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Editorial on the Research Topic

Microencapsulation for Biomedical Applications

The systemic administration of drugs, such as chemotherapeutics, probiotics and anti-
inflammatories, is known to be frequently associated to biomolecules short half-life, poor
stability and side effects potentially harmful to functional tissues and organs. Advanced drug
therapies require patient customization and targeting of drug formulation and dosage to warrant
treatment efficacy and reduce possible undesired secondary effects. Nano- and microencapsulation
strategies are generally defined as a set of technologies that allow to entrap active ingredients, namely
small solid particles, liquid droplets or a gas, using a surrounding material (Silva andMeireles, 2014).
These strategies may allow overcoming previous limitations as the encapsulating material protects
the drugs, while their delivery can be tailored depending on the specific application by the careful
modulation of carrier composition, size and architectural features. A variety of methods, including
microfluidic emulsion, coacervation, antisolvent precipitation and soft lithography, have been used
to produce drug delivery systems for precision medicine (Wang et al., 2006; Canelas et al., 2009; Liu
et al., 2017). Overall, these methods offer control over basic parameters such as material-to-drug
composition, carrier size, porosity and shape (Figure 1). In this vast and complex panorama, the aim
of this Research Topic is to highlight and illustrate important knowledge in the field of micro- and
nanoencapsulation and drug delivery systems as shared by experts in these research fields. Most
notably, the nine articles collected in this issue, composed of five research articles and four reviews by
different countries’ teams, are of interest to researchers looking for current drug delivery advances in
biomedicine and biotechnology, as described following.

Two articles of this collection are specifically focused on the application of hydrogels on cell
microencapsulation for tissue engineering (TE) purposes. TE offers great potential for restoring
individual tissues or organs using patient’s stem cells incorporated within porous scaffolds or
hydrogels (Khademhosseini et al., 2009). However, low new tissue survival, poor engraftment and a
lack of site-specificity are major drawbacks. Natural polymers have gained much interest in the
construction of extracellular matrix (ECM) analogues for stem cells. Cell-laden hydrogel
microspheres with uniform size show great potential for tissue repair and drug screening
applications. The article by Lee et al. reviewed the application of polysaccharide-based hydrogels
for stem cells microencapsulation in TE. In particular, the work showed an updated vision of
microencapsulation techniques, which include emulsion, lithography, microfluidics and bioprinting.
Furthermore, current progress in clinical translation of stem-cell encapsulated polysaccharide
hydrogels for cell delivery and disease modelling (drug testing and discovery) were discussed
with special emphasis on musculoskeletal, nervous, cardiac and cancerous tissues applications. In the
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article by Zhang et al., a simple one-step approach for producing
and purifying hydrogel microspheres with an easily assembled
microfluidic device was described. Droplets were generated and
solidified within a fluidic device and then demulsification and
purification from oil was obtained by the simple evaporation of
the oil at 37°C. This step allowed gelled microspheres to be
released directly into the cell culture media, ready to be tested
for cell culture experiments. HCT116 and U87 tumour cells were
successfully encapsulated within monodisperse gelatin
methacryloyl microspheres ensuring proper cell viability. The
U87-encapsulated microspheres were also used to growth tumour
spheroids up to 14 days, finally suggesting the possible
translational technology of the developed approach. As
previously explained, drug delivery scaffolds are essential
elements of TE strategies for the repair and regeneration of
damaged tissues and organs. Indeed, scaffolds must endow
with arrays of biological signals, with adequate dose and
timescale, to regulate cellular adhesion, migration and ECM
biosynthesis in three dimensions (Salerno et al., 2019).
Therefore, scaffolds fabrication requires the concomitant
processing of biomaterials, cells and biomolecules to reproduce
the cell and ECM composition and architecture of native tissues.
The use of computer-aided design (CAD) and manufacturing of
drug delivery scaffolds was reviewed by the work of Salerno and

Netti. The article highlights some of the most recent advancement
of CAD-based strategies to engineering passive and stimuli-
responsive drug delivery scaffolds for TE and cancer precision
medicine. Furthermore, authors’ perspective about the possible
integration of CAD techniques with microfluidics and soft
lithography was reported for enhancing scaffold bioactivation
features.

A valuable application of microencapsulation techniques is to
protect probiotics from harmful gastrointestinal tract (GI)
environmental factors, such as high acidity and low pH levels,
bile salts, and oxidation conditions. This issue was addressed by
the work of Di Natale et al., that encapsulated the L. paracasei
CBA L74 bacteria in sodium alginate microspheres by the water-
in-oil emulsion technique to protect it in GI and to enhance its
viability and beneficial effects. The optimal microencapsulation
conditions were obtained by using a micro-rheological analysis as
it allowed to understand the relationship between emulsion
conditions and microsphere’s inner microstructure, which in
turn can affect probiotic viability and release.

Nanocarriers are highly versatile and valuable systems for
drugs delivery as they provide high specific surface together with
small size, typically between 1 and 100 nm. Due to these features,
nanocarriers may provide a long-term circulation period with the
sustained release of drug, overcoming limitations related to the

FIGURE 1 | Picture highlighting the main properties of drug delivery carriers and some of the most advanced processing techniques for carriers manufacturing. The
drug can be encapsulated within the polymericmatrix (particles), loaded in the core (single andmulti-core capsules) or adsorbed onto the inner pore surfaces. The control
of drug release is achievable by tuning carriers’ composition, structure, size and shape and by the optimization of the fabrication technique and processing conditions.
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endosomal/lysosomal membrane transport (Chamundeeswari
et al., 2019). Among the different forms of nanocarriers,
nanofibers, nanoparticles and nanotubes, are the most
investigated as they effectively found application in the
biomedical field. In the article by Oseni et al., the
chemotherapeutic andrographolide was encapsulated within
polylactic-co-glycolic (PLGA) nanoparticles via emulsion
solvent evaporation technique. The effect of polymer
composition, polymer molecular weight, polymer-to-drug
ratio, surfactant concentration and the organic solvent used on
particles size and encapsulation efficiency was investigated.
Nanoparticles formulated using 85:15 PLGA and ethyl acetate
as the organic solvent provided the best particle size, drug loading
and release towards the inhibition of proliferation of metastatic
breast cancer cells. In another study, Sandoval and Tobias used
fullerenes to “cork” the open tips of multiwalled carbon
nanotubes (MWCNTs), and as promoting species for the on-
demand release of the inorganic material filled within the
nanotubes’ cavities. In particular, fullerenes avoided the release
of the encapsulated payloads during samples washing as well as
may enable to trigger the release of guest structures from the
MWCNTs cavities once dissolved in appropriate solvents. Most
notably, the authors demonstrated that MWCNTs can be loaded
with chosen bioactive compound before thermal treatment,
therefore allowing the loading of heat labile biomolecules
within MWCNTs porosity. The application of micro- and
nanoencapsulation to the antioxidant, antimicrobial, and
therapeutic oregano essential oil (OEO) has been reviewed by
the work of Pontes-Quaero et al. In fact, encapsulation is
necessary to increase OEO stability and bioactivity and to
decrease its volatility. Hence, different drug delivery systems,
mainly lipids and cyclodextrins, were discussed respect to
scientific literature, in order to find the best candidates for
OEO encapsulation. Among different natural polymers,
bacterial cellulose (BC) is a highly pure form of cellulose
produced by bacteria that can be chemical-physically

modulated and optimized to encapsulate and deliver several
drugs. The work by Di Natale et al. described the preparation
of antioxidant and anti-inflammatory nanofibrous patches by
loading CoenzymeQ10 (Co-Q10) nanoemulsions within the
porous structure of BC. To this purpose, BC layers were
incubated at different time points with a positively-charged
oil/water nanoemulsion, previously loaded with Co-Q10, and
the efficacy of release was studied at different time points.

The last article presented in this Research Topic Editorial
(Duong et al.) rely on the use of porous aerogel particles for
pulmonary drug delivery. Aerogels, the lightest processed solid
materials on Earth, have enormous composition versatility,
modularity, and feasibility of industrial scale manufacturing,
facts which are behind the fast emergence of aerogels in the
drug delivery field. Particularly, the physical properties of the
aerogels appear to be very advantageous for mucosal
administration routes, such as pulmonary, nasal, or
transdermal. This article in fact gives important insights
regarding the use of low-density aerogels for pulmonary
administration, both for local treatment of lung diseases and
for the systemic delivery (transpulmonary) of labile
biopharmaceuticals, including those for gene therapy and
vaccination.

In conclusion, all of the articles collected in this Research
Topic are proof of the increasing knowledge and importance of
micro- and nanoencapsulation for drugs and bioactive molecules
delivery. Thanks to the advancement on drug discovery and
micro- and nanomaterials processing, it is now possible to
design and engineering multifunctional tailor-made drug
delivery systems for TE, biotechnology and health care.
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Encapsulation of Andrographolide in
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Andrographolide is a potential chemopreventive and chemotherapeutic agent that
suffers from poor aqueous solubility. Encapsulation in poly(lactide-co-glycolide) (PLGA)
nanoparticles can overcome solubility issues and enable sustained release of the
drug, resulting in improved therapeutic efficacy. In this study, andrographolide was
encapsulated in PLGA nanoparticles via emulsion solvent evaporation technique. Effect
of various formulation parameters including polymer composition, polymer molecular
weight, polymer to drug ratio, surfactant concentration and the organic solvent used
on nanoparticle properties were investigated. A selected formulation was used to
determine the effect of encapsulation in nanoparticles on andrographolide’s in vitro
anticancer efficacy. Nanoparticles formulated using a polymer with 85:15 lactide to
glycolide ratio and ethyl acetate as the organic solvent were found to be optimal based
on average hydrodynamic particle size (135 ± 4 nm) and drug loading (2.6 ± 0.6%w/w).
This formulation demonstrated sustained release of andrographolide over 48 h and
demonstrated significantly greater in vitro anticancer efficacy compared to free drug in a
metastatic breast cancer cell line. These results suggest that additional, more in-depth
efficacy studies are warranted for the nanoparticle formulation of andrographolide.

Keywords: andrographolide, poly(lactide-co-glycolide), nanoparticles, formulation optimization, breast cancer

INTRODUCTION

According to GLOBOCAN—a cancer database created by the International Agency for Research
on Cancer (IARC), there is an increase in the global incidence and deaths due to cancer. In 2012,
approximately 14.1 million new cases and deaths were recorded (Ferlay et al., 2015) rising to about
18.1 million new incidence and 9.6 million deaths in 2018 (Bray et al., 2018; Ferlay et al., 2019).
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Breast cancer remains the most common cancer type globally
as well as the cause of most deaths associated with cancer in
women. In 2018, breast cancer accounted for 24.2% incidence
and 15.0% cancer-related deaths in women (Bray et al., 2018;
Ferlay et al., 2019).

Chemotherapy is a mainstay treatment modality employed
in the management of cancer. Chemotherapeutic agents such as
doxorubicin, cisplatin, and paclitaxel have been utilized in the
treatment of breast cancer (Takimoto and Calvo, 2005); however,
the major drawback includes the development of resistance
and life-threatening side effects (due to non-specificity of the
chemical agents to cancerous cells) such as cardiac toxicity,
hair loss, bone marrow suppression, and gastrointestinal tract
lesions, amongst others (Igarashi, 2008; Monsuez et al., 2010;
Nussbaumer et al., 2011). An ideal chemotherapeutic agent
will exhibit minimal or no side effects while having intrinsic
ability to prevent the development of resistance. No such drug
currently exists. Research into new therapeutic agents with the
aim of overcoming the above limitations therefore continues
to be highly relevant. Natural products of plant origin present
a source of potential drug molecules (Hosseini and Ghorbani,
2015); many phytochemicals have been shown experimentally to
possess cytotoxic activity against various cancer types (Hadjzadeh
et al., 2006; Shu et al., 2010; Tan et al., 2011; Wilken et al., 2011;
Lè Ne Teiten et al., 2013).

Andrographolide is a labdane diterpenoid derived from the
Andrographis paniculata plant (Niranjan et al., 2010; Jayakumar
et al., 2013). It is the major bioactive compound in the plant
and has been found to possess antimicrobial, hepatoprotective,
anticancer, anti-inflammatory, and immunostimulatory activities
(Jarukamjorn and Nemoto, 2008; Levita et al., 2010; Lim
et al., 2012). The cytotoxic activity of this molecule against
various cancer types including ovarian, lung, hepatoma, breast,
prostate, and colon cancer has been attributed to its ability to
act on several cell signaling pathways. Andrographolide exerts
direct chemotherapeutic activity via cell cycle arrest at the
G0/G1 or G2/M phase. In addition, the drug has also been
shown to induce increased production of interleukin 2 (IL-
2) and interferon gamma (IFN-γ), which activate cytotoxic
T lymphocytes as well as TNF related apoptosis inducing
ligand (TRAIL) and death receptors, which eventually leads to
apoptosis (Ajaya Kumar et al., 2004; Sheeja and Kuttan, 2007;
Mishra, 2016). In addition, the drug inhibits the generation
of pro-inflammatory mediators such as tumor necrosis factor
alpha (TNF alpha) and angiogenesis mediators such as vascular
endothelial growth factor (VEGF) and nitric oxide (NO). In
order to combat cancer resistance, it has been suggested that
drug molecule(s) activating different death pathways should be
utilized. Therefore, a drug molecule such as andrographolide
having multiple mechanisms of anticancer activity will be a
suitable candidate. Andrographolide, however, has low aqueous
solubility, poor bioavailability, and short half-life, resulting in
reduced therapeutic activity (Roy et al., 2012; Ghosh et al.,
2016). These barriers can be mitigated by the use of a suitable
delivery system. In our previous study, andrographolide was
formulated into an emulsion, with the particle size in the
micrometer range (Oseni et al., 2020). However, microparticles

have relatively low cell uptake and poor tissue penetration.
Particles in the nanometer size range (nanoparticles) are more
advantageous because of their ability to passively accumulate
in tumors via the “enhanced permeability and retention effect”
(Bharathala and Sharma, 2019).

Nanoparticles are typically fabricated using natural or
synthetic polymers such as chitosan, gelatin, albumin,
poly(lactide-co-glycolide) (PLGA), polylactide (PLA), and
hyaluronan, amongst others (Pal et al., 2011; Bhatia, 2016). They
have been used as carriers for the delivery of small molecules,
biologic macromolecules, diagnostic agents, and vaccines (Petros
and DeSimone, 2010; Bahrami et al., 2017). Encapsulation in
nanoparticles can overcome poor aqueous solubility issues
because appropriately formulated nanoparticles exhibit excellent
suspension stability in biologic fluids (Jacob et al., 2020).
PLGA is an FDA-approved synthetic polymer widely used to
formulate drug carriers because the polymer is biocompatible
and biodegradable, and nanoparticles formulated using PLGA
allow for sustained release of various types of payload and
can be surface functionalized for targeted delivery applications
(Kumari et al., 2010; Danhier et al., 2012; Gentile et al., 2014;
Rizvi and Saleh, 2018).

In this study, the encapsulation of andrographolide in PLGA
nanoparticles was explored, and the effect of various formulation
parameters such as organic solvent, molecular weight of polymer,
and lactide:glycolide ratio on key nanoparticle properties such as
size, drug loading (DL), and drug release rate were characterized.
The formulation of choice with desired physical properties,
optimum DL, and in vitro release profile was subjected to in vitro
cytotoxicity studies using LM2 breast cancer cells (a metastatic
variant of the MDA-MB-231 triple negative breast cancer parent
cells). Our study shows that the optimized nanoparticulate
formulation of andrographolide demonstrates greater and more
sustained cytotoxic effect vis à vis the free drug.

MATERIALS AND METHODS

Materials
Poly(lactide-co-glycolide) polymer of various lactide:glycolide
ratios (50:50, 65:35, 75:25, 85:15, 100:0) as well as of different
molecular weights (0.26–0.54, 0.55–0.75, 0.76–0.94, and 0.95–
1.20 dL/g inherent viscosity; all of them were 50:50 lactide to
glycolide ratio) was purchased from LACTEL (Birmingham
AL). Polyvinyl alcohol (87–90% hydrolyzed, MW 30,000–
70,000 Da; PVA), flow buffer, RNase, propidium iodide,
dimethylsulfoxide (DMSO), phenazine methosulfate (PMS),
and andrographolide were purchased from Sigma Aldrich
(St. Louis, MO, United States); tween 20 and all organic
solvents (HPLC grade) were purchased from Fischer Scientific
(Rockford, IL, United States); phosphate buffered saline (PBS),
minimum essential medium (MEM), fetal bovine serum (FBS),
penicillin, and streptomycin were procured from Gibco; MTS
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium] reagent was obtained from
Promega; and 0.5%w/v uranyl acetate was procured from
VWR (Radnor PA).
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Cell Line
The LM2 breast cancer cell line was cultured in MEM
supplemented with 10% FBS, 100 UI/mL of penicillin, and
100 µg/mL streptomycin (referred to as complete media).

Methods
Preparation of Andrographolide Nanoparticles
The andrographolide-loaded PLGA nanoparticles were prepared
using the emulsion solvent evaporation method (Toti et al.,
2011; Kim et al., 2018a). Briefly, PVA was dispersed in
DI water to obtain the aqueous phase; andrographolide and
PLGA were dissolved in 1 mL of chloroform and 200 µL
methanol. The organic phase was added into 8 mL of the
PVA solution. The mixture was sonicated at 18–20 W for
5 min over ice bath using a probe sonicator (Sonicator
XL, Misonix, Melville, NY). The resulting emulsion was
placed on the magnetic stirrer (Super-Nuova, Swedesboro, NJ)
for 17 h to remove the organic solvent. The nanoparticle
suspension formed was then placed under vacuum for 1 h
to remove residual organic solvent. The nanoparticles were

recovered via centrifugation (Optima XPN-80 Ultracentrifuge,
Beckman Coulter Inc., Fullerton, CA) at 35,000 rpm for
35 min and washed three times with DI water and recovered
by ultracentrifugation between each washing step. After the
final wash step, nanoparticles were resuspended in DI water,
lyophilized (Labconco FreeZone 4.5, Kansas City, MO), and
stored at−20◦C till further analysis.

The effect of formulation variables (lactide:glycolide ratio,
inherent viscosity of polymer, organic solvent, surfactant
concentration, and drug to polymer ratio) was evaluated
for optimization of the formulation (Table 1). Some minor
modifications were made in the formulation fabricated using
ethyl acetate as the organic solvent because of the lower solubility
of the polymer in the solvent. Briefly, andrographolide and PLGA
were dissolved in 1.7 mL of ethyl acetate and 330 µL of methanol.
The organic phase was added to 8 mL of the aqueous phase.
The mixture was sonicated at 18–20 W for 5 min using a probe
sonicator, and the emulsion was placed on a magnetic stirrer for
17 h in ambient conditions and further under vacuum for 1 h.
Nanoparticles were recovered via centrifugation at 45,000 rpm
for 1 h and washed three times with DI water. The nanoparticles

TABLE 1 | Constituents of the formulation showing the parameters investigated to obtain the optimized formulation.

Formulation code Lactide to glycolide
ratio

Inherent viscosity (dL/g) Organic solvent Drug to polymer ratio PVA surfactant
concentration

Lactide:glycolide

A1a 50:50 0.55–0.75 Chloroform 1:6 2.5

A2 65:35 0.75 Chloroform 1:6 2.5

A3 75:25 0.55–0.75 Chloroform 1:6 2.5

A4 85:15 0.64 Chloroform 1:6 2.5

A5 100:0 0.55–0.75 Chloroform 1:6 2.5

Organic solvent

B1a 50:50 0.55–0.75 Chloroform 1:6 2.5

B2 50:50 0.55–0.75 Dichloromethane 1:6 2.5

B3b 50:50 0.55–0.75 Ethyl acetate 1:6 2.5

B4 50:50 0.55–0.75 Acetone 1:6 2.5

Inherent viscosity

C1 50:50 0.26–0.54 Ethyl acetate 1:6 2.5

C2b 50:50 0.55–0.75 Ethyl acetate 1:6 2.5

C3 50:50 0.76–0.94 Ethyl acetate 1:6 2.5

C4 50:50 0.95–1.20 Ethyl acetate 1:6 2.5

Drug:Polymer

D1 50:50 0.55–0.75 Ethyl acetate 1:20 2.5

D2 50:50 0.55–0.75 Ethyl acetate 1: 12 2.5

D3c 50:50 0.55–0.75 Ethyl acetate 1:8.5 2.5

D4b 50:50 0.55–0.75 Ethyl acetate 1:6 2.5

D5 50:50 0.55–0.75 Ethyl acetate 1:4 2.5

Surfactant concentration

E1 50:50 0.55–0.75 Ethyl acetate 1:8.5 1

E2 50:50 0.55–0.75 Ethyl acetate 1:8.5 2

E3c 50:50 0.55–0.75 Ethyl acetate 1:8.5 2.5

E4 50:50 0.55–0.75 Ethyl acetate 1:8.5 3

E5 50:50 0.55–0.75 Ethyl acetate 1:8.5 4

F* 85:15 0.64 Ethyl acetate 1:8.5 2

a, b, and c, same formulation variables; F*, optimized formulation.
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were resuspended in DI water, lyophilized, and stored at −20◦C
for further analysis.

Characterization of Andrographolide PLGA
Nanoparticles
Particle size, polydispersity index, and zeta potential
The hydrodynamic diameter and polydispersity index (PI) of
nanoparticles were determined via dynamic light scattering
(DLS) technique (DelsaTM Nano C, Beckman Coulter, Inc.) (Kim
et al., 2018a,b). The zeta potential was determined by measuring
the electrophoretic mobility of the particles using DelsaTM Nano
C. Nanoparticle suspension in DI water was sonicated for 30 s
prior to analyses.

Surface morphology
Morphology of nanoparticles was determined using transmission
electron microscopy (TEM) (FEI Tecnai G2 F30) (Grabowski
et al., 2015). Nanoparticle suspension (1 mg/mL) in DI water was
deposited on a copper grid. A 0.5% w/v uranyl acetate solution
was added as negative stain, excess suspension was blotted out
using a filter paper, and the grid was air dried and thereafter
observed under the electron microscope.

Drug loading and encapsulation efficiency
Standard concentrations of 5–30 µg/mL in methanol of
andrographolide reference standard were prepared and
placed in a quartz cuvette; the absorbance of the various
andrographolide solution prepared was obtained using an
ultraviolet (UV) spectrophotometer (Beckman Coulter, Inc.) at
224 nm wavelength. A graph of absorbance against concentration
of andrographolide was plotted. The UV method was validated
in line with the International Conference on Harmonization
guideline (International Conference on Harmonization, 2005).

Andrographolide was extracted from nanoparticles using
methanol (1 mg/mL, 1 mL); the methanol was added to the
nanoparticles and placed on a rotating shaker for 18 h (Toti et al.,
2011). The dispersion was centrifuged at 13,000 rpm for 20 min,
dilution of the supernatant was carried out, and the absorbance
of the resulting solution was obtained at 224 nm wavelength.
The procedure was repeated for nanoparticles devoid of the
drug, and its absorbance was subtracted from the absorbance of
nanoparticles with drug. This normalized absorbance value was
used in calculating the amount of drug in nanoparticles. Drug
loading (DL) and encapsulation efficiency (EE) were calculated
using equations 1 and 2, respectively.

DL (%w/w) = weight of andrographolide
(
mg

)
encapsulated

in 1 mg of nanoparticle × 100 (1)

EE(%)
Experimental amount of drug per mg nanoparticle
Theoretical amount of drug per mg nanoparticle

× 100

(2)

In vitro Release Study
Drug release from nanoparticles was determined in (PBS, pH 7.4)
with 0.2% tween 20 release buffer using a previously reported

method (Toti et al., 2011). Nanoparticle suspensions (0.5 mg/mL,
2 mL) in release buffer were transferred into several tubes; the
tubes were placed in a water bath shaker at 100 rpm, 37◦C. At
predetermined intervals (1, 2, 6, 24, 48, and 72 h), three tubes
were centrifuged at 13,000 rpm for 10 min. The supernatant was
analyzed for drug content via UV spectroscopy at 224 nm.

In vitro Anticancer Efficacy Studies
In vitro acute viability
LM2 breast cancer cells were cultured in complete MEM in an
incubator at 37◦C and 5% CO2 until they were 80% confluent.
The cells were seeded in a 96-well plate (1 × 104 cells in 100 µL
MEM) and allowed to attach overnight. Cells were incubated with
various concentrations of andrographolide solution in DMSO
or equivalent concentration of nanoparticles (6.25–50 µM) for
48 h. Medium only and medium containing 50 µM of DMSO
or PLGA blank nanoparticles were used as controls. At the
end of the incubation period, treatments were removed, cells
were washed with PBS, and 100 µL of MTS reagent (containing
MTS:PMS:MEM) was added and placed in the incubator at 37◦C,
5% CO2 for 1.5 h. Absorbance was determined at 490 nm using a
microplate reader (BioTek Instruments, Inc., VT, United States).
Percentage cell viability was calculated as a percentage of number
of viable cells in each treatment group relative to that in the
untreated control, and IC50 (concentration required to cause
50% reduction in the number of viable cells) was determined
(Yallapu et al., 2010).

To determine the potential effects of DMSO and blank PLGA
nanoparticles, the MTS assay was repeated with 20 µM of free
drug, drug-loaded nanoformulation (equivalent concentration
as free drug treatment), DMSO (equivalent to concentration
present in the free drug), blank PLGA nanoparticles (same
concentration of particles present in the nanoformulation), and
medium (untreated cells). Percent cell viability was obtained for
each treatment group to determine the cytotoxic effect of the
DMSO solvent and blank nanoparticles on LM2 cells.

In vitro sustained efficacy study
The antiproliferative activity of the formulation and free drug was
studied as described by Panyam et al. (Panyam and Labhasetwar,
2004). Briefly, LM2 cells were seeded in a 96-well plate (1 × 104

cells) and allowed to attach overnight. Cell viability via MTS
Assay was carried out as described in section “In vitro Acute
Viability”—this represents Day 0 with no drug treatment. Cells
were treated with andrographolide nanoformulation or free
drug at 20 µM concentration and medium (control) for 48 h,
treatments were removed and replaced with fresh medium.
The medium was changed every other day thereafter, and cell
viability as a function of time (representing cell proliferation) was
determined via MTS Assay.

Cell cycle analysis
The percent cell number in different phases of cell cycle was
determined using flow cytometry as described by Rajagopal
et al. (2003), with slight modifications. Briefly, LM2 cells
were seeded in a 6-well plate (3 × 105 cells in 3 mL
complete MEM) and allowed to attach overnight. The media
was removed and replaced with FBS free MEM for 24 h to
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synchronize the cells to the same phase of the cell cycle.
The cells were then incubated with free drug, andrographolide
nanoformulation (equivalent to 20 µM andrographolide), or
complete medium (untreated control) for 48 h. Cells were
harvested by trypsinization and recovered via centrifugation at
1,000 rpm for 5 min. Cells were washed with PBS, resuspended
in ice cold 70% ethanol, and incubated at 4◦C for 30 min
to permeabilize the cells. Cells were washed twice with flow
buffer and treated with RNase (10 mg/mL) at 37◦C for
15 min. The cells were then stained with propidium iodide
(0.5 mg/mL) at room temperature for 2 min; cells were washed
and resuspended in flow buffer. DNA content was measured
using BD LSR II H4760 flow cytometer (BD Biosciences, San
Jose, CA, United States), and data were analyzed using the
FlowJo software.

Statistical Analysis
Results were reported as mean ± standard deviation (SD) or
mean ± standard error of mean (SEM). Statistical differences
between groups were determined using one-way analysis of
variance (ANOVA) followed by Tukey’s post hoc test (if
applicable) using the Graphpad R© 5 Prism software (GraphPad
Software, La Jolla, CA, United States). A p-value <0.05 was
considered significant.

RESULTS AND DISCUSSION

Andrographolide is a potential therapeutic agent shown to
possess several beneficial pharmacological properties such as
suppression of proinflammatory molecules—TNFα, inducible
nitric oxide synthase (iNOS), and cyclo oxygenase 2 (COX 2);
enhanced induction of immune modulator—IL-2 and induction
of cell cycle arrest; and apoptosis, thereby eliciting anti-
inflammatory, immunomodulatory, and anticancer activities
(Pandey and Rao, 2018). The multiple anticancer mechanisms
exerted by andrographolide might be useful in preventing
resistance associated with conventional chemotherapeutic agents.
However, its low aqueous, poor bioavailability, and short half-life
results in decreased activity, hence limiting its clinical translation.
To overcome these issues, andrographolide nanoformulation was
developed using PLGA polymer.

Andrographolide Nanoparticle
Preparation and Characterization
The particle size of a formulation determines its in vivo
disposition, extent of uptake by cells, and consequently its
therapeutic efficacy. It is generally accepted that for in vivo
applications, smaller particle size is preferred. Particles in the
1–3 nm are prone to clearance by renal filtration, while large
particles are rapidly cleared by the reticuloendothelial system,
thereby reducing their circulation time (Yin Win and Feng, 2005;
Sadat et al., 2016). Furthermore, particles greater than 200 nm
when administered intravascularly may cause embolization
(Hickey et al., 2015). Nanoparticles in the 50–200 nm size have
demonstrated the highest percentage of cellular uptake (Yin Win
and Feng, 2005). However, nanoparticles that are less than 50 nm

suffer from poor payload capacity (Jain and Thareja, 2019).
Therefore, our desired particle size was 50 to 200 nm.

Polydispersity Index is a measure of size distribution
within a given sample (Danaei et al., 2018); it ranges
from 0.0 (a perfect homogenously dispersed size population)
to 1.0 (a heterogeneously dispersed system with multiple
size populations). Formulations with wide range of particle
distribution result in variations in DL, which will in turn lead to
variability in drug release, bioavailability, and eventually efficacy
(Betala et al., 2018). Formulations with PI ≤ 0.20 are generally
acceptable for a polymer-based nanoformulation (Clarke, 2013;
Danaei et al., 2018).

Zeta potential predicts the stability of a nano dispersion;
higher absolute values (that is, either positive or negative) of zeta
potential result in better suspension stability due to the presence
of strong repulsive forces that prevent aggregation of particles
(Sawant and Dodiya, 2008; Kedar et al., 2010). However, high
surface charge on particles has been shown to result in increased
macrophage uptake, resulting in increased clearance, reduced
bioavailability and therapeutic efficacy (Honary and Zahir, 2013;
Sadat et al., 2016). A formulation with decreased absolute value
of surface charge and near zero value may have higher circulation
time and higher accumulation in the tumor. For example, a
previous study suggested that a formulation with particle size
of about 150 nm and a slightly negative surface charge tend
to accumulate more within tumor (Honary and Zahir, 2013;
Sadat et al., 2016).

High DL and EE enables a reduction in the total amount of
the formulation (and by extension, the formulation excipients)
that needs to be administered for a given dose of the drug, thus
preventing excipient-associated toxicity.

In the current study, we investigated the effect of various
formulation parameters with the objective of optimizing the key
nanoparticle properties discussed above.

Effect of PLGA Lactide:Glycolide Ratio
The effect of varying the lactide to glycolide ratio on various
nanoparticle properties is shown in Table 2. In general, no
correlation was observed between lactide to glycolide ratio and
any of the physical properties. The average particle size varied
from 194 to 209 nm, while the PI varied from 0.08 to 0.20
and the zeta potential from −13.5 to −23.5 mV. The DL of
the formulations was in the 1.0–1.5%w/w range, with EE of
7.5 –11.5%. The 50:50 PLGA was chosen for further studies
because that polymer consistently resulted in high DL compared
to other polymers.

Effect of Organic Solvents
The effect of organic solvent used on nanoparticle properties is
described in Table 3. Andrographolide nanoparticles made with
50:50 PLGA polymer and different organic solvents produced
formulations having mean particle size in the range of 112 to
240 nm, PI in the range of 0.10 to 0.20, zeta potential of −10.6
to−23.5 mV, DL of 1.5 to 2.3%w/w, and EE of 11.5 to 18.2%.

The chloroform (B1) and acetone (B4) formulations had
similar particle size while the dichloromethane (B2) and ethyl
acetate (B3) formulations had the largest and smallest particle
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TABLE 2 | Physicochemical properties and drug loading of andrographolide formulation with different lactide to glycolide ratio.

Formulation code Particle size (nm) Polydispersity index (PI) Zeta potential (mV) Drug loading (%) Encapsulation efficiency (%)

A1 209 ± 3 0.20 ± 0.01 −23.5 ± 3.8 1.5 ± 0.4 11.5 ± 2.9

A2 197 ± 7 0.14 ± 0.03* −14.4 ± 0.1* 1.0 ± 0.2 7.5 ± 1.5

A3 200 ± 3 0.09 ± 0.01*** −13.5 ± 2.5* 1.1 ± 0.3 9.1 ± 2.8

A4 194 ± 2* 0.10 ± 0.01*** −17.2 ± 5.6 1.3 ± 0.2 9.8 ± 1.7

A5 202 ± 6 0.08 ± 0.02*** −16.2 ± 1.8 1.2 ± 0.1 8.7 ± 1.0

Results are expressed as mean ± SD (n = 3).
*signifies p < 0.05, ***signifies p < 0.001 significant differences with respect to A1. A1, 50:50 PLGA; A2, 65:35 PLGA; A3, 75:25 PLGA; A4, 85:15 PLGA; A5, 100 PLA.

TABLE 3 | Physicochemical properties and drug loading of andrographolide nanoformulation with different solvent.

Formulation code Particle size (nm) Polydispersity index (PI) Zeta potential (mV) Drug loading (%) Encapsulation efficiency (%)

B1 209 ± 3 0.20 ± 0.01 −23.5 ± 3.8 1.5 ± 0.4 11.5 ± 2.9

B2 240 ± 7*** 0.13 ± 0.07 −17.3 ± 3.5 1.7 ± 0.3 12.8 ± 2.0

B3 112 ± 6*** 0.20 ± 0.02 −11.4 ± 0.9* 2.3 ± 0.3 18.2 ± 2.1

B4 219 ± 8 0.10 ± 0.01* −10.6 ± 4.7* 2.3 ± 0.8 17.8 ± 6.2

Results are expressed as mean ± SD (n = 3).
*signifies p < 0.05, ***signifies p < 0.001 significant differences with respect to B1 formulation. B1, chloroform; B2, dichloromethane; B3, ethyl acetate; B4, acetone.

size, respectively. A similar observation of reduced particle size
with ethyl acetate organic solvent was demonstrated by Vineeth
et al. (Vineeth et al., 2014); this is attributed to the low interfacial
tension of ethyl acetate, which allows for the formation of a
stable primary emulsion and consequently formation of smaller
nanoparticles (Vineeth et al., 2014). All of these formulations
except the one that utilized acetone had similar heterogeneity in
size distribution; the acetone formulation had a lesser variation
in size uniformity than the other three formulations. The
chloroform and dichloromethane formulations (having similar
values) had higher absolute charge but lower DL and EE than
the ethyl acetate and acetone formulations (possessing similar
charge, DL, and EE). The differences in the DL for the various
formulations could have resulted in the differences in their zeta
potential. The higher DL and EE observed in ethyl acetate and
acetone formulations could be attributed to the properties of
the solvents. Ethyl acetate and acetone have higher aqueous
solubility than chloroform and dichloromethane; this could keep
the drug soluble in the emulsion during the encapsulation
process, allowing more of the drug to be entrapped in the polymer
(Pauli et al., 2019). The ethyl acetate and acetone formulations
therefore represent the preferred formulations with respect to
surface charge, DL, and EE. The ethyl acetate formulation was
chosen for further evaluation because of the lower particle size,
higher DL, and EE.

Effect of PLGA Molecular Weight
Andrographolide nanoformulations prepared using ethyl acetate
organic solvent and 50:50 PLGA polymer of different molecular
weights (as measured through polymer inherent viscosities) had
a mean particle size in the range of 107–143 nm, PI of 0.10–0.20,
zeta potential of −8.1 to −11.4 mV, DL of 1.1–2.3%w/w, and EE
of 8.4–18.2% as shown in Table 4.

The 6.7–31.3 kDa (C1) and 31.3–57.6 kDa (C2) formulations
had similar smaller size than those of 57.6–91.6 kDa (C3) and

91.6–111.5 kDa (C4) formulations. This suggests that higher
molecular weight of the polymer results in larger particle size.
The increase in size associated with increased molecular weight
can be attributed to the formation of a more viscous solution,
which provides resistance to particle size breakdown, and thus
more energy is required to achieve smaller particle size. All
the formulations had similar size distribution and charge except
for the 57.6–91.6 kDa formulation, which demonstrated lesser
size variation and lower absolute surface charge value. However,
this formulation had the lowest DL. The highest DL and EE
was observed in the 31.3–57.6 kDa polymer formulation. This
polymer was chosen for further studies because of its small
particle size, comparable size heterogeneity, and surface charge
to the other formulations, highest DL, and EE.

Effect of Drug–Polymer Ratio
Andrographolide formulations with ethyl acetate organic solvent,
50:50 PLGA polymer (molecular weight 31.3–57.6 kDa) and
having different drug–polymer ratios had a mean particle size in
the range of 112 to 148 nm, PI of 0.18 to 0.21, zeta potential of
−8.1 to −11.4 mV, DL of <1.0 to 2.3%w/w, and EE of <9.8 to
23.2% as shown in Table 5.

The 1:20 (D1) and 1:12 (D2) drug–polymer ratio formulations
were characterized by larger particle size than the 1:8.5 (D3) and
1:4 (D5) formulations, while the 1:6 (D4) formulation had the
least particle size. All the formulations comprised particles with
similar size distribution and surface charge. The DL of the 1:20
formulation could not be determined because the drug–polymer
ratio was so low that the amount of drug encapsulated could not
be detected or quantified accurately. Increase in drug-polymer
ratio led to an increase in the amount of drug encapsulated until
the 1:6 drug–polymer ratio; a further increase did not yield an
increase in DL as observed in the 1:4 formulation. An initial
increase in EE was observed with higher drug-polymer ratio,
however, a further increase to 1:6 drug-polymer ratio led to a
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TABLE 4 | Physicochemical properties and drug loading of andrographolide formulation of different PLGA molecular weights.

Formulation code Particle size (nm) Polydispersity index–PI Zeta potential (mV) Drug loading (%) Encapsulation efficiency (%)

C1 107 ± 3 0.20 ± 0.03 −10.4 ± 0.9 1.2 ± 0.1*** 9.0 ± 0.6***

C2 112 ± 6 0.20 ± 0.02 −11.4 ± 0.9 2.3 ± 0.3 18.2 ± 2.1

C3 139 ± 4*** 0.10 ± 0.05* −8.1 ± 0.8* 1.1 ± 0.2*** 8.4 ± 1.4***

C4 143 ± 6*** 0.12 ± 0.04 −10.3 ± 0.1 1.5 ± 0.1** 11.6 ± 0.9**

Results are expressed as mean ± SD (n = 3).
*signifies p < 0.05, **signifies p < 0.01, ***signifies p < 0.001 significant differences with respect to C2 formulation. C1, 6.7–31.3 kDa; C2, 31.3–57.6 kDa; C3,
57.6–91.6 kDa; C4, 91.6–111.5 kDa.

TABLE 5 | Physicochemical properties and drug loading of andrographolide nanoformulation with different drug-polymer ratio.

Formulation code Particle size (nm) Polydispersity index–PI Zeta potential (mV) Drug loading (%) Encapsulation efficiency (%)

D1 144 ± 4*** 0.18 ± 0.03 −11.3 ± 1.2 Unquantifiable Unquantifiable

D2 148 ± 5*** 0.20 ± 0.02 −8.2 ± 1.2 1.0 ± 0.0*** 13.9 ± 0.4

D3 133 ± 2** 0.20 ± 0.03 −10.1 ± 2.0 2.2 ± 0.3 23.2 ± 3.7

D4 112 ± 6 0.20 ± 0.02 −11.4 ± 10 2.3 ± 0.3 18.2 ± 2.1

D5 130 ± 9* 0.21 ± 0.04 −8.1 ± 2.3 1.8 ± 0.3 9.8 ± 1.8**

Results are expressed as mean ± SD (n = 3).
*signifies p < 0.05, **signifies p < 0.01, ***signifies p < 0.001 significant differences with respect to D4 formulation. D1, 1:20; D2, 1:12; D3, 1:8.5; D4, 1:6; D5, 1:4.

TABLE 6 | Physicochemical properties and drug loading of andrographolide nanoformulation with different PVA concentration.

Formulation code Particle size (nm) Polydispersity index–PI Zeta potential (mV) Drug loading (%) Encapsulation efficiency (%)

E1 163 ± 1*** 0.17 ± 0.02 −14.1 ± 1.1 2.5 ± 0.2 24.3 ± 1.7

E2 114 ± 4*** 0.17 ± 0.04 −11.6 ± 1.3 2.8 ± 0.4* 27.3 ± 3.6

E3 133 ± 2 0.20 ± 0.03 −10.1 ± 2.0 2.2 ± 0.3 23.2 ± 3.7

E4 137 ± 1 0.20 ± 0.03 −12.6 ± 0.3 1.2 ± 0.1** 12.6 ± 0.5**

E5 129 ± 1 0.16 ± 0.07 −13.5 ± 3.5 1.3 ± 0.1** 13.4 ± 0.9**

Results are expressed as mean ± S.D (n = 3). *signifies p < 0.05, **signifies p < 0.01, ***signifies p < 0.001 significant differences with respect to E3 formulation. E1,
PVA 1% w/v, E2, PVA 2% w/v, E3, PVA 2.5% w/v, E4, PVA 3% w/v, E5, PVA 4% w/v.

decrease in the EE even though the amount of drug encapsulated
is comparable to that of 1:8.5 formulation. This implies that
an increase in the quantity of drug utilized in the formulation
beyond the 1:8.5 ratio will be a waste of the drug material
given that there seems to be no appreciable improvement in
DL. The 1:8.5 ratio was therefore chosen for further studies
due to its high DL and EE, size distribution and surface charge
comparable to other formulations, and relatively small particle
size (even though the size was greater than the 1:6 formulation—
133 nm vs 112 nm, respectively, it was still within the desired
50–200 nm range).

Effect of Surfactant Concentration
Andrographolide formulations with ethyl acetate organic solvent,
50:50 PLGA polymer (molecular weight 31.3–57.6 kDa), 1:8.5
drug–polymer ratio, and different PVA surfactant concentrations
had a mean particle size in the range of 114–163 nm, PI of 0.16–
0.20, zeta potential of −10.1 to −14.1 mV, DL of 1.2–2.8%w/w,
and EE of 12.6–27.3% as shown in Table 6.

The 1% (E1) and 2% w/v (E2) PVA formulations had the
largest and smallest mean particle size, respectively, and there was
no relationship between the size and surfactant concentration.
The PVA concentration did not affect the size distribution and

surface charge of the particles as similar PI and zeta potential were
obtained in all the formulations. An increase in the surfactant
concentration resulted in an increase in the amount of drug
encapsulated up to the 2% concentration; a further increase
caused a reduction in DL and EE as observed for the 2.5%
(E3), 3% (E4), and 4% w/v (E5) PVA concentrations. This can
be attributed to the ability of the surfactant to improve the
solubility of poorly water-soluble substances in aqueous medium
(Vinarov et al., 2018); an increase in surfactant concentration
will lead to more andrographolide present in the aqueous
phase of the emulsion being lost during washing, resulting in
lower DL and EE.

The 2% w/v PVA formulation was found to be the most
suitable because it had the smallest particle size but with size
distribution and surface charge comparable to other formulations
and highest drug content and EE.

In vitro Release Studies of
Andrographolide Nanoformulation
The release profiles of andrographolide from formulations having
different lactide to glycolide ratios, organic solvent, and PLGA
molecular weights are represented in Figures 1A–C.
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FIGURE 1 | In vitro release of andrographolide nanoformulations prepared using different lactide to glycolide ratios (A), organic solvent (B), and PLGA molecular
weights (C). Data expressed as mean ± S.D (n = 3).

TABLE 7 | Physicochemical properties and drug loading of optimized andrographolide nanoformulation.

Formulation code Particle size (nm) Polydispersity index–PI Zeta potential (mV) Drug loading (%) Encapsulation efficiency (%)

Ethyl acetate 135 ± 4*** 0.22 ± 0.00*** −11.7 ± 2.4 2.6 ± 0.6* 19.1 ± 4.1***

Chloroform 194 ± 2 0.10 ± 0.01 −17.2 ± 5.6 1.3 ± 0.2 9.7 ± 1.7

Results are expressed as mean ± SD (n = 3).
*signifies p < 0.05, ***signifies p < 0.001 significant differences with respect to 85:15 chloroform formulation.

Drug release from polymeric dispersions can occur through
several mechanisms including via polymer degradation,
desorption from the particle surface followed by diffusion from
the bulk, or a combination of these mechanisms (Alhakamy
and Md, 2019). PLGA is known to undergo bulk erosion and
release of hydrophobic drugs from PLGA matrices occurs
through a combination of drug diffusion (dominant during
the early phases) and polymer degradation (more dominant
during terminal phase) (Makadia and Siegel, 2011). The
formulations prepared using polymers of varying lactide to
glycolide ratios released their total andrographolide content in
2–48 h (Figure 1A). The 75:25, 85:15 PLGA and 100:0 PLA
resulted in similar amount of andrographolide release, and
this was lower than the 50:50 formulation. The slowest drug
release was observed for the 65:35 PLGA formulation. The
mechanism(s) underlying this observation is unclear. One
possibility is that reduction in the total drug release in the

65:35, 75:25, 85:15, and 100% PLA when compared to the 50:50
formulation might be due to the increase in the hydrophobic
content of the polymer conferred by higher lactide content. This
might have led to increased affinity of the drug to the polymer,
resulting in slower drug release (Park, 1995; Lee et al., 2002).
However, both 75:25 PLGA and 100 PLA formulations released
their total drug content within 2 h. In contrast, the 65:35 and
85:15 formulations demonstrated a gradual release over 24 and
48 h, with an initial burst release of 57 and 60%, respectively, in
2 h. Thus, the release profile did not directly correlate with the
lactide content or the hydrophobicity of the polymer. Differences
in particle size and DL for the different formulations could
have also contributed to the differences in the observed drug
release profiles.

All the formulations prepared using different organic solvents
released their andrographolide content between 24 and 48 h
(Figure 1B). The chloroform and ethyl acetate nanoformulations
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FIGURE 2 | In vitro release of andrographolide nanodispersion prepared using
85:15 PLGA polymer and chloroform or ethyl acetate as the organic solvent.
Data expressed as mean ± SD (n = 3).

released their drug content in 24 h while the dichloromethane
and acetone formulations release their drug over 48 h. All the
formulations resulted in a rapid initial burst release of at least
84% within 2 h. The initial rapid release was slightly lower in ethyl
acetate and acetone formulations than for dichloromethane and
chloroform formulations. The 50:50 PLGA polymer appeared to

result in rapid release of the drug content irrespective of the
solvent used in the fabrication of the formulation.

The andrographolide nanoformulations obtained from 50:50
PLGA polymer of different molecular weights released their
drug content in 24 h (6.7–31.3, 31.3–57.6, and 91.6–111.5 kDa
polymeric formulation) to 48 h (57.6–91.6 kDa polymeric
formulation) (Figure 1C). The andrographolide formulation
prepared with a high molecular weight polymer, 91.6–111.5 kDa,
demonstrated a slight reduction in the total andrographolide
release (88%) when compared with the 6.7–31.3, 31.3–57.6, and
57.6–91,6 kDa formulations that resulted in similar drug release
(96, 93, and 97% andrographolide release, respectively). All the
50:50 PLGA inherent viscosity formulations showed a rapid
initial release of at least 82% of its drug content within 2 h.

The burst release observed in the formulations can be
attributed to both the presence of surface-associated drug and the
large surface area of PLGA nanoparticles, which allows for rapid
drug diffusion. These physicochemical properties are influenced
by factors such as molecular weight of the polymer, polymer
concentration and hydrophilicity of the polymer (Mohammadi-
Samani and Taghipour, 2015). Therefore, further optimization
of the polymer properties may result in a formulation with
less burst effect.

Considering that most of the drug was released in few hours
in most formulations, the 85:15 PLGA polymer was chosen
for the preparation of nanoparticle and subsequent evaluation
of its antiproliferative activity on breast cancer cells because
it exhibited sustained release potential and high total drug
content release (∼80% release over 48 h). The andrographolide

FIGURE 3 | TEM image of Andro 85:15 EA formulation showing discrete spherical particles ranging from 63 to 206 nm in diameter measured using the Gatan R©

Digital Micrograph software (Pleasanton, CA, United States).
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FIGURE 4 | Dose-response curve of andrographolide free drug and nanoformulation on LM2 cells following 48 h treatment. Andro Free, andrographolide free drug,
Andro NP, andrographolide nanoformulation.

nanoformulation was made with ethyl acetate as the organic
solvent (since it resulted in formulations with reduced particle
size and increased DL), 85:15 PLGA polymer, drug-polymer ratio
of 1:8.5 and 2% PVA; physicochemical properties, DL, EE, and
release of this formulation are shown in Table 7 and Figure 2.

