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Editorial on the Research Topic

Mendelian Randomization: Approach and Applications

Mendelian randomization (MR) is a valuable approach to assess potential causal relationships
between exposures and outcomes in an observational study, especially when traditional
randomized controlled trials or observational studies are not feasible (Davey Smith and
Ebrahim, 2003). Genetic variants, such as single-nucleotide polymorphism (SNP), are selected as
instrumental variables due to random allocation at birth, which can effectively address unmeasured
confounding bias and reverse causation. The productive findings of published genome-wide
association studies (GWAS) for screening suitable instrumental variables of various exposure traits
contributes to MR’s increasing popularity as a major approach to infer potential causal associations
(Sekula et al., 2016). However, the endeavor of MR is still limited in methodological development
and empirical application.

Although MR analysis provides a time- and cost-efficient solution to infer causal relationships
without additional recruitment or experimental design, certain threats, especially pleiotropy, weak
instrument, and linkage disequilibrium, could violate core assumptions, leading to biased causal
links (Burgess et al., 2015; Lawlor, 2016). Hence, it is urgent to develop and apply novel MR
methodologies and assess existingmethods to address those issues.Moreover, the application ofMR
has also extended to new data types and scenarios, such as mRNA, protein, metabolic biomarkers,
molecular phenotypes, and microbiome. All these applications will further explore the etiological
mechanisms behind human diseases.

Here, we organized a Research Topic on “Mendelian Randomization: Approach and
Applications” which gathered a collection of 14 high-quality studies made up of 13 original articles
and one review that deal with approaches and applications of MR. These studies emphasize on
novel methodological development, comparison of existing statistical methods, causal inference
between traditional traits/diseases or novel data types, and drug target application.

Five contributions in this issue clarified whether there is a causal relationship between
traditional traits/diseases and identified their potential risk factors. Zhu et al. utilized a
MR study to fill the gap on causal links between alcohol use and mental health in East
Asian populations. Their study reported that alcohol consumption was causally associated
with a lower risk of depression. The study by Cui, Hou, et al. employed the bidirectional
causal association between inflammatory bowel disease and Ankylosing Spondylitis with a
two-sample MR based on GWAS summary statistics. It indicated that inflammatory bowel
disease was the causal factor of an increased risk of Ankylosing Spondylitis. Similarly, Gao
X. et al. investigated the causal link between sleep-related phenotypes and type 2 diabetes
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mellitus and showed an adverse effect of insomnia on type
2 diabetes mellitus. On the other hand, evidence from the
MR approach did not support a causal relation between
certain associated conditions, which possibly represented other
confounders in previous observational studies, as shown in two
articles by Yang et al. and Cui, Feng, et al., respectively.

Six contributions in this issue explored possibilities in using
new data types in MR analysis and application of MR in new
scenarios. Zhang et al. utilized summary statistics of the gut
microbiome to assess causal relationships in inflammatory bowel
disease, which is a novel attempt to identify specific pathogenic
bacteria taxa for complex diseases by MR. In a similar vein, Ha
et al. examined the causal effects of 69 environmental factors
on asthma in the MR analysis and found that body mass index
causally affects the development of asthma. For protein level,
Zheng et al. demonstrated that fibroblast growth factor 23
level was significantly and causally associated with large-artery
atherosclerotic stroke, which offers potential therapeutic targets
for the disease. YetWang B. et al. did not find evidence to support
the causal relationship of C-reactive protein and fibrinogen with
an increased risk of intracerebral hemorrhage. Moreover, Gao
Y. et al. applied the genetic risk score and MR framework to
assess the causality of leukocyte telomere length on reviewed
around 100 MR studies of different types of exposures with risk
of stroke and provided perspectives to reviewed around 100 MR
studies of different types of exposures with risk of stroke and
provided perspectives to future novel approaches, including drug
development and repurposing.

Although the application of MR has become more popular,
existing MR statistical methods still cannot completely solve
the issues that violate the core assumptions, such as pleiotropy
and linkage disequilibrium. Thereby, novel methodological
development is warranted. In particular, three contributions
have showed novel statistical methods and compared studies
to optimize MR methods and address existing problems. The

study by Schooling et al. has demonstrated theoretically and
empirically that multivariable MR may effectively mitigate
selection bias due to survival before recruitment and performed
an example simulation after amelioration. Wang Y. et al.
proposed a novel mixed-effects regression model-based
method, Pleiotropic and linkage disequilibrium adaptive
Mendelian randomization (PLDMR), which corrected linkage
disequilibrium and pleiotropic effect in the causal statistical
inference. The simulation results showed the validity and
advantage of PLDMR compared with others. Finally, the
contribution by Lin et al. provided an improved MR approach,
Mendelian Randomization with Refined Instrumental Variable
from Genetic Score (MR-RIVER), to integrate summary data
of multiple instrumental variables into a single genetic score.
Through statistical simulations, it indicated that this novel
approach possessed more statistical power as well as smaller
biases and mean squared errors than the competing methods.

In summary, articles in this issue have comprehensively
illustrated that MR framework is an effective and powerful
solution to causal inference in various application scenarios. We
hope that our special issue will stimulate further research and
promote the development of more efficient and accurate MR
approaches in the near future.
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Alcohol Use and Depression:  
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1 College of Economics and Management, China Agricultural University, Beijing, China, 2 Beijing Food Safety Policy and 
Strategy Research Base, Beijing, China, 3 China Center for Genoeconomic Studies (CCGS), Beijing, China, 4 WeGene, 
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Background: Alcohol use has been linked to a number of physical conditions, but the 
relationship between alcohol drinking and depression, one of the most common mental 
disorders that is a significant contributor to the global burden of disease, is still under 
debate. We aim to help fill the literature gap on the causal effect of alcohol use on 
depression by using genetic instruments of ALDH2 rs671 and ADH1B rs1229984 in the 
Mendelian randomization (MR) framework.

Materials and Methods: We collected a sample of 476 middle-aged and older adults 
from mainland China. The 10-item Center for Epidemiologic Studies Depression Scale 
(CESD-10) was used to measure the status of depression. The frequency and intensity 
of alcohol consumption were measured by (1) a binary indicator of drinking or not, (2) the 
total number of drinking occasions during the past 30 days, and (3) the weekly ethanol 
consumption in grams.

Results: MR estimates indicated that alcohol use was causally associated with a lower 
risk of depression. Parameter estimates of drinking or not (b = −0.127, p = 0.048), number 
of drinking occasions (b  =  −0.012, p  =  0.040), and weekly ethanol consumption 
(b = −0.001, p = 0.039) were all negative and statistically significant. The results were 
robust after adjustments for potential confounders (e.g., income, smoking, and parental 
drinking behaviors), and the exclusion of heavy or former drinkers.

Conclusions: This is one of the first study to investigate the causal relationship between 
alcohol use and mental health using an MR design in East Asian populations. Further 
studies are needed to clarify the mechanisms of this causal link.

Keywords: alcohol use, depression, Mendelian randomization, genetic instruments, ALDH2 rs671, ADH1B 
rs1229984, China, alcohol consumption

INTRODUCTION

Alcohol use has been linked to a large number of physical conditions, and recent work has 
challenged the conventional view that low-to-moderate alcohol consumption has a beneficial 
health effect on coronary artery disease and diabetes (GBD 2016 Alcohol Collaborators, 2018). 
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However, there is much less research about the causal 
relationship between alcohol consumption and mental health. 
One common but serious mental disorder, in particular, is 
depression, which is a significant contributor to the global 
burden of disease and affects one in 15 people in any given 
year (American Psychiatric Association, 2013). Earlier 
observational studies have found that alcohol use was associated 
with several psychological benefits (Baum-Baicker, 1985; Peele 
and Brodsky, 2000; Marchand et  al., 2003). Whereas other 
studies have reported an overall null effect of moderate 
drinking on depression in different populations (Paschall 
et  al., 2005; Almeida et  al., 2014; Polimanti et  al., 2019) 
and even a positive association between alcohol use disorders 
and major depression (Boden and Fergusson, 2011). These 
inconsistent findings have raised debate about the causal 
link between alcohol use and depression. Since alcohol use 
is not randomly assigned, one major threat of the previous 
observational study designs is the endogeneity issue originated 
from unobserved confounders and/or reverse causality. This 
study aims to help fill the literature gap on the causal 
relationship between alcohol use and depression by using 
genetic variants of ALDH2 rs671 and ADH1B rs1229984 to 
instrument for alcohol use in the Mendelian randomization 
(MR) framework.

MR is a causal research design that uses genetic variants 
as instrumental variables (IV; DiPrete et al., 2018). The genetic 
basis of the MR approach relies on the random allocation of 
genes at meiosis in humans, resembling the random assignment 
into treatment groups in randomized controlled trials (RCT) 
that may be  infeasible or unethical in this setting (Yeung et al., 
2012; Holmes et  al., 2014). We  collected a sample of 476 
middle-aged and older adults from mainland China, with 
demographics, socioeconomic status (SES), drinking behaviors, 
and mental health conditions linked to individual genotyping 
data. China is an interesting and important country in which 
to study this research question for several reasons: first, 
China has the highest alcohol-related deaths in the world 
(GBD 2016 Alcohol Collaborators, 2018), but studies on the 
causal links between alcohol use and mental health outcomes 
among Chinese populations are still very limited (Yeung et  al., 
2012). Second, depression has become a significant public health 
concern in China. It was estimated that the disability-adjusted 
life years (DALYs) of depression in China had increased by 
36.5% from 1990 to 2017 (Ren et al., 2020). But little is known 
about the link between depression and alcohol drinking among 
Chinese populations. Third, both the spending and consumption 
of alcohol in China are still increasing rapidly. The per capita 
alcohol consumption in China went up from 1.7  L in 1980 
to 5.7  L in 2016 (OECD, 2019) and is projected to jump to 
more than 10  L by 2030, exceeding the United  States per 
capita consumption.1 Fourth, the proposed genetic instruments, 
ALDH2 rs671 and ADH1B rs1229984, have a strong association 
with alcohol consumption and dependence, but are only prevalent 

1 Source: https://www.theguardian.com/society/2019/may/08/world-alcohol-
consumption-on-the-rise-as-chinas-thirst-grows (Accessed: June 24, 2020).

in East Asian populations, which makes the MR research design 
more applicable in this region.

To strengthen the MR framework, we tested the instrument 
validity of ALDH2 rs671 and ADH1B rs1229984 and dealt 
with threats from the pleiotropy effect, dynastic effect, and 
population stratification by controlling for a number of 
potential confounders that have not been included in most 
previous MR studies (e.g., parental drinking behaviors and 
individual genetic ancestral compositions). Besides, to avoid 
biased results due to inadequate separation of alcohol use 
levels, such as the sick-quitter bias (Paschall et  al., 2005), 
we  separated former drinkers from never drinkers and heavy 
drinkers from moderate drinkers.

MATERIALS AND METHODS

Sample Collection
The survey was designed and implemented by the China Center 
for Genoeconomic Studies (CCGS) at China Agricultural University 
in the summer of 2019. The Institutional Review Board of China 
Agricultural University approved the protocol. Prior to data 
collection, all participants signed an informed consent form after 
receiving a careful explanation about the purpose of this study. 
All participants were informed that their responses were completely 
voluntary and confidential and were invited to contact the 
research team later if they had any further questions regarding 
any aspect of the study. Fifty villages from seven provinces in 
mainland China (Heilongjiang, Henan, Zhejiang, Yunnan, Xinjiang, 
Shandong, and Anhui) were selected; in each village, 10 households 
were then randomly selected. The survey collected information 
on participants’ regular demographic/socioeconomic status as 
well as detailed information about their alcohol consumption. 
We  also collected participants’ parental drinking behaviors (i.e., 
father drinking or not and mother drinking or not). Additionally, 
1  ml saliva samples were collected from all participants during 
the face-to-face interview. Excluding individuals who did not 
pass the quality control yielded, a total of 476 observations 
were collected. As reported in Table  1, the average respondent 
in our sample was 49.4 years old, completed 8.2 years of education, 
and earned CNY 70,232 (1 US Dollar  ≈  CNY 7) annually.

Genotyping
DNA was extracted from saliva samples using the Illumina 
WeGene V2 Array. Imputation and quality control were 
performed using PLINK (1.90 Beta), SHAPEIT (v2.17), and 
IMPUTE2 (v2.3.1).

Measures of Alcohol Use
We surveyed respondents about three complementary measures 
of the frequency and intensity of alcohol consumption. First, 
we asked for a binary measure of drinking-or-not status, where 
0 and 1 represent current non-drinkers (54.5%) and current 
drinkers (45.5%), respectively. Second, we  asked participants 
the total number of occasions that they consumed any alcohol 
during the past 30  days (mean  =  4.7, SD  =  6.4). Third, by 
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combining the information on drinking frequency and the 
average amount that a participant drank on one occasion, 
we calculated the weekly ethanol (i.e., pure alcohol) consumption 
in grams as a continuous measure of alcohol use (mean = 62.2, 
SD  =  113.7). While self-reported data often raise concerns of 
misreporting, it has been demonstrated that self-reported recent 
alcohol consumption suffers less from misreporting when 
multiple closed-ended questions are used and can be  reliable 
measures of alcohol consumption (Lintonen et  al., 2004). To 
avoid biases elevated from the inadequate separation of alcohol 
use levels (Paschall et  al., 2005), we  also classified participants 
into four distinct alcohol use groups of never drinkers (38.5%), 

former drinkers (16.0%), heavy drinkers (10.7%; defined as 
having more than 210  g of ethanol per week; Yeung et  al., 
2012), and moderate drinkers (34.8%; defined as current drinkers 
who that have less than or equal to 210 g of ethanol per week).

Genetic Instruments
There are two genetic variants commonly used in MR studies 
of alcohol use: the alcohol dehydrogenase 1B gene (ADH1B 
rs1229984) and the aldehyde dehydrogenase 2 gene (ALDH2 
rs671), both of which encode enzymes involved in the metabolic 
pathway for ethanol and can change the metabolic balance of 
acetaldehyde in human body (Peng and Yin, 2009). In the 

TABLE 1 | Demographic, socioeconomic and genetic characteristics of participants according to their groups of alcohol use (N = 476).

Pooled

N = 476

(100%)

Groups by alcohol use

Never drinkers

N = 184

(38.7%)

Former drinkers

N = 76

(16.0%)

Moderate drinkers

N = 165

(34.7%)

Heavy drinkers

N = 51

(10.7%)

% or mean (SD) % or mean (SD) % or mean (SD) % or mean (SD) % or mean (SD)

Age 49.4 (11.6) 50.0 (11.4) 51.5 (13.6) 47.7 (10.6) 50.0 (12.3)
Gender

 Male 74.0% 48.7% 86.6% 89.0% 100.0%
 Female 26.0% 51.3% 13.4% 11.0% 0.0%
Drinking times during the past 
30 days

4.7 (6.4) 0.0 (0.0) 0.0 (0.0) 8.8 (5.8) 14.9 (2.3)

Weekly ethanol consumption (g) 62.2 (113.7) 0.0 (0.0) 0.0 (0.0) 71.6 (55.0) 347.9 (96.0)
Depression or not

 Yes 9.0% 16.7% 10.4% 2.1% 2.2%
 No 91.0% 83.3% 89.6% 97.9% 97.8%
Years of schooling 8.2 (3.5) 7.8 (3.9) 7.9 (3.4) 8.8 (3.1) 8.8 (2.9)
Annual earnings (in 10,000 CNY) 7.0 (10.8) 6.1 (8.8) 6.7 (8.2) 8.2 (13.9) 6.7 (9.1)
Smoking or not

 Yes 38.3% 18.5% 40.3% 52.1% 62.2%
 No 61.7% 81.5% 59.7% 47.9% 37.8%
No. of parents that drink

 0 19.8% 26.5% 22.4% 12.3% 15.6%
 1 65.0% 59.3% 59.7% 72.6% 68.9%
 2 15.2% 14.2% 17.9% 15.1% 15.5%
  ALDH2 rs671 (no. of effect alleles)

 AA (2): 4.5% 11.1% 1.5% 0.0% 0.0%
 AG (1): 31.0% 41.4% 46.3% 17.8% 13.3%
 GG (0): 64.5% 47.5% 52.2% 82.2% 86.7%
  ADH1B rs1229984 (no. of effect alleles)

 AA (2): 42.4% 47.5% 40.3% 39.0% 37.8%
 AG (1): 44.8% 39.5% 41.8% 52.1% 44.4%
 GG (0): 12.9% 13.0% 17.9% 8.9% 17.8%
Ancestral composition

 Northern Han 49.9% 48.9% 43.7% 53.1% 52.7%
 Southern Han 19.0% 21.2% 21.3% 16.9% 14.5%
 Mongolian 10.0% 8.3% 11.9% 10.4% 12.1%
 Japanese 2.5% 2.5% 2.2% 2.8% 2.2%
Province

 Heilongjiang 94 34 10 35 15
 Henan 22 8 5 7 2
 Zhejiang 41 18 6 12 5
 Yunnan 182 78 33 54 17
 Xinjiang 52 13 11 26 2
 Shandong 16 7 1 6 2
 Anhui 69 26 10 25 8
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human body, ethanol is first converted to acetaldehyde by 
alcohol dehydrogenase (ADH) and then to acetate by aldehyde 
dehydrogenase (ALDH).

The enzyme activity of ADH and ALDH are largely determined 
by the number of effect alleles (i.e., A-allele) in both ADH1B 
rs1229984 and ALDH2 rs671. In East Asian populations, ALDH2 
rs671 alleles exist with three genotypes, GG (# of A allele = 0), 
AG (# of A allele  =  1), and AA (# of A allele  =  2), where 
the presence of A allele can significantly decrease the 
detoxification of acetaldehyde generated during alcohol 
metabolism in humans as noted above (Peng and Yin, 2009; 
Edenberg and McClintick, 2018). From Table  1, 35.5% of 
respondents in our sample are A-allele carriers (i.e., genotypes 
of AA and AG). Specifically, the percentages of genotype AA 
and AG are 4.5 and 31.0%, respectively. In European populations, 
ADH1B rs1229984 has been used as the principal genetic 
instrument in MR studies of alcohol use (Holmes et  al., 2014). 
But because the proportion of A-allele carriers is very low 
(around 3% in Europeans), these MR studies require much 
larger sample sizes.2 In comparison, a majority of participants 
are A-allele carriers of the ADH1B rs1229984  in our sample 
(AA: 42.4% and AG: 44.8%).

Measures of Depression
The 10-item Center for Epidemiologic Studies Depression Scale 
(CESD-10) was used as a reliable and valid survey instrument 
to screen for symptoms of depression (Radloff, 1977; Boey, 
1999). Following Cheng and Chan (2005), we  adopted the 
cut-off score of 12 as the optimal threshold for screening for 
depression. Figure  1 shows a scatter plot of CESD-10 scores 
over age by different combinations of ALDH2 rs671 (horizontal) 
and ADH1B rs1229984 (vertical) genotypes. Each dot represents 
a single subject. Different shapes and colors demote for distinct 
genders (female and male) and alcohol use groups (never 
drinkers, former drinkers, and moderate drinkers/heavy drinkers). 
As expected, most of the participants with two effect alleles 
(AA) in ALDH2 rs671 are never drinkers (right column).

Statistical Analysis
Multivariable linear regression was used to examine the 
relationship between different measures of alcohol use and 
depression. In the MR analyses, we  first verified the validity 
of genetic instruments and then evaluated the causal relationship 
between alcohol use and depression using two-stage least squares 
(2SLS). Given that demographic characteristics, SES, and smoking 
might be highly correlated with both alcohol use and depression 
(Room, 2004), we  adjusted age, gender, income, years of 
schooling, smoking, and province fixed effects in all regressions. 
Figure  2 illustrates the relationships between the genetic 
instruments (ALDH2 rs671 and ADH1B rs1229984), the exposure 
(alcohol consumption), the health outcome (depression), and 
the (observed or unobserved) confounders in our MR framework. 
We  dealt with potential threats from the pleiotropy effect, 
dynastic effect, and population stratification by further adjusting 

2 Source: https://www.ncbi.nlm.nih.gov/snp/rs1229984#frequency_tab

for parental drinking behaviors (i.e., number of parents that drink) 
and the individual genetic ancestral composition3 in MR 
estimations. We  also performed the mediation analysis to 
evaluate the associations of alcohol drinking on depression 
explained by the years of schooling, income, and smoking. 
Results were reported as beta coefficients and 95% confidence 
intervals. All values of p were two-sided.

RESULTS

Table  2 panel a reports critical estimates of alcohol use on 
depression from separate multivariable linear regressions on 
all participants (column 1), the subsample excluding heavy 
drinkers (column 2), and the subsample excluding former 
drinkers (column 3). From estimates of the full sample (panel 
a, column 1), both drinking or not (b  =  −0.068, p  =  0.022, 
95% CI  =  −0.126 to −0.010) and the number of drinking 
times during the past 30  days (b  =  −0.005, p  =  0.017, 95% 
CI = −0.010 to −0.001) were found to be significantly associated 
with a lower risk of depression, suggesting a protective effect 
of alcohol drinking in the prevention of depression. Exclusion 
of heavy alcohol drinkers (panel a, column 2) or former drinkers 
(panel a, column 3) did not change the estimates substantially. 
However, alcohol use can still be confounded by various factors 
even after adjustments, such as socioeconomic classes, diet 
patterns, physical activity, BMI, etc. Thus, the estimated 
associations presented in this section were not causal and 
needed to be  interpreted with caution.

The validity of using ALDH2 rs671 and ADH1B rs1229984 
as genetic instruments relied on the critical assumption of 
relevance and the exclusion restriction (Davies et  al., 2018). 
In our research design, the instrumental relevance was satisfied 
with a priori given the robust associations previously 
documented (Yeung et al., 2012; Peng et al., 2019). We confirmed 
these correlations hold in our sample without and with the 
adjustments for additional controls.4 R-squared suggested that 
ALDH2 rs671 and ADH1B rs1229984 together could explain 
9.6–13.7% of the total phenotypic variation in different measures 
of alcohol consumption, indicating strong genetic instruments. 
We  also tested for weak instruments by using Cragg-Donald 
F statistics in the estimation (Burgess et  al., 2017; Davies 
et  al., 2018). Another crucial concern was the potential 
pleiotropic effect, which occurs when a genetic IV can directly 
influence the outcome variable (Davies et  al., 2018). There 
are several reasons to think pleiotropy is unlikely in our 
setting. First, Yeung et  al. (2012) and Peng et  al. (2019) 
considered this assumption and provided epidemiological 
evidence for the credibility of ALDH2 rs671 as IV for alcohol 

3 Individual genetic ancestral composition gave the percentage of DNA that 
comes from different populations by comparing an individual genome to 
hundreds and thousands people with known ancestry and was calculated by 
using the ADMIXTURE program. The top four ancestries included in the MR 
estimation are (from high to low) Northern Han, Southern Han, Mongolian, 
and Japanese.
4 Detailed first-stage estimation results are available from the corresponding 
author on request.
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use. Second, we consulted with PhenoScanner (v2) and found 
no evidence of direct links of ALDH2 rs671 and ADH1B 
rs1229984 with depression-related phenotypes. Third, we 
formally conducted the overidentification test based on Sargan 
statistics in the estimation, which revealed no violation of 

the exclusion restriction, lending further support to the validity 
of these genetic instruments (Burgess et  al., 2017).

Table  2 panel b reports MR results by incorporating both 
ALDH2 rs671 and ADH1B rs1229984 as instrumental variables. 
The First-stage Cragg-Donald F statistics from all models 
exceeded the conventional cut-off of 10 for weak instruments, 
indicating that the two genetic IVs are jointly strong instruments 
in our MR design. The Sargan statistics and values of p of 
overidentification tests suggested no evidence that the genetic 
IVs were correlated with unobserved confounders. In all MR 
models, we additionally adjusted for parental drinking behaviors 
and individual ancestral compositions to further validate the 
MR settings (Willage, 2018). We  found that under the MR 
design, alcohol use was causally associated with a lower risk 
of depression in the full sample (panel b, column 1). Parameter 
estimates of drinking or not (b  =  −0.127, p  =  0.048, 95% 
CI  =  −0.253 to −0.001), the number of drinking times during 
the past 30  days (b  =  −0.012, p  =  0.040, 95% CI  =  −0.023 
to −0.001), and the weekly ethanol consumption (b  =  −0.001, 
p  =  0.039, 95% CI  =  −0.002 to −0.000) were all negative and 
statistically significant at the 5% level.5 The results were robust 

5 Results remained robust when we  used the Two-stage instrumental variables 
(2SIV) approach that replaced the second-stage least-squares regression in 2SLS 
by logistic regression (Palmer et  al., 2008). Detailed estimation procedures and 
results are available from the corresponding author on request.

FIGURE 1 | Scatter plot of CESD-10 scores over age by gender, genotypes, and groups of alcohol use (N = 476). CESD-10 scores over age were plotted by 
different combinations of ALDH2 rs671 (horizontal) and ADH1B rs1229984 (vertical) genotypes (with the number of effect alleles in parenthesis). Each dot represents 
a single subject. The solid and dashed black horizontal lines denote for cut-off scores of 12 (optimal) and 10 for the depression, respectively. Different genders 
(female/male) and groups of alcohol use (never drinkers/former drinkers/moderate drinkers/heavy drinkers) were represented by distinct shapes and colors, 
respectively.

FIGURE 2 | Directed acyclic graph (DAG) of the Mendelian randomization 
(MR) framework. This DAG illustrated the relationships between the genetic 
instruments (ALDH2 rs671 and ADH1B rs1229984), the exposure (Alcohol 
Consumption), the health outcome (Depression), and the (observed or 
unobserved) confounders.
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after the exclusion of either heavy drinkers (panel b, column 2) 
or former drinkers (panel b, column 3). Further mediation 
analysis showed that the association of drinking or not with 
depression was mediated by approximately 11.8% through years 
of schooling, but not via income or smoking.

DISCUSSION

In this analysis, using a MR research design in a sample of 
476 participants from mainland China, we  found that the 
observed protective effect of alcohol use against depression 
was likely to be causal. The results were robust after adjustments 
for SES, smoking, parental drinking behaviors, genetic ancestral 
compositions, province fixed effects, and the exclusion of heavy 
or former drinkers.

This is one of the first studies to investigate the causal 
relationship between alcohol use and mental health using an 
MR design. The findings are in line with previous research that 

reported regular alcohol consumption was associated with better 
mental health conditions and lower levels of depression (Baum-
Baicker, 1985; Peele and Brodsky, 2000; Marchand et  al., 2003; 
Polimanti et  al., 2019). Our study contributed further evidence 
that among a sample of middle-aged and older adults (with an 
average age of 49.4) from mainland China, alcohol use was 
causally associated with the prevention of depression. Paschall 
et  al. (2005) reported no statistically significant associations 
between moderate alcohol use and depression, but the sample 
they used was young United  States adults with an average age 
of 21.8  years old. Boden and Fergusson (2011) reported a link 
between alcohol use disorders and major depression based on 
a meta-analysis. However, they defined alcohol use disorders as 
a variety of alcohol misuse measures, which beyond the scope 
of regular alcohol use as in the current study. Almeida et  al. 
(2014) found no significant causal effect of alcohol consumption 
on depression by using ADH1B rs1229984 as the single instrumental 
variable, but the analysis was based on a different population 
that contained 3,874 elderly (age 65–83) male participants from 

TABLE 2 | Effects of alcohol use on depression – OLS and 2SLS estimation results.

(1) All participants (2) Excluding heavy drinkers (3) Excluding former drinkers

N = 476 N = 425 N = 400

(a.) Multivariable linear regressions  

 (1) Key explanatory variable: drinking or not
 b (95% CI) −0.068 (−0.126, −0.010) −0.082 (−0.148, −0.016) −0.065 (−0.129, −0.001)
 p 0.022 0.015 0.046
 (2) Key explanatory variable: drinking times during the past 30 days
 b (95% CI) −0.005 (−0.010, −0.001) −0.006 (−0.011, −0.001) −0.006 (−0.012, −0.001)
 p 0.017 0.012 0.019
 (3) Key explanatory variable: weekly ethanol consumption (g)
 b (95% CI) −0.000 (−0.000, 0.000) −0.000 (−0.000, 0.000) −0.001 (−0.001, 0.000)
 p 0.191 0.19 0.092

(b.) Mendelian randomization

 (1) Key explanatory variable: drinking or not
 b (95% CI) −0.127 (−0.253, −0.001) −0.136 (−0.267, −0.004) −0.149 (−0.295, −0.003)
 p 0.048 0.043 0.045
 Cragg-Donald F statistics of weak 
instrument tests (p)

44.491 (0.000) 55.917 (0.000) 34.221 (0.000)

 Sargan statistics of overidentification 
tests (p)

1.837 (0.175) 1.036 (0.309) 2.061 (0.151)

 (2) Key explanatory variable: drinking times during the past 30 days
 b (95% CI) −0.012 (−0.023, −0.001) −0.012 (−0.024, −0.001) −0.015 (−0.030, −0.000)
 p 0.040 0.036 0.047
 Cragg-Donald F statistics of weak 
instrument tests ( p)

28.664 (0.000) 36.403 (0.000) 19.967 (0.000)

 Sargan statistics of overidentification 
tests ( p)

1.605 (0.205) 1.595 (0.207) 2.190 (0.139)

 (3) Key explanatory variable: weekly ethanol consumption (g)
 b (95% CI) −0.001 (−0.002, −0.000) −0.001 (−0.002, −0.000) −0.000 (−0.001, −0.000)
 p 0.039 0.027 0.044
 Cragg-Donald F statistics of weak 
instrument tests ( p)

18.113 (0.000) 20.818 (0.000) 20.386 (0.000)

 Sargan statistics of overidentification 
tests ( p)

1.240 (0.265) 2.559 (0.110) 2.092 (0.148)

Depression was defined as CESD-10 score ≥ 12 (Cheng and Chan, 2005). Abbreviations: 95% CI represents 95% confidence interval. All models were adjusted for age, gender, 
education, income, smoking, and province fixed effects. MR results were additionally adjusted for the number of drinking parents and individual genetic ancestral compositions of 
Northern Han, Southern Han, Mongolian, and Japanese. The First-stage Cragg-Donald F statistics (with values of p) and Sargan statistics (with values of p) are test statistics of the 
weak instrument and overidentification tests, respectively, which indicate that genetic instruments of ALDH2 rs671 and ADH1B rs1229984 used in MR satisfied with the relevance 
assumption and exclusion restriction.
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the metropolitan region of Perth in Australia, and the results 
may suffer from a weak instrument problem and lack of power 
since ADH1B rs1229984 was reported to explain only 0.24% of 
the variance in alcohol consumption (Rees et  al., 2019).

The mechanism underlying the detected beneficial association 
of alcohol use and depression is still under debate. The main 
explanations include the psychological benefits of stress reduction 
and mood enhancement resulting from low to moderate drinking 
(Baum-Baicker, 1985; Peele and Brodsky, 2000). Hence, the 
role of alcohol drinking in depression and overall mental health 
may be  a balance of the beneficial effects (likely from low to 
moderate drinking) and harmful effects (likely from excessive 
drinking; Boden and Fergusson, 2011). Among certain groups 
of people, such as middle-aged and older Chinese adults in 
our sample with limited options of entertaining and stress-
relieving activities, the beneficial effects of drinking may offset 
the harmful effects on depression symptoms.

Before closing, we noted several caveats to our results. First, 
the sample used in this study was not representative of the 
entire Chinese population. Second, the current study was based 
on a sample of 476 participants, which may lack statistical 
power due to the small sample size, and research with a larger 
sample size would be  preferred to confirm our findings in 
the future.6,7 Third, as noted before, the underlying mechanism 
of the detected beneficial impact of drinking on depression 

6 Nevertheless, it should be  noted that the bias resulting from small sample 
sizes tends to underestimate (rather than overestimate) the effect size (Dumas-
Mallet et  al., 2017).
7 We replicated the results in a separate sample (N  =  2,216) collected from 
China, but without available genotyping data. By using alcohol flushing reaction 
(i.e., a proxy to ALDH2 rs671) as IV, we  found that alcohol consumption was 
also related to the lower risk of depression, consistent with our main MR 
results. Detailed estimation procedures and results are available from the 
corresponding author on request.

is still unclear. Further studies are needed in order to clarify 
the mechanisms of this causal link.
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Background: Telomere length is an important indicator of tumor progression and
survival for cancer patients. Previous work investigated the associations between
genetically predicted telomere length and cancers; however, the types of cancers
investigated in those studies were relatively limited or the telomere length-associated
genetic variants employed often came from genome-wide association studies (GWASs)
with small sample sizes.

Methods: We constructed the genetic risk score (GRS) for leukocyte telomere length
based on 17 associated genetic variants available from the largest telomere length
GWAS up to 78,592 individuals. Then, a comprehensive analysis was undertaken to
evaluate the association between the constructed GRS and the risk or mortality of a
wide range of cancers [i.e., 37 cancers in the UK Biobank and 33 cancers in The Cancer
Genome Atlas (TCGA)]. We further applied the two-sample Mendelian randomization
(MR) to estimate the causal effect of leukocyte telomere length on UK Biobank cancers
via summary statistics.

Results: In the UK Biobank dataset, we found that the GRS of leukocyte
telomere length was associated with a decreased risk of nine types of cancer
(i.e., significant association with multiple myeloma, chronic lymphocytic leukemia,
kidney/renal cell cancer, bladder cancer, malignant melanoma, basal cell carcinoma, and
prostate cancer and suggestive association with sarcoma/fibrosarcoma and Hodgkin’s
lymphoma/Hodgkin’s disease). In addition, we found that the GRS was suggestively
associated with an increased risk of leukemia. In the TCGA dataset, we observed
suggestive evidence that the GRS was associated with a high death hazard of rectum
adenocarcinoma (READ), sarcoma (SARC), and skin cutaneous melanoma (SKCM),
while the GRS was associated with a low death hazard of kidney renal papillary cell
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carcinoma (KIRP). The results of MR further supported the association for leukocyte
telomere length on the risk of malignant melanoma, Hodgkin’s lymphoma/Hodgkin’s
disease, chronic lymphocytic leukemia and multiple myeloma.

Conclusion: Our study reveals that telomere played diverse roles in different types
of cancers. However, further validations in large-scale prospective studies and deeper
investigations of the biologic mechanisms are warranted.

Keywords: leukocyte telomere length, cancer, genetic risk score, UK Biobank, TCGA, Mendelian randomization

INTRODUCTION

Telomere is a special structure with a 6-bp TTAGGG repeat
sequence and plays an important role in genomic stability by
protecting DNA against damage and fusion 0 (de Lange, 2005).
Due to the inability of DNA polymerase to fully extend the 3′
end of DNA strand, the telomere becomes progressively shorter
during each round of cell division. The length of telomere is
thus a biomarker of cellular and overall biological aging. Once
a critically short telomere length is reached, the cell would be
triggered to enter senescence, which would ultimately lead to
cell growth arrest or apoptosis (Shay and Wright, 2019). In
stem and progenitor cells, the length of telomere is maintained
by enzyme telomerase (Hackett and Greider, 2002; Shawi and
Autexier, 2008). It is shown that enzyme telomerase is activated
in almost all human tumors; such an activation can result in the
continuous division of cancer cells and is the key component of
the tumorigenic phenotype of human cancer cells (Stewart and
Weinberg, 2006; O’Sullivan and Karlseder, 2010).

Prior studies have demonstrated that telomere length is
associated with a lot of age-related diseases and disorders (e.g.,
cancers and neurodegenerative disorders) (Zhu et al., 2011) and
that a shorter telomere length in tumor tissues is an important
indicator of tumor progression and survival for cancer patients
(Ma et al., 2011; Xu et al., 2016). However, not all studies reported
consistent findings (Supplementary Table S1), partly reflecting
the complicated function of telomere on human cancers. The
diversity in cancer types, ethnicities, study designs, measurement
methods, and selected tissues for telomere length in previous
work further complicates the observed association. Given the
severe disease burden of cancers worldwide (Siegel et al., 2019),
understanding the association between telomere length and
cancers can provide valuable insights into the development of
cancers and has the potential to improve the prevention and
treatment strategies for cancers.

On the other hand, in the past few years, a number of single
nucleotide polymorphisms (SNPs) have been identified to be
associated with leukocyte telomere length through genome-wide
association studies (GWASs) (Levy et al., 2010; Gu et al., 2011;
Mangino et al., 2012; Codd et al., 2013; Pooley et al., 2013;
Dorajoo et al., 2019). Relying on associated genetic variants,
many studies have been undertaken to investigate the association
between genetically predicted leukocyte telomere length and
cancers. However, the types of cancers investigated in previous
studies (Zhang et al., 2015; Li et al., 2020) were relatively limited.
In addition, the telomere length-associated SNPs employed in

previous studies (Zhang et al., 2015; Rode et al., 2016; Haycock
et al., 2017) often came from GWASs with small sample sizes
(Levy et al., 2010; Codd et al., 2013).

Recently, a large-scale GWAS of leukocyte telomere length
was conducted with the largest sample size to date (up to
∼80,000) (Li et al., 2020), which allows us to choose more
appropriate SNPs to study the multilocus genetic profile of
leukocyte telomere length via the genetic risk score (GRS)
approach (Ripatti et al., 2010; Dudbridge et al., 2013; Eusden
et al., 2015; Guo et al., 2016; Goldman, 2017; Tosto et al., 2017;
Bogdan et al., 2018; De La Vega and Bustamante, 2018; Zeng
et al., 2019b). Briefly, GRS is an efficient and powerful genetic
method to explore the association between an exposure and
complex diseases by integrating multiple genetic variants with
weak effects, and it dramatically enhances the predictability of
complex diseases through genetic polymorphisms (Belsky et al.,
2013; Khera et al., 2018; Duncan et al., 2019; Khera et al.,
2019). Moreover, several cancer-relevant cohorts, such as The
UK Biobank (Bycroft et al., 2018) and The Cancer Genome Atlas
(TCGA) (Hoadley et al., 2018), have collected a variety of cancer-
related omics and clinical information, which makes it feasible to
systematically investigate a large number of types of cancers.

Based on these valuable data resources, in the present work,
we evaluated the association between leukocyte telomere length
and 37 cancers from the UK Biobank cohort as well as 33 cancers
from the TCGA dataset using the genetic risk score method. We
further applied the two-sample Mendelian randomization (MR)
(Burgess et al., 2017; Hartwig et al., 2017) to assess the association
between leukocyte telomere length and multiple cancers, for
which the summary statistics can be available from the UK
Biobank cohort. Our study revealed that telomere played cancer-
specific roles and that a shorter leukocyte telomere length can
either increase or decrease the risk/mortality of cancers. However,
further validations in large-scale prospective studies and deeper
investigations of the biological mechanism of leukocyte telomere
length on various types of cancers are warranted.

MATERIALS AND METHODS

Selection of Instrumental Variables for
Leukocyte Telomere Length
We obtained the summary statistics (e.g., effect size and
effect allele) of leukocyte telomere length from the ENGAGE
consortium as well as the EPIC-CVD and EPIC-InterAct cohorts
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(Supplementary Table S2; Li et al., 2020), which was the
largest GWAS of telomere length (N = 78,592) undertaken
in the European population to date. In this study, leukocyte
telomere length was measured as a continuous variable and the
linear additive regression was implemented to investigate the
association for each genetic variant (Li et al., 2020). Particularly,
in the association analysis, the age of participants was considered
as a covariate to remove the influence of biological age.
We selected 17 independent index SNPs that were strongly
associated with leukocyte telomere length (p < 5.00E-8; see
Table 1) to construct GRS. Note that, given the fact that
the length of telomere would shorten progressively with age,
to facilitate the explanation of our results, we made a sign
transformation for the effect sizes of these used SNPs so that
the relationship under investigation corresponded to a shorter
leukocyte telomere length.

Construction of Genetic Risk Score
The genetic risk score for leukocyte telomere length is calculated
in a weighted way (Ripatti et al., 2010; Guo et al., 2016; Zeng et al.,
2019b).

GRS =
17∑

j = 1

Gjβ̂j (1)

where β̂j is the estimated marginal SNP effect on the shorter
leukocyte telomere length for the jth selected index SNP
(e.g., Table 1) (Li et al., 2020). Gj is the individual-level
genotype of the same SNP in the UK Biobank (Bycroft
et al., 2018) or TCGA dataset (Hoadley et al., 2018) and
is coded to be 0, 1, and 2, representing the number of
effect allele. Following prior work (Zeng et al., 2019b), we

do not directly rescale the GRS as its p-value would not be
altered regardless of whether the GRS is scaled or not. We
instead standardize the GRS so that its mean is zero and the
variance is equal to 1.

Two-Stage Regression Model in the UK
Biobank and TCGA Using GRS
To link GRS with the risk of cancers from the UK Biobank
(Table 2; Bycroft et al., 2018), we apply an additive logistic
regression while adjusting for a set of available covariates (i.e., age,
gender, smoke, drink, and BMI).

logit(µi) = GRSi × θ + XT
i α (2)

where µi is the expectation of yi, with yi = 1 or 0 representing
the status of individual i with or without cancer; θ is the
effect size of GRS; and Xi is the vector of standardized
covariates with effect sizes α. Of note, we assume that all
of the entries in the first column of X are 1, representing
the intercept term.

We next evaluate the effect of GRS on the mortality of
cancers from TCGA (Table 3; Hoadley et al., 2018) with the
Cox proportional hazards model (Cox, 1972) while controlling
for available clinical covariates (i.e., age at diagnosis, gender, and
stage).

h(ti|GRSi, Xi) = h0(ti)eGRSi × θ + XT
i α (3)

where ti is the observed survival time and h0(t) is an
arbitrary baseline hazard function. Cancer-specific covariates
are considered for some cancers in TCGA [e.g., the status
of estrogen and progesterone receptors for breast invasive
carcinoma (BRCA)]. In the logistic or Cox model, we are mainly

TABLE 1 | Independent index single nucleotide polymorphisms (SNPs) associated with leukocyte telomere length in the European population.

SNP Chr Position Gene A1/A2 EAF Beta SE p PVE F

rs3219104 1 226,562,621 PARP1 C/A 0.83 −0.042 0.006 9.60E-11 6.23E-04 49.0

rs55749605 3 101,232,093 SENP7 A/C 0.58 0.037 0.007 2.45E-08 3.55E-04 27.9

rs10936600 3 169,514,585 TERC T/A 0.24 0.086 0.006 7.18E-51 2.61E-03 205.4

rs13137667 4 71,774,347 MOB1B C/T 0.96 −0.077 0.014 2.43E-08 3.85E-04 30.2

rs4691895 4 164,048,199 NAF1 C/G 0.78 −0.058 0.006 1.58E-21 1.19E-03 93.4

rs7705526 5 1,285,974 TERT A/C 0.33 −0.082 0.006 5.34E-45 2.37E-03 186.8

rs34991172 6 25,480,328 CARMIL1 G/T 0.07 0.061 0.011 6.19E-09 3.91E-04 30.8

rs2736176 6 31,587,561 PRRC2A C/G 0.31 −0.035 0.006 3.53E-10 4.33E-04 34.0

rs59294613 7 124,554,267 POT1 A/C 0.29 0.041 0.006 1.17E-13 5.94E-04 46.7

rs9419958 10 105,675,946 OBFC1 C/T 0.86 0.064 0.007 5.05E-19 1.06E-03 83.6

rs228595 11 108,105,593 ATM A/G 0.42 0.029 0.005 1.43E-08 4.28E-04 33.6

rs2302588 14 73,404,752 DCAF4 C/G 0.10 −0.048 0.008 1.68E-08 4.58E-04 36.0

rs3785074 16 69,406,986 TERF2 G/A 0.26 −0.035 0.006 4.64E-10 4.33E-04 34.0

rs62053580 16 74,680,074 RFWD3 G/A 0.17 0.039 0.007 4.08E-08 3.95E-04 31.0

rs7194734 16 82,199,980 MPHOSPH6 T/C 0.78 0.037 0.006 6.94E-10 4.84E-04 38.0

rs8105767 19 22,215,441 ZNF208 G/A 0.30 −0.039 0.005 5.42E-13 7.74E-04 60.8

rs75691080 20 62,269,750 STMN3 T/C 0.09 0.067 0.009 5.99E-14 7.05E-04 55.4

Chr, chromosome; A1, effect allele; A2, alternative allele; EAF, frequency of the effect allele; PVE, proportion of variance explained by the SNP [i.e., PVEj _ =
(β̂X

j )2/((β̂X
j )2
+ var(β̂X

j ) × Nj), where β̂X
j and var(β̂X

j ) are the estimated effect size and variance, respectively, for instrument j (Shim et al., 2015)]; F, F statistic [i.e.,
Fj = PVEj(Nj − 1− k)/(k − k × PVEj), where Nj is the sample size for instrument j (i.e., Nj = 78,592) and k is the number of instruments (Burgess et al., 2011; Burgess
and Thompson, 2012). Both PVE and F statistic are calculated to validate the issue of weak instruments].
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TABLE 2 | Association between the genetic risk score (GRS) of leukocyte telomere length and the risk of 37 UK Biobank cancers.

Types of cancer OR (95%CI) p FDR Case M/F Age (years)

Leukemia 1.20 (1.02–1.41) 0.025 0.058 147 79/68 67.99 ± 8.17

Rectal cancer 1.10 (0.96–1.25) 0.165 0.193 231 134/97 70.64 ± 6.17

Tongue cancer 1.06 (0.88–1.29) 0.526 0.407 102 65/37 68.89 ± 7.35

Squamous cell carcinoma 1.04 (0.93–1.15) 0.514 0.401 332 168/164 70.89 ± 6.21

Testicular cancer 1.02 (0.95–1.11) 0.549 0.417 595 595/0 64.78 ± 8.02

Primary bone cancer 1.02 (0.81–1.29) 0.845 0.524 72 44/28 67.56 ± 8.02

Non-melanoma skin cancer 1.02 (0.93–1.12) 0.648 0.458 472 280/192 70.01 ± 6.97

Large bowel cancer/Colorectal cancer 1.02 (0.93–1.12) 0.739 0.490 440 260/180 71.54 ± 5.80

Rodent ulcer 1.01 (0.92–1.11) 0.893 0.538 437 203/234 70.50 ± 5.77

Esophageal cancer 1.01 (0.85–1.19) 0.946 0.552 137 110/27 71.98 ± 6.30

Cervical cancer 1.01 (0.95–1.06) 0.857 0.527 1273 0/1,273 66.16 ± 7.65

Non-Hodgkin’s lymphoma 0.99 (0.92–1.08) 0.945 0.552 593 355/238 69.40 ± 7.34

Pre-cancer cells cervix 0.99 (0.94–1.06) 0.922 0.546 1117 1/1,116 63.99 ± 7.98

Breast cancer 0.98 (0.96–1.01) 0.164 0.193 7330 37/7,293 70.08 ± 6.48

Colon cancer/sigmoid cancer 0.97 (0.92–1.04) 0.399 0.342 1055 631/424 72.30 ± 5.68

Uterine/endometrial cancer 0.95 (0.89–1.02) 0.176 0.200 752 0/752 71.27 ± 5.89

Ovarian cancer 0.95 (0.87–1.03) 0.222 0.224 512 0/512 69.11 ± 7.33

Brain cancer/primary malignant brain tumor 0.95 (0.80–1.13) 0.539 0.412 128 62/66 64.77 ± 8.81

Prostate cancer 0.94 (0.91–0.98) 0.005 0.020 2410 2,410/0 73.96 ± 4.08

Skin cancer 0.94 (0.88–1.00) 0.065 0.106 943 478/465 71.21 ± 6.38

Basal cell carcinoma 0.94 (0.90–0.97) 0.001 0.010 2916 1,206/1,710 70.02 ± 6.84

Stomach cancer 0.94 (0.77–1.14) 0.516 0.402 96 56/40 71.33 ± 6.22

Malignant melanoma 0.91 (0.88–0.95) 4.57E-06 9.56E-05 2526 1,031/1,495 68.95 ± 7.41

Larynx/throat cancer 0.91 (0.80–1.04) 0.161 0.191 228 190/38 71.12 ± 6.43

Bladder cancer 0.91 (0.84–0.98) 0.010 0.030 725 548/177 72.30 ± 5.87

Eye and/or adnexal cancer 0.90 (0.74–1.11) 0.325 0.297 95 44/51 68.82 ± 7.48

Thyroid cancer 0.90 (0.80–1.01) 0.067 0.108 293 52/241 67.27 ± 7.63

Small intestine/small bowel cancer 0.90 (0.76–1.06) 0.206 0.216 133 77/56 72.28 ± 5.55

Hodgkin’s lymphoma/Hodgkin’s disease 0.89 (0.79–0.99) 0.033 0.069 321 184/137 64.96 ± 8.13

Chronic myeloid leukemia 0.88 (0.71–1.10) 0.273 0.262 81 44/37 68.35 ± 7.98

Lung cancer 0.88 (0.74–1.06) 0.172 0.197 123 82/41 72.60 ± 5.70

Kidney/renal cell cancer 0.86 (0.78–0.95) 0.003 0.017 401 261/140 70.22 ± 6.36

Cancer of lip/mouth/pharynx/oral/cavity 0.86 (0.68–1.09) 0.213 0.220 69 43/26 70.42 ± 5.98

Sarcoma/fibrosarcoma 0.84 (0.72–0.98) 0.028 0.063 164 76/88 66.73 ± 7.58

Chronic lymphocytic leukemia 0.82 (0.71–0.94) 0.005 0.020 206 131/75 71.28 ± 6.28

Lymphoma 0.80 (0.64–1.01) 0.057 0.098 78 51/27 68.69 ± 8.27

Multiple myeloma 0.77 (0.63–0.93) 0.006 0.021 108 62/46 70.37 ± 7.08

The cancers were sorted by the estimated odds ratios (ORs). CI, confidence internal; p, the original p-value; FDR, false discovery rate; M, male; F, female. In bold are
significant (i.e., FDR < 0.05) or suggestive associations (i.e., p < 0.05).

interested in estimating θ and testing for the null hypothesis H0:
θ = 0. We further examine the interaction effect between GRS
and each of the clinical covariates (e.g., GRS × gender) if GRS
is detected to be associated with some cancer.

Two-Sample MR Analysis
Besides the GRS method, we also perform the two-sample MR
analysis to estimate the causal effect of leukocyte telomere length
on cancers in the UK Biobank using summary statistics (Sudlow
et al., 2015). In observational studies, MR is a flexible approach
for causal inference to avert confounding and reverse causality
(Zeng et al., 2019a; Yu et al., 2020). In brief, we estimate the causal
effect of leukocyte telomere length (again, denoted as θ) relying

on all the available instrumental variables (Table 1) through the
commonly employed inverse-variance weighted (IVW) method
(Burgess et al., 2017; Hartwig et al., 2017).

θ̂ = 1∑17
j=1 var(β̂Y

j )−1(β̂X
j )2

∑17
j=1 var(β̂Y

j )−1β̂Y
j β̂X

j

var(θ̂) = 1∑17
j=1 var(β̂Y

j )−1(β̂X
j )2

(4)

where β̂X
j and var(β̂X

j ) are the effect size and the variance,
respectively, of the instrumental variable j for the exposure X (i.e.,
leukocyte telomere length; Li et al., 2020), and β̂Y

j and var(β̂Y
j )

are the effect size and the variance, respectively, for the same
instrumental variable j on the outcome Y (i.e., cancer in the UK
Biobank; Sudlow et al., 2015).
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TABLE 3 | Association between the genetic risk score (GRS) of leukocyte telomere length and the mortality of 33 TCGA cancers.

Cancer HR (95%CI) p FDR N Median survival time M/F Age at diagnosis (years) Stage or grade (1/2/3/4/5)

All Event Censor

DLBC 2.24 (0.88–5.67) 0.090 0.317 42 31.85 19.83 32.4 19/23 55.33 ± 14.39 8/17/5/12

PCPG 2.16 (0.95–4.92) 0.068 0.283 178 25.28 15.08 25.6 78/100 47.30 ± 15.12 NA

READ 1.72 (1.09–2.73) 0.020 0.138 157 21.2 24.33 21.02 85/72 64.34 ± 11.67 30/51/51/25

UVM 1.47 (0.94–2.30) 0.092 0.320 79 25.77 19.68 27.37 44/35 61.68 ± 13.94 0/39/36/4

PRAD 1.44 (0.72–2.87) 0.306 0.610 501 30.8 29.17 30.87 501/0 60.93 ± 6.81 NA

SARC 1.29 (1.06–1.58) 0.011 0.138 260 31.77 21.6 36.4 119/141 60.80 ± 14.61 NA

ESCA 1.28 (0.99–1.66) 0.063 0.274 162 13.57 13.38 13.57 137/25 62.40 ± 11.74 18/79/56/9

TGCT 1.23 (0.10–15.59) 0.870 0.816 81 37.53 116.48 37.53 81/0 32.85 ± 10.18 55/12/14/0

SKCM 1.19 (1.03–1.37) 0.018 0.138 411 33.2 31.93 34.5 256/155 58.82 ± 15.51 77/140/171/23

KICH 1.17 (0.46–2.99) 0.743 0.792 65 74.93 28.5 90.43 38/27 51.15 ± 13.99 20/25/14/6

CESC 1.14 (0.90–1.45) 0.274 0.583 295 21.27 20.23 23.12 0/295 47.88 ± 13.47 160/69/46/20

THCA 1.12 (0.66–1.89) 0.676 0.776 503 31.67 34.03 31.47 136/367 47.28 ± 15.78 284/52/113/54

BRCA 1.11 (0.93–1.32) 0.258 0.569 924 26.38 44.13 24.23 0/924 58.84 ± 13.14 156/523/219/14/12

LUSC 1.06 (0.93–1.21) 0.378 0.659 487 21.77 18.13 24.58 359/128 67.31 ± 8.58 239/157/84/7

MESO 1.05 (0.82–1.35) 0.705 0.783 86 17.1 15.23 38.93 70/16 63.08 ± 9.72 10/16/44/16

LUAD 1.04 (0.90–1.21) 0.584 0.749 503 21.87 20.47 22.33 232/271 65.16 ± 10.07 277/121/80/25

UCEC 1.04 (0.84–1.28) 0.742 0.791 546 30.47 23.63 32.2 0/546 63.99 ± 11.13 338/52/127/29

KIRC 1.04 (0.90–1.20) 0.639 0.766 532 39.2 27.35 48.1 342/190 60.57 ± 12.07 267/57/125/83

HNSC 1.03 (0.90–1.19) 0.655 0.770 450 21.37 14.08 27.4 324/126 60.90 ± 12.13 27/73/82/268

LIHC 1.00 (0.83–1.21) 0.963 0.831 350 19.43 13.67 21.47 239/111 59.03 ± 13.30 174/86/85/5

GBM 1.00 (0.91–1.10) 0.949 0.829 595 12.27 12.7 8.67 364/231 57.87 ± 14.41 NA

ACC 0.99 (0.68–1.44) 0.967 0.832 88 37.93 18.38 48.45 29/59 47.07 ± 16.43 9/43/18/18

OV 0.98 (0.88–1.08) 0.629 0.763 569 33.57 35.77 28.57 0/569 59.71 ± 11.46 16/30/437/86

PAAD 0.97 (0.80–1.19) 0.792 0.802 182 15.55 13.13 16.92 100/82 64.92 ± 11.06 21/152/4/5

STAD 0.96 (0.83–1.11) 0.576 0.746 407 14.53 11.6 18.87 260/147 65.37 ± 10.70 55/128/181/43

BLCA 0.96 (0.82–1.12) 0.576 0.746 411 17.87 13.68 21.27 303/108 68.10 ± 10.58 3/131/141/136

COAD 0.93 (0.76–1.13) 0.448 0.696 458 22.32 13.47 24.33 239/219 67.03 ± 13.06 79/183/131/65

LGG 0.89 (0.73–1.09) 0.270 0.580 512 22.47 27.13 20.97 284/228 42.99 ± 13.34 0/247/265/0

LAML 0.89 (0.73–1.09) 0.252 0.563 186 12.17 9.1 23.3 102/84 55.53 ± 16.06 NA

UCS 0.85 (0.59–1.23) 0.395 0.669 56 20.25 16.72 27.6 0/56 69.38 ± 8.89 21/5/20/10

THYM 0.85 (0.41–1.76) 0.654 0.770 121 41.77 28.43 42.33 62/59 58.37 ± 12.94 37/61/15/8

KIRP 0.66 (0.47–0.93) 0.019 0.138 257 24.67 20.8 25.37 190/67 61.50 ± 12.03 171/20/51/15

CHOL 0.64 (0.38–1.08) 0.097 0.331 36 21.5 16.67 31.42 16/20 63.03 ± 12.67 19/9/1/7

The cancers were sorted by the estimated hazard ratios (HRs). CI, confidence internal; p, the original p-value; FDR, false discovery rate; M, male; F, female. Cancer types:
DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; PCPG, pheochromocytoma and paraganglioma; READ, rectum adenocarcinoma; UVM, uveal melanoma;
PRAD, prostate adenocarcinoma; SARC, sarcoma; ESCA, esophageal carcinoma; TGCT, testicular germ cell tumor; SKCM, skin cutaneous melanoma; KICH, kidney
chromophobe; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; THCA, thyroid carcinoma; BRCA, breast invasive carcinoma; LUSC, lung
squamous cell carcinoma; MESO, mesothelioma; LUAD, lung adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; KIRC, kidney renal clear cell carcinoma;
HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; GBM, glioblastoma multiforme; ACC, adrenocortical carcinoma; OV, ovarian
serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; STAD, stomach adenocarcinoma; BLCA, bladder urothelial carcinoma; COAD, colon adenocarcinoma;
LGG, brain lower grade glioma; LAML, acute myeloid leukemia; UCS, uterine carcinosarcoma; THYM, thymoma; KIRP, kidney renal papillary cell carcinoma; CHOL,
cholangiocarcinoma. In bold are suggestive associations (i.e., p < 0.05).

