
EDITED BY : Jonathan Mapelli, Giacomo Indiveri and Angelo Arleo

PUBLISHED IN : Frontiers in Neuroscience, Frontiers in Cellular Neuroscience

and Frontiers in Computational Neuroscience

BRAIN-INSPIRED COMPUTING: FROM
NEUROSCIENCE TO NEUROMORPHIC
ELECTRONICS DRIVING NEW FORMS
OF ARTIFICIAL INTELLIGENCE

https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 1 February 2022 | Brain-Inspired Computing

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88974-608-8

DOI 10.3389/978-2-88974-608-8

https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/journals/neuroscience
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact

Frontiers in Neuroscience 2 February 2022 | Brain-Inspired Computing

BRAIN-INSPIRED COMPUTING: FROM
NEUROSCIENCE TO NEUROMORPHIC
ELECTRONICS DRIVING NEW FORMS
OF ARTIFICIAL INTELLIGENCE

Topic Editors:
Jonathan Mapelli, University of Modena and Reggio Emilia, Italy
Giacomo Indiveri, University of Zurich, Switzerland
Angelo Arleo, Centre National de la Recherche Scientifique (CNRS), France

Citation: Mapelli, J., Indiveri, G., Arleo, A., eds. (2022). Brain-Inspired Computing:
From Neuroscience to Neuromorphic Electronics Driving New Forms of Artificial
Intelligence. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88974-608-8

https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/journals/neuroscience
http://doi.org/10.3389/978-2-88974-608-8

Frontiers in Neuroscience 3 February 2022 | Brain-Inspired Computing

04 Optimizing BCPNN Learning Rule for Memory Access

Yu Yang, Dimitrios Stathis, Rodolfo Jordão, Ahmed Hemani and
Anders Lansner

19 Neuromorphic Computing Using NAND Flash Memory Architecture With
Pulse Width Modulation Scheme

Sung-Tae Lee and Jong-Ho Lee

29 Unsupervised Adaptive Weight Pruning for Energy-Efficient
Neuromorphic Systems

Wenzhe Guo, Mohammed E. Fouda, Hasan Erdem Yantir, Ahmed M. Eltawil
and Khaled Nabil Salama

47 Efficient Spike-Driven Learning With Dendritic Event-Based Processing

Shuangming Yang, Tian Gao, Jiang Wang, Bin Deng, Benjamin Lansdell and
Bernabe Linares-Barranco

62 Neuromorphic Analog Implementation of Neural Engineering
Framework-Inspired Spiking Neuron for High-Dimensional
Representation

Avi Hazan and Elishai Ezra Tsur

73 Real Time Generation of Three Dimensional Patterns for Multiphoton
Stimulation

Paolo Pozzi and Jonathan Mapelli

83 Hardware Design for Autonomous Bayesian Networks

Rafatul Faria, Jan Kaiser, Kerem Y. Camsari and Supriyo Datta

93 Oscillatory Neural Networks Using VO
2
 Based Phase Encoded Logic

Juan Núñez, María J. Avedillo, Manuel Jiménez, José M. Quintana,
Aida Todri-Sanial, Elisabetta Corti, Siegfried Karg and
Bernabé Linares-Barranco

102 Event-Based Trajectory Prediction Using Spiking Neural Networks

Guillaume Debat, Tushar Chauhan, Benoit R. Cottereau,
Timothée Masquelier, Michel Paindavoine and Robin Baures

118 Understanding the Impact of Neural Variations and Random Connections
on Inference

Yuan Zeng, Zubayer Ibne Ferdous, Weixiang Zhang, Mufan Xu, Anlan Yu,
Drew Patel, Valentin Post, Xiaochen Guo, Yevgeny Berdichevsky and
Zhiyuan Yan

131 Quantifying the Brain Predictivity of Artificial Neural Networks With
Nonlinear Response Mapping

Aditi Anand, Sanchari Sen and Kaushik Roy

Table of Contents

https://www.frontiersin.org/research-topics/14332/brain-inspired-computing-from-neuroscience-to-neuromorphic-electronics-driving-new-forms-of-artifici
https://www.frontiersin.org/journals/neuroscience

ORIGINAL RESEARCH
published: 31 August 2020

doi: 10.3389/fnins.2020.00878

Frontiers in Neuroscience | www.frontiersin.org 1 August 2020 | Volume 14 | Article 878

Edited by:

Jonathan Mapelli,

University of Modena and Reggio

Emilia, Italy

Reviewed by:

James Courtney Knight,

University of Sussex, United Kingdom

Francesco Maria Puglisi,

University of Modena and Reggio

Emilia, Italy

*Correspondence:

Yu Yang

yuyang2@kth.se

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 13 June 2020

Accepted: 28 July 2020

Published: 31 August 2020

Citation:

Yang Y, Stathis D, Jordão R, Hemani A

and Lansner A (2020) Optimizing

BCPNN Learning Rule for Memory

Access. Front. Neurosci. 14:878.

doi: 10.3389/fnins.2020.00878

Optimizing BCPNN Learning Rule for
Memory Access
Yu Yang 1*, Dimitrios Stathis 1, Rodolfo Jordão 1, Ahmed Hemani 1 and Anders Lansner 2,3

1Division of Electronics and Embedded Systems, School of Electrical Engineering and Computer Science, KTH Royal

Institute of Technology, Stockholm, Sweden, 2Division of Computational Science and Technology, School of Electrical

Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden, 3Department of Mathematics,

Stockholm University, Stockholm, Sweden

Simulation of large scale biologically plausible spiking neural networks, e.g., Bayesian

Confidence Propagation Neural Network (BCPNN), usually requires high-performance

supercomputers with dedicated accelerators, such as GPUs, FPGAs, or even

Application-Specific Integrated Circuits (ASICs). Almost all of these computers are based

on the von Neumann architecture that separates storage and computation. In all these

solutions, memory access is the dominant cost even for highly customized computation

and memory architecture, such as ASICs. In this paper, we propose an optimization

technique that can make the BCPNN simulation memory access friendly by avoiding

a dual-access pattern. The BCPNN synaptic traces and weights are organized as

matrices accessed both row-wise and column-wise. Accessing data stored in DRAM

with a dual-access pattern is extremely expensive. A post-synaptic history buffer and an

approximation function thus are introduced to eliminate the troublesome column update.

The error analysis combining theoretical analysis and experiments suggests that the

probability of introducing intolerable errors by such optimization can be bounded to a

very small number, which makes it almost negligible. Derivation and validation of such a

bound is the core contribution of this paper. Experiments on a GPU platform shows

that compared to the previously reported baseline simulation strategy, the proposed

optimization technique reduces the storage requirement by 33%, the global memory

access demand by more than 27% and DRAM access rate by more than 5%; the latency

of updating synaptic traces decreases by roughly 50%. Compared with the other similar

optimization technique reported in the literature, our method clearly shows considerably

better results. Although the BCPNN is used as the targeted neural network model, the

proposed optimization method can be applied to other artificial neural network models

based on a Hebbian learning rule.

Keywords: Bayesian Confidence Propagation Neural Network (BCPNN), neuromorphic computing, Hebbian

learning, spiking neural networks, memory optimization, DRAM, cache, digital neuromorphic hardware

1. INTRODUCTION

Bayesian Confidence Propagation Neural Networks (BCPNNs), proposed by Lansner and Ekeberg
(1989) and Lansner and Holst (1996), are biologically plausible brain cortex models that have
been proven useful for understanding brain functions. Tully et al. (2016) implemented a
BCPNN on SpiNNaker and analyzed the neural structure and dynamics inside a hypercolumn

4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00878
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00878&domain=pdf&date_stamp=2020-08-31
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yuyang2@kth.se
https://doi.org/10.3389/fnins.2020.00878
https://www.frontiersin.org/articles/10.3389/fnins.2020.00878/full

Yang et al. Optimizing BCPNN for Memory Access

and demonstrated temporal sequence learning. Meli and Lansner
(2013) studied the neural interconnection scheme from a
BCPNN model. Fiebig et al. (2020) demonstrated how BCPNN
could emulate the cortical working memory function. Recently,
unsupervised hidden representation learning using BCPNN was
benchmarked on MNIST. The BCPNN achieved 97.5% accuracy
on the unseen test set (Ravichandran et al., 2020).

Currently, the simulation of large scale BCPNNs heavily
relies on high-performance computing centers equipped with
supercomputers and accelerators, such as GPUs and ASICs
(Farahini et al., 2014; Stathis et al., 2020), or dedicated spiking
neural network simulation platform, such as SpiNNaker (Knight
et al., 2016). We identify three categories of optimization
methods: (1) reducing the amount of computation, (2) reducing
the amount of memory access demand, and (3) increasing
the memory access efficiency. Current studies of the BCPNN
optimization are mainly focused on reducing the computation
and memory access demand (Vogginger et al., 2015). The
memory access efficiency aspect is seldom exploited.

With technology scaling, memory access becomes the
dominant cost for most applications (Mutlu, 2013). Memory
optimization in terms of both reducing memory access demand
and increasing the efficiency of the memory access has been done
for many years both for non-Hebbian artificial neural networks
and Hebbian spiking neural networks. For conventional non-
spiking deep neural networks, research works like Li et al.
(2016) and Yang et al. (2017) optimized both memory access
demand and efficiency in deep convolutional neural networks.
For Hebbian spiking neural networks, most research works
target the spike-timing-dependent plasticity (STDP) learning
rule (Markram et al., 2012). For example, Bichler et al. (2012)
simplified the STDP learning rule and reduced the demand
for computation and memory access. Yousefzadeh et al. (2017)
further improved the method proposed by Bichler et al. by
replacing the full connection to a weight-sharing connection.
Thus, it further reduced the computation and memory access
demand. Davies et al. (2012) changed part of the STDP learning
rule and approximated the membrane potential in LTP. It
reduced the computation and memory access demand and
improved memory access efficiency. Jin et al. (2010) and Davies
et al. (2018) delayed the update of weights and reduced the
memory access demand. Pedroni et al. (2019) analyzed different
synaptic matrix memory mapping strategies and proposed a
variation of STDP learning rule to perform the causal and
acausal update process. It reduced memory storage demand for
the sparsely connected network by pointer-based compressed
sparse rows and improved the efficiency for reversed access of
such pointer-based data structure. Knight and Furber (2016)
proposed a spike buffer and a mechanism called “flushing event”
to deal with the inefficient column update in STDP and increase
the memory efficiency. Morrison et al. (2007) used a dynamic
spike buffer to remove column update process in STDP and
increased memory efficiency. Sheik et al. (2016) also pointed out
the memory problem caused by bi-directional spike-triggered
learning rule and proposed a learning rule in which update is
only triggered by presynaptic spikes to improve the memory
access efficiency. However, almost all of these studies that target

spiking neural networks focus on the STDP learning rule. Thus,
it cannot be directly applied to BCPNN since its learning rule
is different and more complex than STDP. By abandoning a
conventional von Neumann architecture, custom neural network
simulation platforms could potentially avoid the root of the
memory access problems. Serrano-Gotarredona et al. (2013) and
Prezioso et al. (2018) usedmemristors to merge computation and
storage, thus eliminating the need for memory access. Though
such new architectures are efficient and attractive, they are not
off-the-shelf and easily accessible, and none of them supports the
BCPNN learning rule.

In this paper, we tackle the memory access problem
introduced by the BCPNN optimization method presented in
Vogginger et al. (2015). By replacing a time-driven simulation
method with an event-driven one, plenty of computational
requirements have been eliminated. The event-driven simulation
method is called “lazy evaluation method” because it delays the
evaluation computation as much as possible. The lazy evaluation
simulation method requires access to the synaptic matrix stored
in main memory, both row-wise and column-wise. A presynaptic
spike triggers an update of a single row in the synaptic matrix,
while a post-synaptic spike triggers an update of a single column.
Today’s memory architecture, such as DRAM, cannot handle
two orthogonal directional access patterns of the same block
of continuous data without sacrificing efficiency. Such access
patterns will also affect the efficiency of the cache system.
Therefore, we propose to remove the column update procedure
and to merge the column and row update. In this way, we
avoid entirely the dual memory access pattern that degrades the
efficiency of the BCPNN simulation. Furthermore, by carefully
designing our strategy, we can also reduce the demand in storage
requirement and memory access, while increasing the overall
performance. We remind readers that even though the BCPNN
is the optimization target, our method is not restricted to this
learning rule. Any Hebbian based neural network learning rule
could potentially be optimized with a slightly modified version of
our strategy.

The rest of the paper is organized as follows: section 2
explains the original BCPNN learning rule, points out the
memory access problem, proposes the alternative method that
resolves the problem, and performs an error analysis for the
proposed method. Section 3 demonstrates the benefits of the
proposed method in terms of both memory storage requirements
and performance. Finally, section 4 summarizes the paper and
addresses the potential of the proposed method.

2. METHODOLOGY

In this section, we introduce the lazy evaluation BCPNN
simulation strategy and highlight thememory access problem. To
overcome this problem, we propose an optimization technique
that tackles the memory access problem. We also present a
detailed analytical and experimental error analysis that shows
the probability of introducing intolerable errors is negligible.
Since we will not drastically modify the BCPNN learning rule
in this paper, we will just present its essence. Readers can

Frontiers in Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 8785

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

find the complete and detailed description in Vogginger et al.
(2015).

2.1. The BCPNN Learning Rule
BCPNN is a type of artificial neural network whose learning
rule is derived from Bayes’ theorem. It strengthens or weakens
the connectivity/weight between pre- and post-synaptic neurons
based on their co-activation. A correlated pre- and post-synaptic
activity gives a positive weight, whereas an anti-correlation gives
a negative weight. The connectivity/weight is calculated by Bayes’
theorem based on the measured firing probability of pre- and
post-synaptic neurons.

To mimic the biological columnar cortical structure
(Buxhoeveden and Casanova, 2002), BCPNN considers
minicolumn units (MCUs) as its basic units representing
the aggregation of about a hundred neurons. Many MCUs
form a hypercolumn unit (HCU) representing the biological
hypercolumn structure (Hubel and Wiesel, 1974). MCUs in
each HCU compete with each other in a soft winner-take-all
(soft WTA) fashion, representing the net effects of excitatory
and inhibitory connections among neural cells, as shown in
Coultrip et al. (1992) and Lundqvist et al. (2006). We use the
notation H × M to represent a BCPNN configuration that
consists of H HCUs, and each HCU includes M MCUs. Usually,
we have the constraint H ≥ M. H can be increased arbitrarily
without an upper limit. M, on the other hand, has a limit of
M = 100. Therefore, the network is growing purely due to the
growth of the amount of HCUs for big networks. For example,
a typical human cortex comparable BCPNN configuration is
∼2 · 106 × 100 (Johansson and Lansner, 2007).

Each MCU could connect to an HCU via a sparse patchy
connection (Meli and Lansner, 2013). Synapses are formed due
to these connections. Fully connected big networks are very costly
in terms of storage and computation. A parameter C constraints
the amount of possible incoming connection slots of each HCU.
The parameters C and M define the shape of its synaptic matrix.
In each human cortex comparable HCU, a 104 × 100 synaptic
matrix is used to store the intermediate synaptic traces as well
as the synaptic weights, as shown in Figure 1A. This HCU
configuration uses C = 104 incoming connections andM = 100
MCUs. On the presynaptic side (left side) of the synaptic matrix,
an i-vector of size C = 104 is used to store presynaptic traces zi,
ei, and pi. On the post-synaptic side (bottom side), a j-vector of
size M = 100 is used to store post-synaptic traces zj, ej, and pj.
The synaptic matrix is also called the ij-matrix because it stores
the synaptic traces eij, pij, and wij.

Following Bayes’ theorem, the BCPNN learning rule requires
the probability estimation of both pre- and post-synaptic events
(spikes). Such probability estimation is obtained via a chain of
low-pass filters applied on the pre- and post-synaptic spikes
(si and sj). For example, the presynaptic filter chain is si →

zi → ei → pi. Similar filter chains are also used to generate
pj (sj → zj → ej → pj) and pij (zi ∗ zj → eij → pij). The
last three traces in the chain (pi, pj, and pij) represent the firing
probability for presynaptic spikes, post-synaptic spikes as well as
pre- and post-synaptic spike co-activation. The synaptic weight
is then computed by combining these three traces. These filters

are implemented by ordinary differential equations (ODEs).
Equation (1) is an example of such ODEs where X is the input,
Y is the output, and τ is the time constant. These ODEs can be
easily computed by Euler’s method (Griffiths and Higham, 2010)
in time-driven simulation.

τ
dY

dt
= X − Y (1)

As a numeric method, Euler’s method requires updating all the
traces whenever the simulation time is forwarded one simulation
step 1t, as shown in Figure 1B. The synaptic plasticity is caused
by the interaction between pre- and post-synaptic spikes. These
spikes drive the change of synaptic weights. The update of
synaptic traces is not necessary when the spikes are absent. As
long as we account for the decay of all the traces when a pre-
or post-synaptic spike comes, then the network’s mathematical
behavior will be the same as for time-driven simulation. As shown
in Figure 1C, a lazy evaluation method only updates part of i-
vector and ij-matrix when there is a triggering spike. The current
value of traces will be calculated analytically based on the time
difference between the current simulation step and the time when
the previous spike came. In this paper, we use the “Analytical I
method” in Vogginger et al. (2015) as the baseline and refer it as
the “lazy evaluation method.” Equation (2) shows the complete
set of equations of the lazy evaluation method. These equations
are used for calculating of pi and pij. The calculation of pj remains
as time-driven. The detail of the lazy evaluation method is not in
the scope of this paper, readers can find the proof of equivalence
in Vogginger et al. (2015).

zi(t) = zi(t
last) · e

− 1t
τzi + si(t)

ei(t) = ei(t
last) · e−

1t
τe + ai

(

e
− 1t

τzi − e−
1t
τe

)

zi(t
last)

pi(t) = pi(t
last) · e

−1t
τ∗p + aibi

(

e
− 1t

τzi − e
−1t

τ∗p

)

zi(t
last)

+

(

ei(t
last)− aizi(t

last)
)

c

(

e−
1t
τe − e

−1t
τ∗p

)

eij(t) = eij(t
last) · e−

1t
τe + aij

(

e
− 1t

τzij − e−
1t
τe

)

zi(t
last)zj(t

last)

pij(t) = pij(t
last) · e

−1t
τ∗p + aijbij

(

e
− 1t

τzij − e
−1t

τ∗p

)

zi(t
last)zj(t

last)

+

(

eij(t
last)− aijzi(t

last)zj(t
last)

)

c

(

e−
1t
τe − e

−1t
τ∗p

)

(2)

where,

ai =
τzi

τzi − τe
bi =

τzi

τzi − τ ∗p
c =

τe

τe − τ ∗p

τzij =

(

1

τzi
+

1

τzj

)−1

aij =
τzij

τzij − τe
bij =

τzij

τzij − τ ∗p

Frontiers in Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 8786

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 1 | (A) Synaptic connections in an HCU. (B) Time-driven simulation method. The update of every trace is triggered by simulation time. (C) Lazy evaluation

method. The update of j-vector (yellow) is triggered by time. The row update (red) is triggered by presynaptic spikes. The column update (blue) is triggered by

post-synaptic spikes.

Each MCU works as a leaky integrator that integrates the input
spike effects (si·wij) in terms ofmembrane potential. TheseMCUs
in the same HCU then compete with each other based on their
membrane potential in soft-WTA fashion. The soft-WTA process
normalizes their membrane potential and generates a relative
firing rate oj. If the soft-WTA process has selected a winning
MCU, the oj of the winning MCU will be approaching 1. The
rest losing MCUs will be suppressed to an oj approaching 0. That
means the winning MCU will have a higher probability of firing
than the rest. If there is no clear winner, all the MCUs will have
nearly uniform oj after the soft-WTA process. In this case, the
MCUs will have a relatively low but equal firing probability. The
oj is then scaled to match the firing rate range in order to give the
final firing rate rj, Equation (3). The firing rate range is between 0
and the maximum firing rate (rmax), where the maximum firing
rate is usually set to 0.1.

rj = rmax · oj (3)

Finally, to generate a spike from the firing rate rj, a Poisson
spike generator (Dayan and Abbott, 2001) shown in Equation (4)
is employed. A uniformly distributed random number x is
generated every time and compared to rj. If rj is bigger than x,
the MCU fires.

sj =

{

1, if rj > x, x ∼ U(0, 1)

0, otherwise
(4)

2.2. Memory Access Problems of Lazy
Evaluation Method
By adopting the lazy evaluation method, the massive memory
access and computation demand from the time-driven
simulation can now be avoided. However, the lazy evaluation
method is not perfect. Its most significant issue is the dual-
memory access pattern. Both pre- and post-synaptic spikes
trigger the update events of synaptic traces. Depending on the
type of spikes, either a row or a column of the synaptic matrix
is fetched. The row or column is sent to the computation unit
to be updated and stored back. The lazy evaluation implies that
memory storage should efficiently support both row-wise and
column-wise access mode to achieve high throughput. However,
such a requirement is not feasible for modern DRAM and cache
hierarchy of supercomputers.

Modern DRAM and cache respond to every READ and
WRITE operation with a whole row of their data to increase
efficiency. Isolated single cell access pattern is not friendly for
DRAM and cache. To access a single data cell, they need to fetch

Frontiers in Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 8787

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

or store a whole row of data. Since other parts of the row are
useless, to operate on them is a waste of time and energy.

The lazy evaluation method with both row-wise and column-
wise access patterns can be a great challenge for the DRAM
and cache system. In Stathis et al. (2020), the author tries to
customize the DRAM architecture to make it more adaptable to
the BCPNN access pattern. However, due to the nature of DRAM
technology, even by heavy customization, it still sacrifices the
DRAM performance to support lazy evaluation. In this work, we
propose a modified lazy evaluation method that eliminates the
column-wise memory access pattern. This optimization makes
the BCPNN learning rule DRAM and cache access friendly. We
refer to the modified algorithm as Column Update Elimination,
or CUE for short.

The CUE method not only solves the dual memory access
problem but also eliminates the demand for memory access
by the column update process. Even with the lazy evaluation
method, which has already dramatically reduced the memory
access, the memory access demand is still huge for a large
BCPNN. To put it into context, a human cortex comparable
BCPNN has a 2 · 106 × 100 configuration. Such a network needs
to access, on average, 10,000 rows and 100 columns of synaptic
storage in every second per HCU. In total, it will require 200
TB of data traffic for the whole network per second. The amount
of data required by 100 rows and 1 column is the same, around
240 KB/HCU, because the shape of the synaptic matrix is 10,000
× 100 for the human cortex comparable BCPNN. By applying
CUE, half of the memory access demand due to column update
is eliminated.

2.3. Column Update Elimination (CUE)
In this section, we modify the original BCPNN lazy evaluation
method by eliminating the more expensive column update. In
each subsection, we will introduce one important modification
and explain in detail its mechanism. The main idea of this
modification is to avoid column-wise access to DRAM and cache
by removing the column update. The row update triggered by
the presynaptic spike updates the synaptic weight, which directly
influences the spike generation. On the other hand, the column
update only affects the state of the synaptic traces and can be
delayed. The column update can be removed, and its calculations
can be integrated with the row update.

2.3.1. Ideal CUE
As shown in Figure 2A, in the lazy evaluation method, each cell
in the ij-matrix will be updated either by row update (red) or
column update (blue). A spike triggers each update event. The
update procedure includes three tasks: Load data from memory,
perform the computation, and store data back to memory. Row
update is triggered by presynaptic spikes si (red), while column
update is triggered by post-synaptic spikes sj (blue). The example
in Figure 2A, shows the update event of a single cell in the ij-
matrix. From left to right, its traces are updated by a row update,
followed by 3 column updates, and another row update. Each
update only covers the range from its trigger point back until the
last spike event.

If an infinite buffer that records all the post-synaptic spikes is
available, the column update can then be eliminated, as shown in

Figure 2B. Each cell in the ij-matrix will only be updated by a row
update (red). The row update will cover the range from its trigger
point back until the last presynaptic spike event. However, the
row update process in Figure 2B is different from Figure 2A. The
new row update process emulates the computation of the original
column updates thanks to the buffer that keeps the record of all
post-synaptic spikes. Compared to the original lazy evaluation
method, the CUE row update reduces the amount of memory
access leaving only the row-wise memory access patterns.

The CUE method with an infinite sized buffer will not
introduce any additional error, as all the computation required
by the lazy evaluation method is still performed. It only changes
the point in time when each computation happens. The CUE
does not reduce the amount of computation. It only reduces the
amount of memory access. The integration of column update
effects is summarized by Algorithms 1 and 2.

Algorithm 1: Lazy Evaluation Method

while a presynaptic spike arrives do
foreach Cell ∈ Row do

load_memory(Cell);
update_traces(Cell);
store_memory(Cell);

end

end

while a post-synaptic spike is generated do
foreach Cell ∈ Column do

load_memory(Cell);
update_traces(Cell);
store_memory(Cell);

end

end

Algorithm 2: Ideal CUE Method

while a presynaptic spike arrives do
foreach Cell ∈ Row do

load_memory(Cell);
// Integrating column update by the following
FOR-LOOP;
foreach post-synaptic spike ∈ Buffer[Cell.Column] do

update_traces(Cell);
end

update_traces(Cell);
store_memory(Cell);

end

end

2.3.2. CUE With Finite Sized Buffer
To have an infinite buffer that records every post-synaptic spike
is impractical. In a more realistic case, the infinite buffer can be
substituted by one with limited size, as shown in Figure 2C. The

Frontiers in Neuroscience | www.frontiersin.org 5 August 2020 | Volume 14 | Article 8788

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 2 | Comparison of lazy evaluation method and CUE simulation strategy. (A) Lazy evaluation method. The update is performed either by presynaptic spike

triggered row update (red) or post-synaptic spike triggered column update (blue) process. (B) CUE method with infinite buffer. The update is performed only by the

presynaptic spike triggered row update. The row update is modified to incorporate the effects of the original column update. The change of synaptic trace also

considers the post-synaptic spikes. (C) CUE method with finite buffer. Finite buffer might discard spikes and cause a systematic error. The change of synaptic trace

has been altered due to the discarded spikes. (D) CUE method with finite buffer and approximation function. The approximation function will cover the range that can’t

be covered by the spike buffer. It will introduce a balanced error which is preferable.

edge of the buffer is called the look-back horizon (LBH). A spike
history buffer with size L can only respond to the request for sj(t)
when t is later in time than the LBH. The information from spike
events that are earlier in time than LBH is lost.

As shown in the example in Figure 2C, two post-synaptic
spikes that are beyond the LBH are discarded by the spike
history buffer, due to its limited size. Therefore, the row update
computation, that emulates the effects of the intermediate
column updates is different from the original lazy evaluation
computation. Such behavior will introduce systemic errors since
spikes are solely dropped. The post-synaptic spike train observed
by the row update in Figure 2Cwill always have fewer spikes than
the spike train in Figure 2A. This systematic error is undesirable
because it will accumulate strictly positively or negatively. We
need a mechanism that could introduce balanced errors so that
they can potentially cancel each other.

2.3.3. Approximation Function
To avoid a systematic error, we propose an approximation
function to predict the spikes beyond the LBH, as shown in

Figure 2D. Since the spike history is lost, due to the limited buffer
size, the prediction is the only option when the information of sj
beyond LBH is needed. An approximation function is defined as
H :N

0 × D → B; (t,m) 7→ s. where t ∈ N
0 is the simulation

step that needs prediction, m ∈ D is whatever extra information
required by the approximation function, and s ∈ B is the boolean
variable indicating whether a spike should be generated or not.

Errors will be introduced if the approximation function is
not an oracle that always gives a correct prediction. In the
next section, we will discuss various approximation functions
in detail and analyze their error bounds. A good approximation
function should be computationally light and be able to reduce
the error, compared to the scenario when all the spikes beyond
LBH are dropped. Any errors introduced by the approximation
function should be introduced in a balanced way to avoid
error accumulation.

2.3.4. Alternative Approach in Literature
Knight et al. (2016) has reported a similar method to remove
the BCPNN column update by introducing a finite buffer. The

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 8789

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

work does not mention how the expired spikes are handled. If
the expired spikes are just dropped, the BCPNN will suffer from
systematic error.

Another paper by the same author (Knight and Furber, 2016)
has reported a “flushing event” mechanism to avoid the loss of
spikes when using a finite-sized buffer for STDP. The flushing
event method used in STDP is not very friendly for BCPNN.
A presynaptic neuron triggers a flushing event when it hasn’t
been active for a fixed time (usually spike buffer size L) and
triggers an update of a row in the synaptic matrix. In BCPNN,
when the internal representation is stable, the active rows (very
small proportion of the synaptic matrix) are also stable. For
example, in a 100 × 100 network with 10,000 rows in total, the
number of active rows is statistically always the same 100 rows
due to the bursty property of spike trains. Therefore, presynaptic
neuron triggered flushing events will force almost a complete full
matrix update every L ms. In this paper, we have optimized the
flushing event method to be triggered by post-synaptic spikes. It
forces a column update whenever a post-synaptic spike is shifted
out from the spike buffer to guarantee that no spike is lost.
The post-synaptic triggered version statistically only updates a
synaptic column instead of the whole synaptic matrix every Lms.
Different from our approach which uses approximation function
to predict the spikes, the flushing event method is exact and will
not introduce error. But the price would be keeping the inefficient
column update process.

In section 3, we implement the flushing event method on
BCPNN and compare both the flushing event method and
our CUE method against the baseline lazy evaluation method.
Readers will see that by removing the column update process,
CUE method outperforms the flushing event method in terms of
both storage and performance.

2.4. Error Analysis
In this section, we analyze the error introduced by the CUE
method. The error discussed in this paper refers to the relative
error of synaptic weight wij caused by wrong post-synaptic spike
predictions. We choosewij because it is the final synaptic variable
that influences the spike generation. The error is treated only
at the evaluation points since the row update only happens at
these timing points. The error is defined by Equation (5). For
simplicity, we denote the evaluation of err(t) at the evaluation
points simply by err in later text. In this section, we bound the
probability of intolerable error. Two small threshold numbers, ǫ
and δ, are defined for such error bound. Equation (6) describes
the err, as a function of ǫ and δ.

err(t) =

∣

∣

∣

∣

∣

wij(t)−w
pred
ij (t)

wij(t)

∣

∣

∣

∣

∣

, if si(t) = 1

0, otherwise

(5)

P(err > ǫ|L,H) = P(t − t′ > L) · P(err > ǫ|H) ≤ δ (6)

Equation (6) represents the probability of having an error that
exceeds the threshold ǫ, under the scenario that a spike buffer

of size L is used together with an approximation functionH. This
probability is bounded by δ. If we prove that δ is sufficiently small,
we can assert that the BCPNN behavior will not diverge from the
original simulation strategy. We do not intend to mathematically
bound the error to a definite number that works for every corner
case because such an approach is very pessimistic and does not
reflect typical operational scenarios.

The probability P(err > ǫ|L,H) can be expanded as two terms.
The two terms describe the conditions: (1) The last presynaptic
spike fires beyond the look-back horizon (LBH), and (2) the
approximation function prediction gives an intolerable error. In
Equation (6), t is the current evaluation time when a presynaptic
spike is observed, and t′ is the time when the last presynaptic
spike occurs for the same synaptic cell.

In the following sections, we first discuss the spike firing
rate distribution to form the foundation for the probability-
bound calculation. Then we calculate the probability of a
presynaptic spike firing beyond the LBH, P(t − t′ > L). After
that, we present two approximate functions—the static and
adaptive approximation function. We establish the probability of
introducing errors via the two approximation functions, P(err >

ǫ|H). Finally, we summarize all the strategies and compute the
overall error probability bound.

2.4.1. Spike Firing Rate Distribution
The average spiking frequency in higher-order
(memory/cognitive) cortical areas is very low, likely around
0.1 Hz (Lennie, 2003). When experimenters record active
neurons, they typically have spiking frequency up to 100
Hz with an average of around 20 Hz. An MCU in BCPNN
does not directly represent every single neuron. Instead,
it mimics the behavior of a minicolumn of some hundred
neurons, of which, only a handful (5–10) big layer 5 pyramidal
cells communicate outside the HCU. So we estimate that
the maximum instantaneous firing frequency of an MCU is
5 × 20 = 100 Hz. Therefore, the maximum firing rate at each
simulation step rmax is set to 0.1 when the simulation step 1t is
set to 1 ms.

AnH×M BCPNN has an activity level α ∈ [0, 1]. It indicates
the number of active HCUs in this BCPNN is αH. An active
HCU is an HCU with a clear winning MCU and some losing
MCUs after the soft Winner-Take-All (soft WTA) process while
an inactive HCU has only MCUs that are neither winners nor
losers, see section 2.1. Winning MCUs will have a high firing rate
(close to rmax), losingMCUs have a low firing rate (close to 0), and
MCUs in the inactive HCU will have uniform firing rate (close to
rmax
M). Usually, a BCPNN should not have themajority of its HCUs
inactive as those HCUs would not be able to learn.

The first row of Figures 3A–C, show examples of measured
firing rate probability distribution function ρ(r) of a 10 × 10
BCPNN. From the figure, we can see that the distribution of firing
rates is very dense in some extremely narrow areas. If we zoom in,
as shown in sub-figure (C), we can observe a narrow bell-curve
shaped distribution. The cause of each peak is marked by text
beside all the sub-figures in the first row (A), (B), and (C). For
example, sub-figure (A) has only one peak caused by the MCUs
in the inactive HCUs, since when α = 0, all HCUs are inactive.

Frontiers in Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 87810

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 3 | The measured probability distribution function of firing rate ρ(r) (first row, A–C) and the model of probability distribution of firing rate P(r) (second row, a–c).

The first row is continuous function while the second row is discretized function. The horizontal axis of all sub figures ranges from 0 to 0.1 because rmax = 0.1 and

both ρ(r) and P(r) are 0 when r > rmax .

In sub-figure (C), two peaks are caused by losing and winning
MCUs inside the active HCUs, since when α = 1, all HCUs are
active, hence there is a winning MCU and some losing MCUs.
At last, when α = 0.5, it is the combination of the previous two
scenarios. The height of each pulse is determined by the amount
of MCUs that cause it. If we compare the peak height caused
by losing and winning MCUs, we can see that the losing peak is
much higher than the winning one, because there are nine times
more losing MCUs than the winning MCUs in active HCUs due
to the soft-WTA process.

P(r) =

αM−1
M , if r = rl,

α 1
M , if r = rw,

1− α, if r = rs,

0, otherwise

(7)

We can use impulse functions δ(·) to model the probability
distribution function (PDF) of firing rate ρ(r). By using a
δ function, the probability distribution of the firing rate is
discretized. Therefore, we can directly use P(r) shown in
Equation (7) to describe the discretized events. P(r) is shown in
the second row of Figures 3a–c. The position of these peaks in
the model is determined by the average firing rate rl of losing
MCUs in active HCU, the average firing rate rw of winning
MCUs in active HCU, and the average firing rate rs of MCUs in
inactive HCU. The constants rl, rw, and rs are measured directly
from BCPNN simulations. Since the firing rate is determined
by the soft-WTA process inside a single HCU, the only factor
that influences these constants is the number of MCUs in each
HCU (M), normally ranging from 10 to 100. Different BCPNN
applications might have a different value for these constants.
An investigation of both feed-forward and recurrent BCPNN
suggests that rl and rw are very concentrated and close to 0
and rmax, respectively. The value of rs is analytically determined
by assuming all MCUs in inactive HCU have a uniform firing

rate. To represent the general firing rate distribution, we use
a set of constants that we obtained from the simulation of the
BCPNN as an associative memory via a BCPNN GPU simulator
(Herenvarno, 2019). These constants are listed in Table 1.

We can now calculate the expectancy of r based on
Equation (7) and the constants in Table 1. The Equation (8)
shows the method to calculate such expectancy. It shows that the
expectancy is always very close to rs regardless of α andM.

〈r〉 =
∑

r∈{rl ,rw ,rs}

r · P(r)

= α(rw
1

M
+ rl

M − 1

M
)+ (1− α)rs

≈ α(rmax ·
1

M
+ 0 ·

M − 1

M
)+ (1− α)

rmax

M

=
rmax

M
= rs

(8)

From the recordings of cortical memory systems, it is clear that
spikes typically come in the form of bursts (Lundqvist et al.,
2016). The BCPNN implementation is optimized for this kind
of behavior as its internal representation does not change too
frequently with respect to the simulation step. Therefore, when
analyzing spike sequences, we assume that the firing probability
does not change for the whole spike sequence in the observing
period (typically <200 ms). When at some simulation step, we
observe a firing rate r, it is almost certain that at one step earlier,
the firing rate was also r.

2.4.2. Spike History Buffer
We are now in a position to formulate how the probability
P(t − t′ > L) can be computed in terms of the firing rate r and
its probability distribution P(r). We know that (1) in a period, the
probability of the presynaptic neuron firing at a particular firing
rate r is P(r). (2) The probability of a presynaptic spike appearing
at instance t is then equal to the firing rate r of that period. When

Frontiers in Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 87811

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

TABLE 1 | Firing rate constants.

M 10 20 30 40 50

rl 0.0000990 0.0000981 0.0000972 0.0000963 0.0000954

rw 0.0991090 0.0981361 0.0971812 0.0962443 0.0953254

rs 0.0100000 0.0050000 0.0033333 0.0025000 0.0020000

M 60 70 80 90 100

rl 0.0000945 0.0000936 0.0000927 0.0000918 0.0000909

rw 0.0944245 0.0935416 0.0926767 0.0918298 0.0910009

rs 0.0016667 0.0014286 0.0012500 0.0011111 0.0010000

FIGURE 4 | The decomposition of the probability P(t− t′ > L).

there is indeed a presynaptic spike, a row update will trigger the
proposed CUE scheme. (3) Given point (2) we can deduce that
the probability that no spikes appeared for the previous L ms is
(1− r)L. If t′ is the instance when the row was last updated, then
the probability of having (t − t′) > L is exactly the combination
of the three conditions described above. Figure 4 illustrates the
condition and time relation.

Figure 5 shows the plot of such a probability based on the
equation in Figure 4. The horizontal axis represents the buffer
size L. The vertical axis is in logarithmic scale and represents the
probability of requiring to look beyond the LBH. When α = 0,
all MCUs will have a uniformly distributed firing rate rs. Thus,
all the curves in the first sub-figure are straight lines. When
α = 1, there are two types of MCUs that fire under rl or rw,
which gives the curve two distinct parts. The first part of the
curve is dominated by the effects of winning MCUs, where the
probability drops very fast. The second part is almost flat, which
is dominated by losing MCUs. The sub-figure in the center with
α = 0.5 is the combination of the above scenarios. The BCPNN
configuration parameter M also affects the shape of the curve.

When M is bigger, the rs will become closer to 0, making the
probability smaller. The overall average firing rate of active HCUs
is also roughly equaled to rs. That is why all three sub-figures,
though with different α, have curves starting at the same points,
which are determined by rs.

The most common BCPNN applications have most of their
HCUs being active. Thus, the majority of their MCUs are either
winning or losing after the soft-WTA process. According to the
third sub-figure in Figure 5, we choose the L = 100 as the
size of the spike buffer since it already passes the turning point.
Further increasing the buffer size will not dramatically decrease
the error probability.

2.4.3. Approximation Function
We have briefly discussed the approximation function and have
explained why imperfect approximation function will introduce
errors. Although it is impossible to avoid introducing errors
with any imperfect approximation function, a well-designed
approximation function can introduce small errors in a balanced
manner. Therefore, we need to choose a proper tolerance ǫ so
that the error bound can reflect the approximation function’s
predictive ability. In this work, we choose ǫ = 1% as the
threshold. It is a practical way to consider the error to be
much less than the actual value in insensitive systems, such as
neural networks. It thus could guarantee that the behavior of
the BCPNN remains unaffected. We use ǫ to calculate the error
bound of approximation functions.

It is very complex to analytically find out the error propagation
from the firing rate r to synaptic weights wij, as discussed in
section 2.1. The calculation of wij includes many low-pass filters,
random number generation, and complex arithmetic operations,
such as logarithm. Instead, we opt to find out P(err > ǫ|H)
by experimental simulation for each type of approximation
functions that have been developed. Each experiment has been
repeated for more than 105 times to guarantee the generality of
the collected statistics.

2.4.3.1. Static approximation function
In this subsection, we propose a type of approximation function
that we call static. The static approximation function Hs is
defined in Equation (9), where x ∼ U(0, 1) is a uniformly
distributed random number generated at each prediction. This
function is static because it always uses a constant firing rate to
make a prediction. We use the s subscript to indicate that the
function is static.

Hs :N
0 → B, so thatHs : t 7→ (x < rs) (9)

To maximize the probability for long term correct prediction, the
predicted firing rate has to match the true firing rate. However,
a spike can be generated according to any of rl, rw, and rs.
Therefore, the true firing rate is not constant. We choose rs to
be the static predicted firing rate is because the expectancy of r is
〈r〉 = rs. It will statistically introduce both positive and negative
errors since it does not exactly match the true firing rate.

Figure 6 shows the simulation result when using a static
approximation function. We can see that the prediction differs

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 87812

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 5 | Probability of looking beyond LBH.

when α changes. However, the change is not significant, because
the firing rate expectancy roughly equals to rs, no matter what the
value of α is. On the other hand, when the BCPNN configuration
changes, the probability changes a lot. This change happens
because, for large M, the expected firing rate is close to 0. Since
the expected firing rate approaches 0, it makes it easier for the
approximation function to have a correct prediction.

2.4.3.2. Adaptive approximation function
The static approximation function Hs is very simple and unable
to properly grasp the three different firing rates in the BCPNN.
By modifying it, we can easily implement another type of
approximation function that factors in the dynamic information
available at evaluation time. We call this type of approximation
function as adaptive approximation function. It is defined in
Equation (10), where r∗ is the nearest recorded firing rate history
and x ∼ U(0, 1) is a uniformly distributed random number
generated at each prediction. The a subscript in H indicates that
it is an adaptive function. The Ha is very similar to Hs. The
difference between the two functions is that the predicted firing
rate here adapts to the true firing rate r∗.

Ha :N
0 × R → B, so that,Ha : t 7→ (x < r∗) (10)

We record the HCU activation status and winning/losing status
of each MCU, assuming that spikes come in bursts. The record
of such a status can be reasonably infrequent. Additionally, the
required information is boolean and thus occupies very little
storage space. If we record the winning/losing status of each
MCU every 300 simulation steps, only 32 records are needed to
cover nearly 10,000 simulation steps. The cost to record such a
range for each MCU is equivalent to just a single integer word.
Since we assume the HCU and MCU status will not change
frequently, we can use the recorded status to determine the real
status for any simulation step.

Figure 7 shows the simulation result when using an adaptive
approximation function. We can see that the prediction differs
more when α changes, compared to the previous static
approximation function curve. The explanation is that the
adaptive function adapts to the true firing rate. We note here

again that for large α, the firing rate has a higher probability
of being close to 0. Hence it is easier to predict. When the
BCPNN configuration changes, the probability changes a lot.
The change follows the same trend of static approximation
function simulation.

2.4.4. Summary
We plot the overall error probability in Figure 8. The curve is the
multiplication of previous curves in Figures 5–7. It demonstrates
two different strategies: (1) buffer + static approximation
function and (2) buffer + adaptive approximation function. One
can easily tell from the plot that the second strategy dominates
the first one. By combining the spike buffer and adaptive
approximation functions, we can bound the error as low as
to the order of 10−4 for any activation level. The worst-case
scenario of α = 0 should not happen in any BCPNN simulation.
Whereas, for normal BCPNN simulations, α = 1 is usually
guaranteed. The M is commonly set to 100 when simulating a
relatively big network. In such cases, the error bound will be
improved dramatically to the order of 10−8. Therefore, in normal
circumstances, all errors introduced can be consideredminor and
negligible for the operation of the BCPNN.

The static approximation function leads to a very good
error bound as well. Though slightly worse than the adaptive
approximation function, it does not require any extra resources.
Consequently, it is very efficient to apply the combination
of a spike buffer and a static approximation function for
most applications. Therefore, we adopt this strategy for the
experiments in the results section.

3. EXPERIMENT RESULTS

In this section, we set up a series of experiments on
a GPU platform to examine all the metrics affected by
the CUE method. The GPU we use is an Nvidia Quadro
K1200 GPU, which can be profiled by the Nvidia GPU
profiling tool—nvprof. The profiled metrics include storage
and performance aspects. We mainly analyze the storage
requirements, memory access demand, and memory access
efficiency. The approximation function of CUE used in these

Frontiers in Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 87813

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 6 | Error probability of static approximation function.

FIGURE 7 | Error probability of adaptive approximation function.

FIGURE 8 | Overall error of different strategy.

experiments is the static approximation function due to its
simplicity, see section 2.4.4. The experiments are designed
to compare the original lazy evaluation method (baseline),
the flushing event method, and the CUE method. Both the
flushing event method and the CUE method have the same
buffer size.

3.1. Storage Analysis
In the original lazy evaluation method, we need several variables
to be stored in the memory to represent the state of each synapse.
This variables are used to track the change of all the traces and
time, and they are pij, eij, zi2, zj2, wij, and tij. Once the column
update procedure is removed, all synaptic traces will be updated

Frontiers in Neuroscience | www.frontiersin.org 11 August 2020 | Volume 14 | Article 87814

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 9 | Memory storage requirement comparison (red) and requirement

reduction by the flushing event method and the CUE method (blue).

only when a presynaptic spike si occurs. Thus, the timestamp tij
will be identical to the timestamp ti in presynaptic traces and
can be safely removed. The zi2 is the equivalent zi trace, and it
is stored in the synaptic matrix. In the lazy evaluation method, zi
and zi2 could be updated at different times, so we have to make a
copy (zi2) inside the synaptic matrix. After applying CUE, zi2 will
only be updated when an si occurs, its value should be identical
to zi for all synapses corresponding to the same presynaptic trace.
We can now safely remove the zi2 trace.

The flushing event method still keeps the column update.
The storage of the flushing event method thus is identical to
the lazy evaluation method except that it requires some extra
buffer storage for post-synaptic spikes. Overall, the flushing event
method doesn’t change the storage requirement.

Note that both tij and zi2 traces are synaptic variables that
dominate the storage cost for BCPNN simulation because the
amount of data representing synaptic traces is proportional to the
product of the number of pre- and post-synaptic units. Figure 9
summarize the storage comparison of the original lazy evaluation
method and CUE method. The figure shows that we save around
33% of memory by applying CUE. The 33% of reduction is
due to the elimination of tij and zi2, which are two out of six
synaptic traces.

3.2. Performance Analysis
In this section, we analyze the performance of each method
in terms of the memory access demand, the memory access
efficiency, and the latency of the row/column update CUDA
kernels. The first two factors focus on the memory aspects but
neither of them can characterize the performance alone. The
overall performance is instead characterized by the latency of
the row/column update CUDA kernels. In our experiments, we
implement and test a series of small BCPNNs with configuration
M ×M, where M ∈ {10, 30, 50, 70, 100}. Each of these networks
is trained to remember 10 patterns, where each pattern is trained
for 500 ms.

FIGURE 10 | Memory access demand comparison (red) and memory demand

reduction by the flushing event method and the CUE method (blue).

3.2.1. Memory Access Demand
Compared with the original lazy evaluation method, the memory
access demand requested by the column update is eliminated.We
remind the reader that, in the original lazy evaluationmethod, the
column update roughly demands the same amount of memory
access as a row update. However, when applying CUE, the
memory access demand of a row update increases slightly due
to the access for spike buffer. Therefore, the improvement in
memory demand should be <50%.

We record two global memory access related metrics:
global memory load transactions (Nld) and global memory store
transactions (Nst). They represent the global memory access
demand requested by the CUDA kernels. The Equation (11)
calculates the memory demand of those row/column
update kernels.

D = kL1 ∗ (Nld + Nst) (11)

The scaling factor kL1 is set to 128 because the size of the Quadro
K1200 GPU’s L1 cache line is 128 Bytes. The D represents the
amount of data in Bytes that is needed to be loaded from, or
stored to, the global memory. Figure 10 shows the comparison
among the original lazy evaluation method, the flushing event
method, and the CUE method. From the figure, we can see
that half of the memory access demand of a small network
is eliminated by CUE method due to the elimination of the
column update process. In a bigger network, the memory
demand is improved by one third. The flushing event method
however reduces the memory access demand in a much smaller
proportion. It can reduce the invocation of column update, and
save memory access for active rows. However, the access of the
spike buffer is a non-negligible overhead. Overall, the flushing
event method saves memory access demand. However, for big
networks, the saving is largely canceled by the overhead of
accessing the spike buffer.

Frontiers in Neuroscience | www.frontiersin.org 12 August 2020 | Volume 14 | Article 87815

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 11 | DRAM access rate comparison (red) and DRAM access rate

reduction by the flushing event method and the CUE method (blue).

3.2.2. Memory Access Efficiency
In this experiment, we profile the following four metrics:
DRAM read transactions (Nrd), DRAM write transactions (Nwr),
global memory load transactions (Nld), and global memory store
transactions (Nst). The Nrd and Nwr are the recorded READ and
WRITE operation count from/to the DRAM. They represent the
actual DRAM access. The Equation (12) defines a parameter
called DRAM access rate γ .

γ =
kL2(Nrd + Nwr)

kL1(Nld + Nst)
× 100% (12)

Here, the kL2 and kL1 are the L2 and L1 cache line
size, respectively.

From Equation (12), we can see that a large γ value means
a large number of real DRAM access and a high cache-miss
rate. Figure 11 shows the DRAM access rate of several BCPNN
configurations. We can see that the DRAM access rate is reduced
by the CUE method, although the reduction is less dramatic for
bigger networks. This is because the column-wise memory access
demand has already been eliminated; the improvement has been
shown in Figure 10. The improvement that is shown in Figure 11
only presents the average memory access efficiency using the
CUE method, compared to the lazy evaluation method.

We can also observe that the flushing event method improves
memory access efficiency compared to the lazy evaluation
method. It is because even though the memory access demand
for the spike buffer is equivalent to the memory access demand
of a single cell column update, the memory access for the buffer
is coalesced, thus much more efficient than the column update.
When the flushing event happens, it also updates according to the
spike buffer and resets the spike buffer to reduce the invocation of
the column update kernel. However, the flushing event method
is not as good as the CUE method because it still keeps the
extremely inefficient column update.

FIGURE 12 | Latency comparison of synaptic matrix update procedures (red)

and latency reduction by flushing event method and CUE method (blue).

If we look at the trend of the DRAM access rate, we can see
that it behaves abnormally when M = 10. That is because the
network is so small, the L2 cache can hold almost the entire
network. Therefore, the lazy evaluation method is efficient. For
M ≥ 30, the column update becomes slightly more efficient with
the increase of network size. It’s mainly due to the variation of the
proportion of empty rows in the synaptic matrix that affects the
efficiency of the column update. We don’t explain the complete
causality of this phenomena since it’s not very related to our
memory access efficiency comparison and it requires a lot of
implementation details related to the GPU platform.

3.2.3. Latency
With the improvement in terms ofmemory demand andmemory
access efficiency, the overall latency of function call is reduced.
We test the average latency of a row and column update
procedures. Figure 12 shows that compared to the original lazy
evaluation method, which requires both row and column update,
our CUE strategy reduces the latency of the synaptic matrix
update. The average latency is reduced by about 50%. The
reduction in latency is mainly due to memory optimization and
the elimination of issuing the column update kernel, which has
some overhead.

The flushing event method also improves the overall
performance compared to the lazy evaluation method. However,
due to the column update process, the improvement is less than
the CUE method which eliminates the entire column update.

For both blue lines in Figure 12, whenM = 50, the reduction
drops a little. It is because that the column update efficiency
changes with the change of network size. But the change rate is
not very uniform due to the nature of the GPU platform. It will
be more efficient if the network configuration makes the memory
access pattern to fit the GPU warp size. M = 50 is one of such
configuration points.

Frontiers in Neuroscience | www.frontiersin.org 13 August 2020 | Volume 14 | Article 87816

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

4. DISCUSSION

In this paper, we have discussed the BCPNN memory access
problem introduced by the lazy evaluation method. An
algorithmic optimization has been proposed to tackle this issue.
The proposed Column Update Elimination (CUE) method
eliminates the column update and merges it with the row update,
with the help of spike history buffer and approximation function.
Using the CUE method, we gain not only memory access
efficiency but also other improvements, such as the reduction of
memory storage, memory access demand, etc. We also show that
our algorithmic modification only introduces negligible errors
and does not compromise the functionality of the BCPNN.

In this section, we further examine the potential of the
proposed method. We focus on the new possibilities after the
column update has been eliminated, and other learning rules that
CUE method can fit in. Finally, based on what we have achieved,
we describe an outlook that could improve BCPNN simulation
even further.

4.1. Exploiting the Temporal Locality of
Spike Train
Memory access efficiency can be further improved by
architectural optimization. We have analyzed the pattern of
spike train in section 2.4.1. Spikes are generated in burst mode
regulated by stimulus pattern. Usually, the change of these
stimulus patterns is infrequent. Thus, when the neural network
is in the middle of a stable stimulus pattern, the firing patterns of
spikes are also stable.

We have analyzed the percentage of winning MCUs in both
active and silent HCUs. Even in completely activeH×M BCPNN
(α = 1), the fraction of winning MCUs which fire frequently is
just 1

M . Therefore, only a fraction of 1
M connections will be active

at each simulation step, assuming uniform interconnections.
Therefore, when the firing patterns are stable, the part of synaptic
traces that need to be frequently updated is also stable, and
the global memory access patterns of synaptic traces are stable
as well.

In this paper, we have eliminated the non-coalesced column-
wise memory access pattern. With stable global memory access
patterns, we can cache the frequently updated fraction of synaptic
traces by designing a large enough cache between the memory
and computation unit. The single global memory access pattern
guarantees that the cache system will not be interrupted by other
memory access patterns.

Unfortunately, the estimated size of such a cache usually
is much bigger than any off-the-shelf commercial computer
architecture. The insufficient size of the cache will lead to
frequent swapping data between the cache and DRAM, thus
significantly compromises the memory access efficiency. The
customization of the cache system becomes necessary and can
only be done in custom hardware architecture, such as ASICs.

4.2. CUE Method for STDP
The STDP learning rule changes the synaptic weights based on
the correlation of pre- and post-synaptic spikes. The amount

of change depends on the time difference between the pre- and
post-synaptic spikes. A pre- and post-synaptic spike pair for a
synaptic connection 〈si, sj〉 occurs at time 〈ti, tj〉. If ti < tj, they
are correlated. Otherwise, they are anti-related. One commonly
used method to calculate such causal strength is described in
Equation (13).

1wij =

+A+ · e−
tj−ti

τ , if ti < tj

−A− · e−
ti−tj

τ , if ti > tj
(13)

We can see that the update of weights in the STDP learning rule
is triggered by pre- and post-synaptic spikes, just like the BCPNN
learning rule. It is natural to organize the synaptic weights of
STDP learning as a matrix stored in the memory. Because of its
triggering mechanism and data structure, the STDP learning rule
will suffer from the same dual memory access pattern issue as a
lazy evaluation method.

By proposing the same solution to STDP learning, we can use
a post-synaptic buffer and an approximation function to delay
the update of the post-synaptic triggered column update. The
buffer size L, and the type of approximation function H will
be different for STDP learning. Further analysis and simulation
should be done to investigate the error bound. For example, the
probability density function (PDF) of the firing rate in STDP
might be different. It might be enough for STDP by just using
the spike history buffer. However, the principle of optimizing
memory access efficiency remains the same for both STDP and
BCPNN learning rules.

4.3. Outlook
In the future, we could also explore the option of hardware
architecture to improve the BCPNN simulation further. For
example, we could dimension a big enough cache that can hold
the complete stationary synaptic traces to avoid DRAM memory
access. We could also use non-von Neuman architecture,
such as memristor, which could potentially avoid the memory
access problem. Other algorithmic modifications combined with
approximate computing, such as delayed stochastic row update,
could also improve the overall BCPNN simulation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The initial idea proposed in the paper came from AL and AH. YY
further developed the method by introducing the approximation
function, proposed the methodology for error analysis, and
performed the experiments to verify the proposed method. DS
and RJ helped with the refinement of method especially the error
analysis part. All authors contributed to the article and approved
the submitted version.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2020 | Volume 14 | Article 87817

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

REFERENCES

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J. P., and Gamrat, C.
(2012). Extraction of temporally correlated features from dynamic vision
sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.
doi: 10.1016/j.neunet.2012.02.022

Buxhoeveden, D. P., and Casanova, M. F. (2002). The minicolumn hypothesis in
neuroscience. Brain 125, 935–951. doi: 10.1093/brain/awf110

Coultrip, R., Granger, R., and Lynch, G. (1992). A cortical model of
winner-take-all competition via lateral inhibition. Neural Netw. 5, 47–54.
doi: 10.1016/S0893-6080(05)80006-1

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359
Davies, S., Galluppi, F., Rast, A. D., and Furber, S. B. (2012). A forecast-based

STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14.
doi: 10.1016/j.neunet.2012.02.018

Dayan, P., and Abbott, L. F. (2001). Neural Encoding I: Firing Rates and Spike

Statistics, Chapter 1. Cambridge, MA: MIT Press.
Farahini, N., Hemani, A., Lansner, A., Clermidy, F., and Svensson, C.

(2014). “A scalable custom simulation machine for the Bayesian confidence
propagation neural network model of the brain,” in 2014 19th Asia and

South Pacific Design Automation Conference (ASP-DAC) (Singapore), 578–585.
doi: 10.1109/ASPDAC.2014.6742953

Fiebig, F., Herman, P., and Lansner, A. (2020). An indexing theory for working
memory based on fast hebbian plasticity. eNeuro 7:ENEURO.0374-19.2020.
doi: 10.1523/ENEURO.0374-19.2020

Griffiths, D. F., and Higham, D. J. (2010). Euler’s Method, Chapter 2. London:
Springer.

Herenvarno (2019).GSBN: GPUVersion of Spiking-Based BCPNN. Available online
at: https://github.com/herenvarno/gsbn

Hubel, D. H., and Wiesel, T. N. (1974). Uniformity of monkey striate cortex:
a parallel relationship between field size, scatter, and magnification factor. J.
Compar. Neurol. 158, 295–305. doi: 10.1002/cne.901580305

Jin, X., Rast, A., Galluppi, F., Davies, S., and Furber, S. (2010). “Implementing
spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware,”
in Proceedings of the International Joint Conference on Neural Networks,
(Barcelona), 1–8. doi: 10.1109/IJCNN.2010.5596372

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural
systems. Neural Netw. 20, 48–61. doi: 10.1016/j.neunet.2006.05.029

Knight, J. C., and Furber, S. B. (2016). Synapse-centric mapping of cortical
models to the spinnaker neuromorphic architecture. Front. Neurosci. 10:420.
doi: 10.3389/fnins.2016.00420

Knight, J. C., Tully, P. J., Kaplan, B. A., Lansner, A., and Furber, S. B. (2016). Large-
scale simulations of plastic neural networks on neuromorphic hardware. Front.
Neuroanat. 10:37. doi: 10.3389/fnana.2016.00037

Lansner, A., and Ekeberg, Ö. (1989). A one-layer feedback artificial neural
network with a bayesian learning rule. Int. J. Neural Syst. 1, 77–87.
doi: 10.1142/S0129065789000499

Lansner, A., and Holst, A. (1996). A higher order Bayesian neural network with
spiking units. Int. J. Neural Syst. 7, 115–128. doi: 10.1142/S0129065796000816

Lennie, P. (2003). The cost of cortical computation. Curr. Biol. 13, 493–497.
doi: 10.1016/S0960-9822(03)00135-0

Li, C., Yang, Y., Feng, M., Chakradhar, S., and Zhou, H. (2016).
“Optimizing memory efficiency for deep convolutional neural
networks on GPUs,” in International Conference for High Performance

Computing, Networking, Storage and Analysis, SC (Salt Lake
City, UT: IEEE Computer Society), 633–644. doi: 10.1109/SC.2
016.53

Lundqvist, M., Rehn,M., Djurfeldt, M., and Lansner, A. (2006). Attractor dynamics
in a modular network model of neocortex. Network: Computation in Neural

Systems 17, 253–276. doi: 10.1080/09548980600774619
Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., and Miller,

E. K. (2016). Gamma and beta bursts underlie working memory. Neuron 90,
152–164. doi: 10.1016/j.neuron.2016.02.028

Markram, H., Gerstner, W., and Sjöström, P. J. (2012). Spike-timing-
dependent plasticity: a comprehensive overview. Front. Synap. Neurosci. 4:2.
doi: 10.3389/978-2-88919-043-0

Meli, C., and Lansner, A. (2013). A modular attractor associative memory with
patchy connectivity and weight pruning. Netw. Comput. Neural Syst. 24,
129–150. doi: 10.3109/0954898X.2013.859323

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi: 10.1162/neco.2007.19.6.1437

Mutlu, O. (2013). “Memory scaling: a systems architecture perspective,” in 2013

5th IEEE International Memory Workshop, IMW 2013 (Monterey, CA), 21–25.
doi: 10.1109/IMW.2013.6582088

Pedroni, B. U., Joshi, S., Deiss, S. R., Sheik, S., Detorakis, G., Paul, S., et al. (2019).
Memory-efficient synaptic connectivity for spike-timing- dependent plasticity.
Front. Neurosci. 13:357. doi: 10.3389/fnins.2019.00357

Prezioso, M., Mahmoodi, M. R., Bayat, F. M., Nili, H., Kim, H., Vincent,
A., et al. (2018). Spike-timing-dependent plasticity learning of coincidence
detection with passively integrated memristive circuits. Nat. Commun. 9, 1–8.
doi: 10.1038/s41467-018-07757-y

Ravichandran, N. B., Lansner, A., and Herman, P. (2020). Brain-like approaches
to unsupervised learning of hidden representations–a comparative study.
arXiv[Preprint].arXiv:2005.03476.

Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G.,
and Linares-Barranco, B. (2013). STDP and STDP variations with
memristors for spiking neuromorphic learning systems. Front. Neurosci.
7:2. doi: 10.3389/fnins.2013.00002

Sheik, S., Paul, S., Augustine, C., and Cauwenberghs, G. (2016). “Membrane-
dependent neuromorphic learning rule for unsupervised spike pattern
detection,” in Proceedings–2016 IEEE Biomedical Circuits and Systems

Conference, BioCAS 2016 (Shanghai: Institute of Electrical and Electronics
Engineers Inc.), 164–167. doi: 10.1109/BioCAS.2016.7833757

Stathis, D., Sudarshan, C., Yang, Y., Jung, M., Jafri, S. A. M. H., Weis, C.,
et al. (2020). eBrainII: a 3 kW realtime custom 3D DRAM integrated ASIC
implementation of a biologically plausible model of a human scale cortex. J.
Signal Process. Syst. 2020, 1–21. doi: 10.1007/s11265-020-01562-x

Tully, P. J., Lindén, H., Hennig, M. H., and Lansner, A. (2016). Spike-
based bayesian-hebbian learning of temporal sequences. PLoS Comput. Biol.
12:e1004954. doi: 10.1371/journal.pcbi.1004954

Vogginger, B., Schüffny, R., Lansner, A., Cederström, L., Partzsch, J., and Höppner,
S. (2015). Reducing the computational footprint for real-time BCPNN learning.
Front. Neurosci. 9:2. doi: 10.3389/fnins.2015.00002

Yang, Y., Jafri, S. M. A. H., Hemani, A., and Stathis, D. (2017). “MTP-caffe:
memory, timing, and power aware tool for mapping CNNs to GPUs,” in
Proceedings of the 8th Workshop and 6th Workshop on Parallel Programming

and Run-Time Management Techniques for Many-Core Architectures and

Design Tools and Architectures for Multicore Embedded Computing Platforms,

PARMA-DITAM ’17 (New York, NY: Association for Computing Machinery),
31–36. doi: 10.1145/3029580.3029585

Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,
B. (2017). “Hardware implementation of convolutional STDP for on-line visual
feature learning,” in Proceedings–IEEE International Symposium on Circuits and

Systems (Baltimore, MD: Institute of Electrical and Electronics Engineers Inc.),
1–4. doi: 10.1109/ISCAS.2017.8050870

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yang, Stathis, Jordão, Hemani and Lansner. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 15 August 2020 | Volume 14 | Article 87818

https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1093/brain/awf110
https://doi.org/10.1016/S0893-6080(05)80006-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.neunet.2012.02.018
https://doi.org/10.1109/ASPDAC.2014.6742953
https://doi.org/10.1523/ENEURO.0374-19.2020
https://github.com/herenvarno/gsbn
https://doi.org/10.1002/cne.901580305
https://doi.org/10.1109/IJCNN.2010.5596372
https://doi.org/10.1016/j.neunet.2006.05.029
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.3389/fnana.2016.00037
https://doi.org/10.1142/S0129065789000499
https://doi.org/10.1142/S0129065796000816
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1109/SC.2016.53
https://doi.org/10.1080/09548980600774619
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.3389/978-2-88919-043-0
https://doi.org/10.3109/0954898X.2013.859323
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1109/IMW.2013.6582088
https://doi.org/10.3389/fnins.2019.00357
https://doi.org/10.1038/s41467-018-07757-y
https://doi.org/10.3389/fnins.2013.00002
https://doi.org/10.1109/BioCAS.2016.7833757
https://doi.org/10.1007/s11265-020-01562-x
https://doi.org/10.1371/journal.pcbi.1004954
https://doi.org/10.3389/fnins.2015.00002
https://doi.org/10.1145/3029580.3029585
https://doi.org/10.1109/ISCAS.2017.8050870
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 1

ORIGINAL RESEARCH
published: 18 September 2020

doi: 10.3389/fnins.2020.571292

Edited by:
Jonathan Mapelli,

University of Modena and Reggio
Emilia, Italy

Reviewed by:
Alex James,

Independent researcher, Bangalore,
India

Jiyong Woo,
Electronics and Telecommunications

Research Institute (ETRI), South Korea

*Correspondence:
Jong-Ho Lee
jhl@snu.ac.kr

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 10 June 2020
Accepted: 17 August 2020

Published: 18 September 2020

Citation:
Lee S-T and Lee J-H (2020)

Neuromorphic Computing Using
NAND Flash Memory Architecture

With Pulse Width Modulation
Scheme. Front. Neurosci. 14:571292.

doi: 10.3389/fnins.2020.571292

Neuromorphic Computing Using
NAND Flash Memory Architecture
With Pulse Width Modulation
Scheme
Sung-Tae Lee and Jong-Ho Lee*

Department of Electrical and Computer Engineering, ISRC, Seoul National University, Seoul, South Korea

A novel operation scheme is proposed for high-density and highly robust neuromorphic
computing based on NAND flash memory architecture. Analog input is represented
with time-encoded input pulse by pulse width modulation (PWM) circuit, and 4-bit
synaptic weight is represented with adjustable conductance of NAND cells. Pulse width
modulation scheme for analog input value and proposed operation scheme is suitably
applicable to the conventional NAND flash architecture to implement a neuromorphic
system without additional change of memory architecture. Saturated current-voltage
characteristic of NAND cells eliminates the effect of serial resistance of adjacent cells
where a pass bias is applied in a synaptic string and IR drop of metal wire resistance.
Multiply–accumulate (MAC) operation of 4-bit weight and width-modulated input can
be performed in a single input step without additional logic operation. Furthermore,
the effect of quantization training (QT) on the classification accuracy is investigated
compared with post-training quantization (PTQ) with 4-bit weight. Lastly, a sufficiently
low current variance of NAND cells obtained by the read–verify–write (RVW) scheme
achieves satisfying accuracies of 98.14 and 89.6% for the MNIST and CIFAR10
images, respectively.