The 85:15 ethyl acetate andrographolide formulation had
smaller particle size, increased DL, higher EE, comparable zeta
potential, and a more heterogenous particle size distribution
when compared with the chloroform formulation. The
formulations fabricated using ethyl acetate and chloroform
released a total of 79 and 82%, respectively, within 48 h. Both
formulations exhibited a similar release pattern, however, more
andrographolide was released from the ethyl acetate formulation
initially (64 vs 44% at 1 h; 67 vs 60% at 2–6 h for ethyl acetate and
chloroform, respectively). This can be attributed to the size of
the formulation—the smaller the size, the larger the surface area
and the faster the rate of drug release (Rizvi and Saleh, 2018).
Based on these desirable properties of smaller size, increased
DL, and more sustained in vitro release profile, the formulation
prepared using the 85:15 PLGA polymer and ethyl acetate as the
organic solvent was chosen as the optimized formulation for cell
culture studies.

Surface Morphology of Optimized
Andrographolide Formulation
A TEM image of the 85:15 PLGA ethyl acetate formulation
showed discrete, spherical particles with sizes ranging from
63 to 206 nm (Figure 3). This appeared to correlate well
with the particle size and size distribution determined using
DLS (Table 7).

In vitro Anticancer Efficacy Studies With
the Optimized Andrographolide
Formulation
In vitro Acute Viability
Initial studies evaluated the acute effect of the andrographolide
free drug and the nanoformulation on cell viability over 48 h.

This study showed that the nanoformulation was better than
the free drug (IC50 of 27.68 µM for free drug vs 16.80 µM for
nanoformulation) as shown in Figure 4.

To determine the effect of blank particles and solvent
(DMSO), the LM2 cells were treated with the same concentration
of DMSO and blank PLGA nanoparticles present in the free
drug and nanoformulation treated group. After 48 h, the DMSO
and blank PLGA nanoparticle treated cells showed similar
viability (99.5% and 100.8%, respectively) as the untreated (100%)
group (Figure 5). This demonstrates that the DMSO solvent
or the PLGA polymer did not have cytotoxic effects on the
LM2 cells at the concentration utilized. As in the previous
study, nanoformulation was more cytotoxic than the equivalent
concentration of the free drug. Untreated cells were used as
controls in further experiments since DMSO and blank PLGA
nanoformulation demonstrated no cytotoxic activity.

FIGURE 5 | Cell viability of DMSO, blank NP, andrographolide free, and
nanoformulation treated LM2 cells showing no cytotoxic effect for DMSO and
PLGA nanoparticle at 20 µM after 48 h treatment. Blank NP, blank PLGA
nanoformulation, Andro Free, andrographolide free drug, Andro NP,
andrographolide nanoformulation.
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FIGURE 6 | Cell viability of untreated LM2 cells, andrographolide free and nanoformulation post treatment removal showing prolonged cytotoxic effect of
andrographolide nanoformulation. Andro Free, andrographolide free drug, Andro NP, andrographolide nanoformulation.

FIGURE 7 | Cell cycle of LM2 cells showing the proportion of cells in the cell cycle phases for untreated cells (A), free andrographolide treated cells (B), and
nanoformulation treated cells (C).
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In vitro Sustained Efficacy
We then evaluated the effect of nanoformulation on cell viability
over 12 days. The cell viability of andrographolide free drug,
andrographolide nanoformulation and untreated cells (control)
at various time points following treatment removal is shown in
Figure 6.

Prior to treatment (day 0), the cells seeded showed similar
absorbance, indicating similar number of cells present in
the different groups. Upon treatment removal, the free drug
treatment group showed a transient cytotoxic effect for up
to 6 days post treatment. This effect was lost after 6 days,
as demonstrated by the presence of similar number of viable
cells as in the untreated group. In contrast, the cells treated
with andrographolide nanoformulation maintained lower cell
numbers upon treatment removal until the 12th day of the
study. Thus, the nanoformulation demonstrated a sustained
cytotoxic effect. This is in line with the findings of Panyam and
Labhasetwar (2004). The sustained inhibition of cell proliferation
observed in PLGA nanoformulation in that study was attributed
to the sustained intracellular drug levels as opposed to that
with the free drug in which intracellular drug levels decreased
drastically upon removal of the treatment (Panyam et al., 2002;
Panyam and Labhasetwar, 2004).

Cell Cycle Analysis
Cell cycle analysis demonstrated accumulation of cells in
the G2/M phase in both andrographolide free drug and
nanoformulation compared to that with untreated cells as shown
in Figures 7A–C.

The andrographolide free drug and nanoformulation
treatments resulted in a decrease in the number of cells in the
G1 phase with an increase in the G2/M phase when compared
to that with the untreated cells. This is in line with a study
carried out by Banerjee et al., in which andrographolide elicited
cell cycle arrest in the G2/M phase in MDA-MB-231 cells—the
parent cell line of LM2 cells used in this study (Banerjee et al.,
2016). A higher number of cells were in the G2/M phase for the
nanoformulation treated group than in the group treated with
the free drug, demonstrating improved therapeutic effect with
the nanoformulation.

CONCLUSION

A polymeric nanoformulation of andrographolide was
developed, and the effect of different formulation parameters on
physicochemical properties and release profile was determined to

obtain a formulation with desirable properties. Encapsulation of
andrographolide in nanoparticles of approximately 100–150 nm
size was achieved using ethyl acetate as the organic solvent.
Nanoparticles formulated using 85:15 lactide to glycolide ratio
PLGA polymer, drug–polymer ratio of 1:8.5, 2% PVA, and
ethyl acetate as the organic solvent were identified as the
optimized formulation for andrographolide. This formulation
demonstrated enhanced and sustained inhibition of proliferation
of triple negative LM2 breast cancer cells when compared to the
free drug. This formulation can serve as a template for further
development of andrographolide as a potential anticancer agent
for clinical use.
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We have employed fullerenes as versatile agents to “cork” the open tips of multiwalled
carbon nanotubes (MWCNTs), and as promoting species for the release of the inorganic
material filled within the nanotubes’ cavities. High Z element compounds, namely, PbI2,
ZnI2, and CeI3, were chosen to easily determine the presence of the filler inside the
hosting nanotubes by transmission electron microscopy (TEM). Fullerenes can isolate
inorganic nanostructures confined within the hollow cavities of MWCNTs, which allows
the removal of the external material remnant after the filling. Otherwise, taking advantage
of the affinity of fullerenes with selected solvents, we have confirmed the ability of the
C60 molecules to promote the displacement of the inorganic guest from the host. We
propose two different strategies to trigger the release, employing vapor and liquid phase
treatments. The first protocol involves annealing filled MWCNTs in presence of fullerenes
(to obtain C60PbI2@MWCNTs) and the subsequent washing of the sample in ethanol
under mild conditions. On the other hand, the simultaneous introduction of the C60

molecules and the liberation of the guest are produced by a single step wet procedure;
the latter being potentially useful when materials that are not stable at high temperatures
are employed for filling.

Keywords: carbon nanotubes, fullerenes, filling, corking, release

INTRODUCTION

The wide range of diameters of both single walled (SWCNTs) and multiwalled carbon nanotubes
(MWCNTs) make their cavities susceptible of filling with diverse foreign species. The presence and
nature of the guest material into the hollow cavities can alter the properties of the hosting template,
improving its optical and electrical behavior (del Carmen Giménez-López et al., 2011). Moreover,
the confinement into a small area might notably alter the morphology, chemical and structural
characteristics of the guest, leading to the formation of new crystalline structures (Marega and
Bonifazi, 2014; Sandoval et al., 2019). The hollow cavities of CNTs are useful not only as nanoscale
templates for the synthesis of nanocomposites or nanostructures, but also provide an alternative
toward isolating functional molecules from external environments, preventing any undesirable
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interaction with outer species that can modify the properties
of the inner material or even produce the degradation
of its structure.

Different approaches are employed to fill materials
within CNTs, the strategy of synthesis depending on the
physicochemical properties and stability of the filler (Ajayan and
lijima, 1993; Ujjal et al., 2010; Kharlamova et al., 2012; Sauer
et al., 2012). One dimensional nanowires of a wide number of
inorganic compounds (Meyer et al., 2000; Sloan et al., 2002;
Philp et al., 2003; Kitaura et al., 2009), metallic nanoparticles
(Zhang et al., 2013) and organic species, such as β-carotene
(Yanagi et al., 2006), small proteins and biomolecules (Guo
et al., 1998), as well as graphene derivatives (Chuvilin et al.,
2011) and fullerenes (Yudasaka et al., 2003) can be confined
within the inner surface of CNTs. In this way, hybrid materials
with diverse characteristics are obtained. These can be used in a
myriad of applications, namely, molecular magnets (del Carmen
Giménez-López et al., 2011), optoelectronics and photovoltaics
(Zhou et al., 2015), battery electrodes (Prem Kumar et al., 2004),
catalysis (Pan and Bao, 2008), or biomedicine (Klingeler et al.,
2008; Martincic and Tobias, 2015).

However, a key factor for achieving a high filling yield is having
CNTs with opened ends (Babaa et al., 2003). Regardless of the
method used for the encapsulation of materials inside CNTs,
an excess of the filling agent is typically employed (Dujardin
et al., 1998; Sloan et al., 2002). Thus, an important amount of
material remains outside the nanotubes after the filling step. The
filling process is usually reproducible; nevertheless, the presence
of external material hinders the quantification of the filling yield
(Ballesteros et al., 2009). Furthermore, the removal of the non-
encapsulated compounds is necessary to both allow a proper
characterization of the sample and to determine how the inner
material modifies the properties of the resulting nanocomposite.
Otherwise, the properties of the sample cannot be exclusively
attributed to the confined species but also to the presence of
material external to the CNTs (Brown et al., 2003). An area in
which filled carbon nanotubes have been extensively studied is
in the biomedicine field (Martincic and Tobias, 2015). However,
applications for in vivo imaging, drug delivery or tumor targeting
require the absence of species remnant from the filling process,
usually attached to the outer surface of the CNTs (Ge et al., 2017;
Wang et al., 2020).

The easiest procedure to clean external material from the
sample involves the use of solvents that, in general, are also
capable to dissolve the filling agent. Therefore, unless the
encapsulated material has a strong interaction with the CNTs,
this approach not only removes the external compounds but
also washes out the confined nanostructure, since the ends of
the CNTs are opened (Shao et al., 2006). In the case of single
walled carbon nanotubes (SWCNTs), it has been reported that
the ends can be closed by high temperature treatments (ca.
900◦C) (Geng et al., 2004); thus, allowing the removal of the
external material whilst preserving the encapsulated compounds
(Shao et al., 2006). In case of MWCNTs, closing their ends by
high temperature annealing is much more difficult and requires
the formation of C-C bonds generating high curvature strain
(Mazzoni et al., 1999). Moreover, due to the presence of a larger

cavity, a much higher energy and hence, much higher annealing
temperatures than SWCNTs are necessary to induce the closing
(Martincic et al., 2019). Despite the later protocol demonstrated
to be highly efficient for the formation of hermetically closed
nanocapsules, a wide range of substances can be decomposed at
high temperature and an alternative strategy for sealing up the
ends of the nanotubes is required. Capobianchi et al. proposed
the impregnation of the open ended filled MWCNTs with a
solvent unable to solubilize the filling agent when entering into
the hollow cavity by capillarity. Afterward, a washing solvent
could be added to the mixture without affecting the inner material
(provided both liquids present a low miscibility) (Capobianchi
et al., 2007). However, the resulting filling yield is low and the
elimination of the protecting solvent could be problematic.

Fullerenes, also called buckyballs, are composed entirely of
carbon arranged in hexagonal and pentagonal rings (resembling
the classic soccer balls), forming of a hollow sphere (Nessim,
2010). Taking advantage of the strong affinity of fullerenes to
enter into the inner cavities of SWCNTs, these molecules have
also been employed as corking agents for the containment of
materials previously confined within their cavities (Shao et al.,
2008; Ren and Pastorin, 2008). Sloan et al. (2000) showed that
the presence of fullerenes within the hollow cavity of SWCNTs
prevents the introduction of other foreign materials and a pH
triggered release of materials from SWCNTs has been achieved
using functionalized fullerenes as corks (Luksirikul et al., 2010).

The preparation of C60@SWCNTs; usually called
nanopeapods (NPPs) has been widely studied. The interaction
mechanisms between the nanotubes and fullerenes involved
in the filling process, as well as the behavior of the C60 upon
encapsulation, have attracted much interest due to the particular
structures that can be formed (Warner et al., 2008). Theoretical
studies have shown that, under the appropriate energetic
conditions, fullerenes could be initially adsorbed onto the
external walls prior to encapsulation (Berber et al., 2002), and
coalesce after confinement (Tang et al., 1999; Hernández et al.,
2003). Besides, SWCNTs with the appropriate diameter are
able to perfectly accommodate a single molecule of C60 within
their two walls (Nikolaev et al., 1997). Thus, their proximity to
the inner surface of the nanotubes allows a strong interaction
between the buckyball and the nanotube. In case of fullerenes’
encapsulation into MWCNTs, both theoretical and experimental
studies involve considerations that are more complex and
have been barely described. The successful encapsulation and
stability of the resulting NPPs might be strongly affected by the
diameter of the host, being closely linked not only to the surface
interaction of fullerenes and the inner walls of the nanotubes,
but also to the configuration adopted by the particles inside
the tubes and the mutual interaction between them. It has been
reported that wider inner diameters allow the introduction of
a larger amount of fullerenes, with accommodations within
the MWCNTs cavities ranging from zig-zag chains to irregular
arrangements (Fröhlich et al., 2004), tending to agglomerate and
cluster (Maggini et al., 2014).

Another important issue usually considered for some of
the potential applications of filled nanotubes is the controlled
release of the encapsulated material. This process requires
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breaking energy barriers that can be present due to attractive
interactions established between the inner structures and the
hosting CNTs after filling (Gao et al., 2003). Releasing and
transport mechanisms of liquid (Longhurst and Quirke, 2007)
or gaseous substances (Wang, 2009), as well as the assisted
removal of the filled materials have been explored (Král and
Tománek, 1999; Insepov et al., 2006; Longhurst and Quirke, 2007;
Panczyk et al., 2013). Considering the high affinity and strong
intermolecular forces that can exist between fullerenes and CNTs,
theoretical studies on the capability of fullerenes for displacing
different species from the cavities of SWCNTs have been carried
out (Xue et al., 2012; Saikia et al., 2013).

Previous studies have demonstrated the enormous potential of
MWCNTs as isolating agents and carriers of materials with high
interest in the field of biomedicine. Considering the limitations
still present when preparing clean and hermetically closed
MWCNTs-based nanocapsules, the aim of this study was to
evaluate the capability of fullerenes to act not only as corking
agents to preserve the integrity of the guest molecules confined
within MWCNTs, but also their potential as release agents to
promote the controlled liberation of the guest molecules. Two
different approaches, involving annealing and wet treatments at
room temperature, were tested in order to provide an alternative
for obtaining nanocapsules. These approaches are compatible
with materials unstable at high temperatures.

MATERIALS AND METHODS

MWCNTs Purification
Chemical vapor deposition MWCNTs (Thomas Swan & Co.,
Ltd.) were steam treated during 5 h at 900◦C, in order to remove
amorphous carbon and graphitic nanoparticles and to open their
ends (Cabana et al., 2015). Subsequently, the sample was treated
with a 6 M HCl solution to remove the metal nanoparticles
exposed after the annealing treatment (Ballesteros et al., 2008).
The obtained dispersion was filtered, rinsed with distilled water
until neutral pH and dried overnight at 60◦C.

Filling of MWCNTs by Molten Phase
Procedure
PbI2@MWCNTs were prepared employing 6 mg of purified
MWCNTs and 140 mg of PbI2 (Strem Chemicals Inc.). In an
argon-filled glove box both, PbI2 and MWCNTs were ground
together with an agate mortar and pestle until the mixture
presented a uniform color. Afterward, the powder was transferred
into a silica ampoule, evacuated and sealed under vacuum. The
ampoule was placed into a furnace, where it dwelled at 500◦C
(temperature above the melting point of the salt) during 12 h.
Finally, the sample was cooled at room temperature and then
it was opened under inert atmosphere. ZnI2@MWCNTs and
CeI3@MWCNTs were prepared following the same protocol;
the temperature of treatment being selected taking into account
the melting point of the selected materials. The ZnI2/MWCNTs
mixture (300 mg/10 mg) was annealed at 475◦C, while the
CeI3@MWCNTs resulted from annealing 10 mg of MWCNTs in

presence of 200 mg of CeI3 at 900◦C. Both ZnI2 (99.99%) and
CeI3 (99.99%) were purchased from Sigma-Aldrich.

C60 Corking Into the Opened-Ended
Metal Halide Filled MWCNTs
(MX@MWCNTs)
C60 close-ended filled MWCNTs were prepared by grinding both,
fullerenes (C60, 99.5%, SES Research) and MWCNTs previously
filled with PbI2, ZnI2 or CeI3. Different ratios of filled CNTs
and fullerenes were employed. The corking was carried out by
annealing the mixture at 400◦C, during 48 h, under vacuum
(inside a silica ampoule) (Hirahara et al., 2000).

Washing of the External Material
The material deposited on the external surface of the MWCNTs
was removed by sonicating the samples (5 mg) in 30 mL of
distilled water for 15 min and refluxing during 24 h at 100◦C.
Finally, the sample was recovered by filtration employing a
0.2 µm polycarbonate membrane, rinsed with distilled water and
the procedure was repeated. The recovered powder was dried at
60◦C overnight.

PbI2 Release Assisted by Ethanol/C60
Protocol 1
Five-mg of the C60PbI2@MWCNTs sample were suspended in
absolute ethanol (Panreac, max 0.02% water) and dispersed by
sonication during 15 min. Afterward, the mixture was refluxed
(80◦C) during 16 h, cooled down and filtered using a 0.2 µm
polycarbonate membrane. After drying overnight at 60◦C, the
material was characterized using TEM.

Protocol 2
Five-mg of fullerenes were suspended in pure ethanol and
dispersed by sonication during 30 min. Afterward, 5 mg
of the PbI2@MWCNTs were added to the dispersion and
sonicated for 15 min. The mixture was refluxed (80◦C) during
16 h, cooled down and filtered using a 0.2 µm polycarbonate
membrane. After drying overnight at 60◦C, the material was
characterized using TEM.

Characterization
The filling of the samples was evaluated by means of transmission
electron microscopy (TEM) and scanning electron microscopy
SEM, while their composition was determined by energy
dispersive X-ray (EDX) analysis. TEM images were acquired
using a JEOL Jem 1210 electron microscope operating at
120 kV and a FEI Tecnai G2 F20 microscope (High resolution
microscope-HRTEM) operating at 200 kV. SEM images and
EDX analyses were performed using a QUANTA FEI 200
FEG-ESEM microscope operating at 20.0 kV. Samples were
prepared by sonication of a small amount of the powder in
anhydrous hexane (95%, Sigma-Aldrich). Afterward, the solution
was placed, dropwise, onto a lacey carbon support grid and let
to dry. Diffraction patterns were obtained in a Siemens D5000
diffractometer (Kα Cu). 2θ values were acquired at 0.02◦ intervals
between 5◦ and 60◦. Raman spectra were recorded using a Horiba
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Jobin Yvon operating at 532 nm and using 50 × objective.
Acquisition time was set to 10–30 s and laser power to 0.5 mW.
Spectra were recorded in the 100–3,000 cm−1 range, from
different spots of the powdered samples.

RESULTS

Microscopic Analysis of PbI2 Filled
MWCNTs and C60 Corked PbI2@MWCNTs
The inorganic material present inside the cavities of MWCNTs
is easily distinguishable from CNTs when these are observed
by TEM, which was employed to verify the encapsulation of
PbI2 within the MWCNTs cavities. Figure 1A shows a low
magnification image of PbI2@MWCNTs. A magnification of an
open-ended PbI2@MWCNTs is observed in the inset. A SEM
image of the PbI2@MWCNTs is included in Figure 1B, where the
characteristic tubular morphology of the hosting nanostructure
along with external PbI2 can be observed. The corresponding
EDX spectrum is shown in Figure 1C. A ca. 3.5 Å lattice spacing
was calculated from intensity profile analysis in selected regions
of PbI2 filled MWCNTs [(Figure 1D), HRTEM micrographs].

400◦C treatment of an open ended PbI2@MWCNTs/fullerenes
mixture lead to the formation of C60PbI2@MWCNTs
(Figures 2A,B). The presence of the inner nanorods within
the hosting nanotubes has not been affected by the interaction of
fullerenes with the sample, despite their affinity with the CNTs.
TEM micrographs show that fullerenes are located in the inner
surface of the nanotubes, blocking the open ends. Besides, a large
number of C60 molecules are observed along the external walls
of the hosts.

Washing and Release Strategies
After multiple washings of open-ended PbI2 filled MWCNTs
with hot water, the inorganic salt was removed from the inner
surface of the hosting nanotubes (Supplementary Figure 1).
Otherwise, fullerenes present in the tips avoid releasing the
PbI2 when C60PbI2@MWCNTs are subjected to the same

protocol of washing (Figure 3). The proposed corking approach
demonstrated to be versatile since allows the successful
confinement of other inorganic salts, namely, ZnI2 and CeI3,
after washing the external material from the outer surface of the
nanotubes (Supplementary Figure 2).

When ethanol, a solvent with affinity to the fullerenes
was employed for washing (16 h under reflux), the C60
molecules located in the tips of the MWCNTs act as adjuvants
of the displacement of the inorganic salt filled into the
nanotubes (C60PbI2@MWCNTs sample). In absence of fullerenes
(PbI2@MWCNTs) the release of PbI2 from the hosting nanotubes
in presence of ethanol was not observed (Figures 4A,B). Removal
of PbI2 from PbI2@MWCNTs was also triggered using a liquid
phase approach under mild conditions of reaction. By suspending
the sample in a C60 ethanol dispersion and refluxing, the
inorganic salt was removed from the inner surface of the
nanotubes and replaced by the fullerenes present in the medium
(Figures 6A,B).

XRD and Raman Spectroscopy of Filled
Samples
XRD analysis of C60ZnI2@MWCNTs (Supplementary Figure 3)
shows the characteristic diffraction pattern of C60, which
signal induces the attenuation of the broad diffraction peak
of MWCNTs (002, 2θ∼26◦). Raman spectra (Supplementary
Figure 4) of samples resulting of wet treatment using EtOH/C60
mixtures of both empty and PbI2 filled MWCNT confirm the
presence of fullerenes in the material.

DISCUSSION

End Corking of MWCNTs With Fullerenes
PbI2 is an interesting compound because is a large bandgap
2D layered material that has potential for semiconductor
applications (Sinha et al., 2020) and, bearing heavy elements,
could also be employed as contrast agent (Hernández-Rivera
et al., 2017). PbI2 along with the other metal halides (ZnI2,

FIGURE 1 | (A) TEM of PbI2 filled MWCNTs after molten phase capillary wetting synthesis; the inset shows a detail of an open ended PbI2@MWCNT. (B) SEM
showing the morphology of the sample and (C) the corresponding EDX spectrum, confirming the presence of both Pb and I in the sample. (D) HRTEM of a MWCNT
filled with polycrystalline PbI2; d-spacings of PbI2 determined via intensity profiles along the indicated white lines correspond to I = 3.5 Å, II = 3.3 Å, and III = 3.5 Å.
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FIGURE 2 | (A) C60PbI2@MWCNTs sample. A magnified area of an open ended CNT containing fullerenes is presented. (B) PbI2 filled nanotube with fullerenes
corking and isolating the inorganic nanostructure; fullerenes can be also seen on the external walls of CNTs (pointed by white arrows).

CeI3) employed in this study are layered structures, which can
lead to the formation of tubular van der Waals heterostructures
when confined within the cavities of MWCNTs (Cabana et al.,
2014; Sandoval et al., 2017; Sandoval et al., 2018). Besides,
since the contrast in TEM imaging is highly dependent on the
atomic/molecular weight of the material, PbI2 was chosen as a
model compound (both elements, Pb and I, present a high atomic
number) for filling MWCNTs. Thus, the inner grown nanorods
composed by the relatively heavy atoms are easily distinguished
from the CNTs when characterized by TEM (Figure 1A). SEM
confirms that the morphology of MWCNTs remains unaltered
after the filling experiment and also reveals the presence of
PbI2 crystals external to the CNTs (Figure 1B). As expected,
EDX analysis (Figure 1C) indicates the presence of Pb and
I in the sample. Different d-spacings of the PbI2 crystallites
present inside the MWCNTs cavities have been measured from
the HRTEM images (Figure 1D). A spacing of ca. 3.5 Å is
observed, in agreement with crystallographic data of bulk PbI2
[(002) reflection plane].

PbI2 filled MWCNTs were employed to evaluate the capability
of fullerenes of blocking the open ends of CNTs. For this purpose,
C60PbI2@MWCNTs were prepared from PbI2@MWCNTs by
a vapor-phase method at 400◦C, during 48 h (Tang et al.,

1999). Temperatures between 300 and 450◦C are considered
to provide the energy necessary for the formation of NPPs
(Ajayan and lijima, 1993) and in situ studies have detected
mobility of fullerenes along the CNTs walls at ca. 325◦C, followed
by the entrance of fullerenes within the SWCNTs at 350◦C
(Hernández et al., 2003). Furthermore, the sublimation of C60
molecules, which is necessary for the vapor-phase encapsulation
(Nikolaev et al., 1997), has been reported to start at relatively
low temperatures (ca. 375◦C), being favored under low pressure
conditions (Sloan et al., 2000). Taking into account that the
probability of C60 entering into the nanotubes decreases with
the temperature, higher temperatures of treatment were not
considered for this study. Figure 2A shows a low magnification
TEM image of a C60PbI2@MWCNTs sample. As shown, the
employed protocol allows the introduction of C60 molecules
in the cavities of the MWCNTs that remained empty after the
filling of the tubes with PbI2. The inset shows a magnification
where the presence of fullerenes contained in an open-ended
MWCNT is appreciated. Additionally, a HRTEM image of
a MWCNT containing both, a PbI2 nanotube and fullerenes
blocking the opened tips is presented in Figure 2B. The presence
of fullerenes on the external walls of the nanotubes (pointed
by white arrow) is in agreement with theoretical calculations

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 March 2021 | Volume 9 | Article 64479325

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-644793 March 4, 2021 Time: 17:3 # 6

Sandoval and Tobias Encapsulation and Release of Fullerenes

FIGURE 3 | (A–C) show individual nanotubes containing both fullerenes (white arrows) and PbI2 nanostructures (black arrows) that have not been removed after
washing. A low magnification image (right) shows that most of the corked nanotubes maintained their filling after washing.

that suggest an “optimum” trajectory of the C60 molecules
when approaching to the CNTs. According to the studies of
Berber et al. (2002), fullerenes may be initially physisorbed on the
outer wall of the nanotube and subsequently diffuse along the
CNT surface. In this way, the corking process involves an initial
non-covalent functionalization of the CNTs walls with the C60
molecules before the filling. Afterward, fullerenes can displace
either through the defects of the CNTs walls or via the opened
tips, establishing strong electrostatic interactions with the inner
surface of the nanotubes.

The most common methodology for the elimination of the
excess of material present on the external surface of the hosting
nanotubes consists in carrying out consecutive washings with
a specific solvent, capable of solubilizing the guest specimens
(Kierkowicz et al., 2017). PbI2 is relatively soluble in hot water,
which can be employed to remove the external material present
after the synthesis of PbI2@MWCNTs. Nevertheless, since the
ends of the CNTs are opened, the process also washes out
the material contained inside the nanotubes, and only empty
MWCNTs can be seen in the sample (Supplementary Figure 1).
The strong electrostatic interactions existing between the CNTs
walls and the C60 molecules, combined with the poor solubility
of fullerenes in water (Heymann, 1996), produce the corking
of the opened tips of the hosting carbon nanotubes. Thus, C60
molecules avoid the removal of the inner nanostructures, while
the external material is eliminated. For this reason, when the

same protocol of washing (using hot water) is employed for
the C60PbI2@MWCNTs, an important amount of PbI2 remained
in the hosting cavity of the nanotubes (Figure 3). Images of
individual CNTs containing PbI2 nanorods (pointed by black
arrows) as well as fullerenes (white arrows) are also included
(Figures 3A–C). The presence of PbI2 inside the MWCNTs
confirms that fullerenes not only are useful for the isolation
of inorganic material inside SWCNTs (Tobias et al., 2010), but
also can be employed for the confinement of compounds within
tubular carbon nanostructures with larger diameters (MWCNTs).

The optimum amount of fullerenes necessary to cork the CNTs
was explored. Since an important amount of filling agent remains
outside the nanotubes, the quantification of the CNTs/C60 ratio
is not possible. However, the amount of fullerenes was selected
in function of the mass of CNTs that was initially mixed
with the inorganic salt. Thus, the totality of the sample after
the endohedral functionalization with PbI2 (PbI2@MWCNTs)
was mixed in 1:1, 1:2, 1:3, and 1:10 CNTs/C60 ratios. After
treatment with the lowest amount of fullerenes (1:1 ratio), an
important fraction of C60 was observed along the CNTs walls
and tips. However, the amount of filled nanotubes decreased
considerably after washing with water. Meanwhile, when the
samples were treated with two and three parts of fullerenes,
and subsequently washed, a higher frequency of filled nanotubes
was observed. Finally, the treatment with the highest amount of
fullerenes (1:10 CNTs/C60) did not show a significant variation
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FIGURE 4 | (A) PbI2@MWCNTs and (B) C60PbI2@MWCNTs after washing
with anhydrous ethanol at 80◦C during 16 h.

in the frequency of PbI2@MWCNTs, in comparison with the
sample annealed in presence of three parts of fullerenes. Since
the use of the highest amount of C60 did not result in an
increase of PbI2 filled nanotubes after washing, a 1:3 ratio (filled
sample: fullerenes) appears to be the highest suitable ratio to be
employed for corking.

In order to confirm that the introduction of C60 molecules
within the filled CNTs is independent on the filling agent,
MWCNTs filled with ZnI2 and CeI3 were also treated with
fullerenes. The solubility of ZnI2 and CeI3 in water in normal
conditions is considerably high (Lyde et al., 2003-2004), and the
external material is thus easily removable by simple washings
with aqueous solutions. After washing, the presence of both
ZnI2 and CeI3 nanorods encapsulated within the MWCNTs

is observed (Supplementary Figure 2). After XRD analysis
of the washed C60ZnI2@MWCNTs (Supplementary Figure 3,
continuous red line) the 002 diffraction peak (d-space 3.4 Å at
ca. 26◦), characteristic from MWCNTs is strongly attenuated by
the presence of C60, which diffraction pattern can be attributed to
the Fm3m fcc lattice (Zhou et al., 2004; Ginzburg et al., 2005). In
this way, the use of fullerenes is presented as a useful protocol to
isolate inorganic halides grown within MWCNTs, which allows
the removal of impurities remnant after the filling process.

Release of Crystalline Structures From
MWCNTs Assisted by Fullerenes
The use of fullerenes to assist on the displacement of inorganic
encapsulated nanostructures, employing ethanol as promoting
solvent, was additionally explored. If the physicochemical
properties of fullerenes are considered, employing a solvent
with certain affinity with the C60 molecules may facilitate their
mobility inside the CNTs. These species could act as appropriate
replacing agents favoring the displacement of the inorganic
nanomaterial and triggering its release from the host. For this
purpose, the C60PbI2@MWCNTs were dispersed and refluxed
in ethanol during 16 h. PbI2 is not soluble in ethanol (Lyde
et al., 2003-2004) and under normal conditions (in absence of
fullerenes), the inorganic PbI2 confined within the hosting cavity
should be retained in the MWCNTs. Thus, PbI2@MWCNTs
was additionally washed with ethanol as control. The obtained
samples were characterized employing TEM imaging. Figure 4A
shows a low magnification TEM image of the PbI2@MWCNTs
after washing with ethanol. As expected, the solvent was unable
to remove PbI2 from the interior of the MWCNTs despite being
exposed to the solvent through the opened tips (inset), due to
the low solubility of the PbI2 in ethanol. In contrast, when the
sample was previously annealed in presence of fullerenes and
subsequently washed using the same conditions, the majority
of the inorganic guests were washed out from the MWCNTs
(Figure 4B), indicating that in this case fullerenes foster the
release of the encapsulated compounds.

The entrance of the C60 molecules into the nanotubes requires
specific energies (Berber et al., 2002), which can be provided
either by high temperature treatments (Smith et al., 1998), or by
the assistance of a solvent with certain characteristics (Yudasaka
et al., 2003). Yudasaka et al. (2003) proposed a successful
methodology, which they called “nano-extraction,” consisting in
the incorporation of fullerenes within SWCNTs, promoted by
the suspension of a mixture of both materials in ethanol. This
liquid phase technique, leads to the formation of NPPs and
takes advantage of the solubility of the C60 molecules in the
solvent, which although poor, is strong enough to promote the
interaction between the fullerenes and the CNTs, provoking the
incorporation of the C60 molecules into the nanotubes.

One could think that the strong non-covalent interactions
(Okada et al., 2001) formed between the C60 molecules and
the CNTs walls should constitute a highly energetic barrier to
be overcome in order to produce the mobility of the fullerenes
along the inner cavity of the nanotube. Additionally, electrostatic
interactions, such as van der Waal forces, existing between the
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inorganic nanostructure and the CNTs may be an additional
difficulty toward the displacement of the guests outside the
nanotubes. Theoretical studies have described the energetic
stability of C60 encapsulated within a SWCNT (nanopeapod,
NPP), including the high binding energies present between
the fullerenes and the nanotube (Dubay and Kresse, 2004).
The strength and stability of these interactions depends on the
symmetry and dimensions of the nanotube. Meanwhile, the

release process requires the use of a solvent in which fullerenes
are highly soluble (Simon et al., 2007). Fan et al. (2007) studied
the effect of the diameter in both the incorporation of fullerenes
into SWCNTs and their release assisted by toluene, finding
that small diameters of the host favor the encapsulation, while
the removal of the encapsulated C60 molecules presents the
opposite trend. For a system formed by MWCNTs and fullerenes,
a theoretical approach would be more complex. In fact, the

FIGURE 5 | Schematic representation of the fullerene assisted release of PbI2 from MWCNTs employing ethanol as promoting solvent.

FIGURE 6 | (A) PbI2@MWCNTs after washing at 80◦C during 16 h with a dispersion of fullerenes in absolute ethanol. (B) Detail of a PbI2@MWCNT after washing
with an EtOH/C60 mixture.
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incorporation of fullerenes within MWCNTs has been barely
reported (Kondo et al., 2003).

Considering that the diameter and the contact surface between
the nanotubes and the C60 molecules may play a role in the
release of the inorganic material, fullerenes incorporated within
the cavities of MWCNTs should possess weaker affinity with the
inner walls if compares to SWCNTs. Nevertheless, the established
interactions appear to still be strong and the trafficking of the
fullerenes along the cavities of the nanotubes may also require a
driving force. According to our observations, the attraction forces
between the C60 molecules and the inner walls are significantly
altered when fullerenes are confined within MWCNTs. This is
in agreement with theoretical studies on SWCNTs of different
dimensions filled with drug molecules, where an increase in the
release of the inner material is observed for nanotubes with
higher diameters (Saikia et al., 2013).

A graphical representation of the process of release of the
inorganic salt from the MWCNTs cavities is presented in
Figure 5. A competitive replacement of the inorganic salt fraction
(bluish crystals) contained within the tube is produced. The
high diffusivity of the liquid solvent (EtOH) contributes toward
the mobility of the fullerenes within the MWCNT, expelling
out the inorganic salt. Additionally, the increase in the contact
area between the fullerenes and the CNT wall might enhance
the stability of the system by the creation of van der Waal
forces between the hosting nanotubes and the C60 molecules
(Xue et al., 2012).

Considering that many materials susceptible of being filled
within the cavities of CNTs are not stable at high temperatures,

and those other approaches, different from the molten phase
capillary wetting or vapor-phase reactions are necessary for
their incorporation inside the nanotubes and the subsequent
C60 corking; we applied an alternative strategy for the release
process. Employing the nano-extraction technique (Yudasaka
et al., 2003) to the removal of the inner structure assisted by
fullerenes, the process not only was reduced to a single step, but
also allowed the insertion of fullerenes at mild conditions, having
potential applications to the release of non-thermally stable guest
nanostructures. By suspending PbI2@MWCNTs in a dispersion
of fullerenes in pure ethanol and subsequently refluxing the
mixture, we have been able to remove the inorganic halide from
the inner cavities of the MWCNTs. A low magnification image
of the PbI2 filled MWCNTs after washing with the ethanolic
dispersion of fullerenes is presented in Figure 6A. Microscopy
analyses confirm the replacement of the encapsulated PbI2 by the
C60 molecules. The small nanoparticles observed on the outer
surface of the nanotubes correspond to the PbI2 displaced from
the cavities of CNTs. The latest protocol results in a higher
amount of fullerenes present along the nanotubes. C60 molecules
were homogeneously distributed through both the external walls
of the nanotubes and inside their cavities (Figure 6B). Raman
spectra of both PbI2@MWCNTs before and after washing with
ethanol are presented in Supplementary Figure 4. C60 alone
and MWCNTs before and after introducing fullerenes within
their cavities (by dispersing them in a C60/ethanol mixture)
are included for comparison. In all cases (except for C60)
the characteristic D (1,341 cm−1, out of plane vibration) and
G (1,585 cm−1, stretching of sp2 bonds from the graphitic

FIGURE 7 | Schematic representation of the mechanisms of corking of MWCNTs and release of the guest material from the hosting nanotubes promoted by
fullerenes.
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structure) bands of graphitic-based materials are observed. After
treatment of both empty and PbI2 filled MWCNTs in presence
of C60, the signal arising from MWCNTs is attenuated and the
most prominent peak, corresponding to the pentagonal pinch
mode Ag(2) of fullerenes (1,461.7 cm−1) appears, confirming
their presence in the analyzed powder.

Figure 7 summarizes the proposed complementary
approaches: corking of MWCNTs and release of inner material
confined within their cavities. On the one hand, fullerenes can be
employed as efficient corking agents of open-ended MWCNTs,
which facilitates the removal of external material resulting from
the filling process (left). This protocol is useful as long as the
cleaning of the filled nanotubes is carried out employing solvents
which affinity with the C60 molecules is extremely low. On the
other hand a versatile protocol for the removal of inorganic
material from the inner cavities of MWCNTs is proposed
(right). The encapsulation of fullerenes, followed by the ethanol
assisted migration of the C60 molecules, arises as a potential
strategy to trigger the liberation of materials. Otherwise, a liquid
phase methodology, involving a single step procedure and mild
conditions is suggested for the simultaneous incorporation of
fullerenes and release of compounds from the hosting CNTs.

CONCLUSION

We have studied the use of fullerenes, either to isolate inorganic
materials present in the cavities of MWCNTs, or to promote
the release of the guest structures. Fullerenes act as corking
agents, as long as the cleaning of the filled nanotubes is carried
out with solvents which affinity with the C60 molecules is
very low. The presence of fullerenes avoids the release of the
encapsulated payloads during the removal of the external non-
filled inorganic material remnant after the filling procedure.
Otherwise, fullerenes are useful to trigger the liberation of
guest structures from the MWCNTs cavities when solvents
with considerable affinity to the C60 molecules are employed
to promote the release. In the present study, ethanol was
employed as promoting solvent to favor the mobility of the C60
molecules within MWCNTs, assisting the removal of inorganic
nanostructures previously grown within the hosting nanotubes.
A versatile protocol, involving high temperature treatments
and liquid phase techniques has been proposed to induce the

liberation of guest structures from the cavities of MWCNTs. We
believe that this approach can be employed for a large variety
of both organic and inorganic compounds, opening up new
possibilities for their containment and controlled release from
carbon nanotubes.
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Cabana, L., Ke, X., Kepić, D., Oro-Solé, J., Tobías-Rossell, E., Van Tendeloo, G.,
et al. (2015). The role of steam treatment on the structure, purity and length

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 March 2021 | Volume 9 | Article 64479330

https://www.frontiersin.org/articles/10.3389/fbioe.2021.644793/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2021.644793/full#supplementary-material
https://doi.org/10.1038/361333a0
https://doi.org/10.1016/s0039-6028(03)00442-4
https://doi.org/10.1016/s0039-6028(03)00442-4
https://doi.org/10.1002/smll.200701283
https://doi.org/10.1021/jp810717b
https://doi.org/10.1021/jp810717b
https://doi.org/10.1007/s00339-002-2040-1
https://doi.org/10.1002/adma.201305169
https://doi.org/10.1002/adma.201305169
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-644793 March 4, 2021 Time: 17:3 # 11

Sandoval and Tobias Encapsulation and Release of Fullerenes

distribution of multi-walled carbon nanotubes. Carbon 93, 1059–1067. doi:
10.1016/j.carbon.2015.06.027

Capobianchi, A., Foglia, S., Imperatori, P., Notargiacomo, A., Giammatteo, M.,
Buono, T. D., et al. (2007). Controlled filling and external cleaning of multi-
wall carbon nanotubes using a wet chemical method. Carbon 45, 2205–2208.
doi: 10.1016/j.carbon.2007.06.050

Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M. C., Chamberlain, T. W., Rance,
G. A., Kuganathan, N., et al. (2011). Self-assembly of a sulphur-terminated
graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10,
687–692. doi: 10.1038/nmat3082

del Carmen Giménez-López, M., Moro, F., La Torre, A., Gómez-García, C. J.,
Brown, P. D., et al. (2011). Encapsulation of single-molecule magnets in carbon
nanotubes. Nat. Commun. 2:407.

Dubay, O., and Kresse, G. (2004). Density functional calculations for C60 peapods.
Phys. Rev. B 70:165424.

Dujardin, E., Ebbesen, T. W., Krishnan, A., and Treacy, M. M. J. (1998). Wetting of
Single Shell Carbon Nanotubes. Adv. Mater. 10, 1472–1475. doi: 10.1002/(sici)
1521-4095(199812)10:17<1472::aid-adma1472>3.0.co;2-r

Fan, J., Yudasaka, M., Yuge, R., Futaba, D. N., Hata, K., and Iijima, S. (2007).
Efficiency of C60 incorporation in and release from single-wall carbon
nanotubes depending on their diameters. Carbon 45, 722–726. doi: 10.1016/j.
carbon.2006.11.034

Fröhlich, T., Scharff, P., Schliefke, W., Romanus, H., Gupta, V., Siegmund, C.,
et al. (2004). Insertion of C60 into multi-wall carbon nanotubes—-a synthesis
of C60@MWCNT. Carbon 42, 2759–2762. doi: 10.1016/j.carbon.2004.05.025

Gao, H., Kong, Y., Cui, D., and Ozkan, C. S. (2003). Spontaneous Insertion of
DNA Oligonucleotides into Carbon Nanotubes. Nano Lett. 3, 471–473. doi:
10.1021/nl025967a

Ge, H., Riss, P. J., Mirabello, V., Calatayud, D. G., Flower, S. E., Arrowsmith, R. L.,
et al. (2017). Behavior of Supramolecular Assemblies of Radiometal-Filled and
Fluorescent Carbon Nanocapsules In Vitro and In Vivo. Chem 3, 437–460.
doi: 10.1016/j.chempr.2017.06.013

Geng, H. Z., Zhang, X. B., Mao, S. H., Kleinhammes, A., Shimoda, H., Wu, Y., et al.
(2004). Opening and closing of single-wall carbon nanotubes. Chem. Phys. Lett.
399, 109–113. doi: 10.1016/j.cplett.2004.09.150

Ginzburg, B. M., Tuichiev, S., Tabarov, S. K., Shepelevskii, A. A., and Shibaev, L. A.
(2005). X-ray diffraction analysis of C60 fullerene powder and fullerene soot.
Technical Phys. 50, 1458–1461. doi: 10.1134/1.2131953

Guo, Z., Sadler, P. J., and Tsang, S. C. (1998). Immobilization and Visualization
of DNA and Proteins on Carbon Nanotubes. Adv. Mater. 10, 701–703. doi:
10.1002/(sici)1521-4095(199806)10:9<701::aid-adma701>3.0.co;2-4

Hernández, E., Meunier, V., Smith, B. W., Rurali, R., Terrones, H., Buongiorno
Nardelli, M., et al. (2003). Fullerene Coalescence in Nanopeapods: A
Path to Novel Tubular Carbon. Nano Lett. 3, 1037–1042. doi: 10.1021/nl0
34283f

Hernández-Rivera, M., Kumar, I., Cho, S. Y., Cheong, B. Y., Pulikkathara, M. X.,
Moghaddam, S. E., et al. (2017). High-Performance Hybrid Bismuth–Carbon
Nanotube Based Contrast Agent for X-ray CT Imaging. ACS Appl. Mater. Interf.
9, 5709–5716. doi: 10.1021/acsami.6b12768

Heymann, D. (1996). Solubility of Fullerenes C60 and C70 in Water. Lunar Planet.
Sci. 27:543.

Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., et al.
(2000). One-Dimensional Metallofullerene Crystal Generated Inside Single-
Walled Carbon Nanotubes. Phys. Rev. Lett. 85, 5384–5387. doi: 10.1103/
physrevlett.85.5384

Insepov, Z., Wolf, D., and Hassanein, A. (2006). Nanopumping Using Carbon
Nanotubes. Nano Lett. 6, 1893–1895. doi: 10.1021/nl060932m

Kharlamova, M. V., Yashina, L. V., Eliseev, A. A., Volykhov, A. A., Neudachina,
V. S., Brzhezinskaya, M. M., et al. (2012). Single-walled carbon nanotubes filled
with nickel halogenides: Atomic structure and doping effect. Phys. Status Solidi
B 249, 2328–2332. doi: 10.1002/pssb.201200060

Kierkowicz, M., González-Domínguez, J. M., Pach, E., Sandoval, S., Ballesteros,
B., Da Ros, T., et al. (2017). Filling Single-Walled Carbon Nanotubes
with Lutetium Chloride: A Sustainable Production of Nanocapsules Free of
Nonencapsulated Material. ACS Sustain. Chem. Engine. 5, 2501–2508. doi: 10.
1021/acssuschemeng.6b02850

Kitaura, R., Nakanishi, R., Saito, T., Yoshikawa, H., Awaga, K., and Shinohara,
H. (2009). High-Yield Synthesis of Ultrathin Metal Nanowires in Carbon

Nanotubes. Angewandte Chemie Int. Edit. 48, 8298–8302. doi: 10.1002/anie.
200902615

Klingeler, R., Hampel, S., and Büchner, B. (2008). Carbon nanotube based
biomedical agents for heating, temperature sensoring and drug delivery. Int.
J. Hyperther. 24, 496–505. doi: 10.1080/02656730802154786

Kondo, D., Kawabata, A., Horibe, M., Nihei, M., and Awano, Y. (2003).
Vertically aligned peapod formation of position-controlled multi-walled carbon
nanotubes (MWNTs). Superlatt. Microstruct. 34, 389–394. doi: 10.1016/j.spmi.
2004.03.034

Král, P., and Tománek, D. (1999). Laser-Driven Atomic Pump. Phys. Rev. Lett. 82,
5373–5376. doi: 10.1103/physrevlett.82.5373

Longhurst, M. J., and Quirke, N. (2007). Temperature-Driven Pumping of Fluid
through Single-Walled Carbon Nanotubes. Nano Lett. 7, 3324–3328. doi: 10.
1021/nl071537e

Luksirikul, P., Ballesteros, B., Tobias, G., Moloney, M. G., and Green, M. L. H.
(2010). pH-triggered release of materials from single-walled carbon nanotubes
using dimethylamino-functionalized fullerenes as removable “corks”. Carbon
48, 1912–1917. doi: 10.1016/j.carbon.2010.01.053

Lyde, D. R., Berger, L. I, Covington, A. K., and Fox, R. B. (2003-2004). Handbook of
Chemistry and Physics. Florida: CRC Press.

Maggini, L., Füstös, M.-E., Chamberlain, T. W., Cebrián, C., Natali, M.,
Pietraszkiewicz, M., et al. (2014). Fullerene-driven encapsulation of a
luminescent Eu(III) complex in carbon nanotubes. Nanoscale 6, 2887–2894.
doi: 10.1039/C3NR05876J

Marega, R., and Bonifazi, D. (2014). Filling carbon nanotubes for
nanobiotechnological applications. N. J. Chem. 38, 22–27. doi: 10.1039/
c3nj01008b

Martincic, M., and Tobias, G. (2015). Filled carbon nanotubes in biomedical
imaging and drug delivery. Expert Opin. Drug Delivery 12, 563–581. doi: 10.
1517/17425247.2015.971751

Martincic, M., Vranic, S., Pach, E., Sandoval, S., Ballesteros, B., Kostarelos, K.,
et al. (2019). Non-cytotoxic carbon nanocapsules synthesized via one-pot filling
and end-closing of multi-walled carbon nanotubes. Carbon 141, 782–793. doi:
10.1016/j.carbon.2018.10.006

Mazzoni, M. S. C., Chacham, H., Ordejón, P., Sánchez-Portal, D., Soler, J. M.,
and Artacho, E. (1999). Energetics of the oxidation and opening of a carbon
nanotube. Phys. Rev. B 60, R2208–R2211.