To guarantee the validity of our MR analysis, before
the formal analysis, we examine the pleiotropic effects of
instruments by removing index SNPs that may be potentially
related to individual cancers if the Bonferroni-adjusted
p-values are less than 0.05. We also conduct a series of
sensitivity analyses: (i) weighted median-based (Bowden
et al., 2016b) and maximum likelihood methods (Burgess
et al., 2013), which are robust when some instrumental
variables might be invalid; (ii) MR-Egger regression
(Bowden et al., 2016a; Burgess and Thompson, 2017),
which guards against horizontal pleiotropic effects; and (iii)

leave-one-out (LOO) analysis (Noyce et al., 2017) and Mendelian
randomization pleiotropy residual sum and outlier (MR-
PRESSO) test (Verbanck et al., 2018) to examine potential
instrumental outliers.

UK Biobank and TCGA Cancer Datasets
The UK Biobank dataset consists of approximately 500,000
individuals (Bycroft et al., 2018). We selected age, gender, smoke,
drink, and BMI as covariates and originally chose 79 self-reported
cancers up to 337,198 independent individuals (28,820 cases
and 308,378 controls) of European ancestry, but only included
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cancers with at least 60 cases (to some extent, this cutoff value
was used arbitrarily) and treated cancer-free individuals to be
controls. Finally, a total of 37 cancers were left up to 335,036
individuals (27,641 cases for various cancers and 307,395 shared
cancer-free controls after removing individuals with missing
values). The genotypes were provided by the UK Biobank
after the research application was approved. However, we can
only obtain 15 SNPs because two were missing (i.e., rs3219104
on PARP1 and rs55749605 on SENP7) in the UK Biobank.
In addition, because summary-level statistics are necessary for
the two-sample MR analysis, herein we can only consider 28
cancers from the UK Biobank (n = 420,473) (Sudlow et al.,
2015; Supplementary Table S6). The summary statistics of these
cancers were obtained from https://pan.ukbb.broadinstitute.org/.

Then, we obtained the survival and clinical information of
33 cancers from TCGA (Hoadley et al., 2018). We selected the
overall survival time and status as the outcome and primarily
included age at diagnosis, gender, and pathologic tumor stage
as covariates because many other important clinical covariates
were missing for most of the patients. When the pathologic
tumor stage cannot be available, we instead employed the clinical
stage (i.e., for CESC, DLBC, OV, THYM, UCEC, and UCS) or
histological grade (i.e., for LGG). It needs to be stated that all
three stage variables were missing in five cancers (i.e., GBM,
LAML, PCPG, PRAD, and SARC). For each cancer, we only
kept samples from the primary cancer tissue and excluded
those with missing values in clinical covariates. More details
about these TCGA cancers are demonstrated in Table 3 and
Supplementary Table S3. For each cancer, we filtered out SNPs
that had a missingness rate >0.95 across individuals, genotype
calling rate <0.95, minor allele frequency (MAF) > 0.01,
or Hardy–Weinberg equilibrium (HWE) p-value < 10−4. We
next performed an imputation procedure by first phasing the
genotypes with SHAPEIT (Delaneau et al., 2013), then imputed
the SNPs based on the Haplotype Reference Consortium panel
(McCarthy et al., 2016) on the Michigan Imputation Server
using minimac3 (Das et al., 2016). The filtering procedure for
the imputed genotypes included an HWE p-value < 10−4, a
genotype call rate <95%, a MAF < 0.01, and an imputation score
<0.30. After the imputation of genotypes, all of the 17 SNPs were
yielded in TCGA.

Power Evaluation
Finally, we performed power calculation to detect a non-zero
causal effect for GRS with regards to cancers based on the UK
Biobank and TCGA datasets. Firstly, we simulated genotypes
for 17 independent SNPs with varying MAFs (Table 1) and
then calculated the GRS. Two independent covariates (i.e., one
was binary and the other was continuous) were also included,
with each having an effect size of 0.5. We generated a case–
control variable y with the probability of exp(η)/(1 + exp(η)) and
η = GRS × θ + 0.5X1 + 0.5X2. We created 2,000,000 individuals
to be the population and then randomly sampled 50 (or 100
and 150) cases and 300,000 controls (as well as their GRS and
covariates) to be a subset for the final simulation analysis.

Secondly, to simulate survival datasets, we first generated
genotypes and calculated the GRS in the same way as described

above. Again, two independent covariates were included, with
each having an effect size of 0.5. Then, we employed the inverse
probability method (Bender et al., 2005) to create survival
time which followed a Weibull distribution, with the shape
parameter being 1 and the scale parameter being 0.01. The
location parameter of this Weibull distribution was determined
by the GRS and the two covariates [i.e., µ = exp(η), with
η = GRS × θ + 0.5X1 + 0.5X2]. The censored rate was fixed to be
50% in a random manner (the high censored rate corresponded
to a similar situation observed in the TCGA cancer dataset). The
sample size varied from 100, 300, to 500.

In both simulations, the effect size of GRS θ was set to 0.05,
0.10, or 0.20, approximately corresponding to odds ratios (ORs)
[or hazard ratio (HR)] of 1.05, 1.10, and 1.20. The simulation was
repeated 1,000 times, and the power calculated by the proportion
of the p-value of GRS was less than 1.67E-3, approximately equal
to the significance level after the Bonferroni correction of 30
types of cancers.

Throughout our study, we utilized the R software (version
3.6.1) to implement all the analyses. The association was declared
to be statistically significant if the false discovery rate (FDR) is
<0.05 (Benjamini and Hochberg, 1995), while the association was
deemed to be suggestive if the unadjusted p-value is <0.05.

RESULTS

Association Between GRS and UK
Biobank Cancers
The 17 selected index SNPs collectively explain about 1.37%
phenotypic variance of leukocyte telomere length, and all
the F statistics are above 10 (ranging from 27.9 to 205.4,
with an average of 63.3) (Table 1), largely ruling out the
possibility of weak instrument bias (Cragg and Donald, 1993;
Burgess et al., 2017; Zeng and Zhou, 2019a). Based on the
constructed GRS, we first investigate the association between
leukocyte telomere length and the risk of UK Biobank cancers
(Table 2). We detect that the GRS of leukocyte telomere length
is significantly associated with a decreased risk of seven types
of cancers (Table 2), including multiple myeloma [OR = 0.77,
95% confidence interval (CI) = 0.63–0.93, FDR = 0.021],
chronic lymphocytic leukemia (OR = 0.82, 95%CI = 0.71–
0.94, FDR = 0.020), kidney/renal cell cancer (OR = 0.86,
95%CI = 0.78–0.95, FDR = 0.017), bladder cancer (OR = 0.91,
95%CI = 0.84–0.98, FDR = 0.030), malignant melanoma
(OR = 0.91, 95%CI = 0.88–0.95, FDR = 9.56E-05), basal cell
carcinoma (OR = 0.94, 95%CI = 0.90–0.97, FDR = 0.010), and
prostate cancer (OR = 0.94, 95%CI = 0.91–0.98, FDR = 0.020).
Suggestive associations are observed for two types of cancers
including sarcoma/fibrosarcoma (OR = 0.84, 95%CI = 0.72–
0.98, FDR = 0.063) and Hodgkin’s lymphoma/Hodgkin’s disease
(OR = 0.89, 95%CI = 0.79–0.99, FDR = 0.069). In addition,
we discover that the GRS of leukocyte telomere length is also
marginally related to an increased risk of leukemia (OR = 1.20,
95%CI = 1.02–1.41, FDR = 0.058).

We further examine the interaction effect of GRS and one
of the covariates (e.g., age, gender, smoke, drink, or BMI)
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for each of the 10 cancers. We observe that the interaction
term is statistically significant between smoke and GRS for
sarcoma/fibrosarcoma (OR = 0.83, 95%CI = 0.71–0.97) as well as
between drink and GRS for leukemia (OR = 0.82, 95%CI = 0.69–
0.97) (Supplementary Table S4).

Association Between GRS and TCGA
Cancers
We now examine the effect size of GRS on 33 TCGA cancers
through the Cox proportional hazards model. We observe
suggestive evidence that the GRS of leukocyte telomere length
is related to a higher death hazard of READ (HR = 1.72,
95%CI = 1.09–2.73, p = 0.020), SARC (HR = 1.29, 95%CI = 1.06–
1.58, p = 0.011), and SKCM (HR = 1.19, 95%CI = 1.03–1.37,
p = 0.018) and is associated with a lower death hazard of KIRP
(HR = 0.66, 95%CI = 0.47–0.93, p = 0.019), suggesting that a
genetically decreased leukocyte telomere length can lead to a
worse overall survival of READ, SARC, and SKCM while can
result in a better overall survival of KIRP. However, all these
associations become non-significant after accounting for multiple
comparisons (FDR > 0.05). Neither suggestive nor significant
associations are identified between GRS and the remaining
cancers (Table 3). We further examine the interaction effect of
GRS and each of the covariates (e.g., age at diagnosis, gender,
or stage) for each of the four cancers. We do not identify any
statistically significant interactions (Supplementary Table S5).

Association Between Leukocyte
Telomere Length and UK Biobank
Cancers Using the Two-Sample MR
With the selected 17 instrumental variables, we further perform
MR analysis to investigate the causal effect of leukocyte telomere
length on each of the 28 cancers from the UK Biobank. As no
evidence of effect heterogeneity is presented across instruments
(all the p-values for the Cochran’s Q test are greater than
0.05), thus, only the results estimated via the fixed-effects IVW
method are displayed below. Among the 28 cancers, we identify
that leukocyte telomere length is associated with a decreased
risk of nine cancers (Supplementary Table S6), including
basal cell carcinoma, malignant melanoma, skin cancer, bladder
cancer, kidney/renal cell cancer, Hodgkin’s lymphoma/Hodgkin’s
disease, thyroid cancer, chronic lymphocytic leukemia, and
multiple myeloma. We also observe that leukocyte telomere
length is associated with an increased risk of leukemia
(Supplementary Table S6).

We now validate the observed causal associations shown
above through various sensitivity analyses (Supplementary
Table S6). Here, we focus on the associations that are
significant in all sensitivity analyses (i.e., PWeighted median
and PLikelihood < 0.05) and have no horizontal pleiotropic effects
(i.e., PEgger−intercept > 0.05). Then, four types of cancers are
left, including malignant melanoma (OR = 0.58, 95%CI = 0.44–
0.79, FDR = 0.004), Hodgkin’s lymphoma/Hodgkin’s disease
(OR = 0.30, 95%CI = 0.13–0.69, FDR = 0.008), chronic
lymphocytic leukemia (OR = 0.20, 95%CI = 0.08–0.54,
FDR = 0.004), and multiple myeloma (OR = 0.18, 95%CI = 0.05–
0.66, FDR = 0.018). Of note is that both the weighted median

method and the maximum likelihood method generate
consistent causal effect estimates compared with the IVW
method (Supplementary Table S6). In addition, we create
scatter plots for the SNP effect sizes of leukocyte telomere length
and these four cancers (Figure 1); we find that no instruments
may be potential outliers. The finding is also supported by
MR-PRESSO, which displays the absence of instrument outliers
at the significance level of 0.05.

To further examine whether a single instrumental variable
may strongly influence the causal effects of leukocyte telomere
length on these four cancers, we performed the LOO analysis.
Again, the LOO analysis results demonstrate that none of the
17 instruments can substantially impact the estimated casual
effect. Therefore, we can conclude that it is likely that a shorter
leukocyte telomere length can decrease the risk of malignant
melanoma, Hodgkin’s lymphoma/Hodgkin’s disease, chronic
lymphocytic leukemia, and multiple myeloma. This finding
here is also consistent with the results derived by the GRS
regression above.

Power Calculation for the Association
Between GRS and Cancers in the UK
Biobank/TCGA Datasets
In terms of our simulations, we have sufficient power to detect
the association in the UK Biobank as the total sample size is large,
although only a few of the cancer cases are included. Specifically,
we observe that the estimated power approaches 100% even when
the number of cases is only 50 and the OR is only 1.05. In contrast,
due to the relatively weak effect size and small sample size in the
simulated TCGA cancer dataset, under our simulation settings,
we have only low to moderate power to detect the association
between GRS and the survival risk of cancer (Figure 2). For
example, when the sample size is 300, the statistical power is only
3.0 or 10.7% when the HR was set to be 1.05 or 1.10. As can be
expected, the power improves with the increase in the sample
sizes and effect sizes.

DISCUSSION

Summary of the Results of the Present
Study
The main objective of our study was to investigate whether
there existed associations between genetically predicted leukocyte
telomere length and various types of cancers. To achieve this,
we first constructed the GRS of leukocyte telomere length based
on associated SNPs from a large-scale GWAS and evaluated
the effect of GRS on the risk and mortality of cancers. We
found statistical evidence supporting the existence of associations
between GRS and cancers in the UK Biobank and TCGA.
Briefly, based on the GRS, a shorter leukocyte telomere length
was identified to be associated with the decreased risk of some
cancers (i.e., multiple myeloma, chronic lymphocytic leukemia,
kidney/renal cell cancer, bladder cancer, malignant melanoma,
basal cell carcinoma, prostate cancer, sarcoma/fibrosarcoma, and
Hodgkin’s lymphoma/Hodgkin’s disease) as well as related to the
decreased mortality of KIRP. In addition, inverse associations
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FIGURE 1 | Relationship between the single nucleotide polymorphism (SNP) effect sizes of leukocyte telomere length (LTL) (x-axis) and the corresponding effect
sizes of cancer (y-axis). (A) Malignant melanoma. (B) Hodgkin’s lymphoma/Hodgkin’s disease. (C) Chronic lymphocytic leukemia. (D) Multiple myeloma. In the plot,
horizontal/vertical lines represent the 95% confidence interval.

FIGURE 2 | Estimated power in the simulation to evaluate the association
between genetic risk score (GRS) and cancers in The Cancer Genome Atlas
(TCGA). In the simulation, the effect sizes of GRS were set to 0.05, 0.10, and
0.20 and the sample sizes of cancer were set to 100, 300, and 500.

were observed for shorter leukocyte telomere length on the
risk of leukemia as well as on the mortality of READ, SARC,
and SKCM. The results of the MR analysis also supported
the existence of an association between leukocyte telomere

length and various cancers, including malignant melanoma,
Hodgkin’s lymphoma/Hodgkin’s disease, chronic lymphocytic
leukemia, and multiple myeloma. The diverse associations
between leukocyte telomere length and cancers may in part
reflect the different carcinogenic mechanisms acted by telomere
in specific cancer types, further suggesting that telomere length is
a valuable indicator of cancer risk and prognosis.

Discoveries Combined With the Previous
Study
We found that the observed associations between leukocyte
telomere length and cancers in the present study (i.e.,
multiple myeloma, chronic lymphocytic leukemia, kidney/renal
cell cancer, bladder cancer, malignant melanoma, basal cell
carcinoma, and prostate cancer) are greatly consistent with prior
findings obtained in terms of MR (Supplementary Table S1;
Zhang et al., 2015; Ojha et al., 2016; Haycock et al., 2017; Machiela
et al., 2017; Li et al., 2020; Went et al., 2020). Particularly, several
previous studies demonstrated that a shorter telomere length
was associated with a decreased lung cancer risk or mortality
and that the association was present in adenocarcinoma while
absent in squamous cell carcinoma (Supplementary Table S1;
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Zhang et al., 2015; Haycock et al., 2017; Kachuri et al., 2018;
Yuan et al., 2018), which may be attributed to the discrepancy
in the biological characteristics of various subtypes of lung
cancer. In the present study, inconsistent correlations were also
identified within different subtypes of cancer. For example, we
discovered that leukocyte telomere length had an opposite effect
on the risk of leukemia and chronic lymphocytic leukemia.
However, we observed that leukocyte telomere length displayed
similar effects on the risk of malignant melanoma and basal cell
carcinoma. These findings suggest that leukocyte telomere may
influence the risk or mortality of cancer in a histologic way and
also emphasize the unique roles of leukocyte telomere in the
development of cancers.

Although the molecular mechanism remains unclear, some
prior studies implied that both short and long telomere length
played an important role in the etiology of cancers (Cui et al.,
2012; Cheng et al., 2017; Nelson and Codd, 2020). Cells with
longer telomere lengths have greater proliferative potential and
more probability of accruing mutations (Hanahan and Weinberg,
2011); therefore, telomere shortening is generally considered to
be a protective mechanism against tumorigenesis (Rode et al.,
2016; Zhang et al., 2017; Kuo et al., 2019). However, it has been
proposed that telomere shortening can generally give rise to
end-to-end chromosome fusions and attenuates DNA damage
response, thus increasing genomic instability and finally initiating
carcinogenesis (Wu et al., 2003). These findings indicate that
telomere plays a dual role in cancer development, and such role
seems to depend on the types of cancers and the balance of the
proliferation and senescence of cells in cancers.

Strengths and Limitations of Our Study
One advantage of our study is that more than 50 diverse types
of cancers were investigated; it is thus feasible to undertake
a systematic evaluation in the present analysis. In addition,
methodologically, the GRS analysis can be viewed to be a two-
stage regression model within the framework of instrumental
variable-based causal inference (Baum et al., 2003; Hernán and
Robins, 2006; Zeng et al., 2019a). Specifically, leukocyte telomere
length is the exposure of interest and the associated SNPs are the
carefully selected instrumental variables which are supposed to
satisfy the necessary assumptions of instruments (Lawlor et al.,
2008; Sheehan et al., 2008; Zeng et al., 2019a; Zeng and Zhou,
2019a,b). In the first stage, the effect size of each instrumental
variable is estimated with an external large-scale GWAS dataset;
in the second stage, the influence of leukocyte telomere length on
various cancers is assessed based on the genetically determined
leukocyte telomere length which is predicted with the chosen
instrumental variables. Therefore, in terms of the principle of
instrumental variable inference, the estimated effect of GRS can
be interpreted as causal. In this sense, besides the MR method,
we are actually investigating the causal association between
leukocyte telomere length and cancers by constructing a GRS.

Finally, some shortcomings of this study should also be
mentioned. Firstly, the majority of the individuals of the UK
Biobank and TCGA were of European ancestry, so our results
may not be applicable to other populations. Secondly, in
our study, telomere length measured in blood leukocytes was

employed and not in all cell types in vivo; however, leukocyte
telomere length was demonstrated to be highly correlated with
that in cells from other tissues (Friedrich et al., 2000; Wilson
et al., 2008; Butt et al., 2010). Thirdly, as described before, the
effect sizes of leukocyte telomere length on the mortality of
TCGA cancers were only suggestive and the sample size of these
cancers was not sufficiently large to maintain high power to detect
weak associations. Therefore, further investigations with a larger
sample size are required to validate our results.

CONCLUSION

Our study reveals that telomere played diverse roles in different
types of cancers; however, further validations in large-scale
prospective studies and deeper investigations of the biologic
mechanisms are warranted.
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Background: Associations between inflammatory bowel disease (IBD) [including
ulcerative colitis (UC) and Crohn’s disease (CD)] and ankylosing spondylitis (AS) were
discovered in observational studies, but no evidence supported the causal relationship
between the two diseases.

Methods: We employed two-sample Mendelian randomization (MR) to estimate the
unconfounded bidirectional causal associations between IBD (including UC and CD)
and AS. We selected single-nucleotide polymorphisms (SNPs) from genome-wide
association studies (GWAS) after strictly assessing the quality of the studies in the
IEU GWAS database. Sensitivity analyses were also conducted to verify whether
heterogeneity and pleiotropy can bias the MR results.

Results: We found positive causal effects of genetically increased UC, CD, and IBD
risk on AS (e.g., UC and AS, IVW OR: 1.0256, 95% CI: 1.0130∼1.0385, p = 6.43E-
05). However, we did not find significant causal associations of AS with UC, CD, or
IBD (e.g., AS and UC, IVW OR: 1.1858, 95% CI: 0.8639∼1.6278, p = 0.2916). The
sensitivity analysis also confirmed that horizontal pleiotropy was unlikely to bias the
causality (e.g., UC and AS, MR-Egger: intercept p = 0.1326). The leave-one-out analysis
also demonstrated that the observed links were not driven by SNP. No evidence of
heterogeneity was found between the genetic variants (e.g., UC and AS, MR-Egger: Q
statistic = 43.1297, I2<0.0001, p = 0.7434).

Conclusion: Our results provide new evidence indicating there are positive causal
effects of IBD on AS in the European population. We suggest that the features
of inflammatory bowel disease in particular should be assessed in the diagnosis
of ankylosing spondylitis. We also provide some advice for preventing and treating
the two diseases.

Keywords: ankylosing spondylitis, inflammatory bowel disease, ulcerative colitis, Crohn’s disease, Mendelian
randomization
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INTRODUCTION

Ankylosing spondylitis (AS) is a type of immune-mediated
inflammatory rheumatic and spinal disease in the axial
spondyloarthritis (SpA) spectrum, and it is also termed
radiographic axial SpA (Raychaudhuri and Deodhar, 2014; Sieper
and Poddubnyy, 2017). Ulcerative colitis (UC) and Crohn’s
disease (CD) are two main forms of inflammatory bowel disease
(IBD) (Abraham and Cho, 2009; Ordás et al., 2012; Torres
et al., 2012). It has been suggested that IBD results from an
inappropriate inflammatory response to intestinal microbes in a
genetically susceptible host.

It has long been recognized that there is a close relationship
between IBD and AS. Patients with IBD frequently suffer from
extraintestinal symptoms, the most common symptoms of which
are musculoskeletal manifestations (Larsen et al., 2010). It has
been estimated that the prevalence of AS in IBD patients is
approximately 3%, as reported by a meta-analysis (Karreman
et al., 2016). Because both diseases likely occur concomitantly,
some researchers suggest that AS and IBD might share a similar
pathogenesis, but there is no evidence showing that the two
conditions have a causal relationship. Exploring the causal
relationship between the diseases is of great significance and may
increase the current knowledge of the pathogeneses of AS and
IBD and improve treatments.

Observational studies conducted to estimate causal inference
have numerous inherent limitations, such as remaining limited
to known and properly measured confounders (Greenland
and Morgenstern, 2001). Therefore, we used Mendelian
randomization (MR), which uses instrumental variables (IVs)
in the analysis of genetic variants, to determine whether an
observational association between exposures and outcomes
exists and is consistent with a causal effect. MR rests on
three assumptions: (a) the genetic variant is associated with
the exposures; (b) the genetic variant is not associated with
confounders; and (c) the genetic variant influences the outcomes
only through the exposures. The genetic variants used in MR
are available due to genome-wide association studies (GWAS)
being conducted and high-throughput genomic technologies
being developed. In this study, we used single-nucleotide
polymorphisms (SNPs) strongly associated with IBD (including
UC and CD) and AS as IVs. We performed two-sample MR
using the effects of IVs on the exposures (UC, CD, and IBD)
and outcomes (AS) from two independent samples. We analyzed
the summary-level data and used statistical methods to obtain
quantitative estimates of the effects of UC, CD, and IBD on
AS. Moreover, we also used reverse MR to investigate the
bidirectional causal relationship between IBD and AS.

MATERIALS AND METHODS

Data Source
In our study, a crucial step in performing MR was to choose
appropriate genetic variants from the publicly available GWAS
database to serve as valid IVs for IBD. We selected SNPs as IVs
for all exposures (UC, CD, and IBD) and outcomes (AS) from

the IEU GWAS database, a database of genetic associations from
GWAS summary datasets1 (Hemani et al., 2018). SNPs associated
with IBD were derived from a transancestry association study
on IBD, which was performed by the International Inflammatory
Bowel Disease Genetics Consortium (IIBDGC) (Liu et al., 2015).
In the association study, IBD was diagnosed on the basis
of the accepted radiological, endoscopic, and histopathological
evaluations. The summary-level data on the impact of the
IBD-associated SNPs on AS were derived from GWAS, which
were performed by the International Genetics of Ankylosing
Spondylitis Consortium (IGAS) (International Genetics of
Ankylosing Spondylitis Consortium[IGAS] et al., 2013). In the
GWAS, AS was diagnosed on the basis of the modified New York
Classification Criteria (van der Linden et al., 1984). Population
stratification is a potential source of bias for MR analyses.
Because there are differences in allele frequencies, one SNP
can be associated with ancestry, which itself can be associated
with disease risk (Emdin et al., 2017; Larsson et al., 2019).
To prevent population stratification bias, we selected SNPs and
their corresponding summary statistics (p-value, beta effect, and
standard error) from studies that included only individuals of
European descent for both the exposures and outcomes.

SNP Selection
From the GWAS summary results, we conducted a series of
quality control steps to select eligible SNPs. We selected SNPs
with a genome-wide association (p < 5E−08), with independent
inheritance (r2 < 0.01), and without linkage disequilibrium
(LD) in summary statistics. When the target SNPs were not
available in the outcomes of a study, we used proxy SNPs
that had high LD (r2 > 0.8) with the SNPs of interest. We
selected the reference sample derived from European ancestral
individuals from the 1,000 Genomes Project to estimate the allele
frequency and LD level2 (1000 Genomes Project Consortium
et al., 2010). The palindromic SNPs with intermediate allele
frequencies (palindromic SNPs referred to the SNPs with A/T
or G/C alleles and “intermediate allele frequencies” referred to
0.01 < allele frequency < 0.30) were excluded from the above
selected instrument SNPs. SNPs with a minor allele frequency
(MAF) of < 0.01 were also excluded. We also calculated the F
statistics for the SNPs to measure the strength of the instruments.
IVs with an F statistic less than 10 were excluded and were
often labeled as “weak instruments” (Burgess et al., 2015). These
rigorously selected SNPs were used as the final instrumental SNPs
for the subsequent MR analysis. The proportion of phenotypic
variation explained by IV SNPs was also estimated.

Effect Size Estimate
We applied the principles of two-sample MR to assess the role
of exposures (UC, CD, and IBD) in the susceptibility of the
outcomes (AS). We chose the SNPs according to the selection
criteria listed above as our instrumental variables and estimated
the effects of the selected SNPs on the exposures and outcomes.
We verified the stability of the results by comparing the effect

1https://gwas.mrcieu.ac.uk/
2http://www.internationalgenome.org/
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directions across different two-sample MR filtering methods
(Emdin et al., 2017; Larsson et al., 2019). The causal associations
between exposures (UC, CD, and IBD) and outcomes (AS) were
estimated with inverse variance weighted (IVW), MR-Egger, and
the weighted median (WM). The IVW method uses a meta-
analysis approach to combine the Wald ratios of the causal effects
of each SNP and can provide the most precise estimates. The
WM estimate provides a reliable effect estimate of the causal
effect when at least 50% of the weight in the analysis comes from
effective IVs. MR-Egger regression is used to create a weighted
linear regression of the outcome coefficients with the exposure
coefficients. The WM method offers some important advantages
over MR-Egger because it has improved precision and is more
robust to violations in the causal effects. MR-Egger estimates may
be inaccurate and can be strongly influenced by outlying genetic
variants (Bowden et al., 2016).

We also performed a recently developed method called the
Robust Adjusted Profile Score (MR.RAPS) to estimate the causal
effects, which can lead to a considerably higher statistical power
than the conventional MR analysis can, which only uses a
small set of strong instruments (Zhao et al., 2019). MR.RAPS
considers the measurement error in SNP-exposure effects and is
unbiased when there are many weak instruments, and is robust
to systematic and idiosyncratic pleiotropy (Zhao et al., 2019). The
MR.RAPS method can alleviate but cannot solve the problem of
horizontal pleiotropy (Zhao et al., 2019).

Sensitivity Analyses
To exclude possible violations of the MR assumptions, we
conducted multiple sensitivity analyses to verify whether
heterogeneity and pleiotropy within the genetic instruments
tested can bias the MR results. Pleiotropy refers to the
phenomenon in which a single locus affects multiple phenotypes.
Horizontal pleiotropy arises when a genetic variant is associated
with more than one phenotype on separate pathways, which can
invalidate the results from MR analyses. We performed MR-
Egger regression to assess and adjust for horizontal pleiotropy,
as it is a method that can identify confounders that may
distort the MR results. We evaluated the MR-Egger regression
intercept and conducted the MR-PRESSO (Pleiotropy RESidual
Sum and Outlier) global test (Verbanck et al., 2018) to estimate
the presence of pleiotropy. MR-PRESSO is an extension of
previous approaches that utilize the general model of multi-
instrument MR on summary statistics and is best used to
identify inconsistencies between genetic associations of different
genetic variants and remove outlying genetic variants (Verbanck
et al., 2018). In addition, to test for the presence of pleiotropy,
we evaluated the pleiotropic effects of UC, CD, and IBD on
osteoarthritis (OA), as these effects might distort the effects
of UC, CD, and IBD on AS. Summary statistics for OA were
extracted from studies performed by the GWAS of European
descent performed by Arthritis Research UK Osteoarthritis
Genetics (arcOGEN) Consortium (arcOGEN Consortium et al.,
2012). We assessed the potential associations between the SNPs
that were extracted for the MR analysis and OA. Variants with
detectable associations with OA were removed from the MR
analysis, and the remaining non-pleiotropic variants were taken

as instruments for the MR analysis. Associations of the SNPs
with OA were considered statistically significant at a Bonferroni-
corrected p < 0.05/N, with N representing the number of SNPs
in each exposure trait.

We used the IVW, WM, and maximum likelihood methods
to evaluate the heterogeneity among SNPs. The level of
heterogeneity was quantified by Cochran Q statistics and I2
statistics. The Cochran Q statistic was calculated as the weighted
sum of the squared differences between individual SNP effects
and the pooled effect across all SNPs.

An I2 statistic calculation adapted for meta-analyses was used
to quantify the strength of the violation for MR-Egger. The
values are between 0 and 1 and indicate the expected relative
bias of the MR-Egger causal estimate in the two-sample MR
context (Bowden et al., 2016). Moreover, the causal directions
between the exposures and outcomes were tested by the MR-
Steiger method (Hemani et al., 2017). To guarantee that the MR
estimates are not influenced by the inclusion of proxy SNPs, we
implemented a “leave-one-out” sensitivity analysis by removing
a different SNP in each iteration when performing the MR.
All statistical tests were two-sided, and the results of the MR
analyses and sensitivity analyses regarding the causal effects of
UC, CD, and IBD on AS were considered statistically significant
at p < 0.05.

Bidirectional Mendelian Randomization
We also sought to explore whether AS influenced UC, CD, and
IBD. Therefore, we reversed the functions of the exposures and
outcomes to perform a bidirectional MR analysis and determine
the effects of a genetically increased risk of AS on UC, CD, and
IBD. To that end, we selected SNPs that were significant genome-
wide (p < 5E−08) and independently inherited (r2 < 0.01)
without LD for AS from IGAS (International Genetics of
Ankylosing Spondylitis Consortium[IGAS] et al., 2013). We then
used the corresponding effect estimates from IIBDGC as the
outcomes (Liu et al., 2015). We then applied the same MR
methods as above. The statistical tests of the bidirectional MR
analysis were two-sided, and the results of the MR analyses
and sensitivity analyses regarding the causal effects of AS on
UC, CD, and IBD were considered statistically significant at a
Bonferroni-corrected p < 0.0167 (e.g., 0.05/3 outcomes).

All statistical tests were performed using the “TwoSampleMR”
package for R language, version 3.6.1 (R Foundation for
Statistical Computing, Vienna, Austria). The “TwoSampleMR”
codes in our study were available here: https://mrcieu.github.io/
TwoSampleMR.

RESULTS

We incorporated 52, 59, and 82 significant (p < 5E−08) and
independent SNPs (r2 < 0.01) as IV SNPs for UC, CD, and
IBD, respectively. However, three SNPs (rs3135501, rs11641016,
and rs2564117) for IBD that were palindromic with intermediate
allele frequencies were excluded. Finally, a total of 52, 59, and
79 IVs of UC, CD, and IBD were carefully selected (Table 1).
Overall, the selected instruments explained approximately 21.49,
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TABLE 1 | MR estimates from each method of assessing the causal effects of ulcerative colitis, Crohn’s disease, and IBD on ankylosing spondylitis risk.

Exposure traits MR methods Ankylosing spondylitis

Number of SNPs OR (95% CI) SE MR p-value MR-Steiger test

Ulcerative colitis MR-Egger 52 0.9927 (0.9502∼1.0370) 0.0223 0.7426 Direction: TRUE p-value <0.0001

Inverse variance weighted 52 1.0256 (1.0130∼1.0385) 0.0063 6.43E-05

Weighted median 52 1.0241 (1.0054∼1.0432) 0.0094 0.0115

MR.RAPS 52 1.0280 (1.0146∼1.0414) 0.0067 3.59E-05

MR-PRESSO test 52 1.0256 (1.0137∼1.0377) 0.0060 9.63E-05

Crohn’s disease MR-Egger 59 1.0015 (0.9702∼1.0337) 0.0162 0.9282 Direction: TRUE p-value <0.0001

Inverse variance weighted 59 1.0194 (1.0088∼1.0302) 0.0054 0.0003

Weighted median 59 1.0235 (1.0069∼1.0404) 0.0083 0.0054

MR.RAPS 59 1.0214 (1.0103∼1.0327) 0.0056 0.0002

MR-PRESSO test 59 1.0194 (1.0096∼1.0293) 0.0049 0.0002

IBD MR-Egger 79 0.9920 (0.9512∼1.0345) 0.0214 0.7078 Direction: TRUE p-value <0.0001

Inverse variance weighted 79 1.0259 (1.0133∼1.0387) 0.0063 5.25E-05

Weighted median 79 1.0352 (1.0153∼1.0556) 0.0099 0.0005

MR.RAPS 79 1.0292 (1.0160∼1.0427) 0.0066 1.33E-05

MR-PRESSO test 79 1.0238 (1.0123∼1.0355) 0.0058 0.0001

MR, Mendelian randomization; RAPS, Robust Adjusted Profile Score; PRESSO, Pleiotropy RESidual Sum and Outlier; SNP, single nucleotide polymorphism; IBD,
inflammatory bowel disease; OR, odds ratio; CI, confidence interval; SE, standard error (the standard error is an estimate of the standard deviation (SD) of the coefficient).
The italic values mean the statistical significance.

28.94, and 21.69% of the phenotypic variation in UC, CD, and
IBD, respectively, on the observed scale. For these instrumental
variables, all the F-values were larger than 10 (ranging from
29.7576 to 110.7637 for UC; ranging from 30.7373 to 349.9869 for
CD and ranging from 30.9495 to 232.7940 for IBD) with average
F-values of 45.7381, 66.9439, and 52.0463 for UC, CD, and IBD,
respectively; these results indicate that the variables satisfy the
strong relevance assumption of MR and that the instrument bias
is weak and cannot substantially influence the estimations of
causal effects (Supplementary Tables S1–S3).

The causal associations between UC and AS determined using
the full set of 52 SNPs were not consistent among the three
MR methods. The IVW and WM MR results showed that the
per unit increase in the log-odds of having UC was significantly
associated with an increased risk of having AS at p < 0.05
(IVW OR = 1.0256, 95% CI 1.0130–1.0385, p = 6.43E-05; and
WM OR = 1.0241, 95% CI 1.0054–1.0432, p = 0.0115), while
the MR-Egger regression method did not suggest a significant
association between CD and AS (OR = 0.9927, 95% CI 0.9502–
1.0370, p = 0.7426) (Table 1 and Figure 1). Given that the
IVW estimates were consistent with the WM estimates and
that the IVW estimates may be unbiased estimates of causal
effects and are considerably more powerful than the MR-Egger
regression estimates (Bowden et al., 2016), we believe that UC
had a positive causal effect on AS risk. The causal effects of
CD and IBD on AS were the same as those of UC at p < 0.05
(For CD, IVW OR = 1.0194, 95% CI 1.0088–1.0302, p = 0.0003;
WM OR = 1.0235, 95% CI 1.0069–1.0404, p = 0.0054 and MR-
Egger OR = 1.0015, 95% CI 0.9702–1.0337, p = 0.9282. For IBD,
IVW OR = 1.0259, 95% CI 1.0133–1.0387, p = 5.25E-05; WM
OR = 1.0352, 95% CI 1.0153–1.0556, p = 0.0005 and MR-Egger
OR = 0.9920, 95% CI 0.9512–1.0345, p = 0.7078) (Table 1 and
Figure 1). Moreover, the MR.RAPS results were found to be

consistent with the MR IVW and WM results, showing that UC,
CD, and IBD were significantly associated with an increased risk
of having AS at p< 0.05 (For UC, MR.RAPS OR = 1.0280, 95% CI
1.0146–1.0414, p = 3.59E-05. For CD, the MR.RAPS results were
as follows: OR = 1.0214, 95% CI 1.0103–1.0327, p = 0.0002. For
IBD, the MR.RAPS results were as follows: OR = 1.0292, 95% CI
1.0160–1.0427, p = 1.33E-05) (Table 1 and Figure 1). Therefore,
we found positive causal associations of UC, CD, and IBD with
an increased risk of AS with the MR IVW, WM, MR-Egger, and
MR.RAPS methods.

We conducted MR-Egger regression to assess pleiotropy, and
the results revealed that horizontal pleiotropy was unlikely to
bias the causality of UC (p = 0.1326), CD (p = 0.2484), and IBD
(p = 0.1044) with AS (Table 2). The “leave-one-out” analysis also
revealed that no single SNP was driving the MR estimates (see
Supplementary Figures S1–S3). The associations between these
genetic variants and confounding factors OA were also analyzed.
None of the genetic variants of the UC, CD, or IBD traits
were significantly associated with OA at the Bonferroni-corrected
significance threshold of p < 0.0010 (e.g., 0.05/52), p < 0.0008
(e.g., 0.05/59), or p < 0.0006 (e.g., 0.05/79) (Supplementary
Tables S4–S6). Cochran Q-value and the I2-value indicated there
was no heterogeneity between the IV estimates determined with
the IVW, MR-Egger, and maximum likelihood methods (For
UC, MR-Egger Q = 43.1297, I2 < 0.0001, p = 0.7434; IVW
Q = 45.4670, I2 < 0.0001, p = 0.6923; maximum likelihood
Q = 45.2706, I2 < 0.0001, p = 0.6996. For CD, the MR-Egger
results were as follows: Q = 47.4296, I2 < 0.0001, p = 0.8129;
IVW Q = 48.7894, I2 < 0.0001, p = 0.8002; maximum likelihood
Q = 48.6807, I2<0.0001, p = 0.8034. For IBD, the MR-Egger
results were as follows: Q = 63.1835, I2 < 0.0001, p = 0.8715;
IVW Q = 65.8841, I2 < 0.0001, p = 0.8343; maximum likelihood
Q = 65.7086, I2 < 0.0001, p = 0.8382.) (Table 2). The MR-Steiger
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FIGURE 1 | Scatter plots of the genetic associations with inflammatory bowel
disease against ankylosing spondylitis risk using different MR methods.
(A) Ulcerative colitis against ankylosing spondylitis risk; (B) Crohn’s disease
against ankylosing spondylitis risk; and (C) inflammatory bowel disease
against ankylosing spondylitis risk. The slopes of each line represent the
causal association for each method. The green line represents the inverse
variance weighted estimate, the purple line represents the MR-Egger
estimate, the red line represents the MR.RAPS estimate, and the blue line
represents the weighted median estimate.

results supported a causal association between the IBD traits and
AS (Table 1). Moreover, we did not detect any outlier SNPs or
a horizontal pleiotropic effect of UC, CD, or IBD on the risk of
AS when we used the MR-PRESSO global test (p-values for UC,

CD, and IBD were 0.7020, 0.8060, and 0.7300, respectively). The
MR results determined with the outlier-corrected MR-PRESSO
method were similar to the MR IVW results reported above
(For UC, OR = 1.0256, 95% CI 1.0137–1.0377, p = 9.63E-05.
For CD, OR = 1.0194, 95% CI 1.0096–1.0293, p = 0.0002. For
IBD, OR = 1.0238, 95% CI 1.0123–1.0355, p = 0.0001) (Table 1).
Therefore, the MR-PRESSO results suggested there are causal
effects of UC, CD, and IBD on AS.

To explore the causal effects of AS on UC, CD, and IBD,
we incorporated 8, 8, and 6 significant and independent IV
SNPs for AS, respectively, which were retrieved from IGAS
(Supplementary Tables S7–S9). Overall, the selected instruments
explain approximately 0.37, 0.16, and 1.80% of the phenotypic
variation of AS on the observed scale. For the instrumental
variables of AS, all the F-values were greater than 10 (ranging
from 30.0213 to 252.1853 with UC; ranging from 30.0213 to
748.6627 with CD and ranging from 30.0213 to 1314.9257 with
IBD) with average F-values of 105.6131, 156.4408, and 375.1283
for UC, CD, and IBD, respectively (Supplementary Tables S7–
S9). There was no evidence suggesting causal associations of
an increased risk of AS with changes in the risk of UC, CD,
or IBD, based on the IVW, WM, and MR-Egger regression
methods and the Bonferroni-corrected significance threshold
of p < 0.0167 (e.g., 0.05/3) (Supplementary Table S10 and
Figure 2). The MR.RAPS and MR-PRESSO test results were
consistent with the IVW, WM, and MR-Egger regression results
(Supplementary Table S10 and Figure 2). We conducted MR-
Egger regression to assess pleiotropy, and the results revealed
that the presence of horizontal pleiotropy was unlikely to bias
the causality of AS with UC (p = 0.2931), CD (p = 0.2895), and
IBD (p = 0.5554) (Supplementary Table S11). The leave-one-out
method demonstrated that the observed links were not driven
by SNP (see Supplementary Figures S4–S6). Cochran Q-value
and the I2-value also indicated there was no heterogeneity across
the IV estimates determined with the IVW, MR-Egger, and
maximum likelihood methods (Supplementary Table S11). In
summary, we did not find significant causal associations of AS
with UC, CD, or IBD.

DISCUSSION

To the best of our knowledge, our study is the first to illustrate
the bidirectional causal relationship between IBD and AS using
MR analysis and large-scale GWAS data. Our findings provided
evidence that IBD (including UC and CD) had positive causal
effects on AS risk but did not suggest that there are causal
effects of AS on IBD risk in individuals of European descent.
We found that suffering from IBD was the causal factor of an
increased risk of AS, which suggests that IBD and AS might share
a similar pathogenesis.

Although the exact mechanisms linking IBD and AS are not
fully understood, the joint-gut axis hypothesis was proposed to
explain the pathogenic link (Brakenhoff et al., 2010). Various
environmental (gut bacteria-dysbiosis) factors and host factors
(migration of activated gut-T cells and macrophages) lead to
inflammation in genetically susceptible individuals, which may
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TABLE 2 | Heterogeneity and pleiotropy analysis of ulcerative colitis, Crohn’s disease and IBD with ankylosing spondylitis risk using different analytic methods.

Exposure traits MR methods Ankylosing spondylitis

Cochran Q statistic I2 Heterogeneity p-value MR-Egger

Intercept p-value

Ulcerative colitis MR-Egger 43.1297 < 0.0001 0.7434 0.1326

Inverse variance weighted 45.4670 < 0.0001 0.6923

Maximum likelihood 45.2706 < 0.0001 0.6996

Crohn’s disease MR-Egger 47.4296 < 0.0001 0.8129 0.2484

Inverse variance weighted 48.7894 < 0.0001 0.8002

Maximum likelihood 48.6807 < 0.0001 0.8034

IBD MR-Egger 63.1835 < 0.0001 0.8715 0.1044

Inverse variance weighted 65.8841 < 0.0001 0.8343

Maximum likelihood 65.7086 < 0.0001 0.8382

MR, Mendelian randomization; IBD, inflammatory bowel disease.

act as triggers of inflammatory responses against gut and joint
components (Brakenhoff et al., 2010; Fragoulis et al., 2019). In
one study Tito et al. (2016), investigated the association between
intestinal microbiota and spondyloarthritis and demonstrated
a significant difference in the intestinal microbial composition
between patients with spondyloarthritis who had microscopic gut
inflammation and those without microscopic gut inflammation.
This study indicated that gut bacteria-dysbiosis might play an
important role in the pathogenesis of both diseases. Genetic
factors also seem to have a significant impact on linking the
two diseases. Laukens et al. (2005) reported that CARD15
gene polymorphisms are associated with an increased risk
for chronic gut inflammation in patients with SpA. Peeters
et al. (2004) included 102 patients with CD in a study and
found that CARD15 variants are genetic predictors of CD-
related sacroilitis.

Many studies have shown that the risk of IBD is high
in patients with AS (Stolwijk et al., 2014, 2015), but those
results did not indicate there are causal effects of AS on the
risk of IBD. The findings of some studies were consistent
with our findings. With the data from a large population-
based public health database in Spain, Muñoz-Ortego et al.
(2014) found no significant associations between AS and
IBD. In a preliminary cohort study conducted using data
from the 2005–2012 database of the Taiwan National Health
Insurance Programme in Taiwan, the overall incidence of
IBD was lower in the AS group than in the non-AS
group, but the difference did not reach statistical significance
(Lai et al., 2019). Because there are confounding factors in
observational studies, it is unclear whether they are etiologically
relevant to each other. The results of our study can provide
new information on the similarity of the pathogeneses of
the two diseases.

The causal effects of IBD on AS are of great significance
for the classification of SpA and the diagnosis and treatment
of AS. Traditionally, SpA can be classified as axial SpA or as
peripheral SpA. Axial SpA is subclassified as radiographic SpA
and non-radiographic SpA based on the presence or absence
of definite sacroilitis according to the modified New York

Classification Criteria (van der Linden et al., 1984; Rudwaleit
et al., 2009). According to the ASAS classification criteria
for axial SpA, patients with > 3 months of back pain and
age of onset of < 45 years confirmed sacroilitis on imaging
examinations, and more than one SpA features (including IBD)
or those with HLA-B27 combined with more than two SpA
features (including IBD) can be diagnosed with axial SpA.
Since we found that IBD is the cause of AS, we recommend
that the significance of IBD is emphasized in the axial SpA
classification criteria. We also recommend that the features
of IBD are included in the modified New York Classification
Criteria (van der Linden et al., 1984) for the diagnosis of
AS. Our study is also an important addition to IBD and
AS research, and the results have important implications for
public health. We will predict the occurrence of AS in IBD
patients and will provide strategies for preventing and treating
AS in IBD patients. For example, surveillance examinations for
IBD patients should include not only a regular colonoscopy
but also a regular spine X-ray. We also suggest that IBD
patients take measures to prevent back injuries that may
result in spinal fractures, especially those who have low back
pain, because patients with AS are at high risk of fractures
(Muñoz-Ortego et al., 2014).

The present study has several limitations. First, the summary-
level statistics approach does not allow us to perform analyses
stratified by covariates that were adjusted by the original
GWAS. Second, we only assumed a linear effect relationship
between IBD and AS in the MR model. The summary
statistics also did not permit us to explore the non-linearity
of the association between IBD and AS. Although linearity
is a first-order approximation of any -linear relationship, a
simple linearity assumption may not always be reasonable
in practice (Burgess et al., 2014). Third, we did not stratify
the causal effects between IBD and AS by gender or age,
although previous studies revealed that causal effects between
IBD and AS can be age and gender dependent (Van Praet
et al., 2013). It is difficult to obtain individual-level data
in original GWAS. The study population included in the
exposure and outcome analyses were of European ancestry,
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FIGURE 2 | Scatter plots of the genetic associations with ankylosing
spondylitis against inflammatory bowel disease risk using different MR
methods. (A) Ankylosing spondylitis against ulcerative colitis risk; (B)
ankylosing spondylitis against Crohn’s disease risk; and (C) ankylosing
spondylitis against inflammatory bowel disease risk. The slopes of each line
represent the causal association for each method. The green line represents
the inverse variance weighted estimate, the purple line represents the
MR-Egger estimate, the red line represents the MR.RAPS estimate, and the
blue line represents the weighted median estimate.

which may have mitigated population stratification. However,
the conclusions made based on the European study population
are not representative of individuals of other ancestries, such
as Asians and Americans. Fourth, the small variance for the
exposures, especially for AS with the SNP instruments, might

affect the power of the causal effects. The variance might be
affected by the small amounts of SNP instruments. However,
based on the very large sample size and strongly relevant
instruments, we still have been powered to rule in or rule out the
causal relationship.

A further limitation is our use of binary risk factors (IBD).
IBD is a dichotomization of a continuous risk factor which can
lead to violation of the exclusion restriction assumption and
limit the inferences drawn from an MR study. In particular,
the effect estimate of IBD (yes/no) on AS represents the
average effect among individuals for whom the presence
or absence of the included genetic effects determines their
IBD status. We further assume that the effect of IBD on
AS is constant for all individuals, which may not be the
case. However, it is important to note that the MR test
for an association between IBD and AS is still valid if
the instrumental variable assumptions are satisfied (Burgess
and Labrecque, 2018). Additionally, we did not propose a
physiological mechanism to explain the causal associations
between IBD and AS.
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Objective: Extensive literature put forward the link between sleep and type 2
diabetes mellitus (T2DM), however, little is known about the underlying causality of
the associations. Here we aim to assess the causal relationships between five major
sleep-related traits and T2DM.

Design, Setting, and Participants: Two-sample Mendelian randomization (MR) was
utilized to investigate the potential causal relations. Independent genetic variants
associated with five sleep-related phenotypes—insomnia, sleep duration, short sleep
duration, long sleep duration, and morningness—were chosen as instrumental variables
to estimate the causal associations with T2DM. Summary statistics were acquired
from the genome-wide association studies of UK Biobank and 23andMe (for sleep-
related measures), the DIAbetes Genetics Replication And Meta-analysis and the
FinnGen (for T2DM).

Main Methods: Individual Cochran’s Q statistic was applied to remove the pleiotropic
instruments, global Q statistics and MR-Egger regression were adopted to test for the
global heterogeneity and horizontal pleiotropy of the screened instruments, respectively.
Two T2DM cohorts were selected to analyze their associations with sleep traits.
A modified inverse variance weighted (IVW) estimate was performed to combine the ratio
estimators from each instrument and acquire the causal estimate, alternative methods
including IVW with first-order weights, simple and weighted median estimations, and
MR-Egger regression were conducted as sensitivity analyses, to ensure the robustness
and solidity of the findings.

Results: Two-sample MR supported findings for an adverse effect of genetically
predicted insomnia on T2DM risk (odds ratio [OR] = 1.14, 95% confidence interval [CI]:
1.09–1.19, p = 1.29E–08) at the Bonferroni-adjusted level of significance (p < 0.005).
We further investigated the causal role of T2DM on insomnia but obtained a non-
significant estimation. There was also little evidence for the causal effect of other
sleep-related measures on T2DM. Results were largely consistent when leveraging two
different T2DM cohorts, and were robust among various sensitivity analyses.
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Conclusion: Findings provide significant evidence for an adverse effect of insomnia
on T2DM risk. The study extends fundamental knowledge to further understanding of
the pathophysiological mechanisms of T2DM, and points out the non-negligible role of
insomnia on epidemiologic intervention and clinical therapeutics of T2DM.

Keywords: insomnia, sleep duration, morningness, type 2 diabetes mellitus, causal relations, Mendelian
randomization

INTRODUCTION

Type 2 diabetes mellitus (T2DM), is a chronic condition that
describes a group of metabolic disorders characterized by insulin
resistance (Arnold et al., 2018). The global prevalence of T2DM
was estimated to be around 450 million. If current trends
continue, the cases will rise to 700 million by 2045 (Saeedi et al.,
2019). In the past three decades, the prevalence of T2DM has
risen doubled worldwide, leading to a heavy health burden of
disability and mortality (Roglic et al., 2005).

Quantity and quality of sleep are considerable lifestyle factors
that influence the development of T2DM. Several studies have
reported the associations of sleep-related traits with T2DM
(Kawakami et al., 2004; Meisinger et al., 2005). One retrospective
cohort study indicated that insomnia imparts an increased risk
of T2DM (LeBlanc et al., 2018). Moreover, a systematic review of
prospective studies showed a U-shaped association between sleep
duration and the risk of T2DM (Brady et al., 2018). Consistent
with this, a cross-sectional study demonstrated that both short
and long sleep duration are associated with an increased risk of
T2DM (Chaput et al., 2007). Besides, sleep chronotype may also
play an important role in the risk of T2DM. One study found that
morningness was associated with lower HbA1c, which induced a
high risk of T2DM (Iwasaki et al., 2013).

Despite previous observational evidence of the relationship
between sleep and T2DM, there are also inconsistent results
(Björkelund et al., 2005; Lai et al., 2013). Also, several studies
showed that T2DM may also lead to sleep disorders, it is not
certain whether sleep causally influences the risk for T2DM, or
T2DM reversely affects sleep (Hein et al., 2018; Dong et al.,
2020). Moreover, observational studies are open to confounding,
which can hardly be ruled out. Therefore the causal relationship
between sleep and T2DM remains unclear.