Keywords: neuromorphic, synaptic device, in-memory computing, NAND flash, deep neural networks, quantized
neural networks

INTRODUCTION

Recently, deep neural networks (DNNs) have achieved excellent performance for a variety of
intelligent tasks, such as natural language processing, computer vision, and speech recognition
(Truong et al., 2016; Nishani and Cico, 2017; Sainath et al., 2017). However, recent high-
performance DNNs require a vast network size and an enormous number of parameters and
computational capability, which demand very fast and power-hungry graphics processing units
(Scardapane et al., 2017; Khan et al., 2019). Furthermore, von Neumann architecture leads to
tremendous time and energy consumption due to the bottleneck between memory and processor.
To accelerate neural network computation, neuromorphic systems that can efficiently process
multiply–accumulate (MAC) operation have been proposed and developed utilizing memory
devices (Suri et al., 2011; Jackson et al., 2013).

Frontiers in Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 57129219

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.571292
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.571292
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.571292&domain=pdf&date_stamp=2020-09-18
https://www.frontiersin.org/articles/10.3389/fnins.2020.571292/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 2

Lee and Lee Neuromorphic Computing Using NAND Flash

In prior research, resistive random access memories (RRAMs)
were mainly used as synaptic devices to implement the
neuromorphic system (Park et al., 2013; Tang et al., 2017;
Andri et al., 2018; Zhou et al., 2018; Guan and Ohsawa, 2019).
However, RRAMs require further research in terms of cell
characteristics variation, reliability, and integration of selectors
for large-scale integration (Woo and Yu, 2019). In addition, the
effect of metal wire resistance can cause inaccurate vector–matrix
multiplication (VMM) operation in a large array (Wang et al.,
2020). Furthermore, low on/off current ratio of RRAMs restricts
bandwidth to sum current of many RRAM devices (Sun et al.,
2018; Yu et al., 2020). The state-of-the-art algorithms typically
demand a huge parameter size. To satisfy this demand, NAND
flash memory can be a promising candidate for a synaptic device
to meet this requirement. NAND flash memory offers ultra-high
bit density for immense data storage and low fabrication cost
per bit, and it has been well known as a mature technology
(Yamashita et al., 2017; Kang et al., 2019; Huh et al., 2020).
However, NAND flash memory was not commonly used in
neuromorphic system because of the characteristics of the string
structure. In RRAM crossbar array, the input bias is applied
to word-lines (WLs), and output current is summed through
bit-lines (BLs). Therefore, VMM of the input voltage applied
to the WLs and the conductance of the RRAM can be easily
implemented. However, in NAND flash memory architecture, the
WL and source-line (SL) are shared by NAND strings in the
same block. Furthermore, read bias and pass bias are applied
to the selected layer and unselected layers, respectively, to read
the current of NAND cells of a selected layer. Therefore, it has
been considered difficult to implement VMM in NAND flash
memory architecture.

In this article, a novel neuromorphic architecture is proposed
for the quantized neural network (QNN) utilizing NAND
flash memory with a pulse width modulation (PWM) scheme.
Our scheme implements a high-density neuromorphic system
because two NAND cells having eight current levels (3-bit)
are used as one synaptic device, and a PWM circuitry can
represent the analog input values. Furthermore, our scheme
can process MAC of the analog input value and 4-bit weight
with only a single input step, which considerably decreases
power consumption and burden of peripheral circuits needed in
architectures in digital design. Utilizing saturated current-voltage
characteristics of NAND cells solves the problem arising from the
resistance of the pass cells where a pass bias is applied and metal
wire. Furthermore, the effect of quantization training (QT) on
inference accuracy is investigated compared with post-training
quantization (PTQ). Lastly, we show that sufficiently low current
variance of synaptic devices obtained by the read–verify–write
(RVW) method achieves satisfying accuracy.

MATERIALS AND METHODS

Neuromorphic System Using NAND
Flash
Figure 1 shows schematically an operation scheme of a
neuromorphic system utilizing a three-dimensional (3D) NAND

flash with PWM circuits. Input voltages with adjustable pulse
width from PWM circuits are imposed on string-select lines
(SSL), where cell current is added in the BLs, as shown in
Figure 1A. The NAND cells in the kth WL represent the
synapses in the kth synaptic layer of the neural network
shown in Figure 1B. The read bias (Vread) and pass bias
(VPASS) are imposed on a selected WL and unselected WLs,
respectively, as shown in Figure 1C. When Vread is imposed
on the WL sequentially along the synaptic string, the output
of each postsynaptic neuron is sequentially generated. Cells are
connected to a selected WL store weights, and each weight
determines the string-current of each string. In the proposed
scheme, the input voltage is simultaneously imposed on all SSLs.
The proposed operation scheme is different from that of the
conventional NAND flash memory architecture, as compared
in Table 1. The input bias corresponding to neuron activation
is applied to SSLs, and the current sum is read through
BLs in the proposed operation scheme. On the other hand,
the cell selected by the input address is read through BL in
the conventional NAND flash memory. Furthermore, SSLs are
simultaneously biased by input voltage in the proposed scheme,
whereas read bias is imposed sequentially on each SSL in
the conventional NAND flash memory. Therefore, this scheme
significantly reduces latency compared with conventional NAND
flash memory technology. The output current is read through
the BL in both schemes. In addition, the proposed synaptic
architecture utilizing NAND flash is different from the RRAM
crossbar array. In the RRAM crossbar array, the input bias is
applied to WLs, and the output current is summed through
BLs. The NAND cell array is composed of cell strings, and each
cell string has multiple cells connected in series. In the NAND
cell array, the WL and SL are shared by NAND strings in the
same block of NAND flash memory. In addition, to turn on
unselected cells, pass bias (VPASS) should be applied to WLs of
unselected cells. Therefore, in the proposed synaptic architecture,
the input is applied to SSLs, and the output current is read
in the BLs. Furthermore, cells in the kth layer in NAND flash
strings represent synapses in the kth layer synapse layer in neural
networks. Note that the proposed operation scheme can be
applied to both 2D and 3D NAND flash memory architectures.

Figure 2 represents VMM operation utilizing a string
array and neuron circuits. In the neuromorphic system, the
weight and input in the DNN algorithm are represented
by conductance and input voltage of synaptic devices,
respectively. In the DNN algorithm, weighted sum output
is linearly increased with input as shown in the equation;

O =
∑

WX (1)

where O, W, and X represent weighted sum output, weight, and
input, respectively. In the neuromorphic system, it is commonly
assumed synaptic devices have linear current (I) versus voltage
(V) characteristics (Kim T. et al., 2017). If synaptic devices
have linear I-V characteristics, the amplitude of input in a
DNN model can be simply represented by the amplitude of
input voltage of synaptic devices. Then, the weighted sum
current is represented by the product of input voltage and

Frontiers in Neuroscience | www.frontiersin.org 2 September 2020 | Volume 14 | Article 57129220

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 3

Lee and Lee Neuromorphic Computing Using NAND Flash

FIGURE 1 | (A) Operation scheme for synaptic string array utilizing NAND flash memory with PWM circuits. (B) Schematic diagram of neural networks. (C) Pulse
diagram applied to WLs with the time.

conductance of synaptic devices, as shown in the equation;

I =
∑

GV (2)

where I, G, and V represent weighted sum current, conductance,
and input voltage of devices, respectively. On the other hand,
the cell device of NAND flash memory has non-linear I-V
characteristics (Lee et al., 2018, 2019a), which means output
current has a non-linear relationship with the input voltage.

TABLE 1 | Comparison of proposed operation scheme with that of conventional
NAND flash memory.

Proposed operation
scheme

Conventional NAND
flash memory

Input Input bias corresponding to
neuron activation

Address of a selected cell

String select line Simultaneously biased Sequentially read

Output current Bit-line Bit-line

Thus, an analog amplitude of input pulse cannot represent the
amplitude of input in a DNN algorithm (Lee et al., 2019b). To
resolve the problem of the non-linear I-V characteristic of NAND
cells, the PWM scheme is proposed. In this scheme, the amplitude
of the input pulse is fixed, whereas the pulse width of the input
pulse varies in proportional to the amplitude of input in a DNN
algorithm. Then, the weighted sum output is represented by the
amount of charge accumulated in neuron circuits, whereas the
input voltage is applied as shown in the equation;

Q = V
∑

GT (3)

where Q, V, G, and T represent weighted sum charge, the constant
amplitude of input pulse, conductance of device, and pulse width
of the input pulse, respectively. Therefore, the weighted sum
in a DNN model can be correctly performed in neuromorphic
systems by using the PWM scheme despite the non-linear I-
V characteristics of cell devices. In addition, this scheme is
well fitted to conventional NAND flash memory architecture.
Two adjacent NAND cells are used for one synaptic device to

Frontiers in Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 57129221

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 4

Lee and Lee Neuromorphic Computing Using NAND Flash

FIGURE 2 | (A) Schematic diagram of synaptic string array consisting of synapses with positive weight (G+) and synapses with negative weight (G−). (B) Pulse
diagram of operation scheme and voltage of capacitor with the time. (C) Voltage of capacitor (VC) with difference of IEVEN and IODD.

represent negative weight value. Considering the negative weight,
the charge accumulated in the neuron circuit can be represented
by the equation;

Q = V
∑

T(G+ − G−) (4)

where G− and G+ represent negative and positive
weights, respectively.

By adopting two current mirrors and one capacitor as one
neuron circuit shown in Figure 2A, current summing in time
scale and subtracting between positive and negative weights are
carried out (Kim H. et al., 2017). In Figure 2A, synaptic devices
connected to even BL and odd BL have positive weight (G+)
and negative weight (G−), respectively. The k, j, and i in the
weighted sum equation of Figure 2A represent the kth synapse
layer, jth postsynaptic neuron, and ith synapse connected to jth
neuron, respectively. The current of even BL (IEVEN) accumulates
the charge in a capacitor, and the current of odd BL (IODD)
reduces the charge in a capacitor. Figure 2B represents the pulse
diagram of the operation scheme and voltage of the capacitor
(VC) in the case of positive weight as an example. Whereas Vread
is applied to selected WL during Tread, the VSSL1, VSSL2, and
VSSL3 are applied to SSL1, SSL2, and SSL3 during T1, T2, and
T3, respectively. Then, I1, I2, and I3 flow through NAND strings
1, 2, and 3, respectively. VC increases to V3, which equals to
(I1·T1+ I2·T2+ I2·T2)/C. Here, for simplicity of description, it is
assumed that the weights of cells to which read bias is applied are
the same. The VDD and ground limit the voltage of the capacitor.
Therefore, the relationship between VC and the difference of
IEVEN and IODD represents a hard-sigmoid function, which is
one of the activation functions, as shown in Figure 2C. Note that
VC linearly increases with the difference of IEVEN and IODD in a
specific current region where the difference of IEVEN and IODD
ranges from -(C·VDD)/(2·Tread) to (C·VDD)/(2·Tread). Here, for
simplicity of description, it is assumed that IEVEN and IODD are
constant during Tread. Therefore, this scheme can process MAC

of 4-bit weight and analog input pulse and implement neuron
activation in a single input step without any logic operation,
significantly reducing the burden of peripheral circuits required
for logic operation. The PWM circuits, current mirrors, and
capacitors are reused for all synapse layers (equivalently WLs)
in a synaptic string, which greatly reduces the area of peripheral
circuits. Note that the convolution operation and VMM in
multilayer neural networks are the same operations in principle
when a 2D convolution kernel is unrolled into a 1D column (Gao
et al., 2016). Therefore, the proposed scheme in this work can be
applied to the implementation of convolutional neural networks.

RESULTS

Measurement Results of NAND Flash
Cells
We measured floating-gate 2D NAND cells fabricated with
26-nm technology. One cell string is composed of 64 cells,
including a ground select line transistor, an SSL transistor, and
two dummy cells. The channel width and length are 20 and
26 nm, respectively. Figure 3 represents BL current (IBL) versus
BL voltage (VBL) curves with various weight levels at a VPASS of
6 V and WL voltage (VWL) of 0 V. Each cell has eight weight
levels giving eight current levels from 0 to 1.4 µA, and the current
difference between adjacent current levels is 200 nA. As one
synaptic device consists of positive and negative weight cells, the
synaptic device has a 4-bit weight. In the neuromorphic system,
the IR drop of metal wire causes inaccurate VMM operation, as
resistance in metal wire decreases effective voltage imposed on
synaptic devices. In addition, the channel resistance of adjacent
cells where pass bias is applied also results in inaccurate VMM
operation in NAND flash memory. To resolve these problems,
NAND cells are operated in the saturation region, eliminating
the problem caused by the resistance of the metal wire and the
pass cells in the unselected layers. IBL rarely changes despite the

Frontiers in Neuroscience | www.frontiersin.org 4 September 2020 | Volume 14 | Article 57129222

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 5

Lee and Lee Neuromorphic Computing Using NAND Flash

change of VBL in the saturation region, as shown in Figure 3, and
the minimum output resistance of a NAND cell, which operates
at a saturation region, is about 20 M�.

As VPASS is applied to pass cells during the inference process,
VPASS disturbance needs to be investigated. Figure 4 shows
the IBL–VWL curves with VPASS disturbance and 12-V program
bias (VPGM). Black square symbols represent the IBL–VBL curve
measured in a fresh cell. The red circle symbol represents the IBL–
VBL curve after applying VPASS of 6 V 104 times to the fresh cell.
As these two curves are nearly the same, the effect of VPASS is
negligible. The curves measured after a pulse with VPGM of 12 V
is applied to the cell 10 times and 20 times, which are depicted by
green triangle symbols and blue diamond symbols, respectively.
The inset shows the change of IBL (1IBL) after applying 104 VPASS

FIGURE 3 | IBL–VBL characteristics with various weight levels at a VPASS of
6 V and a VWL of 0 V.

FIGURE 4 | IBL–VWL characteristics with VPASS and VPGM.

(6 V), 10 VPGM, and 20 VPGM pulses. As shown in the inset, the
IBL shows little variation with 104 VPASS pulses compared with 10
VPGM pulses.

We estimate device variation, as it degrades the classification
accuracy of neural networks. RVW method is used to match IBL
of NAND cells in a NAND array to the target current level among
eight levels in Figure 3. The weights obtained in off-chip training
are transferred to cells by the RVW method, which reiterates
the cycle of reading, verifying, and writing threshold voltage of
NAND cells. After each VPGM pulse is imposed on the NAND
cell, the IBL of the NAND cell is measured by the Vread to check
if the measured conductance of the cell is outside of the target
conductance range. A VPGM is imposed on the NAND cell if the
conductance is outside of the target conductance range. As this
process is repeated, the amplitude of VPGM increases. The RVW
process ends when the conductance of the cell is within the target
conductance range. In this work,∼40 pulses are applied to fit the
current of a synaptic device within the range of target current on
average, and amplitude of VPGM increases from 11 V with a fixed
width of 100 µs. Figure 5 shows the measured IBL distribution of
second and third weight levels (W2, W3) obtained by the RVW
method in the NAND string. To investigate the effect of device
variation on neural networks, the largest variation among the
eight levels need to be estimated. Among the eight levels, W2
has the largest device variation, and W3 has the smallest device
variation. The estimated device variation (σw/µw) of W2 is 3.43%,
and W3 is 1.68% based on the statistical parameters extracted
from the measurement data. In this estimation, we assume that
the conductance distribution of NAND cells follows a Gaussian
distribution (Lee et al., 2019b).

Pulse Width Modulation Circuit
Figure 6 represents a PWM circuit consisting of a sawtooth
generator, a differential amplifier, and a level shifter. The
sawtooth generator produces a sawtooth wave (VS). The
differential amplifier compares VS with an analog signal (VA)
and amplifies the difference between VS and VA. The level shifter
produces a width-modulated pulse (VP) with a fixed amplitude,
and VP is applied to SSLs of a synaptic string array. Figure 7
shows the simulation results of VA, VS, and VP in the PWM
circuit when VAs are 0.3 and 0.9 V, as an example. The pulse
width of the VP is proportional to the amplitude of the VA. As
the amplitude of VA increases from 0.3 to 0.9 V, the pulse width
of VP increases from 3 to 9 µs.

Evaluation of Quantized Neural Networks
In QNNs, the weight can be quantized during or after training.
PTQ means that training the DNNs with high-precision floating-
point weight without quantization during training. After the
training process, PTQ quantizes the pretrained weight at the
inference stage. On the other hand, QT performs quantizing
the weights during the training process and training a DNN
model with quantized weights during forward and backward
propagations (Li et al., 2017a,b; Choi et al., 2019). We investigate
the effect of QT that involves quantization during the training
process on the inference accuracy. Figures 8A,B show simulated
classification accuracies of QNN using PTQ for CIFAR10

Frontiers in Neuroscience | www.frontiersin.org 5 September 2020 | Volume 14 | Article 57129223

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 6

Lee and Lee Neuromorphic Computing Using NAND Flash

FIGURE 5 | IBL distribution of NAND cells in NAND array at (A) W2 and (B) W3 levels.

and MNIST, respectively. Classification accuracies decrease by
0.33 and 1.26% with PTQ for MNIST and CIFAR10 images,
respectively, compared with those obtained from neural networks
having floating-point weight, as the bit-width of weight decreases
to 4. Therefore, the PTQ scheme significantly decreases inference
accuracy with 4-bit weight.

To decrease the degradation of classification accuracy, we
adopt QT, which is an algorithm that involves fine-tuning
optimized for QNN. Figure 9 shows the simulated classification
accuracy of neural networks using QT. QT increases classification
accuracies by 0.34 and 0.96% for MNIST and CIFAR10,
respectively, compared with those for PTQ. The classification
accuracies using QT for MNIST and CIFAR10 are 98.2 and
89.7%, respectively, which are comparable with those obtained in
neural networks having floating-point weight (FNN), as shown in
the inset. Therefore, by adopting QT, the neuromorphic system
utilizing NAND flash memory weighting 4-bit can achieve high
inference accuracy. The power efficiency of the synaptic device
is estimated from the distribution of synaptic weights in QNN.
The average power consumed in a synaptic device per neural
computation is estimated to be 0.15 µW for multilayer neural

FIGURE 6 | PWM circuit consisting of sawtooth wave generator, differential
amplifier, and level shifter.

networks consisting of five layers (784–1024–1024–1024–10).
The power consumption of the synaptic device can be reduced
by adopting a thin (∼3 nm) body (Lue et al., 2019) or pruning the
neural networks (Lee et al., 2020). Note that, in this work, we use
a 4-bit weight because a 4-bit weight can achieve higher accuracy
than binary weight and achieve comparable accuracy compared
with a 6-bit weight (Hubara et al., 2017). If a synaptic device has
a 5-bit conductance level to implement a 6-bit weight, more time
and energy are required in the RVW process for weight transfer.

To investigate the effect of weight and input precision on the
classification accuracy of the neural networks, QNN, having 4-
bit weight and analog input, is compared with binary neural
networks (BNN) having 1-bit weight and 1-bit input. Figure 10
shows the inference accuracy of QNN and BNN for CIFAR10
with convolution neural networks having three fully connected
layers and six convolution layers. Note that, as bit-width of
weight and input in QNN decreases, the classification accuracy
decreases (Hubara et al., 2017). It is because the quantization
of weights and inputs results in a weighted sum error. In
addition, the reduction of bit-width of quantization increases the
weighted sum error, which decreases classification accuracy. The
final classification accuracies are 89.38 and 87.1% for QNN and
BNN, respectively. Therefore, the proposed operation scheme
can implement QNN with higher inference accuracy compared
with BNN (Lee et al., 2019a).

Effect of Device Non-ideality
Figure 11 shows the effect of device variation (σw/µw) on
simulated classification accuracy of QNN for CIFAR10 and
MNIST images. The simulation is executed 20 times at each
σw/µw, assuming a Gaussian distribution (Lee et al., 2019b). The
classification accuracy decreases as the device variation increases.
In this work, the largest device variation among eight levels is
3.43% (W2), so it is used to estimate the classification accuracy.
As the device variation (σw/µw) of our work is sufficiently low,
the inference accuracies decrease by less than 0.16 and 0.24%
for the MNIST and CIFAR 10 images, respectively, compared
with accuracy with no variation. To reduce the variation in
the conductance of synaptic devices, it is necessary to reduce

Frontiers in Neuroscience | www.frontiersin.org 6 September 2020 | Volume 14 | Article 57129224

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 7

Lee and Lee Neuromorphic Computing Using NAND Flash

FIGURE 7 | Simulated result of VA, VS, and VP in PWM circuit.

the target current range set in the control circuits of the RVW
method. However, this increases the number of pulses applied
to devices, which increases energy and time consumption in the
RVW process. Therefore, it is necessary to set the optimized
target current range in RVW, taking into account the degree of
conductance variation and the energy and time consumed in the

RVW process. The variation obtained in this work is less than
3.43%, which is sufficiently low to achieve comparable accuracy
compared with that with no variation.

Figure 12 shows the effect of the stuck-at-off device ratio
on simulated classification accuracy of QNN for CIFAR10 and
MNIST images. The simulation is executed 20 times at each ratio,
and the classification accuracy decreases as the ratio of stuck-at-
off device increases. The classification accuracies decrease by 13.5
and 0.5% for CIFAR10 and MNIST, respectively, as the stuck-
at-off device ratio increases to 10%. To reduce degradation of
classification accuracy due to the stuck-at-off device below 1%
for CIFAR10, the ratio of the stuck-at-off device needs to be
below 2%. NAND flash memory is currently a mass-produced
technology, and the ratio of stuck-at-off cells is estimated to
be less than 1%.

DISCUSSION

Comparison of Input Pulse Schemes
To implement VMM in a neuromorphic system, the intensity
of the input signal in the DNN algorithm can be represented
by the amplitude or width of the input pulse. However, the
amplitude modulation scheme causes an error in VMM because

FIGURE 8 | Simulated classification accuracy with respect to the bit-width of weight using PTQ for (A) CIFAR10 and (B) MNIST images.

FIGURE 9 | Simulated classification accuracy with QT for (A) CIFAR10 and (B) MNIST images.

Frontiers in Neuroscience | www.frontiersin.org 7 September 2020 | Volume 14 | Article 57129225

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 8

Lee and Lee Neuromorphic Computing Using NAND Flash

FIGURE 10 | Simulated classification accuracy of QNN and BNN for CIFAR10
images.

FIGURE 11 | Effect of device variation (σw/µw) on simulated classification
accuracy of QNN for CIFAR 10 and MNIST images. Red star represents the
accuracy when the largest variation obtained in this work is applied.

the I-V characteristics of synaptic devices are non-linear (Kim T.
et al., 2017). To resolve this problem, a previous study reported
an input pulse mapping scheme using an inverse function

generator that handles the non-linearity of I-V characteristics
(Kim T. et al., 2017). This solves the non-linearity problem,
but the VMM can still be inaccurate due to unwanted voltage
drop across the parasitic resistance of the pass cells or metal
wire. As described earlier, the amplitude modulation scheme has
limitations in realizing accurate VMM operation but can reduce
latency compared with the width modulation scheme.

On the other hand, the width modulation scheme can
eliminate the effect of parasitic resistance by operating synaptic
devices in the saturation region of I-V characteristics. This
scheme may have a longer latency than the amplitude modulation
scheme but enables accurate VMM. The width modulation
scheme requires a PWM circuit to convert the intensity of the
input to the width of the input pulse, which increases the burden
on the peripheral circuit. Because the amplitude modulation
scheme requires an inverse function generator that requires
an operational amplifier, it also increases the burden on the
peripheral circuit (Kim T. et al., 2017).

Comparison With Prior Works
In prior studies, our group has reported neuromorphic
architectures that use NAND flash memory cells as binary
synapses performing XNOR operation in BNNs (Lee et al., 2019a)
and synaptic devices in on-chip training (Lee et al., 2018). In
those studies, output current for each neuron is sequentially
generated each time Vread is imposed on a selected WL. However,
in this work, all outputs of neurons in a neuron layer are
generated in a single input pulse. In addition, in the previous
study of Lee et al. (2018), the conductance of synaptic devices
is changed by applying an identical pulse to the synaptic device
in on-chip learning. In this study, the conductance of synapse
is tuned by the RVW method in off-chip learning. In Lee et al.
(2019a), binary synaptic architecture capable of XNOR operation
digitally was reported. However, this work proposes the VMM
of multi-bit input and multi-bit weight in an analog fashion,
significantly decreasing the burden of neuron circuits compared
with the scheme of digital fashion.

A design scheme of synaptic architecture using NAND flash
memory for performing MAC with multi-bit weight and multi-
bit input has been proposed in Lue et al. (2019). In this

FIGURE 12 | Effect of stuck-at-off device ratio on simulated classification accuracy of QNN for (A) CIFAR 10 and (B) MNIST images.

Frontiers in Neuroscience | www.frontiersin.org 8 September 2020 | Volume 14 | Article 57129226

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 9

Lee and Lee Neuromorphic Computing Using NAND Flash

scheme, lots of binary cells and BLs are utilized to represent a
multilevel weight and a multilevel input, respectively, resulting
in a substantial disadvantage in terms of synapse density (Lue
et al., 2019). Furthermore, “shifter and adder” design is utilized
to generate multilevel MAC, resulting in lots of burden in
peripheral circuits (Lue et al., 2019). On the other hand, the
proposed scheme in this work uses two NAND cells as one
synaptic device and utilizes the PWM circuit to represent multi-
bit input, which significantly increases the density of synaptic
devices. Furthermore, the VMM can be performed in a pulse
step using the proposed scheme in this work, greatly reducing the
CMOS overhead in peripheral circuits compared with the “shifter
and adder” design.

CONCLUSION

We have proposed a novel operating method and architecture
for neuromorphic computing using PWM in the NAND
flash memory architecture and evaluated its performance. The
proposed operation scheme is well fitted to conventional NAND
flash memory to implement QNNs with width-modulated input
pulse and 4-bit weight. In addition, VMM of analog input and
4-bit weight can be implemented with a single pulse without
additional logic operation. By utilizing a RVW scheme, eight
conductance levels from 0 to 1.4 µA were demonstrated with a
device variation of less than 3.43%. QT increases accuracies by

0.34 and 0.96% for MNIST and CIFAR10 images, respectively,
compared with PTQ. Sufficiently low device variation (3.43%)
of NAND cells results in high inference accuracy. Finally, the
proposed operation scheme in this work can implement high-
density, highly robust, and highly efficient neuromorphic systems
using NAND flash memory architecture.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

S-TL and J-HL conceived and designed the experiments and
wrote the manuscript. S-TL performed the simulation for MNIST
and CIFAR10 classification, theoretical analyses, and measured
device characteristics. All authors discussed the results and
commented on the manuscript.

FUNDING

This work was supported by the National Research Foundation of
Korea (NRF-2016M3A7B4909604) and the Brain Korea 21 Plus
Project in 2020.

REFERENCES
Andri, R., Cavigelli, L., Rossi, D., and Benini, L. (2018). “YodaNN: an architecture

for ultralow power binary-weight CNN acceleration,” in Proceedings of the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Piscataway, NJ.doi: 10.1109/TCAD.2017.2682138

Choi, J., Venkataramani, S., Srinivasan, V., Gopalakrishnan, K., Wang, Z., and
Chuang, P. (2019). “Accurate and efficient 2-bit quantized neural networks,”
in Proceedings of the 2nd SysML Conference, Boston, FL.

Gao, L., Chen, P.-Y., and Shimeng, Y. (2016). Demonstration of convolution kernel
operation on resistive cross-point array. IEEE Electron Dev. Lett. 37, 870–873.
doi: 10.1109/led.2016.2573140

Guan, Y., and Ohsawa, T. (2019). “Co-design of DNN model optimization for
binary ReRAM array in-memory processing,” in Proceedings of the 2019 IEEE
11th International Memory Workshop (IMW), Monterey, CA.doi: 10.1109/
IMW.2019.8739722

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).
Quantized neural networks: Training neural networks with low precision
weights and activations. J. Mach. Learn. Res. 18, 6869–6898.

Huh, H., Cho, W., Lee, J., Noh, Y., Park, Y., Ok, S., et al. (2020). “A 1Tb 4b/Cell
96-stacked-WL 3D NAND flash memory with 30MB/s program throughput
using peripheral circuit under memory cell array technique,” in Proceedings of
the IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco,
CA.doi: 10.1109/ISSCC19947.2020.9063117

Jackson, B. L., Rajendran, B., Corrado, G. S., Breitwisch, M., Burr, G. W., Cheek, R.,
et al. (2013). Nanoscale electronic synapses using phase change devices. ACM J.
Emerg. Technol. Comput. Syst. 9, 1–20. doi: 10.1201/9780367808624-1

Kang, D., Kim, M., Jeon, S. C., Jung, W., Park, J., Choo, G., et al. (2019). “13.4
A 512Gb 3-bit/Cell 3D 6 th-Generation V-NAND flash memory with 82MB/s
write throughput and 1.2 Gb/s interface,” in Proceedings of the 2019 IEEE
International Solid-State Circuits Conference-(ISSCC), New York, NY.doi: 10.
1109/ISSCC.2019.8662493

Khan, S. H., Hayat, M., and Porikli, F. (2019). Regularization of deep neural
networks with spectral dropout. Neural Netw. 110, 82–90. doi: 10.1016/j.
neunet.2018.09.009

Kim, H., Hwang, S., Park, L., and Park, B.-G. (2017). Silicon synaptic transistor
for hardware-based spiking neural network and neuromorphic system.
Nanotechnology 28:40. doi: 10.1088/1361-6528/aa86f8

Kim, T., Kim, H., Kim, J., and Kim, J. J. (2017). Input voltage mapping optimized
for resistive memory-based deep neural network hardware. IEEE Electron Dev.
Lett. 38, 1228–1231. doi: 10.1109/led.2017.2730959

Lee, S. T., Kim, H., Bae, J., Yoo, H., Choi, N., Kwon, D., et al. (2019a). “High-density
and highly-reliable binary neural networks using NAND flash memory cells as
synaptic devices,” in Proceedings of the 2019 IEEE Int. Electron Devices Meeting
(IEDM), San Francisco, CA.doi: 10.1109/IEDM19573.2019.8993478

Lee, S. T., Lim, S., Choi, N., Bae, J., Kwon, D., Park, B., et al. (2019b). Operation
scheme of multi-layer neural networks using NAND flash memory as high-
density synaptic devices. IEEE J. Electron Dev. Soc. 7, 1085–1093. doi: 10.1109/
jeds.2019.2947316

Lee, S. T., Lim, S., Bae, J. H., Kwon, D., Kim, H. S., Park, B. G., et al. (2020). Pruning
for hardware-based deep spiking neural networks using gated schottky diode
as synaptic devices. J. Nanosci. Nanotechnol. 20, 6603–6608. doi: 10.1166/jnn.
2020.18772

Lee, S. T., Lim, S., Choi, N., Bae, J. H., Kim, C. H., Lee, S., et al. (2018).
“Neuromorphic technology based on charge storage memory devices,” in
Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI.doi:
10.1109/VLSIT.2018.8510667

Li, H., De, S., Xu, Z., Studer, C., Same, H., and Goldstein, T. (2017a). “Towards a
deeper understanding of training quantized neural networks,” in Proceedings of
the ICML 2017 Workshop on Principled Approaches to Deep Learning (PADL),
Sydney.

Li, H., De, S., Xu, Z., Studer, C., Samet, H., and Goldstein, T. (2017b). “Training
quantized nets: a deeper understanding,” in Proceedings of Advances in Neural
Information Processing Systems, 5811–5821.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2020 | Volume 14 | Article 57129227

https://doi.org/10.1109/TCAD.2017.2682138
https://doi.org/10.1109/led.2016.2573140
https://doi.org/10.1109/IMW.2019.8739722
https://doi.org/10.1109/IMW.2019.8739722
https://doi.org/10.1109/ISSCC19947.2020.9063117
https://doi.org/10.1201/9780367808624-1
https://doi.org/10.1109/ISSCC.2019.8662493
https://doi.org/10.1109/ISSCC.2019.8662493
https://doi.org/10.1016/j.neunet.2018.09.009
https://doi.org/10.1016/j.neunet.2018.09.009
https://doi.org/10.1088/1361-6528/aa86f8
https://doi.org/10.1109/led.2017.2730959
https://doi.org/10.1109/IEDM19573.2019.8993478
https://doi.org/10.1109/jeds.2019.2947316
https://doi.org/10.1109/jeds.2019.2947316
https://doi.org/10.1166/jnn.2020.18772
https://doi.org/10.1166/jnn.2020.18772
https://doi.org/10.1109/VLSIT.2018.8510667
https://doi.org/10.1109/VLSIT.2018.8510667
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-571292 September 16, 2020 Time: 16:55 # 10

Lee and Lee Neuromorphic Computing Using NAND Flash

Lue, H. T., Hsu, P. K., Wei, M. L., Yeh, T. H., Du, P. Y., Chen, W. C., et al.
(2019). “Optimal design methods to transform 3D NAND flash into a high-
density, high-bandwidth and low-power nonvolatile computing in memory
(nvCIM) accelerator for deep-learning neural networks (DNN),” in Proceedings
of the International Electron Device Meeting (IEDM), San Francisco, CA.doi:
10.1109/IEDM19573.2019.8993652

Nishani, E., and Cico, B. (2017). “Computer vision approaches based on deep
learning and neural networks: Deep neural networks for video analysis
of human pose estimation,” in Proceedings of the 2017 6th Mediterranean
Conference on Embedded Computing (MECO), Bar.doi: 10.1109/MECO.2017.
7977207

Park, S., Sheri, A., Kim, J., Noh, J., Jang, J., Jeon, M., et al. (2013). “Neuromorphic
speech systems using advanced ReRAM-based synapse,” in Proceedings of the
2013 IEEE International Electron Devices Meeting, Washington, DC.doi: 10.
1109/IEDM.2013.6724692

Sainath, T. N., Weiss, R. J., Wilson, K. W., Li, B., Variani, E., Bacchiani, M.,
et al. (2017). “Multichannel signal processing with deep neural networks for
automatic speech recognition,” in Proceedings of the IEEE/ACM Transactions
on Audio, Speech, and Language Processing, Piscataway, NJ.doi: 10.1109/TASLP.
2017.2672401

Scardapane, S., Comminiello, D., Hussain, A., and Uncini, A. (2017). Group sparse
regularization for deep neural networks. Neurocomputing 241, 81–89. doi:
10.1016/j.neucom.2017.02.029

Sun, X., Peng, X., Chen, P.-Y., Liu, R., Seo, J.-S., and Yu, S. (2018). “Fully parallel
RRAM synaptic array for implementing binary neural network with (+ 1,− 1)
weights and (+ 1, 0) neurons,” in Proceedings of the 2018 23rd Asia and South
Pacific Design Automation Conference (ASP-DAC), Jeju.doi: 10.1109/ASPDAC.
2018.8297384

Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., et al. (2011).
“Phase change memory as synapse for ultra-dense neuromorphic systems:
application to complex visual pattern extraction,” in Proceedings of the 2011
International Electron Devices Meeting, Washington, DC.doi: 10.1109/IEDM.
2011.6131488

Tang, T., Xia, L., Li, B., Wang, Y., and Yang, H. (2017). “Binary convolutional neural
network on RRAM,” in Proceedings of the 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), Chiba.doi: 10.1109/ASPDAC.2017.
7858419

Truong, L., Barik, R., Totoni, E., Liu, H., Markley, C., Fox, A., et al. (2016).
“. Latte: a language, compiler, and runtime for elegant and efficient deep
neural networks,” in Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, New York, NY.doi: 10.
1145/2908080.2908105

Wang, C., Feng, D., Tong, W., Liu, J., Wu, B., Zhao, W., et al. (2020).
“Improving write performance on cross-point RRAM arrays by leveraging
multidimensional non-uniformity of cell effective voltage,” in Proceedings of
the IEEE Transactions on Computers, Piscataway, NJ.doi: 10.1109/TC.2020.
2990884

Woo, J., and Yu, S. (2019). “Impact of selector devices in analog RRAM-
based crossbar arrays for inference and training of neuromorphic system,” in
Proceedings of the IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, London.doi: 10.1109/TVLSI.2019.2917764

Yamashita, R., Magia, S., Higuchi, T., Yoneya, K., Yamamura, T., Mizukoshi,
H., et al. (2017). “A 512gb 3b/cell flash memory on 64-word-line-layer bics
technology,” in Proceeding of the 2017 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA.doi: 10.1109/ISSCC.2017.7870328

Yu, S., Sun, X., Peng, X., and Huang, S. (2020). “Compute-in-memory with
emerging nonvolatile-memories: challenges and prospects,” in Proceedings of
the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA.doi:
10.1109/CICC48029.2020.9075887

Zhou, Z., Huang, P., Xiang, Y. C., Shen, W. S., Zhao, Y. D., Feng, Y. L., et al. (2018).
“A new hardware implementation approach of BNNs based on nonlinear 2T2R
synaptic cell,” in Proceedings of the IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA.doi: 10.1109/IEDM.2018.8614642

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Lee and Lee. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 September 2020 | Volume 14 | Article 57129228

https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/MECO.2017.7977207
https://doi.org/10.1109/MECO.2017.7977207
https://doi.org/10.1109/IEDM.2013.6724692
https://doi.org/10.1109/IEDM.2013.6724692
https://doi.org/10.1109/TASLP.2017.2672401
https://doi.org/10.1109/TASLP.2017.2672401
https://doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1109/ASPDAC.2018.8297384
https://doi.org/10.1109/ASPDAC.2018.8297384
https://doi.org/10.1109/IEDM.2011.6131488
https://doi.org/10.1109/IEDM.2011.6131488
https://doi.org/10.1109/ASPDAC.2017.7858419
https://doi.org/10.1109/ASPDAC.2017.7858419
https://doi.org/10.1145/2908080.2908105
https://doi.org/10.1145/2908080.2908105
https://doi.org/10.1109/TC.2020.2990884
https://doi.org/10.1109/TC.2020.2990884
https://doi.org/10.1109/TVLSI.2019.2917764
https://doi.org/10.1109/ISSCC.2017.7870328
https://doi.org/10.1109/CICC48029.2020.9075887
https://doi.org/10.1109/CICC48029.2020.9075887
https://doi.org/10.1109/IEDM.2018.8614642
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 1

ORIGINAL RESEARCH
published: 12 November 2020

doi: 10.3389/fnins.2020.598876

Edited by:
Jonathan Mapelli,

University of Modena and Reggio
Emilia, Italy

Reviewed by:
Anup Das,

Drexel University, United States
Abhronil Sengupta,

Pennsylvania State University (PSU),
United States

*Correspondence:
Khaled Nabil Salama

khaled.salama@kaust.edu.sa

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 25 August 2020
Accepted: 26 October 2020

Published: 12 November 2020

Citation:
Guo W, Fouda ME, Yantir HE,

Eltawil AM and Salama KN (2020)
Unsupervised Adaptive Weight

Pruning for Energy-Efficient
Neuromorphic Systems.

Front. Neurosci. 14:598876.
doi: 10.3389/fnins.2020.598876

Unsupervised Adaptive Weight
Pruning for Energy-Efficient
Neuromorphic Systems
Wenzhe Guo1,2, Mohammed E. Fouda3, Hasan Erdem Yantir1,2, Ahmed M. Eltawil2,3 and
Khaled Nabil Salama1*

1 Sensors Lab, Advanced Membranes & Porous Materials Center, Computer, Electrical and Mathematical Sciences
and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2 Communication
and Computing Systems Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia, 3 Department of Electrical Engineering and Computer Science,
University of California, Irvine, Irvine, CA, United States

To tackle real-world challenges, deep and complex neural networks are generally used
with a massive number of parameters, which require large memory size, extensive
computational operations, and high energy consumption in neuromorphic hardware
systems. In this work, we propose an unsupervised online adaptive weight pruning
method that dynamically removes non-critical weights from a spiking neural network
(SNN) to reduce network complexity and improve energy efficiency. The adaptive
pruning method explores neural dynamics and firing activity of SNNs and adapts the
pruning threshold over time and neurons during training. The proposed adaptation
scheme allows the network to effectively identify critical weights associated with each
neuron by changing the pruning threshold dynamically over time and neurons. It
balances the connection strength of neurons with the previous layer with adaptive
thresholds and prevents weak neurons from failure after pruning. We also evaluated
improvement in the energy efficiency of SNNs with our method by computing synaptic
operations (SOPs). Simulation results and detailed analyses have revealed that applying
adaptation in the pruning threshold can significantly improve network performance and
reduce the number of SOPs. The pruned SNN with 800 excitatory neurons can achieve
a 30% reduction in SOPs during training and a 55% reduction during inference, with
only 0.44% accuracy loss on MNIST dataset. Compared with a previously reported
online soft pruning method, the proposed adaptive pruning method shows 3.33%
higher classification accuracy and 67% more reduction in SOPs. The effectiveness of
our method was confirmed on different datasets and for different network sizes. Our
evaluation showed that the implementation overhead of the adaptive method regarding
speed, area, and energy is negligible in the network. Therefore, this work offers a
promising solution for effective network compression and building highly energy-efficient
neuromorphic systems in real-time applications.

Keywords: neuromorphic computing, spiking neural networks, pruning, unsupervised learning, STDP,
pattern recognition

Frontiers in Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 59887629

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.598876
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.598876
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.598876&domain=pdf&date_stamp=2020-11-12
https://www.frontiersin.org/articles/10.3389/fnins.2020.598876/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 2

Guo et al. Unsupervised Adaptive Pruning in SNNs

INTRODUCTION

In recent years, as the prediction of Moore’s law slows
down prominently, neuromorphic computing has been widely
regarded as a promising approach for large-scale computing.
Neuromorphic systems are constructed following biological
principles existing in our central nervous systems, which features
in massive parallelism, collocated memory, and processors, and
asynchronous event-driven computation (Mead, 1990; Furber
et al., 2014; Davies et al., 2018).

Generally considered as the third generation of neural network
models, spiking neural networks (SNNs) have started a paradigm
shift in the brain-inspired research exploration. Different from
artificial neural networks (ANNs), SNNs are well-known for
its capability of accurately capturing neural dynamics and
biological behaviors of the central nervous system and processing
spatio-temporal information. With energy-efficient computation
and parallel information processing features, SNNs are widely
adopted for building neuromorphic hardware systems (Thakur
et al., 2018). In such systems, information is transmitted through
synapses from a presynaptic neuron to a postsynaptic neuron
on the occurrence of an event (or a spike). Neural networks
require deep and complex structures to tackle real-world tasks,
like pattern recognition, object detection, and motor controls
(Shrestha and Mahmood, 2019). The complexity leads to large
synaptic memories and high energy consumption, which poses
a big challenge in hardware implementation. Therefore, it is
necessary to search for practical solutions to reduce network
complexity and improve the energy efficiency of SNNs.

During early brain development, creations of synaptic
connections between neurons exponentially increase with the
numerous stimuli coming from environments every day (Zillmer
and Spiers, 2001). The rapid synapse creation is vital for
learning and memory formation. Between early childhood and
adulthood, weight pruning occurs as a natural process during
which our brain eliminates unnecessary synaptic connections. It
is regarded as a purposeful process of maintaining a more efficient
brain function. This biological process has been extensively
studied in current ANNs for its attractive memory and energy
reduction benefits. Han et al. (2015) introduced a training-
pruning-retraining approach that can reduce the number of
synaptic connections by 12x and computational operations by
5x for the VGG-16 network. Weight pruning was also proved
to be an effective means of alleviating the overfitting problem
in ANNs (Paupamah et al., 2020). Moreover, to avoid irregular
structure of pruned weight matrices and aid in the leverage
of sparse matric-vector multiplication, a variety of structured
weight pruning techniques were proposed where the entire rows
and columns in the weight matrices are removed by imposing
certain constraints during the pruning process (Anwar et al.,
2017; Sredojevic et al., 2017).

While weight pruning has been widely applied in different
ANNs, the benefits that weight pruning could provide for
SNNs have yet to be explored. Limited works have reported
applying weight pruning in SNNs so far (Iglesias et al., 2005;
Rathi et al., 2019; Shi et al., 2019). Rathi et al. proposed a
spike-timing-dependent plasticity (STDP) based online synaptic

pruning method, which sets non-critical weights to zero during
the training phase and removes the weights below a certain
threshold at the end of training (Rathi et al., 2019). This method
only sets the weights to zero without removing them. It allows
them to be updated during training, which is not an effective
approach to improve the energy efficiency for online learning
systems. Shi et al. presented an online soft-pruning method by
setting the weights below a constant threshold to a constant value
instead of removing them during training. While this method
could reduce the number of STDP updates during training, it
does not induce any sparsity in the network, leading to little
benefit for hardware implementation. Moreover, these pruning
methods use a constant weight threshold throughout the whole
pruning process. With a constant threshold, the network can
not effectively select the non-critical weights to be pruned.
In the early phase of training, weights are not completely
learned, and a large threshold can mistakenly remove important
weights. If a small threshold is used, some non-critical weights
can not be pruned at the end of training since these weights
could grow. On the other hand, the connection strength of
neurons in one layer with the previous layer varies. A large
threshold could remove most of the critical weights from the
neurons with weak connection and hence severely affect the
neurons’ function, which could lead to substantial performance
degradation of the network. Therefore, it is crucial to adapt the
weight threshold over time and all the neurons during training
to improve network performance. In this work, we propose an
online adaptive weight pruning method that adapts the pruning
threshold over time and neurons during training and completely
remove the weights below the threshold from the network. It is
demonstrated to be an effective approach for reducing network
complexity and improving energy efficiency during both training
and inference operations.

The main contributions of this work are
summarized as follows.

• A simple online adaptation scheme for the pruning
threshold is presented, which can change the threshold
dynamically over time during training. It also considers the
spatial difference of the connection strength of neurons in
one layer with the previous layer and adapts the threshold
over the neurons based on their firing activity.
• The proposed method is demonstrated to be more effective

in retaining classification accuracy after pruning than the
constant threshold weight pruning and neuron pruning
methods. It resulted in a 67% reduction in synaptic
operations (SOPs) while outperforming the previously
reported soft weight pruning method by 3.33%. The
advantage of the proposed method was confirmed in the
SNN on different datasets with different network sizes.
• In terms of training, the proposed online adaptive pruning

method outperformed post-training pruning methods by
providing more than 30% reduction in training SOPs when
the pruning percentage is larger than 90% while providing
more than 3% higher classification accuracy, which shows
significant potential for developing high-performance and
energy-efficient online neuromorphic learning system.

Frontiers in Neuroscience | www.frontiersin.org 2 November 2020 | Volume 14 | Article 59887630

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 3

Guo et al. Unsupervised Adaptive Pruning in SNNs

• The overhead of implementing the proposed method in a
neuromorphic system is demonstrated to be insignificant in
terms of processing speed, area, and energy.

This paper is organized as follows: section “Methods and
Results” introduces different neural models used in this work
and the SNN architecture. It then presents an overview
of our methods, algorithmic implementation details, and
pruning results for each method. In section “Comparisons
and Discussions,” different pruning methods are discussed and
compared. Section “Conclusion” concludes this work.

METHODS AND RESULTS

Network Models and Architecture
To model spiking neurons, the leaky integrated-and-fire (LIF)
model was used in this work because of its computational
efficiency and capability of capturing the essential features of
information processing in the nervous system (Burkitt, 2006).
The model consists of one first-order linear differential equation
that defines the dynamics of membrane potential where synapses
are modeled as conductance, as described by

τm
dv
dt
= (vr − v)− ge (v− Eexc)− gi (v− Einh) (1)

where τm is the time constant, vr is the resting membrane
potential, ge is the excitatory conductance associated with an
excitatory channel, Eexc is the reverse potential of the channel, gi is
the conductance associated with an inhibitory channel, Einh is the
reverse potential of the channel. The model resets the membrane
potential to vr and generates a spike if the membrane potential
reaches a defined threshold vth. Synaptic conductance follows a
time-varying dynamics governed by Diehl and Cook (2015),

τg
dg
dt
= −g +

∑
j

wijδ(t − tfj) (2)

where g is the conductance, τg is the time constant, wij is the
synaptic weight from the presynaptic neuron j to the postsynaptic
neuron i, and tfj is the firing time of the presynaptic neuron j.

Spike-timing-dependent plasticity relates the synaptic
plasticity to the relative timing difference between a presynaptic
spike and a postsynaptic spike. A triplet-based STDP model was
used in this work because of its biological plausibility and easy
implementation (Pfister and Gerstner, 2006). It overcomes the
limitation of the paired-based STDP models to accommodate the
dependence on the repetition frequency of the pairs of spikes. It
was shown that the triplet rule is more biological plausible where
its response can fit the experimental data from the visual cortical
slices and hippocampal cultures (Pfister and Gerstner, 2006). The
model considers sets of three spikes (one presynaptic and two
postsynaptic spikes), each of which leaves a time-varying trace
whose dynamics are described below.

ds
dt
= −

s
τs

, s ∈ {xj, y1
i , y2

i } (3)

where xj is the trace variable associated with the firing event
of the presynaptic neuron j, y1

i , and y2
i are the fast and slow

trace variables associated with the firing event of the postsynaptic
neuron i, respectively, and τs is the corresponding time constant.
When the presynaptic neuron (or postsynaptic) fires, the related
trace xj (or yi) is reset to 1. The weight updates are carried
out as below.

1wij =

{
−µprey1

i , if the neuron i fires,
+µpostxjy2

i , if the neuron j fires.
(4)

where µpre and µpost are the corresponding weight updating rates.
In this work, a two-layer SNN architecture was adopted,

as shown in Figure 1, and tested on the Modified National
Institute of Standards and Technology (MNIST) dataset and
Fashion-MNIST dataset (Lecun et al., 1998; Xiao et al., 2017).
This architecture consists of an input layer and a processing
layer. The input layer has 784 units, each of which receives the
corresponding pixel in a digit image from the MNIST dataset and
produces a Poisson spike train with a frequency proportional to
the pixel intensity. This encoding scheme is commonly referred
to as rate coding (O’Connor et al., 2013). The input layer is
fully connected to the processing layer. In the processing layer,
excitatory neurons send spikes to inhibitory neurons in a one-
to-one fashion, whereas each inhibitory neuron sends spikes
to all the excitatory neurons except the one that it receives
spikes from. This connection pattern implements a winner-
take-all (WTA) mechanism, which imposes lateral inhibition on
excitatory neurons and hence competitions for learning input
features. To ensure fair competition, a threshold adaptation
scheme is applied. Whenever a neuron fires, its threshold is
increased by an adaptation constant and then slowly decays
with time. The phenomenon of threshold adaptation has been
commonly observed in the central nervous system (Fontaine
et al., 2014). In this work, the networks with 100 and 800
excitatory neurons were used to verify the effectiveness of our
proposed pruning method. A simple classification scheme is
implemented based on the firing activity of excitatory neurons.
After training, excitatory neurons are assigned labels to which
they fire the most spikes. They are then divided into ten groups,
each of which corresponds to a digit and contains all the neurons
labeled by this digit. During inference, the classification result for
an input image is the digit of the group with the highest average
spike counts. The model parameters used in the simulation are
listed in Table 1. The parameters were configured through a
genetic algorithm to achieve the best accuracy. The classification
accuracy on MNIST dataset achieved in these two SNNs without
pruning is 85.78%/90.40%, respectively, while the accuracy on
Fashion-MNIST dataset is 64.57%/69.21%, respectively. All the
simulations in this work were run in a Python-based platform.

Overview of the Proposed Pruning
Methods
Pruning is a natural process existing in human brains to maintain
their efficient function. It is widely adopted in neural networks
to reduce network complexity and improve energy efficiency.
Various works have demonstrated the practical effectiveness of

Frontiers in Neuroscience | www.frontiersin.org 3 November 2020 | Volume 14 | Article 59887631

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 4

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 1 | Overview of the proposed adaptive pruning process in SNNs. The SNN architecture consists of two layers, an input layer and a winner-take-all (WTA)
layer with excitatory and inhibitory neurons connected to each other. Pruning only happens in the synapses from the input layer to the WTA layer. wth is the weight
pruning threshold.

TABLE 1 | Model parameters used in the simulation.

Model parameters Description Value

τm, τge, τgi Time constants in the
LIF model

100 ms, 1 ms, 2 ms

vr , vth, Eexc, Einh Potential constants in
the LIF model

−60 mV, −50 mV, 0,
−100 mV

τx, τy1, τy2 Time constants in the
STDP model

8 ms, 16 ms, 32 ms

µpre, µpost Learning rates in the
STDP model

0.0001, 0.01

θ Threshold adaptation
constant

0.01 mV

weight pruning in reducing the number of parameters and
computational operations without losing accuracy (Han et al.,
2015; Li et al., 2019; Tung and Mori, 2020). For example, Li et al.
compressed different deep neural networks using weight pruning
on mobile devices for real-time applications. They showed
significant memory storage reduction and speedup. Pruning is
commonly applied after training, which is suitable for improving
the energy efficiency of inference systems with offline training.
Pruning while training technique has been proved to be very
useful in SNNs to improve online learning systems that can
learn and infer the real-world information (Rathi et al., 2019;
Shi et al., 2019).

However, in the previously reported online pruning methods,
pruning was conducted with a constant threshold for all the
synaptic weights during training. It is not an effective approach
to select the non-critical weights since weights change over time
during training. A large threshold can mistakenly remove many
important weights at the beginning of training and severely affect
the functions of the neurons with weak synaptic connections,
leading to substantial performance degradation of the network,
while a small threshold is not able to remove some non-critical
weights at the end. In this work, we will present different pruning

while training methods by adapting the pruning threshold over
time and neurons. The overview of the proposed pruning
process is depicted in Figure 1, where the pruning process
progresses during training. Pruning is carried out only in the
synapses between the input and excitatory layers since only these
synaptic weights are plastic and subject to training. Initially,
the network has a fully-connected structure between the input
layer and the WTA layer. When the pruning process starts, the
pruning threshold (wth) is adapted and remains different for all
the excitatory neurons according to their firing activity. Fewer
weights are removed for the neurons with lower thresholds.
Moreover, over time, the threshold for each neuron is increased
so that more weights are pruned at later pruning stages.

To perform pruning while training effectively, we need to
determine when to start the pruning process. If the pruning
process starts too early, important weights that have a profound
impact on the output could be mistakenly pruned away, which
will deteriorate network performance. On the other hand,
if it starts too late, the network might not have enough
training cycles to compensate for the accuracy loss and reduced
improvement in training energy efficiency. To find this critical
point, we have observed how the network dynamics evolve
with time by monitoring firing activities and weight updates
of excitatory neurons. Figure 2A shows that neurons start
to fire regularly after training over 30,000 images, suggesting
that the network has learned the major input features and
starts to adjust for small details. In Figure 2B, the statistics
(mean and variance) of weight updates over time have also
revealed the same network behavior. As a result, the pruning
process was decided to start after training over 30,000 images.
Moreover, the pruning process was performed in multiple steps
by dividing the whole dataset into multiple batches. The batch
size was selected as 5,000 under the consideration of pruning
frequency. The detailed implementation and algorithm of the
proposed pruning methods are presented and discussed in the
following sections.

Frontiers in Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 59887632

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 5

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 2 | Network dynamics were monitored every 5,000 training images in the SNN with 100 excitatory neurons during training and without pruning. (A) Firing
activity. The average of spike counts of 100 excitatory neurons was calculated. (B) Statistics of weight updates 1w with the mean (black) and variance (red).

FIGURE 3 | (A) The illustration of the online adaptive pruning scheme over time. w0
th is the initial pruning threshold and wth(t) is the pruning threshold at time t.

(B) The evolution of the pruning threshold over time with w0
th set as 0.036.

APT: Online Adaptive Pruning Over Time
During training, synaptic weights are randomly initialized and
updated according to the input features over time. Some
weights approach high value and contribute largely to network
performance, whereas some are reduced to zero and less critical.
The first adaptation scheme is to adapt the pruning threshold
over time during training. The pruning process is illustrated in
Figure 3A. The pruning starts after training over 30,000 images
at a time tm and an initial pruning threshold w0

th is given. It ends
when the training process is finished. This scheme is to increase
the pruning threshold with time. The motivation behind it is to
allow more weights to be trained and avoid removing critical
weights mistakenly at the early training phase. At the end of
the training, weights are already trained enough, and a larger
threshold will not significantly increase the chance of critical
weights being pruned unintentionally. The threshold adaptation
scheme can be formularized by wth (t) = f (t), where wth (t) is the

purning threshold at time t, and f (t) is the adaptation function.
To select a suitable adaptation function, we propose two different
exponential functions (f1 and f2) and a linear function (f3),
described below.

f1 (t) = w0
tha

t−tm , (5)

f2 (t) = wmax −
(
wmax − w0

th
)
b−(t−tm), (6)

and
f3 (t) = w0

th + c (t − tm) (7)

where w0
th is the initial pruning threshold at the starting pruning

time tm, wmax is the maximum value of weights, a, b, and c
are the corresponding adaptation factors in the functions. These
three functions are all confined in the range [w0

th, wmax]. It is
worth noting that the pruning threshold has to be less than wmax
to avoid pruning the entire network. Figure 3B shows how these

Frontiers in Neuroscience | www.frontiersin.org 5 November 2020 | Volume 14 | Article 59887633

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 6

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 4 | Simulation results of the online adaptive pruning over time for different adaptation functions in the SNN trained on MNIST dataset with 100 excitatory
neurons. (A,C,E) show the network connectivity changes with the initial threshold for the adaptation functions f1, f2, and f3, respectively. (B,D,F) present the
accuracy changes with the network connectivity for the adaptation functions f1, f2, and f3, respectively. The connectivity is defined as the percentage of the
unpruned weights in the total weights.

functions change the pruning threshold over time. Clearly, the
f1 function increases the threshold slowly at the beginning and
rapidly at the end, while the f2 function has the opposite effect.
The linear function (f3) keeps the same updating rate.

We simulated SNNs with the proposed online pruning
method. Online pruning with a constant threshold was also

included as a reference to demonstrate the effectiveness of our
proposed pruning methods and will be referred to as online
constant pruning hereinafter. Figure 4 shows the simulation
results of SNNs with the online adaptive pruning over time for
three different adaptation functions, namely f1, f2, and f3, as
described above. For each adaptation function, the results of

Frontiers in Neuroscience | www.frontiersin.org 6 November 2020 | Volume 14 | Article 59887634

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 7

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 5 | The illustration of the online adaptive pruning scheme over neurons. wn
th is the pruning threshold for the n-th group (Gn). Nn is the number of neurons in

the n-th group. SI = 50 is used as an example for demonstrating the grouping method based on an example spike count distribution.

network connectivity vs. initial threshold (wth (t0)) and accuracy
vs. connectivity are presented, where the connectivity is defined
as the percentage of non-zero weights in the total weights. The
impact of different values of the corresponding adaptation factors
(a, b, and c) is also studied. In Figures 4A,C,E, it can be seen
that different initial thresholds result in different connectivity
levels, and the higher the threshold, the smaller the connectivity.
It should be noted that for a = 1, b = 1, and c = 0, they all
are equivalent to the constant pruning case. By increasing the
corresponding adaptation factors, a smaller initial threshold is
needed to reach certain connectivity. In Figure 4C, with the
factor b > 1, the connectivity becomes very small (<15%) even
when a very low threshold is used. This is because the adaptation
function f2 increases the threshold value very rapidly at the early
phase of pruning process and hence results in a high threshold
most of the time, as shown in Figure 3B. In Figures 4B,D,F,
the accuracy decreases with the connectivity, as synaptic weights
are pruned, and the network becomes sparse. We use the
accuracy vs. connectivity as a performance metric to compare
these adaptation functions and different pruning methods since
pruning aims to reduce network complexity and maintain
high classification accuracy. A network with high accuracy and
small connectivity is desired. By applying adaptation over time
(the adaptation factor >1), performance improvement can be
observed for all the three adaptation functions. In Figure 4B,
for the function f1, a = 1.3 is slightly better than a = 1.5 and
hence selected as the optimized value for a. In Figure 4D, for
the function f2, all the three cases (>1) have similar overall
performance, but b = 1.1 is able to reach higher accuracy with
larger connectivity and thus selected as the optimized value for b.
In Figure 4F, for the function f3, c = 0.01 shows the best overall
performance and thus is selected.

APN: Online Adaptive Pruning Over
Neurons
The excitatory neurons in the network play different roles in
contributing to network performance. The connection strength
of these neurons to the input layer is different. A stronger
connection makes the neuron more resilient to pruning, whereas
a weaker connection makes the neuron more susceptible.

Applying a constant threshold for all the neurons can not
effectively take the difference into consideration, and a large
threshold can significantly deteriorate the function of the neurons
with a weak connection. Thus, we propose an adaptation scheme
over neurons by adapting the pruning threshold over all the
excitatory neurons. The aim is to ensure that a smaller threshold
is applied for weaker neurons and a larger threshold is for
stronger neurons. So, we can balance the connection strength of
all the neurons after pruning to achieve large network sparsity
and maintain high classification accuracy.

The adaptation scheme is illustrated in Figure 5. The
connection strength of each neuron to the input layer can be
reflected by the firing activity. The more the neuron fires, the
stronger connection it has to the input. So, the neurons are
ranked according to their spike counts and divided into multiple
groups. The spike count of each neuron was calculated as the
average spike count during one batch training. Each group
shares the same pruning threshold, and the threshold increases
along from the first group (G0) to the n-th group (Gn). The
grouping scheme is explained as follows. Firstly, a spike count
interval is defined as SI. Starting from the neuron with the
minimum spike count, we group all the neurons with spike
counts within [S, S+ SI], where S is the minimum spike count
of the ungrouped neurons. In this way, the neurons in the same
group have a spike count difference not larger than SI, so we
can fairly sort the neurons with similar connection strength into
one group. Across all the groups, the pruning threshold wn

th
is adapted according to an adaptation function f (n), where n
is the group index. In Figure 5, an example of the grouping
process is shown where an example spike count distribution and
SI = 50 are used. The neurons with spike counts that fall into an
interval (red segment) are grouped together. In this example, six
groups are sorted out. The number of neurons in each group is
dependent on the spike count distribution and spike interval. The
algorithmic implementation of this threshold adaptation scheme
is described in Algorithm 1.

We simulated SNNs with the proposed online pruning
method that uses the three different adaptation functions, namely
f1, f2, and f3. Different values of the adaptation factor (a, b, and
c) associated with each function were used in the simulation. The
results are presented in Figure 6, including connectivity vs. initial

Frontiers in Neuroscience | www.frontiersin.org 7 November 2020 | Volume 14 | Article 59887635

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 8

Guo et al. Unsupervised Adaptive Pruning in SNNs

Algorithm 1 | Online adaptive pruning over time and neurons.

Input parameters: initial threshold w0
th, spike count interval SI.

Pruning process starts after 30,000 training images.

Initialize the group index n = 1, the global threshold wth = w0
th.

for batch k = 1, 2, . . . do

Sort all the excitatory neurons according to their spike counts from

low to high.

Set S = Smin, the minimum of the spike counts.

for the sorted neuron i = 1, 2, . . . do

if the spike count of the neuron i, Si < S+ SI,

Set the pruning threshold of the neuron i, wi
th = wth.

else

The group index n increases by 1.

Adapt the pruning threshold, wth = fN(n).

Set S = Si .

end if

end for

Adapt the pruning threshold over time, wth = fT (k).

end for

threshold and accuracy vs. connectivity. In the simulation, the
spike count interval is fixed as 30 to study the impact of different
adaptation functions. In Figures 6A,C,E, a higher threshold
leads to smaller connectivity, and a larger adaptation factor
requires a smaller threshold to reach certain connectivity. Similar
observations to those described in the case of adaptation over
time can also be seen. In Figures 6B,D,F, for the three different
adaptation functions, the optimized values of the corresponding
adaptation factors can be selected as a = 1.15, b = 1.05, and
c = 0.03, respectively.

APTN: Online Adaptive Pruning Over
Time and Neurons
In the adaptation scheme over time, the threshold changes
with time, but all the neurons share the same threshold. In
contrast, the adaptation scheme over neurons considers the
spatial difference of firing activities of all the neurons and adapts
the threshold over them, but the thresholds for neuron groups
are constant over time. A full adaptation scheme combines these
two schemes by adapting the pruning threshold for each neuron
over time during training. The algorithmic implementation is
described in Algorithm 1. The pruning process starts after
training over 30,000 images, and a global pruning threshold
is initialized as w0

th. At each pruning step, all the neurons are
sorted according to their spike counts in the order from low
counts to high counts. Neurons are grouped according to the
grouping method described in section “APN: Online Adaptive
Pruning Over Neurons.” The global threshold is first assigned
to the first neuron group (G0). It is then adapted according
to the adaptation function fN(n), and assigned to the following
groups. After the adaptation process over neurons is completed,
the global threshold is reset and updated with the time adaptation
function fT(k), where k is the pruning-step index. This combined
method takes into consideration both the time evolution of
synaptic weights and the spatial difference of firing activity of
neurons during training.

COMPARISONS AND DISCUSSION

Comparison Among the Proposed
Weight Pruning Methods
Firstly, we will compare the three different adaptation functions
and select the best spike count interval. Figure 7A shows
the comparison among the three adaptation functions with
the optimized adaptation factors for the APT method. Clearly,
the function f1 gives the best performance improvement over
the constant pruning method, i.e., the highest accuracy when
connectivity is smaller than 15% and similar accuracy to other
functions otherwise. This can be attributed to the fact that
f1 allows the pruning threshold to grow slowly at the early
phase of the pruning process and hence more weights to be
trained. It increases the threshold rapidly at the end, which
guarantees largely reduced network connectivity. Figure 7B
shows the comparison among the three adaptation functions
with the optimized adaptation factors for the APN method.
The same conclusion can be drawn that the function f1 gives
the best performance. Moreover, after selecting the adaptation
function as f1, we studied the effect of the spike count interval
on the performance. The results are shown in Figure 8. The
spike count interval is used to identify how similar the firing
activities of neurons in the same group are. In Figure 8A, with
a smaller interval, a smaller initial threshold is needed to reach
a certain threshold. A small interval results in a large number of
groups and hence creates a large difference in pruning threshold
among the groups. This can cause a very high threshold to be
applied in the group with weak neurons and deteriorate their
performance significantly. So, it is not an effective grouping.
A large interval can gather the neurons with very different firing
activity into one group where the same pruning threshold is
shared. This way is also not effective because a large threshold can
significantly deteriorate the performance of weak neurons and a
small threshold is not able to remove enough non-critical weights
from strong neurons. From the results in Figure 8B, SI = 30
shows the best performance.