Meyer, R. R., Sloan, J., Dunin-Borkowski, R. E., Kirkland, A. I., Novotny, M. C.,
Bailey, S. R., et al. (2000). Discrete Atom Imaging of One-Dimensional Crystals
Formed Within Single-Walled Carbon Nanotubes. Science 289, 1324–1326. doi:
10.1126/science.289.5483.1324

Nessim, G. D. (2010). Properties, synthesis, and growth mechanisms of carbon
nanotubes with special focus on thermal chemical vapor deposition. Nanoscale
2, 1306–1323. doi: 10.1039/b9nr00427k

Nikolaev, P., Thess, A., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1997).
Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266, 422–426.
doi: 10.1016/S0009-2614(97)00053-5

Okada, S., Saito, S., and Oshiyama, A. (2001). Energetics and Electronic Structures
of Encapsulated C60 in a Carbon Nanotube. Phys. Rev. Lett. 86, 3835–3838.
doi: 10.1103/physrevlett.86.3835

Pan, X., and Bao, X. (2008). Reactions over catalysts confined in carbon nanotubes.
Chem. Commun. 47, 6271–6281. doi: 10.1039/b810994j

Panczyk, T., Jagusiak, A., Pastorin, G., Ang, W. H., and Narkiewicz-Michalek,
J. (2013). Molecular Dynamics Study of Cisplatin Release from Carbon
Nanotubes Capped by Magnetic Nanoparticles. J. Phys. Chem. C 117, 17327–
17336. doi: 10.1021/jp405593u

Philp, E., Sloan, J., Kirkland, A. I., Meyer, R. R., Friedrichs, S., Hutchison, J. L., et al.
(2003). An encapsulated helical one-dimensional cobalt iodide nanostructure.
Nat. Mater. 2, 788–791. doi: 10.1038/nmat1020

Prem Kumar, T., Ramesh, R., Lin, Y. Y., and Fey, G. T.-K. (2004). Tin-filled carbon
nanotubes as insertion anode materials for lithium-ion batteries. Electrochem.
Commun. 6, 520–525. doi: 10.1016/j.elecom.2004.03.009

Ren, Y., and Pastorin, G. (2008). Incorporation of Hexamethylmelamine inside
Capped Carbon Nanotubes. Adv. Mater. 20, 2031–2036. doi: 10.1002/adma.
200702292

Saikia, N., Jha, A. N., and Deka, R. C. (2013). Dynamics of Fullerene-Mediated
Heat-Driven Release of Drug Molecules from Carbon Nanotubes. J. Phys. Chem.
Lett. 4, 4126–4132. doi: 10.1021/jz402231p

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 March 2021 | Volume 9 | Article 64479331

https://doi.org/10.1016/j.carbon.2015.06.027
https://doi.org/10.1016/j.carbon.2015.06.027
https://doi.org/10.1016/j.carbon.2007.06.050
https://doi.org/10.1038/nmat3082
https://doi.org/10.1002/(sici)1521-4095(199812)10:17<1472::aid-adma1472>3.0.co;2-r
https://doi.org/10.1002/(sici)1521-4095(199812)10:17<1472::aid-adma1472>3.0.co;2-r
https://doi.org/10.1016/j.carbon.2006.11.034
https://doi.org/10.1016/j.carbon.2006.11.034
https://doi.org/10.1016/j.carbon.2004.05.025
https://doi.org/10.1021/nl025967a
https://doi.org/10.1021/nl025967a
https://doi.org/10.1016/j.chempr.2017.06.013
https://doi.org/10.1016/j.cplett.2004.09.150
https://doi.org/10.1134/1.2131953
https://doi.org/10.1002/(sici)1521-4095(199806)10:9<701::aid-adma701>3.0.co;2-4
https://doi.org/10.1002/(sici)1521-4095(199806)10:9<701::aid-adma701>3.0.co;2-4
https://doi.org/10.1021/nl034283f
https://doi.org/10.1021/nl034283f
https://doi.org/10.1021/acsami.6b12768
https://doi.org/10.1103/physrevlett.85.5384
https://doi.org/10.1103/physrevlett.85.5384
https://doi.org/10.1021/nl060932m
https://doi.org/10.1002/pssb.201200060
https://doi.org/10.1021/acssuschemeng.6b02850
https://doi.org/10.1021/acssuschemeng.6b02850
https://doi.org/10.1002/anie.200902615
https://doi.org/10.1002/anie.200902615
https://doi.org/10.1080/02656730802154786
https://doi.org/10.1016/j.spmi.2004.03.034
https://doi.org/10.1016/j.spmi.2004.03.034
https://doi.org/10.1103/physrevlett.82.5373
https://doi.org/10.1021/nl071537e
https://doi.org/10.1021/nl071537e
https://doi.org/10.1016/j.carbon.2010.01.053
https://doi.org/10.1039/C3NR05876J
https://doi.org/10.1039/c3nj01008b
https://doi.org/10.1039/c3nj01008b
https://doi.org/10.1517/17425247.2015.971751
https://doi.org/10.1517/17425247.2015.971751
https://doi.org/10.1016/j.carbon.2018.10.006
https://doi.org/10.1016/j.carbon.2018.10.006
https://doi.org/10.1126/science.289.5483.1324
https://doi.org/10.1126/science.289.5483.1324
https://doi.org/10.1039/b9nr00427k
https://doi.org/10.1016/S0009-2614(97)00053-5
https://doi.org/10.1103/physrevlett.86.3835
https://doi.org/10.1039/b810994j
https://doi.org/10.1021/jp405593u
https://doi.org/10.1038/nmat1020
https://doi.org/10.1016/j.elecom.2004.03.009
https://doi.org/10.1002/adma.200702292
https://doi.org/10.1002/adma.200702292
https://doi.org/10.1021/jz402231p
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-644793 March 4, 2021 Time: 17:3 # 12

Sandoval and Tobias Encapsulation and Release of Fullerenes
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Pulmonary drug delivery has recognized benefits for both local and systemic treatments.
Dry powder inhalers (DPIs) are convenient, portable and environmentally friendly devices,
becoming an optimal choice for patients. The tailoring of novel formulations for DPIs,
namely in the form of porous particles, is stimulating in the pharmaceutical research
area to improve delivery efficiency. Suitable powder technological approaches are being
sought to design such formulations. Namely, aerogel powders are nanostructured
porous particles with particularly attractive properties (large surface area, excellent
aerodynamic properties and high fluid uptake capacity) for these purposes. In this
review, the most recent development on powder technologies used for the processing of
particulate porous carriers are described via updated examples and critically discussed.
A special focus will be devoted to the most recent advances and uses of aerogel
technology to obtain porous particles with advanced performance in pulmonary delivery.

Keywords: porous particles, dry powder inhalers (DPIs), powder technology, pulmonary delivery, aerogels

PULMONARY DRUG DELIVERY: CURRENT STATUS AND
RELEVANCE OF POROUS PARTICLES IN DPIs

Pulmonary route is explored for the systemic delivery of drugs as well as for the treatment of
respiratory disorders. This administration route can enhance the absorption of drugs for systemic
treatments due to the special character of alveoli region, like high surface area (ca. 100 m2), thin
epithelium layer and high vascularization (Borghardt et al., 2018; Hadiwinoto et al., 2018; Deshkar
and Vas, 2019; Kadota et al., 2020). The inhalation therapy can also provide local treatments
with higher efficacy and reduce side effects compared to systemic administration, by targeting
directly the desired region and by increasing the drug concentration in the lungs (Borghardt et al.,
2018). The current annual rate of the global respiratory drugs markets is estimated at 4–6% with
prospects of increase in the short-mid term (Movia and Prina-Mello, 2020). The increasing interest
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GRAPHICAL ABSTRACT | Aerogel powders are advantageous porous particles in dry powder inhalers for the pulmonary drug delivery in local and systemic
treatments.

in pulmonary drug delivery can be evaluated by the evolution
of the number of publications on this topic, particularly in the
recent years (Figure 1). The pulmonary drug delivery systems
and their relevance in the treatment of respiratory diseases is also
gaining a lot of interest due to the current COVID-19 pandemics
(Ivanoska-Dacikj and Stachewicz, 2020; Zuo et al., 2020), where
patients seeks new therapies (Gil et al., 2020; Jarai et al., 2020;
Kipshidze et al., 2020).

Current challenges in the development of orally inhaled
drugs are targeted to face the high overall attrition rate (70%)
(Movia and Prina-Mello, 2020). The complexity of lungs renders
lung deposition as a critical factor in pulmonary administration
determining the drug efficiency, which is generally associated
with the volume of lungs, clinical status and breath patterns
of patients, physicochemical properties of inhaled particles and
design of inhalation devices (Borghardt et al., 2018; Lavorini et al.,
2019). Namely, incorrect handling skills of patients indicates
more exacerbations and the negative impact of daily activity and
lung function (Gregoriano et al., 2018).

Patients’ needs for inhaler products to favor medication
adherence are summarized in the 6E’s principle: “Effective,
Efficient, Engaging, Error-tolerant, Easy-to-teach, Easy-to-switch
to” (Levy et al., 2019). Moreover, several criteria have been
set to guide the medical doctors on the suitable (START
[Screening Tool to Alert doctors to Right Treatment]) and
potentially unsuitable (STOPP [Screening Tool of Older Person’s
Prescriptions]) treatments for patients to avoid adverse drug
events and to reduce sociosanitary costs (O’Mahony et al.,
2014; Lavan et al., 2017; Fahrni et al., 2019). These criteria
label as “potentially inappropriate” the systemic administration
of corticosteroids for the prolonged treatment of moderate-
to-severe chronic obstructive pulmonary disease (COPD) and
recommend the replacement to a local delivery by oral inhalation.
Applying these criteria, the oral inhalation route is suggested

for the prescription of anticholinergic drugs in case of asthma
or mild-to-moderate COPD. Dry powder inhalers (DPIs) are
the recommended inhaler devices in clinical practices and
become the optimal choice for patients with lung diseases
(Kadota et al., 2020).

DPIs are inhaler devices gaining special interest and
market share for pulmonary delivery as they are portable,
environmentally-friendly and convenient to achieve a high
degree of patient compliance (Hadiwinoto et al., 2018; Levy
et al., 2019; Kadota et al., 2020). Moreover, the solid form
of the formulation in DPIs favors the stability of drugs. DPIs
disperse dry powder formulations without the need of a liquefied
propellant (Hadiwinoto et al., 2018). DPIs are mainly classified
as active or passive DPIs category depending on the mechanism
(Moon et al., 2019). Active DPI devices include the internal
energy to aerosolize the particles inside. Passive DPIs use the
patient’inspiratory flow to disperse the inhaled particle into the
pulmonary tract (de Boer et al., 2017; Moon et al., 2019). DPIs are
easy to self-administer by the majority of patients since there is no
requirement of coordination between actuation and inhalation
(Shakshuki and Agu, 2017; Lavorini et al., 2019). Currently, the
aerosol therapy should be delivered with precaution especially for
the patients with COVID-19 (Ari, 2020).

Lung deposition is a determinant factor to reach the desired
therapeutic outcomes in pulmonary drug delivery (Borghardt
et al., 2018; Kadota et al., 2020). Mathematical models to study
particle deposition in different areas of the lungs or in the
whole respiratory tract have been developed since the 1930s
(Fernández Tena and Casan Clarà, 2012). While the first models
only considered a few number of respiratory conditions and
divided the respiratory tract in a low number of regions, the most
used one (Weibel model) considers several ways of bifurcation
and 23 regions from the trachea to the alveolar duct. Later studies
are based on computational fluid dynamics, which simulate fluid
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FIGURE 1 | Number of publications in PubMed database for the search criteria “Pulmonary drug delivery” (search date: February 15, 2021).

movement and stablish mathematical equations to describe the
particle path. Experimental models usually correlate well with
mathematical models and are very useful to calculate the total
deposition of aerosols in the tract.

There are three main mechanisms of particle deposition in
the respiratory system: inertial impaction, sedimentation and
Brownian diffusion. These mechanisms are mainly governed
by the aerodynamic diameter of the inhaled particles (da)
(Hadiwinoto et al., 2018; Kadota et al., 2020). The microparticles
with da higher than 5 µm are normally trapped in the oropharynx
by inertial impaction, while particles with da smaller than 0.5
µm could be exhaled through Brownian motion. Particles with
da in the 1–5 µm range are generally deposited deeply into
the lungs by sedimentation. Meanwhile, there is a clearance
mechanism by mucocilliary clearance in the conducting airway
and alveolar macrophages following the deposition of particles
of small geometric diameter (dg , 1–2 µm diameter range) in
the alveolar region (Hadiwinoto et al., 2018; Deshkar and Vas,
2019; Moon et al., 2019; Shetty et al., 2020). The tailoring of
inhaled particles with higher geometric diameters or decreasing
to nanoparticle size are strategic approaches to prevent clearance
mechanisms in the pulmonary tract (Gharse and Fiegel, 2016).

The relationship between the aerodynamic size and the
particle size, morphology, shape and density of inhaled
particles can be expressed by the simplified Stokes law
(Hickey and Edwards, 2018):

da = dg .
√

ρb

χ
(1)

where ρb is the bulk density, and χ is the dynamic shape factor,
defined as the deviation from the sphericity related to the shape,
surface roughness and surface area of inhaled particles.

According to Eq. 1, particles with acceptable aerodynamic
diameters and high geometric diameters could be achieved by
reducing the bulk density or by enhancing the dynamic shape
factor (Hadiwinoto et al., 2018; Moon et al., 2019; Kadota et al.,
2020). The dynamic shape factor is conditioned by the shape of
the particles. For example, spherical particles present a dynamic
size factor of 1, whereas pollen, cube-shaped and plate-shaped
particles have higher dynamic shapes as χ = 1.2, 1.3, and 1.5,
respectively (Hassan and Lau, 2009). Higher values are found in
needle-shaped particles (χ= 1.7), however, the manufacturing of
inhaled particles with needle-shaped particles poses a challenge
on the industrial scale (Moon et al., 2019). Despite that, fine
particle fraction (FPF) obtained from plate-and needle-shaped
particles are lower than those with spherical, pollen and cube-
shaped particles (Chaurasiya and Zhao, 2020).

Micronized particles (da = 1–5 µm) could create strong
intermolecular forces causing the aggregation and reducing the
flowability of the inhaled powder (de Boer et al., 2017; Weers
and Clark, 2017; Hadiwinoto et al., 2018; Shetty et al., 2020).
Coarse lactose powder is normally used as carrier to reduce
the cohesive forces and enhance the dispersion performance of
DPIs (Weers and Clark, 2017; Moon et al., 2019; Lechanteur
and Evrard, 2020). Despite that, 50% of APIs could not be
released from particle formulations due to intense carrier-
API adhesive forces (de Boer et al., 2017). Airflow turbulence
created by the inspiratory flow rate and the resistance of
inhaled devices contribute to the detachment of APIs from
the carriers (Levy et al., 2019). The inspiratory flow rate of
the patient depends on the muscle strength, effort, clinical
status, age and gender and can impact significantly the drug
particle depositions (Weers and Clark, 2017; Moon et al.,
2019). A reduction in the inspiratory flow rate from 60 to
30 L/min could decrease by 50% the total lung deposition
(% nominal dose).
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Porous particles are alternative powder formulations to tackle
the existing challenges of DPIs. Based on Eq. 1, porous particles
have a low bulk density that can achieve appropriate aerodynamic
diameters with larger geometric diameters than solid non-porous
particles. The tendency for aggregation of these porous particles
is much lower than that of their non-porous counterparts due
to their reduced interparticulate contact (Weers and Clark,
2017). Moreover, the performance of porous particles does not
depend on the patient’s respiratory flow rate exhibiting a low
flow rate dependence (6.4 ± 6.6%). In contrast, spheronized
solid particles and lactose blends showed high (60.8 ± 12.2%)
and medium (33.3 ± 19.3%) flow rate dependence, respectively.
Hence, the development of porous formulations requires novel
powder technologies, since conventional powder technologies
like jet milling and wet milling mainly focus on micronized
inhaled non-porous particles (Hadiwinoto et al., 2018; Kadota
et al., 2020). The aerodynamic properties of porous and non-
porous particles were compared at a low inspiratory flow rate
(30 L/min) (Chvatal et al., 2019). The FPF and emitted fraction
(EF) of the porous formulation were significantly higher than
the non-porous counterparts. These results were explained by the
cohesive forces between particles resulting in agglomeration and
low flowability performance of denser nonporous formulations.
In contrast, inhaled particles with bulk density lower than

0.4 g/cm3 can favor the aerosol penetration into the deep
lung (Chaurasiya and Zhao, 2020). In this favorable context
of porous formulations for DPIs, aerogel particles are novel
porous materials that consist in solid, lightweight and open
porous networks of bonded particles or nanoscale fibers obtained
from the removal of the fluid of a gel without significant
structural modifications, so they maintain large surface areas
and extremely low densities (García-González et al., 2019).
In this review article, current technologies for the design of
porous particle formulations for pulmonary drug delivery will
be described with updated examples of the most recent advances
(Section “Production Strategies of Porous Particles Using Powder
Technology”). Then, Section “Current Developments on Highly
Porous Aerogel-Based Materials in Pulmonary Drug Delivery”
will analyze the current developments in the production of
novel ultra-light porous particles in the form of aerogels for
inhalation formulations.

The evaluation of aerogel particles from a morphological,
flow behavior and biological performance will be discussed
with results from the literature and unpublished experimental
data from the authors. Finally, current challenges in aerogel
engineering for DPIs and future trends are discussed in
Section “Future Trends of Bioaerogel Carriers for pulmonary
Drug Delivery.”

TABLE 1 | Updated research on powder technology applied in the preparation of porous particles in pulmonary drug delivery.

Method of
production

Drugs Excipients Outcomes References

Spray drying Meloxicam L-leucin, ammonium
bicarbonate, sodium
hyaluronate

LPP and non-porous particles containing meloxicam for
carrier-free formulations were compared at low inspiratory
flow rate (30 L/min).
While mass median aerodynamic diameter (MMAD) of both
formulations was the same (2.55 µm), fine particle fraction
(FPF) and emitted fraction (EF) of LPP formulation were
significantly higher than the non-porous counterparts.

Chvatal et al.,
2019

Spray drying Dexamethasone
palmitate (Pro-drug of
dexamethasone)

1,2-Dipalmitoyl-sn-
Glycero-3-
Phosphocholine
(DPPC) and Hyaluronic
Acid (HA)

LPP containing dexamethasone palmitate shows a
sustained release pattern up to 24 h. Systemic exposure is
considerably smaller compared to local effect.
Aerodynamic performance varies depending on the
concentration of dexamethasone palmitate, which affects to
powder cohesion

N’Guessan et al.,
2018

SCF
(Supercritical fluid
antisolvent process,
SAS)

Beclomethasone
dipropionate (BDP)

Poly-ethylene glycol
4000 (PEG 4000).
Subcritical water
(SBCW) and cold water
were employed during
the process

The dissolution rate of obtained BDP nanoparticles
increases significantly.
The process is “green” without using organic solvents.

Pu et al., 2017

SCF
(Precipitation of
compressed CO2

antisolvent, PCA)

Insulin Poly-L-lactic (PLLA
PMs), ammonium
bicarbonate

Desired aerodynamic deposition and particle size
distribution, and low inflammatory responses due to
solvent-free residues.
The sustained release pattern provided a similar in vivo
hypoglycemic performance to that produced after
subcutaneous injection.

Lin et al., 2019

SFD Voriconazole Mannitol Optimal fine particle fraction (FPF) obtained using high
concentration of voriconazole and tert-butyl alcohol.
The dissolution rate of voriconazole was increased.

Liao et al., 2019

SFD SiRNA Mannitol The integrity of the structure of SiRNA is protected after SFD.
The emitted fraction reaches significantly high values
(92.4%), but fine particle fraction FPF is unsatisfied (≈ 20%).

Liang et al., 2018
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PRODUCTION STRATEGIES OF POROUS
PARTICLES USING POWDER
TECHNOLOGY

Powder technologies to produce dry porous particles can
be mainly categorized as “non-freezing induced” (e.g., spray
drying, supercritical fluid technologies) and “freezing induced”
(e.g., spray freeze drying) (Overhoff et al., 2009). Selected
research updates on the preparation of porous particles for
pulmonary drug delivery with these techniques are summarized
in Table 1.

Spray Drying Technology
Spray drying is a well-established technique in the
pharmaceutical industry (Hadiwinoto et al., 2018; Weers
et al., 2019; Kadota et al., 2020). Briefly, this technique consists
on the atomization of a drug solution into liquid droplets in
contact with a drying gas stream. The evaporation of the solvent
in the liquid droplets in the spray drying chamber results in the
formation of dry solid particles. The main fraction of the dried
product is collected from a cyclonic powder collection, while
filter bags or additional cyclones are used to separate residual
amounts of remaining fine powder from the outlet gas stream
(Hadiwinoto et al., 2018). Processing parameters of spray drying
include temperature, feed pressure, drug solution feed rate, air
flow rate, and nozzle type (Hadiwinoto et al., 2018; Kadota et al.,
2020). The tuning of these parameters can flexibly modify the
physicochemical properties of the resulting particles, like surface
properties, shape and size.

Modified versions of the spray drying technology are used
to produce porous particles with high porosity and low tapped
density, such as the PulmoSphereTM formulations and large
porous particles (LPP) used in commercial drug products
(Healy et al., 2014).

PulmoSphereTM formulations are phospholipid-based small
porous particles with low tapped density and geometric sizes in
the 1–5 µm range (Weers and Tarara, 2014; Weers et al., 2019).
PulmoSphereTM formulations are produced from perfluorooctyl
bromide (PFOB)-in-water emulsions as liquid feed containing
also calcium chloride and distearoylphosphatidylcholine
(DSPC), a primary component of endogenous pulmonary
surfactant (Figure 2A). The discontinuous phase of these
emulsions consists on submicron droplets. The PFOB is
quickly evaporated from the emulsion by the heat energy
via spray drying producing pores in the structure of
particles. Three different PulmoSphereTM types can be used
to incorporate APIs into the porous particles depending
on the nature of the drug and the desired solid state
(Weers et al., 2019):

(1) Solution-based PulmoSphereTM: the continuous phase of
the emulsion is responsible to dissolve API and then this
emulsion is spray dried producing porous formulations
containing amorphous drugs. Commercial product TOBI R©

PodhalerTM (tobramycin) is produced using solution-
based PulmoSphereTM (Figure 2B).

(2) Suspension-based PulmoSphereTM: API is added into the
emulsion feed in form of fine particles. The obtained
suspension is spray-dried producing the final product with
the amorphous or crystalline drug covered by a porous
surface (Figure 2C).

(3) Carrier-based PulmoSphereTM: the liquid feed contains
fluorinated medium to suspend micronized API and
prepare particles as small porous carriers. Agglomeration
of API and porous PulmoSphereTM carriers occurs when
liquid feed is evaporated via spray drying (Figure 2D).

Large porous particles (LPP) are characterized by geometric
sizes in the 5–30 µm range (Ni et al., 2017; Chvatal et al.,
2019). Compared to non-porous particles, LPP formulations
have a highly efficient penetration into the deep lung and
have the ability to avoid the clearance mechanism by alveolar
macrophages (Liang et al., 2015; Ni et al., 2017; Shiehzadeh
et al., 2019). A suitable porogen (normally ammonium
bicarbonate) is commonly required to produce the porous LPP
matrix (Liang et al., 2015). Due to the immediate release of
ammonia and carbon dioxide from ammonium bicarbonate,
a porous structure is formed (Figure 3). Cyclodextrin is
another common porogen that could apply as an osmogene,
which produces different osmotic pressure between inner and
outer aqueous phases. Thus, water influx into the organic
phase leads to the creation of pores in the porous matrix.
Recently, spray dried INBRIJATM (levodopa) LPP-powder
received EMA and FDA commercialization authorizations
functioning as quick response doubled with increasing rapidly
the concentration of levodopa in plasma for the treatment of
Parkinson (Patel and Jimenez-Shahed, 2018).

Supercritical Fluid-Assisted Anti-solvent
Technology
Supercritical fluids (SCF) are used in green powder technologies
receiving attention for the formulation of DPIs as cost-effective,
non-toxic approach able to modify the solid-state form of the
dry powder (Kankala et al., 2017; Hadiwinoto et al., 2018;
Chakravarty et al., 2019). SCF technology typically overcomes
the problems of conventional techniques by minimizing the
consumption of organic solvents, effectively modifying solid-
state, and achieving the target particle size and narrow size
distribution of DPIs. Supercritical CO2 (scCO2) is the most
common fluid in SCF technology and an approved solvent by the
FDA, due to its harmless and non-combustible nature. Moreover,
it has a recycled source and is economic. The low viscosity,
high diffusivity and null surface tension of scCO2 allow its easy
penetration to porous matrices under mild conditions (Kankala
et al., 2017; Hadiwinoto et al., 2018; Chakravarty et al., 2019;
Lin et al., 2019). The affinity and high solvation power of scCO2
to several organic solvents (acetone, ethanol, dichloromethane,
among others) are exploited in particle technology through
anti-solvent strategies. Namely, the so-called precipitation of
compressed CO2 antisolvent (PCA) and supercritical fluid
anti-solvent process (SAS) techniques offer a great advantage
for inhaled particles with desired size (Chen et al., 2013;
Lin et al., 2019).
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FIGURE 2 | PulmoSphereTM formulations for DPIs: (A) Scheme of manufacturing method and mechanism to generate porous, micron-sized particles.
(B) Tobramycin produced from Solution-based PulmoSphereTM, (C) Ciprofloxacin produced from Suspension-based PulmoSphereTM and (D) Carrier-based
PulmoSphereTM (drug crystals in green). Picture (B) reprinted from Lam et al. (2013) with permission from SAGE Publishing. Picture (C) reprinted from McShane
et al. (2018) with permission from Elsevier. Picture (D) reprinted from Weers et al. (2019) with permission from Springer Nature.

Insulin-loaded poly-L-lactide porous microspheres were
prepared using PCA technique and ammonium bicarbonate as
porogen (Lin et al., 2019; Figure 4A). Briefly, the water phase
consisting on an aqueous solution with insulin and ammonium
bicarbonate was contacted with an oil phase consisting of
Pluronic F-127 with poly−L−lactide in dichloromethane. The
obtained water-in-oil emulsion was processed by PCA technique
using compressed CO2. Then, ammonium bicarbonate porogen
was removed by vacuum drying. High insulin encapsulation
efficiency (97%) and the desired aerodynamic deposition
(4.46 ± 0.06 µm) were reported in the obtained porous particles
(Figure 4B). Low inflammatory responses were confirmed due
to solvent-free residues. The sustained release pattern of insulin
from the porous particles provided a similar in vivo hypoglycemic
performance to that produced after subcutaneous injection.

Spray Freeze Drying
Spray freeze drying (SFD) is an advanced technology for the
production of LPP in pulmonary drug delivery with high

production yields and being especially suitable for thermally
sensitive materials (Hadiwinoto et al., 2018; Liao et al., 2019).
Three subprocesses are involved: (i) Atomization; the prepared
drug solution is atomized quickly into a refrigerant media assisted
by an atomization gas. (ii) Freezing; this step takes place in a
chamber using a refrigerant medium (normally containing liquid
nitrogen) to provide a fast cooling to obtain frozen granules. (iii)
Lyophilization; porous particles are obtained by the sublimation
of solvent under high vacuum venting (Figure 5).

The porous structure of the particles obtained by SFD not
only can satisfy aerodynamic deposition demands, but also can
improve the apparent solubility of the formulations (Hastedt
et al., 2016; Liao et al., 2019). Voriconazole-loaded LPP were
successfully prepared using SFD for the treatment of pulmonary
aspergillosis (Liao et al., 2019). Voriconazole in the LPP-based
formulation was immediately released in the medium of the
dissolution test, whereas raw voriconazole required 2 h to
completely dissolve. Besides that SFD is a suitable technology
to keep the integrity of biologicals intact (Shetty et al., 2020).
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FIGURE 3 | Use of spray drying for the production of LPP: (A) Scheme of the spray drying approach to obtain LPP formulations, and (B) image of LPP particles
containing meloxicam. SEM figure adapted from Chvatal et al. (2019) with permissions.

FIGURE 4 | Use of supercritical fluid-assisted anti-solvent technologies for the production of DPI formulations: (A) Scheme of the production method, and (B) image
of insulin-loaded porous microspheres using PCA technique. Figures adapted from Lin et al. (2019) with permisssions.
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FIGURE 5 | Use of spray freeze drying technology for the production of porous particles: (A) Scheme of the production method, and (B) image of inhaled
voriconazole formulation prepared by this technology (B). SEM picture adapted from Liao et al. (2019) with permission.

However, LPP prepared by SFD can have lower porosities than
spray dried powders, since SFD produces more hygroscopic
powder absorbing more moisture (Shetty et al., 2020).

CURRENT DEVELOPMENTS ON HIGHLY
POROUS AEROGEL-BASED MATERIALS
IN PULMONARY DRUG DELIVERY

Aerogels for Drug Delivery System
Aerogels are ultra-light porous materials with a potential scarcely
explored for biomedical applications so far (García-González
et al., 2019). Aerogel-based materials may find application
in bone tissue engineering, wound healing, bioimaging and
carriers for drug delivery systems (García-González et al.,
2018, 2021; López-Iglesias et al., 2020; Zheng et al., 2020).
The vast surface area and accessible pores along with good
aerodynamic properties and physicochemical stability of the
aerogels are promising to achieve satisfactory drug loadings in
various administration routes, especially for therapeutic proteins,
cytotoxic drugs or poorly bioavailable drugs (Gonçalves et al.,
2016; García-González et al., 2019; López-Iglesias et al., 2019a;
Muñoz-Ruíz et al., 2019; Wang et al., 2019).

Aerogels were firstly prepared in 1931 by Samuel Kistler
who replaced liquid inside gels without causing the collapse
of the structure (Kistler, 1931). However, the interest of
aerogels for drug delivery has only started at the beginning
of the 21st century (Smirnova et al., 2004) with a fast
growth in the publication rate on the topic in the last
decade (García-González et al., 2021). Aerogels are attracting
attention by their diversity of textural properties and overall
porosity, which depend on the synthetic conditions (Lee et al.,
2019). Inorganic and organic aerogels are applicable in the
engineering of carriers for water-insoluble drugs (Chakravarty
et al., 2019; García-González et al., 2019). Inorganic aerogels,
such as silica aerogels, usually have higher surface areas than
organic aerogels, which enhances the drug loading efficiency

(Chakravarty et al., 2019). However, due to the biodegradability
and biocompatibility, biopolymer or polysaccharide aerogels
(gelatine, agar, cellulose, alginate, chitin and pectin) are preferred
in biomedical applications (Chakravarty et al., 2019; García-
González et al., 2019). Aerogels can be obtained in several shapes,
such as in the form of microspheres, cylinders, films and three-
dimensional scaffolds.

Loading of drugs into aerogels can be mainly achieved by
four approaches that can determine the mechanisms of drug
release (García-González et al., 2021). Drugs can be incorporated
(i) before gelling, (ii) during solvent exchange, (iii) during
drying or (iv) with prepared aerogels using supercritical fluid
impregnation. In general, the choice of the loading strategy
depends on the physicochemical properties of the drugs, namely
the solubility of drugs in organic solvents and supercritical fluid;
hydrophilic and lipophilic properties, and the stability of drugs
in the selected solvent. For example, incorporation via solvent
exchange can be used if drugs are soluble in the organic solvents
and poorly soluble in supercritical fluids. In contrast, supercritical
fluid impregnation is becoming an optimal choice if drugs are
soluble in supercritical fluids but not in the organic solvents.

Regarding the drug release from the aerogel carriers, it mainly
depends on the hydration properties of both drugs and carriers
(erosion and swelling), the intermolecular forces between drugs
and carriers (hydrogen bond, ionic bonding) and the mass
transfer (García-González et al., 2021). Hydration properties
of drugs are determinant factors deciding the dissolution rate
of drug compounds in the dissolution medium. For instance,
hydrophilic drugs in the hydrophilic aerogel matrix normally lead
to a fast dissolution rate. In this context, the mass transfer of drug
to the body fluids has an important role in the release profile
of bioactive compounds. On the contrary, the release profiles
of hydrophobic compounds in the aerogel matrix are normally
delayed. The hydration properties of aerogel carriers is strongly
conditioned by the hydrophilic or hydrophobic character of the
aerogels. In the specific context of pulmonary inhalation, the
hydration in respiratory fluid can determine the release rate of
the drug, erosion and/or swelling of the aerogel structure.
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Aerogel carriers can be formulated containing amorphous
APIs with enhanced stability. The adsorptive deposition of
bioactive compounds from scCO2 solutions into the pores of
aerogels usually takes place in a non-crystalline form as reflected
by XRD analysis of drug-loaded aerogels, which greatly enhances
the dissolution rate and bioavailability of these ingredients
(Gurikov and Smirnova, 2018; Veres et al., 2018). Polysaccharide-
based aerogels (starch, pectin and alginate) were produced as
carriers for poorly water-soluble drugs (ketoprofen and benzoic
acid) for oral drug delivery (García-González et al., 2015). The
XRD analysis showed no peaks of the drugs in the obtained
aerogels. In other study, alginate aerogels loaded with ketoprofen,
nimesulide and loratadine as model drugs showed a stable
amorphous form under storage conditions at room temperature
for 6 months (Lovskaya and Menshutina, 2020). Compared to the
raw materials, the dissolution rate was significantly improved as
confirmed by the decrease of the half-life time.

An Overview of Aerogel Production
Aerogels are normally prepared via the following sequential
steps: sol-gel, solvent exchange, and solvent removal from the
wet gel by drying.

Aerogels produced in the shape of particles are practical
in terms of production costs and manufacturing times, as the
solvent exchange step and drying of the wet gel are simplified
(Ganesan et al., 2018). Biopolymer-based aerogel particles are
mainly produced by two different techniques: the dripping
method (external gelation) and the emulsification method
(internal gelation) (Ganesan et al., 2018; Valente et al., 2019;
Figure 6).

The conventional dripping methods make use of dripping
devices available in the lab-scale, such as syringes, vibrating
nozzles, electrovalves or pipettes. Gravity causes the droplet
of polymer solution to fall into the gelation bath, leading
to aerogel beads with large droplet sizes of few millimeters
(Ganesan et al., 2018) that do not meet the requirements in
inhaled formulations. A modified dripping method using the
thermal inkjet printing method has been recently proposed to
obtain aerogel microspheres of 10–20 µm for DPI formulations
(López-Iglesias et al., 2019b).

The solvent-emulsification technique uses internal gelation
to fabricate gel microparticles (Ganesan et al., 2018). Under
constant agitation, the polymer solution (aqueous phase) is
dispersed in the oil phase forming an emulsion. An emulsifier
with a hydrophilic-lipophilic balance (HLB) in the range of 3–6
is normally employed to stabilize the two immiscible liquids. The
water-to-oil ratio is generally applied from 1:2 to 1:10 on a small
scale, while the viscosities ratio of water-to-oil phase should be
less than 1 to create an emulsion.

The drying step of the gel precursor is an essential step
to produce aerogel particles. Ambient pressure drying, freeze-
drying and supercritical fluid-assisted drying are common
methods to dry wet gels, being the latter technique the most
reliable approach to obtain aerogels (Şahin et al., 2017; García-
González et al., 2019; Rodríguez-Dorado et al., 2019; Soorbaghi
et al., 2019). Xerogels and cryogels are dried gels produced by
oven/ambient drying and freeze-drying, respectively. Drying of
gels with ambient pressure results in xerogels, which does not
preserve the fragile porous structure of the wet gels due to the
high capillary pressure taking place during solvent evaporation

FIGURE 6 | Multi-step aerogel particles production for pulmonary delivery by external gelation and internal gelation.
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(Şahin et al., 2017; Rodríguez-Dorado et al., 2019). Freeze-
drying is another method that uses solvent sublimation to form
porous solid structures called cryogels. During the freezing
step, the formation of crystals inside the pores causes a stress
that can damage the polymeric structure of the gels (Şahin
et al., 2017; Rodríguez-Dorado et al., 2019). Supercritical fluid
drying is the preferred technique to prevent pore collapse
and maintain the physicochemical properties of the aerogels
due to the low surface tension and high diffusivity of CO2
(Ulker and Erkey, 2014, 2017; Şahin et al., 2017; Chakravarty
et al., 2019; García-González et al., 2019; Rodríguez-Dorado
et al., 2019). The physical structure of alginate aerogels,
xerogels and cryogels was studied. Compared with aerogels,
xerogels did not show significant porosity under nitrogen
adsorption-desorption analysis, while in cryogels porosity was
dramatically reduced due to partial collapse of the network
(Rodríguez-Dorado et al., 2019).

Recent Research Using Aerogel Carriers
for Pulmonary Drug Delivery
The high porosity of aerogel microparticles is not only an
important key to fit the requirement of the aerodynamic
size in pulmonary drug delivery, but also improves the flow
dispersibility of particles (García-González et al., 2019). Besides,
the high porosity of aerogel carriers will result in formulations
with a low flow rate dependence on the respiratory capacity of
the patient when used in DPIs.

The dissolution rate-limiting process in pulmonary absorption
of poorly water-soluble substances could reduce the therapeutic
outcomes or cause acute toxicity to the lungs by drug
accumulation (Kumar et al., 2017; Franek et al., 2018; Eriksson
et al., 2019). Two main classes of drugs with limited dissolution
rates in pulmonary drug delivery are distinguished: (i) “potent
inhaled corticosteroids with a nominal dose less than 1 mg,”
and (ii) “high-dose antiinfectives with a nominal dose >1 mg”
(Hastedt et al., 2016). In these cases, the dissolution rate plays an
important role in inhalation therapy when drug solubility is lower
than 1 or 100 µg/mL, respectively (Hastedt et al., 2016).

Aerogels are nanostructured carriers with very high surface
areas that, in accordance to Noyes-Whitney equation, can
improve the drug dissolution rate. This porous structure of the
aerogels also permit to load drugs on the surface or to impregnate
them into the accessible pores of the aerogels (Chakravarty et al.,
2019; Rodríguez-Dorado et al., 2019). Additionally, the solid state
of drugs is another factor that largely influences the dissolution
rate of drug in pulmonary administration. Compared to the
crystalline state, the amorphous form is often advantageous for
solubility and dissolution rate resulting by higher free energy
than other forms. Accordingly, the potential of aerogel-based
carriers, particularly from polysaccharides like alginate, chitosan
or hybrids, is receiving attention for pulmonary drug delivery and
are presented here forth.

Porous chitosan aerogel carriers loaded with salbutamol as
a sustained drug delivery system were prepared for inhalation
applications (Obaidat et al., 2015). Chitosans of different
molecular weight (8, 16, and 250 kDa) were firstly mixed

with different concentrations of sodium tripolyphosphate (TPP),
which acted as crosslinker. Then, the chitosan gel was soaked
in ethanol before salbutamol sulfate loading in ethanolic
solution and supercritical fluid drying or freeze drying. The
drying method was considered as a critical factor to obtain
inhaled particles with suitable characteristics. Salbutamol-loaded
chitosan aerogel particles produced by supercritical drying
preserved better the morphology of the wet gel, and showed
smaller particle sizes (7–12 µm), and lower tapped densities
(0.10–0.14 g/mL) compared with freeze drying (60–68 µm and
0.22–0.25 g/mL, respectively). Additionally, the processing time
of supercritical drying (2 h) was much faster than that of freeze
drying (48 h). The release profile of salbutamol depended on the
concentration of TPP and the molecular weight of chitosan. The
concentration of TPP can modulate the swelling behavior of the
aerogels, and therefore can modify the drug release profiles.

The ionic interactions between alginate, an anionic
polysaccharide, and chitosan, a cationic polysaccharide,
were exploited to obtain hybrid aerogel-based carriers for
pulmonary drug delivery (Alnaief et al., 2020). These aerogels
were produced by the emulsion-gelation method. The order of
addition of the two polymers influenced end aerogel properties.
Higher specific surface areas and lower particle sizes were
obtained when chitosan was added to the alginate solution.
The choice of surfactant (Span 80 -HLB = 4.3-, or Span 85
-HLB = 1.8-) had a great influence on the zeta potential value
and final properties of the prepared aerogels. Higher zeta
potential values and aerodynamic sizes and better performances
were obtained for the aerogels produced with Span 85, while
particles prepared using Span 80 or a mixture of the two
surfactants presented low zeta potential values, and with higher
tendency for agglomeration of the particles. In addition to the
abovementioned parameters, the best operating conditions were
4% of surfactant concentration, 4,000 rpm as mixing rate for
the emulsification step, and extraction time of 2 h. Temperature
of emulsion preparation did not show a significant effect on
the resulting gel particle sizes. Further optimization of the
process resulted in fine particles with specific surface areas of
500± 45 m2/g.

Chitosan-alginate aerogel carriers were tested for inhaled
chemotherapy against lung cancer (Alsmadi et al., 2020). A new
generation of inhalers is tailored for inhaled chemotherapy as
they can be directly applied in the lung tumor to improve
the safety of the treatment (Rosière et al., 2019). Most of
the chemotherapeutic agents are water-insoluble compounds,
causing limited efficiency of clinical treatment and unacceptable
side effects due to accumulation. Therefore, solving the problem
of poor water solubility to target cell lung cancer at a sufficient
concentration and protecting healthy cells is the main challenge
in novel inhaled chemotherapy. Chitosan is known to facilitate
the incorporation of both water-soluble and poorly water-
soluble drugs into its structure, which may enhance the drug
encapsulation efficiency of both types of components. As an
example, cisplatin was incorporated into hybrid chitosan-alginate
nanoporous carriers by SCF impregnation resulting in drug
loadings higher than 76% (Alsmadi et al., 2020). The safety of the
chitosan-alginate aerogel formulation loaded with cisplatin was
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studied in vivo in a rat model after intratracheal administration.
Though hepatic toxicity and dose-dependent renal toxicity
were confirmed, the benefits of using the cisplatin formulation
outweighed the side effects as confirmed by the reduction of lung
toxicity and mortality rate in the rat model.

Alginate and hybrid alginate/hyaluronic acid aerogel
microspheres were prepared using the emulsion-gelation
technique followed by supercritical drying (Athamneh et al.,
2019; Figure 7). The use of hyaluronic acid (HA) improves the
mucoadhesive properties of the aerogels thus increasing the
pulmonary retention time (Athamneh et al., 2019). The gelation
mechanism was explained by various interactions between the
alginate, the hyaluronic acid, and divalent cations. In general,
the ionic gelation between G units of alginate and Ca2+ divalent
cations creating an “egg-box” structure was reported as the
main gelation mechanism, although hydrogen bonding between
alginate and HA and interaction between HA and Ca2+ also
occurred. Energy input and viscosity of the aqueous phase
were considered as sol-gel parameters that influenced the end
properties of the aerogels. Mean aerogel particle diameter and
aerodynamic size was controlled by varying the stirring rate and
the polymers ratio, respectively. High textural properties were
obtained for all the prepared aerogels and did not depend on
these parameters. In general, the emulsion-gelation method is
useful to easily prepare large quantities of aerogel-based materials
in a very short period of time and opens up the possibility to
scale-up the process.

In an innovative approach, drug-loaded aerogel microspheres
were produced by thermal inkjet printing (López-Iglesias et al.,
2019b). This approach allows to produce microspheres without
the use of emulsifiers. This “drop-on-demand” technique is
applied to inks contained in thermal printheads as follows:
an electric voltage heats a resistor in contact with the ink,
so the temperature of the ink increases locally (4–10◦C) and
causes vaporization and nucleation of a bubble that expels a
droplet through the printhead nozzles (Basit and Gaisford, 2018;
Azizi Machekposhti et al., 2019). The cost-effectiveness, high
productivity and efficiency of inkjet printing are compatible with
various biomedical applications such as drug discovery (Azizi

Machekposhti et al., 2019; Lamichhane et al., 2019), drug delivery
(injectables, inhalation, oral or buccal) (Lamichhane et al., 2019;
López-Iglesias et al., 2019b), tissue engineering (Nguyen and
Pentoney, 2017; Santos-Rosales et al., 2020), modeling of human
diseases, and toxicology (Nguyen and Pentoney, 2017). Namely,
the field of drug development may apply inkjet printing to
formulate drugs as well as to control the drug release profile
(Azizi Machekposhti et al., 2019).

Alginate-based aerogels loaded with salbutamol sulfate for a
sustained pulmonary drug delivery were obtained by thermal
inkjet printing combined with supercritical drying (López-
Iglesias et al., 2019b). The ink consisted on an alginate solution.
A computer was connected with the inkjet printer to control
the horizontal movement of the cartridges (Figure 8A). The
ink cartridge contained several small chambers, each chamber
involving a nozzle and a micro-thermal element. Vapor bubbles
were created in the chamber, propelled the alginate-based ink
as pico-droplets via the nozzle to the gelation bath containing
calcium chloride (crosslinker) and salbutamol sulfate (drug).
Concentration of the alginate solution was a critical parameter
for ink printability. High concentrations of the alginate solution
increased the viscosity of the solution, leading to the blockage
of the micro-nozzle, while low concentrations reduced the
stability of the alginate-based gel structure, leading to particles
with decreased porosity and sphericity. The optimal alginate
concentration was 0.35% (w/v) to balance the printability of
the ink and the stability of the gel network. The obtained
alginate-based aerogels presented a high BET specific surface
area (180–397 m2/g), high porosity (97.7%) and nanometric
pore sizes (Figures 8B–F). Additionally, the narrow particle
size distribution and spherical shape of alginate aerogels were
confirmed by SEM microscopy.

The internal porous structure of the alginate aerogel particles
was analyzed by focused ion beam-scanning electron microscopy
(FIB-SEM) combined with image analysis (Figures 8F,G). FIB-
SEM technique is unique to unveil the inner morphology of many
beam sensitive materials such as polymers and aerogels structure
without damaging the delicate structure of these nanostructured
materials (Stachewicz et al., 2015, 2019). Using this technique, the

FIGURE 7 | SEM images of (A) alginate and (B) hybrid alginate/hyaluronic acid aerogel microspheres prepared by the emulsion-gelation technique. Figure adapted
from Athamneh et al. (2019) with permission.
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FIGURE 8 | Application of thermal inkjet printing for inhaled alginate aerogel-based formulations. (A) Schematic representation of thermal inkjet printing of gels. SEM
images of (B) external morphology and (C) external nanostructure of alginate aerogel microspheres. (D–F) Images by FIB-SEM microscopy of internal cross section
and nanostructure of alginate aerogel microspheres. (G) Pore size distribution of alginate aerogels obtained from image analysis with ImageJ software, with and
without watershed segmentation. Figures adapted from López-Iglesias et al. (2019b).

narrow pore size distribution of alginate aerogel microspheres
was confirmed by the pores size analysis from the SEM
micrographs of cross-sections of the particles. In Figure 8G, the
histogram showing the pore size distribution in microspheres is
presented. The pore size was calculated using ImageJ software
(1.51v, NIH, United States). Prior to measurements all images
were binarized using percentile option in ImageJ. Additionally,
watershed was used to reduce curtain effect influence on the
obtained values. Statistical measurements of average pore size
with standard deviations were calculated using OriginPro (2019b,
OriginLab, United States). The mean values of pores in alginate
aerogel microspheres reached 53.9 ± 1.75 nm2 from FIB-SEM
analysis with a standard deviation of 59.5 nm2.

Alginate aerogel particles had suitable aerodynamic sizes
(da = 2.4 µm) (López-Iglesias et al., 2019b). The in vitro
aerodynamic drug deposition behavior revealed higher emitted
dose (ED) and higher fine particle fraction (FPF) than
some commercial formulations. The aerogels also sustained
the release of salbutamol sulfate for 10 h. Finally, recent
(unpublished) works confirmed that these salbutamol-loaded

aerogels processed by inkjet printing resulted in formulations
which are cytocompatible with human lung epithelial cell lines.
Thus, alginate aerogels produced by thermal inkjet printing
followed by supercritical drying proved to be suitable and safe
carriers for pulmonary drug delivery.

FUTURE TRENDS OF BIOAEROGEL
CARRIERS FOR PULMONARY DRUG
DELIVERY

Aerogels are advanced materials with high potential for novel
inhaled formulations (Figure 9). The combination of aerogels
and SCF technology can lead to a new generation of bio-
carriers for pulmonary drug delivery. The remarkable features of
bioaerogels produced by supercritical drying opens the pathway
to novel DPIs with enhanced effectiveness, affordability, and
environmental friendliness.

From a therapeutic impact perspective, the primary goal of
innovative inhaled compounds using aerogels carriers is to tackle
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FIGURE 9 | Potential benefits of aerogel-based carriers for pulmonary drug delivery.

the current needs in local treatment of respiratory diseases.
The large surface area of the aerogels allows enhancing the
dissolution rate of poorly water-soluble drugs, which can be
especially valuable for novel inhaled chemotherapy. Additionally,
aerogels have a high porosity and vast surface area that
also make them well-qualified candidates for inhaled systemic
delivery or vaccination. Namely, inhaled vaccination is known
as “one-off administration,” which requires high performance of
aerodynamic deposition in the target site (de Boer et al., 2017).
Research on aerogels for these purposes is still incipient and needs
further effort to exploit their potential in this administration
route. Importantly, in the current COVID-19 state the aerogel
technologies show a great promise for addressing the challenges
in pulmonary drug delivery.

