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The broad host range pathogenic bacterium 
Agrobacterium tumefaciens has been widely studied 
as a model system to understand horizontal gene 
flow, secretion of effector proteins into host cells, 
and plant-pathogen interactions. Agrobacterium-
mediated plant transformation also is the major 
method for generating transgenic plants for research 
and biotechnology purposes. Agrobacterium species 
have the natural ability to conduct interkingdom 
genetic transfer from bacteria to eukaryotes, 
including most plant species, yeast, fungi, and even 
animal cells. In nature, A. tumefaciens causes crown 
gall disease resulting from expression in plants of 
auxin and cytokinin biosynthesis genes encoded 
by the transferred (T-) DNA. Gene transfer from 
A. tumefaciens to host cells requires virulence (vir) 
genes that reside on the resident tumor-inducing (Ti) 
plasmid. In addition to T-DNA, several Virulence 
(Vir) effector proteins are also translocated to host 
cells through a bacterial type IV secretion system. 

These proteins aid in T-DNA trafficking through the host cell cytoplasm, nuclear targeting, 
and T-DNA integration. Genes within native T-DNAs can be replaced by any gene of interest, 
making Agrobacterium species important tools for plant research and genetic engineering. 
In this research topic, we provided updated information on several important areas of 
Agrobacterium biology and its use for biotechnology purposes.
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The extraordinary Agrobacterium research story started from the search for the causative agent
of crown gall disease more than 100 years ago. Agrobacterium tumefaciens was first isolated from
grapevine galls in 1897 and later isolated from Paris daisy in 1907 (Cavara, 1897a,b; Smith and
Townsend, 1907). The Agrobacterium infection mechanism involves processing and transfer of a
specific DNA fragment (the transferred-DNA, T-DNA) from a bacterial tumor-inducing (Ti) plas-
mid. Transfer to the plant occurs via a type IV secretion system (T4SS), after which T-DNA is
integrated into the plant host genome (Gelvin, 2010; Lacroix and Citovsky, 2013). This interking-
domDNA transfer leads to overproduction of the plant hormones auxin and cytokinin, resulting in
tumors. The interkingdom DNA transfer ability of Agrobacterium and the possibility to replace the
oncogenes in the T-DNA with genes of interest has made Agrobacterium-mediated transformation
the most popular technique to generate transgenic plants.

This Research Topic provides a collection of reviews and original research articles on Agrobac-
terium genes involved in bacterial physiology/virulence and plant genes involved in transformation
and defense against Agrobacterium. A review by Kado (2014) provides a historical overview of how
A. tumefaciens was first established as the cause of crown gall disease. In this review, Kado high-
lights key early plant pathology and milestone molecular biology studies leading to the conclusion
that the expression of oncogenes in native T-DNA is the cause of tumor growth in plants. With the
solid foundation of these pioneering discoveries, A. tumefaciens evolved from a phytopathogen to
a powerful genetic transformation tool for plant biology and biotechnology research.

The first complete genome sequence of anAgrobacterium species (A. tumefaciensC58) was com-
pleted in 2001 (Goodner et al., 2001; Wood et al., 2001). The 5.67-megabase genome of this strain
carries one circular chromosome, one linear chromosome, and two megaplasmids: the Ti plasmid
pTiC58 and a second plasmid, pAtC58. In the review by Platt et al. (2014), the properties, ecology,
evolution, and complex interactions of these two A. tumefaciens megaplasmids are discussed. The
costs and benefits to A. tumefaciens strains carrying the Ti plasmid and/or the pAtC58 plasmid are
discussed and presented from an ecological and evolutionary perspective. Modeling predictions
are presented for the relative cost and benefits to A. tumefaciens strains harboring the Ti and/or
the pAtC58 plasmids determined by environmental resources. Conjugation and amplification of
the Ti plasmid are regulated by the TraI/TraR quorum-sensing (QS) system and conjugal opines.
Lang and Faure (2014) review current knowledge of the genetic networks and molecular basis of
the A. tumefaciens quorum sensing system. These authors also discuss the biological and ecolog-
ical impact of the QS system on Ti plasmid conjugation, copy number, and interactions between
Agrobacterium and host plants.

During the initial interaction between Agrobacterium and plant cells, bacteria sense various
plant-derived signals in the rhizosphere with the help of Ti plasmid-encoded virulence gene (vir
gene) and chromosomal virulence gene (chv gene) products. The current knowledge of how A.
tumefaciens senses and reacts to different plant-derived signals are summarized in the review
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article by Subramoni et al. (2014), which also discusses the
mechanisms of how the plant hormones auxin, salicylic acid,
and ethylene, affect bacterial virulence. Finally, this review dis-
cusses the complexity and intricacy of Agrobacterium signaling
pathways and the underlying regulatory mechanisms during the
initial host cell recognition to maximize subsequent successful
infection. In the original research article by Lin et al. (2014),
the mechanistic regulation of the membrane sensor VirA protein
is further dissected. VirA histidine kinase and the cytoplasmic
response regulator VirG protein together play a central role in
regulating vir gene expression in response to phenolics. Based on
a homology model of the VirA linker region, various mutant and
chimeric VirA proteins were generated and examined for their
ability to induce VirB promoter activity. The ability of VirA to
sense and respond to three separate input signals, phenolics, sug-
ars, and environmental pH, plays a significant role in securing
successful infection.

Agrobacterium attachment to plant cells is an important
early step in crown gall disease progression. Motile bacteria
swim toward host cells and then physically interact with host
cells to form aggregates and establish a multicellular bacterial
community known as a biofilm. Various genetic and environ-
mental factors that affect Agrobacterium attachment and biofilm
formation are reviewed in the article by Heindl et al. (2014). The
functions of different types of exopolysaccharides that constitute
the biofilm and underlying mechanisms involving how the sec-
ond messenger cyclic-di-GMP, the ChvG/ChvI system, phospho-
rus levels, and oxygen tension influence bacterial attachment and
virulence are also summarized. In the review article by Matthysse
(2014), early studies and current knowledge of the mechanisms
of polar and lateral bacterial attachment are summarized. These
two mechanisms both contribute to bacterial attachment. When
the environmental calcium and phosphate levels and pH values
are low, polar attachment predominates. In addition, the phos-
pholipids (PLs), phosphatidylcholine (PC), and phosphate-free
lipid ornithine lipids (OLs) contribute to Agrobacterium viru-
lence. In the review by Aktas et al. (2014), the biosynthetic path-
ways and the physiological roles of these membrane lipids are
summarized. The typical eukaryotic membrane lipid PC is not
frequently found in bacteria, but it constitutes almost 22% of
the Agrobacterium membrane lipid. Interestingly, PCs and OLs
may play opposite roles in Agrobacterium virulence. The reduc-
tion of tumor formation in a PC-deficient Agrobacteriummutant
may result from impaired vir gene expressions controlled by
VirA/VirG. The absence of OLs in A. tumefaciens may decrease
host defense responses and therefore cause earlier and larger
tumor formation.

Plant cells have a variety of receptors that recognize so-called
microbe- or pathogen-associated molecular patterns (MAMPs or
PAMPs), and subsequently activate plant defense responses, a
process known as Pattern-recognition receptor-Triggered Immu-
nity (PTI) (Boller and Felix, 2009; Boller and He, 2009). Agrobac-
teriium may utilize effectors to hijack plant systems and evade
plant defense responses. Pitzschke (2013) reviews strategies
used by Agrobacterium to turn plant defense responses to its
own advantage. Infected plant cells initiate a mitogen-activated
protein kinase signaling cascade that causes VIP1 (Agrobacterium

VirE2-interacting protein 1) phosphorylation and translocation
into the plant nucleus to induce defense gene expression. On
the other hand, Agrobacterium may hijack VIP1 to help T-DNA
enter the plant nucleus. Based on the current knowledge of plant
defense responses against Agrobacterium infection, Pitzschke
(2013) discusses several biotechnological approaches to increase
transformation efficiency. In another review by Gohlke and
Deeken (2014), early plant responses toAgrobacterium, including
various defense responses, hypersensitive responses, and phyto-
hormone level alterations are discussed. The alterations in plant
morphology, nutrient translocation, and metabolism caused by
crown gall tumor formation are also reviewed. The authors
summarize important genomic, epigenomic, transcriptomic, and
metabolomic studies that reveal epigenetic changes associated
with T-DNA integration and gall development. Subsequently,
Hwang et al. (2015) review important pathogenic elicitors, host
cell receptor molecules, and their downstream signal transduc-
tion pathways in host plants during the PAMP-triggered immune
response. They highlight recent discoveries linking plant immu-
nity to endomembrane trafficking and actin dynamic changes.
Effects of both the host physiology, including hormone lev-
els, circadian clock, developmental stages, and environmental
factors, including light exposure lengths and temperature, on
plant defense responses and bacterial virulence are reviewed and
discussed.

In nature, evidence of ancient horizontal gene transfers (HGT)
from Agrobacterium to plants has been observed in the genera
Nicotiana and Linaria. Sequences homologous to mikimopine-
type Agrobacterium rhizogenes pRiA4 T-DNA were first discov-
ered in the genome of untransformed tree tobacco, Nicotiana
glauca, and named “cellular T-DNA” (cT-DNA; White et al.,
1983). Matveeva and Lutova (2014) review cT-DNA organiza-
tion, distribution, expression regulation, and a possible corre-
lation with genetic tumor formation in Nicotiana species. They
also review recent findings of cT-DNA in the genomes of Linaria
species and in other dicotyledonous families. The authors suggest
that plants maintaining cT-DNA in their genomes may poten-
tially benefit microorganisms in the rhizosphere by secreting
opines in the root zone. They also propose that footprints of
ancient pRi T-DNA insertions in the plant genome may provide
selective advantage to these plants.

With this Research Topic we provide a platform for scientists
to share their understanding of Agrobacterium biology and how
Agrobacterium transforms plants. These contributions demon-
strate how a highly active research community in plant and
microbial sciences can elucidate important pathogenesis ques-
tions. Future research on Agrobacteium will continue to advance
our understanding of plant-pathogen interactions, and provide
new insights useful for plant genetic engineering.

Acknowledgments

The authors thank the Ministry of Science and Technology (NSC
100-2311-B-005-002 and MOST 103-2311-B-005-003; H-HH
and E-ML), the National Chung Hsing University (H-HH),
and the US National Science Foundation (SG) for financial
support.

Frontiers in Plant Science | www.frontiersin.org April 2015 | Volume 6 | Article 265 |5

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hwang et al. Agrobacterium biology and its application

References

Aktas, M., Danne, L., Möller, P., and Narberhaus, F. (2014). Membrane lipids in

Agrobacterium tumefaciens: biosynthetic pathways and importance for patho-

genesis. Front. Plant Sci. 5:109. doi: 10.3389/fpls.2014.00109

Boller, T., and Felix, G. (2009). A renaissance of elicitors: percep-

tion of microbe-associated molecular patterns and danger signals by

pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406. doi:

10.1146/annurev.arplant.57.032905.105346

Boller, T., and He, S. Y. (2009). Innate immunity in plants: an arms race between

pattern recognition receptors in plants and effectors in microbial pathogens.

Science 324, 742–744. doi: 10.1126/science.1171647

Cavara, F. (1897a). Eziologia di alcune malattie di piante cultivate. Le Stazioni Sper.

Agraric Itliana 30, 482–509.

Cavara, F. (1897b). Tuberculosi della vite.Intorno alla eziologia di alcune malattie

di piante cultivate. Le Stazioni Sper. Agraric Itliana 30, 483–487.

Gelvin, S. B. (2010). Plant proteins involved in Agrobacterium-mediated genetic

transformation. Annu. Rev. Phytopathol. 48, 45–68. doi: 10.1146/annurev-

phyto-080508-081852

Gohlke, J., and Deeken, R. (2014). Plant responses to Agrobacterium

tumefaciens and crown gall development. Front. Plant Sci. 5:155. doi:

10.3389/fpls.2014.00155

Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., et al.

(2001). Genome sequence of the plant pathogen and biotechnology agent

Agrobacterium tumefaciens C58. Science 294, 2323–2328. doi: 10.1126/sci-

ence.1066803

Heindl, J. E., Wang, Y., Heckel, B. C., Mohari, B., Feirer, N., and Fuqua, C. (2014).

Mechanisms and regulation of surface interactions and biofilm formation in

Agrobacterium. Front. Plant Sci. 5:176. doi: 10.3389/fpls.2014.00176

Hwang, E. E., Wang, M. B., Bravo, J. E., and Banta, L. M. (2015). Unmasking host

and microbial strategies in the Agrobacterium-plant defense tango. Front. Plant

Sci. 6:200. doi: 10.3389/fpls.2015.00200

Kado, C. I. (2014). Historical account on gaining insights on the mechanism

of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front.

Microbiol. 5:340. doi: 10.3389/fmicb.2014.00340

Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in

Agrobacterium-mediated genetic transformation. Int. J. Dev. Biol. 57, 467–481.

doi: 10.1387/ijdb.130199bl

Lang, J., and Faure, D. (2014). Functions and regulation of quorum-sensing

in Agrobacterium tumefaciens. Front. Plant Sci. 5:14. doi: 10.3389/fpls.2014.

00014

Lin, Y.-H., Pierce, B. D., Fang, F., Wise, A., Binns, A. N., and Lynn, D. G. (2014).

Role of the VirA histidine autokinase ofAgrobacterium tumefaciens in the initial

steps of pathogenesis. Front. Plant Sci. 5:195. doi: 10.3389/fpls.2014.00195

Matthysse, A. G. (2014). Attachment of Agrobacterium to plant surfaces. Front.

Plant Sci. 5:252. doi: 10.3389/fpls.2014.00252

Matveeva, T. V., and Lutova, L. A. (2014). Horizontal gene transfer from Agrobac-

terium to plants. Front. Plant Sci. 5:326. doi: 10.3389/fpls.2014.00326

Pitzschke, A. (2013). Agrobacterium infection and plant defense—transformation

success hangs by a thread. Front. Plant Sci. 4:519. doi: 10.3389/fpls.2013.

00519

Platt, T. G., Morton, E. R., Barton, I. S., Bever, J. D., and Fuqua, C. (2014). Ecologi-

cal dynamics and complex interactions of Agrobacteriummegaplasmids. Front.

Plant Sci. 5:635. doi: 10.3389/fpls.2014.00635

Smith, E. F., and Townsend, C. O. (1907). A plant-tumor of bacterial origin. Science

25, 671–673. doi: 10.1126/science.25.643.671

Subramoni, S., Nathoo, N., Klimov, E., and Yuan, Z.-C. (2014). Agrobacterium

tumefaciens responses to plant-derived signaling molecules. Front. Plant Sci.

5:322. doi: 10.3389/fpls.2014.00322

White, F. F., Garfinkel, D. J., Huffman, G. A., Gordon, M. P., and Nester, E.

W. (1983). Sequence homologous to Agrobacterium rhizogenes T-DNA in the

genomes of uninfected plants. Nature 301, 348–350. doi: 10.1038/301348a0

Wood, D. W., Setubal, J. C., Kaul, R., Monks, D. E., Kitajima, J. P., Okura, V.

K., et al. (2001). The genome of the natural genetic engineer Agrobacterium

tumefaciens C58. Science 294, 2317–2323. doi: 10.1126/science.1066804

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Hwang, Gelvin and Lai. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this jour-

nal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org April 2015 | Volume 6 | Article 265 | 6

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


REVIEW ARTICLE
published: 07 August 2014

doi: 10.3389/fmicb.2014.00340

Historical account on gaining insights on the mechanism of
crown gall tumorigenesis induced by Agrobacterium
tumefaciens
Clarence I. Kado*

Davis Crown Gall Group, Department of Plant Pathology, University of California, Davis, Davis, CA, USA

Edited by:

Erh-Min Lai, Academia Sinica,
Taiwan

Reviewed by:

Stanton B. Gelvin, Purdue
University, USA
Walt Ream, Oregon State
University, USA

*Correspondence:

Clarence I. Kado, 1 Shields Avenue,
Davis, CA, USA
e-mail: cikado@ucdavis.edu

The plant tumor disease known as crown gall was not called by that name until more
recent times. Galls on plants were described by Malpighi (1679) who believed that these
extraordinary growth are spontaneously produced. Agrobacterium was first isolated from
tumors in 1897 by Fridiano Cavara in Napoli, Italy. After this bacterium was recognized
to be the cause of crown gall disease, questions were raised on the mechanism by
which it caused tumors on a variety of plants. Numerous very detailed studies led to
the identification of Agrobacterium tumefaciens as the causal bacterium that cleverly
transferred a genetic principle to plant host cells and integrated it into their chromosomes.
Such studies have led to a variety of sophisticated mechanisms used by this organism
to aid in its survival against competing microorganisms. Knowledge gained from these
fundamental discoveries has opened many avenues for researchers to examine their
primary organisms of study for similar mechanisms of pathogenesis in both plants and
animals. These discoveries also advanced the genetic engineering of domesticated plants
for improved food and fiber.

Keywords: Ti plasmid, Agrobacterium, T pilus, T-DNA, type IV secretion system, type VI secretion system, opines,

conjugative transfer

INTRODUCTION
Crown gall is a name given to abnormal tumor-like growths
often observed at the base of the trunk and roots of trees,
grapevines, and woody plants. The nature of the cause of crown
gall was unknown before 1897. Not referenced by many authors
who worked on this disease was the published work of Fridiano
Cavara (Figure 1). He described in detail the galls formed at the
base of grapevines that were in the Royal Botanical Gardens of
Napoli (Naples), Italy. More importantly, he also described the
isolation of a bacterium that he showed caused similar tumors
on young grapevines. This work was published in Le Stazioni
Sperimentale, Agrari Italiane (Cavara, 1897a,b; Figure 2). In
1904, George C. Hedgcock reported the isolation of a causal bac-
terium from grapevine galls that he described in a US Department
of Agriculture Bureau of Plant Industry bulletin (Hedgcock, 1910,
p. 21; Figure 3). His monograph remains not frequently cited.
Most cited as allegedly the first to isolate the causal bacterium
was Smith and Townsend (1907). The authors named the causal
organism Bacterium tumefaciens. E. F. Smith had visited Cavara
in Naples and learned how to isolate the causal bacterium from
grapevine galls (Rodgers, 1952). He and C. O. Townsend then
published the isolation of the crown gall causing bacterium from
chrysanthemum. Smith worked extensively on the disease and
showed that B. tumefaciens can induce gall formation in a num-
ber of herbaceous plants (Smith, 1911b). Subsequently, the name
B. tumefaciens was changed briefly to Pseudomonas tumefaciens
(Duggar, 1909) and then to Phytomonas tumefaciens (Bergey
et al., 1923), followed by Polymonas tumefaciens (Lieske, 1928),

and to Agrobacterium tumefaciens (Conn, 1942). The varying
phases of the life cycle of P. tumefaciens were described by Stapp
and Bortels (1931).

In France, Fabre and Dunal (1853) named the tumors
observed on diseased grapevines as “broussin.” Dornfield (1859)
called the galls found on grapevines in Germany as “Grind,” but
the gall disease was also called “Ausschlag,” “Mauche,” “Krebs,”
“Kropf,” “Raude,” and “Schorf.” In Italy, the gall disease on
grapevines was called “rogna” (Garovaglio and Cattaneo, 1879)
and “tubercoli” (Cavara, 1897a,b). In the United States, the
gall disease observed on grapevines was called “black-knot”
(Galloway, 1889) and likewise in Canada (Fletcher, 1890). Other
names such as tubercular galls were applied to this tumorous
disease that had become recognized throughout the continents
wherever grapevines and woody crops were cultivated.

Eventually, nurserymen, farmers, viticulturalists, etc., became
aware of the gall producing disease that occurred at the base of
trees and vines near the junction of the roots to the trunk, known
to these growers as the “crown,” the term “crown-gall” became the
common name used to recognize the tumor-forming disease.

SEARCH FOR THE AGENT THAT CAUSED CROWN GALL
Once A. tumefaciens was established as the cause of crown gall,
the quest was initiated for the mechanism by which this pathogen
induced tumors in plants. It was widely known that A. tumefa-
ciens induces tumors readily by mechanical inoculation of many
different plant species. Eventually, over 90 families of plants were
found to be susceptible to Crown Gall disease incited by this
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FIGURE 1 | Fridiano Cavara.

bacterium (Kado, 2010). In Nature, however, crown gall is found
mainly on woody plants such as stone fruit trees of the genus
Prunus and other members of the Rosaceae (rose) family, mem-
bers of the Vitaceae (grape), and members of the Juglandaceae
(walnut) family. There are at least 41 families of plants found to be
naturally infected by A. tumefaciens (Kado, 2010). Experimental
inoculations with A. tumefaciens on susceptible herbaceous plants
have provided excellent opportunities to study in detail the
timing of cellular transformation and the process of tumor
formation.

Three schools of thought on the cause of crown gall were
proposed. (1) A. tumefaciens caused tumors by producing one
or more irritating chemicals that promoted tumor formation.
(2) The phytohormone auxin was believed to play a central
role in tumor formation and development. (3) Plant hosts were
conditioned by A. tumefaciens to initiate and promote tumor
formation by a tumor-inducing principle (Braun and Mandle,
1948).

A. TUMEFACIENS PRODUCES CHEMICAL IRRITANTS THAT LED TO
TUMOR FORMATION IN PLANT HOSTS
Normally, plant cells grow, develop, and multiply under stringent
control. There is a mutual balance and restraint to maintain cel-
lular order and differentiation. On the other hand, crown gall
cells multiply and give rise to tissues that are not self-limiting
and tax the surrounding cellular community of their energy and
resources. So, the question arose among many researchers of that
era, what is it that gives crown gall cells these perverse properties?
In the medical field, at that early period of cancer research, it was
believed that cancer was caused by some forms of external irri-
tants. In fact, analogies between human sarcoma and crown gall
were put forth by Smith (1911a; Figure 4).

In 1917, Smith used castor bean (Ricinus communis L.), a
member of the Euphorbiaceae (spurge family), as the host for
A. tumefaciens (called at that time B. tumefaciens Sm. and T.) to
determine the mechanism of crown gall tumor growth (Smith,

1917). After a large number of tests both physical and chemical,
Smith hypothesized that “dilute ammonia causes intumescences
and have rendered it probable that ammonia liberated within the
cell in small quantities by the imprisoned bacteria must be one of
the causes of excessive and abnormal cell proliferation in crown
gall.” It was then thought that A. tumefaciens was invasive and
penetrated into plant host tissues.

A. TUMEFACIENS PRODUCES PHYTOHORMONES THAT CAUSED
TUMOR GROWTH
By the late 1920s, a plant growth substance named auxin (Went,
1926; Figure 5) was believed to play a key role in tumor growth
as it was stated that “The auxin swellings bear close resemblance
to the phenomena observed in some of the galls and other patho-
logical outgrowths and there is good evidence that auxin plays
an important part in such growths” (Went and Thimann, 1937).
The auxin indole-3-acetic acid was found in human urine and
produced by various fungi and bacteria (reviewed in Went and
Thimann, 1937). Its production in plants was first confirmed in
oat coleoptiles (Avena sativa) (Went, 1928). Subsequently, sev-
eral investigators noted similarities between the reaction of plant
tissues treated with indole-3-acetic acid produced by A. tumefa-
ciens from tryptophan and the reaction of similar plant material
inoculated with the pathogen itself (Brown and Gardner, 1936;
Kraus et al., 1936; Link et al., 1937). Plant host tissue swellings
and gall-like outgrowths were obtained by applying extracts from
cultures of A. tumefaciens (then called P. tumefaciens) (Brown
and Gardner, 1936). Using an attenuated culture of A. tume-
faciens (then called P. tumefaciens), Braun and Laskaris (1942)
found that the avirulent strain was capable of inducing tumors
closely resembling crown gall on tomato plants when the bac-
teria were supplemented with either α-naphthalene acetic acid,
γ-indole butyric acid, or β–indole acetic acid. These workers
stated that “The discovery that synthetic growth substances were
able to stimulate the development of tumors by the attenuated
culture strengthened our previous belief regarding the proba-
ble role of the host growth hormones in the development of
these neoplastic growths.” This was somewhat contrary to the
work of Locke et al. (1938) who tested an attenuated strain on
decapitated tomato and Bryophyllum plants treated with 30 mg
indole-3-acetic acid per gram of lanolin paste at the cut site and
found that “. . . there was a slight stimulation in plants treated
with the acid over untreated plants.” Interestingly, these workers
noticed “. . . the galls from virulent cultures were without chloro-
phyll while those from attenuated cultures were green.” Based
on the positive effects of phytohormones on the avirulent strain
leading to tumor growth and the continued tumor growth of
implanted tissue fragments from tumors initiated by the attenu-
ated A. tumefaciens strain stimulated with phytohormone, Braun
and Laskaris (1942) proposed that there appear to be at least
two distinct phases involved in tumor formation. The first phase
involves stimulation of normal cells. The second phase requires
continued stimulation resulting in cellular multiplication by a
growth substance, resulting in tumor formation (Braun, 1952).
This premise appears to be the combination of the above two
concepts, i.e., the need for a chemical irritant and the presence
of phytohormones.
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FIGURE 2 | Paper by Fridiano Cavara in 1897 describing galls on grapevines from which he isolated the tumorigenic bacterium and demonstrated its

gall forming activity on young grapevines.

PERMANENT AUTONOMOUS GROWTH OF CROWN GALL TISSUE
IN VITRO: FIRST CLUES THAT A GENETIC CHANGE HAS OCCURRED
One of the most significant discoveries that have led to our
current understanding of the mechanism by which A. tumefa-
ciens causes crown gall was the work of White and White and
Braun (1942; Figure 6) and Braun and White (1943). These
workers showed that crown gall tumors derived from secondary
tumors were bacteria-free, as determined by cultural and sero-
logical methods. This finding brought forth the idea that there
was indeed some form of genetic transformation of the host plant
cell that was infected by A. tumefaciens. Significantly, the isolated

crown gall tumor tissues grew well in the absence of phytohor-
mones (Figure 7). Hence, they were autonomous with respect
to the need of phytohormones (auxin-autotrophic) that normal
plant tissues in culture required for growth.

Further indirect evidence that a genetic transformation has
taken place in crown gall is derived from the presence of
rare guanidine derivatives such as octopine and nopaline in
crown gall tissues. The A. tumefaciens strain B6 that metabo-
lize octopine was found also to induce tumors that contained
octopine (Menagé and Morel, 1964; Goldmann-Ménagé, 1971;
Morel, 1972). Likewise, A. tumefaciens strains that metabolize
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FIGURE 3 | A compendium by George Hedgcock on crown gall of grapevines published in 1910 describing his 1904 work on the isolation of crown

gall producing bacterium and demonstrating tumorigenicity.

nopaline induced tumors that produced nopaline (Goldmann
et al., 1969). These guanidine compounds appear to be deter-
mined exclusively by the type of A. tumefaciens strain used to
induce crown gall and are not dependent on the plant species
(Petit et al., 1970; Bomhoff, 1974). However, Wendt-Gallitelli and
Dobrigkeit (1973) found octopine in habituated tobacco cells,
and in the root tips of young pea and bean seedlings. These
workers concluded that because of the presence of this guani-
dine derivative in non-transformed plant material, octopine is
not exclusive to crown gall tumors. Earlier work showed that

lysopine is present only in crown gall tumor tissues (Lioret, 1956).
However, Seitz and Hochster (1964) found it to be produced
in small amounts in normal tobacco and tomato plants. Also,
Johnson et al. (1974) detected octopine in normal tobacco, sun-
flower, pinto bean and tobacco callus tissues. Although trace
amounts of unusual guanidine compounds had been detected in
the above plants, opines such as octopine and nopaline exclusively
occur in crown gall tissues.

Given these suggestions that Agrobacterium genetically trans-
forms plants, the idea that DNA might be transferred from
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FIGURE 4 | Paper published in 1911 by Erwin F. Smith describing the similarities and differences between crown gall and human sarcoma.

A. tumefaciens into the plant cell became a popular notion.
Hence, a number of workers proposed that crown gall induc-
tion involves the transfer of bacterial DNA into plant cells
(Milo and Srivastava, 1969; Quétier et al., 1969; Schilperoort,
1969; Srivastava, 1970; Srivastava and Chadha, 1970; Chadha
and Srivastava, 1971; Stroun et al., 1971; Yajko and Hegeman,
1971; Heyn and Schilperoort, 1973). However, this enthusiasm
was dampened when other workers failed to induce crown gall
tumors by introducing purified DNA from A. tumefaciens into
plants (Braun and Wood, 1966; Bieber and Sarfert, 1968; Stroun
et al., 1971; Yajko and Hegeman, 1971).

Although bacteriophages had been found in axenically grown
crown gall tissues (Tourneur and Morel, 1971), an interesting
report claimed that DNA of an A. tumefaciens bacteriophage
called PS8 was present as a plasmid in crown gall tumor cells
(Schilperoort, 1969; Schilperoort et al., 1973; Figure 8). Also,
Schilperoort (1971) found strong complementarity of A. tume-
faciens cRNA to crown gall tissue DNA. This work could not be
verified either by Eden et al. (1974), or by Farrand et al. (1975)
who used DNA/RNA filter hybridization and by Chilton et al.
(1974) who used renaturation kinetics in an attempt to detect
bacterial and phage DNA in crown gall tumors. They stated that
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they “. . . found no evidence for bacterial or phage DNA in the
tumors examined.” Drlica and Kado (1974) used DNA:DNA fil-
ter hybridization and solution enrichment techniques and found
that no more than 0.02% of the crown gall tumor genome could
contain A. tumefaciens DNA. This work left open the possibility
that some traces of A. tumefaciens DNA might be incorporated
into the plant host cell genome.

Kado and Lurquin (1976) established that exogenously added
naked A. tumefaciens DNA to cultured tobacco cells is not sta-
bly maintained in the plant cells and nuclei. Braun and Wood
(1966) found that the addition of deoxyribonuclease (DNase)
at concentrations up to 5 mg/ml was completely ineffective in
inhibiting tumor inception or development when the enzyme
solution was applied 1–2 h prior to the time that the plants were

FIGURE 5 | F. W. Went, the discoverer of auxin.

inoculated with A. tumefaciens or when the bacterium and DNase
were added to the wound site together. Interestingly, Braun and
Wood (1966) reported that ribonuclease A (RNase) inhibited
tumor formation when high concentrations (2–4 mg/ml) of the
enzyme solution were applied 1–2 h prior to the time that the
wound site was inoculated with A. tumefaciens. RNase neither
affected bacterial growth, nor the virulence of the bacterium, nor
the wound-healing process. These early studies suggested that the

FIGURE 7 | Auxin autotrophy of crown gall tissues on hormone-free

medium (lower half of bisectored petri plate). N, normal cells; CG,
crown gall cells; 2,4-D, 2,4-phenoxyacetic acid; IAA, indole-3-acetic acid.

FIGURE 6 | Photo of Armin C. Braun in his greenhouse laboratory. Classic paper on auxin autonomy of crown gall tissue culture by White and Braun (1942).
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FIGURE 8 | Rob Schilperoort (right), his wife (middle) with Clarence

Kado (left).

bacterial DNA must gain entry into plant cells in a protective
fashion. Hence, it remained possible that bacterial-specific DNA
might be passed to plant cells via some form of intimate bacteria-
plant cell interaction. The above studies on subjecting plant cells
to naked A. tumefaciens DNA indicate that the release of naked
DNA by A. tumefaciens and its uptake by plants are not the process
of plant cell transformation.