To apply adaptation over both time and neurons, we
combined the proposed adaptive pruning methods with the
selected adaptation functions and adaptation factors. In this
approach, the pruning threshold is increased over time and
adapted across all the excitatory neurons. The comparisons
among the proposed adaptive pruning methods for MNIST
dataset and Fashion-MNIST dataset are shown in Figures 9A,C
obtained from the SNN with 100 excitatory neurons, respectively.
The same adaptation function and parameters were used to
obtain the pruning results on Fashion-MNIST dataset. For all the
pruning methods, up to 80% of weights trained on MNIST dataset
can be pruned with less than 1% accuracy loss. It is because
the trained weight maps on MNIST dataset are very sparse,
as shown in Figure 10A. Whereas, only up to 50% of weights
trained on Fashion-MNIST dataset can be pruned with less than
1% accuracy loss since the input patterns from Fashion-MNIST
dataset are more complex, as shown in Figure 10B. Clearly,
applying adaptation over both time and neurons can further
improve the network performance, especially when the network
becomes very sparse (connectivity < 10%). When the sparsity

Frontiers in Neuroscience | www.frontiersin.org 8 November 2020 | Volume 14 | Article 59887636

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 9

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 6 | Simulation results of the online adaptive pruning over neurons for different adaptation functions in the SNN trained on MNIST dataset with 100 excitatory
neurons. (A,C,E) show the network connectivity changes with the initial threshold for the adaptation functions f1, f2, and f3, respectively. (B,D,F) present the
accuracy changes with the connectivity for the adaptation functions f1, f2, and f3, repectively. The connectivity is defined as the percentage of the unpruned weights.
The spike interval is set as 30.

of the network increases, the performance of each excitatory
neuron is very sensitive to critical weights, so it is very important
for a pruning method to effectively identify critical weights and
prevent the neurons from failure. The effect of the threshold
adaptation lies in two different aspects. The first one is to allow
the network to reserve critical weights when the network is not

trained enough in the early phase of training. The second aspect
is to balance the connection strength of excitatory neurons in
the network so that more weights can be pruned from strong
neurons and less from weak neurons to avoid causing substantial
performance degradation of some neurons since neurons are
critical processing units in the network. Moreover, a post-training

Frontiers in Neuroscience | www.frontiersin.org 9 November 2020 | Volume 14 | Article 59887637

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 10

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 7 | Performance comparison among different adaptation functions in the SNN trained on MNIST dataset with 100 neurons. (A) APT: Online adaptive
pruning over time, and (B) APN: Online adaptive pruning over neurons. The spike count interval is set as 30.

FIGURE 8 | Simulation results of online adaptive pruning over neurons for different spike count intervals (SI) in the SNN trained on MNIST dataset with 100 neurons.
(A) Connectivity vs. initial threshold, and (B) Accuracy vs. connectivity. SI = Infinity (Inf) means that there is only one group and hence no adaptation over neurons.

pruning method is included for comparison (Rathi et al., 2019).
Instead of pruning weight while training, this method prunes
weights after the training process is done. It shows slightly better
performance than the online constant pruning method but much
worse performance than the proposed online APTN method
when the connectivity is smaller than 10%. This is because, during
the online constant pruning process, some critical weights can be
mistakenly removed, whereas the adaptive method can effectively
reserve the critical weights and provide more chances for them to
be trained. The proposed pruning methods were also studied in
the SNN with 800 excitatory neurons trained on both datasets.
The adaptation function f1 was used. The time adaptation factor,
the neurons adaptation factor, and the spike count interval were
optimized and selected as 1.2, 1.15, and 30, respectively. The
comparison among the proposed pruning methods is shown in
Figures 9B,D. The pruning results show similar comparisons,
and the same analysis can be applied. The post-training pruning

shows slightly better performance than the online constant
pruning method but worse performance than the proposed
online adaptive pruning methods. The pruning results further
confirm that the proposed APTN method outperforms the other
weight pruning methods, especially when the network becomes
very sparse (connectivity < 10%). We can draw a conclusion
that the proposed APTN method is the most effective pruning
method that can significantly reduce network connectivity and
maintain high accuracy.

For the proposed online pruning method, it is crucial to find
the right starting point for pruning during training. If pruning
starts too early, weights are not learned enough, and hence some
critical weights can be mistakenly removed. While the weights
are learned for enough time after 30,000 training images, the
remaining training process will further fine-tune the unpruned
critical weights as they get more chance for STDP updates when
more weights are pruned. This is due to the dynamics of the

Frontiers in Neuroscience | www.frontiersin.org 10 November 2020 | Volume 14 | Article 59887638

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 11

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 9 | Comparison among different weight pruning methods in the SNN trained on different datasets. MNIST dataset: (A) 100 excitatory neurons and (B) 800
excitatory neurons. Fashion-MNIST dataset: (C) 100 excitatory neurons and (D) 800 excitatory neurons.

FIGURE 10 | Trained weight maps on (A) MNIST dataset and (B) Fashion-MNIST dataset in the SNN with 100 neurons without pruning. Each pattern in the maps is
formed by arranging the weights associated with each neuron to a 28 × 28 matrix.

Frontiers in Neuroscience | www.frontiersin.org 11 November 2020 | Volume 14 | Article 59887639

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 12

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 11 | MNIST accuracy results at different connectivity values in the
SNN with 100 neurons after applying APTN method. The number of
pre-pruning training images was changed from 1,000, 10,000, 20,000,
30,000, 50,000, to 60,000.

STDP learning rule that the weights with more contribution to
the neural firing are strengthened more often. So if pruning starts
during the last stage of training, the unpruned weights will not
have enough chance to be fine-tuned to preserve good network
performance. The adaptation will not be carried out effectively,
and there will be less improvement in accuracy and training
energy efficiency. In section “Methods and results,” we decided
to start pruning after training over 30,000 images based on the
change of network dynamics. To further investigate the impact
of the number of pre-pruning training images, we have obtained
pruning results for the various number of pre-pruning training
images which are presented in Figure 11. It confirms that pruning
too early causes more performance loss. If the pruning happens at
the later stage of training (50,000 pre-pruning training images),
the performance loss is also observed, as there is almost no
adaptation effect. 30,000 is proven to be the optimal point where
neurons start to fire stably, and weight updates start to stabilize.
Different from the post-training pruning method (60,000 pre-
pruning training images), the online APTN method requires a
crucial starting point during training in order to achieve the
best network performance, and it also provides more chance for
the unpruned critical weights to be trained during the training
process. Starting at the 30,000 point, the online APTN method
outperforms the post-training pruning method, especially when
the network becomes very sparse, as demonstrated before.

Additionally, the selection of an adaptation function and
the corresponding adaptation factors can be further optimized
with more choices of functions and a finer grid of factor
values. However, this is not in the scope of this work
that aims to demonstrate the effectiveness of the proposed
adaptive pruning method.

Computational Cost Reduction
In general, for neuromorphic hardware systems, like TrueNorth,
SpiNNaker, and Loihi, the fundamental operation is the synaptic

event that occurs when a spike is transmitted from a source
neuron to a target neuron. So the computational energy of an
SNN is proportional to the synaptic activity (Merolla et al.,
2014). Pruning leads to a reduced number of synapses in the
network and hence less synaptic events. To evaluate the energy
improvement benefit of our proposed adaptive pruning method,
we computed the number of SOPs per image (SOPs/image)
during both training and inference. The training SOPs include
weight accumulations and STDP updates, while the inference
SOPs only count weight accumulations. The results for the SNNs
trained on MNIST dataset with 100 and 800 excitatory neurons
are shown in Figure 12A. The SOPs/image is normalized to
the value obtained from the SNN without pruning. Clearly,
the SOPs/image during both training and inference decreases
almost linearly with connectivity, as the number of synaptic
events is proportional to the number of unpruned synapses.
The inference SOPs/image is reduced more significantly than
the training SOPs/image. Moreover, the online pruning method
can effectively reduce the number of training SOPs and hence
improve training energy efficiency, making it promising for
improving online learning systems. To help choose the network
connectivity to reach the best overall performance, we define
a figure of merit by considering accuracy loss and the total
SOPs/image (training+ inference) as below.

FOM = Accuracy loss× Nomalized total SOPs/image

The defined FOM is used on a per-network basis to help
identify the best network connectivity for that specific network,
as demonstrated in Figure 12B. As a result, the best choices of the
connectivity are 14.5% and 17% for 100-neuron and 800-neuron
networks, respectively. Specifically, at 14.5% connectivity, the
adaptive pruning method leads to a 27% reduction in SOPs/image
during training and a 60% reduction during inference with
2.85% accuracy loss in the SNN with 100 excitatory neurons.
In the case of 800 excitatory neurons, at 17% connectivity, the
method leads to a 30% reduction during training and a 55%
reduction during inference with only 0.44% accuracy loss. It
should be noted that the proposed FOM provides one way to
determine the best network connectivity, and other factors or
definitions could also be applied depending on the requirements
of specific applications.

Comparison With Prior Works
Neuron pruning is one of the structured weight pruning
strategies, which eliminates all the weights associated with
the pruned neurons and reduces the network complexity
proportionally. However, directly removing neurons from
the network could cause severe deterioration of network
performance. We compared the proposed online weight pruning
methods with an online adaptive neuron pruning method
presented in our previous work (Guo et al., 2020). The
comparison is shown in Figure 13. In Figure 13A, the online
adaptive neuron pruning method shows worse accuracy than
the weight pruning methods, which proves that weight pruning
is more effective in preserving network performance. Despite
the severe accuracy drop, the neuron pruning method requires

Frontiers in Neuroscience | www.frontiersin.org 12 November 2020 | Volume 14 | Article 59887640

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 13

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 12 | (A) Normalized SOPs/image and (B) a figure of merit (FOM) for different connectivity values are obtained in the SNNs with 100 and 800 excitatory
neurons using the online adaptive pruning over time and neuron method.

FIGURE 13 | Comparison between online weight pruning methods and an online adaptive neuron pruning method in the SNN trained on MNIST dataset with 100
excitatory neurons. (A) Accuracy and (B) normalized SOPs/image change with connectivity. CWP, AWP, and ANP are short for constant weight pruning, adaptive
weight pruning, and adaptive neuron pruning, respectively.

fewer training SOPs/image than the adaptive weight pruning
method and can reduce the inference SOPs/image much more
significantly. Moreover, an additional benefit of the neuron
pruning method is the elimination of state memory and
processing power of the pruned neurons.

An online soft weight pruning method for unsupervised SNNs
was reported in Shi et al. (2019). Unlike conventional pruning
methods, instead of removing the pruned weights, this method
sets the pruned weights constant at the lowest possible weight
value or the current value and stops updating them for the rest
of the training process. By setting the pruned weights to the
lowest possible value, the soft pruning method is equivalent to
the constant pruning method in our case since the lowest value
is 0. In this comparison, we refer to the soft pruning method
as the case where the pruned weights are kept constant at their
current values. Since the soft pruning method does not induce the

sparsity in the network, the connectivity remains 100% and hence
is not applicable in the comparison. Instead, we use the unpruned
percentage that is the percentage of the unpruned weights in the
total weights before pruning. In Figure 14A, it can be seen that
the soft pruning method starts to have performance improvement
over the constant pruning method after the unpruned percentage
drops below 10%. Our proposed adaptive pruning method gives
better performance when the unpruned percentage is between 5%
and 20%, but worse performance after the unpruned percentage
drops below 5%. When most of the weights are pruned, the
soft pruning method is still able to retain high accuracy by
keeping the pruned weights that were trained for some time
in the network. However, the soft pruning method brings less
benefit to the computational cost compared with the adaptive
pruning method. Figure 14B shows that it contributes to less
reduction in training SOPs/image and no reduction in inference

Frontiers in Neuroscience | www.frontiersin.org 13 November 2020 | Volume 14 | Article 59887641

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 14

Guo et al. Unsupervised Adaptive Pruning in SNNs

FIGURE 14 | Comparison with the online soft weight pruning method adopted from Shi et al. (2019) in the SNN trained on MNIST dataset with 100 excitatory
neurons. (A) Accuracy and (B) normalized SOPs/image change with unpruned weights percentage. Since the soft pruning method does not remove the pruned
weights, the connectivity is not applicable as the x axis here. Instead, the unpruned percentage is used, which is defined as the percentage of the unpruned weights
in the total weights before pruning.

TABLE 2 | Comparison among different pruning methods in the SNN trained on MNIST dataset.

Pruning methods Accuracy loss 100/800 Training SOPs reduction 100/800 Inference SOPs reduction 100/800

Online adaptive neuron pruning Guo et al., 2020 38.64%/38.85% 33%/48% 90%/90%

Post-training weight pruning Rathi et al., 2019 9.43%/9.21% 0%/0% 70%/71%

Online soft weight pruning Shi et al., 2019 12.45%/5.94% 25%/24% 0%/0%

Online constant weight pruning Shi et al., 2019 13.23%/6.73% 46%/46% 70%/69%

Online adaptive weight pruning (Our work) 6.73%/3.87% 30%/36% 69%/68%

Accuracy loss and SOPs reduction for two network sizes (100 and 800 neurons) are shown. The connectivity is selected as 10%.

SOPs/image. In comparison, our proposed adaptive pruning
method can lead to more reduction in SOPs/image, especially
during inference. The constant pruning method gives the most
improvement in decreasing the training SOPs/image when a large
number of weights are pruned at the cost of severe accuracy
loss, because it applies a large constant threshold throughout the
whole pruning process.

Comprehensive comparisons among different pruning
methods in terms of accuracy loss and SOPs are provided in
Algorithm 1, Table 3, including results for two network sizes and
two datasets. The reduction is defined as the reduced percentage
of the SOPs/image by pruning against the SOPs/image in the
SNN without pruning. Network connectivity is selected as 10%.
The neuron pruning method achieves the highest reduction in
inference SOPs but the worst accuracy loss on both datasets.
The post-training weight pruning method is able to produce
small accuracy loss but no reduction in training SOPs. The
soft online pruning method leads to the least accuracy loss
on Fashion-MNIST dataset, because classifying more complex
patterns in the dataset is more sensitive to the weights loss and
this pruning method keeps the pruned weights in the network
at their current values instead of removing them. However, this
method leads to no benefits in reducing inference operations.
The constant online pruning method can reduce both training

and inference operations effectively at the cost of high accuracy
loss. Our method achieves the least accuracy loss on MNIST
dataset and slightly higher accuracy loss on Fashion-MNIST
dataset than the soft online pruning method. Our method can
lead to a large reduction in SOPs comparable to the constant
online weight pruning and adaptive online neuron pruning
methods during both training and inference. The network size
has no substantial impact on the comparisons. In conclusion,
our proposed adaptive pruning method can significantly reduce
computational operations during both training and inference
and maintain high accuracy at the same time.

Implementation Overhead
The proposed adaptive pruning algorithm can be implemented
in hardware systems without adding significant overhead. To
investigate the overhead, we chose three metrics: processing
speed, area, and energy.

Figure 15A shows the software simulation runtime of the
whole network during training, including the time used for
executing the pruning algorithm. The software simulation is
programmed in Python language and runs sequentially in a single
process. The runtime decreases with the increasing pruning
percentage (decreasing connectivity), which proves that the
proposed online pruning method is able to shorten the network

Frontiers in Neuroscience | www.frontiersin.org 14 November 2020 | Volume 14 | Article 59887642

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 15

Guo et al. Unsupervised Adaptive Pruning in SNNs

TABLE 3 | Comparison among different pruning methods in the SNN trained on Fashion-MNIST dataset.

Pruning methods Accuracy loss 100/800 Training SOPs reduction 100/800 Inference SOPs reduction 100/800

Online adaptive neuron pruning Guo et al., 2020 42.14%/40.88% 23%/39% 90%/90%

Post-training weight pruning Rathi et al., 2019 16.35%/19.98% 0%/0% 82%/85%

Online soft weight pruning Shi et al., 2019 12.23%/9.63% 27%/29% 0%/0%

Online constant weight pruning Shi et al., 2019 20.43%/19.24% 45%/49% 88%/87%

Online adaptive weight pruning (Our work) 14.09%/13.67% 28%/31% 85%/84%

Accuracy loss and SOPs reduction for two network sizes (100 and 800 neurons) are shown. The connectivity is selected as 10%.

FIGURE 15 | Simulation runtime. (A) Total network simulation runtime during training at different network connectivity values after applying the proposed adaptive
pruning method APTN. (B) Pruning algorithm runtime percentage over the total network simulation time at different network connectivity values. Different batch sizes
were used as 100, 1,000, and 5,000.

TABLE 4 | Estimated number of clock cycles and computational operations (Ops) for the pruning algorithm and SNN training phase in the network with 100 neurons.

Phase Pruning (single batch) Pruning (average per image) Batch: 100/5,000 SNN Training (average per image)

Grouping Adapting Weight pruning

Cycles 120 2,000 78,400 404/9 >>96,099

Ops 400 1,100 156,800 794/18 96,099

Two batch sizes (100 and 5,000) were used for estimating the average per image. The number of operations for SNN training only includes synaptic operations obtained
at the connectivity of 10%.

runtime as it reduces the number of SOPs, including weight
accumulations and STDP updates. Besides, the APTN pruning
runtime is negligible compared to the total runtime (SNN
runtime plus pruning runtime). For example, in Figure 15B,
the pruning runtime percentage is around 0.001% at the batch
size of 5,000 and less than 0.04% even when the batch size
is decreased to 100. For hardware runtime, we estimated the
number of clock cycles required to run the pruning algorithm
in a general synchronous digital system, as shown in Table 4. At
each batch, the proposed pruning process requires three essential
phases, including dividing the neuron groups (grouping phase),
adapting pruning thresholds over neurons (adapting phase), and
writing 0 s to weight memory (weight pruning phase) operations.
The grouping method with sorting in the proposed algorithm
can be replaced by simply searching for the minimum and
maximum values of firing activities of neurons and dividing the

whole range of firing activity (max – min) according to the spike
interval without performance loss. The adapting phase is simply
to position each neuron in the right group according to its firing
activity and assign the corresponding pruning threshold. Both
grouping and adapting phases depend on the number of groups
that varies over time but is smaller than 20. We used 20 for the
estimation. For both phases, we assume that no parallelism is
applied for estimating the upper limit. Moreover, we assume that
all the weights are stored in one memory, and the weight pruning
operations can only access one weight at a time. However, it
should be noted that multiple accesses to weight memory are
available in practice. So the estimation is at the upper limit of the
running cycles of the pruning algorithm. The estimated number
of different phases in the table is for single-batch pruning. The
number of clock cycles for the SNN training phase is much
larger than the number of training SOPs/image, 96,099, since

Frontiers in Neuroscience | www.frontiersin.org 15 November 2020 | Volume 14 | Article 59887643

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 16

Guo et al. Unsupervised Adaptive Pruning in SNNs

TABLE 5 | Estimated number of essential digital gates and memories required for the pruning algorithm and equivalent NAND gates.

Pruning unit SNN

Sub/Add (16 bits) Comparator (16 bits) Register NAND BRAM (18 Kb) NAND BRAM (18 Kb)

4 18 620 8284 2 3.0 × 106 50

The number of NAND gates and BRAMs for an SNN were obtained with 100 neurons according to the proposed digital implementation from (Guo et al., 2020).

each SOP includes many processes, such as searching for
destination addresses, reading out synaptic weights, routing
spikes to the destination, and weight addition or STDP update,
which takes multiple cycles to finish. It can be seen that the
average number of clock cycles per image for pruning with
a small batch size of 100 is far smaller than the number of
training SOPs. Therefore, the hardware runtime of the pruning
algorithm is negligible.

For energy overhead, the number of basic operations, such
as addition, comparison, and memory access, was estimated
in Table 4 for different pruning phases. For the estimation,
16 bits and 8 bits were used to represent the integer part
and fractional part, respectively. The multiplication operation
involved in the algorithm can be approximated by shift and
addition operations. The grouping phase requires addition,
comparison, and memory access operations, while the adapting
phase only needs comparison and memory access operations. The
operations in the weight pruning phase involve memory access
and comparison between weights and a pruning threshold. The
average number of operations per image is 794 and 18 for the
batch size of 100 and 5,000, respectively, which are very small
compared to the number of training SOPs/image. For energy
comparison, we take an example of SNN implementation on
Loihi neuromorphic hardware (Davies et al., 2018). The reported
minimum energy/SOP on this hardware is 23.6 pJ. So the
minimum SOP energy per image is around 2.3 uJ. Since memory
access consumes more energy than addition and comparison
operations, we used the energy of memory access for all the
operations for the comparison. The memory access (read and
write) to an SRAM cell under the same technology consumes
around 0.5 pJ (Yang et al., 2016). So, the estimated energy for
pruning operations per image is 3.4 nJ at the batch size of 100,
which is around 0.1% of the SOP energy. Besides, the network
also spends energy on updating neural states in neural cores,
which makes the percentage even smaller. Thus, we can claim that
the energy overhead is negligible.

As for area overhead, the number of essential digital gates
and memories required to implement the pruning algorithm and
equivalent NAND gates was estimated in Table 5. Each weight
needs a flag bit to indicate if it has been pruned. This bit can
be simply attached to the weight bits in the memory with very
little overhead. The number of NAND gates for an SNN with
100 neurons was estimated according to the proposed digital
implementation from Guo et al. (2020). Clearly, the number
of equivalent NAND gates for the pruning algorithm is much
smaller than that for the SNN. For example, the number of
equivalent NAND gates in the pruning unit is only around 0.3%
of that in the SNN. For memory comparison, in the pruning unit,
firing activity and pruning threshold of neurons are assumed to

be stored in block RAMs (BRAMs). Two 18 Kb BRAMs are totally
enough, which is much smaller than the memory size required in
the SNN. Therefore, the area overhead is very small.

Impact and Future Work
The proposed adaptive method would be effective in improving
the compression rate and preserving good network performance
in other neural networks, as different threshold adaptation
techniques have also been applied to improve the pruning
performance in other neural networks.

The iterative pruning method has been the most successful
and popular pruning technique in ANNs, which relies on
numerous cycles of training and pruning in order to induce
sparsity in weight matrices and preserve network performance
(Han et al., 2015). This method iteratively sets the weights below
a certain threshold to zero and retrains the network to regain
its performance. The main limitation is the need to manually
tweak the thresholds for neurons in different layers to achieve the
best results by iterative tuning. While this iterative method can
effectively compress networks, it requires a large amount of time
and resources in order to find the optimized sparse networks,
which hinders its use in large-scale applications.

In order to eliminate the need for iterative threshold tuning,
many works have explored to adapt threshold values for neurons
in different layers by training the thresholds together with weights
(Manessi et al., 2018; Ye et al., 2019; Azarian et al., 2020). These
methods use the same concept of adapting threshold spatially
as in our method based on the fact that neurons in different
layers have different sensitivity to pruning thresholds, but in a
different adaptation process. In our method, we used the firing
activity of neurons to determine their pruning thresholds, while
these methods adapt the thresholds based on the network loss
in a supervised fashion. These methods were able to find the
optimal thresholds for each layer and do not require pruning-
retaining cycles. The results have shown that with the threshold
adaptation, their methods can achieve a much larger compression
rate with higher classification accuracy than the method without
adaptation. Moreover, threshold adaptation over time during
training was demonstrated to be beneficial in accelerating the
pruning process and achieving a higher compression rate.
Narang et al. (2017) proposed to adapt the pruning threshold
over time using a monotonically increasing function during
training. A heuristic function was presented to calculate the
threshold at different iteration steps, which requires many hyper-
parameters. They tested the method in different types of recurrent
neural networks (RNNs) and demonstrated that this adaptive
method could achieve better network performance and a higher
compression rate without pruning-retraining cycles than a hard
pruning method that simply prunes the weights with a constant

Frontiers in Neuroscience | www.frontiersin.org 16 November 2020 | Volume 14 | Article 59887644

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 17

Guo et al. Unsupervised Adaptive Pruning in SNNs

threshold. Therefore, we believe that the proposed adaptive
pruning method can be useful in improving the compression rate
and preserving good network performance in ANNs. To test the
versatility of our method, we will investigate the impact of the
proposed adaptive method in deep SNNs in our future works.

CONCLUSION

In this work, we proposed an online adaptive weight pruning
method that adapts the pruning threshold over time and
neurons during training in an unsupervised SNN. The effects
of the threshold adaptation over time and neurons were studied
individually. Different functions used to adapt the threshold
were applied and compared. It is demonstrated that both
adaptation over time and neurons can improve the network
performance against an online constant weight pruning method.
The adaptation enables the network to reserve critical weights
when the network is not trained enough at the early phase
of training and balance the connection strength of excitatory
neurons in the network to avoid largely deteriorating the
performance of weak neurons. So, combining the two adaptation
schemes can further improve network performance. The online
adaptive pruning method provides better performance than
the post-training pruning method, suggesting that it can not
only improve training energy efficiency but also achieve higher
accuracy. Regarding the computational cost, the number of SOPs
was analyzed, which shows that the proposed online adaptive
pruning method can significantly reduce the SOPs/image during
both training and inference. Furthermore, comparisons with the
previous works reveal that our method can lead to better accuracy
and a more significant reduction in SOPs. The implementation
overhead of the proposed method was evaluated in terms

of processing speed, area, and energy, which is proven to
be negligible in the network. Therefore, the proposed online
adaptive pruning method provides a promising approach for
reducing network complexity and improving energy efficiency
with good performance in SNNs for real-time applications.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article, further inquiries can be directed to the
corresponding author.

AUTHOR CONTRIBUTIONS

WG, MF, HY, AE, and KS: conceptualization. WG, MF, HY, AE,
and KS: methodology. WG: software, algorithms and writing –
original draft preparation. WG, MF, and HY: investigation and
validation. MF, HY, AE, and KS: writing – review and editing.
AE and KS: supervision. KS: project administration. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was funded by King Abdullah University of Science
and Technology (KAUST) AI Initiative.

ACKNOWLEDGMENTS

We acknowledge the financial support from King Abdullah
University of Science and Technology (KAUST), Saudi Arabia.

REFERENCES
Anwar, S., Hwang, K., and Sung, W. (2017). Structured pruning of deep

convolutional neural networks. J. Emerg. Technol. Comput. Syst. 13:32. doi:
10.1145/3005348

Azarian, K., Bhalgat, Y., Lee, J., and Blankevoort, T. (2020). Learned threshold
pruning. ArXiv [Preprint]. Available online at: https://arxiv.org/pdf/2003.
00075.pdf (accessed October 4, 2020).

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: i.
homogeneous synaptic input. Biol. Cybernet. 95, 1–19. doi: 10.1007/s00422-
006-0068-6

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro
38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi: 10.3389/
fncom.2015.00099

Fontaine, B., Peña, J. L., and Brette, R. (2014). Spike-threshold adaptation predicted
by membrane potential dynamics in vivo. PLoS Comput. Biol. 10:e1003560.
doi: 10.1371/journal.pcbi.1003560

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The
SpiNNaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.230
4638

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2020).
Towards efficient neuromorphic hardware: unsupervised adaptive neuron
pruning. Electronics 9:1059.

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). “Learning both weights
and connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems – Volume
1, (Montreal: MIT Press).

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., and Villa, A. E. P. (2005).
Dynamics of pruning in simulated large-scale spiking neural networks.
Biosystems 79, 11–20. doi: 10.1016/j.biosystems.2004.09.016

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.
726791

Li, H., Liu, N., Ma, X., Lin, S., Ye, S., Zhang, T., et al. (2019). “ADMM-based
weight pruning for real-time deep learning acceleration on mobile devices,” in
Proceedings of the 2019 on Great Lakes Symposium on VLSI, (Tysons Corner,
VA: Association for Computing Machinery).

Manessi, F., Rozza, A., Bianco, S., Napoletano, P., and Schettini, R. (2018).
“Automated Pruning for Deep Neural Network Compression,” in Proceedings of
the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing,
657–664.

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345:668. doi: 10.1126/science.
1254642

Narang, S., Diamos, G., Sengupta, S., and Elsen, E. (2017). Exploring sparsity in
recurrent neural networks. ICLR

Frontiers in Neuroscience | www.frontiersin.org 17 November 2020 | Volume 14 | Article 59887645

https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://arxiv.org/pdf/2003.00075.pdf
https://arxiv.org/pdf/2003.00075.pdf
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1371/journal.pcbi.1003560
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1016/j.biosystems.2004.09.016
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-598876 November 7, 2020 Time: 19:34 # 18

Guo et al. Unsupervised Adaptive Pruning in SNNs

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Paupamah, K., James, S., and Klein, R. (2020). “Quantisation and pruning for
neural network compression and regularisation,” in Proceedings of the 2020
International SAUPEC/RobMech/PRASA Conference, Cape Town, 1–6. doi: 10.
1109/SAUPEC/RobMech/PRASA48453.2020.9041096

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-
dependent plasticity. J. Neurosci. 26, 9673–9682. doi: 10.1523/jneurosci.1425-
06.2006

Rathi, N., Panda, P., and Roy, K. (2019). STDP-based pruning of connections and
weight quantization in spiking neural networks for energy-efficient recognition.
IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 38, 668–677. doi: 10.1109/
TCAD.2018.2819366

Shi, Y., Nguyen, L., Oh, S., Liu, X., and Kuzum, D. (2019). A soft-pruning method
applied during training of spiking neural networks for in-memory computing
applications. Front. Neurosci. 13:405. doi: 10.3389/fnins.2019.00405

Shrestha, A., and Mahmood, A. (2019). Review of deep learning algorithms and
architectures. IEEEAccess 7, 53040–53065. doi: 10.1109/ACCESS.2019.2912200

Sredojevic, R., Cheng, S., Supic, L., Naous, R., and Stojanovic, V. (2017). Structured
deep neural network pruning via matrix pivoting. ArXiv [Preprint]. Available
online at: https://arxiv.org/abs/1712.01084#:~:text=In%20this%20work%
20we%20introduce,for%20obtaining%20resource%2Defficient%20DNNs
(accessed July 15, 2020).

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao,
N., et al. (2018). Large-scale neuromorphic spiking array processors: a
quest to mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.
00891

Tung, F., and Mori, G. (2020). Deep neural network compression by in-parallel
pruning-quantization. IEEE Trans. Pattern Anal. Mach. Intellig. 42, 568–579.
doi: 10.1109/TPAMI.2018.2886192

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. ArXiv [Preprint].
Available online at: https://arxiv.org/abs/1708.07747 (accessed October 11,
2020).

Yang, Y., Jeong, H., Song, S. C., Wang, J., Yeap, G., and Jung, S. (2016). Single
Bit-Line 7T SRAM cell for near-threshold voltage operation with enhanced
performance and energy in 14 nm FinFET technology. IEEE Trans. Circ. Syst. I
Regul. Pap. 63, 1023–1032. doi: 10.1109/TCSI.2016.2556118

Ye, S., Feng, X., Zhang, T., Ma, X., Lin, S., Li, Z., et al. (2019). Progressive DNN
compression: a key to achieve ultra-high weight pruning and quantization rates
using ADMM. ArXiv [Preprint]. Available online at: https://arxiv.org/abs/1903.
09769 (accessed October 4, 2020).

Zillmer, E. A., and Spiers, M. V. (2001). Principles of Neuropsychology. Belmont,
CA: Wadsworth/Thomson Learning.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Guo, Fouda, Yantir, Eltawil and Salama. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 November 2020 | Volume 14 | Article 59887646

https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041096
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041096
https://doi.org/10.1523/jneurosci.1425-06.2006
https://doi.org/10.1523/jneurosci.1425-06.2006
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.1109/ACCESS.2019.2912200
https://arxiv.org/abs/1712.01084#:~:text=In%20this%20work%20we%20introduce,for%20obtaining%20resource%2Defficient%20DNNs
https://arxiv.org/abs/1712.01084#:~:text=In%20this%20work%20we%20introduce,for%20obtaining%20resource%2Defficient%20DNNs
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/TPAMI.2018.2886192
https://arxiv.org/abs/1708.07747
https://doi.org/10.1109/TCSI.2016.2556118
https://arxiv.org/abs/1903.09769
https://arxiv.org/abs/1903.09769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 1

ORIGINAL RESEARCH
published: 19 February 2021

doi: 10.3389/fnins.2021.601109

Edited by:
Angelo Arleo,

Centre National de la Recherche
Scientifique (CNRS), France

Reviewed by:
Charles Augustine,
Intel, United States

Sio Hoi Ieng,
Université Pierre et Marie Curie,

France

*Correspondence:
Bin Deng

dengbin@tju.edu.cn

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 31 August 2020
Accepted: 21 January 2021

Published: 19 February 2021

Citation:
Yang S, Gao T, Wang J, Deng B,

Lansdell B and Linares-Barranco B
(2021) Efficient Spike-Driven Learning

With Dendritic Event-Based
Processing.

Front. Neurosci. 15:601109.
doi: 10.3389/fnins.2021.601109

Efficient Spike-Driven Learning With
Dendritic Event-Based Processing
Shuangming Yang1, Tian Gao1, Jiang Wang1, Bin Deng1* , Benjamin Lansdell2 and
Bernabe Linares-Barranco3

1 School of Electrical and Information Engineering, Tianjin University, Tianjin, China, 2 Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, United States, 3 Microelectronics Institute of Seville, Seville, Spain

A critical challenge in neuromorphic computing is to present computationally efficient
algorithms of learning. When implementing gradient-based learning, error information
must be routed through the network, such that each neuron knows its contribution
to output, and thus how to adjust its weight. This is known as the credit assignment
problem. Exactly implementing a solution like backpropagation involves weight sharing,
which requires additional bandwidth and computations in a neuromorphic system.
Instead, models of learning from neuroscience can provide inspiration for how to
communicate error information efficiently, without weight sharing. Here we present a
novel dendritic event-based processing (DEP) algorithm, using a two-compartment
leaky integrate-and-fire neuron with partially segregated dendrites that effectively solves
the credit assignment problem. In order to optimize the proposed algorithm, a dynamic
fixed-point representation method and piecewise linear approximation approach are
presented, while the synaptic events are binarized during learning. The presented
optimization makes the proposed DEP algorithm very suitable for implementation in
digital or mixed-signal neuromorphic hardware. The experimental results show that
spiking representations can rapidly learn, achieving high performance by using the
proposed DEP algorithm. We find the learning capability is affected by the degree
of dendritic segregation, and the form of synaptic feedback connections. This study
provides a bridge between the biological learning and neuromorphic learning, and is
meaningful for the real-time applications in the field of artificial intelligence.

Keywords: spiking neural network, credit assignment, dendritic learning, neuromorphic, spike-driven learning

INTRODUCTION

Learning requires assigning credit to each neuron for its contribution to the final output (Bengio
et al., 2015; Lillicrap et al., 2016). How a neuron determines its contribution is known as the credit
assignment problem. In particular, the training of deep neural networks is based on error back-
propagation, which uses a feedback pathway to transmit information to calculate error signals in
the hidden layers. However, neurophysiological studies demonstrate that the conventional error

Frontiers in Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 60110947

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.601109
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.601109
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.601109&domain=pdf&date_stamp=2021-02-19
https://www.frontiersin.org/articles/10.3389/fnins.2021.601109/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 2

Yang et al. Efficient Neuromorphic Dendritic Learning

back-propagation algorithm is not biologically plausible. One
problem is known as weight transport: backpropagation utilizes
a feedback structure with the exact same weights as the feed-
forward pathway to communicate gradients (Liao et al., 2016).
This symmetric feedback structure has not been proven to exist in
biological neural circuit. Several studies have presented solutions
to modify or approximate the backpropagation algorithm in a
more biologically plausible manner (Lee et al., 2015; Scellier and
Bengio, 2017; Lansdell and Kording, 2019; Lansdell et al., 2019).
In fact, active channels in dendrites can drive different forms
of spiking activities (Schmolesky et al., 2002; Larkum, 2013).
A potential solution is thus to segregate signals into dendritic
compartments, so that the credit signals can be kept separate
from other ongoing computation (Richards and Lillicrap, 2019).
Recent work shows how spiking neural networks can implement
feedback structures that allow efficient solving of the credit
assignment problem by dendritic computation (Urbanczik and
Senn, 2014; Wilmes et al., 2016; Bono and Clopath, 2017;
Guerguiev et al., 2017). Further, other work has shown that even
feedback systems that crudely approximate the true feedback
weights can solve some learning tasks (Zenke and Ganguli,
2018; Lee et al., 2020). Together these works show that the
credit assignment problem can be largely solved by biologically
plausible neural systems.

An ongoing challenge in neuromorphic computing is to
present general and computationally efficient algorithms of
deep learning. Previous works have shown how neuromorphic
approaches for deep learning can be more efficient compared
to Von Neumann architecture (Esser et al., 2015; Indiveri
et al., 2015; Neftci et al., 2017). However, these systems have
yet to be fully realized. By design, learning in neuromorphic
hardware operates under similar constraints to learning in
biological neural networks. The credit assignment problem, and
the problem of weight transport also manifest in this setting:
neuromorphic learning systems that do not require weight
transport enjoy less data transfer between components. In this
way, biologically plausible approaches to deep learning can
also be used to make neuromorphic computing more efficient.
Previous neuromorphic systems have been presented for high-
performance brain-inspired computation, providing tests of
biological learning models and real-time applications (Qiao et al.,
2015; Yang et al., 2015, 2018, 2020, 2021).

Recent proposals for solutions to the credit assignment
problem have not been considered in neuromorphic computing.
Here we present a novel dendritic event-based processing (DEP)
algorithm to facilitate the efficient implementation of the credit-
assignment task on neuromorphic hardware. The presented
DEP algorithm is inspired by the primary sensory areas of
the neocortex, providing the segregation of feed-forward and
feedback information required to compute local error signals and
to solve the credit assignment problem. In the DEP algorithm,
a binarization method and a dynamic fixed-point solution are
presented for the efficient implementation of deep learning. The
paper is organized as follows: section “Introduction” describes the
preliminaries of this study, including neuromorphic computing
and the spiking neural network (SNN) model. Learning with
stochastic gradient descent (SGD) in spiking neural networks is

introduced and explained in section “Materials and Methods.”
Section “Results” presents the experimental results. And finally,
the discussions and conclusions are proposed in sections
“Discussion” and “Conclusion,” respectively.

MATERIALS AND METHODS

Learning With Dendrites in Event-Driven
Manner
Learning needs neurons to receive signals to assign the credit for
behavior. Since the behavioral impact in early network layers is
based on downstream synaptic connections, credit assignment
in multi-layer networks is challenging. Previous solutions in
artificial intelligence use the backpropagation of error algorithm,
but this is unrealistic in the neural systems. Rather than requiring
weight transport, current biologically plausible solutions to the
credit assignment problem use segregated feed-forward and
feedback signals (Lee et al., 2015; Lillicrap et al., 2016). In
fact, the cortico-cortical feedback signals to pyramidal neurons
can transmit the necessary error information. These works
show how the circuitry needed to integrate error information
may exist within each neuron. The idea is that both feed-
forward sensory information in the neocortex and the higher-
order cortico-cortical feedback are received by different dendritic
compartments, including basal and apical dendrites (Spratling,
2002). In a pyramidal cell, distal apical dendrites are distant
from the soma, and communicate with the soma based on
active propagation using the apical dendritic shaft, driven
predominantly by voltage-gated calcium channels (Katharina
et al., 2016). Further, there exist dynamics of plateau potentials
that generate prolonged upswings in the membrane potential.
These are based on the nonlinear dynamics of voltage-gated
calcium current, and drive bursting at the soma (Larkum et al.,
1999). The plateau potentials of the apical dendritic activities can
induce learning in pyramidal neurons in vivo (Bittner, 2015).

Inspired by these phenomena, a previous study has proposed
a learning algorithm with segregated dendrites (Guerguiev et al.,
2017). Based on this work, an efficient learning algorithm for
neuromorphic learning is presented in this study. The idea
is that the basal dendritic compartment is coupled to the
soma for processing bottom-up sensory information, and the
apical dendritic compartment is used to process top-down
feedback information to calculate credit assignment and induce
learning using plateau potentials. The basic computing unit
we use on the large-scale conductance-based spiking neural
network (LaCSNN) system is based on the integrate-and-fire (IF)
principle. As shown in Figure 1, the simple spiking behaviors
of the IF neurons can be triggered by excitatory input spikes.
The new state of the neural membrane potential with an input
arriving is determined by the last updating time and the previous
state. Thus, the event-driven neuron only updates when an input
spike is received. Then the membrane potential decay after the
last update is retroactively calculated and applied. The synaptic
weight is then used to contribute to the resulting membrane
potential. A spike event is emitted when the membrane potential
exceeds a spike threshold, and then the neural activity is reset and

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 60110948

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 3

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 1 | Event-driven neural computing, showing the process of synaptic weights and time affecting the neural membrane potential and the refractory period.

mutual inhibition with coupled neurons is realized. Finally the
membrane potential and spiking event are written to memory to
store the network state of the next update of neural activity.

Network Architecture With SGD
Algorithm
The network diagram utilizes the SNN model in the previous
study by Guerguiev et al. (2017) as shown in Figure 2, which
consists of an input layer with m = 784 neurons, a hidden
layer with n = 500 neurons, and an output layer with p = 10
neurons. Since our primary interests are in the realization of
neuromorphic networks, the proposed model is restricted to
discrete systems based on the Euler method, where N is the
time step for discretization. This way of representation is popular
in the hardware implementation of spiking neural networks
because of its feasibility of implementation and routing. Poisson
spiking neurons are used in the input layer, whose firing rate
is determined by the intensity of image pixels ranging from
0 to 8max. In the hidden layer, neurons are modeled using
three functional compartments, which are basal dendrites, apical
dendrites and soma. The membrane potential of the ith neuron
in the hidden layer is updated as follows:

τ
V0
i (N+1)−V0

i (N)
1T = −V0

i (N)+
gb
gl

(
V0b
i (N)− V0

i (N)
)

+
ga
gl

(
V0a
i (N)− V0

i (N)
) (1)

where gl, gb, and ga stand for the leak conductance, the basal
dendrites conductance, and the apical dendrite conductance, and
1T is the integration step. The superscript “0,” “a,” and “b”
represent hidden layer, basal dendrite and apical dendrite. The
parameter τ = Cm/gl, is a time constant, where Cm represents the
membrane capacitance. The variables V0, V0a, and V0b represent
the membrane potentials of soma, apical dendrite and basal
dendrite, respectively. The dendritic compartments are defined

as weighted sums for the ith hidden layer neuron as follows:
V0b
i (N) =

m∑
j=1

W0
ijs

input
j (N)+ b0

i

V0a
i (N) =

p∑
j=1

Yijs
1
j (N)

(2)

where Wij
0 and Yij are synaptic weights in the input layer and

feedback synapses, respectively. The constant bi0 is defined as a
bias term, and sinput and s1 are the filtered spiking activities in
the input layer and output layer, respectively. The variable sinput
is calculated based on the following equations as

sinputj (t) =
∑
k

κ
(
t − tinputjk

)
(3)

where tjkinput represents the kth spiking time of the input neuron
j, and the response kernel is calculated as

κ (t) =
(
e−t/τL − e−t/τs

)
2(t)

/
(τL − τs) (4)

where τL and τs are long and short time constants, and 2
is the Heaviside step function. The filtered spike trains at
apical synapses s1 is modeled based on the same method. The
spiking activities of somatic compartments are based on Poisson
processes, whose firing rates are based on a non-linear sigmoid
function σ(.) for the ith hidden layer neuron as follows:

80
i (N) = φmaxσ

(
V0
i (N)

)
= φmax

1

1+ e−V
0
i (N)

(5)

where8max represents the maximum firing rates of neurons.

Plateau Potentials and Weight Updates
Based on the learning algorithm of Guerguiev et al., two phases
are alternated to train the network: the forward and target phases
as shown in Figure 3. In the forward phase Ii(t) = 0, while it
induces any given neuron i to spike at maximum firing rate or be
silent according to the category of the current input image when

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 60110949

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 4

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 2 | The network architecture in this study. Matrices Y and W represent the feedback and feed-forward synaptic weight matrix, respectively.

the network undergoes target phase. At the end of the forward
phase and the target phase, the set of plateau potentials αt and αf
are calculated, respectively.

At the end of each phase, plateau potentials are calculated for
apical dendrites of hidden layer neurons, which are defined as
follows

τ
V1
i (N+1)−V1

i (N)
1T = −V1

i (N)+ Ii (N)
+

gd
gl

(
V1b
i (N)− V1

i (N)
)

V1b
i (N) =

m∑
i=1

W1
ijs

0
j (N)+ b1

i

(6)

where t1 and t2 represent the end times of the forward and target
phases, respectively. 1ts = 30 ms represents the settling time for
the membrane potentials, and 1t1 and 1t2 are formulated as
follows {

1t1 = t1 − (t0 +1ts)
1t2 = t2 − (t1 +1ts)

. (7)

The temporal intervals between plateaus are sampled based on
an inverse Gaussian distribution randomly. Although the system
computes in phases, the specific length of the phases is not vital,
provided there has been a long enough time to integrate the input
currents.

Learning With Feedback Driven Plateau
Potentials
During the forward phase, an image is presented to the input layer
without teaching current at the output layer between time t0 to t1.
At t1 a plateau potential is computed in the hidden layer neurons
and the target phase begins. During the target phase the image
is also presented into the input layer that also receives teaching
current, forcing the correct neuron in the output layer to its
maximum firing rate while others are silent. At time t2 another set
of plateau potentials in the hidden layers are computed. Plateau
potentials for the end of both the forward and the target phases
are calculated as followsα

f
i = σ

(
1
1t1

∫ t1
t1−1t1 V

0a
i (N) dt

)
αti = σ

(
1
1t2

∫ t2
t2−1t2 V

0a
i (N) dt

) (8)

where 1ts represents a time delay of the network dynamics
before integrating the plateau, and 1ti = ti − (ti−1 + 1ts).
The superscript “t” and “f ” represent target and forward
phases, respectively.

The basal dendrites in the hidden layer update the synaptic
weights W0 based on the minimization of the loss function as
follows

L0
=
∣∣∣∣φ0∗

− φmaxσ
(
v̄0f
)∣∣∣∣2

2. (9)

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 60110950

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 5

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 3 | Network computing phases for learning proposed by Guerguiev et al. The green arrows represent the signal transmission from apical dendrite to soma,
and red crosses stand for the disconnection between apical dendrite and somatic compartment. The black arrows represent the transmission of spike signals
between layers.

And the target firing rate is defined as

φ0∗
i = 8̄

0f
i + αti − α

f
i (10)

where the variable and are plateau potentials in the forward and
target phases. It should be noted that as long as neural units
calculate averages after the network has reached a steady state,
and the firing rates of the neurons are in the linear region of the
sigmoid function, then we have the following equation for the
hidden layer as:

φmaxσ
(
V̄0f

)
≈ φmaxσ

(
V0
)f
= φ0f (11)

Then the formulation can be obtained as

L0
≈
∣∣∣∣αt − αf ∣∣∣∣22. (12)

And the formulation can be described as follows
∂L0

∂W0 ≈ −kb
(
αt − αf

)
φmaxσ

′

(
V̄0f

)◦
s̄inputf

∂L0

∂b0 ≈ −kb
(
αt − αf

)
φmaxσ

′

(
V̄0f

) (13)

where the constant kb is given as

kb = gb/(gl + gb + ga). (14)

In this study, 80∗ is treated as a fixed state for the hidden layer
neurons to learn. The synaptic weights of basal dendrites are

updated to descend the approximation of the gradient as follows{
W0
→W0

− η0P0 ∂L0

∂W0

b0
→ b0

− η0P0 ∂L0

∂b0

. (15)

In the target phase the activity is also fixed and no derivatives are
used for the membrane potentials and firing rates. The feedback
weights are held fixed.

Piecewise Linear Approximation (PWL)
for Digital Neuromorphic Computing
Here we simplify the above model for efficient use in
neuromorphic architectures. In order to avoid the complicated
computation induced by nonlinear functions, the PWL approach
is used in this study. Both the functionsσ(x) and σ’(x) are
modified based on the PWL method, which can be formulated
as follows

fPWL =

a1x+ b1, when x ≤ s1
a2x+ b2, when s1 < x ≤ s2
...

aix+ bi, when x > si−1

(16)

where ai and bi are the slope and intercept of the modified
PWL function fowl, respectively (i = 1, 2,..., n). Since the range
of the segment points are constrained, an exhaustive search
algorithm is used in the determination of the PWL functions.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 60110951

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 6

Yang et al. Efficient Neuromorphic Dendritic Learning

TABLE 1 | Parameter values of the PWL methods.

σ(x) A b Condition

i = 1 0.0078125 0.05 x5−3.4

i = 2 0.0625 0.24 −3.4 < x5−1.3

i = 3 0.25 0.5 −1.3 < x51.3

i = 4 0.0625 0.76 1.3 < x53.4

i = 5 0.0078125 0.95 3.4 < x

i = 6 0 0.9999 σ(x)50

i = 7 0 0.0001 σ(x)=1

σ’(x) A b Condition

i = 1 0.0078125 0.05 x5−3.2

i = 2 0.03125 0.15 −3.2 < x5−2

i = 3 0.0625 0.25 −2 < x50

i = 4 −0.0625 0.25 0 < x52

i = 5 −0.03125 0.15 2 < x53.2

i = 6 −0.0078125 0.05 x > 3.2

i = 7 0 0.0001 σ’(x)50

The determination of the coefficient values are based on an error
evaluation criterion as follows

CFRE =
1
n

√√√√ n∑
i=1

(
fori (i)− fPWL (i)

)2

fori (i)2
(17)

where n represents the total sampling points, and fori represents
the original function. If the modified function cannot meet
the accuracy requirement represented by CFRE, its segment
number will be added by 1 until it can be guaranteed. Since the
multiplication operation is replaced by "adder" and "shifter" in
the proposed study, the coefficient value ai in the PWL functions
should be a power of 2 (for example: 1, 2, 4 or 0.5, 0.25, etc.). The
parameter values of the PWL methods are listed in Table 1. The
PWL functions are depicted in Figure 4.

Binarization for Filtered Spike Trains
The digital neuromorphic algorithm requires less multiplication
operations. Therefore, in this study we use the Otsu’s

thresholding method to binarize the filtered spike trains,
which can iterate all possible threshold values and compute the
expansion measure of each pixel level of the threshold (Otsu,
1978). Therefore, each pixel will fall in either foreground or
background. Firstly, separate all the pixels into two clusters based
on the threshold as follows

q1 (t) =
t∑

i=1

p (i)

q2 (t) =
L∑

i=t+1

p (i)
(18)

where p represents the image histogram. Secondly, the mean of
each cluster is calculated by the formulation as follows

µ1 (t) =
t∑

j=1

i · p (i)
q1 (t)

µ2 (t) =
L∑

j=t+1

i · p (i)
q2 (t)

(19)

Thirdly, calculate the individual class variance as follows
λ2

1 (t) =
t∑

i=1

[i− µ1 (t)]2 p (i)
q1 (t)

λ2
2 (t) =

L∑
i=t+1

[i− µ2 (t)]2 p (i)
q2 (t)

(20)

Fourthly, square the difference between the means formulated as
follows

λ2
b (t) _ = λ2

− λ2
w (t)

_ = q1 (t)
[
1− q1 (t)

]
[µ1 (t)− µ2 (t)]2 (21)

where λb, λ, and λw represent between-class variance, total
class variance and within-class variance, respectively. Finally,
the formulation can be maximized and the solution is t that is
maximizing λb

2(t).

FIGURE 4 | PWL functions in the proposed algorithms.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 60110952

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 7

Yang et al. Efficient Neuromorphic Dendritic Learning

Considerations for Training With Low
Bitwidth Weights
Neuromorphic hardware is largely made out of arithmetic
elements and memories. Multipliers are the most space and
power hungry arithmetic elements of the digital neuromorphic
implementation. The realization of a deep neural network is
mainly dependent on matrix multiplications. The key arithmetic
operation is the multiply-accumulate operation. The reduction of
the precision of the multipliers, especially for the weight matrix,
is vital for the efficient realization of deep neural networks.
Recent researches have focused on the reduction of model size
and computational complexity by using low bitwidth weights of
neural networks (Courbariaux et al., 2014). Other neuromorphic
hardware systems implement bistable synapses based on a 1-bit
weight resolution, which is shown to be sufficient for memory
formation (Bill, 2010). However, the models do not only use
spike timings, but also use additional hardware resources to read
the postsynaptic membrane potential (Sjöström et al., 2001).
Therefore, this study trains the proposed DEP algorithm using
dynamic fixed point representation. In dynamic fixed point, each
number is represented as follows

(−1)s · 2−FL
B−2∑
i=0

2i · xi (22)

where B represents the bit-width, s the sign bit, FL is the fractional
length, and x the mantissa bits.

The proposed algorithm is presented in Figure 5. In the
pseudo code, the synaptic weight matrix W is the input of the
algorithm. Total_bit represents the total bit width of the fixed-
point number, and IF_bit is the integer bitwidth. The fractional
bitwidth is represented by LF_bit. The integer and fractional
parts are represented by W_IF and W_LF. The binary integer
and fractional parts are represented by W_IF_bit and W_LF_bit,
respectively. The symbol bit is represented by W_s, and R_max
defines the fault-tolerant ratio. The error rate refers to the
difference between the binary number and the original decimal
number divided by the original decimal number. If the error rate
exceeds the defined fault-tolerant rate, a specialized process will
be used for the binary number. Since the large error occurs in the
situation when the considered number is close to 0, this number
will be set to 0 if the error rate exceeds R_max. The term W is
an a∗b synaptic weight matrix to be trained. The first loop is in
the line 2. This loop is in the line 2, which is the row loop of the
matrix. The second loop is in the line 3, which is the column
loop of the matrix. There are two judgments in the proposed
algorithm. The first judgment is to determine the symbol bit. If it
is negative, then the symbol is 1. If it is positive, then the symbol is
0. The second judgment is to determine the positive and negative
when the binary number is converted to decimal number. If the
sign bit is 1, it is negative. And it is positive when the sign bit is
0. The third judgment is to consider the error rate between the
newly converted number and the original number. If the error
rate exceeds the fault-tolerant ratio, the newly converted number
will be replaced by 0 for efficient calculation on neuromorphic
systems. Finally the updated synaptic weight matrix W_new is

FIGURE 5 | Pseudocode of the algorithm for training with dynamic fixed point
representation.

output by the processing of the proposed algorithm. By using
the proposed algorithm, the memory usage on hardware can be
optimized and the energy efficiency of neuromorphic systems can
be further improved.

RESULTS

To demonstrate the effectiveness of the proposed learning
algorithm, the standard Modified National Institute of Standards
and Technology database (MNIST) benchmark is employed.
The MNIST dataset contains 70,000 28 × 28 images of
handwritten digits. The image number in the training and
testing sets are 60,000 and 10,000, respectively. The dataset
is divided into 10 categories for 10 integers 0–9, and each
image has an associated label. We trained the networks with
no hidden layer, with one hidden layer and two hidden layers
on the 60,000 MNIST training images for 10 epochs, and
tested the classification accuracy using the 10,000 image test
set. As shown in Figure 6A, the network with no hidden
layer has poor classification performance of 62.1%. In contrast,
the three-layer network with hidden layer has an accuracy of
95.1% by the 10th epoch. The proposed network can take
advantage of the multi-layer architecture to enhance the learning
performance, which is the critical characteristics of deep learning
(Bengio and LeCun, 2007). Another critical characteristic of
deep learning is the capability to generate representations,
which obtains task-related information and ignores irrelevant

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 60110953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 8

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 6 | Learning performance of the DEP algorithm. (A) The learning
accuracy across 10 epochs of training. (B) Results of t-SNE dimensionality
reduction applied to the activity patterns of the hidden layer after 10 epochs of
training.

sensory details (LeCun et al., 2015; Mnih et al., 2015). The
t-distributed stochastic neighbor embedding algorithm (t-SNE)
is used to investigate the information abstraction of the proposed
algorithm. The t-SNE algorithm can reduce the dimensionality
of data with the preservation of local structure and nonlinear
manifolds in high-dimensional space. It is a powerful approach
to visualize the structure of high-dimensional data (Maaten and
Hinton, 2008). The t-SNE algorithm is applied to the hidden
layer, which shows that the categories are better segregated with
only a small amount of splitting or merging of category clusters
as shown in Figure 6B. Therefore, the proposed algorithm has
the capability of learning the developing representations in the
hidden layer, in which the categories are quite distinct. It reveals
that the proposed algorithm can be applied in a deep learning
framework. In addition, the proposed algorithm relies on the
phenomenon of feedback alignment, in which the feed-forward
system comes to align with the feedback weights so that a useful
error signal is provided.

The proposed DEP learning algorithm in a network with
one hidden layer trained on permutation invariant MNIST is
explored, although it can be generalized to other datasets in
theory. Rather than seeking for the optimized classification
performance, the equivalent non-spiking neural networks trained
by standard BP and random BP are compared with the proposed
algorithm, with the parameters tuned to obtain the highest
classification accuracy in the current classification task. Weight
updates are conducted during each digit input into the spiking
network, which is different from the batch gradient descent
that performs weight updates once per the entire dataset. As

shown in Figure 7, the DEP algorithm requires fewer iterations
of the dataset to obtain the peak classification performance
in comparison with the two alternative methods. The reason
is that the spiking neural network with DEP algorithm can
be updated multiple times during each input, which results in
faster convergence of learning. In addition, for the equivalent
computational resources, online learning with gradient descent
strategy has the capability to deal with more data samples and
requires less on-chip memory for implementation (Bottou and
Cun, 2004). Therefore, for the same number of calculation
operations per unit time, online gradient-descent-based learning
converges faster than batch learning. Since potential applications
of neuromorphic hardware is with real-time streaming data, it is
essential for the online learning with DEP algorithm.

In order to further demonstrate the learning performance
of the proposed DEP algorithm, a comparison between the
proposed DEP algorithm with two layers and the SNN with
point LIF neuron model is presented. As shown in Figure 8A,
the learning accuracy of the SNN model with dendrites, i.e.,
the proposed DEP algorithm, is higher than the conventional
SNN with point neuron model. Besides, we further apply the
DEP algorithm in the feature detection tasks to see whether
the proposed algorithm could also learn feature detection
maps from continuous sensory streams. Previous study has
shown that SNN models can defect features from background
activities (Masquelier et al., 2008). In order to provide a good
benchmark for the proposed DEP algorithm on the feature
detection task, the ability of the DEP algorithm is examined for
feature detection tasks. In this task, there are eight categories,
and each category represents on direction, including 0◦, 22.5◦,
45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦. Each image consists
of 729 (27 × 27) pixels. Besides, 10% pixels are randomly

FIGURE 7 | MNIST classification error based on spiking neural network with
DEP learning rule and fully connected artificial neural networks with
backpropagation (BP) and random backpropagation(RBP) learning rules.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 60110954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 9

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 8 | Learning performance by comparison and based on feature detection task. (A) Comparison between the proposed DEP algorithm with two layers and
SNN with point LIF neuron model. (B) Performance evaluation of feature detection by DEP algorithm with and without input noise, respectively.

selected to add Gaussian noise to make the data set with input
noise. Figure 8B shows the learning performance of the DEP
algorithm. It reveals that the DEP algorithm can successfully
detect feature patterns contaminated by background noise using
spike-based framework.

As shown in Figure 9, learning on neuromorphic system
can be energy efficient by using the proposed DEP algorithm,
because only active connections in the network induce synaptic
operations (SynOps) operation. In order to show the learning
efficiency, the number of multiply-accumulate (MAC) operations
using the BP algorithm is compared with SynOps number
with the proposed algorithm. This advantage is critical and
promising for neuromorphic computing because SynOps in a

FIGURE 9 | The comparisons of accuracy and SynOps between the
proposed DEP algorithm and BP algorithm on graphical processing unit
(GPU).

dedicated neuromorphic system use much less power than MAC
operations on a GPU platform. The learning accuracy of the
proposed algorithm increases quickly but the final accuracy is
lower than an ANN.

As shown in Figure 10, the response of the proposed DEP
algorithm after stimulus onset is one synaptic time constant.
It leads to 11% error and improves as the spikes number of
the neurons in the output layer increases. Classification using
the first spike induced less than 20 k SynOps events, most of
which exist between the input and hidden layer. In the state-
of-the-art neuromorphic system, the energy consumption of
a synaptic operation is around 20 pJ (Merolla et al., 2014;
Qiao et al., 2015). On such neuromorphic system, single spike
classification based on the proposed network can potentially
induce 400 pJ, which is superior to the state-of-the-art work
in digital neuromorphic hardware (≈2 µJ) at this accuracy
(Esser et al., 2016) and potentially 50,000 more efficient than
current GPU technology. In addition, an estimation of the power
consumption during training by using BP and the proposed DEP
algorithm is also presented according to Figure 9. It reveals that
about 1011 SynOps is cost by the end of 60 epochs, therefore
about 33 mJ is cost in an epoch during training. Previous
study has demonstrated that 1,000–5,000 mJ will be cost by
BP algorithm on conventional GPU platform (Rodrigues et al.,
2018). Therefore, there is a 96.7–99.3% reduction for the power
consumption by the proposed DEP algorithm during training.
The reasons for the low energy cost can be divided into three
aspects. Firstly, the segregated dendrite can generate a plateau
potential within 50–60 ms, which determines the training time of
the proposed network. The training time can be thereby reduced
in this way, which can cut down the number of spikes with the
decreasing of the training time for each image. Secondly, the
conventional BP algorithm induces a trend to make neurons
spike with maximum firing rate, and induces synchronization

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 60110955

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 10

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 10 | Classification error in the proposed DEP network as a function
of the number of spikes in the output layer, and total number of synaptic
operations incurred up to each output spike.

within layers. This means a larger number of spikes. Thirdly, the
communication between layers in the proposed algorithm uses
a Poisson filter, and 8max is set to be 0.2. These results suggest
that the proposed DEP learning algorithm can take full use of
the spiking dynamics, with the learning accuracy comparable to
the spiking network that is trained specifically for single spike
recognition in previous study (Mostafa, 2017).

Figure 11 shows the distribution of spike times in the output
layer, which is the times at which the proposed SNN makes a
decision for all the 10,000 test set images. The proposed SNN
with DEP algorithm makes a decision after most of the hidden
layer neurons have spiked. The network is thus able to make
more accurate and robust decisions about the input images,
based on the plateau potentials generated by the dendrites in the
proposed DEP algorithm.

As shown in Figure 12, 30 neurons in the hidden layer are
selected randomly to explore the selectivity for 10 categories of
MNIST data set. The negative log probability for each of the 30
neurons to spike for each of the 10 categories is explored, which
means the negative log probability for a neuron to participate in
the classification of a specified category. Probability is calculated
from the response of the SNN to the 10,000 test digits. It reveals
that some neurons are highly selective, while most of the neurons
are more broadly tuned. Some of the neurons are mostly silent,
but all the neurons in the SNN model contribute to at least one
category of classification with the 10,000 test digits. In other
word, neurons are typically broadly tuned and contribute to the
classification of more than one categories.

We further investigate the necessary bit widths of the fixed-
point and dynamic fixed-point, respectively. The bit width
of the integer part using the fixed-point calculation is set
to 8 to avoid the overflow problem during computation. In
contrast, the dynamic fixed-point is not required to determine
the bit width of either integer or fractional part. As shown
in Figure 13, the fixed-point representation of the fractional
part requires 14 bits to obtain a satisfied learning performance

FIGURE 11 | Histograms of spike times in the output layer spike across the
10,000 test set images.

that exceeds 90%. Therefore, the satisfied total bit width for
fixed-point representation is 22 bit (8 bit for integer part
and 14 bit for fractional part). The dynamic fixed-point
representation just needs 16 bits to realize high-performance
learning. Therefore, the dynamic fixed-point representation
in the proposed algorithm provides an efficient approach to
reduce the computational hardware resource cost and power
consumption for neuromorphic computing.

Figure 14 shows the digital neuromorphic architecture
at the top level, which contains an input layer, a hidden
layer with five physical neural processors, and an output
layer with 10 physical neural processors. The input layer and
hidden layer are all implemented to use time-multiplexing. The
global counter processors the time-multiplexed input neurons
and hidden layer neurons sequentially. The FSM module
represents the finite-state machine which controls the timing
procedure of the whole neuromorphic system. Three parts
are contained in the neuron processor in the hidden layer,
which are apical dendrite unit, soma unit and basal dendrite
unit. The neuron processor in the output layer consists of
two parts that are apical dendrite unit and soma unit. The
input of the teaching current I(t) is also mastered by the
FSM. The green arrows represent the synaptic connections with
learning mechanisms, and black arrows describe the invariant
synaptic coupling.

The detailed description of the FSM is shown in Figure 15A.
There are eight states in the FSM diagram, including idle,
first time delay, forward phase, first plateau potential (PP)
computation, second time delay, target phase, second PP
computation and weight updating. By using the FSM controller,
the digital neuromorphic system can operate in high performance
with definite timing sequence. Figure 15B depicts the internal
architecture of the time-multiplexed system. It consists of a
physical input neuron, two physical hidden neurons, a global

Frontiers in Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 60110956

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 11

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 12 | Selectivity and tuning properties of 30 randomly selected hidden neurons in the proposed SNN network with DEP algorithm. It is plotted by heat map
with color called YlOrRd, whose color gradually changes across yellow, orange, and red.

FIGURE 13 | The learning accuracy based on fixed-point and dynamic fixed-point representations. (A) The learning accuracy based on fixed-point representation of
fractional part with different bitwidth. (B) The learning accuracy based on dynamic fixed-point representation with different bitwidth.

counter, and two weight buffers for each physical hidden neuron.
The global counter processes the time-multiplexed physical input
and hidden neurons sequentially. The weight buffers store the
synaptic weights of the physical neurons. The input digit signals
remains available until all the time-multiplexed physical neurons
finish their computation. We can also employ the pipeline
architecture, by which the maximum operating frequency of the
neuromorphic system can be further enhanced.

DISCUSSION

This study presents a multi-layer feed-forward network
architecture using segregated dendrites and the corresponding
two-phase learning scheme. Specifically, a piecewise linear
approximation and a dynamic fixed-point representation are
first introduced in the dendritic learning framework for cost
and energy efficient neuromorphic computing. It relies on the

Frontiers in Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 60110957

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 12

Yang et al. Efficient Neuromorphic Dendritic Learning

FIGURE 14 | Top-level entity for the neuromorphic architecture of the proposed learning algorithm.

FIGURE 15 | Descriptions of the digital neuromorphic architecture. (A) The FSM diagram. (B) The internal architecture of the time-multiplexed system.

feedback alignment phenomenon, in which the feed-forward
weights are aligned with the feedback weights to provide useful
error signals for learning. The model is optimized for the efficient
neuromorphic realization by using the PWL approximation,

as well as the binarization for synaptic events. A dynamic
fixed-point representation technique is further presented to
optimize the proposed DEP algorithm. It reveals that the
proposed algorithm with hidden layers can induce higher

Frontiers in Neuroscience | www.frontiersin.org 12 February 2021 | Volume 15 | Article 60110958

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 13

Yang et al. Efficient Neuromorphic Dendritic Learning

learning performance, which means that it contains the deep
learning capability. In addition, the energy efficient property is
proven by comparison with the conventional artificial neural
network with BP algorithm. The reasons for this result are
likely due to two reasons. First, the gradient descent algorithm
suffers from the local optimization problem. When the local
optimization is realized, the global optimization cannot be
obtained. Spikes emanating from error-coding neurons will be
so sparse toward the end of the training that it will prevent the
successful adjustments of the weight. The low learning rate will
aggravate this problem. A scheduled adjustment of the error
neuron sensitivity may solve this problem. Second, the proposed
algorithm has not fully utilized the nonlinear dynamics of the
neural dendrite. The dynamics of the dendritic compartment
have the capability of predicting the dynamics, which may help
to improve the performance when considering the dendritic
prediction feature. These two methods of modifications, as well
as more complicated learning rules, such as momentum or
learning rate decay, are left for future work. The output layer
neurons spike after the spiking activities of the most neurons
in the hidden layer, thus induce a more accurate and robust
classification results. The broadly tuned property of the neurons
in the hidden layer of the proposed SNN shows that the proposed
DEP algorithm can engage each neuron to participate in the
classification task. In addition, it shows the superior performance
by using the proposed dynamic fixed-point representation by
comparing it with the traditional fixed-point computation,
which shows that the proposed method can reduce the hardware
resource cost considerably. Therefore, our study demonstrates
a biologically plausible learning algorithm in a neuromorphic
architecture, and realizes the efficient learning by using the
DEP approach. In summarize, the proposed DEP algorithm
has four aspects of advantages. Firstly, the proposed DEP
algorithm cost less SynOps number in comparison with the
conventional BP algorithm as shown in Figure 8. It means less
power consumption can be realized on neuromorphic hardware.
Secondly, faster learning speed can be achieved by the DEP
algorithm shown in Figure 7, which is meaningful for on-chip
online learning. Thirdly, the solution of credit assignment by
dendrites is a vital mechanism for learning in human brain.
Therefore, the proposed DEP algorithm is more biologically
plausible, which is also a significant ambition of neuromorphic
computing. Fourthly, the proposed DEP algorithm is more useful
for the online learning with network architecture using more
than one layer. As shown in Figure, single point neuron model is
not suitable for learning with gradient descent when the network
layer number increasing to two.

