of a single gene can no longer meet the needs of
researchers. However, such a large amount of data brings new
challenges to the effective extraction and analysis of information.
Taking sequencing data as an example, the analysis of sequencing
results often results in a list of differentially expressed genes or
proteins. But for many researchers, it is difficult to associate this
long list of genes or proteins with a biological phenomenon to
be studied and its underlyingmechanism. Functional enrichment
analysis is to divide a gene or protein list into multiple parts, that
is, to classify a bunch of genes, and the classification criteria here
are often limited according to the function of the gene. In other
words, it is to put together genes with similar functions in a gene
list and associate them with biological phenotypes.

We use DEsingle and SigEMD two methods to analyze the
four types of data contained in Usoskin, overlap the differential
genes obtained by the two methods, and select the differential
genes with p < 0.05 for functional enrichment analysis. In this
work, we usedDAVID to perform two enrichment analyses of GO
and KEGG on overlapping differential genes obtained from two
NF-NP data, and correlated them with biological phenotypes.
Among them, GO (Gene Ontology) enrichment analysis is
mainly divided into three parts: Molecular Function (MF),
Biological Process (BP), and Cellular Component (CC), as shown
in Figure 2A, we have selected the top 20 representative Go terms
for BP, CC, and MF. The x-axis represents the first 20 terms
selected for each part, the y-axis represents the change of pvalue,
and the color represents z-score. The KEGG (Kyoto Encyclopedia
of Genes and Genomes) is a database that systematically
analyzes the metabolic pathways of gene products in cells
and the functions of these gene products. KEGG integrates
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FIGURE 2 | GO and KEGG analysis were performed on the differential genes with overlapping NF-NP data. (A) Perform enrichment analysis on the differential genes

with overlapping datasets, and display the top 20 most significant terms in BP, CC, and MF. (B) Perform KEGG enrichment analysis on the differential genes with

overlapping NF-NP data. (C) Basic information of six specified terms, among them, blue means down-regulated genes, red means up-regulated genes.

data on the genome, chemical molecules, and biochemical
systems, including metabolic pathways (PATHWAY), etc. As
shown in Figure 2B, we can observe that seven pathways are
obtained in the two sets of NF-NP data, and the number of
genes expressed in the pathway Mmu030133: RNA transport
pathway is large, and the p-value lower, indicating that the
enrichment of this pathway is the most significant. In addition,
we selected two terms with the most significant enrichment
among the three indicators of BP, CC, and MF, and analyzed

the up-regulated and down-regulated genes of these six terms,
as well as their z-score changes, as shown in Figure 2C. The
Xin data set and the other five analysis results are shown
in Supplementary Material 1.

Gene Pairs With Significant Differences
Between Two Categories
Analyzing the regulatory relationship between genes is a key
step in establishing an accurate prediction model of biological
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systems. To achieve this goal, a powerful method is to
systematically study the correlation differences between gene
pairs in more than one situation. In our work, we will perform
pairwise analysis on the four data types contained in Usoskin
and Xin, and consider the difference and correlation between
gene pairs in different types of datasets. We used overlapping
differentially expressed genes as the input of DGCA, and listed
the most different gene pairs in six different situations, as shown
in Tables 3, 4.

The first column in Table 3 shows the matching analysis pairs
of six different data subtypes, corresponding to class1 and class2,
respectively in columns four and five, and the sixth column
shows the change value of Z-score, indicating the change of
correlation between gene pairs. Table 4 is the same. NF_NP,
NF_PEP, NF_TH, NP_PEP, PEP_TH these five pairs of data
from class1 to class2 gene pair correlation completely lost, on
the contrary, NP_TH this pair of data is completely irrelevant
from class1 to class2 correlation has been significantly improved.
Please refer to Table 5 for basic information about the two
genes Il17rd and Pde1b. For detailed information about these
two genes, please refer to the database MGI (Mouse Genome
Informatics, http://www.informatics.jax.org/).

Co-expression Networks Generated With
WGCNA
WGCNA is mainly divided into two steps. In the first step,
WGCNA analysis uses the weighted value of the correlation
coefficient, that is, the gene correlation coefficient is taken to
the power of β, so that the connection between the genes in
the network obeys the scale-free network distribution (scale-
free networks), determine the β parameter by the square of
the correlation coefficient of log(k) and logp[

(

k
)

]. In general,
the higher the square of the correlation coefficient, the closer
the network is to the distribution without network scale.
This algorithm has more biological significance. The second
step is to construct a hierarchical clustering tree through the
correlation coefficients between genes. Different branches of the
clustering tree represent different gene modules, and different
colors represent different modules. Based on the weighted
correlation coefficients of genes, genes are classified according
to their expression patterns, and genes with similar patterns
are grouped into one module. In this way, tens of thousands
of genes can be divided into dozens of modules through
gene expression patterns, which is a process of extracting
general information.

TABLE 3 | The six gene pairs in Usoskin data have the largest differences in different situations.

Gene1 Gene2 class1_cor class2_cor zScoreDiff empPVals Classes

NF_NP Robo1 Grid1 −0.0797 0.9913 23.5578 3.11102E-08 0/+

NF_PEP Tomm22 Zc3h13 −0.1886 0.9901 20.0313 3.96294E-08 −/+

NF_TH Fam84a Omg −0.0701 0.9953 25.0786 1.57764E-08 0/+

NP_PEP Itga3 Synj2 −0.0263 0.9968 19.5367 4.84097E-06 0/+

NP_TH Il17rd Pde1b 0.9865 −0.0098 −24.5847 1.25299E-06 +/0

PEP_TH H2.M11 Pde8b −0.0716 0.9945 20.6581 2.66991E-07 0/+

TABLE 4 | The six gene pairs in Xin data have the largest differences in different situations.

Gene1 Gene2 class1_cor class2_cor zScoreDiff empPVals Classes

α_β DAPL1 HMOX1 0.9962 −0.0402 −47.0484 9.33E-09 +/0

α_δ GCG G6PC2 −0.1662 0.9967 18.8006 3.79E-07 −/+

α_pp SLC25A53 RPL518 −0.0630 0.9901 23.6008 6.44E-08 0/+

β_δ INS IAPP −0.1771 0.1000 18.4667 1.33E-06 −/+

β_pp INS IAPP −0.1771 0.1000 23.7250 7.50E-08 −/+

δ_pp RBP4 SST −0.0414 0.9979 14.5204 1.53E-05 0/+

TABLE 5 | Basic information of genes Il17rd and Pde1b.

Il17rd Pde1b

Name Interleukin 17 receptor D Phosphodiesterase 1B, Ca2+-calmodulin dependent

Feature type Protein coding gene Protein coding gene

Human ortholog IL17RD, interleukin 17 receptor D PDE1B, phosphodiesterase 1B

Chr location 3p14.3; chr3:57089982-57170317 (−) GRCh38.p7 12q13.2; chr12:54549393-54579239 (+) GRCh38.p7

HomoloGene Vertebrate Homology Class 9717 Vertebrate Homology Class 37370

HCOP Human homology predictions: IL17RD Human homology predictions: PDE1B
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TABLE 6 | The Hub gene of the NF data subset.

Module Hub gene Module Hub gene

Bisque4 Prr14 Lightyellow Pml

Black Tmem8b Magenta Acvr2a

Blue BC052040 Mediumpurple3 Myo1b

Brown Cntn2 Midnightblue Atrx

Brown4 BC021891 Orange Mybl1

Cyan Tmem130 Orangered4 Acbd3

Darkgreen Robo3 Paleturquoise Taf1c

Darkgrey Mboat1 Pink Gm13375

Darkmagenta Fam70b Plum1 Pkn2

Darkolivegreen Slc7a8 Plum2 Mmadhc

Darkorange Slc25a47 Purple Hhex

Darkorange2 Chd8 Red Apc2

Darkred Gpx2.ps1 Royalblue Med26

Darkslateblue Catsper2 Saddlebrown Slc25a44

Darkturquoise Ebf4 Salmon Orm3

Floralwhite Klhl28 Sienna3 Scube2

Green Grem2 Skyblue Nanp

Greenyellow Usp18 Skyblue3 Nek11

Grey60 Zcchc12 Steelblue Crx

Ivory Ep300 Tan Zfp651

Lightcyan Ptgds Turquoise Ap3m2

Lightcyan1 mt.Rnr2 Violet Qk

Lightgreen Gstm2 White B230217O12Rik

Lightsteelblue1 Disp1 Yellow Inpp4a

Yellowgreen Zswim1

In this work, in order to reduce the running time of WGCNA,
we calculated the standard deviation of the genes in each data set,
and then left the genes with the largest standard deviation of the
first 5000. The reason is that data with large variance contains the
main biological information in the data, and it can also reduce the
complexity of calculation.We first analyze two data subsets of NF
and PEP, as shown in Figure 3. The Xin data set and the other two
analysis results are shown in Supplementary Material 2.

Figure 3 shows the heat map of the module. Both the abscissa
and the ordinate are genes, and the entire module represents the
relationship between genes. On the left and top is the hierarchical
clustering tree and module allocation. Red represents higher
similarity, and yellow represents lower similarity. Since the
module is composed of genes with high similarity, corresponding
to the red area of the diagonal line in the figure, the target gene
analysis and the correlation between the module and the trait can
be performed for the module of interest.

Hub gene is a gene that plays a vital role in biological
processes. In related pathways, the regulation of other genes
is often affected by this gene. Therefore, hub gene is
often an important target and research hot spot. We use
chooseTopHubInEachModule in the WGCNA package to find the
Hub genes in each module, and predict the gene function of the
module through functional enrichment analysis. Here we show
the Hub genes of the NF data type in Table 6 and the results of
the functional enrichment analysis in Table 7.

TABLE 7 | Functional enrichment analysis of Hub genes in NF data subsets.

Category Term Count P-value Fold

enrichment

FDR

BP GO:0045944 9 9.13E-04 4.19373792 0.233863747

BP GO:0006351 12 0.001284966 2.951560906 0.233863747

BP GO:0007275 8 0.005066806 3.604594952 0.422224333

BP GO:0030154 7 0.005358539 4.160880999 0.422224333

BP GO:0006355 12 0.005799785 2.441286664 0.422224333

BP GO:0032206 2 0.020822877 92.72820513 1

BP GO:0006810 9 0.032934936 2.290213628 1

BP GO:0042771 2 0.063185914 29.91232423 1

BP GO:0016055 3 0.07364446 6.530155291 1

CC GO:0005634 18 0.059352202 1.469995016 1

CC GO:0032993 2 0.059738529 31.71290323 1

CC GO:0005654 8 0.083476947 2.032248062 1

MF GO:0003677 10 0.010936964 2.55286147 0.677053596

MF GO:0008013 3 0.012979407 16.83976834 0.677053596

MF GO:0003682 5 0.015065842 5.05915787 0.677053596

MF GO:0032183 2 0.018423227 104.7807808 0.677053596

MF GO:0000978 4 0.037404986 5.253632463 1

MF GO:0035257 2 0.048397769 39.29279279 1

MF GO:0003713 3 0.053050255 7.858558559 1

MF GO:0004674 4 0.057674865 4.406668351 1

MF GO:0000977 3 0.07599868 6.40063593 1

MF GO:0016740 7 0.078508897 2.242251763 1

MF GO:0005524 7 0.085817386 2.190175577 1

MF GO:0035064 2 0.092637771 20.06440483 1

MF GO:0004672 4 0.09568683 3.551890874 1

Differential Network Analysis With
DiffCoEx
When we use DiffCoEx to analyze the difference network of
each two types of Usoskin and Xin data, using the default
parameters will lead to too many modules. In order to reduce
the number of modules as much as possible, the gene is sampled,
in other words, only 1/2 of the genes were randomly selected
as the input to DiffCoEx, and the “cutHeight” parameter of
the “mergeCloseModules” function was adjusted to 0.5 (default
0.2). Here, we only show the results of the two data types
of NF-NP in the Usoskin dataset, as shown in Figure 4. The
Xin data set and the other five analysis results are show in
Supplementary Material 3.

The upper half of the main matrix in the figure shows the
relationship between genes and genes in the NF subset, and the
lower half shows the relationship between genes and genes in
the NP subset. There are a total of 21 modules in the figure.
Some modules have a higher expression level in NF and some
have higher expression levels in NP. The color difference between
the two sides is more obvious, indicating that this module has
a large difference between NF and NP, which can be targeted
at the difference. Analysis of the more obvious modules plays
a vital role in the exploration of downstream target genes and
drug prediction.
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FIGURE 3 | (A,B) are network heat maps of NF and PEP, respectively. On the left side and top are the hierarchical clustering trees and modules of genes. In the figure,

red represents higher similarity and yellow represents lower similarity. As the module is composed of genes with high similarity, it corresponds to the diagonal red in the

figure.

FIGURE 4 | Comparative correlation heat map of NF and NP. The upper

diagonal of the main matrix shows a correlation between pairs of genes

among the NF (the red color corresponds to positive correlations, blue to

negative correlations). The lower diagonal of the heat map shows a correlation

between the same gene pairs in the NP controls. Modules are identified in the

heat map by black squares and on the right side of the heat map by a color

bar. The brown bands on the right side indicate the mean expression of the

modules in the NF (first column) and the NP (second column); darker colors

indicate higher mean expression levels.

DISCUSSION

In recent years, the rapid development of single-cell sequencing
technology can simultaneously measure the expression levels
of tens of thousands of cells in a single experiment. Because

of this, single-cell sequencing technology has developed rapidly
in recent years. Although a large number of research methods
have been developed for single-cell sequencing technology, there
is no systematic framework on how to compare two single-
cell clusters at the molecular level. Due to the difference in
gene expression levels, different cells have different biological
meanings and different physiological functions. Each gene is
involved in a different biological process. It is not feasible to
analyze all genes blindly to predict drugs and treat diseases.
Therefore, analyzing data from the perspective of genetics plays
an important role in clinical trials and scientific research. In this
work, we performed a complete process analysis of scRNA-seq
data at the molecular level. For example, through DEGs, we can
know whether there are differences between different groups,
and which genes are different. Furthermore, the functional
enrichment analysis (GO, KEGG) of these differential genes
was performed to explore the relevant signal pathways and
the biological processes mediated by the differences in the
expression of these genes. By constructing a gene regulatory
network (WGCNA), it is helpful to understand the function of
different genes and the interaction between genes as a whole, to
better understand the gene expression mechanism inside cells,
and to promote the research of disease pathology. By analyzing
the difference modules in the entire gene regulatory network,
exploring modules that contain more biological information
provides effective guidance for the prediction of targeted genes
and subsequent analysis.