So, how is bacterial DNA transferred to plant cells? If trans-
ferred, is the DNA encapsulated or protected in some way in
order to survive the transfer process? These were some of the
important questions asked during that period when not much
was understood about the plant-microbe interaction. Researchers
began investigating how A. tumefaciens perceives its plant host,
how it might attach to the host tissues, how it would transfer
DNA and how the transferred DNA is processed in the host cells.
There apparently is the absence of specific receptors on plant
protoplasts onto which A. tumefaciens might bind and insert its
DNA (Schilde-Rentschler, 1973), so binding of bacterial cells, if at
all, must be at sites other than protoplastic membranes. Because
wounding was required to initiate tumor formation, the plant cell
wall was thought to be a barrier against effective transformation
by bacteria cells. Hence, Virts and Gelvin (1985) infected Petunia
protoplasts with A. tumefaciens and found bacterial DNA trans-
ferred within 2–6 h into the plant cell but most of the DNA was
rapidly degraded. Earlier, Schilperoort (1969) observed attach-
ment of bacteria to intact plant cells and later work by Krens
et al. (1985) found that tobacco leaf protoplasts regenerating pri-
mary cell wall could be transformed by co-cultivation with intact
A. tumefaciens. Apparently bacterial cellulose fibrils appear to play
a role in attachment (Matthysee, 1986).

The important question arose whether or not foreign circular
DNA would survive in plant cells. That question was answered
by the experiments of Lurquin and Kado (1977). These work-
ers showed that plasmids such as pBR313, a covalently closed
DNA, could be taken up by plant protoplasts and remain intact
in the nucleus for extended periods of time. Kerr (1969, 1971)
observed that oncogenicity could be transferred from one strain
of A. tumefaciens to another by inoculating both strains together

or in succession onto the same plant. Hamilton and Chopan
(1975) established that non-pathogenic strains of A. radiobac-
ter or A. tumefaciens were converted to pathogens by surface
inoculation of developing crown galls that harbored the trans-
forming and virulent A. tumefaciens. The co-inoculation tech-
nique described by Kerr (1969, 1971) was called the “Kerr-cross.”
Although there was no definitive idea on how virulence was
transferred, Roberts and Kerr (1974) elegantly stated that “. . . it
would seem that the only other likely method of DNA transfer is
through conjugation.” It was well established that Hfr strains of
Escherichia coli could transfer genetic information to Salmonella
typhimurium (Baron et al., 1959; Miyake and Demerec, 1959).
Likewise, Mitsuhashi (1977) found plasmids, called R factors,
conferring antibiotic resistance that could transfer between dif-
ferent bacterial species via a conjugative process. Hence, the
question was raised as to whether or not A. tumefaciens contained
a conjugative plasmid.

This question was indirectly answered by an observation made
by Hamilton and Fall (1971). These workers noticed A. tumefa-
ciens strains C58 and Ach5 lost their virulence when sub-cultured
for 5 days at 36◦C. Temperatures above 31.5◦C or exposure to
ethidium bromide resulted in either the loss of a large plas-
mid or deletion of a portion of the large plasmid leading to
the loss of virulence in A. tumefaciens (Lin and Kado, 1977).
Interestingly, Braun and Mandle (1948) earlier found that 32◦C
was the temperature that completely stopped the transformation
of normal cells to crown gall tumor cells following inoculation by
Agrobacterium.

The importance of bacterial plasmids was confirmed by the
detection and isolation of large extrachromosomal elements in
virulent strains of A. tumefaciens but not in A. radiobacter strains
(Zaenen et al., 1974; Figure 9). We had earlier explored the
possibility of the existence of a plasmid in A. tumefaciens but
failed to find any owing to the use of a plasmid isolation tech-
nique developed for E. coli rather than for A. tumefaciens (Kado
et al., 1972). Interestingly, other workers showed that both large
and small plasmids exist in both virulent A. tumefaciens and
A. radiobacter strains (Merlo and Nester, 1977; Sheikholeslam
et al., 1978). Zaenen et al. (1974) examined eight different avir-
ulent strains and found none of them harbored large plasmids.
The curious absence of large plasmids in those avirulent strains
of A. tumefaciens or A. radiobacter examined by Zaenen et al.
(1974; Figure 10) was believed to be a lucky choice of strains
according to Jeff Schell (pers. commun. 1978). The conversion
of virulent A. tumefaciens to stable avirulent strains by sub-
culturing at elevated temperatures (32–37◦) was shown to be
due to the concomitant loss of a large plasmid (Watson et al.,
1975). Moreover, by using the “Kerr cross” technique, an avir-
ulent strain of A. tumefaciens was shown to acquire tumor-
inducing ability by acquiring a 58 μm plasmid (Van Larebeke
et al., 1975).

The presence of a plasmid that conferred virulence upon
A. tumefaciens led to investigations seeking plasmid DNA in
crown gall cells. Indeed, Chilton et al. (1977; Figure 11) detected
trace amounts of a part of the plasmid in crown gall cells. The
amount of foreign DNA represented 0.0011% of total DNA con-
tent of the tumor cell. This was a very significant discovery since
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FIGURE 9 | Classic paper first reporting the presence of an A. tumefaciens plasmid associated with tumorigenicity by Jeff Schell’s laboratory.

no other bacterial pathogen has been shown to transfer DNA to
plant cells.

AN EXTRACHROMOSOMAL ELEMENT CONFERS VIRULENCE
ON A. TUMEFACIENS
The establishment that a large A. tumefaciens plasmid called
the Ti plasmid (for tumor-inducing) confers virulence initi-
ated a large number of studies on identifying plasmid genes
that were transferred to the host plant cell as well as iden-
tifying the intrinsic properties of the large plasmid harbored
in virulent strains of A. tumefaciens (Gelvin, 2000). As his-
tory of these studies show (Nester et al., 2005), emphasis
shifted toward developing an understanding of the mech-
anism of horizontal gene transfer (HGT) by A. tumefa-
ciens since this organism represent the first valid case of
the inter-domain gene transfer (Bacteria to Eukarya) (Kado,
2009).

Although a number of ancillary studies on the Ti plasmid
were started, the initial main efforts were on mapping the loca-
tion of genes required for conferring the tumor-inducing prop-
erties on A. tumefaciens. The Ti plasmid of octopine strain
B6-806 was physically mapped using restriction endonucleases
(Chilton et al., 1978b; Koekman et al., 1979). The Ti plasmid
of the nopaline strain C58 was similarly mapped by restriction
endonuclease analysis (Depicker et al., 1980). Both deletion-
mutational and transposon-insertional mapping were used to
locate genes encoding known octopine and nopaline Ti plasmid
phenotypes (Holsters et al., 1980; Degreve et al., 1981; Garfinkel
et al., 1981). Southern blot analysis and heteroduplex mapping
were used to identify homologous “common region” and non-
homologous sequences between the octopine plasmid pTiAch5
and the nopaline plasmid pTiC58 (Engler et al., 1981). Altogether,
two EcoRI fragments present in the nopaline Ti plasmid pTiC58
and homologous to a segment of the octopine plasmids pTiB6S3
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FIGURE 10 | Marc van Montagu and Jeff Schell.

FIGURE 11 | Mary-Dell Chilton.

and pTiAch5 identified the region that confers oncogenicity on
A. tumefaciens (Chilton et al., 1978a,b; Depicker et al., 1978; Schell
et al., 1979). DNA reassociation kinetic analyses were used to
probe four tumor lines induced by three A. tumefaciens strains
(Merlo et al., 1980). This study revealed that a specific sector
of Ti plasmid DNA, called the T-DNA (for transferred DNA)
coincides with the same region of the physical map of the plas-
mids. The length of the T-DNA was found to vary in different
tumor lines and is flanked on each end by 25 base-pair repeated
sequences (Yadav et al., 1982; Wang et al., 1984). The T-DNA bor-
ders are similar to the sequences of broad and narrow host-range
plasmids that are recognized by their respective nicking enzymes
(Kado, 1998). The processing of the T-DNA, initiated by nick-
ing or cleavage at the T-DNA borders, has nicely reviewed by
Zambryski (1992) and Gelvin and Filichkin (1994). The right bor-
der sequence is essential for and determines the direction of DNA
transfer from Agrobacterium to the plant genome (Wang et al.,
1984). The transfer of the T-DNA, as a single-stranded molecule

(Stachel et al., 1986), by a conjugal mechanism is discussed below
and recently reviewed by Gelvin (2012). T-DNA is localized to the
nucleus of host plant cells and covalently linked to the nuclear
DNA (Chilton et al., 1980; Willmitzer et al., 1980).

The next obvious objective regarding the T-DNA was to iden-
tify its encoded functions in crown gall tumor cells. At least
six discrete T-DNA-encoded mRNAs of sizes 0.73–1.75 kb were
detected in octopine-producing tumor lines (Gelvin et al., 1982;
Willmitzer et al., 1982) and sizes 0.67–2.7 kb were detected in
nopaline tumor lines (Willmitzer et al., 1982). Polyadenylated
mRNA transcribed from the T-DNA revealed a transcript 2
(designated earlier as tms-2 revised as iaaH) that is directly
responsible for the production of indole-3-acetic acid from
indole-3-acetamide, whose formation is catalyzed by indoleac-
etamide hydrolase from tryptophan (Inze et al., 1984; Schröder
et al., 1984). Transcript 1 (designated as iaaM) encodes tryp-
tophan 2-monooxygenase (Van Onckelen et al., 1986). Several
workers had reported that cytokinin biosynthesis was associated
in some way with the T-DNA (Akiyoshi et al., 1983; Barry et al.,
1984; Buchmann et al., 1985). The biochemical pathways for
auxin and cytokinin have been reviewed (Morris, 1986). Although
the T-DNA is weakly transcribed in A. tumefaciens (Gelvin et al.,
1981), the ipt gene located in the T-DNA that encodes isopen-
tenyltransferase activity is not fully expressed in A. tumefaciens
(Heinemeyer et al., 1987). It was later shown that the Ipt gene
was repressed by a eukaryotic-like zinc-finger protein called Ros
encoded by the chromosomal ros gene of A. tumefaciens (Chou
et al., 1998) and derepressed by a single amino acid substitution
of Ros (Archdeacon et al., 2006). Nuclear magnetic resonance
spectroscopic studies of Ros revealed a novel DNA recognition
mechanism of eukaryotic promoters (Malgieri et al., 2007).

Besides phytohormone genes in the T-DNA, opine synthase
genes are also located within the T-DNA. The nopaline syn-
thase gene (nos) is located near the right border of the T-DNA
(Depicker et al., 1982; Joos et al., 1983). The octopine synthase
encoded by the ocs gene located in the T-DNA of octopine Ti
plasmids was characterized biochemically (Schröder et al., 1981).
A gene that encodes agrocinopine synthase was also located in the
T-DNA of nopaline Ti plasmids, and a gene that encodes agropine
synthase was identified in octopine Ti plasmids (Joos et al., 1983;
Paulus and Otten, 1993). These opine synthase genes are inte-
grated into the plant host genome. The opines produced are
generally condensation products between basic amino acids and
organic acids such as between arginine and pyruvate (octopine).
Opines can serve as carbon and sometimes nitrogen compounds
utilized by A. tumefaciens for nutritional and Ti-plasmid conjuga-
tional activities (reviewed in Dessaux et al., 1991; Farrand, 1993).
The specificity of opine utilization by A. tumefaciens is not entirely
tight since fluorescent Pseudomonas spp. associated with crown
gall tumors in the field appear to catabolize opines (Moore et al.,
1997).

After Agrobacterium-mediated transformation, these opine
synthase genes are transferred to plant hosts by A. tumefaciens.
This prompted in-depth studies on the T-DNA processing and
transfer system. This historical review will not cover this aspect
of the biology of crown gall. The processing and transfer of
the single-stranded T-DNA covalently linked to VirD2 and then
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bound with VirE2 (T-DNA complex) was nicely reviewed in
Zambryski et al. (1989), Zambryski (1992), Hansen and Chilton
(1999), Gelvin (2003; 2012), Citovsky et al. (2007).

Gaining detailed insights on the functions expressed by
T-DNA genes directed efforts to another sector of the plasmid
(designated as the vir region) that was required for virulence.
Through initial genetic analyses (Tn5- and Tn3-lacZ induced
mutagenesis) (Garfinkel and Nester, 1980; Stachel and Nester,
1986) and DNA sequencing of the vir region, it was initially
determined that there were six operons, designated as VirA, B,
G, C, D, and E, arranged in that sequential order, as a vir reg-
ulon (Rogowsky et al., 1990; Schrammeijer et al., 2000; Hattori
et al., 2001). Each operon in the vir regulon contains the box
sequence (TNCAATTGAAAPy) for both octopine and nopaline
Ti plasmids (Steck et al., 1988). A vir gene designated virF was
found in octopine strain A6 that confers host specificity and
restricts T-DNA transfer to maize (Jarchow et al., 1991). Every
vir operon plays an important role either in facilitating bacte-
rial recognition of its host plant through distal and proximal
interactions (Rogowsky et al., 1987; Winans, 1992), or gener-
ating a T-DNA delivery and processing system (Hooykaas and
Beijersbergen, 1994). Expression of the vir operon is initiated
by sensory detection of external chemical inducers such as ace-
tosyringone (Stachel et al., 1985) and sinapinic acid (Rogowsky
et al., 1987). Inter-communications between Agrobacterium and
its plant host by means of chemical signals, such as precursors
of lignin biosynthesis (phenols), sugars and acidic conditions in
plants, leading to expression of Ti plasmid virulence genes have
been extensively reviewed by Winans (1992) and Gelvin (2006).
Much of the early studies focused on the encoded functional roles
of vir genes within each operon, and those involved in T-DNA
processing and its transfer to the host plant cell were key players
(reviewed in Gelvin, 2012).

The early prediction by Roberts and Kerr (1974) that A. tume-
faciens must use a conjugative process to deliver oncogenes
appears to be insightfully correct. Furthermore, the prediction
was made that the transfer of T-DNA from A. tumefaciens to
plants is a conjugative system requiring a “sex” pilus (Kado, 1994).
Concerted efforts by several research groups carefully analyzed
the functional role of the virB operon (Shirasu and Kado, 1993a;
Jones et al., 1996; reviewed in Zupan et al., 1998). These analy-
ses of the VirB operon revealed striking similarities in both gene
organization and sequences to genes involve in conjugative trans-
fer of broad-host-range plasmids (Shirasu and Kado, 1993b). The
virB2 genes sequence shows similarities to traA of the enteric plas-
mid F and to trbC of the PilW operons of plasmid R388. The
striking similarities between VirB2 and TraA in their amino acid
sequences, their protein processing into a 7.2-KDa subunit, and
their location in the bacterial cell brought forth the hypothesis
that virB2 encodes a VirB2 pilin subunit used in the transfer of the
T-DNA (Shirasu and Kado, 1993a). Consequently, efforts were
made to search for pili made by A. tumefaciens. A pilus of 3 nm
diameter was reported by Fullner et al. (1996). Careful analyses
revealed that both virulent and avirulent A. tumefaciens produce
a common pilus of 3 nm diameter, but only the virulent induced
strain, lacking the interfering flagella (Chesnokova et al., 1997),
produced a long pilus of 10 nm diameter with a 2-nm lumen (Lai

and Kado, 1998, 2000, 2002). This pilus was named the “T-pilus”
(Lai and Kado, 1998, 2000).

The products of the virB operon are required for oncogenesis
and associate with the inner and/or outer membrane of A. tume-
faciens. The membrane association of these products was thought
possibly to form some type of transport system that was distin-
guished as a member of the type IV secretion system (Christie,
1997; O’Callaghan et al., 1999; Christie et al., 2005). This secre-
tion machinery is involved in the transport of the T-DNA-VirD2
complex (reviewed in Zupan et al., 1998). Comparisons between
various known type IV secretion systems have revealed a high
degree of conservation in their structural features (Zechner et al.,
2012). Besides the type IV secretion machinery involving virB2
genes, Ti plasmid and genomic sequence analyses have revealed
two additional type IV secretion systems in A. tumefaciens, one
of which is required for conjugative transfer of the cryptic plas-
mid pAtC58 (Chen et al., 2002) and the other, designated as
the Trb locus is required for conjugal transfer of the Ti plas-
mid (Von Bodman et al., 1989; Li et al., 1999). Moreover, recent
work on Agrobacterium secretion systems has demonstrated the
presence of a type VI secretion machinery having little effect on
virulence. However, it may play an ancillary role in facilitating vir-
ulence (Wu et al., 2008), as do type VI secretion systems in other
pathogens equipped with this secretory system to counter-act
intruding competing bacteria (Basler et al., 2013). In addition, the
type VI machinery is reported to translocate a phage tail spike-like
protein into target cells, cross-link with actin and serve as a tool
to puncture membranes of the host cell (Pukatzki et al., 2007).

Lastly, but not the least is the insightful work accomplished on
determining the fate of the transferred T-DNA complex culmi-
nating in its integration in the nuclear chromosomal DNA of the
host (reviewed by Tzfira et al., 2004; Lacroix and Citovsky, 2009;
Figure 12).

Accessory chromosomal genes assist in facilitating virulence
and regulating both genes of the vir regulon and the T-DNA
of A. tumefaciens (reviewed in Charles and Nester, 1994).
DNA sequencing of the bacterial circular and linear chromo-
somes helped locate these genes of potential significance in

FIGURE 12 | In situ hybridization of labeled T-DNA integrated in the

chromosome of Happlopappus gracilis (Quayle and Kado).
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tumorigenesis (Wood et al., 2001; Goodner et al., 2011; Slater
et al., 2013). Additional comparative sequence analyses between
A. tumefaciens strains of limited host ranges may still reveal novel
genes conferring host and ecological (environmental) specificity.

CONCLUSIONS AND PERSPECTIVES
The historical event of finding and isolating a tumor-inducing
bacterium from grapevine galls (Cavara, 1897a,b) initiated a won-
derful, long journey of scientific research that has led to our
understanding and appreciation on how A. tumefaciens evolved
to be equipped with some very sophisticated means of surviv-
ing in a hostile soil environment and on plants (Palumbo et al.,
1998). This organism escaped numerous microbial competitors
such as Pseudomonas aeruginosa, P. fluorescens, Streptomyces spp.
(Hibbing et al., 2010) by swimming away from the competi-
tion (An et al., 2006) and establishing its own niche in plants
in the form of overgrowths (tumors) and essentially geneti-
cally engineering the plant host to provide highly specialized
organic compounds (opines) that could be specifically utilized
by the tumor-inducer. An evolutionarily built-in DNA escape
mechanism of purely selfish nature (Orgel and Crick, 1980) as
exemplified by the conjugal chromosomal, Ti plasmid and T-
DNA transfer to other microbes and to plants (Fründt et al., 1998)
insured its survival. A. tumefaciens represents the first living rep-
resentative of HGT, i.e., transfer between the domains Bacteria
and Eukarya (Kado, 1998, 2009).

All of the pioneering research groups that contributed to these
biological understanding of A. tumefaciens and crown gall should
be applauded.

Furthermore, it is well established that applications of the
HGT system between bacteria and plants (Caplan et al., 1983;
Fraley et al., 1985) has led to major commercial applications
that yielded many genetically engineered domesticated crop (food
and fiber) plants as well as serving as a tool for investigating
plant immunity responses, plant disease control through trans-
fer of iRNA, etc. A. tumefaciens represents and continues to be a
valuable resource for biotechnology and humanity.
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As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their
virulence functions on a horizontally transmissible genetic element.The tumor-inducing (Ti)
plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium
tumefaciens. This includes the vir genes which drive genetic transformation of host cells
and the catabolic genes needed to utilize the opines produced by infected plants. The Ti
plasmid also encodes, an opine-dependent quorum sensing system that tightly regulatesTi
plasmid copy number and its conjugal transfer to other agrobacteria. Many natural
agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid
depends on the environmental context. Away from diseased hosts, plasmid costs are low
but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are
favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by
the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not
incur virulence costs but can benefit from opines are favored on infected plants and in most
other environments, and these are frequently isolated from nature. Many agrobacteria also
harbor an At plasmid which can stably coexist with aTi plasmid. At plasmid genes are less
well characterized but in general facilitate metabolic activities in the rhizosphere and bulk
soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58,
revealed that harboring its At plasmid is much more costly than harboring it’s Ti plasmid,
but conversely the At plasmid is extremely difficult to cure.The interactions between these
co-resident plasmids are complex, and depend on environmental context. However, the
presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high
frequency with which they are found together.

Keywords: plasmids, ecology, replicon, genome, bacterial, pathogenesis, virulence

INTRODUCTION TO AGROBACTERIAL MEGAPLASMIDS
Plasmids play a key role in the ecology and evolution of bac-
terial populations as they frequently carry genes conferring
traits such as antibiotic resistance, pathogenesis, and the abil-
ity to breakdown nutrients (Turner et al., 2002; Slater et al.,
2008; Rankin et al., 2011). These independently replicating
genetic elements are primarily distinguished from chromo-
somes by the defining characteristic of carrying only non-
essential genes. In addition they tend to be smaller than bac-
terial chromosomes and often encode conjugative systems that
allow for their horizontal transmission to other bacterial cells
(Thomas and Nielsen, 2005; Harrison et al., 2010). Because
they often confer phenotypes that are beneficial in particu-
lar environments, plasmids and their horizontal transfer have
an important role in structuring bacterial communities and
in shaping the evolution of bacterial populations (Slater et al.,
2008).

Many members of the Rhizobiaceae have multipartite genomes
that include several ecologically important plasmids (Jumas-Bilak
et al., 1998). The genome of Rhizobium etli CFN42 provides a
particularly dramatic example of this, being composed of a pri-
mary chromosome, a secondary chromosome or chromid, and
five plasmids (Harrison et al., 2010; Landeta et al., 2011). Many

members of the Rhizobiaceae family live in intimate association
with plant hosts. Some, such as many rhizobia, are nitrogen fix-
ing plant mutualists, while others, like many agrobacteria, are
plant pathogens. The taxonomic status of the genus Agrobac-
terium has been debated with proposals that it be considered
a species of Rhizobium (Young et al., 2001, 2003; Farrand et al.,
2003). However, for continuity and clarity in this review we fol-
low the convention of distinguishing between agrobacterial and
rhizobial strains.

The rhizobial nitrogen fixation and agrobacterial pathogene-
sis functions that characterize their association with plants are
largely conferred by the plasmids they carry. The conjugal Ti
(tumor-inducing) and Ri (root-inducing) plasmids found in many
Agrobacterium species carry the majority of genes underlying
crown gall and hairy root disease, respectively (Escobar and Dan-
dekar, 2003; Suzuki et al., 2009). Ti plasmids are harbored by
both generalist pathogens including many Agrobacterium tume-
faciens strains, and narrow-host range pathogens such as A. vitis
strains that cause crown gall of grape. Ri plasmids are typically
found in pathogenic A. rhizogenes strains that cause hairy root
disease. Unless indicated otherwise, this review will focus on
A. tumefaciens, although many of the general features of plasmid
biology and plant infection are similar in A. rhizogenes and A. vitis.
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Infection of a plant host involves its genetic transformation in
which a large segment or segments (approximately 40 kb) of Ti
plasmid-borne genes (the transferred or T-DNAs) are replicated
from the plasmid via a conjugation-like mechanism, delivered into
the plant cell via a type IV secretion system, and integrated into
the host plant’s genome (Escobar and Dandekar, 2003; Brencic
and Winans, 2005). Ti plasmid virulence genes are only expressed
when pathogenic A. tumefaciens cells encounter a specific set of
environmental conditions (plant-produced phenolics, sugars, low
pH, and limiting phosphate) most indicative of wounded plant
tissue (Winans, 1990). Following transformation, the plant host
cell machinery directs the expression of T-DNA genes, leading
to T-DNA controlled synthesis of the plant hormones auxin and
cytokinin, resulting in accelerated division of transformed plant
cells (Drummond et al., 1977; Garfinkel et al., 1981). This gives rise
to the most conspicuous symptom of crown gall disease—tumor
development. Less conspicuously, but arguably of primary impor-
tance for the pathogen, the plant’s expression of T-DNA genes also
results in the synthesis and release of a suite of unique metabolites
that are broadly termed opines (Brencic and Winans, 2005). Opine
catabolic genes carried on the Ti plasmid allow the pathogen to
catabolize the plant produced opines, providing a key benefit of
pathogenesis to the infecting bacteria (Guyon et al., 1993; Savka
and Farrand, 1997; Platt et al., 2012b). Hairy root disease caused
by Ri plasmid bearing A. rhizogenes also involves T-DNA transfer
that causes plants to produce opines, however rather than cause
tumor development this disease stimulates the growth of adventi-
tious roots. Many Ri and Ti plasmid T-DNA genes show homology,
such as the Ti encoded auxin biosynthesis genes, iaaM and iaaH,
and the corresponding Ri encoded aux1 and aux2 genes. However,
several Ri plasmid T-DNAs genes show limited or no homology to
genes found on Ti plasmid T-DNAs. These genes, such as rolA, rolB,
and rolC, function in stimulating meristem formation, a key fea-
ture distinguishing hairy root and crown gall diseases (reviewed by
Britton et al., 2008).

In addition to the well-studied agrobacterial virulence plas-
mids, agrobacteria can also harbor several less well character-
ized plasmids (Currier and Nester, 1976; Merlo and Nester,
1977; Albiach and Lopez, 1992). For example, some aviru-
lent agrobacteria in nature harbor opine catabolic plasmids,
which confer the ability to freeload on the benefits of patho-
genesis initiated by virulent agrobacteria by catabolizing pub-
lic goods in the form of opines (Merlo and Nester, 1977;
Wabiko et al., 1990; Dessaux et al., 1998; Wetzel et al., 2014).
The biocontrol agent A. radiobacter K84 is the best character-
ized avirulent strain harboring such a plasmid. Interestingly,
K84 also produces several antimicrobials that allow it to inter-
fere with the growth of virulent agrobacteria (Donner et al.,
1993; Penyalver et al., 2001; Kim et al., 2006). For these reasons,
K84 has served as a powerful commercial biocontrol agent of
crown gall disease for several decades. K84’s ability to catab-
olize opines and produce anti-agrobacterial molecules largely
depends on plasmid-borne genes. Wild-type K84 harbors three
plasmids. One of these, pAtK84b, confers the ability to catabo-
lize nopaline and agrocinopine produced by crown gall infected
plants and shares regions of homology with several Ti plas-
mids (Oger and Farrand, 2002). A second plasmid, pAgK84,

carries genes underlying production and immunity to agrocin
84 (Kim et al., 2006), while a third plasmid, pAtK84a, encodes
production of and resistance to agrocin 434 (Donner et al.,
1993; McClure et al., 1998). Agrocin 84 specifically inhibits the
growth of agrocinopine catabolic agrobacteria such as strains
harboring a nopaline-type Ti plasmid (Reader et al., 2005; Kim
et al., 2006). In contrast, agrocin 434 primarily inhibits the
growth of biovar 2 agrobacteria, the same biovar as K84 itself
(Donner et al., 1993).

Tartrate is a common nutrient present on grapevines and many
A. vitis strains harbor a tartrate utilization plasmid, called pTr or
pTar that allows them to access these nutrients (Burr and Otten,
1999). These plasmids likely provide a competitive advantage to A.
vitis strains in colonizing their grapevine hosts (Salomone et al.,
1998). Interestingly these conjugative tartrate utilization plasmids
are diverse, though they harbor similar TAR regions required for
the degradation of tartrate.

Several pathogenic and avirulent strains of A. tumefaciens
carry another type of agrobacterial megaplasmid. Like the Ti
plasmids, these At plasmids vary widely in their gene structure
and composition, though they also share regions of homology.
Non-essential for pathogenesis, the At plasmids have received con-
siderably less attention than Ti plasmids. For this reason, they
were traditionally referred to as cryptic plasmids as they were
previously uncharacterized relative to the Ti plasmids. Although
dispensable for virulence, the full sequence of the best char-
acterized At plasmid, pAtC58, reveals the presence of genes
involved in a range of functions including, but not limited to,
chemotaxis, iron uptake, DNA damage repair, heat shock, and
catabolism (Goodner et al., 2001; Wood et al., 2001; Slater et al.,
2009). One set of At plasmid genes that has received particu-
lar attention are the blcABC genes, previously named attKLM,
because of their initially proposed, but later refuted role in
attachment (Matthysse et al., 2008). We now know, however,
that attachment is largely mediated by chromosomally encoded
genes (Tomlinson and Fuqua, 2009; Li et al., 2012; Xu et al., 2013),
and that the products of the blcABC operon confer the ability
to catabolize γ-butyrolactone (GBL), plant-released compounds
often present at high levels in the soil and rhizosphere (Carlier
et al., 2004; Khan and Farrand, 2009). In addition to GBL uti-
lization, At plasmids confer catabolic functions that are likely to
contribute to the success of A. tumefaciens cells inhabiting the
rhizosphere. These catabolic systems include those for degra-
dation of deoxyfructosyl-glutamine (DFG), mannopine (MOP),
succinyl semialdehyde (SSA), γ-hydroxybutyrate (GHB), and
γ-aminobutyric acid (GABA), and are discussed in greater detail
in Sections “The Costs and Benefits Associated with the Ti and At
Plasmids” and “Ecological Context of Ti and At Plasmids” of this
review.

In addition to catabolic functions, there are several stud-
ies demonstrating that At plasmids can affect virulence (Nair
et al., 2003; Morton et al., 2013). One such study shows that
in some strains the presence of an At plasmid corresponds to
an increase in the size of tumors, suggesting a positive impact
on virulence (Nair et al., 2003). However, variants of pAtC58
from A. tumefaciens C58 have been shown to exhibit differen-
tial effects on the expression of pTiC58-encoded virulence (vir)
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genes (Morton et al., 2013). For example, whereas a truncated
form of pAtC58 (ΔAtu5207–Atu5408) has a repressive effect on
vir gene expression, the full-length form of the plasmid had no
such effect. The basis for the differences between these studies
remains unclear.

In this review, we will focus on the genomic, ecological, and
evolutionary significance of the two best-studied agrobacterial
plasmids, the Ti and the At plasmids. We will first describe what
is known about the function and regulation of replication, parti-
tioning, and conjugation of these plasmids. Then we will discuss
their diversity, ecology, and the genomic context of their evolu-
tion. Throughout, we will focus on the influence of the biotic
and abiotic environmental conditions on the regulation of plas-
mid encoded genes and how this relates to the ecological costs
and benefits associated with these plasmids. Finally, we will dis-
cuss how these genetic and ecological factors couple together to
influence the evolutionary dynamics of these plasmids.

Ti PLASMIDS AND THE OPINE CONCEPT
Many agrobacterial plasmids are defined by their role in patho-
genesis, as is the case for the Ti and Ri plasmids. The Ti and
Ri plasmids are highly diverse and are characterized by the type
of low molecular weight resources, the opines, that infectious
agrobacteria cause host plants to produce. Opines are found
within and around the tumors or root hairs of plant tissue that
has been transformed by the T-DNA of pathogenic agrobacte-
ria, but are not typically found in soil environments. The range
of opines that are produced by the infected plant is determined
by the T-DNA genes carried on the virulence plasmid, and these
genes vary among strains of agrobacteria (Moore et al., 1997).
The driving selective benefit for agrobacterial pathogenesis was
for many years proposed to be access to the relatively exclusive
opine nutrients (this was known as the “opine concept”), and
subsequent experiments demonstrated that this is in fact correct
(Dessaux et al., 1998).

As a family, opines are incredibly diverse with over 30
species having been characterized (Dessaux et al., 1998). Chem-
ically, they can be separated into two structural classes: agro-
cinopines and secondary amine derivatives. Agrocinopines are
sugar-phosphodiesters and thus represent sources of carbon and
phosphorus (Oger and Farrand, 2002). The amine-derived opines
are formed by the condensation of an amino acid with either a
sugar or an alpha-keto acid and serve as sources of carbon and
nitrogen. Amine-derived opines, such as nopaline and octopine
are formed by the reductive condensation of arginine with α-
ketoglutarate and pyruvate, respectively. Mannityl opines are
derived from deoxyfructosyl-glutamine (DFG), the conjugation
product of glutamine and a sugar (Baek et al., 2003).