In the field of neuromorphic computing, neuromorphic
systems with on-line learning ability provide a platform to
develop brain-inspired learning algorithms, which strive
to emulate in digital or analog technologies human brain
properties. Online learning requires to be realized based on the
input of asynchronous and event-based sequential data flow.
Since neuromorphic computing supports continual and lifelong
learning naturally, this study presents a SNN model that can deal
with the asynchronous event-based spatio-temporal information,
which is applicable for neuromorphic systems directly. It provides
a novel view for neuromorphic online learning and continual

learning, which is meaningful to bridge the gap between
neuroscience and machine intelligence. Previous studies have
presented a number of neuromorphic systems equipped with
synaptic plasticity for general-purpose sensorimotor processors
and reinforcement learning (Neftci, 2013; Qiao, 2015; Davies
et al., 2018). However, current neuromorphic computing ignores
the learning capability to further improve the deep learning
performance. Inspired by other neuromorphic studies, more
low-power and high-speed techniques can be considered in the
future work to obtain a better learning effect.

Previous studies have proposed new algorithms, including
attention-gated reinforcement learning (AGREL) and attention-
gated memory tagging (AuGMEnT) learning rules, explaining
the mechanism of the reinforcement learning optimization in
a biologically realistic manner using synapses in deep networks
(Roelfsema and Ooyen, 2005; Rombouts et al., 2015). The
feedback coupling strength is proportional to the feed-forward
strength in these models, which means the learning principles
are computationally equivalent to the error back-propagation.
It indicates the human brain can solve the credit-assignment
problem in a manner that is equivalent to deep learning.
However, AGREL algorithm uses the top-down probabilistic
model to compute rather than the description and representation
of learning from the neural dynamics point of view. There is also
no bottom-to-top modeling using spiking neurons in AuGMEnT
algorithm. Thus, these two algorithms cannot be employed in
neuromorphic computing. Interestingly, we can combine these
two algorithms with the presented DEP algorithm to improve the
learning performance further.

Efficient learning to solve the credit assignment problem is
helpful for the performance improvement of deep learning. This
study presents the DEP algorithm for neuromorphic learning,
which is meaningful for the communities of both neuromorphic
engineering and deep learning. Recently, neuromorphic
computing has wide applications. Neuromorphic vision sensors
capture the features of biological retina, which has changed the
landscape of computer vision in both industry and academia
(Chen et al., 2019; Zhou et al., 2019). Although neuromorphic
systems with deep learning capability are still in research phases,
the development of neuromorphic computing is calling for more
biologically realistic processing strategies. Looking forward,
with such systems with learning ability, the bridges between
machine and biological learning can translate into adaptive and
powerful embedded computing systems for a wide category of
applications, such as object recognition, neuro-robotic control,
and machine learning.

CONCLUSION

This paper presented a biologically meaningful DEP algorithm
with dynamic fixed-point representation, as well as its
digital neuromorphic architecture on LaCSNN. The PWL
approximation method and the binarization approach for
synaptic events are used in the proposed algorithm for the
optimization of efficient implementation. Experimental results
show that the learning performance of the proposed DEP
algorithm can be improved by adding a hidden layer, which

Frontiers in Neuroscience | www.frontiersin.org 13 February 2021 | Volume 15 | Article 60110959

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 14

Yang et al. Efficient Neuromorphic Dendritic Learning

shows the deep learning capability of DEP. Different levels
of dendrite segregation will influence the learning accuracy
of the network, and the manners of the synaptic feedback
connections also play vital roles in the learning performance. By
using the fixed-point representation in this work, the hardware
resource cost can be cut down by reducing the bit width of the
computational elements. This study provides a bridge between
the biological learning and neuromorphic learning, which can
be used in the applications including object recognition, neuro-
robotic control, and machine learning.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
datacan be found here: MNIST http://yann.lecun.com/exdb/
mnist/.

AUTHOR CONTRIBUTIONS

SY, TG, and BL-B developed the theoretical approach for
DEP algorithm with spiking neurons. TG implemented the
source code. JW and BL revised the manuscript and made
critical suggestions on this work. SY wrote the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This study was funded partly by the National Natural
Science Foundation of China with grant numbers
(Grant Nos. 62071324 and 62006170) and partly
by China Postdoctoral Science Foundation (Grant
No. 2020M680885).

REFERENCES
Bengio, Y., and LeCun, Y. (2007). Scaling learning algorithms towards AI. Large

Scale Kernel Mach. 34, 1–41.
Bengio, Y., Lee, D. H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards

biologically plausible deep learning. arXiv [Preprint]. arXiv:1502.04156
Bill, J. (2010). Compensating inhomogeneities of neuromorphic VLSI devices via

short-term synaptic plasticity. Front. Comput. Neurosci. 4:129. doi: 10.3389/
fncom.2010.00129

Bittner, K. C. (2015). Conjunctive input processing drives feature selectivity
in hippocampal CA1 neurons. Nat. Neurosci. 18:1133. doi: 10.1038/nn.
4062

Bono, J., and Clopath, C. (2017). Modeling somatic and dendritic spike mediated
plasticity at the single neuron and network level. Nat. Commun. 8:706.

Bottou, L., and Cun, Y. L. (2004). “Large scale online learning,” in
Proceedings of the Advances in Neural Information Processing Systems,
217–224.

Chen, G., Cao, H., Ye, C., Zhang, Z., and Knoll, A. (2019). Multi-cue event
information fusion for pedestrian detection with neuromorphic vision sensors.
Front. Neurorobot. 13:10. doi: 10.3389/fnbot.2019.00010

Courbariaux, M., Bengio, Y., and David, J. P. (2014). Training deep neural networks
with low precision multiplications. arXiv [Preprint]. arXiv:1412.7024

Davies, M., Srinvasa, N., and Lin, T. H. (2018). Loihi: a neuromorphic manycore
processor with on-chip learning. IEEEMicro 38, 82–99. doi: 10.1109/mm.2018.
112130359

Esser, S. K., Appuswamy, R., and Merolla, P. (2015). Backpropagation for energy-
efficient neuromorphic computing. Adv. Neural Inf. Process. Systems 28, 1117–
1125.

Esser, S. K., Merolla, P. A., Arthur, J. V., and Cassidy, A. S. (2016). Convolutional
networks for fast, energy efficient neuromorphic computing. Proc. Natl. Acad.
Sci. U.S.A. 113, 11441–11446.

Guerguiev, J., Lillicrap, T. P., and Richards, B. A. (2017). Towards deep learning
with segregated dendrites. ELife 6:e22901.

Indiveri, G., Corradi, F., and Qiao, N. (2015). “Neuromorphic architectures for
spiking deep neural networks,” in Proceedings of the 2015 IEEE International
Electron Devices Meeting (IEDM), Washington, DC, 4–2.

Katharina, A., Henning, S., and Susanne, S. (2016). Inhibition as a binary switch
for excitatory plasticity in pyramidal neurons. PLoS Comput. Biol. 12:e1004768.
doi: 10.1371/journal.pcbi.1004768

Lansdell, B. J., and Kording, K. P. (2019). Spiking allows neurons to estimate their
causal effect. bioRxiv [Preprint]. doi: 10.1101/253351

Lansdell, B. J., Prakash, P. R., and Kording, K. P. (2019). Learning to solve the credit
assignment problem. arXiv [Preprint]. arXiv:1906.00889

Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing
principle for the cerebral cortex. Trends Neurosci. 36, 141–151. doi: 10.1016/j.
tins.2012.11.006

Larkum, M. E., Zhu, J. J., and Sakmann, B. (1999). A new cellular mechanism
for coupling inputs arriving at different cortical layers. Nature 398, 338–341.
doi: 10.1038/18686

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
Lee, D. H., Zhang, S., Fischer, A., and Bengio, Y. (2015). “Difference target

propagation,” in Proceedings of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (New York, NY: Springer
International Publishing), 498–515.

Lee, J., Zhang, R., Zhang, W., Liu, Y., and Li, P. (2020). Spike-train level direct
feedback alignment: sidestepping backpropagation for on-chip training of
spiking neural nets. Front. Neurosci. 14:143. doi: 10.3389/fnins.2020.00143

Liao, Q., Leibo, J. Z., and Poggio, T. (2016). How important is weight symmetry in
backpropagation. arXiv [Preprint]. arXiv: 1510.05067

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning.
Nat. Commun. 7, 1–10. doi: 10.1016/j.artint.2018.03.003

Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach. Learn
Res. 9, 2579–2605.

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2008). Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains. PLoS
One 3:e1377. doi: 10.1371/journal.pone.0001377

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., and Cassidy, A. S. (2014). A million
spiking-neuron integrated circuit with a scalable communication network and
interface. Science 345, 668–673. doi: 10.1126/science.1254642

Mnih, V., Kavukcuoglu, K., and Silver, D. (2015). Human-level control through
deep reinforcement learning. Nature 518:529.

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

Neftci, E. (2013). Synthesizing cognition in neuromorphic electronic systems. Proc.
Natl. Acad. Sci. U.S.A. 110, 3468–3476.

Neftci, E. O., Augustine, C., and Paul, S. (2017). Event-driven random back-
propagation: enabling neuromorphic deep learning machines. Front. Neurosci.
11:324. doi: 10.3389/fnins.2017.00324

Otsu, N. (1978). A threshold selection method from gray-scale histogram. IEEE
Trans. Syst. Man Cybern. 8, 62–66. doi: 10.1109/tsmc.1979.4310076

Qiao, N. (2015). A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141. doi:
10.3389/fnins.2015.00141

Qiao, N., Ning, H., and Corradi, F. (2015). A reconfigurable on-line learning
spiking neuromorphic processor comprising 256 neurons and 128K synapses.
Front. Neurosci. 9:141. doi: 10.3389/fnins.2015.00141

Richards, B. A., and Lillicrap, T. P. (2019). Dendritic solutions to the credit
assignment problem. Curr. Opin. Neurobiol. 54, 28–36. doi: 10.1016/j.conb.
2018.08.003

Rodrigues, C. F., Riley, G., and Luján, M. (2018). “SyNERGY: an energy
measurement and prediction framework for convolutional neural networks

Frontiers in Neuroscience | www.frontiersin.org 14 February 2021 | Volume 15 | Article 60110960

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.3389/fncom.2010.00129
https://doi.org/10.3389/fncom.2010.00129
https://doi.org/10.1038/nn.4062
https://doi.org/10.1038/nn.4062
https://doi.org/10.3389/fnbot.2019.00010
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1371/journal.pcbi.1004768
https://doi.org/10.1101/253351
https://doi.org/10.1016/j.tins.2012.11.006
https://doi.org/10.1016/j.tins.2012.11.006
https://doi.org/10.1038/18686
https://doi.org/10.3389/fnins.2020.00143
https://doi.org/10.1016/j.artint.2018.03.003
https://doi.org/10.1371/journal.pone.0001377
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1016/j.conb.2018.08.003
https://doi.org/10.1016/j.conb.2018.08.003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-601109 February 18, 2021 Time: 12:55 # 15

Yang et al. Efficient Neuromorphic Dendritic Learning

on Jetson TX1[C],” in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA). The Steering
Committee of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2018, Turin, 375–382.

Roelfsema, P. R., and Ooyen, A. (2005). Attention-gated reinforcement learning
of internal representations for classification. Neural Comput. 17, 2176–2214.
doi: 10.1162/0899766054615699

Rombouts, J. O., Bohte, S. M., and Roelfsema, P. R. (2015). How attention can
create synaptic tags for the learning of working memories in sequential tasks.
PLoS Comput. Biol. 11:e1004060. doi: 10.1371/journal.pcbi.1004060

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation. Front. Comput. Neurosci.
11:24. doi: 10.3389/fncom.2017.00024

Schmolesky, M. T., Weber, J. T., Zeeuw, C. I. D., and Hansel, C. (2002). The making
of a complex spike: ionic composition and plasticity. Ann. N. Y. Acad. Sci. 978,
359–390. doi: 10.1111/j.1749-6632.2002.tb07581.x

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–
1164. doi: 10.1016/s0896-6273(01)00542-6

Spratling, M. W. (2002). Cortical region interactions and the functional role
of apical dendrites. Behav. Cogn. Neurosci. Rev. 1, 219–228. doi: 10.1177/
1534582302001003003

Urbanczik, R., and Senn, W. (2014). Learning by the dendritic prediction
of somatic spiking. Neuron 81, 521–528. doi: 10.1016/j.neuron.2013.
11.030

Wilmes, K. A., Sprekeler, H., and Schreiber, S. (2016). Inhibition as a binary switch
for excitatory plasticity in pyramidal neurons. PLoS Comput. Biol. 12:e1004768.
doi: 10.1371/journal.pcbi.1004768

Yang, S., Wang, J., and Deng, B. (2020). Scalable digital neuromorphic
architecture for large-scale biophysically meaningful neural network with

multi-compartment neurons. IEEE Trans. Neural Netw. Learn. Syst. 31, 148–
162. doi: 10.1109/tnnls.2019.2899936

Yang, S., Wang, J., and Li, S. (2015). Cost-efficient FPGA implementation of basal
ganglia and their Parkinsonian analysis. Neural Netw. 71, 62–75. doi: 10.1016/
j.neunet.2015.07.017

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2021). BiCoSS: Toward
large-scale cognition brain with multigranular neuromorphic architecture.
IEEE Trans. Neural Netw. Learn. Syst. [Epub ahead of print]. doi: 10.1109/
TNNLS.2020.3045492

Yang, S., Wang, J., Deng, B., Liu, C., Li, H., and Fietkiewicz, C. (2018). Real-
time neuromorphic system for large-scale conductance-based spiking neural
networks. IEEE Trans. Cybern. 49, 2490–2503. doi: 10.1109/tcyb.2018.2823730

Zenke, F., and Ganguli, S. (2018). Superspike: Supervised learning in multilayer
spiking neural networks. Neural Comput. 30, 1514–1541. doi: 10.1162/neco_a_
01086

Zhou, F., Zhou, Z., Chen, J., Choy, T. H., and Chai, Y. (2019). Optoelectronic
resistive random access memory for neuromorphic vision sensors. Nat.
Nanotechnol. 14, 776–782. doi: 10.1038/s41565-019-0501-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yang, Gao,Wang, Deng, Lansdell and Linares-Barranco. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2021 | Volume 15 | Article 60110961

https://doi.org/10.1162/0899766054615699
https://doi.org/10.1371/journal.pcbi.1004060
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1111/j.1749-6632.2002.tb07581.x
https://doi.org/10.1016/s0896-6273(01)00542-6
https://doi.org/10.1177/1534582302001003003
https://doi.org/10.1177/1534582302001003003
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1371/journal.pcbi.1004768
https://doi.org/10.1109/tnnls.2019.2899936
https://doi.org/10.1016/j.neunet.2015.07.017
https://doi.org/10.1016/j.neunet.2015.07.017
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/tcyb.2018.2823730
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1038/s41565-019-0501-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 1

ORIGINAL RESEARCH
published: 22 February 2021

doi: 10.3389/fnins.2021.627221

Edited by:
Jonathan Mapelli,

University of Modena and Reggio
Emilia, Italy

Reviewed by:
Shuangming Yang,

Tianjin University, China
Qinru Qiu,

Syracuse University, United States

*Correspondence:
Elishai Ezra Tsur

elishai@NBEL-lab.com

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 08 November 2020
Accepted: 25 January 2021

Published: 22 February 2021

Citation:
Hazan A and Ezra Tsur E (2021)

Neuromorphic Analog Implementation
of Neural Engineering

Framework-Inspired Spiking Neuron
for High-Dimensional Representation.

Front. Neurosci. 15:627221.
doi: 10.3389/fnins.2021.627221

Neuromorphic Analog
Implementation of Neural
Engineering Framework-Inspired
Spiking Neuron for High-Dimensional
Representation
Avi Hazan and Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab, Department of Mathematics and Computer Science, The Open University of Israel,
Ra’anana, Israel

Brain-inspired hardware designs realize neural principles in electronics to provide high-
performing, energy-efficient frameworks for artificial intelligence. The Neural Engineering
Framework (NEF) brings forth a theoretical framework for representing high-dimensional
mathematical constructs with spiking neurons to implement functional large-scale neural
networks. Here, we present OZ, a programable analog implementation of NEF-inspired
spiking neurons. OZ neurons can be dynamically programmed to feature varying high-
dimensional response curves with positive and negative encoders for a neuromorphic
distributed representation of normalized input data. Our hardware design demonstrates
full correspondence with NEF across firing rates, encoding vectors, and intercepts.
OZ neurons can be independently configured in real-time to allow efficient spanning
of a representation space, thus using fewer neurons and therefore less power for
neuromorphic data representation.

Keywords: neural engineering framework, spiking neural networks, neuromorphic electronics, neuromorphic
engineering, brain-inspired electronics

INTRODUCTION

Albeit artificial intelligence has emerged as the focal point for countless state-of-the-art
developments, in many ways, it is nullified when compared with biological intelligence, particularly
in terms of energy efficiency. For instance, the honeybee is capable of exceptional navigation while
possessing just under 1 million neurons and consuming only 10−3W of power. Comparably, an
autonomous car would need to utilize over a 103W of sensing and computing power, demonstrating
lamentable energetic efficiency decreased a millionfold (Liu et al., 2014). Consequentially, brain-
inspired hardware designs have been used in numerous applications, particularly in neuro-robotics
(Krichmar and Wagatsuma, 2011; Zaidel et al., 2021) and smart-edge devices (Krestinskaya et al.,
2019; Zhang et al., 2020). In neuromorphic computing architectures, the computational principles
of biological neural circuits are utilized to design artificial neural systems. A neuromorphic circuit

Frontiers in Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 62722162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.627221
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.627221
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.627221&domain=pdf&date_stamp=2021-02-22
https://www.frontiersin.org/articles/10.3389/fnins.2021.627221/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 2

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

comprises densely connected, physically implemented
computing elements (e.g., silicon neurons), which
communicate with spikes (Tsur and Rivlin-Etzion, 2020).
Notable neuromorphic hardware includes the TrueNorth
(DeBole et al., 2019), developed by IBM research, the Loihi
(Davies et al., 2018), developed by Intel Labs, the NeuroGrid
(Benjamin et al., 2014), developed at Stanford University, and
the SpiNNaker (Furber et al., 2014), developed at the University
of Manchester. One theoretical framework, which allows for
efficient data encoding and decoding with spiking neurons,
is the Neural Engineering Framework (NEF) (Eliasmith and
Anderson, 2003). NEF is one of the most utilized theoretical
frameworks in neuromorphic computing. It was adopted for
various neuromorphic tasks, ranging from neuro-robotics
(DeWolf et al., 2020) to high-level cognition (Eliasmith et al.,
2012). It was compiled to work on multiple neuromorphic
hardware using Nengo, a Python-based “neural compiler,” which
translates high-level descriptions to low-level neural models
(Bekolay et al., 2014). NEF was shown to be incredibly versatile,
as a version of it was compiled on each of the neuromorphic
hardware designs listed earlier (Mundy et al., 2015; Boahen, 2017;
Fischl et al., 2018; Lin et al., 2018), although they do not follow
the same paradigm of neuromorphic implementation. Although
the Loihi, the TrueNorth, and the Spinnaker are pure digital
systems, in the sense that both computing and communication
are held digitally, the NeuroGrid is a mixed analog–digital circuit.
In the Neurogrid, synaptic computations were implemented with
analog circuitry. Although these general-purpose computing
architectures adopted the digital realm for better adherence
with application programming and ease of fabrication, analog
implementation of synapses (such as the one implemented in
the NeuroGrid) is commonly found in analog neuromorphic
sensing and signal processing. Notably, some of the first and
most significant successes in neuromorphic architectures have
been in vision (Indiveri and Douglas, 2000) and sound (Liu and
Delbruck, 2010) processing.

NEF-inspired neurons were previously directly implemented
in both digital and analog circuitry. For example, NEF-inspired
neurons were implemented on a digital Field-Programmable
Gate Array (FPGA)-circuit and used for pattern recognition
(Wang et al., 2017). However, it is not clear if such
implementations can approximate the density, energy efficiency,
and resilience of large-scale neuromorphic systems (Indiveri
et al., 2011). Current analog implementations of NEF-inspired
neurons rely on the circuit fabrication’s stochasticity to constitute
the variational activity patterns required to span a representation
space. The activity pattern of these neurons cannot be
modulated or programmed, and therefore, using them for
precise representation of a mathematical construct—even in low
dimension—requires a large number of neurons and, hence,
has suboptimal energy consumption (see section “Discussion”
for further details) (Mayr et al., 2014; Boahen, 2017). Here,
we present OZ, a programable, analog implementation of NEF-
inspired spiking neuron. OZ utilizes several of the most well-
known building blocks for analog spiking neurons to provide a
design with a programable high-dimensional response curve and
a temporally integrated output.

MATERIALS AND METHODS

Circuit Simulations and Analysis
All circuit simulations in this study were executed using LTspice,
offered by Analog Devices (2008). The simulator is based
on the open-sourced SPICE framework (Nagel and Pederson,
1973), which utilizes the numerical Newton–Raphson method to
analyze non-linear systems (Nichols et al., 1994). Signal analysis
was performed using the Python scripts we developed. Curve and
surface fittings were performed using MATLAB’s curve fitting
toolbox. Simulation files are available upon request.

Distributed Neuronal Representation
With Neural Engineering Framework
Let a be a representation, or a function, of a stimulus x using
a = f (x). With NEF, high-level network specifications, given
in terms of vectors and functions, are transformed to a set,
or an ensemble, of spiking neurons. A neural representation
will therefore take the form of a = G (J (x)), where G is a
spiking neuron model [e.g., the leaky-integrate-and-fire (LIF)
model (Burkitt, 2006)] and J is the integrated inputs introduced
to the neuron. NEF uses a distributed neuron representation,
where each neuron i responds independently to x, resulting
in ai = Gi (Ji (x)). One possible modeling for J would be
J = αxJbias, where α is a gain term and Jbias is a fixed
background current. Neurons often have some preferred stimuli
e (preferred direction, or encoder) to which they respond with
a high frequency of spikes [e.g., direction selectivity in retinal
ganglion cells (Ankri et al., 2020)]. J will therefore be more
appropriately defined using: J = αx · eJbias, where x · e equals 1
when both x and e are in the same direction, and 0 when they are
opposing each other. To conclude, in NEF, a neuron firing rate δi
is defined using:

δi (x) = Gi[αieixJi
bias
] (1)

An ensemble of neurons in which each neuron has a gain
and preferred direction distributively represents a vectorized (or
high-dimensional) stimulus x. The represented stimuli x̂ can be
decoded using:

x̂ =
∑

i

ai ∗ hdi (2)

Where di is a linear decoder, which was optimized to reproduce
x using least squared optimization and a∗i h is a spiking activity
ai, convolved with a filter h (both are functions of time). NEF
is described in detail in Eliasmith and Anderson (2003) and
succinctly reviewed in Stewart and Eliasmith (2014). NEF is the
foundation upon which our neuron model is built. Particularly,
it is utilized here to represent a high-dimensional stimulus with
spiking neurons distributively.

Analog Building Blocks
In a seminal review by Indiveri et al. (2011) “Neuromorphic
silicon neuron circuits,” the fundamental building blocks of
analog neurons were described. Among them were (1) the

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 62722163

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 3

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 1 | Neuron building blocks. (A) Pulse current source synapse. This voltage-controlled current source is activated by an active-low input spike, producing a
current, which follows the input voltage pattern and dynamic. (B) Subthreshold first-order LPF circuit. This circuit provides temporal control of both charging and
discharging of a capacitor, allowing for temporal integration of incoming spikes. (C) Voltage-amplifier LIF neuron. This spike generating circuit provides precise
control of the generated spikes, including spikes’ rise time, width, fall time, and refractory period. (D) Signal traces for the current-source synapse. When spike
arrives (synapse is activated-low; Vin), current Isyn is proportionally generated. This synapse offers magnitude control where Isyn is proportionally correlated to Vw.
(E) Signal traces for the log-domain integrator synapse. Log-domain integrator synapse features a linear integration of incoming spikes, where ahead of saturation,
each spike equally contributes to Isyn. (F) Signal traces for the voltage-amplifier LIF neuron. Neuron is driven by Iin, which was generated by the subthreshold
first-order LPF circuit (described earlier). Circuit has two voltage inverters: first inverter Iinv1 drives current INA, and second inverter Iinv2 drives the IK currents. These
currents adhere to the behavior of biological neurons, providing precise control of spikes’ dynamic.

pulse current source synaptic circuit, (2) the subthreshold first-
order LPF circuit, and (3) the voltage-amplifier LIF neuron
(Figures 1A–C). We will briefly revisit these circuits here, as they
constitute the OZ neuron’s main building blocks.

The pulse current-source synapse (Figure 1A), proposed by
Mead (1989), was one of the first artificial synapse circuits
created. It is a voltage-controlled current source, which is driven
by an active-low input spike. The resulting current Isyn is
defined using:

Isyn = Ioe−
κ

UT
(VW−Vdd) (3)

Where Vdd is the supply voltage, Io is the leakage current of the
transistor Mw, which is activated in the subthreshold regime, κ

is the subthreshold slope factor and UT is a thermal voltage (at

room temperature, it is approximately 26 mV). This circuit allows
for controlling the magnitude of Isyn such that when Vw equals
Vdd, Isyn is I0. As we decrease Vw, I0 is scaled up exponentially,
increasing Isyn accordingly (Figure 1D). While offering control
over Isyn’s magnitude, the pulse current-source synapse does not
provide temporal modulation.

The subthreshold first-order LPF circuit (Figure 1B),
proposed by Merolla and Boahen (2004), offers linear integration
of incoming spikes. This circuit is built upon the charge and
discharge synapse [described in Bartolozzi and Indiveri (2007)],
which provides temporal control of charging and discharging of
Csyn. In the charge and discharge synapses, the incoming active-
high spikes activate the transistor Min. During a spike, Vsyn
decreases linearly, at a rate set by the net current Iw − Iτ , where

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 62722164

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 4

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 2 | An illustration of four OZ neurons grouped into two branches, one with positive and the other with negative encoders. Each branch initiates with an input
preprocessing module, and each neuron comprises a spike generation and temporal integration modules. Each neuron has different tuning, and it is therefore
producing spikes in a different dynamic.

Iw is the current driven through transistor Mw (and regulated
by Vw) and Iτ is the current driven through transistor Mτ (and
regulated by Vτ). This net current is responsible for discharging
Csyn. The linearly decreasing Vsyn drives Isyn by regulating
transistor Mout . In this log-domain circuit, the logarithmic
relationship between the transistor’sVgs and its current is used to
exhibit overall linear properties [see (Indiveri et al., 2011) for a
detailed analysis]. The governing equations of this synapse during
a spike Ispike

syn and between spikes Iflat
syn are:

Ispike
syn =

I0

Iτ

(
1− e−

(t−t−i)
τc

)
I−syne−

(t−t−i)

τc (4)

Iflat
syn = Isyne−

(t−t+i)

τd (5)

where t−i and ti are the times at which spike i arrives and
terminates, respectively, I−syn and Isyn are the Isyn in times t−i and
ti, respectively, τc is the time constant for the capacitor charge,
which equals UT = C/κ (Iw − Iτ), and τd is the time constant for
the capacitor-discharge, which equals UT = C/κIτ. Controlling
the charge and discharge of Csyn allows for temporal control of
both rise and fall times of Vsyn, thus providing the ability to
temporally integrate multiple incoming spikes (Figure 2E).

The voltage-amplifier LIF neuron is a spike generating circuit
proposed by van Schaik (2001) and Figure 1C. This circuit
enhances the classic axon-hillock neuron design [described in

Mead (1989)] with precise control of the generated spikes’
dynamic, including spikes’ rise time, width, fall time, and
refractory period. Capacitor Cmem models the neuron membrane
and Vlk, which regulates the conductance of transistor Mlk,
controls its leakage current Ilk. In the absence of an input current
from incoming spikes (flat phase), Ilk drives the membrane
voltage Vmem down to 0 V. When an input current is apparent,
the net incoming current Iin − Ilk is charging Cmem, increasing
Vmem. When Vmem exceeds Vth, an action potential is generated
via an operational amplifier (op-amp). This action potential is
introduced into a voltage inverter, where high logical states are
transformed into low logical states and vice versa. A low logical
voltage state activates transistor MNa, through which INa current
is driven, charging Cmem and creating a sustained high voltage
(constituting the spike). A second voltage inverter drives Ikup
through transistor Minv2, charging Ck, thus controlling spike’s
width. As Ck is charging, it activates transistor Mk, through which
Ik is driven. Ik discharges Cmem and when Vmem drops below Vth,
the amplifier’s output drops to a low state. In response, the first
voltage inverter’s output is driven high, deactivating transistor
MNa, thus terminating INa. The second inverter’s output voltage
is driven low, terminating Ikup and allowing Iref to discharge Ck.
As long as Iref is not strong enough to discharge Ck, the circuit
cannot be further stimulated by incoming current (assuming
Iin < Ik), constituting a refractory period. The generated spikes
are shown in Figure 1F. This process is a direct embodiment
of the biological behavior, in which an influx of sodium ions

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 62722165

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 5

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 3 | OZ neuron analog design. (A) Preprocessing module for negatively encoded OZ neurons. Module inverses input voltage, aligns it to initiate at 0 V, and
reinverts and scales it to terminate at 3.3 V. (B) Neuron’s spike generator. Voltages from two weighted inputs are transformed into a proportional current, injected into
a modified voltage-amplifier LIF neuron. Neuron produces a spike train according to its response dynamic. Spike train is introduced into a temporal integration circuit.
(C) Eight OZ neurons, four of them are positively encoded (right), and four are negatively encoded (left). All neurons were stimulated with a linearly increasing voltage,
rising from –1 to 1 V. Each neuron was modulated with various values of Vlk to produce a spike train at a particular rate, starting from a specific input (intercept).

(Na+) and a delayed outflux of potassium ions (K+) govern the
initiation of an action potential.

RESULTS

Circuit Design
In our circuit design, stimulus x is introduced through
preprocessing modules to two branches, one connected to
positively encoded OZ neurons and the other to negatively
encoded OZ neurons. These preprocessing modules accept an
input voltage ranging from −1 to 1 V (corresponding to the
default input normalization scheme taken by NEF) and produce
an output voltage ranging from 0 to 3.3 V. Each OZ neuron is
comprised of two consecutive modules: a spike generator and

a temporal integrator. Each spike generator is characterized by
a tuning curve, modulated using control signals, thus realizing
Eq. 1. A generated spike train is introduced to a temporal
integrator, which integrates the incoming spikes, thus realizing
Eq. 2 and constituting a NEF-inspired neuron. The circuit
schematic for two negatively encoded and two positively encoded
neurons is shown in Figure 2. The negative preprocessing
circuit comprises two consecutive modules: the first one inverses
the voltage and aligns it to initiate at 0 V, and the second
reinverts and scales it so it will terminate at 3.3 V (circuit’sVdd)
(Figure 3A). The first module uses an op-amp based adder to
add 1 V to the input signal (aligning it to 0 V) and inverts
it according to Vo = − (VV−), where V and V− are the
op-amp’s input terminals. The resulted voltage is ranging from
0 to 2 V. The second module uses an inverter amplifier that

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 62722166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 6

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

scales its input voltage according to −Rfb/Rin, where Rfb is
the feedback resistor and Rin is the amplifier’s input terminal
resistor. Here, Rfb2 = 1.65 kOhm and Rin2 = 1 kOhm,
achieving a scaling factor of −1.65, which transform 2 to 3.3
V output. The positive preprocessing module resembles the
negative preprocessing module, with the addition of another
voltage inverter, which produces a similar waveform, initiating at
3.3 V and terminating at 0 V.

The OZ neuron is shown in Figure 3B. It is based on
modified versions of the pulse current source synaptic circuit
(for weighted input), the voltage-amplifier LIF neuron (for spike
generation), and the subthreshold first-order LPF circuit (for
temporal integration). The pulse-current source synapse is used
to convert an input voltage to a proportional current, introduced
into the spike generation circuit, and defined by Vw according
to Eq. 3. The voltage-amplifier LIF neuron’s response dynamic
is predominantly determined by the values of Ikup, Ikdn, INa,
and Iref and the leakage current Ilk (driven through transistor
Mlk), which are regulated, respectively, by of Vkup, Vkdn, VNa,
Vref , and Vlk via dedicated transistors. Therefore, this neuron
has five degrees of freedom (DOF): Vlk controls the discharge
rate of Cmem, Vref controls spikes’ refractory period, Vkup and
Vkdn control the fall time of the generated spikes, and VNa
controls the spikes’ rise time. Furthermore, its spiking dynamic
relies on an op-amp, which is comprised of multiple transistors
and resistors. OZ’s spike generator is a NEF-optimized circuit
design, where Vup, VNa, and Vkdn are redundant. Furthermore,
it does not rely on op-amp for spike generation, as the amplifier
has no significant functional effect in terms of neuron’s firing
rate and intercept (see section “Discussion”). A NEF-tailored
design should also enable high-dimensional input representation,
which can be achieved by concatenating the input module
(highlighted in Figure 3B as weighted input; see section “Circuit
Analysis”). Finally, temporal integration can be achieved via a
simplified LPF temporal integration circuit. In OZ, capacitor
Cint is charged by current Iint , which is activated by the
generated spike train and driven through transistor Mint . Cint
is discharging at a constant rate through a leakage current,
which is driven through transistor Mint2 and regulated by a
continuously held voltage Vint . The voltage on Cint constitutes
the OZ neuron’s output.

A useful way of representing a neuron’s response to varying
inputs is by using a response, or a tuning curve, which is one
of the most fundamental concepts of NEF. In NEF, a tuning
curve is defined using an intercept, the value for which the
neuron starts to produce spikes at a high rate, and its maximal
firing rate. OZ’s tuning curve can be programmed to control
both. For circuit analysis, we built eight OZ neurons, four
with positive and four with negative encoders. Each neuron
has d + 2 DOF, where d is the dimensionality of the input,
corresponding to d values of Vw, which regulate each input
dimension, and Vlk and Vref correspond to the two other
DOF. To demonstrate OZ, we built eight neurons; each was
defined to feature a different intercept and maximal firing
rate. Each neuron was stimulated with the same input voltage,
which linearly increased from −1 to 1 V over 1 s. Results are
shown in Figure 3C.

Circuit Analysis
Architectural Design
For the sake of discussion, we will consider one-dimensional (1D)
OZ neurons. First, we shall consider the classic voltage-amplifier
LIF neuron, shown in Figure 1C. This design relies on an op-
amp for spike generation. From a functional perspective, the
op-amp provides the neuron with a digital attribute, splitting the
neuron into an analog pre-op-amp circuit and a digital post-op-
amp circuit. Particularly, when an incoming current is inducing
Vmem to exceed a predefined threshold voltage, the op-amp yields
a square signal, which generates a sharp INa response. This fast
response induces sharp swing-ups in Vmem and Vout . Without the
op-amp, this transition between states is gradual (Figures 4A–C).
Although both designs permit spike generation, the op-amp-
based design can generate spikes in a higher frequency and
amplitude. To compensate for that, we can discard both INa and
Ikup controls through the removal of their regulating transistors.
Removing these resistance-inducing transistors maximizes INa
and Ikup, thus achieving op-amp-like frequency and amplitude
(Figures 4D–F). Moreover, without the op-amp, there is no need
to explicitly define a threshold, providing a more straightforward
and biologically plausible design.

Neuron Control
Did we lose control over the maximal firing rate over our neuron
by eliminating the regulation of Ikup? Fortunately, both Ikup and
Iref impact neuron’s firing rate. Although Ikup limits neuron’s
firing rate by governing the rise time of the generated spikes,
Iref does that by setting the refractory period between spikes.
Controlling both currents is redundant as both imply similar
constraints, as shown in Figure 4G (Vlk and Vw are held constant
at 2.2 and 0.5 V, respectively).

Vlk controls the discharge rate of Cmem by regulating a leakage
current through transistor Mlk. As long as this leakage current
is lower than the input current (driven through the weighted
input module), Vmem will rise toward saturation. As we decrease
Vlk, leakage current drops and Cmem charged faster. As a result,
the neuron’s intercept (the input value for which the neuron’s
initiate spikes at a high rate) increases for positively encoded
neurons and decreases for negatively encoded neurons. Neurons
exhibit maximal firing rate when their input voltage is either
−1 or 1 V, depending on the neuron’s encodings. The maximal
firing rate is proportionally dependent on the charging status of
membrane capacitance Cmem. The faster Cmem is charging, the
more frequent the neuron will emit spikes. However, a neuron’s
maximal firing rate is not entirely decoupled from its intercept.
Although a neuron’s intercept is controlled by Vlk, it can also be
modulated by Vw, which provides a magnitude control for the
input current. Therefore, although Vlk can be used to define the
neuron’s intercept, Vw can impose on it a firing rate constraint.
For example, the neuron’s spiking rate will not exceed 400 Hz,
when Vw is set to 2.2 V. Vlk and Vw imposed constraint on
neuron’s spiking rate is demonstrated in Figure 4H (Vref and Vup
are held constant at 3.3 and 1 V, respectively).

Figures 4I,J summarizes the control of the neuron’s intercept
and spiking rate using Vref and Vlk (whereas Vw was
held constant at 2.4V). Through curve and surface fittings

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 62722167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 7

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 4 | Circuit analysis. (A–C) Voltage traces for the subthreshold first-order LPF neuron circuit with and without op-amp for spike generation (colored orange
and blue, respectively). Traces for the voltages over Cmem, gate of MNa, and CK are shown in panels A–C, respectively. (D–F) Similar traced to panels A–C, where
the transistor-based controls of INa and Ikup were eliminated. (G) Neuron’s spike rate as a function of Vref and Vup. (H) Neuron’s spike rate as a function of Vw and
Vlk (I) Neuron’s intercept as a function of Vlk . (J) For a given intercept (determined by Vlk), a neuron’s spiking rate can be determined by Vref . Vw was held constant at
2.4 V for both I and J panels.

(R2 > 0.98), neuron’s intercept Nint can be described with:

Nint(Vlk) = 5.611 · 10−3e6.911·Vlk − 0.8178 (6)

and neuron’s maximal firing rate NFR with:

NFR
(
Vref , Nint

)
= − 36180Vref 55Nint − 34.4Vref

266.3Vref Nint
(7)

In Figure 5, the tuning curves of our eight OZ neurons, along
with the tuning curves of eight simulated neurons, which were
computed directly with NEF, are demonstrated. The tuning
curves indicate varying intercepts and spiking rates, showcasing
the produced spike trains’ high predictability and the full
correspondence between our hardware design and NEF. In
Figures 5B,D, we compared 2D tuning curves. It was achieved
with OZ by concatenating two weighted inputs: x1and x2,
weighting them with Vw1 and Vw2, respectively. Results show
the high predictability of the neuron in response to a high-
dimensional stimulus.

DISCUSSION

Numerous digital and analog designs of spiking neurons
have been previously proposed. For example, Yang et al.
(2018b) proposed a biologically plausible, conductance-
based implementation of spiking neurons with an FPGA.
This design was used to simulate 1 million neurons by
utilizing six state-of-the-art FPGA chips simultaneously,
achieving biological plausibility and scale (Yang et al., 2018a).
Furthermore, it was shown to feature multicompartmental
neuron design, supporting the morphologically detailed
realization of neural networks (Yang et al., 2019). Biologically
plausible spiking neurons were also implemented in analog
circuits, featuring spike adaptation (Aamir et al., 2017).
Although incredibly versatile and highly configurable, these
designs were guided by a bottom–up approach, tailored to
reproduce biological behavior. However, to achieve function-
optimized neural networks (e.g., for neurorobotics or other
smart-edge devices), top–bottom modeling is more suitable

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 62722168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 8

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 5 | OZ and Nengo neuron tuning curves. (A) Tuning curves of eight 1D hardware-based OZ neurons. (B) Tuning curves of four 2D hardware-based OZ
neurons. (C) Tuning curves of eight NEF-based simulated neurons, directly computed with Nengo. (D) Four tunning curves of four 2D simulated neurons (D). In
panels A,C, each color stands for one neuron spiking at a specific rate in response to an input voltage (x1). In OZ-based 2D representation, Vw for x1 was held
constant at 2.5 V, Vref at 0.4 V, and Vlk at 0.729. Vw values for x2 were 3.3, 2.8, 2.6, and 2.4 V, left to right, respectively.

(Eliasmith and Trujillo, 2014). By throwing out morphological
and physiological constraints, the NEF allows top–down
optimization, with which high-level specification can be realized
in spiking neurons with a minimal number of explicitly defined
neuronal characteristics.

NEF is one of the most utilized theoretical frameworks in
neuromorphic computing. A version of NEF was compiled
on various neuromorphic digital systems, such as Intel’s Loihi
and IBM’s TrueNorth (Fischl et al., 2018; Lin et al., 2018),
as well as on hybrid analog/digital systems such as the

Frontiers in Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 62722169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 9

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 6 | Neurons activity in high dimension. (A) In 32D representation, a uniform distribution of intercepts (left) creates many neurons, which are either always or
never active (right). (B) Using a rational distribution of intercepts (using Eq. 7), a uniform activity pattern of neurons across the representation space can be generated.

NeuroGrid (Boahen, 2017). NEF-inspired neurons were directly
implemented in both digital (Wang et al., 2017) and analog
(Indiveri et al., 2011) circuitry. Although digital NEF-inspired
implementations are versatile and programmable, they are
fundamentally less energy-efficient and footprint-restricted in
comparison with analog circuitry (Amara et al., 2006). Current
analog implementations of NEF-inspired neurons rely on the
inherent stochasticity in the fabrication process of integrated
circuits to create the variational neurons’ tuning required to span
a representation space (Mayr et al., 2014; Boahen, 2017) or to
support machine learning (Tripathi et al., 2019).

Neurons in NEF represent mathematical constructs, and their
accuracy of that representation is fundamentally limited to the
neurons’ tuning curves. A tunning curve is defined using an
intercept and maximal spike rate. Intercepts represent the part
of the representation space for which the neuron will fire. In
1D, uniformly distributed intercepts will uniformly span the
representation space. A neuron with an intercept of 0 will be
active for 50% of that space, and a neuron with an intercept of
0.75 will be active for only 7.5% of that space. However, using
randomly distributed tuning curves would require many more
neurons to achieve adequate space spanning. When an input does
not invoke a neuron to spike, that neuron is essentially a waste of
space and energy.

Moreover, as we advance toward representing values in higher
dimensions, articulating and carefully defining neurons’ tuning
curves become a critical design factor. This design factor was
attested by the authors of Mayr et al. (2014), as they discussed
their analog implementation of a NEF-inspired neuron: “as
the spread of the curves is determined by random effects of
the manufacturing process, individual instances of the ADC
[the designated application for that design] have to be checked
for sufficient spread, thus defining a yield in terms of ADC
resolution. When comparing the two families of tuning curves,
the main observation is that the Nengo generated neurons tend
to vary more, especially in their gain. . . this has a significant
impact on the overall computation. If the neurons do not
encode for sufficiently different features of the input signal, the
representation of the input signal degrades” (Mayr et al., 2014).

Moreover, our proposed implementation offers a high-
dimensional representation. Distributing intercepts uniformly
between −1 and 1 makes sense for 1D ensembles. Because a
neuron’s intercept defines the part of the representation space
in which this neuron is firing, in 1D representation, uniformly
distributed intercepts create a uniform spanning of that space. In
higher dimensions, the proportions of activity are getting smaller
(or larger for negatively encoded neurons). In high dimensions,
the naive distribution of intercepts results in many neurons,

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 62722170

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 10

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

either rarely producing spikes or always active (Figure 6A). In
both cases, these neurons are essentially not contributing to the
representation. A representation space in 2D is a 3D sphere, in
which each neuron’s encoder points to a cap, which specifies the
space in which that neuron is active (Gosmann and Eliasmith,
2016). The intercept is the location of the cap’s cutoff plane.
The ratio between the cap’s and the sphere’s volumes is the
percentage of the representation space in which a neuron is active.
A generalized sphere in a higher dimension is a hyper-sphere. The
volume of a hyper-sphere cap vcap is defined with:

vcap =
1
2

CdrdI2rh−h2/r2

(
d + 1

2
,

1
2

)
(8)

where Cd is the volume of a unit hypersphere of dimension d
and radius r, h is the cap’s height, and Ix(a, b) is the regularized
incomplete beta function. Here, r = 1 (representation is in
[−1, 1]), and h = x− 1, where x is the intercept. The ratio p
between the hypersphere’s volume Cd and its cap’s volume vcap is:

p =
1
2

I1−x2

(
d + 1

2
,

1
2

)
(9)

To more efficiently span in high-dimensional representation
space, we can use the inverse of Eq. 6 to derive a desired p value,
the intercept, which will create it. This equation is defined with:

x =

√
1− I−1

2p

(
d + 1

2
,

1
2

)
(10)

With Eq. 7, we can generate the intersects to better span the
representation space. Utilizing this equation can provide the
intersects distribution for which the spikes activity pattern is
uniform (Figure 6B). This is a clear example of the importance
of being able to modulate neuron’s tuning curves in high-
dimensional representation. The importance of the discussion
earlier was recently highlighted in DeWolf et al. (2020) in the
context of neuro-robotics.

Here, we presented the OZ neuron—a programmable analog
implementation of a spiking neuron, which can have its
tuning curve explicitly defined. With our system design, for

a uniform distribution of tuning curves (required in most
low-dimensional applications), only one among the positive
and negative branches has to be defined, cutting in half the
number of neurons, which have to be controlled. Because we
can design the neurons’ tuning curve to accurately span the
representation space following a particular application’s needs,
the required number of neurons for spanning that space can
be significantly reduced. Moreover, uniquely, neurons’ tuning
curves can be changed in real-time to provide dynamically
modulated neuromorphic representation. However, when the
required number of neurons is large, the apparent overhead
of control must be considered. Our design can be scaled to
a full very large-scale integration neuromorphic circuit design,
providing analog, distributed, and energy-efficient neuromorphic
representation of high-dimensional mathematical constructs.

DATA AVAILABILITY STATEMENT

Model simulation will be provided upon request.

AUTHOR CONTRIBUTIONS

AH designed the circuits and performed circuit simulation and
analysis. EE conceptualized the research, designed the circuits,
and wrote the manuscript. Both authors contributed to the article
and approved the submitted version.

FUNDING

This research was supported by the Israel Innovation Authority
(EzerTech) and the Open University of Israel research grant.

ACKNOWLEDGMENTS

The authors would like to thank Tamara Perelman Tsur for her
insightful comments.

REFERENCES
Aamir, S. A., Muller, P., Kriener, L., Kiene, G., Schemmel, J., and Meier,

K. (2017). “From LIF to AdEx neuron models: accelerated analog 65 nm
CMOS implementation,” in Proceedings of the IEEE Biomedical Circuits
and Systems Conference (BioCAS), Turin. doi: 10.1109/BIOCAS.2017.832
5167

Amara, A., Amiel, F., and Ea, T. (2006). FPGA vs. ASIC for low power applications.
Microelectron. J. 37, 669–677. doi: 10.1016/j.mejo.2005.11.003

Analog Devices (2008). LTspice simulator. Available online at: http://www.analog.
com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
(accessed September 26, 2020).

Ankri, L., Ezra-Tsur, E., Maimon, S. R., Kaushansky, N., and Rivlin-Etzion,
M. (2020). Antagonistic center-surround mechanisms for direction
selectivity in the retina. Cell Rep. 31:107608. doi: 10.1016/j.celrep.2020.10
7608

Bartolozzi, C., and Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural
Comput. 19, 2581–2603. doi: 10.1162/neco.2007.19.10.2581

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D.,
et al. (2014). Nengo: a Python tool for building large-scale functional brain
models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A., Bussat,
J.-M., et al. (2014). Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102, 699–716. doi: 10.1109/JPROC.
2014.2313565

Boahen, K. (2017). A neuromorph’s prospectus. Comput. Sci. Eng. 19, 14–28. doi:
10.1109/MCSE.2017.33

Burkitt, A. (2006). A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input. Biol. Cybern. 95, 1–19. doi: 10.1007/s00422-006-
0068-6

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk, W. P., et al.
(2019). TrueNorth: accelerating from zero to 64 million neurons in 10 years.
Computer 52, 20–29. doi: 10.1109/MC.2019.2903009

Frontiers in Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 62722171

https://doi.org/10.1109/BIOCAS.2017.8325167
https://doi.org/10.1109/BIOCAS.2017.8325167
https://doi.org/10.1016/j.mejo.2005.11.003
http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://doi.org/10.1016/j.celrep.2020.107608
https://doi.org/10.1016/j.celrep.2020.107608
https://doi.org/10.1162/neco.2007.19.10.2581
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/MCSE.2017.33
https://doi.org/10.1109/MCSE.2017.33
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2019.2903009
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-627221 February 16, 2021 Time: 19:17 # 11

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

DeWolf, T., Jaworski, P., and Eliasmith, C. (2020). Nengo and low-power
AI hardware for robust, embedded neurorobotics. arXiv [Preprint]. arXiv:
2007.10227 doi: 10.3389/fnbot.2020.568359

Eliasmith, C., and Anderson, C. H. (2003). Neural engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge, MA:
MIT press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.
(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.
doi: 10.1126/science.1225266

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain
models. Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Fischl, K., Andreou, A., Stewart, T., and Fair, K. (2018). “Implementation of the
neural engineering framework on the TrueNorth neurosynaptic system,” in
Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS),
Cleveland, OH. doi: 10.1109/BIOCAS.2018.8584720

Furber, S., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gosmann, J., and Eliasmith, C. (2016). Optimizing semantic pointer
representations for symbol-like processing in spiking neural networks.
PloS One 11:e0149928. doi: 10.1371/journal.pone.0149928.g006

Indiveri, G., and Douglas, R. (2000). Neuromorphic vision sensors. Science 288,
1189–1190. doi: 10.1126/science.288.5469.1189

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Krestinskaya, O., James, A. P., and Chua, L. (2019). Neuromemristive circuits for
edge computing: a review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23.
doi: 10.1109/TNNLS.2019.2899262

Krichmar, J. L., and Wagatsuma, H. (2011). Neuromorphic and Brain-Based Robots.
Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511994838

Lin, C.-K., Wild, A., Chinya, G., Cao, Y., Davies, M., Lavery, D. M., et al. (2018).
Programming spiking neural networks on intel’s loihi. Computer 51, 52–61.
doi: 10.1109/MC.2018.157113521

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R. (2014). Event-
Based Neuromorphic Systems. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/
9781118927601

Mayr, C., Partzsch, J., Noack, M., and Schuffny, R. (2014). Configurable analog-
digital conversion using the neural engineering framework. Front. Neurosci.
8:201. doi: 10.3389/fnins.2014.00201

Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley
Longman Publishing.

Merolla, P., and Boahen, K. (2004). “A recurrent model of orientation maps with
simple and complex cells,” in Proceedings of the Advances in Neural Information
Processing Systems 16, eds S. Thrun and L. Saul (Cambridge, MA: MIT Press),
995–1002.

Mundy, A., Knight, J. S. T., and Furber, S. (2015). “An efficient SpiNNaker
implementation of the neural engineering framework,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN), Killarney. doi:
10.1109/IJCNN.2015.7280390

Nagel, L., and Pederson, D. (1973). SPICE (Simulation Program With Integrated
Circuit Emphasis) Technical Report No. UCB/ERL M382 April 1973. Berkeley,
CA: University of California.

Nichols, K., Kazmierski, T., Zwolinski, M., and Brown, A. (1994). Overview of
SPICE-like circuit simulation algorithms. IEE Proc. Circuits Devices Syst. 141,
242–250. doi: 10.1049/ip-cds:19941246

Stewart, T., and Eliasmith, C. (2014). Large-scale synthesis of functional spiking
neural circuits. Proc. IEEE 102, 881–898. doi: 10.1109/JPROC.2014.230
6061

Tripathi, A., Arabizadeh, M., Khandelwal, S., and Thakur, C. S. (2019). “Analog
Neuromorphic System Based on Multi Input Floating Gate MOS Neuron
Model,” in Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), Sapporo. doi: 10.1109/ISCAS.2019.8702492

Tsur, E. E., and Rivlin-Etzion, M. (2020). Neuromorphic implementation of motion
detection using oscillation interference. Neurocomputing 374, 54–63. doi: 10.
1016/j.neucom.2019.09.072

van Schaik, A. (2001). Building blocks for electronic spiking neural networks.
Neural Netw. 6, 617–628. doi: 10.1016/S0893-6080(01)00067-3

Wang, R., Thakur, C. S., Cohen, G., Hamilton, T. J., Tapson, J., and van Schaik,
A. (2017). Neuromorphic hardware architecture using the neural engineering
framework for pattern recognition. IEEE Trans. Biomed. Circuits Syst. 11,
574–584. doi: 10.1109/TBCAS.2017.2666883

Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., et al. (2019). Scalable digital
neuromorphic architecture for large-scale biophysically meaningful neural
network with multi-compartment neurons. IEEE Trans. Neural Netw. Learn.
Syst. 31, 148–162. doi: 10.1109/TNNLS.2019.2899936

Yang, S., Wang, J., Deng, B., Liu, C., Li, H., Fietkiewicz, C., et al. (2018a).
Real-time neuromorphic system for large-scale conductance-based spiking
neural networks. IEEE Trans. Cybern. 49, 2490–2503. doi: 10.1109/TCYB.2018.
2823730

Yang, S., Wang, J., Lin, Q., Deng, B., Wei, X., Liu, C., et al. (2018b). Cost-efficient
FPGA implementation of a biologically plausible dopamine neural network and
its application. Neurocomputing 314, 394–408. doi: 10.1016/j.neucom.2018.
07.006

Zaidel, Y., Shalumov, A., Volinski, A., Supic, L., and Ezra Tsur, E. (2021).
Neuromorphic NEF-based inverse kinematics and PID control. Front.
Neurorobot. 15:631159. doi: 10.3389/fnbot.2021.631159

Zhang, W., Gao, B., Tang, J., Yao, P., Yu, S., Chang, M.-F., et al. (2020). Neuro-
inspired computing chips. Nat. Electron. 3, 371–382. doi: 10.1038/s41928-020-
0435-7

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hazan and Ezra Tsur. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 62722172

https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.1126/science.1225266
https://doi.org/10.1016/j.conb.2013.09.009
https://doi.org/10.1109/BIOCAS.2018.8584720
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1371/journal.pone.0149928.g006
https://doi.org/10.1126/science.288.5469.1189
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TNNLS.2019.2899262
https://doi.org/10.1017/CBO9780511994838
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1002/9781118927601
https://doi.org/10.1002/9781118927601
https://doi.org/10.3389/fnins.2014.00201
https://doi.org/10.1109/IJCNN.2015.7280390
https://doi.org/10.1109/IJCNN.2015.7280390
https://doi.org/10.1049/ip-cds:19941246
https://doi.org/10.1109/JPROC.2014.2306061
https://doi.org/10.1109/JPROC.2014.2306061
https://doi.org/10.1109/ISCAS.2019.8702492
https://doi.org/10.1016/j.neucom.2019.09.072
https://doi.org/10.1016/j.neucom.2019.09.072
https://doi.org/10.1016/S0893-6080(01)00067-3
https://doi.org/10.1109/TBCAS.2017.2666883
https://doi.org/10.1109/TNNLS.2019.2899936
https://doi.org/10.1109/TCYB.2018.2823730
https://doi.org/10.1109/TCYB.2018.2823730
https://doi.org/10.1016/j.neucom.2018.07.006
https://doi.org/10.1016/j.neucom.2018.07.006
https://doi.org/10.3389/fnbot.2021.631159
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1038/s41928-020-0435-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

TECHNOLOGY AND CODE
published: 24 February 2021

doi: 10.3389/fncel.2021.609505

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 609505

Edited by:

Michele Giugliano,

International School for Advanced

Studies (SISSA), Italy

Reviewed by:

Dimitrii Tanese,

UMR8250 Neurophotonique, France

Vincent Daria,

Australian National University, Australia

*Correspondence:

Paolo Pozzi

paolo.pozzi87@unimore.it

Specialty section:

This article was submitted to

Cellular Neurophysiology,

a section of the journal

Frontiers in Cellular Neuroscience

Received: 23 September 2020

Accepted: 01 February 2021

Published: 24 February 2021

Citation:

Pozzi P and Mapelli J (2021) Real

Time Generation of Three Dimensional

Patterns for Multiphoton Stimulation.

Front. Cell. Neurosci. 15:609505.

doi: 10.3389/fncel.2021.609505

Real Time Generation of Three
Dimensional Patterns for
Multiphoton Stimulation
Paolo Pozzi 1* and Jonathan Mapelli 1,2

1Department of Beiomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy,
2Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy

The advent of optogenetics has revolutionized experimental research in the field

of Neuroscience and the possibility to selectively stimulate neurons in 3D volumes

has opened new routes in the understanding of brain dynamics and functions. The

combination of multiphoton excitation and optogenetic methods allows to identify and

excite specific neuronal targets by means of the generation of cloud of excitation

points. The most widely employed approach to produce the points cloud is through

a spatial light modulation (SLM) which works with a refresh rate of tens of Hz. However,

the computational time requested to calculate 3D patterns ranges between a few

seconds and a few minutes, strongly limiting the overall performance of the system.

The maximum speed of SLM can in fact be employed either with high quality patterns

embedded into pre-calculated sequences or with low quality patterns for real time

update. Here, we propose the implementation of a recently developed compressed

sensing Gerchberg-Saxton algorithm on a consumer graphical processor unit allowing

the generation of high quality patterns at video rate. This, would in turn dramatically

reduce dead times in the experimental sessions, and could enable applications previously

impossible, such as the control of neuronal network activity driven by the feedback from

single neurons functional signals detected through calcium or voltage imaging or the real

time compensation of motion artifacts.

Keywords: multiphoton microcopy, wavefront control, optogenetics, computer generated holograms, spatial light

modulators, GPU (CUDA)

1. INTRODUCTION

The recent advances in the field of photonics (Pozzi et al., 2015) combined with methods of
molecular (Gandolfi et al., 2017) and genetic manipulation of the samples (Boyden et al., 2005;
Mutoh et al., 2012), have provided novel tools to investigate neural functions. Among these tools,
optogenetics allows to selectively stimulate specific neuronal subtypes within a three-dimensional
sample (Packer et al., 2013). Indeed, in order to avoid the stimulation of undesired out-of-focus
cells, multiphoton stimulation is required (Papagiakoumou et al., 2010; Dal Maschio et al.,
2017). The near-simultaneous stimulation of multiple cells heterogeneously distributed in three
dimensions can be achieved by time multiplexing with high-speed, inertia-free scanners (Wang
et al., 2011), but the only known method for truly simultaneous stimulation is the use of spatial
light modulators (SLM) (Packer et al., 2012).

73

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2021.609505
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2021.609505&domain=pdf&date_stamp=2021-02-24
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paolo.pozzi87@unimore.it
https://doi.org/10.3389/fncel.2021.609505
https://www.frontiersin.org/articles/10.3389/fncel.2021.609505/full

Pozzi and Mapelli Real Time 3D Optogenetics Software

A coherent light source can be focused simultaneously in
an arbitrary pattern of diffraction limited focal points within
a three-dimensional volume through the use of a spatial light
modulator in the pupil of an optical system. In order to stimulate
areas wider than the diffraction limit, the technique can be
combined with either temporal focusing (Pégard et al., 2017),
or spiral or raster scanning (Packer et al., 2012, 2013). While
this method is widely used in optogenetics, it has a variety of
applications extending beyond the field of neuroscience and
including optical trapping (Grier and Roichman, 2006), high
throughput spectroscopy (Nikolenko et al., 2008; Gandolfi et al.,
2014; Pozzi et al., 2015), and adaptive optics (Pozzi et al., 2020).

A recent publication (Zhang et al., 2018) showed how
multiphoton optogenetics, applied in conjunction with
multiphoton calcium imaging, can be used to manipulate
in real time a network of neurons, for example clamping
their calcium activity to a given threshold, or forcing cells
to co-activate. However, due to the limitations in pattern
calculation speeds, the method can only control the stimulation
by alternating amongst a limited amount of pre-calculated
patterns. True, real-time feedback-based control of a network
would be greatly enhanced by the ability of calculating patterns
automatically on-the-fly as they are needed.

The requirements for real-time optogenetics manipulation of
calcium signals can vary widely depending on the optical setup,
experiment goals, species of interest, cell type, and brain region.
For the number of cells of interest and their distribution, at the
state of the art for in vivo imaging, random access multiphoton
microscopy was shown to be able to acquire signals from over
five hundred cells, within an approximately 300µm fov in all
three directions at 80 Hz (Katona et al., 2012) in visual cortex.
Other implementations showed performance in the same orders
of magnitude, for example Bessel scanning (Lu et al., 2017)
showed the activity of approximately one hundred GABA-ergic
neurons at 30 Hz in the same region. In alternative samples
and technologies, lightsheet microscopy in Zebrafish embryos
(Wolf et al., 2015) was shown to detect signals from tens of
thousands of neurons at 1 Hz from the whole embryo brain, and
its acquisition frequency could increase dramatically by reducing
the field of view.

As for the time resolution requirements, it mainly depends on
the accuracy required for the cell response to photostimulation,
as well as from the rise and fall time of calcium signals in the
neurons of interest. Those in turn strongly depend on the dye or
protein used for calcium imaging and on the cellular type of the
neurons stimulated. Rise times are known to be generally really
fast when photostimulation is activated, reaching a saturation of
the signal within a couple of hundreds milliseconds. As for decay
times, they are generally in the order of a second, but can go down
to a few hundreds milliseconds in some transgenic mice lines
(Dana et al., 2014). Even in the assumption of a calcium signal
decreasing quite slowly with an exponential decay time of 1 s
(corresponding to a complete return to baseline fluorescence in
approximately three seconds), a signal decrease of 10% happens
in the first 100 ms, which indicates the need for SLMmodulation
frequencies higher than 10 Hz for good optogenetic clamping of
the activity. At the very limit of such scenario, cerebellar granule

cells bulk stained with Fura-2 AM dye have been shown to have,
under electrical stimulation, calcium transients shorter than 200
ms from the onset to the return to baseline (Gandolfi et al., 2014),
and would therefore require millisecond-scale modulation of the
stimulation pattern for real-time control.

While the fields of view typical of high speed 3D calcium
imaging are generally within the operating capabilities of modern
SLMs, targeting hundreds of neurons with milisecond-scale
modulation is a challenging endeavor. While high performance
SLMs can refresh at up to hundreds of Hz, the algorithms used
for computing holograms constitute the current main limitation.

For two dimensional patterns, or patterns distributed on a
limited set of two-dimensional planes, relatively fast computation
times can be achieved by exploiting fast Fourier transform based
algorithms (Sinclair et al., 2004). However, the generation of an
arbitrary 3D pattern remains the main limiting factor in the
speed of operation for spatial light modulators, slowing the entire
experimental procedure, and precluding any form of real-time
update of three dimensional patterns. The generation of a three
dimensional focusing pattern requires estimation of the phase
value for each of the hundreds of thousands of pixels of the
spatial light modulator maximizing the quality of the obtained
pattern. The two most popular algorithms for this computation
are the high-speed, lower precision random superposition (RS)
algorithm, and the higher precision, lower speed Weighted
Gerchberg-Saxton (WGS) algorithm (Di Leonardo et al., 2007).
The RS computational cost scales linearly with M · N, where M
is the number of SLM pixels and N is the number of generated
foci, while WGS scales linearly with M · N · I, where I is the
number of iterations required. The quality of the hologram is
generally evaluated through its efficiency (e) and uniformity
(u), two metrics respectively indicating as a number between
0 and 1, the percentage of laser light actually focused in the
desired locations, and the uniformity of intensities between the
generated foci.

At the state of the art, when implemented with a typical
SLM resolution on a consumer computer processor unit (CPU),
RS can generate holograms with e > 0.2 and u > 0.2
in a few seconds, while WGS can generate holograms with
e > 0.9 and u > 0.9. Unfortunately, WGS requires a few
minutes for computation. Since most applications require faster
computation times, it is crucial to implement such algorithms on
faster time scales as it has been obtained by using a consumer
graphical processors (GPU) (Bianchi and Di Leonardo, 2010).
When implemented on a GPU, RS algorithm has been proved
to promptly generate arbitrary patterns at video rate (Reicherter
et al., 2006; Daria et al., 2009), but with its characteristic
low quality. Conversely, the WGS algorithm has proven to
produce high quality holograms at video rate, but only with
a limited number of SLM pixels (M < 7682) and on a very
low number of foci (N < 10) (Bianchi and Di Leonardo,
2010; Vizsnyiczai et al., 2014). Additionally, although WGS
results were published, no source code was openly released
with them. As a result, due to the intrinsic difficulty in
GPU coding, this profitable method has not yet been widely
adopted, and most researchers still perform WGS computation
on CPUs.

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 60950574

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

We have recently proved (Pozzi et al., 2019), how, on a
CPU, a new algorithm (compressive sensing weighted Gerchberg-
Saxton, CS-WGS), applying the principles of compressed sensing
to the iterations of WGS can reduce its computational cost
asymptotically close to the cost of RS, while maintaining the high
quality of WGS holograms. Here, we present the implementation
of CS-WGS on a low-cost consumer GPU, demonstrating that the
algorithm is well-suited to GPU implementation, enabling video-
rate computation of holograms with e > 0.9 and u > 0.9 for
N < 100 and M < 1, 1522, ideally adaptable to feedback-based
optogenetic control of neuronal networks.

2. METHODS

2.1. Compressive Sensing Weighted
Gerchberg Saxton Algorithm
In both RS and WGS algorithms, the SLM phase pattern
80
(

x′, y′
)

generating a set of N foci at positions Xn = {xn, yn, zn}

with relative intensities ‖a0n‖
2
, is calculated as the phase of the

interference of the N wavefronts with known phase patterns
φn(x′, y′) generating each spot independently, each with a set
phase delay θ0n :

80 = arg

(

N
∑

n=1

a0ne
i(φn+θ0n)

)

(1)

where φn is defined by basic physical optics as:

φn

(

x′, y′
)

=
2π

λf

(

xnx
′ + yny

′
)

+
2π

λf 2

(

x′
2
+ y′

2
)

zn (2)

In the simple random superposition algorithm, 80 is simply
determined through Equation (1), selecting random values for θ0n .
In the weighted Gerchberg-Saxton algorithm, the values of θn are
determined through a series of alternating projections between
the SLM space and the spots’ positions. The algorithm begins by
computation of the RS hologram80 through Equation (1). At the

j-th iteration, the field E
j
n of each spot is calculated as:

E
j
n =

∑

x′ ,y′∈�

Ae−i(8j−1−φn) (3)

where ‖A
(

x′, y′
)

‖2 is the distribution of light intensity at the slm
surface, and � is the set of all SLM pixels coordinates. At this
point the values of θn and an are updated as:

w
j
n = w

j−1
n

〈‖E
j−1
n ‖〉

N

n=1

‖E
j−1
n ‖

(4)

a
j
n = w

j
na0 (5)

θ
j
n = arg

(

E
j−1
n

)

(6)

where w
j
n are weight factors, all initialized at 1 for the first

iteration. The updated values of a
j
n and θ

j
n are used to compute

a new hologram8j with Equation (1) and start the next iteration.
The CS-WGS algorithm is equivalent to WGS, but the

summation in Equation (3) is only performed over a subset

�
j

compressed
of randomly distributed pixels on the SLM for

N − 2 iterations, followed by two full iterations to ensure full
convergence and the computation of phase on all SLM pixels.
Conversely the value of the hologram phase can be computed, for

all iterations except the last two, only for the pixels in �
j

compressed
.