From a technological point of view, bioaerogels present
high porosity and can deliver drugs to the bronchi minimizing
systemic exposure, besides the possibility of reducing the total
drug dose with less frequency of inhaled administration in a
controlled-release system. Since patients with respiratory diseases
normally find difficulty to supply sufficient flow rate in using
DPIs, aerogel-based novel inhaled formulations can have a
better performance as they depend less on the respiratory flow
rate of patients. The validation of mathematical models or the
development of new ones to predict aerogel particle deposition
in the lungs might be advantageous for the aerogel design.
Moreover, a higher knowledge on the drug-aerogel interaction
at the molecular level would also favor the prediction of drug

loading capacities and drug release behavior in respiratory
fluid medium. The chemical, physical and biopharmaceutical
stability of aerogels under controlled storage conditions also
needs to be evaluated as this will influence the feasibility of
the formulation of the drug product as well as the packaging
and shelf conditions required. The safety of aerogels regarding
the cytocompatibility with lung cells and the absence of
inflammatory responses should be evaluated for each specific
drug-aerogel combination. Current aerogel formulations tested
for pulmonary delivery correspond to bench-scale production.
The evaluation of the possibility of the aerogel production at
a large (industrial) scale and under GMP guideline practices
is still required.

Finally, from an environmental point of view, bioaerogels also
open the possibility to reduce the burden of sociosanitary costs
by using available and renewable materials. The valorisation of
CO2 with SCF technology also contributes in tailoring green
inhalers that could contribute to reduce the greenhouse effect. In
other words, “green inhalers” containing bioaerogels could make
a joint effort creating a “zero-carbon” healthcare system fit for
the 21st century.
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The intestinal microbiota is a real ecosystem composed of several bacterial species
and a very huge amount of strains that through their metabolic activities play a crucial
role in the development and performance of the immune system and other functions.
Microbiota modulation by probiotics establishes a new era into the pharmaceutical and
healthcare market. Probiotics play, in fact, an important role in helping and sustaining
human health, but in order to produce benefits, their viability must be preserved
throughout the production process up to consumption, and in addition, their bioactivity
required to be safeguarded while passing through the gastrointestinal tract. In this frame,
encouraging results come from encapsulation strategies that have proven to be very
promising in protecting bacteria and their viability. However, specific effort has to be
dedicated to the design optimization of the encapsulation process and, in particular,
to the processing parameters that affect capsules microstructure. Herein, focusing
on calcium alginate microspheres, after a preliminary selection of their processing
conditions based on size distribution, we implemented a micro-rheological analysis, by
using the multiple-particle tracking technique, to correlate the inner microstructure to
the selected process conditions and to the viability of the Lactobacillus paracasei CBA
L74. It was assessed that the explored levels of cross-linking, although changing the
microorganism constriction, did not affect its viability. The obtained results confirm how
this technology is a promising and a valid strategy to protect the microorganism viability
and ensure its stability during the production process.

Keywords: microencapsulation, calcium alginate microsphere, multiple-particle tracking, probiotics, drug
delivery
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INTRODUCTION

Microbiota plays a key role in the development of the immune
system being its interaction with immune cells decisive for
human health from early childhood (Yu et al., 2018). Its
composition is very specific for every individual and seems
to be strongly affected by dynamic changes and different
dietary patterns and/or environmental conditions of the intestine
(Salonen et al., 2014). Microbiota modulation by using probiotics
constitutes a valuable strategy for the development of nutritional
or pharmaceutical tools for healthcare (Ianiro et al., 2014;
Sehrawat et al., 2020). Probiotics are usually defined as live
microbial food ingredients able to provide beneficial effects
on humans, including serum cholesterol level control, balance
of intestinal microflora, enhancement of immunity defense,
decrease in lactose intolerance, or anticariogenic activity (Lin,
2003). Anyway, these advantageous effects are linked to the
concentration of probiotics reaching the intestine that should
be at least of 106 CFU/ml6. This implies that microorganisms,
being taken orally, must be resistant to the passage through
the gastrointestinal (GI) tract, surviving the action of gastric
and bile juices (Scheinbach, 1998; Zoghi et al., 2019). In
addition to the problem of probiotics’ survival in the passage
through the GI tract, several studies have also shown low
viability of probiotics bacteria in functional foods (Zoghi et al.,
2019). These observations indicate the necessity to introduce
a protective carrier, which can safely reach the intestine and
provide the necessary concentrations for metabolic activities.
Up to now, several methods have been performed to enhance
probiotic viability, such as selection of strains tolerant to bile and
acids or appropriate packaging materials, including protective
compounds or oxygen scavengers (Sarkar, 2010). Among them,
encapsulation has been reported to be the most useful method
to protect probiotics from harmful environmental factors, such
as high acidity and low pH levels, bile salts, and oxidation
conditions (Scheinbach, 1998). This technology is used to
“package” microorganisms cells in miniaturized capsules able
to release it at controlled rates (Chávarri et al., 2010). Various
polysaccharides as alginate, chitosan, or gellan gum have been
employed to encapsulate probiotics (Tripathi and Giri, 2014); in
particular, alginate is the most used thanks to its non-toxic nature,
bioavailability, biocompatibility, low cost, and easy preparation
as ionotropic gelation beads (George et al., 2019; Martãu et al.,
2019). Specifically, alginate has been widely used as capsules
materials to protect probiotic during the GI transit, and the
stability of alginate beads has already been tested (Hansen et al.,
2002; Ding and Shah, 2007; Cook et al., 2012; Holkem et al.,
2016). However, even recently, there have been some efforts to
further enhance the degree of protection of bacterial cells in
the gastric conditions by microencapsulating them into alginate-
dairy bases microcapsules or by using chitosan or poly-L-lysine-
coated microspheres (MPs) (Martín et al., 2015; Yeung et al.,
2016; Prasanna and Charalampopoulos, 2018).

Very importantly, the role of processing parameters should
be thoroughly investigated for comprehensive understanding of
how they influence microcapsule formation and microstructure
and to overcome some of the limitations observed for alginate

or other materials. To this purpose, we propose here the
development of sodium alginate MPs with potential probiotic
action via the water-in-oil emulsion technique and with
inner microstructure properties that can be highly controlled
by varying cross-linking agent (CaCl2) concentration and/or
cross-linking time. In particular, after a preliminary selection
of the processing conditions based on the analysis of size
distribution, we adopted a micro-rheological analysis for an in-
depth understanding on how processing parameters can affect
inner microstructure, thus the probiotic viability and potentially
release kinetics. To this aim, we implemented the multiple-
particle tracking (MPT) technique to study the MPs rheology
at different processing conditions. Indeed, MPT evaluates the
diffusion of fluorescent probes embedded in a viscoelastic
sample by studying their Brownian motion, directly related
to the network’s mechanical properties, therefore to the cross-
linkage degree (Moschakis, 2013). Then, we evaluated the
post-production viability of microencapsulated Lactobacillus
paracasei CBA L74 at minimum and maximum cross-linking
conditions. This microorganism is not able to withstand an
acidic environment; therefore, encapsulation could be a good
tool to ensure its protection. Its activity was assessed in both
conditions meaning that the levels of constriction, induced by the
polymer matrix associated to different cross-linkage levels, were
not critical for the probiotics. Consequently, the entire selected
cross-linking range is usable to tune alginate material degradation
with consequent impact on the gastro-protection properties
and on the kinetic release of the encapsulated compound that
one may modulate depending on the GI compartment to be
reached and treated. Moreover, as compared with classic mineral
and paraffinic oils, which possess toxicity characteristics, a
greener vegetable oil, namely, soybean oil, has been used as an
outer emulsion phase.

MATERIALS AND METHODS

Materials
The following materials were used: alginic acid sodium salt
from brown algae (W201502; Sigma-Aldrich), calcium carbonate
anhydrous, free-flowing, Redi-DriTM (CaCO3, 795445, ACS
reagent, ≥99%), soybean oil, dietary source of long-chain
triglycerides and other lipids (S7381; Sigma-Aldrich), SPAN R© 80
(viscosity 1,000–2,000 mPa at 20◦C; Sigma-Aldrich), acetic acid
glacial (401406, ACS reagent; CARLO ERBA), calcium chloride
dihydrate (CaCl2, ACS Reagent, ≥99%; Sigma-Aldrich), 200 nm
yellow-green fluorescent (505–515), carboxylate-modified
polystyrene nanoparticles (NPs) (Invitrogen Nanoprobes),
L. paracasei CBA L74 (Heinz Italia S.p.A., Latina, Italy), 20 g/L
Bacto Yeast Extract (BD Biosciences, Milan, Italy), 0.5 g/L MgSO4
(Sigma-Aldrich, Milan, Italy), 50 g/L glucose (Sigma-Aldrich),
and 0.5 g/L citric acid (Sigma-Aldrich).

Methods
Microorganisms and Culture Conditions
Lactobacillus paracasei CBA L74 is a Gram-positive homo-
fermentative, facultative anaerobic bacteria for which a potential
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probiotic activity has been demonstrated by previous studies
(Sarno et al., 2014; Gallo et al., 2019; Labruna et al., 2019).
The strain was stored at −20◦C and revitalized in 10 ml of an
animal free broth (20 g/L Bacto Yeast Extract, 0.5 g/L MgSO4,
50 g/L glucose, 0.5 g/L citric acid) by incubation at 37◦C. After
24 h, the suspension was centrifuged (1,600 rpm, 10 min), the
supernatant discharged, and the pellet re-suspended in 10 ml of
2% w/v alginate.

Alginate MPs Preparation
Microspheres were prepared through the single emulsion water-
in-oil technique by using CaCO3 as cross-linking agents.
Particularly, the water phase was obtained by homogenization
of 10 ml of 2% (w/v) alginate with 0.5 ml of CaCO3 with a
concentration of 0.5 M by Ultra-Turrax (IKA T25 Digital) for
2 min at 3,000 rpm. This water phase was added drop by drop to
50 ml of the oil phase (soybean oil) with 500 µl of SPAN R© 80 and
stirred at 200 rpm (Heidolph RZR 2102-BR 10) for 15 min. Then,
a solution of 40 µl of acetic acid glacial and 10 ml of soybean oil
was added to the W/O emulsion in order to obtain a pH variation
able to promote the CaCO3 dissociation that allowed the first step
of Ca2+-mediated cross-linking.

This first cross-linking phase was followed by a second one
with the addition of several concentrations of CaCl2 (0.05, 0.1,
0.2 M) at different cross-linking times (5, 10, 15, 30, and 60 min).
Based on these parameters, 15 different production formulations
have been obtained and characterized (Table 1).

To allow MPs collection, these final emulsions were treated
with 10% (v/v) TWEEN R© 20 to promote the separation between
the two phases. The particles were washed with TWEEN R©

20 using a centrifuge at 25,000 rpm for 5 min at 4◦C
(SL16R Centrifuge; Thermo Scientific, United States) to remove
soybean oil residues and to avoid aggregation phenomena during
particle collection. To obtain the production yields of each
formulation, MPs suspensions were filtered and then lyophilized
overnight (−50◦C, 0.73 hPa, Heto PowerDry PL6000 Freeze
Dryer; Thermo Electron Corp., United States). The production

TABLE 1 | Formulation tested in this study.

Formulation (CaCl2) M Cross-linking time (min)

F1 0.05 5

F2 0.05 10

F3 0.05 15

F4 0.05 30

F5 0.05 60

F6 0.1 5

F7 0.1 10

F8 0.1 15

F9 0.1 30

F10 0.1 60

F11 0.2 5

F12 0.2 10

F13 0.2 15

F14 0.2 30

F15 0.2 60

yield was obtained by dividing the weight of lyophilized
MPs with respect to the initial weight of polymer used for
the preparation.

%yield =
g lyophilizedMPs

g alginate

The same preparation procedure was also used for MPs
encapsulated L. paracasei CBA L74 or fluorescent NPs (200 nm;
Invitrogen Nanoprobes). In particular, NPs were encapsulated
into alginate MPs by adding 33 µl of 1% solution of fluorescent
NPs into 10 ml of 2% (w/v) alginate and 0.5 ml of 0.5 M
CaCO3 before the homogenization step, whereas CBA L74-
loaded-MPs were prepared by dissolving bacterial strain into
2% (w/v) alginate solution previously sterilized. All chemical
reactions for MP synthesis are schematically represented
in Figure 1.

MP Characterization
Dimensional and Morphological Characterization:
Optical Microscopy and Static Light Scattering
Each batch of alginate MPs was morphologically and
dimensionally characterized by optical microscopy (OM)
using an Inverted Microscope OLYMPUS IX73 magnified 40×
by an oil objective (Di Natale et al., 2020, 2021). Moreover,
the precise size of MPs was evaluated by static light scattering
(LD) (Mastersizer 2000; Malvern Instruments, Malvern,
United Kingdom) of 0.4 mg/ml alginate-MP suspension
in TWEEN R© 20 (Celetti et al., 2016; Di Natale et al., 2018;
Battisti et al., 2019; Jamaledin et al., 2020). Together with the
average diameter (d50), for each size distribution, the SPAN
value has also been evaluated, which is the distribution width
calculated as:

SPAN =
(

d90− d10
d50

)
where d90 is the particle diameter at which 90% of the particles is
smaller than this value, whereas d10 is the diameter at which 10%
of the particles is smaller than this value.

Multiple-Particle Tracking
The role of cross-linking agent concentration [CaCl2 (0.05,
0.1, and 0.2 M)] on the radial distribution of MPs network
mesh-size was evaluated through the MPT technique. Videos of
fluorescent 200 nm polystyrene-FITC-NPs embedded in alginate
MPs (50 MPs for each sample) were acquired in time-lapse for a
total time of 10 s at 10 frames per second (fps), using an inverted
fluorescence microscope (Olympus IX81; Olympus), equipped
with a 60× water immersion objective (high numerical aperture,
N. A. 1.3) and a Hamamatsu ORCA-Flash 2.8 CMOS camera
(Hamamatsu). The trajectories of fluorescent NPs were obtained
by using our self-developed MATLAB 7 code. By this routine,
each particle position was determined by intensity measurements
of different areas and localized by each area’s centroid; afterward,
it was compared frame by frame to produce the trajectory of
each particle, based on the principle that the two closest positions
in successive frames belong to the same particle (proximity
principle). Then, mean square displacements (MSDs) curves were
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FIGURE 1 | Schematic representation of alginate MS production.

calculated from NPs trajectories using equation (a) and fitted by
equation (b):

a) MSD =
1
N

N∑
t=1

< [Ri (t)− Ri (0)]2 >

b) MSD = 2nDtα

where n is the dimension of the system (2 in this case), D is the
diffusion coefficient

(
µm2/

s
)

, t is the time (s), and α is a non-
dimensional parameter, which describes the way of motion (free
diffusion α = 1, sub-diffusive α < 1, or super-diffusive α > 1).
Curve fitting with a coefficient of determination (R2) less than 0.5
was discarded from the analysis and considered not reliable from
a statistical point of view. The radial diffusion map of investigated
MPs was determined by correlating the diffusion coefficient D
to the starting position of each tracked particle. In particular,
the MP centroid position and radium were calculated by image
analysis using the freeware NIH software (ImageJ 1.37c). From
NPs trajectories, the distances between the initial position of NPs
and alginate MPs centroids were obtained and normalized by
MPs radium (r/R). The normalized distance was divided into
10 sections to allow the statistical analysis. For each section,
the mean value of D was plotted as a function of normalized
distance. All data were compared with a non-polarized
alginate solution.

Microbiological Assay
The viability of L. paracasei CBA L74 after encapsulation
was evaluated by MRS Agar assay (Oxoid, United Kingdom).
After serial dilutions, substrate was spread on Petri dishes of
MRS agar and incubated at 37◦C for 72 h at the end of
which it is possible to count the colonies formed on each
plate. Plate inseminations were carried out pre- and post-
microencapsulation. Before the microencapsulation process, an
insemination was carried out using an alginate sample in which
the bacterial strain was dispersed.

The entrapped probiotics were instead evaluated dissolving
the MPs into 1% w/w sodium citrate solution at pH 6.

RESULTS AND DISCUSSION

MP Production and Characterization
Microspheres were produced by the single emulsion method as
reported in the Materials and Methods section. By combining
two different processing parameters, cross-linking concentration
and time of production, 15 different production formulations
were obtained and characterized. The objective of these first
experiments was to carry out a prior screening of the MPs
produced at various cross-linking concentrations and at different
times, based on the dimensional parameter calculated with
two different techniques, such as Mastersizer and OM. In
particular, the target diameter was set at 100 µm since larger
particle diameters could alter the quality of the final product
(Zuidam and Shimoni, 2010; Lavelli et al., 2014), and the
value of the SPAN parameter, which indicates the width of
the diameter distribution curve, was calculated as described
in the “Materials and Methods” section. These parameters
were evaluated for all formulations and reported in Table 2.
The obtained results showed that the F1 and F2 formulations

TABLE 2 | Values of d50 and SPAN for all the studied formulations, n = 3.

Formulation (CaCl2) M Cross-linking time (min) d50 (µ m) SPAN

F1 0.05 5 297.87 ± 2.72 1.6

F2 0.05 10 191. 95 ± 3.48 1.8

F3 0.05 15 93.10 ± 0.12 0.9

F4 0.05 30 128.08 ± 3.69 1.6

F5 0.05 60 156.88 ± 2.20 1.5

F6 0.1 5 97.71 ± 1.18 1.7

F7 0.1 10 106.25 ± 0.48 1.8

F8 0.1 15 95.10 ± 1.37 0.8

F9 0.1 30 104.27 ± 2.23 0.9

F10 0.1 60 105.73 ± 1.00 1.3

F11 0.2 5 86.74 ± 0.25 1.4

F12 0.2 10 116.51 ± 0.87 3.7

F13 0.2 15 90.72 ± 0.89 1.1

F14 0.2 30 88.54 ± 0.15 1.1

F15 0.2 60 105.84 ± 2.94 4.2
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FIGURE 2 | Chemical–physical (F1–F2) and morphological characterization (F1′–F2′) of microspheres.

displayed non-symmetrical distributions ranging from 10 to
700 µm and high value of SPAN between 1.6 and 1.8 (Figures
2F1–F2). This behavior can be explained by the presence of
pronounced aggregation phenomena between MPs (Figures
2F1′–F2′). Better results were obtained for the F3 formulation,
which showed an average diameter of 93.10 ± 0.12 µm and a
SPAN value of 0.9 (Figures 2F3–F3′). On the contrary, increasing
the cross-linking time (F4 and F5) curves with a very wide
distribution were obtained together with average diameters larger
than 100 µm (Figures 2F4–F5, F4′–F5′). The distribution curves
obtained with 0.1 M cross-linking agent showed a constant
trend; indeed, for all formulations, the mean diameter was
near the target value of 100 µm. In particular, F8 and F9
(Figures 2F8–F9) revealed high symmetrical distribution with
SPAN values less than 1, and their mono-dispersion was also
confirmed by OM (Figures 2F8′–F9′). As to the formulation
F10, even if the distribution was symmetrical, the SPAN value
was 1.3 indicating the beginning of aggregation phenomena also
confirmed by optical images (Figures 2F10–F10′). The widest
and least symmetrical distributions were obtained for F6 and
F7 (SPAN of 1.7 and 1.8, respectively), corresponding to cross-
linking times of 5 and 10 min (Figures 2F6–F7, F6′–F7′), maybe
not enough to provide sufficient cross-linking. Similar results
were obtained for formulations with 0.2 M CaCl2; they showed
highly variable distribution curves according to the cross-linking
time. Particularly, the curve of formulation F11, relating to the
time of 5 min, showed the presence of a peak relative to particles

with diameters greater than 1,000 µm and a SPAN value of 1.4
(Figure 2F11). These values are due to aggregation phenomena
between MPs (Figure 2F11′). The same considerations were for
the F12, in which the distribution curve is non-uniform with a
SPAN value of 3.7 and an average diameter of 116 µm (Figures
2F12–F12′). For formulations F13 and F14, relating to the cross-
linking times of 15 and 30 min, no differences were observed
in terms of peaks of the distributions (Figures 2F13–F14). The
average diameter settles around the target value of 100 µm,
and the SPAN values are slightly greater than 1. However, it
is possible to note how, even if these formulations showed the
most homogeneous distribution curves (Figures 2F13–F14), a
second peak related to particles of about 500 µm was found,
confirming the occurrence of aggregation phenomena (Figures
2F13′–F14′). The last formulation tested, F15, displayed a fewer
uniform distribution with a SPAN value of 4.2 despite the average
diameter recorded was equal to 105.84 ± 2.94 µm (Figures
2F15–F15′).

Therefore, from the analysis of particle diameters, we
concluded that time affects the quality of the particle distribution
below and above certain values. For times below 15 min especially
for the minimum concentration of cross-linking agent equal to
0.05 M, there is aggregation due to low cross-linkage. For all the
concentrations, the minimum time to have good quality particles
with SPAN close to or below 0.1 is 15 min. Remarkably, in all
the cases, the maximum cross-linking time of 60 min always
promoted some aggregation, which was particularly evident for
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the maximum cross-linker concentration of 0.2 M. For the
minimum cross-linker concentration (0.05 M), the increase of
the SPAN value was registered already at 30 min. SPAN increase
at prolonged cross-linking times indicates some aggregation
most probably due to a cross reticulation between particles,
whereas for short cross-linking times especially for lower cross-
linker concentrations, processing conditions are not sufficient to
stabilize structurally the particles that can undergo coalescence as
well as differentiated swelling or shrinkage phenomena (Oliveira
and Mano, 2011). An analysis on production yields was also
performed. As shown in Supplementary Table 1, at each cross-
linking concentration, the yield was improved by increasing
the cross-linking time. A similar trend was obtained by setting
the cross-linking time, in this case, the yield enhanced as
the concentration increased. This behavior can be justified
by the diffusion kinetics of Ca2+ cations that become faster
when both parameters grow. The best result was obtained
using the cross-linking time of 30 min where a yield of 96%
was achieved at 0.2 M (Supplementary Table 1). The lowest
yield (27%) was instead obtained for the formulation with
the lowest parameters: 0.05 M and 15 min (Supplementary
Table 1). In this case, the combination of the two parameters
is not sufficient to ensure that the cross-linking phenomenon
is homogeneous for all the droplets of alginate dispersed in
the oil phase within the emulsion. Moreover, the 0.05 M
concentration was able to reach only 39% of the production
yield at 30 min, which instead for the concentration of 0.1 M
was achieved already at 15 min (Supplementary Table 1).
One future aim will be to optimize process conditions in
order to improve the production yield for the selected cross-
linking conditions.

Microencapsulation of L. paracasei CBA
L74
Based on MPT data in which the condition of minimum
cross-linking guarantees greater mobility to the encapsulated
component, whereas the condition of maximum cross-linking
immobilizes the encapsulated component in a dense polymeric
network, we decided to carry out the microencapsulation tests of
L. paracasei CBA L74 in the critical conditions of minimum cross-
linkage (F3: 0.05 M CaCl2, 15 min) and maximum cross-linkage
(F14: 0.2 M CaCl2, 30 min). These two extreme conditions among
the formulations gave us the best results in terms of SPAN.
A less dense cross-linking should guarantee greater mobility
to the microorganism, whereas a complete cross-linking should
immobilize the microorganism in the polymerized alginic acid.

Viability tests confirmed that in both cases, minimum
and maximum cross-linking conditions, the encapsulated
microorganism remained viable, maintaining the initial bacterial
load unaltered. In detail, as shown in Table 3, no significant
differences were found when the data obtained in the post-
encapsulation phase were compared with those of the initial
microbial load related to bacterial strain dispersed in alginate
solution at time t0. That means that at least in terms of strain
viability, the explored range of processing conditions is viable for
further investigation.

TABLE 3 | Evaluation of Lactobacillus paracasei CBA L74 viability before and after
encapsulation processes.

Strain (CFU ml−1) t0 (CFU ml−1) Post-encaps (CFU ml−1)

F3 1.98 × 108 5.03 × 108 1.57 × 108

F14 1.98 × 108 1.33 × 108 1.54 × 108

The measurement of the number of colonies reported was in CFU ml−1 (Colony
Forming Units); n = 3.

MPT
After a first screening based on the size of the average
diameter, MPs were investigated in terms of microstructure by
implementing an innovative technique based on MPT. MPT is
a micro-rheological technique able to investigate the rheological
properties of a polymeric network by studying the mobility of
NPs embedded within the polymer matrix. Such mobility is
connected to the MPs cross-linking degree, which determines
MP functionality. First of all, the cross-linking degree is linked
to mechanical stresses to which the encapsulated components
are subjected, which in the case of L. paracasei CBA L74, could
lead to a possible decrease in the bacterial load. Anyway, at
least in the explored range, this circumstance was excluded
by the viability test performed at the extremes of such range.
Moreover, the cross-linking degree is connected to the degree
of protection against the surrounding environment and to
the release kinetics of the encapsulated components. First, we
checked by MPT if a complete and uniform cross-linking within
the MPs was obtained.

In particular, by using 200 nm fluorescent NPs embedded
into the alginate MPs, we calculated the diffusivity coefficients
along the normalized radius of the MPs (Figures 3A,B), as
described in the “Materials and Methods” section. Figure 4A
shows the results obtained by plotting the diffusion coefficient
(D) as a function of the normalized distance along the MPs
radius. Comparing the samples at 15 min (F3, F8, and F13),
the coefficient D was almost constant along the radius of the
MPs for both F8 and F13 formulations and lower for the
0.2 M concentration (F13), whereas for the 0.05 M concentration
(F3), the diffusion coefficient did not show a constant trend
with a peak in correspondence to the normalized radius value
equal to 0.45 close to the diffusivity of the alginate solution
(∼3.2 × 10−3 µm2/s). We interpreted this behavior as related
to an uncompleted outside-in CaCl2 polymerization process
during the MP fabrication. In particular, we supposed that
the polymerization process was stopped when the diffusion of
the divalent Ca2 + cations covered about 40% of the radius
(Figure 4B). In other words, when a concentration of 0.05 M
was used for 15 min of cross-linking time, the polymerization
front due to the external gelation mechanism did not advance
along the entire MP radius. To complete the polymerization
and obtain a uniform cross-linking within the MPs, a cross-
linking time of 30 min (F4) was necessary (Supplementary
Figure 1). Conversely, for the 0.1 and 0.2 M cross-linker
concentrations, a time of 15 min was sufficient to guarantee a
uniform and complete cross-linking within MPs. Starting from
these observations, we compared the three formulations obtained
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FIGURE 3 | Fluorescent NPs encapsulated in alginate microspheres. (A) Fluorescence image: λexc 488 nm, λemiss 520–600 nm. (B) Mastersizer analysis.

FIGURE 4 | MPT microsphere analysis. (A) The D coefficient was correlated to the normalized distance along the radius of the microspheres for all formulations.
(B) Internal and external gelation mechanisms for the concentration of 0.05 M CaCl2 and the non-polymerization area of the bare alginate. (C) Average values of α

for the bare alginate and F3, F8, and F13 formulations. (D) α Values are plotted as a function of the normalized distance along the radius from the center of the
microspheres.

at 15 min (F3, F8, and F13) analyzing their motion regime.
The parameter (α) was obtained by fitting the MSD of NPs
with a power-law equation as described in the “Materials and
Methods” section and was used to obtain information on the
mode of motion of NPs encapsulated within MPs. In detail, α

equal to one identifies a purely diffusive regime, α less than one
identifies a sub-diffusive regime, and α greater than one identifies
a super-diffusive regime.

In Figure 4C, the average values of α for the formulations F3,
F8, and F13, compared with the value obtained by analyzing the
starting solution of 2% uncured alginate (v/w), are shown. The
identified motion regimes were all sub-diffusive, and as expected,
α parameter decreases when the cross-linking concentration rises
up. This is made evident in Figure 4D, where α is plotted as a
function of the normalized distance along the radius from the

MP center. For each concentration of tested cross-linker, the NPs
mobility remains almost unchanged (the percentage variation is
'1%) from the center to the outer MP section and decreases
as the cross-linker concentration increases. Figures 4A,C shows
that the parameters α and D present an inverse correlation with
the cross-linker concentration (both decreasing with increasing
the cross-linker concentration), suggesting that the mesh-size of
the polymer network is lowering, posing a steric hindrance for
NPs mobility. Furthermore, the power law dependence of the
MSD on the time lag is a signature of mechanical behavior of
the polymer network (Fusco et al., 2015; Panzetta et al., 2017);
thus, the reduction of D can be considered accompanied by
a stiffening process of the alginate MPs when the cross-linker
concentration increases. Importantly, the possibility to control
the mechanical properties of the MPs microstructure can be used
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to finely tune their degradation and then the kinetic release of the
encapsulated compound.

Thanks to the MPT analysis, we can understand the impact of
the processing parameters (cross-linker concentration and cross-
linking time) toward inner microstructure parameters (D and α),
which, upon future in vitro digestion tests, can help in the optimal
design of the MPs.

CONCLUSION

This study presents a simple method for the encapsulation of
the probiotic L. paracasei CBA L74 in sodium alginate MPs
by the water-in-oil emulsion technique. The optimization of
the formulation parameters was obtained by varying cross-
linking agent concentrations and cross-linking times and by
replacing mineral and paraffinic oils with a greener and safer
vegetable oil. Then, once shortlisted, the parameters ranges, an
MPT based micro-rheological analysis was performed within the
MPs in order to understand the relation between processing
parameters and inner microstructures, which in turn can affect
probiotic viability and its release. Post-production viability
of microencapsulated L. paracasei CBA L74 was assessed at
minimum and maximum cross-linking conditions meaning that
the entire selected cross-linkage range is viable to tune MP
microstructure. Additionally, we could understand the impact
of the processing parameter on MP properties (ex. D and α),
which can help in the optimal design of the system upon future
in vitro digestion tests. The latter tests will indeed provide
useful feedback on the MP degradation and, therefore, on the
gastro-protection and release kinetic properties, which will be
correlated to the MPs properties. In this way, a fine tuning of
the processing parameters will be theoretically performed and
then experimentally assessed. The final aim will be to ensure the

viability of the microorganism and, at the same time, its release
into the colon and place the bases for application in the industrial
field, particularly in the food industry. Subsequent studies will
concern the development of a functional food with beneficial
properties for the intestinal microbiota.
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In the last decade, additive manufacturing (AM) processes have updated the fields
of biomaterials science and drug delivery as they promise to realize bioengineered
multifunctional devices and implantable tissue engineering (TE) scaffolds virtually
designed by using computer-aided design (CAD) models. However, the current
technological gap between virtual scaffold design and practical AM processes makes it
still challenging to realize scaffolds capable of encoding all structural and cell regulatory
functions of the native extracellular matrix (ECM) of health and diseased tissues.
Indeed, engineering porous scaffolds capable of sequestering and presenting even a
complex array of biochemical and biophysical signals in a time- and space-regulated
manner, require advanced automated platforms suitable of processing simultaneously
biomaterials, cells, and biomolecules at nanometric-size scale. The aim of this work was
to review the recent scientific literature about AM fabrication of drug delivery scaffolds
for TE. This review focused on bioactive molecule loading into three-dimensional (3D)
porous scaffolds, and their release effects on cell fate and tissue growth. We reviewed
CAD-based strategies, such as bioprinting, to achieve passive and stimuli-responsive
drug delivery scaffolds for TE and cancer precision medicine. Finally, we describe
the authors’ perspective regarding the next generation of CAD techniques and the
advantages of AM, microfluidic, and soft lithography integration for enhancing 3D porous
scaffold bioactivation toward functional bioengineered tissues and organs.

Keywords: additive manufacturing, biomimetic scaffolds, computer-aided design (CAD) processes, drug delivery,
growth factor

INTRODUCTION TO COMPUTER-AIDED DESIGN AND
MANUFACTURING OF DRUG DELIVERY SCAFFOLDS

Advanced drug therapies require customization and targeting of drug formulation and dosage
to each specific patient to warrant treatment efficacy and reduce possible undesired secondary
effects. To this purpose, engineering strategies for drug delivery system design and fabrication
necessitate the combination and manipulation of materials and drugs to obtain even complex
bioactive systems. Most specifically, the composition, chemical functions, morphology, and
architectural features of new drug delivery systems must be controlled and designed at nanometric-
scale resolution.
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In the past decade, the combination of computer-aided design
(CAD) and additive manufacturing (AM) has revolutionized
the fields of personalized medicine and drug delivery systems
(Guzzi and Tibbitt, 2020; Mohammed et al., 2020). Indeed, CAD-
AM approaches have enabled the manufacturing of biomedical
devices with unique features for in vitro and in vivo applications.
Some examples are three dimensional (3D) drug delivery
scaffolds for tissue growth and repair as well as 3D models
for cancer precision medicine (Moreno Madrid et al., 2019;
Shafiee, 2020). As shown in Figure 1, this broad category
of design and fabrication techniques used medical imaging
combined with virtual scaffold models and automated layer-by-
layer processing to produce patient-specific devices characterized
by highly controlled geometrical features, reliable microstructural
properties, and spatial and temporal drug delivery capability.
In particular, data acquired from computerized tomography or
nuclear magnetic resonance (NMR) tests were used to generate
a customized CAD model and define the consequent scaffold
geometry and internal features to fit the specific tissue defect
site. The scaffold model was subsequently divided into multiple
layers for fabrication. AM techniques are modular approaches
based on the assembly/sintering of layered structures obtained
by continuous or discontinuous processes (Salerno et al., 2019).
The advantages of employing AM processes, such as 3D printing,
include the capability of precisely controlling the spatial loading
of an active molecule within even minute quantities and generate
multiple delivery profiles by creating different depots and
complex geometries (Caballero-Aguilar et al., 2020; Jacob et al.,
2020). These aspects enabled the compounding of personalized
dosage form to minimize costs, to improve patient compliance,
and to maximize drug efficacy. Besides, 3D printing technology
can be successfully used in initial stages of drug development and
testing, including preclinical studies and trials of dosage form
with excellent dose flexibility (Jacob et al., 2020). The quality of
the produced device can be adjusted by altering the fabrication
parameters, mainly printing inkjets and speed, substrate of
deposition, and extrusion parameters (e.g., temperature and
pumping pressure) (Datta et al., 2018; Parak et al., 2019; Wang
et al., 2020).

The aim of this work is to review the recent advances
of CAD-AM processes focusing on the preparation of even
complex drug delivery scaffolds for cell guidance and tissue
repair. In particular, emphasis will be devoted to those
processes/approaches allowing the fabrication of multifunctional
extracellular matrix (ECM)-mimicking scaffolds and stimuli-
responsive drug-loaded devices for tissue engineering (TE) and
cancer precision medicine. Insight into current drawbacks and
future challenges of CAD-AM processes are also provided in the
concluding section of this work.

STRATEGIES FOR POROUS SCAFFOLD
BIOACTIVATION BY DRUG
ENTRAPMENT AND DELIVERY

Tissue engineering aims to repair and restore damaged tissue
functions by using ECM-mimicking drug-releasing scaffolds

or by incorporating drug delivery devices into TE scaffolds
(Salerno et al., 2017; Calori et al., 2020). The ECM is a
hierarchical biomolecular environment in which many cell-
signaling molecules are continuously synthesized, sequestered,
and released aiming to modulate cell adhesion, maintenance
and self-renewal, and to guide cell proliferation, migration, and
differentiation behaviors (Dutta and Dutta, 2009). For instance,
the ECM of soft connective tissues is composed of fiber-forming
proteins, such as collagens, elastin, and fibronectin organized
into collagenous nanofibrous bundles (Ghosh et al., 2019).
Furthermore, a glycosaminoglycan and proteoglycan hydrogel
fills the pores of this woven fibrous bundle. These polysaccharides
contain numerous instructive signals and soluble factors secreted
by the resident cells that are critical for tissue development,
homeostasis, and repair, and that influence cell-mediated
assembly and degradation of ECM components (Ghosh et al.,
2019). Besides, the natural cellular environment is heterogeneous
and dynamic as the ECM composition and structure change with
tissue site and developmental stage (Peng et al., 2021).

In the TE field, 3D porous scaffolds are central elements
for tissue regeneration in vitro and/or in vivo as they
regulate essential cellular events such as adhesion, migration,
proliferation, and morphogenesis (Salerno et al., 2013, 2014;
Bruggeman et al., 2017). Furthermore, scaffolds must encode
arrays of biological signals, with an adequate dose and for a
desired period, to cell-surface receptors to recapitulate the spatial
and temporal microenvironments presented by the natural ECM.
Growth factors (GFs) are biomolecules belonging to a family
of intracellular signaling polypeptides able to modulate cellular
activities, such as stimulating or inhibiting cellular proliferation,
induce stem cell migration and recruitment from adjacent
tissues, and direct their differentiation (Bittner et al., 2018).
Naturally, GF stimuli are transmitted into the cell via activation
of specific, transmembrane receptors that influence important
regulatory proteins residing into the cytoplasm. These proteins,
in turn, control cellular activities, including changes in gene
expression and response to other factors (Cross and Dexter,
1991). The responding cell type, concentration of factor, and
presence of other stimuli, often in a complex variable manner,
determine GF effect (Wang et al., 2009). In TE strategies,
GFs can be supplied directly into the culture medium at
regular intervals to guide cell behavior in vitro. However,
direct administration in vivo is difficult, as it requires large
delivery quantities to overcome possible GF inactivation and
clearance. High GF levels are, in fact, associated with high
risk of adverse effects and increasing treatment costs (Wang
et al., 2009). GF encapsulation strategies allowed researchers
to overcome these limitations as the encapsulating material
protects these molecules, while their delivery can be controlled
by the modulation of carrier composition, size, and structure
(Calori et al., 2020; Hwa Kim et al., 2020). Although GFs are
among the most used biomolecules in TE, scaffolds delivering
genetic material, including DNA and RNA, may provide a
potential alternative to GFs as nucleic acids can induce changes
in the gene expression of cells (Biondi et al., 2008; Kelly
et al., 2019). For example, transplanted cells can take up the
delivered DNA and be transfected to express proteins that
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FIGURE 1 | Scheme of the different steps of computer-aided design (CAD)-based approaches for the fabrication of drug delivery scaffolds for tissue engineering.

may aid in healing a defect. As DNA aims to encode for
new protein production, it must first enter the cell and then
reach the nucleus often by the aid of viral vectors (Kelly et al.,
2019). Antibiotic, anti-inflammatory, or differentiation agents
are other drugs that can be useful for TE purposes (Wang
et al., 2014). Implantation of engineered scaffolds might, in fact,
cause local prolonged inflammation owing to the host immune
response, which therefore requires the use of anti-inflammatory
agents (Li et al., 2018). Glucocorticoids (e.g., dexamethasone) or
non-steroids (e.g., ibuprofen) were delivered by the implanted
biomaterials to control and modulate the local inflammatory
response, avoiding possible side effects associated with systemic
administration (Cantón et al., 2010; Li et al., 2018). Similarly,
scaffolds delivering antibiotics, such as gentamicin, vancomycin,
and antibacterial ions, may prevent infections from occurring
after implantation (Yao et al., 2013; Visscher et al., 2018). It is
therefore clear that the loading, as well as spatial and temporal
delivery of bioactive factors from porous scaffolds is an important

issue of scaffold bioactivation, and it will be discussed in the
next paragraphs.

Biomolecule Delivery by Passive Release
One of the most used strategies for bioactive factor loading into
scaffolds relies on the physical entrapment of signaling molecules
within the scaffold matrix. This approach is widely adopted
for scaffolds made of hydrogels, as biomolecules can be easily
and safely loaded into the polymeric solution mixture before
crosslinking or, alternatively, by swelling crosslinked samples
into a solution containing the biomolecules. The delivery of
the loaded factors is often a balance between free diffusion
and hydrolytic degradation of the polymeric material, and can
be tuned by choosing the properties of the entangled fiber
structure, such as surface area, pore size, and mesh size (Li
and Mooney, 2016; He et al., 2020; Shultz and Zhong, 2021).
In particular, when the hydrodynamic diameter of the diffusing
molecule approaches the hydrogel mesh size, the release is
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not only dependent on diffusion but also is controlled by
polymer degradation, either hydrolytic or enzymatic. As a direct
consequence, the delivery rate from hydrogel scaffolds is lowered
by increasing crosslink density and polymer concentration (He
et al., 2020). Both synthetic and natural polymers have been
used for the design of hydrolytically degradable hydrogels in
which chemical or physical crosslinking offers the possibility
of controlling the diffusion of solubilized hydrophilic drugs.
Naturally derived hydrogels, such as collagens, hyaluronic acid,
and derivatives, are excellent materials for hydrogel preparation
due to their chemical composition and structure resembling
the features of the native ECM (Skardal et al., 2017; Mondal
et al., 2020). For example, Skardal et al. (2017) optimized a fast
photocrosslinkable heparin-conjugated hyaluronic acid hydrogel
system capable of sequestering and releasing growth factors
secreted from encapsulated cells. Furthermore, the authors varied
hydrogel crosslinking to obtain a sustained release of proteins
and heparin-binding growth factors (Skardal et al., 2017). The
breakdown of polymeric chains, by hydrolysis or enzyme activity,
causes the hydrogel structure to rupture and accelerates the
release of drugs (Campbell et al., 2018). Hydrogel features that
affect water diffusion, such as pore size and crosslink density,
can also have a direct role on polymeric chain degradation
and, therefore, modulate hydrogel degradation rate. Wang et al.
(2018) designed an injectable macroporous hydrogel composed
of gelatin/oxidized alginate/adipic acid dihydrazide loaded with
human epidermal growth factor for self-healing purposes.
The obtained hydrogels had an interconnected macroporous
structure with porosity in the 60%–83% range and pore size from
125 to 380 µm. The authors observed that increasing hydrogel
pore size and porosity accelerated the degradation and resulted
in a faster growth factor release. Similarly, Campbell et al. (2018)
designed an injectable alginate hydrogel that becomes porous
in situ to enhance vascular progenitor cell release. The group
of Ehrbar et al. (2007) also demonstrated the importance of
hydrogel composition and degradation on biomolecule release
and, therefore, tissue regeneration. In their work, biomolecular
poly(ethylene glycol)-based hydrogels synthesized and degraded
via site-specific enzymatic reactions were developed. These
hydrogels evidenced cell-secreted metalloproteinase degradation
properties mimicking the cell material crosstalk occurring in
the native ECM. By this way, the authors engineered novel
scaffolds for the cell-mediated modulation of biomolecule release
(Ehrbar et al., 2007).

Vascular endothelial growth factor (VEGF)-delivering
hydrogels have been widely used to enhance cell survival
and scaffold vascularization in 3D. Indeed, VEGF initiates
the sprouting of existing blood vessels by its mitogenic and
chemotactic effects, drives the processes of angiogenesis and
arteriogenesis, and stimulates the rapid development of a vascular
network within 3D scaffolds (Cao and Mooney, 2007). However,
VEGF efficacy is dose-dependent as downregulation can be
unsuccessful at stimulating blood vessel-forming processes, while
upregulation can produce an uncontrollable and detrimental
blood vessel growth. VEGF-loaded alginate hydrogels have
been deeply tested by Sun et al. (2005) and Cao and Mooney
(2007) to validate the efficacy of VEGF release matrixes in the

treatment of ischemic tissue. Alginate hydrogels were chosen as
delivery scaffolds because VEGF can be easily loaded into the
hydrogel at desired concentration and without significant growth
factor deactivation during manufacturing. Concomitantly, the
hydrogel provided a controlled release into the local cellular
microenvironment to yield desirable concentrations over a
period of days to months (Cao and Mooney, 2007; Shvartsman
et al., 2014). Although VEGF is a well-established initiator of
angiogenesis, its presence is often not sufficient for the formation
of a complex, mature vascular network, and it was necessary
to deliver multiple morphogens acting in distinct aspects of
the tissue regeneration process to drive tissue regeneration
to completion. Drug delivery hydrogel strategies combined
VEGF with insulin-like growth factor-1 to promote functional
innervation (Borselli et al., 2010a; Raimondo et al., 2019).
Alternatively, VEGF and platelet-derived growth factor (PDGF)
were used to stimulate blood vessel maturation and stabilization
by muscle cell recruitment (Hao et al., 2007), while VEGF and
bone morphogenetic protein-2 (BMP-2) enhanced osteogenic
and vasculogenic differentiation of hydrogel-encapsulated cells
for bone regeneration (Barati et al., 2016).

Synthetic solid biodegradable materials were also used in
TE to prepare drug delivery platforms, especially for load-
bearing applications. This is because, different from hydrogels,
scaffolds made of these materials have mechanical properties
suitable for hard-tissue repair (Lin et al., 2020). However,
growth factor encapsulation within solid scaffolds posed serious
issues regarding bioactive molecule leaching and degradation
during processing. Reducing the use of organic solvents and/or
high temperatures during the manufacturing processes and
avoiding contact between the protein and aqueous solution are
consequently key issues to protect biomolecule functionalities
(Borselli et al., 2010b). The most currently used bio-safe
technology for the production of drug-loaded devices is
supercritical CO2 (scCO2) technology as it allows for upscaling
drug deactivation problems related to the use of organic solvents
and/or high temperatures (Salerno et al., 2015). Indeed, CO2 is
ecofriendly and non-flammable, whereas scCO2 is achievable at
a rather low critical temperature (Tc = 31.1◦C) and moderate
critical pressure (Pc = 7.4 MPa) (Salerno et al., 2017, 2018).
Several works reported the use of scCO2 as a blowing agent
for thermoplastic biocompatible polymer foaming and porous
scaffold manufacturing (Champeau et al., 2015; Salerno and
Domingo, 2015). For example, porous scaffolds made of VEGF-
loaded polylactic-co-glycolic acid (PLGA) were prepared by
a high-pressure CO2 fabrication process (Sun et al., 2005).
Briefly, PLGA microspheres were mixed with human VEGF
lyophilized with alginate and salt particles, and the mixture was
processed with CO2 at 5.5-MPa pressure and room temperature
for 72 h. When the pressure was released, the PLGA particles
expanded into the spaces between the salt particles and fused,
trapping VEGF and the salt. Subsequently, the salt particles
were leached out in water to yield porous scaffolds. The as-
prepared porous scaffolds evidenced sustained VEGF delivery
for up to 2 months and were able to promote in vivo tissue
perfusion, greater capillary density, and more mature vasculature
if compared with the VEGF-free PLGA scaffold used as control
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(Sun et al., 2005). More recently, de Rieux et al. (2011) enhanced
VEGF loading efficiency into gas foaming/salt leaching porous
scaffolds by growth factor loading into chitosan nanoparticles
before scaffold incorporation. In fact, the addition of GF-
encapsulating carriers within porous scaffolds is a suitable way
to enhance bioactive factor loading and delivery. Using nano-
and micro-carrier delivery systems also opens new routes for
the engineering of scaffolds releasing multiple GFs. Richardson
et al. (2001), to direct the formation of a mature vasculature,
tested the dual delivery of VEGF and PDGF from porous PLGA
scaffolds. PDGF was pre-encapsulated in PLGA microspheres
by double emulsion, while VEGF was incorporated into the
PLGA scaffold matrix by CO2 foaming. The fast VEGF delivery
induced the rapid initiation of blood vessels, while the late PDGF
delivery from PLGA microspheres promoted the stabilization
of the preformed vascular network, finally demonstrating the
versatility of this approach to study blood vessel regression
and remodeling upon controlled GF release (Richardson et al.,
2001). Microsphere-loaded porous scaffolds prepared by gas
foaming/salt leaching were also used for bone regeneration.
In particular, PLGA microspheres loaded with either VEGF
and BMP-2 were incorporated into PLGA porous scaffolds to
evaluate the in vivo osteogenic response to different GF ratios
(Hernández et al., 2012).

Scaffold Bioactivation by
Physical–Chemical-Triggered
Biomolecule Release
Many applications in medicine require controlled release devices
able to provide a pulsed protein and peptide release profile.
This is the case, for example, in hormone and vaccine
release, for drugs with an extensive first-pass metabolism and
that develop biological tolerance when they are constantly
present at their target site, and for drugs that require
administration during sleeping (Stubbe et al., 2004). Adaptable
drug delivery biomaterials represent the cutting edge of
biomedical engineering, as drug delivery can be “programmed”
by the inner mechanism of the device (e.g., degradation) or
“triggered,” where the release is governed by changes in the
physiologic environment. Temperature-responsive hydrogels,
made of lower critical solution temperature (LCST) polymers,
are liquid below a critical solution temperature and become a
gel above it. Physiological gelation temperatures enable injectable
materials, such as poly(N-isopropylacrylamide) (PNIPAAm) and
chitosan-based solutions, to be administered through a syringe
and gel upon injection into the body, where they may serve as a
drug or biomolecule reservoir (Pal et al., 2020; Tao et al., 2020).
PNIPAAm features hydrophilic amide groups, which are buried
during its coil-to-globule transition above the LCST point, and
hydrophobic isopropyl groups, which are conversely exposed.
On the contrary, chitosan is not inherently thermoresponsive,
while the addition of phosphate salts, polyol-phosphates, and
polyol molecules yields a thermogelling system with an LCST
in the 15–85◦C range. Chitosan and PNIPAAm can be also
combined to form multiphase wound healing hydrogels where
chitosan imparted improved biocompatibility, while PNIPAAm

provided a thermally triggered volume change for enhanced
control of drug delivery (Hogan and Mikos, 2020). Another
approach in developing “smart’ multiresponsive hydrogels is
via the incorporation of temperature-sensitive additives, such as
liposomes or nanoparticles (Lu and Ten Hagen, 2020; Palmese
et al., 2020). Recently, Pedersen et al. (2020) developed hydrogel
biomaterials with triggered liquefaction in response to internal,
localized heating, mediated by near-infrared light as external
stimulus. This adaptable behavior was obtained by combining
poly(vinyl alcohol) hydrogel with gold nanoparticles or an
organic photothermal dye as heat generators. Upon laser light
irradiation, composite hydrogel underwent liquefaction within
seconds allowing the controlled, on-demand release of the
incorporated cargo (Pedersen et al., 2020).