Opines are usually degraded by catabolic functions that
are also Ti plasmid encoded and the expression of which is
inducible by the corresponding type of opine. Depending on
the Ti plasmid, an A. tumefaciens strain can transform plants
with one or more of a multiple array of opine biosynthetic
genes (Dessaux et al., 1998). Corresponding opine uptake and
catabolism genes are located on the non-transferred portion
of the infecting Ti plasmid (Guyon et al., 1993). The trans-
ferred opine biosynthesis genes include those that function

to conjugate plant-synthesized products to amino acids, cre-
ating additional substrates that can be utilized by infecting
cells (Kemp et al., 1979; Hack and Kemp, 1980). Some strains
of Agrobacterium exhibit chemotaxis toward specific opines.
Chemotaxis is the directed movement of bacterial cells deter-
mined by chemical gradients (e.g., nutrients) in the environ-
ment. For A. tumefaciens, opine-specific chemotaxis depends
upon the Ti plasmid and as such, correlates with the specific
opine biosynthetic and catabolism genes encoded by the plasmid
(Kim and Farrand, 1998).

Subsets of the opines, called conjugal opines, mediate hor-
izontal transfer of the Ti plasmid from one bacterial cell to
another. This occurs via activation of expression of the gene encod-
ing the LuxR-type transcription factor TraR (described in more
detail in the next section). Octopine is the conjugal opine for
octopine-type plasmids, and agrocinopine A and B are the con-
jugal opines for nopaline-type plasmids (Farrand, 1998a). In at
least one plasmid, mannityl opines activate traR expression and
can function as conjugal opines (Wetzel et al., 2014). This process
of plasmid transfer depends on the presence of specific opines
produced by transformed plant cells as they enable a response
to the self-produced diffusible acyl-homoserine lactone (AHL)
quorum sensing signal (Zhang et al., 1993; Fuqua and Winans,
1994). Although conjugal transfer of Ti plasmids is completely
dependent on the presence of the conjugal opines, the precise reg-
ulatory mechanisms vary for each Ti plasmid (Farrand, 1998b).
For example, in nopaline-type plasmids, when opines are absent,
the conjugation genes (tra and trb) are actively repressed by
the agrocinopine-responsive transcriptional regulator, AccR (Kim
et al., 2008). When opines are present, however, and cells are at a
population density at which AHL molecules reach inducing levels,
transcription of conjugation genes is derepressed. Similar stim-
ulation of conjugation gene expression is mediated through the
octopine-responsive transcriptional activator OccR for octopine-
type plasmids. In either case, the control of Ti conjugation genes
is indirect, and the opines function by elevating the expres-
sion of the traR gene (Piper et al., 1993; Fuqua and Winans,
1994). TraR directs the process of quorum sensing and is acti-
vated and stabilized by forming a complex with accumulating
AHL molecules, resulting in the up-regulation of the tra and
trb genes, as well as increased copy number of the Ti plasmid
(White and Winans, 2007).

STABILITY, REPLICATION, AND PARTITIONING OF repABC
REPLICONS
Low-copy number plasmids require efficient replication and par-
titioning in order to ensure their efficient transmission during
the reproduction of bacterial cells. Many of the large, low-copy
number plasmids and secondary chromosomes found in the
genomes of agrobacteria and other alphaproteobacteria belong
to the repABC family of replicons. The transcriptional and post-
transcriptional regulation of the repABC operon gene products
plays a central role in the replication and partitioning of this
family of replicons. In this paper, we will briefly describe the
regulation of repABC replicon replication and partitioning. We
will focus on the well characterized regulation employed by the
Ti plasmid and describe how this relates to the quorum sensing
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dependent regulation of Ti plasmid conjugation. Several recent
reviews cover these topics in detail (Mazur and Koper, 2012; Pinto
et al., 2012).

The primary replication factor RepC and a nearby replica-
tion origin to which it binds are required for replication of
repABC replicons, whereas RepA and RepB proteins coordi-
nate replicon partitioning during multiplication of the bacterial
cell. Unlike many plasmids, the partitioning (repA and repB)
and replication (repC) genes of repABC replicons are typically
expressed as one transcriptional unit controlled by a promoter
region upstream of repA. RepC does not belong to a known
larger protein family and the repC gene has only been observed
in alphaproteobacteria (Pinto et al., 2012). In contrast, the RepA
and RepB proteins belong to the family of ParA and ParB proteins,
respectively, which includes proteins mediating the partition-
ing of chromosomal, prophage, and plasmid replicons. At least
one agrobacterial tartrate utilization plasmid, pTar, employs a
partitioning system belonging to this larger ParA-ParB family
(Kalnin et al., 2000).

The multipartite genome of A. tumefaciens C58 is composed of
a circular oriC-type chromosome and three repABC family repli-
cons: a linear chromosome, pTiC58, and pAtC58 (Li and Farrand,
2000; Goodner et al., 2001). The replication origins of all four
C58 replicons tend to generally localize to the polar region of the
cell, although each site is distinct from the other replicons, sug-
gesting that they may be targeted to distinct addresses (Kahng
and Shapiro, 2003). This may contribute to the compatibility of
these repABC replicons or reflect the mechanism(s) that allows
for their stable coexistence within a bacterial cell. The location
of centromere-like par sites composed of one or more palin-
dromic sequences varies among repABC replicons. These sites play
a key role in plasmid stability, partitioning, and incompatibility as
they are thought to be the site where the partitioning machin-
ery binds. In the cases of pTiC58 and pTiR10 these par sites
are located between repA and repB within the repABC operon,
while for other repABC replicons par sites can be found close
to the repC stop codon or upstream of repA (Cervantes-Rivera
et al., 2011; Pinto et al., 2012). Though not found in all repABC
replicons, pTiC58 and pTiR10 both encode a repD gene located
between repA and repB that overlaps the par sites of these plasmids
(Chai and Winans, 2005a).

The transcriptional and post-transcriptional control of the
replication, partitioning, and conjugation of the octopine-type
Ti plasmid pTiR10 is particularly well characterized. The repABC
operon of pTiR10 is influenced by four promoters upstream of
repA (Pappas and Winans, 2003a,b). RepA of pTiR10 binds to
an operator located downstream of the most proximal of these
promoters (P4) thereby antagonizing transcription of the operon.
The binding of pTiR10 RepA to this operator is thought to be
enhanced by formation of a complex with RepB (Pappas and
Winans, 2003b). Similarly, pTiR10 RepB binds to the par sites
within repD and this binding is enhanced by the presence of RepA.
Taken together, these results suggest that a RepA–RepB complex
may bind both the P4 promoter upstream of repA and the par site
downstream of repA forming a large double-stranded DNA loop
structure involved in the repression of the repABC operon (Chai
and Winans, 2005a).

The role of RepC in promoting the replication of the Ti plasmid
is thought to depend on its ability to bind the replication ori-
gin (Pinto et al., 2011). As with many repABC replicons, pTiR10
also contains a gene between repB and repC which encodes an
antisense RNA that down-regulates the expression of repC (Chai
and Winans, 2005b). In the case of pTiR10 this gene is called
repE and is thought to duplex with the repABC transcript in
a way that promotes translational termination near the repC
start codon. This post-transcriptional control, along with tran-
scriptional autorepression of the repABC operon mediated by
RepA–RepB complexes, likely helps maintain the low copy number
state of pTiR10 under many environmental conditions.

The presence of two types of plant-produced molecules, phe-
nolic compounds and opines, stimulates the transcriptional
activity of the pTiR10 repABC operon leading to higher plas-
mid copy number when either of these plant cues are present.
The opine effect is indirect, through the TraR quorum sensing
mechanism, whereas the phenolic induction is mediated by the
VirA-VirG two component vir gene regulation system. The sen-
sor kinase VirA phosphorylates VirG in response to the presence
of plant-produced phenolic compounds. Phospho-VirG binds to
an upstream vir-box, stimulating transcription from promoter P4
of the repABC operon leading to the elevation of plasmid copy
number to approximately four copies per cell (Cho and Winans,
2005). The VirA–VirG two component system similarly pro-
motes vir gene transcription directing interkingdom gene transfer
(Winans, 1991).

As described above, opine-dependent gene regulation can func-
tion through repression or activation mechanisms. For example,
for octopine-type Ti plasmids such as pTiR10 the transcription
of opine transport and catabolic genes is stimulated by the bind-
ing of complexes between the LysR-type transcriptional regulator
OccR and octopine, one of the opines that this class of Ti plas-
mid engineers plants to produce (Wang et al., 1992; Fuqua and
Winans, 1996). Nopaline-type Ti plasmids, typified by pTiC58,
also increase expression of opine transport and catabolic genes
in response to the presence of opines. Nopaline uptake and
catabolism are activated by NocR, a LysR-type regulator that
functions similarly to OccR (von Lintig et al., 1994). However,
the best studied example of opine-responsive gene regulation
for pTiC58 is derepression of agrocinopine uptake and catabolic
genes by AccR, a LacI-type repressor (von Bodman et al., 1992;
Kim and Farrand, 1997).

In addition to stimulating opine catabolic functions, the pres-
ence of opines in the plant tumor environment also indirectly
controls Ti plasmid copy number and conjugation by inducing the
expression of the quorum sensing transcriptional activator TraR,
encoded on the Ti plasmid (Pappas, 2008). The inducing ligand
for TraR is N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-
HSL), an AHL signal molecule that is synthesized by the activity of
traI, an AHL synthase also encoded by the Ti plasmid. TraR–AHL
complexes stimulate transcription of the pTiR10 repABC operon
from all four upstream promoters, resulting in a seven- to eightfold
increase in plasmid copy number (Li and Farrand, 2000; Pappas
and Winans, 2003a). Under the same conditions, TraR–AHL binds
another nearby tra box stimulating transcription of the divergently
oriented traI-trb operon that controls expression of both traI and
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genes involved in mating pair formation (Mpf) functions required
for conjugation of the Ti plasmid. The trb operon includes two
genes, trbJ and trbK, which encode entry exclusion proteins that
inhibit conjugal delivery of a Ti plasmid into the cell (Cho et al.,
2009). In addition, another pair of divergent operons encoding the
DNA transfer and replication functions (Dtr) elsewhere on the Ti
plasmid are activated by TraR–AHL binding to an intergenic tra
box. The Dtr functions include the conjugal nickase (TraA) and
the coupling factor TraG.

While the replication, partitioning, and conjugation of the Ti
plasmid are well studied, much less is known about other agrobac-
terial megaplasmids. In some cases, there are parallels between
the conjugation of the Ti plasmid and these other plasmids. For
example, AccR-dependent opine responsive regulation influences
the expression of both pTiC58 and pAtC58 conjugal machinery,
revealing a mechanism that promotes co-transfer of these plas-
mids (Lang et al., 2013). Further, the opine catabolic plasmid
of K84, pAtK84b, employs opine-dependent quorum sensing to
regulate its conjugation. However in contrast to most Ti plas-
mids, two distinct types of opines can independently induce the
conjugation of this pAtK84b, with each inducing the expres-
sion of separate and functional traR paralogs encoded by the
plasmid (Oger and Farrand, 2002). Though the frequency with
which this occurs is unknown, one study has documented the
transfer of pAtK84b into pathogenic agrobacteria under natu-
ral plant-tumor conditions (Vicedo et al., 1996). In this case,
the K84 opine catabolic plasmid likely displaced the resident,
incompatible Ti plasmid and the concurrent delivery of pAgK84
essentially converted a pathogenic agrobacterial strain into an
avirulent, agrocin 84-producing competitor of the pathogen
(Vicedo et al., 1996).

Within the same crown gall tumor, these researchers also
observed transfer of a Ti plasmid into the K84 background,
with likely subsequent recombination between the Ti plasmid
and the resident pAtK84b (Vicedo et al., 1996). In this case,
conjugation essentially converted the avirulent biocontrol agent
into a pathogenic strain that is resistant to biocontrol by K84
and related strains, an outcome that may undermine the long-
term efficacy of biocontrol by K84 (Lopez-Lopez et al., 1999).
Other studies have reported the origin of pathogenic, agrocin
84 producing strains via the transfer of pAgK84 into pathogenic
agrobacteria, demonstrating another threat to the utility of
K84 as a biocontrol agent (Vicedo et al., 1993; Stockwell et al.,
1996; Raio et al., 2009). Because of this issue, a genetically
engineered derivative of K84 in which the conjugal functions
of pAgK84 have been disrupted is also available for biocon-
trol (Jones and Kerr, 1989; Vicedo et al., 1993; Penyalver et al.,
2000). These examples illustrate the recombinational modularity
of the agrobacterial megaplasmids, and hint at the evolution-
ary histories that have led to their complex architecture and
regulation.

Many plasmids encode toxin-antidote loci, which can pro-
mote their stability in growing bacterial populations and medi-
ate within-bacterium competition among plasmids co-infecting
the same bacterial cell (Gerdes et al., 2005; Van Melderen
and De Bast, 2009; Cooper et al., 2010). Toxin-antidote sys-
tems are widespread among bacteria and highly diverse (Van

Melderen and De Bast, 2009). Generally toxin-antidote sys-
tems involve two linked loci, one encoding a toxic factor and
the other an antidote factor that prevents the toxic effects of
the first factor from manifesting. Because of this, these sys-
tems can lead to the inhibition of daughter cells that do not
inherit the toxin-antidote locus, thereby preventing the spread
of cells lacking this locus—such as plasmid free cells—through
the population (Gerdes et al., 2005). Plasmid-encoded toxin-
antidote loci can similarly mediate competition between co-
infecting incompatible plasmids by making it difficult to displace
the resident plasmid (Cooper and Heinemann, 2000; Cooper
et al., 2010). The stability of two nopaline-type Ti plasmids,
pTiC58 and pTi-SAKURA, is greatly enhanced by the presence
of the toxin-antidote systems they encode (Yamamoto et al.,
2007, 2009). The At plasmid of C58 is highly stable despite
the high selective pressure favoring lineages that lose the plas-
mid. This stability may reflect the effects of one or more of
the putative toxin-antidote systems that this plasmid encodes
(Morton et al., 2013).

Other agrobacterial plasmids encode secreted toxins that are
able to mediate interference competition in addition to poten-
tially contributing to plasmid stability. For example, the pAtK84a
plasmid confers not only the ability to produce agrocin 434, which
antagonizes other biovar II agrobacteria, but also resistance to the
toxin (Donner et al., 1993). The same is true for the agrocin 84
plasmid, pAgK84, in that the plasmid confers the ability to pro-
duce a toxin as well as resistance to the toxin (Slota and Farrand,
1982; Ryder et al., 1987). Agrocin 84 interferes with cellular leucyl-
tRNA synthetase thereby disrupting the translation of agrocin 84
sensitive strains. Importantly, pAgK84 encodes a variant leucyl-
tRNA synthetase which imparts resistance to the toxic effects of
agrocin 84 (Reader et al., 2005; Kim et al., 2006).

PLASMID REARRANGEMENTS AND DIVERSITY
The repABC family of agrobacterial plasmids is incredibly diverse
(Cevallos et al., 2008). These plasmids have interspersed regions of
high sequence similarity, suggesting that multiple recombination
events have shaped their structure (Farrand, 1998b). These con-
served blocks of sequence can be found between plasmids of dif-
ferent strains of the same bacterial species, but also across species,
genera, and families (Farrand, 1998b; Galardini et al., 2011).

Although opine biosynthesis genes (located on the T-DNA)
and opine uptake and catabolism genes are often linked together
on the same plasmid, this is not always the case (Merlo and
Nester, 1977). There are several examples of plasmids that lack
the virulence functions all together, but still retain the genes
for opine transport and catabolism. pAtK84b and pAtK112
are two examples of these plasmids, conferring the ability to
catabolize nopaline and agrocinopines. Expression of a gene
on the At plasmid of A. tumefaciens R10 is required for com-
plete catabolism of octopine (Cho et al., 1996). Another At
plasmid, pArA4, found in A. rhizogenes is a catabolic plasmid
which provides the ability for its host bacteria to utilize MOP,
mannopinic acid, and agropinic acid as sole sources of carbon
(Guyon et al., 1993).

Additionally, although most Ti plasmids in Agrobacterium
species are considered to be virulence elements, they exhibit
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blocks of high sequence similarity to the symbiosis plasmids of
other rhizobia (e.g., pRetCFN4d of Rhizobium etli and pSymA
of Sinorhizobium meliloti). Interestingly, the conjugal pili pro-
teins of many of these symbiotic plasmids exhibit homology
to the VirB proteins encoded on the Ti plasmid (Chen et al.,
2002; Ding and Hynes, 2009). However, despite the similarity
between the symbiotic plasmid Type IV secretion (T4S) systems
and those encoded on the Ti plasmid, the horizontal trans-
mission of these symbiotic plasmids is regulated by the rctAB
repression system, distinct from the quorum sensing control of
Ti plasmid conjugal transfer genes and the plant-signal depen-
dent expression of the vir T4S (Brencic and Winans, 2005;
Perez-Mendoza et al., 2005).

Large-scale deletion events have been characterized in the
pAtC58 plasmid of A. tumefaciens C58 (Morton et al., 2013). A
series of repeat sequences (9–13 bp) was found to be distributed
within the At plasmid, immediately flanking sites of large dele-
tions (up to 0.19 Mb). These deletions were discovered in several
laboratory stocks of A. tumefaciens C58, indicating that they occur
during normal passaging. The repeated elements are not within
known transposable elements and the longer repeats (11–13 bp)
are more abundant on the At plasmid than on other A. tumefaciens
C58 replicons. Strains carrying At plasmids that have incurred
these deletions have increased vir expression and possess a higher
relative fitness in lab culture compared to strains with the full
length plasmids, likely due to high carriage costs associated with
these deleted segments (Morton et al., 2013). A large majority of
genes within the deletion intervals are represented by ABC trans-
porters, so it could be that passage in laboratory culture favors
loss of costly genes that would otherwise confer benefits specific
to the natural rhizosphere environment. The variety of rearrange-
ments in the At plasmid of A. tumefaciens C58 indicates that the
replicon is highly adaptable and dynamic. Additionally, the repeats
found flanking deletion sites are not present in the closely related
S. meliloti (Morton et al., 2013), suggesting that they could be
specific to A. tumefaciens and provide a mechanism for genomic
plasticity.

The At plasmid of A. tumefaciens ANT4 has also been shown to
cointegrate with the Ti plasmid (Vaudequin-Dransart et al., 1998).
During matings between A. tumefaciens ANT4 and a plasmid-
less recipient, C58.00RS, some transconjugants possessed a single
large replicon containing genes from both the At and Ti plasmids.
It was proposed that integration of these replicons can cause gene
disruption and potentially inactivate virulence functions through
recombination into required regions (Vaudequin-Dransart et al.,
1998). Cointegration between these replicons could have effects
on the catabolic potential of A. tumefaciens strains, as there
are numerous potential cointegration sites between the plasmids
in separate isolates, in some cases disrupting opine-utilization
functions. Similar cointegration events have been described pre-
viously in other members of Rhizobiaceae (Flores et al., 2000;
Mavingui et al., 2002; Guo et al., 2003). In these cases, cointegra-
tion was shown to occur between all chromosomal replicons, but
did not have strong effects on fitness or symbiotic-proficiency.
The significance of cointegration between the At and Ti plasmids
with respect to rhizosphere metabolism and pathogenesis remains
unclear.

THE COSTS AND BENEFITS ASSOCIATED WITH THE Ti AND
At PLASMIDS
Plasmids can impose significant fitness costs on the bacterial cells
that harbor them (Slater et al., 2008; Baltrus, 2013), which along
with the benefits that plasmids confer play a central role in deter-
mining their ecological and evolutionary dynamics (Slater et al.,
2008). The net balance of these costs and benefits determine
whether a genotype with the plasmid has an advantage or dis-
advantage relative to a competitor genotype lacking the plasmid.
Plasmid costs can result from a variety of causes, including the
energetic burden of plasmid maintenance or conjugation as well
as the costs associated with expressing other functions encoded by
the plasmid (reviewed in Baltrus, 2013). These different forms
of plasmid costs may vary in their magnitude and degree of
context-dependence. The fitness cost of harboring two Ti plas-
mids, the octopine-type pTi15955 and the nopaline-type pTiC58,
has been demonstrated to be low or even undetectable in their
respective host backgrounds under laboratory conditions (Platt
et al., 2012a; Morton et al., 2014). These low carriage costs likely
reflect the tight gene regulation that controls expression of most
genes on the Ti plasmid. Natural selection acting on plasmid
genes likely favors this tight regulation, as high carriage costs
antagonize the fitness of plasmid and chromosomal genes alike.
Carriage of pTi15955 conferred a small competitive disadvantage
against plasmidless derivatives; however, this was only measur-
able when the bacteria were limited for either carbon or nitrogen
(Platt et al., 2012a). In contrast, when the bacteria competed
under conditions that stimulated expression of vir genes and the
repABC operon, cells bearing pTi15955 were at a marked com-
petitive disadvantage (Platt et al., 2012a). This demonstrates that
the expression of these genes is highly costly indicating that the
infection of plant hosts comes at a significant cost to the infecting
agrobacteria.

Key benefits associated with the Ti and At plasmids stem from
their conferring the ability to catabolize nutrients. Consequently,
resource-consumer competition models provide a useful way to
describe competition among genotypes that vary in the plasmids
they harbor. Box 1 provides an overview of how the predictions
of these models can be graphically represented. As articulated in
the “opine concept,” the primary benefit of plant pathogenesis
for pathogenic agrobacteria comes in the form of the opines pro-
duced by the infected plant (Guyon et al., 1993; Oger et al., 1997;
Savka and Farrand, 1997; Mansouri et al., 2002). Opines exuded
by infected plants provide a nutrient source that can promote the
growth of opine catabolic bacteria in the rhizosphere. For example,
octopine availability can shift the outcome of resource competition
between pathogenic agrobacteria harboring pTi15955 and aviru-
lent strains lacking the plasmid (Figure 1A; Platt et al., 2012b).
In this way, opines arise from the costly action of agrobacte-
ria infecting host plants. Upon exudation by the plant, opines
are available for any opine catabolic bacteria, which can include
agrobacteria harboring opine catabolic plasmids as well as other
rhizosphere bacteria (Moore et al., 1997). In addition to the ben-
efits associated with opine catabolism following infection of a
plant host, Ti plasmids also confer the ability to detoxify phe-
nolics or even the use of these phenolics as nutrient sources
(Brencic et al., 2004).
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BOX 1 | The predictions of resource consumer competition

models can be graphically represented and interpreted using

two-dimensional plots in which the graphical axes represent

concentrations of the two resources for which the competitors

compete.

Each species’ population grows in environments where the supply
of resources is sufficiently high to support its growth. In the heuris-
tic example shown, the solid line corresponding to each species
represents environments where that species’ population neither
grows nor declines in size. Consequently these lines are referred
to as zero-net-growth isoclines, or ZNGIs. All environments above
the line have sufficient resource levels to support population growth
of the species, while all environments below the line cannot sup-
port population growth of that species. In this example, the two
resources are substitutable, such that each species can maintain
an equilibrium population in environments with exclusively one or
the other resource (e.g., the ZNGI x- and y- intercepts) or combina-
tions of the two resources (e.g., the points on the line between the
intercepts). The shape and position of ZNGIs can vary depending
on the attributes of the consumer and the way in which resources
influence the growth of that species.The dashed arrows are vectors
representing the rate at which the associated species consumes
each of the resources.
Predicting the establishment of these species in some environ-
ments is straightforward. All points in zone A are under the ZNGIs of
both species 1 and species 2. Since populations of neither species
can grow in zone A, then populations of neither will persist in envi-
ronments with those combinations of resource levels. Similarly
since populations of only species 1 can grow in zone B and only
species 2 can grow in zone F, only those species can establish pop-
ulations in those environments. In these models, one competitor
displaces the other if growth of its population drives resource levels
below the minimal needs of the other species.This occurs in zones
C and E with species 1 driving resource levels below the minimal
needs of species 2 in zone C, and species 2 driving resource levels
below the minimal needs of species 1 in zone E. In this example,
both species stably coexist in zone D since neither species drives
resource levels below the minimal needs of the other species. See
Tilman (1980, 1982) for a more detailed analysis of a variety of
competitive scenarios.

In contrast to the Ti plasmid whose carriage cost is minimized
under conditions where plasmid benefits are limited, the At plas-
mid carriage cost as measured in the C58 nopaline type strain, is
high (Morton et al., 2014). While the reason for the observed high

FIGURE 1 | Model predictions for the outcome of resource competition

between plasmidless,Ti plasmid bearing, and At plasmid bearing

agrobacteria for opines and glucose (A) and for γ-butyrolactone (GBL)

and glucose (B). Solid lines represent the minimum resource levels
required for growth, while dashed arrows represent the consumption
vectors of the indicated strain. Plasmidless agrobacteria can catabolize
glucose while pTi+ cells can catabolize both glucose and opines and pAt+
cells can catabolize both GBL and glucose. Because At plasmids are likely
much more costly than Ti plasmids, the minimum amount of glucose
needed to support a population of pAt+ cells is considerably greater than
that of Ti+ cells (compare the x-intercepts of the zero-net-growth-isoclines
of these strains). Zones of each phase plane are shaded according to which
genotype or genotypes are able to persist in the corresponding
environments despite resource competition with the other strains. Note
that the lower left zone of each phase plane represents environments in
which resource levels are too low to support growth of any of the
genotypes. See Morton et al. (2014) for a more thorough model analysis
that includes competition by genotypes bearing both a Ti plasmid and an At
plasmid and Platt et al. (2012b) for an analysis of competition of genotypes
bearing a Ti plasmid and avirulent, freeloading strains whose plasmids only
contain the opine catabolism genes.
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cost has yet to be determined, there are several potential expla-
nations. For example, this At plasmid is self-conjugal, and unlike
the majority of previously characterized conjugal megaplasmids,
conjugation of pAtC58 is constitutive (Chen et al., 2002). That
is, pAtC58 conjugates at the same frequency under a range of
laboratory conditions (although it is possible that there is as yet
unrecognized environmental control of this conjugation). This
data correlates directly with expression analyses of the genes
encoding the pAtC58 conjugal pilus, the avhB operon (Perez-
Mendoza et al., 2005; Morton et al., in preparation). This operon
encodes a Type IV secretion system responsible for pAtC58 conju-
gation and homologous to the VirB pilus of Ti plasmid, which
mediates transfer of the T-DNA during plant infection (Chen
et al., 2002). Expression of this Ti plasmid encoded system has
been demonstrated to be energetically quite expensive (Platt et al.,
2012a). However, given that a truncated form of the plasmid lack-
ing the avhB genes still confers a significant cost to its host cells,
conjugation is likely not the sole contributor to the high cost of
the plasmid (Morton et al., 2013). In addition to the AvhB sys-
tem, there are multiple ATP binding-cassette (ABC) transporters
encoded on the plasmid. As transmembrane proteins requiring
energy in the form of adenosine triphosphate (ATP) to trans-
fer molecules across membranes, these transporters could explain
a portion of At plasmid costs. Despite its high cost, pAtC58 is
extremely difficult to cure and attempts to do so frequently result
in genomic restructuring (Morton et al., 2014). It is perhaps the
high cost of the plasmid, coupled with mechanisms that ensure its
maintenance (i.e., toxin–antitoxin systems) that drives selection
for the observed deletions (Morton et al., 2013).

In addition to plasmid-encoded stability functions, pAtC58
prevalence in the environment is in part explained by the catabolic
benefits it provides to its host bacteria (Morton et al., 2014).
The competitive advantage in the rhizosphere garnered by strains
of A. tumefaciens harboring pAtC58 is likely attributed to the
plasmid-conferred ability to catabolize such molecules as GBL
and DFG as a sole carbon source (Figure 1B; Baek et al., 2000;
Morton et al., 2014). DFG, also known as santhopine, is an
Amadori compound found in decaying plant material in addition
to the tumors of plants transformed by chrysopine-type strains
of A. tumefaciens. DFG catabolism is encoded by a set of genes
located adjacent to the repABC operon on pAtC58 called socR
and socABCD (Baek et al., 2003). In addition to its prevalence in
the rhizosphere, DFG is formed during catabolism of agropine
(AGR) and MOP, both functions encoded by octopine/mannityl
opine-type Ti and Ri plasmids (Hong and Farrand, 1994). Oxi-
dation of MOP (taken up directly from the environment or
formed by the de-lactonization of AGR) results in the for-
mation of DFG (Kim and Farrand, 1996). The uptake and
catabolism of MOP and AGR is conferred by the products
of the adjacent genes, mot, ags, and moc (Hong et al., 1997;
Oger et al., 1998).

Strains harboring pAtC58 are able to grow using GBLs or
related compounds as a sole carbon source. This growth is depen-
dent on a functional blcABC operon—previously named attKLM,
as mentioned above (Khan and Farrand, 2009). GBLs are common
plant exudates and thus pAtC58 confers the ability to catabo-
lize resources associated with the rhizosphere environment. Many

soil bacteria rely on quorum-sensing (QS) to monitor population
density and regulate community behaviors accordingly (Fuqua
et al., 2001). Several soil bacteria including streptomycetes pro-
duce and employ GBL derivatives as quorum sensing signaling
molecules (Du et al., 2011). The blcC gene, encoding a lactonase,
and its homologs have received considerable attention due to their
potential quorum quenching effects in degrading acyl homoserine
lactone (AHL) signal molecules. The BlcC lactonase can effec-
tively degrade AHLs to form N-acyl-homoserines, rendering them
inactive as quorum sensing signals. The transcriptional repres-
sor blcR is divergently transcribed from the blcABC operon. Null
mutants in blcR fail to accumulate the Ti plasmid encoded AHL,
3-oxo-C8-HSL, due to overexpression of blcC (Zhang et al., 2002).

Break-down products of GBLs are intermediates of the tricar-
boxylic acid (TCA) cycle, which can also induce blcABC expression
by causing the dissociation of BlcR from the blcABC promoter,
thereby inhibiting the accumulation of AHL under more natu-
ral conditions. The biological relevance of this, however, is still
unclear and the subject of considerable debate. There is convinc-
ing evidence demonstrating that artificial induction of this operon
during infection will cause an initial delay in tumorogenesis, but
that over time these effects are negligible (Khan and Farrand,
2009). Additionally, although the blcABC operon confers GBL
catabolism, GBL is only a minor inducer of expression of these
genes. Strong expression requires the presence of the GBL break-
down products SSA, GHB, or GABA, a non-protein amino acid
expressed in plant tissues in association with stress or mechanical
damage (e.g., wounding; Khan et al., 2007). Please refer to Lang
and Faure (2014) for a more extensive discussion on this topic.

ECOLOGICAL CONTEXT OF Ti AND At PLASMIDS
The rhizosphere is the soil at the interface of plant root tissue.
Here, plant roots influence the conditions of the soil to create a
dynamic environment that is rich in microbial life (Badri et al.,
2009). Because of this diversity, the rhizosphere is the seat of
intense resource and interference competition among the resident
microbes (Raaijmakers et al., 2009). Further, the interactions that
occur between plants and the rhizosphere microorganisms as well
as microbe-microbe interactions have large effects on the dynam-
ics of both plant and microbial communities (Bever et al., 2012;
Philippot et al., 2013). Agrobacteria must contend with intense
competition with other agrobacteria and rhizosphere microbes
associated both with healthy and with crown gall-diseased
plants.

The plant tumor environment is remarkably diverse and can
include several different types of opine catabolic microorganisms.
Though opines are relatively uncommon metabolites that provide
nutrients promoting the growth of the pathogenic agrobacte-
ria, several other soil bacteria have the ability to catabolize
specific opine species (Tremblay et al., 1987; Beauchamp et al.,
1990; Bergeron et al., 1990; Nautiyal and Dion, 1990; Nautiyal
et al., 1991; Moore et al., 1997). Additionally, colonization by
opine catabolic, avirulent agrobacteria and the de novo evolu-
tion of avirulent freeloaders via loss of virulence functions have
both been observed (Llop et al., 2009). Pathogenic agrobacteria
are likely to be at a competitive disadvantage to these avir-
ulent, opine catabolic agrobacteria that do not pay the costs
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associated with harboring the intact Ti plasmid or coopera-
tively infecting plants, raising the possibility that the pathogen
may become displaced from the tumor environment it elicited
(Platt et al., 2012a,b). While the competitive disadvantage of vir-
ulent strains against avirulent freeloaders may be sufficient to
explain their exclusion from diseased environments, pathogenic
agrobacteria also must contend with even more overt com-
petitive mechanisms such as bacteriocin-mediated interference
competition with other rhizosphere bacteria (e.g., Kim et al.,
2006). In this way, K84 and similar opine catabolic, aviru-
lent strains are able to highjack the crown gall environment
engineered by pathogenic agrobacteria, hence K84 has utility
as a biocontrol agent for certain types of crown gall disease
(Farrand et al., 2007).