This work mainly focuses on the analysis of the gene level
in single-cell data, including the analysis of differential genes,
the analysis of differential correlation, the construction of gene
regulatory networks and the analysis of differential networks,
without considering the internal dynamics between cells. How to
effectively express the biological information contained in genes
and cells in words is one of our future research directions. And
due to the lack of relevant biological background knowledge, the
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analysis and description of the analysis results and the regulatory
relationship between genes are insufficient. At the same time,
more algorithm models can be considered for constructing the
relationship between genes.
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Background: Multiple myeloma (MM) is a malignant hematopoietic disease that is
usually incurable. RNA-binding proteins (RBPs) are involved in the development of
many tumors, but their prognostic significance has not been systematically described in
MM. Here, we developed a prognostic signature based on eight RBP-related genes to
distinguish MM cohorts with different prognoses.

Method: After screening the differentially expressed RBPs, univariate Cox regression
was performed to evaluate the prognostic relevance of each gene using The Cancer
Genome Atlas (TCGA)-Multiple Myeloma Research Foundation (MMRF) dataset. Lasso
and stepwise Cox regressions were used to establish a risk prediction model through the
training set, and they were validated in three Gene Expression Omnibus (GEO) datasets.
We developed a signature based on eight RBP-related genes, which could classify
MM patients into high- and low-score groups. The predictive ability was evaluated
using bioinformatics methods. Gene ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment, and gene set enrichment analyses were performed to
identify potentially significant biological processes (BPs) in MM.

Result: The prognostic signature performed well in the TCGA-MMRF dataset. The
signature includes eight hub genes: HNRNPC, RPLP2, SNRPB, EXOSC8, RARS2,
MRPS31, ZC3H6, and DROSHA. Kaplan–Meier survival curves showed that the
prognosis of the risk status showed significant differences. A nomogram was
constructed with age; B2M, LDH, and ALB levels; and risk status as prognostic
parameters. Receiver operating characteristic (ROC) curve, C-index, calibration analysis,
and decision curve analysis (DCA) showed that the risk module and nomogram
performed well in 1, 3, 5, and 7-year overall survival (OS). Functional analysis suggested
that the spliceosome pathway may be a major pathway by which RBPs are involved
in myeloma development. Moreover, our signature can improve on the R-International
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Staging System (ISS)/ISS scoring system (especially for stage II), which may have
guiding significance for the future.

Conclusion: We constructed and verified the 8-RBP signature, which can effectively
predict the prognosis of myeloma patients, and suggested that RBPs are promising
biomarkers for MM.

Keywords: RBP, prediction, prognosis, multiple myeloma, model

INTRODUCTION

Multiple myeloma (MM) is a malignant clonal plasma cell
disease of the bone marrow. The main clinical manifestations
are monoclonal proteins in the blood or urine and related
organ dysfunction (Palumbo and Anderson, 2011). Improved
understanding of myeloma and the application of new treatment
methods and drugs have greatly improved the survival of
patients with myeloma. However, MM is a highly heterogeneous
disease, both in response to treatment and in survival, for
which the overall survival (OS) of patients ranges from less than
2 years to more than 10 years (Palumbo and Anderson, 2011;
Sonneveld et al., 2016). This stark difference may be related to
the heterogeneity of myeloma cell biology and multiple host
factors (Greipp et al., 2005). Therefore, it is essential to identify
disease-related biomarkers and use them to distinguish patients
with different prognoses, which will be beneficial for formulating
individualized treatments to cope with tumor heterogeneity,
thereby improving patients’ final prognosis.

Post-transcriptional gene regulation (PTGR) is a crucial
biological process (BP). It is involved in maintaining cellular
metabolism, coordinating the maturation, transport, stability,
and degradation of all classes of RNAs (Gerstberger et al., 2014).
RNA-binding proteins (RBPs) are involved in nearly all steps
of PTGR, determining the fate and function of each transcript
in the cell, and ensuring cellular homeostasis (Pereira et al.,
2017). Gerstberger et al. identified 1542 RBP-associated genes,
accounting for 7.5% of all protein-coding genes in humans,
and half of these genes are involved in mRNA metabolic
pathways. Eleven percent of the RBPs constitute ribosomal
proteins, and the rest are involved in multiple non-coding RNA
metabolic processes (Gerstberger et al., 2014). RBPs constitute
a complex network with cancer-associated RNA targets, and
these interactions maintain tumor growth, allowing them to
escape death and become more invasive (Tu et al., 2015; Pereira
et al., 2017). Overexpression of the LIN28 paralog was shown to
synergize with the Wnt pathway to promote aggressive intestinal
adenocarcinoma development in mouse models; it has also been
detected in a variety of other solid tumors and hematological
malignancies. LIN28/LIN28B blocks let-7 microRNA (miRNA)
biogenesis and, in turn, downregulates the expression of let-7
miRNA target genes, which play an important role in tumor
progression and metastasis.

The International Staging System (ISS) distinguishes myeloma
patients into stages I, II, and III by serum β2 microglobulin
and albumin (Greipp et al., 2005). However, this staging only
considers the biochemical factors. The R-ISS staging groups

patients into stages I, II, and III based on ISS staging, which
integrates chromosomal abnormalities (CA) and serum lactate
dehydrogenase (LDH) (Palumbo et al., 2015). Although R-ISS
distinguishes patients with a good prognosis (stage I) from those
with a poor prognosis (stage III), this staging classifies the larger
cohort patients into stage II, which is composed of those who
still show significant survival heterogeneity (Gonsalves et al.,
2020). RBP-associated genes such as DIS3 have been shown to be
associated with myeloma prognosis (Boyle et al., 2020). Here, we
identified several prognostically relevant differentially expressed
genes (DEGs) for RBP by analyzing public databases and found
that these molecular biomarkers can enrich the understanding
of myeloma. We also performed Cox regression to construct an
8-gene prognostic model and nomogram that could effectively
predict the survival of MM patients and found that this model
could improve on the ISS and R-ISS staging ability.

MATERIALS AND METHODS

Data Processing and DEG Identification
All analyses in this study were conducted using R version
4.03. A list of 1542 RBP-related genes was obtained from
a previous study (Gerstberger et al., 2014). Gene expression
profiles GSE47552, GSE136337, GSE24080, and GSE57317
were downloaded from the Gene Expression Omnibus (GEO)
database1. The data for MMRF-CoMMpass were obtained from
The Cancer Genome Atlas (TCGA2). The array data of GSE47552
were obtained using the GPL6244 platform (HuGene-1.0-st
Affymetrix Human Gene 1.0 ST Array). GSE136337 was obtained
using the GPL27143 platform (HG-U133 Plus 2) Affymetrix
Human Genome U133 Plus 2.0 Array; GSE24080 and GSE57317
were obtained using the GPL570 platform (HG-U133 Plus
2) Affymetrix Human Genome U133 Plus 2.0 Array. The
data of GSE47552 included bone marrow samples from five
healthy donors and 41 newly diagnosed patients with MM.
DEGs between MM patients and healthy donors were identified
using the R package “limma.” Genes with P < 0.05, and
[log2FoldChange (log2FC)] > 1 were considered as DEGs.
Volcanic maps and heat maps were drawn using the R package
“ggplot2” and “pheatmap” to visualize DEGs.

The Cancer Genome Atlas-MMRF was used as a training set
to develop a prognostic signature, while GSE136337, GSE24080,
and GSE57317 were used for validation. To meet the needs of this

1https://www.ncbi.nlm.nih.gov/geo/
2https://tcga-data.nci.nih.gov/
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analysis, we set the following conditions to control data quality:
(1) Samples must have complete survival information, including
survival status and OS time, where death had to be tumor-related
and OS time had to be greater than 30 days (2). Samples must
have complete R-ISS or ISS information. Finally, 709 cases of
MMRF, 559 cases of GSE24080, 559 cases of GSE136337, and 55
cases of GSE57317 were selected for subsequent analysis.

Gene Ontology and KEGG Enrichment
Analysis of DEGs
Gene ontology (GO) term analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were performed
using the R package “clusterProfiler” to identify the functional
roles of the upregulated and downregulated DEGs, respectively.
GO enrichment was described from three sub-ontologies: BP,
molecular function (MF), and cellular component (CC).

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) version 4.1.0 was used to
explore significant BPs between patients in different risk groups.
KEGG gene sets as Gene Symbols3 were chosen as the gene set
database and the cut-off values for the significance of outcomes
were FDR < 0.25, NOM P < 0.05, and | NES| > 1.

RNA-Binding Protein-Related Gene
Signature Construction
Screening for Hub Genes in the Training Dataset
The TCGA dataset was used as the training cohort, and three
datasets (GSE136337, GSE24080, and GSE57317) were used for
validation. Univariate Cox regression analysis and multivariate
regression analysis (Cox, 1972) were chosen to screen for RBP-
related genes that were closely related to the OS of patients. In
the univariate Cox regression analysis, P < 0.05 was the criterion
to screen candidate genes. Next, the least absolute shrinkage
and selection operator (Lasso) (Friedman et al., 2010) regression
model was applied to minimize overfitting and identify the
most significant survival-associated DEGs of RBP-related genes
in myeloma. Stepwise multivariate Cox regression analysis was
then applied to further establish the RBP-related risk signature.
Finally, the hazard ratios (HRs) and regression coefficients of
every gene were calculated, and the satisfactory ones were chosen.

Construction of the Gene-Related Prognostic
Signature in the Training Dataset
The prognostic risk-score signature for prognosis prediction
of MM patients was to multiply the expression level of each
selected prognostic gene by its corresponding relative regression
coefficient weight as follows:

Risk score =
∑N

i=1 βi× Ei: (N represents the total number
of signature genes, and βi and Ei represent the coefficient index
and the gene expression value of each gene, respectively).

The risk score of each patient and the median risk score
were calculated using the training dataset. Those with a
higher risk score than the median were classified into the

3http://www.gsea-msigdb.org/gsea/downloads.jsp

high-score group, while those with a lower risk score were
classified into the low-score group. Kaplan–Meier survival curves
(Ranstam and Cook, 2017) and receiver operating characteristic
(ROC) curves (Kamarudin et al., 2017) of the two groups
were plotted to evaluate the sensitivity and specificity of the
signature we established.

Validation of the Gene-Related Prognostic
Signature’s Efficacy in the Validation Datasets
As in the training set, the patients in the validation datasets
were classified into the high- and low-score groups by comparing
the risk score of each patient with the calculated median risk
score from each dataset. The time-dependent prognostic values
of the gene signature were investigated using the Kaplan–Meier
curve and log-rank test (Kleinbaum, 1998) was used to compare
the survival difference between the above-mentioned high- and
low-score groups.

Construction of the Nomogram
In the GSE24080 dataset, we used the lasso regression analysis
to analyze all clinical factors and finally selected the clinical
prognostic factors together with risk status as the prognostic
parameters, ensuring that the nomogram model will not
overfit. Then, through “rms” and “regplot” R packages, a
prognostic nomogram was established to evaluate the probability
of OS in MM patients at 1/3/5/7 years with the regression
coefficients based on the lasso analysis. Calibration plots were
used to evaluate the discriminative ability of the nomogram.
Harrell’s concordance index (C-index) was used to verify the
nomogram performance. The ROC curve and calibration curve
varying with time were also drawn to estimate the accuracy
of the actual observed rate with the predicted survival for
1/3/5/7-year OS of the nomogram. In addition, the clinical
application prospects of the eight-gene prognostic signature
were determined through decision curve analysis (DCA)
(Vickers and Elkin, 2006).

RESULTS

Identification of DEGs
We set a P < 0.05, and [log2FoldChange (log2FC)] > 1 as the cut-
off criterion. Based on this standard, we identified 866 DEGs in
MM cases compared with healthy donors, among which 202 were
considered significantly upregulated, and 664 were considered
significantly downregulated. The volcano plot of DEGs and the
heat map of the top 200 DEGs are shown in Figures 1A,B. As
shown in Figure 1C, we obtained 96 differentially expressed RBPs
by taking the intersection of DEGs and 1,542 RBPs.

Functional Analysis of Differential RBP
Genes
For exploring the potential function of these differentially
expressed RBPs, we performed GO and KEGG enrichment
analysis using the R package “clusterProfiler.” The results
of the GO enrichment analysis are presented in three parts.
For BP, differentially expressed RNA-binding proteins
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FIGURE 1 | Identification of differentially expressed genes. (A) Volcano plot of DEGs; (B) heat map of the top 200 DEGs; and (C) differentially expressed RBPs.

(DERBPs) were significantly associated with the following
terms: RNA catabolic process, mRNA catabolic process,
nuclear-transcribed mRNA catabolic process, translational
initiation, nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, other important BPs, SRP-dependent
cotranslational protein targeting to membrane, cotranslational
protein targeting to membrane, protein targeting to ER, the
establishment of protein localization to the endoplasmic
reticulum, and protein localization to the endoplasmic reticulum
(Figure 2A). Four of the top five BP terms were related to
various RNA catabolic meaning that these processes may be
involved with MM disease progression. The CCs analysis
indicated that DERBPs were mostly involved in the following
terms: ribosome, ribosomal subunit, cytosolic ribosome,
large ribosomal subunit, cytosolic large ribosomal subunit,
small ribosomal subunit, cytoplasmic ribonucleoprotein
granule, cytosolic small ribosomal subunit, polysome, and
the polysomal ribosome (Figure 2B). MF terms were
mainly enriched for the structural constituent of ribosome,
catalytic activity (acting on RNA), mRNA 3’-UTR binding,
rRNA binding, ribonuclease activity, ribonucleoprotein
complex binding, translation regulator activity, telomerase
RNA binding, nucleocytoplasmic carrier activity, and Ran
GTPase binding (Figure 2C). The ribosome, coronavirus
disease – COVID-19, RNA degradation, spliceosome, ribosome
biogenesis in eukaryotes, and RNA transport pathway terms

were significantly enriched in DERBPs, as shown by KEGG
enrichment analysis (Figure 2D).