Mendelian randomization (MR) can offer essential evidence
for the causal inference (Emdin et al., 2017). Commonly,
MR utilizes genetic variants associated with the exposure but
does not directly affect the disease outcome as instrumental
variables. The alleles of the variants are distributed randomly
at conception, thus the predisposition for the exposure that
is proxy by the genetic variants is distributed randomly, in
this way the MR framework can approximate the RCT design.
Besides, since the formation of the genetic variants is stable
from conception on, they always precede the development of
disease outcomes and other possibly confounding factors. Based
on the distinct nature of genetic variants, MR can overcome
the downsides of traditional observational studies such as
unmeasured confounding and reverse causation, and provide a
more valid estimation for the causal relationship between the

exposure and the outcome (Agoritsas et al., 2017). Benefiting
from the Genome-wide association studies (GWAS) which
unraveled the association of genetic variants with phenotypes,
the summarized data-based MR methods promote the causal
inference of various traits with diseases considerably, and are
prevailingly suggested and extensively applied in recent studies
(Gao et al., 2019; Porcu et al., 2019; Sun et al., 2020).

There have been some studies exploring the causality between
sleep and T2DM based on MR design. For example, Wang
et al. (2019) examined the relationship of sleep duration with
the risk of diabetes but found that they were not causally
related. Bos et al. (2019) investigated the effect of total, short
and long sleep duration on glycemic traits but the results
provided little evidence for the causal role. Despite this, a
comprehensive causal relationship of different sleep measures
with T2DM has not been identified. As sleep is potentially
modifiable, identifying the causal association of sleep and T2DM
has substantial implications for preventing T2DM and improving
population health. Herein, in the current study, we utilized the
MR framework to investigate the causal relations between a wide
range of sleep-related phenotypes (including insomnia, sleep
duration and morningness) and T2DM.

MATERIALS AND METHODS

Study Sample and Data Sources
A total of five cohorts (three for sleep-related traits and two for
T2DM) were included in our study. Summary-level data had been
made publicly available, and ethical approval had been obtained
in the original studies (Table 1).

Summary-level data for insomnia were derived from the
largest available meta-analysis of GWAS, including unrelated
European descent individuals from UK Biobank (UKB,
N = 386,533, 46.0% female) and 23andMe (N = 944,477, 53.1%
female) (Jansen et al., 2019). Insomnia cases were measured with
questionnaire data and defined as participants who usually have
trouble in falling asleep at night or wake up in the middle of the
night in the UKB cohort, and were diagnosed with participants
affirming no less than one phenotypic concept concerning
inferior sleep status in the 23andMe cohort. The prevalence
of insomnia was 29.9% in the combined sample of UKB and
23andMe and was higher in females (34.6%) than males (24.5%).

Genetic association estimates with sleep duration were
obtained from the UKB participants of European ancestry
(N = 446,118, 54.1% female) (Dashti et al., 2019). The GWAS
examined the following three sleep duration phenotypes: self-
reported habitual sleep duration (continuous variable), which
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TABLE 1 | GWAS cohorts used in this study.

Phenotype First author (year) Sample size Consortium PubMed ID

Insomnia Jansen et al. (2019) 397,959 cases, 933,051 controls UKB/23andMe 30804565

Sleep duration Dashti et al. (2019) 446,118 UKB 30846698

Short sleep duration Dashti et al. (2019) 106,192 cases, 305742 controls UKB 30846698

Long sleep duration Dashti et al. (2019) 34,184 cases, 305742 controls UKB 30846698

Morningness Jones et al. (2019) 372,765 cases, 278,530 controls UKB/23andMe 30696823

T2DM Scott et al. (2017) 26,676 cases, 132,532 controls DIAGRAM 28566273

T2DM 2020 17,616 cases, 114,000 controls FinnGen NA

T2DM, Type 2 diabetes mellitus; UKB, UK Biobank; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis.

was assessed by the question: “About how many hours sleep
do you get in every 24 h? (please include naps).” The answer
was responded in hour increments and could only contain
integer values; short and long sleep duration (binary variable),
categorized as <7 h and >8 h relative to 7–8 h sleep duration,
respectively. The mean sleep duration was 7.2 h (1.1 standard
deviation) per day, and the prevalence for short and long sleep
duration ware 25.8 and 10.1%, respectively.

Full summary statistics for morningness were acquired from
the largest meta-analysis of GWAS among adults of European
ancestry, including 449,734 participants from UKB and 248,098
participants from 23andMe (Jones et al., 2019). The participants
in the UKB cohort were promoted to answer the question
“Do you consider yourself to be?” with six possible answers,
persons answering “Definitely a ‘morning’ person” or “More
a ‘morning’ than ‘evening’ person” were assigned to cases of
morningness, and persons answering “More an ‘evening’ than
a ‘morning’ person” or “Definitely an ‘evening’ person” were
assigned to controls. The participants in the 23andMe cohort
responded to the question “Are you naturally a night person
or a morning person?” with two possible answers. 57.2% of
the individuals were coded as a morning person in the pooled
cohort, and the percentages were 62.6% and 48.6% for UKB and
23andMe, respectively.

GWASs for T2DM were selected to extract genetic association
information for the outcome. When using genetic consortia that
have significant overlapping sets in the exposure and outcome
GWAS, the two-sample summary data-based MR may develop
biased estimates (Burgess et al., 2016). Thus, we excluded the
GWASs that involving UKB or 23andMe as main or sub cohort.
Furthermore, to reduce the possible confounding derived from
population stratification, we restricted the T2DM cohort to
European-descent adults. According to the above criteria, we
drew on summary statistics from the largest GWAS of T2DM,
which was conducted by the DIAbetes Genetics Replication
And Meta-analysis (DIAGRAM) consortium and contained
18 study cohorts and a total of 159,208 participants (Scott
et al., 2017). The T2DM diagnosis criteria, control selection
principles, and study characteristics for each cohort had been
described in more detail in the original article. To examine
the solidity of the findings, we also selected another newly
released T2DM GWAS, which was derived from FinnGen
cohort and contained a total of 131,616 individuals, as the
validation sample.

Selection of Instruments
The first core assumption for MR is that the instruments are
robustly and strongly associated with the exposure of interest.
When the relationship of the instruments with exposure is
weak, the causal estimate will be biased toward the null, which
is referred to as weak instrument bias (Davies et al., 2015).
To address the potential weak instrument bias, we included
the independent lead single nucleotide polymorphisms (SNPs)
that are genome-wide significantly (P < 5 × 10−8, r2 < 0.1)
associated with the sleep traits as preliminary instruments. Then
we extracted the summary statistics for the associations of
the selected instruments with T2DM from the T2DM GWAS
database and matched the two groups of sample data based on
the SNP ID. To make sure that the effect of an instrument on
the exposure and the effect of that instrument on the outcome
each correspond to the same allele, we performed harmonization
of the direction of effects (Hemani et al., 2018). To further
ensure the independence of the instruments, SNPs that were in
linkage disequilibrium (LD) were excluded from the instrument
variable set using the clumping algorithm (r2 threshold = 0.01
and window size= 1 Mb) (Chang et al., 2015).

Investigation of Pleiotropy
Other main identifying assumptions for an MR analysis are that
the instrument is not associated with the confounding factors,
and it influences the outcome only through the exposure. These
two assumptions can be together summarized as independent
of pleiotropy (Emdin et al., 2017). Pleiotropy occurs when
the genetic variant influences the target outcome via any
pathway other than the exposure. The nature of pleiotropy could
invalidate an instrument, thus bias the estimate in the MR
analysis (Zhu et al., 2018). Pleiotropy is commonplace in practice,
however, a complete understanding of the effect of genetic
variants on the phenotypes is lacking. Therefore, it is necessary
to take full advantage of statistical findings to assess and identify
the potential pleiotropic instruments (Swerdlow et al., 2016). We
first investigated the association of the instruments with major
confounders such as body mass index, alcohol use and physical
activity, and excluded the SNPs that were associated with these
known confounders at the genome-wide significance level (Chen
et al., 2011; Van Reen et al., 2011; Bayon et al., 2014; Semplonius
and Willoughby, 2018). Known potentially pleiotropic effects of
the chosen SNPs were obtained with PhenoScanner, a database
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that provides massive human genotype-phenotype associations
(Staley et al., 2016). We then performed the individual Cochran’s
Q outlier test to detect the unknown pleiotropic effects of
the instruments (Del Greco et al., 2015). The ratio estimate
(i.e., the estimate for the SNP–outcome association divided
by the estimate for the SNP-exposure association) of each
valid instrument will only vary by chance, and a significant
heterogeneity would hint at the violation of assumptions in
the instrument, most likely as a result of pleiotropy. These
outlier SNPs with significant contributions to the Q statistic for
heterogeneity were removed from the instrument variable set.

After the above steps to eliminate the potential pleiotropy,
global Q test was implemented to examine if there is still
heterogeneity among the screened instruments, and MR-Egger
regression was also conducted to evaluate the directional
pleiotropy of the instruments (Bowden et al., 2015). Directional
pleiotropy here refers to the pleiotropic effects of genetic
variants are not balanced about the null. In this situation,
the estimations from MR analyses inevitably suffer from bias
(Burgess and Thompson, 2017). A significant deviation of the
MR-Egger intercept from 0 indicated directional pleiotropy in
the instruments.

Main MR Analysis
After a series of examinations for the validity of the instruments,
we evaluated the causal estimations with the inverse-variance
weighted (IVW) method, which essentially models the weighted
regression of SNP-outcome effects on SNP-exposure effects where
the intercept is constrained to zero (Burgess et al., 2013). The
modified weights in the IVW framework take account of the
uncertainty of SNP–exposure associations and move beyond
the “NO Measurement Error” (NOME) assumption, therefore
leveraging more power compared with the IVW using the first-
order weights (Bowden et al., 2019). Given this, we adopted the
modified IVW approach to obtain the estimates for the causal
effect of the sleep traits on T2DM.

Sensitivity Analyses and Other Elements
To assess the extent to which findings were robust to potential
pleiotropy, we also performed sensitivity analysis with four other
established MR methods: IVW with first-order weights (Burgess
et al., 2013), simple weighted median (SME), weighted median
estimates (WME) (Bowden et al., 2016), and MR-Egger (Bowden
et al., 2015). IVW with first-order weights could produce
consistent estimates when there are no pleiotropic instruments,
whereas the median based and MR-Egger estimates allow the
inclusion of the pleiotropic instruments and are relatively robust
to pleiotropy, although at the cost of reduced statistical power.
Consistent estimates across multiple methods strengthen the
robustness of the causal findings. Furthermore, we conducted
the analyses by combining the five major sleep traits with both
the main DIAGRAM T2DM cohort and the alternative FinnGen
T2DM cohort respectively, to assess the consistency of the results.
Lastly, we exploited the three largest GWAS cohorts from the
MAGIC consortium and investigated the causal relationships of
five sleep-related traits with Hemoglobin A1c(Hb1Ac), fasting
glucose (FG), and fasting insulin (FI).

To account for multiple testing, we employed a Bonferroni-
corrected threshold of P < 0.005 (0.05/10 to correct for five sleep
traits in relation to two T2DM outcomes). A P-value between
0.005 and 0.05 was considered as suggestive evidence of causality
and needs to be further confirmed. The statistical analyses were
performed in two-tailed, with the use of TwoSampleMR package
(perform data extraction, harmonization, and clumping),
RadialMR package (perform modified IVW and Q test),
and MendelianRandomization package (query the genotype-
phenotype associations, perform sensitivity analysis and
MR-Egger intercept test) in R project 3.5.0.

RESULTS

Insomnia and T2DM
We extracted summary association statistics for the 248 genome-
wide significant SNPs previously demonstrated to be associated
with insomnia. We then matched and harmonized the effects
for the SNPs on insomnia and on T2DM to each be for the
same reference allele. Thirty-seven SNPs were excluded because
of high LD with the other SNPs, 22 SNPs were excluded due
to their significant relationships with the known confounders,
and 22 outliers were identified by the individual Q test and
were removed from the instrument variable set. Global Q test
(Q = 138.04, P = 0.94) and MR-Egger test (intercept P = 0.32)
did not support any evidence for heterogeneity or directional
pleiotropy for the rest of the instruments. Detailed information
on the instruments for insomnia was shown in Supplementary
Table 1 and Supplementary Figure 1. Modified IVW supported
the findings of a significant adverse effect of insomnia on the
risk of T2DM [odds ratio (OR) = 1.14, 95% confidence interval
(CI): 1.09–1.19, P = 1.29E–08], and the estimates were broadly
consistent between the main analysis and sensitivity analysis
(Table 2 and Figure 1).

Since a significant effect of insomnia on T2DM was
observed, we further conducted a complimentary analysis to
assess the causal effect of T2DM on the risk of insomnia.
Each genome-wide significant T2DM-related instrument and its
association estimates with T2DM and insomnia are presented
in Supplementary Table 2 and Supplementary Figure 2.
However, across all MR methods, we found no evidence of the

TABLE 2 | Main MR analysis for the causality of sleep traits with the risk of T2DM.

Phenotypes MR results

Exposure Outcome N SNPs OR (95% CI) P-value

Insomnia T2DM 167 1.14 (1.09, 1.19) 1.29E–08

Sleep duration 56 1.00 (1.00, 1.00) 0.43

Short sleep duration 17 1.15 (0.96, 1.38) 0.09

Long sleep duration 5 1.10 (0.79, 1.51) 0.43

Morningness 284 1.03 (0.98, 1.08) 0.29

MR, Mendelian randomization; T2DM, Type 2 diabetes mellitus; N SNPs, number
of SNPs retained and used in the MR analysis after filtered by individual Q outlier
test; OR, odds ratio; CI, confidence interval.
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FIGURE 1 | Sensitivity analysis for the causality of sleep traits with the risk of T2DM. T2DM, Type 2 diabetes mellitus; N SNPs, number of SNPs retained and used in
the MR analysis after filtered by individual Q outlier test; OR, odds ratio; CI, confidence interval.

causal relationship of T2DM with insomnia (Supplementary
Table 3).

Sleep Duration and T2DM
After harmonization of the SNP effects in the two summary
datasets (UKB for sleep duration and DIAGRAM for T2DM),
there were 77, 27, and 6 SNPs used to instrument sleep duration,
short sleep duration, and long sleep duration. After clumping
for the selected SNPs, we removed rs7115226 and rs142180737
from the sleep duration and short sleep duration instrument set,
respectively, due to their LD with other SNPs. We then queried
the left SNPs for their associations with the phenotypes and
filtered 10, 4, and 1 SNPs which were significantly correlated
with the given confounders. Subsequently, the individual Q test
detected 10 outliers and 5 outliers from the sleep duration and
short sleep duration instrument set, respectively. The removal of
these outliers resulting in a final number of 56, 17, and 5 SNPs
that acted as instruments for sheep duration, short sleep duration,
and long sleep duration, respectively. Evidence for heterogeneity
provided by global Q test did not indicate any violation of the MR
assumptions (Q = 39.70, P = 0.94 for sleep duration; Q = 11.35,

P= 0.79 for short sleep duration; Q= 4.37, P= 0.36 for long sleep
duration), and the directional pleiotropy estimated by MR-Egger
test was consistent with the null for all of the models (intercept
P = 0.51 for sleep duration; intercept P = 0.92 for short sleep
duration; intercept P = 0.14 for long sleep duration). Resulting
lists of instrument SNPs are given in Supplementary Tables 4–6
and Supplementary Figures 3–5.

Little evidence for a causal effect of sleep duration on T2DM
was observed either with the modified IVW (OR 1.00, 95% CI:
1.00–1.00, P = 0.43), first-order IVW or the pleiotropy robust
methods (simple median, weighted median, MR-Egger) applied.
Similarly, we found no causal relationship of either short sleep
duration (OR 1.15, 95% CI: 0.96–1.38, P = 0.09) or long sleep
duration with T2DM in the primary analysis (OR 1.10, 95% CI:
0.79–1.51, P = 0.43), and the sensitivity analysis yielded a similar
pattern of results (Table 2 and Figure 1).

Morningness and T2DM
We implemented MR analysis using 343 SNPs that are
strongly associated with morningness as instruments. Among the
instruments, 6 SNPs were ruled out after the clumping process,
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19 SNPs were significantly associated with the confounders
thus been excluded from the instrument set, and 34 potential
outlier SNPs were picked out with the individual Q test. When
restricting the MR model to the remaining 284 instruments,
the global Q statistic indicated no notable heterogeneity
(Q = 228.37; P = 0.99), and the MR-Egger test also suggested
no horizontal pleiotropy (intercept P = 0.62). Details of the
selected instruments are provided in Supplementary Table 7 and
Supplementary Figure 6. No significant causal relationship of
genetically determined morningness with T2DM was suggested
with the modified IVW (OR 1.03, 95% CI: 0.98–1.08, P = 0.29),
and the effect estimates with other sensitivity analyses methods
were largely unchanged compared to the main analysis (Table 2
and Figure 1).

Other Analyses
We acquired quite similar results when replicating the causal
estimations using the FinnGen T2DM cohort. After excluding
the correlated and pleiotropic SNPs, the valid instruments
for insomnia exhibited a significant effect on the risk of
T2DM. Furthermore, we found suggestive evidence for the
effect of sleep duration and morningness on T2DM risk with
the modified IVW model, whereas the nominally significant
effects disappeared when utilizing alternative MR models in the
sensitivity analyses. One possible reason for the inconsistency
is that the modified IVW method accounts for the sampling
errors in the estimated effect sizes of the instruments on
the exposure, therefore it is more powerful than other MR
methods. Meanwhile, the pleiotropy-corrected approaches such
as median-based estimations and MR-Egger regression introduce
noise to the causal association, which means that the statistical
power will be reduced (Bowden et al., 2019; Dudbridge, 2020).
Since the causation of sleep duration and morningness on
T2DM failed to reach the Bonferroni-adjusted significance, the
suggestive evidence for the relationships should be investigated
further (Supplementary Figure 7). Also, we acquired a similar
pattern of results for the causality of sleep with Hb1Ac, FG, FI
(Supplementary Figure 8).

DISCUSSION

The biological mechanisms of the relationship between sleep
and diabetes are complicated, sleep habits and sleep disturbance,
such as sleep duration, insomnia, and different kinds of
circadian rhythms may act on T2DM through different biological
mediations. Defining the relationship between these sleep traits
and glycemic health is of great importance in understanding
the detailed mechanisms and discovering potential treatment
strategies for T2DM disease (Anothaisintawee et al., 2016;
Ding et al., 2019). Therefore, we investigated the causality
of different sleep traits with T2DM in this study and found
significant evidence for an adverse effect of insomnia on
T2DM risk. However, no evidence of causal association
was found in other sleep-related phenotypes with T2DM.
The study enhances the understanding of T2DM and opens
new potential avenues for T2DM intervention and therapy,

thus making a positive endeavor on public health and
medical care.

Previous epidemiological studies provide inconsistent results
in terms of the relationship between sleep and T2DM (Yaggi
et al., 2006; Chaput et al., 2007; Shan et al., 2015). A cohort
study observed that both short or long sleep duration increase
the risk of developing T2DM independently (Chaput et al., 2007).
While another study found that there is no significant association
between sleep duration and a higher risk of T2DM after adjusting
for possible factors (Hayashino et al., 2007). The mixed results can
be attributed partly to the existence of unmeasured confounders
and reverse causation, which has distorted effect estimates of the
observational studies. However, when the studies are designed
reasonably and the core assumptions are tested rigorously,
valid causal evidence can always be achieved through the MR
approaches. Considering this, we leverage a series of MR methods
to investigate the causal relation of sleep with T2DM and acquire
credible results.

Recent studies have offered some supporting evidence for
the causal link between insomnia and T2DM. A longitudinal
observation study demonstrated that insomnia patients were
more likely to develop T2DM than the comparison cohort at
about 16% higher. Furtherly, with an increased duration of
insomnia symptoms, the risk of T2DM also tended to increase
(Lin et al., 2018). Besides, an experimental study induced sleep
deprivation in healthy individuals and found that insomnia led
to hyperglycemia and insulin resistance, which was reversed
subsequently when their sleep returned to normal (Benedict
et al., 2011; Rao et al., 2015). Moreover, a large retrospective
cohort study including more than 80,000 pre-diabetic people
indicated that after adjusting for traditional risk factors, people
who suffer from insomnia were 28% more likely to develop
T2DM than those without insomnia symptoms (LeBlanc et al.,
2018). The external evidence strengthens our confidence in the
generalizability and validity of the present findings. All of these
findings, including our study, have provided ample and credible
evidence for a causal effect of insomnia on T2DM.

Furtherly, several potential mechanisms may contribute to the
causal relationship between insomnia and T2DM. A previous
study showed that insomnia may promote activation of the
sympathetic nerve thereby increasing insulin resistance, which
plays an important role in the risk of developing T2DM (Irwin
et al., 2003). Furthermore, insomnia is also associated with
the activation of chronic systemic inflammation, leading to
the presence of insulin resistance which eventually develops
into T2DM (Wang et al., 2013; Irwin et al., 2016). Despite
these findings, further work to uncover the in-depth causal
mechanisms is required.

It has long been uncertain whether the association between
insomnia and T2DM is owed potentially to a negative causal
relationship of insomnia on T2DM, and/or a relationship
between T2DM and more serious insomnia symptoms. Some
studies have reported that about half of the participants
with T2DM also suffered from insomnia, indicating that
insomnia itself is a further complication of T2DM (Luyster
and Dunbar-Jacob, 2011; Koopman et al., 2020). To better
understand the direction of the relationship, we also evaluated
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the causal effect of T2DM on insomnia but found non-significant
results. The potential reason for the observed T2DM-insomnia
relationship maybe that observational studies cannot control for
all confounding factors like physical activities, which related both
sleep and T2DM and thus induce a major bias for the estimation
(Semplonius and Willoughby, 2018).

This study has important strengths. First, this study explored
the causality between a broad range of sleep-related traits
and T2DM, contributing to filling the gaps over the existing
observational studies and extending the relevant research
notably. Second, we exploited the MR design and analysis
to control for reverse causality and unmeasured confounding,
which might lead to biased results in the traditional observational
studies. Third, we took a series of steps to make sure the
MR core assumptions are satisfied and the estimates are valid.
Specifically, the instruments of sleep-related phonotypes came
from large scale GWASs, which provided strongly and robustly
associated SNPs and averted the potential weak instrument
bias. Furthermore, the pleiotropic SNPs were identified and
the validity of the reserved instruments was examined through
different tests to correct for the bias deriving from pleiotropy.
Fourth, the replication study for the relationship of sleep with
another T2DM cohort ensured the solidity of the results. Last,
the analyses included a large number of sample sizes and SNPs
leveraging from GWASs, thereby offering sufficient statistical
power for the causal estimation. These measures together help
increase confidence in the results.

Nevertheless, our study has several limitations. First, we could
not investigate the non-linear effects of sleep traits on T2DM
due to the summary statistics we used, resulting in hardly
assessable U-shaped associations. Second, the sleep-related data
were obtained from self-reported questionnaires surveys, some
of which may be less exact than directly objective measurements,
such as sleep duration. Although previous studies have proved
the validity of subjective sleep, people often overestimated their
sleep duration time by up to 1 h, which may lead to imprecise
results (Lockley et al., 1999). Further work can attempt to use
the device-measured sleep duration to evaluate its association
with T2DM. Moreover, recent studies indicated that there are
gender or age differences in people with T2DM, but we could not
investigate these differences due to the limitation of a lack of data
(Lai et al., 2013).

Overall, we concluded from this study that there is strong
evidence for a causal effect of insomnia on T2DM risk.
The potentially modifiable sleep traits should be added to

the prevention strategies of T2DM to improve public health.
Moreover, this study highlights the need for further research
regarding the mechanisms underlying these causal associations
and leads to optimized medical care and management of T2DM.
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Fibroblast growth factor 23 (FGF23), which is involved in the regulation of vitamin D, is
an emerging independent risk factor for cardiovascular diseases. Previous studies have
demonstrated a positive association between FGF23 and stroke. In this study, we aimed
to assess the association of FGF23 with ischemic stroke and its subtypes by applying
a Mendelian randomization (MR) framework. Five genetic variants obtained from a
genome-wide association study involving 16,624 European subjects were used as valid
instruments of circulating FGF23 levels. MR was applied to infer the causality of FGF23
levels and the risk of ischemic stroke using data from the MEGASTROKE consortium.
Subsequently, several MR analyses, including inverse-variance weighted meta-analysis,
MR-Egger, weighted median estimate (WME), MR Pleiotropy Residual Sum and Outlier
were performed. The heterogeneity test analysis, including Cochran’s Q, I2 test and
leave-one-out analysis were also applied. Furthermore, potential horizontal/vertical
pleiotropy was assessed. Lastly, the power of MR analysis was tested. Three validated
variants were found to be associated with circulating FGF23 levels and were used for
further investigation. We found that high expression level of FGF23 was not associated
with any ischemic stroke. However, a causal association between genetically predicted
FGF23 levels and the risk of large-artery atherosclerotic stroke (LAS) was significant,
with an odds ratio of 1.74 (95% confidence interval = 1.08–2.81) per standard
deviation increase in circulating FGF23 levels. Our findings provide support for the
causal association between FGF23 and LAS, and therefore, offer potential therapeutic
targets for LAS. The specific roles of FGF23 in LAS and associated molecules require
further investigation.

Keywords: ischemic stroke, large-artery atherosclerotic stroke, Mendelian randomization, fibroblast growth
factor 23, MEGASTROKE consortium, vitamin D regulation

Abbreviations: AIS, any ischemic stroke; CES, cardioembolic stroke; CI, confidence interval; FGF23, fibroblast growth
factor 23; GWAS, whole-genome association studies; IS, ischemic stroke; IVW, inverse-variance weighted; LAS, large-artery
atherosclerotic stroke; MR, Mendelian randomization; MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odds ratio;
SNPs, single-nucleotide polymorphisms; SVS, small-vessel stroke; WME, weighted median estimate.
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INTRODUCTION

Stroke is one of the major causes of death and long-term
disability worldwide (GBD 2016 Stroke Collaborators, 2019).
Approximately 70% of strokes are ischemic stroke (IS), which is
usually caused by the occlusion of the middle cerebral artery (The
GBD 2016 Lifetime Risk of Stroke Collaborators et al., 2018). The
increasing global burden and limited therapy options for stroke
have led to urgent demands for more effective preventive and
therapeutic measures (Avan et al., 2019).

Fibroblast growth factor 23 (FGF23), a bone-derived
hormone, plays an important role in the regulation of calcium,
phosphate, and active vitamin D levels (Vervloet, 2019). Recently,
increasing evidence has indicated a strong relationship between
FGF23 and cardiovascular diseases (Panwar et al., 2018). Several
studies have demonstrated that an increased circulating FGF23
level was correlated with a higher risk (Wright et al., 2014) and
a poorer outcome (Seiler et al., 2010) for stroke. Other studies
have indicated that plasma FGF23 was associated with carotid
atherosclerosis in patients who suffered from stroke as well as in
the normal population (Shah et al., 2015; Yan et al., 2017; Chang
et al., 2020). Meanwhile, higher FGF23 level also correlated with
increased instability of carotid plaques (Biscetti et al., 2015).
However, a case–cohort study indicated that there was a graded
association of FGF23 with the risk of cardioembolic stroke, but
there was no significant association between FGF23 and other
IS subtypes or with hemorrhagic strokes in community-dwelling
adults (Panwar et al., 2015). In addition, a Multi-Ethnic Study of
Atherosclerosis (MESA) showed that FGF-23 was not associated
with carotid intima-media thickness or stroke (Kestenbaum et al.,
2014). Until now, it is unclear whether FGF23 levels are causally
associated with risk of IS. Therefore, in this study, we aimed to
investigate the possible causal relationships of FGF23 with IS and
its subtypes and the potential research value of FGF23.

Recently, with the development of whole-genome association
studies (GWAS), an increasing number of single-nucleotide
polymorphisms (SNPs) related to human diseases have been
identified (Pei et al., 2019; Liu et al., 2020a,b). Meanwhile,
Mendelian randomization (MR) has been widely used for causal
inference (Davies et al., 2018; Larsson et al., 2019). Since genetic
variants such as SNPs are randomly allocated during conception
and the genotypes are determined in the zygote stage, the MR
framework can detect causality by minimizing the impacts of
confounders and reverse causality (Davies et al., 2018). In this
study, an MR design was used to investigate the association of
circulating FGF23 levels with IS and its subtypes.

MATERIALS AND METHODS

Study Design
MR was performed based on three primary assumptions as
described previously (Yang et al., 2019; He et al., 2020).
The first assumption was that the SNPs identified to be the
instrumental variables (IVs) should be significantly related to
the exposure (FGF23) (Figure 1). The second assumption was
that genetic variants should be unrelated to the confounding

factors of an outcome (IS) (Liu et al., 2018). The third
assumption was that the genetic variants must only affect the
risk of the disease (IS) through the exposure (FGF23) but
not via other routes. Meanwhile, both the second and third
assumptions were identified to be independent of pleiotropic
effects. As the large-scale datasets from the published genome-
wide meta-analysis were publicly available, no additional ethical
approval was required.

Selection of SNPs and Validation
The circulating FGF23-associated variants were collected from
a meta-analysis comprising 16,624 individuals of European-
descent after excluding those whose estimated glomerular
filtration rate was less than 30 mL/min/1.73 m2 (Robinson-Cohen
et al., 2018). The selected genetic instruments from the GWAS
of FGF23 were composed of top five significant (P < 5 × 10−8)
SNPs near CYP24A1, ABO, RGS14, LINC01506, and LINC01229
genes, and were located in five genomic regions, accounting for
approximately 3% of FGF23 variation. Detailed information is
provided in Supplementary Table 1. The strength of the IVs
was evaluated using the mean F-statistic, defined as the ratio of
the mean square of effect size to the mean square of standard
error for each genetic instrument (Bowden et al., 2016b). The
rule of thumb threshold of F value is greater than 10 to avoid
potential bias from weak instruments (Burgess and Thompson,
2011). The F statistics for each of the five instruments was greater
than 10 (Supplementary Table 1). Subsequently, we verified
the independence among these SNPs by linkage disequilibrium
(R2 < 0.1) through the 1000 Genomes Phase 3 (European)
reference panel.

Data Sources
The summary-level data for IS and its subtypes were obtained
from the MEGASTROKE consortium. Any ischemic stroke (AIS)
group (n = 34,217), regardless of the subtype of European
ancestry, was selected and compared with 406,111 control
subjects. The three main subtypes of IS were acquired mainly on
the basis of the Trial of ORG 10172 in Acute Stroke Treatment
criteria, including LAS (n = 4,373), cardioembolic stroke (CES;
n = 7,193), and small-vessel stroke (SVS; n = 5,386) (Malik
et al., 2018). As all the five genetic instruments associated with
FGF23 levels were available in the MEGASTROKE consortium,
no proxy variant was needed. The MEGASTROKE-matched data
are shown in Supplementary Table 2.

Statistical Analysis
The principal analyses assessing the causal associations of FGF23
with IS and its subtypes were performed using the inverse-
variance-weighted (IVW) method (Davies et al., 2018). For each
of the five SNPs, we computed an Wald’s ratio estimates by
dividing the beta-coefficients (log odds ratio) for the SNP–stroke
association by the beta coefficient for the SNP–FGF23 association.
Moreover, to improve the reliability of causal effect estimates, we
also carried out the MR Pleiotropy Residual Sum and Outlier
(MR-PRESSO) test (Verbanck et al., 2018).

To further evaluate the impact of potential pleiotropy on
causal estimates, we performed sensitivity analyses using several
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FIGURE 1 | Assumptions for the Mendelian randomization (MR) and study design. The MR was based on three principal assumptions, including: (1) the genetic
variants selected to be instrumental variables should be correlated with the exposure [fibroblast growth factor 23 (FGF23) levels]; (2) the genetic variants should be
unrelated to confounding factors; (3) genetic variants must influence the risks of the outcome [ischemic stroke (IS)] only through the exposure (FGF23 levels).

other methods. First, we used the MR-Egger regression to assess
the presence of directional pleiotropy (Bowden et al., 2015).
A statistically significant intercept term from the MR-Egger
regression suggests the possibility that genetic variants may
not affect the outcome via the exposure of interest. We also
conducted the weighted median estimate (WME) (Bowden et al.,
2016a), which provides an effective estimate of causality when
at least 50% of genetic IVs is valid. Furthermore, to evaluate
the potential heterogeneity due to pleiotropy or other causes, we
conducted the Cochran’s Q-test (together with the I2 statistic),
as reported in a previous study (Liu et al., 2013). In addition,
we selected the leave-one-out sensitivity method to sequentially
remove each SNP from the MR analysis and assess the impact
of single-gene variants on the causal estimates (He et al., 2020).
Moreover, vertical pleiotropy was assessed using the Steiger
test to verify the causal direction between FGF23 and stroke
(Hemani et al., 2017).

Lastly, we excluded those SNPs associated with potential
confounders (Bonferroni correction, P < 0.05/5 SNPs) by using
PhenoScanner V2 in March 2020 (Staley et al., 2016; Kamat
et al., 2019), and repeated the MR analysis using the IVW,
MR-Egger regression, and weighted-median estimate. To correct
for potential pleiotropic bias, we performed multivariable MR
following Sanderson’s method (Sanderson et al., 2020). We
also calculated the power of MR estimates using the mRnd
platform1 and the effect size based on a 5% type 1 error rate and
enough power (>80%). Statistical analyses were performed using
Mendelian Randomization (version 0.4.1) (Yavorska and Burgess,
2017) and TwoSampleMR (version 0.5.1) (Hemani, 2019) on
R 3.6.2 (The R Foundation for Statistical Computing, Vienna,

1https://shiny.cnsgenomics.com/mRnd/

Austria). All statistical tests were two-sided and the statistical
significance was set at the level of P < 0.05.

RESULTS

Primary MR Analysis of the Association
of FGF23 With IS and Its Subtypes
As listed in Supplementary Table 1, five SNPs were used as the
IVs for FGF23 levels. We identified significant association of
high FGF23 levels with increased LAS risk (OR = 1.94, 95% CI
1.35–2.27; p = 3.04E−04) but not with the other IS subtypes or
AIS using the IVW method (Supplementary Table 4). However,
a potential heterogeneity was identified using the Cochran’s Q
test and I2 for causal estimates of five SNPs in the conventional
IVW model for AIS (14.34, p = 0.0063, I2 = 72.10%), LAS
(14.12, p = 0.0069, I2 = 71.70%), and CES (16.79, p = 0.0021,
I2 = 76.20%) (Supplementary Table 4), suggesting the possibility
that the obtained effect estimates of these associations from the
IVW method may be biased by outlier SNPs.

Sensitivity Analysis of the Association of
FGF23 With IS and Its Subtypes
To assess the robustness of the causal effect of FGF23 on IS
and its subtypes, we performed several sensitivity analyses as
follows. First, WME suggested significant association between
FGF23 levels and LAS risk with an odds ratio of 1.75
(95% CI 1.06–2.90; p = 0.029), but not with the other
IS subtypes or AIS (Supplementary Table 4). Second, the
intercept term from MR-Egger analysis revealed no evidence
of directional pleiotropy in the analysis of LAS (p = 0.81),
SVS (p = 0.97), CES (p = 0.22), or AIS (p = 0.26).
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However, MR-PRESSO test identified horizontal pleiotropic
outliers in AIS (p = 0.0066), LAS (p = 0.0134), and CES
(p = 0.0034). The leave-one-out permutation analysis further
indicated that the direction and precision of the genetics
estimates between increased FGF23 levels and risk of IS and
its subtypes changed largely with the deletion of rs2769071
(Supplementary Table 7).

We next searched the PhenoScanner V2 database (Kamat
et al., 2019) for possible pleiotropic associations of individual
SNPs with risk factors for IS. Among the FGF23-associated
SNPs, associations were observed for the rs2769071 variant
with low-density lipoprotein (P = 3.06E−10), total cholesterol
(P = 7.48E−13), diastolic blood pressure (P = 2.80E−10), and
type 2 diabetes (P = 2.30E−05). The rs11741640 variant was
significantly related to self-reported hypertension (P = 2.22E−04)
and alcohol intake frequency (P = 3.74E−03). Detailed
information is provided in Supplementary Table 3.

In total, we excluded two SNPs (rs2769071 near the ABO
gene and rs11741640 near the RGS14 gene) that were potentially
associated with at least one secondary phenotype and repeated
the MR analyses. Based on the remaining three effective SNPs,
FGF23 levels were significantly associated with LAS but not with
the other IS subtypes or AIS (Figure 2). In the standard MR
analysis-IVW method, the odds ratios per standard deviation
of the genetically predicted increase in FGF23 levels was 1.74
(95% CI 1.08–2.81; p = 0.023) for LAS. Importantly, the results
obtained for LAS were similar in the WME analysis (OR = 1.76,
95% CI = 1.04–2.99; p = 0.036), while the Egger estimate was

less precise despite having the same direction and a similar
size (OR = 1.80, 95% CI = 0.26–12.46; P = 0.549). The single
variant causal ratio and results of all three variants for the
association of FGF23 and LAS are shown in Supplementary
Table 6. No heterogeneity among these three instruments was
found using Cochran’s Q analysis (Q = 0.02, P = 0.992,
I2 = 0.00%) in LAS (Supplementary Table 5). The leave-
one-out sensitivity analysis also showed the same direction
and estimates between the increased FGF23 levels and the
risk of LAS, although the deletion of IV rs17216707 near
CYP24A1 gene was not statistically significant (Supplementary
Table 8). No directional pleiotropy in LAS was found according
to the Egger intercept test (–0.003, 95% CI = –0.150 to
0.145; P = 0.970). Considered the potential effects of obesity
and smoking-the two most important confounders for both
heart disease and circulating metabolites, we then applied
the multivariable MR analysis. The BMI or smoke adjusted
data by three validated instruments also verifies our results
(Supplementary Table 9).

Besides, the direction of causality inferred by the Steiger test
showed that the SNPs–FGF23 association (r2 = 1.04E−02) was
more significantly correlated (pSteiger = 3.20 × 10−14) than the
SNPs-LAS association (r2 = 1.26E−05), suggesting that higher
FGF23 levels leads to the increased risk of LAS, consistent with
expectation. We had enough power (>80%) to detect 1.59 OR of
LAS risk per SD increased log FGF23 levels (cases n = 4,373; non-
cases n = 406,111); and the power of causal estimate for FGF23 to
LAS here was 94%.

FIGURE 2 | Association of genetically predicted circulating fibroblast growth factor 23 (FGF23) levels with ischemic stroke (IS) and other stroke subtypes. The odds
ratio (OR) represented at the center of each box was the risk of genetically predicted one standard deviation increase in FGF23 levels. AIS, any ischemic stroke; LAS,
large-artery atherosclerotic stroke; SVS, small-vessel stroke; CES, cardioembolic stroke; CI, confidence interval; IVW, Mendelian randomization (MR) inverse-variance
weighted method; WME, weighted median estimate; Egger, the MR-Egger method.
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DISCUSSION

Until now, it has remained unclear whether the circulating FGF23
levels is genetically associated with risk of IS. In this study, we
found a potential association of genetically predicted high levels
of FGF23 and the increased risk of LAS. The risk of LAS increased
by 74% with a 23 pg/mL per SD increase in circulating FGF23
levels. This effect size was similar to previously reported sizes of
low-density lipoprotein cholesterol (OR = 1.28, 95% CI = 1.07–
1.53) (Hindy et al., 2018), fasting blood glucose (OR = 1.42, 95%
CI = 1.08–1.85) (Larsson et al., 2017), systolic blood pressure
(OR = 1.56, 95% CI = 1.37–1.78) (Parish et al., 2019), and waist-
to-hip ratio (OR = 1.75, 95% CI = 1.44–2.13) (Marini et al., 2020).

Our results are consistent with those of previous
epidemiological studies (Seiler et al., 2010; Shah et al., 2015;
Yan et al., 2017; Chang et al., 2020). In patients with acute IS,
the plasma FGF23 concentration was positively correlated with
the presence and burden of intracranial carotid atherosclerosis
(Chang et al., 2020). FGF23 seems to be mainly involved in vessel
calcification, vascular stiffness, and inflammation (Mirza et al.,
2009; Kim et al., 2011; Libby et al., 2019; Vervloet, 2019). In
mice, excessive plasma FGF23 directly stimulates the production
of inflammatory factors such as interleukin-6 (Singh et al.,
2016). Meanwhile, inflammatory factors in turn promote the
production of FGF23 and exacerbate LAS progression (Feger
et al., 2017; Durlacher-Betzer et al., 2018; Egli-Spichtig et al.,
2019; McKnight et al., 2020). Our analysis implied that reducing
FGF23 levels may be a potential therapeutic strategy for IS,
especially for LAS. However, the potential mechanisms that
correlate FGF23 with LAS still require further investigations.

Considering the role of FGF23 in regulation of vitamin D
levels, some previous studies argued that the pathophysiological
effects of FGF23 were partially through decreasing the level
of active vitamin D. FGF23 inhibits the functions of vitamin
D by promoting its degradation via 24-hydroxylase encoded
by the CYP24A1 gene and inhibiting its production by
1α-hydroxylase encoded by the CYP27B1 gene (Vervloet,
2019). The physiological roles of vitamin D, including anti-
inflammation and inhibition of artery calcification, are contrary
to the effects of FGF23 (Han et al., 2016; Wang et al., 2018). In
addition, vitamin D receptor activation enables the recovery of
αKlotho, an anti-aging protein, while this recovery is inhibited
in an inflammatory environment (Lim et al., 2012). FGF23
induces vessel damage and inflammation through an αKlotho-
independent pathway when αKlotho is insufficient (Komaba
and Fukagawa, 2012; Navarro-González et al., 2014; Krick
et al., 2018). The aforementioned studies collectively suggest
that proper calcitriol supplements might reduce the risk of
LAS in people or those with intracranial atherosclerosis. The
effects of calcitriol supplements involved in the process of
vasomotion and immune modulation have been reported by
several studies (Chitalia et al., 2014; Ojeda López et al., 2018).
In this study, the validated genetic variant (rs17216707) near
the CYP24A1 gene showed a strong association with LAS
(Supplementary Table 6), which supports the critical role
of active vitamin D in the regulation of FGF23 level and
the risk of LAS.

To our knowledge, this is the first MR study to clarify
the genetic causalities between FGF23 levels and IS with MR
methods. Considering the ethical care of patients and the high
cost of randomized controlled trials, the MR framework is
effective in the discovery of potential targets of intervention and
can indicate potential therapeutic strategies. In addition, our
findings in this study were especially prospective, as analyzed
data were extracted from the database with the largest number
of participants currently known.

However, this study also has several limitations. The different
methods for FGF23 measurement could have potentially caused
bias in the results. The FGF23 levels were detected in
two forms: intact and C-terminal FGF23 (Robinson-Cohen
et al., 2018). In patients with chronic kidney diseases, the
production of FGF23 (intact FGF23) was separated from its
cleaved form (C-terminal FGF23) (Edmonston and Wolf, 2020).
Meanwhile, the FGF23-associated GWAS data were obtained
from individuals whose estimated glomerular filtration rate was
above 30 mL/min/1.73 m2. In addition, log-transformed FGF23
levels, applied in each cohort and the following meta-analysis,
could reflect the relative change in circulating FGF23 levels.

In our study, only three SNPs accounting for 1.13% of
the total variation in FGF23 levels were identified as genetic
instruments, causing a possible limitation in the results. Thus,
additional influential loci are necessary as IVs in the future
if new GWAS data are available. As this limited number of
IVs restricted the application of PRESSO, the sensitive analysis
of potential horizontal pleiotropy could not be performed
completely. However, similar results were obtained from WME
and IVW estimate, while no signs of heterogeneity (Cochran’s
Q test) and directional pleiotropy (MR-Egger intercept analysis)
were discovered. Therefore, the above results indicated that
confounders are unlikely to explain the observed associations.

Population stratification also potentially restricted the
accuracy of this study. The MR inference depended on three
instrumental assumptions that rely on the same genetic
backgrounds in the exposure and outcome data. In this study,
we used European-descent genotypes to assess the association
between FGF23 levels and IS. This result may be altered in
different populations due to different genetic backgrounds, such
as linkage disequilibrium. Moreover, the MR framework was
not able to infer the association during specific periods of the
life cycle or conditions. Thus, further animal experiments and
possible intervention trials are needed.

In summary, our results provide support for a suggestive
causal association between higher circulating FGF23 levels and
an increased risk of LAS. Our findings may offer new therapeutic
targets for LAS. Further studies are necessary to investigate
whether genetic variants at or near the CYP24A1 gene influence
the risk of LAS through downstream effects or pathways
related to vitamin D.
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Background: It remains unclear whether an increased risk of type 2 diabetes (T2D)
affects the risk of osteoarthritis (OA).

Methods: Here, we used two-sample Mendelian randomization (MR) to obtain non-
confounded estimates of the effect of T2D and glycemic traits on hip and knee OA. We
identified single-nucleotide polymorphisms (SNPs) strongly associated with T2D, fasting
glucose (FG), and 2-h postprandial glucose (2hGlu) from genome-wide association
studies (GWAS). We used the MR inverse variance weighted (IVW), the MR–Egger
method, the weighted median (WM), and the Robust Adjusted Profile Score (MR.RAPS)
to reveal the associations of T2D, FG, and 2hGlu with hip and knee OA risks. Sensitivity
analyses were also conducted to verify whether heterogeneity and pleiotropy can
bias the MR results.

Results: We did not find statistically significant causal effects of genetically increased
T2D risk, FG, and 2hGlu on hip and knee OA (e.g., T2D and hip OA, MR–Egger
OR = 1.1708, 95% CI 0.9469–1.4476, p = 0.1547). It was confirmed that horizontal
pleiotropy was unlikely to bias the causality (e.g., T2D and hip OA, MR–Egger,
intercept = −0.0105, p = 0.1367). No evidence of heterogeneity was found between
the genetic variants (e.g., T2D and hip OA, MR–Egger Q = 30.1362, I2 < 0.0001,
p = 0.6104).

Conclusion: Our MR study did not support causal effects of a genetically increased
T2D risk, FG, and 2hGlu on hip and knee OA risk.

Keywords: Osteoarthritis, type 2 diabetes, fasting glucose, 2-h postprandial glucose, Mendelian randomization

INTRODUCTION

Osteoarthritis (OA) and type 2 diabetes (T2D) are two pandemic chronic diseases and have
significant impact on quality of life, social expenditure, and life expectancy (Martel-Pelletier et al.,
2016; Hunter and Bierma-Zeinstra, 2019). OA is the most common chronic joint disease, and its
main characteristic is the loss of chronic irreversible articular cartilage (Martel-Pelletier et al., 2016;
Hunter and Bierma-Zeinstra, 2019). T2D is one category of diabetes, which is a chronic metabolic

Frontiers in Genetics | www.frontiersin.org 1 January 2021 | Volume 11 | Article 59787651

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.597876
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.597876
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.597876&domain=pdf&date_stamp=2021-01-13
https://www.frontiersin.org/articles/10.3389/fgene.2020.597876/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-597876 January 4, 2021 Time: 15:57 # 2

Cui et al. Causality Between T2D and Osteoarthritis

syndrome characterized by increased blood glucose levels as
a consequence of insulin resistance (Chatterjee et al., 2017).
The epidemiological association between T2D and OA was
confirmed by different analyses showing that the prevalence
of OA is significantly higher among patients with T2D than
among those without the condition, and vice versa (Cheng
et al., 2012; Alenazi et al., 2019). Cheng et al. (2012) found
that the unadjusted prevalence of arthritis was 48.1% among
United States adults with diabetes. Alenazi et al. (2019) also
reported that the overall prevalence of T2D among patients with
OA was about 16.6%. OA and T2D share common risk factors,
such as obesity, physical activity, and genetic factors (Martel-
Pelletier et al., 2016; Reyes et al., 2016; Chatterjee et al., 2017),
which could explain why there was increasing prevalence of
OA in T2D. However, the strength of such an association may
have been heterogeneous by considering the heterogeneity of age,
sex, ethnic group, duration of T2D, and body weight (Cannata
et al., 2020). Since the exact mechanism involving T2D and
OA was still debatable, it was controversial whether there was
a causal relationship between T2D and OA. Recognizing the
causal associations between the two diseases would have clinical
implications for diseases management and be of great value for
the design of specific therapeutic interventions targeting T2D and
OA main pathogenic hallmarks.

Observational studies to estimate the causal inference have
numerous inherent limitations, such as remaining limited
to known and properly measured confounders (Greenland
and Morgenstern, 2001). Therefore, we used Mendelian
randomization (MR), an application of the method of
instrumental variables (IVs), to the analysis of genetic data
to assess the causal associations of T2D and related glycemic
traits [fasting glucose (FG) and 2-h postprandial glucose (2hGlu)]
with hip and knee OA. The genetic variants in MR are available
with the progress of genome-wide association studies (GWAS)
and high-throughput genomic technologies. MR method aims
to give estimates of the causal effect free from biases due to
confounding. Confounding factors are mitigated due to random
assortment of genetic variants during meiosis yielding a random
distribution of genetic variants in a population. MR method
can also prevent reverse causality because genetic variants are
fixed at conception and cannot be affected by disease processes.
Moreover, the causal associations tested based on the MR
method likely reflect the longstanding effect of exposures on
outcomes for the genetic instruments that generally represent
lifelong exposures (Emdin et al., 2017). In this study, we used
single-nucleotide polymorphisms (SNPs) strongly associated
with T2D and glycemic traits as IVs. We performed a two-
sample MR and used statistical methods to obtain quantitative
estimates to investigate the effect of T2D, FG, and 2hGlu upon
hip and knee OA.

MATERIALS AND METHODS

SNP Selection
In our study, we selected SNPs as IVs for all exposures (T2D,
FG, and 2hGlu) and outcomes (hip and knee OA) from the IEU

GWAS database, a database of genetic associations from GWAS
summary datasets1 (Hemani et al., 2018). When target SNPs
were not available in the outcome study, we used proxy SNPs
that were in high linkage disequilibrium (LD) (r2 > 0.8) with
the SNPs of interest. We selected the reference sample formed
by the European ancestral individuals from the 1000 genomes
project to estimate the allele frequency and LD level2 (1000
Genomes Project Consortium et al., 2010). The palindromic SNPs
with intermediate allele frequencies (palindromic SNPs referred
to the SNPs with A/T or G/C alleles and “intermediate allele
frequencies” referred to 0.01 < allele frequency < 0.30) were
excluded from the above selected instrument SNPs. SNPs with
a minor allele frequency (MAF) of < 0.01 were also excluded.
We also calculated the F statistics for the SNPs to measure the
strength of the instruments. IVs with an F statistic less than
10 were excluded and were often labeled as “weak instruments”
(Burgess et al., 2015). These rigorously selected SNPs were used
as the final instrumental SNPs for the subsequent MR analysis.

Data Source
Single-nucleotide polymorphisms associated with T2D were
derived from a meta-analysis of GWAS in a very large sample of
T2D (62,892 cases and 596,424 controls) of European ancestry
(Xue et al., 2018). SNPs associated with FG and 2hGlu were
derived from genome-wide association meta-analyses of up to
133,010 and 42,854 individuals, respectively, with males and
females, of European ancestry without diabetes, performed
by the Meta-Analyses of Glucose and Insulin-related traits
Consortium (MAGIC) (Scott et al., 2012). The summary-
level data for the impact of the exposures-associated SNPs on
hip and knee OA were extracted from a genome-wide meta-
analysis for OA of European descent with the UK Biobank
and Arthritis Research UK Osteoarthritis Genetics (arcOGEN)
resources (Tachmazidou et al., 2019). The self-reported OA status
established during interview with a nurse and the Hospital
Episode Statistics International Classification of Diseases, 10th
edition (ICD 10) primary and secondary codes were used
in the UK Biobank cases (Tachmazidou et al., 2019). The
arcOGEN case samples were collected on the basis of clinical
evidence of disease to a level requiring joint replacement or
radiographic evidence of disease (Kellgren–Lawrence grade ≥ 2)
(Tachmazidou et al., 2019). The detailed characteristics of GWAS
associated with exposures (T2D, FG, and 2hGlu) and outcomes
(hip and knee OA) are shown in Supplementary Table 1 in the
Supplementary Material.

Effect Size Estimate
We applied the two-sample MR to assess the role of exposures
(T2D, FG, and 2hGlu) in the susceptibility of outcomes (hip and
knee OA) (Hemani et al., 2018). We assessed the independent
association of SNPs with T2D, FG, and 2hGlu and selected
SNPs that were strongly associated (p < 5E-08) and independent
inheritance (r2 < 0.01) without any LD with the exposures.
Then, we obtained the effect estimates for the selected SNPs

1https://gwas.mrcieu.ac.uk/
2http://www.internationalgenome.org/
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on hip and knee OA from genome-wide meta-analysis for OA
in 2019. The causal associations between exposures (T2D, FG,
and 2hGlu) and outcomes (hip and knee OA) were estimated
with inverse variance weighted (IVW), MR–Egger, and weighted
median (WM) (Burgess et al., 2013; Bowden et al., 2015). The
IVW method uses a meta-analysis approach to combine the
Wald ratios of the causal effects of each SNP and can provide
the most precise estimates. However, it can be influenced by
invalid IVs and pleiotropic effects. The WM estimate provides
a reliable effect estimate of the causal effect when at least
50% of the weight in the analysis comes from effective IVs.
MR–Egger regression is based on the assumption that the
pleiotropic associations are independent, performs a weighted
linear regression of the outcome coefficients on the exposure
coefficients. MR–Egger estimates may be inaccurate and can be
strongly influenced by outlying genetic variants (Bowden et al.,
2016). We also performed a recently developed method called the
Robust Adjusted Profile Score (MR.RAPS) to estimate the causal
effects, which can lead to a considerably higher statistical power
than the conventional MR analysis can, which only uses a small
set of strong instruments (Zhao et al., 2019). MR.RAPS considers
the measurement error in SNP-exposure effects, is unbiased when
there are many weak instruments, and is robust to systematic and
idiosyncratic pleiotropy (Zhao et al., 2019).

Sensitivity Analyses
We used the IVW, WM, and maximum likelihood methods
to evaluate the heterogeneity between SNPs. The heterogeneity
was quantified by Cochran Q statistics and I2 statistics (Bowden
et al., 2016). Moreover, we used the MR–Steiger method to
compute the amount of variance instrumenting SNPs explained
in the exposure and outcome variable and test if the variance
in the outcome is less than the exposure. In case of a
true causal direction, SNPs should be more predictive of the
exposure than of the outcome (Hemani et al., 2017). Pleiotropy
refers to the phenomenon in which a single locus affects
multiple phenotypes. Horizontal pleiotropy arises when a genetic
variant associates with more than one phenotype on separate
pathways, which can invalidate the results from MR analyses
(Stearns, 2010; Larsson et al., 2019). In order to explore and
adjust for horizontal pleiotropy, we evaluated the pleiotropic
effects of T2D and glycemic traits on weight-associated factors,
including body mass index (BMI), weight, and obesity, as
these confounding effects might distort the effects of T2D
and glycemic traits on OA. Summary statistics for BMI were
extracted from studies performed by the Genetic Investigation of
ANthropometric Traits (GIANT) consortium (Locke et al., 2015),
weight (male and female) from GIANT Consortium (Randall
et al., 2013), and obesity from GIANT Consortium (Berndt
et al., 2013). The detailed characteristics of studies associated
with confounding factors are shown in Supplementary Table 1.
We assessed the potential associations between SNPs that were
extracted for the MR analysis and those confounding factors.
Associations of the SNPs with the four confounding factors
were considered statistically significant at a Bonferroni-corrected
p < 0.05/(4 × N), with N representing the number of SNPs in
each exposure trait. In addition to evaluating the associations

with the risk factors, we performed MR–Egger regression to
explore and adjust for horizontal pleiotropy, which was a method
that can provide evidence for confounders that would distort the
MR results. The intercept represents the average pleiotropic effect
across the genetic variants.