Through this adaptation, CS-WGS scales in computational cost
linearly with 2 · M · N + c(M · N · (I − 2)), where c is the ratio

between the sizes of �
j

compressed
and �.

The performance of all three described algorithms can be
computed through the metrics of efficiency (e), uniformity (u),
and variance (v). Efficiency is computed as the fraction of power
effectively directed at the spots locations:

e =
∑

n

In (7)

where In is the fraction of laser intensity directed to the n-th spot.
The uniformity metric is defined as:

u = 1−
maxn(Fn)−minn(Fn)

maxn(Fn)+minn(Fn)
(8)

where Fn is the ratio between the achieved and desired power
fractions at the n-th spot:

Fn =
In

∑

n′ In′
/

‖a0n‖
2

∑

n′ ‖a
0
n′‖

2 (9)

Finally, the variance metric is expressed as the mean square
relative error in the power fractions:

v =

∑

n (Fn − 1)2

N
(10)

The efficiency metric reports on the actual fraction of power
directed to the spots. It should be noted that the power
fraction not directed to the spots is rarely uniformly distributed
throughout the sample, and generally forms undesired excitation
spots. The metric should therefore be as close to the value of 1 as
possible to avoid undesired artifacts, and low values can not only
be compensated by an increase in laser power.

The uniformity metric should also be as close to 1 as
possible. Lower values reveal the presence of significant outliers
in the spots intensities, which can lead to missing excitation of
targeted cells, or to local photodamage in over-illuminated cells.
Finally, the variance metric defines the general deviation of spots
intensities from their desired values, and should be as close to
0 as possible in order to achieve precise control of power over
all generated spots. Precise control of intensities is crucial for
optogenetics stimulation, as the relative power between spots
should be carefully regulated in order to prevent non-optically
sectioned stimulation due to thermal effects (Picot et al., 2018).

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 60950575

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

2.2. GPU Implementation
GPU implementations of algorithms should be carefully
developed in order to fully exploit the parallelized calculation
performance of the devices. We report here some considerations
about the implementation.

2.2.1. Global Memory Allocation
When implementing GPU code, minimization of memory
transfer between the system memory and the GPU global
memory is critical to achieve optimal performances. RS, WGS,
and CS-WGS are all very well suited algorithms for this specific
requirement, as the hologram specific inputs required are limited
to the 3D coordinates of the desired spots and their desired
intensities, as well as a single floating point value for the required
compression factor c for CS-WGS. As most SLMs are connected
to calculators as secondary monitors directly connected to the
GPU, no readout of the algorithm’s output to system memory
is necessary, but the hologram is directly projected on the SLM
through CUDA-OPENGL interoperability.

Additionally, some fixed parameters characterizing the
physical and geometrical properties of the SLM and the optical
system (e.g., the coordinates x′, y′ of the SLM pixels, the phase
to gray scale lookup table of the SLM output), are uploaded
to the GPU only once at startup and used for all holograms
computed during an experimental session. Such initialization
does not therefore affect the speed of the algorithm convergence.

2.2.2. Backwards Propagation of RS and WGS
Given, for each spot, the values of the desired coordinates and

intensitiesXn, a0n, weightsw
j
n and phase terms θ

j
n, at each iteration

the hologram phase is computed according to Equation (1). Each
of the parallel threads of the GPU evaluates the equation for one
of the M pixels of the SLM, performing the summation over
all spots. Counter-intuitively, the values of φn are computed at
each iteration according to Equation (2), instead of computed
once and stored in global memory, as their direct computation
is significantly faster than accessing values stored in the GPU
global memory.

The obtained hologram 8j is stored in a pre-allocated section
of global memory, or, in case of the last iteration, copied to an
OpenGL texture buffer, and projected on the SLM surface. It
should be noticed that vertical synchronization in the OpenGL
environment should be enabled, in order to avoid artifacts
during the alternation of different holograms on the SLM. As a
consequence, the total time required for the last iteration will be
extended until the next refresh of the SLM screen.

2.2.3. Forward Propagation of RS and WGS
Given an hologram 8j, and the known intensity distribution of
light at the SLM surface, the field at each spot can be computed
through Equation (3), which therefore requires the sum of M
complex numbers per each spot. This sort of computation is
known in GPU programming as a dimensionality reduction, and
is performed by using k threads to iteratively perform the sum
of M/k elements of the sum, until the amount of elements to
be summed equals one. Since a modern GPU can run 1,024
threads in one block, and the number of SLM pixels in the

system aperture is <1,0242, the dimensionality reduction always
converged in two iterations for the presented results.

2.2.4. Compressed Sensing
During initialization, all arrays containing data referring to SLM
pixels (e.g., hologram phase, known intensity at the pupil) are
reorganized in a randomly selected order. At each iteration
only c · M GPU threads are employed both for forwards and
backwards projection, performing computation on pixels which
will be adjacent in GPU global memory for optimal performance,
but randomly distributed in the pupil due to the random
reorganization. Only the backwards projection at the very last
iteration is performed on all pixels, in order to compute the
phase of the full hologram. The actual position in the pupil for
each pixel is stored during initialization in an additional array in
global memory, and used at the end of the computation to apply
the correct phase values to the correct OpenGL texture pixels
for projection.

2.3. Experimental Setup
Holograms were computed on a budget desktop GPU (GTX1050,
Nvidia), also available in several mid-range laptops. Experimental
results were obtained by measuring two-photon excited
fluorescence from a solid, 1.7 mm thick fluorescent slide (FSK-2,
Thorlabs, USA) on a custom system for multiphoton imaging
and optogenetics. The system includes an SLM with a refresh
frequency of 31 Hz, and a panel of 1,152 × 1,920 pixels, with
pixel pitch of 9.2µm (Meadowlark, USA), with the short side
optically matched to the round aperture of the optical system,
limiting hologram computation to a round sub-region of 1,152
pixels in diameter.

The source employed is a Ti:Sa laser (Chameleon Ultra II,
Coherent, USA), tuned to 800 nm, expanded through a telescope
of two infrared achromatic doublets (AC-127-050-B andAC-254-
250-B, Thorlabs) to a beam waist radius of 6 mm at the SLM
panel. A simplified scheme of the setup is shown in Figure 1.

The spatial light modulator (SLM) surface is conjugated to a
couple of silver coated galvanometric mirrors (GM, GVS-012/M,
Thorlabs, USA) by a 4-f beam reducing telescope of two infrared
achromatic doublets (L1 and L2, AC-508-200-B and AC-508-
150-B, Thorlabs). A custom made glass slide with a 0.5 mm
round deposition of titanium is placed in the focal plane of the
first lens in order to block the 0-th order of diffraction of the
SLM while minimally affecting the projected pattern. We were
in fact unable to measure any differences in spots intensities
when adding and removing the blocker. The Galvanometric
mirrors are conjugated through a beam expanding 4-f telescope
of broad spectrum achromatic doublets (L3 and L4, AC-508-
180-AB and AC-508-400-AB) to the back aperture of a water
dipping microscope objective (OL, XLUMPlanFL N, 20X, 1.0
NA, Olympus, Japan). In this configuration, a phase-conjugated
image of the SLM is produced on the back aperture of the
objective with a magnification of 5 : 3, so that the 10.6 mm side
of the SLM is matched with the 18 mm aperture of the objective.

Fluorescence light is reflected by a longpass dichroic mirror
(DM, FF665-Di02-25x36, Semrock, USA) and further filtered
from laser light through an IR-blocking filter (FF01-680/SP-25,

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 60950576

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

FIGURE 1 | Scheme of the optical setup for the reported experiments. Not to

scale. Red lines show the excitation light path, green lines represent the

fluorescent light path after descanning. SLM - Spatial light modulator. L1-L2 -

First 4f telescope. GM - Galvanometric mirrors. L3-L4 - Second 4f telescope.

OL - Objective lens. DM - Dichroic mirror. L5 - Focusing lens. CCD - Detector

camera.

Semrock, USA). The mirrors are conjugated by a couple of 4-f
telescopes of visible achromatic doublets and a custom channel
splitter (not shown) with a mounted 12 − 72 mm, 1.2f # zoom
lens (L9, Cosina, Sony, Japan), mounted on a high speed, 128 ×

128 pixels EMCCD camera (CCD, Hnu 128 AO, Nuvu, Canada).
The focal and aperture of the camera zoom lens are chosen in

order to image a field of view of 400µm × 400µm for two color
channels in 64× 64 pixels subregions of the camera sensor, while
maintaining a depth of field of 400µm in order to visualize three-
dimensional patterns without defocus aberrations. Focusing
of the laser in the fluorescent slide generates two-photon
fluorescence, the intensity of which increases quadratically
with local power, and is therefore an appropriate reporter
of the stimulation intensity which could be achieved in a
biological sample.

Measurements were performed at approximately 300µm
depth within the fluorescent slide, in order to avoid spots
generated at high axial distances from the focal plane to
be focused outside the sample. The galvanometric mirrors
were operated in a 50µm wide constant speed spiral scan at
120 Hz throughout the experiments, in order to minimize
photobleaching effects, as well as compensating for local
inhomogeneities of the fluorescent slide. The descanned nature
of the detection light path insured that the motion of the mirrors
did not affect the shape of the spots at the detector.

3. RESULTS

In order to compute convergence timing for RS, WGS, and CS-
WGS algorithms, two types of holograms were computed: regular
two-dimensional grids of uniform spots, considered as a worst
case scenario for pattern uniformity, and a more realistic random
distributions of spots of varying intensity within a cubic volume
of 200µm. Grids were calculated for square patterns from 4 to
144 spots. Random distributions were calculated from 9 to 99
spots. Lower amounts of spots were not considered, as SLMs
have generally unreliable performance independently from the
algorithm used when generating very few spots. If possible, in
such situation, other excitationmethods should be preferred (e.g.,
acousto-optic scanners). Amaximum performance reference was
computed through 200 iterations of WGS. Holograms for the
same distributions of points were then calculated with RS, with
WGS, and with CS-WGS for compression factors ranging from
2−1 to 2−8. WGS and CS-WGS computations were repeated
for an increasing number of iterations, until a uniformity value
higher than a target percentage of the maximum performance
was reached. Figure 2 shows the timings required for full
convergence of the algorithms, as well as a comparison between
the uniformity performances achieved by the non-iterative RS
compared to the iterative algorithms. Only the best performing
value of the compression factor in CS-WGS is reported for each
data point. For these results, vertical synchronization of the GPU
with the SLM screen was disabled, in order to present data
unaffected by the specific hardware employed. The data reported
clearly shows how, in any of the presented scenarios, CS-WGS
greatly outperforms WGS, with generally half the convergence
time, and up to a factor 5 speedup when computing holograms
for regular lattices of high numbers of spots. This, while being an
unlikely pattern for optogenetics experiments, is often required
for imaging or optical trapping applications.

While still significant, the lowest performance advantage of
CS-WGS over WGS, was observed for random distributions of
small numbers of spots (<50) for relatively low performance
targets (<92% of full convergence uniformity) for which WGS
converged in only two iterations, leaving small space for
improvement with the application of compressed sensing. In this
situation, WGS still resulted 1.5 times slower than CS-WGS.

It should be noticed how, while a GPU implementation of
RS remains up to an order of magnitude faster than iterative
algorithms, the uniformity of the patterns produced can be
extremely low for any number of spots, and this algorithm should
only be used when the experimental scenario requires extremely
high computation speed for a very high number of spots.

A more realistic utilization scenario for high speed hologram
computation, however, is one in which the full convergence
performance is sacrificed in order to achieve computation times
equivalent to the refresh rate of the SLM, in order to update
the hologram on-the-fly as fast as the hardware allows it. Fixed
refresh rate performance of RS, WGS, and CS-WGS algorithms
was measured both through calculation of the theoretical
efficiency and uniformity of the patterns, and by visualization of
multiphoton fluorescence excitation in the experimental setup.
In these measurements, vertical synchronization of the GPU

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 60950577

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

FIGURE 2 | Performance comparison of the algorithms when computing patterns at a set fraction of the full convergence uniformity.

with the SLM screen was enabled, as it is required for correct
experimental application. The SLM used for data validation was
capable of a refresh rate of 31 Hz. However, hologram computing
times were constrained to a refresh rate of 15 Hz, as it was
experimentally found that, while operating at the SLM limit of 31
Hz, the quality of the projected pattern was strongly dependent
on the pixel response times of the SLM at the experimental
wavelength, and comparison of experimental data resulted
difficult. The performance of CS-WGS was computationally
tested for a range of compression rates c from 2−1 to 2−8. The best
performing compression rate for the uniformity metric was used
for experimental comparison. An additional set of measurements
for full convergence of WGS was added in order to provide a
reference for the best achievable pattern quality without frame
rate constraints.

Tests were performed in three critical scenarios for multi-
foci real-time computation. The first two were two-dimensional,
regularly spaced, grids of points rotating in 3D space,
representing a worst-case scenario for pattern uniformity. The
two grids differ in number of total spots, one is a grid of 100 spots,

for which WGS could only perform a single iteration within the
64 ms frame time limit, the other is a more limited 36 spots grid,
for whichWGS could achieve 5 full iterations. The third scenario
was a more realistic distribution of 100 points in a random
pattern, within a cubic volume of side 300µm, with randomly
distributed target intensities.

The computed efficiencies and intensities achievable with a 15
Hz frame rate are reported in Figure 3. Error bars were calculated
from the standard deviation of the mean performance over
10 calculations with different initial values of θ0n and different
spatial orientations of the patterns. It can be observed how, for
a large amount of regularly spaced spots, WGS has practically no
advantage over RS, due to the limited amount of iterations which
can be performed within the time limit.

The performance of WGS improve for smaller amounts of
spots and less regular patterns, but CS-WGS still stands out as the
better performing algorithm in all scenarios. Low compression
rates of CS-WGS tend to prioritize uniformity, due to their
better sampling of the pupil, while high compression rates tend
to prioritize efficiency due to the higher number of iterations

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 60950578

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

FIGURE 3 | Performance comparison of the algorithms when computing in real time at 15Hz in selected scenarios. The legend is valid for all graphs. RS results for the

100 points random distribution has been omitted as out of a reasonable graph scale at e = 0.554± 0.004, u = 0.0245± 0.004 and v = 0.44± 0.22. Similarly, the

CS-WGS uniformity for the same pattern at 2−8 compression was omitted, scoring u = 0.46± 0.17. RS computation times were approximately 25ms for 100 spots

patterns, and 12ms for 36 spots patterns. Error bars report standard deviation.

achievable. Nonetheless, unless extreme compression factors
were used for spots patterns with varying intensities, CS-WGS
provides better performance than WGS in all tested scenarios.
Results equal or similar to a fully converging implementation
of WGS could be achieved in all tested scenarios for well-tuned
compression factors.

Since experimental systems are non-ideal, often the
performance of the computed patterns can be affected by
the experimental setup (Palima and Daria, 2006). In order to
prove the improvement in performance provided by CS-WGS is
detectable and significant in experimental scenarios, we provided
verification of the results of Figure 3 on the setup described in
the methods section.

Experimental results are reported in Figure 4. All holograms
show a decrease in signal intensity toward the edges of the
frame, due to the loss in diffraction efficiency of the SLM
at the edges of its addressable volume, which is independent

from the algorithm’s performance. Images are reported with
a 10X upscaling with bilinear filtering in order to reduce
aliased sampling artifacts due to the sensor’s low resolution.
For each experimental scenario, 10 different variants of the
pattern were computed by rotating the grids in three dimensions
and rearranging the spots random distribution. In order to
estimate the intensity of the spots, a blob detection algorithm
was run over images acquired from the camera, integrating the
pixels intensities within the blob. blob locations and sizes were
estimated over the average of 10 images of the WGS pattern
with full convergence and used to compute intensities for the
other algorithms. The relative error of each spot’s intensity was
computed from the ratio of its blob intensity compared to that
of the fully converging WGS pattern. It should be noticed the
intensity detection error on a fixed pattern could get up to 5%
root mean square, depending on the intensity of the spot. As
expected, RS performed the worst, with average errors of 0.47 ±

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 60950579

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

FIGURE 4 | Experimental results, each columns shows representative images for each scenario. Scale bar is 100µm. Scale bar and intensity colorbar are equivalent

for all images. It should be noticed how, qualitatively, CS-WGS patterns are practically indistinguishable from full convergence WGS patterns. Significant artifacts can

be observed in the grid patterns for both RS and WGS. Significant artifacts are visible for RS in the random spots distribution, while WGS qualitatively seems to

perform well. On the bottom row, histograms of the detected spots intensity accuracy over 10 images are shown. It should be observed how CS-WGS does actually

outperform significantly WGS, with no spots over 0.25 relative error, while WGS presents outliers up to 0.4.

0.30 for the 36 spots grid, 0.32 ± 0.11 for the 100 spots grids,
and 0.17 ± 0.02 for the random patterns. When constrained
to 64 ms of computation time, WGS performed similarly to
RS when computing the 100 spots grid, with an average error
of 0.28 ± 0.03, due to its inability to perform more than two
iterations in the given time. It performed better for the 100 spots
random pattern and the 36 spots grid (respectively 0.03 ± 0.02
and 0.16± 0.03 relative errors). Still, CS-WGS proved to provide
the best performance in all scenarios, with average errors of
0.08 ± 0.01 for the 36 spots grid, 0.06 ± 0.03 for the 100 spots
grids, and 0.02±0.01 for the random patterns. More importantly
the highest outliers for all patterns for RS reached relative errors
of 0.8, meaning the spot was either almost completely missing
or nearly twice as bright as it should have been. Outliers for WGS
reached up to 0.8 for the 100 points grid, up to 0.6 for the 36 spots
grid and up to 0.4 for the random distribution. Conversely, in all
scenarios CS-WGS managed to keep all spots under 0.25 relative
error. Computing the same pattern multiple times with different
initialization phases led to similar statistics in error distributions.
Most importantly, the outlier spots would be positioned in
random, unpredictable positions within the pattern.

It should be noted how for the worst case scenario of regular
grid patterns, significant deviations from the desired patterns
can easily be noticed in the intensity distributions of RS and
WGS, while CS-WGS seems indistinguishable from the desired
pattern, as highlighted by the numerical metrics. In the random
distribution pattern, RS is still visibly inaccurate, while WGS and

CS-WGS seem to perform equivalently. However, the numerical
metrics highlight how CS-WGS holograms present smaller
deviations from the desired pattern, and therefore provide the
best achievable performance within the time constraint.

Examples of real time manipulation of the patterns are
available as Supplementary Materials, showing the selected
patterns rotating in three dimensions through real-time
recalculation. The videos show how smooth live update of the
hologram is possible, with reasonably constant performance
throughout the experiment.

From the results, it is apparent that the compression factor
and number of iterations can be fine-tuned to achieve maximum
performance. However, this is often not possible for real
time generation of generic patterns with varying numbers
of spots or geometrical distribution. In such a situation, a
compression factor between 1/8 and 1/16 seems to provide a
good baseline value to achieve reliable performance in a variety
of experimental conditions.

4. DISCUSSION

In this manuscript a GPU implementation of the CS-WGS
algorithm is presented, and benchmarked against the two most
popular alternatives available, being RS and WGS. The results
clearly show how the higher convergence speed of CS-WGS,
makes it the ideal candidate for real-time applications. The
GPU implementation of the algorithm proves, for real time

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 60950580

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

applications, absolutely necessary, as similar spots patterns to
those tested would require several seconds for computation
with CS-WGS (Pozzi et al., 2019), and up to several minutes
with WGS.

While the presented experimental tests were limited by the
refresh rate of the available SLM, the algorithm could easily
be used to control even faster systems, provided a reasonable
amount of spots is selected, and the compression factor is tuned
accordingly. The ability of computing high quality holograms
in real time could enable real-time, feedback-based control
of neuronal networks, driven by calcium (Lu et al., 2017) or
voltage activity (Gandolfi et al., 2015) without being limited to
stimulation on pre-calculated spatial patterns.

As an example of the advantages of real-time computation
compared to the use of pre-computed patterns in closed loop
stimulation, keeping N cells clamped at the same level of
activity through pre-computed patterns by binary switching of
photostimulation on each cell, would require pre-calculation of
patterns stimulating all possible combinations of at least one of
the N cells. In practice, this means that 2N − 1 patterns would
be required, limiting the applicability of the experiment to only a
very few neurons.

A similar consideration can be made for the possibility of
synchronizing the activity of cell populations to a single “trigger
neuron.” For N selected trigger neurons, at least 2N patterns
would need to be calculated, or more if any neuron would need
to be coupled with two separate trigger neurons.

It should be acknowledged that fast photoswitching of single
points in a given fixed pattern can be achieved by the use of a
digital micromirror device in the image plane (Go et al., 2013) to
modulate intensity. However, this is still limited in the number
of available patterns in the DMD memory (a few tens to a few
hundreds, depending on the hardware used), has limited axial
positioning extent (only ±10µm in the reported publication),
it would not work for spots located at similar lateral positions
but at different axial depths, and in general requires significant
modifications to a standard SLM based setup, when compared to
a simpler modification of software. Moreover, due to the accuracy
of our algorithm in the modulation of power of single spots,
even stimulation based on analog modulation of the excitation
power for each spot, instead of a binary on/off behavior, could
be implemented.

Independently from closed loop photostimulation, an
immediate outcome of this implementation lies in the extreme
streamlining of the experimental procedure, practically
eliminating any waiting time between the selection of the
point of interests and the experimental procedure. Of note, it
can be extremely useful for in-vivo recordings with awake mice.
In these circumstances, experiments are in fact extremely time-
sensitive, and the minimization of the experiments duration is of
utmost importance.

Furthermore, the newly introduced ability of updating the
pattern in real-time at the SLM refresh speed limit can
potentially enable previously impossible experimental protocols.
For instance, the correction ofmotion artifacts, which is currently
performed only through the use of scanners and focus actuators,
for rigid linear movements (Vladymyrov et al., 2016), could be
enabled for sample rotations and non rigid deformations through
SLM patterns adaptation.

Since GPU programming is not a widespread practice
amongst the optics and neuroscience research community,the
software used to generate the results presented in the paper is
made available as a free and open-source library (Pozzi, 2020)
for non commercial purposes, to ensure a widespread adoption
of the method. The software library is compatible with all SLMs
controlled as external screen, and is not necessarily limited
to 64 ms computation time. Some modifications to the code
may be required to directly drive SLMs with dedicated pci-e
interfaces. The software consists in Python (Van Rossum and
Drake, 1995) code controlling the GPU using CUDA (Nickolls
et al., 2008) through the PyCuda (Klöckner et al., 2012) library
and rendering holograms directly to the SLM through the GLFW
OpenGL framework.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

PP designed the research, performed the experiments, and
wrote the first version of the manuscript. JM designed
the research and contributed to the manuscript writing.
All authors contributed to the article and approved the
submitted version.

FUNDING

The work is partially funded by the SMART BRAIN project.
SMART-BRAIN is a Partnering Project to the European
Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreement No. 785907
(Human Brain Project SGA2).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncel.
2021.609505/full#supplementary-material

REFERENCES

Bianchi, S., and Di Leonardo, R. (2010). Real-time optical micro-manipulation
using optimized holograms generated on the GPU. Comput. Phys. Commun.
181, 1444–1448. doi: 10.1016/j.cpc.2010.04.012

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005).
Millisecond-timescale, genetically targeted optical control of neural activity.
Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

Dal Maschio, M., Donovan, J. C., Helmbrecht, T. O., and Baier, H.
(2017). Linking neurons to network function and behavior by two-photon

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 60950581

https://www.frontiersin.org/articles/10.3389/fncel.2021.609505/full#supplementary-material
https://doi.org/10.1016/j.cpc.2010.04.012
https://doi.org/10.1038/nn1525
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Pozzi and Mapelli Real Time 3D Optogenetics Software

holographic optogenetics and volumetric imaging. Neuron 94, 774–789.
doi: 10.1016/j.neuron.2017.04.034

Dana, H., Chen, T.-W., Hu, A., Shields, B. C., Guo, C., Looger, L. L., et al. (2014).
Thy1-gcamp6 transgenic mice for neuronal population imaging in vivo. PLoS

ONE 9:e108697. doi: 10.1371/journal.pone.0108697
Daria, V. R., Stricker, C., Bowman, R., Redman, S., and Bachor, H.-A. (2009).

Arbitrary multisite two-photon excitation in four dimensions. Appl. Phys. Lett.
95:093701. doi: 10.1063/1.3216581

Di Leonardo, R., Ianni, F., and Ruocco, G. (2007). Computer generation
of optimal holograms for optical trap arrays. Opt. Exp. 15, 1913–1922.
doi: 10.1364/OE.15.001913

Gandolfi, D., Cerri, S., Mapelli, J., Polimeni, M., Tritto, S., Fuzzati-Armentero,
M.-T., et al. (2017). Activation of the CREB/c-Fos pathway during long-
term synaptic plasticity in the cerebellum granular layer. Front. Cell. Neurosci.
11:184. doi: 10.3389/fncel.2017.00184

Gandolfi, D., Mapelli, J., and D’Angelo, E. (2015). Long-term spatiotemporal
reconfiguration of neuronal activity revealed by voltage-sensitive dye
imaging in the cerebellar granular layer. Neural Plast. 2015:284986.
doi: 10.1155/2015/284986

Gandolfi, D., Pozzi, P., Tognolina, M., Chirico, G., Mapelli, J., and D’Angelo, E.
(2014). The spatiotemporal organization of cerebellar network activity resolved
by two-photon imaging of multiple single neurons. Front. Cell. Neurosci. 8:92.
doi: 10.3389/fncel.2014.00092

Go, M. A., To, M.-S., Stricker, C., Redman, S., Bachor, H.-A., Stuart, G., et al.
(2013). Four-dimensional multi-site photolysis of caged neurotransmitters.
Front. Cell. Neurosci. 7:231. doi: 10.3389/fncel.2013.00231

Grier, D. G., and Roichman, Y. (2006). Holographic optical trapping.Appl. Opt. 45,
880–887. doi: 10.1364/AO.45.000880

Katona, G., Szalay, G., Maák, P., Kaszás, A., Veress, M., Hillier, D., et al. (2012). Fast
two-photon in vivo imaging with three-dimensional random-access scanning
in large tissue volumes. Nat. Methods 9, 201–208. doi: 10.1038/nmeth.1851

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A. (2012).
Pycuda and pyopencl: a scripting-based approach to GPU run-time code
generation. Parall. Comput. 38, 157–174. doi: 10.1016/j.parco.2011.09.001

Lu, R., Sun, W., Liang, Y., Kerlin, A., Bierfeld, J., Seelig, J. D., et al. (2017). Video-
rate volumetric functional imaging of the brain at synaptic resolution. Nat.
Neurosci. 20, 620–628. doi: 10.1038/nn.4516

Mutoh, H., Akemann, W., and Knopfel, T. (2012). Genetically engineered
fluorescent voltage reporters. ACS Chem. Neurosci. 3, 585–592.
doi: 10.1021/cn300041b

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel
programming with cuda. Queue 6, 40–53. doi: 10.1145/1365490.1365500

Nikolenko, V., Watson, B. O., Araya, R., Woodruff, A., Peterka, D. S.,
and Yuste, R. (2008). Slm microscopy: scanless two-photon imaging and
photostimulation using spatial light modulators. Front. Neural Circuits 2:5.
doi: 10.3389/neuro.04.005.2008

Packer, A. M., Peterka, D. S., Hirtz, J. J., Prakash, R., Deisseroth, K., and Yuste, R.
(2012). Two-photon optogenetics of dendritic spines and neural circuits. Nat.
Methods 9:1202. doi: 10.1038/nmeth.2249

Packer, A. M., Roska, B., and Häusser, M. (2013). Targeting neurons and photons
for optogenetics. Nat. Neurosci. 16:805. doi: 10.1038/nn.3427

Palima, D., and Daria, V. R. (2006). Effect of spurious diffraction orders in
arbitrary multifoci patterns produced via phase-only holograms. Appl. Opt. 45,
6689–6693. doi: 10.1364/AO.45.006689

Papagiakoumou, E., Anselmi, F., Bégue, A., De Sars, V., Glückstad, J., Isacoff, E.
Y., et al. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nat.
Methods 7, 848–854. doi: 10.1038/nmeth.1505

Pégard, N. C., Mardinly, A. R., Oldenburg, I. A., Sridharan, S., Waller,
L., and Adesnik, H. (2017). Three-dimensional scanless holographic
optogenetics with temporal focusing (3D-shot). Nat. Commun. 8, 1–14.
doi: 10.1038/s41467-017-01031-3

Picot, A., Dominguez, S., Liu, C., Chen, I.-W., Tanese, D., Ronzitti, E., et al. (2018).
Temperature rise under two-photon optogenetic brain stimulation. Cell Rep.
24, 1243–1253. doi: 10.1016/j.celrep.2018.06.119

Pozzi, P. (2020). SLM-3dPointCloud. Available online at:
https://github.com/ppozzi/SLM-3dPointCloud

Pozzi, P., Gandolfi, D., Tognolina, M., Chirico, G., Mapelli, J., and
D’Angelo, E. (2015). High-throughput spatial light modulation two-
photon microscopy for fast functional imaging. Neurophotonics 2:015005.
doi: 10.1117/1.NPh.2.1.015005

Pozzi, P.,Maddalena, L., Ceffa, N., Soloviev, O., Vdovin, G., Carroll, E., et al. (2019).
Fast calculation of computer generated holograms for 3D photostimulation
through compressive-sensing Gerchberg-Saxton algorithm. Methods Protoc.
2:2. doi: 10.3390/mps2010002

Pozzi, P., Smith, C., Carroll, E., Wilding, D., Soloviev, O., Booth, M., et al. (2020).
Anisoplanatic adaptive optics in parallelized laser scanning microscopy. Opt.
Exp. 28, 14222–14236. doi: 10.1364/OE.389974

Reicherter, M., Zwick, S., Haist, T., Kohler, C., Tiziani, H., and Osten, W.
(2006). Fast digital hologram generation and adaptive force measurement
in liquid-crystal-display-based holographic tweezers. Appl. Opt. 45, 888–896.
doi: 10.1364/AO.45.000888

Sinclair, G., Leach, J., Jordan, P., Gibson, G., Yao, E., Laczik, Z. J., et al.
(2004). Interactive application in holographic optical tweezers of a multi-plane
Gerchberg-Saxton algorithm for three-dimensional light shaping. Opt. Exp. 12,
1665–1670. doi: 10.1364/OPEX.12.001665

Van Rossum, G., and Drake F. L. Jr. (1995). Python Tutorial. Amsterdam: Centrum
voor Wiskunde en Informatica.

Vizsnyiczai, G., Kelemen, L., and Ormos, P. (2014). Holographic multi-focus 3d
two-photon polymerization with real-time calculated holograms. Opt. Exp. 22,
24217–24223. doi: 10.1364/OE.22.024217

Vladymyrov, M., Abe, J., Moalli, F., Stein, J. V., and Ariga, A. (2016). Real-
time tissue offset correction system for intravital multiphoton microscopy. J.
Immunol. Methods 438, 35–41. doi: 10.1016/j.jim.2016.08.004

Wang, K., Liu, Y., Li, Y., Guo, Y., Song, P., Zhang, X., et al. (2011). Precise
spatiotemporal control of optogenetic activation using an acousto-optic device.
PLoS ONE 6:e28468. doi: 10.1371/journal.pone.0028468

Wolf, S., Supatto, W., Debrégeas, G., Mahou, P., Kruglik, S. G., Sintes,
J.-M., et al. (2015). Whole-brain functional imaging with two-photon
light-sheet microscopy. Nat. Methods 12, 379–380. doi: 10.1038/nmeth.
3371

Zhang, Z., Russell, L. E., Packer, A. M., Gauld, O. M., and Häusser, M. (2018).
Closed-loop all-optical interrogation of neural circuits in vivo. Nat. Methods

15, 1037–1040. doi: 10.1038/s41592-018-0183-z

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Pozzi and Mapelli. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 60950582

https://doi.org/10.1016/j.neuron.2017.04.034
https://doi.org/10.1371/journal.pone.0108697
https://doi.org/10.1063/1.3216581
https://doi.org/10.1364/OE.15.001913
https://doi.org/10.3389/fncel.2017.00184
https://doi.org/10.1155/2015/284986
https://doi.org/10.3389/fncel.2014.00092
https://doi.org/10.3389/fncel.2013.00231
https://doi.org/10.1364/AO.45.000880
https://doi.org/10.1038/nmeth.1851
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1038/nn.4516
https://doi.org/10.1021/cn300041b
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.3389/neuro.04.005.2008
https://doi.org/10.1038/nmeth.2249
https://doi.org/10.1038/nn.3427
https://doi.org/10.1364/AO.45.006689
https://doi.org/10.1038/nmeth.1505
https://doi.org/10.1038/s41467-017-01031-3
https://doi.org/10.1016/j.celrep.2018.06.119
https://doi.org/10.1117/1.NPh.2.1.015005
https://doi.org/10.3390/mps2010002
https://doi.org/10.1364/OE.389974
https://doi.org/10.1364/AO.45.000888
https://doi.org/10.1364/OPEX.12.001665
https://doi.org/10.1364/OE.22.024217
https://doi.org/10.1016/j.jim.2016.08.004
https://doi.org/10.1371/journal.pone.0028468
https://doi.org/10.1038/nmeth.3371
https://doi.org/10.1038/s41592-018-0183-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

ORIGINAL RESEARCH
published: 08 March 2021

doi: 10.3389/fncom.2021.584797

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 584797

Edited by:

Jonathan Mapelli,

University of Modena and Reggio

Emilia, Italy

Reviewed by:

Francesco Maria Puglisi,

University of Modena and Reggio

Emilia, Italy

Alexantrou Serb,

University of Southampton,

United Kingdom

*Correspondence:

Rafatul Faria

rafatul.faria@gmail.com

Received: 18 July 2020

Accepted: 26 January 2021

Published: 08 March 2021

Citation:

Faria R, Kaiser J, Camsari KY and

Datta S (2021) Hardware Design for

Autonomous Bayesian Networks.

Front. Comput. Neurosci. 15:584797.

doi: 10.3389/fncom.2021.584797

Hardware Design for Autonomous
Bayesian Networks
Rafatul Faria 1*, Jan Kaiser 1, Kerem Y. Camsari 2 and Supriyo Datta 1

1Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 2Department of

Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States

Directed acyclic graphs or Bayesian networks that are popular in many AI-related

sectors for probabilistic inference and causal reasoning can be mapped to probabilistic

circuits built out of probabilistic bits (p-bits), analogous to binary stochastic neurons

of stochastic artificial neural networks. In order to satisfy standard statistical results,

individual p-bits not only need to be updated sequentially but also in order from the parent

to the child nodes, necessitating the use of sequencers in software implementations.

In this article, we first use SPICE simulations to show that an autonomous hardware

Bayesian network can operate correctly without any clocks or sequencers, but only if

the individual p-bits are appropriately designed. We then present a simple behavioral

model of the autonomous hardware illustrating the essential characteristics needed

for correct sequencer-free operation. This model is also benchmarked against SPICE

simulations and can be used to simulate large-scale networks. Our results could be

useful in the design of hardware accelerators that use energy-efficient building blocks

suited for low-level implementations of Bayesian networks. The autonomous massively

parallel operation of our proposed stochastic hardware has biological relevance since

neural dynamics in brain is also stochastic and autonomous by nature.

Keywords: Bayesian network, probabilistic spin logic, binary stochastic neuron, magnetic tunnel

junction, inference

1. INTRODUCTION

Bayesian networks (BN) or belief nets are probabilistic directed acyclic graphs (DAG) popular for
reasoning under uncertainty and probabilistic inference in real-world applications such as medical
diagnosis (Nikovski, 2000), genomic data analysis (Friedman et al., 2000; Jansen et al., 2003; Zou
and Conzen, 2004), forecasting (Sun et al., 2006; Ticknor, 2013), robotics (Premebida et al., 2017),
image classification (Arias et al., 2016; Park, 2016), neuroscience (Bielza and Larrañaga, 2014),
and so on. BNs are composed of probabilistic nodes and edges from parent to child nodes and
are defined in terms of conditional probability tables (CPT) that describe how each child node is
influenced by its parent nodes (Heckerman and Breese, 1996; Koller and Friedman, 2009; Pearl,
2014; Russell and Norvig, 2016). The CPTs can be obtained from expert knowledge and/or machine
learned from data (Darwiche, 2009). Each node and edge in a BN have meaning representing
specific probabilistic events and their conditional dependencies and they are easier to interpret
(Correa et al., 2009) than neural networks where the hidden nodes do not necessarily have
meaning. Unlike neural networks where useful information is extracted only at the output nodes
for prediction purposes, BNs are useful for both prediction and inference by looking at not only
the output nodes but also other nodes of interest. Computation of different probabilities from a

83

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.584797
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.584797&domain=pdf&date_stamp=2021-03-08
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rafatul.faria@gmail.com
https://doi.org/10.3389/fncom.2021.584797
https://www.frontiersin.org/articles/10.3389/fncom.2021.584797/full

Faria et al. Hardware Design for Autonomous Bayesian Networks

BN becomes intractable when the network gets deeper and
more complicated with child nodes having many parent nodes.
This has inspired various hardware implementations of BNs for
efficient inference (Rish et al., 2005; Chakrapani et al., 2007;
Weijia et al., 2007; Jonas, 2014; Querlioz et al., 2015; Zermani
et al., 2015; Behin-Aein et al., 2016; Friedman et al., 2016; Thakur
et al., 2016; Tylman et al., 2016; Shim et al., 2017). In this
article, we have elucidated the design criteria for an autonomous
(clockless) hardware for BN unlike other implementations that
typically use clocks.

Recently, a new type of hardware computing framework
called probabilistic spin logic (PSL) is proposed (Camsari et al.,
2017a) based on a building block called probabilistic bits (p-bits)
that are analogous to binary stochastic neurons (BSN) (Ackley
et al., 1985; Neal, 1992) of the artificial neural network (ANN)
literature. p-bits can be interconnected to solve a wide variety
of problems such as optimization (Sutton et al., 2017; Borders
et al., 2019), inference (Faria et al., 2018), an enhanced type of
Boolean logic that is invertible (Camsari et al., 2017a; Faria et al.,
2017; Pervaiz et al., 2017, 2018), quantum emulation (Camsari
et al., 2019), and in situ learning from probability distributions
(Kaiser et al., 2020).

Unlike conventional deterministic networks built out
of deterministic, stable bits, stochastic or probabilistic
networks composed of p-bits (Figure 1A), can be correlated
by interconnecting them to construct p-circuits defined by
two equations (Ackley et al., 1985; Neal, 1992; Camsari et al.,
2017a): (1) a p-bit/BSN equation and (2) a weight logic/synapse
equation. The output of a p-bit,mi, is related to its dimensionless
input Ii by the equation:

mi(t + τN) = sgn
(

rand(−1, 1)+ tanh Ii(t)
)

(1a)

where rand(−1,+1) is a random number uniformly distributed
between−1 and+1, and τN is the neuron evaluation time.

The synapse generates the input Ii from a weighted sum of
the states of other p-bits. In general, the synapse can be a linear
or non-linear function, although a common form is the linear
synapse described according to the equation:

Ii(t + τS) = I0

(

hi +
∑

j

Jijmj(t)

)

(1b)

where hi is the on-site bias and Jij is the weight of the coupling

from jth p-bit to ith p-bit, I0 parameterizes the coupling strength
between p-bits, and τS is the synpase evaluation time. Several
hardware designs of p-bits based on low barrier nanomagnet
(LBM) physics have been proposed and also experimentally
demonstrated (Ostwal et al., 2018; Borders et al., 2019; Ostwal
and Appenzeller, 2019; Camsari et al., 2020; Debashis, 2020).
The thermal energy barrier of the LBM is of the order of a few
kBT instead of 40–60 kBT used in the memory technology to
retain stability. Because of thermal noise the magnetization of
the LBM keeps fluctuating as a function of time with an average
retention time τ ∼ τ0exp(EB/kBT) (Brown, 1979), where τ0
is a material-dependent parameter called attempt time that is
experimentally found to be in the range of nanosecond or less and

EB is the thermal energy barrier (Lopez-Diaz et al., 2002; Pufall
et al., 2004). The stochasticity of the LBMs makes them naturally
suitable for p-bit implementation.

Figure 1 shows two p-bit designs: Design 1 (Figure 1B)
(Camsari et al., 2017b; Borders et al., 2019) and Design 2
(Figure 1C) (Camsari et al., 2017a; Ostwal and Appenzeller,
2019). Designs 1 and 2 both are fundamental building blocks
of spin transfer torque (STT) and spin orbit torque (SOT)
magnetoresistive random access memory (MRAM) technologies,
respectively (Bhatti et al., 2017). Their technological relevance
motivates us to explore their implementations as p-bits. Design
1 is very similar to the commercially available 1T/1MTJ (T:
Transistor, MTJ: Magnetic Tunnel Junction) embedded MRAM
device where the free layer of the MTJ is replaced by an in-
plane magnetic anisotropy (IMA) or perpendicular magnetic
anisotropy (PMA) LBM. Design 2 is similar to the basic building
block of SOT-MRAM device (Liu et al., 2012) where the thermal
fluctuation of the free layer magnetization of the stochastic MTJ
(s-MTJ) (Vodenicarevic et al., 2017, 2018; Mizrahi et al., 2018;
Parks et al., 2018; Zink et al., 2018; Borders et al., 2019) is tuned
by a spin current generated in a heavy metal layer underneath
the LBM due to SOT effect. The in-plane polarized spin current
from the SOT effect in the spin hall effect (SHE) material in
design 2 requires an in-plane LBM to tune its magnetization,
although a perpendicular LBM with a tilted anisotropy axis
is also experimentally shown to work (Debashis et al., 2020).
However, design 2 requires spin current manipulation, design
1 does not rely on that as long as circular in-plane LBMs
with continuous valued magnetization states that are hard to
pin are used. In-plane LBMs also provide faster fluctuation
than perpendicular ones leading to faster sampling speed in the
probabilistic hardware (Hassan et al., 2019; Kaiser et al., 2019).

The key distinguishing feature of the two p-bit designs
(designs 1 and 2) is the time scales in implementing
Equation (1a). From a hardware point of view, Equation (1a)
has two components: a random number generator (RNG) (rand)
and a tunable component (tanh). In design 1, the RNG is the s-
MTJ utilizing an LBM and the tunable component is the NMOS
transistor, thus having two different time scales in the equation.
But in design 2, both the RNG and the tunable component are
implemented by a single s-MTJ utilizing an LBM, thus having just
one time scale in the equation. This difference in time scales in
the two designs is shown in Figure 2. Note that although the two
p-bit designs have the same RNG source, namely a fluctuating
magnetization, it is the difference in their circuit configuration
with or without the NMOS transistor in the MTJ branch that
results in different time dynamics of the two designs.

In traditional software implementations, p-bits are updated
sequentially for accurate operation such that after each τS + τN
time interval, only one p-bit is updated (Hinton, 2007). This
naturally implies the use of sequencers to ensure the sequential
update of p-bits. The sequencer generates an Enable signal for
each p-bit in the network and ensures that no two p-bits update
simultaneously. The sequencer also makes sure that every p-
bit is updated at least once in a time step where each time
step corresponds to N · (τS + τN), N being the number of p-
bits in the network. (Roberts and Sahu, 1997; Pervaiz et al.,

Frontiers in Computational Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 58479784

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

FIGURE 1 | Clocked vs. autonomous p-circuit: (A) a probabilistic (p-)circuit is composed of p-bits interconnected by a weight logic (synapse) that computes the input

Ii to the ith p-bit as a function of the outputs from other p-bits. (B) p-bit design 1 based on stochastic Magnetic Tunnel Junction (s-MTJ) using low barrier

nanomagnets (LBMs) and an NMOS transistor as tunable component. (C) p-bit design 2 based on s-MTJ as tunable component. Both designs have been used to

build a p-circuit as shown in (A). (D) Two types of p-circuits are built: a directed or Bayesian network and a symmetrically connected Boltzmann network. The

p-circuits are sequential (labeled as SeqPSL) that means p-bits are updated sequentially, one at a time, using a clock circuitry with a sequencer. It is shown that for

Boltzmann networks update order does not matter and any random update order would produce the correct probability distribution. But for Bayesian networks, a

specific, parent-to-child update order is necessary to converge to the correct probability distribution dictated by the Bayes rule. (E) The same Bayesian and

Boltzmann p-circuits are implemented on an autonomous hardware built with p-bit design 1 and 2 without any clocks or sequencers. It is interesting to note that for

Bayesian networks, design 2 fails to match the probabilities from applying Bayes rule, whereas design 1 works quite well as an autonomous Bayesian network. For

every histogram in this figure, 106 samples have been collected.

2018). For symmetrically connected networks (Jij = Jji) such
as Boltzmann machines, the update order of p-bits does not
matter and any random update order produces the standard
probability distribution described by equilibrium Boltzmann law
as long as p-bits are updated sequentially. But for directed acyclic
networks (Jij 6= 0, Jji = 0) or BNs to be consistent with the
expected conditional probability distribution, p-bits need to be
updated not only sequentially but also in a specific update order,
which is from the parent to child nodes (Neal, 1992) similar to
the concept of forward sampling in belief networks (Henrion,

1988; Guo and Hsu, 2002; Koller and Friedman, 2009). As long
as this parent to child update order is maintained, the network
converges to the correct probability distribution described by
probability chain rule or Bayes rule. This effect of update order
in a sequential p-circuit is shown on a three p-bit network in
Figure 1D. In the Supplementary Material, it is shown in an
example how the CPT of the BN can be mapped to a p-circuit
following Faria et al. (2018).

Unlike sequential p-circuits in ANN literature, the
distinguishing feature of our probabilistic hardware is that

Frontiers in Computational Neuroscience | www.frontiersin.org 3 March 2021 | Volume 15 | Article 58479785

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

FIGURE 2 | Autonomous behavioral model for p-bit: (A–D) Behavioral model for the autonomous hardware with design 1 (Figure 1B) is benchmarked with SPICE

simulations of the actual device involving experimentally benchmarked modules. The behavioral model (labeled as “PPSL”) shows good agreement with SPICE in

terms of capturing fluctuation dynamics (A), steady-state sigmoidal response (B), and two different time responses: autocorrelation time of the fluctuating output

under zero input condition labeled as τcorr (C), which is proportional to the LBM retention time τN in the nanosecond range, and the step response time τstep (D) that is

proportional to transistor response time τT , which is few picoseconds and much smaller than τN. The magnet parameters used in the simulations are mentioned in

section 2. (E–H) Similar benchmarking for p-bit design 2 (Figure 1C). In this case, τstep is proportional to τN. For (B,F), each point for the SPICE simulation was

obtained by averaging mi over 1 µs. The step response time for (D,H) is obtained by averaging over 2,000 ensembles where Ii = −5 at t < 0 and Ii = 0 at t > 0.

it is autonomous where each p-bit runs in parallel without any
clocks or sequencers. This autonomous p-circuit (ApC) allows
massive parallelism potentially providing peta flips per second
sampling speed (Sutton et al., 2020). The complete sequencer-
free operation of our “autonomous” p-circuit is very different
from the “asynchronous” operation of spiking neural networks
(Merolla et al., 2014; Davies et al., 2018). Although p-bits are
fluctuating in parallel in an ApC, it is very unlikely that two
p-bits will update at the exact same time since random noise
control their dynamics. Therefore, persistent parallel updates
are extremely unlikely and are not a concern. Note that even if
p-bits update sequentially, each update has to be informed such
that when one p-bit updates it has received the up-to-date input
Ii based on the latest states of other p-bits mj that it is connected
to. This informed update can be ensured as long as the synapse
response time is much faster than the neuron time (τS ≪ τN)
and this is a key design rule for an ApC. If the input of the p-bit
is based on old state of neighboring p-bits or on time-integrated
synaptic inputs, the ApC operation declines in functionality or
fails completely. However, for τS ≪ τN , the ApC works properly
for a Boltzmann network without any clock because no specific
update order is required in this case. But, it is not intuitive at all
if an ApC would work for a BN because a particular parent to
child informed update order is required in this case, as shown
in Figure 1D. As such, it is not straightforward that a clockless
autonomous circuit can naturally ensure this specific informed
update order. In Figure 1E, we have shown that it is possible
to design hardware p-circuit that can naturally ensure a parent
to child informed update order in a BN without any clocks. In

Figure 1E, two p-bit designs are evaluated for implementing
both Boltzmann network and BN. We have shown that design
1 is suitable for both Boltzmann network and BN. But design
2 is suitable for Boltzmann networks only and does not work
for BNs in general. The synapse in both types of p-circuits is
implemented using a resistive crossbar architecture (Alibart
et al., 2013; Camsari et al., 2017b), although there are also other
types of hardware synapse implementations based onmemristors
(Li et al., 2018; Mahmoodi et al., 2019; Mansueto et al., 2019),
magnetic tunnel junctions (Ostwal et al., 2019), spin orbit torque
driven domain wall motion devices (Zand et al., 2018), phase
change memory devices (Ambrogio et al., 2018), and so on. In all
the simulations, τS is assumed to be negligible compared to other
time scales in the circuit dynamics.

Our proposed probabilistic hardware for BNs shows
significant biological relevance because of the following reasons:
(1) The brain consists of neurons and synapses. The basic
building block called “p-bit” of our proposed hardware mimics
the neuron and the interconnection among p-bits mimics the
synapse function. (2) The components of brain are stochastic
or noisy by nature. p-bits mimicking the neural dynamics
in our proposed hardware are also stochastic. (3) Brain does
not have a single clock for synchronous operation and can
perform massively parallel processing (Strukov et al., 2019).
Our autonomous hardware also does not have any global clock
or sequencers and each p-bit fluctuates in parallel allowing
massively parallel operation.

Further, we have provided a behavioral model in section 2
for both designs 1 and 2, illustrating the essential characteristics

Frontiers in Computational Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 58479786

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

needed for correct sequencer-free operation of BNs. Both models
are benchmarked against state-of-the-art device/circuit models
(SPICE) of the actual devices and can be used for the efficient
simulation of large-scale autonomous networks.

2. BEHAVIORAL MODEL FOR
AUTONOMOUS HARDWARE

In this section, we will develop an autonomous behavioral
model that we will call parallel probabilistic spin logic (PPSL)
for design 1 (Figure 1B) and revisit the behavioral model for
design 2, which was proposed by Sutton et al. (2020). The term
“Parallel” refers to all the p-bits fluctuating in parallel without
any clocks or sequencers. These behavioral models are high-
level representations of the p-circuit and p-bit behavior and
connect Equations (1a) and (1b) to the hardware p-bit designs.
Please note the parameters introduced in these models will
represent certain parts of the p-bit and synapse behavior like
MTJ resistances (rMTJ) and transistor resistances (rT) but are
generally dimensionless apart from time variables (e.g., τT ,τN).
The advantage of these models is that they are computationally
less expensive to use than full SPICE simulations while preserving
the crucial device and system characteristics.

2.1. Autonomous Behavioral Model:
Design 1
The autonomous circuit behavior of design 1 can be explained
by slightly modifying the two equations (Equations 1a,b) stated
in section 1. The fluctuating resistance of the low barrier
nanomagnet-based MTJ is represented by a correlated random
number rMTJ with values between −1 and +1 and an average
dwell time of the fluctuation denoted by τN . The NMOS
transistor tunable resistance is denoted by rT and the inverter
is represented by a sgn function. Thus, the normalized output
mi = VOUT,i/VDD of the ith p-bit can be expressed as:

mi (t + 1t) = sgn
(

rT,i (t + 1t) − rMTJ,i (t + 1t)
)

(2)

where 1t is the simulation time step, rT,i represents the NMOS
transistor resistance tunable by the normalized input Ii =

VIN,i/V0 (compare Equation 1a) where V0 is a fitting parameter
which is ≈ 50mV for the chosen parameters and transistor
technology (compare Figure 2B) and rMTJ,i is a correlated
random number generator with an average retention time of τN .
For design 1, the transistor represents the tunable component
that works in conjunction with the unbiased stochastic signal of
the MTJ. rT,i as a function of input Ii is approximated by a tanh
function with a response time denoted by τT modeled by the
following equations:

rT,i (t + 1t) = rT,i (t) exp (−1t/τT)

+
(

1− exp (−1t/τT)
) (

tanh
(

Ii(t + 1t)
))

(3)

where it can be clearly seen that the dimensionless quantity rT,i
representing the transistor resistance is bounded by −1 ≤ rT,i ≤
1 for all synaptic inputs. Figure 2B shows by utilizing SPICE
simulation how Ii influences the average output mi and shows

that the average response of the circuit is in good agreement with
the tanh-function used in Equation (3).

The synapse delay τS in computing the input Ii can be
modeled by:

Ii (t + 1t) = Ii (t) exp (−1t/τS)

+
(

1− exp (−1t/τS)
)

I0

(

∑

j

Jijmj(t)+ hj

)

(4)

For calculating rMTJ,i, at time t + 1t a new random number will
be picked according to the following equations:

rflip,i (t + 1t) = sgn

(

exp

(

−
1t

τN

)

− rand[0,1]

)

(5a)

where rand[0,1] is a uniformly distributed random number
between 0 and 1 and τN represents the average retention time
of the fluctuating MTJ resistance. If rflip is -1, a new random
rMTJ will be chosen between−1 and+1. Otherwise, the previous
rMTJ(t) will be kept in the next time step (t + 1t), which can be
expressed as

rMTJ,i (t + 1t) =
rflip,i (t + 1t) + 1

2
rMTJ,i (t)

−
rflip,i (t + 1t) − 1

2
rand[−1,1] (5b)

where−1 ≤ rMTJ,i(t) ≤ 1.
The charge current flowing through the MTJ branch of p-

bit design 1 can get polarized by the fixed layer of the MTJ and
generate a spin current Is that can tune/pin the MTJ dynamics
by modifying τN . This effect is needed for tuning the output of
design 2 but is not desired in design 1. However, the developed
behavioral model can account for this pinning effect according to

τN = τ 0Nexp(rMTJIMTJ), (6)

where τ 0N is the retention time of rMTJ when IMTJ = 0.
The dimensionless pinning current IMTJ is defined as IMTJ =

Is/Is,0 where Is,0 can be extracted by following the procedure of
Figure 2F. This pinning effect by IMTJ is much smaller in in-plane
magnets (IMA) than perpendicular magnets (PMA) (Hassan
et al., 2019) and is ignored for design 1 throughout this paper.

Figures 2A–D shows the comparison of this behavioral model
for p-bit design 1with SPICE simulation of the actual hardware in
terms of fluctuation dynamics, sigmoidal characteristic response,
autocorrelation time (τcorr), and step response time (τstep) and in
all cases the behavioral model closely matches SPICE simulations.
The SPICE simulation involves experimentally benchmarked
modules for different parts of the device. The SPICE model
for the s-MTJ model solves the stochastic Landau–Lifshitz–
Gilbert equation for the LBM physics. For the transistors, 14
nm Predictive Technology Model1 is used. As simulator HSPICE

1http://ptm.asu.edu/

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 58479787

http://ptm.asu.edu/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

is utilized with the .trannoise function and a time step of 1
ps. The simulating framework was benchmarked experimentally
and by using standard simulation tools in the field (Datta, 2012;
Torunbalci et al., 2018). The autonomous behavioral model for
design 1 is labeled as “PPSL: design 1.” The benchmarking is
done for two different LBMs: (1) Faster fluctuating magnet 1
with saturation magnetization Ms = 1100 emu/cc, diameter
D = 22 nm, thickness th = 2 nm, in-plane easy axis anisotropy
Hk = 1 Oe, damping coefficient α = 0.01, demagnetization
field Hd = 4πMs and (2) slower fluctuating magnet 2 with the
same parameters as in magnet 1 except D = 150 nm. The supply
voltage was set to VDD = −VSS = 0.4 V. The fast and slow
fluctuations of the normalized output mi = VOUT,i/VDD are
captured by changing the τN parameter in the PPSL model. In
the steady-state sigmoidal response,V0 is a tanh fitting parameter
that defines the width of the sigmoid and lies within the range
of 40–60 mV reasonably well depending on which part of the
sigmoid needs to be better matched. In Figure 2B, V0 value of
50 mV is used to fit the sigmoid from SPICE simulation. The
following parameters have been extracted from the calibration
shown in Figure 2, where 1t = 1 ps was used: τN = 150 ps
(magnet 1), τN = 1.5 ns (magnet 2), τT = 3 ps, Is,0 = 120 µA
(magnet 1), Is,0 = 1 mA (magnet 2).

There are two types of time responses: (1) Autocorrelation
time under zero input condition labeled as τcorr and (2) step
response time τstep. The full width half maximum (FWHM) of
the autocorrelation function of the fluctuating output under zero
input is defined by τcorr , which is proportional to the retention
time τN of the LBM. The step response time τstep is obtained
by taking an average of the p-bit output over many ensembles
when the input Ii is stepped from a large negative value to zero
at time t = 0 and measuring the time it takes for the ensemble
averaged output to reach its statistically correct value consistent
with the new input. τstep defines how fast the first statistically
correct sample can be obtained after the input is changed. For p-
bit design 1, τstep is independent of LBM retention time τN and is
defined by the NMOS transistor response time τT , which is much
faster (few picoseconds) than LBMfluctuation time τN . The effect
of these two very different time scales in design 1 (τstep ≪ τcorr)
on an autonomous BN is described in section 3.

2.2. Autonomous Behavioral Model:
Design 2
The autonomous behavioral model for design 2 is proposed
in Sutton et al. (2020). In this article, we have benchmarked
this model with the SPICE simulation of the single p-bit steady
state and time responses shown in Figures 2E–H. According to
this model, the normalized output mi = VOUT,i/VDD can be
expressed as:

mi(t + 1t) = mi(t)sgn
(

pNOTflip,i(t + 1t)− rand[0,1]
)

(7a)

pNOTflip,i(t + 1t) = exp
(

−
1t

τN exp(Iimi(t))

)

(7b)

where pNOTflip,i(t + 1t) is the probability of retention of

the ith p-bit (or “not flipping”) in the next time step that

is a function of average neuron flip time τN , input Ii, and
the current p-bit output mi(t). Figure 2 shows how this
simple autonomous behavioral model for design 2 matches
reasonably well with SPICE simulation of the device in terms
of fluctuation dynamics (Figure 2E), sigmoidal characteristic
response (Figure 2F), autocorrelation time (τcorr) (Figure 2G),
and step response time (τstep) (Figure 2H). In design 2, τstep
and τcorr are both proportional to LBM fluctuation time τN
unlike design 1.

Different time scales in p-bit designs 1 and 2 are also reported
in Hassan et al. (2019) in an energy-delay analysis context. In this
article, we explain the effect of these time scales in designing an
autonomous BN (section 3).

3. DIFFERENCE BETWEEN DESIGNS 1
AND 2 IN IMPLEMENTING BAYESIAN
NETWORKS

The behavioral models introduced in section 2 are applied to
implement a multi-layer belief/BN with 19 p-bits and random
interconnection strengths between +1 and −1 (Figure 3A).
For illustrative purposes, the interconnections are designed in
such a way that although there are no meaningful correlations
between the blue and red colored nodes with random couplings,
pairs of intermediate nodes (A,M1) and (M1,B) get negatively
correlated because of a net −r2 type coupling through each
branch connecting the pairs. So it is expected that the start
and end nodes (A,B) get positively correlated. Figure 3B shows
histograms of four configurations (00, 01, 10, 11) of the pair
of nodes A and B obtained from different approaches: Bayes
rule (labeled as Analytic), SPICE simulation of design 1 (SPICE:
Design 1) and design 2 (SPICE: Design 2), and autonomous
behavioral model for design 1 (PPSL: Design 1) and design 2
(PPSL: design 2). It is shown that results from SPICE simulation
and behavioral model for design 1 matches reasonably well with
the standard analytical values showing 00 and 11 states with
highest probability, whereas design 2 autonomous hardware does
not work well in terms of matching with the analytical results
and shows approximately all equal peaks. We have tested this
basic conclusion for other networks as well with more complex
topology as shown in Supplementary Figure 1. The analytical
values are obtained from applying the standard joint probability
rule for BNs (Pearl, 2014; Russell and Norvig, 2016), which is:

P(x1, x2, . . . , xN) =
N

∏

i=1

P
(

xi|Parents(xi)
)

(8)

Joint probability between two specific nodes xi and xj can
be calculated from the above equation by summing over all
configurations of the other nodes in the network, which becomes
computationally expensive for larger networks. But one major
advantage of our probabilistic hardware is that probabilities of
specific nodes can be obtained by looking at the nodes of interest
ignoring all other nodes in the system similar to what Feynman
stated about a probabilistic computer imitating the probabilistic
laws of nature (Feynman, 1982). Indeed, in the BN example in

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 58479788

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

FIGURE 3 | Difference between designs 1 and 2: (A) The behavioral models described in Figure 2 are applied to simulate a 19 p-bit BN with random Jij between +1

and -1. The indices i and j of Ji,j correspond to the numbers inside each circle. The interconnections are designed in such a way so that pairs of intermediate nodes

(A,M1) and (M1,B) get anti-correlated and (A,B) gets positively correlated. (B) The probability distribution of four configurations of AB are shown in a histogram from

different approaches (SPICE, behavioral model and analytic). The behavioral models for two designs (labeled as PPSL) match reasonably well with the corresponding

results from SPICE simulation of the actual hardware. Note that while design 1 matches with the standard analytical values quite well, design 2 does not works as an

autonomous BN in general. For each histogram, 106 samples have been collected.

FIGURE 4 | Effect of step response time in design 1: The reason for design 1 to work accurately as an autonomous Bayesian network as shown in Figure 3 is the

two different time scales (τT and τN) in this design with the condition that τT ≪ τN. The same histogram shown in Figure 3 is plotted using the proposed behavioral

model for different τT/τN ratios and compared with the analytical values. It can be seen that as τT gets comparable to τN, the probability distribution diverges from the

standard statistical values. For each histogram 106, samples have been collected.

Figure 3, the probabilities of different configurations of nodes A
and B were obtained by looking at the fluctuating outputs of the
two nodes ignoring all other nodes. For the SPICE simulation of
design 1 hardware, tanh fitting parameter V0 = 57 mV is used
and the mapping principle from dimensionless coupling terms
Jij to the coupling resistances in the hardware is described in
Faria et al. (2018). An example of this mapping is given in the
Supplementary Material.

The reason why design 1 works for a BN and design 2 does
not is because of the two very different time responses of the
two designs shown in Figure 2 due to the fact that the tunable
component is the transistor in design 1 (τstep ∝ τT) and the MTJ
in design 2 (τstep ∝ τN). It is these two different time scales in
design 1 (τstep ≪ τcorr) that naturally ensures a parent to child
informed update order in a BN. The reason is that when τstep is
small, each child node can immediately respond to any change
of its parent nodes that happens due to a random event, which
have a much larger time scale ∝ τcorr . Thus, due to that fast
step response, information about changing p-bits at the parent

node can propagate quickly through the network and the output
of the child nodes can be conditionally satisfied with the parent
nodes very fast. Otherwise, if τcorr gets comparable to τstep, the
child nodes will not be able to keep up with the fast changing
parent nodes since the information of the parent p-bit state has
not been propagated through the network. As a result, the child
nodes will produce a substantial number of statistically incorrect
samples over the entire time range, thus deviating from the
correct probability distribution. This effect is especially strong for
networks where the coupling strength between p-bits is large.

To illustrate this point, the effect of τstep/τcorr ratio is shown
in Figure 4 for the same BN presented in Figure 3 by plotting the
histogram of AB configurations for different τT/τN ratios. It is
shown that when τT/τN ratio is small, the histogram converges
to the correct distribution. As τT gets comparable to τN , the
histogram begins to diverge from the correct distribution. Thus,
the very fast NMOS transistor response in design 1 makes it
suitable for an autonomous BN hardware. One thing to note that
under certain conditions, results from design 2 can also match

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2021 | Volume 15 | Article 58479789

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

the analytical results if spin current bias is large enough to drive
down the fast step response time to ensure τstep ≪ τcorr .

So apart from ensuring a fast synapse compared to neuron
fluctuation time (τS ≪ τN), which is the design rule for
an autonomous probabilistic hardware, the autonomous BN
demands an additional p-bit design rule that is a much faster
step response time of the p-bit compared to its fluctuation time
(τstep ≪ τN) as ensured in design 1. In all the simulations, the
LBM was a circular in-plane magnet whose magnetization spans
all values between +1 and −1 and negligible pinning effect. If
the LBM is a PMA magnet with bipolar fluctuations having just
two values +1 and −1, design 1 will not provide any sigmoidal
response except with substantial pinning effect (Borders et al.,
2019). Under this condition, τstep of design 1 will be comparable
to τN again and the system will not work as an autonomous BN
in general. Therefore, LBM with continuous range fluctuation is
expected for design 1 p-bit to work properly as a BN.

4. DISCUSSION

In this article, we have elucidated the design criteria for
an autonomous clockless hardware for BNs that requires a
specific parent to child update order when implemented on
a probabilistic circuit. By performing SPICE simulations of
two autonomous probabilistic hardware designs built out of
p-bits (designs 1 and 2 in Figure 1), we have shown that
the autonomous hardware will naturally ensure a parent to
child informed update order without any sequencers if the
step response time (τstep) of the p-bit is much smaller than
its autocorrelation time (τcorr). This criteria of having two
different time scales is met in design 1 as τstep comes from the
NMOS transistor response time τT in this design, which is few
picoseconds. We have also proposed an autonomous behavioral
model for design 1 and benchmarked it against SPICE simulation
of the actual hardware. All the simulations using behavioral
model for design 1 are performed ignoring some non-ideal effects
listed as follows:

• Pinning of the s-MTJ fluctuation due to STT effect is ignored
by assuming IMTJ = 0 in Equation (6). This is a reasonable
assumption considering circular in-plane magnets that are
very difficult to pin due to the large demagnetization field that
is always present, irrespective of the energy barrier (Hassan
et al., 2019). This effect is more prominent in perpendicular
anisotropy magnets (PMA)magnets. It is important to include
the pinning effect in p-bits with bipolar LBM fluctuations
because in this case the p-bit does not provide a sigmoidal
response without the pinning current. This effect is also
experimentally observed in Borders et al. (2019) for PMA
magnets. Such a p-bit design with bipolar PMA and STT
pinning might not work for BNs in general, because in this
case τstep will be dependent on magnet fluctuation time τN .

• In the proposed behavioral model, the step response time
of the NMOS transistor τT in design 1 is assumed to
be independent of the input I. But there is a functional
dependence of τT on I in real hardware.

• The NMOS transistor resistance rT is approximated as a tanh
function for simplicity. In order to capture the hardware
behavior in a better way, the tanh can be replaced by a more
complicated function and the weight matrix [J] will have to be
learnt around that function.