Exploration of the Prognostic RBPs in
MM
We enrolled 709 patients with a follow-up time of more than
30 days from TCGA as the training dataset for the construction
of the signature. Although 96 differentially expressed RBPs were
screened before (Figure 1C), only 94 of them were included in
the TCGA dataset. The prognostic significance of the 94 genes
was investigated using univariate Cox regression. As a result, 34
prognostic-associated candidate RBPs were obtained (P < 0.05)
(Table 1). LASSO regression was then performed to identify 34
candidate genes closely related to the prognosis of MM patients,
including the following 19 genes: HNRNPC, RPLP2, SNRPB,
SNRPE, SF3B3, KPNB1, GAPDH, RPS12, NFX1, MTIF3, CIRBP,
EXOSC8, RARS2, MRPS31, ZC3H6, DROSHA, NAT10, LSM5,
and PRIM1 (Supplementary Figure 1). To further screen out the
RBPs with the greatest prognostic value, a multiple stepwise Cox
regression was conducted to investigate their impact, and eight
hub RBPs, HNRNPC, RPLP2, SNRPB, EXOSC8, RARS2, MRPS31,
ZC3H6, and DROSHA were selected to construct the risk model
in MM patients (Figure 3A). All of the above genes showed
an independent prognostic effect (P < 0.05). Among them,
HNRNPC, SNRPB, EXOSC8, and DROSHA may be regarded as
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FIGURE 2 | Functional enrichment analysis of DEGs showed by bubble plots. (A–C) Three sub ontologies of GO enrichment analysis. (A) The biological process (BP)
enrichment analysis. (B) The cellular component (CC) enrichment analysis. (C) The molecular function (MF) enrichment analysis. (D) The KEGG enrichment analysis.

oncogenes, whereas RPLP2, RARS2, MRPS31, and ZC3H6 may be
tumor suppressor genes. The coefficients of these genes indicated
their impact on survival prediction.

Construction and Validation of the RBP
Prognostic Signature
We used the eight hub RBPs selected by multiple Cox regression
to establish the eight-gene predictive signature in the TCGA
dataset. The risk score for each patient was calculated based on
the expression level and the corresponding beta value using the
following formula:

Risk score = (−0.6071)× ExpZC3H6+ (0.9575)× ExpSNRPB
+ (−0.4821)× ExpRPLP2+ (−0.5116)× ExpRARS2+ (−0.4890)
× ExpMRPS31 + (0.7192) × ExpHNRNPC + (0.5315) × Exp
EXOSC8+ (0.9987)× ExpDROSHA

We then divided MM patients into the low-score group
(n = 355) and high-score group (n = 354) based on the median
risk score as the cut-off point. The patients’ gene expression levels,
status, and survival time are shown in Figures 3B–D. The K-M
results showed that the OS rate of patients in the high-score
group was significantly lower than that in the low-score group
(P < 0.001, Figure 3E). In addition, the time-dependent ROC
curve showed that the area under the ROC curve (AUC) of this
risk score signature at 1, 2, 3, 4, and 5 years were 0.78, 0.74,
0.77, 0.77, and 0.81, respectively (Figure 3F), indicating that this
signature has moderate performance.

To verify the predictive value of the 8-gene signature in other
MM cohorts, we performed a similar analysis in three datasets:
GSE136377, GSE24080, and GSE57317, which all included the

risk-related genes selected. The risk score formula described
above was validated for the three datasets. We only compared the
OS differences of 1–5 years in the TCGA dataset. But when the
risk model was applied to the GSE24080 and GSE136337 datasets,
comparing for up to 10 years, the results showed that the OS of
patients in the high-score group was worse than that of patients
in the low-score group (all P < 0.01) (Figures 4A,C). The AUC
of this risk score signature was >0.6, proving the performance
of this scoring system (Figures 4B,D). More interestingly, in the
GSE57317 dataset, the OS difference between the two groups
was very significant, with AUC values of 0.84,0.88, and 0.96 at
1, 2, and 3 years, respectively, proving the prognostic value in
this dataset (Figures 4E,F). In conclusion, this scoring model
exhibited acceptable performance for all three datasets.

Establishment and Validation of
Nomogram Survival Model
Univariate and Multivariate COX Regression Analysis
of the Model
Univariate and multivariate Cox regression analyses were
performed using clinical data from the GSE24080 dataset.
Using univariate Cox regression analysis, age, B2M, CRP,
LDH, ALB, HGB, and risk score status were selected to
assess the independent prognostic factors in the MM sample
(Figure 5A). Multivariate Cox regression analysis confirmed
that age (HR = 1.02, 95% CI [1.00−1.03]; P = 0.042),
B2M (HR = 1.41, 95% CI [1.17−1.69]; P = 0.000354), LDH
(HR = 1.00, 95% CI [1.00−1.01]; P = 6.89 × 10−8), ALB
(HR = 0.60, 95% CI [0.42−0.86]; P = 0.005), and multigene
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TABLE 1 | Unicox results of differential RNA-binding proteins.

Gene Hazard ratios CI95 P-value

SUPT4H1 1.76 1.02–3.06 0.043

HNRNPC 3.67 2.1–6.43 0

RPLP2 0.66 0.5–0.89 0.007

SNRPB 5.09 3.39–7.64 0

EIF3K 0.62 0.43–0.9 0.012

GEMIN5 1.95 1.31–2.89 0.001

SNRPE 2.54 1.79–3.61 0

UTP6 2.7 1.59–4.61 0

SF3B3 2.24 1.39–3.62 0.001

KPNB1 3.97 2.46–6.39 0

GAPDH 2.14 1.51–3.03 0

CNOT1 1.65 1.06–2.58 0.027

DDX17 0.77 0.6–0.98 0.033

NFX1 0.54 0.35–0.83 0.005

MTIF3 0.52 0.38–0.72 0

CPSF2 1.75 1.09–2.81 0.02

NOL11 1.88 1.19–2.98 0.007

ESF1 2.57 1.57–4.2 0

CIRBP 0.5 0.35–0.72 0

EXOSC8 1.9 1.28–2.84 0.002

DDX21 1.89 1.31–2.73 0.001

INTS2 2 1.32–3.01 0.001

RARS2 0.58 0.38–0.88 0.01

MRPS31 0.59 0.46–0.77 0

ZC3H6 0.45 0.29–0.71 0.001

RPF2 2.08 1.45–2.99 0

DROSHA 2.16 1.3–3.6 0.003

NAT10 1.84 1.18–2.89 0.007

XPO1 2.14 1.38–3.3 0.001

LSM5 1.7 1.05–2.74 0.032

PRIM1 2.66 1.97–3.58 0

CPEB2 0.7 0.52–0.93 0.014

SLIRP 1.69 1.04–2.77 0.035

DARS2 1.78 1.35–2.33 0

CI95: 95% confidence interval.

risk status (HR = 1.78; 95% CI [1.29−2.47]; P = 0.000438)
were significant independent risk factors (Figure 5B). Based on
the results shown in Figure 3C, the risk score can be used
as an independent prognostic factor without being affected by
clinicopathological features. The HR of the high-risk group was
1.78 (95% CI: 1.29−2.47) times higher than that of the low-
risk group.

Nomogram Construction
To establish a clinical method to predict the survival probability
of MM patients, we created a nomogram using lasso regression
analysis to estimate the probability of, 1-, 3-, 5-, and 7-
year OS with age, B2M, LDH, ALB, and risk score status
(Figures 6A,B). The AUC of 1-, 3-, 5-, and 7-year OS predictions
were 0.78, 0.75, 0.70, and 0.77, respectively (Figure 6E).
The calibration curve was used to describe the prediction
value of the nomogram, and the 45◦ line indicates the

actual survival outcomes. The results for predicting 1-, 3-, 5-,
and 7-year OS showed that the nomogram-predicted survival
closely matched the best prediction performance (Figure 6D),
indicating that the nomogram has a significant predictive
value for predicting 1-, 3-, 5-, and 7-year OS in patients
with MM. The concordance index (C-index) was calculated to
evaluate the prognostic capability of the model. The C-index
of the nomogram was 0.71 (95% CI [0.69–0.73]), which
proved that the nomogram’s value a good predictive tool
for MM prognosis. We used DCA analysis to confirm the
range of the threshold probabilities for a prediction model.
As shown in Figure 6C, the nomogram threshold probability
based on 8-gene combinations was significantly better than
the default strategies of treating all or none at a threshold
probability > 0.05.

Validation of Classification Capabilities
of the Eight-Genes Prognostic Signature
for R-ISS and ISS Stage II Patients
To assess whether our model could improve the heterogeneity
of patients with R-ISS stage II, we reclassified R-ISS stage II
patients in GSE136337 based on the model. Finally, 122 of 267
patients were redefined as II-High, while 145 were defined as
II-Low, and the survival curves were subsequently plotted. To
highlight the discriminatory effect, we defined the categorized
patients as R-ISS II co-plotted in graphs. As shown in Figure 7,
stage II patients were clearly divided into two groups with
different survival, and patients defined as II-High had a worse
prognosis. Meanwhile, we found that the classifier also optimized
for ISS stage II in GSE136337, and it was validated in two other
independent datasets (Figures 7B–D). We treated R-ISS stage I
and stage III in the same way, but the discrimination was not ideal
(Supplementary Figures 2A,B). To further evaluate whether
a similar effect would be apparent on ISS, we performed the
same reclassification for the TCGA, GSE24080, and GSE136337
datasets. In GSE136337, the results were not significant for either
ISS stage I or stage III (P > 0.05). For GSE24080, the difference
in survival after grouping was significant only for ISS stage I
(P = 0.033), but the effect of differentiation was not good enough.
Surprisingly, the TCGA dataset performed the best in the three
datasets. Although each dataset performed differently, the overall
results were not as good as those of stage II (Supplementary
Figures 2C–H).

Signaling Pathways Analysis of
High-Risk Group
In our study, patients in the high-risk group exhibited worse
survival. We used GSEA to investigate the potentially important
pathways causing different prognoses in the two groups. A KEGG
functional enrichment analysis showed that the base excision
repair, nucleotide excision repair, spliceosome, cell cycle, and
p53 signaling pathways may be involved in cancer development
(Figure 8). The spliceosome pathway also appeared in the
KEGG enrichment results of DERBPs, further demonstrating the
importance of this pathway.

Frontiers in Genetics | www.frontiersin.org 6 April 2021 | Volume 12 | Article 665173107

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665173 April 21, 2021 Time: 13:29 # 7

Wang et al. Prognostic Model of Multiple Myeloma

FIGURE 3 | Forest plots of the multivariate Cox regression analysis, the boxplot of eight RBP expression levels, the distribution of risk score, the living status,
Kaplan–Meier analysis, and ROC analysis of the eight-gene signature of MM patients in the TCGA cohort. (A) Forest plot of the multivariate Cox regression analysis
of OS of eight genes. Beta values represent the coefficient index β for each gene. (B) The boxplot of eight RBP expression levels in the training set (blue: low-score
group. Red: high-score group). (C) The distribution of risk scores in the TCGA training set. (D) The living status of MM patients in the TCGA training set.
(E) Kaplan–Meier survival analysis of the low-score and high-score group patients. (F) ROC curve analysis according to the 1-to-5-year survival of the area under the
AUC value in the training TGCA cohort.

DISCUSSION

With the development of novel diagnostic approaches and
treatment strategies, the survival of patients with MM has
improved. However, MM remains an incurable disease for
the vast majority of patients (Rajkumar, 2020). To ensure the
predictive value of RBP-associated genes, we first screened for

RBPs with significant differences in expression between newly
diagnosed myeloma patients and normal human bone marrow.
Subsequently, an eight-gene prognostic signature was established
based on the expression levels of RBP-associated genes. By
calculating the risk scores, we divided all patients into high- and
low-score groups in the training dataset and three validation
datasets, respectively. The predictive ability of this scoring model
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FIGURE 4 | Kaplan–Meier analysis and ROC analysis of 8-gene signature in three validation datasets. (A,B) Kaplan–Meier survival analysis of the low-score and
high-score group patients and ROC curve analysis according to the 1-, 3-, 5-, 7-, and 9-year survival of the AUC value in the GSE24080 cohort. (C,D) Kaplan–Meier
survival analysis of the low-score and high-score group patients and ROC curve analysis according to the 1-, 3-, 5-, 7-, and 9-year survival of the area under the
AUC value in the GSE136337 cohort. (E,F) Kaplan–Meier survival analysis of the low-score and high-score group patients and ROC curve analysis according to the
1-, 2-, and 3-year survival of the AUC value in the GSE51317 cohort.

was evaluated and verified in the training set and the three
validation datasets. Meanwhile, we built a nomogram survival
model to predict the 1/3/5/7-year survival rate by combining age,
B2M, LDH, ALB, and risk score status.