Power Assessment
We also used an online tool mRnd3 to calculate the power to
detect causal effect. The equations using an approximate linear
model on the observed binary (0–1) scale were adapted for
binary outcomes, which needs several parameters to estimate.
These parameters include the proportion of phenotypic variation
explained by IV SNPs, the effect size of the exposure to the
outcome at the epidemiological level, sample size, and standard
deviation of exposure and outcome (Brion et al., 2013).

The results of the MR analyses were considered statistically
significant at a Bonferroni-corrected p < 0.025 (e.g., 0.05/2
outcomes). All statistical tests were two-sided and performed
using the “TwoSampleMR” package for R language, version 3.6.1
(R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Causality Between T2D and OA
For T2D, we used 37 genome-wide significant (p < 5E-08) SNPs
associated with increased T2D risk identified in the largest meta-
analysis of T2D GWAS (Xue et al., 2018). For each of the
susceptibility variants for T2D, we sought summary-level data
for OA from the GWAS performed by arcOGEN Consortium.
After removing two T2D variants (rs6494307, rs7619041) that
were palindromic with intermediate allele frequencies, 35 SNPs
remained to perform the MR analysis for hip and knee OA. None
of the proxy SNPs were used in the analysis. For these IVs, all the
F values were larger than 10, ranging from 30.6746 to 256.3266,
with an average F value of 53.4983 (Supplementary Table 2).

In our analysis using the full set of 35 SNPs, we did not
find causal associations of per unit increase in the log-odds
of having T2D with risk changes of having OA, based on the
IVW, WM, MR–Egger regression, and MR.RAPS methods at
the Bonferroni-corrected significance threshold p < 0.025 (e.g.,
0.05/2). (For hip OA, MR–Egger OR = 1.1708, 95% CI 0.9469–
1.4476, p = 0.1547; IVW OR = 1.0022, 95% CI 0.9329–1.0767,
p = 0.9517; WM OR = 1.0454, 95% CI 0.9369–1.1664, p = 0.4274;
MR.RAPS OR = 0.9957, 95% CI 0.9239–1.0731, p = 0.9094.
For knee OA, MR–Egger OR = 0.9046, 95% CI 0.7880–1.1085,
p = 0.4426; IVW OR = 0.9809, 95% CI 0.9265–1.0385, p = 0.5084;
WM OR = 1.0053, 95% CI 0.9213–1.0971, p = 0.9050; MR.RAPS
OR = 0.9833, 95% CI 0.9247–1.0457, p = 0.5920.) (Table 1 and
Figure 1). We assessed the horizontal pleiotropy by checking the
association of T2D-associated SNPs with confounders, and no
significant association signal was detected among the 35 SNPs
we selected at the Bonferroni-corrected significance threshold
p < 3.57E-04 (e.g., 0.05/140) (Supplementary Table 3). We also
assessed the horizontal pleiotropy with the MR–Egger regression

3http://cnsgenomics.com/shiny/mRnd/
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TABLE 1 | MR estimates from each method of assessing the causal effects of T2D, FG and 2hGlu on OA risk.

Exposure traits MR methods Hip OA Knee OA

Number of
SNPs

OR (95% CI) SE MR p-value MR-Steiger
test

Number of
SNPs

OR (95% CI) SE MR p–value MR-Steiger
test

T2D MR-Egger 35 1.1708
(0.9469∼1.4476)

0.1083 0.1547 Direction: TRUE
p-value < 0.0001

35 0.9046
(0.7880∼1.1085)

0.0871 0.4426 Direction: TRUE
p-value < 0.0001

Inverse variance weighted 35 1.0022
(0.9329∼1.0767)

0.0366 0.9517 35 0.9809
(0.9265∼1.0385)

0.0291 0.5084

Weighted median 35 1.0454
(0.9369∼1.1664)

0.0559 0.4274 35 1.0053
(0.9213∼1.0971)

0.0446 0.9050

Robust adjusted profile score 35 0.9957
(0.9239∼1.0731)

0.0382 0.9094 35 0.9833
(0.9247∼1.0457)

0.0314 0.5920

FG MR-Egger 10 0.4634
(0.1848∼1.1617)

0.4690 0.1396 Direction: TRUE
p-value < 0.0001

10 0.5890
(0.3697∼1.0943)

0.1665 0.1559 Direction: TRUE
p-value < 0.0001

Inverse variance weighted 10 0.9820
(0.6545∼1.4734)

0.2070 0.9301 10 0.8158
(0.6009∼1.1077)

0.1560 0.1921

Weighted median 10 0.6670
(0.4176∼1.0651)

0.2388 0.0899 10 0.6491
(0.4060∼1.1897)

0.1721 0.3417

Robust adjusted profile score 10 0.8996
(0.5811∼1.3926)

0.2229 0.6350 10 1.0374
(0.4699∼2.2900)

0.4040 0.9299

2hGlu MR-Egger 3 1.3062
(0.2540∼2.8190)

0.6140 0.8309 Direction: TRUE
p-value < 0.0001

3 1.3652
(0.7171∼2.5993)

0.3285 0.5171 Direction: TRUE
p-value < 0.0001

Inverse variance weighted 3 1.1976
(0.9437∼1.5199)

0.1216 0.1380 3 1.0594
(0.9067∼1.2378)

0.0794 0.4673

Weighted median 3 1.3301
(1.0348∼1.7098)

0.1281 0.0260 3 1.0786
(0.8998∼1.2930)

0.0925 0.4133

Robust adjusted profile score 3 1.2125
(0.9817∼1.4976)

0.1077 0.0737 3 1.0598
(0.9020∼1.2451)

0.0822 0.4804

MR, Mendelian randomization; SNP, single nucleotide polymorphism; OA, osteoarthritis; T2D, type 2 diabetes; FG, fasting glucose; 2hGlu, 2-h postprandial glucose; OR, odds ratio; CI, confidence interval; SE, standard
error (the standard error is an estimate of the standard deviation (SD) of the coefficient).

Frontiers
in

G
enetics

|w
w

w
.frontiersin.org

4
January

2021
|Volum

e
11

|A
rticle

597876

54

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-597876 January 4, 2021 Time: 15:57 # 5

Cui et al. Causality Between T2D and Osteoarthritis

FIGURE 1 | Scatter plots of genetic associations with type 2 diabetes risk against osteoarthritis using different MR methods. (A) Type 2 diabetes and hip
osteoarthritis results; (B) type 2 diabetes and knee osteoarthritis results. The slopes of each line represent the causal association for each method. The green line
represents the inverse variance weighted estimate, the purple line represents the MR–Egger estimate, the red line represents the MR.RAPS estimate, and the blue
line represents the weighted median estimate.

and found that no horizontal pleiotropy would bias the causality
with hip OA (intercept = −0.0105, p = 0.1367) and knee OA
(intercept = 0.0033, p = 0.5589) (Table 2). The heterogeneity test

demonstrated that there is no evidence of heterogeneity in the
MR analysis. For hip OA, MR–Egger Q = 30.1362, I2 < 0.0001,
p = 0.6104; IVW Q = 32.4634, I2 < 0.0001, p = 0.5430; maximum
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likelihood Q = 32.4633, I2 < 0.0001, p = 0.5430. For knee OA,
MR–EggerQ = 33.5130, I2 = 0.0153, p = 0.4424; IVWQ = 33.8671,
I2 < 0.0001, p = 0.4741; maximum likelihood Q = 33.8592,
I2 < 0.0001, p = 0.4745. (Table 2). The MR–Steiger results
supported that the SNPs in the analysis were more predictive of
the exposure than of the outcome (Table 1). Power calculations
showed that our sample provided sufficient statistical power
(>80%) for causal analysis of T2D on hip and knee OA (Table 3).

Causality Between FG in Non-diabetic
Individuals and OA
Based on independent and LD analyses, we selected 10 genome-
wide significant (p < 5E-08) SNPs associated with FG in non-
diabetic individuals to analyze the causality with hip and knee
OA, and no palindromic SNPs were found. None of the proxy
SNPs were used in the analysis. The F values of the 10 SNPs
ranged from 32.6531 to 442.4495, with an average value of
124.7024 (Supplementary Table 4).

No evidence supported that the genetically increased FG was
causally associated with the hip and knee OA risk changes
in non-diabetic individuals based on the IVW, WM, MR–
Egger regression, and MR.RAPS methods (p < 0.025). For
hip OA, MR–Egger OR = 0.4634, 95% CI 0.1848–1.1617,
p = 0.1396; IVW OR = 0.9820, 95% CI 0.6545–1.4734,
p = 0.9301; WM OR = 0.6670, 95% CI 0.4176–1.0651, p = 0.0899;
MR.RAPS OR = 0.8996, 95% CI 0.5811–1.3926, p = 0.6350.
For knee OA, MR–Egger OR = 0.5890, 95% CI 0.3697–
1.0943, p = 0.1559; IVW OR = 0.8158, 95% CI 0.6009–
1.1077, p = 0.1921; WM OR = 0.6491, 95% CI 0.4060–1.1897,
p = 0.3417; MR.RAPS OR = 1.0374, 95% CI 0.4699–2.2900,
p = 0.9299. (Table 1 and Figure 2). None of the 10 SNPs
were significantly associated with known confounders at the
Bonferroni-corrected significance threshold (p < 0.0013) (e.g.,
0.05/40) (Supplementary Table 5). We also conducted the MR–
Egger regression to assess the horizontal pleiotropy, and the
results revealed that the horizontal pleiotropy was unlikely to bias
the causality with hip OA (intercept = 0.0243, p = 0.1189) and
knee OA (intercept = −0.0078, p = 0.5348) (Table 2).

We also found no significant heterogeneity between FG and
OA. For hip OA, MR–Egger Q = 11.6746, I2 = 0.2291, p = 0.1663;
IVW Q = 16.1241, I2 = 0.4418, p = 0.0643; maximum likelihood
Q = 16.1240, I2 = 0.4418, p = 0.0643. For knee OA, MR–
Egger Q = 13.8053, I2 = 0.4205, p = 0.0870; IVW Q = 14.5310,
I2 = 0.3806, p = 0.1047; maximum likelihood Q = 14.5175,
I2 = 0.3801, p = 0.1051. (Table 2). The MR–Steiger directionality
test showed that the SNPs in the analysis were more predictive
of the exposure than of the outcome (Table 1). We also have
sufficient statistical power (>80%) to detect the true causal effect
between FG and hip and knee OA (Table 3).

Causality Between 2hGlu in Non-diabetic
Individuals and OA
We chose three independent SNPs associated with 2hGlu in
European ancestry from summary statistics datasets of GWAS
meta-analyses, and no palindromic SNPs were found. The F TA
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TABLE 3 | Power calculation for the MR analysis in current study.

Exposure Outcome OR Proportion of variance
explained by the SNPs on

exposure

Power

Trait Sample size Trait Sample size Proportion of cases

T2D 659,316 Hip OA 382,833 0.0336 1.1708 0.0508 99%

T2D 659,316 Knee OA 391,904 0.0559 0.9046 0.0508 87%

FG 133,010 Hip OA 382,833 0.0336 0.4634 0.0029 91%

FG 133,010 Knee OA 391,904 0.0559 0.5890 0.0029 91%

2hGlu 42,854 Hip OA 382,833 0.0336 1.3062 0.0074 83%

2hGlu 42,854 Knee OA 391,904 0.0559 1.3652 0.0074 99%

T2D, type 2 diabetes; FG, fasting glucose; 2hGlu, 2-h postprandial glucose; OA, osteoarthritis; OR, odds ratio; SNP, single nucleotide polymorphism.

values of the three SNPs were 32.8017, 33.5180, and 39.0625, with
an average value of 35.1274 (Supplementary Table 6).

Our results did not suggest causal associations of genetically
increased 2hGlu with hip and knee OA risk changes in
non-diabetic individuals (p < 0.025). (For hip OA, MR–
Egger OR = 1.3062, 95% CI 0.2540–2.8190, p = 0.8309;
IVW OR = 1.1976, 95% CI 0.9437–1.5199, p = 0.1380; WM
OR = 1.3301, 95% CI 1.0348–1.7098, p = 0.0260; MR.RAPS
OR = 1.2125, 95% CI 0.9817–1.4976, p = 0.0737. For knee OA,
MR–Egger OR = 1.3652, 95% CI 0.7171–2.5993, p = 0.5171;
IVW OR = 1.0594, 95% CI 0.9067–1.2378, p = 0.4673; WM
OR = 1.0786, 95% CI 0.8998–1.2930, p = 0.4133; MR.RAPS
OR = 1.0598, 95% CI 0.9020–1.2451, p = 0.4804.) (Table 1
and Figure 3). We conducted the MR–Egger regression
to assess the pleiotropy, and the results revealed that the
horizontal pleiotropy was unlikely to bias the causality with
hip OA (intercept = 0.0303, p = 0.6639) and knee OA
(intercept = −0.0222, p = 0.5722) (Table 1).

The associations between these genetic variants and
confounding factors were analyzed. None of the three genetic
variants were significantly associated with the confounding
factors mentioned above at the Bonferroni-corrected significance
threshold (p < 0.0042) (e.g., 0.05/12) (Supplementary Table 7).
Cochran’s Q value and I2 value indicated no evidence of
heterogeneity between IV estimates with the IVW, MR–Egger,
and maximum likelihood methods. (For hip OA, MR–Egger
Q = 2.2054, I2 = 0.5466, p = 0.1375; IVW Q = 2.9551, I2 = 0.3232,
p = 0.2282; maximum likelihood Q = 2.8701, I2 = 0.3032,
p = 0.2381. For knee OA, MR–Egger Q = 0.0204, I2 < 0.0001,
p = 0.8863; IVW Q = 0.6533, I2 < 0.0001, p = 0.7213; maximum
likelihood Q = 0.6503, I2 < 0.0001, p = 0.7224.) (Table 2). The
MR–Steiger results supported that the SNPs in the analysis were
more predictive of the exposure than of the outcome (Table 1).
Power calculations showed that our sample provided sufficient
statistical power (>80%) for causal analysis of 2hGlu on hip and
knee OA (Table 3).

DISCUSSION

To our knowledge, this is the first MR study on the effect of
T2D and other glycemic traits on OA. We obtained sufficient
sample sizes and thus had sufficient power (>80%) to detect
causal effects. We did not distinguish statistical causality between

exposures and outcomes based on our MR results. The F
values of IVs indicated that the variables satisfy the strong
relevance assumption of MR, and that the instrument bias was
weak and could not substantially influence the estimations of
causal effects. We used the MR–Egger method to detect and
adjust for pleiotropy of the genetic variants. We also performed
heterogeneity and did not find significant heterogeneity between
SNPs, which indicated the reliability of the MR results. Some
studies reported similar results that there was no evidence to
support the causal associations between T2D and OA. Frey et al.
(2016) conducted one case–control study and provided evidence
that T2D is not an independent risk factor for hand OA regardless
of T2D severity, duration, or pharmacological treatment. Funck-
Brentano et al. (2019) analyzed the individual-level data in UK
Biobank study and performed MR analysis. They found no
significant causality for T2D with all OA, knee OA, hip OA, and
hand OA. Zengini et al. (2018) also found no causal association
of T2D with self-reported OA or hospital-diagnosed OA with
the MR analysis.

Some studies provided a few suggestive pathophysiological
mechanisms for the development of OA in T2D patients. One
of them was hyperglycemia-induced accelerated synthesis of
Advanced Glycation End products (AGEs), which leads to an
increase in oxidative stress. These AGEs have been regarded
as one of the factors responsible for healing impairment
and loss of elasticity of the cartilage (DeGroot et al., 2001).
Another mechanism was that chronic high glucose environment
had noxious effects on chondrocytes metabolism (Laiguillon
et al., 2015). High glucose environment would induce diabetic
cartilages to produce more interleukin-6 and prostaglandin E2.
High glucose exposure also increased the metalloproteinases
production especially in human OA chondrocytes and decreased
the production of collagen II. Vaamonde-Garcia et al. (2017)
demonstrated that high glucose environment favored the
suppression of heme oxygenase-1, which led to an increase in
the oxidative stress and cartilage damage. Chen et al. (2015)
found that high glucose diminished the synthesis of type II
collagen and peroxisome proliferator-activated receptor gamma
(PPARγ) by chondrocytes, which could result in the development
of cartilage defects.

Many studies reported the suggestive evidence to support
the associations between T2D and OA. Eymard et al. (2015)
demonstrated that T2D was a predictor of joint space reduction in
men with established knee OA. Davies-Tuck et al. (2012) reported
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FIGURE 2 | Scatter plots of genetic associations with fasting glucose against osteoarthritis using different MR methods. (A) Fasting glucose and hip osteoarthritis
results; (B) fasting glucose and knee osteoarthritis results. The slopes of each line represent the causal association for each method. The green line represents the
inverse variance weighted estimate, the purple line represents the MR–Egger estimate, the red line represents the MR.RAPS estimate, and the blue line represents
the weighted median estimate.

the evidence that increased FG concentration in non-diabetic
individuals was associated with adverse structural changes at
the knee in women based on one prospective cohort study.
Williams et al. (2016) executed one meta-analysis including 10

observational studies with 16,742 patients in total. They revealed
that T2D was associated with radiographic and symptomatic
OA even after controlling the BMI and weight. Schett et al.
(2013) reported that T2D could predict the progress of OA,
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FIGURE 3 | Scatter plots of genetic associations with 2-h postprandial glucose against osteoarthritis using different MR methods. (A) 2-h postprandial glucose and
hip osteoarthritis results; (B) 2-h postprandial glucose and knee osteoarthritis results. The slopes of each line represent the causal association for each method. The
green line represents the inverse variance weighted estimate, the purple line represents the MR–Egger estimate, the red line represents the MR.RAPS estimate, and
the blue line represents the weighted median estimate.
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independent of age and BMI, based on one cohort study
followed up over 20 years. Although many studies suggested
the associations, those evidences were too weak to indicate the
causal associations between T2D and OA. Confounders might
interfere with the associations between T2D and OA. Since T2D
and OA share common risk factors, some studies even suggested
that OA was the component of metabolic syndrome (Schett
et al., 2013); metabolic factors, such as obesity, inflammatory
factors, physical activity, and diabetic medication might have
impacts on OA. For example, obesity is a pandemic condition
defined as the abnormal or the excessive accumulation of fat,
which is characteristic of T2D (Kolb and Martin, 2017). Obesity
would promote the progress of OA through mechanical load and
inflammatory reaction. Mechanical load means that the increase
load of weight-bearing joint caused by obesity could accelerate
the development of OA. Inflammatory reaction indicated that
the increased systemic and local inflammation caused by obesity
would damage the integrity of the extracellular matrix of
the cartilage (Martel-Pelletier et al., 2016; Reyes et al., 2016).
Furthermore, some confounders that cannot be entirely ruled
out, such as socioeconomic status, occupation, and nutrition,
also had impacts on the association between T2D and OA
(Frey et al., 2016). Some studies (Schett et al., 2013) used joint
arthroplasty due to OA as the study endpoint, which precludes
the ability to assess temporality, because joint arthroplasty was
the terminal event of OA. This would be the reason that affected
the association between T2D and OA. Besides, reverse causation
bias between T2D and OA (Kendzerska et al., 2018) would
also limit the ability to provide causal estimates of the effect of
exposures on outcomes in the observational studies.

The present study has several limitations. The criteria for
OA were limited in the GWAS included in the study. The
radiographic OA or the mild symptomatic OA was not included.
Additionally, there were only two types of OA, hip and knee OA,
involved in the study. The hand OA was not analyzed in the
MR study, which might distinguish the pathogenesis mechanism
from hip and knee OA due to the absence of weight-bearing
factors. The samples included in the exposures and outcomes
were of European ancestry, which could mitigate the population
stratification. However, the conclusions based on the European
sample were not representative of other ancestries, such as Asians
and Americans. Moreover, we only evaluated the associations
between SNPs and weight-associated confounders due to the
limited publicly available GWAS databases. The associations
between these instruments and other potential confounders, such
as physical activity, were not evaluated in our study.

CONCLUSION

In summary, our two-sample MR analysis did not suggest the
significant causal effects of genetic increases in T2D risk, FG,
and 2hGlu with hip and knee OA. The complicated effects of
T2D risk, FG, and 2hGlu with OA might be influenced by other
confounding factors, which still need further investigation in the
future. In addition, future studies should additionally seek to
investigate the effect of T2D and glycemic traits on hand OA.
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Background: Mendelian randomization (MR) provides unconfounded estimates. MR
is open to selection bias when the underlying sample is selected on surviving to
recruitment on the genetically instrumented exposure and competing risk of the
outcome. Few methods to address this bias exist.

Methods: We show that this selection bias can sometimes be addressed by adjusting
for common causes of survival and outcome. We use multivariable MR to obtain a
corrected MR estimate for statins on stroke. Statins affect survival, and stroke typically
occurs later in life than ischemic heart disease (IHD), making estimates for stroke open
to bias from competing risk.

Results: In univariable MR in the UK Biobank, genetically instrumented statins did not
protect against stroke [odds ratio (OR) 1.33, 95% confidence interval (CI) 0.80–2.20]
but did in multivariable MR (OR 0.81, 95% CI 0.68–0.98) adjusted for major causes
of survival and stroke [blood pressure, body mass index (BMI), and smoking initiation]
with a multivariable Q-statistic indicating absence of selection bias. However, the MR
estimate for statins on stroke using MEGASTROKE remained positive and the Q statistic
indicated pleiotropy.

Conclusion: MR studies of harmful exposures on late-onset diseases with shared
etiology need to be conceptualized within a mechanistic understanding so as
to identify any potential bias due to survival to recruitment on both genetically
instrumented exposure and competing risk of the outcome, which may then be
investigated using multivariable MR or estimated analytically and results interpreted
accordingly.

Keywords: selection bias, competing risk, Mendelian randomization, shared etiology, instrumental variable
analysis
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INTRODUCTION

Mendelian randomization (MR), i.e., instrumental variable
analysis with genetic instruments, is an increasingly popular
and influential analytic technique (Davies et al., 2018; Taubes,
2018), which can be used to investigate causal effects even
when no study including both exposure and outcome of interest
exists. Invaluably, MR studies have provided estimates more
consistent with results from randomized controlled trials (RCTs)
than conventional observational studies, even foreshadowing the
results of major trials (Holmes et al., 2017). MR studies are often
presented as observational studies analogous to RCTs (Davey
Smith and Ebrahim, 2005; Burgess et al., 2012) because they
take advantage of the random assortment of genetic material at
conception, while observational studies are open to biases from
confounding and selection bias (Bareinboim and Pearl, 2016).
Instrumental variable analysis is described in health research
as addressing confounding (Greenland, 2000; Maciejewski and
Brookhart, 2019), i.e., bias from common causes of exposure and
outcome (Bareinboim and Pearl, 2016). MR is currently described
as “less likely to be affected by confounding or reverse causation
than conventional observational studies” (Davies et al., 2018).

Mendelian randomization was originally thought to be less
open to selection bias than conventional observation studies
(Smith and Ebrahim, 2004). Selection bias is now increasingly
widely recognized as a limitation of MR (Nitsch et al., 2006;
Boef et al., 2015; Canan et al., 2017; Munafo et al., 2017;
Swanson et al., 2017; Gkatzionis and Burgess, 2018; Munafo
and Smith, 2018; Vansteelandt et al., 2018; Hughes et al., 2019;
Swanson, 2019), which may violate the instrumental variable
assumptions. Sources of potential selection bias in MR have been
specifically identified as selecting an unrepresentative sample
(Munafo et al., 2017; Munafo and Smith, 2018; Hughes et al.,
2019), attrition from an initially representative sample, such as
a birth cohort (Munafo et al., 2017), and selecting a sample
strongly on surviving the exposure (Gkatzionis and Burgess,
2018) or genotype of interest (Vansteelandt et al., 2018; Smit et al.,
2019). What has not explicitly been considered is selecting the
underlying sample(s) on surviving the genotype of interest in
the presence of competing risk of the outcome. MR studies are
particularly vulnerable to sample selection on survival because
of the time lag between genetic randomization (at conception)
and typical recruitment into genetic studies of major diseases in
middle to old age. MR studies also often concern major causes
of death thought to share considerable etiology. For example,
lipids, blood pressure, diabetes, lifestyle (such as smoking, diet,
physical activity, and sleep), and socioeconomic position cause
both ischemic heart disease (IHD) and ischemic stroke, with
death from IHD typically occurring at younger ages than death
from stroke (Kesteloot and Decramer, 2008; Menotti et al., 2019).
As a result, a study of the association of lipid modifiers with
stroke among the living will automatically select on surviving
high lipids and on surviving competing risk of prior death
from IHD due to shared etiology between IHD and stroke.
Some people dying from genetically high lipids and others dying
from IHD before recruitment into a stroke study will leave
a shortage of people available to recruit with genetically high

lipids and susceptibility to stroke, thereby obscuring any effect
of lipids or lipid modifiers on stroke. Correspondingly, MR
studies suggest less effect of lipids and lipid modifiers on stroke
than IHD (Hopewell et al., 2018; Valdes-Marquez et al., 2019),
although RCTs suggest similar effects (Mills et al., 2011; Chou
et al., 2016; Schmidt et al., 2017). Similarly, MR studies do not
consistently show detrimental effects of body mass index (BMI)
on stroke (Marini et al., 2020). In this study, we explain how
potential violations of the instrumental variable assumptions due
to inadvertently recruiting survivors of the genetically predicted
exposure and competing risk of the outcome may bias MR
estimates. We explain how this bias might be corrected using
multivariable MR and provide a simple means of estimating how
large the bias is likely to be.

MATERIALS AND METHODS

Potential Biasing Pathways Due to
Recruiting on Selective Survival
Figure 1A shows the directed acyclic graph for MR illustrating
the instrumental variable assumptions typically referred to as
relevance, independence, and exclusion restriction. Relevance is
explicitly indicated by the arrow from instrument to exposure.
Independence is implicitly indicated by the lack of an arrow
from confounders of exposure on outcome (or of instrument
on outcome) to instrument. Exclusion restriction is implicitly
indicated by the lack of arrows linking instrument to outcome,
sometimes illustrated as no arrow from instrument to outcome
indicating no pleiotropy (Bowden et al., 2015, 2016; Hartwig
et al., 2017; Verbanck et al., 2018) (Figure 1B). Figure 1C
shows selection on survival of both instrument and common
causes of the outcome (U2) (Hughes et al., 2019; Swanson,
2019), which also violates the exclusion restriction assumption,
particularly when stated as “every unblocked path connecting
instrument and outcome must contain an arrow pointing into
the exposure” (Pearl, 2009). Figure 1D explicitly shows survival
on instrument, and another disease (Y2) sharing etiology (U2)
with the outcome (Y). Figure 1E shows the exclusion restriction
assumption with both no pleiotropy and no selection bias from
competing risk (U2) made explicit. Notably, Figures 1C–E are
very similar in structure to a well-known example of selection
bias, which occurs when conditioning on an intermediate (or
covariable adjustment) reverses the direction of effect: the “birth
weight” paradox (Hernandez-Diaz et al., 2006). In the birth
weight paradox adjusting the association of maternal smoking
with infant death for birth weight makes maternal smoking
look protective; further adjusting for all common causes of birth
weight and infant death, thought to be birth defects, should
remove this bias (Hernandez-Diaz et al., 2006) by blocking the
path from maternal smoking to infant death via birth weight and
birth defects. Similarly, bias due to inadvertently selecting the
underlying sample in an MR study on surviving the genetically
instrumented exposure and surviving competing risk of the
outcome should be ameliorated by adjusting for major causes of
survival and the outcome (Figure 2). The recent development of
multivariable MR (Sanderson et al., 2019) provides the means
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FIGURE 1 | Directed acyclic graphs with instrument (Z), outcome (Y), exposure (X), confounders (U1), and survival (S), where a box indicates selection, for (A) a valid
Mendelian randomization study and (B) a Mendelian randomization study with an invalid instrument through violation of the exclusion-restriction assumption via
pleiotropy, (C) a Mendelian randomization study with an invalid instrument through violation of the exclusion-restriction assumption via survival on instrument and
shared etiology with the outcome (U2), (D) a Mendelian randomization study with an invalid instrument through violation of the exclusion restriction assumption via
survival (S), competing risk of another disease (Y2) and shared causes (U2) with (Y2) and the outcome (Y), and (E) a Mendelian randomization illustrating both
conditions which have to be met to satisfy the exclusion restriction assumption.

to do so. Specifically, as indicated in Figures 1C,D, where
univariable MR may be biased, using multivariable MR adjusting
for the main determinants of survival and outcome may reduce
bias by at least partially blocking any backdoor paths from
instrument to outcome.

In addition, to provide triangulation, the level of selection
bias due to surviving to recruitment on genetically instrumented
exposure in the presence of competing risk of the outcome can
also be thought of as depending on the proportion of the exposed
who are not available for recruitment because of prior death
due to the genetically predicted exposure and the proportion
of those who could have experienced the outcome who are
not available for recruitment because of prior death from a
competing risk. Assuming these proportions are independent
and their corresponding probabilities do not sum to more than
1, then for an observed odds ratio (OR) greater than 1, the
true OR for genetically predicted exposure on disease can be
estimated as the observed OR multiplied by the ratio of the
probability of surviving the exposure and the competing risk to
the probability of surviving the exposure or the competing risk,
as shown in Appendix Table 1.

Examples of Selection Bias and
Amelioration
We investigated effects of lipid modifiers and BMI on ischemic
stroke as possible exemplars, because previous MR studies of
these exposures on stroke have not always given the expected
results (Hopewell et al., 2018; Marini et al., 2020). Statins and
PCSK9 inhibitors are very well-established interventions for
cardiovascular disease, which reduce low-density lipoprotein
(LDL)-cholesterol, IHD (Mills et al., 2011; Chou et al., 2016;
Schmidt et al., 2017), stroke (Mills et al., 2011; Chou et al.,
2016; Schmidt et al., 2017), and atrial fibrillation (AF) (Peng
et al., 2018). BMI is also known to be harmful. IHD, stroke,
and AF also share major causes independent of lipid modifiers,
such as blood pressure (Emdin et al., 2015; Ettehad et al., 2016),
smoking, lifestyle, and socioeconomic position. Death from IHD
typically occurs at earlier ages than death from stroke in Western
populations (Kesteloot and Decramer, 2008; Menotti et al., 2019).
AF may also be a consequence of IHD. Figure 2A suggests bias
would be expected for harmful exposures on stroke or AF in

any sample of survivors, such as middle-aged or older adults.
Adjusting for major factors causing survival to recruitment into
the underlying studies of stroke or AF, as shown for lipid
modifiers on stroke (Figure 2B) or BMI on stroke (Figure 2C),
should reduce the bias. As such, univariable MR, even with
well-defined genetic instruments free from genetic pleiotropy,
might generate biased estimates due to selection bias violating
the exclusion-restriction assumption, but appropriate use of
multivariable MR might ameliorate the problem.

We used well-established independent genetic variants to
mimic effects of statins (rs12916) and proprotein convertase
subtilisin/kexin type 9 (PCSK9) inhibitors (rs11206510,
rs2149041, and rs7552841) (Ference et al., 2019), and for BMI
(96 variants) (Locke et al., 2015). Using two-sample univariable
MR, we applied these variants to major GWAS, in people largely
of European descent, of IHD (CARDIoGRAMplusC4D 1000
Genomes) (Nikpay et al., 2015), stroke (MEGASTROKE) (Malik
et al., 2018), and AF (Nielsen et al., 2018). We also used the UK
Biobank summary statistics for IHD and stroke (Zhou et al.,
2018), but not for AF because the AF GWAS includes the UK
Biobank data (Nielsen et al., 2018). We obtained univariable MR
estimates by meta-analyzing the Wald estimates (genetic variant
on outcome divided by genetic variant on exposure) using inverse
variance weighting, with multiplicative random effects, after
aligning variant estimates on the same-effect allele in each study.

We used multivariable two-sample MR to obtain MR
estimates for the lipid modifiers on stroke and AF adjusted for
major causes of survival (smoking initiation, blood pressure,
and BMI) (Forouzanfar et al., 2015; Sakaue et al., 2020) and
stroke, and to obtain an MR estimate for BMI on stroke adjusted
for smoking initiation. We used published independent genetic
instruments for smoking initiation (327 variants) (Larsson
et al., 2020), systolic blood pressure (SBP) and diastolic blood
pressure (DBP) [all replicated variants (SBP 215, DBP 219)]
(Evangelou et al., 2018), and BMI (96 variants) (Locke et al.,
2015). Genetic associations, for all the instruments selected,
with LDL-cholesterol, ever smoking, SBP, DBP, and BMI, were
obtained from the UK Biobank summary statistics1 adjusted for
age, sex, age2, sex∗age, and sex∗age2 and the first 20 principal
components. We used the MR-Base clump_data R package

1http://www.nealelab.is/uk-biobank
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competing risk of ischemic heart disease (IHD) which shares causes with the outcome of interest, i.e., stroke, with U1 as confounders of exposure and outcome,
when assessing (A) effects of an exposure on stroke or AF, (B) effects of lipid modifiers on stroke, and (C) effects of body mass index on stroke.

with r2<0.05 to obtain independent genetic variants across
exposures and the MendelianRandomization package to obtain
IVW multivariable estimates. Here, we used summary statistics,
meaning we assumed linear and homogenous effects for all
exposures. We reported the multivariable conditional F-statistic
as a measure of instrument strength and the multivariable
Q-statistic as a measure of instrument pleiotropy (Sanderson
et al., 2019), obtained using the MVMR package (Sanderson
et al., 2019). Calculation of the conditional F-statistic and
the multivariable Q-statistic requires the covariance between
the effects of genetic variants on each exposure or use of
non-overlapping samples for the exposure GWAS (Sanderson
et al., 2019). Use of summary statistics for the exposures
makes it difficult to obtain their covariance, so we largely
selected genetic instruments for exposures from non-overlapping
samples; however, some overlap exists, for example, the GWAS
used to obtain genetic instruments for smoking initiation and
blood pressure both included the UK Biobank (as 33 and ∼40%
of the sample, respectively) (Forouzanfar et al., 2015; Locke et al.,
2015; Evangelou et al., 2018; Larsson et al., 2020; Sakaue et al.,
2020). As such, the conditional F-statistic gives a lower bound for
strength of the instruments and the modified Q-statistic gives an
upper bound on bias from pleiotropy (Sanderson et al., 2019).
Notably, in this context, a significant multivariable Q statistic
may indicate genetic pleiotropy or violation of the exclusion
restriction assumption by selection bias, because both might
inflate the multivariable Cochran Q. If the same instruments give
very different multivariable Cochran’s Q for the same outcomes
in different studies or for related outcomes in the same study,
it would suggest that estimates with higher Cochran’s Q are
more likely open to selection bias than genetic pleiotropy. We
also reported the multivariable MR-Egger intercept which may
indicate genetic pleiotropy (Rees et al., 2017).

This study only used publicly available genetic summary
statistics, collected with consent, and so does not require
ethical approval.

RESULTS

As expected, the cases recruited into the underlying GWAS
(Nikpay et al., 2015; Malik et al., 2018; Nielsen et al., 2018) seemed
to be youngest for IHD and oldest for AF with stroke somewhere
in between (Supplementary Table 1). In univariable MR,
genetically mimicking statins or PCSK9 inhibitors reduced IHD,

while genetically instrumented BMI increased IHD (Table 1).
Estimates were similar using CARDIoGRAMplusC4D 1000
Genomes and the UK Biobank. IHD is not expected to be
majorly open to competing risk, so it was not considered further.
In univariable MR, genetically mimicking statins or PCSK9
inhibitors was not associated with a lower risk of stroke or AF;
some estimates for statins were in the direction opposite to
expected (Table 1). In univariable MR, genetically instrumented
BMI did not consistently increase stroke but did increase AF
(Table 1). Univariable MR estimates for the major causes of
survival considered are shown in Supplementary Table 2.

In multivariable MR, the conditional F-statistics for each
exposure were similar in each analysis, suggesting similar
instrument strength (Table 1). The Q-statistics were not
significant for lipid modifiers on UK Biobank stroke (Table 1).
The multivariable MR estimates in the UK Biobank, in contrast
to the corresponding univariable MR estimates, showed that
genetically instrumented lipid modifiers protected against stroke
and that genetically instrumented BMI caused stroke (Table 1).
The multivariable MR-Egger intercepts were significant, with
largely similar MR-Egger estimates for statins [OR 0.70, 05%
confidence interval (CI) 0.56–0.88] and PCSK9 inhibitors
(OR 0.66, 95% CI 0.53–0.83) but not BMI (OR 1.00, 95%
CI 0.83–1.20). The Q-statistics were highly significant for
lipid modifiers and BMI on MEGASTROKE stroke and AF
(Table 1), indicating that these estimates were likely still biased
by pleiotropy probably from selection bias given the same
instruments gave estimates apparently unbiased by genetic
pleiotropy for stroke in the UK Biobank. Correspondingly,
the multivariable MR estimates were similar to the univariable
estimates, and for lipid modifiers differed from those expected
from RCTs (Table 1). The multivariable MR-Egger intercepts
were not significant for MEGASTROKE estimates or for BMI
on AF but were significant for statins and PCSK9 inhibitors on
AF. The corresponding multivariable MR-Egger estimates gave
directionally similar estimates to the inverse variance weighted
estimates for genetically mimicked statins (OR 1.06, 95% CI
0.92–1.23) and PCSK9 inhibitors (OR 1.01, 95% CI 0.87–1.17).

To provide triangulation, we estimated whether the level of
selection bias for statins on stroke, from surviving genetically
instrument statins and IHD, was consistent with the univariable
estimate, using the formula given in Appendix Table 1. The
OR for the protective allele of the statin single-nucleotide
polymorphism (rs12916) on IHD used to obtain the Wald
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TABLE 1 | Effect of genetically mimicking statins and PCSK9 inhibitors use (Ference et al., 2019) (in effect size of LDL-cholesterol) and BMI (Locke et al., 2015) on IHD
using the CARDIoGRAMplusC4D 1000 Genomes based GWAS (Nikpay et al., 2015) and the UK Biobank on all ischemic stroke using MEGASTROKE (Malik et al., 2018)
and the UK Biobank and on AF using a study by Nielsen et al. (2018) from univariable Mendelian randomization and from multivariable Mendelian randomization, with
genetically mimicked statins and PCSK9 inhibitors adjusted for systolic blood pressure (Evangelou et al., 2018), diastolic blood pressure (Evangelou et al., 2018),
smoking initiation (Larsson et al., 2020) and BMI (Locke et al., 2015), and BMI adjusted for smoking initiation.

Univariable Multivariable

Source of genetic
associations with disease

MR-Egger
Intercept

Conditional
F

Q
p-valueDisease Exposure OR 95% CI OR 95% CI

Ischemic heart
disease

CARDIoGRAMplusC4D 1000
Genomes

Statin 0.56 0.41–0.75

PCSK9 inhibitor 0.32 0.22–0.46

BMI 1.57 1.36–1.81

UK Biobank (SAIGE) Statin 0.69 0.52–0.93

PCSK9 inhibitor 0.47 0.34–0.65

BMI 1.38 1.18–1.61

All ischemic
stroke

MEGASTROKE Statin 1.17 0.84–1.65 1.05 0.91–1.21 0.56 5.8 1.4e–10

PCSK9 inhibitor 0.94 0.65–1.37 1.02 0.88–1.18 0.47 5.7 1.3e–10

BMI 1.18 1.04–1.34 1.16 1.05–1.28 0.12 18.0 0.0001

UK Biobank (SAIGE) Statin 1.33 0.80–2.20 0.79 0.65–0.97 0.04 5.8 0.09

PCSK9 inhibitor 0.96 0.55–1.69 0.76 0.62–0.92 0.02 5.7 0.11

BMI 1.13 0.93–1.36 1.27 1.10–1.47 <0.001 18.0 0.02

Atrial fibrillation Nielsen et al. (including UK
Biobank)

Statin 1.22 0.97–1.54 1.16 1.03–1.32 0.02 5.9 1.3e–80

PCSK9 inhibitor 0.79 0.62–1.01 1.12 0.99–1.27 0.01 5.7 1.3e–81

BMI 1.46 1.34–1.59 1.44 1.35–1.56 0.70 17.9 4.6e–18

estimate was 0.96. Assuming statins have the same effect
on IHD and stroke, it would only take 10% with that
harmful allele and 25% of potential stroke cases to have
died from IHD or other competing risks before recruitment
into a stroke study for the observed OR to be exactly
1.0, which would give a null MR estimate. If instead 40%
of potential stroke cases had died from competing risk
before recruitment, then the OR would reverse to 1.04 and
give an MR estimate similar to the univariable estimate
from MEGASTROKE.

DISCUSSION

Here, we have shown theoretically, empirically, and analytically
that univariable MR studies can be open to quite severe
selection bias likely arising from selective survival on genetically
instrumented exposure when other causes of survival and
outcome exist, i.e., competing risk before recruitment. We have
also explained the relevance of this situation to the assumptions
of MR, as a violation of the exclusion restriction assumption, how
to mitigate this bias using multivariable MR, how to assess the
success of this mitigation (using the multivariable Q statistic),
and how to make an assessment of the possible level of bias using
an approximation based on contextual knowledge (Appendix
Table 1). Notably, genetic studies are particularly vulnerable to
bias because most genetic estimates are of small magnitude; the
closer the true estimate is to the null, the easier it is for a reversal
to occur (Appendix Figure 1).

Our study differs from many other studies suggesting that
MR is open to selection bias by specifically identifying when
such bias can occur in the context of a typical MR study using
existing GWAS, and by showing how any such bias may be
addressed along with a means of checking whether the bias
has been successfully addressed. For participants selected on
surviving the genetically instrumented exposure and competing
risk of the outcome, our study is similar to other studies
about bias in MR in showing that bias can occur from using
GWAS summary statistics with “covariable adjustment” (Hartwig
et al., 2020). We add by explaining that selecting from the
living is common in MR studies and may engender covariable
adjustment on survival. Rather than suggesting that such
situations should be avoided (Hartwig et al., 2020), precluding
MR studies of a harmful exposure on a late-onset disease
subject to competing risk, we show how such situations can
be addressed. Specifically, external knowledge can be used to
identify potential common causes of survival and outcome,
followed by multivariable MR to adjust for them and thereby
possibly obtain a less biased estimate, bearing in mind the
Q statistic. We also show that when, in this situation, it
is not possible to adjust comprehensively for factors causing
survival and the outcome, the level of potential bias can be
estimated (Appendix Table 1). Alternatively, restricting MR
studies to younger people will usually reduce bias because
death prior to recruitment is less common in younger people.
However, these studies may need to consider competing risk
after recruitment. Our study also implies that care should
be taken in interpreting phenome-wide association studies
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identifying the effect of a specific genetically instrumented
exposure across the phenome, because the effects of harmful
exposures observed will vary depending of the level of competing
risk of the outcome.

Despite the strengths of our study in explicating and providing
means of addressing a relatively common bias in univariable MR,
limitations exist. First, use of multivariable MR to address bias
arising from sample selection on survival requires knowledge of
the underlying causal structure and suitable genetic instruments
for all sources of bias. In all observational studies, knowledge of
the underlying causal structure is needed to identify potential
sources of confounding and selection bias. For example, here our
results could also be due to removing the harmful effects of statins
and PCSK9 inhibitors via body composition by adjusting for
BMI, although these effects are still under investigation (Nelson
et al., 2019). Alternative methods to recover from selection
bias due to surviving the genetically instrumented exposure and
competing risk of the outcome that do not require knowledge
of the underlying causal structure or additional data would be
easier to use. Second, our study did not conduct simulations of
the level of bias. Simulations including research questions with
the same underlying directed acyclic graph s as investigated here
have been done (Hartwig et al., 2020), and simulation of a similar
situation is available (Glymour and Vittinghoff, 2014). The key
issue in making use of these simulations is appreciating when
these biasing situations might arise and how serious the issues
can be in practice, which is the gap addressed by this study. As
such, we address appreciating which real-life situations will result
in the simulated bias, and what to do to ameliorate it. Third,
we provide a means of addressing any such selection bias using
multivariable MR (adjusting for common causes of survival and
outcome) as well as a means of assessing the likely validity of
the revised estimate (non-significant multivariable Q-statistic).
However, application and interpretation may not always be
straightforward. As with any bias correction by adjustment, it
may not be feasible to recover the correct estimate, due to lack of
contextual knowledge, a highly interrelated causal structure, such
as the genetic instruments causing common causes of survival
and outcome, or a lack of relevant information. Fourth, we
also provide an approximation to estimate the likely effects of
such bias (Appendix Table 1). However, given that the role
of selection bias due to death before recruitment from the
genetically predicted exposure or from a competing risk of the
outcome has rarely been explicitly considered previously, the
information needed to identify the sources of bias and estimate
the likely level of bias is not easily available. More research
concerning the effects of genetic exposures on longevity and the
sequence of death from different diseases in different populations
would be helpful, as well as easily accessible information about
the age and sex structure of participants in genetic studies by case
status. Fifth, we do not provide an exhaustive list of examples of
when this bias has occurred, because few MR studies have been
validated against RCTs. For example, Alzheimer’s disease usually
occurs in old age and appears to share causes with determinants
of longevity (Deelen et al., 2019), so MR studies of harmful
exposures on Alzheimer’s disease could be open to selection bias
but the true causes of Alzheimer’s disease are unknown making

any determination of whether the MR studies are biased or
not difficult. Finally, the issue of obtaining valid estimates in
the presence of selective survival on exposure and competing
risk of the outcome is similar to the issue of obtaining valid
genetic estimates in other studies of survivors, i.e., patients. The
current solution for obtaining valid estimates in genetic studies of
patients relies on the assumption that the factors causing disease
and disease progression differ (Dudbridge et al., 2019). Use
of multivariable MR to adjust observational studies in patients
suitably might bear consideration.

Specifically, as regards the example here, for the MR estimate
for statins on stroke, we were able to recover a plausible estimate
in the UK Biobank but not in MEGASTROKE. The UK Biobank
participants are younger (∼57 years) than the MEGASTROKE
participants (Supplementary Table 1), so the confounders of
survival to recruitment and stroke used to adjust for survival
could also be more biased by survival in MEGASTROKE making
adjustment less effective in MEGASTROKE than in the UK
Biobank, possibly as indicated by Supplementary Table 2. In
addition, the Q-statistic represents both genetic pleiotropy and
pleiotropy due to selection bias, so it is possible that the
Q-statistic in MEGASTROKE is larger due to MEGASTROKE
having more cases than UK Biobank rather than more severe
selection bias, although the same instruments were used in both
studies. The conditional F-statistics were quite low for lipid
modifiers; however, they did not differ by outcome, so they are
unlikely to fully explain the difficulty in fully recovering plausible
estimates. The multivariable Q-statistics could also be somewhat
larger because some samples used to obtain instruments for the
exposures overlapped (Sanderson et al., 2019). However, given
the very large Q-statistics for the multivariable estimates for
stroke using MEGASTROKE and for AF (Table 1), this overlap
is unlikely to affect the interpretation. Finally, the multivariable
MR-Egger intercepts were not always significant even when the
estimates did not look plausible, perhaps because MR-Egger
detects exposure specific directional pleiotropy. In contrast, the
multivariable Q-statistic assesses heterogeneity across several
exposures which if different due to differing selection bias by
exposure could contribute to a larger multivariable Cochran’s Q
as well as biased estimates.

CONCLUSION

Here, we have shown theoretically, empirically, and analytically
that univariable MR studies can be open to quite severe selection
bias arising from selecting on survival of genetically instrumented
exposure when other causes of survival and outcome exist, i.e.,
competing risk before recruitment. Bias from such selection bias
is likely to be least for MR studies of harmless exposures recruited
shortly after genetic randomization with no competing risk, i.e.,
studies using birth cohorts with minimal attrition. Conversely,
such bias is likely to be most evident for MR studies recruited
at older ages examining the effect of a harmful exposure on
an outcome subject to competing risk from shared etiology
with other common conditions that occur earlier in life. Use
of multivariable MR to adjust for major causes of survival
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and outcome may ameliorate this bias, while simple sensitivity
analysis based on information about the exposure and the natural
history of disease may help quantify the magnitude of the bias.
Infallible, methods of obtaining valid MR estimates, when the
exclusion restriction is invalidated by selection bias stemming
from competing risk, that do not require external knowledge,
would be helpful.
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APPENDIX

A possible solution for recovering the causal effect in the presence of selection bias due to selecting on surviving the exposure and
competing risk of the exposure in a case-control study.

The fundamental issue of the selection bias in a case–control study is unknown information for the “missing” (or unselected)
participants. Appendix Table 1 shows the possible mechanism generating a biased causal effect due to selection on surviving the
exposure (E) and surviving competing risk (CR) of the outcome (D) in a case–control study.

Based on the observed data a′, b′, c′, and d′, the observed causal effect of E on D using an OR (ORobs) is,

ORobs
=

a′/b′

c′/d′
=

a′d′

b′c′

To obtain the true causal effect, we have to recover the data for the whole population, i.e., the birth cohorts who formed the population.
Let PE denote the proportion of participants unselected due to E, and let PCR denote the proportion of participants unselected due to
CR. Suppose PE and PCR are additive, and 0 < PE + PCR < 1. We can construct the pattern of the unselected participants, as shown in
Appendix Table 1. As such, the causal effect of E on D for the whole population can be estimated as follows,

ORtrue
=

ad
bc
=

a
′
/(1−PE)

b′/(1−PE−PCR)

c′

d′/(1−PCR)

= ORobs
×

(1− PE) (1− PCR)

(1− PE − PCR)

This relationship will be invalid if we replace the OR with a risk ratio.

TABLE A1 | Possible mechanism for biased causal effects in a case-control study due to selection bias from surviving the exposure and competing risk of the outcome.

S = 1 S = 0

D = 1 D = 0 D = 1 D = 0

E = 1 CR = 1 a
′

b
′

PE PE + PCR

CR = 0

E = 0 CR = 1 c
′

d
′

0 PCR

CR = 0

Observation ORobs

Target ORtrue

S indexes selection status of participants, i.e., S = 1 indicates those selected and S = 0 indicates those unselected. D indexes outcome status, i.e., D = 1 indicates
disease and D = 0 indicates no disease. E indexes exposure status, i.e., E = 1 indicates the exposed, and E = 0 indicates unexposed. CR indicates competing risk (CR)
of the outcome D; i.e., CR = 1 then D = 0, and if D = 1 and CR = 0. a′, b′, c′, and d′ are observed data about the selected participants.
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Notably, the level of bias depends on the magnitude of the OR. A small OR, of the order of 1.05, as is typical in a genetic study, is
much more vulnerable to a reversal of effect from selection bias due to selecting on surviving the exposure and surviving competing
risk of the outcome than a larger OR, of the order of 1.50, as is typical in traditional observational studies. To clarify Appendix Figure 1
shows the observed OR plotted against the true OR for different combinations of selection on survival (PE) and selection on competing
risk of surviving the outcome (PCR).

FIGURE A1 | Observed odds ratio against the True odds ratio in the presence of different proportions of death before recruitment due to the exposure (PE ) and
different proportions of death before recruitment due to competing risk of the outcome (PCR) for true odds ratios large than 1 (left hand side) and smaller than 1 (right
hand side, obtained by taking the inverse of the odds ratio).
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The Role of C-Reactive Protein and 
Fibrinogen in the Development of 
Intracerebral Hemorrhage: A 
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European Population
Biyan Wang 1†, Xiaoyu Zhang 1,2†, Di Liu 1, Jie Zhang 1, Mingyang Cao 1, Xin Tian 1, 
Isinta Elijah Maranga 1, Xiaoni Meng 1, Qiuyue Tian 1, Feifei Tian 1, Weijie Cao 1, Wei Wang 2, 
Manshu Song 2* and Youxin Wang 1*

1 Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China, 
2 School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia

Background: The causal association of C-reactive protein (CRP) and fibrinogen on 
intracerebral hemorrhage (ICH) remains uncertain. We investigated the causal associations 
of CRP and fibrinogen with ICH using two-sample Mendelian randomization.

Method: We used single-nucleotide polymorphisms associated with CRP and fibrinogen 
as instrumental variables. The summary data on ICH were obtained from the International 
Stroke Genetics Consortium (1,545 cases and 1,481 controls). Two-sample Mendelian 
randomization estimates were performed to assess with inverse-variance weighted and 
sensitive analyses methods including the weighted median, the penalized weighted 
median, pleiotropy residual sum and outlier (MR-PRESSO) approaches. MR-Egger 
regression was used to explore the pleiotropy.

Results: The MR analyses indicated that genetically predicted CRP concentration was not 
associated with ICH, with an odds ratio (OR) of 1.263 (95% CI = 0.935–1.704, p = 0.127). 
Besides, genetically predicted fibrinogen concentration was not associated with an increased 
risk of ICH, with an OR of 0.879 (95% CI = 0.060–18.281; p = 0.933). No evidence of 
pleiotropic bias was detected by MR-Egger. The findings were overall robust in sensitivity analyses.

Conclusions: Our findings did not support that CRP and fibrinogen are causally associated 
with the risk of ICH.

Keywords: C-reactive protein, fibrinogen, single-nucleotide polymorphisms, Mendelian randomization, 
intracerebral hemorrhage

INTRODUCTION

Globally, stroke is a leading cause of death with a high societal burden in most regions 
(GBD 2015 Mortality and Causes of Death Collaborators, 2016). Among adults, the risk of 
stroke from the age of 25  years is approximately 25% (Feigin et  al., 2018). Hemorrhagic stroke 
(HS) as a subtype of stroke carries high morbidity and mortality rates (Stokum et  al., 2015), 
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and intracerebral hemorrhage (ICH) is by far the most common 
type of HS (Qureshi et  al., 2009). Inflammation plays an 
important part in pathogenesis of stroke by influencing  
the development of atherosclerosis and plaque instability 
(Barone and Feuerstein, 1999; Scirica and Morrow, 2006).

C-reactive protein (CRP) and fibrinogen, considered as well-
proven clinical markers of systemic inflammation, are acute-
phase protein synthesized by hepatocytes against inflammation 
(Dalmon et  al., 1993; Pepys and Hirschfield, 2003) and can 
increase the risk of cardiovascular disease (Scirica and Morrow, 
2006; Zhang et  al., 2014) and stroke (Coull et  al., 1991; Cao 
et  al., 2007; Jiménez et  al., 2015). Significantly increased levels 
of fibrinogen are commonly found in patients with stroke, 
suggesting that fibrinogen is elevated before thrombotic incidents 
occur and is a risk factor for stroke (Coull et  al., 1991). 
However, Roudbary et al. (2011) revealed that CRP concentration 
was not improved in patients with HS. No associations of 
CRP and fibrinogen with ICH were identified in a nested 
case-control study (Karim et  al., 2020). The observational 
epidemiologic studies on the associations of CRP and fibrinogen 
with ICH showed inconsistent results (Coull et  al., 1991; 
Roudbary et  al., 2011). Furthermore, potential unmeasured 
confounders and reverse causation bias in observational studies 
limit the ability to ascertain causal inferences.