The non-protein amino acid GABA is involved in a wide vari-
ety of cellular responses that extends across kingdoms. In animals,
GABA acts as a neurotransmitter and in plants and bacteria, the
molecule is usually involved in biotic and abiotic stress responses.
GABA is produced in wounded plant tissues as part of a complex
defense response, where this molecule is taken up in A. tumefaciens.
Uptake has been shown to require an ABC transporter BraDEFG
(Atu2424- Atu2427) and a periplasmic binding protein (Atu2422;
Chevrot et al., 2006; Haudecoeur et al., 2009b). GABA resembles
break-down products of the QS signal 3-oxo-C8-HSL which is
responsible for activating Ti plasmid replication and conjugation
through its interaction with the regulator, TraR. Regulation of
GABA uptake in A. tumefaciens has recently been shown to primar-
ily occur via the sRNA AbcR1 (Wilms et al., 2011). This sRNA was
found to destabilize the transcript of the proline/GABA periplas-
mic binding protein, Atu2422. In stationary cultures, strains
deficient in AbcR1 accumulate Atu2422 and GABA to a much
higher level than WT cells. It was proposed that the sRNAs serve
to reduce levels of the Atu2422 transcript and minimize intra-
cellular levels of GABA. Exclusion of GABA from the cell would
prevent BlcC-mediated quorum quenching and maintain physio-
logical AHL-regulated Ti conjugation and expression of virulence
genes (Wilms et al., 2011, 2012). Additional regulation of GABA
uptake has been suggested through proline as it competes with
GABA for binding to the periplasmic protein, Atu2422, which is
required for uptake of both molecules (Haudecoeur et al., 2009a).
It is unclear, however, what role proline accumulation plays in the
plant–Agrobacterium interaction.

While GABA stimulates expression of blcABC and degradation
of QS signals, it has also been shown that agrocinopines stimulate
production of another, Ti-encoded, lactonase, AiiB homologous
to BlcC, which may be involved in the reduction in accumulation
of 3-oxo-C8 HSL and a modulation of QS-mediated Ti plasmid
conjugation (Liu et al., 2007). AiiB was shown to be excluded from
AccR-mediated regulation, meaning that it acts independent of 3-
oxo-C8 HSL levels (Haudecoeur et al., 2009b). AiiB and BlcC are
thus regulated by separate pathways, suggesting they play distinct
roles in the degradation of QS signals during A. tumefaciens plant
interactions and pathogenesis.

For nopaline-type A. tumefaciens strains, the agrocinopines
produced by the infected plant control expression of many genes,
primarily through the regulator, AccR. These genes include the
arc genes (including the traR gene encoding the AHL-responsive

quorum sensing regulator), the acc genes and, more recently dis-
covered, the noc genes through nocR. TraR is directly responsible
for the expression of T4SS genes for the conjugal transfer of the
Ti plasmid, meaning that agrocinopines, through AccR, control
dissemination of this replicon. Similarly, it was recently shown
that AccR also regulates expression of pAtC58’s rctB, orthologs
of which have been shown to be involved in control of symbi-
otic plasmid conjugation in related rhizobia R. etli and S. meliloti
(Perez-Mendoza et al., 2005; Lang et al., 2013; Nogales et al., 2013).
A recent paper demonstrated that AccR regulates the conjugation
of both the Ti and At plasmids by repressing transfer of both repli-
cons in the absence of agrocinopines (Lang et al., 2013). These
results suggest that conjugation of co-resident Ti and At plasmids
may be enhanced in the tumor environment. This would poten-
tially result in co-transfer or competitive transfer of the At and Ti
plasmids.

ECOLOGICAL AND EVOLUTIONARY CONSEQUENCES OF
INTERACTIONS BETWEEN THE Ti AND At PLASMIDS
Pathogenic agrobacteria pay a high cost to translocate the T-DNA
into the plant’s genome. However the resulting infection can
benefit other individuals such as neighboring opine catabolic
agrobacteria making this a cooperative behavior (Platt and Bever,
2009; Gardner and West, 2010; Platt et al., 2012a). The primary
benefit of agrobacterial pathogenesis stems from the catabolism
of public good nutrients, the opines that infected plants pro-
duce (Guyon et al., 1993; Oger et al., 1997; Savka and Farrand,
1997; Mansouri et al., 2002; Platt et al., 2012b). The competitive
advantage of cheating genotypes threatens the evolutionary
stability of any cooperative behavior (Hamilton, 1964a,b). Due
to the high cost associated with infecting plants there is a strong
selective pressure favoring avirulent, freeloading genotypes that
retain the ability to access these benefits by catabolizing opines
(Platt et al., 2012b). Non-pathogenic, opine-catabolic agrobacte-
ria have frequently been isolated from plant crown gall tumors
(Merlo and Nester, 1977; Nautiyal and Dion, 1990; Bouzar et al.,
1993; Belanger et al., 1995). Growth of laboratory cultures of
several strains of A. tumefaciens in the presence of vir-inducing
phenolic compounds results in the origin and rapid spread of
mutated strains that have generated plasmids incapable of con-
ferring virulence (Fortin et al., 1992, 1993; Belanger et al., 1995).
The evolution of avirulent agrobacteria from a pathogenic strain
has also been observed in plant tumor tissues; however in this
study non-pathogenic agrobacteria more often colonized the plant
from the environment (Llop et al., 2009). This result is perhaps
surprising given the apparent rapid rate of evolution of aviru-
lent plasmids in the lab. Llop et al.’s (2009) observations suggest
that avirulent freeloading is a successful and persistent strategy in
nature and motivates future work examining the relative impor-
tance of mutation and colonization to the success of avirulent
freeloaders.

Regardless of the origin, the ability of avirulent, opine-catabolic
agrobacteria to invade plant tumors elicited by pathogenic
agrobacteria, poses a significant challenge to the persistence of
the pathogen. The costs of the Ti plasmid put the pathogen at a
competitive disadvantage when opines are not present (Figure 1).
Further, competition with avirulent, opine-catabolic agrobacteria
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threatens the persistence of the pathogen in the host environment
as well (Platt et al., 2012b). Thus, non-tumor soils are predicted
to be a sink population for the pathogen due to competition
with saprophytic agrobacteria, while freeloading avirulent bac-
teria can competitively displace pathogens from tumor soils. The
persistence of agrobacterial pathogens, then, critically depends
on the pathogen’s neighbors tending to be other pathogens such
that the individuals that pay the cost of infecting the plant have
at least a transient exclusive access to the plant tumor environ-
ment. The conditions for pathogen persistence are relaxed if the
tumor environment can support a larger population size than the
healthy plant root (Platt et al., 2012b). The resolution of this
tension will determine the prevalence of pathogenic strains in
agrobacterial populations and therefore the disease incidence on
the plant host.

Although the At and Ti plasmids are central drivers of the eco-
logical dynamics of A. tumefaciens strains, there is a clear lack of
knowledge regarding their frequency and distribution in nature,
particularly in non-tumor environments. The spatial and tem-
poral heterogeneity of the soil makes it difficult to define any
particular microhabitat, for which the selective pressures affect-
ing each plasmid’s fitness are expected to vary (Platt et al., 2012a,b;
Morton et al., 2014). Natural populations of pathogenic agrobac-
teria fluctuate seasonally, change across years, and can persist
several years in soils that lack readily observable plants exhibiting
crown gall disease (Bouzar et al., 1993; Krimi et al., 2002). In some
cases the frequency of Ti plasmid bearing cells in nature has been
observed to decline over time in the absence of opine-producing
tumors of infected plants (Krimi et al., 2002). In contrast to this,
the same study observed several instances where cells bearing a
Ti plasmid appeared to have a competitive advantage over cells
lacking a Ti plasmid, despite the absence of a crown gall tumor.
Such observations may result from benefits conferred by chromo-
somal genes, the presence of cryptic tumors, or yet uncharacterized
benefits conferred by Ti plasmids (Krimi et al., 2002). This high-
lights the importance of further work establishing the variety of
factors driving the dynamics of natural agrobacterial populations.

Genomic characterization of natural isolates reveal that At plas-
mids are very commonly found in association with a Ti plasmid
and strains that lack a Ti plasmid, frequently still carry an At
plasmid. This is perhaps explained by the array of rhizosphere-
specific catabolic functions encoded by At plasmids (DFG, GABA,
and GBL). One greenhouse study shows that a strain with an At
plasmid outcompetes an isogenic strain lacking the plasmid in
the rhizospheres of infected plants (Morton et al., 2014). When
rhizosphere-specific resources are depleted, the direction of the
competitive interaction is reversed.

In addition to the direct effects of resource competition,
the ecological dynamics of A. tumefaciens genotypes are deter-
mined by intracellular interactions. One example of this is the
elevated expression of Ti plasmid virulence genes in cells that
harbor a laboratory-evolved At plasmid (Morton et al., 2013).
Competitions between pairs of isogenic C58 plasmid genotypes
(plasmidless, carrying At plasmid, carrying Ti plasmid, and
carrying both At and Ti plasmids) revealed genotype-specific
interactions that differ significantly from what would be predicted
based on independent plasmid costs. For example, the cost of the

two plasmids together is non-additive (Morton et al., 2014). Incor-
porating these empirically determined plasmid-specific costs and
benefits into a resource consumer model of competition shifted
the predicted outcomes at equilibrium such that cells harboring an
At plasmid are expected to dominate environments with a broader
range of resource supply conditions (Morton et al., 2014). As a fac-
ultative pathogen A. tumefaciens cells occupy a range of resource
environments. The environment-specific costs and benefits of the
At and Ti plasmids coupled with the observed non-additive costs
suggest that in a temporally dynamic and spatially structured envi-
ronment, strains with both plasmids could have a competitive
advantage relative to plasmidless or single plasmid genotypes.

SUMMARY AND FUTURE DIRECTIONS
Agrobacterial plasmids play a central role in the ecology and
evolution of the bacteria that harbor them. These plasmids
confer a wide range of phenotypes including the ability to
infect plant hosts, catabolize plant-produced nutrients, and
produce bacteriocins mediating interference competition with
other rhizosphere bacteria. In this review we have described
the wide range of ecological and molecular interactions that
shape the evolution and ecological dynamics of agrobacterial
plasmids.

Environmental resource levels play a key role in determining
the relative costs and benefits associated with many agrobacte-
rial megaplasmids (e.g., Figure 1). Consequent impacts on the
competitive ability of plasmid-harboring strains thereby influence
the spread and decline of these plasmids. A significant challenge
remains in integrating these local scale competitive interactions
into a meta-community framework that would predict population
virulence levels and disease incidence. This effort will require addi-
tional information on other aspects of agrobacterial life-history,
including their dispersal and dormancy. A secondary level of
questions relates to the environmental benefits of the different
variants of virulence plasmids. Do, for example, agrocinopine
Ti plasmids confer a competitive advantage in P-limited envi-
ronments while Ti plasmids conferring catabolism of secondary
amine derivatives confer a competitive advantage in N-limited
environments?

Conjugal transfer is a second factor determining the evolu-
tion of agrobacterial megaplasmids as it allows colonization of
novel genetic backgrounds. An open question for future research
is to what degree conjugation also impacts competition among
variant agrobacterial plasmids. The fitness of conjugal plasmids
is composed of contributions from both its vertical transmission
during reproduction of the host cell and its horizontal transmis-
sion during conjugation. Because of this impact on plasmid fitness,
conjugation may have a role in shaping the competitive ability of
these plasmids.

Conjugation may also play a role in allowing for interactions
between competing plasmids mediated by the toxin-antidote sys-
tems that they encode (Cooper and Heinemann, 2000, 2005).
Several agrobacterial plasmids harbor such systems (Yamamoto
et al., 2007, 2009), however their role in mediating interactions
among competitor plasmids is yet uncharacterized and will be an
interesting question for future research. Entry exclusion systems
may play a role in mediating these affects as they provide a way
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to prevent entry of the host bacterium by competitor plasmids
that may evict the resident plasmid via a toxin-antidote system.
An intriguing aspect of the Ti plasmid system is the hierarchical
regulation of conjugation by opines and a quorum sensing system
(Lang and Faure, 2014, this issue). This mechanism of gene reg-
ulation is responsive to both the levels of available resources that
can be catabolized by Ti plasmid bearing cells, and the density of
those cells. Why conjugation is regulated in this way, as it relates
to plasmid fitness and competitive ability, is an exciting question
for future work.

One of the strengths of agrobacteria as a model system for
such questions is the ability to readily integrate lab, greenhouse,
and field studies of this microorganism. Our understanding and
ability to manipulate relevant environmental and genetic factors
allows for experimental dissection of forces influencing the eco-
logical success and evolution of these plasmids in the laboratory
and more realistic greenhouse settings. Such work can be coupled
with examination of the plasmid dynamics in field populations to
provide a clear picture of what drives the success of agrobacterial
megaplasmids in nature. These types of studies also address more
general issues such as how the joint effects of dynamics in host
and non-host environments influences the ecology and evolution
of diseases caused by facultative pathogens. While many important
diseases are caused by facultative pathogens, the dynamics of these
pathogens occurring in non-host environments is poorly incor-
porated into most models of disease epidemiology and evolution.
Consequently the experimental tractability and the established
environmental context dependence to the fitness of agrobacterial
pathogens makes these bacteria powerful model systems for study-
ing the intersection of microbial ecology and disease dynamics for
facultative pathogens.
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In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic
Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The
determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI
synthesizes N -acyl-homoserine lactone molecules which act as diffusible QS-signals.
Beyond a threshold concentration, these molecules bind and activate the LuxR-like
transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last
20 years, A. tumefaciens has stood as a prominent model in the understanding of the
LuxR/LuxI type of QS systems. A number of studies also unveiled features which are
unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic
lifestyle of the bacteria. In this review, we will present the current knowledge of QS
in A. tumefaciens at both the genetic and molecular levels. We will also describe how
interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what
could be the advantages for the agrobacteria to use such a tightly regulated QS-system to
disseminate the Ti plasmids.

Keywords: quorum-sensing, opines, conjugation, genetic, plant host, quorum-quenching, gene expression

regulation

INTRODUCTION
In its canonical definition, quorum-sensing (QS) refers to a pro-
cess through which a bacterial population is able to monitor its cell
density and accordingly to mount coordinate responses (Fuqua
et al., 1994). This phenomenon relies on the synthesis, diffusion,
and perception of small signal molecules (autoinducers) that allow
bacteria to communicate with each other and to regulate gene
expression. In the last 40 years, a number of studies have estab-
lished that QS is widespread in the bacterial kingdom although the
nature of the signal molecules and/or signaling networks as well as
the functions regulated by QS may vary considerably depending
on the species (Miller and Bassler, 2001; Frederix and Downie,
2011; Stevens et al., 2012; Pereira et al., 2013).

In Proteobacteria, the typical QS model is epitomized by
the LuxI/LuxR bioluminescence system of Vibrio fischeri that
was described as early as 1970 (Nealson et al., 1970; Eberhard,
1972). In summary, LuxI catalyzes the synthesis of an N-
acyl-homoserine lactone, namely the 3-oxo-hexanoyl-homoserine
lactone (3OC6HSL), that acts as an autoinducer and accumulates
in a cell density-dependent manner. At a threshold concentration,
the 3OC6HSL molecules bind to their ligands, the transcriptional
factor LuxR, and the newly formed LuxR dimers induce the expres-
sion of the lux operon which includes the genes responsible for
bioluminescence but also luxI. This last autoregulatory action
results in an exponential increase of the production of autoinduc-
ers and accounts for the characteristic pattern of QS-dependent
bioluminescence in V. fischeri populations which rapidly shift at
the quorum concentration from an “off” state to an “on” state.

Interestingly many homologs of LuxI and LuxR proteins
have been found in other bacterial species such as Pseudomonas

aeruginosa, Pectobacterium atrosepticum, and Agrobacterium tume-
faciens (Fuqua et al., 1994, 1996). The first milestone in the study of
A. tumefaciens QS was the functional characterization of the TraR
protein, the LuxR homolog (Piper et al., 1993; Zhang et al., 1993).
This seminal finding opened a new area of research in horizontal
transfer of virulence Ti plasmids in A. tumefaciens that made this
phytopathogenic species a leading model for the investigation of
LuxI/LuxR QS systems. In this review, we will recap the most strik-
ing results obtained in deciphering the genetic network as well as
the molecular basis of A. tumefaciens QS. We will also present how
this QS system, consistent with the phytopathogenic lifestyle of
A. tumefaciens, is integrated into an exquisite regulatory process,
including various opine-induced regulons and lactonase activities.
Finally we will discuss the biological/evolutionary relevance of this
complex network in terms of dissemination of Ti plasmid genes
in the plant tumor environment.

OVERVIEW OF A. tumefaciens QS
A LuxI/LuxR TYPE QS INTEGRATING AN ANTAGONIST COMPONENT
The first insight of a QS system in A. tumefaciens was gained with
the functional characterization of a traR gene, homologous to
V. fischeri luxR, the product of which acted as a transcriptional
activator in the presence of a co-inducer. Actually two versions
of the traR gene were found almost concomitantly in nopaline-
and octopine-type Ti plasmids (Piper et al., 1993; Fuqua and
Winans, 1994). These genes displayed high homology between
them but were located in dissimilar regions of the two Ti plas-
mids, the expression of each of these regions being controlled by
specific opines. Along with these discoveries, the chemical struc-
ture of the co-inducer required for TraR activity was determined
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FIGURE 1 | Structures of the QS signals mentioned in this review. In parallel are indicated the full name of the molecule, its abbreviation as well as some
bacterial species known to produce it.

by spectrometry analysis as 3-oxo-octanoyl-homoserine lactone
(OC8HSL, see structure in Figure 1; Zhang et al., 1993). Soon
afterward the gene traI, for which very closely related sequences
also exist in nopaline- and octopine-type Ti plasmids, was shown
to be responsible for OC8HSL synthesis (Hwang et al., 1994).

Like other LuxI/LuxR type QS systems, A. tumefaciens QS com-
prises another component that negatively modulates the activity of
TraR and OC8HSL and this component is the Ti plasmid-encoded
protein TraM which can suppress TraR transcriptional activity.
Versions of the traM gene were identified in both nopaline- and
octopine-type Ti-plasmids (Fuqua et al., 1995; Hwang et al., 1995).
The octopine-type Ti plasmid A6 even possesses a second func-
tional traM gene borne on a chromosome, surely as a result of gene
duplication (Wang et al., 2006a). For long it has been thought that
TraM proteins were not related to any other proteins found in the
databases, but recent characterization of the Pseudomonas aerugi-
nosa QslA protein contradicted this view (Seet and Zhang, 2011),
suggesting that TraM-type functions might be relatively common
in bacteria.

At a mechanistic level, yeast two-hybrid assays revealed that
TraM and TraR could directly interact. From these data it was
deduced that the association between the two proteins was respon-
sible for the inhibition of TraR-mediated responses by preventing
proper TraR binding to DNA (Hwang et al., 1999). Two subsequent
findings strengthened the negative regulatory functions exerted by
TraM on QS. First it was established that this protein could block
TraR activity even after the transcription factor has bound to DNA
(Luo et al., 2000) and second TraM was demonstrated to promote
TraR proteolysis (Costa et al., 2012).

The implications of TraM action for the dynamics of the QS
system will be discussed in the following section.

QS-REGULATED GENES ARE INVOLVED IN FEEDBACK CONTROL AND Ti
PLASMID DISSEMINATION
Chronologically the first TraR-regulated, hence QS-regulated,
genes were the OC8HSL synthesis traI gene and the tra genes
involved in conjugation of the Ti plasmid (Piper et al., 1993;
Fuqua and Winans, 1994; Hwang et al., 1994). Next, were the
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regulatory gene traM (Fuqua et al., 1995; Hwang et al., 1995) and
finally the rep genes required for vegetative replication of the
Ti plasmid (Li and Farrand, 2000). Concomitantly, four 18 bp-
inverted repeat operator sequences (called tra box I, II, III, and
IV), the disruption of which abolished the TraR transactiva-
tion, were found in the promoter regions of the QS-regulated
genes. These promoters were assigned to two distinct classes
(class I-type and class II-type) according to the position of the
tra boxes relatively to the transcription initiation site. In pro-
moters of class I-type, the tra box is located approximately 65
nucleotides upstream of the transcription start site and in pro-
moters of class II-type, the tra box is located about 45 nucleotides
upstream of the transcription start site, partially overlapping with
the −35 element of the promoter (Figure 2; Fuqua and Winans,
1996a). The traR gene has also been reported as being self-
regulated though no tra box was detected in its promoter region
(Fuqua and Winans, 1996b).

In line with the above studies, an extensive survey of
QS-regulated genes has been recently carried out both in nopaline-
and octopine-type Ti plasmids, using gene arrays and a TraR-
overexpressing system (Cho and Winans, 2007). The results
globally confirmed the previous data. Only genes located in
the Ti plasmids were affected. In nopaline-type Ti plasmid,
31 genes were up-regulated in response to TraR overexpression
and 25 in octopine-type Ti plasmid. Among the up-regulated
genes common to the two plasmids, were the tra, rep, and
traM genes. Moreover the operon structures, the presence of
tra boxes in the promoter regions and the overall regulation of

the expression of these genes were well conserved within the two
plasmids.

Table 1 summarizes the identities and functions of the A. tume-
faciens QS-regulated genes which are detailed in the following. The
traCDGyci and traAFBH operons are divergently transcribed from
a single class II-type promoter activated by a tra box I. These genes
code for a DNA transfer and replication machinery involved in
the conjugative processing of the Ti plasmid (Farrand et al., 1996;
Cook et al., 1997; Cho and Winans,2007). The proteins TraA,TraC,
and TraD are notably thought to form a relaxosome at the oriT
of the Ti plasmid which can also repress the expressions of both
traCDGyci and traAFBH operons (Cho and Winans, 2007). The
promoter of traI-trbBCDEJKLFGHI operon belongs to the class
II-type of QS-regulated promoter but is characterized by the pres-
ence of a tra box II. The trb genes encode a mating pair formation
system for the transfer of the Ti plasmid which is related to type IV
secretion systems (Li et al., 1998). Among the proteins encoded by
these genes, TrbJ and TrbK also act synergistically to implement
an entry exclusion mechanism which ensures that conjugation
events cannot occur between donor and recipient A. tumefaciens
cells harboring similar Ti plasmids (Cho et al., 2009). In agree-
ment with the gene functions, TraR-mediated up-regulation of
the three traCDGyci, traAFBH and traI-trbCDEJKLFGHI oper-
ons results in induction of Ti plasmid conjugation. On the other
hand the control of traI expression by TraR leads to a posi-
tive feedback loop which amplifies, through increase in OC8HSL
production, the QS responses of A. tumefaciens (Fuqua and
Winans, 1994; Hwang et al., 1994). As an illustration of this

FIGURE 2 | Promoter architecture of theTraR-regulated genes in A.

tumefaciens. (A–C) Representation of the regions upstream of the
traI-trbBCDEJKLFGHI and repABC operons (A), traCDGyci and traAFBH
operons (B) traM gene (C). The tra boxes (I, II, III, and IV) are indicated by
black boxes. Under each tra box are presented the associated promoters, the
activations of which are dependent on the binding of TraR. The promoters of

class I-type are in blue while those of class II-type are in red. The
fourth identified promoter controlling the expression of repABC in a
TraR-independent way is also displayed (P). The arrows indicate the direction
of transcription. (D) The nucleotide sequences of the four tra boxes. (Adapted
from Fuqua and Winans, 1996a; Pappas and Winans, 2003a,b; White and
Winans, 2005).
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Table 1 | List of QS-regulated genes in nopaline- and octopine-typeTi

plasmids (adapted from Cho and Winans, 2007).

Gene name Function atu code

traC Conjugal transfer protein atu6126

traD Conjugal transfer protein atu6125

traG Conjugal transfer protein atu6124

yci Nuclease atu6122

traA Conjugal transfer protein atu6127

traF Conjugal transfer protein atu6128

traB Conjugal transfer protein atu6129

traH Conjugal transfer protein atu6130

traI Acyl-homoserine-lactone synthase atu6042

trbB Conjugal transfer protein atu6041

trbC Conjugal transfer protein atu6040

trbD Conjugal transfer protein atu6039

trbE Conjugal transfer protein atu6038

trbJ Conjugal transfer protein atu6037

trbK Entry-exclusion protein atu6036

trbL Conjugal transfer protein atu6035

trbF Conjugal transfer protein atu6034

trbG Conjugal transfer protein atu6033

trbH Conjugal transfer protein atu6032

trbI Conjugal transfer protein atu6031

traM Transcriptional anti-activator atu6131

repA Plasmid-partitioning protein atu6043

repB Plasmid-partitioning protein atu6044

repC Replication initiation protein atu6045

effect, exogenous supply of OC8HSL to A. tumefaciens cells accel-
erated the TraR-mediated induction of Ti plasmid conjugation
(Fuqua and Winans, 1996a).

Curiously the traM gene coding for the TraR antiactivator
appears also to be up-regulated by TraR (Hwang et al., 1995). It was
proposed that this regulatory mechanism allows the cells to pro-
duce TraM proteins at levels sufficient to inhibit the available TraR
under conditions of basal-level expression. Later on, when the
expression of traR is induced, the resulting increased levels of TraR
protein would overcome the available TraM, thence triggering the
QS response. This model actually highlights the importance of
relative TraR and TraM protein levels in QS regulation and sug-
gests that TraM significantly contributes to the quorum-dependent
dimension of the system by delaying the moment when TraR is
able to transactivate target genes (Su et al., 2008). Consistently, a
traM defective strain was shown to be QS active in a cell density-
independent manner (Piper and Farrand, 2000). Furthermore, a
mathematical approach claimed that TraM was necessary for the
existence of the A. tumefaciens QS “off” state (Goryachev et al.,
2005). Another implication of the traM regulation by TraR is that

the rate of TraR production must at one point exceed that of TraM
production, otherwise QS activation would continuously be inhib-
ited. Evidence that TraM is specifically transcribed from a mildly
activated promoter with a tra box IV (White and Winans, 2005) is
in line with this requirement. Alternatively an interesting but yet
unexplored possibility to explain the induction of traM expres-
sion by TraR would be that this mechanism provides the cells with
a mean to limit or shut off the QS process when this one is too
strongly activated and becomes for instance too demanding ener-
getically. This down-regulation loop is indeed common in other
LuxI/LuxR systems (Gelencser et al., 2012). Either way a more crit-
ical examination of TraM regulation is still needed to fully clarify
its role in QS. Additionally it has been shown that acetosyringone,
a phenolic compound released by wounded plant cells, could also
induce expression of traM, suggesting that during first steps of
tumorigenesis TraM could efficiently inhibit QS activity (Cho and
Winans, 2005).

The A. tumefaciens Ti-plasmids use an original system of repli-
cation and partitioning encoded in a single locus named repABC.
While RepC is essential for replicative DNA synthesis, RepA and
RepB are thought to be involved in stable partitioning of plasmids
into daughter cells (Pinto et al., 2012). Initially the expression of
the operon repABC was shown to be strongly stimulated by TraR
in bacterial backgrounds with both nopaline- and octopine-type
plasmids. This stimulation was also correlated with induction of
vegetative replication, i.e., with a drastic increase in number of
Ti plasmid copies per cell (Li and Farrand, 2000; Pappas and
Winans, 2003a). However, in the array experiment mentioned
previously (Cho and Winans, 2007), repABC up-regulation by
TraR was barely detectable. The authors argued that this result
was probably due to the very weak basal expression of the operon
and that it did not question the role of QS in controlling the
number of Ti plasmid copies because under their experimental
conditions the number of Ti plasmids per cell was still higher than
one. Another interpretation of this result might be that increased
Ti plasmid copies culminate in a negative feedback control pos-
sibly bringing back the expression of the repABC genes to their
basal levels, thereby avoiding continuous and anarchic replication
of the replicon. The promoter architecture of repABC may sup-
port this hypothesis as three different TraR-dependent (repAP1, 2,
and 3) and one TraR-independent (repAP4) promoters control the
expression of the operon (Pappas and Winans, 2003b). Promoter
repAP4 is thought to mediate the Ti plasmid replication associated
with cell division but it is also autorepressed by RepA and RepB.
Moreover repAP4 is located downstream of repAP1, 2, and 3. It is
therefore conceivable that autorepression of repAP4 might impair
activation of TraR-dependent promoters. Additionally expression
of repABC can be induced by the virulence proteins VirA and
VirG, further suggesting that the regulation of this operon is com-
plex and might be sensitive to different physiological states (Cho
and Winans, 2005; Pappas, 2008).

MECHANISTIC INSIGHTS INTO A. tumefaciens QS
A central aspect of the LuxI/LuxR type QS systems resides in
the way autoinducers, transcriptional factors and gene promoters
interact with each other. A better understanding of these mecha-
nisms is therefore crucial to evaluate the specificity of the system.
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Given the large variety of acyl-homoserine lactone derivatives
which can serve as QS signals, it may also represent a privileged
opportunity to get insight into possible crosstalk between differ-
ent bacterial QS or to develop strategies of quorum-quenching. By
combining biochemical and structural approaches with analysis of
mutant strains and in vivo expression assays, the investigations on
A. tumefaciens QS undoubtedly assemble one of the most elaborate
sets of data in this domain.

TraI and OC8HSL SYNTHESIS
To identify the substrates of OC8HSL synthesis, the enzymatic
activity of a purified A. tumefaciens TraI protein was tested in
the presence of different molecules (More et al., 1996). It was
thus determined that 3-oxo-octanoyl-acyl carrier protein (OC8-
ACP) was the fatty acid donor and S-adenosylmethionine (SAM)
the homoserine lactone precursor involved in OC8HSL synthesis.
Mechanistically the synthesis reaction is proposed to occur in a
“bi-ter” (two substrates, three products) way. The donation of the
3-oxo-octanoyl branch to the amine of SAM leads to the releases
of first apo-ACP, then OC8HSL and finally methylthioadenosine
(Parsek et al., 1999). All enzymes of the LuxI family are expected
to share similar mechanisms of reaction, though variations in
the acyl chain length and oxidation state at C3 of their acyl-ACP
substrates exist. High-resolution crystal structures were obtained
for two TraI orthologs: EsaI of Pantoea stewartii that synthesizes
3OC6HSLs and LasI of Pseudomonas aeruginosa that synthesizes 3-
oxo-dodecanoyl-homoserine lactones (Watson et al., 2001; Gould
et al., 2004). Analyses of these structures revealed that conserved
residues in the N-terminal part of the protein were essential for
SAM-binding and that selectivity of the acyl-ACP substrate was
dependent on a V-shaped cleft passing through the enzyme. Other
results also suggested that selectivity of LuxI-like proteins could
be affected by availability of different acyl-ACP substrates. Notice-
ably, besides OC8HSL, A. tumefaciens produces traces of OC6HSL
and octanoyl-homoserine lactone (C8HSL; Zhu et al., 1998).