The role of RBPs in promoting cancer has been confirmed,
and DROSHA, EXOSC8, HNRNPC, MRPS31, RPLP2, and SNRPB
have also been reported to be related to the occurrence and
development of a variety of tumors. DROSHA and DICER
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FIGURE 5 | Forest plots of the multivariate and univariate Cox regression analysis in GSE24080 cohorts. (A) Forest plot of the univariate Cox regression analysis OS
of the clinical factors and risk score. (B) Forest plot of the multivariate Cox regression analysis OS of clinical factors screened by univariate Cox analysis and risk
score. Beta values represent the coefficient index β for each clinical factor.

are important factors involved in miRNA processing. For
neuroblastoma, the expression level of DROSHA decreased in
advanced-stage patients and was associated with poor prognosis
(Lin et al., 2010). EXOSC8 is an essential component of the
exosome complex and is involved in RNA surveillance and
epigenetic regulation. Cui et al. found that the expression of
EXOSC8 in colorectal cancer was higher than that in normal
tissues in a public database, indicating a poor prognosis. They
confirmed that the expression of EXOSC8 in colorectal cancer
was higher than that in matched normal tissues in clinical
samples, and verified the cancer-promoting effect of the gene
in cell and animal experiments (Cui et al., 2020). As an RBP,
HNRNPC was reported to be aberrantly expressed at elevated
levels in a variety of tumors, besides being involved in some
well-established BPs, such as RNA splicing. Further, it was
found to control endogenous dsRNA and downstream interferon
response functions and is indispensable to a subset of breast
cancer cell lines, and partial suppression of this gene can affect
cell line activity (Wu et al., 2018). Xu et al. (2014) found that
mitochondrial ribosomal protein S31 (MRPS31) was associated
with thyroid cancer disease progression using a machine-
learning method. Ribosomal P2 (RPLP2) is an ancient ribosomal
stalk protein. It has been shown that RPLP2 can alleviate
ribosome pausing in the DENV envelope coding sequence,

thus enhancing protein stability. This effect is achieved by
improving the efficiency of co-translational folding. RPLP2 also
influences multipass transmembrane protein biogenesis, making
it important in protein synthesis. Moreover, it is associated with
DNA repair, proliferation, apoptosis, and tumorigenesis, and is
significantly associated with malignancies such as gynecological
tumors, digestive system tumors, and lung adenocarcinoma
(Campos et al., 2020). The SNRPB of SMB/B’, the core member
of the spliceosome mechanism, promotes cell proliferation and
inhibits cell apoptosis. Changes in the core splice protein encoded
by SNRPB may interrupt RNA processing, resulting in specific
changes in the splice of variable exons, thus affecting the entire
transcription process (Correa et al., 2016). Besides its important
role in splicing, SNRPB mutations also have significant effects
on cell division and DNA repair (Kittler et al., 2004). SNRPB is
associated with poor prognosis in a variety of cancers, including
glioblastoma, non-small cell lung cancer, and metastatic prostate
cancer (Yi et al., 2009). Although the above-mentioned genes
have been reported in a variety of cancers, their precise roles
in myeloma remain unknown; thus, our study may provide
direction for further exploration. RARS2 encodes mitochondrial
arginine tRNA synthetase, a protein essential for the translation
of all mitochondrially synthesized proteins (Edvardson et al.,
2007). Mutation of the RARS2 gene causes destructive effects
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FIGURE 6 | Nomogram construction based on the eight-gene signature and prognostic value of genes. (A) The nomogram for predicting the proportion of patients
with 1-, 3-, 5-, and 7-year OS of MM. (B) LASSO regression analysis used tenfold cross-validation via the maximum criteria. (C) Decision curve analysis of
nomogram predicting 1-, 3-, 5-, and 7-year OS of MM. (D) Calibration plots of the nomogram. (E) Time-dependent ROC analysis of nomogram predicting 1-, 3-, 5-,
and 7-year OS of MM.

on the cerebellum and cerebellum-associated nuclei (inferior
olivary nuclei, pontine base, and dentate nuclei), leading to
degenerative changes in the brain. However, the exact mechanism
of this effect remains to be elucidated (Joseph et al., 2014).
ZC3H6 is a zinc finger transcription factor, but little is known

about its function or expression. However, we found that ZC3H6
may be closely related to the prognosis of patients with MM.
This finding has not been mentioned in previous literature,
so it may be a potential research direction in the future. In
previous studies, RARS2 and ZC3H6 have not been reported
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FIGURE 7 | The eight-gene model can enhance the predictive power of R-ISS and ISS for their respective stage II cohorts. (A) R-ISS stage II in GSE136337.
(B–D) ISS stage II in GSE136337, TCGA-MMRF, and GSE24080. (Red: a group that was reclassified as high risk. Green: a group that was reclassified as low risk.
Blue: total group before reclassification.)

FIGURE 8 | The KEGG pathways were enriched in the high-risk group by performing the GSEA analysis.

to be associated with tumors. In our study, these two genes
were differentially expressed in myeloma and correlated with
patient survival, suggesting that these two genes are potential
tumor-related genes that require further investigation. The vast
majority of these eight RBP genes were first reported to be
associated with myeloma, and in the future, we intend to establish

a real-world cohort of MM patients to validate the value of
these genes again.

To explore how RBPs are involved in the development and
progression of MM, we performed GO and KEGG enrichment
analyses of 96 DERBPs. In the GO enrichment analysis section,
the results of enrichment from BP, CC, and MF are described.
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The BP results show that the RNA catabolic process was the most
significantly enriched result. The CC results suggest that RBPs
are mainly localized in the ribosome and its associated locations.
MF then reflects the involvement of RBPs in the structural
conformation of the ribosome, RNA catalytic activity, and other
important MPs. KEGG indicated that RBPs affected the disease
by participating in the ribosome, RNA degradation, spliceosome,
and RNA transport pathways. The results of conducting
enrichment analysis only on DEGs may miss the contribution
of genes that are relevant but less biologically significant to
disease, so we further analyzed the differences in BPs between
high-risk and low-risk groups by GSEA. In the GSEA-KEGG
results, as with the results of the KEGG enrichment analysis of
the DERBPs, the “Spliceosome pathway” was suggested to be
significant. The RNA splicing pathway is associated with a variety
of human tumors (Wang and Aifantis, 2020). In MM, aberrant
RNA splicing patterns were found to exist, and patients with a
large number of novel splice loci tended to have worse survival
outcomes, which could be used to distinguish extremely high-
risk groups (Bauer et al., 2020). These findings fit our enrichment
results, demonstrating the value of the spliceosome pathway in
myeloma, but there are currently few relevant studies, and its
role in myeloma remains to be comprehensively uncovered. One
study showed that spliceosome interference was an unreported
mechanism of action of proteasome inhibitors; inhibition of
the spliceosome could synergize with carfilzomib to potentiate
antitumor effects, suggesting that targeted spliceosome therapy
could serve as a future research direction for the treatment of
myeloma (Huang et al., 2020).

R-ISS staging had the advantage of distinguishing patients
with a very good prognosis (stage I) from those with a very
poor prognosis (stage III); however, more patients were classified
as stage II. Although stage II patients were intermediate in
terms of overall prognosis, the issue of significant heterogeneity
within stage II patients has not been addressed. In this study, we
constructed a model that we intended to be a powerful predictor
of patient survival. Therefore, we wanted to evaluate whether the
model could enhance R-ISS prediction. The results showed that
the model could further discriminate patients with R-ISS stage II,
but performed poorly in stage I and III patients. This result not
only further suggests intra-patient heterogeneity at stage II, but
also illustrates that our model can optimize R-ISS to some extent.
Besides this, we also applied this model for ISS staging in the three
databases. The results were similar between the three databases,
the optimization effect of the model on the ISS stage II phase
was the most obvious, and it had a smaller optimization effect
on stages I and III, although the effect was weaker than R-ISS.
The distinct results for stages I and III affirm the ability of R-ISS
to discriminate between patients with stages I and III diseases,
as well as the significant heterogeneity within patients with stage
II disease, while also demonstrating the ability of our model to
optimize both R-ISS and ISS.

Collectively, we suggest that our 8-RBP-related gene signature
and nomogram could be practical and reliable prognostic
tools for MM. Although the signature and nomogram showed
excellent performance in the training and validation sets, they
inevitably had some limitations. First, although it performed

well in predicting the survival of patients with MM, it lacked
verification of large-scale prospective trials. Second, the R-ISS
data were only obtained from the GSE136337 database, and
further confirmation is needed to conclude that our model can
enhance the predictive power of R-ISS. Third, the associated
mechanisms have not been validated in MM cells. Based
on this, our follow-up research will focus on verifying the
conclusions of this study in terms of clinical applications and
molecular mechanisms.

In conclusion, we introduced a prognostic signature based on
eight RBP genes that might be independent prognostic factors in
MM and a novel nomogram that could predict the survival of
patients with MM.
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In the present study, we aimed to investigate the clinical and prognostic values of
CDK4 amplification and improve the risk stratification in patients with esophageal
squamous cell carcinoma. CDK4 amplification was analyzed by fluorescence in situ
hybridization using tissue microarray consisting of representative tissues of 520 patients
with esophageal squamous cell carcinoma, and its correlation with clinicopathological
features and clinical outcomes were evaluated. CDK4 amplification was found in 8.5%
(44/520) of patients with esophageal squamous cell carcinoma. CDK4 amplification
was negatively correlated with disease progression (P = 0.003) and death (P = 0.006).
Patients with CDK4 amplification showed a significantly better disease-free survival
(P = 0.016) and overall survival (P = 0.023) compared with those patients without
CDK4 amplification. When patients were further stratified into I–II stage groups and III–IV
stage groups, CDK4 amplification was significantly associated with both better disease-
free survival (P = 0.023) and overall survival (P = 0.025) in the I–II stage group rather
than the III–IV stage group. On univariate and multivariate analysis, invasive depth and
CDK4 amplification were associated with disease-free survival and overall survival. Taken
together, CDK4 amplification was identified as an independent prognostic factor for
survival, which could be incorporated into the tumor–node–metastasis staging system
to refine risk stratification of patients with esophageal squamous cell carcinoma.

Keywords: esophageal squamous cell carcinoma, CDK4 amplification, clinical stage, prognostic value,
fluorescence in situ hybridization

INTRODUCTION

Esophageal cancer (EC) is a lethal digestive tract malignancy with a poor prognosis, and an
increasing incidence and mortality rate worldwide (Malhotra et al., 2017). There are two main
histological types of EC: esophageal squamous cell cancer (ESCC) and esophageal adenocarcinoma
(EAC), which have significant differences in pathogenesis, epidemiology, and risk factors
(Rustgi and El-Serag, 2014; Arnold et al., 2015). ESCC usually occurs in flat cells lining the upper
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two thirds of the esophagus, predominantly in Africa and eastern
Asia (especially in China), and smoking is the main risk factor
(Lin et al., 2013; Rustgi and El-Serag, 2014), while EC mostly
originates from the Barrett mucosa in the lower third of the
esophagus and is prevalent in many developed countries (Edgren
et al., 2013; Rustgi and El-Serag, 2014; Arnold et al., 2016). In
addition to environmental and external factors, genetic factors
may also contribute to the development of a specific type
of EC. Recently, whole-genome sequencing and genome-wide
association studies have been undertaken to identify EC-related
genetic alterations (Gao et al., 2014; Lin et al., 2014; Cancer
Genome Atlas Research Network, Analysis Working Group:
Asan University, Bc Cancer Agency, Brigham and Women’s
Hospital, Broad Institute, Brown University, et al., 2017).

Cell cycle dysregulation induced by abnormal genetic
alterations (mutations, deletions, or amplifications) occur
frequently in human malignancies (Hanahan and Weinberg,
2011; Gampenrieder et al., 2016). The deregulation of the cyclin
D1–CDK4/6–Rb pathway, which will trigger loss of cell cycle
control, is one of the hallmarks of carcinogenesis (Asghar et al.,
2015). The cyclin-dependent kinase 4 (CDK4) gene located
in the chromosomal region 12q14.1 might have oncogenic
potential similar to other G1 regulatory genes (Haas et al.,
1997). CDK4 is initially identified as a catalytic subunit present
in the CDK/cyclin D complex in the G1 phase of the cell
cycle (Matsushime et al., 1992). CDK4 coupled with cyclin D1
(CCND1) phosphorylates the retinoblastoma protein 1 (RB1),
which leads to the release of the transcription factor EF2 and
subsequently enables the cell cycle progress from G1 to S phase
(Harbour et al., 1999). Alterations of these key components have
been implicated in the pathogenesis of multiple tumor types (An
et al., 1999). Overexpression of CDK4 could induce uncontrolled
cell growth and eventually lead to tumorigenesis; moreover,
amplification of the CDK4 gene, have been found in various
cancers (Lee et al., 2014).

The perturbed cell cycle regulation pathway in ESCC mainly
exhibited genetic alterations in the G1/S transition control,
including mutations or deletions of TP53, RB1, CDKN2A,
CHEK1, and CHEK2, and amplifications of CDK4, CCND1,
CDK6, and MDM2 (Song et al., 2014). Alterations of these genes,
such as inactivation of RB1 and CDKN2A and amplification of
CCND1, CDK6, and MDM2 have been well documented in ESCC
(Huang et al., 2007; Baba et al., 2014; Jiang et al., 2020). To
date, the prognostic significance of CDK4 amplification in ESCC
has not been described before. In this article, we describe CDK4
amplification in ESCC by fluorescence in situ hybridization
(FISH) and meticulously investigated the clinical and prognostic
values of CDK4 amplification in patients with ESCC to improve
the risk stratification.

MATERIALS AND METHODS

Patients and Tissues
This study retrospectively enrolled 520 ESCC patients who
had undergone surgical resection in the Department of Thorax
Surgery, Zhongshan Hospital, Fudan University (Shanghai,

China), between January 2007 and November 2010. Patients who
received preoperative antitumor therapy, including neoadjuvant
therapy, chemotherapy, and radiotherapy or died within
3 months were excluded from the current study. Ethical approval
was granted by the Human Research Ethics Committee of
Zhongshan Hospital, Fudan University. Signed informed consent
for the acquisition and use of patient tissue specimens and clinical
data was obtained from each patient.

All specimens were reassessed independently by two
pathologists using hematoxylin and eosin (HE)-stained sections
to determine the tumor grade, differentiation, invasion depth,
lymph node metastasis, vessel and nerve involvement, and
disease stage, according to the American Joint Committee
on Cancer guidelines for tumor–node–metastasis (TNM)
classification (eighth edition). Patients’ clinicopathological
characteristics such as gender, age, smoking, tumor location, and
clinical stage were collected from medical records. After surgery,
patients were followed up with endoscopy and computed
tomographic scan of the thorax and abdomen every 3 months
for the first year, every 6 months for the second year, and
every 6–12 months thereafter. Follow-up data of those patients
who did not have themselves examined in our hospital were
obtained by telephone.

Tissue Microarray
Tissue microarrays (TMAs) containing tumor tissues of the
520 patients under study were constructed as previously
described (Shi et al., 2013). Briefly, the representative areas
of 2 mm wide and 6 mm long with rich tumor cells were
selected by two experienced pathologists according to HE-stained
slides. The corresponding regions on archived formalin-fixed,
paraffin-embedded (FFPE) tissue blocks were extracted, vertically
planted into the recipient TMA blocks and then aggregated
on the instrument.