Thermoresponsive polymeric nanocarriers, including
micelles, liposomes, dendrimers, and polymersomes are other
interesting systems for drug delivery purposes. Liposomes that
are characterized by an aqueous core surrounded by one or more
concentric lipid bilayer allowed loading of either hydrophilic or
hydrophobic drug molecules, while their release behavior was
engineered to respond to external stimuli such as heat, light,
ultrasound, and pH. Thermosensitive liposomes (TSLs) are
among the most studied due to their ability to generate rapid and
massive drug release in the heated area, and marginal release of
contents in non-heated parts of the body (Lu and Ten Hagen,
2020; Yuba, 2020). This rapid release feature of TSLs occurred
at a temperature range at which the liposomal membrane is
going through a phase transition, which causes membrane
openings and drug release. During the phase transition,
manipulating temperatures can alter the density of gaps in
the liposomal membrane, thus, also controlling the amount
of released biomolecules. Typically, the temperature range
for clinical hyperthermia is 40–45◦C. Therefore, temperature-
responsive liposomes that can show sharp responsiveness at
this temperature range are promising in a viewpoint of clinical
application. Clinically, liposome-based delivery systems were
used for the delivery of bioactives, such as genes, drugs, and other
biological molecules, especially for applications such as cancer
treatment. Zhang et al. (2014) developed docetaxel-encapsulated
thermosensitive liposomes for the targeted delivery of a drug to
a tumor. The release rate of DOX was high at 42◦C compared
with 37◦C and enabled higher tumor growth suppression
in vivo if compared with the free drug-treated group. Growth
factor receptor-bound protein-2 liposomes were prepared to
inhibit the production of the growth factor receptor-bound
protein-2 and, thereby, to reduce the proliferation of tumor cells
(Saraf et al., 2020). TSL administration can be done directly
in suspension (e.g., intravenous injection) or by loading them
into injectable hydrogels to sequential delivery of multiple drugs
(Lu and Ten Hagen, 2020; Palmese et al., 2020). In a recent
work, Palmese et al. (2020) synthesized an injectable crosslinked
poly(ethylene glycol) hydrogel containing both chemically
crosslinked TSLs and matrix metalloproteinase-sensitive peptide
crosslinks capable of independently responding to matrix
metalloproteinase and applied hyperthermia. Doxorubicin, a
widely used anticancer drug, was loaded in the TSLs with a
high encapsulation efficiency, and the subsequent release was
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temperature dependent. Experiments characterizing the in situ
drug delivery and degradation of these materials indicate that
the TSL gel responds to both thermal and enzymatic stimuli
in a local environment. The timescales of release associated
with these two stimuli are distinct, allowing for the potential
loading and independent delivery of multiple compounds
(Palmese et al., 2020).

Light as an external stimulus for smart drug delivery systems
is advantageous for a number of reasons including its non-
invasive nature, high spatial resolution and temporal control,
and convenience and ease of use. Light-based strategies used
to design novel delivery systems can be classified into three
main groups (Linsley and Wu, 2017; Ruskowitz and DeForest,
2018): photochemically triggered, where the absorbed light
energy is sufficient to break covalent bonds directly or by a
photochemical reaction; photoisomerization, where the excess
energy causes structural changes; and photothermal, where the
absorbed photon energy is dissipated via vibrational motion.
Photochemically triggered drug delivery systems are usually
made of an ortho-nitrobenzyl photolinker, or coumarin- and
pyrene-containing random copolymers with light-responsive
pyrene ester bonds that irreversibly cleave upon UV irradiation
(Wang et al., 2015). Mesoporous silica nanocontainers loaded
with cyclodextrin were combined with photoactivation of
“snap-top” stoppers over the pore openings for triggered
release (Guardado-Alvarez et al., 2013). The on-command
release was stimulated by UV photon activation that is suitable
for use in biological systems because it enabled good tissue
penetration and precise spatial control. Penetration of UV-
responsive systems into the clinic is favored by the fact that
light-based therapies are already being used. However, practical
and regulatory issues, such as depth of tissue penetration
and possible phototoxicity of the light used, are limiting the
UV-triggered drug delivery system used today (Barhoumi
et al., 2015). In fact, the type of light employed as well as its
dosages and power have to be adjusted based on the target
organs. Light-actuated drug delivery was also achieved by
the reversible conformational change of molecules, such as
azobenzenes, induced by irradiation with UV and visible light.
These molecules contain two phenyl groups joined by N=N bond
that change from trans to cis conformation once excited by UV
light. The cis conformation relaxes with the thermodynamically
stable trans isomer in the dark or under visible light (Dhammika
Bandara and Burdette, 2012). For example, Geng et al. (2017)
synthesized an azobenzene derivative, 4-cholesterocarbonyl-
4′-(N,N,N-triethylamine butyloxyl bromide) azobenzene, and
incorporated it into liposomal membranes to serve as an on–off
switch of doxorubicin release. In another work, Cao et al.
(2014) prepared a photoresponsive hydrogel by free radical
copolymerization of xylan-type hemicellulose methacrylate
with 4-[(4-acryloyloxyphenyl)azo]benzoic acid. Under UV
irradiation, the trans conformation of azobenzene in the
hydrogel convert into the cis conformation and resulted in the
hydrophilic/hydrophobic balance variation of the hydrogel that
accelerated the release of vitamin B12. Although the majority
of light-triggered release platform works focused on cancer
treatments, in recent years, these active materials were also

designed for the delivery of growth factors for TE purposes.
Photoresponsive supramolecular polysaccharide hydrogels were
prepared through host–guest interactions between azobenzene
and β-cyclodextrin groups conjugated to hyaluronic acid chains
(Zhao et al., 2020). The hydrogel showed a decrease in the
spatial network crosslink density under the application of UV
light stimulus that resulted in the fast release of epidermal
growth factor for wound healing. In another work, a library
of polymerizable ortho-nitrobenzyl macromers with different
functionalities at the benzylic position was synthesized to allow
for the direct conjugation of therapeutic agent and its subsequent
controlled photorelease from a hydrogel network (Griffin et al.,
2013). Utilizing the photodegradable macromer incorporating an
activated disulfide, the authors conjugated transforming growth
factor-β1 (TGF-β1) into the hydrogel and controlled their release
with light to induce chondrogenic differentiation of human
mesenchymal stem cells (hMSCs).

Additional methods to trigger the release of biomolecules
from biomedical devices and scaffolds aided by external
activation involve the use application of electrical and/or
magnetic fields as well as by acoustic and/or ultrasound
stimulation (Moncion et al., 2017; Gao et al., 2019; Ahmadi
et al., 2020; Lu et al., 2020; Oliva and Almquist, 2020; Thébault
et al., 2020). Ultrasound-sensitive microbubbles, liposomes,
and emulsions have advanced the field of ultrasound-triggered
drug delivery systems as they undergo the phenomenon of
cavitation and destruction followed by encapsulated drug release.
This strategy was applied, among others, for improvement
of angiogenesis and osteogenesis in bone defect repair with
ultrasound-targeted VEGF-loaded PLGA microbubbles (Gong
et al., 2019) or to trigger the release of an avascular agent,
combretastatin A4 phosphate, from ultramagnetic liposomes
monitored by NMR (Thébault et al., 2020). Ultrasound-triggered
drug delivery emulsions were also recently loaded inside a fibrin
hydrogel to spatially direct cell migration and angiogenesis in
acoustically responsive fibroblast growth factor (bFGF) delivery
scaffolds (Moncion et al., 2017; Lu et al., 2020). By applying
spatial patterns of ultrasounds to the in vivo implanted scaffolds,
the authors spatially controlled bFGF release to elicit a spatially
directed response from the host (Lu et al., 2020). Magnetically
responsive scaffolds are another important class of responsive
drug delivery platforms and can be prepared by the incorporation
of iron oxide nanoparticles inside a biocompatible matrix to
obtain a so-called ferrogel. The basic principle of release control
is that the entrapped nanoparticle moves under the effect
of magnetic field and deformed the scaffolds accelerating the
release of therapeutic loads (Oliva and Almquist, 2020). By
using this principle, authors triggered the release of PDGF
from methacrylated chondroitin sulfate-based hydrogels without
inducing structure degradation. This released PDGF promoted
the proliferation of human tendon-derived cells and human
adipose-derived stem cells as well as the expression of tendon-
and bone-related markers, respectively (Silva et al., 2018). With
a similar approach, alginate ferrogels modified with heparin
enabled the sustained release of TGF-β1 upon magnetic field
stimulation, enhancing chondrogenic differentiation of mouse
teratocarcinoma cells (Kim et al., 2016).
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The works herein described highlighted some of the most
used ways to control, both passively and actively, the delivery of
drugs and GFs from nanocarriers and scaffolds for biomedical
applications. In the next part of this review, we focus our
attention on the most novel and advanced techniques that
applied these drug delivery strategies to scaffolds prepared
by AM, aiming to tune the spatial and temporal release of
biomolecules for recreating complex biomimetic 3D systems for
new tissue growth.

SPATIAL AND TEMPORAL CONTROL OF
BIOMOLECULE PRESENTATION IN 3D
SCAFFOLDS PREPARED BY ADDITIVE
MANUFACTURING

Advancement in TE strategies require the design of smart,
functional, and high-performance scaffolds with robust and
versatile manufacturing processes and capable of replicating
the morphological, microstructural, and biochemical features
of ECM. AM techniques revolutionized the means by which
biomaterials, cells, and drugs are designed, developed, processed,
and integrated and, therefore, represent the present and future of
3D drug delivery scaffold design and manufacturing.

Additive manufacturing techniques can be conveniently
classified into discontinuous techniques, where layers’ fabrication
and assembly involve two distinct processing steps, and
continuous techniques, where these two steps are mostly
automatized and take place at once (Salerno et al., 2019). Both
approaches have been used in the past years to load GFs to
stimulate cell growth (Bittner et al., 2018; Koons and Mikos,
2019); anti-inflammatories and immunomodulators were used
to control in vivo body response after scaffold implantation
(Zhu et al., 2020); chemotherapist molecules were delivered
to kill cancer cells and stop tumor progression (Shi et al.,
2020). As summarized in Figure 2, loading bioactive molecules
in AM scaffolds was achieved during manufacturing or by
postprocessing treatments and following four main methods.

Bulk loading (strategy n◦1) requires drug/polymer blending
before scaffold fabrication and represents the most common
and facile strategy for obtaining bioactive polymeric scaffolds.
Blends can be prepared by dissolving both compounds into
organic solvents or by mixing drugs and polymers in the
melt state. Melting is the preferred way to avoid the use of
toxic organic solvents and when the use of high temperatures
does not affect the bioactivity of the entrapped molecules.
The distribution and morphology of the drug in the scaffolds
depend upon the physical–chemical interaction between the
drug and polymer. A favorable interaction may allow for
achieving high levels of drug loading and homogeneous drug
distribution. Conversely, a poor interaction resulted in phase
segregation with the majority of the drug crystallized onto
a scaffold surface and the difficult control over the release
kinetic (Calori et al., 2020). Porous scaffolds prepared by bulk
loading were developed for the purpose of regenerating complex
tissues such as bone and blood vessels (Ahlfeld et al., 2019;

Zhang et al., 2019; Tamjid et al., 2020). For instance, 3D printing
technology was used to prepare bioresorbable vascular polylactic
acid scaffolds loaded with sirolimus, to solve problems such
as long-term stent restenosis (Zhang et al., 2019). Sirolimus is
a natural macrocyclic lactone, which inhibits smooth muscle
cell proliferation and migration to reduce neointima formation
and stent stenosis (Jelonek et al., 2018). Mixing the drug with
scaffold preparation material in solution ensured reducing burst
release and, consequently, avoided possible acute cytotoxicity
to the surrounding tissues. The implant enabled a sustained
release up to 16 months in vivo providing the required
therapeutic treatment. Bulk loading combined with a 3D printing
process was also applied to fabricate biphasic scaffolds for
the spatial–temporal controlled release of VEGF toward bone
regeneration (Ahlfeld et al., 2019). The scaffold was obtained by
extrusion-based 3D multichannel plotting of a calcium phosphate
cement paste and a VEGF-loaded alginate/gellan gum (AlgGG)
hydrogel paste. The outer geometry of the biphasic scaffold
was designed as a cylinder with a 5-mm diameter base to fit
in the femur diaphysis of rats and make tight contact with
the osteosynthesis plate. A triangular pore structure with 60◦
strand orientation was used in the inner architecture design,
while the scaffolds had a gradient of VEGF-loaded AlgGG
strands, increasing from the outer to the inner scaffold regions.
The scaffold revealed good handling and fitting properties as
well as bone tissue ingrowth and vascularization in response
to locally released VEGF (Ahlfeld et al., 2019). As previously
discussed, drug impregnation postprocessing can be classified
depending on the drug impregnation medium into wet and
supercritical impregnation strategies. The first strategy was
applied, for instance, to load VEGF onto laponite–alginate–
methylcellulose bone hydrogel scaffolds encapsulating human
bone marrow stromal cells (Cidonio et al., 2020). In the treatment
of acute and chronic skin loss conditions, such as venous ulcer
and diabetes, the development of skin grafts may allow for
overcoming possible donor site morbidity and immune-rejection
problems often occurring when using autografts and allografts.
A 3D-printed gelatin patch coated with sulfonated silk fibroin
derivative was developed to serve as a “porous magnet” to
sequester and concentrate basic fibroblast growth factor (FGF-
2) and to promote the formation of granulation tissue and
enhance the repair of full-thickness skin defects (Xiong et al.,
2017). Incorporation of FGF-2 within the scaffold was obtain
by soaking the scaffold in FGF-2 solution, while its release
enhanced cell proliferation rate, tissue morphology, collagen
fibril assembly, and blood vessel formation, and demonstrated
great potential for major cutaneous defects, such as repairing
large-area skin damage and chronic skin wounds due to lower
granulation (Xiong et al., 2017). However, wet absorption is often
unsuitable for loading bioactive molecules into scaffolds made of
thermoplastic polymers due to slow solution diffusion into the
bulk. By using scCO2, Ngo et al. (2020) fabricated flurbiprofen-
loaded acrylate-based 3D-printed systems and modulated the
amount of loaded drug in the range of 12.72–24.08% by varying
the operating temperature and pressure. Concomitantly, 3D-
printed scaffolds processed with scCO2 enabled the tuning of
surface roughness features and macro/microporous porosities for
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FIGURE 2 | Scheme of the different methods for the preparation of drug-loading scaffolds: (1) Bulk loading involved mixing drugs and biomaterials by melt/solution
blending before 3D structure fabrication or, alternatively, by wet/supercritical CO2 impregnation of the settled scaffold. (2) Surface bioactivation required the
adsorption/grafting of the biomolecules to the scaffold surface or the incorporation of the biomolecules inside the coatings. (3) Biomolecules were loaded inside
nano/microcarriers, and the carriers were further blended with the scaffold matrix before manufacturing. (4) The biomolecules were loaded into the scaffold pores
using a carrier system (e.g., hydrogel).

specific application needs (Zhou et al., 2016; Ngo et al., 2020).
Surface loading (strategy n◦2) of bioactive molecules requires
scaffold postprocessing treatments similar to the wet and vapor
treatments described previously. In fact, biomolecule loading
depended on their physical or chemical adsorption onto the
scaffold pore surface, while biomolecule delivery depended on
the interaction between scaffold material and drug, the specific
surface, and the diffusion of the release medium into the scaffold
core. An example of this approach was the work by Saska et al.
(2018) that investigated the postprinting functionalization with
osteogenic growth peptide (OGP) and its C-terminal sequence
OGP(10–14) of poly(3-hydroxybutyrate) scaffolds. OGP peptide
loading was carried out by immersing the scaffolds into a

peptide solution for 72 h at 10◦C followed by air drying
at 37◦C. Similarly, Tamjid et al. (2020) loaded tetracycline
hydrochloride into PCL composite scaffolds to enhance its
antibacterial properties, while Gbureck et al. (2007) bioactivated
bioceramic bone implants with spatially localized angiogenic
factors. If compared with bulk loading, surface bioactivation has
some important advantages. In fact, the bioactivation of porous
scaffolds by postprocessing enabled overcoming problems related
to possible biomolecule deactivation that may conversely occur
during drug–polymer premixing and scaffold manufacturing.
Besides, by carrying out scaffold manufacturing and drug loading
into two independent steps, it was possible to expand material
choice and scaffold formulation possibilities and incorporate
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hydrophilic compounds into hydrophobic scaffolds. For example,
hollow poly(lactic acid) (PLA) scaffolds prepared by fused
deposition modeling were coated by solution-casting mixtures
of differing molecular weights of PCL and poly(ethylene glycol)
(PEG) (Stewart et al., 2020). These implants demonstrated in vitro
release rates for hydrophilic model compounds (methylene
blue and ibuprofen sodium) that were modulated in a facile
way by changing the formulation of the polymeric coating.
However, if compared with bulk loading, scaffolds prepared by
surface bioactivation usually evidenced lower drug loading and
limited control of drug release kinetic and spatial distribution.
Overcoming the limitations required the increase of the specific
surface of the scaffolds, for instance, by creating bimodal
macro-microporosity (Visscher et al., 2018; Liu et al., 2020)
or by grafting the biomolecules to the polymeric chains.
Nevertheless, the difficult control of the contact points between
solution/vapor carrying biomolecules and scaffold surfaces
hindered the fabrication of scaffolds having spatial gradients of
bioactive factors.

In order to achieve spatiotemporal delivery, recent advances
in AM of scaffolds have paved the way for incorporating micro
or nanoparticles loaded with biomolecules inside scaffolding
material (strategy n◦3) (Fahimipour et al., 2017; Zhu et al.,
2018; Guzzi et al., 2019). Indeed, these carriers not only protect
the encapsulated molecules against solvents and temperature
during processing but also release the molecule in a sustainable
manner. Furthermore, their localization inside the scaffold was
controlled during manufacturing, finally resulting in a spatial
and temporal controlled release. In order to optimize VEGF
release timing at the preferred location within 3D bioprinted
scaffolds, Poldervaart et al. (2014) fabricated Matrigel scaffolds
containing human endothelial progenitor cells (EPCs) and
VEGF-loaded gelatin microparticles. These scaffolds allowed a
sustained VEGF release and enhanced vessel formation after
implantation in subcutaneous pockets in nude mice. The use
of microcarriers was also implemented to achieve sequential
release function of chemokine stromal cell-derived factor-1 (SDF-
1) and Y27632 factors from polyurethane scaffolds for cartilage
TE (Wen et al., 2019). The fast release of SDF-1 attracted MSCs
from the surrounding tissues, while the later release of Y27632
factor stimulated MSCs differentiation into chondrocytes.
Microprecise spatiotemporal delivery scaffolds were achieved by
the proper choice of microspheres and scaffold strut materials.
For instance, the formation of multitissue interfaces from
bone marrow-derived mesenchymal stem/progenitor cells was
achieved by controlling the localization of PLGA microspheres
loaded with connective tissue growth factor (CTGF) and
transforming growth factor β3 (TGF-β3) inside PCL scaffolds
(Tarafder et al., 2016). Given the substantial difference in
the melting points between PLGA and PCL and their low
heat conductivity, the microsphere structure was not altered
during the process, protecting biomolecules from thermal
degradation. This microprecise spatial control of multiple
GFs was achieved by interchanging dispensing cartridges
during a single printing process, and the as-prepared scaffolds
significantly prevented arthritic changes on temporomandibular
joint condyles (Tarafder et al., 2016).

The last strategy (n◦4) to bioactivate porous scaffold is to fill
the pores with a carrier material loaded with the biomolecules.
Although this approach reduces scaffold porosity for cells and
tissue ingrowth, it was suitable to control drug delivery behavior
and to impart additional features to porous scaffolds made of
thermoplastic materials or bioactive ceramics. For example, beta-
tricalcium phosphate scaffolds with CAD designed structure
were filled with a collagen–heparin thermogel encapsulating both
BMP-2 and MSCs to enhance bone regeneration (Fahimipour
et al., 2019). The heparin-functionalized collagen gel retained the
bioactivity of growth factors and supported MSC viability and
differentiation. Concomitantly, the ceramic fibers ensured the
adequate mechanical support and the correct integration with
surrounding bone tissue. Tuning hydrogel properties allowed for
the development of composite scaffolds providing drug release
and on-demand photothermal conversion functions (Jiang et al.,
2020). This approach was also used to obtain miniaturized
modular LEGO-like cage scaffolds loaded with biologic cargo
of different compositions and assembled into highly complex
structures to pattern therapeutics within the material in 3D
(Hipfinger et al., 2020). It is worth noting that all of the
approaches described in Figure 2 can also be combined to others
aiming to increase scaffold design complexity. For example, a
collagen type 1 solution containing PLGA microspheres loaded
with VEGF, BMP-2, or FGF-2 was incorporated into the pores
of polycaprolactone fumarate scaffolds and crosslinked under
UV light to stimulate vascular ingrowth and tissue regeneration
(Wagner et al., 2018). Growth factor-loaded microspheres were
also deposited on the surface of melt electrowriting scaffold pores
by an inkjet spray drying technique to prepare three layers of
scaffolds for repairing cartilage injury (Han et al., 2020). The
scaffold consisted of a surface layer loaded with BMP-7 and
TGF-β1, a middle layer loaded with IGF-1 and TGF-β1, and a
deep layer loaded with hydroxyapatite (HA) and TGF-β1. This
design stimulated the adhesion, proliferation, and differentiation
of MSCs recruited from the bone marrow and blood, while
contributing to the regional heterogeneity of chondrocytes and
secreted proteins to promote functional cartilage regeneration.
Novel scaffolds performing multidrug spatiotemporal release
were also engineered by filling the pores of bioprinted scaffolds
with electrospun nanofibers loaded with biomolecules (Liu et al.,
2016). These scaffolds provided a biomimetic nanofibrous pore
morphology to support cell growth and enhance cell retention,
while ensuring the controlled delivery of growth factors and other
drugs for tissue regeneration.

BIOPRINTING OF BIOACTIVE HYBRID
SCAFFOLDS FOR MUSCULOSKELETAL
TISSUES

Musculoskeletal tissue damage and degeneration as a
consequence of traumas and/or diseases are common and
debilitating events that cannot be often healed by one’s own body
tissue regeneration capability due to extensive inflammation
and the high degree of damage (Loebel and Burdick, 2018).
The high prevalence of musculoskeletal tissue injuries has
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directed significant investments in the development of TE
therapies to enhance healing of damaged musculoskeletal tissues,
such as bone, cartilage, and osteochondral tissues. However,
the biologically and architecturally complex composition
and structure of these tissues are challenging goals for TE.
For example, bone is a connective tissue characterized by a
multitude of mechanical, chemical, and hematological functions.
Furthermore, bone is subjected to continuous remodeling
based on time- and spatial-dependent physiological changes
(Hutmacher et al., 2007). From a material point of view, bone
is a natural composite consisting mainly of a collagen organic
phase and a hydroxyapatite inorganic phase. The interaction
and balance between these two phases are responsible for the
biomechanical properties of bone tissue, characterized by elastic
compression moduli in the 18- to 20-GPa range (Bayractar
et al., 2004). Bone tissue intraosseous vasculature is highly
organized and ensure essential nutrients to closed osteocytes
and allow the removal of cellular metabolic wastes (Santos and
Reis, 2020). Articular cartilage is a highly organized tissue that
provides a low-friction and wear-resistant bearing surface and
exhibits regional organization, e.g., structure, cells, and ECM
biochemical composition, to match biomechanical requirements
(Steele et al., 2014). Indeed, the superficial zone exhibits a
collagenous fibrous structure aligned to the surface and rich
in chondrocytes to ensure high tensile strength upon wearing
and a deeper region richer in proteoglycan concentration while
reducing cell concentration to guarantee cartilage compression
resistance by producing a high osmotic pressure within the tissue
(Steele et al., 2014).

To fabricate biomimetic tissues, with zone-specific
heterogeneity like musculoskeletal tissues, multimaterial
and multicell-type bioprinting with micrometric scale control
of localization is demanding. Bioprinting allows the fabrication
of patient-specific, implantable 3D constructs by using in a
simultaneous and controlled way cartridge loaded with different
matters: biomaterials in form of pastes, polymeric composite
melt or solution; free drug or drug-encapsulated carriers; and
cells of different origins in suspension or encapsulated within
hydrogels. Bioprinting techniques can be broadly classified
into three main categories (Murphy et al., 2017): (i) laser-
assisted, (ii) inkjet-based, and (iii) extrusion-based printing.
To date, extrusion-based 3D bioprinting is the most successful
biofabrication process as cells, hydrogels, and other materials are
deposited onto a substrate by using one or multiple pressurized
syringes. The pressure system consists of either a mechanical
piston or a pneumatic pressure source (mostly compressed air)
that is computer-controlled. Besides, through bioprinting, it
was possible to design and fabricate evenly complex hybrid
scaffolding systems to mimic biological tissue hierarchical
architecture and composition and suitable to enhance tissue
regeneration potential.

Table 1 highlights some of the most recently published
work on the engineering of musculoskeletal tissue scaffolds
with spatial and temporal controlled release capability by means
of bioprinting technique. In a recent study, a multiple-tool
biofabrication technique was used to deliver VEGF and BMP-
2 with distinct spatiotemporal release profiles from porous

composite scaffold made of PCL and alginate to enhance the
regeneration of critically sized bone defects (Freeman et al.,
2020). The fabrication process started by printing a PCL
structural scaffold (4-mm diameter and 5-mm height) having
both lateral and horizontal porosity, and a fiber spacing of
1.2 mm. The scaffold was subsequently loaded with two different
alginate-based nanocomposite bioinks. The vascular bioink,
consisting of 3.5% w/v RGD-alginate, 1.75% w/v methylcellulose,
3.5% w/v nHA, and 500 ng/ml VEGF in alpha minimum essential
medium (αMEM), 10% fetal bovine serum (FBS), penicillin (5%
v/v), and streptomycin (5% v/v), was loaded in the scaffold center
to stimulate blood vessel ingrowth. The osteoinductive bioink,
consisting of 3.5% w/v RGD-alginate, 1.75% w/v methylcellulose,
0.5% w/v laponite, and 10 µg/ml of BMP-2 solubilized in the
previously described medium, was loaded in the periphery to
promote bone growth and implant integration with surrounding
tissue. A proof-of-concept study in nude mice validated the
benefit of this precise localization of growth factors in both time
and space on angiogenesis and new tissue formation (Freeman
et al., 2020). In fact, the composite scaffold demonstrated
accelerated bone defect healing with higher levels of vessel
invasion and less heterotopic bone formation if compared with
implants homogeneously loaded with the same total amount
of growth factors. Similar hydrogel-PCL composite scaffold
strategies were proposed by the group of Sun et al. (2020a,b, 2021)
to generate living anisotropic cartilaginous tissues (Figure 2).
In the case of meniscus, PCL was molten to fabricate the
physically supporting structure for the scaffold, choosing needle
diameter, layer thickness, and fiber spacing of 200, 200, and
350 µm, respectively. Furthermore, inspired by the heterogeneity
of native meniscus structure, a composite hydrogel was made
mixing gelatin (45 mg/ml), fibrinogen (30 mg/ml), hyaluronic
acid (30 mg/ml), and glycerol (10% v/v) and loaded with
MSCs and PLGA microparticles carrying connective tissue
growth factor (CTGF) and TGF-β3. These growth factors
induced differentiation of MSCs into fibrochondrocytes and were
located in different porous regions of the scaffold. In particular,
to chemically simulate the anisotropic phenotypes in native
meniscus, microcarriers carrying CTGF were positioned in the
outer one-third region, while those carrying TGF-β3 were used
for the inner two-thirds regions of the meniscus construct. In vivo
implantation into sheep showed that the ECM composition of the
3D-bioprinted constructs shared many characteristics of native
meniscus, including the heterogeneous zonal expression of types
I, II collagen and therewith the conferred anisotropic zonal
function properties (Sun et al., 2020a). Dual-factor releasing
and gradient-structured bioprinted constructs were also used for
anisotropic cartilage regeneration (Sun et al., 2020b). As native
articular cartilage transitions from the superficial zone to the deep
zone, gradient anisotropic cartilage scaffold was constructed by
one-step 3D bioprinting gradient polymeric scaffolding structure.
The gradient PCL fiber spacing ranged gradually from 150 µm of
the superficial zone of the cartilage, providing higher mechanical
properties and smaller pores for chondrocyte differentiation, up
to 750-µm pores in the construct core to enhance diffusion of
nutrients and vessel ingrowth. Furthermore, as in the case of
meniscus construct, dual protein-releasing composite hydrogels
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TABLE 1 | Examples about the use of the bioprinting technique to fabricate complex drug delivery scaffolding systems for the regeneration of musculoskeletal tissues.

Tissue Bioactive scaffold Outcome References

Design features Composition

Bone Structural support Cylindrical construct (d = 4 mm
and h = 5 mm) with 1.2-mm
fiber spacing

PCL High vessel invasion and
accelerated large bone
defect healing with little
heterotopic bone formation

Freeman et al.
(2020)

Delivery system Osteoinductive composite
hydrogel printed in the pores of
the periphery

RGD-modified alginate,
methylcellulose, and
laponite

Vascular composite hydrogel
printed in the pores of the
center

RGD-modified alginate,
methylcellulose and
hydroxyapatite
nanoparticles

Biological component No cells /

Cartilage Structural support Four-layer graded cubic
scaffold (l = 4 mm) with fiber
spacing varying from 150-µm
wide from the superficial zone
to 750-µm wide in the deep
zone of the cartilage construct

PCL Whole-layer integrity,
lubrication of superficial
layers, nutrient supply in
deep layers, and cartilage
tissue maturation suitable
for translation to patients

Sun et al. (2020a)

Delivery system Chondrogenic
microsphere-laden hydrogel
printed in the pores of the first
three layers

Composite hydrogel made
of gelatin, fibrinogen,
hyaluronic acid, and
glycerol and incorporating
polylactic-co-glycolic acid
(PLGA) microspheres
encapsulating transforming
growth factor-β1 (TGF-β3)

Osteoinductive
microsphere-laden hydrogel
printed in the pores of the
deepest layer with a 750-µm
PCL fiber spacing

Composite hydrogel made
of gelatin, fibrinogen,
hyaluronic acid, and
glycerol and incorporating
PLGA microspheres
encapsulating bone
morphogenetic protein-2
(BMP-4)

Biological component Cell-laden osteoinductive and
chondrogenic bioinks

Bone marrow-derived
mesenchymal stem cells
(MSCs)

Meniscus Structural support Anatomically shaped meniscus
structure with fiber size of
200 µm and fiber spacing of
350 µm

PCL Goat anisotropic meniscus
construct having the
heterogeneous zonal
expression of types I, II
collagen and ready for
implantation

Sun et al. (2020b)

Delivery system Chondrogenic
microsphere-laden hydrogel
printed in the pores of the inner
2/3 region of the meniscus
construct

Composite hydrogel made
of gelatin, fibrinogen,
hyaluronic acid, and
glycerol and incorporating
PLGA microspheres
encapsulating TGF-β3

Chondrogenic
microsphere-laden hydrogel
printed in the pores of the outer
1/3 region of the meniscus
construct

Composite hydrogel made
of gelatin, fibrinogen,
hyaluronic acid, and
glycerol and incorporating
PLGA microspheres
encapsulating connective
tissue growth factor (CTGF)

Biological component Cell-laden chondrogenic
bioinks

Bone marrow-derived
MSCs

(Continued)
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TABLE 1 | Continued

Tissue Bioactive scaffold Outcome References

Design features Composition

Intervertebral
disk (IVD)

Structural support Anatomically shaped IVD
scaffold consisting of five parts:
(1) the upper cartilage endplate;
(2) the lower cartilage endplate;
(3) the nucleus pulposus; (4) the
annulus fibrous, and (5) the
annulus fibrous support

PCL The reconstructed IVD
scaffold exhibited a
zone-specific matrix
phenotype with type II
collagen and
glycosaminoglycan in the
core zone, and type I
collagen in the surrounding
zone

Sun et al. (2021)

Delivery system Nucleus pulposus bioink
printed in the pores of the
nucleus pulposus

Composite hydrogel made
of gelatin, sodium alginate,
and hyaluronic acid and
loaded with polydopamine
nanoparticles
encapsulating TGF-β3

Annulus fibrous bioink printed in
the pores of the annulus fibrous

Composite hydrogel made
of gelatin, sodium alginate,
and hyaluronic acid and
loaded with polydopamine
nanoparticles
encapsulating CTGF

Biological component Cell-laden nucleus pulpous and
fibrous annulus bioinks

Bone marrow-derived
MSCs

Osteochondral Structural support Cylindrical construct
(d = 6 mm; h = 5 mm) with
160-µm fiber diameter and
250-µm fiber spacing

PCL Gene-activated bioprinted
construct supported the
vascularization and
mineralization in the
osseous region, while
sGAG and type II
collagen-rich cell clusters
formation in the cartilage
region

Gonzalez-
Fernandez et al.
(2019)

Delivery system Osteogenic bioink casted in the
bottom layer of 4 mm

Alginate-methyl cellulose
composite hydrogel
containing
nanohydroxyapatite
particles-pBMP-2
complexes

Chondrogenic bioink casted in
the top layer of 2 mm

Alginate-methyl cellulose
hydrogel containing RALA–
pTGF-β3–pBMP2–pSOX9
complexes

Biological component Cell-laden osteogenic and
chondrogenic bioinks

Bone marrow-derived
MSCs

encapsulating MSCs and PLGA microspheres loaded with either
TGF-β3 and BMP-4 were bioprinted into the pores between PCL
fibers (Sun et al., 2020b). Specifically, the BMP-4 hydrogel was
located in the deepest layer with a 750-µm PCL fiber spacing,
while the TGF-β3 hydrogel was used for the other three layers
of the cartilage construct.

The versatility of the bioprinting strategy combining a
structural support made of a thermoplastic polymer (PCL)
and drug delivery composite hydrogels incorporating GF-loaded
carriers was demonstrated by the same group to engineer also
an anatomically correct intervertebral disk (IVD) scaffold (Sun
et al., 2021). Connective tissue growth factor (CTGF) and TGF-
β3 were loaded into polydopamine nanoparticles mixed with

MSCs for regenerating and simulating the structure and function
of the nucleus pulposus and annular fibrous. A 3D virtual
model of the IVD scaffold was designed into five parts: (1)
the upper cartilage endplate, (2) the lower cartilage endplate,
(3) the nucleus pulposus, (4) the annulus fibrous, and (5)
the annulus fibrous support. The CTGF/MSCs ink and TGF-
β3/MSCs ink were loaded into the annulus fibrous and nucleus
pulposus parts, respectively. In vivo experiments confirmed
that the reconstructed IVD scaffold exhibited a zone-specific
matrix phenotype, as the TGF-β3 promoted the biosynthesis of
glycosaminoglycan and collagen II in the nucleus pulposus, while
the CTGF stimulated the biosynthesis of glycosaminoglycan and
collagen I in the annulus fibrous (Sun et al., 2021).
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Engineering cells to synthesize and deliver in situ growth
factors through gene delivery represents an alternative approach
to direct stem cell fate within the tissue construct. Non-viral gene-
activated bioprinted scaffolds providing a temporal and spatial
control of plasmid gene delivery to stem cells were developed
to engineer an osteochondral implantable cell-laden construct
consisting of a cartilaginous matrix overlaying a vascularized
bone tissue (Gonzalez-Fernandez et al., 2019). The newly
developed bioink was obtained by blending sacrificial and stable
hydrogels, providing an active platform to temporally modulate
transfection of host or transplanted cells in vivo by increasing
scaffold porosity over time with transient or sustained rates
(Table 1) (Gonzalez-Fernandez et al., 2019). In particular, the
bioinks containing stem cells and plasmids encoding for either
osteogenic (BMP-2) or chondrogenic (combination of TGF-β3,
BMP-2, and SOX9) genes were printed inside specific porous
zones of 3D-printed PCL scaffold, and the composite constructs
guided the formation of a vascularized, bony tissue overlaid by a
layer of stable cartilage (Gonzalez-Fernandez et al., 2019).

Although all of the previous reported works clearly
demonstrated the advancement of bioprinting in musculoskeletal
tissue reconstruction, researchers working on tissue bioprinting
have to face up to two major limitations in the future (Sigaux
et al., 2019). First, there are so many options in bioink
composition and patient-specific tissue properties that defining
a unique strategy for each tissue is complex. Vascularization
of the printed tissues is the other main challenge as cells and
tissues cannot survive without adequate blood circulation,
and integrating a full vascular network (from large vessels to
capillaries) into the printed tissues is still a challenge. Once the
vascularization of the in silico designed tissues is overcome,
the translation of bioprinted tissues to personalized medical
treatments and reconstructed surgery will be possible by a
two-step management for patients (Sigaux et al., 2019). In a first
1-day appointment, the patient is subjected to specific biopsies to
obtain autologous cell sources for tissue printing and maturation
in vitro. Then, a second step surgery is performed to implant the
in vitro grew tissue.

RECENT APPLICATIONS OF
COMPUTER-AIDED DESIGN DRUG
DELIVERY PLATFORMS FOR CANCER
TREATMENT

Cancer is one of the major causes of morbidity and mortality
worldwide, leading to significantly increased healthcare costs
and the great need to better understand cancer to improve
therapy (Shrike Zhang et al., 2016). The biochemical (e.g.,
growth factors and cytokines) and biophysical cues (e.g., ECM
mechanics) of tumor microenvironment are highly complex
and dynamic and play a significant role in tumor growth
and metastasis development (Shrike Zhang et al., 2016). The
application of TE scaffold-based strategies toward cancer genesis
and treatment are therefore highly desirable as they could help
in understanding in vitro how cancer cells and the ECM become
implicated in tumor growth and migration, and they can be

used in the clinic to stimulate tissue repair after tumor resection
and reduce tumor cell migration risks (Katt et al., 2016; Mao
et al., 2020; Oztan et al., 2020; Shafiee, 2020). Scaffolds for the
treatment of human tissue defects after tumor resection required
loading and release of chemotherapy molecules for residual
tumor cell suppression after surgery. In fact, if compared with
high-dose intravenous chemotherapy, drug-loaded implants have
the advantages of single-drug administration, minimal systemic
toxicity, and increased delivery efficacy. Furthermore, when
fabricated starting from 3D reconstruction images of critical
size tissue defect, these patient-specific implants served as space
holders to prevent undesired tissue invasion from the immediate
vicinity into the affected site and simultaneously provided a
temporary biomechanical support for the growing tissue and
sustain in vivo loads. To address these issues for postsurgical bone
tumor management, a multifunctional bone graft substitute was
designed by incorporating the soy isoflavones genistein, daidzein,
and glycitein in a 5:4:1 ratio, onto a 3D-printed tricalcium
phosphate (TCP) porous scaffold (Sarkar and Bose, 2020). The
TCP scaffold was designed as having an interconnected porosity
and biodegradation rate to control isoflavone release kinetics.
Most importantly, genistein delivery was designed to reduce
osteosarcoma cell viability and proliferation, while daidzein
and glycitein promoted osteoblast attachment, viability, and
proliferation in vivo into a critical-sized bicortical defect in
the lateral epicondyle. The efficacy of AM scaffolds for local
release of chemotherapist for osteosarcoma treatment was also
demonstrated in vitro by using composite scaffolds made of
silica nanoparticles and PCL incorporating ruthenium-loaded
PEGylated liposomes (Ye et al., 2019). The authors found that the
scaffolds had a relatively slow sustained chemotherapist release
and a good antitumor efficacy over a relatively long period.
The use of porous scaffolds as local drug reservoirs to prevent
cancer recurrence and stimulate new tissue regeneration was also
suitable for soft tissues applications, such as breast cancer therapy
(Dang et al., 2020; Yang et al., 2020). AM and salt-leaching
techniques were combined to produce bimodal porous PCL
scaffolds that were subsequently loaded with doxorubicin by the
wet dipping method. The scaffolds displayed a chemotherapeutic
effect against breast cancer cells and, if compared with systemic
administration, reduced local cancer recurrence and showed
lower cardio-cytotoxicity effect (Dang et al., 2020). Similarly,
PLGA scaffolds fabricated by 3D printing and loaded with
anticancer molecules significantly reduced the required drug
dosages and ensured curative drug levels near tumor sites for
prolonged periods, while drug exposure to normal tissues was
minimized (Yang et al., 2020).

The utilization of CAD-based processes for in vitro creation
of tumor models is widespread as it enabled testing drug efficacy
and studying tumor growth and progression mechanisms.
For example, modeling tumor microenvironments through
bioprinting had the potential to overcome limitations related
to cancer study on 2D systems and/or cell spheroids thanks
to its freeform nature, adaptability, customizability, scalability,
and diversity (Salerno and Netti, 2014; Oztan et al., 2020).
Existing bioprinting methods used in cancer research involved
extrusion, stereolithography, and inkjet printing techniques and
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have significantly improved accuracy and composition of tumor
environment design and, therefore, drug testing reliability and
scale-up to humans. Bioprinted tumor models were fabricated
to mimic in vitro the physical and cellular properties of cancer
of tissues like the breast, brain, bone, and lung (Kang et al.,
2020; Radhakrishnan et al., 2020). For example, a series of
3D bone matrices of variable geometry were printed using
stereolithography and used to study breast cancer cell growth
(Zhu et al., 2016). It was found that matrix geometry and
composition, together with the coculture of breast cancer cells
and MSCs, influenced cell proliferation and enhanced cell
migration capability (Zhu et al., 2016). Although 3D cancer
models contribute to the recapitulation of important features of
cancers and may represent suitable alternatives of the animal-
based models, their standardization is still far to be possible
(Shafiee, 2020). In fact, as discussed in the previous section,
both cancer tissue heterogeneity and experimental processing
conditions make it difficult to define standardized models, and
the analysis of the mechanisms involved in cancer development
are often incomplete. Concomitantly, scientific literature about
drug-loaded scaffolds for a tumor model is limited, and future
advances in this field depend on the efforts that will be done to
integrate knowledge from cancer cell biology and drug delivery
scaffold biofabrication to engineer patient-specific tumor tissue
models for immediate translation to clinical applications.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we described the state-of-the-art of drug
delivery scaffolds prepared by AM processes for TE and cancer
precision medicine. Common strategies for porous scaffolds
and hydrogel bioactivation were overviewed to elucidate the
importance of material selection together with 3D structure
design on drug loading and delivery efficacy. To date, there
is a plethora of drugs and biomolecules, such as GFs and
anti-inflammatories, that can be incorporated inside porous
scaffolds to guide cellular processes involved in new tissue
regeneration. Among them, VEGF is an excellent biomolecule
to enhance the vasculogenic potential of the scaffold, especially
when combined with PDGF and BMP. However, it was
demonstrated that the efficacy of these molecules depend on
their bioactivity, their presentation to cell-surface receptors,
and their spatial and temporal controlled release. In view
of these important aspects, great attention must be paid
to the way these biomolecules are incorporated into the
scaffolds, in order to avoid possible deactivation as well as to
maximize biomolecule loading and achieve a sustained release
over the entire time required for the biological stimulation
process. The use of drug-loaded micro and nanocarriers have
opened new possibilities for scaffold design as they allow for
enhanced control over scaffold release features, together with
the possibility of protecting the bioactive molecules during
scaffold manufacturing, especially when high temperature and/or
aggressive solvents are used. Besides, these carriers allow for
loading multiple biomolecules inside porous scaffolds and

test the efficacy of synergic biomolecule delivery on scaffold
biocompatibility and integration into the host body. The
development of advanced biomaterials whose properties can be
adjusted by variation of biophysical and biochemical conditions,
such as changes in temperature or magnetic field, has also opened
new routes to enhance therapeutic efficacy of biomolecule-
releasing scaffolds.

It is universally recognized that, among the different AM
scaffold fabrication processes, bioprinting represents, nowadays,
the most powerful technique addressing patient-specific demand
for tissue repair mediated by drug delivery implantable scaffolds.
In fact, this technique enabled the manipulation of almost any
kind of material, spanning from thermoplastic polymers to
hydrogels and ceramic pastes, cells, and biomolecules such as
GFs, and create evenly complex 3D structures mimicking the
composition, architecture, and functionalities of the native ECM.
The importance of the bioprinting technique in biomedicine
was demonstrated by recent works applying this technique
to design and manufacture ECM-mimicking scaffolds for the
regeneration of complex musculoskeletal tissues. Bioprinting is
also the first choice in cancer precision medicine when tissue
regeneration must be achieved after tumor resection or to study
chemotherapist efficacy against tumors in 3D in vitro models.

Despite these advancements, the translation of bioactive
delivering scaffolds from bench to bedside is still a challenging
goal, and further efforts are necessary to design and fabricate
scaffolds providing ECM guidance functions that are suitable
to successfully regenerate tissue analogs for clinical demand.
It is, however, worth noting that technological advancement
in the fields of materials science, cellular therapy, and drug
discovery can boost AM processes advancement toward the next
generation of drug delivery scaffold development. For instance,
the integration of nanotechnology (e.g., soft lithography),
micro/nanofluid, and bioprinting is a promising approach to
enhance the control of scaffold processing/structure/delivery
(Davoodi et al., 2020; Richard et al., 2020). Indeed, the
formation of multiple emulsions within microfluidic devices
may enable the fabrication of microparticles with multiple
cores and drug/cell loading and delivery capability (Omidi
et al., 2020; Tomeh and Zhao, 2020; Moreira et al., 2021).
Similarly, lithography-based processes, such as those using
UV-photopolymerization or patterned polydimethyl siloxane
molds, offer the possibility for precise structuring drug and
cell delivery microcontainers (Salerno et al., 2019; Mirza and
Saha, 2020; Saraswat et al., 2020). These microcontainers may
be charged with multiple drugs and biomolecules in powder
form or by using scCO2 processing to protect the bioactive
ingredient against degradation and deactivation and achieve
full loading efficiency (Marizza et al., 2014; Abid et al., 2017).
Furthermore, the combination of monodisperse porosity and
enhanced diffusion in an even nanometric volume together
with the possibility of integrating stimuli-responsive components
for triggered drug delivery may allow the precise tuning of
biomolecule release profiles (Randall et al., 2007; McHugh
et al., 2017). All of these novel-designed carriers can be
further incorporated into the bioprinted scaffold structure,
inside the filament otherwise located into the pores aided by
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micromanipulation systems (Mekhileri et al., 2018; Hacohen
et al., 2020). The as-engineered scaffolds can achieve, in principle,
the nanometric scale control of biomolecule loading, and their
programmed/triggered release following cell and tissue demands
can finally have a tremendous impact on the production of
customized clinical-grade functional tissues.
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Due to the preservative, antioxidant, antimicrobial, and therapeutic properties of oregano

essential oil (OEO), it has received an emerging interest for biotechnological and

biomedical applications. However, stability and bioactivity can be compromised by its

natural volatile and hydrophobic nature, and by external factors including light, heat,

or oxygen. Therefore, micro- and nanoencapsulation are being employed to guarantee

oregano oil protection from outside aggressions and to maximize its potential. Oregano

oil encapsulation is an interesting strategy used to increase its stability, enhance its

bioactivity, and decrease its volatility. At the same time, the versatility that micro- and

nanocarriers offer, allows to prepare tailored systems that can provide a controlled and

targeted release of the encapsulated principle, influence its bioactive activities, or even

provide additional properties. Most common materials used to prepare these carriers

are based on lipids and cyclodextrins, due to their hydrophobic nature, polymers due to

their versatility in composition, and hybrid lipid-polymer systems. In this context, recently

developed micro- and nanocarriers encapsulating oregano oil with applications in the

biotechnological and biomedical fields will be discussed.