OC8HSL SPECIFICALLY INTERACTS WITH TraR
The first evidence of the interaction between TraR and OC8HSL
was obtained through purified active TraR complexes which co-
eluted with OC8HSLs in a ratio 1:1 (Zhu and Winans, 1999).
Analysis of the protein turnover also indicated that binding of
OC8HSL occurs rapidly in cells, surely during the own synthesis
of TraR on polysomes (Zhu and Winans, 2001). Further crys-
tal structures provided a mechanistic explanation for the specific
interaction between TraR and OC8HSL as they revealed that the
N-terminal part of TraR formed an enclosed cavity into which
OC8HSL molecule could be engulfed and tightly maintained
through numerous hydrophobic interactions as well as four hydro-
gen bounds (Vannini et al., 2002; Zhang et al., 2002b; Figure 3).
To analyze the specificity of the interaction between OC8HSL and
TraR, 31 analogs of OC8HSLs were tested for their abilities to
activate TraR. Most of these compounds turned out to be potent
antagonists of TraR under wild-type conditions of TraR expression
and significant stimulators under conditions of TraR overexpres-
sion. These two features demonstrate that the specificity of the
interaction between TraR and its ligand could be dependent on

FIGURE 3 | Structures of theTraR–OC8HSL dimers in complex with

DNA. The images were created using data from The Protein Data Bank
(PDB; www.rcsb.org) (Berman et al., 2000) and the PyMOL Molecular
Graphics System software. (A) PDB ID: 1H0M from Vannini et al. (2002).
(B) PDB ID: 1L3L from Zhang et al. (2002b).

TraR concentration (Zhu et al., 1998). Moreover the 3-oxo func-
tion of the OC8HSL molecule seems to play important role in the
interaction process as 3-oxo-C6-, 3-oxo-C7-, 3-oxo-C11-, and 3-
oxo-C12-homoserine lactones (see structures in Figure 1) can also
activate TraR, though with a much lower intensity than OC8HSL
(Zhu et al., 1998; Luo et al., 2003b). Consistently non-conservative
mutations of the threonine 129 of TraR, that was predicted to
stabilize the 3-oxo group in the binding pocket, led to a strong
impairment of TraR activity (Chai and Winans, 2004). In addi-
tion, alanine 49 and glutamine 58 in the N-terminal part of TraR
were found to be important for the binding of the C8 acyl chain of
OC8HSL since their conversion to bulkier amino acids resulted in
higher affinity toward homoserine lactone derivatives with shorter
acyl chain (Chai and Winans, 2004).

INTERACTION BETWEEN OC8HSL AND TraR FACILITATES FORMATION
OF ACTIVE HOMODIMERS
The observation that C-terminal deletion mutants of TraR exerted
strong dominant negativity over their wild-type counterparts
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led to the hypothesis that TraR–OC8HSL complexes had to
multimerize to be active (Luo and Farrand, 1999). Thereafter,
size exclusion chromatography techniques revealed that puri-
fied active OC8HSL–TraR complexes formed homodimers, and
hybrid expression reporter systems demonstrated that OC8HSL
was required for this dimerization to take place (Qin et al., 2000).
The existence of active OC8HSL–TraR homodimers was further
supported by analysis of crystal structures which also suggested
that these dimers were significantly asymmetric (Vannini et al.,
2002; Zhang et al., 2002b). Two dimerization domains were
identified in TraR sequence, one in the N-terminal part of the
protein, partially overlapping with the OC8HSL-binding domain
and another, less extensive, in the C-terminal part (Luo et al.,
2003a). Several findings illustrated the role of OC8HSL binding
in the maturation and dimerization process of TraR. In absence of
OC8HSL, TraR proteins were intrinsically unstructured, insolu-
ble in cells and rapidly degraded by proteases. On the opposite,
presence of OC8HSL directed the release of active TraR into
cytosol and enhanced the resistance of the protein against pro-
teolysis (Qin et al., 2000; Zhu and Winans, 2001; Pinto and
Winans, 2009). Additionally the proper folding of TraR and acqui-
sition of mature ternary structure following the interaction with
OC8HSL was shown to be mediated by the chaperone GroESL
(Chai and Winans, 2009).

TraR–OC8HSL HOMODIMERS SPECIFICALLY RECOGNIZES tra BOXES
As mentioned above, tra boxes are 18 bp-inverted repeat operator
sequences with a pronounced dyad symmetry, found in the two
classes of TraR-regulated promoters (Fuqua and Winans, 1996a).
The crystallization of TraR–OC8HSL complexes in presence of
the tra box I sequence strongly suggested that each subunit of
TraR–OC8HSL dimer binds to half of the tra box via C-terminal
helix-turn-helix DNA binding motifs, thereby leading to an exten-
sive DNA–protein interaction (Vannini et al., 2002; Zhang et al.,
2002b; Figure 3). However, it was later demonstrated that six
nucleotides at the center of the tra boxes did not interact with
TraR and that yet these nucleotides contributed to proper acti-
vation of transcription, presumably by creating a flexible DNA
bend (White and Winans, 2007). In parallel different screenings
of TraR mutants resulted in the identification of three regions
located in the N- and C-terminal part of the protein, which
are critical for transactivation function but not for accumula-
tion or DNA binding ability (Qin et al., 2004a, 2009; White and
Winans, 2005). This finding suggested that these regions could
cooperatively modulate the recruitment of the RNA polymerase
and thereby differently control the expressions of TraR-regulated
genes. Consistently some TraR mutants defective in transactiva-
tion of the traI promoter could still activate the traM promoter
(Costa et al., 2009).

TraM-MEDIATED INACTIVATION OF TraR IS DUE TO OLIGOMERIC
ASSOCIATION
In an effort to better understand how TraM could deactivate TraR,
two crystal structures of TraM were obtained. They showed that
the TraM protein can form homodimers with one unit linked to
the other by an extensive hydrophobic interface (Chen et al., 2004;
Vannini et al., 2004). The importance of this interface and the

dimerization properties of TraM were also assessed using deletion
mutants (Qin et al., 2004b). In addition, purifications of inactive
TraR/TraM complexes carried out by different groups and with
different biochemical techniques led to the conclusion that the
inactive complexes were composed of two TraR–OC8HSL dimers
and two TraM dimers both in vitro and in vivo (Chen et al., 2004;
Vannini et al., 2004; Qin et al., 2007). Several domains important
for this oligomerization and the resulting inhibitory effect were
identified both in TraR and TraM sequences (Luo et al., 2000;
Swiderska et al., 2001; Qin et al., 2007). Moreover, to explain the
way TraM could inactivate DNA-bound TraR–OC8HSL dimers,
a study convincingly proposed a stepwise mechanism according
to which the apparition of inactive TraR–OC8HSL/TraM com-
plexes was preceded by a nucleoprotein intermediate comprising
one dimer of each protein in association with DNA (Qin et al.,
2007). Interestingly the biochemical and structural properties of
the TraR/TraM complexes were also investigated in the Rhizobium
sp. strain NGR234 and led to similar conclusions regarding the
mechanisms by which TraM can negatively impact TraR functions
(Chen et al., 2007).

PLANT FACTORS ASSOCIATED TO A. tumefaciens QS
ROLE OF THE OPINES: MASTER CONTROL AND FINE-TUNING OF QS
REGULATION
Opines are the small organic compounds which are produced
during development of crown gall disease in transformed plant
cells through the action of synthesis genes present on the T-DNA.
All A. tumefaciens Ti plasmids harbor operons specialized in the
uptake and assimilation of the opines they contribute to pro-
duce (Dessaux et al., 1992, 1998; Platt et al., 2012b). The two
types most investigated in laboratories are the octopine- and the
nopaline-type. Moreover, specific opines, called conjugal opines,
are strictly required to enable conjugation of the A. tumefaciens Ti
plasmid (Kerr et al., 1977; Petit et al., 1978). Therefore the find-
ing, at the beginning of the 1990s, that this phenomenon was
also dependent on the TraR/TraI QS system (Zhang and Kerr,
1991), sparked off significant interest and a number of stud-
ies aimed at understanding how these regulatory steps could be
related. Successive genetic analysis, sequence determination and
promoter dissections ultimately allowed the complete elucida-
tion of the signaling pathway, clearly establishing the prominent
role played by the conjugal opines for traR expression and QS
initiation.

In the case of nopaline-type Ti plasmids, agrocinopines A
and B which are a mixture of two non-nitrogenous phosphodi-
esters of sugars serve as conjugal opines (Ellis et al., 1982). These
molecules can provoke, presumably by direct inhibitory interac-
tion, the release of the transcriptional repression exerted by AccR, a
member of the FucR family of transcriptional regulator (Beck von
Bodman et al., 1992). In turn this derepression causes the expres-
sion of two divergently oriented operons: the acc (agrocinopines
catabolism) and arc (agrocinopine regulation of the conjugation)
operons of the Ti plasmid. The acc operon encodes seven pro-
teins involved in internalization and degradation of agrocinopines
plus the repressor AccR (Kim and Farrand, 1997) while the arc
operon encodes five proteins, the fourth being TraR (Piper et al.,
1999). In contrast, in octopine-type Ti plasmids, traR is the last
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of 14 genes of the occ operon which codes for functions asso-
ciated with octopine assimilation (Fuqua and Winans, 1996b).
Octopine molecules are formed in transformed plant cells from
arginine and pyruvate. Octopine is a conjugal opine as it binds to
OccR, a transcriptional activator of the LysR family, thereby elicit-
ing transcription of the occ operon including traR (Habeeb et al.,
1991; Cho and Winans, 1993). Remarkably, the absence of the
conjugal opines totally prevents QS-mediated conjugation of both
nopaline- and octopine-type Ti plasmids. Moreover, despite the
differences in traR location, the structures of the TraR-regulated
operons are well conserved between the nopaline- and octopine-
type Ti plasmids (Cho and Winans, 2007). This feature actually
supports the view that traR and TraR-regulated genes constitute
a functional unit, subjected to multiple and fortuitous recom-
bination events in the course of A. tumefaciens evolution, and
whose integration under the strict control of an opine regu-
lon may have resulted in an important selective advantage for
the bacteria (Piper et al., 1999; Oger and Farrand, 2001). In this
sense the fact that such different molecules as agrocinopines and
octopine can regulate traR expression in different Ti plasmids is
remarkable.

Apart from the master control depicted above, opines are
also involved in at least two other fine-tuning QS regulatory
mechanisms. The first one was described in the A. tumefa-
ciens strain R10 that harbors an octopine-type Ti plasmid. In
this strain, the existence of a TraR antiactivator encoded by
the Ti plasmid and different from TraM, named TrlR, was evi-
denced. Interestingly, TrlR expression was inducible by the opine
mannopine (Oger et al., 1998). TrlR strongly resembles TraR
but lacks its DNA-binding domain (Zhu and Winans, 1998).
Experimental data provided evidence that TrlR could block TraR
activity by forming inactive TrlR:TraR dimers (Chai et al., 2001).
However, the impact of TrlR on QS implementation, espe-
cially in vivo, remains poorly understood. A second example
of QS fine-tuning by opines is documented. In the nopaline-
type A. tumefaciens C58 strain, expression of the Ti plasmid
gene aiiB was shown to be induced by the agrocinopines, the
same opines which are required for QS initiation (Haudecoeur
et al., 2009b). Curiously aiiB codes for the AiiB lactonase that
is highly similar to the AiiA lactonase from Bacillus sp. These
proteins belong to a large family of Zn-hydrolases that encom-
passes lactonases of Arthrobacter, Bacillus, Klebsiella, Mesorhizo-
bium, Photorhabdus, and Rhizobium. Biochemical and structural
properties of AiiB were investigated. The AiiB protein is able
to cleave the lactone rings of a large range of homoserine
lactone derivatives, with a general preference for non-3-oxo-
substituted molecules and substrates with an acyl chain longer
than four carbons (Liu et al., 2007). Further conjugation exper-
iments demonstrated the capacity of this lactonase to modulate
A. tumefaciens QS responses both in vitro and in planta (Haude-
coeur et al., 2009b). Globally the characteristics of trlR and
aiiB (specific to octopine- and nopaline-type, respectively, and
close homologs to traR and aiiA, respectively) suggest that these
two genes could have arisen from gene duplication (for trlR)
and horizontal gene transfer (for aiiB). On the other hand the
conservation of an opine dependent regulation of their expres-
sion implies that there would be – somehow paradoxically – an

advantage for A. tumefaciens cells to dampen QS communication
at moments when opines, including conjugal opines, accumulate
in tumors.

THE EXPRESSION OF THE OC8HSL-DEGRADING BlcC (FORMERLY AttM)
LACTONASE IS INDUCED BY PLANT METABOLITES
As AiiB, the BlcC protein is a member of the AiiA lactonase family.
Different studies have shown that BlcC degrades various homoser-
ine lactone derivatives, including gamma-butyrolactone (GBL, see
structure in Figure 1) and OC8HSLs. The blcC gene is part of the
three-gene blcABC operon which codes for the catabolic pathway
converting GBL to succinate, through gamma-hydroxybutyrate
(GHB) and succinic semialdehyde (SSA) intermediates (Chai et al.,
2007). Remarkably BlcC confers to Agrobacterium the ability to
grow with GBL as sole source of carbon, but it does not with
OC8HSLs (Carlier et al., 2004). The expression of the blcABC
operon is tightly controlled by the transcriptional repressor BlcR.
Carbon and nitrogen starvation, GBL,GHB,and SSA can all release
the repression exerted by BlcR, hence allowing the expression of
the blcABC genes (Zhang et al., 2002a; Carlier et al., 2004). The
plant metabolite gamma-amino butyric acid (GABA), through
conversion to SSA (Chevrot et al., 2006; Wang et al., 2006b), and
the plant defense signaling hormone salicylic acid, through an
unknown mechanism (Yuan et al., 2008), can also induce blcC
expression. Based on the observations that GABA induces the
expression of the blcABC operon and that GABA accumulates
in tumors, it was proposed that the BlcC activity could coincide
with QS communication during interactions between A. tume-
faciens and plant hosts. However, in tomato tumors, the effect
of BlcC on QS-dependent Ti plasmid conjugation was weak and
transient (Khan and Farrand, 2009), suggesting that plant tumor
tissues could exert a negative control on the expression of the BlcC
expression.

The capacity of A. tumefaciens to take up GABA was extensively
investigated in the last years. Studies revealed the involvement
of two distinct transport systems. The gene atu2422, located on
the circular chromosome is widely conserved within the Agrobac-
terium genus and codes for a periplasmic GABA-binding protein
that controls GABA import through the bra ABC transporter
(Planamente et al., 2010). Interestingly the GABA import by
atu2422 is strongly antagonized by proline, alanine, and valine,
suggesting that these compounds which accumulate in tumors
could also indirectly modulate the overall BlcC lactonase activity
in the bacterial cells (Haudecoeur et al., 2009a). In comparison, the
periplasmic binding protein encoded by the linear chromosome
gene atu4243 appears highly specific for GABA (Planamente et al.,
2012). Strikingly, the expression of atu4243 is totally repressed
by atu4232-encoded protein and mechanisms of derepression
are so far unknown (Planamente et al., 2012). Collectively these
data illustrate the complexity of factors coming into play when
searching to determine the impact of BlcC on A. tumefaciens
QS. Of special interest would be the critical examination of
plant metabolism to evaluate how the GABA, GBL, GHB, and
SSA produced in the tumors may activate BlcC in colonizing
A. tumefaciens cells. Such studies might reveal that the role
of BlcC varies according to the metabolic status of the plant
hosts.
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INTERACTIONS BETWEEN THE Ti AND At PLASMIDS IN THE PLANT
TUMOR
Another interesting feature of the blcC gene lies in its location
on the companion At plasmid. This makes it the only compo-
nent involved in A. tumefaciens QS that is not present on the Ti
plasmid. Ecologically this characteristic raises interesting ques-
tions and notably that to know whether the dissociation of the At
and Ti plasmids could result in a QS deregulation. To date very
little is known about the maintenance of the At plasmid in A.
tumefaciens populations. If no gene essential for the survival of
A. tumefaciens C58 is present on the At plasmid (Goodner et al.,
2001; Wood et al., 2001), the carriage of this At plasmid imposes
in vitro high fitness costs to A. tumefaciens host cells (Morton
et al., 2013). On the other hand, the At plasmid encodes sev-
eral functions which confer or may confer a fitness advantage to
agrobacteria in plant tumors (Haudecoeur et al., 2009b). Besides
the degradation of butyrolactones and their derivatives mentioned
above, the At plasmid is involved in the assimilation of some
opines of Amadori compounds (Vaudequin-Dransart et al., 1998;
Baek et al., 2005). The At plasmid also seems to have a positive
impact on the virulence capacity of A. tumefaciens (Matthysse
et al., 2008), although this point is debatable as it was recently
shown that a large deletion in the At plasmid resulted in increase
of the bacterial virulence (Morton et al., 2013). In conclusion,
one can reasonably assume that, as for Ti plasmids, the tumor
compartment is an appropriate environment for the dissemina-
tion of the At plasmid. Remarkably it was recently demonstrated
that in A. tumefaciens C58, the conjugations of At and Ti plas-
mids are related events controlled by the agrocinopines-responsive
regulator AccR and it was suggested that this mechanism of
co-regulation could be instrumental in the conservation of the
reciprocally beneficial functions carried by the two replicons
(Lang et al., 2013).

OC8HSL-ASSOCIATED PLANT RESPONSES
The interactions between A. tumefaciens and plant hosts are medi-
ated by several factors, from the phenolic compounds accumulated
at wound sites that induce the expression of the Ti plasmid vir
genes, to the opines produced in the tumor niche that control
horizontal transfer of bacterial plasmids. It is therefore tempting
to speculate on a possible implication of QS signal molecules in
this generic trans-kingdom association, especially as several lines
of evidence showed that N-acyl-homoserine lactone molecules
could induce specific responses in eukaryote cells (Williams, 2007).
For instance, in axenic plant systems, exogenous supply of differ-
ent homoserine lactone derivatives was found to modulate plant
immunity and development although the outcomes drastically dif-
fered according to the nature of the tested QS molecules (Klein
et al., 2009; Hartmann and Schikora, 2012).

To our knowledge only three studies investigated the impact of
OC8HSL on plants. In the first one, authors devised an inducible
gene expression system based on TraR-OC8HSL activity which
they introduced in Arabidopsis thaliana plants (You et al., 2006).
To verify that induction with OC8HSL of the transferred gene
did not affect the transcriptome of the transformed plants, the
authors extracted RNA from 12-day-old seedlings treated or not
by foliar application with 1 mM of OC8HSL for 24 h and carried

out microarray experiments using Agilent technology. Processing
of the data prompted them to conclude that no gene was dif-
ferentially expressed by presence of the QS signal. In a second
paper, a proteome analysis of Arabidopsis thaliana roots grown
for 24 h in a hydroponic system in the presence or not of 10 μM
of OC8HSL revealed that the levels of 53 proteins involved in
the metabolism of carbohydrate and energy, protein biosynthesis,
defense responses, and cytoskeleton remodeling, were significantly
affected by the QS signal (Miao et al., 2012). The modest num-
ber of proteins differentially affected in this study suggests that
plants sense A. tumefaciens QS signals only in a very restricted
way. Noteworthy, in the two above-mentioned experiments, the
used concentrations of homoserine lactone derivatives were in
the micromolar and millimolar range while the concentrations
at which QS molecules are active in A. tumefaciens are usu-
ally rather in the nanomolar range. Finally Arabidopsis thaliana
defense responses upon exposure to OC8HSL-producing Rhizo-
bium etli were recently analyzed. The results established that this
condition had no impact on the plant defense (Zarkani et al.,
2013), thereby strengthening the notion that plants are immune to
OC8HSLs.

IMPLICATIONS AND SELECTIVE ADVANTAGES OF THE
TIGHTLY REGULATED QS SYSTEM IN A. tumefaciens
Taken together the findings presented above described a very
sophisticated system in which A. tumefaciens QS action is not only
placed under the strict control of the conjugal opine regulon but
is also modulated by various adjacent components like antiactiva-
tor or lactonases (Figure 4). Now we will discuss the implications
of such hierarchical regulatory cascades and speculate about the
selective advantages they may confer to A. tumefaciens.

CONJUGATION OF Ti PLASMID IN OPINE-PRODUCING TUMORS
As mentioned previously, the expression of traR gene requires
the presence of conjugal opines. Therefore the QS system of
A. tumefaciens functions only in host plants and only after trans-
formed tissues have accumulated sufficient amount of conjugal
opines. This restriction suggests that mature tumors are the
most conducive environments for Ti plasmid dissemination and
that, in these plant tumors, the selective advantages conferred
to A. tumefaciens by a functional Ti plasmid would overcome
the associated costs of maintenance. Supporting these notions,
it has been demonstrated that Ti plasmid imposed a high fitness
cost under conditions reminiscent of tumorigenesis but not any-
more when opines were fully supplied (Platt et al., 2012a). It has
also been observed that large proportion of A. tumefaciens cells
present in mature tumors were devoid of Ti plasmids or harbored
a mutated Ti plasmid (Fortin et al., 1993; Belanger et al., 1995).
Thus the master control by conjugal opines could allow a large
dissemination of functional Ti plasmids in an A. tumefaciens pop-
ulation characterized by a high proportion of potential recipient
cells. The resulting selective advantages would be manifold. By
amplifying the number of genes involved in opine assimilation,
this mechanism could increase the colonizing fitness of the A.
tumefaciens population, especially in older tumors where nutritive
resources are scarcer. Multiplication of vir genes may also enhance
aggressiveness of the bacteria. In relation, several reports already
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FIGURE 4 | Representation of the sophisticated hierarchical QS

regulation in A. tumefaciens strain C58. QS-dependent conjugation and
copy-number amplification of the Ti plasmid is initiated when OC8HSL and
TraR reach appropriate concentration and form transcriptional active dimers.
QS-signaling is positively regulated by the conjugal opines agrocinopines
which are produced by the transformed plant cells (1) and induce
production of TraR by releasing AccR repressive action (2). Then, active
TraR-OC8HSL dimers activate the production of TraI, thereby triggering a
positive feedback in the synthesis of OC8HSLs (3) which are diffusible
molecules (4). The QS activation is delayed by the TraR-antagonist TraM (5),
as well as OC8HSL-cleaving lactonases AiiB and AttM (6) whose
expressions are controlled by agrocinopines and GABA, respectively. SAM,
S-adenosylmethionine; ACP, acyl carrier protein. The Ti plasmid genes and
the At plasmid genes are in blue and pink boxes, respectively.

correlated an impairment of A. tumefaciens QS communication
with a diminution of the crown gall symptoms (Haudecoeur et al.,
2009b; Planamente et al., 2010, 2012). At last dissemination of
Ti plasmids would increase the potential of migratory agrobac-
terial cells to initiate new infections. Interestingly Ti plasmid
transfers to other bacterial species present in plant tumors may
also occur, a feature that would favor genetic biodiversity. In
this regard it is unfortunate that, even if the plant tumors are
generally considered as privileged entry points for other bacteria,
no information on plant tumor microbiomes are available at the
moment.

DOES A. tumefaciens QS REALLY MEASURE A QUORUM OF DONOR
CELLS?
Since the finding that A. tumefaciens QS controlled Ti plasmid
conjugation, a “nagging” question remained to understand the
relevance of a system in which donor cells could only monitor the
density of other donors that already harbor a Ti-plasmid. Indeed as
conjugation cannot happen in a cell already containing a resident
Ti plasmid (Cho et al., 2009), the risk of uselessly activating, at the
quorum concentration, the horizontal transfer machinery in the
absence of sufficiently numerous recipient cells seems elevated.
Nonetheless, as evoked previously, the master control of QS by

conjugal opines might provide a way to circumvent this difficulty
by allowing the conjugation of Ti plasmid only in mature tumors,
i.e., in environments where the proportion of recipient cells would
have extended. In such a context, the adjustment of the activation
of the tra regulon according to a quorum of donor cells should
maximize the efficiency of Ti plasmid dissemination and would
be fully sensible. Under laboratory conditions, all the collected
data firmly sustain the notion that A. tumefaciens QS functions as
a cell density-dependent process. However, these conditions, using
most of the time cell cultures and constant concentration of con-
jugal opines to initiate QS, may not reflect natural conditions. In
V. fischeri the quorum nature of the system is defined by a produc-
tion of LuxR at relatively high basal level and by a concentration of
OC6HSL which increases as a function of cell density until reach-
ing the threshold of LuxR activation (Miller and Bassler, 2001). In
contrast, in A. tumefaciens, production of an active TraR regulator
is subordinated to the presence of conjugal opines and to that of the
antiactivator TraM. Taking full consideration of this characteristic
implies that QS can be partly dissociated from solely functioning
as a measure of population density. Another element of complex-
ity may be brought by the non-linear accumulation of OC8HSL in
tumors. Indeed plant tumors are not homogenous structures; they
emerged from wound sites and underwent neoplastic expansion
(Aloni et al., 1995; Veselov et al., 2003). In these complex envi-
ronments colonizing A. tumefaciens shall form different clusters
of cells more or less isolated one from the other and located in
surface or intercellular spaces where diffusion rates are different
as well as temporally changing. It therefore appears unlikely that
the OC8HSL concentration which can be measured in a tumor
or a part of the tumor does strictly mirror the cell density of the
pathogen in this environment. Interestingly when they simulated
the QS-induced transition in liquid cell cultures or biofilm, Gory-
achev et al. (2005) noticed that the first condition required a much
higher threshold density than the second. They consequently came
to the conclusion that A. tumefaciens QS served as a detector of
biofilm formation rather than a sensor of cell concentration. If
a growing attention has been given in the last years to mecha-
nisms of biofilm formation in A. tumefaciens (Tomlinson et al.,
2010; Hibbing and Fuqua, 2012), no data so far have related them
to QS and very little is known about the formation of biofilms
in the context of the agrobacterial interactions with plant host.
However, it would definitely be relevant for the bacteria to place
the coordination of Ti plasmid conjugation upon biofilm percep-
tion since the cell aggregates would constitute a very appropriate
context for activation of the horizontal transfer machinery, either
by minimizing the distances between donor and recipient cells
or by acting as a shield against all kinds of physical or biological
perturbations.

RELATIONSHIP BETWEEN QS REGULATION, Ti PLASMID
CONJUGATION, AND A. tumefaciens HOST CELL
In the above discussion, the question of the QS-dependent dis-
semination of Ti plasmids was addressed only according to the
selective advantages this dissemination may confer to agrobacte-
rial cells. However, another perspective would be to consider Ti
plasmids as selfish elements which somehow hijack A. tumefaciens
cells in order to disseminate their genetic backgrounds. In this
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framework Ti plasmids would take advantage of the opine and QS
regulations to optimize the efficiency of their conjugations. It is
furthermore important to note that the tumor conditions where
the selective advantage conferred to A. tumefaciens cells by the
Ti plasmids is the strongest coincide with the conditions where
the dissemination of these Ti plasmids is the most important.
The recent discovery in A. tumefaciens C58 that the conjugations
of both Ti and At plasmids are exacerbated by conjugal opines
(Lang et al., 2013) further supports the notion that Ti and At plas-
mids may collaborate to transform avirulent A. tumefaciens cells
into virulent in order to perpetuate and disseminate their genetic
traits.

CONCLUSION
In this review, we described the A. tumefaciens TraI/TraR QS sys-
tem and showed how it exquisitely regulated the dissemination of
Ti plasmids.

The QS systems of LuxI/LuxR type are generally thought
to have originated early in evolution of Gram-negative Pro-
teobacteria, with functional pairs of autoinducer synthases and
receptors coevolving as regulatory cassettes, although in many
cases these cassettes could also be inherited horizontally (Gray
and Garey, 2001). In A. tumefaciens, the TraI/TraR system and the
related QS-regulated genes are well conserved in all nopaline- and
octopine-type strains studied to date, suggesting that this regula-
tory mechanism has been anciently selected. The target genes of
A. tumefaciens QS are involved in the dissemination of Ti plasmids,
both by replication and conjugation, but also in positive and neg-
ative feedback controls with the OC8HSL-synthesis TraI enzyme
and the TraM antiactivator. Different studies demonstrated that
this last protein plays a critical role in the implementation of the
QS, even if it is not clear yet whether TraM is more relevant in
delaying QS activation or in stabilizing and limiting QS activity.

At the molecular level, the A. tumefaciens QS communication
has been largely deciphered. Two crystal structures have notably
been obtained for TraR, in association with OC8HSL and DNA,
providing a first class access to the interaction specificities of the
system. Thorough biochemical investigations of active and inac-
tive complexes also allowed to better understand multimerization
processes of the QS components.

Consistent with the particular phytopathogenic lifestyle of the
bacteria, A. tumefaciens QS system displays an original scheme
including several differently acquired regulatory elements. The
most important of these elements, common to all A. tumefaciens
strains, are the conjugal opines which accumulate in tumors as
a consequence of plant transformation and are strictly required
for traR expression and hence for QS initiation. In parallel, only
specific to some A. tumefaciens strains, lactonases such as AiiB
and BlcC or supplementary anti-activator like TrlR can also mod-
ulate QS responses. This complex network of horizontal and
lateral regulation suggests that there would be an advantage for
A. tumefaciens to restrain as much as possible the window of QS
activation.

Assessing reasons why a biological system has been selected
is always challenging because this selection hinges on a trade-
off between advantages and drawbacks which cannot be fully
appreciated under laboratory conditions. By perusing different

possibilities, we nonetheless hypothesized that the tight regulation
of A. tumefaciens QS surely allowed the bacteria to disseminate the
Ti plasmid in an environment where carrying the replicon would
be clearly advantageous and at a moment when the energetic and
physical factors would be ideal.

For the future, some important questions still remain to be
answered to complete our understanding of A. tumefaciens QS
functioning during the interactions with the host plant. For
instance how do conjugal opines and TraM cooperate to produce
active TraR-OC8HSL dimers? Precise dosage of conjugal opines in
the course of tumor development as well as advances in knowledge
of traM regulation might help solve this question. It would also be
very interesting to better determine how the BlcC lactonase inter-
feres with OC8HSL levels in tumors induced on different plants
hosts and what are the ecological implications regarding horizon-
tal transfers of both At and Ti plasmids. At last, analysis of bacterial
populations found in natural tumors could deliver exciting results
regarding abundance of potential Ti plasmid recipient cells. This
kind of data might also unveil the extent of competition between
the phytopathogen and other bacterial species present in plant
tumors, hence leading to a novel appreciation of A. tumefaciens
QS activity.
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As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts
and causes plant tumors also known as crown galls. The complexity of Agrobacterium–
plant interaction has been studied for several decades. Agrobacterium pathogenicity is
largely attributed to its evolved capabilities of precise recognition and response to plant-
derived chemical signals. Agrobacterium perceives plant-derived signals to activate its
virulence genes, which are responsible for transferring and integrating itsTransferred DNA
(T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-
DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA),
cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation.
Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its
quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly,
Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and
salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby
avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium
hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence
genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also
inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of
Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions.

Keywords: Agrobacterium tumefaciens, virulence, signaling mechanism, gene regulation, quorum sensing

INTRODUCTION
Agrobacterium is a genus of Gram-negative bacteria that uses hor-
izontal gene transfer to cause tumors in many plant species with
agricultural and economic importance including woody orna-
mental shrubs (rose), vines (grape), shade trees, fruit trees (cherry,
berry, walnut), and herbaceous perennials. Agrobacterium tume-
faciens is the most commonly studied species in this genus. A.
tumefaciens causes typical crown-gall diseases. The disease man-
ifests as a tumor-like growth or gall usually at the junction of
the root and shoot. Infection by the species Agrobacterium vitis
results in cane gall on grapevines while A. rhizogenes causes exces-
sive formation of hairy roots or root tumors. Agrobacterium–plant
interaction is an excellent paradigm for studying both plant and
bacterial responses, as well as the role of chemical signaling in
these processes. A. tumefaciens–plant interaction is now relatively
well-understood as a result of significant findings made over the
past four decades (for reviews refer to Gelvin, 2003; Brencic and
Winans, 2005; McCullen and Binns, 2006; Yuan and Williams,

Abbreviations: AS, acetosyringone; chv genes, chromosome encoded virulence
genes; CK, cytokinin; DIMBOA, 2,4-dihydroxy-7-methoxy-2H-1,4-benzixazin-
3(4H)-one; ET, ethylene; GABA, γ-amino butyric acid; IAA, indole acetic acid;
MDIBOA, 2-hydroxy-4,7-dimethoxybenzoxazin-3-one; QS, quorum sensing; SA,
salicylic acid; T3SS, type III secretion system; T4SS, type IV secretion system, T6SS,
type VI secretion system; T-DNA, transferred DNA; Ti-plasmid, tumor-inducing
plasmid; vir genes, virulence genes.