Fluorescence in situ Hybridization and
Assessment
Dual-color FISH assay was conducted on the TMA sections of
5 µm thickness using CDK4-specific probe (Spectrum orange)
together with a centromere-specific probe (Spectrum green)
for chromosome 12 (CEP12) (Empire Genomics, Buffalo, NY)
for assessment of CDK4 amplification according to established
laboratory protocol, as previously described (Zhang et al., 2014).
FISH copy number evaluation was performed by two experienced
pathologists blinded to patients’ clinicopathologic characteristics
under a fluorescence microscope (BX43; Olympus, Tokyo, Japan)
equipped with a DAPI/green/orange triple band pass filter and
a Microscope Digital Camera (DP73; Olympus). At least 100
tumor cell nuclei of each ESCC sample were analyzed by counting
orange signals for CDK4 and green signals for CEP12 under an
oil microscope with a magnification of 1,000 times. Overlapping
tumor nuclei were excluded from evaluation to avoid false-
positive scoring. Then the average number of CDK4 and CEP12
signals and the ratio of CDK4/CEP12 were calculated for each
case. Amplification of CDK4 was defined as a CDK4/CEP12
ratio ≥2.0 or an average copy number of CDK4 signals/tumor
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cell nucleus ≥5.0 or percentage of tumor cells containing large
clusters of CDK4 signal ≥10%, respectively, based on previously
reported modified scoring algorithms for HER2 and c-MYC
(Wolff et al., 2007; Huang et al., 2019).

Statistical Analysis
All the statistical analyses were carried out using SPSS 20.0 (SPSS
Inc., Chicago, IL, United States). All P-values were two sided,
and differences were considered statistically significant values of
P < 0.05. Disease-free survival (DFS) was defined as the interval
between surgical resection and recurrence, metastasis, or death
from any cause. Overall survival (OS) was defined as the interval
from date of curative surgery until death or last follow-up date.
Correlations between CDK4 amplification and clinicopathologic
variables were analyzed using the Fisher exact test or Pearson χ2

test. The Kaplan–Meier method with log-rank test was applied
to calculate the cumulative survival proportion for OS and DFS
by CDK4 amplification level and to determine if there were
any significant differences between the survival curves. The Cox
proportional hazard regression model was used to carry out the
univariate and multivariate regression analyses, and the hazard
ratio (HR) and 95% confidence intervals (CI) were determined.

RESULTS

Patient Characteristics
Detailed clinicopathological characteristics of the study cohort
including 520 ESCC specimens obtained for this study are
summarized in Table 1. The median age of this cohort was
61 years (range, 34–83 years), of which 81.7% were men and
38.7% were smokers. By anatomic site, 44.0% of tumors were
in the middle esophagus, whereas 51.2% of the tumors were in
the upper and lower esophagus with a median tumor size of
3 cm (range, 0.3–10 cm). The tumor differentiation was defined
as grade I in 20 (3.8%) patients, II in 292 (56.2%) patients, and
III in 208 (40.0%) patients. Vessel and nerve invasions were
presented in 111 (21.3%) and 177 (34.0%) tumors, respectively.
Meanwhile, lymph node metastasis was observed in 238 (45.8%)
of the patients. The depth of invasion was also evaluated. 15
(2.9%) cases were confined to the mucosa, 38 (7.3%) were in
the submucosa, 115 (22.1%) were in the muscular layer, and 352
(67.7%) were beyond the muscular layer. Among these patients
with ESCC, clinical stage was classified as I to II and III to IVb
in 290 (55.8%) and 230 (44.2%) cases, respectively, according
to the American Joint Committee on Cancer Staging Manual
(eighth edition).

Association Between CDK4
Amplification and Clinicopathological
Features
All the patients were classified into two groups by using
prespecified criteria for CDK4 amplification based on previous
studies (Wolff et al., 2007; Huang et al., 2019). CDK4
amplification (a CDK4/CEP12 ratio ≥2.0 or an average copy
number of CDK4 signals/tumor cell nucleus ≥5.0 or percentage

of tumor cells containing large clusters of CDK4 signal ≥10%)
was found in 8.5% (44 of 520) of patients (Figures 1A,B), and
other patients (91.5%, 476 of 520) showed non-amplification (low
polysomy or disomy) (Figures 1C,D). The correlations between
CDK4 amplification and clinicopathological features are shown
in Table 1. CDK4 amplification status significantly correlated
with disease progression (P = 0.003) and death (P = 0.006).
There was no significant difference between CDK4 amplification
and CDK4 non-amplification group regarding sex (P = 0.987),

TABLE 1 | Correlation between CDK4 amplification and clinicopathological
features in full cohort of patients with ESCC.

Clinicopathologic feature No. CDK4 amplification

No Yes P-value

Sex 0.987

Female 95 87 8

Male 425 389 36

Age (years) 0.588

<60 221 204 17

≥60 299 272 27

Grade 0.403

I + II 312 283 29

III 208 193 15

Invasive depth 0.791

I–II 168 153 15

III 352 323 29

Vessel invasion 0.592

No 409 373 36

Yes 111 103 8

Nerve invasion 0.511

No 343 312 31

Yes 177 164 13

Lymph node metastasis 0.556

No 282 260 22

Yes 238 216 22

Site 0.768

Up 25 22 3

Middle 229 211 18

Down 241 220 21

Smoking 0.748

No 319 293 26

Yes 201 183 18

Clinical stage 0.625

I–II 290 267 23

III–IVb 230 209 21

Disease progression 0.003

No 242 212 30

Yes 278 264 14

Death 0.006

No 251 221 30

Yes 269 255 14

Grade: I, well differentiated; II, moderately differentiated; III, poorly differentiated.
Invasive depth: I, confined to submucosal layer; II, invasion of muscular layer; III,
beyond the muscularis.
The features/variables that make significant contribution are in bold.
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FIGURE 1 | Representative patterns of CDK4 gene (orange color) and CEP12 (green color) copy number status by FISH (original magnification ×1,000). (A) CDK4
amplification, a CDK4/CEP12 ratio ≥2.0; (B) CDK4 amplification, an average copy number of CDK4 signals/tumor cell nucleus ≥5.0; (C) CDK4 non-amplification,
low polysomy; (D) CDK4 non-amplification, disomy.

age (P = 0.588), grade (P = 0.403), invasive depth (P = 0.791),
vessel (P = 0.592) and nerve invasions (P = 0.511), lymph
node metastasis (P = 0.556), anatomic site (P = 0.768), smoking
(P = 0.748), and clinical stage (P = 0.625).

Survival Analyses
The 5-year DFS and OS rates for all patients were 32.1%
and 32.9%, respectively, with a median follow-up period of
35.5 months (range, 3–102 months). Mean and median times
to DFS were 41.6 and 31.0 months, while to OS were 44.9
and 35.5 months, respectively. Instances of disease progression
(278), including 106 local recurrences and 172 lymph node or
distant metastasis, were documented, and 277 patients (53.3%)
died during the follow-up, in which 269 patients (51.7%)
died of EC. To further explore the prognostic significance
of CDK4 amplification and clinical outcomes, Kaplan–Meier
analysis with log-rank test was used to compare differences
between subgroups. The Kaplan–Meier curves revealed that
the CDK4 amplification group with a median DFS and OS of
42.5 and 46.0 months, respectively, gained significant survival
benefit compared with the group without CDK4 amplification
(median DFS, 30.0 months, P = 0.016; median OS, 35.0 months,

P = 0.023) (Figure 2). Univariate analysis of prognostic
significance revealed that grade, invasive depth, vessel invasion,
nerve invasion, lymph node metastasis, clinical stage, and CDK4
amplification were significantly associated with DFS and OS. In
the multivariate analysis, invasive depth (P = 0.006, HR: 1.560,
95% CI: 1.133–2.149 for DFS; P = 0.008, HR: 1.542, 95% CI:
1.119–2.125 for OS) and CDK4 amplification (P = 0.015, HR:
0.512, 95% CI: 0.299–0.877 for DFS; P = 0.021, HR: 0.530,
95% CI: 0.309–0.908 for OS) were associated with DFS and
OS (Table 2).

Survival Analyses Based on Clinical
Stage
In stages I–II patients (n = 290, Figures 3A,B), CDK4
amplification was significantly associated with better DFS
(P = 0.023) and OS (P = 0.025). Among the 23 patients withCDK4
amplification, a better prognosis was observed, with a median
DFS and OS being both 73.0 months compared with 45.0 and
47.0 months for 267 patients without CDK4 amplification. As
to the stages III–IV patients (n = 230, Figures 3C,D), CDK4
amplification did not play the prognostic role whether in DFS
(P = 0.144) or in OS (P = 0.211), since the median DFS and OS
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FIGURE 2 | Kaplan–Meier curves of disease-free survival (DFS) (A) and overall survival (OS) (B) according to CDK4 amplification status in 520 esophageal squamous
cell cancer (ESCC) patients.

were 18.0 and 25.0 months, respectively, in 21 patients withCDK4
amplification, whereas it was 20.0 and 25.0 months, respectively,
for 209 patients without CDK4 amplification.

TABLE 2 | Univariate and multivariate survival analyses for DFS and OS in full
cohort of patients with ESCC.

Variable DFS OS

P-value Hazard ratio P-value Hazard ratio

(CI 95%) (CI 95%)

Univariate analysis

Sex 0.109 1.299 (0.943–1.790) 0.128 1.283 (0.931–1.767)

Age 0.848 0.977 (0.768–1.243) 0.888 1.017 (0.800–1.295)

Grade 0.032 1.269 (1.021–1.577) 0.045 1.250 (1.005–1.554)

Invasive depth <0.001 1.921 (1.446–2.553) <0.001 1.952 (1.469–2.593)

Vessel invasion 0.002 1.536 (1.175–2.007) 0.001 1.562 (1.195–2.042)

Nerve invasion 0.008 1.394 (1.091–1.782) 0.002 1.460 (1.142–1.865)

Lymph node
metastasis

<0.001 2.809 (2.192–3.600) <0.001 2.854 (2.227–3.658)

Clinical stage <0.001 2.844 (2.222–3.639) <0.001 2.882 (2.252–3.687)

Site 0.980 0.997 (0.810–1.228) 0.813 1.026 (0.832–1.265)

Smoking 0.199 1.173 (0.919–1.495) 0.192 1.176 (0.922–1.499)

CDK4
amplification

0.020 0.529 (0.309–0.906) 0.027 0.546 (0.319–0.934)

Multivariate analysis

Grade 0.438 1.093 (0.873–1.367) 0.594 1.063 (0.849–1.331)

Invasive depth 0.006 1.560 (1.133–2.149) 0.008 1.542 (1.119–2.125)

Vessel invasion 0.977 0.996 (0.749–1.324) 0.907 1.017 (0.766–1.351)

Nerve invasion 0.964 1.006 (0.771–1.313) 0.677 1.058 (0.810–1.382)

Lymph node
metastasis

0.192 1.980 (0.709–5.524) 0.158 2.095 (0.750–5.849)

Clinical stage 0.583 1.333 (0.478–3.721) 0.656 1.263 (0.452–3.528)

CDK4
amplification

0.015 0.512 (0.299–0.877) 0.021 0.530 (0.309–0.908)

ESCC, esophageal squamous cell carcinoma; CI, confidence interval; DFS,
disease-free survival; OS, overall survival.
The features/variables that make significant contribution are in bold.

DISCUSSION

Prognosis prediction and treatment guidance for ESCC are
currently based on the TNM staging system, which provides
prognostic information, and it will continue to be the most
commonly applied approach for a fairly long time (Rustgi and
El-Serag, 2014). However, patients with the same TNM stage
may display different molecular phenotypes and prognoses.
Many non-anatomic prognostic factors, especially genetic
and molecular markers critical in carcinogenesis and cancer
progression, are also found to have great significance in patient
prognosis (Cao et al., 2014; Lin et al., 2017; Mei et al., 2017; Wang
et al., 2017; Bi et al., 2020). Therefore, it is of great importance to
identify accurate biological markers for the prognosis of ESCC,
which may help subdivide patients at the same stage into different
groups according to their prognosis. A better understanding of
patient prognosis would help guide more personalized treatment
for ESCC patients after curative surgery.

Aberrant CDK4 amplification in malignant tissues has been
reported to be involved in the development and progression of
various cancers including liposarcoma (Creytens et al., 2015),
glioblastomas (Schmidt et al., 1994), breast cancer (Piezzo et al.,
2020), ovarian cancer (Masciullo et al., 1997), and melanoma
(Muthusamy et al., 2006) through the cyclin D1–CDK4/6–
Rb pathway. Ricciotti et al. (2017) performed a cut point
analysis of the prognostic significance of CDK4 amplification
in patients with dedifferentiated liposarcoma by comparison
of Kaplan–Meier survival curves using log rank tests. The
study showed that CDK4 amplification was associated with
decreased DFS (P = 0.0169) and disease-specific survival (DSS)
(P = 0.0140). Saada-Bouzid et al. (2015) also demonstrated that
CDK4 amplification was significantly associated with shorter
recurrence-free survival, and overall survival in dedifferentiated
liposarcoma patients. Altogether, the amplification of CDK4
appears to be a negative event in liposarcoma. In glioblastoma
patients, Fischer et al. (2010) reported that lack of amplification
of CDK4 was recognized to be associated with a significant
longer survival time.
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In the present study, we investigated CDK4 amplification
and its value in the prediction of survival in patients with
ESCC. The correlation between CDK4 amplification and the
clinicopathological parameters of ESCC patients was also
analyzed. Different from a singular criterion only using
CDK4/CEP12 ratio or CDK4 copy numbers, we applied a
more sophisticated CDK4 FISH criterion considering percentage
of CDK4 clusters at the same time. Patients with CDK4
amplification and non-amplification account for 8.5% (n = 44)
and 91.5% (n = 476) of all the 520 ESCC patients, respectively.
CDK4 amplification rate (8.5%) determined by FISH analysis
in our study is comparative with that of a previous study
obtained by high-throughput sequencing methods (Song et al.,
2014). There was no significant difference between CDK4
amplification and CDK4 non-amplification group regarding sex,
age, grade, invasive depth, vessel and nerve invasions, lymph
node metastasis, anatomic site, smoking, and clinical stage, which
is in line with the conclusion that no significant associations were
found between CDK4 gene amplification and patient’s age, tumor
size, and lymph node status in breast cancer (An et al., 1999).