Keywords: microcarriers, nanocarriers, antimicrobial, antibacterial, antifungal, emulsion, stability

INTRODUCTION

Essential oils (EOs), derived from aromatic plants, are volatile oily liquids mainly composed of
terpenoids and phenolic acids (da Silva et al., 2021). They have been used since ancient times in
different cultures due to their bioactive properties. Some of the most reported properties of EOs are
their antibacterial (Nazzaro et al., 2013), antifungal (D’agostino et al., 2019), antiviral (Ma and Yao,
2020), and antioxidant (Leyva-López et al., 2017) activities, mainly due to the disruption of bacterial
and fungal membranes and viral envelops (Böhme et al., 2014). Nevertheless, some characteristics
like immunomodulatory and anticancer activities are recently being reported, highlighting the
potential use of EOs in the biomedical field (Bhalla et al., 2013; Böhme et al., 2014). For these
reasons, in the last decades, it has emerged a great interest in their use in biotechnology, for
example, in foods and cosmetics, and in the biomedical field, in which their excellent properties
provide a great therapeutic potential (Böhme et al., 2014; Aljaafari et al., 2021). However, stability
and bioactivity can be compromised by their natural volatility, low water solubility, and external
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factors, which have detrimental effects on the overall acceptability
of the developed product (Turek and Stintzing, 2013).

In this context, drug delivery systems such as micro- and
nanoparticles (MPs and NPs), micro- and nanocapsules (MCs
and NCs), films, or nanocomposite materials have been proposed
to encapsulate EOs (Zhu et al., 2021). These systems enhance EO
stability in aqueous media and, as a consequence, improve their
bioavailability, reduce their toxic effects, provide a controlled
release of the encapsulated agent, protect them against the
environment or mask their intense aroma (Cimino et al., 2021).
Micro- and nanocarriers with tailored properties are of special
interest due to the increased surface-to-volume ratio that their
sizes offer and, consequently, an increase in their reactivity
(Franklyne et al., 2016). These systems are typically based on
polymers, lipid materials, or a combination of both (Kaliamurthi
et al., 2019). Moreover, micro- and nanocarriers present some
differences regarding their fate after its application, the ability to
cross some biological barriers, entering cells, and possible tissue
reactions that, depending on the application, will determine the
choice of one over the other (Kohane, 2007).

Oregano essential oil (OEO) is one of the most widely
used EOs worldwide. It is extracted from Origanum vulgare
L. and formed basically by carvacrol and thymol (Teixeira
et al., 2013). Both carvacrol and thymol are monoterpenes
with a single phenolic ring formed from the bonding of two
isoprene molecules with three functional group substituents
(Memar et al., 2017). Due to this chemical structure, they
provide OEO with its antibacterial and antioxidant properties,
in addition to its anticancer and anti-inflammatory activities
(Sakkas and Papadopoulou, 2017; Sharifi-Rad et al., 2021). Due

to these activities, OEO and its components have come to the
forefront and are being widely investigated to be used as a food
preservative, for active packaging, and the treatment of different
diseases, such as infections (Bhalla et al., 2013).

This review aims to discuss the state-of-the-art micro- and
nanoencapsulation of OEO in biotechnology and biomedical
applications, making emphasis on the materials used, the
fabrication process, and their final bioactive properties. It
is expected that the information provided here will provide
the reader with a general view of the possibilities that OEO
encapsulation may offer in these specific fields. In this sense,
Figure 1 collects the main types of OEO delivery systems
reported, their fabrication methods, most common materials
employed, and biomedical and biotechnological applications.

REVIEW METHOD

For this mini-review article, an extensive search was conducted
in different web search engines using keywords such as OEO,
carvacrol, thymol, microencapsulation, nanoencapsulation,
microcarriers, nanocarriers, MPs, NPs, MCs, NCs, biomedical
and biotechnological. The search strategy was limited to
publications in English and published from 2017 to 2021.
Articles were classified according to the size of the OEO delivery
system and listed according to their application.

OEO MICROENCAPSULATION

Microencapsulation is a technique in which a material of
interest is surrounded by a coating to form capsules or
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FIGURE 1 | Scheme of most common OEO delivery systems, fabrication methods, materials employed, and biomedical and biotechnological applications.

particles with sizes between 1 and 1,000µm (Ju and Chu,
2019). Compared to macroscale particles, MPs and MCs have
the advantage of having a larger surface-to-volume ratio,
which is even larger for NPs, increasing the reactivity of
the delivery system. Microencapsulation of OEO has been
conducted through different methods such as emulsification,
spray-drying, coaxial electrospray, freeze-drying, coacervation,
in situ polymerization, or ionic gelation using mainly lipids,
cyclodextrins, and polymers (Bakry et al., 2016). One of the
main applications of these OEO-loaded systems is in the
field of biotechnology as food preservatives, as components
of active packages, and in the pharmaceutical industry
(Bakry et al., 2016). Research articles published on this
topic in the latest years and the main results obtained
are listed in Table 1 according to the system function
or application.

The stability of microemulsions, MPs, and MCs encapsulating
OEO has been widely investigated. In this sense, Cardoso-
Ugarte et al. (2021) optimized OEO loaded water-in-oil-in-
water (W/O/W) double emulsions in terms of primary emulsion
concentrations and homogenization parameters to finally assess
the antifungal activity of the best system (Cardoso-Ugarte
et al., 2021). They assessed the stability of primary emulsions
resulting from high-pressure and mechanical homogenization
evidencing that stability, in terms of droplet size, was affected
by the homogenization method of the primary emulsion.
Asensio et al. (2017), for their part, studied how wall
materials (hydroxypropyl methylcellulose, maltodextrin, and
colloidal silicon dioxide) and storage temperatures influenced
the antioxidant activity, total phenolic content, and release
kinetics of OEO compounds of spray-dried microcapsules (MCs)
(Asensio et al., 2017). The authors observed that the presence
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TABLE 1 | Latest research reports (2017–2021) on oregano essential oil (OEO) microencapsulation with biotechnological and biomedical applications.

Function/application Fabrication process Composition Results References

Delivery system W/O emulsion OEO, corn oil Emulsifier concentration affected emulsion separation,

viscosity, and surface electric charge.

Cardoso-Ugarte

et al., 2018

Delivery system Emulsion Thymol, alginate No chemical interactions between thymol and sodium

alginate. Sustained in vitro release.

Bhalerao and

Wagh, 2019

Antifungal W/O/W double emulsion OEO, corn oil Stability and droplet sizes are affected by the

homogenization method of the primary emulsion.

Antifungal activity against A. niger.

Cardoso-Ugarte

et al., 2021

Antimicrobial agent Pickering emulsion OEO, cellulose

nanocrystals

Average droplet sizes: 1.2–2.9µm. Zhou et al., 2018

Variations of zeta potential with pH.

Antimicrobial activity by cell membrane disruption.

Antimicrobial agent O/W emulsion OEO, high oleic sunflower

oil

Nanoemulsions were not stable under acid and high

salt concentration conditions. Inutec SP1 emulsions

remained stable for several days.

Sedaghat Doost

et al., 2017

Antimicrobial agent Solvent evaporation Thymol, PLGA Improvement of thermal and storage stability sustained

release of thymol and antibacterial properties against

E. coli and S. aureus.

Zhu et al., 2019

Antimicrobial agent Spray drying Carvacrol, pectin-alginate Encapsulation efficiency: 77%. Sun et al., 2019

Antimicrobial activity against E. coli.

Antioxidant additive

to control food

oxidation

Spray drying OEO, hydroxypropyl

methyl cellulose,

maltodextrin, colloidal

silicon dioxide

Release kinetics of OEO volatile compounds and the

antioxidant activity of the system was controlled by

wall material-lipid core ratios and temperature storage

conditions.

Asensio et al.,

2017

Food preservation Co-precipitation inclusion

method

OEO,

β-cyclodextrin

Inclusion efficiency: 55%. Huang et al., 2020

Enhancement of yam shelf-life.

Food preservation Ionic gelation and

electrostatic interactions

(coating)

OEO, alginate, whey

protein concentrate

Loading and retention capacity: 64 and 57%. Gallo et al., 2020

Freeze-drying caused an increase in size polydispersity

and porosity of bead surface.

Whey protein coating caused a slowdown effect on

OEO release.

Active packaging,

personal care

products, insect

repellents

Co-precipitation inclusion

method

OEO, β-cyclodextrin Particle size range: 450–530 nm. Kotronia et al.,

2017Polydispersity: 0.31–0.48.

Good stability in suspension.

Inclusion efficiencies: 26%.

In vitro OEO release for up to 11 days.

Topical treatment of

cutaneous diseases

Double emulsion OEO Average particle size: 1.76µm. Fraj et al., 2019

Surface charge: −15mV. Encapsulation efficiencies:

47%.

Unstable with temperature.

Topical cosmetics Ultrasonication Thymol, lignosulfonate Average particle size range: 3.2–3.4µm. Piombino et al.,

2020Encapsulation efficiencies >40%.

Antibiotic substitute

for intestinal delivery

Melt-granulation process Thymol, lauric acid,

starch, alginate

In vitro slow release of thymol using simulated fluids. Omonijo et al.,

2018

Intestinal delivery Blending of thymol with a

lipid matrix

Thymol, commercial lipid

matrix containing other

organic acids

Stability during feed pelleting and storing processes. Choi et al., 2020

In vitro and in vivo prolonged release of thymol in

simulated gastric and intestinal fluids and pig guts,

respectively.

W/O, water-in-oil; W/O/W, water-in-oil-in-water; OEO, oregano essential oil; O/W, oil-in-water; PCL, polycaprolactone; PLGA, poly(lactic-co-glycolide).

of colloidal silicon dioxide in some formulations increased the
release of volatile compounds, to detriment of the antioxidant
activity, in terms of radical scavenging activity and Trolox
equivalent antioxidant capacity, which was lost to a greater extent
during storage.

Highly stable Pickering emulsions (emulsion stabilized by
solid particles) loading OEO were prepared by Zhou et al.

(2018) using cellulose nanocrystals as stabilizers (Zhou et al.,
2018). The authors demonstrated that emulsions exhibited higher
stability with increasing concentration of cellulose nanocrystals
or at lower oil-water ratio and salt concentration. Furthermore,
the antimicrobial efficacy of the emulsions was confirmed
by efficiently inhibiting the growth of different bacteria by
destroying the integrity of their cell membranes.
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The influence of environmental stress conditions, such
as acidification and salt addition, on the stability of OEO
oil-in-water (O/W) emulsions prepared by a high energy
method, has also been assessed by Sedaghat Doost et al. (2017),
using two non-ionic surfactants, Tween 80 and Inutec SP1, as
stabilizers (Sedaghat Doost et al., 2017). Different OEO: high
oleic sunflower oil ratios were used to prepare the emulsions.
Despite nanoemulsions could be formed, they were not stable
under acid and high salt concentration conditions. Moreover,
Tween 80 containing emulsions exhibited phase separation at all
salt concentrations, while Inutec SP1 emulsions remained stable
for several days. In the end, colloidal dispersions with a 50:50
OEO: high oleic sunflower oil ratio in the lipid phase stabilized
by Inutec SP1 kept at 4◦C showed the longest stability with no
droplet size variation during 2 weeks. The effect of Tween 80 in
addition to Span 20 as emulsifiers of OEO water-in-oil (W/O)
emulsions was also investigated (Cardoso-Ugarte et al., 2018). In
this case, the concentration of the emulsifier affected emulsion
separation, led byOstwald ripening, viscosity, and surface electric
charge, showing slower separation rates in the tested emulsions
with higher concentrations of Tween 80 and Span 20.

Cyclodextrins, cyclic hydrophilic oligosaccharides obtained
from starch enzymatic conversion, have been employed in OEO
encapsulation. For instance, Kotronia et al. (2017) encapsulated
OEO into β-cyclodextrin inclusion complexes by coprecipitation
methods (Kotronia et al., 2017). The systems showed suitable
characteristics in terms of size, surface charge, and morphology,
a controlled in vitro OEO release for up to 11 days, and
inclusion efficiencies up to 26%. Similarly, Huang et al. (2020)
prepared β-cyclodextrin systems loaded with OEO, obtaining
MPs with strong interactions between β-cyclodextrin and
OEO. A reduction of both gram-positive and gram-negative
bacteria occurred when treated with OEO-loaded systems,
especially in gram-positive bacteria. Finally, the food preservative
performance of the system due to its antibacterial activity was
demonstrated by reducing the browning and enhancing the shelf-
life of a type of yam (Huang et al., 2020).

Alginate beads have also been used to encapsulate OEO by
extrusion dripping to study the influence of its encapsulation
in oil release kinetics in liquid simulating meat marinating
solution (Gallo et al., 2020). Spherical particles with good
encapsulation performance were obtained and subjected to
electrostatic interactions with whey proteins and freeze-
drying. Freeze-drying of the beads increased the particle size
polydispersity and the porosity of the bead surface. Besides,
beads were successfully coated with whey proteins by electrostatic
interactions causing a slowdown effect on OEO in vitro release
rates. Alginate has also been used to encapsulate thymol, one of
the main components of OEO, demonstrating that no chemical
interactions between thymol and sodium alginate occurred and
showing sustained thymol in vitro release (Bhalerao and Wagh,
2019). Carvacrol, the other main component of OEO has also
been microencapsulated, in a pectin-alginate matrix by Sun
et al. (2019), demonstrating that the microencapsulation did
not affect the radical scavenging properties of carvacrol and
the antibacterial activity against Escherichia coli (Sun et al.,
2019).

Thymol has been entrapped in other lipid and polymeric
vehicles. For instance, Omonijo et al. (2018) microencapsulated
thymol along with lauric acid into starch MPs with the presence
or not of alginate to deliver them to pig intestinal tracts as
an antibiotic substitute (Omonijo et al., 2018). Highly stable
systems were obtained with an in vitro prolonged release of
loaded compounds in the case of MPs presenting alginate, using
simulated salivary, gastric, and intestinal fluids. However, the
efficacy of the MPs was not demonstrated. The intestinal delivery
of thymol has also been assessed when microencapsulated into
commercial lipid matrices containing organic acids by Choi
et al. (2020), demonstrating the stability of the systems during
feed pelleting and storing processes and an in vitro and in vivo
sustained release of thymol in simulated gastric and intestinal
fluids and pig guts, respectively (Choi et al., 2020).

Due to the antioxidant and biocompatibility properties
of lignin, lignosulfonate MPs were successfully developed by
Piombino et al. (2020) to encapsulate thymol and its derivatives
as topical systems with antimicrobial properties for cosmetics
through environmental friendly sonication procedures. Results
showed that more than 40% of each substrate was properly
encapsulated, except for 2,4-dibromothymol, showing the best
encapsulation efficiencies for the mono-brominated thymol
derivative (76%). To test the suitability of these systems as
dermal agents, the in vitro release of the derivatives from the
MPs in solutions simulating skin pH (acetate buffer at pH
5.4) were performed, showing a slow-release, especially for O-
methylated compounds, that was dependent on the inherent
lipophilicity of each compound. Thymol-loaded poly(lactic-co-
glycolide) (PLGA) MPs have also been demonstrated to be
suitable microcarriers of thymol improving thermal and storage
stability and controlling thymol release (Zhu et al., 2019). In
addition, the antibacterial properties of the MPs against E. coli
and Staphylococcus aureus were demonstrated by the disruption
of their cytoplasmic membrane, since the porous structure of
the MPs enhances the permeation of thymol into bacteria. The
antibacterial effect was confirmed by adding the loaded MPs into
naturally contaminated milk and observing that the growth of
bacteria was suppressed by thymol-loaded MPs.

OEO NANOENCAPSULATION

Nanoencapsulation is another common strategy addressed to
protect OEO from the environment and improve its performance
(Bilia et al., 2014). In addition, the smaller size of NPs, between
1 and 1000 nm, makes them very suitable for biomedical
applications, as they can be intravenously injected, can be
efficiently uptaken by a variety of cell types, and can extravasate
through endothelium to reach, for instance, inflammatory sites or
tumors (Gelperina et al., 2005; Singh and Lillard, 2009). The latest
research reports on OEO nanoencapsulation that are mainly
focused on food biotechnology and biomedical applications are
listed in Table 2 according to the system function or application.

Polymeric nanocarriers have received great interest due
to their versatility in composition, structure, and properties.
In the study of Fraj et al. (2019), the authors compared
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TABLE 2 | Latest research reports (2017–2021) on OEO nanoencapsulation with biotechnological and biomedical applications.

Function/application Fabrication process Composition Results References

Delivery system High energy emulsion

method

OEO, sunflower oil, succinic

anhydride-modified starch,

chitosan, sodium

carboxymethylcellulose

Multilayer NPs: Espinosa-

Sandoval et al.,

2021
One layer NPs: 180 nm, −42mV.

Two layers NPs: 226 nm, 35mV. Three layers NPs:

265 nm, −1mV. Encapsulation efficiency: 97%.

Delivery system Complex coacervation OEO, gelatin, chia

mucilage/arabic gum

Particle size range: 17–120 nm. Hernández-Nava

et al., 2020Encapsulation efficiency: >90%.

Delivery system Ultrasonication Neobee® 1053

medium-chain triglyceride oil

Lecithin nanoemulsions were more stable and

viscoelastic than Tween 20 nanoemulsions.

Nash and Erk,

2017

Antifungal agent for

food preservation

Electrospraying OEO, PVA, chitosan Particle size range: 337–818 nm. Encapsulation

efficiency: 90%.

Vehapi et al., 2020

Antifungal properties against different fungi.

Antimicrobial agent

for food preservation

Emulsion OEO, medium-chain

triacylglyceride

Average droplet size range: 74–150 nm. Asensio et al.,

2020Viscoelastic behavior of nanoemulsions.

Antimicrobial activity by quorum-sensing inhibition.

Antimicrobial agent

for food preservation

High-frequency

ultrasonication

EOs (cinnamon, rosemary,

OEO)

Particle size range: 226–546 nm. Dávila-Rodríguez

et al., 2019Encapsulation efficiency >80%.

Inhibition of E. coli and L. monocytogenes.

Antibacterial agent

for food preservation

Nanoliposomes: lipid film

hydration technique

Carvacrol, soy

phosphatidylcholine

Nanoliposomes: Ayres Cacciatore

et al., 2020Particle size: 271 nm.

Zeta potential: 8.6mV.

Encapsulation efficiency: 98%.

Antibacterial agent

for food preservation

Nanocapsules: interfacial

deposition technique

Carvacrol, Eudragit® Particle size: 159 nm. Nash and Erk,

2017Zeta potential: 44.8mV.

Encapsulation efficiency: 97%.

Antibacterial agent

for food preservation

Standard Schlenk

techniques by ring-opening

polymerization

PEI, PLA Average particle size: 115 nm. Niza et al., 2020

Zeta potential: 55mV.

Encapsulation efficiency: 54%.

Enhanced antibacterial effect.

Antimicrobial agent Single emulsion Thymol, PLA Average particle size range: 220–260 nm. Marcet et al., 2018

Encapsulation efficiency: 60%.

Improved antibacterial effect compared to

non-encapsulated thymol.

Antimicrobial agent Novel, simple chemical

synthesis

Thymol, chitosan, silver Average particle size: 29 nm. Manukumar et al.,

2017Spherical shape, monodisperse in water, excellent

blood biocompatibility.

Topical treatment of

cutaneous diseases

Nanoprecipitation OEO, PCL Average particle size: 181 nm Fraj et al., 2019

Polydispersity: 0.133.

Surface charge: −41mV. Encapsulation efficiencies:

85%.

Anti-angiogenic

system

Ultrasonication Carvacrol, medium chain

triglyceride

Hydrodynamic droplet size: 101 nm. Khan et al., 2019

Zeta potential: −39mV.

Decrease in the expression of several angiogenic

markers in a lung adenocarcinoma model.

Pharmaceutical

product for airway

lung disease

Fusion-emulsification Carvacrol, cocoa butter,

3,5-di-tert

4-butylhydroxytoluene,

imidazolidinyl urea

Minimization of oxidative stress and histological

damage generated from smoke inhalation in rodens.

Carvalho et al.,

2020

OEO, oregano essential oil; PVA, polyvinyl alcohol; EO, essential oil; NP, nanoparticle; PEI, polyethylenimine; PLA, polylactic acid; PCL, polycaprolactone.

the properties of OEO-loaded NPs and MPs prepared by
nanoprecipitation and double emulsion, respectively (Fraj et al.,
2019). Results demonstrated that, while NPs were stable at
different temperatures, MPs suffered an increase in particle

size and a decrease in carvacrol component retention. In other
studies, gelatin combined with chia mucilage was used as an
alternative OEO delivery system to other most commonly used
in complex coacervation (gelatin combined with Arabic gum)
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(Hernández-Nava et al., 2020). NPs of both gelatin and chia
mucilage and gelatin and Arabic gum were synthesized obtaining
high encapsulation efficiencies in both cases. Moreover, the
amount of Tween 80 and OEO concentration influenced the
NP size, obtaining smaller particles with increasing Tween 80
due to the enhancement of the interfacial tension reduction and
droplet breaking. Finally, complex coacervates with the highest
encapsulation efficiencies were spray-dried obtaining the best
flow properties for the gelatin-chia mucilage NPs.

Chitosan was used by Espinosa-Sandoval et al. (2021) to
prepare OEO-loaded multilayer nano-emulsions by high energy
methods (Espinosa-Sandoval et al., 2021). In this study, octenyl
succinic anhydride-modified starch combined with partially
deacetylated chitosan of medium and low molecular weight and
carboxymethylcellulose was used to protect OEO in a multilayer
system. Interestingly, using an in vitro gastric condition
simulating test, the authors showed that each polymeric layer
influenced OEO bioaccessibility, obtaining the highest value
for the three-layer system. Spherical polymeric NPs based on
polyvinyl alcohol (PVA) and chitosan loaded with OEO have
also been prepared by electrospraying (Vehapi et al., 2020).
Results demonstrated that the encapsulation of OEO and the
presence of chitosan led to a superior antifungal effect of the
nanoencapsulated system compared to free OEO.

Oregano essential oil nanoemulsions have also been reported
to obtain nanocarriers with antibacterial properties. For instance,
Asensio et al. (2020) prepared OEO nanoemulsions, showing
that the incorporation of the oil could increase nanoemulsion
stability, lower droplet size, and increase emulsion viscosity
(Asensio et al., 2020). Furthermore, nanoemulsions exhibited
good antimicrobial activity by the inhibition of cell-to-cell
communication of gram-negative bacteria, also known as
quorum-sensing (ability to detect and respond to cell population
density by gene regulation). Dávila-Rodríguez et al. (2019)
prepared O/W nanoemulsions encapsulating three different
EOs, cinnamon, rosemary, and OEO, using a high-frequency
ultrasound technique. Results proved that nanoencapsulated EOs
were more effective than free EOs since a lower amount of EO
was required to provide the antibacterial effect. Moreover, OEO
nanoemulsions proved to be the most effective antimicrobial
systems against E. coli and Listeria monocytogenes (Dávila-
Rodríguez et al., 2019).

Another advantage that encapsulation can offer is masking
the intense aroma of OEO components. Carvacrol encapsulation
into nanostructures, nanoliposomes, and polymeric Eudragit R©
NCs were developed by Ayres Cacciatore et al. (2020),
establishing that its encapsulation could be interesting to reduce
its aroma due to its controlled release (Ayres Cacciatore et al.,
2020). The effect of lecithin or Tween 20 on O/W nanoemulsions
encapsulating carvacrol was studied by Nash and Erk (2017),
concluding that, while lecithin nanoemulsions were highly
viscoelastic and gave stability to the nanoemulsion, Tween 20 did
not (Nash and Erk, 2017).

Oregano essential oil encapsulation using polycationic
polymers can improve its antibacterial effect due to the enhanced
bacterial uptake that positive charges cause. Polyethylenimine
(PEI)-coated polylactic acid (PLA) NPs encapsulating carvacrol
have also been developed as antimicrobial agents (Niza et al.,

2020). In this study, NPs coated with PEI possessed a positively
charged surface that facilitated their uptake by bacteria compared
to negatively charged ones, enhancing the antibacterial effect
of the encapsulated carvacrol. Moreover, NPs displayed higher
antibacterial activity than free carvacrol, a sustained release, and
stability during storage.

Other biomedical applications of carvacrol-loaded
nanocarriers have been reported. Khan et al. (2019) demonstrated
the potent anti-angiogenic effect both, in vitro and in vivo, of
carvacrol-loaded O/W nanoemulsions, by reducing the
expression of several angiogenic markers such as COX-2, VEGF,
and CD31 in a lung adenocarcinoma model (Khan et al., 2019).
Furthermore, solid lipid NPs incorporating carvacrol were
prepared to treat lung damage of airway smoke inhalation and
tested in an in vivo rat model by Carvalho et al. (2020). Results
showed that carvacrol-loaded solid lipid NPs could minimize
oxidative stress and inhalation injury and histological damage
generated from smoke inhalation in rodents compared to the
negative control.

To improve the antibacterial effect of thymol, different
nanocarriers have been developed. An example is that of
biodegradable PLA NPs developed by Marcet et al. (2018). PLA
was found to be the key variable in optimizing NP preparation
in terms of size and encapsulation efficiency, producing NPs with
high storage stability at several pHs and improved antimicrobial
properties compared to non-encapsulated thymol. In other
studies, thymol was loaded into intrinsic antibacterial chitosan
silver NPs showing interesting antioxidant properties through
radical scavenging and antibacterial activity due to the three
components against different gram-positive bacterial strains
(Manukumar et al., 2017).

CONCLUSIONS

Although oregano oil has been used in different cultures since
ancient times, it has received special attention in the last
decades due to its preservative, antimicrobial, and therapeutic
characteristics. However, its bioactivity is compromised by
its highly volatile and hydrophobic nature and by external
environmental factors. Hence, different drug delivery systems
are being explored as a strategy to increase its stability
and bioavailability, protect it from the environment, control
its release, and even enhance its properties. In this review,
the latest research on micro- and nanocarriers encapsulating
OEO focusing on biomedical and biotechnological applications
revealed that carriers such as emulsions and polymeric-based
systems seem to be the most appropriate ones for encapsulation
of this compound. Stability has been demonstrated to be
particularly important in this type of delivery system since it
determines the final performance of the loaded system, and it
is dependent on multiple parameters such as the composition,
the fabrication method, and the storing conditions. On the
contrary, the mechanism of action by which OEO exerts its
activities is not deeply investigated in most of the reviewed
articles, but instead, they focused on the properties and final
performance of the loaded delivery system. Overall, the process
of OEO encapsulation stands out as a possible alternative for
the preservation of this oil against environmental conditions,
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increasing its stability and maintaining its bioactive properties,
mainly its antioxidant and antimicrobial ones. Furthermore,
design and formulation on the carrier employed to encapsulate
this oil, can influence and enhance its bioactive properties and
even can provide the final delivery system with additional and
beneficial properties.
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Stem cell-based therapy appears as a promising strategy to induce regeneration of
damaged and diseased tissues. However, low survival, poor engraftment and a lack of
site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues
and offer several advantages as cell delivery vehicles. They have become very popular due
to their unique properties such as high-water content, biocompatibility, biodegradability
and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to
construct biomimetic hydrogels. Their resemblance to living tissues mimics the native
three-dimensional extracellular matrix and supports stem cell survival, proliferation and
differentiation. Given the intricate nature of communication between hydrogels and stem
cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide
hydrogels using various microencapsulation techniques, allowing generation of more
relevant models and further enhancement of stem cell therapies. This paper provides a
comprehensive review of human stem cells and polysaccharide hydrogels most used in
regenerative medicine. The recent and advanced stem cell microencapsulation
techniques, which include extrusion, emulsion, lithography, microfluidics,
superhydrophobic surfaces and bioprinting, are described. This review also discusses
current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels
for cell delivery and disease modeling (drug testing and discovery) with focuses on
musculoskeletal, nervous, cardiac and cancerous tissues.

Keywords: polysaccharide hydrogels, stem cells, microencapsulation, regenerative medicine, cell delivery, disease
modeling

INTRODUCTION

Regenerative medicine offers great potential for restoring individual tissues or organs using patient’s
stem cells incorporated with scaffolds (Mason and Dunnill, 2008). A number of stem cell-biomaterial
related studies have been performed with the aim of treating various diseases and injuries, such as
neurodegenerative disorders, diabetes, cardiovascular diseases, liver diseases, musculoskeletal
defects, osteoarthritis and wound injuries (Crevensten et al., 2004; Kuo et al., 2008; Segers and
Lee, 2008; Mazhari et al., 2020). Stem cells possess self-renewal capability and the potential to
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differentiate into multiple lineages, which include pluripotent
stem cells (embryonic stem cells, ESCs and induced pluripotent
stem cells, iPSCs) and multipotent stem cells (hemopoietic stem
cells, HSC; mesenchymal stem cells, MSCs and adult stem cells,
ASCs) (Leeper et al., 2010). Owing to their distinctive abilities and
characteristics, stem cells have been identified as an
unprecedented and important source of clinically relevant
differentiated cells for application in regenerative medicine,
particularly as cell delivery components for stem cell therapy
and in-vitro (disease) models for drug discovery (Figure 1).

The use of biomaterial scaffolds, which can resemble intrinsic
extracellular matrix (ECM) and direct stem cells, is crucial in the
regeneration of functional tissues. It is challenging to design and
develop scaffolds that can support cell survival, promote
bioactivity and improve cell retention at the administered sites
for cell delivery, cell transplantation as well as disease modeling
(Parisi-Amon et al., 2013; Mayfield et al., 2014). In this respect,
hydrogels are among the most promising biomaterials for
recreating the native ECM properties due to their high-water
content, biological compatibility and moldability (Slaughter et al.,
2009). Various types of hydrogels made of natural polymers,
synthetic polymers and co-polymers with optimized physical and
chemical properties have been developed for regenerative
medicine (Engler et al., 2006; Huebsch et al., 2010).
Biophysical cues including porosity, degradation and
mechanical strength or stiffness, have been incorporated into
hydrogels in a spatiotemporally controlled manner to
systematically modulate the behavior of stem cells such as cell
proliferation, differentiation and migration (Yang et al., 2016). In
addition, advanced chemical strategies and conjugation of
functional materials or molecules were found to improve the

cell-matrix interaction and functionality of hydrogels (Phelps
et al., 2012). In the selection of hydrogel materials, natural
polymers (e.g., polysaccharides and proteins) have gained
much interest in the construction of ECM for stem cells and
their derivatives owing to their hydrophilicity, biocompatibility,
low cytotoxicity, biodegradability, softness, similarity to
physiological environment and tunability into an injectable gel
(Gomez-Florit et al., 2020).

This review focuses on the natural hydrogels derived from
polysaccharides, including agarose, alginate, carrageenan,
chitosan, gellan gum and hyaluronic acid. Despite major
advantages of polysaccharide hydrogels, these materials are not
without limitations. For example, they do not have strong
mechanical properties, and some may not easily be controlled
due to their batch-to-batch variation. For these reasons,
polysaccharide hydrogels are often combined with protein-
based or synthetic polymers, creating composite or co-polymer
hydrogels, and are still widely experimented (Jabbari et al., 2016).
In addition to aiding the retention of microencapsulated stem
cells by providing biological and physical supports,
polysaccharide hydrogels also serve as semi-permeable
membranes with interconnected pores, which allows nutrient
supply, mass transfer and waste removal from the
microencapsulated cells. Hydrogels further protect the
microencapsulated cells from immune attacks of host immune
biosystems. They can be easily modified to incorporate various
cell-interactive moieties to facilitate stem cell-based therapy by
enhancing cell viability and specifically directing stem cell
differentiation to target tissues. (Burdick and Vunjak-
Novakovic, 2009; Guilak et al., 2009). Accordingly, this gives
rise to the emergence of many methods for stem cell
microencapsulation and application in regenerative medicine.

In the first part of this review, we discuss the type and
characteristics of stem cells which have been widely used for
microencapsulation and tissue regeneration. We also highlight
selected polysaccharide polymers that can be processed under
mild conditions to produce biomimetic hydrogels suitable for
stem cell microencapsulation. The advanced
microencapsulation techniques that allow the production of
polysaccharide hydrogels with controlled size, in the form of
beads, particles or capsules within the range of micrometers will
be introduced. Finally, we further discuss the application of
microencapsulated stem cells using biomimetic polysaccharide
hydrogels in stem cell therapy or cell delivery and disease
modeling.

STEM CELLS

Stem cells are unspecialized cells with the ability to self-renew and
differentiate into at least one type of mature cells. Based on the
potential of differentiation, stem cells can be classified into
totipotent stem cells (able to generate all types of cells
including germ cells), pluripotent stem cells (able to generate
all types of cells except for cells of the embryonic membrane), and
multipotent stem cells (able to generate more than one type of
mature cells). In this section, we will discuss pluripotent stem cells

FIGURE 1 | Microencapsulation of stem cells using polysaccharide-
based hydrogels supports cell differentiation and viability in 3D, which has
been recently applied in tissue regeneration or cell therapy and disease
modeling for future drug screening.
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(PSCs) e.g., ESCs and iPSCs, and two types of multipotent stem
cells e.g., HSCs and MSCs.

Embryonic Stem Cells
ESCs are derived from the inner cell mass (ICM) of the blastocyst,
a pre-implanted embryo developed 4 days after fertilization.
Isolation of the ICM can be achieved by immunosurgery or
mechanical dissection. ESCs are cultivated by culturing with
either feeder cells of various sources or cell-free media
conditioned by fibroblasts and supplemented with appropriate
growth factors. Notably, the three-dimensional (3D) culture
system is preferred over the traditional two-dimensional (2D)
culture system as it provides a niche that closely resembles the
physiological environment. Multiple 3D cultures have been
developed, with the most physiologically relevant matrix being
hyaluronic acid (HA)-based hydrogel. Functions of human ESCs
can be confirmed by their potential to differentiate into cells of all
three germ layers in vitro as well as in vivo (teratoma formation
assay in severe combined immunodeficiency mice). So far, many
cell types have been successfully obtained from ESCs, including
endoderm-derived hepatocytes, pancreatic beta cells, lung
epithelium, mesoderm-derived bone, cartilage, cardiomyocytes,
hematopoietic cells, endothelial cells, and ectoderm-derived
keratinocytes, retinal pigment epithelium and neurons. The
basic paradigm of PSC-based cell therapy is that PSCs are first
differentiated into the desired cell type, followed by
transplantation of the differentiated cells into patients (Vazin
and Freed, 2010). While ESCs possess immense therapeutic
potential, their use is limited by 1) ethical issues as human
embryos are destroyed to isolate ESCs, and 2) transplanted
cells derived from allogenic ESCs as they are subjective to host
immune rejection. To this end, ESCs can be replaced by iPSCs
(Moradi et al., 2019).

Induced Pluripotent Stem Cells
The iPSCs are derived from somatic cells that are dedifferentiated
in vitro to a pluripotent stage using either an integrative or non-
integrative approach. In the former, retroviral or lentiviral vectors are
used to deliver four reprograming factors (Oct4, Sox2, Klf4, and
c-Myc). The latter approach involves episomal DNA plasmids,
Sendai virus, adenovirus, synthesized modified mRNA,
microRNAs, proteins and small molecules. Compared to the
integrative approach, the non-integrative approach has a lower
reprograming efficiency but a minimal risk of inducing
mutagenesis, and is therefore considered more suitable for stem
cell-based therapies (Moradi et al., 2019). Like ECSs, the growth of
iPSCs in vitro also requires appropriate extracellular matrices and
environmental cues, which can be achieved with the introduction of
animal cells, hydrogels, individual matrix proteins, synthetic
surfaces, and some commercially well-defined and xenogeneic-
free components (Chen et al., 2014). However, directing iPSCs to
a specific cell lineage remains a challenge and each differentiation
progress likely requires unique features in the culture system. While
a 3D culture system is favorable to the generation of many other cell
types, a recent study has shown that it may impair the differentiation
of iPSCs towards mesenchymal stem cells-like phenotype as
compared to a 2D culture system (Goetzke et al., 2019). iPSCs

are equally suitable for all the biomedical applications of ESCs, such
as drug screening, toxicological studies, disease modeling and cell
therapies. Several iPSC-based clinical trials to treat macular
degeneration, Parkinson’s disease and heart diseases are ongoing.
In recent cases where iPSCs are derived from a patient with certain
disease-causing genetic mutations, cell therapy can potentially revert
the mutations by applying CRISPR/Cas9 technology (Moradi et al.,
2019).

Mesenchymal Stem Cells
MSCs are commonly derived from adult human bone marrow
and adipose tissue stromal vascular fraction. MSCs can be
genetically distinguished from non-MSCs with an “MSC
classifier” based on their gene expression profile. The
number of MSCs in bone marrow is low but a large number
of cells can be acquired by in vitro expansion. MSCs can be
differentiated into various types of mesodermal tissues,
including cartilage, bone, adipose tissue, stroma, muscle and
tendon. This process requires treatment of MSCs with specific
stimuli introduced in specific chronological order (temporal
stochasticity). Differentiation of MSCs in vitro is also affected
by the cellular environment (e.g., hypoxia, inflammatory cues)
and the properties of the substrate. For example, rigid culture
surfaces have been shown to favor osteogenesis whereas soft
gels are conducive to adipogenesis. Due to the ease of isolation
and expansion, MSCs have been widely applied in regenerative
medicine. Over the past decade, however, the focus of MSC
application has shifted from cell replacement to the paracrine
function of MSCs. MSCs have been found to secrete multiple
growth factors, cytokines, and immunomodulatory molecules,
which is a unique feature of MSCs among the other stem cell
types (Pittenger et al., 2019). In order to scale up the production
of MSCs for clinical applications, 3D culture systems such as
microcarriers and stirred-tank bioreactors, are the most
common to achieve a higher surface-to-volume ratio than
monolayer cultures (Koh et al., 2020; Tsai et al., 2020).

Hemopoietic Stem Cells
HSCs are traditionally harvested from bone marrow but now
predominantly from cytokine-mobilized peripheral blood stem
cells. CD34 + peripheral blood stem cells are enriched using
immunomagnetic separation and characterized by flow
cytometry based on the expression of specific cell markers
(CD34+, CD38−, CD45RA−, CD90+, CD49f) (Morgan et al.,
2017). HSCs are able to produce all types of mature blood cells
through differentiation of increasingly lineage-specific progenitors,
which is regulated by both intrinsic factors (transcription factor,
epigenetic regulators, and metabolic pathways) and extrinsic
factors (humeral and neural signals, and local
microenvironmental cues) (Pinho and Frenette, 2019). Bone
marrow transplantation has been a curative therapy for a
variety of hematological diseases over the last 4 decades and its
implication has been advanced with gene editing techniques.
However, bone marrow transplantation is still hindered by the
immunological complications of allogenic transplantation as well
as the suboptimal ex vivo expansion of HSCs in monolayer culture
to provide sufficient amount of stem cells for marrow
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reconstitution (Ng and Alexander, 2017; Pinho and Frenette,
2019). 3D cultures may improve HSC yields by providing space
as well as a more faithful simulation of tissue microenvironment
than 2D. Recently, a 3D scaffold made of polydimethylsiloxane to
mimic the natural hematopoietic niche has been demonstrated to
support the viability, multipotency and self-renewal of human
HSCs in vitro (Marx-Blümel et al., 2020).

POLYSACCHARIDE HYDROGELS

Agarose
Agarose is extracted from red algae and seaweed and consists of a
galactose-based backbone 1,4-linked 3,6-anhydro-α-1-galactose
and 1,3-linked β-D-galactose derivatives (Zarrintaj et al., 2018). It
has a thermoresponsive property, i.e., in a gel state at room

TABLE 1 | Polysaccharides derived natural hydrogels microencapsulated with different type of stem cells and their response.

Polysaccharide
material

Gelation mechanism Stem cell
type1

Significant biological responses References

Agarose Thermal ESCs Agarose hydrogel functionalized with VEGFA and successfully induced
blood progenitor cells

Rahman et al. (2010)

ASCs Bio-fabricated ASCs spheroids into ‘lockyballs’ enabled spheroid
aggregation, delivery and engraftment

Silva et al. (2016)

MSCs 3D bioprinting agarose hydrogel supported MSCs survival in a tissue-like
structure composed of a range of mechanically discrete microdomains

Forget et al. (2017)

Alginate Ionic/chemical
crosslinking

ESCs Co-encapsulated functional β-like cells from human ESCs and CXCL12
enhanced insulin secretion in diabetic mice whilst evaded the pericapsular
fibrotic response

Alagpulinsa et al. (2019)

iPSCs Alginate hydrogel functionalized with RGD peptide supported survival of
functional neurons and allowed optogenetic stimulation

Lee et al. (2019)

MSCs Microfluidics encapsulated single-cell MSCs in alginatemicrogels enhanced
osteogenesis and accelerated mineralization

An et al. (2020)

Carrageenan (CRG) Thermal Ionic
crosslinking

ASCs Injectable k-CRG and non-injectable CRG co-encapsulated with TGF-β1
increased cell viability, induced chondrogenic differentiation and
expression, and synthesized proteoglycans

Popa et al. (2015)

MSCs Excellent structural strength and optimal concentrations obtained by 3D
bioprinted CRG-alginate composite without significant negative effects on
the cell viability

Kim et al. (2019)

iPSCs and
MSCs

Micropatterned κ-CRG hydrogel systems of defined shapes supported the
growth of stem cells and enabled the spatial control of stem cell niche

Vignesh et al. (2018)

Chitosan Ionic/chemical
crosslinking

ESCs Chitosan incorporated with VEGF and endothelial cells to induce
neovascularization

Lee et al. (2015)

MSCs Injectable thermo-responsive chitosan promoted wound healing,
supported MSC’s secretion of growth factor and inhibited inflammation
factors

Xu et al. (2019b)

ASCs N-methacrylate glycol chitosan (MGC) hydrogels incorporated with RGD
peptide sustained cell viability, increased cell spreading and metabolic
activity. Encapsulated ASCs promoted murine CD31+ endothelial cell
recruitment to the peri-implant region

Dhillon et al. (2019)

Gellan Gum (GG) Thermal Ionic/chemical
crosslinking

ESCs and
iPSCs

Bioamine-crosslinked and laminin-functionalized GG hydrogel further
induced neural cell viability, maturity and supported neurite migration

Koivisto et al. (2017)

ASCs GG composited with collagen type-1 and bioactive glass was found to
support osteogenic differentiation of ASCs

Vuornos et al. (2020)

iPSCs The covalent hydrazone crosslinking GG blended with gelatin supported a
prolonged culture of cardiomyocytes in 3D, allowed the cardiac model to
maintain its elasticity and closely mimicked the native heart for at least
7 days

Koivisto et al. (2019)

Hyaluronic acid (HA) Thermal Ionic/chemical
crosslinking

iPSCs The soft 3D methacrylated hyaluronic acid (Me-HA) hydrogel-encapsulated
hiPSC-NPCs displayed robust neurite outgrowth and showed high level of
spontaneous neural differentiation

Wu et al. (2017)

MSCs Encapsulation of human vascular endothelial-cadherin (hVE-cad-Fc) fusion
protein functionalized MSC aggregates (FMA) using HA-based hydrogel
demonstrated better recovery of cardiac function and improved
revascularization of infarcted myocardium in comparison to the
conventional hydrogel-MSC delivery system

Lyu et al. (2020)

ESCs HA backbone was chemically modified with gelatin to encapsulate and
deliver hESC-neural stem cells, successfully improved locomotor function in
a rat spinal cord injury model

Zarei-Kheirabadi et al.
(2020)

1ESCs: Embryonic Stem Cells; iPSCs: induced Pluripotent Stem Cells; MSCs: Mesenchymal Stem Cells; ASCs: Adipose-derived Adult Stem Cells.
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temperature but in a solution state at an increased temperature.
This makes agarose a favorable biomaterial for its easy tunable
mechanical properties during synthesis. Agarose solutions
containing cells can be prepared and emulsified at 37°C, then
gelated to microgels in an ice bath. As shown in Table 1, previous
and current studies of stem cell encapsulation in agarose have
been reported. An earlier research activity showed that agarose
was used as a scaffold for vascular endothelial growth factor
(VEGF) immobilization to encapsulate and differentiate ESCs
during early stages of development toward blood progenitor cells
(Rahman et al., 2010). Stem cells were encapsulated into agarose
microwells to form structures known as ‘lockyballs’. The
‘lockyball’ interior structure consisted of an aggregate of
human adipose stem cells that is surrounded by a synthetic
coating, which contained multiple binding sites for other
‘lockyballs’ (Silva et al., 2016). In addition, agarose has been
used as a printable bioink for generating specific tissues from
human stem cells where recent work illustrated how MSCs are
printed using an agarose-based bioink at different formulations,
which can provide a versatile platform for stem cell therapy
(Forget et al., 2017).

Alginate
Alginate is a polysaccharide derived from brown algae containing
guluronic acid (G units) and mannuronic acid (M units)
(Figure 2). Alginate-based biomaterials have been widely used
for biomedical and pharmaceutical applications because of their

biocompatibility and ionic crosslinking. It has been the most
popular natural polymer matrix for cell microencapsulation due
to quick gelation without using toxic chemicals or organic solvent
(Andersen et al., 2015; Ching et al., 2017). Divalent cations such
as calcium, barium ormagnesium are used as ionic crosslinkers to
form ionic bridges between alginate G units. The most frequent
used crosslinker, calcium chloride (CaCl2), is highly soluble in
aqueous medium which can trigger rapid or poorly controlled
gelation. To decrease the gelation rate, calcium carbonate
(CaCO3) or calcium sulfate (CaSO4) is added. For example,
calcium ions (Ca2+) will be released from CaCO3 when
glucono-δ-lactone is applied in alginate/CaCO3 mixture,
subsequently initiating alginate gelation in a gradual manner
(Crow and Nelson, 2006). Furthermore, the Ca2+ release from
alginate hydrogel may induce hemostasis, which leads to interest
in covalently crosslinking.

In stem cell encapsulation, alginate hydrogel was combined
with ESCs to generate functional human beta-like cells (SC-β
cells) (Maguire et al., 2006). The capacity of these cells to co-
microencapsulate with immunomodulatory chemokine
(CXCL12) in alginate can evade the fibrotic foreign body
reaction and induce long-term glycemic correction in an
immunocompetent murine model of type-1 diabetes without
systemic immunosuppression (Maguire et al., 2006;
Alagpulinsa et al., 2019). Bone and cartilage have also been
regenerated using microfluidics or bioprinting methods where
MSCs or iPSCs were not only encapsulated in suspension.
However, single-cell encapsulation has been achieved lately to
prevent non-homogeneous differentiation (Nguyen et al., 2017;
An et al., 2020).

Although alginate has been fundamentally easy to utilize for
stem cell microencapsulation, it lacks biological active moieties.
In order to improve cell-cell and cell-matrix interaction for
efficient stem cell-based therapy, alginate has been modified,
coated or composited with other biologically active molecules
or polymers (e.g., gelatin, hyaluronic acid, chitosan, poly-L-
lysine, various growth factors, peptides and proteins). For
instance, when a combination of alginate and HA hydrogel
was formulated for MSC microencapsulation, an optimal
composition of 1% alginate and 0.25% HA was found to
greatly enhance cell growth and support release of therapeutic
proteins (Cañibano-Hernández et al., 2017). Lee and co-workers
covalently conjugated alginate with ECM-derived peptide (e.g.,
arginine-glycine-aspartic acid, RGD),successfully stimulated
iPSCs and neural derivatives, promoted cell viability and
differentiation as well as allowed optogenetics application in
the 3D culture system (Lee et al., 2019). Hence, alginate-based
hydrogels can be further tailored to better resemble the natural
ECM microenvironments by providing multiple specific signals
to stem cells and their derivatives.

Carrageenan
Carrageenan is a sulphated polysaccharide extracted from red
seaweeds (Rhodophyceae), which contains repeating disaccharide
units of 4-linked b-D-galactopyranose (G-unit) and 4-linked
a-D-galactopyranose (D-unit) or 4-linked 3,6-anhydrogalactose
(DA-unit), with a variable portion of sulphate group (Campo

FIGURE 2 | Chemical structures of polysaccharide hydrogels.
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et al., 2009). It can be categorized into three main families - kappa
(κ), iota (ι) and lambda (λ), based on the number and position of
the sulphate group in the repeating galactose units. Among them,
κ-carrageenan (k-CRG) has primarily and recently been exploited
in cell therapy due to its distinguishing properties, including
thermoresponsive nature, facile gelation, moldability, close
resemblance to glycosaminoglycans (GAGs) and good
injectability under physiological conditions (Campo et al.,
2009; Mohite and Patil, 2014). Stem cells are encapsulated
within κ-CRG hydrogels in a mild condition with ionic
gelation mechanism (Mohite and Patil, 2014).

Several recent studies show a promising performance of
κ-CRG hydrogels. For example, injectable κ-CRG hydrogels
encapsulated with human ASCs and TGF-β1 for cartilage
regeneration were reported to enhance cell viability and
proliferation, increase chondrogenic differentiation and
expression level, and stimulate production of proteoglycans
and other ECM components of cartilage (Popa et al., 2015).
Carrageenan has also been compositely incorporated with other
polymers such as alginate and chitosan for preparing hydrogel
beads and fibers. It has demonstrated good processability at
different formulations for application in tissue regeneration
and cell delivery (Kim et al., 2019). Recently, a bioprinted co-
polymer hydrogel consisting of carrageenan and alginate
encapsulated with MSCs, has demonstrated excellent structural
strength and biological activity (Kim et al., 2019).