Mendelian randomization (MR) is a genetic epidemiological 
method to explore the association between the exposure and 
outcome, using genetic variants as instrumental variables (IVs) 
for the exposure (Smith and Ebrahim, 2003). Because of the 
independent segregation and randomized assignment of alleles 
at meiosis, MR approach can control potential confounders 
and reverse causation, making stronger causal inference (Lawlor 
et  al., 2008). Therefore, we  conducted two-sample MR analysis 
to assess the causal relationships of CRP and fibrinogen in 
the development of ICH in European population.

MATERIALS AND METHODS

Study Design and Data Sources
A two-sample MR approach was used to investigate the causal 
effects of CRP and fibrinogen on the risk of ICH. The study 
design is under the assumption that the genetic variants are 
associated with CRP and fibrinogen, but not with confounders. 
Besides, the genetic variants affect risk of ICH only through 
exposure and not through any alternative pathways.

Information on genetic variants associated with level of CRP 
was collected from a meta-analysis of genome-wide association 
study (GWAS), which is currently the largest study attempted 
to identify genetic variants in relation to CRP concentration 
involving 204,402 individuals from 88 previous population-
based cohort studies (Ligthart et  al., 2018). In genetic variants 
associated with fibrinogen, we used previously published genetic 
variants of a GWAS meta-analysis involving more than 100,000 
subjects (Sabater-Lleal et  al., 2013).

Summary statistics data on associations of genetic variants 
with ICH were obtained from the published GWAS meta-
analysis by the International Stroke Genetics Consortium (ISGC) 

of 3,026 participants (1,545 cases and 1,481 controls; 
Woo et  al., 2014). All data in our MR analyses were restricted 
to individuals of European ancestry only.

Genetic Variants
We used single-nucleotide polymorphisms (SNPs) published 
previously, which reached genome-wide significance 
(p  <  5  ×  10−8) for CRP and fibrinogen concentrations as MR 
IVs. The selected SNPs were independent, namely, not in linkage 
disequilibrium (r2  <  0.2). Nineteen SNPs (11 for CRP and 8 
for fibrinogen) were not presented in ISGC datasets. For the 
unavailable SNPs in outcome datasets, we  replaced them with 
proxy SNPs. The proxy SNPs in linkage disequilibrium (r2 > 0.8) 
were identified for two SNPs. Accordingly, 42 SNPs for CRP 
and 16 SNPs for fibrinogen were included in the analysis of 
ICH. The summary genetic association data are reported in 
Supplementary Table S1.

Mendelian Randomization Analysis
We performed two-sample MR analyses to estimate the associations 
of CRP and fibrinogen with ICH using summarized data. Causal 
effects on ICH of CRP and fibrinogen concentrations were 
estimated using the conventional inverse-variance weighted (IVW) 
method (Burgess et  al., 2013). We  also conducted sensitivity 
analyses using the weighted median (WM), the penalized weighted 
median (PWM), and pleiotropy residual sum and outlier 
(MR-PRESSO) methods (Bowden et  al., 2015, 2016; Verbanck 
et  al., 2018). For MR-Egger regression analysis, we  assessed 
directional pleiotropy based on its intercepts (Burgess and 
Thompson, 2017). A leave-one-out analysis (omitted one SNP 
in turn) was performed to test the influence of outlying values 
(Burgess and Thompson, 2017). Heterogeneity of individual genetic 
variants was evaluated by Cochran’s Q test. All results are presented 
as an odds ratio (OR) with 95%  confidence interval (CI) of 
the outcomes per predicted increase in CRP and fibrinogen 
concentrations. The associations of each SNP with CRP and 
fibrinogen concentrations are further plotted compared to their 
effects for the outcomes. All analyses were performed by the 
TwoSampleMR and MR-PRESSO packages with R version 4.0.2.

RESULTS

Causal Association of CRP With ICH
The results of associations between genetically determined CRP 
and fibrinogen and the risk of ICH were presented in Table  1. 
Genetic predisposition to CRP levels were not observed to 
be  statistically significantly associated with ICH by performing 
IVW method (OR  =  1.263, 95% CI  =  0.935–1.704, p  =  0.127). 
The lack of causal association remained in all sensitivity analyses 
(all p  >  0.05; Table  1).

The MR-Egger method showed no evidence of directional 
pleiotropy for the association of CRP with ICH [odds (intercept), 
−0.010; p  =  0.480; Table  2]. For IVs, MR-PRESSO did not 
detect any potential outliers. Likewise, no heterogeneity was 
observed among individual SNPs of CRP for ICH (Q = 36.775, 
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p  =  0.616, Table  2). We  calculated the individual and pooled 
MR estimates between each CRP-related SNP and the risk for 
ICH shown as forest plots and scatter plots in Figure  1. The 
result of leave-one-out sensitivity analysis showed that the 
association between CRP and ICH was not substantially driven 
by any individual SNP (Supplementary Figure S1).

Causal Association of Fibrinogen With ICH
Regarding fibrinogen, we  found no causal effect of genetically 
instrumented fibrinogen on ICH (OR = 0.879, 95% CI = 0.042–
18.281, p  =  0.933). No significant association was observed 
for ICH in sensitivity analyses that were performed by WM, 
PWM, MR-PRESSO, and MR-Egger methods (Table  1).

The MR-Egger method showed no evidence of directional 
pleiotropy for the association of fibrinogen with ICH (Table 2). 
For IVs, MR-PRESSO did not detect any potential outliers. 
We calculated the individual and pooled MR estimates between 
each fibrinogen-related SNP and risk for ICH shown as forest 
plots and scatter plots in Figure  2. Furthermore, analysis on 

leaving out each SNP revealed that the inverse association 
between fibrinogen concentrations and ICH was not substantially 
driven by any individual SNP (Supplementary Figure S2). 
However, the Cochran Q statistic was 28.028 with an associated 
p  <  0.05, suggesting some heterogeneity in the effect estimates 
of fibrinogen and ICH (Table 2), but there was no clear evidence 
of directional pleiotropy (p for intercept  >  0.05, Table  2).

DISCUSSION

In the present study, we  assessed whether high circulating 
levels of CRP and fibrinogen are causally associated with ICH 
using two-sample MR analysis in European population. In the 
present study using publicly available summary statistics data, 
we  did not find CRP and fibrinogen levels might increase 
ICH risk. The findings were overall robust in sensitivity analyses.

Apart from being markers of systemic inflammation, CRP 
and fibrinogen are acute-phase protein induced by 
proinflammatory cytokine contributing to host defense against 
infection (Dalmon et  al., 1993; Pepys and Hirschfield, 2003). 
Previous studies investigated associations between CRP and 
fibrinogen and ICH but reported inconsistent results. A large-
scale cohort study found that CRP and fibrinogen were not 
associated with a significantly greater risk of HS (Jiménez et al., 
2016), while a retrospective cohort study suggested that increased 
CRP was a significant risk factor for in-hospital mortality 
among patients with cardiovascular disease including ICH 
(Yoshinaga et  al., 2017).

In our analysis, we  did not observe the relationships of CRP 
and fibrinogen with ICH. These findings suggested that the 
role of CRP and fibrinogen may be  less important in causing 
the risk of ICH. A previous MR study indicated that CRP 
concentration itself was unlikely to be  even a modest causal 
factor in coronary heart disease (Wensley et  al., 2011). Our 
findings corroborate earlier studies that showed CRP had no 
clear effect on ICH risk (Liu et  al., 2014). Similar results were 
also found in a meta-analysis consisting of six population-based 
prospective studies (Georgakis et al., 2019). Another meta-analysis 
has also suggested that elevated baseline CRP levels exhibited 
no clear effect on HS (Zhou et  al., 2016). However, evidence 
from a few prospective studies showed that CRP level in HS 
patients was significantly elevated (Das et al., 2014; Xue et al., 2017).

Fibrinogen participates in platelet aggregation, thrombogenic 
activity, atherogenesis, and inflammation, and the role of fibrinogen 
is probably various in the different subtypes of stroke. Our 
findings were supported by previous studies, which also reported 

TABLE 1 | Mendelian randomization (MR) estimates of exposure with 
intracerebral hemorrhage from the inverse-variance weighted (IVW) and sensitivity 
analysis.

Phenotype IVs (SNPs) OR (95% CI) p

CRP

IVW 42 1.263 (0.935–
1.704)

0.127

Weighted median 42 1.458 (0.977–
2.175)

0.065

Penalized weighted 
median

42 1.466 (0.957–
2.247)

0.079

MR_Egger 42 1.432 (0.906–
2.266)

0.133

MR-PRESSO 42 1.236 (0.950–
1.522)

0.154

Fibrinogen
IVW 16 0.879 (0.042–

18.281)
0.933

Weighted median 16 0.438 (0.016–
11.771)

0.623

Penalized weighted 
median

16 0.438 (0.014–
13.561)

0.637

MR_Egger 16 1.663 (0.004–
746.651)

0.872

MR-PRESSO 16 1.221 (−1.893 to 
4.335)

0.901

CRP, C-reactive protein; IVW, inverse-variance weighted; MR, Mendelian randomization; 
WM, weighted median; PWM, penalized weighted median; OR, odds ratio; 
MR-PRESSO, pleiotropy residual sum and outlier; CI, confidence interval.

TABLE 2 | Heterogeneity tests and MR-Egger intercept of CRP and fibrinogen causally linked to ICH.

Outcome Exposure Intercept pa Cochran’s Q Q_df pb

ICH CRP −0.010 0.480 36.775 40 0.616
ICH Fibrinogen −0.008 0.815 28.028 15 0.045

aValue of p for MR-Egger intercept.
bValue of p for heterogeneity tests by performing inverse-variance weighted method.  
CRP, C-reactive protein; ICH, intracerebral hemorrhage.
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that elevated levels of fibrinogen did not exhibit suggestive 
evidence of association with HS (Alvarez-Perez et  al., 2011). 
In line with our results, no significant association between 

fibrinogen and ICH was observed in observational studies 
(Woodward et al., 2005; Welsh et al., 2008; Folsom et al., 2016). 
However, greater plasma fibrinogen concentration was associated 

A B

FIGURE 1 | Forest plots and scatter plots of CRP-associated SNPs potential effects on intracerebral hemorrhage (ICH). Forest plot (A) shows the odds ratio (OR) 
with a horizontal line representing 95% CI for the CRP-associated SNP allele for ICH risk. Scatter plot (B) shows the per-allele association with ICH risk plotted 
against the per-allele association with 1 SD of CRP (vertical and horizontal black lines presenting the 95% CI of OR for each SNP), with the slope of each line 
corresponding to estimated Mendelian randomization (MR) effect per method.

A B

FIGURE 2 | Forest plots and scatter plots of fibrinogen-associated SNPs potential effects on ICH. Forest plot (A) shows the odds ratio (OR) with a horizontal line 
representing 95% CI for the fibrinogen-associated SNP allele for ICH risk. Scatter plot (B) shows the per-allele association with ICH risk plotted against the per-allele 
association with 1 SD of fibrinogen (vertical and horizontal black lines presenting the 95% CI of OR for each SNP), with the slope of each line corresponding to 
estimated Mendelian randomization (MR) effect per method.
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with increased risk of ICH in these prospective studies 
(Sato et  al., 2006; Sturgeon et  al., 2008). These findings should 
be  interpreted cautiously as higher CRP and fibrinogen levels 
may reflect subclinical infection, chronic infectious diseases, 
preexisting disease, and socioeconomic or lifestyle characteristics. 
Besides, these opposite results may be  due to different study 
populations and ethnic groups (Iso et al., 2012; Shi et al., 2016).

The pathogenesis of the associations of CRP and fibrinogen 
with the risk of ICH is unclear. CRP plays a direct role in 
the pathogenesis of atherosclerosis and is upregulated significantly 
in atheromatous plaques, where it may promote low-density 
lipoprotein cholesterol uptake by macrophages (Torzewski et al., 
2000). Moreover, these inconsistent previous results may be due 
to reverse causal bias or confounders from atherosclerosis 
(Libby et  al., 2011) or inflammation (Hartwig et  al., 2017). 
One possible explanation is that the previous finding was a 
false-positive outcome because the effect of confounding was 
not controlled for, whereas in our studies, the genetic variants 
associated with exposure explained a larger proportion of 
variance, showing the true relationship of CRP and fibrinogen 
with ICH. Another possible explanation is that a mass of 
variants resulted in greater pleiotropy potential, which may 
have diluted the association in our analysis.

The major strengths of this study are using data from large-
scale GWAS studies and ISGC collaboration. We  used a 
two-sample MR approach assessing CRP and fibrinogen levels 
in relation to the risk of ICH in European-descent individuals, 
which reduces bias of population stratification. Moreover, in 
terms of the MR analysis, we  performed conventional IVW, 
WM, PWM, MR-PRESSO, and MR-Egger methods to avoid 
reverse causation and to reduce other confounding factors. 
Lastly, there is no strong evidence of pleiotropic effects for the 
genetic instruments, suggesting there was less likelihood of CRP 
and fibrinogen-related SNPs are associated with other phenotypes.

The present study also has some limitations. Interpreting the 
magnitude of estimates for the effect of CRP and fibrinogen on 
ICH risk requires caution. First, stratified analyses or analyses 
adjusted for other covariates were not possible on the account 
of using the available summary statistics datasets. In addition, 
the genetic IVs accounted for approximately 7.0% of the total 
variation in CRP and 3.7% of plasma fibrinogen variation (Sabater-
Lleal et  al., 2013; Ligthart et  al., 2018), which might be  low for 
the use as IVs, and any bias from weak instruments was in 
the direction of the null (Pierce and Burgess, 2013). Nevertheless, 
MR analysis likely reflects lifelong exposure to elevated CRP 
and fibrinogen levels. However, it is possible that only exposure 
in a specific window of time (e.g., early life) affects ICH risk. 
Lastly, we  used a relatively small sample size to explore the 
causal relationship between CRP, fibrinogen, and ICH with the 

power of less than 0.90. Thus, the nonsignificant but still suggestive 
associations between CRP and fibrinogen levels and ICH risk 
should be further validated in future studies with larger independent 
populations and larger datasets offering greater statistical power.

In conclusion, these MR analyses did not find evidence to 
support the causal relationship between CRP and fibrinogen 
with ICH. The results add to the burgeoning evidence that 
refutes the harmful role of CRP and fibrinogen in ICH. Further 
research is required to clarify this finding, using larger samples 
for undertaking “adjusted” MR analyses.
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Background: Recent studies have shown that the gut microbiota is closely related to
the pathogenesis of Inflammatory Bowel Disease (IBD), but the causal nature is largely
unknown. The purpose of this study was to assess the causal relationship between
intestinal bacteria and IBD and to identify specific pathogenic bacterial taxa via the
Mendelian randomization (MR) analysis.

Materials and Methods: MR analysis was performed on genome-wide association
study (GWAS) summary statistics of gut microbiota and IBD. Specifically, the TwinsUK
microbiota GWAS (N = 1,126 twin pairs) was used as exposure. The UK inflammatory
bowel disease (UKIBD) and the Understanding Social Program (USP) study GWAS
(N = 48,328) was used as discovery outcome, and the British IBD study (N = 35,289)
was used as replication outcome. SNPs associated with bacteria abundance at the
suggestive significance level (α = 1.0 × 10−5) were used as instrumental variables.
Bacteria were grouped into families and genera.

Results: In the discovery sample, a total of 30 features were available for analysis,
including 15 families and 15 genera. Three features were nominally significant, including
one family (Verrucomicrobiaceae, 2 IVs, beta = −0.04, p = 0.05) and two genera
(Akkermansia, 2 IVs, beta = 0.04, p = 0.05; Dorea, 2 IVs, beta = −0.07, p = 0.04). All of
them were successfully replicated in the replication sample (Verrucomicrobiaceae and
Akkermansia Preplication = 0.02, Dorea Preplication = 0.01) with consistent effect direction.

Conclusion: We identified specific pathogenic bacteria features that were causally
associated with the risk of IBD, thus offering new insights into the prevention and
diagnosis of IBD.

Keywords: mendelian randomization, gut microbiota, inflammatory bowel disease, ulcerative colitis, causal
relationship

Abbreviations: FDR, false discovery rate; GWAS, genome-wide association study; IBD, inflammatory bowel disease; IV,
instrumental variable; IVW, inverse-variance weighted; LD, linkage disequilibrium; MGWAS, microbiome genome-wide
association study; MR, Mendelian randomization; OTU, operational taxonomic unit; UKB, UK Biobank; USP, understanding
social program.
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INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic non-specific
inflammatory disease that invades colonic mucosa without
gender advantage (Matsuoka et al., 2018). The peak age of IBD is
between 20 and 40 years old (Loftus, 2004; Bernstein et al., 2006;
Cosnes et al., 2011). The main symptoms of IBD are abdominal
pain, diarrhea, mucous bloody stool, as well as extra-intestinal
symptoms. IBD is mostly common in developed countries
including North America, Europe, Australia, and New Zealand,
with incidence rate as high as 20–100 per million people. It is
estimated that as many as 1 million Americans suffer from IBD
(Cohen et al., 2010; Magro et al., 2012). In recent decades, the
incidence of IBD has been rising all over the world, especially in
East Asian (Loftus et al., 2007; Bengtson et al., 2009; Cosnes et al.,
2011; Molodecky et al., 2012).

The pathogenesis of IBD has not been fully elucidated. It
has a strong genetic determinant. For instance, first-degree
relatives of patients with IBD are 4 to 20 times more likely
to develop IBD (Kevans et al., 2016). Recent genome-wide
association studies (GWASs) have identified more than 200
responsible genomic loci associated with IBD (Turpin et al.,
2018). Despite these fruitful findings, its pathogenic mechanism
has not been fully understood yet. On the other hand,
gut microbiota may be related to the pathogenesis of IBD
(Nishida et al., 2018). Imbalance of gut microbiota coupled
with impaired intestinal bacterial clearance could enhance the
invasiveness of pathogens, disrupt intestinal immune response,
accelerate intestinal inflammation, and eventually lead to IBD.
In a recent controlled trial, patients in the fecal microbiota
transplantation group showed significant clinical improvement,
indicating that high-dose fecal microbiota transplantation is an
effective method for the treatment of active IBD (Paramsothy
et al., 2017). Another study indicates that the low abundance
of Phascolarctobacterium is positively correlated with the
occurrence of IBD (Bajer et al., 2017).

Although previous extensive studies have established
observational associations between gut microbiota and IBD
developing risk, the causal nature is largely unclear. Mendelian
randomization (MR) analysis is a statistical approach that aims
to infer causal relationship from observational association
results (Lee and Lim, 2019). With the rapidly increasing genetic
data at both microbiota and complex disease sides, MR has
been widely applied in recent years. MR approach has three
essential assumptions: (1) Instrumental variable (IV) is strongly
associated with exposure; (2) IV is not associated with any
confounders of exposure; and (3) The association of IV with
outcome is only through exposure. It has been used to infer
the causal relationship from gut microbiota to type 2 diabetes,
neurodegenerative diseases, and bone density (Burgess et al.,
2013; Bowden et al., 2015; Goodrich et al., 2016; Quigley, 2017;
Verbanck et al., 2018).

In the present study, in order to explore the causal relationship
from gut microbiota to IBD, and to identify specific pathogenic
bacteria taxa, we conducted a two-sample MR study based
on GWAS summary data. In brief, summary data from the
microbiota GWAS (MGWAS) of the TwinsUK study were used

as exposure, and GWAS summary statistics from two IBD GWAS
were used as discovery and replication outcomes.

MATERIALS AND METHODS

GWAS Summary Statistics
The MR analysis was performed on GWAS summary statistics of
both microbiota and IBD. All data were retrieved from previously
published studies that were released to the public.

The microbiota GWAS summary statistics from the TwinsUK
study (Goodrich et al., 2016) served as exposure. In brief,
The TwinsUK study collected 3,261 fecal samples from 1,126
twin pairs from the TwinsUK Registry in British. Microbiota
16S rRNA was sequenced using Illumina Miseq 2 × 250 bp
sequencing platform, followed by host genome genotyping using
Illumina HumanHap610 Quad Chip. For genotype imputation,
the 1,000 Genomes project (Phase 3) reference panel was used.
Sixty-one bacteria taxa were found to be associated with 307 host
SNPs with p-values ranging from 7.33 × 10−5 to 4.94 × 10−9

(Supplementary Table 1).
The discovery outcome sample UK IBD and Understanding

Social Program (UKIBD and USP) is a GWAS study based on a
general prospective population cohort of European ancestry with
12,924 cases and 35,391 controls. Host genome was genotyped
by the HumanCyto SNP-12 BeadChip and the Immunochip
arrays, and was imputed into the UK IBD Genetics Consortium
and UK10K Consortium reference panel (Burgess et al., 2013).
A total of 38 genomic loci were identified at the genome-wide
significance level (p < 5.0 × 10−8), increasing the number of
known IBD risk sites to 200.

The replication British IBD sample was the GWAS of
16,452 IBD British cases and 18,837 controls. Participants were
genotyped on the Human Core Exome v12.1, the Affymetrix
500K, or the Affymetrix 6.0 genotyping array.

Instrumental Variable Selection
The same criteria were used for IV selection in both discovery and
replication samples. IVs were grouped at family or genus level.
Specifically, a bacterial feature was defined as a family or genus.
SNPs associated with bacterial taxa in one feature were grouped
together for that feature. As a QC step, palindrome SNPs,
which are defined as SNPs with ambiguous strand information
(e.g., A/T or G/C polymorphisms), were removed. SNP-feature
association threshold was set to be 1.0 × 10−5. In order to
eliminate the effect of linkage disequilibrium (LD), SNPs within
each feature were clumped with PLINK (v1.9). The LD threshold
was set to be r2 < 0.1, and the clustering window was set to
be 500 kb. LD was estimated on the 1,000 Genome Project
sequencing data (Phase 3).

In order to minimize the effect of horizontal pleiotropy. MR-
PRESSO global test and outlier test were applied (Verbanck
et al., 2018). The MR-PRESSO outlier test calculates the p-value
for the significance of pleiotropy for each SNP, while the MR-
PRESSO Global test calculates the p-value for the overall level
of pleiotropy. Each individual SNP was deleted in turn and the
MR-PRESSO Outlier test was applied to the set of remaining
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SNPs (Verbanck et al., 2018). All significant SNPs were removed.
A MR-PRESSO Global test was finally performed to monitor
the overall pleiotropic effect. Non-significant SNPs were used for
subsequent MR analysis.

MR Analysis
Upon the selection of qualified SNPs, MR analysis was then
performed for a causal relationship from microbiota feature to
IBD risk. Specifically, each microbiota feature was tested for its
association. For features with multiple IVs, the inverse-variance
weighted (IVW) test (Burgess et al., 2013) was applied. For
features with only one IV, the Wald ratio test was applied. The
results of IVW were also cross-validated by three alternative
tests, including the MR-Egger regression (Bowden et al., 2015),
the weighted median estimator (Bowden et al., 2016) and the
MR-PRESSO (Verbanck et al., 2018).

Nominally significant results identified in the discovery
sample were subjected to be replicated in the replication sample,
with the same analysis procedures.

The horizontal heterogeneity effect was examined by the IVW
test and the MR-Egger regression. Meanwhile, a leave-one-out
sensitivity analysis was performed to monitor if significant
associations were dominated by a single SNP.

All the above analyses (including sensitivity analysis and
MR analysis) were implemented within the R packages

TwoSampleMR1(Hemani et al., 2018) and MRPRESSO2

(Sanna et al., 2019).

RESULTS

The flow chart of the present study is displayed in Figure 1.
In the discovery sample, there are 237 host SNPs that are
associated with gut microbiota features at the significance
threshold p < 1.0 × 10−5. After clumping, 168 and 80
SNPs are left for 15 families and 15 genera, respectively
(Supplementary Table 2). Two families with the largest number
of SNPs are Lachnospiraceae (51 SNPs) and Ruminococcaceae
(51 SNPs), followed by Bacteroidaceae (36 SNPs). There are
five families, Barnesiellaceae, Enterobacteriaceae, Rikenellaceae,
Streptococcaceae, and Veillonellaceae, each having only one SNP.
At the genus level, the genus with the largest number of SNPs is
Bacteroides (36 SNPs), followed by Faecalibacterium (9 SNPs) and
Coprococcus (6 SNPs). There are four genera each having only one
SNP, Anaerostipes, Dorea, Streptococcus, and Veillonella. Of note,
genus is a child taxon of family, therefore SNPs contained in both
features may overlap. For example, the genus Faecalibacterium is

1https://github.com/MRCIEU/TwoSampleMR
2https://github.com/rondolab/MR-PRESSO

FIGURE 1 | Diagrammatic description of MR analysis in the discovery and replication. (A) The whole workflow of MR analysis. (B) The main results and the change
in the number of SNPs.
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a child taxon of the family Ruminococcaceae. The SNPs in them
are partly identical.

For features containing multiple IVs, no outliers were
detected using the MR-PRESSO outlier test and no evidence
of horizontal pleiotropy (both MR-PRESSO Global test
p > 0.05/15 = p > 3.3 × 10−3 and MR-Egger regression
p > 0.05) was observed.

MR Analysis
In the discovery sample, after removing potentially pleiotropic
SNPs, one family and two genera are significant at the nominal
level (p < = 0.05): family Verrucomicrobiaceae (2 IVs, beta = 0.04,
p = 0.05), genus Akkermansia (2 IVs, beta = 0.04, p = 0.05) and
genus Dorea (1 IV, beta =−0.07, p = 0.04).

In sum, three features (one family++ two genera) are causally
associated with IBD in the discovery sample. These three features
were replicated in the British IBD replication sample. The same
IVs are available in the replication sample. Using the same IVW
test, the replication p-value is significant (p = 0.02) and the
effect direction is consistent for family Verrucomicrobiaceae and
genus Akkermansia (Table 1). For the other genus Dorea, only
one SNP rs10743315 is qualified as the IV. Using the Wald
ratio test, the MR p-value is 0.01, again with consistent effect
direction. Moreover, there is no evidence of heterogeneity at the
three identified features in both discovery and replication sample.
Detailed information of the 3 IVs is listed in Table 2.

DISCUSSION

In this study, we used MR analysis to evaluate the causal
relationship between gut microbiota and IBD. Using the
summary statistics of one microbiota GWAS and 2 IBD GWASs,
we identified and replicated three bacterial taxa, one family
Verrucomicrobiaceae and two genera Akkermansia and Dorea,
that may have causal relationship with IBD. Our study confirmed
that gut microbiota can aggravate IBD, suggesting that gut
microbiota plays a regulatory role in IBD.

The gut microbiota is an intricate and dynamic collective
of ecological microbial communities that are colonized in
the human gut, even called a “forgotten organ” (O’Hara
and Shanahan, 2006; Backhed et al., 2015). Gut microbiota

is not only an important part of immune and metabolic
health, but also regulate central nervous system and relevant
disorders, including movement disorders, neurodegenerative
diseases, behavioral disorders, neuroimmune-mediated diseases,
and Cerebrovascular accident (Strandwitz, 2018). More than 90%
of the gut microbiota that maintain intestinal health and balance
in adults consist of four phylums of Firmicutes, Bacteroides,
Actinobacteria, and Proteobacteria (Matsuoka and Kanai, 2015).
The large intestine comprises the densest and metabolism-active
microorganism in healthy individuals, which is predominated by
anaerobic microbiota, two phyla Firmicutes and Bacteroidetes,
apart from Actinobacteria, Proteobacteria, and Verrucomicrobia
(Eckburg et al., 2005).

The Dorea identified in this study belongs to the
Lachnospiraceae family, which mainly exists in the gut
microbiota of mammals and humans. One previous study
has established a link between Lachnospiraceae and IBD (Lee
et al., 2020). Another recent studies has also confirmed that
the level of Lachnospiraceae and butyric acid gets decreased in
IBD patients (Sasaki et al., 2019). The genus Akkermansia is
present abundantly in the human gastrointestinal tract where it is
believed to be a key symbiont member of the microbiota (Collado
et al., 2007; Derrien et al., 2008; van Passel et al., 2011; Clarke
et al., 2014; Guo et al., 2016). Extensive studies demonstrate that
the lower level of Akkermansia is found in patients with IBD
and other metabolic disorders, suggesting that Akkermansia may
have potential anti-inflammatory properties (Zhang et al., 2016).

Previous studies have shown that the imbalance of gut
microbiota is one of the pathogenic factors of IBD, but the
specific regulatory mechanism is yet poorly understood. One
possible mechanism, among others, is that the anti-inflammatory
activity of IBD model is related to the regulation of inflammatory
cytokines such as iNOS, MPO, IL-4, IL-10, EGF, MUC2, IL-
6 and so on (Ma et al., 2018). However, this needs to be
confirmed by further functional studies, which is beyond the
scope of this study.

Mendelian randomization analysis is an effective method to
explore causality from exposure to outcome while controlling
confounding factors. The MR analysis in this study has the
following advantages. First, it is a new attempt to speculate the
causal relationship from gut microbiota to IBD, which provides
a theoretical basis for the follow-up study of the regulation

TABLE 1 | MR analysis of gut microbiota on IBD in both discovery and replication samples.

Stage MR Tests Family Genus

Verrucomicrobiaceae Akkermansia Dorea

No. SNP bxy p-value No. SNP bxy p-value No. SNP bxy p-value

Discovery
IVW 2 0.04 0.05 2 0.04 0.05 – – –
Wald ratio test – – – – – – 1 −0.07 0.04

Replication
IVW 2 0.02 0.02 2 0.02 0.02 – – –
Wald ratio test – – – – – – 1 −0.08 0.01

No. SNP is the number of SNPs being used as IVs. bxy is the estimated effect coefficient. Significant p-values were marked in bold. IVW, inverse-variance weighted.
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mechanism of single strain on IBD. Second, it is based on publicly
available large-scale GWAS summary statistics, so it provides an
effective choice for mining reliable genetic information without
additional experimental cost.

Obviously, our study has certain limitations. First, due to
limited sample size, the genetic loci identified in gut microbiota
GWAS are still limited, which limits the statistical power of MR
analysis. Second, MR analysis based on one single IV is less
robust, which may bias the interpretation of our findings.

In conclusion, we evaluated the causal relationship from
gut microbiota to IBD and identified specific bacterial taxa
that may affect the pathogenesis of IBD by a two-sample MR
analysis using publicly available GWAS summary statistics. Our
results provide a basis for revealing the causal relationship from
gut microbiota to IBD, and thus offer new insights into its
development and treatment.
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Mendelian Randomization With
Refined Instrumental Variables From
Genetic Score Improves Accuracy
and Reduces Bias
Lijuan Lin1†, Ruyang Zhang1,2,3,4†, Hui Huang1, Ying Zhu1, Yi Li5, Xuesi Dong1,6,
Sipeng Shen1, Liangmin Wei1, Xin Chen1, David C. Christiani2,7,8, Yongyue Wei1,2,3,4* and
Feng Chen1,2,3,4*‡

1 Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China,
2 China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical
University, Nanjing, China, 3 Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation
Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China, 4 State Key Laboratory
of Reproductive Medicine, Nanjing Medical University, Nanjing, China, 5 Department of Biostatistics, University of Michigan,
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Mendelian randomization (MR) can estimate the causal effect for a risk factor on
a complex disease using genetic variants as instrument variables (IVs). A variety
of generalized MR methods have been proposed to integrate results arising from
multiple IVs in order to increase power. One of the methods constructs the genetic
score (GS) by a linear combination of the multiple IVs using the multiple regression
model, which was applied in medical researches broadly. However, GS-based MR
requires individual-level data, which greatly limit its application in clinical research.
We propose an alternative method called Mendelian Randomization with Refined
Instrumental Variable from Genetic Score (MR-RIVER) to construct a genetic IV by
integrating multiple genetic variants based on summarized results, rather than individual
data. Compared with inverse-variance weighted (IVW) and generalized summary-data-
based Mendelian randomization (GSMR), MR-RIVER maintained the type I error, while
possessing more statistical power than the competing methods. MR-RIVER also
presented smaller biases and mean squared errors, compared to the IVW and GSMR.
We further applied the proposed method to estimate the effects of blood metabolites on
educational attainment, by integrating results from several publicly available resources.
MR-RIVER provided robust results under different LD prune criteria and identified three
metabolites associated with years of schooling and additional 15 metabolites with
indirect mediation effects through butyrylcarnitine. MR-RIVER, which extends score-
based MR to summarized results in lieu of individual data and incorporates multiple
correlated IVs, provided a more accurate and powerful means for the discovery of novel
risk factors.

Keywords: Mendelian randomization, multiple correlated instrumental variables, genetic score, metabolomics,
educational attainment
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INTRODUCTION

Observational studies have long been utilized to detect
associations between the exposures of interest and the risk
of complex diseases. However, the estimated effects are typically
biased and causality cannot be directly inferred because of
unobserved confounders or reverse causality (Ebrahim and
Davey Smith, 2008). Double-blind randomized controlled trials
with perfect adherence, which use randomization allocation to
avoid potential confounding, are often considered as the gold
standard to infer causality (Bothwell et al., 2016). However,
logistical difficulties limit the use in real-world studies.

Instrumental variable (IV) analysis provides unbiased
causal estimates in the presence of observed and unobserved
confounders under certain assumptions (Burgess et al., 2017).
A valid IV should (1) be associated with the exposure of interest;
(2) not be associated with any confounders of the exposure–
outcome association; and (3) affect the outcome only through its
impact on the exposure of interest (Figure 1A; Martens et al.,
2006). Because human germline genetic variants usually form
at fertilization and remain unchanged after birth (Ference et al.,
2019), they are less likely to be correlated with the environmental
or clinical factors but can be correlated with susceptibility to
these factors that are associated with outcomes and thus are ideal
candidates for IVs.

Mendelian randomization (MR), which uses genetic variants
as IVs, has emerged recently as a powerful tool to estimate the
causal effects of risk factors in observational settings (Smith
and Ebrahim, 2003; Yavorska and Burgess, 2017; Burgess and
Labrecque, 2018; Bowden et al., 2019) and has been increasingly
used in genome-wide association studies (GWAS) (Welter et al.,
2014; Burgess et al., 2015; Pickrell et al., 2016). However, as
a single variant typically explains only a small proportion of
variability, a large sample size is often required to power the
traditional MR (Pierce et al., 2011). A variety of generalized MR
methods have been proposed to integrate results arising from
multiple IVs in order to increase power (Burgess and Thompson,
2013; Burgess et al., 2013). These methods include generalized
summary-data-based Mendelian randomization (GSMR) (Zhu
et al., 2018) and inverse-variance weighted method (IVW)
(Burgess et al., 2013, 2016). GSMR integrates estimates from
single IVs by using a generalized least-square approach (Zhu
et al., 2018), whereas IVW combines estimates by using weights
based on the variance–covariance matrix (Burgess et al., 2016).
However, these existing methods are based on the summarized
results of single-variant analysis and commonly prune IVs based
on linkage disequilibrium to obtain relatively independent IVs,
resulting in loss of information. Even with adjustment of the
correlation structure, the results may still be inefficient. Notably,
Burgess et al. (2017) introduced a multivariate regression method,
which regresses the exposure factor on multiple IVs at the first
stage to construct genetic scores (GSs). GS can be viewed as a
linear combination of multiple IVs weighted by the strength of
the association between an IV and the exposure, adjusted for all
the other IVs. In the ensuing MR analysis, GS will be passed
along as a single IV. The method was recently implemented in
a study of ACLY and cardiovascular disease which incorporated

multiple germline genetic variants (IVs) to construct GS as
single IV and further inferred the causal relationship between
ACLY inhibitors and the reduced risk of cardiovascular disease
(Ference et al., 2019).

Thus, we propose an alternative method called Mendelian
Randomization with Refined Instrumental Variable from Genetic
Score (MR-RIVER) (Figure 1B) to construct a genetic score
summarizing multiple genetic variants based on summarized
results rather than individual-level data. Our method, which
accounts for correlations among multiple genetic variants by
borrowing linkage disequilibrium (LD) information from public
databases (such as 1000 Genomes Project), provides a useful
framework to integrate estimates obtained by using various
genetic IVs and improves the performance of the summarized
genetic score for the correlated genetic variants. Simulation
studies suggested improved performance of our proposed
method, compared to GSMR and IVW. We further applied the
proposed method to estimate the effects of blood metabolites
on educational attainment, by integrating results from several
publicly available resources (Shin et al., 2014; Okbay et al., 2016).

METHOD

MR-RIVER Algorithm
We propose a method to infer the causal relationship between
risk factor X (e.g., blood metabolites) and outcome Y (e.g., years
of schooling) given a set of IVs, denoted by Z = (Z1, Z2, . . .,
Zp) (e.g., a set of genetic variants). The major components of
our framework are depicted in Figure 1A. More specifically,
we use bXZi , along with standard error se(bXZi), to quantify the
association of each Zi with the risk factor X from the traditional
single-locus association analysis model, and likewise for bYZi and
se
(
bYZi

)
for each Zi with the outcome Y.

The unified weighted GS incorporating multiple IVs could be
estimated by the linear combination of multiple IVs:

GS =
p∑

i=1

b̃XZiZi (1)

Where b̃XZi denotes the direct effect of Zi on X after controlling
for the other IVs that derived from multivariable regression.
However, in practice, the published-available summarized data
were derived from single-variant analysis; it is unlikely to get
genetic association estimates from a multivariable regression
model in a large independent dataset due to issues of practicality
and confidentiality of data sharing on such a large scale. Here,
we propose an estimator by borrowing the idea of coefficient
decomposition to estimate b̃XZi by using summarized results
rather than individual-level data.

Specifically, under the assumption that (X, Z)
follow a multivariate normal distribution, regressing
X on each Zi will yield an estimate of bXZi . Without
loss of generality, we assume that there is a linear
relationship between X and Z. As E (X|Zi) = b0 +

bXZiZi, bXZi represents the total effect of Zi on X.
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FIGURE 1 | Diagram of Mendelian randomization and flowchart of the proposed MR-RIVER method. (A) Mendelian randomization inferring the causal association of
the exposure and outcome: (i) IVs are associated with the exposure X; (ii) IVs and outcome Y are independent, conditional on exposure X and unmeasured
confounders U; (iii) IVs and confounders U are independent. (B) Flowchart of the proposed MR-RIVER method for multiple genetic variants in causal inference.

After adjusting the effect of all the other IVs, the
relationship between X and Zi can be expressed as
E
(
X|Z1, · · · , Zp

)
= b0 + b̃XZ1Z1 + · · · + b̃XZpZp , where

b̃XZi is the direct effect of Zi on X under the control
of other IVs. Therefore, bXZi can be decomposed into

the direct effect and indirect effect via other correlated
IVs:

bXZi = b̃XZi +
p∑
j6=i

b̃XZjθZjZi (2)
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Here, θZjZi is the regression coefficient of Zj on Zi, and b̃XZi
is the direct effect of Zi on X, after controlling for the other IVs.
Equation 2 can be rewritten as:

b̃XZ = θ−1bXZ (3)

where bXZ is the p-length vector containing bXZi , b̃XZ is the
vector of refined coefficients b̃XZi , and θ is a p × p matrix
with θZj Zi being the ij-th entry. It follows that θZiZj =

ρZjZi

√
var

(
Zj
) /

var (Zi) where ρZj Zi is the correlation between
Zj and Zi, var(Zi) is the variance of Zi. var(Zi) and ρZjZi
can be obtained from the public GWAS resources (e.g., 1000
Genomes Project).

We note that Eq. 3 is crucial as it enables us to compute GS
defined in Eq. 1 with only summary data, in lieu of individual-
level data. With GS as a single IV, we can estimate the association
between the risk factor X and outcome Y with:

β̂XY =
βYGS

βXGS
(4)

=
cov(Y,GS)
cov(X,GS)

=
cov(Y,

∑p
i b̃XZiZi)

cov(X,
∑p

i b̃XZiZi)

=

∑p
i b̃XZi cov(Y,Zi)∑p
i b̃XZi cov(X,Zi)

=

∑p
i b̃XZibYZi var(Zi)∑p
i b̃XZibXZi var(Zi)

As mentioned by Burgess et al. (2016), var (Zi) is approximately
proportional to 1

/
var

(
bYZi

)
; thus, Eq. 4 can be simplified as:

β̂XY =

∑p
i b̃XZibYZi

/
var

(
bYZi

)
∑p

i b̃XZibXZi
/
var

(
bYZi

) (5)

The asymptotic standard error for β̂XY can be estimated by the
delta method (Thomas et al., 2007):

se
(
β̂XY

)
=

√√√√√√
∑p

i
∑p

j ρZiZjb̃XZi b̃XZj
/(

se
(
bYZi

)
se
(
bYZj

))
(∑p

i b̃XZiXZj
/
var

(
bYZi

))2

(6)
The association between X and Y can be further tested by using
the Wald test statistic u = β̂XY

/
se
(
β̂XY

)
, which asymptotically

follows a standard normal distribution under the null hypothesis.
We stress that, though Eqs.5, 6 resemble the estimator

proposed in Burgess et al. (2017), our estimator differs from
that in Burgess et al.’s (2017) required individual data, while
our estimator, with the introduction of the refined estimates in
Eq. 3, can be computed even with the summary data. Therefore,
our estimator is applicable in more broad settings, where only
summary data are available. Simulations have confirmed the
utility of our method.

Design of Statistical Simulations
Two sets of simulation studies were designed to investigate MR-
RIVER.

Evaluation of the Estimates of the Refined
Coefficients of IVs on X
We generated six IVs, Z1, Z2, . . ., Z6, from a multivariate normal
distribution MVN (0,6), where6 is a correlation matrix with an
equal correlation structure. We varied the correlation coefficient
and set it to be 0, 0.1, 0.3, 0.5, 0.7, and 0.9, corresponding
to various scenarios: from the independent case to the highly
correlated case. We generated X using the following models:

Xi =
∑6

j=1 Zijb̃j + εXi
b̃j ∼ N (µ, 1) , µ = −1, −0.5, 0.5, 1, 1.5, 2
εXi ∼ N (0, 1)

(7)

The sample size was fixed at 1,000. In addition, we simulated
5,000 additional individuals to provide an external correlation
structure for IVs. For each simulation configuration, 2,000
datasets were produced.

We first regressed X on each Zj separately to obtain the
summarized effect of Zj on X, and based on these results, we
applied Eq. 2 to obtain the estimates of the refined coefficients.
The estimated refined coefficients, along with the corresponding
standard errors, were compared to those from traditional GWAS
summarized results under different correlation structures and
effect sizes of Z.

Investigation of the Statistical Properties of
MR-RIVER
Let Xi and Yi denote the exposure and outcome variables of
the ith subject, and Zij the jth IV (j = 1, . . ., J). The data were
generated from the following model:

Zi ∼ MVN (0, 6) , bj ∼ U (0, 0.5)
Xi =

∑J
j=1 Zijbj + εXi

Yi = XibXY + εYi

where εXi ∼ N
(

0, var
(∑J

j=1 Zijbj
) (

R−2
ZX − 1

))
and εYi ∼ N

(
0, var

(
XibXY

) (
R−2
XY − 1

))
(8)

where6 is the correlation matrix of IVs with an equal correlation
structure. We varied the correlation parameter from 0 to 0.9
by 0.1. Each IV explains 0.005 of the variance of X, and we
considered J = 5, 10, 15, 20. Moreover, R2

ZX is the proportion
of variance of X explained by all IVs, which was set to be 0.025,
0.05, 0.075, and 0.1, while R2

XY is the proportion of variance of
Y explained by X, which was set to be 0.05, 0.1, 0.15, and 0.2.
Sample sizes for the IV-exposure association study (N1) and the
IV-outcome association study (N2) were set to be 1,000 and 1,500,
respectively. In addition, 5,000 (N3) individuals were generated
to provide an external correlation structure for genetic variants.

For each parameter configuration, a total of 2,000 datasets
were produced. Under all the scenarios examined, MR-RIVER
was found to outperform GSMR and IVW by maintaining the
Type I error, possessing more statistical power, as well as having
smaller biases and mean squared errors.
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FIGURE 2 | Comparison of refined and traditional coefficients under different correlation structures. Expected values are the regression coefficients obtained from
the multivariable regression model with all the variables used to generate dependent variable Y plotted against predicted values obtained from the refined method
(refined coefficients) and traditional single-locus analyses (traditional coefficients). Refined and traditional coefficients were compared with the bias from expected
coefficients under different correlation structures through a regression model. Red equation represents the relationship between expected coefficients and refined
coefficients, and green equation represents traditional coefficients.

RESULTS

Statistical Properties of Refined
Coefficients
We investigated the accuracy of refined coefficients. With the
obtained correlation structure of IVs from the internal analysis

set, the estimated refined coefficients (along with the standard
errors) based on the summarized results were in consistent
with the corresponding estimates from multivariable regression
(Supplementary Figures 1A,B), suggesting that the estimates of
the refined coefficients were unbiased.

As the key of the approach lies in borrowing the correlation
information from public resources, we further evaluated
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FIGURE 3 | Comparison of refined and traditional coefficients under different effect sizes. Expected values are the regression coefficients obtained from the
multivariable regression model with all the variables used to generate dependent variable Y plotted against predicted values obtained from the refined method
(refined coefficients) and traditional single-locus analyses (traditional coefficients). Refined and traditional coefficients were compared with the bias from expected
coefficients under different effect sizes through a regression model. Red equation represents the relationship between expected coefficients and refined coefficients,
and green equation represents traditional coefficients.

the method by obtaining the correlation structure from the
simulated external samples. According to different levels of
correlation among IVs, refined coefficients outperformed
traditional coefficients obtained from single-locus analysis,
especially when the correlations among IVs were relatively
high (Figure 2). Similarly, under the specific correlation
structure (with a correlation coefficient of 0.5), refined
coefficients remained approximately unbiased, while traditional

coefficients showed increased biases with increased effect
sizes (Figure 3).

Statistical Properties of MR-RIVER
With various strengths of correlations among IVs, MR-RIVER
maintained the type I error at the 0.05 level, compared to the
IVW (with type I error around 0.04) and GSMR (with the most
conservative control of the type I error) (Figure 4A). The results
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FIGURE 4 | Statistical properties of MR methods under different correlations. Correlation between IVs plotted against: (A) type I error under the null hypothesis; (B)
performance of power under the alternative hypothesis with bxy = 1; (C) bias under the alternative hypothesis; and (D) mean square error.

held when we varied the sample size (Supplementary Figure 2A)
or the number of IVs (Supplementary Figure 3A). Further,
increasing correlation strengths among IVs (Figure 4B), or
increasing sample size (Supplementary Figure 2B), or increasing
the numbers of IVs (Supplementary Figure 3B) led to increased
power for all MR methods. Overall, the power of MR-RIVER
was higher than that of GSMR and IVW under different
parameter settings.

Estimates of bxy from the three MR methods were
approximately unbiased, while the biases of the MR-
RIVER and IVW estimates were lower than that of
the GSMR estimate (Figure 4C). The bias increased
with the increased effect size (Supplementary Figure 4)
and so was true for the MSE (Figure 4D). MR-RIVER
and IVW had lower biases and MSEs, compared
to GSMR.
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FIGURE 5 | Study workflow for educational attainment MR analysis.

REAL DATA APPLICATION

Motivation
Educational attainment is moderately heritable and has been
recognized as a proxy phenotype for intelligence, cognition,
and neuropsychiatric disorders (Berry et al., 2006; Esch
et al., 2014). Discovery of the causal factors linking to the
educational attainment could shed light on the biological
pathways underlying human behavioral and health-related
outcomes (Rietveld et al., 2013). Blood metabolites, which closely
represent the physiological status of an organism, have garnered
significant interest in biomedical research (Simpson et al., 2016).
However, few studies have focused on a causal relationship
between metabolites and educational attainment in the presence
of multiple IV variables. Taking advantage of the proposed
MR-RIVER, this application aims to systematically evaluate the

causal relationship between blood metabolites and educational
attainment using multiple GWAS summary results.

Materials
Genome-wide association studies summary results for
educational attainment were obtained based on various studies
from the Social Science Genetic Association Consortium1 (Berry
et al., 2006; Rietveld et al., 2013). Educational attainment was
measured as the year of schooling completed (EduYears) among
293,723 individuals (with a mean of 14.3 years) (Supplementary
Table 1). Approximately, 9.3 million SNPs were included in the
association analysis, and minor allele frequencies were obtained
from the 1000 Genomes Project. Details of the SNPs included in
our analysis are displayed in Supplementary Table 2.

1https://www.thessgac.org/data
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FIGURE 6 | MR-RIVER and GSMR analysis for causal association between metabolites and educational attainment. Relationship between individual metabolites
with –log10 (P-value) of the association. Upper yellow values represent MR-RIVER results, and lower blue values represent GSMR results. Associated metabolites are
annotated.
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Summary results of quantitative trait locus (QTL) analysis of
SNPs on corresponding metabolites were obtained from 7,824
European adult individuals (Supplementary Table 3) (Shin et al.,
2014). Specifically, the metabolite QTL (mQTL) data contained
all of the summarized association statistics for 529 metabolites
with P-values less than 1 × 10−52.A total of 196 metabolites out
of 529 (37%) were unknown because their chemical identity was
not yet determined at the time of analysis. Detailed information
of metabolites can be found in Supplementary Table 4.

MR Analysis Results
We applied the method to explore the causal effect of blood
metabolites on educational attainment as depicted in Figure 5.
Based on assumption (1) of IV, SNPs were required to have an
mQTL relationship with the corresponding metabolites with P-
values less than 5 × 10−8. As a result, 9,472 SNPs were selected
as IVs, matched with 260 metabolites. Among these, 9,329 SNPs
were available in the educational attainment GWAS.

Causal inference for each metabolite on quantitative education
years was evaluated through MR-RIVER and GSMR. To obtain
sufficient IVs to increase the power of MR, IVs were pruned by
LD at 0.5; The HEIDI-outlier test was used to detect pleiotropic
SNPs and remove them from the MR analysis; see Figure 6.
Bonferroni correction was used to control for false positives. MR-
RIVER identified three metabolites associated with education
years: butyrylcarnitine (bxy = −0.043, P = 1.08 × 10−7), 1,5-
anhydroglucitol (1,5-AG) (bxy = −0.192, P = 1.77 × 10−7),
and homocitrulline (bxy = −0.269, P = 1.47 × 10−4). GSMR
identified biliverdin (bxy = −0.028, P = 2.92 × 10−15), 1,5-AG
(bxy =−0.183, P = 5.83× 10−8), and an unknown metabolite, X-
12092 (retention time, 1.130; mass-to-charge ratio, 144.2; spectra,
84.2:0.8) (bxy = 0.028, P = 3.85 × 10−7) (Table 1). In addition,
sensitivity analyses with different LD prune criteria (0.1–0.7, in
0.1 increments) showed robust results for MR-RIVER, but not
for GSMR (Supplementary Tables 5, 6).

We performed additional analyses to explore whether the
remaining metabolites affected education years through the
above-identified candidate metabolites. SNPs associated with the

2http://metabolomics.helmholtz-muenchen.de/gwas

TABLE 1 | Relative bias of imputed datasets with three imputation methods.

Method Metabolite bxy se of bxy P-value

MR-RIVER Butyrylcarnitine −0.0430 0.0081 1.08 × 10−07

1,5-Anhydroglucitol
(1,5-AG)

−0.1916 0.0367 1.77 × 10−07

Homocitrulline −0.2687 0.0708 1.47 × 10−04

GSMR Biliverdin −0.0284 0.0036 2.92 × 10−15

1,5-Anhydroglucitol
(1,5-AG)

−0.1838 0.0339 5.83 × 10−08

X-12092 0.0283 0.0056 3.85 × 10−07

bxy : causal effect of metabolite and educational attainment.
se of bxy : standard error of causal effect.
P value: P-value of causal effect.
X-12092: unknown metabolite (retention time, 1.130; mass-to-charge ratio, 144.2;
spectra, 84.2:0.8).

remaining metabolites were treated as IVs to infer potential
causal associations between the identified metabolites and
remaining metabolites (Figure 7A). The results indicated
28 additional metabolites were associated with the three
candidate metabolites. Among these, 24 metabolites (including
six unknown metabolites) were associated with butyrylcarnitine,
three unknown metabolites were associated with 1,5-AG, and
one unknown metabolite was associated with homocitrulline
(Supplementary Table 7).

Further, mediation analysis was used to evaluate potential
metabolic regulatory pathways for education years by Sobel
test (Baron and Kenny, 1986). The 15 metabolites indirectly
mediated the effect on education years through butyrylcarnitine
(Figure 7B and Supplementary Table 7). Most metabolites
were located in the carnitine metabolism pathway (8/15, 53.0%).
Blood metabolic biomarkers overall formed a potential causal
network (Figure 7C).

DISCUSSION

We proposed an improved MR approach, MR-RIVER, to
combine summarized results of multiple IVs into a single GS
and to estimate the unbiased causal effect of a risk factor
on an outcome. The publicly accessible summary-level data
were obtained from single-locus analyses without consideration
of the correlation between IVs. MR-RIVER provides a novel
way to refine the effect size of genetic variants account for
the correlation based on summary data and makes it efficient
to perform summarized data genetic score MR when the
correlation between IVs are unignorable. MR-RIVER closely
maintains the type I error around the nominal level while it
has higher power, lower bias, and smaller variation compared
to GSMR and IVW.

Genome-wide association studies uses original GWAS
summarized results for IV exposure and IV outcome obtained
from single-locus analyses and then derives the causal effect
by the generalized least-square approach weighted by the
variance–covariance matrix to adjust for correlations among
IVs (Zhu et al., 2018). MR-RIVER instead first modifies the
summarized results, accounting for correlations among IVs, and
then integrates the results. Thus, there are several differences
between MR-RIVER and GSMR. First, MR-RIVER adjusts
summarized results for each genetic IV by borrowing external
LD information to obtain more accurately estimate IV-exposure
effect—therefore, MR-RIVER has an advantage in accuracy.
Second, MR-RIVER aggregates multiple IVs by weighted linear
combination weighted by refined coefficients, which reduces the
dimension for IVs and simplifies the following calculation.

Interestingly, MR-RIVER and IVW showed similar
performance in bias and MSE. If the weights used to aggregate
multiple IVs are equal to the original GWAS summary results
(b̃XZi = bXZi in Eq. 5), then MR-RIVER is the same as IVW.
On the one hand, estimates of MR-RIVER are approximately
identical to IVW because point estimates are robust toward
the weights (Supplementary Figure 5A). On the other
hand, different weights result in different standard errors
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FIGURE 7 | Diagram of MR analysis between metabolites and mediation analysis. (A) MR inferring the causal association of remaining metabolites (X ) on previously
identified metabolites (Y ). Mediation analysis of the rest of metabolites on risk of education years through the identified metabolites. (B) Metabolites that indirectly
mediate the effect on education years through butyrylcarnitine in mediation analysis. b_CI represents effect of metabolites on butyrylcarnitine and 95% confidence
interval (95% CI). IE_CI represents indirect effect of metabolites on education years and 95% CI, and IE_pval represents P-values. (C) Causal network of blood
metabolites on education years. Blue circles indicate metabolites that are directly identified, while yellow circles have indirect effect through blue metabolites. Red
lines represent positive effects, and blue lines indicate negative effects.