Although there was no statistical significance, CDK4 gene
amplification was less common in tumors with higher histological
grade. Moreover, it is worth noting that CDK4 amplification

had a significant negative correlation with disease progression
(P = 0.003) and death (P = 0.006) (Table 1). CDK4 seems to
be negatively correlated with some indicators indicating poor
prognosis in ESCC. Interestingly, different from the prognosis
value of CDK4 amplification in dedifferentiated liposarcoma and
glioblastoma patients, we demonstrated that CDK4 amplification
was associated with a better DFS (P = 0.016) and OS (P = 0.023)
(Figure 2). Furthermore, CDK4 amplification was not a common
genetic alteration but proved to be an independent prognostic
marker in patients with ESCC (Table 2). The results of this
study seem to be opposite to the prognosis of other tumor
types. This may be as a result of the complexity of the gene
regulation process in ESCC. The occurrence and development of
ESCC is a multistage and multifactor process, which involves the
interaction of multiple oncogenes and tumor suppressor genes
(Gao et al., 2014; Lin et al., 2014; Cancer Genome Atlas Research
Network, Analysis Working Group: Asan University, Bc Cancer
Agency, Brigham and Women’s Hospital, Broad Institute, Brown
University, et al., 2017). In addition, we speculate that it may
be due to the influence of cancer species, and geographical and
environmental factors; the causes of different tumors are not the
same, leading to the differences in research results. To the best
of our knowledge, this study is the first to evaluate the value of

FIGURE 3 | Survival analyses based on clinical stage of ESCC patients. (A,B) In stages I–II patients, CDK4 amplification was significantly associated with better DFS
(P = 0.023) and OS (P = 0.025). (C,D) In stages III–IV patients, CDK4 amplification could not predict the prognosis in DFS (P = 0.144) or OS (P = 0.211).
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CDK4 amplification as a novel candidate prognostic biomarker
in patients with ESCC, so it is necessary to further investigate the
upstream and downstream genes of CDK4 to clarify its role and
elucidate the prognostic utility in ESCC.

Given that clinical stage is an important clinicopathological
factor, the prognosis usually varies between patients with
different stages. Therefore, we categorized the patients into the
I–II stage group and III–IV stage group. In the I–II stage
group, CDK4 amplification was significantly associated with
both better DFS and OS compared with the non-amplification
group. However, this significant correlation was not found in the
III–IV stage patients implying that prognostic value of CDK4
amplification is relying on clinical stage (Figure 3). It is suggested
that CDK4 may change in the early stage of ESCC and play an
important role in the occurrence and development of the disease.
With the increase in clinical stage, more and more genes in ESCC
are changed (Sudo et al., 2019), and the interaction between genes
becomes complex, which affects the role of CDK4.

In summary, we have first proved the prognostic significance
of CDK4 amplification as a favorably independent prognostic
factor for DFS and OS in Chinese patients with ESCC.
Combining CDK4 amplification with the TNM staging system
might add more information to better predict the prognosis
of ESCC patients.
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Melanoma is one of the most aggressive cancer types whose prognosis is determined
by both the tumor cell-intrinsic and -extrinsic features as well as their interactions.
In this study, we performed systematic and unbiased analysis using The Cancer
Genome Atlas (TCGA) melanoma RNA-seq data and identified two gene signatures
that captured the intrinsic and extrinsic features, respectively. Specifically, we selected
genes that best reflected the expression signals from tumor cells and immune infiltrate
cells. Then, we applied an AutoEncoder-based method to decompose the expression
of these genes into a small number of representative nodes. Many of these nodes
were found to be significantly associated with patient prognosis. From them, we
selected two most prognostic nodes and defined a tumor-intrinsic (TI) signature and
a tumor-extrinsic (TE) signature. Pathway analysis confirmed that the TE signature
recapitulated cytotoxic immune cell related pathways while the TI signature reflected
MYC pathway activity. We leveraged these two signatures to investigate six independent
melanoma microarray datasets and found that they were able to predict the prognosis
of patients under standard care. Furthermore, we showed that the TE signature was
also positively associated with patients’ response to immunotherapies, including tumor
vaccine therapy and checkpoint blockade immunotherapy. This study developed a
novel computational framework to capture the tumor-intrinsic and -extrinsic features
and identified robust prognostic and predictive biomarkers in melanoma.

Keywords: biomarker, gene expression profile, SKCM, tumor microenvironment, immunotherapy

INTRODUCTION

Melanoma is one of the most aggressive tumors, with about 160,000 newly diagnosed cases
worldwide each year (Schadendorf et al., 2015; Torre et al., 2015). Although the 5-year overall
survival of metastatic melanoma patients has increased up to over 50% with checkpoint blockade
immunotherapy (CBI) (Larkin et al., 2019), there are still about half of the patients who do not
respond to current immunotherapy whose prognosis remain poor (Khair et al., 2019). Thus,
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identifying comprehensive gene signatures that predict
the responses to immunotherapy and melanoma patients’
overall survival would facilitate the clinical practices of
melanoma patients.

Both the tumor cell-intrinsic and cell-extrinsic factors
influence the progression and regression of cancer. Extrinsically,
immune cell infiltration is a hallmark of melanoma (Li et al.,
2016; Thorsson et al., 2018). Four molecular subtypes of
metastatic melanoma patients based on the gene expression
have been identified and the immune subtype patients had
significantly prolonged overall survival (Jönsson et al., 2010).
This tumor immune microenvironment can be largely affected
by tumor intrinsic features (L. Yang et al., 2019). Several studies
reported the positive association between the number of non-
synonymous somatic mutations and the abundance of tumor-
infiltrating immune cells (Li et al., 2016; Varn et al., 2017).
On the contrary, copy number variation (CNV) presented a
negative association with immune cell infiltration in the tumor
microenvironment across multiple cancer types (Davoli et al.,
2017; Zhao et al., 2019). In addition to the genomic features, the
tumor oncogenic pathways play a profound role in regulating
the immunosuppressive tumor microenvironment and immune
evasion (Hanahan and Weinberg, 2011). MYC, as an important
transcription factor, has been reported to cooperate with Ras
to exclude the infiltration of immune cells (L. Yang et al.,
2019). In line with these findings, it has been shown that
melanoma patients with high somatic mutation burden, low
CNV, or low oncogenic activation are more likely to benefit from
immunotherapy (Snyder et al., 2014; Van Allen et al., 2015; Davoli
et al., 2017; Lauss et al., 2017).

In order to comprehensively characterize these cell-extrinsic
and cell-intrinsic factors in patients, linear regression-based
models have been widely used to identify gene signatures in
patients. Zhao et al. identified 25 immune-associated genes to
depict the abundance of tumor-infiltrating immune cells (Zhao
et al., 2019), and Liao et al. combined the expression of two
immune genes, CCL8 and DEFB1, for prognosis prediction (Liao
et al., 2020). However, the algorithms based on linear regression
ignored the complicated nonlinear relationships and correlations
among genes. Currently, only few methods designed nonlinear
models to capture the tumor-infiltrating immune cells in the
microenvironment but mostly focused on the function of specific
immune cell populations (Yoshihara et al., 2013; Varn et al.,
2016). Thus, in this study, we proposed an Autoencoder-based
computational framework to extract both the tumor-intrinsic and
-extrinsic features from gene expression of melanoma samples.
By applying this framework to the TCGA metastatic melanoma
RNA-seq dataset, we identified a number of interrelated nodes.
Many of these nodes are found to be significantly associated
with patients’ prognosis. We selected two most prognostic nodes
and defined a tumor-intrinsic (TI) signature and a tumor-
extrinsic (TE) signature. Using benchmarked experimental data,
we validated that the TE signature reflected the immune
cell cytotoxicity pathway while the TI signature captured the
MYC oncogenic pathway activity. Both signatures were strong
predictors for metastatic melanoma patients’ overall survival,
even after adjusting for several clinical factors. Moreover, the

TE signature could predict the patients’ response to MAGE-
A3 and anti-CTLA4 immunotherapy. Our results provided a
generic computational framework for tumor-intrinsic and -
extrinsic feature extraction and identified potential biomarkers
for predicting clinical outcome in melanoma.

RESULTS

Overview of the Study
We extracted the tumor-intrinsic and -extrinsic signals from the
gene expression data of metastatic melanoma patients in TCGA
and identified a number of interrelated modules (Figure 1).
Among these modules, we identified two representatives
associated with tumor-extrinsic (TE) and -intrinsic (TI) features,
respectively. We further validated that the TE signature reflected
the immune cell cytotoxicity pathway while the TI signature
indicated the MYC oncogenic pathway activity. Subsequently,
we systematically investigated the function of the extrinsic
and intrinsic features in melanoma patients’ prognosis and
response to immunotherapy, which could be summarized as
(1) illustrating the prognostic value of the TE signature and
TI signature in metastatic and stage III melanoma patients;
(2) developing an integrative model to predict patients’ overall
survival; (3) examining the prediction power of the TE signature
in immunotherapy; and (4) identifying the association between
the TI signature and anticancer drugs.

Association of the TI and TE Signatures
With Molecular and Immunological
Features
In total, 40 nodes were acquired (20 nodes from TE-associated
modules and 20 from TI-associated modules). An additional
feature selection process was performed to select the most
clinically relevant nodes. We first examined the prognostic value
of each node in the training data (metastatic TCGA SKCM)
and chose the TE-signature (H17) and TI-signature (L7) nodes
as the representatives for tumor-extrinsic and -intrinsic features
given their performances in predicting prognosis (Methods,
Figure 2A).

As mentioned in Figure 1, we only chose the genes that were
correlated with lymphocyte abundance as the input for training.
Therefore, we further validated that the TE signature and the TI
signature are associated with lymphocyte abundance (p < 2e-16,
Figure 2B; p = 9e-08, Figure 2C). Additional correlation analyses
with immune-stimulatory and inhibitory genes confirmed that
the TE signature and TI signature were correlated with the
immune microenvironment in the tumor with TE signature
presenting a positive correlation and TI signature presenting
a negative correlation (Figure 2D). Those evidences showed
that the TE signature and TI signature maintained the original
correlation structure with the lymphocyte score.

Next, we aimed to explore the pathways that the TE signature
and TI signature represent to unravel their biological indications.
Based on the pre-ranked GSEA results of the TE signature
(Supplementary Table 2), we hypothesized that the TE signature
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FIGURE 1 | Schematic overview of present study. The TCGA-SKCM metastatic RNA-seq dataset was used to screen out the immune cell and tumor cell related
genes. (A) The RNA-seq dataset was further split into immune cell related genes expression dataset and tumor cell related gene expression dataset for AutoEncoder
decomposition models training. (B) Node TE-signature and TI-signature were chosen as the representatives of the immune cell and tumor cell gene expression
datasets. (C) The trained models were further applied into the independent melanoma gene expression dataset for decomposition. Node TE-signature and
TI-signature were then examined for predicting prognosis and immune therapy response.

was associated with immune cell cytotoxicity-related pathways.
To test this, the pathway activity for each patient was identified
using the TCGA metastatic SKCM patients’ expression data of
the genes in each pathway of the MsigDB C2 pathway database.
The pathway activity of all the pathways in the MsigDB C2
database was then correlated with the TE-signature score for
each patient. Shown in Figure 2E, the TE-signature score was
correlated with the pathway activity of Graft Versus Host Disease
(GVHD), mediated by pro-inflammatory immune components
(Henden and Hill, 2015; Kuba and Raida, 2018). The hypothesis
was further supported by a strong correlation between the TE-
signature score and the cytolytic activity (CYT) index in TCGA
metastatic melanoma patients (Rho = 0.91, Figure 2E). To

gain insights on the immune cell subtype contributing to this
cytolytic activity, the infiltration levels of six major immune
subtypes (NK cell, naive B cell, memory B cell, CD8+ T cell,
CD4+ T cell, and monocytes) were correlated with the TE-
signature score, which showed that the NK cells having the
highest correlation (Figure 2G).

We also explored if the TI-signature score captured similar
immune profiles. We found strong negative correlations
between the TI signature with the CYT index as well as the
infiltration of the six immune cell subtypes (Rho = −0.54,
Figures 2E,G), indicating that the TI signature could rather
associate with the tumor-intrinsic but not -extrinsic pathways
in the TME. Interestingly, the TI-signature score presented a
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FIGURE 2 | Association of TI and TE signatures with molecular and immunological features. (A) Bar plot showing the –log10 (p-value) of each node in the TCGA
metastatic melanoma dataset. (B,C) Boxplot showing the association between TE-signature score and lymphocyte score in (B) and between TI-signature score and
lymphocyte score in (C). P-value was calculated by ANOVA. (D) Heat map showing the correlation between immune stimulatory or immune inhibitory gene
expression and TE-signature or TI-signature scores. (E) Scatterplot showing the correlation between GVHD pathway activity and TE-signature score (left panel) or
showing the correlation between CYT index and TE-signature or TI-signature scores (right panel). (F) Scatterplot showing the correlation between MYC oncogene
pathway activity and TI-signature score. Boxplot indicating the TI-signature scores difference between MYCamp or MYCNamp or MYCLamp and WT. P-values were
calculated by Wilcoxon rank-sum test. (G) Heat map showing the correlation between TE-signature or TI-signature scores and immune cell abundance.
(H) Scatterplot showing the correlation between Mutation burden and TE-signature (left panel) or TI-signature (right panel) scores. (I) Scatterplot showing the
correlation between CNV burden and TE-signature (left panel) or TI-signature (right panel) scores. In all scatterplots, the rho was calculated by Spearman correlation.

consistent positive correlation with multiple MYC oncogene-
related pathways (Figure 2F and Supplementary Table 3).
MYC, MYCL, or MYCN amplification-induced MYC pathway
activation was reported through many studies (Schaub et al.,
2018). Thus, the association between the TI-signature and

MYC/MYCL/MYCN amplification status were examined and the
results indicated that the TI-signature score represented the MYC
pathway in the tumor cells.