Chitosan
Another commonly used polysaccharide polymer, chitosan, is
derived by the deacetylation of chitin. It consists of glucosamine
units such as β-(1→4)-linked D-glucosamine and N-acetyl-D-
glucosamine (Wan and Tai, 2013). Chitosan has been extensively
used in tissue regeneration because of its excellent
biocompatibility, biodegradability, hydrophilicity and structural
similarity to glycosaminoglycans (GAGs) (Kim et al., 2008). The
gelation of chitosan hydrogels can be controlled using pH (Chang
et al., 2015) and the hydrogel properties can be modified for stem
cell encapsulation through chemical crosslinking (Muzzarelli
et al., 2016). Numerous works showed that 3D chitosan
hydrogels at different concentrations promoted osteogenic and
chondrogenic differentiation of human stem cells (Muzzarelli
et al., 2015). Other researchers have combined chitosan hydrogels
with stem cells and growth factors to treat spinal cord injury (Li
et al., 2016). Chitosan-based hydrogels have been further
modified or functionalized to increase the biological activities
of encapsulated cells (Dhillon et al., 2019). Since it can also
provide analgesic effect and hemostatic activity, much current
research focuses on its application in wound healing (Xu H. et al.,
2019; Soriano-Ruiz et al., 2019). For example, injectable thermo-
sensitive hydrogel loaded MSCs from umbilical cord blood was
found to successfully accelerate wound closure and support tissue
remodeling and regeneration of skin appendages for cutaneous
wound healing. (Xu Y. et al., 2019; Soriano-Ruiz et al., 2019).
Furthermore, chitosan-based hydrogel encapsulating ESC-
derived endothelial cells and VEGF induced robust cell
retention and promoted neovascularization through
vasculogenesis and angiogenesis (Lee et al., 2015). Recently,

studies show chitosan bioink is suitable for printing stem cell-
derived constructs (Roehm and Madihally, 2018). However,
optimization and more studies are required to ensure stem cell
survival and differentiation.

Gellan Gum
Gellan gum (GG), an anionic polysaccharide polymer, is obtained
from Sphingomonas Elodea. It contains repeating units of β-D-
glucose, β-D-glucuronic acid and α-L-rhamnose in a molar ratio
of 2:1:1 (Prajapati et al., 2013). It has been immensely used for the
encapsulation of drugs, enzymes, cells and microorganism
attributed to its hydrophilicity and excellent gelling property
in the presence of cations (Wang et al., 2008; Chakraborty
et al., 2014).

Like many other polysaccharide polymers, GG is a relatively
inert biomaterial that requires further modification and
improvement to support cell adherence. GG-based hydrogels
are functionalized with various type of peptides by covalently
conjugating them into the molecular backbone itself
(Chakraborty et al., 2014). GG has been studied for the
regeneration of bone (Vuornos et al., 2020), cartilage (Park
et al., 2020) and spinal cord (Gomes et al., 2016). In neural
regeneration, Koivisto and co-workers have demonstrated that
bioamine-crosslinked GG hydrogels supported viability of both
ESCs and iPSCs derived neuronal cells, and further confirmed
that functionalized GG hydrogels with laminin resulted in cell
type-specific behavior, neuronal cell maturity and neurite
migration (Koivisto et al., 2017). Other studies reported that
the development of composite GG, incorporated with collagen
type-1 and bioactive glass, can support the osteogenic induction
of human ASCs (Vuornos et al., 2020). This suggested that a
specific type of peptide/protein, growth factor and composite
material plays a key role in triggering specific stem cell
differentiation, hence these factors need to be considered in
hydrogel synthesis and modification.

Hyaluronic Acid
Hyaluronic acid (HA), also known as hyaluronan, is one of the
major components of ECM and consists of multiple sites for cell
adhesion (Knopf-Marques et al., 2016). It is a non-sulphated
glycosaminoglycan with repeating disaccharide units of
glucoronate and N-acetylglucosamine (Khademhosseini et al.,
2006). Many studies have demonstrated that HA regulates stem
cell niches, thus making it suitable for stem cell
microencapsulation and culture (López-Ruiz et al., 2019). HA
has been developed as a hydrogel scaffold for promoting self-
renewal and vascular differentiation of human ESCs (Gerecht
et al., 2007). Other research groups detailed the incorporation of
bone marrow derived MSCs with injectable HA hydrogel to
engineer cartilage tissue (Jooybar et al., 2019), and MSCs
encapsulated with a photocrosslinkable HA-collagen hydrogel
to generate bone tissue (Zhang et al., 2019). Tissue regeneration
using encapsulated stem cells in HA appears as a promising
strategy to promote wound healing as well as to repair damaged
nerve tissues (da Silva et al., 2017; Wu et al., 2017). In addition,
HA microcarriers and HA bioinks provide a conducive
environment for stem cell growth (Shendi et al., 2017; Law
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et al., 2018; Sakai et al., 2018). For instance, HA blended with
methylcellulose supported MSCs viability at above 75% in the
bioprinted structures, and the cells retained viability for at least
1 week after 3D bioprinting (Law et al., 2018).

MICROENCAPSULATION TECHNIQUES

Extrusion
Extrusion method, which includes air jet extrusion, syringe
droplet extrusion, centrifugational extrusion, electrostatic
extrusion and vibrational extrusion, is among the most
common methods applied to microencapsulate cells for
regenerative medicine. Among the extrusion methods,
electrostatic/electrospray droplet extrusion has been widely
applied for stem cell microencapsulation study (Kim et al.,
2019) Hydrogel beads of approximately 50 µm are produced
and the reduction of cell viability can be avoided by the use of
organic solvent. The process involves gravitational dripping
where a suspension of hydrogel precursor and cells are
extruded via a needle into a hardening solution (Figure 3A)
(Hashemi and Kalalinia, 2015).

There are several factors that influence the diameter of the cell
encapsulated microspheres such as density of solution, diameter
of the extrusion needle/nozzle and surface tension of the droplets.
Peng and co-workers reported the optimization of electrospray
technique to encapsulate human bone marrow stromal cell
(hBMCs) in alginate-gelatin microspheres (Xu H. et al., 2019).
In the study, non-aggregated, polydispersity and defined
spherical microspheres were produced with alginate (1.5%,
w/v) and gelatin (0.5%, w/v) using a 30 G needle and 8 kV
voltage. When compared to alginate microsphere alone,
alginate-gelatin improved cell proliferation and viability by up
to 21 days. A method to control cell-release tunable microbead
hydrogels containing adipose stem cells (ASCs) had also been

developed (Leslie et al., 2017). In this study, electrostatic
extrusion dripping was employed to produce enzymatically
modulated hydrogels. Nevertheless, a major limitation of this
technique is the presence of cells which often leads to the clogging
of nozzle. In certain cases, nozzle inner diameter and applied
pressure are two factors that cause cell damage (Cidonio et al.,
2019). The clogging issue can be reduced by ensuring cell
suspension is homogenous as well as flushing the nozzle with
sodium citrate. Meanwhile, employing right parameters and a
blunt nozzle may prevent cell damage.

Emulsion
Cell encapsulation by emulsion method is typically carried out by
dispersing hydrogel precursor in non-miscible solution, namely
water-in-oil emulsion. At equilibrium, internal gelation occurs in
which the emulsified hydrogels are later collected by a
centrifugation process (Choe et al., 2018; Figure 3B). Despite
advantages of this technique e.g., low production cost and high
scalability, broad size distribution and cell disruptions at oil
interface have raised some concerns (Daly et al., 2020).
Prolonged exposure towards oil and surfactants resulted in
cytotoxic environment that disrupted cells and subsequently
reduced cell viability (Chan et al., 2013). Water-in-water
emulsion drop, which involved a one-phase system, has been
reported as a template to produce microgels. However, a specific
combination of two immiscible aqueous solutes is required,
which would limit the potential use of this modified approach.
To obtain uniform micro encapsules, a few studies have
investigated the application of double emulsion technique
(Chan et al., 2013; Liu E. Y. et al., 2018). Choi and co-workers
adopted double emulsion drop technique with ultrathin oil shell
being as a sacrificial template (Choi et al., 2016) The
monodisperse emulsion drops were formed via coaxial flow
aqueous pre-polymer solution surrounded by oil phase and
directly emulsified into a continuous aqueous phase. Upon UV

FIGURE 3 | Extrusion and emulsion methods. (A) Electrostatic/electrospray droplet extrusion technique for microencapsulation of stem cells and bioactive
molecules. Figure adapted with permission from Figure 1 of (Verica et al., 2008). (B) Emulsification technique (water-in-oil emulsion) produces hydrogels for cell
encapsulation. Figure adapted with permission from Figure 6 of (Choe et al., 2018).
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exposure, dewetting occurred and the hydrogels solidified. The
researchers demonstrated that this approach can support
large-scale hydrogel production and increase cell viability
attributed to the shorter exposure of cells to oil phase (Choi
et al., 2016).

Lithography
There are two commonmethods of lithography for the fabrication
of microfluidic cell culture devices, namely photolithography and
soft lithography. This technique is used to pattern hydrogels at the

micro and nanoscale with bioactive features to improve cell
differentiation, spreading and migration (Guan et al., 2017) In
photolithography, a silicon wafer is spin-coated with a viscous
photoresist, which will start to crosslink when exposed to high
energy of UV light. The designed pattern of hydrogel is formed
(Figure 4A). Soft lithography has been introduced to replicate a
mold of the microstructure, allowing nanofabrication by pouring
a polymer solution or spin-coated onto a master for crosslink
until a rubbery replica is formed (Gasperini et al., 2014) The
channels in the replica can be filled or loaded with a suspension of
a hydrogel precursor and cells. Master is a photoresist patterned
silicon wafer with polydimethylsiloxane (PDMS) chosen as an
elastomer to cover the surface of the master because of its
transparency, gas permeability and biocompatibility (Tang
et al., 2021). In addition, soft lithography possesses unique
advantages as it could provide a good resolution (∼35 nm),
which is more competitive when compared to electron beam
lithography (∼15 nm) (Lin et al., 2018). By using soft lithography,
the fabrication of polymer materials allows procedures to pattern
non-planar substrates with a wide range of materials (Rose et al.,
2019).

Currently, several advanced lithography techniques have been
established such as microcontact printing, replica molding,
micro-transfer molding and solvent assisted micro-molding/
micropatterning. Previous research by Suh and co-workers
demonstrated that a soft lithographic technique using HA is
compatible with microcontact printing and molding approaches
(Suh et al., 2004). During microcontact printing, PDMS stamps
were used with oxygen plasma in order to enhance the adhesion
of HA to the stamps. Results showed that the pattern transfer by
this method had a good edge definition where the height of the
printed HA was higher (∼90 nm) than typically obtained by self-
assembled monolayers. However, microcontact printing and
photolithography are restricted to many other polymers which
require ionic or thermal crosslinking. Series of fabrication steps
are laborious and often damage encapsulated cells during curing
and demolding. Recent work to overcome these issues by using
simple paraffin wax molds was reported to successfully generate
defined shapes on alginate-gelatin and κ-carrageenan hydrogel
surface. This supports the viability of both MSCs and iPSCs
(Vignesh et al., 2018).

Moreover, an advanced lithography based 3D bio-printing has
also been introduced where both UV and visible light can be
applied to cure photocrosslinkable bioinks as well as to improve
the resolution and to achieve multi-material printing ability
(Liang et al., 2020). Factors such as temperature change,
curing or drying during processing, UV initiators in UV
crosslinking and light intensity could have detrimental effects
on the viability of encapsulated stem cells. Thus, further
improvement and optimization are required.

Microfluidics
Microfluidics is a method which deals with the handling of fluids
in microenvironments that allows the formation of micro gels. In
stem cell culture, microfluidics involves a small-scale system,
which focuses on the flow volume and channel size, and is
increasingly being explored (McKee and Chaudhry, 2017). The

FIGURE 4 | Lithography, microfluidics and bioprinting methods for stem
cell microencapsulation. (A) Schematic diagram shows the process of
photolithography and soft lithography. (B) Geometric illustrations of three
microfluidic devices: (a) T-junction, the perpendicular flow of the
continuous phase is sheared by dispersed phase and thereby generates
droplets. (b) Flow-focusing, droplets are produced by shearing the dispersed
phase from two directions. (c) Co-flow, the dispersed phase is forced through
a capillary inside a bigger capillary where continuous phase is pumped. (d)
Droplet generation by flow-focusing device (use of fluorinated oil with
stabilizing agent and dispersed phase as water solution of dye). Figure
adapted with permission from Figure 1 of (Hayat et al., 2018; Alkayyali et al.,
2019). (C) Schematic diagram of (a) piston extrusion-based bioprinting, (b)
piezoelectric actuator inkjet-based bioprinting, and (c) laser-assisted
bioprinting.
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microfluidics is also used to simulate the in vivo
microenvironment via perfusion media exchange and creating
chemical gradients of soluble factors for low amount of cells or
single cells (Halldorsson et al., 2015). Droplet-based microfluidics
appears as a powerful method and versatile technique to
reconstruct microenvironments with remarkably high
throughput and tight control over cells, biomolecules and
extracellular matrix. There are active and passive methods of
droplet-based microfluidics. The most common devices in cell
microencapsulation are derived from passive methods, including
flow-focusing, co-flow and T-junction design (Figure 4B)
(Rossow et al., 2017). Details on the active and passive
droplet-based microfluidics methods can refer to the recent
review article (Zhu and Wang, 2017). Generally, flow-focusing
and co-flow microfluidic devices form droplets as a reaction to
shear stress of a continuous phase on a dispersed phase. Both
phases are normally immiscible liquids. Meanwhile for the
T-junction devices, a droplet is created when the two channels
collide with each other at the right angle and leave through a
perpendicular stem (Alkayyali et al., 2019). The size and shape of
the droplets in microfluidics-based synthesis is influenced by the
sizes of the microchannel and flow rates of the two phases.
T-junction is a common technique in microfluidics for cell
microencapsulation owing to ease of droplets and uniform size
distribution of microbeads (Alkayyali et al., 2019). Stem cells such
as ESCs, have been embedded in agarose hydrogel using
T-junction technique (Kumachev et al., 2011).

Bioprinting
Bioprinting is an emerging technology for tissue regeneration
because of its ability to produce bio-artificial organs and to
mimic the cell-matrix native microenvironments (Lei and
Wang, 2016). In general, 3D bioprinting is utilized to
deposit biomaterials layer by layer with the assistance of
digital 3D computer aided design (CAD). There are three
common techniques employed in advanced tissue
regeneration and organ manufacturing areas. They are
inkjet bioprinting, laser-assisted bioprinting and extrusion-
based bioprinting (Figure 4C). The working principle in the
inkjet bioprinting technology is simple and similar to home
printing techniques where the hydrogel is printed separately
layer by layer using thermal and acoustic methods. The heat
from the printer head forces the cells and biomaterials out of
the nozzle through pressure pulses. In addition, extrusion-
based bioprinting uses the same extrusion principle where the
fluids are released by a pressure assisted system. In laser-
assisted bioprinting, a vapor pressure (laser pulse) forms
bubbles between the solution and a piece of glass (donor
slide) where the pressure will shoot a small droplet of
solution towards the collector substrate drop by drop.
Subsequently, the repeated processes produce a tissue-like
structure. During the process, the polymer solution is
transformed into a 3D structure by crosslinking, which
involves ionic crosslink or UV photo polymerization
(Markstedt et al., 2015). The printing temperature is set
between 1°C and 37°C to avoid causing overheating damage
to the encapsulated cells (Lei and Wang, 2016).

The important feature of 3D bio-printers is to print living cells
together with polymeric hydrogels and other bioactive
compounds, either alone or in combination with other
polymers as the main composition of bioinks. This will impact
the mechanical and cellular behaviors of the generated biological
structures. Previous studies showed that the use of polysaccharide
polymers and copolymers as bioinks can produce a stable
microenvironment for stem cells to grow, proliferate,
differentiate and migrate (Liu F. et al., 2018). There are four
types of hydrogel bioinks that are classified based on the
crosslinking methods such as ionic-crosslinked bioink,
thermo-sensitive bioink, photosensitive bioink and shear-
thinning bioink (Xu et al., 2020). Each bioprinting technique
has limitations and different requirements for the bioinks which
can affect the encapsulated stem cells. Although inkjet
bioprinting and laser-assisted bioprinting are able to position
multiple cell types accurately with high cell survivability, inkjet
bioprinting has the limitations of vertical printing and restricted
material viscosities to produce a 3D architecture, whereas laser
bioprinting only positions the bioink onto a prefabricated matrix
and suffers from less stability, low scalability and high cost. In
contrast, extrusion bioprinting has quick fabrication times for any
3D microstructures but poor cell viability. Thus, combining
different bioprinting techniques could solve the existing
limitations and adopt advantages from each other (Željka
et al., 2018). Current research demonstrates the feasibility and
efficiency of using more than one cell microencapsulation
technique. Integrating 3D bioprinting (digital micromirror
device (DMD)-based projection printing) and microfluidics
improved bioprinting time and speed with less than 20 s for
two to three bioinks and allowedmore than one type of cell (Amir
et al., 2018).

Superhydrophobic Surfaces
Hydrophilicity of most pristine hydrogels can cause inert
characteristics and affect the functionality of the hydrogels. In
an encapsulated hydrogel system, small molecules and solutes can
freely diffuse across the hydrogel layer. Nevertheless, in certain
cases where larger molecules or components present in the
system, this may block the interaction of the cells and the
hydrogel matrix (Pérez-Luna and González-Reynoso, 2018). It
has been shown that surface-coating hydrogels with a super
hydrophobic surface can prevent contamination within
hydrogel beads and control the entrance of solvents for
molecular exchange with the surrounding environment (Lima
et al., 2011). This technique was adopted to produce alginate
hydrogels coated with polystyrene surfaces and crosslinked with
CaCl2 to encapsulate MSCs and fibronectin (Lima et al., 2013). It
is practically important to entrap water soluble molecules such as
fibronectin, which can easily diffuse to the media. In the study,
MSCs isolated from Wistar rat’s bone marrow were immobilized
into alginate beads through a process of gelification of liquid
precursor droplets onto biomimetic superhydrophobic surfaces.
In the microencapsulation and gelification process, no additional
process of precipitation and aggressive mechanical strength were
used, the hydrogel was rapidly formed without aggregations in
5 min. The results demonstrated that alginate beads at 2% of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 7350909

Lee et al. Polysaccharide Hydrogels for Microencapsulation of Stem Cells

94

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


concentration were found to remain stable for 21 days whilst
hybrid bone regeneration was accelerated. Major advantages of
this technique, including mild processing conditions, controllable
hydrogel size, high encapsulation loading, and mechanical forces
are not required during formation of the particles. However, it is
difficult to bind and incorporate with other superhydrophobic
nanoparticles without sacrificing or degrading its
superhydrophobic nature. Several in-depth reviews are
available, which focus on the materials and methods used to
produce superhydrophobic surfaces (Eric et al., 2016; Karim et al.,
2019).

MOVING TOWARDS CLINICAL
TRANSLATION

Stem Cell Therapy
While stem cell therapies have made significant progress
preclinically, clinical translation remains challenging due to
the massive cell death during transplantation and the failure of
the graft to integrate into the host tissue. Hydrogel-based delivery
systems emerge as a promising platform to tackle these challenges
by preventing mechanical cell damage during cell delivery and
creating a favorable microenvironment post-transplantation.
Hydrogels derived from natural, synthetic materials or a
hybrid of both have been engineered with desirable features.
The design of injectable hydrogels allows for localized cell
delivery in a minimally invasive manner. Moreover, the ability
of hydrogel systems to co-deliver bioactive molecules and to be
modified further, enhanced the therapeutic effects (Youngblood

et al., 2018) (Figure 5). In this section, the recent progress of
polysaccharide-based hydrogels for cell delivery in the
musculoskeletal, cardiac, neural and cancerous tissues towards
clinical translation is reviewed.

Musculoskeletal Tissues
Cell therapies for musculoskeletal tissue restoration are at
different levels of evidence in clinical trials. Various sources of
stem cells (bone marrow-derived MSCs, umbilical cord-derived
MSCs, synovial MSCs, induced PSC, muscle satellite cells) and
multiple delivery methods (implantation, arthroscopy, injection)
are being explored to optimize the therapeutic effects (Loebel and
Burdick, 2018). Modification of hydrogel biophysical properties
such as incorporation of integrin-binding motifs has been proven
to augment the muscle regeneration. RGD-coupled alginate
hydrogel encapsulated gingival mesenchymal stem cells
(GMSCs) delivered with multiple myogenic growth factors
(containing 6-Bromo-1-methylindirubin-3′-oxime, forskolin,
and basic-fibroblast growth factor) was reported to stimulate
the expression of myogenetic-related genes and support
myogenic differentiation. In animal trial, muscle-like structures
were formed in small islands 8 weeks after ubcutaneous
transplantation of GMSCs in microbeads into
immunocompromised mice (Ansari et al., 2016).

In cartilage repair, the advanced design of a hydrogel system
transforms stem cell therapy to the next level with promising
clinical application. An alginate (Alg)/polyacrylamide (PAAm)
double network (DN) hydrogel system functionalized with
transforming growth factor beta-3 (TGF-b3)-encapsulated
nanoparticles has been shown to improve the regeneration of

FIGURE 5 | Cell therapy and delivery. (A) A schematic of the microencapsulation of human stem cells and its benefits for clinical translation. Figure adapted with
permission from Figure 1 of (Choe et al., 2018). (B) GLP-1 CellBeads illustrating the central core bead containing GLP-1-secreting MSCs (1) and the surrounding
alginate shell (2). (C) A green fluorescence protein-tagged CellBead within a coronary vessel. Scale bar: 250 μm. Figures 5B,C adapted with permission from Figures
1A,B of (Wright et al., 2012).
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cartilage in rats, which is attributed to its physical stability and
controlled release of TGF-b3 (Saygili et al., 2021). HA appears as
an important component in the hydrogel system. It has been
studied in combination with 1) polyethylene glycol and MSCs,
namely ChonDux hydrogel, and 2) allogenic human umbilical
cord blood derived MSCs, namely Cartistem® for clinical trials
(Park et al., 2017; Wolf et al., 2020). Results from the clinical trials
suggest that these hydrogel systems are safe and effective for
cartilage regeneration to treat cartilage defect in osteoarthritis
(Table 2). Despite being highly effective and biodegradable,
adverse events such as joint pain, joint effusion and
inflammation limit the clinical translation of HA hydrogel
systems (Abhirup et al., 2020).

While hydrogel has exhibited great potential in regenerating
many types of musculoskeletal tissues, its application in
craniofacial bone tissue repair has been restricted due to its
weak adherence to the host tissue. This has been resolved with
encapsulating gingival MSCs with an alginate-based, adhesive,
photocrosslinkable hydrogel with modifiable mechanical
properties. This approach has exhibited satisfying
biocompatibility, biodegradability and osteoconductivity in a
rat peri-implantitis model (Hasani-Sadrabadi et al., 2020).

Cardiac Tissues
Heart failure is among the major causes of death worldwide.
Massive cell death in cardiovascular diseases means substantial
amount of stem cells are required to reconstitute the cardiac
tissue. Co-transplantation of stem cells with hydrogels
appeared as one of the appealing strategies to improve both
cell delivery and cell survival. A recent study screened the
efficacy of matrigel, alginate and hyaluronate as carriers to
deliver hESC-derived cardiomyocytes (hESC-CM) using a rat
acute myocardial infarction (AMI) model. Although all three
delivery systems give rise to improved cardiac function
compared with the saline control group, hyaluronate
hydrogel is superior in improving cardiac functional

recovery, delaying left ventricular remodeling, and
preventing arrhythmias (Tan et al., 2020).

Innovative hydrogel designs have emerged to improve the
therapeutic efficacies of stem cell therapies via targeted
delivery, improved cell retention and increased cell viability
(Peña et al., 2018). A bioglass/g-polyglutamic acid/chitosan
(BG/g-PGA/CS) injectable composite hydrogel loaded with
MSCs has resulted in enhanced cardiac tissue repair in a rat
AMI model (Gao et al., 2020). Incorporation of bioactive
molecules including cytokines and/or growth factors may
increase the efficacy of stem cell therapy by stimulating
stem cell proliferation in vivo after transplantation. Increase
in graft size compared to controls in a rat AMI model has been
observed when insulin-like growth factor-1 (IGF-1) was
delivered in chitosan hydrogel with human placenta-derived
MSCs (Yao et al., 2020). In addition, encapsulation of human
vascular endothelial-cadherin (hVE-cad-Fc) fusion protein
functionalized MSC aggregates (FMA) using HA-based
hydrogel has exhibited better recovery of cardiac function
and improved revascularization of infarcted myocardium in
comparison to the conventional hydrogel-MSC delivery
system (Lyu et al., 2020). In clinical trials, until now, only
alginate hydrogels were applied as a device (without cells and
bioactive molecules) in treating heart failure, namely IK-5001,
Algisyl-LVR and Algisyl (Frey et al., 2014; Lee et al., 2015).
Details on promising alginate-based systems in cardiac
regeneration and clinical trials can be referred to the
current review paper (Giada et al., 2020).

Neural Tissues
Delivery of stem cells that can either produce therapeutic
molecules to support neural regeneration, or simply substitute
the injured or dead cells, is a major paradigm of cell therapy in the
management of neural tissue damage (Hlavac et al., 2020). The
clinical application potential of various types of hydrogels have
been reported. A commercially available HA hydrogel (the

TABLE 2 | Clinical trials using polysaccharide hydrogels with/without stem cells as of January 2021 (ClinicalTrials.gov).

Polysaccharide
hydrogels

Disease/Condition Intervention/Treatment Clinical trial Id number

Hyaluronic acid Musculoskeletal: Cartilage Defect Device: ChonDux (combination of HA and PEG
encapsulated with MSCs

Terminated (Enrolment
suspended; follow up
continue)

NCT01110070

Hyaluronic acid Musculoskeletal: Degeneration
Articular Cartilage Knee

Biological: Cartistem (HA hydrogel encapsulated with
MSCs derived from allogenic human umbilical cord
blood)

Completed phase 2 NCT01733186

Alginate Neural: Intracerebral Hemorrhage Drug: GLP-1 CellBeads (alginate microcapsules
containing allogenic MSCs, transfected to secrete
Glucagon like peptide-1)

Phase 2 (Terminated for
improvement of study
medication)

NCT01298830

Alginate Cardiac: Vesicoureteral reflux Drug: Chondrocyte-alginate gel suspension Phase 3 NCT00004487
Alginate Cardiac: Acute Myocardial Infarction;

congestive heart failure
Device: IK-5001 (Alginate + calcium gluconate +
saline solution

Completed NCT01226563

Alginate Cardiac: Dilated cardiomyopathy Device: Algisyl-LVR Completed phase 2 NCT00847964
Alginate Cardiac: Dilated cardiomyopathy; heart

failure with reduced ejection fraction
Device: Algisyl-LVR Completed phase 3 NCT01311791

Alginate Cardiac: Dilated cardiomyopathy; heart
failure

Device: Algisyl Not yet recruiting NCT03082508

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 73509011

Lee et al. Polysaccharide Hydrogels for Microencapsulation of Stem Cells

96

http://ClinicalTrials.gov
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


HyStem-C Cell Culture Scaffold Kit, BioTime Inc. Alameda, CA,
GS313), of which the HA backbone was chemically modified with
gelatin to encapsulate and deliver human ESC derived neural
stem cells, successfully improved locomotor function in a rat
spinal cord injury model (Zarei-Kheirabadi et al., 2020).

Hydrogels provide a 3D microarchitecture that is conducive
for neural regeneration in many ways. For example, they provide
the physical cues to guide stem cell differentiation, allow the
release of bioactive molecules (e.g., brain-derived neurotrophic
factor, BDNF) in a controlled manner and shield stem cells from
host immune surveillance (Madhusudanan et al., 2020). HA
hydrogels functionalized with RGD adhesive peptide and
heparin have been demonstrated to promote post-
transplantation survival of the highly fragile human ESC-
derived midbrain dopaminergic neurons (Vazin and Freed,
2010). In the setting of neurosensory hearing loss,
encapsulating BDNF-producing MSCs with ultra-high viscous-
alginate has been shown to prevent spiral ganglion neurons from
degeneration when applied to the cochlear implant surface in
deafened guinea pigs (Scheper et al., 2019). Interestingly, MSCs
encapsulated in agarose-carbomer based hydrogel secreted CCL2
chemokine to preserve cytoarchitecture and promote functional
recovery in spinal cord injury (Papa et al., 2018). In addition,
hydrogel microbeads made of alginate–Ca2+were used to
differentiate and scale up dopaminergic neurons from
encapsulated human iPSC-derived precursor cells. Sufficient
cell number was obtained when retrieved for transplantation
and the cells were found well integrated with the host brain in
pre-clinical study (Komatsu et al., 2015). In clinical trials,
allogenic MSCs, transfected to secrete glucagon like peptide-1,
were encapsulated in alginate microcapsules (GLP-1 CellBeads).
Phase-II results showed no safety issues or adverse events after
implantation in the stroke patients with space-occupying
intracerebral hemorrhage or traumatic brain injury (Heile and
Brinker, 2011).

Cancerous Tissues
The role of stem cell therapy in the management of cancer
patients is not restricted to replace damaged tissue after cancer
treatment (e.g., transplantation of HSCs to facilitate
hematological recovery, iPSCs-derived hepatocytes to repair
liver tissues), but also involves localized delivery of anti-cancer
therapies. Stem cells have been engineered to exhibit tumor-
killing properties through the expression of cytotoxic enzymes
that process prodrugs (e.g., cytosine deaminase, herpes
simplex virus-thymidine kinase), secretory factors (e.g.,
TNF-alpha-related apoptosis-inducing ligand/TRAIL, IFN-
beta) and oncolytic viruses (e.g., herpes simplex virus,
HSV). A recent role of stem cells is to carry chemotherapy-
containing nanoparticles and protect them from host immune
clearance. In cancer immunotherapy, transplantation of HSCs
expressing chimeric antigen receptors (CARs) or T-cell
receptors (TCR) that are specific for tumor-associated
antigen, is a promising strategy to treat hematological
malignancies (Zhang et al., 2017). However, this approach
is less feasible for solid tumors due to poor infiltration, which
could be solved with a localized implantation system. Tumor-

targeting CAR T cells and stimulator of IFN genes (STING)
agonist delivered by alginate scaffolds has been demonstrated
to eradicate solid tumors, which systemic T cell injection alone
failed to achieve (Smith et al., 2017). In addition to the
implantable form, an injectable hydrogel has shown
impressive therapeutic effects as a carrier for cancer vaccine
and anti-PD-1 monoclonal antibodies (Li et al., 2020). A recent
review covers this area in depth from the hydrogel materials,
therapeutic strategies as well as clinical perspectives (Correa
et al., 2021).

Disease Modeling
Apart from its application in cell therapy, biomimetic
polysaccharide hydrogels also harbor great potential in disease
modeling. However, unlike hydrogels for cell therapy, which
emphasize on the homing and engraftment ability, the
preferred choice of hydrogels for disease modeling are disease-
specific, with emphasis on candidates which carry characteristics
that could facilitate the replication of disease phenotypes.
Polysaccharide hydrogels have distinct advantages with the
ease of modification in mechanical property, permeability,
accessibility to nutrients and the ability to imitate the
pathophysiological states of various diseases including
musculoskeletal, cardiac, neural diseases and cancers.

Musculoskeletal Disease
One of the most prevalent musculoskeletal diseases is
osteoarthritis (OA), attributed to the degeneration of articular
cartilage which involved the loss of chondrocytes. Traditional 2D
culture of chondrocytes was found to be suboptimal as
chondrocytes dedifferentiated within two passages in such a
condition (Aurich et al., 2018). Nevertheless, when
chondrocytes were encapsulated in alginate hydrogel in 3D
culture condition, chondrocytes maintained their differentiated
form (Aurich et al., 2018). It was later discovered that the
maintenance of the chondrogenic phenotype was attributed to
physical entrapment instead of the chemical interaction with the
alginate molecules (Cooke et al., 2017). In addition, chondrocytes
encapsulated in alginate methacrylate (ALMA) also exhibited
frictional properties, which were similar to stage-3 to stage-4 OA
(Meinert et al., 2017). When Meinert and co-workers applied a
sliding shear motion on the encapsulated chondrocytes to
replicate the mechanical environment of the native cartilage,
the chondrocytes responded to the excessive strain by
increasing the expression of matrix metalloproteinase-3, which
facilitated the degradation of surrounding ECM proteins,
resulting in the reduction of stiffness. In the effort to
investigate the role of stiffness in the pathogenesis of OA,
models of chondrocytes encapsulated in 2% (low stiffness) or
4.5% (high stiffness) agarose to imitate the stiffness of the
osteoarthritic or healthy cartilage were created respectively
(Jutila et al., 2015). Metabolites were found to be differentially
regulated when the low and high stiffness models were subjected
to a minimum of 15 min of dynamic compression. Moreover,
chondrocytes encapsulated in alginate also responded to various
anabolic cues such as connective tissue growth factor (CTGF),
bone morphogenetic protein 4 (BMP-4), fibroblast growth factor-
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2 (FGF-2), insulin growth factor-I (IGF-I), epidermal growth
factor (EGF), and Cadherin11 or Matrix Gla Protein (MGP) by
increasing the synthesis of glycosaminoglycan (GAG), one of the
main proteoglycans that plays a role in maintaining a healthy
cartilage structure (Neidlin et al., 2018).

Neural Disease
One of the early 3D in vitro models of neural tissues was
developed by encapsulating neural stem cells (NSCs) in
alginate, agarose and carboxy-methyl chitosan via 3D
bioprinting, which had allowed in situ differentiation of NSCs
into functional GABAergic neurons, astrocytes and
oligodendrocytes (Gu and Mooney, 2016). The efficient in situ
differentiation was attributed to the stiffness of the hydrogel,
which was maintained at 0.8 kPa, which closely mimicked the
stiffness of the human’s brain (Handorf et al., 2015). The stiffness
was further reduced to 0.51 kPa by encapsulating iPSC-derived
neural progenitors (iPSC-NPC) in the softer methacrylated
hyaluronic acid (Me-HA) hydrogel. The soft stiffness had
facilitated spontaneous neural differentiation and neurite
outgrowth of iPSC-NPC. In addition, it induced expression of
neuron-specific proteins in iPSC-NPC derived from Down’s
syndrome patients, which otherwise have impaired
neurogenesis (Wu et al., 2017). It is important to note that
despite many studies having demonstrated the success of 2D
cultures in recapitulating the phenotypic hallmarks of various
neurodegenerative diseases including amyotrophic lateral
sclerosis, Alzheimer’s, Parkinson’s and Huntington’s disease,
the majority of studies belong to the familial cases (Centeno
et al., 2018). In vitro modeling of the more prevalent, sporadic
version of such diseases are often more challenging as the
replication of disease phenotypes are highly dependent on the
physical, chemical and mechanical cues in the
microenvironment. A recent study had demonstrated that the
amyloid-β plaques formed in an Alzheimer’s disease model may
exhibit varying cytotoxicity depending on whether they were
confined in 2D or 3D space (Simpson et al., 2020). Agarose,
collagen, hyaluronic acid and polyethylene glycol hydrogel
cultures were shown to enhance the amyloid-β aggregation
towards the larger species which confer lower cytotoxicity as
compared to when amyloid-β plaques were found in monolayer
cultures. This implies that any future development of Alzheimer’s
disease model requires careful consideration concerning the pore
size of the hydrogels to recapitulate the physiological condition in
the brain.

Cardiac Disease
To date, the majority of 3D in vitro cardiac disease models were
mainly based on cells that were microencapsulated in ECM
proteins such as fibrin, gelatin, collagen and Matrigel
(Sacchetto et al., 2020). However, ECM protein-based
hydrogels suffer from limitations due to batch-to-batch
variation, poor mechanical properties and rapid degradation.
Integration of polysaccharide hydrogels with ECM proteins
could improve the versatility of the resulting hydrogels by
offering flexible control over their mechanical properties. For
example, gelatin, which has gelation temperature below

physiological condition, suffers from poor mechanical
properties. When combined with gellan gum, it supported a
prolonged culture of cardiomyocytes in 3D. The covalent
hydrazone crosslinking of gelatin and gellan gum had allowed
the cardiac model to maintain its elasticity, which closely
mimicked the native heart for at least 7 days (Koivisto et al.,
2019). The state of maturation of the microencapsulated
cardiomyocytes, however, was not determined in this study.
Maturation of cardiomyocytes is crucial for the accurate
modeling of heart diseases and in particular diseases which
have late-onset such as heart failures and atrial fibrillation.
Composite hydrogels made of hyaluronic acid and collagen
had been shown to improve the magnitude of cardiac
contraction force (Dahlmann et al., 2013). Moreover, the
resulting cardiomyocytes exhibited a well-developed and
organized sarcomeric structure that collectively indicated
improved cardiac maturation. When microencapsulated
cardiomyocytes differentiated from iPSC were co-cultured with
endothelial cells and stromal cells in Gly-Arg-Gly-Asp-Ser-Pro
(GRGDSP) peptide-coupled alginate hydrogel, they achieved
structural maturation after 15 days of culture, as evidenced by
the presence of matured myofibril alignment accompanied by
elongated and well-organized sarcomeres, which were absent in
the control cardiomyocytes aggregates (Abecasis et al., 2020). The
resulting model also demonstrated dose-dependent response
towards known cardiotoxins such as doxorubicin. Similar
dose-dependent toxicity response was also observed in the
endothelialized heart-on-a-chip model established by adopting
bioprinted alginate-gelatin methacryloyl (GelMA) composite
hydrogels, making them useful for drug screening (Zhang
et al., 2016).

Cancers
Tumor microenvironments with their complexity, diversity and
dynamic nature, play critical roles in cancer development and
metastasis (Hanahan and Weinberg, 2011). A current research
trend involved the creation of 3D tumor microenvironments
recapitulating native tumors by using various engineered
polymeric hydrogels (Gu and Mooney, 2016) and stem cells,
which enabled the studies of basic cancer biology and screening of
the efficacy of anticancer drugs (Roudsari and West, 2016)
(Figure 6). At present, 67% of drugs failed phase two clinical
trials whilst only 12% completed all stages (Hay et al., 2014).
Disease modeling in cancer utilizing natural polymeric hydrogels
encapsulated with stem cells has not been widely investigated as
compared to other non-communication diseases. Cancer stem
cells and cancer cell lines are commonly used for encapsulation to
mimic the heterogeneity of tumor microenvironment. Recently,
3D bioprinted tumor constructs using modified alginate-gelatin-
fibrinogen biomaterials and glioma stem cells were reported to
support cell survival, glioma stem cell proliferation, inheritance of
cancer stem cell characteristics as well as to exhibit differentiation
and vascularization potential (Xingliang et al., 2016; Zhu et al.,
2016). When this model tested with temozolomide, higher
resistance against temozolomide were found as compared to
those in the 2D cell culture model. Another 3D bioprinted
hydrogel infused with hydroxyapatite nanoparticles was
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developed to mimic tumor and bone microenvironments (Zhu
et al., 2016). This model served as a tool for exploring cancer
metastasis (invasive of breast cancer to bone) and assessing
anticancer drug sensitivity. The breast cancer cell spheroids
exhibited high migratory ability when co-cultured with bone
marrow derived MSCs and demonstrated higher anticancer
drug resistance when compared to the 2D culture model.

FUTURE PERSPECTIVE AND
CONCLUSION

We reviewed studies on stem cell microencapsulation in
hydrogels, highlighting the polysaccharide polymers, recent
microencapsulation techniques and clinical translation in
cell-based therapy (cell delivery) and disease modeling (drug
testing and discovery). Despite current promising results and
potentials, there are still several challenges and issues
remaining. The relatively low viability of encapsulated cells
is among the issues. For example, microencapsulation
techniques that involve photopolymerization with radial
initiators during encapsulation may cause cell damage whilst
oil emulsion can destroy the lipid membrane of cells. Thus,
current techniques need to be enhanced to reduce the use of
radicals, decrease light intensity as well as to limit contact time
with the oil phase.

Moreover, most of the techniques are established and tested for
stem cells encapsulation at a small scale. Further optimization for
large-scale production in the future studies are required to meet the
criteria of good manufacturing production (GMP) guidelines. In
clinical trials, large quantity of stem cells with approximately

107–1010 cells per patient is administered. It is tricky to
uniformly encapsulate and expand a large number of cells whilst
high cell viability and functionality still remained during and after
the 3D culture processes. It is believed that advances in micro-
technology and smart material synthesis will help to solve the issues
and offer new options for stem cell microencapsulation. The use of a
bioreactor in 3D culture and large-scale production may improve
cell expansion and cell quality. Importantly, hydrogel materials and
processes for stem cell microencapsulation should further modify
and customize according to their specific applications in clinical
translation as well as display the desired structural, biological, and
physicochemical properties. The hydrogelmaterials must also obtain
an approval from regulatory authority such as Food and Drug
Administration (FDA) and the equivalent.

To increase the ability of hydrogels and cells to respond to
physical, chemical and biological stimuli, diversity in
material design is a prospect. Novel synthetic ECM
mimetics are suggested to formulate into natural polymers
to enable dynamic changes in their properties and reaction to
their external environment. Future interest has been drawn
to produce ‘smart hydrogels.’ Several types of ‘smart
hydrogels’ suitable for stem cell encapsulation and
delivery are light responsive hydrogels, electro responsive
hydrogels, magnetic responsive hydrogels, pH-responsive
hydrogels, glucose responsive hydrogels and biochemical
responsive hydrogels (Mantha et al., 2019). Stimuli-
responsive hydrogels or cell vehicles could direct
migration and cell homing in vivo (Wan et al., 2020).
Hydrogel materials with programed shape and size are
expected to transform post-implantation to fit the defect
or transplant site with precise geometry.

FIGURE 6 | Disease modeling: Creating 3D in vitro human tumour models to mimic various microenvironmental cues of human tumours, which can be used to
screen anticancer therapeutics. Hydrogel fabrication and cell microencapsulation are involved in engineering the microenvironmental conditions. Impact of each
condition on the efficacy of the therapeutic approaches is determined by efficient manipulation and regulation of the microenvironment conditions.
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Nowadays, advanced hydrogel designs are progressing toward
multicomponent and multicellular approaches to increase
complexities and heterogeneities in the hydrogel constructs for
better tissue integration, sustainable function and effective
therapeutic strategy. Multicellular constructs such as stem cell-
derived organoids incorporated with polysaccharide hydrogels
present the opportunity to create compositionally tailored in-
vitro tissue models in a high-throughput manner. The models can
be utilized in future drug testing and discovery, including
toxicological screening and the possibility for drug
stratification at a personalized level (when combined with
patient-derived iPSCs). It is also foreseen that the reviewed
and suggested strategies may potentially apply in precision
medicine and personalized tissue regeneration.

The microencapsulation methods discussed in this review are
the approaches currently available. Latest and upcoming
development such as next-generation 3D bioprinting, namely
4D bioprinting, is believed to provide enormous application in
regenerative medicine when moving towards clinical translation.
4D bioprinting could be used for ‘smart hydrogels’ fabrication
and advanced stem cell microencapsulation. It offers capability to
synthesis shape-programed and functional structured hydrogels
in a regulated manner, leading to construction of active
multilayered, functional tissues and disease models with
dynamic and hierarchical structures (Liaw et al., 2018). Under
multiple stimuli, the complex shape transformation processes and
functional transitions can facilitate tissue remodeling and
maturation.

In conclusion, we detailed various commonly used
polysaccharide hydrogels and their unique properties, types of
stem cells and current microencapsulation methods with recent
studies demonstrating the potential of stem cell-encapsulated
hydrogels in cell delivery and disease modeling for treating

diseases. While the choice of hydrogel material and design
impact the viability and differentiation of encapsulated stem
cells, the different microencapsulation techniques have also
shown variable cell activities post-encapsulation. There are still
many problems to solve when moving towards clinical
translation. Future developments are now focusing on the
combining of different materials, multiple cell types and more
than one microencapsulation technique to work in a
complementary mode. The challenges and limitations
discussed herein need to be further addressed in future studies
to promote the therapeutic activity and applicability of
microencapsulated stem cells in regenerative medicine.
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Cell-laden hydrogel microspheres with uniform size show great potential for tissue repair
and drug screening applications. Droplet microfluidic systems have been widely used for
the generation of cell-laden hydrogel microspheres. However, existing droplet microfluidic
systems are mostly based on complex chips and are not compatible with well culture
plates. Moreover, microspheres produced by droplet microfluidics need demulsification
and purification from oil, which requires time and effort and may compromise cell viability.
Herein, we present a simple one-step approach for producing and purifying hydrogel
microspheres with an easily assembled microfluidic device. Droplets were generated and
solidified in the device tubing. The obtained hydrogel microspheres were then transferred to
a tissue culture plate filled with cell culture media and demulsified through evaporation of the
oil at 37°C. The removal of oil caused the gelled microspheres to be released into the cell
culture media. The encapsulated cells demonstrated good viability and grew into tumor
spheroids in 12–14 days. Single cell-laden hydrogel microspheres were also obtained and
grown into spheroid in 14 days. This one-stepmicrosphere generation method shows good
potential for applications in automated spheroid and organoid cultures as well as drug
screening, and could potentially offer benefits for translation of cell/microgel technologies.

Keywords: one-step purification, cell-encapsulated, hydrogel microsphere, microfluidic, spheroid

INTRODUCTION

Spheroids are three-dimensional (3D) spherical cellular aggregates that allow cells to interact with
neighboring cells and their extracellular matrix. Spheroids can recapitulate cell morphology as well as
reproduce gene expression, cell connectivity, and tissue morphology. Compared with two-
dimensional models, spheroids are more physiologically relevant and predictive (Du et al., 2008;
Dyson, 2019). Spheroids have therefore become the most common and versatile three-dimensional
model since they were first used in cell cultures in the 1950s (Dyson, 2019; Boucherit et al., 2020;
Sivakumar et al., 2020; Decarli et al., 2021; Roper et al., 2021).
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Various scaffold-free and scaffold-based approaches have been
developed to generate three-dimensional spheroids. Scaffold-free
approaches include using hanging drop plates (Kelm et al., 2003;
Guo et al., 2014), low cell attachment plates (Ivanov et al., 2015),
and emerging techniques such as magnetic levitation (Türker
et al., 2018), ultrasound waves, and acoustic waves. Scaffold-free
approaches are easy to perform and can be applied to various cell
types (Franchi-Mendes et al., 2021). Microfabrication techniques
such as photolithography (Du et al., 2008; Brandenberg et al.,
2020) and micromolding (Tekin et al., 2011; Tao et al., 2019) have
also been used to create spheroids, allowing the volume and shape
of spheroids to be precisely controlled. However, most spheroid
fabrication approaches require an excessive amount of time and
effort, and producing uniform spheroids with a high throughput
and in a reproducible manner is particularly challenging.

Droplet microfluidics is a versatile technology that allows for
the manipulation of small volumes of liquids on a microfluidic
chip (Zhu et al., 2019; Mohamed et al., 2020; Balasubramanian
et al., 2021). Previous studies have applied droplet microfluidics
in the fields of molecular and cellular biology and analytical
chemistry for applications such as clonal development (Dolega
et al., 2015), drug screening (Courtney et al., 2017), single-
molecule/single-cell analysis (Najah et al., 2012; Shembekar
et al., 2018; Shao et al., 2020), tissue engineering (Liu et al.,
2018), organoid modeling (Vadivelu et al., 2017; Zhang et al.,
2021), and spheroid fabrication (Lopa et al., 2020; Mohamed
et al., 2020). Droplet microfluidic technology is especially suitable
for 3D cell cultures (Eqbal et al., 2021). Three-dimensional cell
culture technology based on microfluidic droplets has many
advantages. For instance, droplet size distributions from tens
to hundreds of microns allow nutrients and oxygen to effectively
diffuse into cells. In addition, droplet microfluidic systems
provide high throughput and high controllability, and they can
produce uniform cell-encapsulated microspheres with tunable
microenvironments in a high throughput manner. Currently,
various materials and microfluidic chips have been used to
generate hydrogel microspheres for cell culture and spheroid
fabrication.

The preparation of microdroplets by microfluidic methods
typically uses two incompatible liquids as a continuous phase and
a discrete phase, and the generation of droplets is controlled by

the microtubule structure and two-phase flow rate ratio of the
microfluidic chip. Through precise pressure control, uniform and
high-throughput droplet generation can be achieved. The
obtained droplets can then be solidified into microspheres by
a photosensitive or thermal reaction. After gelation,
demulsification and centrifugation are carried out to obtain
the encapsulated hydrogel microspheres (Caballero Aguilar
et al., 2021). However, this method is complex and time-
consuming, and exposing the cells to demulsifiers affects their
viability. Alternatively, other studies have used an aqueous two-
phase system as a template for hydrogel microspheres generation
in water to avoid extra washing steps (Moon et al., 2015; Mao
et al., 2017; Liu et al., 2018). However, aqueous two-phase systems
require two water phase reagents that are immiscible with each
other. Only a limited number of reagent combinations, such as
polyethylene glycol and dextran, meet this requirement.
Therefore, the limited number of solution combinations
hinders the wide application of this technology in cell
encapsulation.