(Supplementary Figure 5B), which in turn lead to different
statistics (Supplementary Figure 5C). This may explain why
the bias and MSE of MR-RIVER and IVW are similar, but

the performance of power and type I error is different. To
summarize, MR-RIVER improves upon IVW and is powerful to
infer a causal relationship between an exposure and outcome.
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There has been much discussion on the potentials and
limitations of MR, as the IV assumptions cannot be fully tested
(VanderWeele et al., 2014; Paternoster et al., 2017). Horizontal
pleiotropy is a common phenomenon in the human genome
that some genetic variants affect the outcome through other
traits or pathways rather than exclusively through the risk factor
(Solovieff et al., 2013). It is a violation of the instrumental variable
assumptions and may induce a major source of potential bias
in causal inference. There are several methods are proposed
to detect pleiotropy (Slob and Burgess, 2020). The MR-Egger
method is able to assess the pleiotropic effects as well as to provide
a consistent estimate of the causal effect (Bowden et al., 2017),
while the estimates were generally imprecise with low power
(Slob and Burgess, 2020). The HEIDI-outlier test was proposed
to detect heterogeneity at multiple correlated instruments (Zhu
et al., 2018). It will be powerful and valuable when only some
proportion of the SNPs have a horizontal pleiotropy effect. In
our proposed method, we ensembled the HEIDI-outlier test
to detect potential pleiotropy and then remove them from the
MR-RIVER analysis.

Notably, after GWAS significant threshold screening,
LD prune, and HEIDI-outlier filtering, MR-RIVER analysis
suggested three causal metabolites that are associated with
education years. The first metabolite is butyrylcarnitine,
classified as an acylcarnitine. Previous studies have shown
that abnormally increased levels of acylcarnitines, including
butyrylcarnitine, are associated with fatty acid oxidation
disorders (Jones et al., 2010). Elevated butyrylcarnitine
concentration in plasma is associated with short-chain
acyl-CoA dehydrogenase deficiency (van Maldegem et al.,
2006), which may cause failure to thrive, developmental and
cognitive delay, seizures, and neuromuscular (Corydon et al.,
2001). Moreover, fatty acid oxidation disorders may lead to
mitochondrial dysfunction and further affect the energy supply
of the brain (Kölker et al., 2004; Wajner and Amaral, 2015).
Therefore, high levels of acylcarnitines may be involved in
potential metabolic regulatory pathways affecting cognitive
status or brain energy supplement and, in turn, increased
education years (mannose→butyrylcarnitine→education
years). Mannose easily crosses the blood–brain barrier and is
converted to fructose-6-phosphate that enters the glycolytic
pathway (Sharma et al., 2014). Cerebral tissue can utilize
mannose directly and rapidly from the blood to restore
or maintain normal metabolic functions in the absence of
glucose (Sloviter and Kamimoto, 1970). Taken altogether,
mannose levels appear to be a potential beneficial factor for
education years.

The second metabolite, 1,5-AG, is a monosaccharide
structurally similar to glucose and is a validated marker of
short-term glycemic control (Buse et al., 2003). Low levels of
1,5-AG, indicative of glycemic peak, are associated with dementia
and cognitive decline (Rawlings et al., 2017). Finally, elevated
homocitrulline, the third metabolite, is structurally similar to
but one methylene group longer than citrulline, and impairs
bioenergetics in the brain cortex, by reducing velocity of the
citric acid cycle and creatine kinase activity. Consequently, it
decreases energy production and transfer (Viegas et al., 2009).

Therefore, administration of 1,5-AG and homocitrulline may
improve educational attainment.

In conclusion, the proposed MR-RIVER method
appears to outperform the existing commonly used MR
methods. With publicly accessible summary-level data,
MR-RIVER provides a more accurate and powerful
mean for novel discoveries and identifies several blood
metabolites as biomarkers and interventional targets for
educational attainment.
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Although asthma is one of the most common chronic diseases throughout all age
groups, its etiology remains unknown, primarily due to its heterogeneous characteristics.
We examined the causal effects of various environmental factors on asthma using
Mendelian randomization and determined whether the susceptibility to asthma due to
the causal effect of a risk factor differs between asthma subtypes, based on age of
onset, severity of asthma, and sex. We performed Mendelian randomization analyses
(inverse variance weighted, weighted median, and generalized summary-data-based
Mendelian randomization) using UK Biobank data to estimate the causal effects of 69
environmental factors on asthma. Additional sensitivity analyses (MR-Egger regression,
Cochran’s Q test, clumping, and reverse Mendelian randomization) were performed to
ensure minimal or no pleiotropy. For confirmation, two-sample setting analyses were
replicated using BMI SNPs that had been reported by a meta-genome-wide association
study in Japanese and European (GIANT) populations and a genome-wide association
study in control individuals from the UK Biobank. We found that BMI causally affects the
development of asthma and that the adult-onset moderate-to-severe asthma subtype
is the most susceptible to causal inference by BMI. Further, it is likely that the female
subtype is more susceptible to BMI than males among adult asthma cases. Our findings
provide evidence that obesity is a considerable risk factor in asthma patients, particularly
in adult-onset moderate-to-severe asthma cases, and that weight loss is beneficial for
reducing the burden of asthma.

Keywords: asthma, environmental factors, body mass index, mendelian randomization, moderate-to-severe
asthma

Abbreviations: AM, adult-onset mild; AM-S, adult-onset moderate-to-severe; BMI, body mass index; BTS, British Thoracic
Society; CI, confidence interval; CM, child-onset mild; CM-S, child-onset moderate-to-severe; FC, female control; FAM,
female adult-onset mild; FAM-S, female adult-onset moderate-to-severe; GIANT Consortium, The genetic investigation of
anthropometric traits consortium; GSMR, generalized summary-data-based mendelian randomization; GWAS, genome-
wide association study; HEIDI, heterogeneity in dependent instrument; IVW, inverse-variance weighted; MR, mendelian
randomization; MC, male control; MAM, male adult-onset mild; MAM-S, male adult-onset moderate-to-severe; OR, odds
ratio; SD, standard deviation; SNP, single-nucleotide polymorphism.
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INTRODUCTION

Asthma is one of the most common chronic diseases, affecting
children and adults; yet, much remains to be determined with
regard to its etiology (Subbarao et al., 2009). Approximately
300 million persons have been afflicted by asthma worldwide
(Dharmage et al., 2019), and it is estimated that 250,000 people
die prematurely each year due to asthma (Bousquet et al.,
2010). If current trends continue, roughly 100 million more
persons will develop asthma by 2025 (Dharmage et al., 2019).
However, asthma has considerable heterogeneity, including
its pathophysiological mechanisms, environmental exposure,
comorbidities, underlying disease severity, age of onset, medical
accessibility, psychological factors, and medical responsiveness
(Bousquet et al., 2010). For this reason, the identification of causal
risk factors in a specific asthma case has been a challenging task.

Asthma is characterized by variable narrowing of the airway
due to the interaction of airway inflammation and remodeling.
Several studies have classified asthma by various clinical criteria,
such as age of onset (early onset, late onset) (Ferreira et al.,
2019), disease severity (mild, moderate-to-severe) (Shrine et al.,
2019), and allergy (atopic, non-atopic) (Zhu et al., 2020). In
addition, a gender-specific asthma cluster analysis has reported
heterogeneous characteristics of asthma between sexes (Hsiao
et al., 2019). T-helper type 2 (Th2) inflammation is regarded as
the central molecular mechanism of asthma, and based on Th2
profiles, asthma is classified as Th2-high and Th2-low (Woodruff
et al., 2009; Sterk and Lutter, 2014).

The severe form of asthma is aggravated by marked thickening
of the airway walls and widespread inflammation (Busse et al.,
2000). These changes can reduce lung function and cause the
airway to be narrowed rapidly due to smooth muscle contraction
(Busse et al., 2000). Thus, individuals with severe asthma
present with symptoms that are distinct from those in mild
asthma patients, including debilitating lung function, frequent
exacerbation of asthma, and increased hospital admissions
despite significant use of medicines (corticosteroids) (Shrine
et al., 2019). Classification of asthma by phenotype provides a
foundation on which to understand disease causality and develop
management approaches that improve the control of asthma
while avoiding adverse effects and decreasing the risk of serious
outcomes (Moore et al., 2010).

Many environmental factors, such as BMI (Taylor et al., 2008),
smoking (Hedman et al., 2011), physical inactivity (Cordova
et al., 2017; Vlashki et al., 2018), and dietary habits (Protudjer
et al., 2012), have been epidemiologically and clinically related
to the occurrence or severity of asthma. But, observational
studies encounter limitations in determining a causal link, due
to their various potential confounding factors (Sun et al., 2020).
Randomized controlled trials (RCTs), if appropriately conducted,
are the standard for determining causal inferences in health
sciences. However, RCTs are expensive and time-consuming,
involving thousands of patients, some of whom might experience
unwanted side effects of drugs (Roberts, 2018).

With some similarities to RCTs, Mendelian randomization
(MR) is an alternative approach for establishing evidence of
causal relationships for which RCTs are practically unavailable

(Smith and Ebrahim, 2003). MR is a method from genetic
epidemiology that uses randomly inherited genetic instruments
[single-nucleotide polymorphisms (SNPs)] that are robustly
associated with a risk factor as proxies for environmental
exposure to assess causal inferences for the effects of exposure
on an outcome (Smith and Ebrahim, 2003; Rosoff et al., 2019).
The increasing availability of summary-level data from genome-
wide association studies (GWASs) in the public domain allows
MR to make inferences on causality by integrating summary-level
GWAS data from various studies (Bowden et al., 2016).

The aim of our study was to estimate causal inferences of
environmental factors on asthma using MR and to examine
the differences in the susceptibility to asthma with regard to
the causal effect of an environmental factor between asthma
subtypes, classified by the age of onset, disease severity, and sex.

MATERIALS AND METHODS

Study Population and Design
The UK Biobank is a population-based cohort that recruited over
487,409 individuals aged 40–69 years from 2006–2010 (Collins,
2012). For quality control of the samples, we used the following
filter parameters of the Neale lab1: PCA calculation filter for
selection of unrelated samples; sex chromosome filter for removal
of aneuploidy; filter of principal components (PCs) for European
sample selection to determine British ancestry; and filters for
selection of self-reported ‘white British,’ ‘Irish,’ and ‘White.’
The UK Biobank has been granted ethical approval to collect
data on participants by the North West Multicentre Research
Ethics Committee, the National Information Governance Board
for Health & Social Care, and the Community Health
Index Advisory Group.

Asthma cases (n = 35,926) were determined as those that had
been diagnosed with asthma by a doctor and had checked for
age of onset. Participants who had been diagnosed with chronic
obstructive pulmonary disease (COPD) were excluded. Controls
(n = 227,924) were defined those who had not been diagnosed
with asthma, rhinitis, eczema, allergy, or emphysema/chronic
bronchitis. In addition, those who had diagnostic records of hay
fever, allergic rhinitis, emphysema, chronic bronchitis, or COPD
and those who had J40-47 records in the ICD 10 codes (the 10th
revision of the International Statistical Classification of Diseases
and Related Health Problems) were excluded (Supplementary
Material and Supplementary Figure 1).

For the study of specific asthma subtypes, cases were divided
into 4 groups by the age of onset and disease severity: child-onset
mild (CM, n = 9,758), child-onset moderate-to-severe (CM-S,
n = 1,875), adult-onset mild (AM, n = 19,415), and adult-onset
moderate-to-severe (AM-S, n = 4,878). Individuals with an age
of onset before 19 years were defined as child-onset asthma cases
(Ferreira et al., 2019), and those with an age of onset after 20 years
were considered adult-onset asthma. Moderate-to-severe asthma
cases were selected from individuals for whom, in addition to
the conditions above, medication information was available and

1https://github.com/Nealelab/UK_Biobank_GWAS
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the British Thoracic Society (BTS) stage 3-5 criteria were met, as
described (Shrine et al., 2019). Asthma cases that did not satisfy
these conditions were classified as mild asthma.

To determine whether gender differences had causal effects,
adult-onset asthma cases and controls were separated by gender:
female adult-onset mild (FAM, n = 12,208), female adult-onset
moderate-to-severe (FAM-S, n = 3075), male adult-onset mild
(MAM, n = 7207), male adult-onset moderate-to-severe (MAM-
S, n = 1803), female control (FC, n = 119,515), and male control
(MC, n = 108,409).

Genetic Instrumental Variants for
Environmental Factors and Asthma
We studied 93 environmental factors in 18 categories that were
associated with asthma (Supplementary Table 1, references
attached). Association test was performed between asthma and
each of the 93 factors by logistic linear regression in R, with
adjustments for age, sex, and each environmental factor. As a
result, 69 environmental factors were associated with asthma
[P < 5.38E-04 (0.05/93)] (Supplementary Table 2). For each
of the 69 environmental traits, we extracted SNPs that were
significantly associated with each factor (e.g., SNP-environmental
factor) (P < 5E-08) using genome-wide summary statistics,
provided by the Neale lab UK Biobank GWAS summary data
(Supplementary Table 3)2. The SNPs-environmental factor were
subject to clumping (r2 > 0.05, 1-Mbp boundary distance) using
FUMA (Watanabe et al., 2017) to ensure the independence of
environmental factor-associated loci. As an additional quality
control of SNPs for Mendelian randomization, we removed
strand-ambiguous SNPs (e.g., A/T and C/G, MAF > 0.42) (Tang
et al., 2020) and SNPs in the MHC region (chromosome 6:25-
34M) due to their strong pleotropic effects (Supplementary
Figure 2 and Supplementary Table 4; Zhu et al., 2020).

For asthma, we performed a genome-wide association analysis
using UK Biobank data. Genotyping imputation was performed
using the UK10K Project and 1000 Genome Project Phase
3 reference panels (UK10K Consortium, Walter et al., 2015;
Genomes Project et al., 2015). General quality control procedures
for exclusion (P for Hardy-Weinberg equilibrium test <1E-
06, missing genotype call rate >0.05, minor allele frequency
<0.01) were applied to 7,402,791 SNPs. In total, 5,664,578 SNPs
were retained for further analysis. A GWAS for asthma was
performed using PLINK 1.9, with adjustments for age, sex,
genetic array, and 10PCs. A list of independent asthma-associated
loci (e.g., asthma SNPs) were determined by clumping (P < 5E-
08, r2 > 0.05, 1-Mbp boundary distance), and SNPs that were
strand-ambiguous and in the MHC region were excluded. The
resulting quantile-quantile (QQ) plot and Manhattan plot are
shown in Supplementary Figure 3. Thus, 142 SNPs were selected
for genetic instruments of asthma (Supplementary Table 5).

For the two-sample MR setting of BMI → asthma, we
extracted summary association statistics for the 158 genome-
wide significant SNPs (P < 5E-08) that were associated with
BMI in a trans-ethnic meta-GWAS of 173,430 Japanese subjects

2http://www.nealelab.is/uk-biobank

(the BioBank Japan project, the Japan Public Health Center-
based Prospective Study, and the Tohoku Medical Megabank
Project) and 339,224 Europeans (the GIANT consortium) (total
Nmax = 480,438) (Akiyama et al., 2017). Of 158 BMI SNPs, we
removed SNPs with palindromes (e.g., A/T and C/G) (Tang et al.,
2020) and SNPs in the MHC region (chromosome 6:25-34M) in
the MR analyses (Zhu et al., 2020), retaining 149 SNPs.

To avoid the biases of one-sample settings, such as reverse
causality and overfitting, we performed a GWAS for BMI only in
controls (n = 227,924) from the UK Biobank data. The resulting
genome-wide significant BMI SNPs (P < 5E-08) were subject
to clumping using FUMA (Watanabe et al., 2017). The 170
independent BMI SNPs were further subject to the removal
of SNPs with strand ambiguity, SNPs in the MHC region,
and SNPs that were associated with asthma, leaving 159 SNPs
(Supplementary Table 10). The resulting quantile-quantile (QQ)
and Manhattan plots are shown in Supplementary Figure 4.

Mendelian Randomization
To assess the causal relationship between environmental factors
and asthma, we applied 3 methods: inverse variance weighted
(IVW) random effects model (Burgess et al., 2013), weighted
median regression (Bowden et al., 2016; Censin et al., 2017),
and generalized summary-data-based Mendelian randomization
(GSMR) (Zhu et al., 2018). The causal effect estimate by
IVW is liable to be biased if any SNP exhibits horizontal
pleiotropy. As a complementary method to reduce heterogeneity,
we performed GSMR, in which genetic variants were pruned at
a high threshold of r2 < 0.05 (Pasman et al., 2019) and filtered
for pleiotropic effects on exposure and outcome [Heterogeneity
In Dependent Instrument (HEIDI) filtering] (Zhu et al., 2018).
The weighted median method provides an unbiased estimate
of the causal effect even when up to 50% of the information
comes from invalid genetic variants (Bowden et al., 2016;
Censin et al., 2017).

To ensure minimal or no pleiotropy in our results, we
performed additional sensitivity analyses. First, we estimated the
intercept by MR-Egger regression, with an intercept that differs
significantly from 0 (P < 0.05) as an indication of residual
heterogeneity due to directional pleiotropy (Bowden et al., 2015).
Next, we evaluated the residual heterogeneity using Cochran’s
Q statistic, with significant heterogeneity (P < 0.05) due to
horizontal pleiotropy. Then, we removed SNPs with any evidence
of pleiotropy by clumping both environmental factor and asthma
SNPs (r2 > 0.05, 1-Mbp boundary distance) and excluded SNPs
that were potentially associated with asthma (P< 0.05/number of
environmental factor SNPs) for forward MR and SNPs that were
linked to environmental factors (P < 0.05/number of asthma
SNPs) for reverse MR and then repeated the MR analyses.
Finally, only unidirectional causal effects were determined by
performing the reverse MR of asthma → environmental factor
(P < 5E-08).

The estimates from the IVW, weighted median, and GSMR
were defined as causal effects only when meeting significance
after Bonferroni correction for multiple tests as the threshold
for the true causal estimate (P < 0.05/number of environmental
factors x number of asthma subtypes).
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Statistical Analysis
For the genome-wide association analyses, we used a logistic
regression model and assumed an additive genetic model of
trait status with genotype dose, fitted using the R package and
adjusted for covariates, including age, sex, environmental factor,
and PC10s. t-tests were used to compare characteristics between
control and asthma cases using R.

We used the TwoSampleMR package for performing
Mendelian randomization methods, such as IVW, weighted
median, and MR-Egger; the gsmr package for GSMR, the qqman
package for drawing Manhattan plot and quantile-quantile (QQ)
plots; and the ggplot2 package for drawing odds ratio plots,
available in the R stats package, version 3.6.33.

RESULTS

Characteristics of Study Population for
Asthma Case and Control Subjects
The basic characteristics of the 263,850 UK Biobank participants
(35,926 asthma cases and 227,924 controls) in this study are
described in Table 1. BMI, obesity, eosinophil parameters,
and female frequency were significantly higher in asthma
cases than controls, and there was no difference in smoking
status between groups.

Effects of 69 Environmental Factors on
Asthma
Forward MR analyses (environmental factor → asthma) were
conducted using IVW, weighted median, and GSMR for 69
factors (Figure 1 and Supplementary Table 4). Factors that
were related to white blood cells and anthropometry (leukocyte,

3www.r-project.org

TABLE 1 | Characteristics of the asthma cases and controls from the UK Biobank.

Control Asthma

(n = 227,924) (n = 35,926)

Age (years) * 57.00 ± 7.91 55.86 ± 8.19

Onset age (years) – 31.07 ± 18.71

Male (%) * 108,409 (47.56%) 15,562 (43.32%)

BMI (kg/m2) * 27.26 ± 4.59 28.10 ± 5.28

Obesity (%) * 52,342 (22.96%) 10,468 (29.14%)

Hay fever (%) – 16,304 (45.38%)

Eosinophil percentage (%) * 2.39 ± 1.67 3.25 ± 2.39

Eosinophil count (109 cells/L) * 0.16 ± 0.12 0.23 ± 0.18

Medicine use (%) – 16,933 (47.13%)

Smoking status 193,627 30,389

Never smoker 90,354 (46.66%) 14,086 (46.35%)

Previous smoker 80,157 (41.40%) 12,962 (42.65%)

Current smoker 23,116 (11.94%) 3,341 (10.99%)

Obesity, BMI ≥ 30 kg/m2; eosinophil percentage, proportion of eosinophils in the
leukocytes; and medicine use is used to distinguish between mild and moderate-
to-severe asthma.
*P < 7.14E-03 (0.05/7).

eosinophil parameters, BMI, and waist circumference) satisfied
the threshold by Bonferroni correction for multiple tests
(P < 7.25E–04, 0.05/69) in all 3 methods. The intercept P-value
from the MR-Egger regression suggests that there was relatively
balanced pleiotropy (P = 0.08 for leukocyte count, P = 0.27 for
eosinophil count, P = 0.47 for eosinophil percentage, P = 0.88
for BMI, and P = 0.19 for waist circumference). However, the
Cochran’s Q values indicated significant residual heterogeneity
in all 4 analyses (Q = 394.9, P-value = 1.65E–30 for leukocyte
count; Q = 1095.7, P-value = 3.22E–149 for eosinophil count;
Q = 1181.2, P-value = 6.41E–169 for eosinophil percentage;
Q = 383.4, P-value = 8.25E–14 for BMI; and Q = 309.6,
P-value = 2.46E–10 for waist circumference), which must be
improved to determine the true causal effects.

For the sensitivity analyses, we clumped all 873 environmental
factor SNPs (123 for leukocyte count, 138 for eosinophil count,
131 for eosinophil percentage, 200 for BMI, 170 for waist
circumference, and 111 for asthma; r2 < 0.05, 1-Mbp boundary
distance; Supplementary Table 15). In addition, we removed
environmental factor SNPs that were associated with asthma
[P < 5.05E–04 (0.05/99) for leukocyte count SNPs, P < 5.32E–
04 (0.05/94) for eosinophil count SNPs, P < 6.17E–04 (0.05/81)
for eosinophil percentage SNPs, P < 2.99E–04 (0.05/167) for
BMI SNPs, and P < 5.21E–04 (0.05/96) for waist circumference
SNPs] and asthma SNPs that were related to environmental
factors [P < 5.38E–04 (0.05/93) for asthma SNPs]. RE–analysis
of MR using SNPs that were retained after pruning showed
that the overall heterogeneity improved, as indicated by the
lower Cochran’s Q values (Figure 2A and Supplementary
Table 6; Q = 221.7, P-value = 1.03E–12 for leukocyte count;
Q = 173.1, P-value = 3.61E–09 for eosinophil count; Q = 98.0,
P-value = 8.01E–04 for eosinophil percentage; Q = 254.7,
P-value = 4.48E–06 for BMI; and Q = 167.0, P-value = 5.33E–06
for waist circumference). These additional analyses suggest that
eosinophil count, eosinophil percentage, and BMI have causal
inferences on asthma, whereas the effects of leukocyte count and
waist circumference are not significant, because they failed to
reach the threshold for significance [P < 1.00E–02 (0.05/5)].

To determine unidirectional causal effects (environmental
factor → asthma), we conducted reverse MR analyses (asthma
→ environmental factor) using asthma SNPs (Figure 2B and
Supplementary Table 6). We found that asthma had causal
effects on leukocyte count, eosinophil count, and eosinophil
percentage, whereas asthma did not causally affect BMI or waist
circumference. The reverse MR results indicate that only BMI
causally increases the risk of asthma.

Effects of BMI on the Susceptibility of
Asthma Subtypes
Asthma is a highly heterogeneous disease that can be classified
by various clinical criteria (Haldar et al., 2008; Zhu et al., 2020).
Recent studies indicate that specific asthma subtypes are related
to metabolic traits, such as obesity (Jeong et al., 2017). In our
study, asthma cases were divided into 4 subsets, based on 2
criteria, combining age of onset and severity: child-onset mild
(CM), child-onset moderate-to-severe (CM-S), adult-onset mild
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FIGURE 1 | MR estimates for associations between 5 environment factors and asthma. The odds ratio is plotted as dots with the 95% confidence interval. White
dots are the IVW method, and black dots are the GSMR method. The P value indicates significance when P < 7.25E-04 (0.05/69) by Bonferroni correction. The Q
value by Cochran’s Q statistic indicates residual heterogeneity in the MR estimates.

(AM), and adult-onset moderate-to-severe (AM-S) (Table 2).
The child- and adult-onset moderate-to-severe subgroups had
significantly higher BMI, obesity, and eosinophil parameters than
their respective mild subgroups (Table 2).

Mendelian randomization (BMI → asthma) was performed
using 4 asthma subtypes. As a result, the causal impact of BMI
on asthma was stronger in moderate-to-severe versus mild cases
before sensitivity analysis, with the adult-onset moderate-to-
severe subtype the most susceptible to BMI ([CM versus CM-S]
IVW OR/CI95 = 1.02/0.99–1.05 versus 1.10/1.04–1.17, weighted
median = 1.02/0.98–1.06 vs. 1.09/1.00–1.20, GSMR = 1.09/0.97–
1.23 vs. 1.62/1.24–2.12; [AM vs. AM-S] IVW = 1.06/1.03–
1.08 vs. 1.12/1.07–1.16, weighted median = 1.02/0.99–1.05
vs. 1.11/1.05–1.17, GSMR = 1.271.17–1.39 vs. 1.67/1.41–1.97;
Supplementary Tables 7, 15). Additional sensitivity analyses
improved the heterogeneity, as evidenced by the Cochran’s Q
values, establishing BMI as having its strongest effect on asthma
in the adult-onset moderate-to-severe subgroup ([CM vs. CM-
S] IVW OR/CI95 = 1.02/0.99–1.05 vs. 1.12/1.05–1.20, weighted
median = 1.01/0.97–1.06 vs. 1.10/1.00–1.22, GSMR = 1.09/0.96–
1.25 vs. 1.74/1.30–2.32; [AM vs. AM-S] IVW = 1.06/1.03–1.08 vs.
1.10/1.06–1.15, weighted median = 1.02/0.99–1.06 vs. 1.09/1.03–
1.16, GSMR = 1.25/1.14–1.38 vs. 1.51/1.26–1.82; Figure 3 and
Supplementary Table 7). The child-onset moderate-to-severe
and adult-onset mild subgroups were marginally susceptible to
asthma, based on the IVW and GSMR analyses, but not weighted
median analysis, suggesting the weak causality of BMI. These
findings suggest that the causality of BMI in asthma increases as
the severity of asthma rises in child- and adult-onset asthma cases
and that the causal effect of BMI is the strongest in the adult-onset
moderate-to-severe subgroup.

Gender-Specific Effect of BMI in Adult
Onset Asthma Cases
Observational studies have suggested that BMI causes the
development of adult-onset asthma and that the effect of BMI on

asthma is greater in female versus male adults (Chen et al., 2002;
Guerra et al., 2002; Beuther and Sutherland, 2007), although
the gender-specific effect of BMI on asthma is unknown in
children (Castro-Rodriguez et al., 2001; Gold et al., 2003). To
study the sex-specific causality of BMI, we divided adult-onset
asthma cases into 4 subgroups and controls into 2 subgroups by
gender: male adult-onset mild (MAM, n = 7207), male adult-
onset moderate-to-severe (MAM-S, n = 1803), female adult-onset
mild (FAM, n = 12,208), female adult-onset moderate-to-severe
(FAM-S, n = 3075), male control (MC, n = 108,409), and female
control (FC, n = 119,515). FAM-S and MAM-S patients had
higher BMI, obesity, and eosinophil parameters compared with
FAM and MAM cases, respectively (Table 3).

Prior to the sensitivity analysis, the results in the adult
subgroups showed that female adult-onset cases were more
susceptible to the causal effect of BMI than male cases ([MAM
versus FAM] IVW OR = 1.05 versus 1.06, weighted median
OR = 1.05 versus 1.04, GSMR OR = 1.26 versus 1.35; [MAM-
S versus FAM-S] IVW OR = 1.08 versus 1.14, weighted
median OR = 1.11 versus 1.09, GSMR OR = 1.43 versus 1.83;
Supplementary Tables 8, 15). All 3 MR results in the female
moderate-to-severe subgroup support the robust inference of
BMI on asthma, with the heterogeneity by Cochran’s test
implying little pleiotropy. In the sensitivity analyses using
clumping of SNPs, the susceptibility to asthma in the female
moderate-to-severe cases was marginally significant, because the
weighted median regression failed to satisfy the threshold by
Bonferroni correction (P < 1.25E-02, 0.05/4) (Figure 4 and
Supplementary Table 8).

Effect of BMI on Asthma and Its
Subtypes in Two-Sample Mendelian
Randomization
To confirm the causal inference of BMI on asthma subtypes
without the bias that often occurs in a one-sample setting, we
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FIGURE 2 | MR estimates for associations between 5 environmental factors and asthma after sensitivity analysis. (A) Forward MR: environmental factors→ asthma.
(B) Reverse MR: asthma→ environmental factors. The odds ratio is plotted as dots with the 95% confidence interval. White dots are the IVW method, and black
dots are the GSMR method. The P value indicates significance when P < 1.00E-02 (0.05/5) by Bonferroni correction. The Q value by Cochran’s Q statistic indicates
residual heterogeneity in the MR estimates.

performed two-sample MR using BMI SNPs from another data
resource. A total of 149 BMI SNPs were selected from the 158
genome-wide significant SNPs (P < 5E-08) that were associated
with BMI in a trans-ethnic meta-GWAS of Japanese individuals
(the BioBank Japan consortium) and Europeans (the GIANT
consortium) (total Nmax = 480,438) (Akiyama et al., 2017).
Then, we excluded 2 SNPs that were potentially associated with
asthma [P < 3.36E-4 (0.05/149)] to mitigate heterogeneity as a
sensitivity analysis.

The MR (BMI → asthma) results of the two-sample setting
using 147 BMI SNPs were consistent with the one-sample
MR result, implicating BMI as a causal risk factor for asthma
[IVW OR = 1.18 (1.07–1.30), P = 5.97E–04; weighted median
OR = 1.14 (1.01–1.29), P = 3.68E–02; GSMR OR = 1.17 (1.08–
1.28), P = 2.15E–04; Figure 5A and Supplementary Table 9].
Further, in the two-sample MR of the 4 asthma subtypes, the
most susceptible was adult-onset moderate-to-severe asthma
[IVW OR = 1.35 (1.11–1.64), P = 2.81E–03; weighted median
OR = 1.52 (1.12–2.06), P = 6.76E–03; GSMR OR = 1.40

(1.13–1.73), P = 2.24E–03; Figure 5B and Supplementary
Table 9], replicating the one-sample MR findings.

To avoid reverse causality or overfitting bias in the one-sample
setting, we performed an additional MR analysis using 170 BMI
SNPs that were acquired from a genome-wide association analysis
with BMI alone in controls (no asthma cases) from the UK
Biobank. SNPs were further subjected to clumping by FUMA
and exclusion of SNPs that were strand-ambiguous and in
the MHC region and SNPs that were potentially associated
with asthma (P < 3.05E-4 (0.05/164)) as a sensitivity analysis.
Ultimately, 159 BMI SNPs were used for the MR (BMI →
asthma). The results confirmed BMI as a causal factor for asthma
[IVW OR = 1.16 (1.07–1.26), P = 2.89E–04; weighted median
OR = 1.18 (1.07–1.32), P = 1.71E–03; GSMR OR = 1.18 (1.11–
1.26), P = 4.37E–08; Figure 5C and Supplementary Table 11].
Additional MR analyses of the 4 asthma subtypes confirmed
that the adult-onset moderate-to-severe cases were the most
susceptible to the development of asthma due to the causal effect
of BMI [IVW OR = 1.37 (1.16–1.62), P = 2.60E–04; weighted
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TABLE 2 | Characteristics of the asthma subtypes and controls from the UK Biobank.

Control Child-onset Child-onset Adult-onset Adult-onset

mild moderate-to-severe mild moderate-to-severe

(n = 227,924) (n = 9,758) (n = 1,875) (n = 19,415) (n = 4,878)

Age (years) 57.00 ± 7.91 53.86 ± 8.31a 55.74 ± 8.45ab 56.10 ± 8.01ad 58.96 ± 7.42ace

Onset age (years) – 8.62 ± 4.88 8.16 ± 5.37b 41.41 ± 12.13d 43.62 ± 11.92ce

Male (%) 108,409 (47.56%) 5,608 (57.47%)a 944 (50.35%)ab 7,207 (37.12%)ad 1,803 (36.96%)ace

BMI (kg/m2) 27.26 ± 4.59 27.30 ± 4.78 28.26 ± 5.33ab 28.22 ± 5.32ad 29.11 ± 5.83ace

Obesity (%) 52,342 (22.96%) 2,224 (22.73%)a 533 (28.43%)ab 5,907 (30.42%)ad 1,804 (36.98%)ace

Hay fever (%) – 5,350 (54.68%) 1,099 (58.61%)b 7,896 (40.67%)d 1,959 (40.16%)ce

Eosinophil percentage (%) 2.39 ± 1.67 3.32 ± 2.47a 3.74 ± 2.84ab 3.13 ± 2.23ad 3.39 ± 2.60ace

Eosinophil count (109 cells/L) 0.16 ± 0.12 0.23 ± 0.17a 0.27 ± 0.23ab 0.22 ± 0.17ad 0.25 ± 0.20ace

Medicine use (%) – 3,020 (30.86%) 1,875 (100%) 7,160 (36.88%) 4,878 (100%)

Smoking history 193,627 8,081a 1,628a 16,389d 4,291ace

Never smoker 90,354 (46.66%) 4,078 (50.46%) 846 (51.97%) 7,503 (45.78%) 1,659 (38.66%)

previous smoker 80,157 (41.40%) 3,076 (38.06%) 615 (37.78%) 7,198 (43.92%) 2,073 (48.31%)

Current smoker 23,116 (11.94%) 927 (11.47%) 167 (10.26%) 1,688 (10.30%) 559 (13.03%)

Onset age: child-onset <20, adult-onset ≥20; Obesity, BMI ≥30 kg/m2; Eosinophil percentage, proportion of eosinophils in the leukocytes; and Medicine use is used
to distinguish between mild and moderate-to-severe asthma. aP < 7.81E–04 (0.05/64) compared with the asthma control group, bP < 7.81E–04 (0.05/64) vs. the
child-onset mild group, cP < 7.81E–04 (0.05/64) vs. the child-onset moderate-to-severe group, dP < 7.81E-04 (0.05/64) vs. the child-onset mild group, eP < 7.81E–04
(0.05/64) vs. the adult-onset mild group.

FIGURE 3 | MR estimates of associations between BMI and asthma subtypes. The odds ratio is plotted as dots with the 95% confidence interval. White dots are the
IVW method and black dots are the GSMR method. The P value indicates significance when P < 1.25E-02 (0.05/4) by a Bonferroni correction. The Q value by
Cochran’s Q statistic indicates residual heterogeneity in the MR estimates.

median OR = 1.60 (1.25–2.06), P = 2.41E–04; GSMR OR = 1.36
(1.17–1.58), P = 8.84E–05; Figure 5D and Supplementary
Table 11].

To determine the effect of childhood BMI on asthma in our
setting, we extracted 25 childhood BMI SNPs with associated
statistical values from a previous study (Vogelezang et al.,
2020). These BMI SNPs were subject to the removal of SNPs
with strand ambiguity (e.g., A/T and C/G), SNPs in the
MHC region (chromosome 6:25-34M), SNPs with no proxy
(r2 > 0.8) in UKB, and SNPs that were associated with asthma
(P < 2.17E–03, 0.05/23) leaving 21 SNPs. Two-sample MR
was performed using these 21 childhood BMI SNPs, and the
results are described in Supplementary Table 12. The estimates
of childhood BMI in total asthma showed significant effects
by IVW (OR/CI95 = 1.11/1.03-1.19, P-value = 3.43E–03) and

GSMR (OR/CI95 = 1.12/1.04–1.20, P-value = 3.43E-03) but
not by the weighted median method (OR/CI95 = 1.09/0.99–
1.21, P-value = 0.07). However, no significant causal effect
was found between childhood BMI and the 4 asthma subtypes
by IVW, GSMR, and weighted median, consistent with the
previous report (Au Yeung et al., 2021). Based on the previous
study (Au Yeung et al., 2021) and our result, childhood
BMI has a weak causal impact on asthma but not on any
specific subtype.

DISCUSSION

In this study, we used MR to examine the causal relationship
between 69 environmental factors and asthma and noted the
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TABLE 3 | Characteristics of the adult-onset asthma cases and controls from the UK Biobank.

Environment Male Male adult-onset Male adult-onset Female Female adult-onset Female adult-onset

control mild moderate-to-severe control mild moderate-to-severe

(n = 108,409) (n = 7,207) (n = 1,803) (n = 119,515) (n = 12,208) (n = 3,075)

Age (years) 57.21 ± 8.00 56.29 ± 8.19a 59.71 ± 7.36ab 56.81 ± 7.83 55.99 ± 7.89a 58.51 ± 7.42abc

Onset age – 41.74 ± 12.22 44.65 ± 12.03b – 41.21 ± 12.06d 43.01 ± 11.81bc

BMI (kg/m2) 27.80 ± 4.12 28.33 ± 4.50a 28.92 ± 4.87ab 26.77 ± 4.93 28.16 ± 5.75a 29.21 ± 6.33ab

Obesity (%) 26,944 (24.85%) 2,156 (29.92%)a 625 (34.66%)ab 25,398 (21.25%) 3,751 (30.73%)ad 1,179 (38.34%)abc

Hay fever (%) – 2,618 (36.33%) 571 (31.67%)b – 5,278 (43.23%)d 1,388 (45.14%)bc

Eosinophil percentage (%) 2.57 ± 1.75 3.40 ± 2.31a 3.64 ± 2.69a 2.22 ± 1.57 2.97 ± 2.17ad 3.25 ± 2.54abc

Eosinophil count (109 cells/L) 0.17 ± 0.13 0.24 ± 0.17a 0.27 ± 0.22ab 0.15 ± 0.12 0.21 ± 0.16ad 0.24 ± 0.19abc

Medicine use (%) – 2,640 (36.63%) 1,803 (100%) – 4,520 (37.02%) 3,075 (100%)

Smoking history 92,770 6,103 1,600ab 100,857 1,0286ad 2,691abc

Never smoker 37,483 (40.40%) 2,373 (38.88%) 448 (28.00%) 52,871 (52.42%) 5,130 (49.87%) 1,211 (45.00%)

previous smoker 42,282 (45.58%) 3,058 (50.11%) 916 (57.25%) 37,875 (37.55%) 4,140 (40.25%) 1,157 (43.00%)

Current smoker 13,005 (14.02%) 672 (11.01%) 236 (14.75%) 10,111 (10.03%) 1,016 (9.88%) 323 (12.00%)

Age onset: adult-onset ≥20; Obesity, BMI ≥ 30 kg/m2; Eosinophil percentage, proportion of eosinophils in the leukocytes; and Medicine use are used to distinguish
between mild and moderate-to-severe asthma. aP < 8.93E–04 (0.05/56) vs. its respective gender control, bP < 8.93E–04 (0.05/56) vs. its gender-specific mild group,
cP < 8.93E–04 (0.05/56) vs. the male moderate-to-severe group, dP < 8.93E-04 (0.05/56) vs the male mild group.

FIGURE 4 | MR estimates of associations between BMI and adult-onset asthma subtypes. The odds ratio is plotted as dots with the 95% confidence interval. White
dots are the IVW method, and black dots are the GSMR method. The P value indicates significance when P < 1.25E-02 (0.05/4) by Bonferroni correction. The Q
value by Cochran’s Q statistic indicates residual heterogeneity in the MR estimates.

following: BMI is a causal risk factor for asthma without reverse
causation; the effect of BMI on asthma is strongest in the adult-
onset moderate-to-severe asthma subgroup; and finally, female
subtypes are more prone to asthma due to increased BMI than
male subtypes in adults.

Epidemiological and genetic studies that used MR have
suggested that BMI is causal factor in asthma (Skaaby et al.,
2018; Xu et al., 2019; Sun et al., 2020). In addition, BMI is a
risk factor for late-onset asthma (onset age >16) and atopic
asthma (Zhu et al., 2020). Our study confirms that BMI is a
risk factor for asthma and demonstrates that the causal effect of
BMI increases significantly in individuals with child- and adult-
onset asthma, exacerbating the asthma. Further, the MR result
on the stronger effect of BMI in female subgroups is consistent

with observational studies (Chen et al., 2002; Guerra et al., 2002;
Beuther and Sutherland, 2007).

In the Epidemiology and Natural History of Asthma:
Outcomes and Treatment Regimens (TENOR) study on severe
asthma, approximately 57% of individuals with severe asthma
were obese, implying a high prevalence of obesity in severe
asthma cases compared with an obesity rate of 35% in non-
asthma adults in the general United States population (Schatz
et al., 2014). In our study, the obesity rate in the adult moderate-
to-severe subgroup was significantly higher than in the adult
mild subgroup by 7%. Another study found that lung function
improved after weight loss in obese patients with asthma,
suggesting that greater obesity is related to the severity of asthma
(Hakala et al., 2000). There are several potential mechanisms
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FIGURE 5 | Two-sample MR estimates of BMI→ asthma (A,C) and BMI→ 4 asthma subtypes (B,D). (A,B) BMI SNPs were obtained from a meta-GWAS of
Japanese (JBB) and European individuals (GIANT). (C,D) BMI SNPs were obtained from a GWAS that was performed in only controls (no asthma) from the UK
Biobank. The IVW and GSMR methods are indicated by white and black dots, respectively. The Q value by Cochran’s Q statistic indicates residual heterogeneity in
the MR estimates.

by which BMI is linked to asthma. Obesity has been related to
multiple traits of asthma, including eosinophil levels (Kim et al.,
2014), lung function (Salome et al., 2010), and allergy (Luo et al.,
2013). Studies have suggested that adipokines, such as leptin and
adiponectin, are associated with the development and severity
of asthma and mediate the exacerbation of asthma through the
regulation of eosinophil survival and trafficking (Kim et al., 2014;
Zhang et al., 2017; Zheng et al., 2018).

We initially aimed to identify environmental factors that cause
the development of asthma. However, of 69 factors, only BMI
was identified as a causal influence in asthma. We assume that
our study was limited in obtaining the appropriate instruments
for certain phenotypes. Environmental data from self-reported
questionnaires (e.g., dietary intake, neuroticism, alcohol,
smoking, sociodemographic factors, and physical activities) are
prone to responder bias (Rask-Andersen et al., 2017). Thus,
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the presence of an interviewer is recommended to reduce
the likelihood of responder bias when obtaining self-reported
questionnaire data.

Further, certain anthropometric factors (e.g., fat and non-fat
mass) were measured with a less accurate method (bioelectric
impedance using a Tanita BC418MA body composition analyzer;
UK Biobank) than such techniques as dual-energy x-ray
absorptiometry (Speed et al., 2019). Our primary results show
that fat mass and percentage, but not fat free mass, are
causal factors in asthma by IVW and GSMR (Supplementary
Table 4). However, the weighted median method does not
support the causal effect of fat mass and percentage. A valid
association analysis using precise values can improve the
statistics of MR analyses.

Our MR analyses of 69 environmental factors → asthma
used only the UK Biobank data as a resource. The one-
sample MR setting has several benefits: MR and epidemiological
findings can be compared in the same individuals, the validity
of causal inferences is unaffected by differences in population
characteristics when using 2 samples, and harmonization of
genetic variants across datasets is not required (Burgess et al.,
2019). However, a limitation of the one-sample analysis is
that if the links between genetic instrument and exposure are
weak, the causal estimation might suffer from reflection of the
confounded associations between exposure and outcome and
inflation of false positive (type 1 error) rates (Burgess et al.,
2019). Bias in a one-sample analysis with a binary disease
outcome can be avoided, such that genetic associations with
the exposure are estimated in the controls only; consequently,
genetic associations with exposure and outcome will not be
correlated (Gharahkhani et al., 2019; Hindy et al., 2019;
Wade et al., 2019). We replicated the two-sample MR
analyses of BMI → asthma using BMI SNPs from another
source of GWAS summary statistics and BMI SNPs from
a GWAS only in the control, confirming the one-sample
analysis findings.

Although our study stratified asthma by age of onset and
sex, concerns remain, because these stratifications were not
applied when obtaining genome-wide association statistics on
BMI. Genetic studies on BMI have suggested significantly positive
genetic correlations between childhood and adult BMI (rg = 0.76,
P-value = 1.45E-112) (Vogelezang et al., 2020) and between male
and female BMI (rg = 0.879, P-value = 5.9E-4) (Yang et al., 2015).
Thus, it is likely that depending on the instrument source, BMI
might have disparate causal effects on asthma subtypes. Notably,
a recent study that used the IVW method confirmed the causal
impact of adult BMI on asthma, whereas the possible impact of
childhood BMI on the risk of asthma was less clear, mediated
predominantly by its relationship with adult BMI, implicating
that children with high BMI can reduce their risk of asthma
by becoming normal-weight adults. This study was limited, in
that there were far fewer childhood BMI SNPs (N = 14 and
5) than adult BMI SNPs (N = 323 and 115), decreasing the
power of the MR estimation (Au Yeung et al., 2021). Our two-
sample MR using 25 childhood BMI SNPs (Vogelezang et al.,
2020) supports a causal relationship with asthma. However, based
on the previous study (Au Yeung et al., 2021) and our result,

childhood BMI has a weak causal impact on asthma but not on
any specific subtype.

There is much evidence that suggests gender-specific effects of
BMI on asthma. Previous epidemiological reports have suggested
that the incidence and symptoms of adult asthma are higher
and more severe in women than in males (Chen et al., 2003;
Zein and Erzurum, 2015). A recent study that performed sex-
specific transcriptomics in 5 tissues from asthma patients also
showed sexual dimorphism in asthma, including sex-specific
dysregulation of genes and signaling pathways (Gautam et al.,
2019). Moreover, the effect of BMI on asthma is greater in female
than male adults (Chen et al., 2002; Guerra et al., 2002; Beuther
and Sutherland, 2007). Consistent with these reports, the asthma
cases and M-S asthma subgroups in our study included more
female than male adults (Table 3). Further, FAM and FAM-S
subtypes had significantly increased obesity compared with
MAM and MAM-S subtypes (Table 3). Although we observed
that female adult subtypes are more susceptible to the causal
effect of BMI than the male groups, the effects did not meet our
strict criteria. We speculate that the genetic correlations between
male and female asthma subtypes are too high to render any
distinctive causal patterns (Supplementary Table 14) compared
with correlations between the child- and adult-onset mild and
moderate-to-severe subtypes (Supplementary Table 13). For
these reasons, it is unlikely that gender-specific BMI instruments
have a causal effect on gender-specific asthma subtypes.

In conclusion, our data indicate that elevated BMI levels
are causally related to the risk of adult-onset moderate-to-
severe asthma. Thus, reducing body weight can help alleviate the
susceptibility to moderate-to-severe asthma.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the North West Multicentre Research Ethics
Committee, the National Information Governance Board for
Health & Social Care, and the Community Health Index Advisory
Group. Written informed consent for participation was not
required for this study in accordance with the national legislation
and the institutional requirements.

AUTHOR CONTRIBUTIONS

T-WH, BO, and J-OK designed the study. T-WH analyzed
the data and wrote the first draft of the manuscript. J-OK
revised the manuscript. BO, JL, HK, and J-OK collected the
data and provided technical support. All authors contributed
to the interpretation of the results and critical revision of the

Frontiers in Genetics | www.frontiersin.org 10 May 2021 | Volume 12 | Article 639905108

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639905 May 14, 2021 Time: 17:50 # 11

Ha et al. Mendelian Randomization of Asthma

manuscript for important intellectual content and approved the
final version of the manuscript.

FUNDING

This work was supported by a grant from Kyung Hee University
in 2019 (KHU-20191224) and the National Research Foundation
of Korea (NRF) grant funded by the Korean government (MSIT)
[The Bio & Medical Technology Development Program of the
NRF (2019M3E5D3073365) and NRF-2019R1A2C1083980].

ACKNOWLEDGMENTS

This study was conducted using the resources of UK Biobank
(application 56987).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.639905/full#supplementary-material

REFERENCES
Akiyama, M., Okada, Y., Kanai, M., Takahashi, A., Momozawa, Y., Ikeda, M., et al.

(2017). Genome-wide association study identifies 112 new loci for body mass
index in the Japanese population. Nat. Genet. 49, 1458–1467. doi: 10.1038/ng.
3951

Au Yeung, S. L., Li, A. M., and Schooling, C. M. (2021). A life course approach
to elucidate the role of adiposity in asthma risk: evidence from a Mendelian
randomisation study. J. Epidemiol. Commun. Health. 75, 277–281.

Beuther, D. A., and Sutherland, E. R. (2007). Overweight, obesity, and incident
asthma - A meta-analysis of prospective epidemiologic studies.Am. J. Resp. Crit.
Care 175, 661–666. doi: 10.1164/rccm.200611-1717oc

Bousquet, J., Mantzouranis, E., Cruz, A. A., Ait-Khaled, N., Baena-Cagnani, C. E.,
Bleecker, E. R., et al. (2010). Uniform definition of asthma severity, control,
and exacerbations: document presented for the World Health Organization
Consultation on Severe Asthma. J. Allergy Clin. Immun. 126, 926–938. doi:
10.1016/j.jaci.2010.07.019

Bowden, J., Smith, G. D., and Burgess, S. (2015). Mendelian randomization
with invalid instruments: effect estimation and bias detection through Egger
regression. Int. J. Epidemiol. 44, 512–525. doi: 10.1093/ije/dyv080

Bowden, J., Smith, G. D., Haycock, P. C., and Burgess, S. (2016). Consistent
estimation in mendelian randomization with some invalid instruments using a
weighted median estimator. Genet. Epidemiol. 40, 304–314. doi: 10.1002/gepi.
21965

Burgess, S., Butterworth, A., and Thompson, S. G. (2013). Mendelian
randomization analysis with multiple genetic variants using summarized
data. Genet. Epidemiol. 37, 658–665. doi: 10.1002/gepi.21758

Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour,
M. M., et al. (2019). Guidelines for performing Mendelian randomization
investigations. Wellcome Open Res. 4:186. doi: 10.12688/wellcomeopenres.
15555.1

Busse, W. W., Banks-Schlegel, S., and Wenzel, S. E. (2000). Pathophysiology of
severe asthma. J. Allergy Clin. Immunol. 106, 1033–1042.

Castro-Rodriguez, L. A., Holberg, C. J., Morgan, W. J., Wright, A. L., and Martinez,
F. D. (2001). Increased incidence of asthmalike symptoms in girls who become
overweight or obese during the school years. Am. J. Resp. Crit. Care 163,
1344–1349. doi: 10.1164/ajrccm.163.6.2006140

Censin, J. C., Nowak, C., Cooper, N., Bergsten, P., Todd, J. A., and Fall, T. (2017).
Childhood adiposity and risk of type 1 diabetes: a mendelian randomization
study. Plos Med. 14:e1002362. doi: 10.1371/journal.pmed.1002362

Chen, Y., Dales, R., Tang, M., and Krewski, D. (2002). Obesity may increase
the incidence of asthma in women but not in men: longitudinal observations
from the Canadian National Population Health Surveys. Am. J. Epidemiol. 155,
191–197. doi: 10.1093/aje/155.3.191

Chen, Y., Stewart, P., Johansen, H., McRae, L., and Taylor, G. (2003). Sex difference
in hospitalization due to asthma in relation to age. J. Clin. Epidemiol. 56,
180–187. doi: 10.1016/s0895-4356(02)00593-0

Collins, R. (2012). What makes UK biobank special? Lancet 379, 1173–1174. doi:
10.1016/s0140-6736(12)60404-8

Cordova, L., Gibson, P., Gardiner, P., and McDonald, V. (2017). Physical inactivity
and sedentary time in severe asthma: prevalence and associations. Eur. Respir J.
50:A775.

Dharmage, S. C., Perret, J. L., and Custovic, A. (2019). Epidemiology of asthma in
children and adults. Front. Pediatr. 7:246. doi: 10.3389/fped.2019.00246

Ferreira, M. A. R., Mathur, R., Vonk, J. M., Szwajda, A., Brumpton, B., Granell, R.,
et al. (2019). Genetic architectures of childhood- and adult-onset asthma are
partly distinct. Am. J. Hum. Genet. 104, 665–684. doi: 10.1016/j.ajhg.2019.02.
022

Gautam, Y., Afanador, Y., Abebe, T., Lopez, J. E., and Mersha, T. B. (2019).
Genome-wide analysis revealed sex-specific gene expression in asthmatics.
Hum. Mol. Genet. 28, 2600–2614. doi: 10.1093/hmg/ddz074

Genomes Project, C., Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang,
H. M., et al. (2015). A global reference for human genetic variation. Nature 526,
68–74. doi: 10.1038/nature15393

Gharahkhani, P., Ong, J. S., An, J. Y., Law, M. H., Whiteman, D. C., Neale, R. E.,
et al. (2019). Effect of increased body mass index on risk of diagnosis or death
from cancer. Br. J. Cancer 120, 565–570. doi: 10.1038/s41416-019-0386-9

Gold, D. R., Damokosh, A. I., Dockery, D. W., and Berkey, C. S. (2003). Body-
mass index as a predictor of incident asthma in a prospective cohort of children.
Pediatr. Pulm. 36, 514–521. doi: 10.1002/ppul.10376

Guerra, S., Sherrill, D. L., Bobadilla, A., Martinez, F. D., and Barbee, R. A. (2002).
The relation of body mass index to asthma, chronic bronchitis, and emphysema.
Chest 122, 1256–1263. doi: 10.1378/chest.122.4.1256

Hakala, K., Stenius-Aarniala, B., and Sovijarvi, A. (2000). Effects of weight loss on
peak flow variability, airways obstruction, and lung volumes in obese patients
with asthma. Chest 118, 1315–1321. doi: 10.1378/chest.118.5.1315

Haldar, P., Pavord, I. D., Shaw, D. E., Berry, M. A., Thomas, M., Brightling, C. E.,
et al. (2008). Cluster analysis and clinical asthma phenotypes. Am. J. Resp. Crit.
Care 178, 218–224.

Hedman, L., Bjerg, A., Sundberg, S., Forsberg, B., and Ronmark, E. (2011). Both
environmental tobacco smoke and personal smoking is related to asthma and
wheeze in teenagers. Thorax 66, 20–25. doi: 10.1136/thx.2010.143800

Hindy, G., Akesson, K. E., Melander, O., Aragam, K. G., Haas, M. E., Nilsson,
P. M., et al. (2019). Cardiometabolic polygenic risk scores and osteoarthritis
outcomes: a mendelian randomization study using data from the malmo diet
and cancer study and the UK biobank. Arthritis Rheumatol. 71, 925–934. doi:
10.1002/art.40812

Hsiao, H. P., Lin, M. C., Wu, C. C., Wang, C. C., and Wang, T. N. (2019). Sex-
specific asthma phenotypes, inflammatory patterns, and asthma control in a
cluster analysis. J. Allergy Clin. Imm Pract. 7, 556.e15–567.e15.

Jeong, A., Imboden, M., Hansen, S., Zemp, E., Bridevaux, P. O., Lovison, G., et al.
(2017). Heterogeneity of obesity-asthma association disentangled by latent class
analysis, the SAPALDIA cohort. Respir. Med. 125, 25–32. doi: 10.1016/j.rmed.
2017.02.014

Kim, S. H., Sutherland, E. R., and Gelfand, E. W. (2014). Is there a link between
obesity and asthma? Allergy Asthma Immun. 6, 189–195. doi: 10.4168/aair.
2014.6.3.189

Luo, X., Xiang, J., Dong, X. H., Cai, F. W., Suo, J. N., Wang, Z. Q., et al.
(2013). Association between obesity and atopic disorders in Chinese adults:
an individually matched case-control study. BMC Public Health 13:12. doi:
10.1186/1471-2458-13-12

Moore, W. C., Meyers, D. A., Wenzel, S. E., Teague, W. G., Li, H. S., Li, X. N., et al.
(2010). Identification of Asthma phenotypes using cluster analysis in the severe
asthma research program. Am. J. Resp. Crit. Care 181, 315–323.