2012; Pitzschke, 2013). The virulence proficiency of A. tumefa-
ciens is dependent on the presence of the Tumor-inducing (Ti)
plasmid, which harbors a Transferred DNA (T-DNA) defined
by two direct repeat sequences of approximately 25 base pairs,
termed the left and right borders. Most studies have made use
of nopaline metabolizing strains C58 and T37 (carrying plasmids
pTiC58 and pTiT37, respectively) or the octopine utilizing strain
A6 (carrying pTiA6). As a ubiquitous soil bacterium, Agrobac-
terium is capable of two lifestyles: independent free-living or
acting as a pathogen in association with a plant host. When living
independently, Agrobacterium virulence is essentially silent. Upon
detection of plant-derived signals in the rhizosphere, Agrobac-
terium activates its chromosomal virulence genes (chv genes) and
Ti plasmid encoded virulence genes (vir genes). Vir genes are
directly involved in T-DNA cleavage from the Ti plasmid, T-
DNA processing, transferring and integration into plant nuclei,
conversely, Chv genes are not directly involved in the T-DNA
transfer process. Instead, chv genes play important roles in signal
transduction necessary for Agrobacterium pathogenicity. Since T-
DNA carries genes for the synthesis of indole-3-acetic acid (IAA)
and cytokinin (CK; also called oncogenic genes), their expres-
sion in plants leads to the production of a large amount of plant
hormones that promote uncontrolled cell division and undiffer-
entiated growth of plant tissues, resulting in the formation of a
plant tumor and permanent plant genetic transformation.
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In addition to genes responsible for IAA and CK production,
T-DNA also contains genes for the synthesis of opines (unusual
amino acid and sugar condensates). Opines produced by trans-
formed plant cells can be metabolized by Agrobacterium as a
source of nutrients. In addition, opines act as signals that acti-
vate Agrobacterium quorum sensing (QS). QS is a special form of
cell-to-cell communication by which microorganisms synthesize,
release, and perceive diffusible signals such as N-(3-oxooctanoyl)-
DL-homoserine lactone (3OC8-HSL). QS enables a single cell to
sense the number of surrounding cells (cell density) and coor-
dinates their collective behavior. In Agrobacterium, QS plays
important roles in interaction with plant hosts, which will be
discussed in later sections.

Interestingly, T-DNA encoded oncogenic genes are neither
physiologically nor biologically required for the T-DNA trans-
fer process. Therefore, T-DNA encoded genes can be deleted and
replaced with genes of interest, and such genetically modified “T-
DNA” can still be transferred, integrated and expressed in the plant
cell. This unique ability of inter-kingdom DNA transfer makes
Agrobacterium an important tool for genetically modifying plants,
allowing for incorporation of useful traits like resistance to insects
and herbicides, production of recombinant vaccines, proteins, etc.
In addition, T-DNA is distally located from vir genes required for
T-DNA transfer process. Thus, T-DNA and vir genes can be sep-
arated onto two plasmids without affecting T-DNA transfer into
plant hosts. This feature prompted the design and construction
of binary vectors that greatly facilitate DNA manipulation and
plant transformation, especially considering the large size of the
Ti plasmid (over 200 kb).

Agrobacterium is capable of infecting/transforming a wide
variety of plant species including long-lived woody plants and
cultivated plants. However, plants vary greatly in their ability
to be infected/transformed by Agrobacterium, even among eco-
types within species, and the underlying molecular mechanisms
are poorly understood (Nam et al., 1997). To mount a successful
infection in nature, it is important for Agrobacterium to pre-
cisely and specifically recognize and respond to a combination
of plant-derived signals in the rhizosphere including acidity, plant
released sugars and plant-derived phenolic compounds (Stachel
et al., 1985; Brencic and Winans, 2005; McCullen and Binns, 2006;
Gelvin, 2012; Yuan and Williams, 2012; Pitzschke, 2013). Agrobac-
terium virulence programing and associations with plant hosts
are stringently and synergistically regulated by a combination of
plant-derived chemicals.

Agrobacterium RESPONSES TO ACIDIC SIGNALS CAUSED
BY PLANT-DERIVED CHEMICALS IN THE RHIZOSPHERE
The rhizosphere is the narrow region (within millimeter range
of roots) of soil that is directly influenced by root exudates
and is densely populated by soil microorganisms. Rhizosphere
is rich in not only plant-derived but microbe-derived signals as
well (Winans, 1992; Phillips et al., 2004; Bais et al., 2005). Plants
routinely secrete organic acids such as lactic, citric, oxalic, and
malic acids as well as other secondary metabolites, resulting in
acidic rhizosphere conditions (Rivoal and Hanson, 1994; Xia
and Roberts, 1994; Walker et al., 2003; Phillips et al., 2004; Bais
et al., 2005; Wang et al., 2006; Huckelhoven, 2007; Badri and

Vivanco, 2009). Upon wounding, plants release phenolic com-
pounds as well as neutral and acidic sugars necessary to repair
damaged tissue acidifying the rhizosphere (Winans, 1992). There-
fore the rhizosphere, where Agrobacterium primarily infects plant
hosts, is typically an acidic niche driven by various plant-released
chemicals.

Upon close proximity to a suitable plant host in the rhizosphere,
acidic conditions and plant-derived chemicals play important
roles in initiating the Agrobacterium virulence program, which
involves various Agrobacterium regulatory factors and signaling
pathways (Winans, 1992). A chromosomally encoded che cluster
(chemotaxis) allows A. tumefaciens to be attracted to plant-derived
chemicals in the rhizosphere (Wright et al., 1998). In addition,
three Agrobacterium chromosomally encoded genes chvA, chvB,
and exoC are involved in synthesis of extracellular oligosaccha-
rides, such as cyclic 1,2-b-D-glucan, that allows Agrobacterium to
attach to plant hosts (Cangelosi et al., 1989). Upon perception
of acidity characteristic of the rhizosphere, Agrobacterium mounts
both a conserved response as well as a signaling specific response to
infect plant hosts. This conserved response allows Agrobacterium
to adapt to the rhizosphere niche by modulating metabolism and
cellular adaptation, such as the induction of genes coding for
cell envelope synthesis, stress response, transporters of sugars and
peptides (Yuan et al., 2008b).

The signaling specific response to acidity is mediated by
the chromosomally encoded ChvG/ChvI two-component sys-
tem, as well as other genes that allow Agrobacterium to initiate
its early virulence program (Yuan et al., 2008a). ChvG acts as
the sensor kinase while ChvI functions as the response regu-
lator (Winans, 1990, 1992; Chen and Winans, 1991; Charles
and Nester, 1993; Mantis and Winans, 1993; Li et al., 2002).
The ChvG/I system is believed to recognize acidity in the rhi-
zosphere and activates the expression of several virulence factors
including chvI, aopB encoding an outer membrane protein, katA
encoding a catalase, pckA encoding phosphoenol carboxyki-
nase, and the imp gene cluster encoding a type VI secretion
system (T6SS; Yuan et al., 2008a). A more recent study con-
firmed that Agrobacterium T6SS is indeed induced by acidity in
a ChvG/ChvI dependent manner (Wu et al., 2012). Perhaps most
interestingly, it was found that upon perception of acidic sig-
nals, several vir genes were also induced including virG, virE0,
and virH (Yuan et al., 2008a), consistent with the observation
that the ChvG/ChvI system activates the proximal promoter
(P2) of virG (Li et al., 2002). However, to be functional, VirG
requires phosphorylation signaling from another plant-derived
signal, e.g., plant-derived phenolic compounds, which will be dis-
cussed in the following section. It is noteworthy that in addition
to ChvG/I, another chromosomally encoded virulence gene, chvE,
is also involved in Agrobacterium response to acidity and plant-
derived sugars in the rhizosphere, which will also be discussed
later.

Agrobacterium RESPONSES TO PLANT-DERIVED PHENOLIC
COMPOUNDS
Originally it was believed that plant wounding was necessary
for Agrobacterium infection and pathogenicity. However, recent
advances have found that plant wounding is in fact not essential
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for Agrobacterium pathogenicity since unwounded plants can also
infected by Agrobacterium pathogens (Brencic and Winans, 2005).
Besides acidic signals, plant-derived phenolic compounds are
essential for the induction of Agrobacterium virulence (Stachel
et al., 1986). Moreover, phenolics serve as chemoattractants for
Agrobacterium (Parke et al., 1987; Melchers et al., 1989). Struc-
tural specificities of virulence inducing phenolics include the
presence of a benzene ring with a hydroxyl group at position
4 and a methoxy group at position 3 (Dixon and Paiva, 1995).
3,5-dimethoxyacetophenone (acetosyringone) and hydroxyace-
tosyringone were the first identified inducers of Agrobacterium
virulence (Stachel et al., 1985; Hess et al., 1991). The Agrobacterium
VirA/VirG two-component system located on the Ti plasmid
has been suggested to recognize acetosyringone as a host spe-
cific signal and activate vir gene expression (Winans et al., 1986;
Leroux et al., 1987; Shaw et al., 1988; Winans, 1990). The mem-
brane receptor VirA functions as a dimer with four domains; the
periplasmic, cytoplasmic linker, kinase, and receiver domains.
Upon phenolic signal perception, the linker domain of one VirA
subunit activates the kinase domain of the opposite dimerized
subunit by intermolecular phosphorylation (Chang and Winans,
1992; Turk et al., 1994; Toyoda-Yamamoto et al., 2000). How-
ever, a previous study has shown the binding of radiolabelled
phenolic compounds to two small proteins other than VirA and
controversy remains regarding the exact mechanism involved
in phenolic detection by VirA (Lee et al., 1992). Nevertheless,
the auto-phosphorylated sensor kinase VirA phosphorylates the
cytosolic response regulator VirG at the conserved Asp52 (Morel
et al., 1990; Lee et al., 1995). Phosphorylated VirG binds to a 12-
bp vir box located upstream of transcription start sites of vir
genes, thereby activating their transcription (Stachel et al., 1985;
Stachel and Nester, 1986; Jin et al., 1990a,b,c; Pazour and Das,
1990; Roitsch et al., 1990). In fact, phosphorylated VirG also acti-
vates its own expression by activating virG transcription at the
distal promoter (p1; Chang and Winans, 1992; Liu et al., 1992,
2005; Jia et al., 2002; Li et al., 2002; Yuan et al., 2008a; Wise et al.,
2010).

Vir genes of Agrobacterium are organized in several vir operons.
There are eight vir operons on the octopine-type Ti plasmid and
relatively fewer vir genes on the nopaline-type Ti plasmid (Stachel
and Nester, 1986; Rogowsky et al., 1987; Kalogeraki and Winans,
1998; Kalogeraki et al., 2000; Brencic and Winans, 2005). The vir
operons are typically organized as virH, virA, virB, virG, virC, virD,
virE, and virF transcriptional units (Brencic and Winans, 2005).
Vir genes code for a set of proteins with different functions such
as T-DNA excision and processing (virC and virD), coating and
protecting T-DNA during transfer (virE), formation of the type IV
secretion system (T4SS) responsible for the delivery of T-DNA to
plant cells (virB operon), and T-DNA integration into plant nucleus
(virE2 and virD4). A study by Cho and Winans (2005) revealed
that each gene on the Ti plasmid was modestly induced by plant-
derived phenolic signals, while the repABC operon, responsible for
Ti plasmid replication/partitioning, was significantly induced by
phenolic signals. This suggests that the copy number of the Ti plas-
mid is induced by plant-derived phenolics, which is confirmed by
direct binding of phosphorylated VirG to a 12-bp vir box upstream
of the repABC operon (Zhu et al., 2000; Pappas and Winans, 2003;

Cho and Winans, 2005). Apparently an increase in Ti plasmid copy
number enhances the dosage of vir genes responsible for T-DNA
transfer. A proteomic study corroborated VirA/VirG dependent
induction of vir genes by identifying 11 proteins that were signif-
icantly induced in response to acetosyringone, including proteins
constituting the T4SS, the single strand binding protein VirE2 that
is exported to the plant nucleus, and the trans-zeatin synthesiz-
ing protein Tzs (Lai et al., 2006). Moreover, responses to phenolic
inducers may be modulated by detoxification of these compounds
by VirH2. VirH2 was shown to play a role in the metabolism of sev-
eral phenolic compounds including ferulic acid, another inducer
of vir genes (Brencic et al., 2004).

Agrobacterium RESPONSES TO PLANT RELEASED SUGARS
IN THE RHIZOSPHERE
Agrobacterium detects and responds to plant-derived sugars
through a distinct signaling pathway involving VirA and a chro-
mosomally encoded periplasmic protein, ChvE (Cangelosi et al.,
1990). Expression of chvE is regulated by the LysR transcriptional
regulator (TraR) galactose-binding protein regulator (GbpR) in
the presence of sugars (Doty et al., 1993; Peng et al., 1998).
ChvE mediates Agrobacterium chemotaxis in response to aldose
monosaccharides such as galactose, glucose, arabinose, fucose,
xylose, and sugar acids. Importantly, ChvE binds plant-derived
sugars and subsequently interacts with the periplasmic domain of
VirA to stimulate vir gene expression (Cangelosi et al., 1990; He
et al., 2009; Hu et al., 2013). Mutations in the periplasmic domain
of VirA present the same phenotype as a ChvE mutant with both
mutants unable to infect specific plant hosts (Cangelosi et al., 1990;
Chang and Winans, 1992; Banta et al., 1994; Peng et al., 1998; Gao
and Lynn, 2005). Recent studies also suggest that the ability of
ChvE to recognize and bind different plant-derived sugars is vital
in determining the host range of Agrobacterium (Hu et al., 2013).
Interestingly, the sugar response in Agrobacterium has been found
to be linked with the acidity responses since the absence of sugars
or mutations in chvE disrupted acidic signaling. In addition, the
affinity of ChvE for sugar acids increases with a decrease in pH (Hu
et al., 2013), which reinforces an important role for acidity in mod-
ulating Agrobacterium virulence. It has been proposed that acidic
conditions, together with the presence of sugars and a functional
ChvE, promotes VirA–ChvE interactions required for efficient vir
gene induction (Shimoda et al., 1993; Toyoda-Yamamoto et al.,
2000; Gao and Lynn, 2005; Nair et al., 2011). However, mutations
in chvE that abolish sugar sensing do not abolish vir gene induc-
tion by acetosyringone, although ChvE is known to interact with
the periplasmic domain of VirA. This suggests ChvE and associ-
ated sugar perception play additive roles that further promote vir
gene expression in response to sugars and phenolic compounds,
while phenolics are essential vir gene inducing signals (Cangelosi
et al., 1990; He et al., 2009; Hu et al., 2013). Apart from its signaling
role, ChvE also has a role in sugar utilization as it delivers sugars
to the ABC transporter MmsAB (Hu et al., 2013).

BACTERIAL AND PLANT MOLECULES INVOLVED IN T-DNA
TRANSFER AND INTEGRATION
T-DNA transfer and integration into the plant nucleus is mediated
by a complex set of Agrobacterium and host proteins. As discussed
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in previous sections, Agrobacterium recognizes three main plant-
derived signals (acidity, phenolics, and sugars) and activates vir
genes. VirD1, a helicase, and VirD2, a site specific endonucle-
ase, are essential for nicking the Ti plasmid and the release of
T-DNA as a single stranded DNA (referred to as T-strand; Yanof-
sky et al., 1986; Wang et al., 1990). VirD4, the coupling protein, and
VirB1–VirB11, the mating-pore-formation components, together
constitute the trans-envelope channel and pilus of Agrobacterium
T4SS apparatus. In depth studies have assigned functional roles
to each protein of the T4SS complex; VirD4, VirB3, VirB4, and
VirB11 constitute the ATP-dependent translocation machinery,
VirB6–VirB10 form the channel and VirB1, VirB2, VirB5, and
VirB7 form the pilus (Cascales and Christie, 2003). The T-strand
is covalently attached by VirD2, which is subsequently bound
by VirD4 and VirB11 forming the T-complex. Current findings
suggest that such DNA binding by associated virulence proteins
(VirD4 and VirB11) stimulates ATP hydrolysis to produce a struc-
tural transition in the membrane channel protein VirB10. This
allows passage of the T-complex to the cell surface where it can
be directed to the T4SS pili, followed by delivery into the plant
cell by the T4SS apparatus (Cascales and Christie, 2003; Cas-
cales et al., 2013). Notably, many Gram-negative plant and animal
pathogenic bacteria employ a type III secretion system (T3SS)
to inject effector proteins directly into the cytosol of eukaryotic
cells and thus allow the manipulation of host cellular activities
to the benefit of the pathogen (Buttner and He, 2009). How-
ever, no T4SS organelles in Agrobacterium reminiscent of the basal
body of flagella or needle complexes of the T3SS were evident
(Christie, 2004). The exact process is still unknown regarding
how the T-DNA complex is delivered by T4SS into plant cells,
especially how the T-DNA complex passes through cell wall and
plasma membrane, subsequently moving through the cytoplasm
to the plant cell nucleus (Cascales and Christie, 2003; Gelvin,
2003).

T-DNA integration into plant nuclei is thought to occur
by hijacking various host systems including defense signaling,
cytoskeletal networking, molecular motors, nuclear import, pro-
teolytic degradation, chromatin targeting, and DNA repair to
ensure successful plant transformation (for review see Citovsky
et al., 2007). In the plant cytoplasm, the T-strand/VirD2 com-
plex is coated along its entire length by the VirE2 ssDNA-binding
protein that is transported into the plant cell independently
of the T-strand complex (Vergunst et al., 2000; Citovsky et al.,
2007). Both VirD2 and VirE2 carry plant nuclear localization
signals and together with host protein VIP1 (VirE2 interact-
ing protein 1), facilitate T-complex import into the plant cell
for host chromatin targeting (Citovsky et al., 1992; Tzfira et al.,
2001; Li et al., 2005; Djamei et al., 2007; Lacroix et al., 2008).
T-DNA is thought to attach to chromatin by interacting with
nucleosomal proteins and is released from the T-complex by pro-
teolytic removal of associated proteins (Magori and Citovsky,
2011). VirF, a bacterial F-box protein, also targets both VIP1 and
VirE2 for proteasome dependent degradation. The mechanism of
T-DNA integration into the plant genome is thought to occur
by illegitimate recombination; however, the details of many of
the molecular events within the plant cell and nucleus are still
unclear.

Agrobacterium METABOLIZES PLANT-DERIVED OPINES AS A
SOURCE OF NUTRIENTS
Besides IAA and CK, infected plant cells produce over 20 dif-
ferent kinds of opines that can be classified into four fami-
lies: octopine, nopaline, mannopine, and agrocinopine families
(Beck von Bodman et al., 1992; Fuqua and Winans, 1996b; Piper
et al., 1999). In fact, the most intensively studied Ti plasmids
are the octopine and nopaline types, named after the predomi-
nant opines synthesized by transformed plant cells. Octopine is
synthesized by the T-DNA-encoded enzyme octopine synthase
(Ocs), which condenses pyruvate with different amino acids to
produce octopine, lysopine, histopine, or octopinic acid (Dessaux
et al., 1998). Nopaline is generated by nopaline synthase (Nos)
in a similar condensation reaction involving αα-ketoglutaric acid
and either arginine or ornithine. Opines of the mannopine and
agrocinopine families are structurally more heterogeneous, which
contain sugar and phosphate groups in the case of agrocinopine.
Since plants cannot metabolize opines, transformed plant cells
accumulate and release opines into the rhizosphere. The pre-
cise mechanism by which opines are exuded from plant cells
is unknown, although the exudation of octopine and nopaline
appears to depend upon the product of T-DNA gene 6a. Never-
theless, opines are present on the plant (or tumor) surface and
are part of the soluble plant exudates released into the phylloplane
and rhizoplane (Savka and Farrand, 1992).

Agrobacterium Ti plasmids also contain genes for opine uptake
and catabolism that are located in the non-transferrable region,
e.g., occ and noc regions for octopine- and nopaline-type Ti
plasmids. In addition, Ti plasmids contain chemotaxic genes for
their corresponding opines (Beck von Bodman et al., 1992; Kim
and Farrand, 1997). Agrobacterium LysR-type transcriptional acti-
vator OccR (octopine catabolic regulator) and NocR (nopaline
catabolic regulator) recognize and bind to opines, subsequently
activating the expression of opine catabolic genes (Beck von Bod-
man et al., 1992; Wang et al., 1992). Agrobacterium metabolism
of agrocinopine is much more complicated. When agrocinopines
are present, the repressor agrocinopine catabolic regulator (AccR)
dissociates from the promoter, allowing for expression of the acc
operon responsible for agrocinopine metabolism. In addition, the
acc operon is activated in response to phosphate limitation (Kim
et al., 2008). Some of opine catabolic genes are also under regula-
tion of other factors, for example the presence of certain substrates
such as succinate (Hong et al., 1993). Although the rhizosphere
contains species other than Agrobacterium that are capable of
utilizing opines, they comprise of a very small minority of the
bacterial population (Nautiyal and Dion, 1990). Therefore, the
ability to use opines as a carbon, nitrogen, and energy source
provides distinct advantages to Agrobacterium in the rhizosphere
niche.

Agrobacterium QUORUM SENSING IS ACTIVATED BY
PLANT-DERIVED OPINES
In addition to serving as a nutrition source for Agrobacterium,
opines produced by transformed plant cells also activate Agrobac-
terium QS. In fact, the original study of Agrobacterium QS
was relevant to Ti plasmid conjugation. In soil or cultivation
at temperatures greater than 30◦C, the Ti plasmid is rapidly
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lost from Agrobacterium populations. Once infected by Agrobac-
terium, plant cells produce opines. In addition to activating genes
for opine metabolism, the NocR- or OccR-opine complex also
activates a LuxR-type TraR located on the Ti plasmid (Li and Far-
rand, 2000). When the diffusible QS signal N-(3-oxooctanoyl)-
DL-homoserine lactone (3OC8-HSL) reaches a threshold level
with high population density, TraR binds to 3OC8-HSL. The
TraR–3OC8-HSL complex activates traI, a LuxI-type 3OC8-HSL
synthase, and tra/trb genes coding for a second T4SS responsi-
ble for conjugal transfer of Ti plasmids (Piper et al., 1993; Zhang
et al., 1993; Fuqua and Winans, 1994; Hwang et al., 1994). Since
the Ti plasmid carries genes responsible for plant infection and
opine metabolism, avirulent Agrobacterium lacking the Ti plas-
mid becomes infectious and capable of opine metabolism by
acquiring the Ti plasmid through conjugation. Additionally, the
TraR–3OC8-HSL complex activates the repABC operon thereby
enhancing the replication and copy number of the Ti plasmid
(Fuqua and Winans, 1996a; White and Winans, 2007). TraR–
3OC8-HSL complex also activates the transcription of TraM, a
TraR antiactivator in both octopine- and nopaline-type strains
of Agrobacterium. TraM further modulates QS and Ti plasmid
conjugation in the rhizosphere (Hwang et al., 1999). Therefore,
the initial infection and T-DNA transfer leads to the synthesis of
opines in plant cells. Opines activate the Agrobacterium TraR/TraI
QS system, which activates Ti plasmid conjugation and enhances
Ti plasmid copy number (up to eightfold). This typical posi-
tive feedback regulation is advantageous for maximal infection of
plant hosts and opine metabolism (Zhu and Winans, 1999, 2001;
Pappas and Winans, 2003; Cho and Winans, 2005; Pinto et al.,
2012).

Agrobacterium QS IS FURTHER MODULATED BY OTHER
PLANT-DERIVED SIGNALS
Agrobacterium QS is well regulated not only for QS signal pro-
duction, but also for QS signal degradation, also known as
quorum quenching. γ-amino butyric acid (GABA) significantly
increases in wounded plant tissues and acidic conditions. GABA
also accumulates in plants infected by Agrobacterium (Chevrot
et al., 2006). In addition, proline significantly accumulates in plant
tumors but neither in wounded nor healthy tissues (Deeken et al.,
2006). The Agrobacterium proline/GABA receptor atu2422 and
ABC-transporter braE (atu2427) are required for GABA and pro-
line uptake. GABA activates transcription of the attKLM operon
located on the second plasmid of Agrobacterium. AttK is a NAD
dependent dehydrogenase. AttL is a alcohol dehydrogenase and
AttM, a γ-butyrolactonase, breaks down the Agrobacterium QS sig-
nal 3OC8-HSL. Proline is a competitive antagonist of GABA and
is also taken up through the Atu2422-Bra ABC transporter system
(Wachter et al., 2003; Haudecoeur et al., 2009). It was found that
plants with relatively higher proline levels present bigger tumors
and severe disease symptoms, whereas those with relatively high
GABA attenuated Agrobacterium pathogenesis. This is likely a
result of the pathogen’s enhanced virulence through QS that is
negatively regulated by GABA (Brugiere et al., 1999). Furthermore,
it was found that a short interfering RNA, AbcR1, targets the ribo-
some binding site of atu2422 and negatively affects its translation
(Wilms et al., 2011, 2012).

Recent studies revealed that the plant defense signal salicylic
acid (SA) also activates the attKLM operon thereby down-
regulating Agrobacterium QS (Yuan et al., 2007, 2008a). It was
suggested that down-regulation of QS during the initial stages of
infection benefits Agrobacterium pathogenicity, since high levels of
QS signals are known to trigger a defense response in eukaryotic
hosts (Ritchie et al., 2005; Wagner et al., 2007). Therefore, Agrobac-
terium QS is under tight and complex modulation by plant-derived
opine, SA, and GABA to ensure optimum infection of plant hosts
and to avoid the elicitation of plant defense responses by high
levels of QS signals, reflecting an evolutionary advantage. In addi-
tion, quorum quenching induced by SA and GABA might function
to prevent unnecessary energy expenditure after T-DNA transfer.
Moreover, since the AttM lactonase has a broad substrate range, the
activation of Agrobacterium quorum quenching by GABA and SA
likely confers Agrobacterium a competitive advantage by degrading
QS signals from unrelated competitive bacteria occupying the rhi-
zosphere niche (Mathesius et al., 2003; Carlier et al., 2004; Chevrot
et al., 2006; Yuan et al., 2007). Furthermore, induction of attKLM
genes allows Agrobacterium to metabolize other plant-released
compounds such as gamma-butyrolactone to produce succinic
acid for the central metabolism (tricarboxylic acid cycle; Carlier
et al., 2004; Chevrot et al., 2006; Chai et al., 2007).

Agrobacterium VIRULENCE MODULATED BY PLANT
HORMONES AND PLANT-DERIVED CHEMICALS
Plant hormones play important roles in plant defense and stress
resistance. IAA and ethylene (ET) levels in plant tissues are ele-
vated at the initial stages of infection by Agrobacterium. Following
T-DNA integration, SA, IAA, and ET levels are elevated (Lee et al.,
2009), while jasmonic acid (JA) levels were unchanged. How-
ever, in tumors, IAA and ET signaling pathways were activated,
while JA and SA signaling pathways remained inactivated. Syn-
thesis of IAA in crown gall occurs as a two-step process from
tryptophan via indoleacetamide, mediated by-products of the T-
DNA encoded iaaM and iaaH genes (Thomashow et al., 1986).
T-DNA also carries an ipt gene responsible for CK synthesis. The
ipt product condenses isopentenyl pyrophosphate and AMP to
produce isopentenyl-AMP, which is later converted to CK by host
enzymes. The elevated level of IAA and CK promote plant cell
growth and tumor formation. It is now becoming evident that key
phytohormones significantly influence Agrobacterium pathogenic-
ity and tumor formation through both plant signaling pathways
as well as direct modulation of bacterial processes (Veselov et al.,
2003; Yuan et al., 2007; Zottini et al., 2007; Anand et al., 2008). The
following sections are focussed on the effects of plant hormones
on Agrobacterium pathogenicity, in particular, how Agrobacterium
responds to these plant hormones.

Agrobacterium RESPONSES TO INDOLE-3-ACETIC ACID (IAA)
IAA is important for plant growth and development, where its
functions are mediated by the asymmetric distribution of IAA
both systemically and locally (Korbei and Luschnig, 2011). IAA
produced by Agrobacterium infected cells not only contributes to
tumor growth, but also affects Agrobacterium pathogenicity. It was
found that IAA, at 25 μM concentrations, inhibits Agrobacterium
vir gene expression while not significantly affecting Agrobacterium
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growth. This is thought to occur by competition between IAA
and phenolic inducers of vir genes for their interaction with the
VirA/VirG two-component system (Liu and Nester, 2006). Fur-
ther studies have indicated that IAA likely competes with vir gene
inducing signals, such as acetosyringone, for association with the
VirA linker domain, which is strengthened by the related molecu-
lar structures of acetosyringone and IAA. Activation of vir genes
by acetosyringone and IAA-mediated inhibition of vir genes have
never been genetically separated. Moreover, the inhibition of vir
genes by IAA can be rescued by higher level of acetosyringone or
incorporation of a constitutive virA expressing plasmid. Further-
more, IAA inhibits Agrobacterium growth at higher concentrations
(over 50 μM) yet does not kill Agrobacterium (Liu and Nester,
2006). It was proposed that after successful transformation of a
plant host, the synthesis of large amounts of IAA in infected plant
tissues represses vir gene expression for energy conservation. Yet it
remains unclear if the local concentration of IAA in fresh tumors
reaches the inhibitory range (Liu and Nester, 2006).

Agrobacterium RESPONSES TO SALICYLIC ACID (SA)
SA is a well-known phytohormone activating plant defense
responses to incompatible interactions (Zottini et al., 2007). Dur-
ing Agrobacterium–plant interactions, SA produced in infected
plants modulates the Agrobacterium virulence program by sev-
eral mechanisms (Yuan et al., 2007; Lee et al., 2009). Apart from
mounting plant defense responses, SA at biologically relevant con-
centrations (8–10 μM) limits Agrobacterium growth, represses vir
gene expression, and dampens Agrobacterium QS as discussed
in the previous section (Yuan et al., 2007, 2008b). In fact, SA
inhibits all the vir genes including the repABC operon, suggest-
ing SA likely prevents the increase of Ti plasmid copy number.
This is consistent with the observation that SA-overproducing
plants display recalcitrance to Agrobacterium infection, whereas
mutant plants impaired in SA biosynthesis and accumulation are
more susceptible to tumor growth (Yuan et al., 2007; Lee et al.,
2009). Similar to IAA, the inhibition of vir gene expression by
SA can be rescued by either increasing levels of acetosyringone
or incorporation of a constitutive virA expressing plasmid. SA
likely functions as an allosteric competitive inhibitor and inter-
feres with the interaction between the kinase domain of VirA and
acetosyringone since the constitutively expressed VirA activates
vir gene expression independent of acetosyringone (Yuan et al.,
2007).