All the non-ideal effects listed above are supposed to have
minimal effects on different probability distributions shown in
this article. Real LBMs may suffer from common fabrication
defects, resulting in variations in average magnet fluctuation
time τN (Abeed and Bandyopadhyay, 2019). The autonomous
BN is also quite tolerant to such variations in τN as long
as τT ≪min(τN).

It is important to note that, for design 1 (Transistor-
controlled) to function as a p-bit that has a step response time
(τstep) much smaller than its average fluctuation time (τN), the
LBM fluctuation needs to be continuous and not bipolar. It is
important to note that while most experimental implementations
of low barrier magnetic tunnel junctions or spin-valves exhibit
telegraphic (binary) fluctuations (Pufall et al., 2004; Locatelli
et al., 2014; Parks et al., 2018; Debashis et al., 2020), theoretical
results (Abeed and Bandyopadhyay, 2019; Hassan et al., 2019;
Kaiser et al., 2019) indicate that it should be possible to design
low barrier magnets with continuous fluctuations. Preliminary
experimental results for such circular disk nanomagnets have
been presented in Debashis et al. (2016). We believe that a lack of
experimental literature on such magnets is partly due to the lack
of interest of randomly fluctuating magnets that have long been
discarded as impractical and irrelevant. The other experimentally
demonstrated p-bits (Ostwal et al., 2018; Ostwal and Appenzeller,
2019; Debashis, 2020) fall under design 2 category with the
LBM magnetization tuned by SOT effect and are not suitable for
autonomous BN operation in general. It might also be possible to
design p-bits using other phenomena such as voltage controlled
magnetic anisotropy (Amiri and Wang, 2012), but this is beyond
the scope of the present study. Here, we have specifically focused
on two designs that can be implemented with existing MRAM
technology based on STT and SOT.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

RF and SD wrote the paper. RF performed the simulations. JK
helped setting up the simulations. KC developed the simulation
modules for the BSN in SPICE. All authors discussed the results
and helped refine the manuscript.

FUNDING

This work was supported in part by ASCENT, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 58479790

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

ACKNOWLEDGMENTS

The authors would like to thank professor Joerg Appenzeller
from Purdue University for helpful discussions. This manuscript
has been released as a preprint at arXiv (Faria et al., 2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2021.584797/full#supplementary-material

REFERENCES

Abeed, M. A., and Bandyopadhyay, S. (2019). Low energy barrier
nanomagnet design for binary stochastic neurons: design challenges for
real nanomagnets with fabrication defects. IEEE Magnet. Lett. 10, 1–5.
doi: 10.1109/LMAG.2019.2929484

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cogn. Sci. 9, 147–169. doi: 10.1207/s15516709cog0901_7

Alibart, F., Zamanidoost, E., and Strukov, D. B. (2013). Pattern classification by
memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4,
1–7. doi: 10.1038/ncomms3072

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C.,
et al. (2018). Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 60–67. doi: 10.1038/s41586-018-0180-5

Amiri, P. K., and Wang, K. L. (2012). “Voltage-controlled magnetic anisotropy
in spintronic devices,” in Spin, Vol. 2 (World Scientific), 1240002.
doi: 10.1142/S2010324712400024

Arias, J., Martinez-Gomez, J., Gamez, J. A., de Herrera, A. G. S., and Müller, H.
(2016). Medical image modality classification using discrete bayesian networks.
Comput. Vis. Image Understand. 151, 61–71. doi: 10.1016/j.cviu.2016.04.002

Behin-Aein, B., Diep, V., and Datta, S. (2016). A building block for hardware belief
networks. Sci. Rep. 6:29893. doi: 10.1038/srep29893

Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., and Piramanayagam, S.
(2017). Spintronics based random access memory: a review. Mater. Tdy. 20,
530–548. doi: 10.1016/j.mattod.2017.07.007

Bielza, C., and Larrañaga, P. (2014). Bayesian networks in neuroscience: a survey.
Front. Comput. Neurosci. 8:131. doi: 10.3389/fncom.2014.00131

Borders, W. A., Pervaiz, A. Z., Fukami, S., Camsari, K. Y., Ohno, H., and Datta, S.
(2019). Integer factorization using stochastic magnetic tunnel junctions.Nature
573, 390–393. doi: 10.1038/s41586-019-1557-9

Brown,W. (1979). Thermal fluctuation of fine ferromagnetic particles. IEEE Trans.
Magnet. 15, 1196–1208. doi: 10.1109/TMAG.1979.1060329

Camsari, K. Y., Chowdhury, S., and Datta, S. (2019). Scalable emulation of sign-
problem-free hamiltonians with room-temperature p-bits. Phys. Rev. Appl.
12:034061. doi: 10.1103/PhysRevApplied.12.034061

Camsari, K. Y., Debashis, P., Ostwal, V., Pervaiz, A. Z., Shen, T., Chen,
Z., et al. (2020). From charge to spin and spin to charge: Stochastic
magnets for probabilistic switching. Proc. IEEE. 108:1322–1337.
doi: 10.1109/JPROC.2020.2966925

Camsari, K. Y., Faria, R., Sutton, B. M., and Datta, S. (2017a). Stochastic p-bits for
invertible logic. Phys. Rev. X 7:031014. doi: 10.1103/PhysRevX.7.031014

Camsari, K. Y., Salahuddin, S., and Datta, S. (2017b). Implementing p-
bits with embedded mtj. IEEE Electron Dev. Lett. 38, 1767–1770.
doi: 10.1109/LED.2017.2768321

Chakrapani, L. N., Korkmaz, P., Akgul, B. E., and Palem, K. V. (2007). Probabilistic
system-on-a-chip architectures. ACM Trans. Design Automat. Electron. Syst.
12:29. doi: 10.1145/1255456.1255466

Correa, M., Bielza, C., and Pamies-Teixeira, J. (2009). Comparison of bayesian
networks and artificial neural networks for quality detection in a machining
process. Expert Syst. Appl. 36, 7270–7279. doi: 10.1016/j.eswa.2008.09.024

Darwiche, A. (2009). Modeling and Reasoning With Bayesian Networks.
Cambridge University Press. Available online at: https://www.cambridge.
org/core/books/modeling-and-reasoning-with-bayesian-networks/
8A3769B81540EA93B525C4C2700C9DE6 doi: 10.1017/CBO9780511811357

Datta, D. (2012).Modeling of spin transport in MTJ devices (Ph.D. thesis), Purdue
University Graduate School; ProQuest. Available online at: https://docs.lib.
purdue.edu/dissertations/AAI3556189/

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Debashis, P. (2020). Spintronic devices as P-bits for probabilistic computing (Ph.D.
thesis). Purdue University Graduate School. Available online at: https://

hammer.figshare.com/articles/thesis/Spintronic_Devices_as_P-bits_for_
Probabilistic_Computing/11950395

Debashis, P., Faria, R., Camsari, K. Y., Appenzeller, J., Datta, S., and Chen, Z.
(2016). “Experimental demonstration of nanomagnet networks as hardware for
ising computing,” in 2016 IEEE International Electron Devices Meeting (IEDM)

(San Francisco, CA: IEEE), 34. doi: 10.1109/IEDM.2016.7838539
Debashis, P., Faria, R., Camsari, K. Y., Datta, S., and Chen, Z. (2020). Correlated

fluctuations in spin orbit torque coupled perpendicular nanomagnets. Phys.
Rev. B 101:094405. doi: 10.1103/PhysRevB.101.094405

Faria, R., Camsari, K. Y., and Datta, S. (2017). Low-barrier nanomagnets as p-bits
for spin logic. IEEE Magnet. Lett. 8, 1–5. doi: 10.1109/LMAG.2017.2685358

Faria, R., Camsari, K. Y., and Datta, S. (2018). Implementing bayesian networks
with embedded stochastic mram. AIP Adv. 8:045101. doi: 10.1063/1.5021332

Faria, R., Kaiser, J., Camsari, K. Y., and Datta, S. (2020). Hardware design for
autonomous bayesian networks. arXiv preprint arXiv:2003.01767.

Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys.
21:467–488. doi: 10.1007/BF02650179

Friedman, J. S., Calvet, L. E., Bessiére, P., Droulez, J., and Querlioz, D. (2016).
Bayesian inference with muller c-elements. IEEE Trans. Circ. Syst. I Regular

Pap. 63, 895–904. doi: 10.1109/TCSI.2016.2546064
Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using bayesian

networks to analyze expression data. J. Comput. Biol. 7, 601–620.
doi: 10.1089/106652700750050961

Guo, H., and Hsu, W. (2002). “A survey of algorithms for real-time bayesian
network inference,” in Join Workshop on Real Time Decision Support

and Diagnosis Systems. American Association for Artificial Intelligence.
Available online at: https://www.aaai.org/Papers/Workshops/2002/WS-02-15/
WS02-15-001.pdf

Hassan, O., Faria, R., Camsari, K. Y., Sun, J. Z., and Datta, S. (2019). Low-barrier
magnet design for efficient hardware binary stochastic neurons. IEEE Magnet.

Lett. 10, 1–5. doi: 10.1109/LMAG.2019.2910787
Heckerman, D., and Breese, J. S. (1996). Causal independence for probability

assessment and inference using bayesian networks. IEEE Trans. Syst. Man

Cybernet A Syst. Hum. 26, 826–831. doi: 10.1109/3468.541341
Henrion, M. (1988). “Propagating uncertainty in bayesian networks by

probabilistic logic sampling,” in Machine Intelligence and Pattern Recognition,
(Elsevier) 5:149–163. doi: 10.1016/B978-0-444-70396-5.50019-4

Hinton, G. E. (2007). Boltzmann machine. Scholarpedia 2:1668.
doi: 10.4249/scholarpedia.1668

Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., et al. (2003).
A bayesian networks approach for predicting protein-protein interactions from
genomic data. Science 302, 449–453. doi: 10.1126/science.1087361

Jonas, E. M. (2014). Stochastic architectures for probabilistic computation (Ph.D.
thesis). Massachusetts Institute of Technology, Cambridge, MA, United States.

Kaiser, J., Faria, R., Camsari, K. Y., and Datta, S. (2020). Probabilistic circuits
for autonomous learning: a simulation study. Front. Comput. Neurosci. 14:14.
doi: 10.3389/fncom.2020.00014

Kaiser, J., Rustagi, A., Camsari, K., Sun, J., Datta, S., and Upadhyaya, P. (2019).
Subnanosecond fluctuations in low-barrier nanomagnets. Phys. Rev. Appl.
12:054056. doi: 10.1103/PhysRevApplied.12.054056

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles

and Techniques. MIT Press. Available online at: https://mitpress.mit.edu/books/
probabilistic-graphical-models

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al. (2018). Efficient and
self-adaptive in-situ learning in multilayer memristor neural networks. Nat.
Commun. 9, 1–8. doi: 10.1038/s41467-018-04484-2

Liu, L., Pai, C.-F., Li, Y., Tseng, H., Ralph, D., and Buhrman, R. (2012). Spin-torque
switching with the giant spin hall effect of tantalum. Science 336, 555–558.
doi: 10.1126/science.1218197

Locatelli, N., Mizrahi, A., Accioly, A., Matsumoto, R., Fukushima, A., Kubota,
H., et al. (2014). Noise-enhanced synchronization of stochastic magnetic
oscillators. Phys. Rev. Appl. 2:034009. doi: 10.1103/PhysRevApplied.2.034009

Frontiers in Computational Neuroscience | www.frontiersin.org 9 March 2021 | Volume 15 | Article 58479791

https://www.frontiersin.org/articles/10.3389/fncom.2021.584797/full#supplementary-material
https://doi.org/10.1109/LMAG.2019.2929484
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1038/ncomms3072
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1142/S2010324712400024
https://doi.org/10.1016/j.cviu.2016.04.002
https://doi.org/10.1038/srep29893
https://doi.org/10.1016/j.mattod.2017.07.007
https://doi.org/10.3389/fncom.2014.00131
https://doi.org/10.1038/s41586-019-1557-9
https://doi.org/10.1109/TMAG.1979.1060329
https://doi.org/10.1103/PhysRevApplied.12.034061
https://doi.org/10.1109/JPROC.2020.2966925
https://doi.org/10.1103/PhysRevX.7.031014
https://doi.org/10.1109/LED.2017.2768321
https://doi.org/10.1145/1255456.1255466
https://doi.org/10.1016/j.eswa.2008.09.024
https://www.cambridge.org/core/books/modeling-and-reasoning-with-bayesian-networks/8A3769B81540EA93B525C4C2700C9DE6
https://www.cambridge.org/core/books/modeling-and-reasoning-with-bayesian-networks/8A3769B81540EA93B525C4C2700C9DE6
https://www.cambridge.org/core/books/modeling-and-reasoning-with-bayesian-networks/8A3769B81540EA93B525C4C2700C9DE6
https://doi.org/10.1017/CBO9780511811357
https://docs.lib.purdue.edu/dissertations/AAI3556189/
https://docs.lib.purdue.edu/dissertations/AAI3556189/
https://doi.org/10.1109/MM.2018.112130359
https://hammer.figshare.com/articles/thesis/Spintronic_Devices_as_P-bits_for_Probabilistic_Computing/11950395
https://hammer.figshare.com/articles/thesis/Spintronic_Devices_as_P-bits_for_Probabilistic_Computing/11950395
https://hammer.figshare.com/articles/thesis/Spintronic_Devices_as_P-bits_for_Probabilistic_Computing/11950395
https://doi.org/10.1109/IEDM.2016.7838539
https://doi.org/10.1103/PhysRevB.101.094405
https://doi.org/10.1109/LMAG.2017.2685358
https://doi.org/10.1063/1.5021332
https://doi.org/10.1007/BF02650179
https://doi.org/10.1109/TCSI.2016.2546064
https://doi.org/10.1089/106652700750050961
https://www.aaai.org/Papers/Workshops/2002/WS-02-15/WS02-15-001.pdf
https://www.aaai.org/Papers/Workshops/2002/WS-02-15/WS02-15-001.pdf
https://doi.org/10.1109/LMAG.2019.2910787
https://doi.org/10.1109/3468.541341
https://doi.org/10.1016/B978-0-444-70396-5.50019-4
https://doi.org/10.4249/scholarpedia.1668
https://doi.org/10.1126/science.1087361
https://doi.org/10.3389/fncom.2020.00014
https://doi.org/10.1103/PhysRevApplied.12.054056
https://mitpress.mit.edu/books/probabilistic-graphical-models
https://mitpress.mit.edu/books/probabilistic-graphical-models
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1126/science.1218197
https://doi.org/10.1103/PhysRevApplied.2.034009
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Faria et al. Hardware Design for Autonomous Bayesian Networks

Lopez-Diaz, L., Torres, L., and Moro, E. (2002). Transition from ferromagnetism
to superparamagnetism on the nanosecond time scale. Phys. Rev. B 65:224406.
doi: 10.1103/PhysRevB.65.224406

Mahmoodi, M., Prezioso, M., and Strukov, D. (2019). Versatile stochastic dot
product circuits based on nonvolatile memories for high performance
neurocomputing and neurooptimization. Nat. Commun. 10, 1–10.
doi: 10.1038/s41467-019-13103-7

Mansueto, M., Chavent, A., Auffret, S., Joumard, I., Nath, J., Miron, I.
M., et al. (2019). Realizing an isotropically coercive magnetic layer for
memristive applications by analogy to dry friction. Phys. Rev. Appl. 12:044029.
doi: 10.1103/PhysRevApplied.12.044029

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Mizrahi, A., Hirtzlin, T., Fukushima, A., Kubota, H., Yuasa, S., Grollier, J., et al.
(2018). Neural-like computing with populations of superparamagnetic basis
functions. Nat. Commun. 9, 1–11. doi: 10.1038/s41467-018-03963-w

Neal, R. M. (1992). Connectionist learning of belief networks. Artif. Intell. 56,
71–113. doi: 10.1016/0004-3702(92)90065-6

Nikovski, D. (2000). Constructing bayesian networks for medical diagnosis from
incomplete and partially correct statistics. IEEE Trans. Knowl. Data Eng. 4,
509–516. doi: 10.1109/69.868904

Ostwal, V., and Appenzeller, J. (2019). Spin-orbit torque-controlled magnetic
tunnel junction with low thermal stability for tunable random number
generation. IEEE Magnet. Lett. 10, 1–5. doi: 10.1109/LMAG.2019.2912971

Ostwal, V., Debashis, P., Faria, R., Chen, Z., and Appenzeller, J. (2018). Spin-torque
devices with hard axis initialization as stochastic binary neurons. Sci. Rep. 8,
1–8. doi: 10.1038/s41598-018-34996-2

Ostwal, V., Zand, R., DeMara, R., and Appenzeller, J. (2019). A novel compound
synapse using probabilistic spin-orbit-torque switching for mtj-based deep
neural networks. IEEE J. Explorat. Solid State Comput. Dev. Circ. 5, 182–187.
doi: 10.1109/JXCDC.2019.2956468

Park, D.-C. (2016). Image classification using naive bayes classifier. Int. J. Comp.

Sci. Electron. Eng. 4, 135–139. Available online at: http://www.isaet.org/images/
extraimages/P1216004.pdf

Parks, B., Bapna, M., Igbokwe, J., Almasi, H., Wang,W., andMajetich, S. A. (2018).
Superparamagnetic perpendicular magnetic tunnel junctions for true random
number generators. AIP Adv. 8:055903. doi: 10.1063/1.5006422

Pearl, J. (2014). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Elsevier. Available online at: https://www.elsevier.com/books/
probabilistic-reasoning-in-intelligent-systems/pearl/978-0-08-051489-5

Pervaiz, A. Z., Ghantasala, L. A., Camsari, K. Y., and Datta, S. (2017).
Hardware emulation of stochastic p-bits for invertible logic. Sci. Rep. 7:10994.
doi: 10.1038/s41598-017-11011-8

Pervaiz, A. Z., Sutton, B. M., Ghantasala, L. A., and Camsari, K. Y. (2018).
Weighted p-bits for fpga implementation of probabilistic circuits. IEEE Trans.

Neural Netw. Learn. Syst. 30, 1920–1926. doi: 10.1109/TNNLS.2018.2874565
Premebida, C., Faria, D. R., and Nunes, U. (2017). Dynamic bayesian network for

semantic place classification in mobile robotics. Auton. Robots 41, 1161–1172.
doi: 10.1007/s10514-016-9600-2

Pufall, M. R., Rippard, W. H., Kaka, S., Russek, S. E., Silva, T. J.,
Katine, J., et al. (2004). Large-angle, gigahertz-rate random telegraph
switching induced by spin-momentum transfer. Phys. Rev. B 69:214409.
doi: 10.1103/PhysRevB.69.214409

Querlioz, D., Bichler, O., Vincent, A. F., and Gamrat, C. (2015). Bioinspired
programming of memory devices for implementing an inference engine. Proc.
IEEE 103, 1398–1416. doi: 10.1109/JPROC.2015.2437616

Rish, I., Brodie, M., Ma, S., Odintsova, N., Beygelzimer, A., Grabarnik, G., et al.
(2005). Adaptive diagnosis in distributed systems. IEEE Trans. Neural Netw.
16, 1088–1109. doi: 10.1109/TNN.2005.853423

Roberts, G. O., and Sahu, S. K. (1997). Updating schemes, correlation structure,
blocking and parameterization for the gibbs sampler. J. R. Stat. Soc. Ser. B 59,
291–317. doi: 10.1111/1467-9868.00070

Russell, S. J., and Norvig, P. (2016). Artificial Intelligence: A Modern Approach.
Pearson Education Limited. Available online at: https://www.pearson.com/
us/higher-education/product/Norvig-Artificial-Intelligence-A-Modern-
Approach-Subscription-3rd-Edition/9780133001983.html

Shim, Y., Chen, S., Sengupta, A., and Roy, K. (2017). Stochastic spin-
orbit torque devices as elements for bayesian inference. Sci. Rep. 7:14101.
doi: 10.1038/s41598-017-14240-z

Strukov, D., Indiveri, G., Grollier, J., and Fusi, S. (2019). Building brain-inspired
computing. Nat. Commun. 10. doi: 10.1038/s41467-019-12521-x

Sun, S., Zhang, C., and Yu, G. (2006). A bayesian network approach to
traffic flow forecasting. IEEE Trans. Intell. Transport. Syst. 7, 124–132.
doi: 10.1109/TITS.2006.869623

Sutton, B., Camsari, K. Y., Behin-Aein, B., and Datta, S. (2017).
Intrinsic optimization using stochastic nanomagnets. Sci. Rep. 7:44370.
doi: 10.1038/srep44370

Sutton, B., Faria, R., Ghantasala, L. A., Jaiswal, R., Camsari, K. Y., and Datta, S.
(2020). Autonomous probabilistic coprocessing with petaflips per second. IEEE
Access. 157238–157252. doi: 10.1109/ACCESS.2020.3018682

Thakur, C. S., Afshar, S., Wang, R. M., Hamilton, T. J., Tapson, J., and Van Schaik,
A. (2016). Bayesian estimation and inference using stochastic electronics. Front.
Neurosci. 10:104. doi: 10.3389/fnins.2016.00104

Ticknor, J. L. (2013). A bayesian regularized artificial neural network
for stock market forecasting. Expert Syst. Appl. 40, 5501–5506.
doi: 10.1016/j.eswa.2013.04.013

Torunbalci, M. M., Upadhyaya, P., Bhave, S. A., and Camsari, K. Y. (2018).
Modular compact modeling of MTJ devices. IEEE Trans. Electron Dev. 65,
4628–4634. doi: 10.1109/TED.2018.2863538

Tylman, W., Waszyrowski, T., Napieralski, A., Kamiński, M., Trafidło, T., Kulesza,
Z., et al. (2016). Real-time prediction of acute cardiovascular events using
hardware-implemented bayesian networks. Comput. Biol. Med. 69, 245–253.
doi: 10.1016/j.compbiomed.2015.08.015

Vodenicarevic, D., Locatelli, N., Mizrahi, A., Friedman, J. S., Vincent, A. F.,
Romera, M., et al. (2017). Low-energy truly random number generation with
superparamagnetic tunnel junctions for unconventional computing. Phys. Rev.
Appl. 8:054045. doi: 10.1103/PhysRevApplied.8.054045

Vodenicarevic, D., Locatelli, N., Mizrahi, A., Hirtzlin, T., Friedman, J. S.,
Grollier, J., et al. (2018). “Circuit-level evaluation of the generation of
truly random bits with superparamagnetic tunnel junctions,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence: IEEE),
1–4. doi: 10.1109/ISCAS.2018.8351771

Weijia, Z., Ling, G. W., and Seng, Y. K. (2007). “PCMOs-based hardware
implementation of bayesian network,” in 2007 IEEE Conference on

Electron Devices and Solid-State Circuits (Tainan: IEEE), 337–340.
doi: 10.1109/EDSSC.2007.4450131

Zand, R., Camsari, K. Y., Pyle, S. D., Ahmed, I., Kim, C. H., and DeMara,
R. F. (2018). “Low-energy deep belief networks using intrinsic sigmoidal
spintronic-based probabilistic neurons,” in Proceedings of the 2018 on Great

Lakes Symposium on VLSI Chicago IL, 15–20. doi: 10.1145/3194554.31
94558

Zermani, S., Dezan, C., Chenini, H., Diguet, J.-P., and Euler, R. (2015). “FPGA
implementation of bayesian network inference for an embedded diagnosis,” in
2015 IEEE Conference on Prognostics and Health Management (PHM) (Austin,
TX: IEEE), 1–10. doi: 10.1109/ICPHM.2015.7245057

Zink, B. R., Lv, Y., andWang, J.-P. (2018). Telegraphic switching signals by magnet
tunnel junctions for neural spiking signals with high information capacity. J.
Appl. Phys. 124:152121. doi: 10.1063/1.5042444

Zou, M., and Conzen, S. D. (2004). A new dynamic bayesian network
(DBN) approach for identifying gene regulatory networks from time course
microarray data. Bioinformatics 21, 71–79. doi: 10.1093/bioinformatics/
bth463

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Faria, Kaiser, Camsari and Datta. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 March 2021 | Volume 15 | Article 58479792

https://doi.org/10.1103/PhysRevB.65.224406
https://doi.org/10.1038/s41467-019-13103-7
https://doi.org/10.1103/PhysRevApplied.12.044029
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/s41467-018-03963-w
https://doi.org/10.1016/0004-3702(92)90065-6
https://doi.org/10.1109/69.868904
https://doi.org/10.1109/LMAG.2019.2912971
https://doi.org/10.1038/s41598-018-34996-2
https://doi.org/10.1109/JXCDC.2019.2956468
http://www.isaet.org/images/extraimages/P1216004.pdf
http://www.isaet.org/images/extraimages/P1216004.pdf
https://doi.org/10.1063/1.5006422
https://www.elsevier.com/books/probabilistic-reasoning-in-intelligent-systems/pearl/978-0-08-051489-5
https://www.elsevier.com/books/probabilistic-reasoning-in-intelligent-systems/pearl/978-0-08-051489-5
https://doi.org/10.1038/s41598-017-11011-8
https://doi.org/10.1109/TNNLS.2018.2874565
https://doi.org/10.1007/s10514-016-9600-2
https://doi.org/10.1103/PhysRevB.69.214409
https://doi.org/10.1109/JPROC.2015.2437616
https://doi.org/10.1109/TNN.2005.853423
https://doi.org/10.1111/1467-9868.00070
https://www.pearson.com/us/higher-education/product/Norvig-Artificial-Intelligence-A-Modern-Approach-Subscription-3rd-Edition/9780133001983.html
https://www.pearson.com/us/higher-education/product/Norvig-Artificial-Intelligence-A-Modern-Approach-Subscription-3rd-Edition/9780133001983.html
https://www.pearson.com/us/higher-education/product/Norvig-Artificial-Intelligence-A-Modern-Approach-Subscription-3rd-Edition/9780133001983.html
https://doi.org/10.1038/s41598-017-14240-z
https://doi.org/10.1038/s41467-019-12521-x
https://doi.org/10.1109/TITS.2006.869623
https://doi.org/10.1038/srep44370
https://doi.org/10.1109/ACCESS.2020.3018682
https://doi.org/10.3389/fnins.2016.00104
https://doi.org/10.1016/j.eswa.2013.04.013
https://doi.org/10.1109/TED.2018.2863538
https://doi.org/10.1016/j.compbiomed.2015.08.015
https://doi.org/10.1103/PhysRevApplied.8.054045
https://doi.org/10.1109/ISCAS.2018.8351771
https://doi.org/10.1109/EDSSC.2007.4450131
https://doi.org/10.1145/3194554.3194558
https://doi.org/10.1109/ICPHM.2015.7245057
https://doi.org/10.1063/1.5042444
https://doi.org/10.1093/bioinformatics/bth463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 1

ORIGINAL RESEARCH
published: 16 April 2021

doi: 10.3389/fnins.2021.655823

Edited by:
Jonathan Mapelli,

University of Modena and Reggio
Emilia, Italy

Reviewed by:
Robert W. Newcomb,

University of Maryland, College Park,
United States

Mauro Forti,
University of Siena, Italy

*Correspondence:
Juan Núñez

jnunez@imse-cnm.csic.es

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 19 January 2021
Accepted: 25 March 2021

Published: 16 April 2021

Citation:
Núñez J, Avedillo MJ, Jiménez M,

Quintana JM, Todri-Sanial A, Corti E,
Karg S and Linares-Barranco B

(2021) Oscillatory Neural Networks
Using VO2 Based Phase Encoded

Logic. Front. Neurosci. 15:655823.
doi: 10.3389/fnins.2021.655823

Oscillatory Neural Networks Using
VO2 Based Phase Encoded Logic
Juan Núñez1* , María J. Avedillo1, Manuel Jiménez1, José M. Quintana1,
Aida Todri-Sanial2, Elisabetta Corti3, Siegfried Karg3 and Bernabé Linares-Barranco1

1 Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Seville, Spain, 2 Laboratoire
d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), University of Montpellier, Montpellier, France,
3 Department of Science and Technology, IBM Research – Zurich, Rüschlikon, Switzerland

Nano-oscillators based on phase-transition materials are being explored for the
implementation of different non-conventional computing paradigms. In particular,
vanadium dioxide (VO2) devices are used to design autonomous non-linear oscillators
from which oscillatory neural networks (ONNs) can be developed. In this work, we
propose a new architecture for ONNs in which sub-harmonic injection locking (SHIL)
is exploited to ensure that the phase information encoded in each neuron can only take
two values. In this sense, the implementation of ONNs from neurons that inherently
encode information with two-phase values has advantages in terms of robustness
and tolerance to variability present in VO2 devices. Unlike conventional interconnection
schemes, in which the sign of the weights is coded in the value of the resistances, in our
proposal the negative (positive) weights are coded using static inverting (non-inverting)
logic at the output of the oscillator. The operation of the proposed architecture is shown
for pattern recognition applications.

Keywords: phase transition materials, VO2, nano-oscillators, ONNs, neuromorphics

INTRODUCTION

Phase-transition materials (PTMs) like vanadium dioxide (VO2), with their abrupt switching
between states with very different resistivity, are being explored for implementing non-boolean
computational paradigms such as neuromorphic architectures. In particular, different groups are
exploiting the capability of a PTM device in series with a resistor to oscillate in the implementation
of oscillator based computing (OBC).

The field of OBC is not a new idea, with outstanding contributions in the field of logic in the
1950s (von Neumann, 1957; Goto, 1959). In recent years, this idea has received considerable interest
and has become an active research area due to the appearance of devices, operating based on very
different physical phenomena, with the ability to implement very compact oscillators and with very
low energy consumption.

In Csaba and Porod (2020) numerous oscillators are evaluated as potential building blocks
of OBC. In terms of energy, PTM-based relaxation oscillators show good performance. They
are reported to reduce energy per cycle by more than an order of magnitude when compared
to CMOS ring oscillators (ROs). They rank second in terms of energy efficiency, behind only
superconducting oscillators.

The most widely used compound as phase-transition material is VO2 and the term VO2 nano-
oscillator has come to be coined (Maffezzoni et al., 2015; Sharma et al., 2015). In addition, they

Frontiers in Neuroscience | www.frontiersin.org 1 April 2021 | Volume 15 | Article 65582393

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.655823
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.655823
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.655823&domain=pdf&date_stamp=2021-04-16
https://www.frontiersin.org/articles/10.3389/fnins.2021.655823/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 2

Núñez et al. ONNs Using VO2 Based PeL

show good performance in terms of scalability and
interconnection with electronic circuits, without requiring
any conversion between electrical variables and other non-
electrical variables as occurs with other nano-oscillators that
exploit other physical magnitudes. Numerous experimental
results of VO2 nano-oscillators have been reported as well as
some preliminary results of applications (Shukla et al., 2016;
Corti et al., 2018, 2020; Dutta et al., 2019a,b).

Oscillator based computing encompasses a wide variety of
operating principles and architectures. In the first place, one can
distinguish between those that work with oscillators of ideally
identical frequency and the processing corresponds to obtaining
a pattern of phase synchronization, phase shift key (PSK) and
those that work with oscillators of different frequencies and
patterns of frequency synchronization frequency shift key (FSK)
(Nikonov et al., 2015).

Oscillator-based-computing phase-shift-key has been applied
to obtain solutions to combinatorial optimization problems,
difficult to solve in conventional computers. In Wu et al. (2011);
Parihar et al. (2017), the problem of graph coloring is solved
from the steady-state of a network of oscillators, which represent
the nodes, and in which the branches of the corresponding
graph are mapped into interconnections that push to separate
the phases of the adjacent oscillators. In Dutta et al. (2019a), the
resolution of a Max-Cut problem using VO2 oscillators is shown
experimentally. The comparison with other implementations in
terms of scalability, power and quality of the results obtained
is very favorable.

Phase shift key has been also applied to explore oscillatory
neural networks (ONNs) using a Hopfield-type architecture for
associative memories with application in pattern recognition.
The neurons in the network are replaced by oscillators and
the output is determined by the phase of each one. There are
contributions of mathematical analysis with simulations using
phase models for neurons (Hoppensteadt and Izhikevich, 1999;
Follmann et al., 2015) as well as reporting implementations with
different types of oscillators [phase-locked loops and voltage-
controlled oscillators (Hoppensteadt and Izhikevich, 2000), non-
volatile logic based on magnetic tunnel junctions (Calayir and
Pileggi, 2013), micro-electro-mechanical systems and a feedback
loop with transconductance amplifiers (Kumar and Mohanty,
2017), comparator and a digital circuit in Jackson et al. (2018),
CMOS ring oscillators (Csaba et al., 2016), STOs (Popescu et al.,
2018), or VO2 (Shukla et al., 2014; Maffezzoni et al., 2015; Corti
et al., 2018)]. The implementations based on VO2 devices exhibit
potential for very low energy computation (Corti et al., 2020).
In the case of electrical oscillators, synapses are implemented
with resistors or memristors that play the role of weights. In
this way, the output of each neuron interacts electrically with
the rest. Recently, the potential of ONNs with a small number of
neurons to efficiently tackle different image processing tasks has
been revealed. Corti et al. (2021) have shown that this approach
using VO2 oscillators can be exploited for the implementation of
commercial high-accuracy image processing architectures based
on convolutional neural networks (CNN).

Motivated by the latter type of application, in this paper we
describe the implementation of an ONN using VO2 based phase

encoded logic (PeL). PeL with VO2 devices has been recently
proposed (Avedillo et al., 2020) by the authors. It uses the phase to
encode information in logic circuits and its basic building block
is a VO2 oscillator which performs a weighted sum of inputs to
evaluate its output phase. So we propose to use it to build an
ONN. It overcomes some limitations of previously reported VO2
ONNs (Corti et al., 2018, 2020).

MATERIALS AND METHODS

Background
ONNs With VO2 Oscillators
Figure 1 shows the ONN proposed in Corti et al. (2018,
2020), and the VO2 oscillator used as neuron. The resistances
implement the synapses among neurons.

Under no electrical stimuli VO2 tends to stabilize in the
insulating state. When the applied voltage increases and so the
current density that flows through it reaches a critical current
density, JC−IMT , insulator to metal transition (IMT) occurs.
When the voltage decreases and so the current density reduces
below JC−MIT , the metal to insulator transition (MIT) takes place,
transitioning from the metallic to the insulating state. Electrical
parameters of its model, are summarized in Table 1. VIMT and
VMIT are the voltages at which the IMT and MIT transition occur,
respectively. RINS and RMET are the resistances in the insulating
and metallic state. Since MIT and IMT transitions are abrupt
but not instantaneous, transition times (TTIMT and TTMIT) are
also included. The I-V characteristic of such device is depicted in
Figure 2A. The VO2 device has been simulated with a behavioral
model as described in Maffezzoni et al. (2015). As expected, in
the insulating operating zone the slope is significantly flat, which
indicates that the resistance value is very high. On the other hand,
in the metallic state, the slope of the I-V curve is clearly steeper,
thus implying that the resistance is lower.

VOUT,1

VOUT,2

VOUT,3

VOUT,4

VOUT,N

VOUT,i

FIGURE 1 | Oscillatory hopfield neural network (OHNN) and VO2 oscillator
used as neuron.

TABLE 1 | Vanadium dioxide (VO2) electrical parameters.

VIMT VMIT RMET RINS TT

1.99 V 0.99 V 0.99 K� 100.2 K� 30 ns

Frontiers in Neuroscience | www.frontiersin.org 2 April 2021 | Volume 15 | Article 65582394

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 3

Núñez et al. ONNs Using VO2 Based PeL

A

B

IMT

MIT
VIMTVMIT

FIGURE 2 | (A) I-V curve of the VO2 device reported in Corti et al. (2018, 2020). (B) Simulated waveform of the output of a VO2 oscillator.

Figure 2B depicts simulated waveforms for the oscillator
output, VOUT,OSC, with VDD = 2.5 V and VBIAS = 2.5 V. The
state of the VO2 device is also shown to better illustrate the
circuit behavior. Regions marked with “INS” label mean that
the device is in the insulating state, whereas those marked with
“MET” corresponds to the device in the metallic state. When
the VO2 is in an insulating state (point “X” in Figure 2B),
the oscillator output is discharged through the transistor and,
therefore, the voltage drop across the VO2 (VDD–VOUT,OSC)
and the current through this device are increased. When the
circulating current density reaches the critical value JC−IMT ,
the VO2 switches to the metallic state. On the other hand, the
switching to the metallic state occurs once the VO2 voltage
reaches VIMT , when the output is then charged through the
VO2 device. Due to the low RMET value, this charging is
very fast and leads to a reduction of the voltage seen by
the VO2 until it reaches VMIT and the MIT occurs. Finally,
note that the voltage VBIAS can be used to control the
frequency of the signal.

This ONN works as an associative memory with application
in pattern recognition. The ONN state is defined by the phase of
each neuron. There are states which are stable and others which
if entered converge to a stable one. For pattern recognition, a set
of patterns (called training patterns) are said to be stored in the
network, which means the network is configured so that the state
corresponding to such patterns are stable. When the network is
placed in a state corresponding to a distorted version of a training
pattern, it evolves to a training pattern, ideally to the most similar
one. Placing the ONN in a given state means fixing a specific
phase for each oscillator. This is achieved by suitably delaying the
switching on of the supply voltage of each oscillator.

The stable states of the network are determined by the
resistance values connecting the oscillators, which plays the role
of the weights of the neural network. The required weights to
store a given set of training patterns are derived applying the
well-known Hebbian rule (Hebb, 1949) and then mapped to
resistance values.

There are several challenges in the operation of this ONN.
First, in order to work properly, the neurons must all synchronize
in frequency. Although ideally all neurons are identical, and so
they oscillate at the same frequency, in practice this is not the
case because of different reasons. Variability between the VO2
devices is the main one. Secondly, both positive and negative
values must be mapped to resistance values. Note that positive
weights mean that the phase of both associated oscillators should
be pulled to each other while negative ones should have the
contrary effect. Although, there are results showing that two
oscillators coupled with enough large resistance value end in
anti-phase configuration, the device-to-device of variability can
have a great impact on this behavior, especially when many
oscillators are coupled. The ONN we propose aims at addressing
these challenges.

VO2-Based PeL Description
Key components of PeL logic are VO2 oscillators with only two
possible phases, 180◦ apart. The oscillating phase depends on
the phases (also discretized) of the applied inputs. That is, the
resulting phase is a logic function of the inputs. In particular,
it implements a majority functionality. The output phase is
the majority phase.

Figure 3A depicts the schematic of a three-input majority gate
(Avedillo et al., 2020). It exploits sub harmonic injection locking

Frontiers in Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 65582395

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 4

Núñez et al. ONNs Using VO2 Based PeL

OUT

VIN1
VIN2
VIN3

A

B

FIGURE 3 | PeL three-input majority gate. (A) Schematic. (B) Waveforms.

(SHIL) to stabilize the oscillator frequency against variability
effects and to discretize its phase. This is achieved by injecting
a synchronization signal (VSYNC), which ranges between 0 and
VDD, of frequency close to twice the natural frequency of
the oscillator. The oscillator outputs exhibit half such injected
frequency. The phases of the input signal are represented in terms
of that of a reference signal (VREF) external to the oscillator.

When signal VWRITE activates, the oscillator phase is
forced to that of the majority phase of its three inputs. For
example, for (VIN1, VIN2, VIN3) = (VREF, VREF, VREF), the
phase corresponding to VREF is stored and for (VIN1, VIN2,
VIN3) = (VREF , VREF, VREF) the phase corresponding to VREF
is stored. Figure 3B depicts simulation results for those input
combinations. From top to bottom the VWRITE, VIN1 and the
oscillator output, VOUT , are shown. VIN1 is the only changing
input and determines the output value. A reference signal (VREF)
is also displayed to ease identification of the phase of each signal.
That is, VIN1 is VREF initially and then changes to VREF . Note
the phase change of VOUT in response to the application of the
second VWRITE pulse.

PeL-Based ONN Architecture
The New Neuron
Figure 4A depicts the topology proposed for the neuron Note the
use of the synchronization signal VSYNC, like in PeL, although

VOSCVREF

A

B

FIGURE 4 | Proposed neuron. (A) Schematic. (B) Operation for two values of
the delay of the supply voltage.

it is injected through the gate of the transistor avoiding the
injection resistor. In the neuron, it contributes to reducing period
variations due to device variability, which translates to frequency
synchronization advantages in the ONN network. Figure 4B
depicts its operation. The oscillator output before the static
logic, VOSC, and a reference signal are shown. The use of SHIL
reduces the number of phases to two. It can be observed that the
oscillation phase can be controlled by the supply voltage delay like
in the original ONN described in the background section. Supply
voltages delays under half the oscillation period (top waveform in
Figure 4B) lead to one phase and delays over half period (bottom
waveform) force the other phase.

It is interesting to study the robustness of the ONNs against
variations in the electrical parameters of the VO2 (resistance
in the insulating and metallic state and switching voltages
between states). In this sense, conventional implementations
of ONNs are sensitive to these variations. Figure 5A depicts
a design space for the phase difference between two identical
coupled oscillators in which the variables are the time difference
between oscillator initialization (1T) and the coupling resistance
(RC). Note how two clearly differentiated regions corresponding
to an in-phase (0◦) and out-of-phase (180◦) operation are
observed. Figure 5B reproduces the previous plot by considering
variations of 10% of the insulating and metallic resistances of

Frontiers in Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 65582396

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 5

Núñez et al. ONNs Using VO2 Based PeL

RC (K)
10 20 30 40 50 60 70 80 90 100

0.3

0.5

T

0.2

0.1

0.4

IN
-P

H
A

S
E

O
U

T-
O

F
-P

H
A

S
E

 (
18

0º
)

U
N

S
TA

B
L

E

SHIL (180º)

SHIL (0º)

RC (K)

0.3

0.5

T

10 20 30 40 50 60 70 80 90 100

IN-PHASE

OUT-OF-PHASE

0.2

0.1

0.4

O
U

T-
O

F
-P

H
A

S
E

 (
>

18
0º

)

26
2º

A

B

FIGURE 5 | 1T vs. RC plot for in-phase/out-of-phase operation of two conventional coupled oscillators. (A) Nominal scenario. (B) Considering RINS and RMET

variations. The boundary for the in-phase/out-of-phase operation of two SHIL-based oscillators is depicted with a dashed line.

the VO2 device of one of the oscillators with respect to the
nominal scenario (RINS,1 = 0.9·RINS,2 and RMET,1 = 0.9·RMET,2).
Significant differences are observed given that there are phase
differences other than 180◦ for the out-of-phase region and even
an area of unstable behavior. Unstable behavior means that both
oscillators are not able to synchronize. Also, note that in the plot
corresponding to ideal oscillators there are resistance values for
which both in-phase and out-of-phase are possible depending on
the initial delay (phase difference between) the two oscillators.
This bistability, which is interesting from the point of view of the
ONN functionality, is not observed in the plot with variability
(Figure 5B). In this figure, the boundary between the in-phase
and out-of-phase operating regions for two coupled oscillators
using SHIL, and considering the same variation between the VO2
resistances, has been represented using a dashed line. Two clearly
distinct regions of operation are observed like in the ideal plot.
These results reveal that SHIL has significant benefits in that
inherently two complementary phases are obtained at the output
and this is more tolerant to variations in the parameters of VO2.

Synapse
The proposed interconnection scheme encodes the sign of the
weights in the way the neurons are connected unlike the original

ONN, which relies just on resistance values. Figure 6A shows
two possible scenarios for the interconnection of two neurons
using positive and negative weights. When interconnecting using
positive weights the output of each is connected to a buffer
(marked in green), while for encoding negative weights an
inverter (marked in red) is used. Note that unlike the original
ONN, which uses a bidirectional interconnection mechanism
with a single coupling resistor between two neurons, in the
proposed scheme the interconnection is unidirectional and
therefore two coupling resistors must be used. The rationale
behind using the oscillation signal but complemented for
negative weights is that in an ONN, a negative weight must
push away the phases of the two neurons which is equivalent
to pull the phase of the neurons to the complement of the
other one. The buffer is used for positive weights so that the
shape of the two outputs of the neuron are similar. Figure 6
also shows simulation results of both interconnection schemes.
The four scenarios are illustrated. Initially in-phase neurons
connected with positive coupling weight (Figure 6B) and with
negative weight (Figure 6C) and initially out-of-phase neurons
connecting with positive (Figure 6D) and negative (Figure 6E)
weights. Note neurons coupled with positive weights end up
in phase independently of their initial states (Figures 6B,D).

Frontiers in Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 65582397

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 6

Núñez et al. ONNs Using VO2 Based PeL

A

B

C a

D

E

RC

CC

VSYNC

VOSC

2.5

0
time

VOSC,1
VOSC,2

OUT1
OUT2

OUT1
OUT2

OUT3
OUT4

OUT3
OUT4

RC

CC

VOSC,3 VOSC,4

RC

CC

RC

CC

4

43

2

4

4

FIGURE 6 | (A) Schematics of the interconnection of two neurons with a positive (green) and a negative (red) weight. (B–E) Waveforms showing the operation of
both interconnection schemes.

Similarly, neurons coupled with negative weights evolve toward
out of phase (Figures 6C,E).

Network Operation
The switch at the input of the neurons allows disconnecting
the coupling among them by fixing the VWRITE signal to a low
voltage. This is used at the beginning of the operation to initialize
the ONN state (phase of each neuron oscillation). As mentioned
before, this is the way an input pattern is applied to the network.
After application of successively positive VWRITE pulses enable
interaction among the neurons and the network state evolves
toward ideally the closest stored pattern.

RESULTS

PeL Associative Memory
As a first experiment to verify the operation of the network, we
propose the training and test patterns corresponding to 3 × 3
pixel size images shown in Figure 7. In this demonstration (and

the following ones), the supply voltage is 2.5 V, the oscillator
capacitance is 100 pF and the coupling capacitance is 0.05 pF. The
obtained Hebbian weight matrix exhibits two positive and two
negative values which have been mapped to resistances, 100 K�
and 300 K�, respectively.

The results are shown in Figures 7B–E. Waveforms
corresponding to one of these experiments are shown in Figure 8.
Specifically, the write pulse and the outputs of the oscillators
before the inverter/buffer are shown. Note that the outputs have
been grouped for each of the rows. After the first writing cycle, the
outputs of bits 4 and 9 change their phase and, thus, the expected
training pattern is recovered.

Coming back to Figure 7, the test patterns for which
results are shown have been categorized into four groups
in order to facilitate the analysis. The first three groups
represent test patterns at Hamming distances of 1 (Figure 7B),
2 (Figure 7C), and 3 (Figure 7D) from the training or
stored patterns. To consider a result as correct, the retrieved
pattern must match the training pattern that has the lowest
Hamming distance with respect to the test pattern. All but

Frontiers in Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 65582398

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 7

Núñez et al. ONNs Using VO2 Based PeL

Applied Retrieved Applied Retrieved

Training patternsA

B

Applied Retrieved Applied Retrieved

C

Applied Retrieved Applied Retrieved

D

Applied Retrieved Applied RetrievedE

d=1

d=2

d=3

FIGURE 7 | 3 × 3 ONN experiment. (A) Training patterns. (B–D) Applied and
retrieved patterns for Hamming distances of 1, 2, and 3, respectively, from the
training patterns. (E) Applied and retrieved patterns for test patterns
generated from the training ones adding gray pixels with different intensities.

1 2 3
4 5 6
7 8 9

Applied Retrieved Osc1/Osc4/Osc7
Osc2/Osc5/Osc8
Osc3/Osc6/Osc9

t��s]0 93 6
0V

1.5V

0V

1.5V

0V

1.5V
1 2 3

4 5 6

7 8 9

FIGURE 8 | Waveforms corresponding to one of the experiments illustrated in
Figure 7.

Applied Retrieved Applied RetrievedApplied Retrieved

Applied Retrieved Applied RetrievedApplied Retrieved

B

C

Training patternsA

FIGURE 9 | 5 × 3 ONN experiment. (A) Training patterns. (B,C) Applied and
retrieved patterns corresponding to “0” and “1,” respectively.

one test pattern are correctly retrieved. In fact, the one
that has not been recovered, the vertical line with a missed
pixel in Figure 7B, is at distance of 1. However, in order
to fairly analyze the pattern recognition performance of the
proposed ONN, it is important to be aware of the capabilities

Frontiers in Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 65582399

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 8

Núñez et al. ONNs Using VO2 Based PeL

of the Hopfield model itself. It is well known that even the ideal
model is not able to correctly retrieved any number of stored
patterns, but its capacity depends on the number of neurons, the
correlation among the patterns to be stored, and the learning rule.
In the case of random training patterns, the maximum number
which can be reliably stored (PERROR < 1/N) is 0.14·N for the
Hebbian learning rule (Hopfield, 1982). That is, we should not
expect perfect retrieval since we are storing too many patterns
for the network size. So, it is interesting to investigate also the
performance of the Hopfield network on this example. For that,
the same example has been simulated with a MATLAB model of
a Hopfield network. Its accuracy is under 80.5% and in particular,
neither it recovers the vertical line from the one without the
bottom pixel. From our simulations, we have also observed that
the third training pattern is easier to be retrieved and we have
confirmed that this is also the case for the model. This is in
agreement with this pattern being the one exhibiting the smaller
energy minimum and so exercising stronger attraction.

The last group (Figure 7E) depicts test patterns generated
from the training ones adding gray pixels with different
intensities. As explained before, gray values in the input image
are encoded in distinct initialization times of the oscillators.
It can be observed that the most similar training pattern is
retrieved in all cases.

PeL ONN for Character Recognition
In order to further illustrate our proposal, we have designed an
ONN for character recognition. For this, using the Hebbian rule,
weights have been derived to store 5 × 3 pixels representations
of digits “0” and “1” as shown in Figure 9A. These weights have
been mapped to resistance values (RC = 200 K� and RC = 400 K�
for strong and weak coupling weights, respectively) and an ONN
with our architecture has been simulated with them using HSpice
electrical simulator.

The performance of ONN has been evaluated using the set
of 18 test patterns shown in Figure 9. These experiments have
been grouped in sets of nine corresponding to an expected output
of the image “0” (Figure 9B) and “1” (Figure 9C) based on the
criterion of minimum Hamming distance, in which both the
applied and retrieved patterns are shown. Within each set of 9,
the first column represents noisy versions of the corresponding
training pattern. The other two columns represent harder test

patterns in which some bits have been completely flipped. The
results show that all applied patterns were successfully retrieved.

DISCUSSION

A novel ONN architecture based on phase encoding is proposed
and its operation as associative memory is shown. Phase
information storage using oscillators with VO2 devices and
subharmonic injection locking is exploited for the neurons. SHIL
has shown to greatly increase the variability robustness with
respect to free VO2 oscillators. The proposed mechanism of
interconnecting neurons encodes the sign of the weight by using
static logic to force a phase change instead of just having different
resistance values. This architecture allows overcoming some of
the challenges that arise in other implementations of VO2-based
ONN, including improved robustness against variability and
simplifying mapping of weights to resistance values.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JN, MA, and JQ developed the main concepts. JN performed
all the simulations. All authors assisted in the writing of the
manuscript and developing the concepts.

FUNDING

This work has been funded by NeurONN Project (Horizon
2020 – Grant agreement ID: 871501) and Ministerio de Economía
y Competitividad del Gobierno de España with support from
FEDER (Project TEC2017-87052-P). We acknowledge support
of the publication fee by the CSIC Open Access Publication
Support Initiative through its Unit of Information Resources for
Research (URICI).

REFERENCES
Avedillo, M. J., Quintana, J. M., and Núñez, J. (2020). Phase transition device for

phase storing. IEEE Trans. Nanotechnol. 19, 107–112. doi: 10.1109/TNANO.
2020.2965243

Calayir, V., and Pileggi, L. (2013). “Fully-digital oscillatory associative memories
enabled by non-volatile logic,” in Proceedings of the 2013 International Joint
Conference on Neural Networks, Dallas, TX. doi: 10.1109/IJCNN.2013.670
6925

Corti, E., Cornejo, J. A., Niang, K. M., Robertson, J., Moselund, K. E., Gotsmann,
B., et al. (2021). Coupled VO2 oscillators circuit as analog first layer filter in
convolutional neural networks. Front. Neurosci. 15:628254. doi: 10.3389/fnins.
2021.628254

Corti, E., Gotsmann, B., Moselund, K., Stolichnov, I., Ionescu, A., and Karg,
S. (2018). “Resistive coupled VO2 oscillators for image recognition,” in

Proceedings of the 2018 IEEE International Conference on Rebooting Computing,
McLean, VA. doi: 10.1109/ICRC.2018.8638626

Corti, E., Khanna, A., Niang, K., Robertson, J., Moselund, K., Gotsmann, B.,
et al. (2020). Time-delay encoded image recognition in a network of resistively
coupled VO2 on Si oscillators. IEEE Electron Device Lett. 41, 629–632. doi:
10.1109/LED.2020.2972006

Csaba, G., and Porod, W. (2020). Coupled oscillators for computing: a review and
perspective. Appl. Phys. Rev. 7:011302. doi: 10.1063/1.5120412

Csaba, G., Ytterdal, T., and Porod, W. (2016). “Neural network based on
parametrically-pumped oscillators,” in Proceedings of the IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, 45–48.
doi: 10.1109/ICECS.2016.7841128

Dutta, S., Khanna, A., Gomez, J., Ni, K., Toroczkai, Z., and Datta, S. (2019a).
“Experimental demonstration of phase transition nano-oscillator based Ising
machine,” in Proceedings of the IEEE International Electron Devices Meeting

Frontiers in Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 655823100

https://doi.org/10.1109/TNANO.2020.2965243
https://doi.org/10.1109/TNANO.2020.2965243
https://doi.org/10.1109/IJCNN.2013.6706925
https://doi.org/10.1109/IJCNN.2013.6706925
https://doi.org/10.3389/fnins.2021.628254
https://doi.org/10.3389/fnins.2021.628254
https://doi.org/10.1109/ICRC.2018.8638626
https://doi.org/10.1109/LED.2020.2972006
https://doi.org/10.1109/LED.2020.2972006
https://doi.org/10.1063/1.5120412
https://doi.org/10.1109/ICECS.2016.7841128
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-655823 April 12, 2021 Time: 17:8 # 9

Núñez et al. ONNs Using VO2 Based PeL

(IEDM), San Francisco, CA, 37.8.1–37.8.4. doi: 10.1109/IEDM19573.2019.
8993460

Dutta, S., Parihar, A., Khanna, A., and Gomez, J. (2019b). Programmable coupled
oscillators for synchronized locomotion. Nat. Commun. 10:3299. doi: 10.1038/
s41467-019-11198-6

Follmann, R., Macau, E. E., Rosa, E. Jr., and Piqueira, J. R. (2015). Phase oscillatory
network and visual pattern recognition. IEEE Trans. Neural Netw. Learn. Syst.
26, 1539–1544. doi: 10.1109/TNNLS.2014.2345572

Goto, E. (1959). The parametron, a digital computing element which utilizes
parametric oscillation. Proc. IRE 47, 1304–1316.

Hebb, D. O. (1949). The Organization of Behavior. New York, NY: Wiley.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational caabilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.
Hoppensteadt, F. C., and Izhikevich, E. M. (1999). Oscillatory neurocomputers

with dynamic connectivity. Phys. Rev. Lett. 82:2983. doi: 10.1103/PhysRevLett.
82.2983

Hoppensteadt, F. C., and Izhikevich, E. M. (2000). Pattern recognition via
synchronization in phase-locked loop neural networks. IEEE Trans. Neural
Netw. 11, 734–738. doi: 10.1109/72.846744

Jackson, T., Pagliarini, S., and Pileggi, L. (2018). “An oscillatory neural network
with programmable resistive synapses in 28 nm CMOS,” in Proceedings of the
2018 IEEE International Conference on Rebooting Computing (ICRC), McLean,
VA, 1–7. doi: 10.1109/ICRC.2018.8638600

Kumar, A., and Mohanty, P. (2017). Autoassociative memory and pattern
recognition in micromechanical oscillator network. Sci. Rep. 7:411. doi: 10.
1038/s41598-017-00442-y

Maffezzoni, P., Daniel, L., Shukla, N., Datta, S., and Raychowdhury, A. (2015).
Modeling and simulation of vanadium dioxide relaxation oscillators. IEEE
Trans. Circuits Syst. I Regul. Pap. 62, 2207–2215. doi: 10.1109/TCSI.2015.
2452332

Nikonov, D. E., Csaba, G., Porod, W., Shibata, T., Voils, D., Hammerstrom, D.,
et al. (2015). Coupled-oscillator associative memory array operation for pattern
recognition. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 85–93.
doi: 10.1109/JXCDC.2015.2504049

Parihar, A., Shukla, N., Jerry, M., Datta, S., and Raychowdhury, A. (2017). Vertex
coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep.
7:911. doi: 10.1038/s41598-017-00825-1

Popescu, B., Csaba, G., Popescu, D., Fallahpour, A. H., Lugli, P., Porod, W., et al.
(2018). Simulation of coupled spin torque oscillators for pattern recognition.
J. Appl. Phys. 124:152128. doi: 10.1063/1.5042423

Sharma, A., Bain, J. A., and Weldon, J. A. (2015). Phase coupling and control
of oxide-based oscillators for neuromorphic computing. IEEE J. Explor.
Solid State Comput. Devices Circuits 1, 58–66. doi: 10.1109/JXCDC.2015.244
8417

Shukla, N., Datta, S., Parihar, A., and Raychowdhury, A. (2016). “Computing with
coupled relaxation oscillators,” in Future Trends in Microelectronics: Journey
into the Unknown, eds S. Luryi, J. Xu, and A. Zaslavsky (Hoboken, NJ: Wiley),
147–156. doi: 10.1002/9781119069225.ch2-3

Shukla, N., Parihar, A., Cotter, M., Barth, M., Li, X., Chandramoorthy, N.,
et al. (2014). “Pairwise coupled hybrid vanadium dioxide-MOSFET (HVFET)
oscillators for non-boolean associative computing,” in Proceedings of the 2014
IEEE International Electron Devices Meeting, San Francisco, CA, 28.7.1–28.7.4.
doi: 10.1109/IEDM.2014.7047129

von Neumann, J. (1957). Non-linear Capacitance or
Inductance Switching, Amplifying and Memory Devices. U.S.
Patent No 2,815,488. Washington, DC: U.S. Patent and
Trademark Office.

Wu, J., Jiao, L., Li, R., and Chen, W. (2011). Clustering dynamics of nonlinear
oscillator network: application to graph coloring problem. Physica D 240,
1972–1978. doi: 10.1016/j.physd.2011.09.010

Conflict of Interest: EC and SK were employed by the company IBM.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Núñez, Avedillo, Jiménez, Quintana, Todri-Sanial, Corti, Karg
and Linares-Barranco. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 655823101

https://doi.org/10.1109/IEDM19573.2019.8993460
https://doi.org/10.1109/IEDM19573.2019.8993460
https://doi.org/10.1038/s41467-019-11198-6
https://doi.org/10.1038/s41467-019-11198-6
https://doi.org/10.1109/TNNLS.2014.2345572
https://doi.org/10.1103/PhysRevLett.82.2983
https://doi.org/10.1103/PhysRevLett.82.2983
https://doi.org/10.1109/72.846744
https://doi.org/10.1109/ICRC.2018.8638600
https://doi.org/10.1038/s41598-017-00442-y
https://doi.org/10.1038/s41598-017-00442-y
https://doi.org/10.1109/TCSI.2015.2452332
https://doi.org/10.1109/TCSI.2015.2452332
https://doi.org/10.1109/JXCDC.2015.2504049
https://doi.org/10.1038/s41598-017-00825-1
https://doi.org/10.1063/1.5042423
https://doi.org/10.1109/JXCDC.2015.2448417
https://doi.org/10.1109/JXCDC.2015.2448417
https://doi.org/10.1002/9781119069225.ch2-3
https://doi.org/10.1109/IEDM.2014.7047129
https://doi.org/10.1016/j.physd.2011.09.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 24 May 2021

doi: 10.3389/fncom.2021.658764

Frontiers in Computational Neuroscience | www.frontiersin.org 1 May 2021 | Volume 15 | Article 658764

Edited by:

Angelo Arleo,

Centre National de la Recherche

Scientifique (CNRS), France

Reviewed by:

Michael Schmuker,

University of Hertfordshire,

United Kingdom

Timoleon Moraitis,

Huawei Technologies, Switzerland

Hananel Hazan,

Tufts University, United States

*Correspondence:

Guillaume Debat

guillaume.debat@cnrs.fr

Received: 26 January 2021

Accepted: 27 April 2021

Published: 24 May 2021

Citation:

Debat G, Chauhan T, Cottereau BR,

Masquelier T, Paindavoine M and

Baures R (2021) Event-Based

Trajectory Prediction Using Spiking

Neural Networks.

Front. Comput. Neurosci. 15:658764.

doi: 10.3389/fncom.2021.658764

Event-Based Trajectory Prediction
Using Spiking Neural Networks

Guillaume Debat 1*, Tushar Chauhan 1, Benoit R. Cottereau 1, Timothée Masquelier 1,

Michel Paindavoine 2 and Robin Baures 1

1CERCO UMR 5549, CNRS—Université Toulouse 3, Toulouse, France, 2 Laboratory for Research on Learning and

Development (LEAD), University of Burgundy, CNRS UMR, Dijon, France

In recent years, event-based sensors have been combined with spiking neural networks

(SNNs) to create a new generation of bio-inspired artificial vision systems. These systems

can process spatio-temporal data in real time, and are highly energy efficient. In this study,

we used a new hybrid event-based camera in conjunction with amulti-layer spiking neural

network trained with a spike-timing-dependent plasticity learning rule. We showed that

neurons learn from repeated and correlated spatio-temporal patterns in an unsupervised

way and become selective to motion features, such as direction and speed. This motion

selectivity can then be used to predict ball trajectory by adding a simple read-out layer

composed of polynomial regressions, and trained in a supervised manner. Hence, we

show that a SNN receiving inputs from an event-based sensor can extract relevant

spatio-temporal patterns to process and predict ball trajectories.

Keywords: SNN, STDP, unsupervised learning, spiking camera, ball trajectory prediction, motion selectivity

INTRODUCTION

The original aim of Artificial Neural Networks (ANNs) was to mimic human or even non-human
brain processing. The learning and generalization abilities of ANNs have led to great advances,
particularly in solving visual tasks (Rawat and Wang, 2017). However, the quest for performance
has taken ANNs away from their original bio-inspired function, even if ANNs show good
performances with neural activity correlated with human cortical activity (Schrimpf et al., 2018).

There is, however, another category of neural networks, called Spiking Neural Networks (SNNs).
SNNs use spikes as signals between neurons, and in this respect, are closer to the brain than
ANNs. The temporality of these spikes provides additional information (VanRullen et al., 2005),
making SNNs good candidates to deal with spatio-temporal stimuli. Moreover, since spiking
activity is usually binary-coded and sparse (Van Rullen and Thorpe, 2001; Perrinet et al., 2004),
processing in SNNs is highly power efficient (Rueckauer et al., 2017; Barrios-Avilés et al., 2018;
Pfeiffer and Pfeil, 2018).

SNNs can be coupled with synaptic plasticity rules such as STDP (Spike Timing Dependent
Plasticity), which are bio-inspired and unsupervised.

SNNs with STDP rule have been applied many times on image categorization tasks, in
order to benchmark them against more common ANNs or other SNNs (Diehl and Cook, 2015;
Kheradpisheh et al., 2018; Lee et al., 2018; Thiele et al., 2018). However, most of these studies
used static images as stimuli, and thus, did not take full advantage of the above-mentioned
benefits. In contrast, videos (or spikes from spiking cameras also called event-based cameras) are
more suited for SNNs due to their spatio-temporal nature (Pfeiffer and Pfeil, 2018; Iyer et al.,
2021). Recently, (Orchard et al., 2017) used event-based cameras and mimicked retinal saccades

102

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.658764
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.658764&domain=pdf&date_stamp=2021-05-24
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guillaume.debat@cnrs.fr
https://doi.org/10.3389/fncom.2021.658764
https://www.frontiersin.org/articles/10.3389/fncom.2021.658764/full

Debat et al. Event-Based Trajectory Prediction

to perform categorization tasks on standard datasets like MNIST.
This allowed spike processing on more biologically plausible and
more realistic data where a temporal dimension was induced
directly by the motion saccade. The performance of the model
was not only excellent (Lee et al., 2016), but even surpassed state-
of-the-art ANNs on temporally occluded images (Moraitis et al.,
2020).

In order to process motion, frame-based cameras are the
most common way to acquire data. Frame-based processing
is different from that of the retina. Typically, the camera
output is synchronous, and processed by the ANN frame-
by-frame. This processing then induces response time delays
depending on the number of frames per second (FPS), motion
blur, and data redundancy, resulting here again in unnecessary
resource consumption.

However, the development of visual (Lichtsteiner et al., 2008;
Posch et al., 2011; Brandli et al., 2014; Son et al., 2017), audio
(Liu et al., 2014), and tactile (Taunyazov et al., 2020) event-
based sensors brings them closer to biomimetics. These sensors
only encode variations (of brightness, frequency, etc.) and are
fully asynchronous, much like the retina. This allows sensors
to generate extremely sparse data and to considerably reduce
response latency (Farabet et al., 2012). These sensors make it
possible to take advantage of all the benefits of SNNs. Indeed, a
combination of SNNs with event cameras has been used to solve
several tasks, such as object detection (Bichler et al., 2012), optical
flow estimation (Orchard et al., 2013; Adams and Harris, 2014;
Paredes-Valles et al., 2019), motion detection, etc.

These studies show that a bio-inspired system composed
of an SNN driven by inputs from an event-based camera can
learn, in an unsupervised manner, to optimally process spatio-
temporal data.

In this study, we used a specific type of event camera, the
“Neurosoc,” introduced in section Choice of the Event Camera.
We recorded ball trajectories with the NeuroSoc and used an
SNN to learn specific features of the trajectory (direction, speed,
shape). Our objective was to test the accuracy of this setup in
predicting the arrival point of the ball under various presentation
times. We wanted to test if our network is able to anticipate the
arrival point of the ball based on a snapshot of the trajectory, like
sport experts do on the field, for example (Farrow and Abernethy,
2003).

A ballistic trajectory is constrained by physical laws, and based
on these regularities. Humans can anticipate the arrival point of
a moving object from information about the object’s position,
velocity and direction (Aglioti et al., 2008). Likewise, in this study,
we aimed to decode the output of the SNN with polynomial
regression. If after learning, neurons code for precise directions
and speeds, it should be possible to accurately predict where the
ball will fall from the SNN responses.

MATERIALS AND METHODS

The aim of this study was to predict the ending point of a ball’s
trajectory from an artificial visual system. Our pipeline consisted
of (1) a “Neurosoc” camera which generates spikes from ball

trajectories, (2) a 3-layer SNN equipped with an STDP learning
rule which progressively becomes selective to motion patterns
and (3) a read-out layer which uses polynomial regressions to
recover the ending point of the ball’s trajectory. We further
detail these three parts in the next sections. Figure 1 provides a
schematic overview of the artificial system.

Neurosoc
Choice of the Event Camera
Several models of event-driven cameras have already been
proposed in the industry (Prophesee, iniVation, Insightness,
Samsung, CelePixel) and operate mainly according to a pixel-to-
pixel temporal difference. Although the performances of these
devices are remarkable in terms of temporal frequency and
dynamic range, they suffer from some crucial limitations in terms
of bio-inspired modeling, namely the inexistence of spatial filters
upstream of the spike-generation. Using bio-inspired models
which capture various aspects of the visual system (Masquelier
and Thorpe, 2007), these filters make it possible to reinforce
the performances of spike-based analysis by introducing a bio-
inspired component upstream of the spike-generation.