Frontiers in Genetics | www.frontiersin.org 11 May 2021 | Volume 12 | Article 639905109

https://www.frontiersin.org/articles/10.3389/fgene.2021.639905/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.639905/full#supplementary-material
https://doi.org/10.1038/ng.3951
https://doi.org/10.1038/ng.3951
https://doi.org/10.1164/rccm.200611-1717oc
https://doi.org/10.1016/j.jaci.2010.07.019
https://doi.org/10.1016/j.jaci.2010.07.019
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/gepi.21758
https://doi.org/10.12688/wellcomeopenres.15555.1
https://doi.org/10.12688/wellcomeopenres.15555.1
https://doi.org/10.1164/ajrccm.163.6.2006140
https://doi.org/10.1371/journal.pmed.1002362
https://doi.org/10.1093/aje/155.3.191
https://doi.org/10.1016/s0895-4356(02)00593-0
https://doi.org/10.1016/s0140-6736(12)60404-8
https://doi.org/10.1016/s0140-6736(12)60404-8
https://doi.org/10.3389/fped.2019.00246
https://doi.org/10.1016/j.ajhg.2019.02.022
https://doi.org/10.1016/j.ajhg.2019.02.022
https://doi.org/10.1093/hmg/ddz074
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/s41416-019-0386-9
https://doi.org/10.1002/ppul.10376
https://doi.org/10.1378/chest.122.4.1256
https://doi.org/10.1378/chest.118.5.1315
https://doi.org/10.1136/thx.2010.143800
https://doi.org/10.1002/art.40812
https://doi.org/10.1002/art.40812
https://doi.org/10.1016/j.rmed.2017.02.014
https://doi.org/10.1016/j.rmed.2017.02.014
https://doi.org/10.4168/aair.2014.6.3.189
https://doi.org/10.4168/aair.2014.6.3.189
https://doi.org/10.1186/1471-2458-13-12
https://doi.org/10.1186/1471-2458-13-12
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639905 May 14, 2021 Time: 17:50 # 12

Ha et al. Mendelian Randomization of Asthma

Pasman, J. A., Verweij, K. J. H., Gerring, Z., Stringer, S., Sanchez-Roige, S., Treur,
J. L., et al. (2019). GWAS of lifetime cannabis use reveals new risk loci, genetic
overlap with psychiatric traits, and a causal effect of schizophrenia liability. Nat.
Neurosci. 22, 1196–1196. doi: 10.1038/s41593-019-0402-7

Protudjer, J. L. P., Sevenhuysen, G. P., Ramsey, C. D., Kozyrskyj, A. L., and
Becker, A. B. (2012). Low vegetable intake is associated with allergic asthma and
moderate-to-severe airway hyperresponsiveness. Pediatr. Pulm. 47, 1159–1169.
doi: 10.1002/ppul.22576

Rask-Andersen, M., Karlsson, T., Ek, W. E., and Johansson, A. (2017). Gene-
environment interaction study for BMI reveals interactions between genetic
factors and physical activity, alcohol consumption and socioeconomic status.
PLoS Genet. 13:e1006977. doi: 10.1371/journal.pgen.1006977

Roberts, R. (2018). Mendelian randomization studies promise to shorten the
journey to FDA approval. JACC 3, 690–703. doi: 10.1016/j.jacbts.2018.08.001

Rosoff, D. B., Clarke, T. K., Adams, M. J., McIntosh, A. M., Davey Smith, G., Jung,
J., et al. (2019). Educational attainment impacts drinking behaviors and risk
for alcohol dependence: results from a two-sample Mendelian randomization
study with ˜780,000 participants. Mol. Psychiatry 26, 1119–1132. doi: 10.1038/
s41380-019-0535-9

Salome, C. M., King, G. G., and Berend, N. (2010). Physiology of obesity and effects
on lung function. J. Appl. Physiol. 108, 206–211. doi: 10.1152/japplphysiol.
00694.2009

Schatz, M., Hsu, J. W. Y., Zeiger, R. S., Chen, W. S., Dorenbaum, A., Chipps, B. E.,
et al. (2014). Phenotypes determined by cluster analysis in severe or difficult-to-
treat asthma. J. Allergy Clin. Immun. 133, 1549–1556. doi: 10.1016/j.jaci.2013.
10.006

Shrine, N., Portelli, M. A., John, C., Artigas, M. S., Bennett, N., Hall, R., et al.
(2019). Moderate-to-severe asthma in individuals of European ancestry: a
genome-wide association study. Lancet Resp. Med. 7, 20–34.

Skaaby, T., Taylor, A. E., Thuesen, B. H., Jacobsen, R. K., Friedrich, N., Mollehave,
L. T., et al. (2018). Estimating the causal effect of body mass index on hay
fever, asthma and lung function using Mendelian randomization. Allergy. 73,
153–164. doi: 10.1111/all.13242

Smith, G. D., and Ebrahim, S. (2003). ’Mendelian randomization’: can genetic
epidemiology contribute to understanding environmental determinants of
disease? Int. J. Epidemiol. 32, 1–22. doi: 10.1093/ije/dyg070

Speed, M. S., Jefsen, O. H., Borglum, A. D., Speed, D., and Ostergaard, S. D. (2019).
Investigating the association between body fat and depression via Mendelian
randomization. Transl. Psychiatry 9:184.

Sterk, P. J., and Lutter, R. (2014). Asthma phenotyping: TH2-high, TH2-low, and
beyond. J. Allergy Clin. Immunol. 133, 395–396. doi: 10.1016/j.jaci.2013.10.008

Subbarao, P., Mandhane, P. J., and Sears, M. R. (2009). Asthma: epidemiology,
etiology and risk factors. Can. Med. Assoc. J. 181, E181–E190.

Sun, Y. Q., Brumpton, B., Langhammer, A., Chen, Y., Kvaloy, K., and Mai,
X. M. (2020). Adiposity and asthma in adults: a bidirectional Mendelian
randomisation analysis of The HUNT Study. Thorax 75, 202–208. doi: 10.1136/
thoraxjnl-2019-213678

Tang, B. W., Yuan, S., Xiong, Y., He, Q. Q., and Larsson, S. C. (2020). Major
depressive disorder and cardiometabolic diseases: a bidirectional Mendelian
randomisation study. Diabetologia 63, 1305–1311. doi: 10.1007/s00125-020-
05131-6

Taylor, B., Mannino, D., Brown, C., Crocker, D., Twum-Baah, N., and Holguin, F.
(2008). Body mass index and asthma severity in the National Asthma Survey.
Thorax 63, 14–20. doi: 10.1136/thx.2007.082784

UK10K Consortium, Walter, K., Min, J. L., Huang, J., Crooks, L., Memari, Y., et al.
(2015). The UK10K project identifies rare variants in health and disease. Nature
526, 82–90. doi: 10.1038/nature14962

Vlashki, E., Cholakovska, V. C., Kimovska, M., Seckova, L., Ristevska, T., and
Lawson, J. (2018). The association of physical activity and sedentary lifestyle
with asthma in childhood. Eur. Respir. J. 52:A4603.

Vogelezang, S., Bradfield, J. P., Ahluwalia, T. S., Curtin, J. A., Lakka, T. A.,
Grarup, N., et al. (2020). Novel loci for childhood body mass index and shared
heritability with adult cardiometabolic traits. PLoS Genet. 16:e1008718. doi:
10.1371/journal.pgen.1008718

Wade, K. H., Carslake, D., Sattar, N., Smith, G. D., and Timpson, N. J. (2019).
Obesity BMI and mortality in UK biobank: revised estimates using mendelian
randomization. Obesity 27, 349–349. doi: 10.1002/oby.22397

Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma, D. (2017).
Functional mapping and annotation of genetic associations with FUMA. Nat.
Commun. 8:1826.

Woodruff, P. G., Modrek, B., Choy, D. F., Jia, G. Q., Abbas, A. R., Ellwanger,
A., et al. (2009). T-helper Type 2-driven Inflammation defines major
subphenotypes of asthma. Am. J. Resp. Crit. Care 180, 388–395. doi: 10.1164/
rccm.200903-0392oc

Xu, S. J., Gilliland, F. D., and Conti, D. V. (2019). Elucidation of causal direction
between asthma and obesity: a bi-directional Mendelian randomization study.
Int. J. Epidemiol. 48, 899–907. doi: 10.1093/ije/dyz070

Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A., Nolte, I. M., et al.
(2015). Genome-wide genetic homogeneity between sexes and populations for
human height and body mass index. Hum. Mol. Genet. 24, 7445–7449. doi:
10.1093/hmg/ddv443

Zein, J. G., and Erzurum, S. C. (2015). Asthma is different in women. Curr. Allergy
Asthma Rep. 15:28.

Zhang, L., Yin, Y., Zhang, H., Zhong, W., and Zhang, J. (2017). Association
of asthma diagnosis with leptin and adiponectin: a systematic review and
meta-analysis. J. Invest. Med. 65, 57–64. doi: 10.1136/jim-2016-000127

Zheng, H., Wu, D., Wu, X., Zhang, X., Zhou, Q., Luo, Y., et al. (2018). Leptin
promotes allergic airway inflammation through targeting the unfolded protein
response pathway. Sci. Rep. 8:8905.

Zhu, Z. H., Zheng, Z. L., Zhang, F. T., Wu, Y., Trzaskowski, M., Maier, R., et al.
(2018). Causal associations between risk factors and common diseases inferred
from GWAS summary data. Nat. Commun. 9:224.

Zhu, Z. Z., Guo, Y. J., Shi, H., Liu, C. L., Panganiban, R. A., Chung, W., et al.
(2020). Shared genetic and experimental links between obesity-related traits
and asthma subtypes in UK Biobank. J Allergy Clin. Immun. 145, 537–549.
doi: 10.1016/j.jaci.2019.09.035

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ha, Jung, Kim, Baek, Lee, Lim, Kim, Kang and Oh. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 12 May 2021 | Volume 12 | Article 639905110

https://doi.org/10.1038/s41593-019-0402-7
https://doi.org/10.1002/ppul.22576
https://doi.org/10.1371/journal.pgen.1006977
https://doi.org/10.1016/j.jacbts.2018.08.001
https://doi.org/10.1038/s41380-019-0535-9
https://doi.org/10.1038/s41380-019-0535-9
https://doi.org/10.1152/japplphysiol.00694.2009
https://doi.org/10.1152/japplphysiol.00694.2009
https://doi.org/10.1016/j.jaci.2013.10.006
https://doi.org/10.1016/j.jaci.2013.10.006
https://doi.org/10.1111/all.13242
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1016/j.jaci.2013.10.008
https://doi.org/10.1136/thoraxjnl-2019-213678
https://doi.org/10.1136/thoraxjnl-2019-213678
https://doi.org/10.1007/s00125-020-05131-6
https://doi.org/10.1007/s00125-020-05131-6
https://doi.org/10.1136/thx.2007.082784
https://doi.org/10.1038/nature14962
https://doi.org/10.1371/journal.pgen.1008718
https://doi.org/10.1371/journal.pgen.1008718
https://doi.org/10.1002/oby.22397
https://doi.org/10.1164/rccm.200903-0392oc
https://doi.org/10.1164/rccm.200903-0392oc
https://doi.org/10.1093/ije/dyz070
https://doi.org/10.1093/hmg/ddv443
https://doi.org/10.1093/hmg/ddv443
https://doi.org/10.1136/jim-2016-000127
https://doi.org/10.1016/j.jaci.2019.09.035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-676136 June 2, 2021 Time: 18:23 # 1

ORIGINAL RESEARCH
published: 07 June 2021

doi: 10.3389/fgene.2021.676136

Edited by:
Lei Zhang,

Soochow University, China

Reviewed by:
Wei-Min Chen,

University of Virginia, United States
Tomas Drgon,

United States Food and Drug
Administration, United States

*Correspondence:
Jie Yang

joyoung007@sina.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal

Frontiers in Genetics

Received: 04 March 2021
Accepted: 27 April 2021

Published: 07 June 2021

Citation:
Yang J, Chen T, Zhu Y, Bai M and

Li X (2021) Causal Inference Between
Chronic Periodontitis and Chronic

Kidney Disease: A Bidirectional
Mendelian Randomization Analysis

in a European Population.
Front. Genet. 12:676136.

doi: 10.3389/fgene.2021.676136

Causal Inference Between Chronic
Periodontitis and Chronic Kidney
Disease: A Bidirectional Mendelian
Randomization Analysis in a
European Population
Jie Yang1*†, Tianyi Chen1†, Yahong Zhu2, Mingxia Bai3 and Xingang Li4,5

1 Division of Nephrology, Beijing Jishuitan Hospital, Beijing, China, 2 Beijing Lucidus Bioinformation Technologies, Beijing,
China, 3 Department of Stomatology, Beijing Jishuitan Hospital, Beijing, China, 4 Centre for Precision Health, Edith Cowan
University, Joondalup, WA, Australia, 5 School of Medical and Health Sciences, Edith Cowan University, Joondalup,
WA, Australia

Background: Previous epidemiological studies have shown significant associations
between chronic periodontitis (CP) and chronic kidney disease (CKD), but the causal
relationship remains uncertain. Aiming to examine the causal relationship between these
two diseases, we conducted a bidirectional two-sample Mendelian randomization (MR)
analysis with multiple MR methods.

Methods: For the casual effect of CP on CKD, we selected seven single-nucleotide
polymorphisms (SNPs) specific to CP as genetic instrumental variables from the
genome-wide association studies (GWAS) in the GLIDE Consortium. The summary
statistics of complementary kidney function measures, i.e., estimated glomerular
filtration rate (eGFR) and blood urea nitrogen (BUN), were derived from the GWAS in
the CKDGen Consortium. For the reversed causal inference, six SNPs associated with
eGFR and nine with BUN from the CKDGen Consortium were included and the summary
statistics were extracted from the CLIDE Consortium.

Results: No significant causal association between genetically determined CP and
eGFR or BUN was found (all p > 0.05). Based on the conventional inverse variance-
weighted method, one of seven instrumental variables supported genetically predicted
CP being associated with a higher risk of eGFR (estimate = 0.019, 95% CI: 0.012–0.026,
p < 0.001).

Conclusion: Evidence from our bidirectional causal inference does not support a causal
relation between CP and CKD risk and therefore suggests that associations reported by
previous observational studies may represent confounding.

Keywords: causal inference, chronic periodontitis, chronic kidney disease, Mendelian randomization, single
nucleotide polymorphisms
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INTRODUCTION

Chronic kidney disease (CKD) leading to end-stage renal disease
(ESRD) and requiring dialysis or kidney transplantation is greatly
associated with shortened life expectancy (Webster et al., 2017).
The prevalence of CKD is around 10% worldwide, which is
becoming one of the major burdens for health care in every
country (GBD 2017 Risk Factor Collaborators, 2018). CKD
demonstrates a series of changes in glomerular, tubular, and
endocrine renal structures. As the pathogenesis of CKD is
considerably complicated and yet to be uncovered, the current
therapeutic options for CKD are limited to controlling its
risk factors, such as blood pressure, diabetes, and chronic
inflammation (Köttgen et al., 2010).

As a low-grade chronic inflammation, chronic periodontitis
(CP) has been reported to be highly associated with kidney
function measures, including estimated glomerular filtration rate
(eGFR) and blood urea nitrogen (BUN) (Kinane et al., 2017).
Meanwhile, greater deterioration of periodontal status, including
poor oral hygiene and gingival, has been observed among CKD
patients, especially those under dialysis treatment, than health
controls (Gautam et al., 2014; Tadakamadla et al., 2014). Due to
the restriction of methodological bias, it is a particular challenge
to determine the causality by conventional observational study,
in terms of the existing of confounding, reverse causation,
and measurement error (Boyko, 2013). Therefore, investigating
the causal relationships between CP and CKD through other
effective approaches is of great urgency for disease prevention
and treatment strategies (Nanayakkara and Zhou, 2019).

Mendelian randomization (MR) is a powerful genetic
epidemiological tool used to evaluate causal effects, overcoming
the limitations of conventionally observational studies (Smith
and Ebrahim, 2003). Two-sample MR analysis is an extensive
application of the MR approach, allowing the use of GWAS
summary statistics for MR studies rather than limiting them
using individual-level data within one sample (Burgess et al.,
2015). Using two-sample MR analysis, the causal relationship
between CP and risk factors of CKD, e.g., cardiovascular disease
(Bell et al., 2020) and blood pressure (Yu et al., 2020), has been
assessed. In this study, we took advantage of the recent large-scale
meta-analysis of the GWAS of CP and CKD to bidirectionally
perform a two-sample MR analysis for examining the causal
associations between these two diseases.

MATERIALS AND METHODS

Study Design
In this bidirectional two-sample MR analysis, genetic variants
were used to investigate the causal effect and direction of
CP with eGFR (the primary kidney function trait) and BUN
(the second kidney function trait). Briefly, the modifiable
risk factor-associated single-nucleotide polymorphisms (SNPs)
hired as instrumental variables (IVs) are randomly allocated
obeying Mendel’s law of independent assortment. The SNPs
are distributed at the forming of the zygote, which always
precedes the onset of disease and is less likely to be affected

by confounding or reverse causation. Therefore, grouped by
the naturally allocated genetic IVs, the MR approach mimics a
randomized controlled trial using individual- or summary-level
data from observational studies (Smith and Hemani, 2014).

To obtain reliable results, the valid IVs must satisfy three
important assumptions within the MR analysis process (Smith
et al., 2020): (1) the IVs are solidly related to the exposure,
(2) the IVs are not correlated with any confounders influencing
both exposure and outcome, and (3) the IVs affect the outcome
only through their effects on the exposure and not through any
other causal pathways (Figure 1). Details on the MR design
have been described elsewhere (Burgess and Thompson, 2015;
Tillmann et al., 2017). For each inference direction, the analysis
included three main procedures: the selection of suitable genetic
IVs for the corresponding exposure, application of multiple MR
methods, and pleiotropic effect analyses, as described below.

Participants and Data Sources
For our study, summary statistics of the genome-wide association
study (GWAS) for CP was derived from the Gene-Lifestyle
Interactions in Dental Endpoints (GLIDE) Consortium,
analyzing a total of 12,289 clinically diagnosed periodontitis
cases and 22,326 controls (Shungin et al., 2019). Summary-level
data of CKD concerning kidney function measures (i.e., eGFR
and BUN) were extracted in currently the biggest the Chronic
Kidney Disease Genetics (CKDGen) Consortium (including
41,395 cases and 4,39,303 controls) (Wuttke et al., 2019).

The participants of these two GWAS studies are mostly people
with European ancestry. In both these corresponding original
studies, all participants provided written informed consent. Each
study included in the GLIDE and the CKDGen Consortiums
was approved by a local institutional review board and an
ethics committee.

FIGURE 1 | Illustration of the current bidirectional Mendelian randomization
setting with required instrumental variable assumptions. That is, each genetic
variant (SNP) is ¬ associated with the exposure (a disease or phenotypic
characteristics),  but not associated with unmeasured confounders of the
exposure–outcome association, and ® not associated with the risk of
outcome (another disease or phenotypic characteristics) conditional on the
exposure and confounder. The blue items indicate the assumptions for causal
inference of CP on CKD, while the purple items show the assumptions for
reverse inference. The green items present confounders of the
exposure–outcome association. CP, chronic periodontitis; CKD, chronic
kidney disease; SNP, single nucleotide polymorphism.
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Selection of Genetic Instrumental
Variables
All genetic instrumental variables for the current bidirectional
MR analysis were filtered to fit the three basic MR assumptions
as described above.

For the first assumption, the genetic instruments for
estimating the causal effect of CP on the risk of CKD were
obtained from a GWAS analysis of the GLIDE Consortium, in
which eight SNPs were suggestively (p < 5 × 10−6) associated
with periodontitis (Shungin et al., 2019). To investigate the causal
effect of kidney function on chronic periodontitis, 256 and 75
index SNPs reported significantly associated with eGFR and BUN
in a meta-analysis of GWAS on kidney function (p < 5 × 10−8)
were included as candidate genetic instruments, respectively.

The assumptions of genetic instrumental variables being
independent of outcome and confounding factors were
investigated for the genome-wide significant associations with
corresponding outcome variables and their related confounding
factors by searching in a web-based GWAS catalog1 (Staley
et al., 2016). The SNPs co-associated with outcome variable
and potential confounders were removed to satisfy these two
assumptions (Smith et al., 2008).

Besides, pairwise linkage disequilibrium clumping (Purcell
et al., 2007) was performed for identifying the independent
signals among correlated SNPs, and the removal of correlated
SNPs was conducted by Steiger filtering for the exclusion of
reverse causality (Hemani et al., 2017).

Statistical Analysis
We employed multiple complementary methods of MR for a
comprehensive and precise causal effect investigation, including
the inverse variance weighted (IVW) (Burgess and Thompson,
2015), the weighted median (WM) (Bowden et al., 2016), and
the Mendelian randomization–Egger (MR-Egger) (Burgess and
Thompson, 2017) methods. For the fundamental estimates of
the causal effect of the exposure on the risk of the outcome, we
performed the IVW method which is conventionally used in two-
sample MR studies (Burgess and Thompson, 2015). The IVW
method uses the associations (beta-coefficients and standard
errors) combined with risk factors and the results of regressing
each genetic variant in turn, using summarized data from all the
genetics variants to estimate causality (Rees et al., 2019). The
WM method could give consistency analyses by calculating a
single weighted median estimator for combining data on multiple
genetic instruments (Bowden et al., 2016). Compared to the IVW
method which only provides consistent results when all genetic
variants in the analysis are valid IVs, the WM method could give
a consistent estimator even if some of the genetic instruments in
the reference are not valid instrument variables (Hartwig et al.,
2017). MR–Egger methods provide assess potential asymmetry
for bias from the pleiotropic effect of the multiple genetic variants
and give estimates of the causal effect (Verbanck et al., 2018).
MR–Egger has the advantages to assess the directional pleiotropy
under the weaker assumption (Burgess and Thompson, 2017),

1http://www.phenoscanner.medschl.cam.ac.uk

e.g., the Instrument Strength Independent of Direct Effect
(InSIDE) assumption.

The power analysis was conducted by a web-based
application2 (Brion et al., 2013) to evaluate the minimum
detectable magnitude of association for outcomes in bidirectional
causal inferences between CP and CKD. All results are presented
as an estimate or odds ratio (OR) with a 95% confidence interval
(CI) of the outcomes OR or per predicted increase/decrease. All
statistical tests were two-sided, and the evidence of association
was cutoff at a prespecified p-value below 0.05. All analyses were
performed in R version 4.0.3 (R Project for Statistical Computing,
Vienna, Austria), with packages MendelianRandomization (0.5.0)
(Yavorska and Burgess, 2017) and forestplot (1.10)3.

RESULTS

Selection of Instrumental Variables for
CP and Kidney Function
After the removal of SNPs associated with potential confounders
in the online GWAS database, the pairwise linkage disequilibrium
clumping and matching of coding alleles between the summary
statistics of the exposure and those of the outcome, and the
exclusion of correlated SNPs by Steiger filtering, the valid
instrumental variables were selected to fit the three basic
MR assumptions above. Seven SNPs suggestively associated
with CP were selected as genetic instruments for the MR
analysis of CP causally associated with CKD. In the reversed
MR analysis, six SNPs and nine SNPs significantly associated
with two commentary kidney function measures (eGFR and
BUN), respectively, were included. The corresponding summary
statistics for these SNPs for MR analyses were retrieved from the
reported summary GWAS results of CKD and CP, respectively
(Tables 1, 2).

Causal Association of CP and CKD by
Conventional MR Method
We estimated the association between CP-related SNPs and risk
of CKD, and between CKD-related SNPs and risk of CP, using
the IVW method. The results are presented in Figure 2. This
conventional estimate showed no convincing evidence to support
the causal relation between CP and CKD in either of two reversed
directions (CP-related SNPs on risk of eGFR, effect = 0.003, 95%
confidence interval [CI]: −0.003–0.008, p = 0.317; CP-related
SNPs on risk of BUN, effect = 0.002, 95% CI: −0.004–0.009,
p = 0.472; eGFR-related SNPs on risk of CP, effect = −0.333, 95%
CI: −3.124–2.459, p = 0.815; BUN = −related SNPs on risk of
CP, effect = −0.021, 95% CI: −1.447–1.405, p = 0.977). For the
single genetic instrument, only one of seven SNPs used as genetic
instruments in the IVW method demonstrated that CP was
causally associated with eGFR (p < 0.001 for rs2976950), which
changed little of the overall IVW estimate of all CP-related SNPs
on the risk of eGFR (p = 0.317) (Burgess and Thompson, 2015).

2https://shiny.cnsgenomics.com/mRnd/
3http://gforge.se/packages/
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TABLE 1 | Summary statistics for Mendelian randomization analysis of the potential causal effect of chronic periodontitis on kidney function.

SNP Chr EA OA EAF Exposure: chronic periodontitis Primary outcome: eGFR Secondary outcome: BUN

Beta SE p Beta SE p Beta SE p

rs13005050 2 C T 0.14 0.1432 0.0310 3.76E-06 0.0009 0.0006 1.03E-01 −0.0027 0.0014 6.29E-02

rs4956201 4 C A 0.89 0.2406 0.0474 3.89E-07 −0.0006 0.0008 4.42E-01 0.0001 0.0020 9.61E-01

rs6816769 4 C T 0.89 0.1348 0.0294 4.57E-06 0.0004 0.0006 4.81E-01 0.0006 0.0014 6.53E-01

rs78422482 4 A G 0.01 0.2425 0.0510 2.02E-06 −0.0006 0.0010 5.15E-01 0.0024 0.0024 3.10E-01

rs73155039 7 A G 0.99 0.8316 0.1757 2.22E-06 −0.0004 0.0019 8.35E-01 0.0034 0.0052 5.23E-01

rs2976950 8 A G 0.60 0.0963 0.0195 7.99E-07 0.0018 0.0004 4.52E-07 0.0007 0.0010 4.37E-01

rs151226594 11 G T 0.01 0.3671 0.0768 1.75E-06 0.0012 0.0014 3.90E-01 0.0030 0.0034 3.67E-01

These SNPs are associated with chronic periodontitis at the genome-wide significance level (p < 5 × 10−6) in a meta-analysis with up to 34,615 individuals of European
ancestry (Shungin et al., 2019). SNP, single nucleotide polymorphism id; Chr, chromosome; EA, effect allele; OA, other allele; EAF, effect allele frequency; Beta, SNP effect
size; SE, standard error; p, p-value; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen.

TABLE 2 | Summary statistics for Mendelian randomization analysis of the potential causal effect of kidney function on chronic periodontitis.

SNP Chr EA OA EAF Primary exposure: eGFR Secondary exposure: BUN Outcome: chronic periodontitis

Beta SE p Beta SE p Beta SE p

rs11694902 2 A G 0.76 0.0050 0.0004 3.28E-34 0.0047 0.0257 8.56E-01

rs17462630 2 C G 0.14 0.0041 0.0005 2.14E-16 0.0026 0.0189 8.91E-01

rs9868185 3 G A 0.31 0.0055 0.0004 4.04E-37 0.0012 0.0182 9.47E-01

rs12920176 16 A C 0.79 0.0026 0.0004 1.01E-09 0.0002 0.0186 9.92E-01

rs113445505 19 T C 0.20 0.0096 0.0005 1.21E-99 −0.0089 0.0184 6.26E-01

rs6127099 20 T A 0.34 0.0034 0.0004 1.53E-20 0.0001 0.0211 9.94E-01

rs10874312 1 A G 0.66 0.0070 0.0009 1.73E-14 0.0035 0.0187 8.51E-01

rs760077 1 A T 0.41 0.0134 0.0010 2.10E-44 −0.0124 0.0184 4.99E-01

rs34773350 2 C T 0.86 0.0083 0.0012 2.90E-11 0.0034 0.0257 8.94E-01

rs9849724 3 G T 0.46 0.0047 0.0009 4.09E-08 0.0043 0.0180 8.13E-01

rs4976646 5 C T 0.34 0.0073 0.0009 2.91E-15 0.0033 0.0196 8.67E-01

rs13230625 7 A G 0.70 0.0134 0.0013 1.08E-26 0.0077 0.0262 7.71E-01

rs6597862 10 C A 0.76 0.0058 0.0010 8.33E-09 −0.0011 0.0210 9.59E-01

rs3925584 11 T C 0.55 0.0096 0.0009 9.85E-29 0.0078 0.0183 6.69E-01

rs4886755 15 G A 0.51 0.0095 0.0009 1.73E-28 −0.0047 0.0175 7.89E-01

These SNPs are associated with chronic periodontitis at the genome-wide significance level (p < 5 × 10−8) in a meta-analysis with up to 480,698 individuals of European
ancestry (Wuttke et al., 2019). SNP, single-nucleotide polymorphism id; Chr, chromosome; EA, effect allele; OA, other allele; EAF, effect allele frequency; Beta, SNP effect
size; SE, standard error; p, p-value; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen.

Causal Association of CP and CKD by
Different MR Approaches
The bidirectional MR estimates between CP and CKD by multiple
methods are presented in Figure 3. The associations of CP with
CKD biomarkers were consistent in the sensitivity analysis that
used the WM but not in the MR–Egger method. The intercept
test of MR–Egger suggested a potential directional pleiotropy
(p = 0.003 for CP on eGFR, using all seven SNPs). This was also
indicated in the scatter plots in terms of the results from the IVW
method (Figure 2).

We assessed the statistical power of this current bidirectional
MR study. Based on the variance in CP, eGFR, and BUN
according to corresponding seven, six, and nine SNPs,
respectively, and the sample sizes of 12,289 cases and 22,326
controls in cohorts from the GLIDE Consortium for CK
and 41,395 cases and 4,39,303 controls in cohorts from the
CKDGen Consortium for CKD, our study could have over

99% power at an alpha rate of 5% to detect a statistically
significant causal effect.

DISCUSSION

In the present study, we investigated the potential causal roles of
CP in the development of CKD and the reverse causal relation of
kidney function with the progress of CP, by conducting multiple
complementary MR approaches. Using genetic variants as proxies
for CP and kidney function measures, including eGFR and
BUN, our study did not observe strong evidence to support that
genetically predicted CP was associated with decreased eGFR or
increased BUN and vice versa.

Previous observational studies based on cross-sectional or
case–control design can only describe a connection between
CP and CKD because of the absence of chronological sequence
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FIGURE 2 | Forest plots and scatter plots of associations between chronic periodontitis (CP) and chronic kidney disease (CKD), dedicated by kidney function
measures of estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN). CP-related single-nucleotide polymorphism (SNP) and risk of eGFR: (A1,A2);
CP-related SNP and risk of BUN: (B1,B2); eGFR-related SNP and risk of CP: (C1,C2); BUN-related SNP and risk of CP: (D1,D2). Forest plots (A1,B1,C1,D1)
present the estimates with a horizontal line representing 95% confidence intervals (CIs) for the exposure-related SNP allele for outcome risk. Scatter plots
(A2,B2,C2,D2) present the per-allele association with outcome risk plotted against the per-allele association with one standard deviation of exposure (with vertical
and horizontal purple lines showing the 95% CI for each SNP). The slope of the navy solid line in the scatter plots corresponds to each Mendelian randomization
(MR) estimate. p, p-value.
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FIGURE 3 | Causal effects between CP and kidney function measures using different MR approaches. SNP: single-nucleotide polymorphism; No.: number; MR:
Mendelian randomization; CI: confidence interval; p, p-value; CP: chronic periodontitis; eGFR: estimated glomerular filtration rate; BUN: blood urea nitrogen; IVW:
inverse variance weighted; WM: weighted median; MR–Egger: the Mendelian randomization–Egger method.

(Chen et al., 2006; Kshirsagar et al., 2007; de Souza et al., 2014).
In further population-based studies with cohort design, the onset
of the exposure can be observed to happen before or after the
outcome of interest, but the causal relationship between the traits
is yet difficult to be assessed according to the affection by reverse
causation or confounding effects (Grubbs et al., 2015, 2016). In
the present MR study, we combined the summary statistics of
CP and measures of kidney function from large-scale cohorts
with European ancestry, to investigate the causal effect on these
two traits. To the best of our knowledge, our study performed
the first MR analysis on the causal effect between CP and CKD.
Also, unlike previous studies based on smaller sample sizes, our
two-sample MR study is sufficiently powered to assess a causal
relationship between CP and CKD.

Our result is consistent with the conclusion from the
newest systematic review and meta-analysis of observational
studies on CP and CKD, including seven case–control studies,
38 cross-sectional studies, and two retrospective cohort
studies (Zhao et al., 2018). Despite the lack of evidence to
support CP as causal factors for CKD from our study, it
does not hint that treatment for periodontitis in hemolysis
patients with CKD or kidney transplantation patients with
ESRD is unnecessary. Improved early treatment and dental
care for the prevention of periodontitis could assist in the
relief of the overall inflammatory status in the period of
hemolysis treatment (Schmalz et al., 2016). Furthermore,
for immunosuppressive therapy on patients with kidney
transplantation, care of oral and periodontal condition is

important for preventing complications and improvement of
survival (Kitamura et al., 2019).

The current study has several strengths. First, this study
investigated the largest GWAS datasets of CP included in
the GLIDE Consortium, analyzing a total of 12,289 clinically
diagnosed periodontitis cases and 22,326 controls, and of CKD
included in the CKDGen Consortium (41,395 cases and 4,39,303
controls). The participants recruited in these two independent
Consortiums are mostly of European descent, which minimizes
the influence of population stratification (Burgess and CRP
CHD Genetics Collaboration, 2013). Second, our two-sample
design estimating the association between the genetic variant
exposure and genetic variant outcome was from two independent
comparable populations to gain a larger statistical power (Burgess
et al., 2015). The bidirectional analysis guarantees the inference
of causality between CP and CKD in both directions (Cao
et al., 2019). Third, to control the pleiotropic effect from a
certain single genetic variable, we used as much as multiple
variants robustly associated with exposure variables as genetic
instruments for assessing their effect on the outcome variables
(Palmer et al., 2012).

Although our study used the newest data available, this study
has some potential limitations. MR uses an average risk effect
of genetic variants on a specific trait in participants’ lifetime; in
such case, it could not answer whether an exposure within a
certain period of life has any effect on the risk of an outcome. We
used the most recent GWAS of CP and CKD in the population
of European ancestry to gain sufficient statistical power to test
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the potential causal relation between CP and CKD; however,
it might be limited to explore a tiny effect between these
pairs of traits based on the weak instrument bias. The
presented beta and standard error values for all instrumental
variables show their effect size; all seven SNPs used as
candidate genetic instruments for CP were weakly associated
with CP, with a threshold of p < 5 × 10−6 instead of
5 × 10−8. In addition, the functional mechanisms for most
of these SNPs related to periodontitis remain unclear. The
weak instruments tend to shift the MR estimate toward the
null in two-sample MR (Davies et al., 2018), which may
therefore result in the uncertain causality between CP and
CKD in our study. Future high-quality GWAS are warranted
to further examine the potential etiological role of CP in
various diseases.

In conclusion, using CP-associated SNPs as genetic
instruments retrieved from the GWAS results within large
populations with European ancestry, our MR study does not
find sufficient evidence to support a causal effect of CP as an
exposure on the development of CKD as an outcome. Similarly,
in the reverse inference, limited evidence was obtained in support
of a causal role of CKD on CP.
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Mendelian randomization makes use of genetic variants as instrumental variables

to eliminate the influence induced by unknown confounders on causal estimation

in epidemiology studies. However, with the soaring genetic variants identified in

genome-wide association studies, the pleiotropy, and linkage disequilibrium in genetic

variants are unavoidable and may produce severe bias in causal inference. In this study,

by modeling the pleiotropic effect as a normally distributed random effect, we propose

a novel mixed-effects regression model-based method PLDMR, pleiotropy and linkage

disequilibrium adaptive Mendelian randomization, which takes linkage disequilibrium

into account and also corrects for the pleiotropic effect in causal effect estimation

and statistical inference. We conduct voluminous simulation studies to evaluate the

performance of the proposed and existing methods. Simulation results illustrate the

validity and advantage of the novel method, especially in the case of linkage disequilibrium

and directional pleiotropic effects, compared with other methods. In addition, by applying

this novel method to the data on Atherosclerosis Risk in Communications Study, we

conclude that body mass index has a significant causal effect on and thus might be a

potential risk factor of systolic blood pressure. The novel method is implemented in R

and the corresponding R code is provided for free download.

Keywords: causal effect, individual data, linkage disequilibrium, Mendelian randomization, mixed-effects

model, pleiotropy

1. INTRODUCTION

Conventional epidemiology has made enormous contributions to identifying certain significant
exposures associated with common diseases, like fine particle air pollution was found to increase
the risk of lung cancer mortality (Knowler et al., 2002; Pope et al., 2002). However, some
epidemiological findings have later been revealed to be misleading by randomized controlled
trials (RCTs) (Smith and Ebrahim, 2005). Furthermore, even if RCTs can correct the bias, despite
the high cost of RCTs, the randomization of some potential confounders like nutrition and
physical activity may be unfeasible (Smith and Ebrahim, 2003), thus some statistical methods were
developed and employed to infer the causal relationship of interested exposures and diseases in
epidemiology studies.
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Mendelian randomization (MR) applies the method of
instrumental variables (IVs) to estimate the causal effect of
a non-genetic exposure on a disease outcome (Lawlor et al.,
2008). MR exceeds conventional observational epidemiology in
many aspects. Just as the role that IVs play in econometrics,
setting genetic variants, e.g., single-nucleotide polymorphisms
(SNPs), as instrumental variables, MR is capable of excluding
the unknown confounders which often interfere with the
conventional epidemiological analyses. What is more, not
like RCTs spending large amounts of time and money in
designing experiments and measuring physiological indexes, MR
is practical and economical in the sense of using statistical
methods. Methodological studies on MR in recent years have
facilitated the reuse of results from genome-wide association
studies (GWASs) (Burgess et al., 2013; Bowden et al., 2015, 2016).
The GWAS is able to detect association between genetic variants
and traits (Visscher et al., 2017). Immense results of GWASs are
available through various online databases, such as Gene ATLAS
and GWAS Catalog (Buniello et al., 2018; Canela-Xandri et al.,
2018), from where we can get summary statistics like effects
of SNPs on exposures and outcomes. To discover the causal
relationships between exposure-outcome pairs, these statistics
are necessary for MR methods. There are also some methods
developed to infer causal relationships in individual-level data
(Kang et al., 2016; Windmeijer et al., 2019), in addition to the
general two-sample MR methods, which can be easily conducted
and only require one-sample individual-level data.

Selecting a genetic variant as an IV, we must follow several
critical assumptions (Angrist et al., 1996), among which the
exclusion restriction assumption implies any effect of an IV on
the outcome must be via an effect of the IV on the exposure (i.e.,
no pleiotropy; Angrist et al., 1996). However, it is possible that
pleiotropy occurs in MR studies when taking multiple genetic
variants as IVs, as numerous conclusions from GWASs have
suggested (Soranzo et al., 2009; Lauc et al., 2013; Hu et al.,
2018; Parker et al., 2019; Watanabe et al., 2019). To correct
the bias in causal effect estimation produced by the latent
pleiotropy of IVs, MR-Egger was proposed and widely employed
in MR analyses, which viewed individual IV estimates as separate
study results in meta-analysis and applied Egger’s regression
for interpreting pleiotropy in causal inference (Bowden et al.,
2015; Yavorska and Burgess, 2017; Zhan and Fang, 2019).
The latest version of the package MendelianRandomization
(Yavorska and Burgess, 2017) allows MR-Egger to adjust for
the bias brought by the linkage disequilibrium (LD) between
genetic variants. However, MR-Egger (Bowden et al., 2015)
only considers correcting the average pleiotropic effect, ignoring
the potential variance of pleiotropic effects for invalid IVs,
which may also influence causal inference. Thus, whether MR-
Egger is able to handle LD and random pleiotropic effects
simultaneously needs to be verified. LDA MR-Egger (Barfield
et al., 2018) improves the performances of MR-Egger when
LD exists between genetic variants but still has problems when
the variance of pleiotropic effect is considerable. Other two-
sample MR methods such as MR-LDP (Cheng et al., 2020) and
RAPS (Zhao et al., 2020) are unable to correct the directional
pleiotropic effect.

TABLE 1 | Causal inference of BMI on SBP and GLU, respectively, in analyzing

ARIC dataset.

SBP GLU

Method β Standard

error

p-value β Standard

error

p-value

MR-LDP 0.0080 0.0051 0.1162 0.0055 0.0036 0.1349

RAPS 0.0104 0.0036 0.0042 0.0053 0.0025 0.0344

MR-Egger 0.0149 0.0098 0.1301 −0.0001 0.0066 0.9826

LDA MR-Egger 0.0136 0.0110 0.2280 −0.0012 0.0091 0.8919

LDMR 0.0143 0.0091 0.1330 −0.0019 0.0078 0.8108

PLDMRa 0.0163 0.0067 0.0244 −0.0007 0.0062 0.9146

PLDMR 0.0163 0.0067 0.0248 −0.0007 0.0062 0.9139

The threshold of p-value for selecting SNPs is 5 × 10−8. The total number of SNPs is 21.

In this paper, we first introduce the mixed-effects regression
model inherited fromMR-Egger (Bowden et al., 2015) and briefly
review MR-Egger method. Then we propose our novel method,
pleiotropy and linkage disequilibrium adaptive Mendelian
randomization (PLDMR), which models and corrects both the
mean and variance of pleiotropic effects, as well as LD between
genetic variants in causal effect estimation and statistical testing.
We also derive two approximations of PLDMR, i.e., LDMR when
the variance of pleiotropic effect is about zero and PLDMRa

when the sample size is sufficiently large. We further compare
the statistical properties of PLDMR against MR-Egger as well as
several two-sample summary-level data methods developed in
recent years, such as MR-LDP (Cheng et al., 2020), RAPS (Zhao
et al., 2020), and LDAMR-Egger (Barfield et al., 2018), in terms of
estimation and statistical testing in various simulation scenarios.
Furthermore, we apply PLDMR, LDMR, and PLDMRa to the data
of Atherosclerosis Risk in Communications Study (ARIC) and
identify the significant causal effect of body mass index (BMI) on
systolic blood pressure (SBP). We conclude that incorporating
the variance of the pleiotropic effects and LD into MR analyses
can efficiently estimate the causal effect and make more credible
causal inference.

2. MATERIALS AND METHODS

2.1. Mendelian Randomization and
Regression Models
Let us first recall the regression models used in MR-Egger
(Bowden et al., 2015). For n individuals, let the matrix G =

(Gij)n×m denote their centralized measurement of the m genetic
variants, where Gij is the genotype of individual i at the jth

variant, 1 ≤ i ≤ n, 1 ≤ j ≤ m. X = (X1,X2, ...,Xn)
T

and Y = (Y1,Y2, ...,Yn)
T are centralized measurements of the

exposure and outcome of the n individuals, respectively. The
exposure X is the linear combination of m genotypes and an
error term εX = (εX1 , εX2 , ..., εXn )

T , and the outcome Y is
the linear combination of m genotypes, the exposure and an
error term εY = (εY1 , εY2 , ..., εYn )

T . To simplify the model, we
reflect the influence of unknown confounders on X and Y in
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the correlatedness of the error terms εX and εY . The causal
effect of the exposure on the outcome is β in the model, which
is of interest. The coefficients γ = (γ1, γ2, ..., γm)

T represent
the effect of m genetic variants on the exposure, and α =

(α1,α2, ...,αm)
T is the pleiotropic effect of m genetic variants on

the outcome. Specifically,

X = Gγ + εX ,

Y = Gα + Xβ + εY ,

(
εX
εY

)
∼ N

((
0

0

)
,

(
σ 2
X ρσXσY

ρσXσY σ 2
Y

)
⊗ In

)
,

where σX ∈ (0,∞), σY ∈ (0,∞), ρ ∈ (−1, 1), α ∼

N(µα1, σ
2
α Im) is the random pleiotropic effect independent of

G, εX , and εY (Zhao et al., 2020), I is the identity matrix, ⊗ is
the Kronecker product, and 1 is all 1’s vector of lengthm. To take
genetic variants as valid IVs in the conventional MR studies, the
following assumptions should be satisfied (Angrist et al., 1996):
(i) The genetic variants are randomly assigned, thus independent
of unknown confounders; (ii) The genetic variants should be
associated with the exposure; (iii) Any effect of the genetic
variants on the outcome must be via an effect of that on the
exposure. Equivalently speaking, (i) assumes G is independent of
εX and εY ; (ii) requires γj 6= 0 for each genetic variant j, which
can be met by selecting genetic variants with methods like linear
regression; (iii) implies no pleiotropic effect, i.e., α = 0. Our aim
is to estimate the causal effect β and then make the statistical
inference on it. To this end, we employ the mixed-effects model
as described above to relax the requirement in (iii).

2.2. Revisit Egger Regression and
MR-Egger
Let Ŵ̃j and γ̃j denote the coefficient estimates of the simple linear
regression of the outcome Y and the exposure X on the genotype
G.j = (G1j,G2j, ...,Gnj)

T at variant j, respectively, and SE(Ŵ̃j)

denote the standard error of Ŵ̃j, 1 ≤ j ≤ m. An adaption of
Egger regression was proposed (Bowden et al., 2015) as follows
to estimate the causal effect,

Ŵ̃ = β0E1+ βEγ̃ + e
Ŵ̃
, e

Ŵ̃

∼ N(0, σ 2diag(SE2(Ŵ̃1), SE
2(Ŵ̃2), ..., SE

2(Ŵ̃m)),

where Ŵ̃ = (Ŵ̃1, Ŵ̃2, ..., Ŵ̃m)
T , γ̃ = (γ̃1, γ̃2, ..., γ̃m)

T .
Imposing the constraint of β0E = 0 on the above regression

model yields the inverse-variance weighted (IVW) estimate of
the causal effect (Burgess et al., 2013), which is also commonly
used in the meta-analysis. Notice that both MR-Egger and
IVW are applicable to the summary data that are accessible in
most GWASs.

2.3. PLDMR Adjusted for Pleiotropy and
Linkage Disequilibrium
With the rapidly increasing number of genetic variants involved
in Mendelian randomization studies, it is necessary to take the

correlation among variants into account in estimating the causal
effect of exposure on the outcome. Instead of the marginal
regression of exposure/outcome on the genotype, multiple linear
regression of Y on G, and X on G are employed to derive the

coefficient estimates Ŵ̂ and γ̂ , respectively. To be precise, Ŵ̂ =

(GTG)−1GTY and γ̂ = (GTG)−1GTX. Further, we have

Ŵ̂ = (GTG)−1GT(Gα + Xβ + εY )

= α + βγ̂ + (GTG)−1GTεY

= µα1+ βγ̂ + (α − µα1)+ (GTG)−1GTεY .

Based on the independence of α and εY and also their normality,
we have the following regression model

Ŵ̂ = µα1+ βγ̂ + ε
Ŵ̂
, ε

Ŵ̂
∼ N(0,W−1),

where W = [σ 2
α Im + σ 2

Y (G
TG)−1]−1. The corresponding

likelihood function is

L(µα ,β , σ
2
α , σ

2
Y ; Ŵ̂, γ̂ )

= (2π)−
m
2 |W|

1
2 exp

[
−
1

2
(Ŵ̂ − µα1− βγ̂ )TW(Ŵ̂ − µα1− βγ̂ )

]
.

Notice that both unknown parameters σ 2
α and σ 2

Y are involved in
W, which renders difficulty in the calculation of the maximum
likelihood estimates (MLEs). For the positive definite matrix
(GTG)−1, there exists an m × m orthogonal matrix Q and an
m × m diagonal matrix 3 such that (GTG)−1 = Q3QT . Let
r2 = σ 2

α/σ 2
Y , we then express W−1 as σ 2

Y (r
2Im + Q3QT) and

further diagonalize QTW−1Q as σ 2
Y (r

2Im +3). So the likelihood
function is transformed to

L(µα ,β , r
2, σ 2

Y ; Ŵ̂, γ̂ ) = (2πσ 2
Y )

−m
2 |r2Im + 3|−

1
2 ·

exp

[
−

1

2σ 2
Y

(QTŴ̂ − µαQ
T1− βQT γ̂ )T(r2Im + 3)−1(QTŴ̂

−µαQ
T1− βQT γ̂ )

]
.

We call the R package BB (Varadhan and Gilbert, 2009)
implementing the spectral projected gradient algorithm
(Varadhan and Roland, 2008) to get the MLEs µ̂α , β̂ , and r̂2. As

β̂ =
γ̂
T
W

1
2

(
Im − P

W
1
2 1

)
W

1
2 Ŵ̂

γ̂
T
W

1
2

(
Im − P

W
1
2 1

)
W

1
2 γ̂

∼ N


β ,

1

γ̂
T
W

1
2 (Im − P

W
1
2 1
)W

1
2 γ̂


 ,

where P
W

1
2 1

= W
1
2 11TW

1
2

1TW1
is the orthogonal projection onto

W
1
2 1. The plug-in method is invoked to get V̂ar(β̂), the
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estimate of the variance of β̂ . Based on these estimates, we
have approximately

β̂ − β√
V̂ar(β̂)

∼ t(m− 2),

which can easily yield the confidence interval of the causal effect
β or the p-value in testing the statistical hypothesis H0 :β = β0,
where t(m − 2) represents the t-distribution with m − 2 degrees
of freedom. We use PLDMR for the statistical inference of the
causal effect in the presence of pleiotropy and multiple SNPs in
LD in Mendelian randomization analyses.

Considering the sample size n is usually an order of tens of
thousands, we have GTG = O(n) and further W ≈ σ−2

α Im.
As an approximation in the situation of big n, the estimate
of the causal effect β and its variance are easily derived from
classical simple linear regression. We denote this approximation
as PLDMRa. The accuracy of this approximation is illustrated
in the simulation study for varied sample sizes from several
hundreds to several tens of thousands and varied σ 2

α .
Another special case of our interest is σ 2

α = 0, i.e., α = µα1, or
σ 2

α ≈ 0. We have W ≈ σ−2
Y (GTG) and then the estimates of the

causal effect and its variance can be derived approximately from
the following simple linear regression

Ŵ̂ = µα1+ βγ̂ + ε
Ŵ̂
, ε

Ŵ̂
∼ N(0, σ 2

Y (G
TG)−1).

So regressing Ŵ̂ on γ̂ yields

β̂LDMR =
γ̂
T

(
GTG− GTGJGTG

1TGTG1

)
Ŵ̂

γ̂
T

(
GTG− GTGJGTG

1TGTG1

)
γ̂
,

where J is all 1’sm×mmatrix, and further

β̂LDMR ∼ N


β ,

1

γ̂
T
(GTG)

1
2 (Im − P

(GTG)
1
2 1
)(GTG)

1
2 γ̂


 .

Again, we can use this normality to construct the confidence
interval of β or test the statistical hypothesis of β when the
variance of pleiotropic effect is about zero. We refer to this
method as LDMR. In contrast to PLDMR, the estimators of
LDMR and PLDMRa have closed forms and thus have no
computational burden.

2.4. The Design of Simulation Studies
To evaluate the proposed methods, a series of scenarios
of different parameter settings are designed to conduct the
simulation studies. We explore and compare the estimation
results and statistical properties of MR-LDP, RAPS, MR-Egger,
and LDA MR-Egger with PLDMR in nine combinations of three
patterns of pleiotropy (balanced, negative and positive) and three
magnitudes of linkage disequilibrium (no, low, and high). We

also vary n, the sample size, and σ 2
α , the variance of pleiotropic

effect, to illustrate whether PLDMR can be approximated by
LDMR and PLDMRa in the two situations, i.e., σ 2

α ≈ 0 and large
n, respectively. Additionally, we generate genotype data in LD for
every individual i as the steps listed below:

(i) Construct a Toeplitz m × m matrix 6g , i.e., the (j1, j2) cell

element is ρ
|j1−j2|
g , 1 ≤ j1, j2 ≤ m;

(ii) Randomly draw zi = (zi1, zi2, ..., zim)
T from MVN(0,6g )

and calculate 8(zij), where 8 denotes the cumulative
distribution function of N(0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

(iii) For the given minor allele frequency MAFj at the jth
locus, assign genotype Gij as the 8(zij) quantile of
Binomial(2,MAFj), 1 ≤ j ≤ m.

The Toeplitz matrix used in (i) is able to weaken the correlation of
genotypes at two loci j1, j2 with respect to their “relative distance”
|j1 − j2|. Also, we can control the relative strength of linkage
disequilibrium by tuning the magnitude of ρg .

3. RESULTS

3.1. Comparison of Statistical Properties
Between PLDMR and Existing Methods
All of the methods are implemented using R software (version
3.6.0). To evaluate the proposed methods comprehensively, we
choose MAFj ∼ Uniform([0.2, 0.4]), γj ∼ Uniform([0.5, 4]), 1 ≤

j ≤ m, and fix σX = σY = 2, ρ = 0.5. We further set ρg = 0, 0.3,
and 0.6 to represent no LD, low LD, and high LD; µα = 0,+0.1,
and −0.1 to represent balanced pleiotropy, positive pleiotropy,
and negative pleiotropy; σα = 0.01, 0.1 and 0.2 to represent
different strengths of the pleiotropic effect; n = 1,000, 5,000,
10,000, and 20,000 to represent a wide range of sample sizes. The
nominal significance level is 0.05 and the replications are 10,000
for each scenario. For brevity, results of the simulation study
with σα = 0.1 and m = 25 are shown in Figures 1, 2, and the
remainders are shown in Supplementary Material.

Four existing two-sample summary-level data methods, i.e.,
MR-LDP (Cheng et al., 2020), RAPS (Zhao et al., 2020), MR-
Egger (Bowden et al., 2015), and LDA MR-Egger (Barfield et al.,
2018), are also included in the comparison. Summary level data
is obtained by splitting the one-sample individual data into two
halves and then conducting simple linear regression in each part.
The reference LD correlation matrix needed for these methods is
generated from the genotypes of an additional independent 5,000
individuals. We use the R packages MendelianRandomization
(version 0.4.2) (Yavorska and Burgess, 2017), MR.LDP (version
1.0), mr.raps (version 0.3.1) to implement the above methods.
The code of LDA MR-Egger (Barfield et al., 2018) is downloaded
from the github homepage of the author. In addition to
PLDMR, LDMR, and PLDMRa, we also add PLDMRt, which
represents the PLDMR method evaluated at the true values
of σ 2

α and σ 2
Y instead of the estimated ones in weighted

linear regression.
Now let us look at the performances of the eight methods

mentioned above in terms of estimation and testing when the
true value of β is 0. As is shown in Figure 1, MR-LDP controls
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FIGURE 1 | Bar plot of the type I error rates of all methods under the null hypothesis of H0 :β = 0. Sample size (n = 1,000, 5,000, 10,000, 20,000), the number of

genetic variants m = 25, and σα = 0.1. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between

the genetic variants. The red dashed horizontal line indicates the nominal significance of 0.05.

type I error rate well in the scenarios of balanced pleiotropy
(left panel), but fails in the scenarios of directional pleiotropy
(mid and right panels). RAPS fails to control type I error rate
when LD or directional pleiotropy exists and only controls the
type I error rate in the top-left figure. The type I error rate
of MR-Egger method inflates as the sample size increases in
each scenario. The type I error rates of LDA MR-Egger and
LDMR behave similarly in each scenario, albeit there exists
some inflation in the scenarios of high LD (bottom panel).
No obvious inflation can be observed from the type I error
rates of PLDMR, PLDMRa and PLDMRt, although PLDMRa

shows some conservativeness in the scenarios of high LD.
Supplementary Figure 1 shows the estimation performance of
all methods. MR-LDP and RAPS are biased in the scenarios
of directional pleiotropy (mid and right panels). MR-Egger and
LDAMR-Egger behave similarly in each scenario, as they are both
severely biased in the scenarios of directional pleiotropy and high
LD (bottom-mid and bottom-right figures). LDMR, PLDMR, and
PLDMRa are unbiased in each scenario. However, the standard
errors of MR-LDP and RAPS are apparently smaller than
those of other methods in the scenarios of balanced pleiotropy
(left panel).