To avoid this problem, Choi et al. developed a method for the
one-step generation of monodisperse cell-laden hydrogel
microspheres. They first generated double emulsion droplets
with an ultrathin oil shell, then used UV light to solidify the
droplets. After polymerization of the inner droplets, the thin oil
shells of the double emulsion droplets gradually wet and
subsequently transfer into the aqueous solution. This results in
hydrogel microspheres dispersed in the aqueous phase without
extra washing steps (Choi et al., 2016). However, this method
requires complex microfluidic control and is not compatible with
conventional cell culture plate systems. Recently, on-chip
methods for the generation and purification of hydrogel
microspheres in an integrated microfluidic chip have been
developed (Deng et al., 2011; Hong et al., 2012; Choi et al.,
2016; Mohamed et al., 2019). Deng et al. designed filter blocks in a
microfluidic chip for on-chip hydrogel microsphere filtration.
The filter blocks separated hydrogel microspheres from an oil
phase by infusing the oil phase and the aqueous phase. After
filtration, the hydrogel microspheres were sequentially
maintained by the filter blocks (Deng et al., 2011). In another
study, Hong et al. extracted collagen microspheres from amineral
oil phase into a cell culture with an aqueous extraction chamber.
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The fluid exchange and filter gates on the chip aided the
separation and release of the microspheres into the aqueous
solution (Hong et al., 2012). Other microfluidic chip-
integrated on-chip fabrication and purification methods and
off-microfluidic approaches have also been used for hydrogel
microsphere purification (Lee et al., 2014). For instance, hydrogel
microspheres have filtered by a micropost array to achieve their
removal from an oil phase to an aqueous phase (Mohamed et al.,
2019). However, these methods require complex chip design and
processing steps.

In this study, a simple one-step approach for generating and
purifying encapsulated hydrogel microspheres was designed.
Droplets were generated with a commercial adapter and
solidified in the system’s tubing. The hydrogel microspheres
were then transferred to a tissue culture plate filled with cell
culture media. The gelled microspheres were demulsified through
oil evaporation, causing them to be released into the cell culture
media. The obtained encapsulated cells maintained good viability
and grew into tumor spheroids in 14 days. The one-step
microsphere generation method presented herein may have
potential application in biomedical fields.

METHODS

Materials
Gelatin methacryloyl (GelMA) and Lithium phenyl(2,4,6-
trimethylbenzoyl) phosphinate (LAP) were obtained from

Stemeasy Biotech Co., Ltd. (Wuxi, China). HFE7500
fluorinated oil were purchased from 3M Company (Shanghai,
China), and SF33 fluorinated oil were purchased from Chemours
Co., Ltd. (Shanghai, China). Perfluoropolyether–polyethylene
glycol (PFPE–PEG) block-copolymer fluorosurfactants (PEG-
based fluorosurfactants) were synthesized as described
previously (Holtze et al., 2008). Calcein-AM/PI Double Stain
Kit was purchased from Yeasen Biotech Co., Ltd. (Shanghai,
China). 0.22 µm filters were purchased from Millipore (Bedford,
MA, United States). All other chemicals were analytical grade,
and double-distilled water was used throughout the experiments.
MicroCross were obtained from IDEX Health & Science LLC
(Oak Harbor, WA, United States).

MicroCross Construction and Droplet
Generation
A microfluidic T-junction platform was designed and
constructed for droplet generation, as shown in Figure 1.
An IDEX MicroCross T-junction and a fluorinated
ethylene-polypropylene (FEP) tube were used for device
fabrication. The inner diameter of the MicroCross was
250 μm. HFE7500 fluorinated oil containing 1% PFPE–PEG
fluorinated surfactant was selected as the continuous phase
and 6% photocrosslinkable gelatin, GelMA in PBS, containing
0.4% photoinitiator LAP was selected as the disperse phase. To
generate droplets, the continuous phase and disperse phase
were loaded into two syringes (20 and 1 ml, respectively),

FIGURE 1 | Schematic illustration of the developed microfluidic system for one-step hydrogel microsphere generation. (A) Schematic diagram of the microfluidic
platform. (B) Configuration of the microfluidic chip. (C) Generation and separation procedures for obtaining hydrogel microspheres.
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which were propelled by peristaltic pumps (Baoding Longer
Precision Pump Co., Ltd.). At the junction section, the disperse
phase was broken into small droplets under the shear force
caused by the continuous phase.

Generation of Cell-Laden Hydrogel
Microspheres
HCT116 and U87 cells were digested by trypsin-EDTA and
resuspended in DMEM supplemented with 10% FBS at a
density of 8×106 cells/ml. Photocrosslinkable GelMA and
photoinitiator LAP were dissolved in PBS and filtered with a
0.22 µm filter. The disperse phase was prepared by mixing
100 μl cell suspension with 200 µL 12% GelMA and 100 µL
1.6% LAP. A volatile fluorinated oil SF33 with low boiling
point (33°C) containing 0.02% PFPE–PEG fluorosurfactant was
chosen as the continuous phase. The continuous phase and
disperse phase were loaded into two syringes (20 and 1 ml,
respectively), which were propelled by peristaltic pumps.
Droplets generated at the T-junction were cured using 405 nm
light for 15 s. The obtained hydrogel microspheres were
transferred to a tissue culture plate filled with cell culture
media by an second oil syringe with SF33 fluorinated oil
downstream of emulsification. Cells were cultured at 37°C in a
humidified 5% CO2 and 95% air atmosphere.

Cell Viability Assessment
Cell viability was assessed using a commercial Calcein-AM/PI
Double Stain Kit (Shanghai Yeasen Biotech. Co., Ltd.) according
to the manufacturer’s instructions. Live/dead staining solution

was prepared by adding 1 µl calcein AM and 3 µL ethidium
homodimer into 1 ml assay buffer. The cell-laden hydrogel
microspheres were harvested and centrifuged at 1,000 rpm for
5 min. Then, the cell-laden hydrogel microspheres were
suspended in assay buffer and stained by live/dead staining
solution at room temperature for 20 min. After staining, the
hydrogel microspheres were imaged using a fluorescence
microscope. The live and dead cell numbers were identified
and the ratio of live cells to the total number of cells was
determined using ImageJ software (Ma et al., 2017).

Statistical Analysis
Each experiment was performed at least three times. Data were
presented as mean± standard deviation. Image analysis, data
treatments, and statistical analysis were performed using
ImageJ and Origin. Statistical analysis was performed using
one-way ANOVA, and statistical significance was established
at p < 0.05.

RESULTS

Design and Fabrication of the Assembled
Microfluidic Platform
To generate and purify cell-encapsulated hydrogel microspheres
in one step, we developed an easily assembled microfluidic
platform. The microfluidic platform consisted of three major
modules: a T-junction microfluidic module for droplets
generation, a blue light curing module for on-line hydrogel
microsphere gelation, and a microsphere injection module for

FIGURE 2 | Effects of the disperse phase and continuous phase flow rates on the diameter of generated droplets. (A) Variation in droplet diameter with increasing
continuous phase flow rate from 15 to 75 μl/min (disperse phase flow rate: 5 μl/min). (B) Variation in droplet diameter with increasing disperse phase flow rate from 2.5 to
12.5 μl/min (continuous phase flow rate: 30 μl/min). (C) Representative microscopy image of droplets generated by the microfluidic system. (D) Size distribution of the
droplets. The scale bar represents 200 µm.
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microsphere distribution and purification (Figure 1A). The
T-junction microfluidic module was designed and fabricated
using commercial IDEX adapters. To generate droplets of an
appropriate volume, several adapters were assessed, and micro
static mixing T-junction with 250 μm and 150 internal diameter
were chosen for droplet generation (Figure 1B). After droplet
generation, the droplets were immediately solidified using a blue
light (wavelength of 405 nm, power density of 2000 mW/cm2) in
the FEP tube (Supplementary Video S1). An second oil syringe
downstream of emulsification was used to increase the spacing
between droplet and distribute the hydrogel microspheres into
cell culture plates containing cell culture media. When the
microsphere reaches the outlet, the second oil syringe extruded
the microsphere into the 96 well plate, and then the tube outlet
moved to the next position through the two-dimensional mobile
platform, and extruded the next drop of microsphere into the 96
well plate. The cell culture plates were then transferred to a CO2

incubator. In the 37°C environment, the oil phase gradually
evaporated within 4 h, leading to the direct transfer of the gel
microspheres into the cell culture media without an additional
washing step (Figure 1C).

Formation of Emulsion Droplets With the
Assembled Microfluidic System
To assess the efficiency of the assembled microfluidic system for
droplet generation, HFE7500 fluorinated oil and SF33 fluorinated
oil were tested. HFE7500 oil is less volatile and the droplets
generated are stable at room temperature. In contrast, SF33 oil is
volatile and the droplets are not as stable as droplets generated
with HFE7500 oil and some droplets fuse when the droplets
gather together. So we chose HFE7500 oil for the initial
optimization of fabrication conditions. HFE7500 with 1 wt%
PFPE–PEG fluorosurfactant and 6% GelMA in PBS were
loaded into two syringes and propelled by peristaltic pumps.
At the T-junction, the disperse phase was broken into small
droplets under the shear force generated by the continuous phase.

To evaluate the effect of the continuous phase on droplet
generation, the flow rate of the continuous phase was
increased from 15 to 75 μl/min while the flow rate of the
disperse phase was held constant at 5 μl/min. The results show
that the droplet size gradually decreased from 368 to 290 µm as
the continuous phase flow rate increased to 75 μl/min
(Figure 2A). To test the effect of the disperse phase on
droplet generation, the flow rate of the disperse phase was
increased from 2.5 to 12.5 μl/min while the flow rate of the
continuous phase was held constant at 30 μl/min. The results
in Figure 2B show that the droplet size increased when the flow
rate of the disperse phase was increased. These results reveal that
the droplet size can be adjusted by the flow rates of the continuous
phase and the disperse phase. It was also determined that droplets
are less likely to collide and coalescence and the droplet size
becomes more uniform with increasing flow rate ratio of the
continuous phase to the disperse phase. And the results also
indicated that the assembled microfluidic system could generate
monodispersed emulsion droplets and the average diameter was
326 ± 11 µm (Figures 2C,D).

Production of Monodisperse Hydrogel
Microspheres Through Oil Evaporation
To produce monodisperse hydrogel microspheres, a volatile
fluorinated oil SF33 with low boiling point (33°C) was used.
HFE7500 oil was not used because HFE7500 oil is less volatile and
the use of HFE7500 is not compatible with the oil evaportation
method. Different from the demulsification and purification
methods used before, we report a hydrogel microsphere
production method without demulsification and washing steps.
After the droplets were generated and solidified by 405 nm light
for 15 s in the microfluidic system tubing, the resulting hydrogel
microspheres were transferred to a cell culture plate filled with
cell culture media. Although the density of fluorinated oil SF33
(1.36 g/ml) was higher than that of culture medium, the
microspheres in the fluorinated oil remained on top of the cell

FIGURE 3 | Generation and extraction of hydrogel microspheres. (A) Schematic diagram of the microsphere extraction process by oil evaporation. (B) Size
distribution of the hydrogel microspheres. (C) Representative microscopy image of extraction process. The scale bar represents 200 µm.
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culture media due to interfacial tension. The tissue culture plate
was then placed in a 37°C incubator. Because the incubator
temperature was higher than the boiling point of the
fluorinated oil (33°C), the oil phase evaporated in 4 h,
destroying the stability of the surfactant layer on the droplet
surfaces. As a result, the hydrogel microspheres were gradually
released from the oil phase into the cell culture medium over 4 h
(Figure 3A). The size distribution of the hydrogel microsphere
indicated microspheres were monodisperse and the average
diameter was 328 ± 13 µm (Figure 3B). It should be noted
that the surfactant concentration in the continuous phase
should be within an appropriate range. When the surfactant
concentration is lower than 0.02%, droplet coalescence occurs
before photocuring takes place. When the surfactant
concentration is too high, such as 1%, the microspheres
aggregate together after oil partially evaporation. Microspheres
hang on the surface of the aqueous phase due to the hydrophobic

effect of surfactants and are unable to be released into the aqueous
phase (Figure 3C).

Generation of Tumor Spheroid Using the
Microfluidic Platform
The utility of the hydrogel microsphere production method for
the generation of tumor spheroid was studied. HCT116 cells were
suspended in 6% GelMA and encapsulated into droplets
(Figure 4A). The size distribution of these hydrogel
microspheres was then measured. As shown in Figure 4B, the
average diameter of the cell-laden hydrogel microspheres was
313 µm within a 5% coefficient of variation, indicating that they
were homogeneous. The number of cell-encapsulated in the
microspheres was 50 ± 12 µm (Figure 4C). Cell viability was
evaluated after encapsulation, and the results show that the
HCT116 cells maintained good viability and formed cell

FIGURE 4 |Generation of cell-laden hydrogel microspheres in themicrofluidic system. (A)Representative image of cell-laden hydrogel microspheres. The scale bar
represents 200 µm. (B) Size distribution of cell-laden hydrogel microspheres. (C) The number of cell-encapsulated in the hydrogel microspheres. (D) Fluorescence
microscopy image of HCT116-laden hydrogel microspheres after culturing for 3, 7, and 14 days. The scale bar represents 100 µm. (E) Percentage viability of
encapsulated cells in the hydrogel microspheres of 3, 7, and 14 days. (F) The diameter of the cell spheroids formed within the hydrogel microspheres after culturing
for 3, 7, and 14 days.
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clusters in the hydrogel microspheres after 7–14 days of culturing
(Figures 4D–F).This microfluidic system was further verified
with the U87 tumor cell line. In contrast to the densely packed
cellular organization formed by HCT116 cells (Supplementary
Figure S1), the U87 cells behaved completely differently after
being encapsulated into hydrogel microspheres. The U87 cells
spread out from the hydrogel microspheres after culturing for
12 days (Supplementary Figure S2). The cell viability of the
encapsulated U87 cells was assessed with a live cell staining kit.
The results show that the encapsulated cell viability was
comparable to that of non-encapsulated cells, indicating that
this microfluidic system is highly biocompatible with 3D cell
cultures.

Single cell-laden hydrogel microspheres have been shown to
have great potential in the fields of stem cells and tissue
engineering. Herein, we generated single U87 tumor cell-laden
hydrogel microspheres by adjusting the diameter of the
microcross (Supplementary Figure S3A). 100 µm
microspheres which is the favorable size for single cell
applications were generated. Single cell tumor spheroid formed
after 14 days culture, and the live cell staining revealed the U87
cells maintained good viability (Supplementary Figure S3B).

DISCUSSION

Prior work has documented the potential of droplet microfluidic
in spheroid and organoid generation. For example, uniform
patient-derived tumor spheroids and engineering human islet
organoids have been fabricated using droplet microfluidic based
platform (Siltanen et al., 2016; Tao et al., 2019). Droplet
microfluidic ensures high-throughput formation of cell-
encapsulated hydrogel microspheres of controlled size and cell
seeding density by adjusting flow velocity and cell suspension
concentration. Morever, droplet microfluidic based platform
requires only 30–50% percentage of 3D culture medium
compared with traditional 3D culture. Besides, hydrogel
microspheres generated by droplet microfluidic can be used
combing with other microfluidic device for more complex
interdisciplinary studies. However, current technologies for
cell-laden microsphere generation need either demulsification
and centrifugation or complex microfluidic device to transfer the
encapsulated hydrogel microspheres into the culture medium
(Caballero Aguilar et al., 2021). These methods are complex and
time-consuming, and exposing the cells to demulsifiers affects
their viability (Mohamed et al., 2020).

In this study, we developed an easily assembled microfluidic
platform for one-step and high-throughput monodisperse
hydrogel microsphere preparation and cell encapsulation.
Compared with traditional hydrogen microsphere fabrication
methods, this method does not require the addition of a
demulsifier or other chemicals, reducing the toxic effect on
cells and improving the cell survival rate. Evaporation-based
microfluidic strategy has been used to produce cell
encapsulated hydrogel microsphere. However, evaporation of
oil phase resulted in an aggregation of cell encapsulated
hydrogel microspheres, and only 40% percentage of cells

survive after 6 days culture (Fan et al., 2015). We found that
the realization of hydrogel microsphere fabrication without a
separate washing step relies on the concentration of surfactant in
the oil phase. The surfactant concentration should not be too
high, so as to ensure that hydrogel microspheres don’t aggregate
and can be released into the culture medium. The surfactant
concentration also should not be too low, so as to ensure that the
droplets do not fuse before gelation. By adjusting the
concentration of surfactant, monodisperse hydrogel
microspheres were prepared by real-time solidification in the
microfluidic system tube, and over 90% percentage of cells keep
alive after 14 days culture. It should be noted that the surfactant in
the oil phase should be biocompatible, otherwise the residual
surfactant after oil volatilization may affect cell survival (Clausell-
Tormos et al., 2008).

Several studies have indicated that spheroids above 200 µm
undergo core necrosis (Vadivelu et al., 2017; Corrado et al., 2019).
Due to the limitation of mass transport, cells encapsulated in the
hydrogel microspheres suffer from different levels of waste
products, low nutrients and even hypoxia. Hypoxia may
induce cell death in the hydrogel microspheres of a few
hundred micrometers (Ling et al., 2007). Previous study
indicated that the microsphere diffusivity depends on the
microsphere size relative to the network pore size and also on
the stress relaxation dynamics of the network. The diffusion of
nutrients, growth factors and other molecules in hydrogel can
change depending the degree of crosslinking (Burla et al., 2020).
Studies also indicated that the concentration of GelMA and its
degree of crosslinking are inversely proportional to the degree of
porosity and the network pore size, and the decrease of gel
concentration is correlated with decreased stiffness of the gel,
which promotes cell proliferation and survival (Cuvellier et al.,
2021); [45]. Compared with 7.5–10% GelMA used in previous
study, low-concentration (6%) GelMA is chosen for cell-
encapsulated microsphere generation in our study. By
reducing the LAP concentration and the UV exposure time,
the viability of the cells are improved while keeping the
stability of the microsphere. Moreover, we found that low-
concentration gelma microspheres were more likely to
aggregate when separated by demulsification and
centrifugation, while the microspheres were more likely to
disperse rather than aggregate through the oil-phase
evaporation and hydrophilic adsorption separation.

Besides, the assembled microfluidic platform is compatible
with existing 96 well plates and other cell culture systems, which
is conducive to the realization of high-throughput three-
dimensional culturing and screening. This method is expected
to have important application value in the fields of tumor high-
throughput drug screening and organoid preparation.

However, some limitations are worth noting. Cells such as
HCT116 generated more than one cluster in one microsphere.
Similar results has also been reported in prevrious study (Choi
et al., 2016). This may affects the uniform of spheroid generated.
Recently, cell aggregation in low-concentration matrigel has been
used for uniform spheroids generation. Cells sediment by gravity
and aggregate into tumor spheroids (Brandenberg et al., 2020).
Cell aggregation for uniform spheroids generation in droplet
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microfluidic should be further evaluated. It also should be noted
that many of the encapsulated cells in the system were located in a
non-central position in the hydrogel microspheres, resulting in
the partial encapsulation of the cells and allowing some cells to
escape into the cell culture. Non-central encapsulation can lead to
asymmetric biomechanical stimuli and biochemical culture
conditions, which may affect the uniformity of the generated
spheroids or organoids. Hence, a strategy for centering the
encapsulated cells in the hydrogel microspheres for long-term
3D culturing needs to be developed in the future.
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Engineered Bacterial Cellulose
Nanostructured Matrix for Incubation
and Release of Drug-Loaded Oil in
Water Nanoemulsion
Concetta Di Natale1,2,3, Vincenza De Gregorio1,2, Elena Lagreca2,3, Francesca Mauro2,3,
Brunella Corrado1,2, Raffaele Vecchione2* and Paolo Antonio Netti 1,2,3

1Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy, 2Istituto Italiano di Tecnologia,
Naples, Italy, 3Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy

Bacterial cellulose (BC) is a highly pure form of cellulose produced by bacteria, which
possesses numerous advantages such as good mechanical properties, high chemical
flexibility, and the ability to assemble in nanostructures. Thanks to these features, it
achieved a key role in the biomedical field and in drug delivery applications. BC showed its
ability to modulate the release of several drugs and biomolecules to the skin, thus
improving their clinical outcomes. This work displays the loading of a 3D BC
nanonetwork with an innovative drug delivery nanoemulsion system. BC was optimized
by static culture of SCOBY (symbiotic colony of bacteria and yeast) and characterized by
morphological and ultrastructural analyses, which indicate a cellulose fiber diameter range
of 30–50 nm. BC layers were then incubated at different time points with a nanocarrier
based on a secondary nanoemulsion (SNE) previously loaded with a well-known
antioxidant and anti-inflammatory agent, namely, coenzyme-Q10 (Co-Q10). Incubation
of Co-Q10–SNE in the BC nanonetwork and its release were analyzed by fluorescence
spectroscopy.

Keywords: bacterial cellulose, drug delivery, nanocellulose network, nanoemulsion, antioxidant

1 INTRODUCTION

In the last few years, the choice of appropriate drug delivery systems has achieved great attention in
the pharmaceutical field. A successful drug delivery is influenced by several factors (La Manna et al.,
2021b; Di Natale et al., 2021d) including the identification of a suitable biomaterial (Lagreca et al.,
2020) to be used as a building block for the assembly of the final system (Del Valle et al., 2009). For
example, very recently, nanostructure plasmalogen-loaded cubosomes or hexosomes were reported
as innovative delivery systems for the lipophilic antioxidant compound, opening new opportunities
for bioinspired nanoassemblies (Angelova et al., 2021; Mathews et al., 2021). In this context, another
interesting material, which is synthesized from bacteria and presents a nanostructured matrix useful
for drug encapsulation and release, is the bacterial cellulose (BC); it possesses a great versatility in
terms of in situ modulation, post-synthesis chemical modifications, biocompatibility, or ease of
sterilization (Barud et al., 2016; Carvalho et al., 2019). In addition, it also shows high purity and water
absorption capacity, as well as single mechanical properties, good permeability, or resistance to
degradation (Badshah et al., 2020; Parte et al., 2020; Gregory et al., 2021). Thanks to these properties,
BC is achieving great interest in biomedical research concerning, for example, the wound dressing for
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skin burns or the microsurgery for the restoration of artificial
blood vessels (Klemm et al., 2001; Carvalho et al., 2019). From the
chemical point of view, BC is organized in a tridimensional (3D)
nanofibrillar network, and this singular property makes it a
suitable macromolecular support for drug encapsulation and,
therefore, for the development of specific controlled release
systems (Tan et al., 2019). Several studies displayed the ability
of BC networks to modulate the release and bioavailability of
drugs in percutaneous administration, and hence, they were
suggested as supports for topical or transdermal drug delivery
(Almeida et al., 2014). For example, BC fibers loaded with silver
nanoparticles, in topic formulations, demonstrated an
antibacterial activity up to 99.99% against Escherichia coli and
Staphylococcus aureus (Fortunati et al., 2014; Volova et al., 2018).
Other studies instead showed the ability of nanofibrils as aerogels
to encapsulate drugs such as anti-inflammatories, anticancer,
steroids or biomolecules as peptides, and proteins or
antibodies (Gopi et al., 2018). Apart from drug loading, the
possibility of regulating their release is also remarkable, and
BC nanofibers revealed the ability to modulate the release of
both hydrophobic and hydrophilic compounds, thus providing
versatile materials with respect to drug delivery (Picheth et al.,
2017). Several studies, indeed, revealed as BC nanofibers can
allow a sustained and controlled release of antioxidant molecules
such as quercetin and vanillic or cinammic acid for food or
cosmetic applications (Trombino et al., 2008; Li et al., 2019;
Morais et al., 2019).

The present work proposes a method to load the BC
nanonetwork with stabilized lipophilic compounds and allow
its release in a time frame of hours which is compliant with skin
applications. To the best of our knowledge, no Co-Q10
nanocarrier has ever been encapsulated within cellulose fibers.
In detail, we used an ultra-stable oil-in-water (O/W) SNE coated
by a thin layer of chitosan (CT) (Vecchione et al., 2016a;
Vecchione et al., 2016b; Vecchione et al., 2014), a positively
charged polyelectrolyte, able to encapsulate lipophilic molecules
such as curcumin (Fotticchia et al., 2017; Vecchione et al., 2017;
Langella et al., 2018; Vecchioneet al. 2016), lycopene
(Quagliariello et al., 2018), and Co-Q10 (Quagliariello et al.,
2020). In the latter stage of work, the nanocarriers were
loaded with Co-Q10 acting as antioxidant and anti-
inflammatory agents meant for oral delivery, proving high
loading capability and molecular stability preservation.
However, Co-Q10 is also very well-known as an antioxidant
for skin applications (El-Leithy et al., 2017). Starting from these
considerations, here, we propose the development of a BC-Co-
Q10-SNE nanonetwork for a double release approach where
the cellulose network releases the Co-Q10–loaded SNE which,
upon degradation, can finally release active Co-Q10 to the
skin. Our BC was produced by the SCOBY using optimized
conditions in terms of humidity (98%) and temperature
(30°C), as well as the culture media volume that assured the
correct moist status, avoiding the production of a thick layer
with BC exfoliation (Alkhalifawi and Hassan, 2014; Lahiri
et al., 2021). Several spectroscopic techniques such as
scanning electron microscopy (SEM) and infrared ray (IR)
were used for BC morphological and chemical

characterizations, while Co-Q10-SNE loading and release
were studied by confocal microscopy and fluorescence,
respectively, by following Co-Q10 autofluorescence.

This study aims to be a proof of concept for a new use of BC as
a drug delivery system; future analysis will indeed focus on the
production of inflamed micro-tissues which will subsequently be
treated with the BC-Co-Q10-SNE described in this study.

2 MATERIAL AND METHODS

2.1 Materials
Both soybean oil (density at 20°C of 0.922 g ml−1) and the
surfactant Lipoid E80 (egg lecithin powder 80–85% enriched
with phosphatidyl choline (PC) and 7–9.5% content in
phosphatidyl ethanolamine (PE)) were purchased from Lipoid
GmbH and used without further purification. Millipore Milli-Q
water was used for the preparation of all nanoemulsions and
solutions. Chitosan (CT, LMW 90–150 kDa, and DDA 84%
determined via 1H-NMR) was purchased from Sigma-Aldrich
(Milan, Italy). Ubidecarenone, coenzyme-Q10 (Co-Q10), was
kindly offered by the Faravelli Group. Kombucha SCOBY was
purchased from KEFIRA, and glucose and agar were purchased
from Sigma-Aldrich.

2.2 Methods
2.2.1 Media Preparation and SCOBY Culture
For Kombucha SCOBY (KEFIRA) culture, a tea broth and an agar
plate were prepared with the following protocol: 860 ml of
deionized water (dH2O) was boiled before adding 140 g/L of
glucose; 10 sachets (20 g) of black tea were added and steeped for
10 min. Consequently, the tea bags were removed, and the
sweetened tea was cooled at room temperature; then, apple
vinegar (140 ml/L) was added. The medium was autoclaved at
121°C for 15 min. For solid medium, the agar was autoclaved
separately. To improve the fermentation process of the SCOBY,
one piece (1 × 1 cm) of the SCOBY was aseptically added into the
liquid broth and cultured for 3 days. Then, an aliquot of 1 ml of
the previously fermented SCOBY, which acts as a starter, was
inoculated into the culture broth at a concentration of 0.05%
(1 ml/20 ml). For BC production, starters of the SCOBY were
cultured in 50 ml tubes, and two different experimental phases
were performed: uncontrolled fermentation conditions (UCC)
and controlled fermentation conditions (CC). For the CC, the
static fermentation process took place in a dark CO2 incubator in
a controlled humidified atmosphere (≥80%) with constant
temperature at 30°C for 3 days, in order to guarantee an
optimal environment for symbiont growth. The cap of the
tube was removed and perforated parafilm, previously
sterilized, and was used to cover the lid and increase the
exchange of O2 with the external surface. This process was
repeated in triplicates. Tests were performed in triplicates as
well. Viable count assay was performed, as reported earlier.

2.2.2 Live/Dead Assay
In order to select the SCOBY pieces to use for the experimental
phase, the viability percentage was assessed by using the Live/
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Dead BacLight Bacterial Viability Stain Kit (Molecular Probes,
Eugene, and OR). First, the best concentration of the viability kit
stain mixture (SYTO9 and propidium iodide (PI)) was selected,
which allowed us to distinguish live cells from dead cells (SYTO9:
PI, 1:2 v/v). Briefly, freshly grown SCOBY pieces were
opportunely cut, harvested, and washed three times with
0.85% sodium chloride (NaCl) solution. Then, 30 μl of a
mixture of SYTO9 and PI (1:2) was diluted in a final volume
of 5 ml, and each SCOBY piece was incubated with 1 ml in
darkness for 15 min at room temperature, according to the
manufacturer’s instructions. The non-viable SCOBY were
prepared by 95% ethanol treatment of bacteria for 30 min
(positive control). The SCOBY pieces were washed twice with
0.85% NaCl after the treatments and examined under a confocal
microscope (Confocal Leica TCS SP5 II femtosecond laser
scanning system, Leica). Filters were set to 493–522 nm for
SYTO9 and 618–676 nm for PI. Confocal images were
obtained with 40x objective (optical zoom 1.5). Each sample
was scanned at randomly selected areas as a series of vertical
optical sections, each one 0.50 μm thick. Quantitative analyses of
each SCOBY piece were carried out by analyzing the digital
images of live (green) and dead (red) bacteria by ImageJ
software. Each image was divided in regions of interest (ROIs)
with comparable areas, and thresholding was performed. The
fluorescence intensity per unit area was measured and calculated
as the percentage of viable cells. Thereafter, the culture parameter
was set, maintaining the temperature at 30°C and the humidity
(>98%) for controlled experimental cultures (CCs). To obtain the
CC condition, the samples were placed in an incubator at 30°C by
inserting a 10-cm high tank with an evaporating surface of 20 cm
to obtain constant humidity >80% without water refill during the
entire experimental phase. Conversely, for uncontrolled
experimental cultures (UCCs), SCOBY pieces were cultured at
room temperature (~23°C) and environmental humidity (~50%).

2.2.3 Ultrastructural Characterization of the BC Layer
For ultrastructural analysis of the fibrillar structure of BC, the BC
layers obtained by UCC and CC were primarily fixed with 4%
paraformaldehyde. Then, it was fixed with 2.5% of glutaraldehyde
in 0.1 M of sodium cacodylate and was left for 1–4 h at the room
temperature. In due course of time, it was washed thrice for
10 min in 0.1 M sodium cacodylate and sucrose and buffered at
the normal temperature. It was then buffered with 1% osmium
tetroxide (OsO4) in 0.1 M sodium cacodylate for 1 h at 4°C and
afterward again, washed thrice with 0.1 M sucrose buffer solution.
Dehydration was performed on the sample using ethanol at 30,
50, 70, and 95% for 15–60 min at 4°C. Finally, 100% of ethanol
was applied for 15–60 min at the room temperature thrice. Image
analyses were performed by ImageJ software by using the
DiameterJ plugin (Hotaling et al., 2015). First of all, the scale
bar of the image was measured by using the scale option after
using the zoom option from the toolbar. SEM images (1024 × 768
pixels) were obtained, as already described (Di Natale et al., 2019;
Bagheri et al., 2021; Di Natale et al., 2021a; Di Natale et al., 2021b;
Di Natale et al., 2021c; Di Natale et al., 2021d; Florio et al., 2021;
Di Natale et al., 2020a; Di Natale et al., 2020b; La Manna et al.,
2021a; La Manna et al., 2021b), and then segmented using the

algorithms provided by “DiameterJ Segment” to convert the
image into binary forms. Then, segmented images were
processed by DiameterJ to measure the diameter of the
cellulose bundles and fibers. In addition, DiameterJ was also
used to measure the BC network parameters as the mean pore
area, porosity percent, and numbers of pores:

Meanpore area � TOTALNUMBEROFBLACKPIXELCOUNTED INPORES
TOTALNUMBEROFPORES IN IMAGE

,

(1)

%porosity � TOTALNUMBEROFBLACKPIXELS
TOTALNUMBEROFPIXELS IN IMAGE

. (2)

2.2.4 Infrared Spectroscopy
The BC chemical structure was confirmed by IR. BC sheet of
1 cm. The measurements were carried out in the range of
500–4,000 cm−1 in absorption or transmission modes (64
scans, 4 cm−1 resolution) (Thermo Fisher Scientific
Instruments, Nicolet 6,700, Waltham, MA, United States). The
spectra were subject to ATR correction, smoothing, and baseline
correction to be normalized (Di Natale et al., 2021a).

2.2.5 Co-Q10-SNE Production and Characterization
At first, a primary Co-Q10 negatively charged oil-in-water (O/W)
nanoemulsion (NE) at 20 wt% of oil concentration was prepared,
as previously reported (Vecchione et al., 2014; Quagliariello et al.,
2020; Profeta et al., 2021). Briefly, first the oil phase was obtained
by adding the surfactant to the soybean oil. For the analysis, 5.8 g
of Lipoid E80 was dissolved in 24 ml of soybean oil at 60°C and
mixed using the immersion sonicator (Ultrasonic Processor
VCX500 Sonic and Materials). An amount of 4.08 g of Co-
Q10 was dissolved in the oil phase at 60°C for 1 h, then added
dropwise to the aqueous phase (Milli-Q water), and mixed again
using the immersion sonicator. The pre-emulsion was passed at
2000 bar through the high-pressure valve homogenizer
(Microfluidics M110PS) for three individual cycles to greatly
reduce the initial size; then, the reservoir was continuously
refilled for 200 steps.

Co-Q10-NE was then functionalized with CT to have a positively
charged SNE. In detail, to achieve the secondary emulsion, a first
layer of CT was deposited above the primary one by following an
already developed procedure (Vecchione et al., 2014; Vecchione
et al., 2016). Briefly, a 0.1M acetic acid solution of CT pH 4 (0.2 wt
%) was prepared, and the 20 wt% oil-O/WNEwas then added to the
CT solution under vigorous stirring for 15min to allow uniform CT
deposition. Final concentrations of oil and CT were 10 and 0.1 wt%,
respectively, while the pH of the final NE (SNE) was 4. O/WNE and
SNE were characterized by measuring the size, polydispersity index
(PDI), and ζ-potential values through a dynamic light scattering
(DLS) instrument (Zetasizer ZS, Nanoseries ZEN 3600, Malvern
Instruments Ltd., Malvern, United Kingdom, λ = 632.8 nm). All the
samples were diluted up to a droplet concentration of approximately
0.025 wt% by usingMilli-Qwater. A detecting angle of 173 was used.
A default refractive index ratio (1.5900) and three runs for each
measurement (1 run lasting 100 s) were used in the calculations of
the particle size distribution. ζ-potential analysis was carried out by
setting 30 runs for each measurement. The morphology of Co-Q10-
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SNEwas observed by Cryo-TEM analysis. For the preparation of the
frozen-hydrated sample, the plunge freezingmethodwas performed.
Briefly, a drop of 3 μl of the sample was deposited on 200-mesh holey
carbon grids (Ted Pella, United States); then, it was inserted in the
chamber of a FEI VitrobotMark IV (FEI Company, the Netherland)
at 4°C and 90% of humidity. The droplet of the sample was blotted
with a filter paper for 1 s (blot force 1, drain time 0.5 s) and then, the
grid was plunged into liquid propane. Then, the grid was stored in
liquid nitrogen in a grid box until it was finally transferred to a cryo-
specimen 626 holder (Gatan, Inc., United States) and loaded into the
Cryo-transmission electron microscope for imaging. To obtain the
image of the nanocarriers, we used a Tecnai G2 20, a Cryo-TEM
transmission electron microscope (FEI Company, the Netherlands)
equipped with a LaB6 emitter (acceleration voltage of 200 kV), and
recorded with a 2 × 2 k CCD-Eagle 2HS camera. The frozen-
hydrated sample is a radiation-sensitive material, so to avoid
damaging it, the observation was carried out in a low-dose mode.

2.2.6 Co-Q10-SNE Encapsulation and Release:
Confocal Microscopy and Fluorescence
For the experiment, 5 mg of cellulose layers (5 mm diameter) were
suspended in 1.5 ml of Co-Q10-SNE and incubated at room
temperature at different time points (15 min and 30min) with a
gentle agitation. All the tests were executed in triplicates. All
samples were stored at 4°C, and SNE adsorption on cellulose
layers was evaluated by confocal microscopy. Samples were
imaged using a Leica TCS SP5 STED-CW gated microscope
(Leica-Microsystems, Mannheim, Germany) with HCX IRAPO L
25.0 × 0.95 water objective (Di Natale et al., 2020a; Jamaledin et al.,
2020; Di Natale et al., 2021a; Battisti et al., 2019; La Manna et al.,
2021a). A laser source of 488 nm was used to excite the Co-Q10 in
the oil core. Moreover, a semi-quantitative analysis was performed
on at least five images for each z-plane to obtain the mean
fluorescence intensity of the loaded Co-Q10-SNE. Using ImageJ
software, the mean gray value (MGV) of the green channel was
measured for each image (Celetti et al., 2016; Di Natale et al., 2018).
Co-Q10-SNE release studies were carried out by suspending 5 mg of
BC-Co-Q10-SNE in 1.5 ml of water. Samples were incubated at
37°C and shaken under gentle conditions. At fixed time points (15,
30 min, 1, 2, 3, and 24 h), 1 ml of the sample was withdrawn after
cellulose layer sedimentation using centrifugation for 5 min at
10,000 rpm (MicroCL21R, Centrifuge, Thermoscientific,
United States). The pellet was resuspended in the same volume
of fresh buffer. The collected supernatants were analyzed by
fluorescence (Microplate Readers Perkin Elmer); the excitation
wavelength was 450 nm, and the maximum emission was
recorded between 470 and 600 nm. The fluorescence intensity
peak was determined at 551 nm. All the tests were executed in
triplicates.

3 RESULTS AND DISCUSSION

3.1 Cellulose Production: Morphological
and Chemical Characterization
In order to validate the SCOBY (Figure 1A) for BC production in
static culture, preliminary viability assay was performed by using

Live/Dead assay. SCOBY portions (1cmx1cm) were observed
under a confocal microscope in the central and peripheral
areas, obtaining a reliable measurement of the entire sample.
SCOBY pieces on which symbiont viability reaches at least 50%
were used for the experimental phase, as reported in
representative images and 3D reconstruction (Figure 1B).
Quantitative analysis of the SCOBY portion showed a viability
of 79 ± 3.5% by measuring the intensity of green (for viable
bacteria) and red (for non-viable bacteria) fluorescence measured
by the area. SCOBY pieces with a strong reduction in the cell
viability were not used for the experimental phase (data not
showed). Once the SCOBY pieces to use for BC production are
selected, two different culture conditions were set: a temperature
of 30°C and the humidity >98% for the controlled experimental
culture (CC) and room temperature (~23°C) and environmental
humidity (~50%) for the uncontrolled experimental culture
(UCC). To carry out the morphological characterization of the
BC produced in UCC at different stages of maturation, BC layers
were produced in static conditions without refreshing the
medium. Each layer (about 1 mm thick) was separated from
the layer below due to a variation of the medium/air interface and
a reduction in the volume of the medium over time with a
reduced humidity. The BC layers obtained with this procedure
showed different ripeness degrees, starting from the bottom (in
direct contact with the liquid suspension) with the lowest ripeness
up to the more superficial ones (in direct contact with air), which
appear to be, from a macroscopic analysis, more consistent and
thicker >1 mm. These tests made it possible to observe a variation
in the cellulose consistency based on the degree of maturation
whose chemistry was studied by IR spectroscopy. In detail, three
layers (internal, intermediate, and external) were obtained at 72 h,
and they showed the typical BC peaks (Keshk et al., 2009; Castro
et al., 2011; Tabarsa et al., 2017) with the bands at 3,353 cm−1 and
2924 cm−1 relative to the stretching of the OH and CH groups,
respectively; a peak observed at 1738 cm−1 and 1,640 cm−1

associated with the stretching of the C = O groups, and the
bending of the OH groups referred to absorbed water molecules
into cellulose fibers, a peak at 1,046 cm−1 corresponding to the
vibration of the pyranose ring–C–O–C, and the peak at 889 cm−1

related to the presence of β-glycosidic bonds (Figure 2). The three
layers also revealed a similar degree of polymerization with the
presence of the peak at 1738 cm−1, even if, its intensity grows as
the superficiality of the layer increases (Figure 2). To avoid the
development of this crosslinked BC, which could hinder the
correct SNE incubation, BC was grown under CC conditions,
as explained earlier, and the correct maturation level was
analyzed by IR. From the morphological analysis, the samples
grown under CC conditions appear to have an adequate
hydration status, highlighted by the lower degree of
compactness, as well as greater transparency. In contrast, the
unique layer produced under UCC conditions is thicker and not
transparent at all, indicating a greater degree of compactness and
less hydration, which is reflected in a greater degree of
crosslinking in the IR spectrum (Figure 3 red spectrum).
Spectra of UCC and CC BC obtained at 72 h, corroborated
our hypothesis; indeed, BC obtained in CC conditions showed
only the maturation peak at 1,640 cm−1 (Figure 3, violet
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spectrum) in contrast with the UCC BC which revealed the
crosslinked band at 1738 cm−1 (Figure 3 red spectrum). IR
spectra strongly confirmed that the moisture content seemed
to be directly related to the degree of compactness (revealed by
the crosslinking) of BC, demonstrating that the adjusted
humidity environment allows reaching a loosening of the
cellulose structure useful for nanocarriers’ penetration
upon incubation.

3.2 Ultrastructural Characterization of BC
To achieve the ultrastructural characterization of the BC
produced in UCC or in CC, BC layers were produced in static
conditions without refreshing the medium (Figure 4A).
Representative SEM images showed a different degree of
compactness of the cellulose fiber network. In particular, the
external layer in UCC highlighted a greater degree of

compactness, as shown in Figure 4B. Quantitative data of the
SEM images showed for the single layer obtained in CC a
significantly greater mean pore area and porosity percentage
with a smaller number of pores (p < 0.05) than the layers
obtained in UCC, especially the superficial layer (External). In
detail, the porosity values are 39.0, 41.7, and 35.9, while the mean
pore area values are 0.0107, 0.0151, and 0.0129 µm2 for the
external, intermediate, and internal layers, respectively,
indicating a slight difference between the superficial layer and
the most internal layers obtained in UCC although not
statistically significant (Figure 4C).

At last, all samples showed the fiber diameters in a range of
30–50 nm, and a comparable fiber frequency was also reported
(Figure 4D), indicating that the main difference among BC
produced by the SCOBY is in assembly of the fiber rather
than in the single fibers.

FIGURE 1 | (A) Representative image of the SCOBY portion for BC production. (B) Live/Dead fluorescence images of the SCOBY. 3D reconstruction of the
observed portion and the percentage of live (green) and dead (red) bacteria.

FIGURE 2 | IR analysis of UCC internal, intermediate, and external layers obtained at 72 h.
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3.3 Co-Q10-SNE Encapsulation and
Release by BC
As stated in the Materials and Method section, primary and
secondary Co-Q10-NEs were produced by a method developed in
our laboratory (Quagliariello et al., 2020). Co-Q10-NE and Co-
Q10-SNE size distribution and uniformity were evaluated by DLS
measurements, as reported in Supplementary Figures S1A, B. In
detail, Co-Q10-NE displayed an average size of 112.4 ± 0.65 nm

with a PDI of 0.12 ± 0.04 and a surface charge of −46.8 ± 0.40 mV
(Supplementary Figure S1C), while Co-Q10-SNE reported an
average size of 103.0 ± 1.0 nm with a PDI of 0.090 ± 0.025 and a
charge of -+39.9 ± 0.07 mV (Supplementary Figure S1C), in
agreement with those reported in the literature (Vecchione et al.,
2016; Quagliariello et al., 2018; Vecchione et al., 2014; Profeta
et al., 2021). Before starting incubation experiments, we also
evaluated the chemical stability of our SNEs over time, and as

FIGURE 3 | IR spectra of CC (violet spectrum) and UCC BC (red spectrum) at 72 h.

FIGURE 4 | (A) Qualitative images of BC layers produced under UCC (left and middle) and CC (right). (B) Representative SEM images of the different BC layers
(internal, intermediate, external, and single layer, from left); scale bar 1 µm. (C)Mean pore area, number of pores, and porosity percentage of BC networks of the different
BC layers. (D) Fiber diameter histogram of external and single BC layers produced in UCC and CC, respectively.
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shown in Supplementary Figure S1D, they remained stable for
up to 30 days, without any variation in size or PDI. Nanocarriers’
uniformity and stability were also confirmed by Cryo-TEM
analysis (Supplementary Figure S2), where Co-Q10-SNE
showed monodispersed spherical nanostructures of ~100 nm.

As to incubation experiments, 1cm x 1cm layers of BC were
used and incubated at two different time points (15 and 30 min)
with 1 ml of Co-Q10-SNE. The correct incubation was then
evaluated by confocal microscopy, following the
autofluorescence of Co-Q10 at 551 nm, as shown in Figures
5A,B and Supplementary Figure S3. Confocal analysis revealed
no difference in the fluorescence intensity of both samples
(Figure 5A, Supplementary Figure S3A) underlying as the
ultrastructure of BC allows a complete loading of SNEs
already at 15 min. This result was corroborated by Co-Q10-
SNE release studies where similar quantities of the Co-Q10-
SNE were released from both BC samples. These analyses were
carried out by fluorescence, following the maximum of Co-Q10-
SNE emission at 551 nm. In detail, 5 mg of BC-Co-Q10-SNEs
were suspended in 1.5 ml of water and incubated at 37°C for
different time periods from 15 to 1,440 min and after 1 ml of the
supernatant was removed at each time and analyzed. The
quantification of release kinetics showed that for both samples
(BC incubated at 15 and 30 min), the Co-Q10-SNE fluorescence
signal increased during the time reaching the saturation point
from 120 to 1.440 min (Figure 5B, Supplementary Figure S3B).
These results were reached optimizing the BC preparation
process to obtain a single not a crosslinked layer of nanofibers.
Indeed, by conducting preliminary experiments on UCC BC
layers, we noted that more external layers were not able to
incubate the Co-Q10-SNE, and encapsulation is mostly
superficial in all the samples analyzed, both at 15 and 30 min
(Supplementary Figures S4A–F).

The reported results show that the BC networks produced with
our conditions can carry out a sustained release of drugs. Our
double release approach based on the use of a drug-encapsulated
nanocarrier within BC could help obtain a prolonged antioxidant
drug release, enhancing their therapeutic effects; it is, indeed,

reported that encapsulated antioxidants show a better stability, and
their gradual and sustained release leads to a superior antioxidant
profile (Khalil et al., 2019). However, simple drug encapsulation in
BC is not able to completely achieve the described effects, for
example, curcumin loaded in cellulose acetate electrospun
nanofibers showed a great initial burst that gradually increased
over time in an uncontrolled manner (Khoshnevisan et al., 2018).
Conversely, we proposed a delivery system which can guaranty a
controlled and time-sustained release highly wished for antioxidants.
In addition, by tuning the SNE size (Vecchione et al., 2014), in
principle, we may easily tune the release kinetics according to the
required needs.

4 CONCLUSION

The current research work was carried out to evaluate the
potential application of BC as a drug delivery system (an
explicative final system was reported in Supplementary Figure
S5). The BC layers were prepared starting from the SCOBY
culture using UCC and CC conditions. Preliminary incubation
studies showed that under UCC conditions, only the innermost
layer, the least crosslinked layer, started to incubate the
nanocarrier (Supplementary Figure S4), and therefore, to
reproduce the best loading conditions, we optimized the BC
preparation process, to assure the production of a mature not
crosslinked BC nanonetworks. Characterization data showed that
CC-BC layers were mature, and IR data corroborate these results,
demonstrating the presence of chemical bands related to BC
nanofibers that are not crosslinked. The Co-Q10-SNE loading
and in vitro release studies revealed that BC matrices can
encapsulate the drug already in 15 min; indeed, confocal
images and fluorescence kinetic studies highlighted no
differences with the BC incubated for 30 min. In detail, the
quantification of release kinetics demonstrated that for both
samples, the Co-Q10-SNE fluorescence signal increases in
intensity during the time reaching the saturation point from
120 to 1.440 min. The obtained results concluded that our BC

FIGURE 5 | Confocal images of the BC-Co-Q10 SNE, (A) 15 min incubation time λexc 450 nm, λemiss 470–600 nm. (B) Release kinetic studies of the Co-Q10 SNE
from BC incubated for 15 min.
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produced in CC conditions could represent a novel matrix for the
delivery of drug-encapsulated nanocarriers. Indeed, thanks to the
optimization of BC synthesis, it could guaranty enough hydration
to demonstrate for the first time the ability to incubate O/W
nanoemulsions, which are ideal nanocarriers for the
encapsulation and stabilization of lipophilic and water-labile
molecules, such as Co-Q10. Additionally, by playing with the
SNE size and with BC synthesis conditions, we may modulate
nanocarriers and therefore biomolecule release to the skin.
However, further research works are required to explore this
potential application. Future analysis will indeed focus on the
production of inflamed micro-tissues that will be then healed
with the BC-Co-Q10-SNE and appropriately analyzed to evaluate
the therapeutic power of the proposed system.
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