In parallel to this observation, different devices have appeared
during the last few years which allow the generation of
spikes from standard CMOS image sensors (Abderrahmane and
Miramond, 2019; Admin, 2020; Spike Event Sensor, 2021). The
main objective behind these cameras is, on one hand, to be able
to integrate spatial filters upstream of the spikes generation, and
on the other hand, to have sensors of different formats going, for
example, up to 2M pixels (Caiman Camera, 2021) [usually the
pixel-count of event-based cameras is rather limited (Lichtsteiner
et al., 2008; Posch et al., 2011; Brandli et al., 2014; Son et al.,
2017)].

In order to guarantee reliable integration of spikes, it is
imperative that these image sensors work in global-shutter mode
(instantaneous image acquisition), and with a short exposure
time (in the order of few milliseconds). Such cameras are
an intermediary between event-based sensors and frame-based
cameras, and allow for spatial and temporal filtering with
high FPS.

The NeuroSoc camera from Yumain (Spike Event Sensor,
2021) possesses these characteristics and was, therefore, chosen
for this study. This camera operates at 240 frames per second
at a resolution of 128 × 120 px. Spatial and temporal filters
are embedded in a processing board closed to the image sensor
(see section Architecture of the NeuroSoc Event Camera) to
detect brightness variations and generate spikes. As explained
above, these spatial filters (here DoG type) are closer to those
found in the lateral geniculate nucleus in the human visual
system. As a result, they reduce noise, detect edges, and increase
output sparseness.

Architecture of the NeuroSoc Event Camera
We used the NeuroSoc event camera developed by Yumain
which is based on a global-shutter CMOS MT9024 image sensor
from On Semiconductor and a board called NeuroSoC. This
board is composed of a MPSoC Zynq 7020 circuit from Xilinx
and a 4 Gbits DDRAM memory (see Figure 2). The CMOS

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2021 | Volume 15 | Article 658764103

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

TABLE 1 | Parameters for each SNN’s layers.

wMax τmemb Nf τLTP aLTP aLTD fInst fLong TThresh

Layer 1 1.873 0.01 60 0.0754 0.00195 0.0005 3.0 2.89 0.031

Layer 2 0.813 0.052 80 0.0236 0.0131 0.00118 2.82 2.41 0.023

Layer 3 1.308 0.039 100 0.0368 0.00815 0.00198 3.46 1.9 0.051

FIGURE 1 | (A) General architecture of the system. The neurosoc camera captures “ON” and “OFF” events (red and green points). These are duplicated, delayed

(three different delays are used: 1t0, 1t1, and 1t2) in the input layer (see section Delays) and subsequently sent to a 3-layers SNN. Output spikes are finally

processed by a read-out layer in order to predict the final position of the ball. (B) Simplified STDP learning rule. (C) Evolution of the adaptive threshold intensity ULong, n

over time (see section Lateral Inhibition and Threshold Adaptation).

sensor operates in global-shutter mode (instantaneous image
acquisition) with an exposure time in the range of 31 ns to
4ms. In the context of this study, images are generated in a 128
× 120 pixels format guaranteeing a throughput of 240 frames
per second, with an exposure time of 3.7ms due to low luminosity
conditions (window shutters closed for proper operation of the
Vicon). Images from the image sensor transmitted to the Zynq
MPSoC circuit are filtered in real time in order to extract the
salient parts of the objects contained in the images. The first
step of the process consisted of calculating the difference between
the images at time tn and tn−1 (the sampling period tn-tn−1

was 4.17ms or 1/240 fps). In this study, a DoG (Difference of
Gaussian) filter was applied to this difference. The output of the
filter was classified (positive/negative values generate ON/OFF
spikes) and sorted according to the most important to the least
important absolute values above a threshold, thus constituting a
train of temporal spikes. The threshold value was set manually
during the acquisition phase, and was adjusted to extract as many
spikes from movements as possible while keeping the noise level

low. As shown in Figure 2, all these treatments are implemented
in the FPGA within the Zynq MPSoC.

The spike stream was transmitted outside the camera via
an ethernet link. Input/output management (spike transmission,
sensor exposure time control) of the event camera was performed
through the ARM processor of the Zynq MPSoC.

Time Encoding
The outputs of the filters implemented in the cameras (see above)
were first thresholded. Values above threshold were subsequently
converted into spikes using an intensity to latency conversion
(Thorpe et al., 2001; VanRullen et al., 2005; Masquelier and
Thorpe, 2007; Chauhan et al., 2018). Spike-latencies were
obtained by inverting the output values of the corresponding
filters. Spikes were spread between the current and the next
frame, see Equation (1):

1ts,rel =
(Is − Imin)

FPS · (Imax − Imin)
and ts =

F

FPS
+ 1ts,rel (1)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2021 | Volume 15 | Article 658764104

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 2 | (A) The event-based camera used in the study (NeuroSoc). It is based on a global shutter CMOS image sensor connected to a MPSoC Zynq circuit. (B)

Implementation treatments on NeuroSoC board.

With:

F= Index of the current frame
1ts, rel = Relative time of the spike s to the current frame F
Is = Inverted intensity of the spike s
ts = Time of the spike s.

SNN
In this study, the architecture we used is similar to other proposed
multi-layer convolutional SNN (Masquelier and Thorpe, 2007;
Tavanaei and Maida, 2017; Kheradpisheh et al., 2018; Mozafari
et al., 2018; Thiele et al., 2018; Paredes-Valles et al., 2019).
These studies highlighted the relevance of multi-layer SNN
trained with an STDP learning rule to extract spatiotemporal
features. Our architecture is composed of 3 layers trained with
STDP. There is no pooling layer, and the network uses delays
similar to (Paredes-Valles et al., 2019), but directly applied to
the input layer generated by the NeuroSoc (see Figure 1A). We
used a 3-layer SNN, composed of leaky integrate and fire (LIF)
neurons with feedforward connections and lateral inhibition.
The synaptic weights of the feedforward connections were learnt
through a simplified STDP rule (Bichler et al., 2012). Similar
as (Masquelier and Thorpe, 2007; Paredes-Valles et al., 2019),

we used a weight sharing process with retinotopically organized
neurons connected to 5 × 5 × d patches and a stride of 1
(d corresponds to the number of convolutional filters in the
previous layer). The network was also endowed with a lateral
inhibition mechanism which reduced the membrane potential of
all neurons sharing the same position, instead of resetting it (see
details in section Lateral Inhibition and Threshold Adaptation).
Simulations were performed using a C++ code developed by
the team.

Neuron Model
Our SNN was based on leaky integrate and fire (LIF) neurons.
When such a neuron receives an incoming spike, its membrane
potential increases in proportion to the synaptic weight that
connects it to the pre-synaptic neuron that emitted the spike. In
the absence of incoming spikes, the neuron membrane potential
leaks according to Equation (2):

Ui (t) = Urest + (U (tk) − URest) · exp

(

− (t − tk)

τmemb

)

(2)

tk: last time update
URest: resting potential= 0

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2021 | Volume 15 | Article 658764105

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

The SNN was event-based, and the membrane potential of a
neuron was only updated when an incoming spike was received
by the neuron. First, the leak was applied, and then, a value
Wi,j (weight connection between neuron i and j, constrained
between 0 and 1) multiplied by WMax was added to the
membrane potential.

A given neuron emitted a spike when its membrane potential
reached a threshold value UThresh. A spike was then generated
and propagated to the next layer and the membrane potential was
reset to its resting-state value Urest .

STDP
To update synaptic weight connections and to give neurons
the ability to learn specific features, we used a bio-inspired
unsupervised learning rule called spike-timing dependent
plasticity (STDP) (Bi and Poo, 2001; Caporale and Dan, 2008).
It detects input correlations and enables the neurons to become
selective to most frequently occuring patterns. Previous studies
have already demonstrated that SNNs equipped with STDP can
learn repetitive specific patterns (Masquelier et al., 2008), visual
properties such as orientation (Delorme et al., 2001; Masquelier,
2012), binocular disparity (Chauhan et al., 2018) or shape
(Masquelier and Thorpe, 2007; Diehl and Cook, 2015; Thiele
et al., 2018). In this study, we used a simplified STDP learning
rule inspired from (Bichler et al., 2012) (see Figure 1B). This
simplified version does not include a time window for LTD. If
the time of the last presynaptic spike is not included within the
LTP window (τLTP), LTD is applied. Synaptic weight updates
corresponding to spikes occurring during the LTP window are
all equal and therefore independent of spike times, as shown
in Equation (3). Contrary to the synaptic update rule used in
(Bichler et al., 2012), we included a multiplicative term which
depends on the current weight. This multiplicative rule also
forces a soft-bound on the weights in the interval (0, 1).

1Wi,j =
(

1−Wi,j
)

∗aLTP if tj − ti < τLTP and

1Wi,j = −Wi,j∗aLTD otherwise (3)

Wi,j: weight synaptic connection between afferent neuron i and j
ti: last spike of afferent i.
tj: last spike of neuron j.
aLTP/aLTD: amplitude of the potentiation/depression
τLTP: LTP time window.

Delays
Although SNNs equipped with STDP can learn different spatial
patterns (orientation, spatial frequency, binocular disparity, . . .),
learning motion direction is a harder task because it relies on
spatio-temporal properties. Indeed, input neurons with similar
spatial positions spike but not in the same order: for leftward
(or rightward) motion, inputs placed on the left (right) spike
first, followed by other inputs from the left (right) to the right
(left). The common way to improve SNNs’ temporal selectivity
and thereby permit discrimination of motion direction is to
use delays. These delays improve synchrony between input
spikes for specific spatio-temporal patterns (rightward motion,
for example) and desynchronize inputs for opposite patterns
(leftward motion).

In order to work with delays, it is necessary to be careful
about the strategy employed to learn them. Over the last few
years, various approaches have been proposed to select these
delays (Eurich et al., 2000). For instance, the delay shift (Eurich
et al., 2000; Tversky and Miikkulainen, 2002; Gibson et al., 2014)
approach consists of learning the delay from the input spikes. In
addition to the weight-learning rule, this approach also uses a
specific learning rule for delays to increase the simultaneity of the
input spikes. Another approach, called delay selection (Paredes-
Valles et al., 2019), consists of duplicating synapses and adding
delays to them. In delay selection, a single weight-learning rule
can be used to select synapses with appropriate delays. In this
study, we used this second method (Eurich et al., 2000; Paredes-
Valles et al., 2019). Three different delays (0, d1, and d2) were
applied on each input and each synapse was therefore duplicated
three times. Because we consider both “on” and “off” events,
there were 6 different synapses for each pixel-positions (ON1t=0,
OFF1t=0, ON1t=d1, . . . , OFF1t=d2) as shown in Figure 1A.

Lateral Inhibition and Threshold Adaptation
When a neuron spiked, the neurons of the same layer sharing
the same retinotopic position were prevented from spiking. We
used an instantaneous inhibition, the membrane potential was
reduced by a specific value UInst [see, e.g., Diehl and Cook (2015)
and Delorme et al. (2001)]. The purpose of this inhibition was
to prevent the filters from learning similar patterns. It therefore
increases selectivity and sparsity within the neural population.

We also used a homeostatic process which added a penalty
Ulong,n to the neurons by increasing their threshold. The
magnitude of change in the threshold had an inverted “V” shape
in time—it increased and subsequently decayed back to zero (the
increase and decrease both lasted for a time-interval TThresh),
allowing a time dependent threshold adaptation (see Figure 1C
and Annex 1 in Supplementary Material).

The threshold variation and inhibition intensity was made
proportional to UPropInh: the current average of squared
membrane potentials of neurons connected to the same patch
(see Annex 1 in Supplementary Material).

Training Procedure
The 3-layer SNN was trained layer-by-layer in an unsupervised
manner using the STDP learning rule described in sectionDelays.
Seventy percentage of the recorded trajectories were used for
training. During the training and testing phases, trajectories
were presented individually and were separated by periods of 2 s
without spikes, allowing the SNN to reset to its initial state. The
third layer output was then used to make predictions, as detailed
in section Trajectory Prediction. For each convolutional filter (Nf

= 100 for the third layer), a polynomial regression was performed
with the spatial position (x and y) of the spiking neuron as input
and the ball’s vertical position as the predicted variable.

An SNN with STDP learning rule has some parameters which
need to be tuned (membrane potential time constant, ratio
LTP/LTD, learning rate, . . .). We estimated these parameters with
a genetic algorithm (Mohammadi et al., 2017) (see Table 1).
A simplified version of the prediction process presented in
section Trajectory Prediction was used. The cost function for the

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2021 | Volume 15 | Article 658764106

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

minimization was the average value of the mean prediction error
at 15, 45, . . . , 90% of trajectory presentation.

Data Acquisition and Comparison
We recorded 297 passes of the ball between two participants
using the Neurosoc camera. The two participants were separated
by a distance of ∼2.30m, and the trajectories included
multiple velocities. The camera’s direction was perpendicular to
the trajectories.

Each of the 297 trajectories was manually labeled so as to
determine the start and end points of the throw, the direction
and the height of the reception (X and Y-axis, respectively, see
section Trajectory Prediction). The trajectories were partitioned
using a 70–30 train-test split, and the final training and testing
sets contained 208 and 89 trajectories, respectively.

To quantify the neuron’s selectivity, we recorded the ball’s 3D
spatial position with Vicon cameras (Merriaux et al., 2017). These
cameras use infrared light to capture the position of markers
placed on the ball, at a frequency of 200Hz. Four targets were
placed at four opposite positions on the ball. The ball’s center
of gravity was obtained by averaging these positions. A low-
pass filter was applied to these values with a cut-off frequency of
6Hz. Using the exact value of the ball over time, we could easily
determine the ball’s direction and speed.

Vicon technology uses infrared flashing lights to detect targets.
These lights were perceived by the camera and generated big
variations of brightness which generated spikes. To overcome this
issue, we used an anti-IR lens with a cut-off wavelength of 730 nm
(SP730 Near-IR/Colorless Dichroic Block Shortpass Filter, 2015).

Trajectory Prediction
Our main objective was to predict the ball’s reception point
from the output of the SNN. Since this point would be highly
impacted by the receiver (depending on whether he moved his
arms forward to intercept the ball or not), we restricted these
predictions to the y-axis. The prediction along the x-axis was
simplified, with only two choices reflecting the ball’s direction
(right or left).

The y-value was the ball’s position when it crosses the
blue/brown line for leftward/rightward directions (see
Figure 3B). Polynomial regressions (PR) for each filter of
the last layer were used to decode the SNN output and
predict the y-value. We used a simple decoder to ensure that
performances were mostly driven by processing within the SNN.
More complicated decoders could provide better results, but this
study focuses on the performance of the SNN. Second degree
polynomial regressions were chosen because filters of the SNN
spiked for specific patterns. If the SNN did not develop any
motion direction selectivity, predictions from PRs would be
inaccurate. To demonstrate this point, we also applied PRs to the
outputs of the neurosoc camera (i.e., PRs were performed on the
SNN inputs) (see Figure 6).

In this study, to determine the prediction on the Y-axis, we
used a PR of second degree for each filter n, Equation (4):

YPred,n = a00 + a10x+ a01y+ a20x
2 + a02y

2 + a11xy (4)

With x and y, the spatial position of the spiking neuron of
filter n, as schematized in Figure 3A. PR’s parameters were
learned by presenting all spatial positions of spiking neurons
of corresponding filter n as PR’s input and the corresponding
y-value at the spike time as value to predict. This process was
applied for each filter of the output layer.

The ball’s predicted direction (Xpred) was not taken into
account during the PR. Filters mostly encode for specific
directions. The direction was thus independent of the PR. The
root mean square error (RMSE) of each PR was then computed
in order to evaluate the reliability of each PR. Finally, a scoring
mechanism (see Figure 3C and Annex 2 in Supplementary
Material) was used to spatially integrate the predicted value
YPred,n based on the PR’s reliability, and perform an average
prediction over time.

Unsupervised Motion Tracking
The motion selectivity of filters should allow us to track specific
motions of stimuli based on their speed, directions, shape, etc.
There are few different motions-patterns in the stimuli, mainly
the ball and arms which can be divided into multiple parts
(hands, forearm, . . .). An ideal way to evaluate our network’s
ability to track specific motions should be to label all of them, but
this would make the task highly time-consuming and unfeasible.
This study mainly evaluates if filters spike for the ball or for
shapes similar to the ball.

A first way to determine whether a filter spikes for the ball
is to compute the distance between the center of the ball and the
spike’s position. Because the camera was facing the plan of the ball
trajectory, there is a linear relation between the ball’s position in
the reference frame of the camera and the one of the Vicon. So,
given the ball’s position in the reference frame of the Vicon, we
can easily compute its position on the frame and compute the
distance between a given spike and the center of the ball.

Then, by looking at the mean distance Dn from the ball of
all spikes for each filter n, we can determine if the given spike
encodes the ball’s motion (if Dn is very low) or some other feature
like a part of an arm.

Because a neuron is determined by its position and its filter,
which encodes or not for ball motion (based onDn), we should be
able to track the ball’s motion based on the output of this network.
As an example, in the context of Figure 3A, we can expect that
filter 2 and 23 could be used to track ball motion and filter 1 for
hand motion.

Comparison With Human Performance
In order to compare the performances of our system to human
capabilities, we conducted an experiment during which 12
participants (mean age= 27+/− 12,9) were instructed to predict
the end-point of the ball at different time steps. The NeuroSoc
camera also recorded the classical frame-based video at f =

240 fps in parallel with spike estimation and transmission. The
trajectories presented to these participants were therefore exactly
the same as the ones used to test our SNN. All participants
had normal or corrected-to-normal vision, and were healthy
and without any known oculomotor abnormalities. Participants
were naïve with respect to the purpose of the experiment, which

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2021 | Volume 15 | Article 658764107

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 3 | (A) Readout process. When a neuron spikes, its spatial position in its corresponding neural map is used as input for the PR linked to the spiking neuron’s

filter. In this figure, 3 neurons from different positions and filters spike and generate 3 predictions. These are then integrated to compute a score value as presented in

(C). (B) Horizontal positions used as receiving points. (C) Example of the score update (see Annex 2 in Supplementary Material). Thick lines represent the score

added by three spiking neurons from different filters, based on Equation (4). It is assumed that these three neurons spike at the same time, and there is no leak of the

score. The dashed blue line represents the score. The gray and orange dotted lines are the real and predicted values, respectively.

received the appropriate ethical authorization from the “Comité
d’éthique de la Recherche” of the Federal University of Toulouse
(agreement 2020-279). The sample size was determined using
G∗Power (Faul et al., 2007) after having analyzed the results of
a previous experiment investigating the influence of presentation
duration on anticipation’s performances. The results showed that
for a desired power of 0.90, a total sample size of 12 participants
was required.

Only a part of the trajectories (i.e., the first 15, 30, 45, 60, 75,
and 90%) were presented to the participants who were instructed
to predict the end-point by clicking with the mouse on the
anticipated ending point, without any temporal constraint. The
experiment was divided into three parts:

- Pre-learning: first time videos are presented to participants
- Active-learning: after each prediction made by the participant,
the exact arrival point was -shown on the screen to provide the
prediction error to the user, as a feedback

- Post-learning: same procedure as Pre-learning (no error was
shown) but subjects had the experience of the “Active-
learning” phase.

For each part, 8 trajectories were shown for each percentage of
presentation time, for a total of 48 trials in each condition. Videos
with a dimension of 384 × 360 pixels were presented on a 13.3-
in. screen (60Hz, full resolution 1,366 × 768, dimension 29.5 ×
17 cm in horizontal by vertical).

In contrast to our SNN, the human participants already
had experience with ball motion or motion in general. We

nonetheless included an active-learning phase in the experiment
so that participants could adapt to its specificities.

RESULTS

Selectivity
During the acquisition of the videos, we used the Vicon
technology to precisely measure the trajectory and position
of the ball (see section Data Acquisition and Comparison).
After the learning phase, we characterized the selectivity of
the neurons from these ground truth data. We averaged
all results over 6 simulations of the SNN with different
random weight-initializations. The network learned using the
training set, and the results below are the analysis from
the output of the third layer with the test set as input
of the SNN.

Direction Selectivity
Motion direction selectivity was obtained by counting the
number of spikes from the output layer triggered by all the
ball’s trajectories. For each filter n, we divided the number of
spikes for each direction of the ball (rounded to the unit) by
the number of occurrences of each of these directions during
all presented throws, giving us θf n. These results are presented
in Figures 4A,B.

We can observe that filters mostly spike for directions
similar to their preferred direction θcn, which demonstrates
a strong motion direction selectivity. Figure 4C, provides a

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 658764108

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 4 | Direction selectivity. (A) Normalized direction selectivity θFn of four different filters. Each filter spikes for different direction’s range. (B) General DS of all

filters centered on their preferred direction θcn. (C) Distribution of the preferred directions of the filter compared to number of input spikes per direction.

FIGURE 5 | (A) 2D normalized density of the ball’s speed by angle. Speeds and directions are correlated: for example, ascending motions are on average faster

(initiation of the throw, angles around 45 and 315 degrees) than horizontal motion (top of the trajectory, angles around 90 and 270 degrees). (B) Range of speeds that

generate a spike (blue line) for three filters with similar motion direction selectivity, compared to the range of speeds when the ball’s direction causes the corresponding

neuron to generate a spike (red line). These filters have similar direction selectivities, explaining the closeness of the red lines. We can observe that these neurons spike

for a smaller range of speeds (Sfn) compared to the randomly drawn distribution (SfRandn).

comparison between a histogram of the preferred directions
θcn of our filters and the occurrence of input spikes for
each direction.

Different filters are selective to different trajectories as shown
in Figures 4A,C, and there are more filters selective to ascending
motion. Indeed, leftward/rightward rising directions (which
include the throw phase, when the ball is still in the thrower’s
hand) represent the majority of our trajectories, and this result
confirms the ability of our model to learn the direction selectivity
patterns in the inputs.

Speed Selectivity
Using an analysis similar to direction selectivity, we evaluated Sfn:
the speed distribution for which each filter n spikes. However, this
is not sufficient to evaluate the speed selectivity as there is a broad
range of different speeds of the ball for all trajectories, but given
the limited set of recorded trajectories, directions and speeds are
correlated (kinematics in a uniform gravitational field), as shown
in Figure 5A.

To better characterize speed selectivity, we evaluated it
independently of its direction selectivity. We compared Sfn

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2021 | Volume 15 | Article 658764109

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 6 | (A) Evolution of the average absolute error with time of presentation for different PR inputs. (B) Average absolute prediction error comparison for different

PR inputs.

with a randomly drawn distribution SfRandn of ball’s speeds
with directions similar to the filter’s direction selectivity θf n.
Details about this randomly drawn distribution and filters’
speed selectivity can be found in Annex 3 in Supplementary
Material. A non-selective filter should have an Sfn very close to
SfRandn. Figure 5B, shows that filters become selective to the
ball’s speed. These three filters with similar direction selectivity
spike for a smaller range of speeds (Sfn) than the randomly drawn
distribution (SfRandn), and the distributions also have different
peak values. These results highlight filters’ selectivity for a range
of speeds and confirms previous results (Paredes-Valles et al.,
2019). This selectivity is broader than direction selectivity, and
although we cannot determine speed with high precision, it still
provides information about velocity, which is useful to make
predictions about the trajectory of the ball.

Trajectory Prediction
After training of the SNN and PRs, the test set of trajectories
was presented. For each spike generated by the last layer, the
prediction was updated. We analyzed the mean Absolute Error
(AE) and variability of AE (SD AE) obtained during the test
phase, through the mean of separate ANOVAs, with Visibility
(15–90%) as a within factor.

The ANOVA on AE showed that Visibility influenced the
mean AE, F(5, 25) = 1156.38, p < 0.001. Post-hoc tests using

Bonferroni corrections demonstrated that the mean AE was
always reduced as the visibility increased (see the layer 3 in
Figure 6). We obtained good performances even with 15% of
the trajectory with an error of 7.7 pixels. This error decreased
with presentation time and went down to 2.2 pixels for 90% of
trajectory presentation. No direction (rightward/leftward throw)
error was made, whatever the percentage of presentation. It
is important to note that for the lower Visibility condition
(15%), the video is stopped on average 0,114 s after the
throw’s initiation.

As a comparison, if we compute the mean of all training
values, equals to 68.2 pixel, and use it as a naive predictor,
we get an error of 9.4 pixels. Even with 15% of the trajectory
presentation, the SNN can predict the throw’s direction and is
16.7% better than this ≪ naive ≫ predictor. The ball was still
in the thrower’s hand for all trajectories at 15% of trajectory
presentation and also at 30% for 35 over 89 trajectories (the ball
had just left the hand for others).

The analysis of SD AE also showed a significant influence of
the Visibility, [F(5, 25) = 143.60, p < 0.001], with the SD AE
decreasing as the visibility increases. The SD goes from 5.605
pixels at 15% to 1.996 at 90%, with no significant difference
between the 15 and 30% conditions, and 75 and 90% conditions.
The evolution of the SD AE depending on visibility can be seen
in Figure 10B.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2021 | Volume 15 | Article 658764110

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 7 | (A) Evolution of the average absolute prediction error with time of presentation for different number of trajectories presented during the learning phase. (B)

Average absolute prediction error for different number of trajectories presented during the learning phase.

We compared the prediction error over different layers, with
an untrained network and with direct inputs to evaluate the
performance of the learning and the impact of adding layers to
the network. As shown in Figure 6, using the direct input (i.e.,
output of the camera), we cannot predict the reception point. As
expected, PRs are not accurate with just the position information,
and need more complex features, such as speed and direction
encoded in filters.

Error prediction decreased over the successive layers. The first
layer still made some errors but performed far better on the
untrained network, more specifically for the end of the trajectory.

We subsequently investigated how quickly our solution (SNN
+ PR) could learn and how many presentations it needed to
provide correct estimations. We applied the same learning and
prediction process as before, but the learning was done with only
a subset (20, 40, 60, 80, and 100%) of the 211 training trajectories.
Our approach led to very good performance even when only
learning from 20% of trajectories. Performances increased and
then reached a ceiling at 80%, ∼168 trajectories, as shown
in Figure 7.

Unsupervised Motion Tracking
Numerous studies showed that SNNs equipped with STDP
develop a progressive selectivity to shape along their hierarchy

(asmore conventional neural networks) (Masquelier and Thorpe,
2007; Kheradpisheh et al., 2018; Thiele et al., 2018). Neurons in
the first layers are selective to edges whereas neurons in deeper
layers are selective to more complex features. In the context of
our SNNs, filters with a mean distance from the ball under 6
pixels mostly encode for features related to the ball (including the
forearm of the thrower when the ball is still in their hands). Filters
with an higher value encode for different features, like other parts
of the arm, the receiver, etc. The distribution of Dn highlights the
ability of filters to encode for specific motions’ patterns, such as
the motion of the ball (see Figure 8A). As shown in Figure 8B,
we can see the position of spikes for 4 different filters. Each filter
spikes for specific positions and different motion patterns. This
unsupervised selectivity could then be used to track motion of
specific objects such as the ball, the thrower’s hand, etc.

Human’s Performances
We analyzed the performance of human participants (AE and
SD AE) with two separate ANOVAs, with Learning (Pre-test,
Active and Post-test) and Visibility (from 15 to 90%) as within-
subject variables. The results show that visibility [F(5, 55) = 31.85,
p < 0.001] and learning [F(2, 22) = 10.78, p < 0.001] have
an influence on prediction error and there are no interactions
between these two factors [F(10, 110) = 2.32, p= 0.016]. Prediction

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2021 | Volume 15 | Article 658764111

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 8 | (A) Histogram of the mean distance Dn of all filters. Blue bars represent filters with Dn under 6 pixel which mostly spike for the ball, the hand or the

forearm. Red bars represent filters which spike for other features less correlated with the ball motion (arm, after throw motion, etc.). (B) Spike’s position for four

different filters: The filter number 37 (in red) spikes for ascending leftward ball’s motion, the opposite of filter 5 (in yellow) which spikes for descending rightward ball’s

motion. Filter 87 (in blue) is selective to the right thrower’s arm during the throwing motion (i.e., when the arm rises) and filter 10 (in green) to the left thrower’s arm after

throwing motion (i.e., when the arm goes back to initial position).

error decreases with the percentage of trajectory that is shown
to the participants, as shown in Figure 9B. From post-hoc tests,
we did not observe significant differences between 15 and 45
and between 45 and 60 percent of trajectory’s presentation.
There are also significant differences between pre-learning and
other learning phases (learning and post-learning) and not
between learning and post-learning, as shown in Figure 9A.
These results highlight the effect of the learning phase which
improves the prediction results which remain stable during the
post-learning phase.

Performance Comparison
To compare the performances between the human participants
and our SNN, we performed an ANOVA on the mean AE and SD
AE for the trained condition only (i.e., Post-Test condition for the
humans and test set for the 6 simulations of the SNN). We used
the participant-type (humans vs. SNN) as a between variable, and
Visibility as a within variable.

By comparing the results between humans and SNN, a
large difference between them can easily be seen at first
when comparing their mean absolute error [F(1, 16) = 47.09,
p < 0.001] and their SD AE [F(1, 16) = 20.16, p < 0.001]
for each participant/simulation. This suggests that predictions
made by the SNN are more accurate and more precise than
human predictions.

The mean and SD AE decreases in a linear way as Visibility
increases [for the mean: F(5, 80) = 38.21, p < 0.001, for the SD:
F(5, 80) = 22.88, p < 0.001], as shown in Figure 10. Finally, there
was a significant interaction, [F(5, 80) = 2.53, p = 0.036] for
AE only, indicating that the SNN always outperformed human
participants, except when the trajectory was presented for 60 or
90% of the trajectory. The absence of the interaction regarding
SD AE [F(5, 80) = 1.19, p= 0.32] indicates that SD AE is generally
lower for the SNN, independent of the visibility.

Next, we investigated how the SNN or human participants
predict the ending point of the ball trajectory. The prediction
strategy used by humans and the SNN is different as shown
in Figure 11. Indeed, the SNN has mean predictions close
to 68 pixels which is close to the average prediction value
of the training set (equals to 68.2 pixels) and remains
stable over time. On the contrary, average prediction for
human participants varies over presentation time. On average,
human participants under-estimate the final position of the
ball (prediction under 68.2 pixels) for the beginning of
the trajectory, which changes to a light over-estimation
with time.

The variability of predicted values is also different between
humans and our system. Indeed, the standard deviation of
predicted values increases over presentation’s times for our
solution. This one is low for the beginning of the trajectory

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2021 | Volume 15 | Article 658764112

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 9 | (A) Distribution of mean absolute error as a function of the learning phase. Yellow line and points represent average values. (B) Evolution of the mean

absolute error depending on the trajectory visibility.

and so our solution predicts values close to 68 px. Then, it
increases the prediction’s variability with more information and
so presentation’s time. This tendency is also valid for humans but
less≪ significant≫ than our system.

These results show a different way to predict the reception
point between our solution and humans. On the one hand,
our solution makes cautious and ≪ statistical ≫ predictions
by targeting close on average to 68.2 px (the average value of
the training set). As visibility increases, the SNN is able to step
aside from this mean value and predict a different position,
close to the correct value. In other words, the SNN makes
cautious predictions, based on the average value of the dataset
when the visibility is low, but is able to make more liberal—but
accurate—predictions as visibility increases. Humans however
seem to act differently, without using a statistical mean as a
target. Their perception is variable even under low visibility
conditions, indicating a trial-by-trial decision, and seems to
switch from an underestimation to a small overestimation as
visibility increases.

DISCUSSION

Studies have already shown the ability of SNNs to process motion
from a spike-based visual flow. This study extends the evidence

of the reliability of using SNNs for motion processing and the
efficiency of such networks.

One of our study’s main contributions is the new sensor
used to generate spikes and to analyze motion. Usually, SNNs
are fed by asynchronous spiking cameras (Bichler et al., 2012;
Orchard et al., 2013; Paredes-Valles et al., 2019) which spike
for each step of brightness, thus generating a large number
of spikes.

In this study, the brightness variation is encoded in the
spike’s temporality using the neuroSoc and an intensity
to latency conversion rule. The filtering process used
by the Neurosoc sensor thus provides less noisy and
sparser information.

Firstly, we show our system is able to process motion
information from a spiking camera, which is reliable for making
ball trajectory predictions.

Secondly, we show that the selectivity of the filters can then
be used to track specific motion patterns (arm, ball, etc.). Like
the motion selectivity of our network, the tracking ability is fully
unsupervised. While it was not the main objective of this study, it
highlights the ability of unsupervised neural networks to solve
multiple tasks. Thus, we can expect it to be relevant to other
related visual tasks such as gesture recognition, counting tasks,
object recognition, etc.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 658764113

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 10 | Evolution of the mean (A) and standard deviation (B) of the absolute error with trajectory visibility for humans (red) and SNNs (blue).

Finally, we show our system outperforms human prediction
on this task.

Previous studies have shown that it is possible to make
predictions from the outputs of SNNs receiving spikes generated
by an event-based camera. Some of them use liquid state
machines (LSM), but their predictions remain restricted to short
durations (i.e., typically a few ms) (Burgsteiner et al., 2007;
Kaiser et al., 2017). Another study used delays in anisotropic
lateral connections (Kaplan et al., 2013). Others use a learning
rule to anticipate inputs on longer prediction times but with
simpler and repetitive input stimuli (Gibson et al., 2014). Our
system permits predictions on longer duration by extracting
motion features, as we used ball’s trajectories restricted by
physics’ laws.

Event-based sensors allow performing sparse coding on
dynamic visual scenes. In the context of this study, only a
small part of the visual scene is relevant to be extracted as
we only want to process motion (ball and arm). Using the
testing dataset presented as the SNN’s input, an average of about
9,000 spikes per second were generated by the neuroSoc. This
represents only 0.26 percent of pixels for each frame (37 +/−
15.5 ON/OFF spikes per frame), and shows that, in comparison
to a full-frame synchronous camera, the output of the NeuroSoC
was extremely sparse. This, in turn, makes the system highly

energy-efficient if embedded in a neuromorphic chip as the
power consumption of spiking neural networks is determined
by the number of spikes processed (Farabet et al., 2012).
Through STDP, the network can then learn from these repeated
sparse spatio-temporal stimuli and is thus highly capable of
processing motion.

Even though our approach has been evaluated on a rather
easy task, with little variations in trajectories and minimal
background motion, this evaluation is still relevant to numerous
situations such as basketball free throws, or objects moving
along a specific constraint (e.g., cars moving on a road or
pedestrian crossing a sidewalk). In a more complex situation
with background motion, the motion tracking ability of the
SNN could be used to discriminate the ball’s motion from
other objects.

The next step would be to evaluate our system on more
complex trajectories (rebounds, collisions etc.) or scenes which
involve unconstrained motion trajectories such as pedestrians
moving along a footpath or players moving across a football
field. This type of solution could also be useful in robotics
(e.g., aerial drones) where real-time, energy-efficient processing
is highly desirable.

In the near future, one of our aims is to embed this SNN
on a chip such as the FPGA of the neuroSoc camera, allowing

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 658764114

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

FIGURE 11 | Evolution of the mean (A) and standard deviation (B) of the prediction with trajectory visibility for humans (red) and SNNs (blue).

us to have the acquisition sensor, the spike extraction, and the
processing (SNN) in a single, low-powered, and real-time chip.
Hence, this work is the first step toward showing the reliability
of a simple SNN to extract relevant spatiotemporal features using
the neuroSoc camera.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of Toulouse local ethic committee. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

RB, BC, and TM designed the project. MP developed the camera.
GD adapted a code developed by TC to run the simulations,
analyzed the data, and wrote the first draft of the article. All the
authors provided comments on this manuscript.

FUNDING

This research was funded by Agence National de la Recherche
awarded to RB, BC, and TM, Beating Roger Federer ANR-16-
CE28-0017-01.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2021.658764/full#supplementary-material

REFERENCES

Abderrahmane, N., and Miramond, B. (2019). “Information coding and
hardware architecture of spiking neural networks,” in 2019 22nd

Euromicro Conference on Digital System Design (DSD) (Kallithea), 291–298.
doi: 10.1109/DSD.2019.00050

Adams, S. V., and Harris, C. M. (2014). A proto-architecture for
innate directionally selective visual maps. PLoS ONE. 9:e102908.
doi: 10.1371/journal.pone.0102908

Admin (2020). Akida Neural Processor IP. BrainChip. Disponible sur:
https://brainchipinc.com/akida-neural-processor-ip/ (consulté le
avr. 23, 2021).

Frontiers in Computational Neuroscience | www.frontiersin.org 14 May 2021 | Volume 15 | Article 658764115

https://www.frontiersin.org/articles/10.3389/fncom.2021.658764/full#supplementary-material
https://doi.org/10.1109/DSD.2019.00050
https://doi.org/10.1371/journal.pone.0102908
https://brainchipinc.com/akida-neural-processor-ip/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

Aglioti, S. M., Cesari, P., Romani, M., and Urgesi, C. (2008). Action anticipation
and motor resonance in elite basketball players. Nat. Neurosci. 11, 1109–1116.
doi: 10.1038/nn.2182

Barrios-Avilés, J., Iakymchuk, T., Samaniego, J., Medus, L. D., and Rosado-Muñoz,
A. (2018). Movement detection with event-based cameras: comparison with
frame-based cameras in robot object tracking using powerlink communication.
Electronics 7:304. doi: 10.3390/electronics7110304

Bi, G., and Poo, M. (2001). Synaptic modification by correlated
activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166.
doi: 10.1146/annurev.neuro.24.1.139

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J. P., and Gamrat, C.
(2012). Extraction of temporally correlated features from dynamic vision
sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.
doi: 10.1016/j.neunet.2012.02.022

Brandli, C., Berner, R., Yang, M., Liu, S. C., and Delbruck, T. (2014). A 240 × 180
130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE J. Solid

State Circ. 49, 2333–2341. doi: 10.1109/JSSC.2014.2342715
Burgsteiner, H., Kröll, M., Leopold, A., and Steinbauer, G. (2007). Movement

prediction from real-world images using a liquid state machine. Appl. Intell.
26, 99–109. doi: 10.1007/s10489-006-0007-1

Caiman Camera. (2021). Yumain. Disponible sur: https://yumain.fr/en/products/
caiman-camera/ (consulté le avr. 22, 2021).

Caporale, N., and Dan, Y. (2008). Spike timing–dependent plasticity:
a hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46.
doi: 10.1146/annurev.neuro.31.060407.125639

Chauhan, T., Masquelier, T., Montlibert, A., and Cottereau, B. R. (2018).
Emergence of binocular disparity selectivity through hebbian learning. J.

Neurosci. 38, 9563–9578. doi: 10.1523/JNEUROSCI.1259-18.2018
Delorme, A., Perrinet, L., and Thorpe, S. J. (2001). Networks of integrate-and-

fire neurons using Rank Order Coding B: Spike timing dependent plasticity
and emergence of orientation selectivity. Neurocomputing 38–40, 539–545.
doi: 10.1016/S0925-2312(01)00403-9

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Eurich, C. W., Pawelzik, K., Ernst, U., Thiel, A., Cowan, J. D., and Milton, J.
G. (2000). Delay adaptation in the nervous system. Neurocomputing 32–33,
741–748. doi: 10.1016/S0925-2312(00)00239-3

Farabet, C., Paz, R., Pérez-Carrasco, J., Zamarreño-Ramos, C., Linares-Barranco,
A., LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-
value and frame-free spiking-dynamic-pixel convnets for visual processing.
Front. Neurosci. 6:32. doi: 10.3389/fnins.2012.00032

Farrow, D., and Abernethy, B. (2003). Do expertise and the degree of perception-
action coupling affect natural anticipatory performance? Perception 32,
1127–1139. doi: 10.1068/p3323

Faul, F., Erdfelder, E., Lang, A. G., and Buchner, A. (2007). G∗Power 3: a flexible
statistical power analysis program for the social, behavioral, and biomedical
sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Gibson, T. A., Henderson, J. A., and Wiles, J. (2014). “Predicting temporal
sequences using an event-based spiking neural network incorporating learnable
delays,” in 2014 International Joint Conference on Neural Networks (IJCNN)

(Beijing), 3213–3220. doi: 10.1109/IJCNN.2014.6889850
Iyer, L. R., Chua, Y., and Li, H. (2021). Is neuromorphic MNIST neuromorphic?

Analyzing the discriminative power of neuromorphic datasets in the time
domain. Front. Neurosci. 15:608567. doi: 10.3389/fnins.2021.608567

Kaiser, J., Stal, R., Subramoney, A., Roennau, A., and Dillmann, R. (2017). Scaling
up liquid state machines to predict over address events from dynamic vision
sensors. Bioinspir. Biomim. 12:055001. doi: 10.1088/1748-3190/aa7663

Kaplan, B. A., Lansner, A., Masson, G. S., and Perrinet, L. U. (2013). Anisotropic
connectivity implements motion-based prediction in a spiking neural network.
Front. Comput. Neurosci. 7:112. doi: 10.3389/fncom.2013.00112

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
STDP-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep
spiking convolutional neural networks with STDP-based unsupervised
pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.
doi: 10.3389/fnins.2018.00435

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking
neural networks using backpropagation. Front. Neurosci. 10:508.
doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128$ ‖times $128 120 dB
15µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circ. 43, 566–576. doi: 10.1109/JSSC.2007.914337
Liu, S. C., van Schaik, A., Minch, B. A., and Delbruck, T. (2014). Asynchronous

binaural spatial audition sensor with 2$ ‖ times‖,64‖,‖times‖,$4
channel output. IEEE Trans. Biomed. Circ. Syst. 8, 453–464.
doi: 10.1109/TBCAS.2013.2281834

Masquelier, T. (2012). Relative spike time coding and STDP-based orientation
selectivity in the early visual system in natural continuous and saccadic
vision: a computational model. J. Comput. Neurosci. 32, 425–441.
doi: 10.1007/s10827-011-0361-9

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2008). Spike Timing dependent
plasticity finds the start of repeating patterns in continuous spike trains. PLoS
ONE. 3:e1377. doi: 10.1371/journal.pone.0001377

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual
features through spike timing dependent plasticity. PLoS Computat. Biol. 3:e31.
doi: 10.1371/journal.pcbi.0030031

Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., and Savatier, X. (2017).
A study of vicon system positioning performance. Sensors 17:1591.
doi: 10.3390/s17071591

Mohammadi, A., Asadi, H., Mohamed, S., Nelson, K., and Nahavandi, S. (2017).
“OpenGA, a C++ genetic algorithm library, in 2017 IEEE International

Conference on Systems, Man, and Cybernetics (SMC) (Banff, AB), 2051–2056.
doi: 10.1109/SMC.2017.8122921

Moraitis, T., Sebastian, A., and Eleftheriou, E. (2020). Short-term synaptic
plasticity optimally models continuous environments. arXiv 2009.06808 [cs,

q-bio]. Disponible sur: http://arxiv.org/abs/2009.06808 (consulté le avr. 23,
2021).

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and
Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-
modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.
doi: 10.1109/TNNLS.2018.2826721

Orchard, G., Benosman, R., Etienne-Cummings, R., and Thakor, N., V. (2013). “A
spiking neural network architecture for visual motion estimation,” in 2013 IEEE
Biomedical Circuits and Systems Conference (BioCAS) (Rotterdam), 298–301.
doi: 10.1109/BioCAS.2013.6679698

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2017). Converting
static image datasets to spiking neuromorphic datasets using saccades. Front.
Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Paredes-Valles, F., Scheper, K. Y. W., and de Croon, G. C. H. E. (2019).
“Unsupervised learning of a hierarchical spiking neural network for
optical flow estimation: from events to global motion perception,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 42, 2051–2064.
doi: 10.1109/TPAMI.2019.2903179

Perrinet, L., Samuelides, M., and Thorpe, S. (2004). Sparse spike coding in
an asynchronous feed-forward multi-layer neural network using matching
pursuit. Neurocomputing 57, 125–134. doi: 10.1016/j.neucom.2004.01.010

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons:
opportunities and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.
00774

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB
dynamic range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS. IEEE J. Solid-State Circuits. 46, 259–275.
doi: 10.1109/JSSC.2010.2085952

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for
image classification: a comprehensive review. Neural Comput. 29, 2352–2449.
doi: 10.1162/neco_a_00990

Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., and Liu, S. C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks
for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.
00682

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa,
E. B., et al. (2018). Brain-score: which artificial neural network for
object recognition is most brain-like?. bioRxiv 407007. doi: 10.1101/
407007

Frontiers in Computational Neuroscience | www.frontiersin.org 15 May 2021 | Volume 15 | Article 658764116

https://doi.org/10.1038/nn.2182
https://doi.org/10.3390/electronics7110304
https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1007/s10489-006-0007-1
https://yumain.fr/en/products/caiman-camera/
https://yumain.fr/en/products/caiman-camera/
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1523/JNEUROSCI.1259-18.2018
https://doi.org/10.1016/S0925-2312(01)00403-9
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1016/S0925-2312(00)00239-3
https://doi.org/10.3389/fnins.2012.00032
https://doi.org/10.1068/p3323
https://doi.org/10.3758/BF03193146
https://doi.org/10.1109/IJCNN.2014.6889850
https://doi.org/10.3389/fnins.2021.608567
https://doi.org/10.1088/1748-3190/aa7663
https://doi.org/10.3389/fncom.2013.00112
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1007/s10827-011-0361-9
https://doi.org/10.1371/journal.pone.0001377
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.3390/s17071591
https://doi.org/10.1109/SMC.2017.8122921
http://arxiv.org/abs/2009.06808
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1109/BioCAS.2013.6679698
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2019.2903179
https://doi.org/10.1016/j.neucom.2004.01.010
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1101/407007
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Debat et al. Event-Based Trajectory Prediction

Son, B., Suh, Y., Kim, S., Jung, H., Kim, J. S., Shin, C., et al. (2017). “4.1 A
640×480 dynamic vision sensor with a 9µm pixel and 300Meps address-event
representation,” in 2017 IEEE International Solid-State Circuits Conference

(ISSCC) (San Francisco, CA), 66–67. doi: 10.1109/ISSCC.2017.7870263
SP730 Near-IR/Colorless Dichroic Block Shortpass Filter (2015). MidOpt.

Disponible sur: https://midopt.com/filters/sp730/ (consulté le nov. 23, 2020).
Spike Event Sensor. (2021). Yumain. Disponible sur: https://yumain.fr/en/

products/s-e-s-spike-event-sensor/ (consulté le avr. 23, 2021).
Taunyazov, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., et al. (2020).

Event-driven visual-tactile sensing and learning for robots. Présenté Robot. Sci.
Syst. doi: 10.15607/RSS.2020.XVI.020

Tavanaei, A., and Maida, A. S. (2017). Bio-Inspired Spiking Convolutional
Neural Network using Layer-wise Sparse Coding and STDP Learning.
arXiv:1611.03000 [cs]. Disponible sur: http://arxiv.org/abs/1611.03000
(consulté le avr. 12, 2021).

Thiele, J. C., Bichler, O., and Dupret, A. (2018). Event-based, timescale invariant
unsupervised online deep learning with STDP. Front. Comput. Neurosci. 12:46.
doi: 10.3389/fncom.2018.00046

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid
processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Tversky, T., and Miikkulainen, R. (2002). Modeling directional selectivity
using self-organizing delay-adaptation maps.Neurocomputing 44–46, 679–684.
doi: 10.1016/S0925-2312(02)00457-5

Van Rullen, R., and Thorpe, S. J. (2001). Rate coding versus temporal order
coding: what the retinal ganglion cells tell the visual cortex. Neural Comput.
13, 1255–1283. doi: 10.1162/08997660152002852

VanRullen, R., Guyonneau, R., and Thorpe, S. J. (2005). Spike times make sense.
Trends Neurosci. 28, 1–4. doi: 10.1016/j.tins.2004.10.010

Conflict of Interest: MP is Chief Technology Officer at Yumain, which develops
and commercializes the Neurosoc. Yumain has however nothing to do with the
design of our study or the interpretation of the results. The SNN is currently under
a patent examination process, with all the co-authors at the exception of MP listed
as the inventors of this patent.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Debat, Chauhan, Cottereau, Masquelier, Paindavoine and Baures.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 16 May 2021 | Volume 15 | Article 658764117

https://doi.org/10.1109/ISSCC.2017.7870263
https://midopt.com/filters/sp730/
https://yumain.fr/en/products/s-e-s-spike-event-sensor/
https://yumain.fr/en/products/s-e-s-spike-event-sensor/
https://doi.org/10.15607/RSS.2020.XVI.020
http://arxiv.org/abs/1611.03000
https://doi.org/10.3389/fncom.2018.00046
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1016/S0925-2312(02)00457-5
https://doi.org/10.1162/08997660152002852
https://doi.org/10.1016/j.tins.2004.10.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 1

ORIGINAL RESEARCH
published: 07 June 2021

doi: 10.3389/fncom.2021.612937

Edited by:
Jonathan Mapelli,

University of Modena and Reggio
Emilia, Italy

Reviewed by:
Ivan Raikov,

Stanford University, United States
Jong-Ho Lee,

Seoul National University,
South Korea

*Correspondence:
Yuan Zeng

yuz615@lehigh.edu

Received: 01 October 2020
Accepted: 19 April 2021

Published: 07 June 2021

Citation:
Zeng Y, Ferdous ZI, Zhang W,

Xu M, Yu A, Patel D, Post V, Guo X,
Berdichevsky Y and Yan Z (2021)

Understanding the Impact of Neural
Variations and Random Connections

on Inference.
Front. Comput. Neurosci. 15:612937.

doi: 10.3389/fncom.2021.612937

Understanding the Impact of Neural
Variations and Random Connections
on Inference
Yuan Zeng1* , Zubayer Ibne Ferdous1, Weixiang Zhang2, Mufan Xu2, Anlan Yu1,
Drew Patel1, Valentin Post1, Xiaochen Guo1, Yevgeny Berdichevsky1,3 and Zhiyuan Yan1

1 Electrical and Computer Engineering Department, Lehigh University, Bethlehem, PA, United States, 2 Electrical
and Computer Engineering Department, Beihang University, Beijing, China, 3 Bioengineering Department, Lehigh University,
Bethlehem, PA, United States

Recent research suggests that in vitro neural networks created from dissociated neurons
may be used for computing and performing machine learning tasks. To develop a
better artificial intelligent system, a hybrid bio-silicon computer is worth exploring, but its
performance is still inferior to that of a silicon-based computer. One reason may be
that a living neural network has many intrinsic properties, such as random network
connectivity, high network sparsity, and large neural and synaptic variability. These
properties may lead to new design considerations, and existing algorithms need to be
adjusted for living neural network implementation. This work investigates the impact
of neural variations and random connections on inference with learning algorithms.
A two-layer hybrid bio-silicon platform is constructed and a five-step design method is
proposed for the fast development of living neural network algorithms. Neural variations
and dynamics are verified by fitting model parameters with biological experimental
results. Random connections are generated under different connection probabilities
to vary network sparsity. A multi-layer perceptron algorithm is tested with biological
constraints on the MNIST dataset. The results show that a reasonable inference
accuracy can be achieved despite the presence of neural variations and random
network connections. A new adaptive pre-processing technique is proposed to ensure
good learning accuracy with different living neural network sparsity.

Keywords: bio-silicon computer, biological neural network, living neural network, spiking neural network, sparse
connections, weight constraint, random network, recurrent network

INTRODUCTION

Artificial neural networks (ANN) have shown great success in solving real-world problems (Hinton
et al., 2012; He et al., 2016; Silver et al., 2017). Most widely used neural network algorithms run
on silicon- based computers, where the resource requirement and energy consumption become
a challenge when the network size grows (Sze et al., 2017). In contrast, neurons and synapses
naturally process information in a more energy-efficient way as compared to transistors and wires in
computers (De Salvo, 2018). To develop a better artificial intelligent system, several groups (Reger
et al., 2000; DeMarse et al., 2001; Han, 2013; Ju et al., 2015) proposed to incorporate biological living
neural networks into the silicon platform to design a hybrid bio-silicon computer.

By dissociating the animal cortex into individual cells, placing them on an adhesive dish, and
maintaining them in physiological conditions for several weeks, living neurons in a dish make

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 612937118

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.612937
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncom.2021.612937
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.612937&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/articles/10.3389/fncom.2021.612937/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 2

Zeng et al. Neural Variation and Random Connections

random synaptic connections with each other and form an
in vitro living neural network (Hasan and Berdichevsky, 2016).
The in vitro neural cultures could respond to stimuli and
be precisely controlled through microelectrode arrays (MEAs)
(Thomas et al., 1972; Wang et al., 2006; Pizzi et al., 2007) or an
optogenetics interface (Hong et al., 2015; Nguyen et al., 2019).
Such a platform not only helps neuroscience studies but also
makes it possible to use neurons as “devices” for learning and
computing, which applies to image recognition (He et al., 2016),
speech recognition (Hinton et al., 2012), and object detection
(Zhao et al., 2019) tasks.

In an early hybrid bio-silicon design (Reger et al., 2000),
neurons from the reticular formation of a lamprey brain were
cultured and placed in a robot to guide its movement. The
sensor data gathered from the robot were used as the input
for the in vitro living neural network. Outputs of the living
neural network were processed with silicon-based circuits and
used to control the motor actuators of the robot. Experiments
showed that, with the closed-loop interaction between the in vitro
network and the robot, the robot’s behavior would adapt to the
sensory information. Later works expanded the application sets
for hybrid bio-silicon designs, Dranias et al. (2013) constructed
a hybrid platform to process image patterns and Ju et al.
(2015) showed that such a network is capable of classifying
organized temporal sequences similar to music. Other works in
this area were reviewed by Heard et al. (2018). Instead of using
in vitro living neural networks that are randomly connected,
researchers also tried to control in vitro neural connectivity and
construct living neural circuits that carry out logic functions
(Hasan and Berdichevsky, 2016). There were attempts to use
in vivo neural networks for learning too (Musk and Neuralink,
2019). These works provided proof of concept that a hybrid
bio-silicon network can perform some learning tasks and solve
real-world problems.

However, the capability of the hybrid bio-silicon network is
still far from the silicon-based design. Ju et al. (2015) constructed
a comparison experiment between a hybrid bio-silicon design
and a silicon-based design with a similar network structure and
learning algorithm. The in vitro living neural network is modeled
by a liquid state machine (LSM) structure (Maass et al., 2002)
in the silicon-based design. For a temporal pattern classification
task, the hybrid design achieved 60% classification accuracy,
which is 10% lower than the LSM-based silicon design, and
far below what a state-of-the-art silicon-based design (e.g., long
short term memory; Hochreiter and Schmidhuber, 1997) could
achieve. Although this result showed that a hybrid network can
perform the learning task, the reason behind the accuracy gap
has not been studied. In general, none of the well-designed
benchmarks used to assess ANN performance have been tested
in the bio-silicon platform due to implementation complexity.

The inferior performance observed in experiments could
come from experimental limitations (e.g., control or recording
precision), living neural network properties (e.g., high variations,
random connections), as well as the poor learning capability
of the algorithm. To achieve a better hybrid bio-silicon design,
it is important to separate the influences of each factor and
clearly understand the bottlenecks. While prior works mentioned

above focused on implementation issues, this paper aims to study
the impact of living neural network properties on prediction
accuracy. Specifically, this work investigates the influence of
neural variations and random connections on inference with an
experimentally fitted biophysical model.

Contributions of the work are listed below: (1) This work
proposes a new approach to the design of algorithms for
living neural network implementation. Section “Living Neural
Network Properties and Related Works” reviews related works
and shows that none of the existing works had the same
target as this paper, and none of the existing algorithms have
been proved to be efficient for living neural networks. Since a
living neural network has many unique properties that are not
fully considered by previous works, rethinking the algorithm
design with biological constraints is necessary. (2) A two-layer
hybrid bio-silicon platform and a five-step design method are
proposed for the living neural network algorithm study and
introduced in section “Scope of the Study.” Characteristics of
neurons in culture, including their variability, are captured in
a biophysical model (section “Experiment Settings,” Experiment
1). The model is then transferred to a TensorFlow-based
computational model through synapse weight and neuron
threshold fitting to enable fast algorithm exploration (section
“Experiment Settings,” Experiment 2). Accuracy between the
biophysical and computational models are compared to validate
that the model transfer does not lose fidelity (section “Experiment
Settings,” Experiment 3). (3) A multi-layer perceptron algorithm
(section “Algorithm”) is tested with biological constraints as a
case study. The algorithm is adjusted for living neural network
implementation with a new adaptive pre-processing technique
(section “Experiment Settings,” Experiment 4), which helps the
proposed neural network to achieve good learning accuracy
for living neural networks with different sparsities. At last,
neural variations are studied on the optimized model (section
“Experiment Settings,” Experiment 5).

LIVING NEURAL NETWORK
PROPERTIES AND RELATED WORKS

Living neural networks have many intrinsic properties that
are important for algorithm designs. Table 1 summarizes the
living neural network properties and the difference between
this work and prior bio-inspired algorithm designs. Artificial
neural network (ANN) algorithms, which are based on the
static numerical abstractions of the biological neural networks,
have shown great potential on standard benchmark testing.
Although the accuracy keeps improving for ANN designs, many
important biological properties are omitted. For example, in
living neural cultures, the information is coded, processed, and
transferred through spikes. At a certain time, the output of
a neuron can be a spike or no spike, depending on whether
the membrane potential has crossed the threshold or not (b1).
However, in most ANNs, a neuron is modeled by an activation
function such as a sigmoid or a rectified linear unit (ReLU),
where the output could be a floating-point value. A recently
proposed binary neural network (Courbariaux et al., 2016) did

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 612937119

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 3

Zeng et al. Neural Variation and Random Connections

TABLE 1 | Living neural network properties and the comparison with other related
works.

Biological
properties\works

MLP[1] RNN
[2]

Binary
NN [3]

SNN
[4]

RSNN
[5]

LNN
(Proposed)

bl Threshold neuron
output

√ √ √

b2 Fixed synapse type √ √ √

b3 Synapse strength
constraint

√

b4 Neuron and
synapse dynamics

√ √ √ (fitted)

b5 Neuron and
synapse variability

√ [6] √ [6] √ [6] √ √ √ (fitted)

b6 Sparse connectivity √ [7] √ [7] √ [7] √ 7 √ √

b7 Random
connectivity

√ √

b8 Recurrent
connectivity

√ √ √

Design goals al al a2 a2 a2 a4

The check mark C means one or more works in this category have captured the
properties. [1]: LeCun et al. (1998), [2]: Hochreiter and Schmidhuber (1997), [3]:
Courbariaux et al. (2016), [4]: Maass (1997), [5]: Maass et al. (2002), [6]: only
synapse variation is modeled by randomly initialed weights, [7]: Han et al. (2015),
[8]: Krizhevsky et al. (2012), [9]: Sacramento et al. (2018).

capture the threshold neuron output to make the algorithm
more hardware efficient. However, in the binary neural network,
detailed neuron dynamics such as neuron spike frequency
adaptation and refractory period (Liu and Wang, 2001) (b4) are
not modeled. In a living neural culture, the synaptic weights
are positive or negative, depending on whether it is coming
from an excitatory or inhibitory neuron, respectively (Chen and
Dzakpasu, 2010) (b2). The synaptic weights are also normally
constrained to a range in living neural cultures, 2 × larger and
0.5 × smaller than the initial weights (Bi and Poo, 1998) (b3).
Both the neuron and the synapse have complicated dynamics and
high variability (b5). None of the existing ANN designs consider
these. In a living neural culture, the network connections are
randomly formed, the probability of connection between any pair
of neurons is based on the distance between them (b7). The
overall connectivity of the network is typically less than 40%
(Barral and Reyes, 2016) and a living neural network is very
sparse (b6). Recurrent connections also exist (Amit and Brunel,
1997) (b8). Some network-level properties of a living neural
network are captured by existing ANNs. For example, by utilizing
recurrent connections, a network could “memorize” past content
and be able to predict sequences. Another example could be
pruning technology (Han et al., 2015), which cuts the unnecessary
connections of a trained network to make the algorithm converge
faster, as well as reduce the hardware cost. Overall, as summarized
in Table 2, existing ANNs are designed for high performance and
efficient hardware implementations (a1). Hence, well-designed
ANN algorithms may not be efficient when running on living
neural networks because many necessary constraints are omitted.

Spiking neural network (SNN) algorithms emulate spiking
dynamics at different levels by using different neuron and
synapse models. Because the spiking feature is captured, the
network is “event-driven” rather than continuously processing.

TABLE 2 | Different directions for bio-inspired algorithm designs*.

a1 Improve the learning capability for real word tasks, e.g., ANNs (MLP [1],
LSTM [2], CNN [8])

a2 Improve hardware efficiency, e.g., binaryNN [3], pruning [7], SNN [4],
RSNN [5]

a3 Provide hypothesis for biophysical mechanisms, e.g., dendritic
backpropagation [9]

a4 Adjust or design algorithms for living neural network implementation,
e.g., LNN (proposed)

*a1–a3 normally target on silicon implementation. Citations described in the caption
of Table 1.

Therefore, SNNs are normally more energy efficient as compared
to the ANN designs when running on hardware (a2). However,
the non-continuous threshold function for SNNs also brings
challenges for the training algorithm design. The powerful
backpropagation algorithm for ANNs needs to be adjusted for
SNNs, and many prior SNN works focused on this direction
(Lee et al., 2016; Huh and Sejnowski, 2018; Wu et al., 2019).
Besides the backpropagation approach mentioned above, there
are explorations on spike time-dependent plasticity (STDP)-
based training algorithms and unsupervised learning approaches
(Diehl and Cook, 2015; Iakymchuk et al., 2015). Another group
of works tried to incorporate more biological properties into the
computational models to provide new hypotheses for biophysical
mechanisms (a3). For example, Sacramento et al. (2018) capture
more detailed neuron dynamics by modeling both the soma
and dendritic compartments. This work provides a hypothesis
that the dendritic micro-circuit provides a similar effect as the
backpropagation algorithm in ANNs. Another example is the
well-known blue brain project (Hill and Markram, 2008), which
is trying to build biologically detailed digital reconstructions.

Unlike prior SNN works, where one or more properties are
utilized for a unique design purpose, all living neural network
properties need to be considered when targeting living neural
network implementation (a4). In this work, we call algorithms to
be implemented on living neural networks living neural network
(LNN) algorithms. This work focuses on understanding the
impact of neural variations and random connections to LNN
algorithm design, which is an important step toward building
efficient bio-silicon computers.

ALGORITHM STUDY METHOD

Scope of the Study
A two-layer hybrid bio-silicon neural network (Figure 1A) is
targeted for algorithm study. The first layer is to be implemented
in an in vitro living neural network and named biological
layer in this paper. The second layer is computational and
can run on general purpose computers or accelerators, and is
named the hardware layer is this paper. More details about
the network structure and design choice will be introduced
in section “Network Structure and Data Representation.” To
improve the algorithm exploration speed without losing fidelity,
the in vitro biological living neural network (biological platform
in Figure 1B is represented by two different models in this work.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2021 | Volume 15 | Article 612937120

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 4

Zeng et al. Neural Variation and Random Connections

FIGURE 1 | (A) Two-layer hybrid bio-silicon neural network. (B) A five-step method for LNN algorithm design. Step 5 (labeled with darker gray) of the method is out
of the scope of the paper.

One is a biophysical model, which uses the NEURON simulator
(Hines and Carnevale, 2001) to implement the biological layer. In
this model, neurons are represented with the two-compartment
Pinsky-Rinzel model (Pinsky and Rinzel, 1994), and synapses are
represented with the alpha function model (Sterratt et al., 2011a).
To further speed up the simulation, a computational model built
with TensorFlow (Abadi et al., 2016) is used to model the living
neural network, which uses the threshold function as the neuron
activation function and models synapse as a floating-point value
without dynamics.

In this work, the living neural network properties are
converted into a simple computational model for fast algorithm
design and optimization through a five-step method: (1)
Biological experiments are conducted to determine neural and
synaptic parameters; (2) the biophysical model captures the
living neural network properties and variability by neuron and
synapse parameter fitting from experimental data. However, the
simulation speed for the biophysical layer is slow because of
the large number of differential equations that are involved in
modeling ion channels and synapses. Therefore, a simplified
computational model with fast simulation speed is used and the
living neural network properties are transferred into this model
by fitting the weight and threshold distributions; (3) the learning
algorithm is designed and optimized in the computational model
with fitted biological layer parameters; (4)–(5) accuracy of the
algorithm is checked on the biophysical model and the living
neural network. Design details of steps (1)–(4) are introduced
in the rest of the paper and step (5) remains as future work.
This paper studies disinhibited networks and focuses on testing
the influence of realistic biological properties on the inference
process. Limitations and future steps of the work are discussed
in section “Discussion.”

Network Structure and Data
Representation
A living neural network is randomly connected, which means
other than the input-output connections, connections also exist
between inputs, between outputs, and from outputs to inputs.
As a result, the network has poly-synaptic (secondary) spikes
triggered indirectly by the inputs, in addition to single-synaptic

(primary) spikes. This paper assumes that an early “cut-off”
mechanism for spike counting can be applied in experiments to
distinguish the primary spikes from the secondary spikes, because
the primary spikes normally happen before the secondary
spikes. With this assumption, a living neural network can be
observed as a feedforward network. In the biophysical and
computational model, the biological layer is modeled with a 40%
connectivity (Barral and Reyes, 2016). The hardware layer is
fully connected. This work uses the MNIST dataset to evaluate
network performance. Each MNIST image has 28 × 28 pixels
in grayscale. Since controlling 784 input neurons is difficult,
each MNIST image is compressed to 14 × 14 pixels. Section
“Network and Algorithm Optimization Methods” describes the
details of different pre-processing methods to compress the
images. MNIST contains ten groups of digits, therefore, the
network has 196 inputs, 10 outputs, and a varying number of
hidden layer neurons.

An example of using the hybrid neural network for digit
recognition is shown in Figure 2. After pre- processing and
compression, the pixel values are turned into binary (zero or
one) and used as the network inputs to the biological layer
(Figure 2A). Each input neuron corresponds to a pixel in the
image. For the biophysical model, channelrhodopsin-2 (ChR2)
(Nagel et al., 2003) is simulated as a light-gated ion channel. By
controlling the light intensity and the duration, current (the blue
bar in Figure 2A) is generated to evoke a single spike for the
input neuron if the corresponding pixel value is one. Detailed
settings used for our study are introduced in section “Experiment
Settings,” Experiment 1. For one input image, currents are
generated for different input neurons at the same time. This
kind of deterministic binary data representation, instead of spike
train representation, is used to distinguish the primary output
spikes from the secondary output spikes. Data are represented as
floating-point numbers for the hardware layer (Figure 2C) for
both biophysical and computational model.

Network activity of the biological layer is measured by
observing and converting the output neuron membrane potential
to binary representations through a spike detection process in the
biophysical model. In this model, membrane potential changes
with time. A 200 ms window is set to observe the output spiking
pattern for each input image. A detection example is shown in

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 612937121

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 5

Zeng et al. Neural Variation and Random Connections

FIGURE 2 | An example of using the hybrid neural network for digit recognition. The hidden layer is the output of the biological layer and the input of the hardware
layer.

Figure 2D: membrane potential of neuron five does not reach
the pre-defined threshold (0 mV); therefore, the output is zero
and given as the input to the hardware layer. For neurons 50
and 80, the membrane potential exceeds the threshold, and the
output value is one. For the computational model of the biological
layer, the membrane potential is a floating-point value and it is
converted to binary by comparing with a pre-defined threshold.