Evidences above suggested that the TE signature was
associated with immune cell cytotoxicity while the TI signature
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was associated with MYC pathway activation. These tumor cell-
intrinsic and -extrinsic features were largely affected by tumor
mutation burden and copy number variation burden (Hanahan
and Weinberg, 2011; Chalmers et al., 2017; Taylor et al., 2018).
Thus, we further correlated tumor mutation burden and copy
number variation burden with both signatures and found that
the tumor mutation burden only correlated with the TI-signature
score with Rho = 0.17 while the tumor copy number variation
burden correlated with both the TE-signature and the TI-
signature scores with Rho = −0.57 and Rho = 0.48, respectively
(Figures 2H,I).

TE and TI Signatures Were Predictive of
Prognosis in Metastatic Melanoma
Aforementioned, the TE and TI signatures were chosen based
on their prognostic values for metastatic melanoma patients
from TCGA, where the TE-signature score associated with better
prognosis, yet the TI-signature associated with poor prognosis.
The prognosis values of both signatures were further expanded to
four other independent metastatic melanoma datasets (GSE8401,
GSE65904, GSE19234, and GSE22155). Consistent with the
results in the TCGA dataset, patients with higher TE-signature
scores had significantly better survival outcomes, while the
patients with higher TI-signature scores had worse overall
survival (Figures 3A,B). Importantly, the distinctive prognostic
values of the TE and TI signature were stable across all the
datasets, although each dataset had different patient numbers
and collection criteria. To further investigate whether the TE
signature and TI signature added additional prognostic values
to well-established clinical factors, we applied a multivariate Cox
regression model and found that both signatures maintained as
predictors for patients’ overall survival even after adjusting for
clinical covariates (e.g., tumor pathological stage at diagnosis,
patients age and gender) (Figures 3C,D).

TE Signature Predicted Prognosis in
Stage III Melanoma Patients
Metastatic melanoma includes distant (stage IV) and regional
lymph node metastasis (stage III). After validating that the
TE and TI signatures were predictors for stage IV melanoma
patients as above, we investigated their prognostic values in
stage III melanoma patients. We isolated the stage III SKCM
samples in TCGA based on the metastatic regions. We found
that the distribution of TE-signature and TI-signature scores
are highly different. The stage III samples got the highest TE-
signature score while the distal metastatic samples got the highest
TI-signature score (Figures 4A,B). Then, we calculated the
TE-signature and TI-signature scores of samples in two stage
III datasets—GSE53118 and GSE54467—and examined their
prognostic roles. We found a significant protective association
of the TE-signature score with survival (HR = 0.46, P = 0.002,
Figure 4C) in GSE53118. Adjusting for clinical covariates,
including pathological stage at diagnosis, age, and sex, did not
substantially change the significant prognostic value of the TE
signature we observed (P = 0.02, Figure 4D). We were able to
repeat this finding in the GSE54467 dataset with the TE signature

(HR = 0.38, P = 0.003, Figure 4E, P = 0.003, Figure 4F). On
the contrary, the predictive performance of TI signature was
not significant. Therefore, only the TE signature can be used to
predict the prognosis of patients with stage III melanoma.

TE and TI Signatures Provided Additional
Prognostic Values Than Clinical Factors
Taking into consideration the distinctive associations of the
TE signature and TI signature with patients’ prognosis, we
proposed that the integration of TE signature and TI signature
could separate patients much better in terms of overall survival.
As a result, we examined the predictive performance of TE
signature and TI signature and clinical information on the
survival outcome of metastatic melanoma patients. First, we
separated the samples in the TCGA SKCM datasets into four
groups including TE-signature score-Low and TI-signature
score-High, TI-signature score-Low and TE-signature score-
High, TE-signature score-Low and TI-signature score-Low, and
TE-signature score-High and TI-signature score-High. We found
that the survival probability of the four groups of samples was
significantly different as shown in Figure 5A. As we expected, the
group with high TE-signature and low TI-signature scores had
the best survival outcome, and the group with low TE-signature
and high TI-signature score shaved the worst survival outcome
(P = 2E-5, Figure 5A). This pattern could still be observed after
adjusting for important clinical factors (Figure 5B), highlighting
the potential of developing clinical applicable model.

Driven by this, we further conducted a multivariate
Cox regression analysis on the TCGA cohort to explore
the prediction power differences among TE signature, TI
signature, and clinical factors and subsequently developed a
prognostic prediction model. Shown in Figure 5C, the model
combined all clinical information with TE signature and
TI signature achieving the highest prediction performance,
measured by C-index. We further quantified the model’s
performance on another five independent stage III and stage
IV melanoma datasets. The combined model outperformed
other models in each independent dataset with the highest
C-index = 0.84 being observed in GSE8401 (Figure 5D). As
expected, the combined model could significantly improve
the prediction of patient’s survival outcome (P = 0.05,
Figure 5E).

The TE-Signature Predicted Patients’
Response to Immunotherapy
Various immunotherapy strategies have been developed to save
metastatic melanoma patients’ lives, yet many patients do
not respond to current immunotherapies. Precisely predicting
that the patient cohort may potentially respond to a certain
immunotherapy could maximize the benefit of the therapy
to the responding patients while minimizing the risks of
severe side effects of immunotherapy for the nonresponding
patients. MAGE-A3 anti-gen-specific cancer immunotherapy
is a tumor vaccine therapy that has been tested in multiple
clinical trials (Daud, 2018; Pol et al., 2019). Therefore, we first
investigated whether the TE signature can predict the response
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FIGURE 3 | TE signature and TI signature are prognostic in metastatic melanoma. (A,B) Kaplan–Meier plots depicting the survival distribution for patients with high
(red) and low (blue) TE-signature or TI-signature scores. In Kaplan–Meier plots, p-values were calculated using the log-rank test and vertical hash marks indicate
censored data. (C,D) Forest plot showing hazard ratios and p-values of TE-signature score (C) or TI-signature score (D) and several clinical variables estimated by a
multivariate Cox regression model. In all forest plots, HR was presented as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s
test was used to determine statistical significance.

of patients with metastatic melanoma to this tumor antigen
vaccine therapy. We calculated the TE-signature score and
compared its difference between the patients who responded
or did not respond to the MAGE-A3 immunotherapy. As
shown in Figure 6A, there was a significant difference in
TE-signature score between two groups of patients (P = 7E-
4, Figure 6A). Patients who benefited from the MAGE-A3
immunotherapy had significantly higher TE-signature score. An
AUC = 0.76 was observed by using the TE-signature score as the
predictor (Figure 6B).

In addition to antigen-specific immunotherapy, CBI has
achieved great success in treating metastatic melanoma patients

(Li et al., 2016; Larkin et al., 2019). We additionally analyzed
the association between the TE signature and response to
anti-CTLA4 therapy. Using the RECIST criteria, patients were
labeled as no response (NR), long survival (LS), and complete
response (CR). Shown in Figure 6C, both CR and LS patients
had significantly higher TE-signature scores compared to no
response patients (P = 0.01, CR vs. NR; P = 0.01, LS vs. NR).
Furthermore, it is not surprising that the TE signature predicted
the overall survival in patients treated with anti-CTLA4 therapy
and the prediction power remained significant after controlling
for clinical factors (P = 0.004, HR = 0.53, Figure 6D; P = 0.009,
Figure 6E).
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FIGURE 4 | TE signature predicts prognosis in stage III melanoma patients. (A,B). Boxplots indicating the difference of TE-signature or TI-signature scores across
different metastatic regions. P-values were calculated by the Wilcoxon rank-sum test. (C) Kaplan–Meier plots depicting the survival distribution for patients with high
(red) and low (blue) TE-signature or TI-signature scores. (D) Forest plot showing hazard ratios and p-values of TE-signature scores and several clinical variables
estimated by a multivariate Cox regression model. (E) Kaplan–Meier plots depicting the survival distribution for patients with high (red) and low (blue) TE-signature or
TI-signature scores. (F) Forest plot showing hazard ratios and p-values of TI-signature score and several clinical variables estimated by a multivariate Cox regression
model. In Kaplan–Meier plots, p-values were calculated using the log-rank test and vertical hash marks indicate censored data. In all forest plots, HR was presented
as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s test was used to determine statistical significance.

The TI Signature Was Associated With
Cancer Cell Line Sensitivity to Inhibitors
of the MYC Pathway
Given that the TI signature reflected poor clinical outcomes
of metastatic melanoma patients (Figures 3, 6), we sought for
potential drugs that could inhibit the function of the genes
in the TI signature which was annotated as the MYC-related
pathway (Figure 2). Using the GDSC database, we examined
the association between anticancer drugs and the TI-signature
score (Supplementary Table 4). The top three highly correlated
anticancer drugs are presented in Figure 6F. Interestingly, all
those drugs are reported to be kinase inhibitors and have a certain
degree of inhibition on the signaling pathway activated by MYC.
Erlotinib and Midostaurin were both FDA-approved tyrosine
kinase inhibitors and found to inhibit MYC activity (Suenaga
et al., 2013; Basit et al., 2018; Allen-Petersen and Sears, 2019).
GSK650394 is a novel serum and glucocorticoid-inducible kinase
(SGK) inhibitor and has been reported in treating melanoma
cancer in some preclinical studies (Scortegagna et al., 2015).

DISCUSSION

In this study, we have built a deep-learning-based computational
framework to extract tumor-intrinsic features and extrinsic
features from the melanoma gene expression data and define
a tumor-intrinsic (TI) signature and a tumor-extrinsic (TE)
signature. Then, we systematically investigated how TI and TE

signatures affect melanoma patients’ prognosis and response
to different therapies. To interpret the two signatures, we
determined the relative contribution of each gene (bottom node)
to them (see Methods). Following that, pathway analyses were
performed to identify the underlying pathways. Our results
first indicated that the TE signature captured the cytotoxic
infiltrating immune cell abundance while the TI signature
captured MYC oncogenic pathway activity (Figures 2B–F). Next,
we examined the prognostic role of the TE signature and
TI signature in metastatic melanoma patients and stage III
melanoma patients, respectively (Figures 2–4). Patients with high
TE-signature scores would present a better survival outcome
in metastatic and stage III melanoma while patients with high
TI-signature scores would present a worse survival outcome
in metastatic melanoma (Figures 3, 4). Driven by this, we
further constructed different prediction models to quantify
the prognostic power of the TE signature, TI signature, and
clinical factors. As a result, we found the integrative model
using the TE signature; the TI signature with a clinical factor
achieved a significantly better performance compared with
clinical factor-only model (Figure 5). In addition, we showed
that the TE signature was predictive of immunotherapy while
the TI signature was associated with tyrosine and Ser/Thr kinase
inhibitor sensitivity (Figure 6).

While many computational methods have been published
to capture the immune cell-associated features in the tumor
microenvironment, most of them utilized the linear regression-
formulized model to characterize the relationship of immune
cell-related genes. Given the complicated gene–gene interactions
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FIGURE 5 | Integration of TE signature and TI signature outperforms prognosis prediction than clinical factors. (A) Kaplan–Meier plots depicting the survival
distribution for patients in each group. In Kaplan–Meier plots, p-values were calculated using the log-rank test, and vertical hash marks indicate censored data.
(B) Forest plot showing hazard ratios and p-values of TE-signature score and several clinical variables estimated by a multivariate Cox regression model. In all forest
plots, HR was presented as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s test was used to determine statistical
significance. (C) Barplot showing the C-index distribution of using Clinical factors, TI-signature scores, TE-signature scores, combination of TI-signature and
TE-signature scores, and combination of all features in predicting prognosis in TCGA data. (D) Heat map showing the C-index distribution of features listed in (C)
across different datasets. (E) Boxplot showing the C-index difference between combined prognostic model and clinical factor-derived prognostic model. P-value
was calculated by the Wilcoxon rank-sum test.

in the tumors, our method utilized deep learning, integrating
both the linear and nonlinear associations between genes,
to capture the function of the tumor-extrinsic features
(Figures 1, 2). By choosing IHC-measured lymphocyte score

positively associated genes, we decomposed the immune
microenvironment into 20 nodes which covered different states
or types of immune cells. In our analyses, we only chose the
most prognostic node, defined as TE signature, to perform the
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FIGURE 6 | The TE and TI signatures are predictive of drug response. (A) Dot plot indicating the TE-signature score difference between responder and
non-responder. P-value was calculated by Wilcoxon rank-sum test. (B) Receiver operating characteristic (ROC) curves for MAGE-A3 therapy response prediction in
melanoma patients using the TE-signature score as the predictor. (C) Boxplot depicting the TE-signature score difference between different response groups treated
with Anti-CTLA4 therapy. P-value was calculated by Wilcoxon rank-sum test. (D) Kaplan–Meier plots depicting the survival distribution for patients with high (red) and
low (blue) TE-signature scores. In Kaplan–Meier plots, p-values were calculated using the log-rank test and vertical hash marks indicate censored data. (E) Forest
plot showing hazard ratios and p-values of TE-signature scores and several clinical variables estimated by a multivariate Cox regression model. In all forest plots, HR
was presented as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s test was used to determine statistical significance.
(F) Scatterplot showing the correlation between TI-signature score and Erlotinib, GSK650394, or Midostaurin drug sensitivity. In all scatterplots, the rho was
calculated by spearman correlation.

downstream analyses due to its clinical potential (Figure 2).
However, the more comprehensive analysis of characterizing
other nodes will be interesting in the future.

We performed a similar analysis to capture the tumor-
intrinsic feature by using IHC-measured lymphocyte score
negatively associated genes. It is interesting to observe that
the TI-signature score, which reflects MYC oncogene pathway
activity, is strongly associated with prognosis. MYC, known
as an important oncogenic regulator, has a high fraction of
amplification events in melanoma samples, contributing to the
overactivation of the MYC oncogenic pathway (Schaub et al.,
2018; Schaafsma et al., 2020). As a result, high MYC activity
induces melanoma tumor growth, further leading to metastasis.
More importantly, MYC also regulates the immune cell function
in the tumor microenvironment. MYC could either directly
or cooperate with other oncogenes to regulate the expression
of PD-L1 to inhibit the function of immune cells or remodel
the tumor microenvironment by recruiting macrophages that
promote angiogenesis and reduce T cell infiltration (Casey
et al., 2018). It is not surprising that MYC activity is negatively
associated with the infiltration level of different immune cells
(Figure 2G). Our study highlighted the significance of MYC
in melanoma progression from both tumor-intrinsic and -
extrinsic perspectives.