Agrobacterium RESPONSES TO ETHYLENE (ET)
ET, unlike other plant hormones, is a volatile hormone that
affects many aspects of plant growth and development (Wang
et al., 2013). ET also acts as a plant stress signal. ET signal-
ing pathways are induced by various biotic and abiotic stresses
including osmotic stress, salt stress, wounding, pathogen attack
and flooding. These stress-induced ET signaling pathways have
substantial roles in defense responses and disease resistance by
accelerating senescence, abscission of infected organs and induc-
tion of specific defense proteins (Chang and Shockey, 1999).
Plant tissues rich in ET, such as melons, are recalcitrant to
Agrobacterium transformation, yet the cause for the transfor-
mation recalcitrance remains unclear. Thus, various strategies

have been employed to reduce ET level to improve Agrobacterium
transformation efficiency, including the application of an anti-
sense ACC oxidase gene (pAP4), the final enzyme in the ET
biosynthetic pathway. Recent studies have found that ET is another
important factor modulating Agrobacterium virulence programing
and determining crown gall morphogenesis (Nonaka et al., 2008).
In particular, Agrobacterium-mediated genetic transformation was
inhibited in ET-sensing melon but enhanced in ET-insensitive
mutants. Further studies also revealed that Agrobacterium growth
was not affected by ET, but the presence of ET at the begin-
ning of Agrobacterium infection displays significant inhibitory
activity on vir gene expression. Such inhibitory effects can be res-
cued by supplementation with acetosyringone, a vir gene inducer
(Nonaka et al., 2008). Although the ET levels are up-regulated
during Agrobacterium infection, plant genes for ET receptors and
downstream signaling are not induced (Lee et al., 2009). These
observations suggest that ET impacts Agrobacterium–plant inter-
actions largely through its inhibitory effects on bacterial virulence
programming.

ADDITIONAL PLANT-DERIVED vir GENE INHIBITORS IN NATURE
In addition to the universal phytohormones SA, ET, and IAA,
monocots contain special chemicals acting as natural inhibitors
of Agrobacterium virulence. Maize, along with other mono-
cots, are notoriously resistant to Agrobacterium transformation
and the cause for this has been delimited to the inhibition
of Agrobacterium vir genes (Heath et al., 1997). In particular,
metabolites derived from corn seedlings (Zea mays) such as
2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIM-
BOA) and 2-hydroxy-4,7-dimethoxybenzoxazin-3-one (MDI-
BOA) inhibit the expression of Agrobacterium vir genes in the
presence of vir inducing signals (Sahi et al., 1990; Zhang et al.,
2000). In addition, Agrobacterium mutants resistant to either
DIMBOA or MDIBOA were much more effective in infecting plant
hosts. Moreover, Agrobacterium carrying constitutively active virA
are insensitive to MDIBOA in terms of the inhibition of vir genes.
These observations suggest that DIMBOA and MDIBOA, similar
to SA, ET, and IAA, probably affect signal perception by the VirA
sensor kinase prior to the VirA/G phosphorylation signal relay
events.

CONCLUSION AND FUTURE PERSPECTIVES
SIGNALING INTEGRATION AND CASCADE ACTIVATION OF
Agrobacterium VIRULENCE BY PLANT-DERIVED SIGNALS
Several lines of evidence suggests a hierarchical activation of
Agrobacterium virulence by a combination of plant-derived sig-
nals, as illustrated in Figure 1. Rhizospheric acidity activates
the ChvG/I system, which subsequently activates virG tran-
scription at the proximal promoter (P2) to allow basal level
expression of virG. Therefore, the ChvG/I system functions
upstream of VirA/VirG system (Li et al., 2002; Yuan et al.,
2008b). Upon recognizing phenolic signals such as acetosy-
ringone, VirA becomes auto-phosphorylated and subsequently
phosphorylates VirG. Phosphorylated VirG activates the expres-
sion of vir genes responsible for T-DNA transfer and integration.
Phosphorylated VirG also activates virG expression at the dis-
tal promoter (p1) to further promote virulence. ChvE binds to
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FIGURE 1 | Schematic drawing of Agrobacterium responses to

plant-derived signals. (1) Upon perception of acidic conditions in the
rhizosphere, the ChvG/I two-component system activates the expression
of several virulence genes including chvI and virG; (2) Upon perception of
plant-derived phenolics, the VirA/G two-component system activates all vir
genes including virG to further promote vir gene expression; (3) ChvE
binds plant-released sugars and interacts with the VirA to allow maximal
vir gene expression; (4) Agrobacterium Ti plasmid copy number is
up-regulated in response to phenolic compounds; (5) Vir gene products

process and deliver T-DNA into plant nuclei; (6) Expression of T-DNA
encoded genes in plants leads to the production of IAA, CK, and opines;
(7) Opine activates Agrobacterium genes for opine metabolism, as well as
TraR/TraI QS system that subsequently induces Ti plasmid conjugation;
(8) QS also up-regulates Ti plasmid copy number for maximal
pathogenicity; (9) Agrobacterium quorum quenching (attKLM operon) is
activated by plant-derived GABA and SA thereby down-regulates QS;
(10) Agrobacterium hijacks plant-derived SA, IAA, and ET to down-regulate
vir gene expression.
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plant-derived sugars and subsequently interacts with the periplas-
mic domain of VirA to allow for the maximal expression of
vir genes. Thus, the VirA/G system couples and integrates
three rhizosphere signals: acidity, sugars (monosaccharides) and
phenolic compounds. Such signaling integration and cascade
activation of Agrobacterium virulence ensures precise perception
of suitable plant hosts in the rhizosphere and maximal infec-
tion, reflecting an evolutionary advantage (Li et al., 2002; Yuan
et al., 2008b). Although ChvG/I regulates VirA/G, chvG/chvI
are expressed independent of the VirA/G system and plant-
derived phenolic signals (Charles and Nester, 1993; Peng et al.,
1998).

PLANT-DERIVED SIGNALS FUNCTION ADDITIVELY AND PLAY
REDUNDANT ROLES IN MODULATING Agrobacterium VIRULENCE, Ti
PLASMID COPY NUMBER AND QS
Since Ti plasmid harbors vir genes as well as genes for
opine metabolism, Ti plasmid copy number directly influences
pathogenicity and the efficiency of opine metabolism. It was
established that the repABC operon responsible for Ti plasmid
replication and partition is induced by plant-derived phenolics
through the VirA/G system. In addition, opine activated-QS
further promotes the expression of the repABC operon. On
the other hand, plant-derived SA and GABA activate Agrobac-
terium quorum quenching, which has negative impacts on Ti
plasmid copy number. Furthermore, SA, IAA, and ET inhibit
vir genes including the repABC operon, thereby preventing the
increase of Ti plasmid copy number. The signaling complex-
ity also applies to the modulation of Agrobacterium vir genes,
which are activated by tripartite signals in the rhizosphere, acid-
ity, phenolics, and plant-derived sugars, but down-regulated by
SA, IAA, and ET and other natural vir gene inhibitors such as
DIMBOA and MDIBOA (not shown in the Figure 1). In fact,
the modulation of Ti plasmid copy number and conjugation also
influences the overall Agrobacterium pathogenicity. It is notewor-
thy that Agrobacterium mounts distinct but overlapping cellular
responses to SA, IAA, and GABA, despite the absence of any
structural relation (Yuan et al., 2008a). Therefore, it is plausible
that in nature, different plant-derived signals act in concert and
function additively, playing redundant roles in tailoring Agrobac-
terium virulence, Ti plasmid copy number and QS (Yuan et al.,
2008a).

THROUGH INFECTION OF PLANTS, Agrobacterium CONVERTS PLANT
CELL INTO A FACTORY TO SECURE NUTRIENTS AND MAINTAIN THE
GENETIC INTEGRITY IN NATURE
The evolution and survival of Agrobacterium as a bacterial species
depends on an intricate balance of two populations of cells,
those which actively maintain and those which passively lose
the Ti-plasmid. Both forms are necessary for the species to
sustain competitive lifestyles in either the absence or presence
of a plant host. In the absence of a plant host, Agrobac-
terium harboring the Ti plasmid are at a growth disadvantage
to those Agrobacterium lacking the plasmid, which is ascribed
to the metabolic burden needed to maintain such a large Ti
plasmid. In the presence of a host plant and opines, the advan-
tage is shifted to Ti plasmid-retaining Agrobacterium since the

Ti plasmid contains genes responsible for opine uptake and
metabolism. Opines not only activates genes responsible for
opine metabolism, but also activate QS-dependent functions
such as induction of Ti plasmid conjugation and enhancement
of Ti plasmid copy number, promoting maximal infection. In
fact, the increase of Ti plasmid copy number may be advan-
tageous for Ti plasmid conjugation. Moreover, Agrobacterium
hijacks SA and GABA signaling to activate the AttKLM operon
which also degrades plant-derived GABA, gamma-butyrolactone,
and gammahydroxy butyrate to provide even more nutrients
for the tricarboxylic acid cycle. Therefore, it is reasonable to
believe that through plant transformation, Agrobacterium con-
verts infected plant cells into a factory to secure nutrients, in
particular opines, nutrients almost exclusive for Agrobacterium. In
addition, QS activates Ti plasmid conjugation enabling Agrobac-
terium to maintain the Ti plasmid and genetic integrity in
nature.

In summary, Agrobacterium pathogenicity is largely attributed
to its evolved capabilities of precise recognition, response to and
hijacking of plant-derived chemical signals for its own benefit.
The complex inter-kingdom signaling interplay and regulatory
circuits highlight elegant mechanisms of Agrobacterium–host co-
evolution. Plant roots secrete and release a wide range of chemical
cues into the rhizosphere (Bais et al., 2005), admittedly, only a
limited number of plant-derived chemicals have been intensively
studied for their roles in Agrobacterium–plant interactions. For
future studies, it will be worthwhile to identify additional plant-
derived chemicals that impact Agrobacterium pathogenicity and
rhizospheric fitness. In addition, it will be very interesting to
elucidate Agrobacterium signaling pathways and underlying reg-
ulatory mechanisms responsible for the precise perception and
response to these plant-derived signals, especially at the early stage
of Agrobacterium–plant interaction.
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Histidine kinases serve as critical environmental sensing modules, and despite
their designation as simple two-component modules, their functional roles are
remarkably diverse. In Agrobacterium tumefaciens pathogenesis, VirA serves with VirG
as the initiating sensor/transcriptional activator for inter-kingdom gene transfer and
transformation of higher plants. Through responses to three separate signal inputs, low
pH, sugars, and phenols, A. tumefaciens commits to pathogenesis in virtually all flowering
plants. However, how these three signals are integrated to regulate the response and why
these signals might be diagnostic for susceptible cells across such a broad host-range
remains poorly understood. Using a homology model of the VirA linker region, we provide
evidence for coordinated long-range transmission of inputs perceived both outside and
inside the cell through the creation of targeted VirA truncations. Further, our evidence is
consistent with signal inputs weakening associations between VirA domains to position
the active site histidine for phosphate transfer. This mechanism requires long-range
regulation of inter-domain stability and the transmission of input signals through a common
integrating domain for VirA signal transduction.
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INTRODUCTION
Dynamic fluctuations in conformation can be essential for pro-
tein function, and large-scale adjustments are often necessary
for complex cellular events ranging from allosteric enzymatic
activity, regulation of overlapping signal transduction pathways,
and the many intra- or inter-subunit protein-protein, protein-
DNA, and protein-RNA interactions associated with information
flow (Chillemi et al., 2003; Laskowski et al., 2009; Farago et al.,
2010). Such protein dynamics are not typically highlighted in
static structural models, but can be of critical importance to our
understanding of function. The complex roles of the membrane-
bound histidine kinases, which function as receptors and signal
transducers to modify gene expression or protein function in
response to environmental change in many prokaryotes, are crit-
ical for committing Agrobacterium tumefaciens to pathogenesis
(Stock et al., 2000; Mitrophanov and Groisman, 2008; Cheung
and Hendrickson, 2010).

The VirA histidine kinase and its response regulator VirG
form a two-component stimulus-response coupling pair (Gelvin,
2000; Lin et al., 2008). This pair is the necessary first step in
the regulation of transcription of the virulence (vir) genes on
the tumor inducing (Ti) plasmid that ultimately mediate the
transfer and integration of DNA into the host cell (Gelvin,
2006; Tzfira and Citovsky, 2006). The multi-domain VirA kinase
(Figure 1A) exists as a transmembrane dimer (Pan et al., 1993;
Brencic et al., 2004; Wise et al., 2005) and responds to a broad
range of phenols (Melchers et al., 1989; Duban et al., 1993)
and monosaccharides in low pH environments (Ankenbauer
and Nester, 1990; Brencic et al., 2004; Wise et al., 2005; Hu

et al., 2013). Maximal expression of the vir genes requires a
pH sensitive monosaccharide binding to a periplasmic protein
ChvE (Ankenbauer and Nester, 1990; Cangelosi et al., 1990).
Both ChvE/sugar and phenols associate with VirA to regulate
VirG phosphorylation (Chang and Winans, 1992). The terminal
receiver domain of VirA homologous to VirG and has been shown
to have both negative and positive effects on the phosphoryla-
tion cascade (Chang et al., 1996; Wise et al., 2010). Therefore,
coordinated actions across the entire VirA dimer appears to be
necessary for signal perception and transmission. The central
position of the “linker” domain, which joins the trans-membrane
helices to the kinase domain, suggests that both periplasmic
and cytoplasmic inputs might be integrated here for transmis-
sion to the catalytic histidine 474, which is phosphorylated and
subsequently used to phosphorylate VirG (Chang and Winans,
1992).

We have used homology models of the VirA linker to gain
mechanistic insight for long-range conformational regulation of
VirA activity (Wang et al., 2002; Gao and Lynn, 2007). Using
mutational and chimeric protein constructs to test prediction,
we now document specific interactions within and between VirA
domains critical for signal transmission. These long-range struc-
tural interactions reveal additional insights into the integrator
functions of the linker domain. While it is not yet clear how gen-
eral these insights may be or why these specific signal inputs have
been selected for broad host range evolution, it is certainly clear
that sophisticated cooperative motions throughout the entire
sensor kinase are exploited for the successful pathogenesis by
Agrobacterium tumefaciens.
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FIGURE 1 | Domain architecture of the histidine autokinase VirA. (A)

Domain organization and signal inputs of VirA. Besides the conserved kinase (K),
three regulatory domains exist to coordinate the signal output. The periplasmic
domain (P) perceives sugar and H+, the linker domain senses the phenol, and a
receiver domain (R) locates at the C-terminus for additional regulation. (B)

Homology between VirA (292–441) and the Neisseria meningitidis fRMsr
protein, using Phyre2 (Kelley and Sternberg, 2009). Bold lettering indicates
identical residues. (C) Predicted structure of the VirA linker region. The
GAF-domain containing protein from N. meningitidis (PDB ID: 3MMH) provided
a template for a predicted protein structure of the VirA linker (292–441).

MATERIALS AND METHODS
LINKER STRUCTURE MODELING
The VirA (292–441) sequence was used to perform a sec-
ondary structure homology search using Phyre2 (Kelley and
Sternberg, 2009). The GAF domain was common to all but
a few of the top 20 hits, and several of these protein struc-
tures were known (1VHM, 1F5M) (Gao and Lynn, 2007)
(Figure S1A). The top hit was the fRMsr protein from
Neisseria meningitidis, 12% identity with 93.4% confidence.
fRMsr and other hits (e.g., 3P01 and 1F5M) were used as
templates for VirA (292–441) (Figure S1B). Comparisons of
the resulting GAF domains, including the previous thread-
ing of this VirA domain using Swiss Model Workspace
(Gao and Lynn, 2007), provided structures that differed only
slightly in the relative orientations of the secondary elements
(Figure S1C).

BACTERIAL STRAINS, PLASMIDS, AND REAGENTS
The bacterial strains and plasmids used in this study are listed in
Table 1. E. Coli strain XL1-Blue (Strategene) was used for rou-
tine plasmid construction. Acetosyringone (AS) used for vir gene
induction was purchased from Sigma-Aldrich Corp. Isopropyl β-
D-1-thiogalactopyranoside (IPTG) used to induce protein expres-
sion and 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside
(X-gal) used in library screening were purchased from Research
Products International Corp. All cloning reagents were purchased
from either New England Biolab or Promega.

PLASMID CONSTRUCTIONS
While the scheme for the design of constructs is shown in
Figure 2B, plasmid construction procedures are described in
Supplementary Materials. The plasmids are listed in Table 1, and
the primers are listed in Table S2.

LIBRARY CONSTRUCTION AND SCREENING
The constitutively active mutants in α4 were identified by ran-
domly mutating aa426–437 in LKR(285–829) via two-step PCR
using the primers with an NNN codon replacing each residue,
and the results being amplified using primers LKR285 (5′-
CGGGATCCGATTGGTTAGCGCGGCGT-3′) and LKRA1 (5′-
GCGGTACCGCAACTCTACGTCTTGAT-3′). The library was
digested with BamHI and Acc65I and ligated into the BamHI
and Acc65I digested pJZ6. These constructs were directly trans-
formed into A. tumefaciens strain A136 containing pRG109 by
eletroporation. To select for the constitutively “on” variants, the
transformants of the mutated aa426–437 library were screened on
non-inducing media plates containing X-gal. The blue colonies
were extracted, sequenced, and the phenotype confirmed by
site-directed mutagenesis.

β-GALACTOSIDASE ASSAYS FOR Vir GENE INDUCTION
The GCN4 leucine zipper variants, LZ(n)-426K(G665D), were
transformed into A. tumefaciens strain A348-3 containing
pRG150, which has lacIq to allow chimera expression only dur-
ing IPTG induction. The A. tumefaciens strains were grown in
LB medium with appropriate antibiotics at 28◦C to an OD600 of
0.4–0.6. The cells were pelleted by centrifugation at 4◦C, 7000 ×
g, for 10 min. The pellet was washed with PBS, and diluted to
OD600 ∼0.1 into tubes containing a total of 1 mL induction
medium (Winans et al., 1988) with 200 μM IPTG, and cultured at
28◦C, 225 rpm for 15 h. β-galactosidase activity was determined
as previously described (Miller, 1972), and the reading of opti-
cal densities at 600 and 415 nm was performed using a EL800
microplate reader (BIO-TEK Instruments).

Except for the LZ(n)-426K(G665D) variants, all of the virA vari-
ants and fusions were transformed into A. tumefaciens strain A136
containing pRG109, which carries PvirB-lacZ and PN25-virG, for
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Table 1 | Bacterial strains and plasmids used in this study.

Strains/plasmids Relevant characteristics References

E. coli STRAINS

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F ′ proAB lacIqZ M15 Tn10 (Tcr)] Stratagene

A. tumefaciens STRAINS

A136 Strain C58 cured of pTi plasmid Watson et al., 1975

A348-3 A136 containing pTiA6NC, �PvirA – virA,virA deletion, Kmr Lee et al., 1992

PLASMIDS

pYW15b Broad-host-range expression vector, IncW, Apr Wang et al., 2000

pYW33 PN25-6xHis-LZ-virA(aa285–471) in pYW15, Apr Wang et al., 2002

pYW39 PN25-6xHis-virA(aa285–829)(G665D) in pYW15, Apr Wang et al., 2000

pYW48 PvirA-virA(aa1–829) in pYW15b, Apr Wang et al., 2000

pSW209� virB::lacZ, IncP, Specr Wang et al., 2000

pJZ4 PvirB-lacZ in pMON596, IncP Specr Zhang et al., 2000

pJZ6 IncW/ColE expression vector with PN25, Apr Zhang, Unpublished

pRG109 PN25-His6-virG in pJZ4, Specr Gao and Lynn, 2005

pRG150 lacIq in pJZ4, Specr Gao and Lynn, 2007

pRG178 PN25-His6-LZ(4)-virA(aa426–711)(G665D) in pYW15b, Apr Gao and Lynn, 2007

pRG179 PN25-His6-LZ(3)-virA(aa426–711)(G665D) in pYW15b, Apr Gao and Lynn, 2007

pRG180 PN25-His6-LZ(0)-virA(aa426–711)(G665D) in pYW15b, Apr Gao and Lynn, 2007

pYL28 PN25-His6-virA(aa285–829)(C435F ) in pJZ6, Apr This study

pYL64 PN25-virA(aa438–711) in pJZ6, Apr This study

pYL75 PN25-virA(aa285–711) in pJZ6, Apr This study

pYL81 PN25-virA(aa446–711) in pJZ6, Apr This study

pYL99 PN25-virA(aa426–711) in pJZ6, Apr This study

pYL100 PN25-virA(aa460–711) in pJZ6, Apr This study

pYL102 PN25-virA(aa453–711) in pJZ6, Apr This study

pYL103 PN25-virA(aa467–711) in pJZ6, Apr This study

pYL108 PN25-virA(aa426–711)(C435F ) in pJZ6, Apr This study

pYL136 PN25-virA(aa285–829) in pJZ6, Apr This study

pYL138 PN25-virA(aa285–829)(Q427F ) in pJZ6, Apr This study

pYL139 PN25-virA(aa285–829)(Q427W ) in pJZ6, Apr This study

pYL140 PN25-virA(aa285–829)(C435K ) in pJZ6, Apr This study

pYL141 PN25-virA(aa285–829)(E430K ) in pJZ6, Apr This study

pYL147 PN25-virA(aa426–711)(Q427F ) in pJZ6, Apr This study

pYL148 PN25-virA(aa426–711)(Q427W ) in pJZ6, Apr This study

pYL149 PN25-virA(aa426–711)(E430K ) in pJZ6, Apr This study

pYL150 PN25-virA(aa426–711)(C435K ) in pJZ6, Apr This study

pYL200 PN25-LZ(4)-virA(aa450–829) in pJZ6, Apr This study

pYL201 PN25-LZ(3)-virA(aa450–829) in pJZ6, Apr This study

pYL202 PN25-LZ(0)-virA(aa450–829) in pJZ6, Apr This study

pYL203 PN25-virA(aa285–829)(C435R) in pJZ6, Apr This study

pYL205 PN25-LZ(3)-virA(aa450–711) in pJZ6, Apr This study

pYL206 PN25-LZ(0)-virA(aa450–711) in pJZ6, Apr This study

pYL207 PN25-LZ(4)-virA(aa450–711) in pJZ6, Apr This study

pYL212 PN25-virA(aa450–711) in pJZ6, Apr This study

pYL213 PN25-virA(aa450–829) in pJZ6, Apr This study

pYL214 PN25-LZ(-2)-virA(aa450–829) in pJZ6, Apr This study

pYL215 PN25-LZ(-1)-virA(aa450–829) in pJZ6, Apr This study

pYL267 PN25-LZ(1)-virA(aa426–711)(G665D) in pJZ6, Apr This study

pYL268 PN25-LZ(2)-virA(aa426–711)(G665D) in pJZ6, Apr This study

pYL269 PN25-LZ(-1)-virA(aa426–711)(G665D) in pJZ6, Apr This study

pYL270 PN25-LZ(-2)-virA(aa426–711)(G665D) in pJZ6, Apr This study

pYL283 PN25-virA(aa285–711)(C449-A-D450) in pJZ6, Apr This study

(Continued)
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Table 1 | Continued

Strains/plasmids Relevant characteristics References

pYL295 PN25-virA(aa285–711)(C449-DA-D450) in pJZ6, Apr This study

pYL296 PN25-virA(aa285–711)(C449-DALK-D450) in pJZ6, Apr This study

pYL306 PN25-virA(aa285–711)(C449-DAL-D450) in pJZ6, Apr This study

pYL307 PN25-virA(aa285–829)(K298E) in pJZ6, Apr This study

pYL308 PN25-virA(aa285–829)(K298E/E430K ) in pJZ6, Apr This study

FIGURE 2 | Design of the VirA variants. (A) COILS was used to predict
coiled-coil forming propensity of VirA-LK(285–711). Aa440–462 was predicted
to have high coiled-coil forming probability, and the predicted heptad repeats
is shown inside the figure. Heptad positions a and d are shown in bold for
orientation. (B) The design of VirA truncations, GCN4 fusions, kinase
truncations, and direct amino acid insertions. The predicted α1 and α4 of the

linker domain and the coiled-coil in K are shown with the dashed line
indicating the inserted adapter. (C) β-galactosidase activity of different kinase
truncations. A. tumefaciens strain A136 carrying pRG109 and the kinase
truncations from 426K to 467K were assayed for vir gene expression in the
absence of inducers. In vivo protein expression of each truncation was
analyzed by Western blot and shown below.

vir gene expression. The cells were grown and pelleted by the
same procedure described above, and diluted to OD600 ∼ 0.1 into
tubes containing a total of 1 mL induction media with or without
300 μM AS, as indicated, and cultured at 28◦C, 225 rpm for 15 h.
The β-galactosidase activity was determined by the same method
as described, from the reading of the optical densities at 600 and
415 nm.

IMMUNOBLOT ANALYSIS
A. tumefaciens strains were grown in 50 mL LB medium
with appropriate antibiotics at 28◦C overnight. The cells were
harvested by centrifugation at 4◦C, 7000 × g, for 10 min.
The pelleted cells were washed with PBS and lysed on ice by

sonication. The clear lysates were obtained by centrifugation at
4◦C, 9000 × g, for 10 min, and analyzed by 10% SDS-PAGE
followed by electro-blotting onto nitrocellulose membrane. The
membrane was blocked with 3% BSA in TBS, and probed with
anti-VirA polyclonal antibody (see SI methods) at 1:200 dilutions.
Visualization was achieved using the goat anti-rabbit antibody
conjugated with alkaline phosphatase (Amersham) at 1:1000 dilu-
tions, followed by the 1-step NBT/BCIP development (Pierce).

RESULTS
STRUCTURAL MODEL FOR THE LINKER DOMAIN OF VirA
The linker domain, designated (L) as it connects TM2
(ending at aa279) with the kinase (K) domain of VirA
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(Chang and Winans, 1992), was originally defined through muta-
genesis and sequence analyses as responsible for phenol signal
regulation of kinase activity (Figure 1A). Conservatively selecting
residues 292–441 for a Phyre2 secondary structure search revealed
85% of the top 20 hits as GAF domains, so named because of
their presence in cGMP-regulated cyclic nucleotide phosphodi-
esterases, Adenylyl cyclases, and the bacterial transcription factor
FhlA (Kelley and Sternberg, 2009). Several of these proteins have
structural models, and of these, the GAF-domain containing pro-
tein fRMsr from Neisseria meningitis is the most similar (Gruez
et al., 2010). While previous GAF domain-containing proteins are
homologous to the VirA linker (Gao and Lynn, 2007), the fRMsr
protein (PDB ID: 3MMH) provides a stronger template with
93.4% confidence at 98% coverage, defining the relative position-
ing of the α-helices and β-sheets (Figure 1B). Using other protein
structures as templates gave similar structures with only slight
changes in the orientation of the conserved secondary elements
(Figure S1).

The resulting threading model of the VirA linker region
(Figure 1C) contains a central β-sheet, arranged in a 2-1-5-4-
3 strand order (Figure 1C), connected to a helix bundle region
composed of α1, α2, and α4 that connects the linker region to the
histidine kinase (see Figure 1A). A four-helix bundle architecture,
similar to the proposed bundle in VirA, has been character-
ized in HAMP domains (derived from Histidine kinases, Adenyl
cyclases, Methyl-accepting proteins, and Phosphatases) (Aravind
and Ponting, 1999). These domains regulate signal transmission
in histidine kinases (HK) (Falke and Hazelbauer, 2001; Hulko
et al., 2006; Airola et al., 2010) and are thought to constitute a
dimerization interface (Gao and Lynn, 2007). The α1, α2, and α4
helix region of VirA is proposed to serve as the interface in the
VirA dimer based on homologies with these domains.

Initial physical analyses of this model involved over-expressing
and purifying the N-terminal His6-tagged VirA (285–471)
domain (Figure S2A). The relative abundances of secondary
structure determined by circular dichroism supported the thread-
ing model (∼34% α-helix, ∼20% β-sheet), but conditions were
not found to sufficiently stabilize this truncated domain for fur-
ther evaluation (Figure S2B). Additional sequence analysis of
the full LK domains of VirA (285–711) with COILS (Lupas
et al., 1991) identified strong coiled-coil propensity connecting
the GAF fold to the N-terminus of the DHp domain, a region
in Thermotoga maritima HK0853 and Saccharomyces cerevisiae
Sln1 critical for signal transmission (Tao et al., 2002; Marina
et al., 2005). Employing several scanning windows of the hep-
tad repeats, COILS identified aa440–462 (Figure 2A) as having
an amphipathic heptad repeat signature. Increasing the size of
the scanning window lowered the probability of this region as a
coiled-coil, presumably because the sequences surrounding this
region do not contribute to the coiled-coil.

To directly evaluate the role of the predicted coiled-coil, we
constructed a series of N-terminal truncations of the kinase
domain (Figure 2B), starting from amino acid 426 (426K), which
includes the entire α4 of the linker (L) domain (Gao and Lynn,
2007) and extending through amino acid 467 (467K) for complete
coiled-coil removal. Most of these truncations appeared stable,
but the immunoblot suggests that constructs where the coiled-coil

is removed are expressed in lower amounts. To examine how
well these VirA fragments are able to induce the vir genes, we
used a well-characterized β-galactosidase assay where the VirB
promoter is placed in front of a plasmid localized lacZ gene. As
VirA receives the phenol signal, the VirB promoter is turned on
and β-galactosidase is produced from the lacZ gene. The β-gal
activity can then be assayed using its cleavage of the substrate
ONPG (Miller, 1972), thereby effectively revealing the activity of
the VirA protein. In the absence of inducers, VirA fragments 438K

and 446K, which retain all or most of the coiled-coil region, have
high activity, while partial (453K) and complete coiled-coil dele-
tion (460K and 467K) are expressed in lower amounts and have a
lower activity (Figure 2C). The reduced activity of 426K is strik-
ing and consistent with previous evidence that related HAMP-like
domains can also be repressive (Gao and Lynn, 2007), suggest-
ing that the 11 amino acids (aa426–437) in α4 contribute to that
repression when inducers are absent.

FUNCTIONALLY CONNECTING THE L AND K DOMAINS
The helix bundle architecture at the dimerization interface of the
GAF-fold in the L domain and the predicted coiled-coil connec-
tion to K implies a continuous helical connection being necessary
for signal transmission. Previous work describing incremental
fusion chimeras with the yeast GCN4 coiled-coil at aa426, just
before α4, was interpreted as anchoring the relative position
of the helices of the VirA dimer (Wang et al., 2002; Gao and
Lynn, 2007). The aa440–462 coiled-coil, however, suggests that
in-register fusions with GCN4 are possible, allowing us to define
the relative registry of each VirA monomer through to the posi-
tion of the active site histidine. Fusions were therefore engineered
at aa450, removing the N-terminal half of the predicted coiled-
coil (Figures 2B, 3A), and placing the fusion just 24 residues
upstream of the phosphorylated His474.

While similar results were found using the 450K construct
and GCN4 fusions (Figure S3), the effect of helix positioning
was more dramatic when the receiver (R) domain is retained
in the constructs (Figure 3B). In our experimental conditions,
where the constitutive T5 promoter drives VirG expression, the R
domain acts as a repressor. The protein expression appeared to be
enhanced in all LZ-450KR fusions compared to 450KR. The 450KR

truncation was active, but the in-register LZ(0)-450KR fusion,
which is predicted to place the His474 at the same e heptad
position, gives a 4-fold increase in activity that may be partially
attributed to increased stabilization. A three amino acid insertion,
LZ(3)-450KR, creating a −51◦ rotation relative to LZ(0)-450K

and moving His474 to the a heptad position, shows five times
the activity of LZ(0)-450KR. A four amino acid insertion, LZ(4)-
450KR, creating a +51◦ rotation and positioning His474 at b,
shows the same level of kinase activity as LZ(0)-450KR. The “ON”
and “OFF” states being regulated by the relative position of the
active site His474 was further tested with LZ(-1)-450KR and LZ(-
2)-450KR constructs, corresponding to a rotation of His474 to the
d and c positions on the opposite face of the coiled-coil, and these
fusions also showed little activity (Figure 3B).

This model was finally tested by direct insertion of amino
acids at residue 449 in the center of the predicted coiled-coil,
here denoted as LK(449+n) where n is the number of amino
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acids inserted (Figure 4A). As seen in Figure 4B, a +3 amino acid
insertion would extend the coiled-coil by almost a single turn and
create a −51◦ rotation, most similar to the LZ(3) fusions, and
a +4 amino acid insertion would extend the coiled-coil by more
than one turn and create a +51◦ rotation. The activity observed
in LK(449+1,2,3,4) constructs follows the general pattern as the
GCN4 chimeras in Figure 3, but the predicted registry is differ-
ent; the +51◦ rotation LK(449+4) enhanced kinase activity while
the −51◦ rotation LK(449+3) reduced activity (Figure 4C). We
have no direct evidence that the positional variability is due to
difference in expression or stability, nor do we know whether
the inserts “buckle” or bend the helices in some way to trans-
mit slightly different positional information down the helix to
the histidine, and these assignments will require higher structural
resolution.