Algorithm
The algorithm study process using the biophysical and
computational models is shown in Algorithm 1 with the pseudo-
code. Corresponding equations are described in Figure 3. In
order to faithfully model a living neural network, the biological
layer uses realistic parameters derived from experimental
characterization of in vitro neurons disassociated from the
cortical region of a rat brain. The hardware layer provides both
high-precision data representation and flexibility for weight
updates, and hence has the potential to boost performance.
This work only studies the disinhibited network behavior.
Disinhibited environment is easily obtained by using GABAA
receptor antagonists (Goel and Buonomano, 2013; Odawara
et al., 2016) in in vitro experiments and it has been studied
extensively in the literature. Both excitatory and inhibitory
neurons exist in the network; however, synapses coming from
the inhibitory neurons are prevented from functioning. Only
excitatory synapses are captured for synapse parameter fitting.
Correspondingly, we constrain the weights to be greater than
zero in the biological layer in both biophysical and computational
models to match the in vitro experiment setting.

To capture the neuron dynamics in the biophysical model,
a two-compartment Pinsky-Rinzel neuron model (Pinsky and
Rinzel, 1994) with three somatic ion channels and four dendritic
ion channels is used (Figure 3) (Equations 3 and 4). An
alpha synapse model (Sterratt et al., 2011a) (Equation 1) is
used. The two-compartment Pinsky-Rinzel model with the alpha
synapse model reproduces a variety of realistic activity patterns

in response to somatic current injection or dendritic synaptic
input, which is verified by biological experiment results. Having
more compartments will increase computation complexity, while

Algorithm 1: Algorithm study process for biophysical and computational model.

1 //Network initialization;

2 for each neuron and synapse in the biological layer do

3 if biophysical model then

4 Set neuron and synapse parameters to the fitted value (Table 3)
discovered by Experiment 1*;

5 else if computational model then

6 Set initial weight and threshold distribution to the fitted value
discovered by Experiment 2*

7 ;__

8 for each neuron and synapse in the hardware layer do

9 Initial weight are threshold distribution are hyper-parameters, optimized
by Experiment 3*;__

10 //Learning process;

11 for each image in the training set do

12 //Inference for the biological layer;

13 Convert pixel values of the image to binary representation;

14 if biophysical model then

15 Model Equations (1)–(5) in Figure 3 for each neuron;

16 else if computational model then

17 Model Equations (9)–(10) in Figure 3 for each neuron;

18 //Inference for the hardware layer;

19 Make prediction based on Equation (11)

20 //Training;

21 Model Equations (13)–(18) to calculate loss and do back-propagation
to update all the weights parameters for biological and Hardware layer;__

22 //Validation process;

23 for each image in the testing set do

24 Do the inference steps as described in the learning process and get
the prediction accuracy;__

25 * Detailed experiment settings and results are described in section
“Experiment Settings” and “Results” Results

Frontiers in Computational Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 612937122

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 6

Zeng et al. Neural Variation and Random Connections

FIGURE 3 | The hybrid network learning algorithm (Martin and Jurafsky, 2009; Sterratt et al., 2011a,b).

a single- compartment model cannot capture some important
neuron properties such as spike frequency adaptation behavior.

For pre-synaptic neurons, the current evoked by ChR2 (Is)
is the input to the network. For post-synaptic neurons, an

action potential is triggered when the accumulated synapse
current (Isyn) (Equation 2) is large enough. In the biophysical
model, a spike occurs when the somatic voltage (Vs) exceeds
zero (Equation 5), which happens near the peak of the action

Frontiers in Computational Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 612937123

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 7

Zeng et al. Neural Variation and Random Connections

potential. For the computational model, weights and the neuron
thresholds for the biological layer are initialized following a
normal distribution (Equations 6 and 7), and no negative weight
is allowed (Equation 8). If the sum of input-weight products at
a certain neuron exceeds the threshold (Equations 9 and 10), a
spike is generated. The hardware layer is fully connected with ten
outputs (Figure 2), the weights are initialed following a normal
distribution without any constraint (Equation 12). A softmax
function (Martin and Jurafsky, 2009) is used to normalize the
output (Equation 11). The index of the largest output is the
prediction result. The cross-entropy loss (Martin and Jurafsky,
2009) is used for error backpropagation (Equation 13). The
gradient of the non-differentiable hard threshold function is
estimated as a constant one, which is known as the “straight-
through estimator” (Bengio et al., 2013) (Equations 14–17). The
weights of the biological layer are restricted to the range of
0.5× –2× of initial weights (Equation 18).

Experiment Settings
Experiment 1: Biophysical Model Parameter Fitting
To capture the living neural network variations in the biophysical
model, parameters of the neuron and synapse models are fitted
to data obtained through intracellular recordings. Nine different
neurons and 12 different excitatory synapses are captured. Neural
cultures were obtained by dissociating cortices of postnatal day
0 Sprague Dawley rats and plating neurons onto poly-D-lysine
coated tissue culture dishes. On days in vitro (DIV) 12–19,
neuron IV characteristics were obtained by injecting currents
from −200 to 300 pA in current clamp mode with a 25 pA
delta current step. Biophysical neural model (Pinsky-Rinzel)
parameters were then adjusted for nine recorded cells through a
multi-objective optimization approach. The defined mean square
error incorporates different neuron features such as time to
first spike, number of spikes, and after-hyperpolarization voltage
produced by current injection. Excitatory postsynaptic currents
(EPSCs) were evoked by patterned blue light stimulation of
ChR2-expressing pre-synaptic neurons. The light power is set
to 10mW/mm2 and the duration is 5 ms to evoke a single
spike. Synaptic parameters were then extracted by fitting an
alpha function to experimentally obtained EPSC waveforms
for 12 different post-synaptic neurons and the average of 10
trails are reported.

Experiment 2: Computational Model Parameter
Fitting
To reduce the computational complexity, this work further
converts the biophysical model into a computational neural
network model with a threshold activation function. To ensure
that a similar accuracy can be achieved after the conversion,
this paper uses the minimum number of pre-synaptic neurons
that trigger a post-synaptic neuron to fire (minPreNum) as
the bridge to convert the variations in the biophysical model
to the variations in the computational model. The following
experiment is conducted in the biophysical model: the number
of pre-synaptic neurons is varied from 1 to 20 and the pre-
synaptic neurons are stimulated through injected current (Is).
The input neurons and synapses are randomly selected from

the fitted excitatory neurons and synapses, respectively. The
post-synaptic neuron is sequentially selected from all the fitted
neurons. A selection is allowed to repeat. The experiment
is repeated 1,000 times in simulation. The outcome of this
step is nine minPreNum curves for each post-synaptic neuron.
The threshold and weight variations are assumed to follow a
normal distribution. The expectations of each of the minPreNum
curves are used to estimate the threshold variation. The nine
minPreNum are aligned with peak and averaged to estimate the
weight distribution. The detailed calculation process and results
are shown in section “Computational Model Parameter Fitting.”

Experiment 3: Accuracy Comparison Between
Biophysical and Computational Models
To validate the computational model against the biophysical
model, the handwritten digit recognition task is performed
with both the computational and biophysical models. In this
experiment, 100 MNIST images are used, and the network
size is 196-100-10 for the input-hidden-output layer. As a first
step, the computational and biophysical models are compared
without any variations. In this experiment, a fitted neuron and
a fitted synapse are chosen from Table 3. The weights in the
computational model are initialized to the gsyn value of the
fitted synapse without variation. V th in the computational model
is set to match the behavior of the selected biophysical model.
The network connectivity, topology, and the hardware layer
weights are initialized to exactly the same for the biophysical
and computational models. For the second step, both models
with all variations are tested. The experiment goal is to check
whether the network accuracy matches between biophysical and
computational models with and without variation.

Experiment 4: Network and Algorithm Optimization
The computational model is optimized to achieve good accuracy
with fitted weight and threshold distributions for the biological
layer. In these experiments, 1000 MNIST images are used,
and there are 196, 100, and 10 neurons in the input, hidden,
and output layers, respectively. Methods for network and
algorithm optimization are proposed and described in section
“Network and Algorithm Optimization Methods.” Experiment
results are described in section “Network and Algorithm
Optimization.”

Experiment 5: Neural, Synaptic, and Network
Variation Study
After network and algorithm optimization, testing accuracy is
validated on the full MNIST dataset and the influence of neuron
variation, synapse variation, and weight constraint are studied.
These experiments are based on 60,000 training samples and
10,000 testing samples. The network has 196 inputs and 10
outputs. Hidden layer neurons vary between 100 AND 2,000.

Experiment 6: Accuracy Comparison Between
Biophysical and Computational Models After
Optimization
The adaptive pre-processing approach developed through
computational model optimization is then validated on the

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2021 | Volume 15 | Article 612937124

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 8

Zeng et al. Neural Variation and Random Connections

TABLE 3 | Parameters fitting results.

Neuron parameters

Cell* 1 2 3 4 5 6 7 8 9 Mean

crn (µF/cm2) 10 8 10 15 15 10 8 10 8 10.44

EL (mV) −45 −40 −45 −35 −45 −56 −50 −60 −60 −48.44

ḡL × 10−3 (S/cm2) 1.10 0.85 1.48 1.15 1.48 2.10 0.8 1.10 0.70 1.20

ḡNa × 10−2 (S/cm2) 8 6 15 29 25 9 7 11 8 13.11

ḡDR × 10−2 (S/cm2) 2 2 0.5 2 1 9.9 2 12 6 4.16

ḡAHP × 10−2 (S/cm2) 1 0.9 0.1 0.45 0.1 3 0.5 0.5 12 2.06

ḡCa × 10−2 (S/cm2) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.80

ḡC × 10−2 (S/cm2) 2 2 2 2.5 10 20 2 2 10 5.83

*Cell diameter is 20 um, p is 0.5, and gc is 8 (S/cm2) for all cells.

Synapse parameters

Cell 1 2 3 4 5 6 7 8 9 10 11 12 Mean

gsyn (10−3 µ S) 0.72 0.59 0.34 0.73 0.69 0.63 1.15 0.21 1.17 2.28 0.59 0.41 0.79

τ 4.50 5.70 4.55 7.80 5.75 6.96 5.95 6.00 4.40 4.75 4.90 6.99 5.69

Delay (ms) 1.80 2.00 2.00 2.00 2.00 1.30 2.00 2.00 1.40 1.30 2.00 2.00 1.82

biophysical model. A hundred MNIST images are used for
validation. The experiment settings are similar to those used
in Experiment 3, except that the adaptive pre-processing
optimization is applied with Ninb = 20.

Network and Algorithm Optimization
Methods
The image classification accuracy of the fitted computational
model (the result of Experiment 2) is lower than the state-of-the-
art report on the full MNIST dataset. After a closer examination
of the hybrid network, one hypothesis is that the average
percentage of firing neurons in the hidden layer (Nfhidden) during
the learning process directly influences the network capacity and
hence the accuracy. When half of the hidden layer neurons spike
on average, the network has the best learning capability. An
intuitive example is that, if none of the neurons in the hidden
layer spike, no matter what images are given from the dataset,
the network will not learn at all. A similar situation also happens
if all of the neurons in the hidden layer spike, regardless of
the input image. For further analysis, considering the network
structure in Figure 2, we introduce a parameter that is related
to Nfhidden:

f = (Sparsity× Ninb ×meanW)/Vth, (19)

where Sparsity is calculated by the number of connected neuron
pairs divided by the total number of neuron pairs between
the input- and the hidden-layer neurons, Ninb represents the
number of black pixels in the input images, meanW represents
the average weights between input- and the hidden-layer neurons
for the entire dataset after training, and V th is the average
threshold of the hidden layer neurons. The second hypothesis
is that when f = 1, the network has on average around
50% × Nhidden firing neurons for all of the images within the

dataset. This is because Sparsity × Nin_b × meanW represents

the expectation of xn in Equation (5), where xn =
M∑

m=0
xn × wmn .

When Sparsity×Nin_b×meanW = Vth, a neuron in the hidden
layer has on average 50% possibilities to fire. When f approaches
zero, it is likely that none of the hidden layer neurons will fire,
while when f is much larger than one, it is likely that all of the
hidden layer neurons will fire. The optimization goal is to keep
f close to one because the hybrid network has a greater learning
capability when 50% of the hidden layer neurons are firing.

In this paper, an adaptive pre-processing (Adpp) method
for the living neural network is proposed to shift Nfhidden
to 50% with a certain sparsity. In this approach, the input
images are processed to achieve a target Ninb, so that the f
value is close to one. We adopt a filter-and-pool approach
(LeCun et al., 1998) as the pre-processing mechanism. It
is sometimes necessary to compress the input data to fit
the input-bio interface of the biological layer. Fortunately,
the compression can be naturally incorporated into the pre-
processing. The proposed work uses 196 neurons as the inputs.
To compress the 28 × 28 MNIST images to 14 × 14, a
specific filter size, stride, padding, and compression threshold
need to be chosen. Relationship between these parameters are
given by compressed size = (original size−filter size+2×padding)

stride + 1. The
compression threshold that turns the greyscale value to black and
white after the average pooling is tuned to meet the desired Ninb
value. By using the Adpp approach, Nfhidden can usually be tuned
to around 50% for a typical living neural network sparsity, and
thus a good accuracy can be achieved. The f value is close to one
when Nfhidden is close to 50%.

Besides the adaptive pre-processing method, this work studies
different gradient estimator (Est) methods to further improve
the network accuracy. Because the hidden layer of the hybrid
network uses a non-continuous threshold function, the gradient

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 612937125

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 9

Zeng et al. Neural Variation and Random Connections

needs to be estimated. The straight-through estimator (Bengio
et al., 2013), which considers the gradient as a constant one, is
used for the previous experiments in this work. However, setting
the gradient as one only when xn (Figure 3) is within a small
range can improve the training of the network. A set of gradient
ranges around V th are explored in the experiment to find the best
one. Finally, the biological layer learning rate and the hardware
layer parameters such as the initial weights and learning rate can
be tuned as hyper-parameters.

RESULTS

Biophysical Model Parameter Fitting
Biophysical model fitting results for nine neurons and 12
synapses are shown in Table 3.

Computational Model Parameter Fitting
Figure 4A shows the nine minPreNum histograms
corresponding to each post-synaptic neuron. The average
of the nine minPreNum expectations is 8.2, and the standard
deviation is 2.4. These values are multiplied with the average
maximum synapse conductance (the average gsy = 0.0008 in
the supplementary materials is used to estimate the average
weights) to derive the threshold distribution N (0.0066, 0.0019).
To estimate the weight distribution, the nine minPreNum are
aligned with the peak and the aligned points on the curves
are averaged into one curve in Figure 4B. To fit the mean and
standard deviation of the curve, the minPreNum experiment
is repeated using the computational model. A post-synaptic
neuron with threshold = 0.0066 is used. A weight distribution of
N (0.0009, 0.0009) has the best fit.

Accuracy Comparison Between
Biophysical and Computational Model
To validate the computational model against the biophysical
model, the digit recognition task is performed with both the
computational and the biophysical models. Experiment settings
are listed in Table 4 and the testing accuracy are compared
in Figure 4C, which shows that the accuracy results for the
biophysical and the computational models closely match each
other with and without variations.

TABLE 4 | Simulation parameters.

Experiment/dataset/
network

Accuracy comparison between two models/100
MNIST images, training set same as testing
set/size:196-100-10

Bio layer (fix) Sparsity: 40%, Vthcp: N (0.0055, 0), initWcp: N (0.00072, 0),
Lr: 1e-4

Bio layer (var) Sparsity: 40%, Vthcp: N (0.0066, 0.0019), initWcp: N
(0.0009, 0.0009), Lr: 1e-4

Hardware layer Fully connected, initW: N (0.0009, 0.0009), Lr: 1e-2

Optimization
(Experiment 6)

Adpp: Ninb = 20

Experiment/dataset/
network

Network and algorithm optimization/1,000 MNIST
images, training set same as testing set/size:196-100-10

Bio layer Sparsity: 40%, Vthcp: N (0.0066, 0.0019), initW: N (0.0009,
0.0009), Lr:5e-6

Hardware layer Fully connected, initW: N (0.0009, 0.03), Lr: 0.008

Optimization Adpp: Ninb = 20, Estimator range: (0, 0.0075), Adlr: bio
layer initial 5e-06, hardware layer initial 0.1, decay rate 0.1

Experiment/dataset/
network

Variation study/60,000 and MNIST images for training and
10,000 for testing/size:196-(100–2,000)-10

Bio layer Sparsity:40%, Vthcp: N (0.0066, 0.0019), initW: N (0.0009,
0.0009), Lr: 5e-6

Hardware layer Fully connected, initW: N (0.0009, 0.03), Lr:0.008

Optimization Adpp: Ninb = 26, Estimator range: (0, 0.0075), Adlr: bio
layer initial 1e-05, hardware layer initial 0.1, decay rate 0.1

Network and Algorithm Optimization
To validate the hypotheses proposed in section “Experiment
Settings,” the relationship between accuracy and number of firing
neurons in the hidden layer (Nfhidden) is studied with the variation
of network sparsity (Figure 5A), number of black pixels in the
input images (Figure 5B), and the initial weights (Figure 5C),
respectively. The sparsity study suggests that, when the sparsity
is higher, Nfhidden is larger. The best accuracy is achieved at
sparsity 20%, where the corresponding Nfhidden is the closest to
50% among the tested sparsity and the corresponding f values are
close to one. The best accuracy is achieved at Ninb = 20 and initial
weight distribution N (0.0004, 0.0004), where the corresponding
Nfhidden value is the closest to 50% among the tested parameter
ranges. These observations agree with the hypotheses. Figure 5D)
shows the accuracy result with different combinations of the filter
size, stride, and padding. The best result is given by filter size = 2,
stride = 2, and padding = 0. This set of pre-processing parameters

FIGURE 4 | (A,B) Computational model parameter fitting; (C) accuracy comparison between biophysical and computational models.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 612937126

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 10

Zeng et al. Neural Variation and Random Connections

FIGURE 5 | Network and algorithm optimization study. Nfhidden: average percentage of firing neurons in the hidden layer; Ninb: number of black pixels in the input
images; W mean/W std: mean/standard deviation for biological layer initial weight distribution.

are used in this paper. Figure 5E shows that passing the gradient
across a neuron only when xn falls in a smaller range can help
improve the accuracy. However, for living neural networks, only
the upper bound constraint of the gradient could be implemented
with the “cut-off” mechanism. Therefore, (0, 0.0075) is used for
the following experiments in this paper. The result of hyper-
parameter tuning is listed in Table 4, in the network and
algorithm optimization part. With all the optimization methods,
a 99.5% accuracy could be achieved for the 1000 MNIST dataset.

Neural, Synaptic, and Network Variation
Study
The hybrid bio-silicon neural network learning accuracy for the
full MNIST dataset is reported in Figure 6A after adding all
optimizations discussed above. For 100, 500, and 2,000 hidden
layer neurons, the average testing accuracy is 85.3, 90.8, and
93.4%, respectively. For the 2,000 hidden layer neuron case, a 6%
accuracy gap is observed between training and testing accuracy.
When increasing the hidden layer neuron number and adding
the dropout technique to alleviate the overfitting issue, a 96%
testing accuracy is achieved, which is a reasonable accuracy with
biological constraints.

Effects of threshold and weight variations are evaluated
separately in Figures 6B,C, respectively. Within the tested range,
with the increase of the threshold variation, network accuracy
slightly increases first and then starts to decrease. This is because
a larger threshold variation brings too much noise to the network,
which goes beyond the ability of the algorithm. With the increase
of the synaptic weight variation, the network accuracy increases
first then saturates. This is because the weights are trainable, and
a larger initial weight variation enlarged the synapse changing
space, since the weights are constrained to 0.5 × −2× of the
initial weights. In Figure 6D, network accuracy is studied with the
weight constraint. Synapse weights are initialized randomly but
are constrained in a fixed range. Results suggest that, the larger
the weight range, the higher the accuracy. Overall, a relatively
good accuracy could be achieved with a realistic threshold,
synapse weight, and weight constraints.

Accuracy Comparison Between
Biophysical and Computational Models
After Optimization
The accuracy comparison result between the biophysical and
computational model before and after the network and algorithm
optimization is shown in Figure 7. After optimization, the
testing accuracy and converge speed on the 100 MNIST
dataset improved for both models. The accuracy also matched
well between the biophysical and computational model after
optimization. This verified the effectiveness of the optimization
method on the biophysical model.

DISCUSSION

In this paper, a hybrid bio-silicon neural network is proposed
and studied using both biophysical and computational models.
Random network connections, as well as realistic threshold
and synapse weight variations are considered. With proposed
optimization methods, a 96% accuracy is achieved in simulation
using a living neural network-fitted computational model.
Simulation suggests that biologically plausible inference is
not the major reason for a poorly performed bio-silicon
computer; hence, living neurons could be used to design a
learning machine.

This paper focuses on testing the influence of realistic
biological properties on the inference process. Thus, the
training approach is set to be the same as the conventional
backpropagation algorithm to ensure a fair comparison between
LNN and ANN accuracy. How to update the weights in a
biologically plausible manner and ensure training efficiency
is beyond the scope of this paper and will be carried out
in our future work. Potential solutions could be updating
weights through a supervised spike time-dependent plasticity
(STDP) algorithm as shown in Zeng et al. (2018), or assigning
blame by multiplying errors by random synaptic weights
(Lillicrap et al., 2016). The functional equivalence between the
NEURON-based biophysical model and the TensorFlow-based
computation model are validated with a relatively small dataset

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2021 | Volume 15 | Article 612937127

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 11

Zeng et al. Neural Variation and Random Connections

FIGURE 6 | Neural, synaptic, and network variation study. Vth mean/Vth std: mean/standard deviation for biological layer threshold distribution; W mean/W std:
mean/standard deviation for biological layer initial weight distribution; W min/W max: minimum/maximum weight constraint for biological layer.

of 100 MNIST images, because training the NEURON model is
very time-consuming and the full MNIST simulation cannot be
finished within a reasonable amount of time. Only the adaptive
pre-processing method is applied to validate the computational
optimization on the biophysical model. For a living neural
network, the network topology cannot be easily controlled.
Pre-processing guarantees a good accuracy with any measured
network sparsity and it is the most effective optimization
approach we found through the study shown in Figure 5.
With the addition of adaptive pre-processing, the network
accuracy on a small dataset of 100 MNIST images reaches

FIGURE 7 | Accuracy comparison between biophysical and computational
models after addition of adaptive pre-processing optimization (Biophysical Val
optimized and Computational Val optimized).

100%, therefore, other optimization approaches are not applied
for biophysical model validation. This work focuses on the
excitatory network, which has been studied extensively in the
literature and can be experimentally implemented via inhibition
of GABAA receptors (Goel and Buonomano, 2013; Odawara
et al., 2016) as introduced in section “Algorithm.” With inhibitory
synapse, the network activity will be more sparse and new
learning features may emerge. The influence of the variability of
inhibitory synapses on hybrid bio-silicon network performance
is important and will be explored on the biological platform in
our future work.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://yann.lecun.com/exdb/mnist/.

ETHICS STATEMENT

The animal study was reviewed and approved by Animal Care
and Use Committee (IACUC) at Lehigh University.

AUTHOR CONTRIBUTIONS

YZ and XG developed the main concepts. YZ implemented
the major part of the biophysical and computational models,
performed the simulation, and drafted the manuscript. ZF
and YB developed the biological platform. ZF performed
the biological experiments and provided related data. WZ
implemented the Chr2 channel in the biophysical model and
helped in parameter tuning and adaptive pre-processing. MX
helped in parameter tuning and adaptive learning rate. VP helped
in converting biophysical variations into the computational
model. All the other authors assisted in developing the concepts
and writing the manuscript.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 612937128

http://yann.lecun.com/exdb/mnist/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 12

Zeng et al. Neural Variation and Random Connections

FUNDING

This work is supported by the National Science Foundation under
Grant No. 1835278.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at https://arxiv.
org/pdf/1905.11594.pdf (Zeng et al., 2019).

REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.

(2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 [preprint] arxiv.org/abs/1603.04467

Amit, D. J., and Brunel, N. (1997). Dynamics of a recurrent network of spiking
neurons before and following learning. Network 8, 373–404. doi: 10.1088/0954-
898x_8_4_003

Barral, J., and Reyes, A. D. (2016). Synaptic scaling rule preserves excitatory–
inhibitory balance and salient neuronal network dynamics. Nat. Neurosci.
19:1690. doi: 10.1038/nn.4415

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv 1308.3432 [preprint]

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing synaptic strength and postsynaptic cell
type. J. Neurosci. 18, 10464–10472. doi: 10.1523/jneurosci.18-24-10464.1998

Chen, X., and Dzakpasu, R. (2010). Observed network dynamics from altering the
balance between excitatory and inhibitory neurons in cultured networks. Phys.
Rev. E 82:031907.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
Binarized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1. arXiv preprint arXiv 1602.02830 [preprint]

De Salvo, B. (2018). “Brain-inspired technologies: Towards chips that think?,” in
2018 IEEE International Solid-State Circuits Conference-(ISSCC) (Netherland:
IEEE), 12–18.

DeMarse, T. B., Wagenaar, D. A., Blau, A. W., and Potter, S. M. (2001). The neurally
controlled animat: biological brains acting with simulated bodies. Autonom.
Rob. 11, 305–310.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi:
10.3389/fncom.2015.00099

Dranias, M. R., Ju, H., Rajaram, E., and VanDongen, A. M. (2013). Short-term
memory in networks of dissociated cortical neurons. J. Neurosci. 33, 1940–1953.
doi: 10.1523/jneurosci.2718-12.2013

Goel, A., and Buonomano, D. V. (2013). Chronic electrical stimulation
homeostatically decreases spontaneous activity, but paradoxically increases
evoked network activity. J. Neurophysiol. 109, 1824–1836. doi: 10.1152/jn.
00612.2012

Han, J. (2013). Computing with Simulated and Cultured Neuronal Networks. Ph.D.
thesis, Netherland: IEEE.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv 1510.00149 [preprint]

Hasan, M., and Berdichevsky, Y. (2016). Neural circuits on a chip. Micromachines
7:157. doi: 10.3390/mi7090157

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition (Netherland: IEEE) 770–778.

Heard, M., Ford, J., Yene, N., Straiton, B., Havanas, P., and Guo, L. (2018).
Advancing the neurocomputer. Neurocomputing 284, 36–51. doi: 10.1016/j.
neucom.2018.01.021

Hill, S., and Markram, H. (2008). “The blue brain project,” in 2008 30th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (IEEE) (Netherland: IEEE) clviii–clviii.

Hines, M. L., and Carnevale, N. T. (2001). Neuron: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-R., Jaitly, N., et al. (2012).
“Deep neural networks for acoustic modeling in speech recognition,” in IEEE
Signal Processing Magazine (Netherland: IEEE) 29.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Hong, G., Diao, S., Antaris, A. L., and Dai, H. (2015). Carbon nanomaterials for
biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906.
doi: 10.1021/acs.chemrev.5b00008

Huh, D., and Sejnowski, T. J. (2018). Gradient descent for spiking neural networks.
Adv. Neural Inform. Proc. Syst. 1433–1443.

Iakymchuk, T., Rosado-Munñoz, A., Guerrero-Martínez, J. F., Bataller-Mompeán,
M., and Francés-Víllora, J. V. (2015). Simplified spiking neural network
architecture and stdp learning algorithm applied to image classification.
EURASIP J. Image Video Proc. 2015:4.

Ju, H., Dranias, M. R., Banumurthy, G., and VanDongen, A. M. (2015).
Spatiotemporal memory is an intrinsic property of networks of dissociated
cortical neurons. J. Neurosci. 35, 4040–4051. doi: 10.1523/jneurosci.3793-14.
2015

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Adv. Neural Inform. Proc. Syst. 60,
1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.
726791

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural
networks using backpropagation. Front. Neurosci. 10:508. doi: 10.3389/fnins.
2016.00508

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning.
Nat. Commun. 7, 1–10. doi: 10.1016/j.artint.2018.03.003

Liu, Y.-H., and Wang, X.-J. (2001). Spike-frequency adaptation of a generalized
leaky integrate-and-fire model neuron. J. Comput. Neurosci. 10, 25–45.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Networks 10, 1659–1671. doi: 10.1016/s0893-6080(97)
00011-7

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Martin, J. H., and Jurafsky, D. (2009). Speech and Language Processing: an
Introduction to Natural Language Processing. New Jersey, NJ: Pearson/Prentice
Hall.

Musk, E., and Neuralink. (2019). An integrated brain-machine interface platform
with thousands of channels. J. Med. Int. Res. 21:e16194. doi: 10.2196/16194

Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P.,
et al. (2003). Channelrhodopsin- 2, a directly light-gated cation-selective
membrane channel. Proc. Natl. Acad. Sci. 100, 13940–13945. doi: 10.1073/pnas.
1936192100

Nguyen, C., Upadhyay, H., Murphy, M., Borja, G., Rozsahegyi, E. J., Barnett,
A., et al. (2019). Simultaneous voltage and calcium imaging and optogenetic
stimulation with high sensitivity and a wide field of view. Biomed. Optics Expr.
10, 789–806. doi: 10.1364/boe.10.000789

Odawara, A., Katoh, H., Matsuda, N., and Suzuki, I. (2016). Physiological
maturation and drug responses of human induced pluripotent stem cell-derived
cortical neuronal networks in long-term culture. Scientif. Rep. 6, 1–14.

Pinsky, P. F., and Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a
reduced traub model for ca3 neurons. J. Comput. Neurosci. 1, 39–60. doi:
10.1007/bf00962717

Pizzi, R., Cino, G., Gelain, F., Rossetti, D., and Vescovi, A. (2007). Learning in
human neural networks on microelectrode arrays. Biosystems 88, 1–15. doi:
10.1016/j.biosystems.2006.03.012

Reger, B. D., Fleming, K. M., Sanguineti, V., Alford, S., and Mussa-Ivaldi,
F. A. (2000). Connecting brains to robots: an artificial body for studying the
computational properties of neural tissues. Artificial Life 6, 307–324. doi:
10.1162/106454600300103656

Sacramento, J., Costa, R. P., Bengio, Y., and Senn, W. (2018). Dendritic cortical
microcircuits approximate the backpropagation algorithm. Adv. Neural Inform.
Proc. Syst. 2018, 8721–8732.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 612937129

https://arxiv.org/pdf/1905.11594.pdf
https://arxiv.org/pdf/1905.11594.pdf
https://doi.org/10.1088/0954-898x_8_4_003
https://doi.org/10.1088/0954-898x_8_4_003
https://doi.org/10.1038/nn.4415
https://doi.org/10.1523/jneurosci.18-24-10464.1998
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1523/jneurosci.2718-12.2013
https://doi.org/10.1152/jn.00612.2012
https://doi.org/10.1152/jn.00612.2012
https://doi.org/10.3390/mi7090157
https://doi.org/10.1016/j.neucom.2018.01.021
https://doi.org/10.1016/j.neucom.2018.01.021
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1021/acs.chemrev.5b00008
https://doi.org/10.1523/jneurosci.3793-14.2015
https://doi.org/10.1523/jneurosci.3793-14.2015
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1016/j.artint.2018.03.003
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1162/089976602760407955
https://doi.org/10.2196/16194
https://doi.org/10.1073/pnas.1936192100
https://doi.org/10.1073/pnas.1936192100
https://doi.org/10.1364/boe.10.000789
https://doi.org/10.1007/bf00962717
https://doi.org/10.1007/bf00962717
https://doi.org/10.1016/j.biosystems.2006.03.012
https://doi.org/10.1016/j.biosystems.2006.03.012
https://doi.org/10.1162/106454600300103656
https://doi.org/10.1162/106454600300103656
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-612937 June 1, 2021 Time: 18:47 # 13

Zeng et al. Neural Variation and Random Connections

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
et al. (2017). Mastering the game of go without human knowledge. Nature 550,
354–359. doi: 10.1038/nature24270

Sterratt, D., Graham, B., Gillies, A., and Willshaw, D. (2011a). Principles of
Computational Modelling in Neuroscience, Section 7.2. Cambridge: Cambridge
University Press.

Sterratt, D., Graham, B., Gillies, A., and Willshaw, D. (2011b). Principles of
Computational Modelling in Neuroscience, Section 8.1.2. Cambridge: Cambridge
University Press.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of
deep neural networks: A tutorial and survey. Proc. IEEE 105, 2295–2329. doi:
10.1109/jproc.2017.2761740

Thomas, C. Jr., Springer, P., Loeb, G., Berwald-Netter, Y., and Okun, L. (1972). A
miniature microelectrode array to monitor the bioelectric activity of cultured
cells. Exp. Cell Res. 74, 61–66. doi: 10.1016/0014-4827(72)90481-8

Wang, K., Fishman, H. A., Dai, H., and Harris, J. S. (2006). Neural stimulation
with a carbon nanotube microelectrode array. Nano Lett. 6, 2043–2048. doi:
10.1021/nl061241t

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for
spiking neural networks: Faster, larger, better. Proc. AAAI Conf. Artif. Intell. 33,
1311–1318. doi: 10.1609/aaai.v33i01.33011311

Zeng, Y., Devincentis, K., Xiao, Y., Ferdous, Z. I., Guo, X., Yan, Z., et al. (2018).
“A supervised stdp-based training algorithm for living neural networks,” in In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (Netherland: IEEE), 1154–1158.

Zeng, Y., Ferdous, Z. I., Zhang, W., Xu, M., Yu, A., Patel, D., et al. (2019). Inference
with hybrid bio-hardware neural networks. arXiv preprint arXiv:1905.11594
[preprint]

Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Object detection with deep
learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 30, 3212–3232.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zeng, Ferdous, Zhang, Xu, Yu, Patel, Post, Guo, Berdichevsky
and Yan. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 612937130

https://doi.org/10.1038/nature24270
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1016/0014-4827(72)90481-8
https://doi.org/10.1021/nl061241t
https://doi.org/10.1021/nl061241t
https://doi.org/10.1609/aaai.v33i01.33011311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 1

BRIEF RESEARCH REPORT
published: 24 August 2021

doi: 10.3389/fncom.2021.609721

Edited by:
Si Wu,

Peking University, China

Reviewed by:
Bao Ge,

Shaanxi Normal University, China
Jonathan Mapelli,

University of Modena and Reggio
Emilia, Italy

*Correspondence:
Aditi Anand

anand86@purdue.edu

Received: 24 September 2020
Accepted: 26 July 2021

Published: 24 August 2021

Citation:
Anand A, Sen S and Roy K (2021)

Quantifying the Brain Predictivity of
Artificial Neural Networks With
Nonlinear Response Mapping.

Front. Comput. Neurosci. 15:609721.
doi: 10.3389/fncom.2021.609721

Quantifying the Brain Predictivity of
Artificial Neural Networks With
Nonlinear Response Mapping
Aditi Anand1,2* , Sanchari Sen2,3 and Kaushik Roy2

1 West Lafayette Junior/Senior High School, West Lafayette, IN, United States, 2 Center for Brain-Inspired Computing,
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 3 IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, United States

Quantifying the similarity between artificial neural networks (ANNs) and their biological
counterparts is an important step toward building more brain-like artificial intelligence
systems. Recent efforts in this direction use neural predictivity, or the ability to predict
the responses of a biological brain given the information in an ANN (such as its internal
activations), when both are presented with the same stimulus. We propose a new
approach to quantifying neural predictivity by explicitly mapping the activations of an
ANN to brain responses with a non-linear function, and measuring the error between
the predicted and actual brain responses. Further, we propose to use a neural network
to approximate this mapping function by training it on a set of neural recordings. The
proposed method was implemented within the TensorFlow framework and evaluated
on a suite of 8 state-of-the-art image recognition ANNs. Our experiments suggest that
the use of a non-linear mapping function leads to higher neural predictivity. Our findings
also reaffirm the observation that the latest advances in classification performance of
image recognition ANNs are not matched by improvements in their neural predictivity.
Finally, we examine the impact of pruning, a widely used ANN optimization, on neural
predictivity, and demonstrate that network sparsity leads to higher neural predictivity.

Keywords: artificial neural networks (ANN), brain-inspired computing, neuromorphic systems, brain similarity,
neural recordings, neural predictivity

INTRODUCTION

The fields of machine learning and neuroscience have a long and deeply intertwined history
(Hassabis et al., 2017). In the quest for developing intelligent systems capable of learning and
thinking by themselves, researchers have repeatedly looked for inspirations in the biological
brain. The first generation of Artificial Neural Networks (ANNs) developed in the 1950s utilized
perceptrons, which are abstract mathematical models of biological neurons (Rosenblatt, 1958).
In subsequent generations of ANNs, engineering efforts to successfully train these networks
eventually led to the design of artificial neuron models that differ from their biological counterparts.
Simultaneously, researchers continued to seek and implement biological inspirations for improving

Frontiers in Computational Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 609721131

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.609721
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncom.2021.609721
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.609721&domain=pdf&date_stamp=2021-08-24
https://www.frontiersin.org/articles/10.3389/fncom.2021.609721/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 2

Anand et al. Quantifying Brain Predictivity of ANNs

ANNs, including their structure and function. For instance,
multi-layer convolutional neural networks developed in the
1990s (Fukushima, 1980; Lecun et al., 1998) were heavily
inspired by the functioning of simple and complex cells in
the human visual cortex (Hubel and Weisel, 1962). More
recently, the development of attention networks (Vaswani et al.,
2017) was motivated by the observation that human brains
“attend to” certain parts of inputs when processing large
amounts of information.

While the desire to emulate more advanced functions of
biological brains serves as one driver of brain-inspiration in the
field of ANNs, a second, equally important motivation arises
from the need for efficiency. While ANNs have matched or
surpassed human performance in many machine learning tasks,
including image recognition, machine translation and speech
recognition, the computational cost required to do so is quite
high and increasing rapidly. Amidst the justified excitement
about the success of artificial intelligence in man vs. machine
contests such as IBM’s Watson (IBM) and Google’s AlphaGo
(Deepmind AlphaGo), the gap in energy efficiency between
artificial and natural intelligence continues to grow. Improved
energy efficiency is crucial in the face of exploding computational
requirements for training state-of-the-art ANNs on the one
hand (AI and Compute, 1998), and the need to deploy them
in highly energy-constrained energy devices on the other hand
(Venkataramani et al., 2016). Recent efforts also suggest that
biologically inspired mechanisms have the potential to improve
the robustness of ANNs to adversarial attacks (Sharmin et al.,
2019; Dapello et al., 2020).

Several efforts have explored the use of biologically inspired
concepts for improving the energy efficiency and robustness of
ANNs, or allowing them to learn from less data. Among these
efforts, one group attempts to increase representational similarity
at the individual neuronal and synaptic level. For instance,
spiking neural networks comprise of neurons mimicking the
firing behavior of biological neurons while employing different
neural coding schemes (Maass, 1997). A second group of
efforts explore biologically inspired learning rules like Spike-
Timing-Dependent Plasticity (STDP) (Bi and Poo, 1998). Finally,
other efforts attempt to create ANNs with topologies that are
derived from neuroanatomy (Riesenhuber and Poggio, 1999).
In summary, prior efforts have taken various approaches in the
attempt to identify desirable features of biological brains and
embody them in ANNs.

In this work, we focus on quantifying the information
similarity between ANNs and biological networks by comparing
their internal responses to a given input stimulus (Schrimpf
et al., 2018, 2020). This approach was pioneered by Brain-
score (Schrimpf et al., 2018), which quantifies information
similarity through a combination of a behavioral sub-score
and a neural predictivity sub-score. We specifically focus on
neural predictivity, which refers to the ability to predict the
responses of a biological brain given the information from
an ANN (such as its internal activations), when both are
presented with the same stimulus. Brain-Score utilizes the
Pearson correlation coefficient to capture the correlation between
ANN activations and neural recordings from the macaque visual

cortex (Schrimpf et al., 2018). The use of Pearson’s correlation
coefficient implicitly assumes a linear relationship between the
ANN activations and neural responses. Alternative metrics such
as Mutual Information can quantify correlation under non-linear
relationships (Cover and Thomas, 2006). However, methods to
compute Mutual Information are only known when the tensors
being compared have the same rank and dimensions, which is not
true when comparing ANN activations with neural recordings.

In this work, we advocate the use of an explicit, non-
linear mapping function to predict neural responses from
ANN activations. The rationale behind this approach is that
ANN activations are themselves a product of non-linear
transformations. In addition, there does not exist a one-to-
one correspondence between ANN and brain layers, decreasing
the likelihood that the relationship between ANN activations
and neural recordings can be modeled by a linear function.
A second key idea that we propose is the use of a neural
network to approximate the mapping function itself. We note
that this is a regression problem, where the form of the function
mapping from ANN activations to neural recordings is unknown.
Neural networks, which are known to be universal function
approximators, have been successfully applied to many regression
problems. Hence, we explore their use in our work.

Embodying the approach outlined above, we propose a new
method for neural response prediction in order to quantify
the informational similarity between an ANN and a set of
brain recordings. The method utilizes a neural network, called
the neural response predictor (NRP) network, to model the
non-linear relationship between ANN activations and brain
recordings. Input stimuli (in our case, images) are fed to the
ANN, and the activations of its layers are extracted. These
activations, along with the corresponding neural recordings
(captured after presentation of the same stimuli to a primate)
(Schrimpf et al., 2018), are then used to train the NRP network.
The prediction error of the NRP network, termed NRP-error, is a
quantitative measure of the ANN’s neural predictivity.

We implement the proposed method within the TensorFlow
(Tensorflow, 2015) machine learning framework and apply it to
calculate the NRP-errors of 8 state-of-the-art image classification
ANNs. We utilize neural recordings from the IT (168 recording
sites) and V4 (88 recording sites) regions of primate brains for
3,200 images (Schrimpf et al., 2018) to evaluate the proposed
method. Our results demonstrate considerable improvement in
neural predictivity over linear models which are used in previous
approaches (Schrimpf et al., 2018). Our results reaffirm the
finding that recent advances in image classification ANNs (from
AlexNet to Xception) are not accompanied by an improvement
in neural predictivity. Finally, we also evaluate the impact of
commonly used network optimizations such as pruning on
neural predictivity.

MATERIALS AND METHODS

In this section, we first describe the general concept of
quantifying brain similarity through neural predictivity. We next
present the proposed method to quantify neural predictivity and

Frontiers in Computational Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 609721132

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 3

Anand et al. Quantifying Brain Predictivity of ANNs

finally discuss the experimental setup and methodology used to
evaluate our proposal.

Quantifying Brain Similarity Through
Neural Predictivity
Neural predictivity refers to the ability to predict biological
neural behavior using the information inside an ANN. As
illustrated in Eq. 1, one way to quantify neural predictivity is
to explicitly formulate a function f() that maps ANN activations
into predicted neural recordings. In this equation, Acti refers to
the activations of layer i in the ANN and NRpred refers to the
predicted neural responses.

NRpred = f
(
UL

i=1Acti
)

(1)

NRP-error = δ
(
NRpred, NRmeasured

)
(2)

The inputs to the function f() are the collection of activations
from all or a subset of the layers of the ANN. Next, the predicted
neural responses are compared to the measured neural recordings
using a distance metric δ such as mean absolute error, to quantify
neural response prediction error (NRP-error), as illustrated in
Eq. 2. The NRP-error may be calculated separately for different
brain sub-regions (e.g., V1, V4, and IT of the visual cortex) and
then averaged to compute the overall NRP-error for the ANN.
While there exists a wide range of possibilities for function f(),
based on the fact that neural networks are universal function
approximators, we propose to use a neural network to map from
ANN activations to predicted neural recordings.

Neural Response Prediction Method
Our work proposes a new method for quantifying the neural
predictivity of an ANN that is based on the overall approach
proposed in section “Quantifying Brain Similarity Through
Neural Predictivity.” The first key idea we propose is to explicitly
map ANN activations into predicted neural recordings. A non-
linear function is used for this mapping in order to overcome the
limitations of previous work (Schrimpf et al., 2018). A second key
idea is to use a neural network to approximate this non-linear
mapping from ANN activations to predicted neural responses.

Figures 1A,B present the proposed method to quantify the
neural predictivity for a given ANN, and given a set of neural
recordings. The method consists of the following steps:

Add NRP Network to Decode ANN Activations
The NRP network is an auxiliary structure that decodes the
ANN’s activations into neural response predictions that can be
directly compared to neural recordings in order to compute
brain similarity. The structure of the NRP network is detailed in
Figure 1B. First, activations (layer outputs) from selected layers
of the ANN are passed through a layer of neurons that we call
NRP-L1. Thus, the size of the input to the NRP network is
defined by the number of activations in the chosen layers from the
original ANN. The layer NRP-L1 has locally dense connectivity,
i.e., the activations from each layer of the ANN are processed
separately. This decision was made in order to keep the number

of parameters in NRP-L1 and the overall NRP network small.
We then concatenate the outputs of NRP-L1 and pass them
through a dense layer (NRP-L2). To enable the NRP network to
model non-linear relationships, we add ReLU layers at the end of
NRP-L1 and NRP-L2. The final layer in the NRP network (NRP-
out) produces the predicted neural recordings. Therefore, the
number of outputs of the NRP-out layer is set to be equal to the
number of neural recording sites for which data is available. We
evaluated the use of additional layers in the NRP network, but our
experiments suggest that they do not provide improved accuracy.
Overall, the NRP network forms a regression network that maps
ANN activations into predicted neural responses, specifically the
firing rates of the neurons at the recording sites.

Train the NRP Network
The composite network (the original ANN with added NRP
layers) is trained while locking down the original ANN’s
weights. The training data for this composite network consists
of stimuli (images) along with corresponding neural recordings
from the visual cortex when the primate was presented with
these stimuli. The loss function for this training is the mean
squared error between the actual and predicted neural recordings.
Standard gradient-based optimizers are used for this step [in our
experiments, the Adam optimizer (Kingma and Ba, 2014) was
found to give the best results]. A held-out set of data is used to
validate the NRP network.

Network Architecture Search for the NRP Network
A key challenge faced by the proposed method arises from
the limited number of neural recordings, which translates to
limited training data for the NRP network. Although it is
reasonable to expect this limitation to be gradually relaxed as
additional experiments are performed, it is nevertheless one that
must be considered in our effort. Thus, it becomes extremely
important to determine an optimized configuration for the NRP
network so that it has sufficient modeling capacity to predict
the neural recordings, but can also be trained with the limited
training data available. We address this challenge by performing
a network architecture search (Elsken et al., 2019) on the NRP
network. Specifically, we performed a grid search on the following
hyperparameters for the NRP network: (i) ANN layers used as
input to the NRP network, (ii) sizes of the NRP network layers
(except NRP-out, whose outputs must match the number of
neural recording sites), and (iii) learning rate.

We would like to underscore that the NRP network is not
simply a part of the original ANN (e.g., more layers added to it).
Instead, it should be viewed as a decoder that maps from ANN
activations to a representation that can be directly compared
with neural recordings. This overcomes the limitation of previous
methods in scenarios where ANN representations and brain
representations are not linearly related, and thus correlation
metrics that assume a linear relationship are not able to accurately
quantify the similarity.

Experimental Setup
The proposed method to compute the neural predictivity
of an ANN was implemented using the Tensorflow

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 609721133

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 4

Anand et al. Quantifying Brain Predictivity of ANNs

Predicted
Neural

Reponses

f()

Neural
Recordings

NRP-error

ANN

ANN ac�va�ons

Compare

FC

FC

Original ANN

NRP-L1

NRP-L2

NRP-out

Predicted neural recordings

ReLU
FC

ReLU
FC

ReLU

ReLU

FC: Fully
Connected
Layer

A B

FIGURE 1 | (A) Overview of the proposed method for quantifying neural predictivity, and (B) augmenting an ANN with Neural Response Prediction network.

(Tensorflow, 2015) machine learning framework. NRP-errors
were calculated for 8 popular image recognition ANNs that have
been proposed in recent years for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015). The characteristics of these networks are described in
Table 1.

The dataset used to train the NRP network and compute
NRP-error consists of recordings from 168 neurons in the IT sub-
region and 88 neurons in the V4 sub-region of the primate visual
cortex (Schrimpf et al., 2018). These responses were measured
when visual stimuli (3,200 images) were presented to the primates
(Rhesus macaques) for 100 ms each immediately before these
measurements were made (Schrimpf et al., 2018). Specifically,
these neural recordings consist of the average neuronal firing
rate for each neuron between 70 and 170 ms after the image
was presented. Neuronal firing rates were normalized to the
firing rates resulting from a blank gray stimulus. Note that the
proposed method is generic and can be applied to recordings
from additional sites or brain regions as such recordings become
available. The NRP network for each ANN takes as input
selected layer activations from the ANN, and produces as output

TABLE 1 | Accuracies and NRP-errors of image recognition ANNs.

Network Parameters Top-5 accuracy Top-1 accuracy NRP-error

MobileNet 4,253,864 0.895 0.704 0.237

MobileNetV2 3,538,984 0.901 0.713 0.249

NASNetMobile 5,326,716 0.919 0.744 0.247

ResNet50 25,636,712 0.921 0.749 0.290

Xception 22,910,480 0.945 0.79 0.257

DenseNetl21 8,062,504 0.923 0.75 0.249

DenseNetl69 14,307,880 0.932 0.762 0.249

AlexNet 60,954,656 0.803 0.57 0.226

predicted firing rates for each of the recording sites. The NRP-
error is the mean absolute error between the predicted firing rates
and neural measurements.

NRP-errors were calculated separately for the V4 and IT
regions of the visual cortex. In addition to the non-linear model
used to generate predicted neural recordings for the calculation
of NRP-error, we also implemented a linear regression model to
predict neural recordings as a representative of previous efforts.

RESULTS

In this section, we discuss the results of implementing the
proposed method to quantify neural predictivity of ANNs.

Table 1 presents the NRP-errors of eight different ImageNet
classification ANNs. These NRP-errors were computed as the
averages of the errors on the V4 and IT regions. As can be
seen from the table, some of the more recent ANNs such as
ResNet50 (NRP-error of 0.290) are associated with NRP-errors
that are higher than older networks such as AlexNet (NRP-errors
of 0.226). In fact, AlexNet achieved the lowest NRP-error, while
having the lowest Top-1 accuracy, among all networks evaluated.
In other words, improvements in application performance (Top-
1 accuracy) have not been accompanied by increases in neural
predictivity. Another observation is that deeper networks do
not necessarily lead to higher neural predictivity. For example,
comparing DesneNet121 and DenseNet169, we can see that the
additional layers improve Top-1 accuracy but not the neural
predictivity. This overall trend, illustrated in Figure 2A, is
consistent with observations from recent efforts on quantifying
brain similarity (Schrimpf et al., 2018). This is perhaps because,
deeper ANNs have enabled improvements in accuracy, but have
done so by adopting internal representations that are beyond and
less like those used in biological systems.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 609721134

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 5

Anand et al. Quantifying Brain Predictivity of ANNs

0.2

0.22

0.24

0.26

0.28

0.3

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

N
RP

-e
rr

or

ImageNet Top-1 Accuracy

NRP-error vs. ImageNet Top-1

0.15

0.2

0.25

0.3

0.35

0.4

Mobile
Net

Mobile
NetV

2

Dense
Net121

NASNetM
obile

ResN
et50

Xce
p�on

Dense
Net169

AlexnetM
ea

n
ab

so
lu

te
 e

rr
or

Mean absolute error of linear and non-linear mapping (IT)

Non-linear Linear

0.15

0.2

0.25

0.3

0.35

Mobile
Net

Mobile
NetV

2

Dense
Net121

NASNetM
obile

ResN
et50

Xce
ptio

n

Dense
Net169

Alexnet

M
ea

n
ab

so
lu

te
 e

rr
or

Mean absolute error of mapping for V4 and IT sub-
regions of the visual cortex

V4 IT

A B

C

FIGURE 2 | (A) NRP-error vs. Top-1 accuracy for image recognition ANNs listed in Table 1, (B) mean absolute prediction error of proposed (non-linear) and baseline
(linear) methods, and (C) prediction error for V4 and IT regions.

Necessity of Non-linear Mapping
Function
A key feature of our work is the use of a non-linear mapping
function (approximated by a neural network) to map ANN
activations to predicted neural recordings in the calculation
of NRP-error. This is in contrast to prior efforts, which use
the Pearson correlation coefficient, effectively assuming a linear
relationship between ANN activations and neural responses. In
order to demonstrate the necessity of a non-linear mapping
function, we also implemented a linear regression model to
predict neural recordings from ANN layer activations. Figure 2B
compares the mean absolute errors obtained from the proposed
method as well as the linear regression model for the IT region.
As can be seen from Figure 2B, our results show that a non-linear
mapping function from ANN activations to predicted neural
recordings significantly decreases the error of neural prediction
and can hence be considered a superior predictor of an ANN’s
neural predictivity. The results for V4 also lead to the same
conclusion. For example, in the case of ResNet-50, the mean
absolute error of the linear and non-linear models are 0.379 and
0.265, respectively. This is explained by the facts that ANN layers
are non-linear transformations and there is no layer-to-layer
correspondence between most ANN and brain layers, making a
non-linear function more suitable to model the mapping between
ANN activations and neural recordings.

To further establish the inability of a linear model to capture
the relationship between ANN activations and neural recordings,
we computed the R2 values of the linear regression models. We
found the R2 values to be less than 0.2 in all cases, which indicates
that a linear model is unable to capture the relationship between
ANN activations and neural recordings.

NRP-Errors for V4 and IT Sub-Regions
In order to compare the neural predictivities for the V4 and
IT sub-regions of the visual cortex, NRP-errors were computed
separately for both sub-regions. From the results, we observe
that ANN activations predict IT neural recordings with a higher
accuracy than V4 neural recordings (Figure 2C). This suggests
that ANNs use representations that have a higher level of
similarity with later visual cortex sub-regions (such as IT).

Relationship Between Neural Predictivity
and Layer Sizes of NRP Network
To overcome the small amount of training data (neural
recordings) available for the NRP network, a suitable
configuration must be determined so that it has sufficient
modeling capacity to predict the neural recordings but can also
be trained with the limited training data available. In order to
address this, we performed a network architecture search on the
NRP network by varying the sizes and number of intermediate

Frontiers in Computational Neuroscience | www.frontiersin.org 5 August 2021 | Volume 15 | Article 609721135

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 6

Anand et al. Quantifying Brain Predictivity of ANNs

FIGURE 3 | (A) Impact of NRP network layer sizes on prediction error, (B) impact of network pruning on NRP-error.

layers to find a suitable configuration. Representative results
obtained for the MobileNet ANN are presented in Figure 3A.
We found that using two intermediate layers in the NRP network
before the output layer is sufficient to model the mapping from
ANN activations to predicted neural recordings. We also found
that there is a sweet-spot of layer sizes for the NRP network
that minimizes the average mean absolute error of mapping
across all networks.

Impact of Network Pruning on Neural
Predictivity
Finally, we investigate the impact of a popular ANN optimization
technique, namely network pruning, on neural predictivity. We
consider the ResNet50 ANN and applied state-of-the-art pruning
algorithms (Zmora et al., 2019) to derive pruned models with
varying levels of sparsity. We define sparsity as the percentage
of weights that are zero-valued. We generated pruned models
of the ResNet50 ANN with sparsity varying from 0 to 80%.
We then applied the proposed method to the pruned models
to compute the corresponding NRP-errors, and the results are
presented in Figure 3B. The results suggest that pruning leads
to a clear decrease in NRP-error, indicating a positive effect on
neural predictivity. We believe this is due to the fact that pruning
removes “extraneous” information from the ANN, making it
easier to map its activations to the neural recordings.

DISCUSSION

Despite the rapid advances made in the field of deep learning
over the past decade, biological brains still have much to teach
us in the quest to build more energy-efficient and robust
artificial intelligence. A key step toward drawing inspiration from
biological brains is to quantify the similarity between them and
their artificial counterparts. Our work takes the approach of
quantifying similarity through neural predictivity, or the ability
to predict neural responses from a biological brain given the
internal information of ANNs. Since this is the goal of our work,
we discuss closely related efforts and place our own effort in their
context. We also discuss possible future directions, both in terms
of improving our work and its applications.

Related Work
A recent effort that quantifies neural predictivity is Brain-
Score (Schrimpf et al., 2018). Brain-Score specifically focuses
on evaluating ANNs that perform core object recognition
tasks, and provides a quantitative framework to compare image
classification ANNs with measurements from the visual cortex
of primates (firing rates for specific neurons when the primate
is presented with the stimulus). It consists of a behavior sub-
score and neural predictivity sub-scores for various regions of
the visual cortex (V1, V2, V4, and IT). The behavior sub-score
quantifies how similar the ANN’s predictions are to those made
by the primate when both are presented with the same stimulus.
The neural predictivity sub-scores capture how well the ANN’s
activations correlate to the neural recordings from each region of
the visual cortex. These sub-scores are computed as the Pearson
correlation coefficient between ANN layer outputs and neural
firing rates for that region.

Through the use of the Pearson correlation coefficient, Brain-
Score implicitly assumes a linear relationship between ANN
activations and neural firing rates. However, since ANN layers are
non-linear transformations, there is no evidence to support this
assumption. Moreover, there is no layer-to-layer correspondence
between most ANN and brain layers, making the likelihood of a
linear relationship even less likely.

Our work extends the state-of-the-art through two key ideas.
First, it advocates the use of an explicit (non-linear) mapping
function to predict neural responses from ANN activations in
order to quantify neural predictivity. A second key idea is the
use of a neural network (known to be a universal function
approximator) to approximate the mapping function itself. Our
experiments clearly support the merit of these proposals by
demonstrating an improved ability to predict neural responses.

Future Work
One possible direction to build upon our effort would be to
collect and incorporate additional neural recordings into the
dataset used. A dataset with additional recording locations and
more input images would allow us to train larger (and potentially
more accurate) NRP networks without the risk of over-fitting.
Since internal representations are greatly influenced by training,
it would also be interesting to study whether networks trained

Frontiers in Computational Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 609721136

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

fncom-15-609721 August 18, 2021 Time: 15:47 # 7

Anand et al. Quantifying Brain Predictivity of ANNs

with bio-plausible learning rules (e.g., STDP) yield higher neural
predictivity than ANNs trained with gradient-descent. Finally,
building upon a recent result that using brain-like representations
in the early layers of an ANN can lead to higher robustness,
it would be interesting to study whether there is a relationship
between an ANN’s neural predictivity and its robustness to noise
and adversarial perturbations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AA implemented the methods, performed the experiments, and
analyzed the data. SS and KR provided mentorship and inputs

into all aspects of the research. SS assisted with experiments. All
authors contributed to writing the manuscript.

FUNDING

This work was supported in part by C-BRIC, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Martin Schrimpf and James
DiCarlo from the Department of Brain and Cognitive Sciences
at the Massachusetts Institute of Technology for providing them
with the neural recordings used in this work, and for their
valuable suggestions.

REFERENCES
AI and Compute, (2018). Available online at: https://openai.com/blog/ai-and-

compute/ (accessed August 15, 2020).
Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464–10472.

Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory. Hoboken,
NJ: Wiley-Interscience.

Dapello, J., Marques, T., Schrimpf, M., Geiger, F., Cox, D. D., and DiCarlo, J. J.
(2020). Simulating a primary visual cortex at the front of CNNs improves
robustness to image perturbations. bioRxiv doi: 10.1101/2020.06.16.154542

Deepmind AlphaGo, (2017). Available online at: https://deepmind.com/research/
case-studies/alphago-the-story-so-far (accessed August 15, 2020).

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: a survey.
J. Mach. Learn. Res. 20, 1–21.

Fukushima, K. (1980). Neocognitron, a self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybernet.
36, 193–202.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.

Hubel, D. H., and Weisel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

IBM, (2011). A Computer Called Watson. Available online at: https://www.ibm.
com/ibm/history/ibm100/us/en/icons/watson/ (accessed August 15, 2020).

Kingma, D. P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
Available online at: https://arxiv.org/abs/1412.6980 (accessed August 15, 2020).

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)
00011-7

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nat. Neurosci. 2, 1019–1025. doi: 10.1038/14819

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychol. Rev. 65, 386–408.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., and Ma, S. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comp. Vis. 115,
211–252.

Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., et al.
(2020). Artificial neural networks accurately predict language processing in the
brain. bioRxiv doi: 10.1101/2020.06.26.174482

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et al.
(2018). Brain-score: which artificial neural network for object recognition is
most brain-like? bioRxiv doi: 10.1101/407007

Sharmin, S., Panda, P., Sarwar, S. S., Lee, C., Ponghiran, W., and Roy, K. (2019). A
comprehensive analysis on adversarial robustness of spiking neural networks.
Int. Joint Conf. Neural Netw. 63, 3493–3500.

Tensorflow, (2015). An end-to-end open source machine learning platform.
Available online at: https://www.tensorflow.org/ (accessed August 15,
2020).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
et al. (2017). “Attention is all you need,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems (NIPS),
New York, NY.

Venkataramani, S., Roy, K., and Raghunathan, A. (2016). “Efficient embedded
learning for IoT devices,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), Macao, 308–311.

Zmora, N., Jacob, G., Zlotnik, L., Elharar, B., and Novik, G. (2019). Neural network
distiller: a python package for DNN compression research. arXiv. Available
online at: https://arxiv.org/abs/1910.12232 (accessed August 15, 2020).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Anand, Sen and Roy. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 609721137

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://doi.org/10.1101/2020.06.16.154542
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1038/14819
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1101/407007
https://www.tensorflow.org/
https://arxiv.org/abs/1910.12232
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Brain-Inspired Computing:From Neuroscience to Neuromorphic Electronics Driving New Forms of ArtificialIntelligence
	Table of Contents
	Optimizing BCPNN Learning Rule for Memory Access
	1. Introduction
	2. Methodology
	2.1. The BCPNN Learning Rule
	2.2. Memory Access Problems of Lazy Evaluation Method
	2.3. Column Update Elimination (CUE)
	2.3.1. Ideal CUE
	2.3.2. CUE With Finite Sized Buffer
	2.3.3. Approximation Function
	2.3.4. Alternative Approach in Literature

	2.4. Error Analysis
	2.4.1. Spike Firing Rate Distribution
	2.4.2. Spike History Buffer
	2.4.3. Approximation Function
	2.4.3.1. Static approximation function
	2.4.3.2. Adaptive approximation function

	2.4.4. Summary

	3. Experiment Results
	3.1. Storage Analysis
	3.2. Performance Analysis
	3.2.1. Memory Access Demand
	3.2.2. Memory Access Efficiency
	3.2.3. Latency

	4. Discussion
	4.1. Exploiting the Temporal Locality of Spike Train
	4.2. CUE Method for STDP
	4.3. Outlook

	Data Availability Statement
	Author Contributions
	References

	Neuromorphic Computing Using NAND Flash Memory Architecture With Pulse Width Modulation Scheme
	Introduction
	Materials and Methods
	Neuromorphic System Using NAND Flash

	Results
	Measurement Results of NAND Flash Cells
	Pulse Width Modulation Circuit
	Evaluation of Quantized Neural Networks
	Effect of Device Non-ideality

	Discussion
	Comparison of Input Pulse Schemes
	Comparison With Prior Works

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems
	Introduction
	Methods and Results
	Network Models and Architecture
	Overview of the Proposed Pruning Methods
	APT: Online Adaptive Pruning Over Time
	APN: Online Adaptive Pruning Over Neurons
	APTN: Online Adaptive Pruning Over Time and Neurons

	Comparisons and Discussion
	Comparison Among the Proposed Weight Pruning Methods
	Computational Cost Reduction
	Comparison With Prior Works
	Implementation Overhead
	Impact and Future Work

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Efficient Spike-Driven Learning With Dendritic Event-Based Processing
	Introduction
	Materials and Methods
	Learning With Dendrites in Event-Driven Manner
	Network Architecture With SGD Algorithm
	Plateau Potentials and Weight Updates
	Learning With Feedback Driven Plateau Potentials
	Piecewise Linear Approximation (PWL) for Digital Neuromorphic Computing
	Binarization for Filtered Spike Trains
	Considerations for Training With Low Bitwidth Weights

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation
	Introduction
	Materials and Methods
	Circuit Simulations and Analysis
	Distributed Neuronal Representation With Neural Engineering Framework
	Analog Building Blocks

	Results
	Circuit Design
	Circuit Analysis
	Architectural Design
	Neuron Control

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Real Time Generation of Three Dimensional Patterns for Multiphoton Stimulation
	1. Introduction
	2. Methods
	2.1. Compressive Sensing Weighted Gerchberg Saxton Algorithm
	2.2. GPU Implementation
	2.2.1. Global Memory Allocation
	2.2.2. Backwards Propagation of RS and WGS
	2.2.3. Forward Propagation of RS and WGS
	2.2.4. Compressed Sensing

	2.3. Experimental Setup

	3. Results
	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Hardware Design for Autonomous Bayesian Networks
	1. Introduction
	2. Behavioral Model for Autonomous Hardware
	2.1. Autonomous Behavioral Model: Design 1
	2.2. Autonomous Behavioral Model: Design 2

	3. Difference Between Designs 1 and 2 in Implementing Bayesian Networks
	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Oscillatory Neural Networks Using VO2 Based Phase Encoded Logic
	Introduction
	Materials and Methods
	Background
	ONNs With VO2 Oscillators
	VO2-Based PeL Description

	PeL-Based ONN Architecture
	The New Neuron
	Synapse
	Network Operation

	Results
	PeL Associative Memory
	PeL ONN for Character Recognition

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Event-Based Trajectory Prediction Using Spiking Neural Networks
	Introduction
	Materials and Methods
	Neurosoc
	Choice of the Event Camera
	Architecture of the NeuroSoc Event Camera
	Time Encoding

	SNN
	Neuron Model
	STDP
	Delays
	Lateral Inhibition and Threshold Adaptation
	Training Procedure

	Data Acquisition and Comparison
	Trajectory Prediction
	Unsupervised Motion Tracking
	Comparison With Human Performance

	Results
	Selectivity
	Direction Selectivity
	Speed Selectivity

	Trajectory Prediction
	Unsupervised Motion Tracking
	Human's Performances
	Performance Comparison

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Understanding the Impact of Neural Variations and Random Connections on Inference
	Introduction
	Living Neural Network Properties and Related Works
	Algorithm Study Method
	Scope of the Study
	Network Structure and Data Representation
	Algorithm
	Experiment Settings
	Experiment 1: Biophysical Model Parameter Fitting
	Experiment 2: Computational Model Parameter Fitting
	Experiment 3: Accuracy Comparison Between Biophysical and Computational Models
	Experiment 4: Network and Algorithm Optimization
	Experiment 5: Neural, Synaptic, and Network Variation Study
	Experiment 6: Accuracy Comparison Between Biophysical and Computational Models After Optimization

	Network and Algorithm Optimization Methods

	Results
	Biophysical Model Parameter Fitting
	Computational Model Parameter Fitting
	Accuracy Comparison Between Biophysical and Computational Model
	Network and Algorithm Optimization
	Neural, Synaptic, and Network Variation Study
	Accuracy Comparison Between Biophysical and Computational Models After Optimization

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Quantifying the Brain Predictivity of Artificial Neural Networks With Nonlinear Response Mapping
	Introduction
	Materials and Methods
	Quantifying Brain Similarity Through Neural Predictivity
	Neural Response Prediction Method
	Add NRP Network to Decode ANN Activations
	Train the NRP Network
	Network Architecture Search for the NRP Network

	Experimental Setup

	Results
	Necessity of Non-linear Mapping Function
	NRP-Errors for V4 and IT Sub-Regions
	Relationship Between Neural Predictivity and Layer Sizes of NRP Network
	Impact of Network Pruning on Neural Predictivity

	Discussion
	Related Work
	Future Work

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Back Cover