The prognostic value of immune cells in metastatic melanoma
has been reported many times, and several-immune-cell-based
prognostic biomarkers have been proposed. In this work, we
selected genes that best reflected the expression of tumor
cells and infiltrating immune cells, respectively. These genes
were input into autoencoders to extract tumor-intrinsic and
-extrinsic features in the form of bottleneck nodes. From
them, we selected two representative nodes and defined a TE
signature and a TI signature for prognostic prediction. We
first validated the prognostic role of TE signature. Surprisingly,
our results indicated that the integration of the TE signature
and TI signature could further stratify patients into different
risk groups. Patients with high TI-signature and low TE-
signature scores had the best survival outcome while patients
with high TI-signature and low TE-signature scores had the worst
survival outcome. The combination prognostic model, which
integrates the TE signature, TI signature, and clinical factors,
significantly improved the prediction power of clinical factors
derived model (Figure 5). These results validated the capability
of Autoencoders in denoising and reducing dimensionality for
defining prognostic signatures.

Our current model utilized the median score as the cutoff
for predicting prognosis because the gene expression profiles
from the preclinical cohorts have different scales. To facilitate
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the clinical application in the future, we could rescale the
expression profiles from those preclinical cohorts to build a
cohort-independent threshold for clinical practice. One thing
to be noted is that the model prediction power was limited by
the clinical information that was provided in the public data.
In addition to patients’ stage, gender, and Breslow Depth, the
surgery information and other treatment information also impact
the prognosis in melanoma patients (Bhatia et al., 2015). In the
future, with more patient information available, we would like
to integrate different clinical information to further improve the
prediction accuracy of the combined model.

Targeted immunotherapies have been increasingly used in
clinical practice of treating metastatic melanoma patients.
MAGE-A3 therapy, a tumor vaccine-based immunotherapy, is
still undergoing different clinical trials (Pol et al., 2019). However,
several previous clinical trials revealed that MAGE-A3 did not
reach the endpoint criteria (Kruit et al., 2005; Dreno et al., 2018).
Our results indicated that the TE signature was predictive of
MAGE-A3 clinical benefits, which could be further used to guide
the design of future clinical trials (Figures 6A,B). In addition
to tumor vaccine therapy, immune checkpoint blockade therapy
has revolutionarily changed immunotherapy and significantly
improved overall survival (Larkin et al., 2019). In our results,
TE signature could predict anti-CTLA4 response (Figure 6C).
Patients with high TE-signature scores were more likely to be
responders and had a better survival outcome (Figure 6D).
This result raised the potential of using the TE-signature
score as a biomarker for anti-CTLA4 response prediction.
In our current analysis, only regular clinical information,
including patients’ age, gender, and stage, was provided.
The efficacy of immunotherapy was also affected by other
treatment strategies. For example, chemotherapy administered
after immunotherapy might improve the immunotherapy
response (Fridlender et al., 2010; Peng et al., 2015). In
the future, with such treatment information being released,
the prediction accuracy of using the TE signature could be
further enhanced.

In the previous section, we mentioned the importance of MYC
from both tumor-extrinsic and -intrinsic sides. Inhibiting MYC
in melanoma will bring a reduction in tumor proliferation and
potentially remodel the tumor microenvironment into immune
hot, leading to the increased sensitivity of immunotherapy.
Using the GDSC database, we identified that Erlotinib and
Midostaurin have inhibitory roles for MYC pathway activity
(Figure 6F). Erlotinib and Midostaurin were both FDA-approved
tyrosine kinase inhibitors and found to repress MYC activity
(Suenaga et al., 2013; Basit et al., 2018; Allen-Petersen and Sears,
2019). Interestingly, several clinical trials are ongoing for testing
the efficacy of Erlotinib combined with immune-checkpoint
blockade therapy (Liang et al., 2018). Our analysis highlighted the
potential clinical usage of MYC inhibitors in treating metastatic
melanoma patients (Singleton et al., 2017).

In summary, we developed a computational framework to
capture the tumor-extrinsic and -intrinsic features in melanoma
patients. The two TE- and TI-signature scores we calculated
as the representatives of tumor cell feature and immune cell
feature are powerful in predicting patient prognosis and response

to different treatments. The computational framework could be
readily extended to other cancer types.

MATERIALS AND METHODS

Dataset Collection
The TCGA melanoma RNA-seq data were downloaded from
Firehose1 (Supplementary Table 1), containing gene expression
profiles of 358 metastatic patients. Gene expression values were
calculated and normalized by using the RNA-Seq by Expectation-
Maximization (RSEM) Algorithm (Li and Dewey, 2011). The
clinical information of TCGA melanoma samples was also
retrieved from Firehose (see text footnote 1). The information
included the patients’ age, gender, pathological stage at diagnosis,
location of the metastatic tumor, Breslow thickness, lymph node
stage, and metastatic stage.

Six additional microarray data sets were used for metastatic
melanoma and stage III melanoma prognosis analysis. These
data were downloaded from the Gene Expression Omnibus
(GEO) database with accession numbers GSE65904 (n = 214),
GSE54467 (n = 79), GSE53118 (n = 79), GSE22155 (n = 54),
GSE8401 (n = 47), and GSE19234 (n = 44) (Xu et al., 2008;
Bogunovic et al., 2009; Jönsson et al., 2010; Mann et al., 2013;
Cirenajwis et al., 2015; Jayawardana et al., 2015). GSE65904 and
GSE19234 contained disease-specific survival time (DSS) and
survival time information after recurrence, respectively, while
TCGA-SKCM, GSE54467, GSE53118, GSE22155, and GSE8401
data sets contained overall survival time (OS) information.
GSE53118 and GSE54467 provided the survival information for
patients with stage III melanoma.

Two datasets were used for immunotherapy response analysis.
The treatment information of MAGE-A3 immunotherapy is
included in the GSE35640 dataset. It provided the gene
expression profiles of a total of 56 patients, among which 34 had
no responses and 22 had clinical benefits (Ulloa-Montoya et al.,
2013). The anti-CTLA4 immune checkpoint blockade therapy
dataset was downloaded from the Database of Genotypes and
Phenotypes (dbGaP) under accession number phs000452 (Van
Allen et al., 2015). Raw read files were aligned to the GRCh37
human genome assembly using the TopHat v2.1.0 (Kim et al.,
2013), and the gene expression was calculated using the Cufflinks
v2.2.1 (Trapnell et al., 2012). In total, 42 treatment-naive tumor
sample patients were sequenced.

The Genomics of Drug Sensitivity in Cancer (GDSC) dataset
was downloaded from the GDSC database2 for anticancer drug
sensitivity testing (W. Yang et al., 2013). It provided a baseline
gene expression for a total of 987 cell lines, including with 38
melanoma cell lines, with the corresponding sensitivity to 251
drugs. Drug sensitivity was represented as Area Under the Curve
for the fitted model (AUC), with lower values indicating higher
sensitivity to a drug (i.e., lower IC50 values).

The genomic characteristics of TCGA melanoma samples
were calculated based on the MAF file and DNA sequencing

1http://gdac.broadinstitute.org/
2https://www.cancerrxgene.org
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map downloaded from Firehose (see text footnote 1). Specifically,
tumor mutation burden (TMB) was represented as the total
number of non-silent somatic mutations in a given TCGA
melanoma sample. The copy number variation burden (CNV
burden) was calculated using the following equation:

CNV − burden =

∑m
j=1 |log2

(
cj
2

)
∗ fj|

N
(1)

where Cj and fj represent the copy number and the size of
the DNA fragment j in the sample; m is the total number of
abnormal fragments in the genome, and N is the size of the
human genome. For a normal diploid genome, the CNV burden
is zero. A higher CNV burden indicates a higher level of copy
number variation of the genome.

Gene Expression Decomposition Based
on Autoencoder
We applied an autoencoder model to decompose gene expression
data for metastatic melanoma samples using the RNA-seq
from TCGA. An autoencoder is a type of artificial neural
network consisting of two components: an encoder that gradually
reduces the input gene expression data into a small number
of representative nodes and a decoder that reconstructs the
original input (Chen et al., 2018; Way and Greene, 2018;
Supplementary Figure 1). The configuration of the Autoencoder
is shown in Supplementary Figure 1; we used two layers
for Encoder and Decoder with each layer containing 400 and
100 nodes, respectively. By minimizing the deviation between
the reconstructured and the input data, Autoencoder achieves
dimensionality reduction using the 20 representative nodes while
filtering out noises (Supplementary Figure 1). As shown in
Figure 1, the main steps are elaborated below.

First, TCGA metastatic melanoma RNA-seq data were log
transformed and converted into z-scores by subtracting the mean
and then dividing the standard deviations of genes across all
samples. In order to capture both tumor cell-intrinsic and -
extrinsic signals, we selected the top 1000 genes that had the
highest positive correlations with lymphocyte infiltration scores
(G
′

H) and the top 1000 genes that had the highest negative
correlations (G

′

L). Lymphocyte infiltration scores were calculated
based on IHC staining results from TCGA (Cancer Genome Atlas
Network, 2015).

Second, for both of the two gene expression sub-matrices
(G
′

H and G
′

L), an Autoencoder model was used to identify
20 informative “hidden” nodes that best capture the whole
expression sub-matrices. Autoencoder could integrate both
linear and nonlinear structures in the gene expression data
and therefore more correctly capture complex gene–gene
interactions. Specifically, the configuration of the AutoEncoder
model is shown in Supplementary Figure 1. There were 1000
nodes of the input layer, corresponding to the gene expression
after screening, and then compressed to 400, 100, and 20 nodes
in the following layers, and then gradually reconstructed. Each
layer of the model is fully connected, and each hidden layer is

followed by a rectified linear unit (ReLU) activation function,
which is defined as follows.

ReLU (x) =

{
x if x ≥ 0
0 if x < 0

(2)

In order to train the model, we chose the regularized square loss
as the objective function, as shown in equation 5.

L =
n∑

i=1

ε (i)+ ||w||2 =
1
2

n∑
i=1

||x− Dθ(Eθ(x))||2 + λ||w||2,

(3)
where n denotes the number of samples and Eθ and Dθ represent
the encode and decode functions, respectively. w represents
the learnable weight of the AutoEncoder model. λ is the
hyperparameter controlling the proportion of the regularization
term. We chose a stochastic gradient descent (SGD) optimization
method to train the model and to obtain the optimal weight w.
The compressed features FH and FL corresponding to G

′

H and G
′

L
can be obtained by the two well-trained AutoEncoder models, as
shown in equations 6 and 7.

FH = Eφ1(G
′

H) (4)

FL = Eφ2(G
′

L) (5)

where FH and FL are two matrices with 20 columns; each
row represents a sample, and each column represents a feature
compressed by the AutoEncoder model. The performance of the
autoencoder model was measured by the R square between the
fitted gene expression and the real gene expression. We also tried
different numbers of nodes in the bottleneck layer and found the
comparable performance.

Finally, from the compressed features FH and FL, we selected
a feature that best correlated with patient prognosis in TCGA
metastatic melanoma samples. Since the two selected features,
respectively, capture tumor cell-intrinsic and -extrinsic features,
we denoted them as tumor-intrinsic (TI) and tumor-extrinsic
(TE) signatures.

Calculation of TE- and TI-Signature
Scores in Tumor Samples
For a given melanoma gene expression dataset, we first utilized
a Z-score transformation to convert the expression profile to
a relative expression profile. We then separated the relative
expression profile into two profiles, containing G

′

H and G
′

L genes,
respectively. For each patient in the relative expression profile,
we applied the Autoencoder models trained in the TCGA-SKCM
metastatic dataset and acquired the corresponding TE- and TI-
signature scores according to equations 4 and 5.

Survival Analysis
Cox proportional hazard models were used to investigate the
association between signature scores (calculated based on the
TE signature or TI) and patient prognosis. Patient samples were
dichotomized into two groups by using the median score as
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the cutoff value. Univariate Cox regression models were used to
determine the association between the dichotomized scores and
patient survival. To compare survival between the two groups,
Kaplan–Meier plots were used for visualization. The difference
between the survival times of different groups was compared by
a log-rank test. The multivariate Cox regression model was used
to estimate the association between signature scores and patient
survival while considering important clinical variables such as
age, sex, Breslow score, and tumor stages.

The Kaplan–Meier estimator was implemented in the survival
R package. Specifically, the “coxph” function was used to
construct Cox proportional hazard models. The “survfit”
function was used to generate Kaplan–Meier survival curves.
The “survdiff” function was used to statistically compare the
difference between survival curves.

Gene Weight Calculation
After model training, we obtained the weights of each layer in TE
and TI signature-associated Autoencoder models. The genes with
more contributions to the signature tend to have higher weights.
The weighted sum of all the possible combinations between each
gene and the corresponding signature node (the TE signature-
17th node in the FH and the TI signature-7th node in FL) can be
viewed as the contribution score. The score is defined as follows.

GWH (i) =
∑

j = 1 : 400
k = 1 : 100

w(1)
i,j · w

(2)
jk · w

(3)
k,17 (6)

GWL (i) =
∑

j = 1 : 400
k = 1 : 100

w(1)
i,j · w

(2)
jk · w

(3)
k,7 (7)

where w(c)
a,b represents the weight between the bth node of the cth

hidden layer and the ath node of the prior layer. So GWH (i) and
GWL (i) represent the importance score of the ith gene in the TE
and TI signature, respectively.

Pathway Analysis
Based on the weight profile that each gene contributes to the
node, we performed pre-rank Gene Set Enrichment Analysis

using the fgsea R package (Korotkevich et al., 2019). For
calculating the specific pathway activity in melanoma patients,
Gene Set Variation Analysis was used for integrating the
expression profile with the MsigDB C2 pathway database
(Subramanian et al., 2005) through GSVA R package
(Hänzelmann et al., 2013).
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