Figure 2 depicts the power of detecting the causal effect
when β = 0.05. The powers of MR-LDP are higher than
LDMR, PLDMR, PLDMRa, and PLDMRt in the scenarios of
balanced pleiotropy (left panel), but are invalid in the scenarios of
directional pleiotropy due to its failure in controlling type I error
rates. RAPS is the most powerful method for detecting the causal
effect in the scenario of balanced pleiotropy and no LD (top-left
figure), but is doubtful in other cases. MR-Egger can control type
I error rates only when sample size is small and the correlation
between SNPs is low (ρg = 0, 0.3), in which cases its power
is lower than LDMR, PLDMR, PLDMRa, and PLDMRt. LDA
MR-Egger performs better than LDMR, PLDMR, PLDMRa, and
PLDMRt when sample size is large and the correlation between
SNPs is low. Supplementary Figure 2 shows the performances
of estimations when β = 0.05, which exhibits a similar pattern
as when β = 0.

Figures 3, 4 show the performances of the eight methods
using different numbers of IVs. We fix sample size n at 5,000
in this simulation and the variance of the pleiotropic effect is
σα = 0.01.MR-LDP still fails to control the type I error rate in the
scenarios of directional pleiotropy and RAPS is unable to control
type I error rate either when LD exists or directional pleiotropy
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FIGURE 2 | Bar plot of the powers of all methods under the alternative hypothesis of H1 :β = 0.05. Sample size n = 1,000, 5,000, 10,000, 20,000, the number of

genetic variants m = 25, and σα = 0.1. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between

the genetic variants.

exists. It can be obviously observed that the type I error rates
of MR-Egger inflates when directional pleiotropic effect exists,
whereas LDA MR-Egger fails to control type I error rate in the
scenarios of directional pleiotropic effect and strong LD. LDMR,
PLDMR, PLDMRa, and PLDMRt control type I error rates at
0.05 and show no noticeable changes asm increases. In Figure 4,
the standard errors of all methods decrease with respect to the
number of IVsm, except for MR-LDP and RAPS in the scenarios
of directional pleiotropic effect.

In addition, we compare the type I error rates of all methods
under different settings of σα in Supplementary Figures 3, 5. In
Supplementary Figure 3 with σα = 0.01, MR-Egger can control
type I error rate at 0.05 in situations of balanced pleiotropy and
no LD but still fails in situations of directional pleiotropy, low
and high LD groups. LDMR, PLDMR, and PLDMRt control type
I error rates well at around 0.05, whereas PLDMRa obviously
is conservative, especially in high LD situations. Except for the
conservativeness showed by MR-LDP when sample size is small
in the scenarios of balanced pleiotropy, the behaviors of MR-
LDP and RAPS are almost the same as those when σα =

0.1. When σα = 0.2, the conclusion is similar to that when
σα = 0.1 (Supplementary Figure 5). Furthermore, the powers

of all methods when σα = 0.01 and 0.2 are also shown in
Supplementary Figures 7, 9, from where we can conclude that
the increasing magnitude of the powers of LDMR, PLDMR, and
PLDMRa with respect to sample size under large σα is much
slower than that with smaller σα . The behaviors of estimations
of all methods are shown by Supplementary Figures 4, 6, 8, 10.

3.2. Briefing and Preprocessing of ARIC
Data
Nowadays obesity has become a key issue of global concern (Xu
and Lam, 2018). In studying obesity, we usually use BMI to
define overweight and obesity. So it is an important factor to use
BMI in the relevant research. In order to investigate the causal
effect of BMI on SBP and glucose (GLU), we use data on 15,792
individuals from ARIC study. The ARIC study is one of the
largest multi-ethnic sampling frame studies in the United States.
Nearly 70% of the participants were European Americans, and
the rest were African Americans. ARIC includes 909,622 SNPs
and more than 450 phenotypes.

Regarding BMI as an exposure and choosing SNPs
significantly associated with BMI (p-value < 5 × 10−8)
with reference to GWAS Catalog database (We also choose
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FIGURE 3 | Bar plot of the type I error rates of all methods under the null hypothesis of H0 :β = 0. Sample size is n = 5,000, σα = 0.01, and the number of genetic

variants m = 50, 75, 100, 200. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between the

genetic variants. The red dashed horizontal line indicates the nominal significance of 0.05.

p < 1 × 10−4 as another threshold and the corresponding
results are shown in Supplementary Table 2), we identify 616
significant SNPs as instrumental variables from ARIC dataset
for MR analysis. We only consider individuals of white origin in
the following analysis for avoiding the population stratification
problem. After model checking, BMI follows normal distribution
and it is necessary to log-transform SBP and GLU. We adjust
for covariates including sex, age, and age2 by regressing BMI,
SBP, GLU on these covariates, respectively, and then use the
corresponding regression residuals as the adjusted BMI, adjusted
SBP and adjusted GLU for the subsequent analysis. After pruning
out SNPs with missing value proportion >20% and testing for
Hardy-Weinberg equilibrium of the candidate SNPs, multiple
linear regression is employed to select genetic variants positively
associated with the exposure BMI. Finally, 21 SNPs (see details
in Supplementary Table 1) and 6,782 individuals are included in
this study after the preliminary processing of data.

3.3. Causal Inference of BMI on SBP
The results of Ŵ̂ and γ̂ of 21 SNPs are depicted in Figure 5,
and the estimated causal effects, standard errors, and p-values

are listed in Table 1. The estimate of r2 is about 0.015, which
implies that pleiotropy may exist for those 21 SNPs. The point
estimate of the causal effect is 0.0162 with the standard error
0.00677. The result of PLDMRa is similar to that of PLDMR,
with estimator 0.0163 with standard error 0.00666 for causal
effect of BMI on SBP, while the MR-Egger and LDMR methods
give point estimates of 0.0149 (with standard error 0.00985)
and 0.0143 (with standard error 0.00911) for causal effect,
respectively. Most importantly, PLDMRa and PLDMR imply a
significant causal effect of BMI on SBP with p-values 0.0244
and 0.0272, while MR-Egger and LDMR show no significance
in the causal relationship of BMI and SBP (p-value = 0.130
and 0.133, respectively). In addition, we conduct MR-LDP, LDA
MR-Egger and RAPS methods by randomly selecting 1,000
individuals from the whole dataset to estimate reference LD
correlation matrix and splitting the remained 5,782 individuals
into two halves to obtain summary statistics. The estimates of
the causal effect given by MR-LDP and LDA MR-Egger are
0.00802 and 0.0136, respectively (with standard errors 0.00510
and 0.0109, respectively), which show no significance in the
causal relationship between BMI and SBP (p-value = 0.116 and
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FIGURE 4 | Plot of the performances of all eight estimating methods when β = 0. Sample size is n = 5, 000, σα = 0.01, and the number of genetic variants

m = 50, 75, 100, 200. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between the genetic

variants. The solid circles are the mean values of estimators, the upper and lower bars are the means plus and minus one standard error in 10,000 replications. The

red dashed line indicates the true value of β.

0.228, respectively). RAPS estimates the causal effect as 0.0104
(with standard error 0.00362) and implies a significant causal
relationship between BMI and SBP (p-value = 0.00419).

Existing studies have already shown that there is a relationship
between BMI and blood pressure or hypertension (Feng et al.,
2012; Shihab et al., 2012; Hall et al., 2015). Recently, a
population-based cohort study from UK Biobank including
120,000 individuals identified the association between BMI and
hypertension, SBP and DBP, where Mendelian randomization
was used to show significant positive association between
BMI and SBP with p-value 2 × 10−4 (Lyall et al., 2017).
In addition, a MR analysis is conducted by studying a total
of 19,502 people from 36 study populations of European
descents, confirming that BMI has causal relationship with SBP
with p-value 6.7 × 10−76 (Fall et al., 2013). These results all
support the conclusion inferred from our method. So when
pleiotropy exists and can not be ignored, our method PLDMR
is recommended.

3.4. Causal Inference of BMI on GLU
We also investigate the relationship between BMI and GLU
(Supplementary Figure 11). The estimate of r2 is 0.000406,

which means the pleiotropic effect is relatively small. Only RAPS
shows a significant causal association between BMI and GLU
(β̂ = 0.00527 with standard error 0.00249 and p-value 0.0344).
A large-scale MR study investigating a European population
(34,538 people) concluded no significant association of BMI with
glucose deterioration with p-value 0.787 (Wang et al., 2018).
No statistical significance between BMI and fasting glucose was
reported in another study (Xu et al., 2020) (p-value 0.546).
The results of PLDMR are consistent with the findings in
the literature.

4. DISCUSSION

4.1. Relation Between PLDMR and Other
Existing Methods
Many methods have been proposed to detect the invalid
instrumental variables involved in Mendelian randomization
analysis and then to correct the estimate of causal effect. For
example, the Q test employs Cochran’s Q statistic, which follows
χ2 distribution with one degree of freedom, to detect outliers
and exclude them out in further analysis of the summary
level data (Bowden et al., 2018). They also proposed a scale
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FIGURE 5 | Scatter plot of Ŵ̂ with respect to γ̂ in the analyses of BMI-SBP. The red line is the regression line of MR-LDP method, the brown dashed line is the

regression line of RAPS, the yellow-green dashed line is the regression line of MR-Egger method, the green dashed line is the regression line of LDA MR-Egger

method, the blue short dashed line is the regression line of LDMR method, the purple short dashed line is the regression line of PLDMRa, and the magenta long

dashed line is the regression line of PLDMR.

factor φ, which is associated with the squared ratio r2 =

σ 2
α/σ 2

Y , to quantify the degree of heterogeneity in the Q-
test (Bowden et al., 2018). Similar to the Q-test method,
MR-PRESSO (Verbanck et al., 2018) first conducts a global
test to detect the overall pleiotropic effect in a MR study,
and then applies outlier test to rule out invalid genetic
variants in follow-up study. Unlike the Q-test and MR-
PRESSO methods, PLDMR contains all of the genetic variants
associated with the exposure in a MR study and corrects
the causal effect estimate with the mean and variance of
pleiotropic effect.

Another strategy for adjusting the pleiotropy in MR studies is
to additionally assume that the number of invalid genetic variants
is less than half of the total number of variants, like the weighted
median estimator and sisVIVE (Bowden et al., 2016; Kang et al.,
2016). Adaptive lasso (Windmeijer et al., 2019) has been applied
to select valid IVs and propose consistent estimate for causal
effect by combining weighted median method with sisVIVE
for individual level data. With these additional conditions on

pleiotropic effect, it has been proved that α is estimable (Kang
et al., 2016) and identification of the true set of invalid genetic
variants is consistent (Windmeijer et al., 2019). However, when
these conditions are not met (for example, the fraction of invalid
genetic variants is >50%), these methods fail to give a proper
estimate of causal effect.

TWMR (Porcu et al., 2019) is similar to multivariable MR
(Burgess and Thompson, 2015), which takes multiple expression
quantitative trait loci as exposures to control the pleiotropic
effects mediated by expression loci to the trait. However, any
other pleiotropic effects mediated by environmental factors such
as diet and education can still be potential confounders which
affect the performances of these two methods. Moreover, we
have conducted simulation studies to verify the performance of
TWMR. Because we only consider one exposure in this study,
the TWMR is unable to identify the pleiotropic effects in this
case and thus the results cannot meet expectations. Furthermore,
GSMR (Zhu et al., 2018) can also be applied to two-sample
summary-level data. It solves the pleiotropy and LD problems by
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excluding the SNPs which have pleiotropic effect and/or strong
LD correlations between each other (Zhu et al., 2018). We also
conduct simulation studies to compare our method and GSMR.
As all the SNPs have pleiotropic effects and most of them are
correlated with each other in our simulation study, the number
of remaining SNPs after HEIDI test and LD pruning procedures
may be <10, which would cause the instability warning in
executing GSMR. In addition, it is observed from Figures 2A,C
(Cheng et al., 2020) in the comparison of MR-LDP and GSMR
that GSMR is not able to control type I error rate well when h2α is
not zero, which is equivalent to the parameter setting of µα = 0
and σ 2

α > 0 in our simulation, thus we have excludedGSMR from
the comparison.

PLDMR takes a similar strategy to RAPS (Zhao et al., 2020),
but PLDMR also borrows the idea from MR-Egger. To be
precise, RAPS only models the variance of pleiotropic effects
to correct for causal effect, while PLDMR models both the
mean and variance of pleiotropic effects. What is more, RAPS
assumes the selected genetic variants are in linkage equilibrium
but PLDMR allows the existence of LD in all IVs. Similar to
RAPS, MR-LDP (Cheng et al., 2020) also models the variance
of pleiotropic effects, which regards pleiotropic effects as latent
variables and uses expectation-maximization (EM) algorithm
to estimate the causal effect. LDA MR-Egger (Barfield et al.,
2018) improves MR-Egger when LD exists among the selected
SNPs. The estimator derived from LDA MR-Egger is actually
quite similar to that of LDMR, despite of a little difference in
weight matrices.

4.2. Limitations and Forecast of PLDMR
We have shown in Figure 1 that the small sample size n and high
LD may cause type I error rate inflation, although very slight, for
PLDMR method. This may mainly be caused by the relatively
large variance of PLDMR estimator when the sample size n is
small, since the term (GTG)−1 in the variance is associated with
n and the diagonal elements of this matrix decrease at rate 1

n .
On the other hand, the slow growth of PLDMR’s power under
large variance of pleiotropic effect (Supplementary Figure 9)
may be interpreted as “the strong pleiotropy in MR studies
can dominate the power growth benefit from the increase in
sample size.”

Furthermore, although we propose a measurement r2 =

σ 2
α/σ 2

Y to describe the relative strength of pleiotropy, we have
not developed a method to test for the potential pleiotropy in
genetic variants. The test for pleiotropic effect is important as it
adds the interpretability of MR analyses when PLDMR returns
a different result from the traditional MR methods which do
not take pleiotropy into account. MR-Egger models pleiotropy
in the intercept term of the Egger’s regression, thus the test for
pleiotropy is equivalent to test whether the intercept in regression
is zero (Bowden et al., 2015), while the Q-test in fact focuses
on the regression residuals (Bowden et al., 2018). When testing
pleiotropic effect with PLDMR, it is important to notice that we
must test two parameters µα and r2 simultaneously, which is
similar to the random-effects model in meta analysis (Han and
Eskin, 2011) and may be conducted by the likelihood ratio test
with a mixture of χ2 distributions.

PLDMR also has restrictions on the data involved. Because
of the requirement of matrix GTG in calculating multiple

regression coefficients Ŵ̂, γ̂ and weight matrix W
1
2 , individual

data is needed for PLDMR method, whereas two-sample MR
methods likeMR-Egger (Bowden et al., 2015) only need summary
level data and thus can be easily implemented using results
from online database like GWAS Catalog. To extend the
application of PLDMR in summary level data, similar to most
MR methods which consider LD in summary level data analyses
(Zhu et al., 2018; Porcu et al., 2019), we can approximately
substitute the matrix GTG with the reference LD panels such as
1000Genomes or even ARIC dataset itself. This is work left for
future study.

Ultimately, we conclude that although MR-Egger allows
correction for LD, the type I error of testing the null hypothesis
of H0 :β = 0 still inflates when directional pleiotropy and
LD simultaneously exist between genetic variants, and LDA
MR-Egger also fails to control type I error rate when there
exists strong LD between genetic variants. PLDMR method
controls type I error rate well and stays consistent with true
value plug-in method PLDMRt, especially when MR-LDP and
RAPS are unable to control type I error rates in the cases of
directional pleiotropic effects. We further conclude that LDMR
and PLDMRa are effective approximation of PLDMR method
when the variation of pleiotropy is small and the sample size is
large, respectively.
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Stroke is a leading cause of death and disability worldwide. However, our understanding 
of its underlying biology and the number of available treatment options remain limited. 
Mendelian randomization (MR) offers a powerful approach to identify novel biological 
pathways and therapeutic targets for this disease. Around ~100 MR studies have been 
conducted so far to explore, confirm, and quantify causal relationships between several 
exposures and risk of stroke. In this review, we summarize the current evidence arising 
from these studies, including those investigating ischemic stroke, hemorrhagic stroke, or 
both. We highlight the different types of exposures that are currently under study, ranging 
from well-known cardiovascular risk factors to less established inflammation-related 
mechanisms. Finally, we provide an overview of future avenues of research and novel 
approaches, including drug target validation MR, which is poised to have a substantial 
impact on drug development and drug repurposing.

Keywords: stroke, genetics, Mendelian randomization, polygenic risk scores, drug target validation

INTRODUCTION

Stroke is a leading cause of mortality and disability worldwide. While the overall incidence 
of stroke is decreasing, the global burden of this disease remains high because the absolute 
number of disability-adjusted life years lost due to stroke is increasing as the population grows 
and ages (Johnson et  al., 2019). Thus, there is an urgent need for novel preventive, therapeutic, 
and rehabilitation strategies. Among these three, new acute treatments are particularly needed, 
as the few alternatives available thus far include thrombolytic therapy and mechanical thrombectomy 
for ischemic stroke (Powers et  al., 2019), targeted blood pressure reduction for intracerebral 
hemorrhage (ICH; Hemphill et  al., 2015), and early securing of the aneurysm in subarachnoid 
hemorrhage (Connolly et  al., 2012).

In this setting, the field of stroke research can greatly benefit from the tools that population 
genetics has to offer. Mendelian randomization (MR) is a statistical method aimed at determining 
and quantifying causal relationships between genetically determined exposures and outcomes 
of interest (Davies et  al., 2018). Importantly, in contrast to randomized clinical trials (the  most 
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frequently used tool to evaluate causality), MR can be performed 
using already available open-access data from different sources, 
allowing the evaluation of larger numbers of possible mechanisms 
and accelerating the speed of the translational cycle.

In this review, we introduced the concept of MR and provide 
an overview of the existing MR studies focused on stroke. To 
identify these studies, we  conducted a systematic search of 
the medical literature using PubMed and the keywords 
“Mendelian randomization stroke,” “Mendelian randomization 
intracerebral hemorrhage,” and “Mendelian randomization 
subarachnoid hemorrhage” in the MEDLINE database. We also 
explored some analytical possibilities beyond classical MR, 
including the use of multiomics data and drug target 
validation MR.

MENDELIAN RANDOMIZATION: A 
PRIMER

MR constitutes a special case of instrumental variable analysis, 
a widely used analytical framework for causal inference. When 
the MR assumptions are met, it is possible to identify and 
quantify causal relationships between exposures and outcomes 
of interest (Figure  1). MR is best explained using an example. 
For this section, we will use the link between cholesterol levels 
and systolic blood pressure as our starting point. In randomized 
clinical trials, investigators randomly assign study participants 
to an intervention or placebo to study causal relationships 

between the intervention and the outcome of interest. In our 
example, researchers would randomly assign participants to 
receive a cholesterol-lowering drug or placebo and then measure 
systolic blood pressure levels in both groups. In MR analysis, 
we  would use genetic variants strongly associated with the 
exposure of interest as the instrument. In this case, we  would 
choose genetic variants strongly associated with cholesterol 
levels. As these variants are randomly segregated before birth, 
one could then separate groups according to the number of 
risk alleles, and the resulting analyses would not be confounded 
by environmental exposures happening after birth. Thus, we can 
measure systolic blood pressure levels in those groups and 
implement the necessary comparisons.

The implementation of MR analyses requires important 
assumptions (Figure  2). First, the genetic variants used as 
instruments must be  strongly associated with the exposure or 
risk factor of interest. This is generally easily accomplished, 
since these variants are often derived from large-scale genome-
wide association studies (GWAS) of the exposure of interest. 
Second, there should be no confounders affecting the association 
between genetic variants and the outcome of interest. This 
assumption is not trivial, and, at the moment, there is no 
method to definitively confirm this assumption. Although not 
always performed, a practical way to tackle this problem is 
to test the genetic variants used as instruments against an 
array of different other potential covariates that could lead to 
bias. Third, the genetic variants used as instruments affect the 
outcome of interest only via the exposure of interest, with no 

FIGURE 1 | Mendelian randomization (MR) as instrument variable analysis. MR is a type of instrumental variable analysis, similar to randomized clinical trials. 
Exposed individuals in MR are those carrying risk alleles for determined genetic variants known to associate with an exposure of interest.
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other alternative pathways coming into play. These alternative 
pathways are part of what is called horizontal pleiotropy. There 
are several statistical methods to test and correct for horizontal 
pleiotropy, including the Mendelian randomization–Egger (MR–
Egger) intercept, MR Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO), and Causal Analysis Using Summary Effect 
Estimates (CAUSE; Bowden et  al., 2015; Verbanck et  al., 2018; 
Morrison et  al., 2020).

Crucial to MR studies is the online availability of open-
access resources, including tools to rapidly test hypotheses such 
as MR-Base (Hemani et  al., 2018); large biobanks such as the 
UK Biobank (Bycroft et al., 2018), the China Kadoorie Biobank 
(CKB; Chen et  al., 2011), Biobank Japan (Nagai et  al., 2017), 
and the All of Us Research Program (Denny et  al., 2019); 
and repositories of summary statistics from large GWAS like 
the GWAS catalog (Buniello et  al., 2019), the GWAS atlas 
(Tian et al., 2020), and specifically for stroke, the Cerebrovascular 
Disease Knowledge Portal (Crawford et  al., 2018). These and 
other helpful resources are summarized in Table  1.

TRADITIONAL CARDIOVASCULAR RISK 
FACTORS

Cardiovascular risk factors represent the most important 
determinants of risk of stroke. While several observational 
studies have shown associations between traditional vascular 
risk factors and risk of different types of stroke, deriving 
causality from observational data is problematic due to the 
possibility of bias. In the last 5  years, several MR studies have 
been conducted to explore, confirm, and quantify causality 
behind these already described associations (Table  2).

Blood Pressure
Robust existing evidence indicates that high blood pressure is 
one of the main risk factors for stroke. However, several questions 

remain, including how early and sustained changes in blood 
pressure affect outcomes later in life and whether specific 
pharmacological interventions provide additional benefits over 
others. Georgakis et  al. (2020b) utilized MR analyses to assess 
the relationship between genetically proxied blood pressure levels 
and the risk of any stroke as well as its subtypes. They demonstrated 
that blood pressure levels were causally associated with the risk 
of any stroke and most subtypes, with the exception of lobar 
ICH. The effect of blood pressure appeared stronger in large 
artery stroke (LAS) and small vessel stroke (SVS). Additionally, 
the authors explored genetic proxies for two different 
antihypertensive drugs classes, calcium channel blockers and beta-
blockers, finding that a 10  mmHg reduction in systolic blood 
pressure using genetic proxies for calcium channel blockers was 
protective for any stroke and its subtypes, especially for SVS 
(40% reduction). Furthermore, the same reduction in blood 
pressure through calcium channel blockers variants was also 
associated with lower white matter hyperintensity (WMH) volumes, 
a well-established neuroimaging biomarker for cerebral small vessel 
disease. A study from the same group also evaluated whether 
blood pressure pulsatility (i.e., pulse pressure) affects stroke risk 
independently of the mean arterial pressure. Using multivariable 
MR within the UK Biobank, they found that pulse pressure was 
independently associated with ischemic stroke risk (but not ICH) 
in participants older than 55  years, being particularly important 
for LAS (Georgakis et  al., 2020a). Beyond ischemic stroke, MR 
analyses have confirmed observational evidence that indicate that 
high blood pressure is associated with higher risks of intracranial 
aneurysms and subarachnoid hemorrhage (Bakker et  al., 2020).

Lipids
The role of lipids in cardiovascular disease (CVD) has been 
extensively studied. However, the effect of circulating lipid levels 
on stroke appear to be heterogeneous and depend on the specific 
subtypes being evaluated. Hindy et  al. (2018) investigated the 
effect of blood lipids on the risk of ischemic stroke and its 

FIGURE 2 | Mendelian randomization paradigm and assumptions. Mendelian randomization assumptions: (1) valid instrument, (2) no association with confounders, 
and (3) no horizontal pleiotropy.
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subtypes using summary statistics from the GWAS completed 
by the Stroke Genetics Network (SiGN), which included 17,000 
ischemic stroke cases and more than 32,000 controls of European 
ancestry. They found that low-density lipoprotein cholesterol 
(LDL-C) levels were associated with risk of ischemic stroke, 
especially LAS. HDL-C levels were inversely associated with 
the risk of SVS. There were no consistent associations for 
triglycerides. More recently, Allara et  al. (2019) conducted a 
two-sample MR study to identify relationships between lipid 
levels and the risk of several cardiovascular outcomes, including 
stroke. In their study, higher HDL-C levels were associated 
with lower risk of ICH, while higher LDL-C levels were associated 
with higher risk of ischemic cerebrovascular disease. Interestingly, 
they also found an inverse association between triglycerides 
and the risk of ICH. A rigorous study performed by Valdes-
Marquez et  al. (2019) investigated the effect of LDL-C on the 
risk of ischemic stroke and its subtypes and did not find any 
significant associations with these conditions. Georgakis et  al. 
(2020c) also looked at the association between lipid fractions 
and small vessel disease, a broad phenotype that includes SVS, 
white matter disease, and ICH. They found that higher HDL-C 
was associated with lower risk of SVS and lower WMH volume. 
Interestingly, they also found a relationship between higher 
HDL-C and higher risk of ICH. Along this lines, Sun et  al. 
(2019) found a strong positive association between LDL-C and 
ischemic stroke and a strong inverse association with ICH in 
participants of the China Kadoorie Biobank. This inverse 
association between genetically determined LDL-C levels and 
the risk of ICH was confirmed in cohorts of European descent 
by Falcone et al. (2020). The latter two studies confirmed previous 
observational results that suggested that very low LDL-C levels 
increase the risk of ICH (Wang et  al., 2013; Saliba et  al., 2018; 
Ma et  al., 2019), pointing to novel pathways in ICH.

Another study recently explored association pertains to 
lipoprotein(a) [Lp(a)] levels and ischemic stroke. Using summary 
statistics from MEGASTROKE and the International Genomics 

of Alzheimer’s Project (IGAP), Pan et al. (2019) found a causal 
positive association between Lp(a) levels and LAS and, 
remarkably, an inverse association with SVS and Alzheimer 
disease (AD). Using individual-level data from the UK Biobank, 
Larsson et  al. (2020b) confirmed a positive association with 
any ischemic stroke but could not replicate the protective 
association with AD. The latter result, however, could have 
been due to lack of statistical power, as the investigators did 
find a protective association with parental AD or dementia.

Type 2 DM
Extensive data point to a deleterious effect of diabetes on 
ischemic stroke, but there is no such evidence for hemorrhagic 
stroke. Larsson et  al. (2017) used MR analyses to confirm a 
causal relationship between type 2 diabetes mellitus (T2DM) 
and risk of ischemic stroke, especially LAS, but found null 
associations between other metabolic markers such as glucose, 
insulin levels, and body mass index (BMI). Gan et  al. (2019) 
replicated this causal association between T2DM and ischemic 
stroke in the CKB, and Liu et  al. (2018) found an association 
between T2DM and lacunar stroke. Similarly, using a combined 
exposure comprising phenotypes related to insulin resistance 
(fasting insulin adjusted for BMI, HLD-C and triglycerides, 
and insulin sensitivity), Chen et  al. (2020) found a causal 
relationship between insulin resistance and ischemic stroke, 
particularly small vessel stroke. On the other hand, Yeung et al. 
(2018) did not find an association between glycated hemoglobin 
(HbA1c) and ischemic stroke in an MR study within the UK 
Biobank. More recently, Georgakis et  al. (2021) investigated 
the effects of T2DM, hyperglycemia, insulin resistance, and 
β-cell dysfunction on the risk of stroke and related traits, finding 
that type 2 diabetes and higher HbA1c levels are associated 
with higher risk stroke, and particularly of LAS and SVS, with 
similar associations found for insulin resistance and β-cell 
dysfunction. β-Cell dysfunction was also associated with the 
risk of ICH. Furthermore, a study focused on neuroimaging 

TABLE 1 | Online resources available for Mendelian Randomization studies.

References Name Website Description

Crawford et al., 2018
Cerebrovascular Disease 
Knowledge Portal

http://www.cerebrovascularportal.org/
A platform that allows for searching, visualizing, and 
analyzing variations related to cerebrovascular disease.

Buniello et al., 2019 GWAS Catalog https://www.ebi.ac.uk/gwas/ Catalog of GWAS results
Tian et al., 2020 GWAS atlas https://atlas.ctglab.nl/ Catalog of GWAS results
Lambert et al., 2019 PGS Catalog http://www.pgscatalog.org/ Catalog of Polygenic Risk Scores

Hemani et al., 2018 MR-base https://www.mrbase.org/
A database and analytical platform for Mendelian 
Randomization

Bycroft et al., 2018 UK Biobank https://www.ukbiobank.ac.uk/
Observational study, enrolling >500,000 participants, 
open-access

Gaziano et al., 2016 Million Veteran Program https://www.research.va.gov/mvp/
Observational study, enrolling 1 million participants, 
restricted access

Denny et al., 2019 All of Us https://allofus.nih.gov/
Observational study, aiming to enroll 1 million participants, 
open-access

Chen et al., 2011 China Kadoorie Biobank https://www.ckbiobank.org/
Observational study, 500,000 participants, restricted 
access

Nagai et al., 2017 Biobank Japan https://biobankjp.org/english/index.html
Observational study, ~200,000 participants, restricted 
access

Wong et al., 2017 dbGAP https://www.ncbi.nlm.nih.gov/gap/ Repository, open-access
Lappalainen et al., 2015 EGA https://ega-archive.org/ Repository, open-access
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TABLE 2 | Summary of MR studies looking at traditional risk factors for stroke.

References Exposure Outcomes Findings

Georgakis et al., 2020b Blood pressure levels
Any stroke, ischemic stroke, 
LAS, CES, and SVS

Ten mmHg increase in SBP was associated with approximately 
40% increase in the risk of any stroke or ischemic stroke. It 
was also associated with the risk of stroke subtypes, except 
for lobar ICH. Similar findings were presented for DBP. 
Decreases in SBP through calcium channel blockers but not 
through beta-blockers was associated with decrease in 
ischemic stroke risk.

Georgakis et al., 2020a PP Ischemic stroke and subtypes
Pulse pressure was independently associated with stroke risk 
in participants older than 55 years.

Hindy et al., 2018 LDL-C Ischemic stroke and subtypes
Higher LDL-C was associated with higher risk of ischemic 
stroke and LAS.

Allara et al., 2019 Lipid fractions levels CVD outcomes

Higher LDL-C was associated with higher risk of ischemic 
stroke.

Higher HDL-C levels were associated with lower risk of ICH.

Higher triglycerides were associated with lower risk of ICH.

Valdes-Marquez et al., 2019 LDL-C
CHD, Ischemic stroke and its 
subtypes

LDL-C levels were not associated with the risk of ischemic 
stroke or its subtypes.

Georgakis et al., 2020c Lipid fractions levels SVS, WMH volume, and ICH

Higher HDL-C levels were associated with lower risk of SVS 
and lower WMH volumes.

Higher HDL-C levels were associated with higher risk of ICH.

Sun et al., 2019 Lipid fractions levels Ischemic stroke and ICH
Higher LDL-C levels were associated with higher risk of 
ischemic stroke and lower risk of ICH.

Falcone et al., 2020 Lipid fractions levels ICH Higher LDL-C levels were associated with lower risk of ICH.

Pan et al., 2019 Lp(a)
Ischemic stroke, its subtypes, 
AD

Lp(a) levels were associated with higher risk of LAS, but lower 
risk of SVS and Alzheimer’s disease.

Larsson et al., 2020b Lp(a)
Ischemic stroke, AD, parental 
AD or dementia

Lp(a) levels were associated with the risk of ischemic stroke.

There is an inverse relationship between Lp(a) and Parental AD 
or dementia.

Larsson et al., 2017 T2DM
Ischemic stroke and its 
subtypes

T2DM was associated with the risk of ischemic stroke, specially 
LAS.

Gan et al., 2019 T2DM Ischemic stroke T2DM was associated with ischemic stroke.

Liu et al., 2018 T2DM
Small vessel disease 
phenotypes

T2DM was associated with MRI-confirmed lacunar stroke.

Chen et al., 2020 Insulin resistance Ischemic stroke and subtypes
Insulin resistance was associated with ischemic stroke, 
particularly SVS.

Yeung et al., 2018 HbA1c Ischemic stroke No association.

Georgakis et al., 2021
Type 2 diabetes, HbA1c, insulin 
resistance, and β-cell dysfunction

Ischemic stroke, ischemic 
stroke subtypes, intracerebral 
hemorrhage, related 
phenotypes

T2DM and higher HbA1c levels were associated with higher 
risk of ischemic stroke, especially LAS and SVS. Insulin 
resistance and β-cell dysfunction show similar associations, 
with the latter also associated with intracerebral hemorrhage. 
T2DM was also associated with lower white matter integrity 
(fractional anisotropy). T2DM, HbA1c, and β-cell dysfunction 
were associated with lower grey matter volume and total brain 
volume.

Qian et al., 2019 Smoking Ischemic stroke Smoking was associated with any ischemic stroke and LAS.

Larsson et al., 2019a Smoking initiation
Ischemic stroke, subtypes, and 
ICH

Smoking initiation was associated with ischemic stroke, LAS, 
and SVS, but not with CES or ICH.

Larsson et al., 2020c Smoking 14 CVDs

Smoking was associated with a broad range of CVDs including 
coronary artery disease, heart failure, abdominal aortic 
aneurysm, ischemic stroke, transient ischemic attack, 
peripheral arterial disease, and arterial hypertension.

Acosta et al., 2021 Smoking initiation SAH
Smoking initiation was associated with the risk of nontraumatic 
SAH.

Dale et al., 2017
General adiposity and central 
adiposity

Stroke
Central adiposity but not general adiposity was associated with 
stroke risk.

Marini et al., 2020 BMI and WHR
Ischemic stroke, subtypes, ICH, 
WMH volume

Higher WHR but not higher BMI was associated with all-
cause ischemic stroke, LAS, SVS, non-lobar ICH and WMH 
volume.

Zhuang et al., 2020 Physical activity Stroke No association.
Hou et al., 2020 Atrial fibrillation CES Bidirectional association between atrial fibrillation and CES.

CVD, cardiovascular disease; ICH, intracerebral hemorrhage; LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke; WMH, white matter hyperintensity; SAH, 
subarachnoid hemorrhage; PP, pulse pressure; HDL-C, high-density lipoproteins cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); T2DM, type 2 diabetes 
mellitus; HbA1c, glycosylated hemoglobin; BMI, body mass index; and WHR, waist-to-hip ratio.
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markers of cerebrovascular disease found that type 2 diabetes 
was also positively associated with fractional anisotropy (a measure 
of white matter integrity) and inversely associated with gray 
matter volume and total brain volume, with similar inverse 
associations seen for HbA1c and β-cell dysfunction.

Smoking
A large body of literature indicate that smoking is associated 
with both ischemic stroke and aneurysmal subarachnoid 
hemorrhage (Peters et  al., 2013). Qian et  al. (2019) reported 
a causal association between smoking and any ischemic stroke 
and LAS. In other MR studies, Larsson et  al. (2019a, 2020c) 
confirmed the association between smoking initiation and the 
risk of any ischemic stroke, LAS and SVS, but did not find 
an association with cardioembolic stroke (CES) or ICH. In a 
one-sample MR study using the UK Biobank, Acosta et  al. 
(2021) confirmed an association between genetic propensity 
to smoke and risk of nontraumatic subarachnoid hemorrhage. 
Similarly, in a large GWAS of intracranial aneurysms and 
subarachnoid hemorrhage, smoking was shown to be a powerful 
risk factor for this disease (Bakker et  al., 2020).

Obesity
Observational evidence suggests that obesity is a risk factor 
for stroke. However, MR studies have yielded heterogeneous 
results. One study indicated that while both general and central 
adiposity had causal effects on coronary heart disease, only 
central adiposity appeared to be associated with ischemic stroke 
(Dale et al., 2017). Further evidence supporting this hypothesis 
was provided by a more recent MR study by Marini et  al. 
(2020) which found that higher waist-to-hip ratio, but not 
higher BMI, was causally associated with all-cause ischemic 
stroke, LAS, SVS, non-lobar ICH, and WMH volume.

Lack of Physical Activity
Physical activity, especially moderate-to-vigorous physical activity, 
has been associated with lower risk of stroke in several 
observational studies. To date, only one MR has investigated 
this relationship, finding null results for this association (Zhuang 
et  al., 2020). Therefore, further research is warranted in order 
to fully understand these conflicting results.

Atrial Fibrillation
Atrial fibrillation (AF) is considered a major risk factor of 
cardioembolic ischemic stroke. Remarkably, patients with stroke 
are also at a higher risk of developing AF (Sposato et  al., 
2015, 2018). Only one MR study has looked at this relationship 
and, as expected given the overwhelming amount of observational 
evidence, found causal evidence to support this link using 
bidirectional MR (Hou et  al., 2020).

NONTRADITIONAL RISK FACTORS

A number of studies have explored nontraditional risk factors 
that had mixed or inconclusive evidence when evaluated in 
nongenetic, observational studies. Prominent among these are 

studies that focused on inflammation, coagulation factors, sleep 
health, and nutrition. MR studies have evaluated several of 
these factors in search of causal associations (Table  3).

Inflammatory Biomarkers
Observational studies have demonstrated that patients with 
underlying inflammation have a higher risk of stroke (Anrather 
and Iadecola, 2016), although this association could be  the 
result of confounding. Therefore, genetically determined 
inflammatory biomarkers have been targeted by many studies 
investigating the risk of stroke. Zhang et  al. (2020) examined 
whether genetically raised plasma C-reactive protein (CRP) 
concentration levels were associated with ischemic stroke without 
finding a significant association. In line with these findings, 
Lin et al. (2020) evaluated numerous inflammatory biomarkers 
and found no association between genetically elevated levels 
of these biomarkers and ischemic stroke. Yuan et  al. (2020b) 
analyzed genetically determined circulating interleukins in 
relation to coronary artery disease (CAD), atrial fibrillation, 
and ischemic stroke, and its subtypes. There was a suggestive 
(p  <  0.05 but not statistically significant after correction for 
multiple testing) positive association between interleukin-1 
receptor antagonist and cardioembolic stroke and a suggestive 
inverse association between interleukin-6 and ischemic stroke, 
CES, and SVS, and of interleukin-16 with CAD. Georgakis 
et  al. (2020d) reported the results of an MR study focused 
on interleukin-6 signaling effects on ischemic stroke and other 
cardiovascular outcomes and demonstrated that genetically 
downregulated interleukin-6 signaling was associated with lower 
risk of ischemic stroke. The same group published a study 
investigating genetically determined levels of circulating cytokines 
and risk of stroke (Georgakis et  al., 2019). They showed that 
genetic predisposition to elevated circulating levels of monocyte 
chemoattractant protein-1 was associated with higher risk of 
stroke, in particular with LAS and CES. Another study by 
Yuan et al. (2020a) investigated causal associations of increased 
tumor necrosis factor levels and several highly prevalent CVDs. 
Genetically elevated tumor necrosis factor levels were positively 
associated with both CAD and ischemic stroke. In addition, 
Wang et  al. (2020) investigated the impact of growth 
differentiation factor 15 on the risk of CVDs using an MR 
approach. They found evidence for a relationship between 
circulating of growth differentiation factor 15 levels and increased 
risk of CES, atrial fibrillation, CAD, and myocardial infarction. 
Finally, Song et  al. (2020) published results of their study 
investigating association of genetically determined T-cell 
immunoglobulin and mucin domain 1 with incidence of stroke, 
which found a causal effect of TIM-1 on any stroke and 
ischemic stroke.

Hematological Traits
The role of hematological traits and pathways in the occurrence 
of stroke has also been extensively evaluated using MR. Gill 
et  al. (2018b) investigated genetically determined platelet count 
and risk of different CVDs, finding that higher genetically 
determined platelet count is associated with higher risk of 
ischemic stroke. The same group released results of an MR 
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TABLE 3 | Summary of MR studies looking at nontraditional risk factors for stroke.

References Exposure Outcomes Findings

Larsson et al., 2020a Alcohol CVDs
Causal relationship between higher alcohol consumption and increased 
risk of stroke and peripheral artery disease.

Yuan et al., 2020c PUFA IS
High-level plasma ALA was protective for IS, but AA was the opposite. 
LA, EPA, DHA, and DPA had no effects on IS.

Au Yeung and Schooling, 2020 Urinary sodium CVDs
Higher log-transformed urinary sodium was associated with higher risk of 
stroke.

Larsson et al., 2019b
Serum magnesium and 
calcium

IS

Genetically higher serum magnesium concentrations were associated 
with a reduced risk of cardioembolic stroke but found no significant 
association of genetically higher serum calcium concentrations with any 
IS subtype.

Wang et al., 2021 Tea IS
Genetically predicted an extra daily cup of tea consumption was causally 
associated with a reduced risk of small vessel stroke.

Qian et al., 2020 Coffee IS and ICH
Coffee consumption was not causally associated with risk of stroke or its 
subtypes.

Choi et al., 2020 Serum bilirubin levels IS an ICH
Causal associations between serum bilirubin levels and decreased stroke 
risk.

Huang et al., 2019 25(OH)D CVDs
No evidence to support that genetically increased 25(OH)D was 
associated with a lower risk of IS, ICH, and SAH.

Larsson et al., 2018b 25(OH)D IS
No evidence that genetically determined higher S-25OHD concentrations 
were causally associated with any ischemic stroke subtype.

Larsson et al., 2018a VitK1 IS
Genetic predisposition to higher circulating vitamin K1 levels was 
associated with an increased risk of large artery atherosclerotic stroke.

Schooling et al., 2018 Testosterone CVDs Genetically determined testosterone was associated with IS.

Zhang et al., 2020 CRP IS
No clear support that genetically determined elevated CRP concentration 
was causally associated with the risk of IS.

Yuan et al., 2020b Circulating ILs CVDs
Positive association of IL-1 with cardioembolic stroke and suggestive 
inverse associations of IL-6 with any IS, cardioembolic stroke, and small 
vessel stroke, and of IL-16 with CAD.

Georgakis et al., 2020d
Genetic proxies for IL-6R-
mediated downregulation of 
IL-6 signaling

IS and other CVDs
Genetically downregulated IL-6 signaling to be associated with lower 
risks of IS.

Yuan et al., 2020a TNF CVDs
Genetically predicted TNF levels were positively associated with coronary 
artery disease and IS.

Wang et al., 2020 GDF-15 CVDs

Causal relationship of circulating GDF-15 levels with the increased risk 
of cardioembolic stroke, atrial fibrillation, coronary artery disease and 
myocardial infarction, but not any IS, large-artery atherosclerotic 
stroke, small vessel stroke, heart failure, and nonischemic 
cardiomyopathy.

Song et al., 2020 TIM-1 Stroke Causal effect of TIM-1 on stroke.

Georgakis et al., 2019 Cytokines Stroke
Genetic predisposition to elevated circulating levels of MCP-1 was 
associated with higher risk of stroke, in particular with large-artery stroke 
and cardioembolic stroke.

Lin et al., 2020 Inflammatory biomarkers IS
No convincing evidence to support that inflammatory biomarkers like 
IL-1Ra, sIL-6R, and CRP were causally associated with the risk of IS or 
its subtypes.

Gill et al., 2018c Iron Stroke
MR evidence that higher iron status was associated with increased stroke 
risk and, in particular, CES.

Titova et al., 2020 Sleep duration Stroke
No clear support that a genetically determined short or long sleep 
duration has influence on the risk of total stroke or stroke types.

Lu et al., 2020 Sleep duration Stroke
Sleep duration was not causally associated with risk of stroke and its 
subtypes.

Cai et al., 2020 Sleep traits IS
Potential causal role of short sleep duration and insomnia symptoms in 
LAS.

Larsson and Markus, 2019 Insomnia CAD and stroke Causal link between insomnia and ischemic stroke and its subtypes.

Marouli et al., 2020 Thyroid hormones Stroke or CAD
A 1-SD increase in TSH was associated with a 5% decrease in the risk of 
stroke.

Cai et al., 2019 MDD SVS Possible causal effect of MDD on increased risk of SVS.

Gill et al., 2019b Depression
IS and functional outcome 
after IS

No evidence of genetically determined risk of depression affecting IS risk 
but consistent MR evidence suggestive of a possible effect on functional 
outcome after IS.

Gill et al., 2018b Platelet count CVDs
Higher genetically determined platelet count was causally associated with 
higher risk of IS.

Gill et al., 2018a FXI IS, ICH, MI Causal effect of higher, genetically determined FXI levels on risk of any IS.

(Continued)
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study focused on genetically determined factor XI levels that 
found causal evidence supporting factor XI as a possible target 
to reduce the risk of cardioembolic stroke (Gill et  al., 2018a). 
Harshfield et al. (2020) reported a study that, rather than focusing 
on a single target, evaluated several different hematological traits 
in connection to risk of ischemic stroke and its subtypes. Several 
factors in the intrinsic coagulation pathway were significantly 
associated with CES and LAS but not with SVS. Specifically, 
gamma fibrinogen, a component of the common pathway, was 
associated with CES, plateletcrit was associated with CES, 
eosinophil percentage of white cells was associated with LAS, 
and thrombin-activatable fibrinolysis inhibitor activation peptide 
antigen was associated with any ischemic stroke. Follow-up 
analyses in the UK Biobank showed that among individuals 
with atrial fibrillation, those with genetically lower versus normal 
levels of factor XI have a reduced risk of ischemic stroke. Finally, 
one group investigated circulating vitamin K1 levels in connection 
to cerebrovascular disease and found that genetic predisposition 
to higher circulating vitamin K₁ levels was associated with an 
increased risk of LAS (Larsson et  al., 2018a).

Nutritional Factors
A number of MR studies also investigated the role of nutritional 
factors in the occurrence of stroke, another research avenue 
extensively explored from an observational perspective. Larsson 
et  al. (2020a) examined whether genetically determined 
predisposition to alcohol consumption had influence on risk 
of CVD. This study provided evidence for a causal relationship 
between higher alcohol consumption and increased risk of 
any stroke and peripheral artery disease.

Beyond alcohol, several other nutritional factors have been 
investigated. One research group examined the role of plasma 
phospholipid fatty acids in risk of 15 CVD-related phenotypes. 
Genetically higher plasma α-linolenic, linoleic, and oleic acid levels 
were inversely associated with LAS and venous thromboembolism, 
whereas arachidonic and stearic acid levels are positively associated 
with these two CVD-related outcomess (Yuan et  al., 2019).

Iron metabolism, including anemia and polycythemia, have 
long been postulated to play a role in cerebrovascular disease. 
Gill et al. (2018c) published results of an MR study investigating 
this question, finding that higher iron levels were associated 
with increased risk of stroke and, in particular, CES.

Two groups reported on genetically predicted levels of 
vitamin D and the risk of stroke. Huang et  al. investigated 
whether vitamin D played a role in risk and mortality of several 
vascular diseases by conducting an MR study that included 
both Asian and European participants (Huang et  al., 2019). 
They found no evidence to support that genetically increased 
vitamin D was associated with a lower risk of ischemic stroke, 
ICH, SAH, and lipid levels in neither Chinese nor European. 
Similarly, Larsson et  al. (2018b) reported the results of a study 
on genetically determined vitamin D concentrations and ischemic 
stroke and its subtypes that failed to find significant associations.

Other Risk Factors
Among other investigated risk factors, it is worth mentioning 
two studies investigating endocrine changes. Schooling et  al. 
(2018) analyzed genetic predictors of testosterone and their 
associations with different CVD phenotypes. They confirmed 
prior results from observational studies showing a significant 
association between genetically proxied testosterone and risk 
of ischemic stroke. Another study by Marouli et  al. (2020) 
used MR analyses to analyze whether thyroid function affects 
the risk of stroke via atrial fibrillation, finding that a 1 SD 
increase in TSH was associated with a 5% decrease in the 
risk of ischemic stroke.

Finally, another four studies are also worth mentioning. 
Larsson et al. (2019b) examined serum magnesium and calcium 
levels in relation to ischemic stroke using MR. They found 
that genetically higher serum magnesium concentrations were 
associated with a reduced risk of CES but not with other 
stroke subtypes. Au Yeung and Schooling (2020) investigated 
the impact of urinary sodium on CVD. Higher genetically 
determined log-transformed urinary sodium was associated 

References Exposure Outcomes Findings

Harshfield et al., 2020 Hematological traits IS and its subtypes

Several factors on the intrinsic clotting pathway were significantly 
associated with CES and LAS, but not with SVS. On the common 
pathway, increased gamma (γ’) fibrinogen was significantly associated 
with AIS/CES. Furthermore, elevated plateletcrit was significantly 
associated with AIS/CES, eosinophil percentage of white cells with LAS, 
and thrombin-activatable fibrinolysis inhibitor activation peptide antigen 
with AIS. Follow-up analysis in UK Biobank showed that among individuals 
with atrial fibrillation, those with genetically lower levels of factor XI are at 
reduced risk of AIS compared to those with normal levels of factor XI.

Jia et al., 2019

Gut microbiota dependent 
metabolites (betaine, 
carnitine, choline, and 
trimethylamine N-oxide)

Stroke

No association.

CVDs, cardiovascular disorders; ICH, intracerebral hemorrhage; IS, ischemic stroke; PUFA, polyunsaturated fatty acids; AA, arachidonic acid; LA, linoleic acid; EPA, 
eicosapentaenoic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; SAH, subarachnoid hemorrhage; FAs, circulating fatty acids; CRP, C-reactive protein; ILs, 
interleukins; IL-1, interleukin 1; IL-6, interleukin 6; IL-16, interleukin 16; TNF, tumor necrosis factor; GDF-15, growth differentiation factor 15; TIM-1, T-cell immunoglobulin and 
mucin-1; MCP-1, monocyte chemoattractant protein-1; LAS, large artery stroke; CAD, coronary artery disease; TSH, thyroid stimulating hormone; MDD, major depressive disorder; 
SVS, small vessel stroke; MR, Mendelian randomization; FXI, factor XI; MI, myocardial infarction; CES, cardioembolic stroke; and AIS, arterial ischemic stroke.

TABLE 3 | Continued
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with higher risk of stroke. Choi et  al. (2020) used MR tools 
to describe a causal association between serum bilirubin levels 
and decreased stroke risk. Lastly, Jia et  al. (2019) investigated 
the role of gut microbiota-dependent metabolites and risk of 
several CVDs, finding no evidence of a causal link between 
these metabolites (betaine, carnitine, choline, and trimethylamine 
N-oxide) and the risk of stroke.

MENDELIAN RANDOMIZATION FOR 
DRUG TARGET VALIDATION AND DRUG 
REPURPOSING

Beyond hypothesis-driven MR studies, population genetics offers 
powerful tools to accelerate the discovery of novel biological 
pathways by agnostically evaluating several biological targets 
and/or reevaluating targets for drug repurposing (Nelson et al., 
2015; Schmidt et  al., 2020). This approach is significantly 
potentiated by the growing culture of open-access research 
and the increasing availability of high-throughput genomic and 
proteomic technologies.

Drug target MR studies use genetic variants that lie within 
or near the genes coding for these targets (the latter called 
cis-variants) as instruments, which either have an effect on 
the actual serum levels of the target protein or other endpoint, 
such as an intermediate biomarker, gene expression levels, or 
metabolite levels. This distinction is important because drug 
target MR aims to answer a different question than conventional 
MR. While conventional MR establishes causal relationships 
between biomarkers or traits and an outcome, drug target MR 
addresses whether modifications of a specific drug target or 
protein will have an effect on the outcome (Gill et  al., 2021).

Drug target MR overcomes problems related to pleiotropy, 
which are especially relevant when looking at possible targets 
for intervention. In addition, by testing these drug targets 
phenome-wide, investigators can also pinpoint possible adverse 
effects. While drug target MR is a robust methodology, it also 
has limitations. While new high-throughput technologies have 
increased the amount of proteome-wide data available, publicly 
available summary statistics and proteomic studies with adequate 
sample sizes are still limited. This relative paucity of proteomic 
data leads to the utilization of cis-variants associated with a 
biomarker in the causal pathway, which could in turn lead to 
some problems. For example, circulating levels of a biomarker 
could not represent accurately its cellular concentration, which 
is often the value of interest, and this could limit the ability 
to detect causality. Additionally, the biomarker of interest could 
be  relevant only in certain physiological or disease states, or 
during a critical period of time, which could also limit results. 
Lastly, not all proteins are druggable (i.e., able to 
be  pharmacologically manipulated), which of course would 
defeat the purpose of doing drug target MR (Mokry et al., 2015).

Gill et  al. (2019a) compared the results of drug target MR 
and clinical trials for three antihypertensive drug classes 
(angiotensin-converting-enzyme inhibitors, β-blockers, and 
calcium channel blockers) in coronary heart disease and stroke, 
finding comparable estimates. Along these lines, Chong et al. (2019) 

conducted a proteome-wide MR study to investigate potential 
therapeutic targets in ischemic stroke. The authors analyzed 
653 circulating proteins as possible causal factors for the three 
main subtypes of ischemic strokes (LAS, SVS, and CES) and 
hemorrhagic stroke. In their analyses, they found eight biomarker–
stroke associations encompassing seven unique targets. Of these 
biomarkers, five had already been associated with CVDs, including 
the coagulation factor 11, Lp(a), ABO, CD40 (a member of 
the tumor necrosis factor superfamily), and MMP12 (a member 
of the matrix metalloproteinase family, implicated in vascular 
remodeling). Novel biomarkers included SCARA5, a protein 
with a role in iron homeostasis, and TNFS12, a pleiotropic 
tumor necrosis factor-like cytokine linked to atrial fibrillation, 
a potential mediating mechanism.

Drug repurposing is another potentially useful approach, 
as previously approved drugs can be  more easily brought to 
clinical practice if a beneficial effect is found. There are no 
clear examples of MR studies specifically focused on drug 
repurposing for stroke. However, we bring the reader’s attention 
to two such studies that explored the potential of repurposing 
medications to treat Alzheimer’s disease, unfortunately with 
null results (Walker et al., 2020; Wu et al., 2021). These studies 
provide an appropriate example and analytical framework for 
future studies applying this approach to stroke and 
cerebrovascular diseases.

CONCLUSION

Stroke constitutes an increasingly prevalent condition worldwide 
and remains one of the leading causes of death and disability. 
MR has proved to be  a powerful methodology to confirm or 
refute associations described by observational studies and identify 
novel therapeutic targets for stroke. The ability of MR studies 
to add valuable scientific evidence to the field of cerebrovascular 
disease research will be  greatly increased by the utilization of 
novel tools, including proteome-wide and drug target 
validation analyses.
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