MAPPING THE HELIX ASSOCIATION INTERFACES
To further investigate GCN4 fusions for controlling the dimer
interface of α4–α4′, the domain was placed outside of the coiled
coil region in LK to create GCN4(n)-426K with the same amino
acid inserts as in Figure 3A. Since the wild-type 426K has low
basal activity (Figure 2C), possibly due to repressive dimer asso-
ciation, a constitutive mutation, G665D, denoted as 426KON, was
used as before to increase basal activity (Chang et al., 1996;
Gao and Lynn, 2007). The full range of GCN4-426K fusions,
LZ(0/1/2/-1/-2/3/4)-426KON, mapped the possible rotations, and
as shown in Figure 5, the activity again follows heptad orien-
tation positioning. The highest activity was found for LZ(1)-
426KON, and the activity gradually diminished with rotations in
either direction. By this analysis, LZ(1)-426ON was assigned as
the lowest energy 0 degree rotation interface, and the α4–α4′

FIGURE 3 | Chimeric GCN4 fusions with 450K and 450KR. (A) Design of the
GCN4-450 fusions. The heptad repeats from a to g were built from the registry
of GCN4 and the adapters. GCN4 enforces the hydrophobic ad interface (shown
in bold), and shifts the registry of the heptads of kinase coiled-coil according to
the different adapters. The predicted position of His474 (∗ in the K domain) in

each fusion is shown at the end of the sequence. (B) A. tumefaciens strain A136
carrying pRG109 and the indicated GCN4-450KR fusions were assayed for vir
gene expression without inducers. The degree of rotation created by each fusion
is shown in the figure with the 0◦ rotation defined at LZ(0)-450. The protein
expression of the GCN4-450KR constructs was analyzed by Western blot.

FIGURE 4 | Direct amino acid insertion within the coiled-coil. (A) The
amino acids in bold were inserted between amino acids 449 and 450 in the
predicted coiled-coil region. (B) An illustration of how His474 moves along the
helix coil according to the amino acid insertion at the N’-terminus. (C) A.

tumefaciens strain A136 carrying pRG109 and the LK constructs with
different insertions at aa449 (449+n) were assayed for vir gene expression
with or without 300 μM AS. The degree of rotation created by the insertions
is shown in the graph.
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dimer interface can be designated as the “ON” conformation
(Figure 8A).

The possibility of interactions across α4–α4′ between subunits
of the dimer suggests that inputs from sugar/ChvE association
might also be transmitted through α1 to the dimer interface
in the GAF structure. To test this possibility, we first sought
“ON” interface stabilizing mutations within α4 that could provide
signal-independent activity. Residues 426–437 of LKR (aa285–
829) were randomly mutagenized, and the variants were screened
in A136/pRG109 on AB media plates with X-gal without phenolic
inducer for active mutants. This approach yielded six constitutive
mutants: three with substitutions at Cys435 (C435K, C435R, and
C435F), two at Gln427 (Q427W and Q427F), and one at Glu430
(E430K).

FIGURE 5 | Signal transmission through α4. β-galactosidase activity of
the GCN4-426K(G665D) fusions. A. tumefaciens strain A348-3 carrying
pRG150 and the indicated GCN4-426KON fusions were assayed for vir gene
expression without inducers. 200 μM IPTG was added to induce chimera
expression. The degree of rotation created by each fusion is shown in the
graph with the 0◦ rotation defined at LZ(1)-426KON.

In all of these mutants, phenol induction is severely attenuated
(Figure 6A), consistent with the “ON” interface being conforma-
tionally stabilized. These mutations were moved to 426K as shown
in Figure 6B. The hydrophobic constitutive variants (Q427F,
Q427W, C435F) and the charged variant C435K enhanced 426K

activity, consistent with stabilization of the “ON” α4–α4′ dimer
interface, but the low basal activity of 426K(E430K) suggests that
its constitutive phenotype in LKR is unlikely a result of α4–α4′
stabilization. The GAF models place several charged residues dis-
tributed at the helical surface of α1 (Figure 7A), suggesting that
the constitutive phenotype of E430K might result from α4 to α1
charge interaction. While the relative positions of these helices
is weakly constrained by these modeling algorithms, among the
charged residues in α1, K298 is positioned close enough to form
a salt-bridge with E430 in all three models with the allowance
of a simple clockwise rotation. To test this possibility, a K298E
mutation was constructed to complement E430K. While neither
of the single E430K or K298E mutations were phenol respon-
sive, the double mutant (K298E/E430K) restored both kinase
activity and phenol inducibility (Figure 7B). This compensating
mutation is consistent with an α1 and α4 interface impacting sig-
nal transmission, possibly connecting sugar/ChvE binding and
phenol induction to conformational transmission through this
helical bundle (Gao and Lynn, 2007).

DISCUSSION
Available protein structures and comparison algorithms have dra-
matically increased our ability to predict secondary and tertiary
folds from primary sequence information. However, determin-
ing how these static structures are coupled to function, partic-
ularly in proteins not amenable to biophysical and structural
analyses, remains a significant challenge. The integral mem-
brane VirA histidine kinase of Agrobacterium tumefaciens is
an example of remarkable signaling complexity controlling the
very first commitments to pathogenesis. We have been able
to predict the phenol-sensing linker domain as a GAF fold
(Gao and Lynn, 2007), a structure type known to bind cyclic
nucleotides, heme, simple chromophores, and branched-chain
amino acids (Martinez et al., 2005; Handa et al., 2008), and to

FIGURE 6 | Library screen for constitutive mutations within α4

(aa426–437). (A) β-galactosidase activity of the identified constitutively
induced mutants. A. tumefaciens strain A136 carrying pRG109 and wild-type

LKR or LKR mutants were assayed for vir gene expression with or without
300 μM AS. (B) A. tumefaciens strain A136 carrying pRG109 and wild-type
426K or 426K mutants were assayed for vir gene expression without inducers.
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FIGURE 7 | α1–α4 salt-bridge formation. (A) The amino acids in linker α1
and α4. The charged residues are shown in bold. (B) A. tumefaciens strain
A136 carrying pRG109 and LKR constructs with E430 and/or K298 mutants
were assayed for β-galactosidase activity in the presence or absence of
300 μM AS.

regulate secondary messenger metabolism (Sardiwal et al., 2005;
Levdikov et al., 2006; Yang et al., 2008). The GAF domain is
similar to PAS domains (Per-Arnt-Sim), an additional regula-
tory motif that is involved in protein functional control through
interaction with a broad variety of small molecules (Ponting and
Aravind, 1997; Hefti et al., 2004). Both GAF and PAS domains are
observed in histidine kinases, with an estimated 9 and 33% occur-
rence, respectively (Gao and Stock, 2009), and successful swaps
of those signal sensing domains between different HK have been
described (Kumita et al., 2003; Möglich et al., 2009), possibly indi-
cating a common signaling mechanism. The developed structural
model has now been used to examine the interactions regulat-
ing signal sensing and kinase activation of VirA. Specifically, the
helix bundle architecture in the VirA linker and simple rotational
motion mediated by these helices was proposed, and this mech-
anism has been further evaluated with a diverse series of fusions
and chimeric constructs.

The GCN4 leucine zipper motif was used to anchor the
orientation of the continuous helix proposed to connect the
linker domain and the DHp domain of the kinase. When
placed in the middle of the predicted coiled-coil region (aa450),
“ON” and “OFF” conformations were identified that could be
proposed to arise from different relative orientations of the
helices (Figure 8A). Amino acid insertions at the coiled-coil sug-
gested a clockwise rotation mediates VirA activation. The VirA
histidine kinase employs a trans-phosphorylation mechanism

(Brencic et al., 2004), similar to the EnvZ histidine kinase in
E. Coli (Cai and Inouye, 2003), meaning that the phosphoryla-
tion occurs across the subunits of the kinase dimer. A BLAST
search identified VirA to have 24% identity to the Thermotoga
maritima protein HK0853, whose entire cytoplasmic structure
has been solved via x-ray crystallography (Marina et al., 2005).
If VirA adopts a similar kinase fold as that of HK0853, the
predicted clockwise rotation should bring the His474 in VirA
closer to the ATP-binding domain of the other subunit for trans-
phosphorylation (Figure 8A). This model is consistent with pre-
vious analyses (Gao and Lynn, 2007), suggesting the rotational
motion controls kinase activity at the level of histidine phos-
phorylation rather than phosphoryl-transfer efficiency. However,
HK0853 of T. maritima adopts a different cis-phosphorylation
mechanism (Casino et al., 2009). The difference between VirA
and HK0853 can be reconciled by the alignment of the coiled-coil
region of both kinases (Figure 8B) and the proposed rotational
mechanism. As shown in Figure 8B, the identified coiled-coil
region of HK0853 is also located in front of the conserved H-
box (Marina et al., 2005). However, when compared with VirA, an
additional residue in HK0853 exists between Gly466 and Thr467
of VirA. Having this extra residue in the coiled-coil would shift
the conserved histidine of HK0853 (His260) from e to f in the
heptads, which involves a movement of +103◦ relative to the
position of His474 in VirA (Figure 8B). Therefore, the same rota-
tional motion in HK0853 would move His260 from an exposed
surface to the ATP-binding domain of the same subunit, requiring
a cis-phosphorylation mechanism (Figure 8B).

The observation of the high constitutive activities of 438K and
446K is consistent with the argument that the unimpeded kinase is
constitutively active while regulatory domains successively repress
this activity prior to signal perception release (McCullen and
Binns, 2006). The kinase truncation results narrow the repressive
region of the linker domain to aa426–437 (Figure 2C), and fur-
ther lead to the hypothesis that the helical associations within the
predicted helical bundle control the critical ON/OFF switch. An
“OFF” interface is maintained in the un-induced state, and signal
sensing switches it to the “ON” interface. Successful engineering
of rotational motions at this region by similar GCN4 fusions dis-
played a clear rotational activation (Figure 5), and predicts the
ON/OFF interface of α4–α4′ (Figure 8A). Furthermore, the con-
trol by GCN4 at both 426K and 450K indicates the rotational
motion is coherently transmitted from the linker domain to the
kinase core. Indeed, library screens for constitutive mutants iden-
tified both hydrophobic and electrostatic interactions stabilizing
the dimerization interface at α4–α4′. A recent study on an engi-
neered HK YF1 (generated by replacing the oxygen-sensing PAS
domain of Bradyrhizobium japonicum FixL with the FMN (flavin-
mononucleotide)-binding LOV (light-oxygen-voltage) domain
from Bacillus subtilis YtvA) provided structural insight into the
coiled-coil motifs mediating signal transmission between func-
tional domains (Diensthuber et al., 2013). Furthermore, it also
implies a simple motion and a fundamental mechanism that can
be shared between different signal sensing domains for kinase
output.

And most interestingly, this search for functional long-range
interactions identified the α1 helix as a key regulator for signal
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FIGURE 8 | VirA and Thermotoga maritima HK0853. (A) Proposed
auto-phosphorylation mechanism of VirA, mediated by α4 coiled-coil. The
conserved His474 of VirA, predicted to reside in the dimerization interface, is
rotated clockwise upon phenolic sensing to close proximity of the ATP-binding
domain at the other subunit for trans-phosphorylation and the subsequent VirG
phosphoryl transfer. The ON and OFF α4 coiled-coil interface is represented in
the helical wheel. (B) Sequence alignment of VirA and HK0853 at the coiled-coil

region preceding the conserved histidine. The predicted heptads of the
coiled-coil of both HK are shown from a to g, and the conserved histidine are
shown in bold. In TM0853, the additional residue in the kinase coiled-coil shifts
the registry of the conserved His260 by one residue, which creates a +103◦
displacement of His260 relative to VirA’s His474. Therefore, the same proposed
rotation upon signal sensing will move the conserved His260 in TM0853
toward the ATP-binding domain at the same subunit for cis-phosphorylation.

activation in this rotational mechanism. Salt-bridge associations
between K298 (α1) and E430 (α4) is consistent with the computa-
tional model of the helix bundle containing α1 and α4 interfaces
in the VirA dimer (Wang et al., 2002) and its regulator role

in signal transmission. The other charged residues in α1 were
previously found to be important in controlling a “piston-like”
motion, mediated by the monosaccharide/H+ sensing from the
periplasmic domain (Gao and Lynn, 2007). Therefore, this bundle
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may be the conversion point for both sugar/pH and phenol inputs
to counteract the repressive region in the dimerization interface
at α4–α4′. In addition, preliminary chemical cross-linking results
aimed at clarifying the receiver domain’s role in enhancing sig-
nal response precision indicated an association with the kinase
core at this coiled-coil region (Figure S4), but the nature of this
association is not yet clear.

The identified interactions point to highly cooperative long-
range motions transmitting signal association within the VirA
dimer to regulate the very first steps of pathogenesis. The posi-
tioning of α1, α2, and α4 vary in the three structural models for
the GAF domain and indeed these kinds of structural details are
the least well-defined in the structural algorithms. Figure 8 out-
lines a mechanistic model that is consistent with our chimeric
fusion, but the nature of the long-range transmission (Gao and
Stock, 2009) has also implicated symmetry switching models
(Moore and Hendrickson, 2012). A recent structural analysis
identified a critical proline residue in CpxA that contributes to
helix bending in that kinase (Mechaly et al., 2014), but that
residue is not conserved in VirA. The range of constructs pre-
pared here provide opportunities to identify constructs amenable
to direct structural analyses and further evaluation of these mod-
els. Most importantly, the remarkably coordinated action of VirA
in processing three separate input signals likely contributed sig-
nificantly to the success of this pathogen. These constructs now
allow the system to be simplified sufficiently to define which sig-
nal is being processed and to map the signaling landscape of the
host wound site for commitment to pathogenesis.
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For many pathogenic bacteria surface attachment is a required first step during host
interactions. Attachment can proceed to invasion of host tissue or cells or to establishment
of a multicellular bacterial community known as a biofilm. The transition from a unicellular,
often motile, state to a sessile, multicellular, biofilm-associated state is one of the most
important developmental decisions for bacteria. Agrobacterium tumefaciens genetically
transforms plant cells by transfer and integration of a segment of plasmid-encoded
transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for
plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety
of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized
that the biofilm state plays an important functional role in the ecology of this organism.
Surface attachment, motility, and cell division are coordinated through a complex regulatory
network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In
this review, we describe the mechanisms by which A. tumefaciens associates with
surfaces, and regulation of this process. We focus on the transition between flagellar-based
motility and surface attachment, and on the composition, production, and secretion of
multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by
A. tumefaciens is linked with virulence both mechanistically and through shared regulatory
molecules. We detail our current understanding of these and other regulatory schemes,
as well as the internal and external (environmental) cues mediating development of the
biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role
of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an
important model system contributing to our understanding of developmental transitions,
bacterial cell biology, and biofilm formation.

Keywords: Agrobacterium, attachment, biofilm, cyclic-di-GMP, polarity, motility

INTRODUCTION
A biofilm is defined as a multicellular community of one or
more microorganisms stably attached to a surface and frequently
encased in an extracellular matrix of secreted biopolymers (Coster-
ton et al., 1995). Biofilm formation proceeds from initial contact of
an individual bacterium with a surface and reversible attachment,
to stable surface association, microcolony formation, biofilm mat-
uration, and to eventual dispersal (Dazzo et al., 1984; Figure 1).
Biofilms can form on a wide variety of surfaces including liv-
ing tissues. These multicellular structures and the processes that
lead to them are of great interest as they are highly prevalent
in the bacterial world, and have profound impacts on society
in industrial, medical, and agricultural contexts. The physiol-
ogy of bacteria within a biofilm is quite distinct from the same
cells in a free-swimming, planktonic state. This is best exempli-
fied by the observation that biofilms can manifest dramatically
greater resistance to antimicrobial agents, both chemical (e.g.,
antibiotics, disinfectants) and biological (e.g., viruses, predatory
grazing by protists). The control of biofilm growth is therefore
quite challenging and a target of significant research. The ini-
tial steps of surface attachment that lead to eventual formation
of a biofilm are a significant target as control of this step in the

process could be used to inhibit the formation of biofilms before
they are established, or to promote biofilm formation for ben-
eficial processes. The attachment mechanisms of pathogens to
host tissues overlaps with those processes that lead to biofilm
formation, and for many pathogens, biofilm formation is an
important or requisite component of disease progression. Addi-
tionally, the survival of facultative pathogens in environmental
reservoirs, such as that for water-borne disease agents, can be
dramatically enhanced within biofilms, thereby affecting disease
ecology.

Agrobacterium tumefaciens is a plant pathogen which is clearly
capable of surface colonization and biofilm formation on host
tissues, and on abiotic surfaces. This review focuses primarily
on the molecular mechanisms by which A. tumefaciens initially
associates with surfaces and forms a biofilm, as well as the reg-
ulation of these mechanisms. Much of the data described below
has been determined in the laboratory using the nopaline-type
strain A. tumefaciens C58. More recent studies on a range of
Agrobacterium species have revealed similar trends in biofilm for-
mation (Abarca-Grau et al., 2011). It is acknowledged that in
many cases the connection between the described attachment and
biofilm formation mechanisms and ecological interactions of the
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FIGURE 1 | Key steps in attachment and biofilm formation by

Agrobacterium tumefaciens. Motile planktonic cells approach and physically
interact with potential attachment substrates. Initial surface interactions are
reversible and may depend on physiochemical forces at the interface of the
surface with the local medium. Following these initial surface interactions the
unipolar polysaccharide (UPP) is secreted by the bacterium at the point of
surface contact. This irreversible surface attachment establishes a site for
microcolony formation through continued growth and cell division of attached

bacteria as well as aggregation of neighboring microcolonies. During and
following this period cells secrete matrix components, including cellulose. As
the biofilm matures cells may differentiate into various metabolic and
reproductive states as the local environment within the biofilm changes.
Dispersal from the biofilm may be initiated by an internal developmental cue
or by an extracellular factor, as well as through release of motile daughter
cells from attached mother cells. Note that in this cartoon only the outer
membrane of the Gram-negative cell envelope is depicted.
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bacterium within the rhizosphere remain to be experimentally
validated, and much of the relevant environmental context for
A. tumefaciens, both on and off the plant host, remains poorly
understood.

PHYSICAL INTERACTIONS MEDIATING ATTACHMENT
The first step in attachment and biofilm formation is arrival at and
interaction with an appropriate substrate (Figure 1). In the rhi-
zosphere this step is frequently mediated by chemotaxis-directed
swimming motility as bacteria are attracted toward plant exudates.
For many species flagella may also serve as adhesins and there is
increasing evidence that inhibition of flagellar rotation, as hap-
pens when motile bacteria abut a solid surface, stimulates adhesin
production. Active motility may also be required to overcome
physiochemical forces at the substrate interface. Additional motil-
ity mechanisms as well as multiple adhesin molecules, including
pili and various exopolysaccharides, also participate in attachment
and biofilm formation.

FLAGELLUM-DEPENDENT MOTILITY AND ATTACHMENT
There are various forms of motility observed among bacteria, all
of which serve to transport bacteria, individually or collectively,
through a porous or liquid environment or across a surface (Jarrell
and McBride, 2008). These include flagellum-dependent swim-
ming and swarming motility, and flagellum-independent twitch-
ing, sliding, and gliding motilities. The particular form of motility
used by an individual bacterium is context-dependent and bacteria
frequently possess multiple means of locomotion. A. tumefaciens
is thought to utilize only flagellum-dependent swimming motility
(Loake et al., 1988; Shaw et al., 1991; Merritt et al., 2007). Although
surfactant production and swarming motility has been observed
in the related species A. vitis this mode of motility has not yet
been described for A. tumefaciens (Sule et al., 2009). As with
many motile bacteria, in aqueous environments A. tumefaciens
moves in a series of straight runs, with periodic redirections or
tumbles. Directed movement, either toward or away from chem-
ical and physical stimuli, functions by biasing the frequency of
tumbles.

Agrobacterium tumefaciens typically has a sparse tuft of four
to six flagellar filaments, sometimes described as a circumthe-
cal arrangement (Loake et al., 1988; Shaw et al., 1991). Flagellum
assembly occurs as a highly regulated process in which a master
regulator(s) controls flagellar gene expression. Subsequent regu-
latory switches drive stepwise expression of subsets of these genes
in coordination with different assembly intermediates including
the basal body, the hook, and then the flagellum filament. As with
several rhizobia, the master regulators of flagellar gene expression
in A. tumefaciens are called VisN and VisR (Vital for swimming),
transcription factors in the LuxR–FixJ superfamily (Sourjik et al.,
2000; Tambalo et al., 2010; Xu et al., 2013). VisN and VisR are
thought to function in a heterocomplex, and are required for
expression of virtually all genes involved in motility. This control
is, however, indirect, as VisNR primarily activate expression of
another transcription factor called Rem (named in Sinorhizobium
meliloti for Regulator of exponential growth motility), an OmpR-
type two-component response regulator with no obvious partner
sensor kinase. Rem is thought to directly activate transcription of

the flagellar genes. As will be discussed in more detail in subse-
quent sections, VisNR also regulate biofilm formation, conversely
with flagellar gene expression and independently of Rem, with a
profound impact on the process of attachment (Xu et al., 2013).

Motility and chemotaxis play an important role in A. tume-
faciens attachment, biofilm formation, and virulence. In the
rhizosphere, A. tumefaciens senses and responds directly to plant
exudates, chemotaxing toward plant wounds and inducing viru-
lence gene expression (Loake et al., 1988; Shaw et al., 1988, 1991;
Hawes and Smith, 1989; Shaw, 1991). Initial suggestions that
flagellar-based motility may influence attachment were based on
a set of transposon mutants that lost sensitivity to the flagellum-
specific phage GS2 and GS6 (Douglas et al., 1982). The attachment
defect in these strains, however, was later linked to pleiotropic
effects caused by lesions in chvA or chvB, genes responsible for
generation of β-1,2-glucans (Douglas et al., 1985). Furthermore,
chvAB mutant strains are virulent when inoculated into plant
wounds (Bradley et al., 1984). It was later shown that a puta-
tive “bald” strain of A. tumefaciens, engineered with disruptions
in three flagellin genes (the fourth flagellin gene flaD was not
known at that time) and microscopically devoid of flagella, was
moderately reduced in virulence (Chesnokova et al., 1997). Direct
experimental evidence that both chemotaxis and flagellar-based
motility affect attachment and biofilm formation was provided
by comparisons of defined A. tumefaciens mutants with either
no flagella, unpowered flagella, or impaired chemotaxis. Dele-
tion of flgE, encoding the flagellar hook protein FlgE, generated
aflagellate, non-motile bacteria while deletion of motA, encod-
ing one of the main components of the flagellar motor, resulted
in non-motile cells with unpowered flagella. Aside from their
lack of motility, both strains were markedly reduced in both
attachment and biofilm formation on abiotic surfaces under static
conditions (Merritt et al., 2007). Remarkably, under conditions of
constant media flow the �flgE mutant was increased in attach-
ment and biofilm formation relative to wild-type whereas the
�motA mutant remained impaired. This result suggests that in
A. tumefaciens, the flagellar filament is not required for attach-
ment and is unlikely to function as an adhesin (Smit et al., 1989a).
Rather, active rotation of the flagellar motor is required for both
efficient attachment and biofilm formation. Increased rates of
attachment and more robust biofilm generation by the �flgE
mutant in a flowing environment might be explained by reduced
rates of dispersal from established microcolonies and the biofilm
surface.

Chemotaxis mutants, generated by deletion of either the entire
chemotaxis operon or the chemotaxis sensor kinase CheA, do not
tumble and are impaired for swimming as measured on motility
agar plates, a standard laboratory assay for motility (Wright et al.,
1998; Merritt et al., 2007). These chemotaxis mutants also man-
ifest significant biofilm deficiencies under both static and flow
conditions. By selecting for spontaneous mutants of the �cheA
mutant with increased swimming motility in motility agar, Che−
mutation suppressors, or cms mutants, were isolated. These cms
mutants exhibited increased swimming motility on motility agar
compared to their parent chemotaxis mutants and were restored
for tumbling. Although they improved migration through swim
agar, the cms mutants remained compromised in attachment and

www.frontiersin.org May 2014 | Volume 5 | Article 176 | 75

http://www.frontiersin.org/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Heindl et al. Agrobacterium attachment and biofilms

biofilm formation (Merritt et al., 2007). Ectopic expression of a
plasmid-borne wild-type cheA allele enhanced motility in swim
agar but did not correct the attachment deficiency. The improved
migration of the cms mutants in motility agar in the absence
of true chemotaxis resembles the phenomenon known as pseu-
dotaxis (Ames et al., 1996). Pseudotaxis has been described in
several systems, including Escherichia coli and Salmonella enterica,
with spontaneous suppressors of chemotaxis mutants developing
mutations in flagellar switch genes that lead to increased tumbling
rates (Parkinson et al., 1983; Wolfe and Berg, 1989; Magariyama
et al., 1990; Sockett et al., 1992; Togashi et al., 1997). The A. tume-
faciens cms mutants restore tumbling as well, but the basis for their
attachment and biofilm deficiencies remains to be elucidated.

Ctp COMMON PILI AND REVERSIBLE ATTACHMENT
Once the bacterial cell is delivered to a surface via motility or
passively by flow, it must initiate physical contact with the sub-
stratum. This is often mediated by hair-like extracellular cell
surface appendages called pili (or fimbriae) that can function
in cell–cell or cell–surface adhesion. Pili in Gram-negative bac-
teria may be divided into several categories according to their
ultrastructure, protein composition, genetic determinants, and
mechanism of assembly. These include the type I pili assembled by
the chaperone/usher secretion system, the type IV pili assembled
by dedicated machinery related to type II secretion systems, and
conjugal pili assembled by type IV secretion systems (unrelated
to type IV pili; Thanassi et al., 2012). The A. tumefaciens genome
encodes at least four potential pili. These are the well-studied virB
T -pilus associated with T-DNA transfer, conjugal pili associated
with both pTi and pAt plasmids, and a locus with homology to
the type IVb Tad system from Aggregatibacter actinomycetemcomi-
tans (Wood et al., 2001). Of these systems, only the type IVb pilus
appears to play a role in attachment and biofilm formation by
A. tumefaciens.

Type IV pili are widespread among diverse bacteria. They are
common among Gram-negative species or proteobacteria such as
enteropathogenic and enterohemorrhagic E. coli, Legionella pneu-
mophila, Neisseria gonorrhoeae, and Vibrio cholerae (Strom and
Lory, 1993; Craig et al., 2004; Craig and Li, 2008). Type IV pili are
generally 6–9 nm wide, composed primarily of one major pilin
subunit, and often aggregate laterally to form bundles. In many
species cycles of extension and retraction of type IV pili generate
a significant mechanical force, enabling a variety of non-adhesive
functions including twitching motility, DNA uptake during trans-
formation, and phage infection (Mattick, 2002). Type IV major
pilin subunits are usually synthesized as a prepilin monomer with
an N-terminal hydrophilic leader peptide. Type IV pili are grouped
into two categories: type IVa pili, whose pilin subunits have short
leader peptides (<10 residues) and are 150–160 residues long, and
type IVb pili, whose pilin subunits have longer leader peptides
(15–30 residues) and are either long (180–200 residues) or are
very short (40–50 residues; Mattick, 2002; Thanassi et al., 2012).

The Tad (tight adhesion) system was originally discovered
in the periodontal pathogen Aggregatibacter actinomycetemcomi-
tans where it mediates attachment and biofilm formation in the
oral cavity and may contribute to infective carditis caused by
this organism (Scannapieco et al., 1983, 1987; Rosan et al., 1988;

Tomich et al., 2007). More recently homologous systems have
been identified in many bacterial and archaeal species, includ-
ing Yersinia pestis, V. cholerae, Mycobacterium tuberculosis, and
Pseudomonas aeruginosa (Kachlany et al., 2000; Tomich et al.,
2007). The tad locus is responsible for biogenesis of adhesive
Flp (fimbrial low-molecular-weight protein) pili, within the type
IVb pilus subclass, which are often involved in biofilm formation
and pathogenesis. Several Alphaproteobacteria closely related to A.
tumefaciens, including Caulobacter crescentus and S. meliloti, also
encode genes homologous to the Aggregatibacter actinomycetem-
comitans tad locus (Skerker and Shapiro, 2000; Fields et al., 2012).
In C. crescentus this locus, the Caulobacter pilus assembly locus
(Cpa), is responsible for generating developmentally regulated
polar pili that are required for surface interactions and attach-
ment (Skerker and Shapiro, 2000; Bodenmiller et al., 2004; Li
et al., 2012). The A. tumefaciens genome sequence revealed the
ctpABCDEFGHI (cluster of type IV pili) locus homologous to
the Aggregatibacter actinomycetemcomitans tad locus (Wood et al.,
2001; Tomich et al., 2007). For the A. tumefaciens locus, ctpA is
predicted to encode the major pilin subunit and ctpB the prepilin
peptidase that cleaves the leader peptide for pilin maturation.
The remaining ctp genes encode components of the biosynthetic
machinery and related secretion apparatus. Transmission electron
microscopy (TEM) of A. tumefaciens reveals the presence of thin
filaments, significantly thinner than flagella, arranged around the
cell surface and frequently shed into the external milieu. These
filaments are absent in TEM images of mutant strains deleted for
ctp genes suggesting that these genes encode Flp-type pili (Wang
et al., 2014). As in C. crescentus, the Ctp pilus, or a component
thereof, may be involved in attachment and subsequent biofilm
formation. Mutations in ctpA, ctpB, or ctpG (a predicted ATPase
responsible for energizing pilus biogenesis) result in partial but
significant decreases in attachment and biofilm formation, and
a notable decrease in reversible surface interaction compared to
the wild-type strain. Taken together, these results indicate that
the ctp locus is involved both in pilus assembly, attachment and
biofilm formation. Unexpectedly, mature pilin subunits them-
selves appear to contribute to attachment and biofilm formation,
even in mutants for which the Ctp pilus does not assemble (Wang
et al., 2014). Modulation of surface interactions by pilin pro-
teins independent of pili has been reported in other bacteria.
For example, the minor pilin subunits of P. aeruginosa, PilX and
PilW, modulate intracellular levels of the second messenger cyclic
diguanylate monophosphate (cyclic-di-GMP, or c-di-GMP) and
consequently inhibit swarming motility in this pathogen (Kuchma
et al., 2012).

POLAR ATTACHMENT TO SURFACES
At some point weak, reversible surface interactions can transi-
tion to more stable associations (Figure 1). Several well-studied
biofilm-forming bacteria such as P. aeruginosa transition from
transient interactions in which single cell poles engage the sur-
face, to a longitudinal position (Petrova and Sauer, 2012). This
is thought to represent the switch to highly stable, irreversible
attachment. Polar surface binding is evident in many micro-
graphs of A. tumefaciens associated with plant tissues (Pueppke
and Hawes, 1985; Brown et al., 2012), and is consistent on abiotic
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surfaces in flowing and non-flowing environments, and within
complex biofilms (Li et al., 2012; Xu et al., 2012, 2013). It is not
clear that polar surface interaction is the only way in which A.
tumefaciens engages with surfaces, but it is certainly a common
mode of interaction. In contrast to the switch from polar to non-
polar interactions observed for P. aeruginosa and other bacteria,
many stably attached A. tumefaciens remain associated by a sin-
gle pole. Recent studies have suggested a model in which during
T-DNA transfer to plants A. tumefaciens transitions to length-
wise interactions and transfers the DNA via type IV secretion
complexes interspersed in an arrayed pattern along the length of
the cell (Aguilar et al., 2010, 2011; Cameron et al., 2012). This
work uses very high resolution deconvolution microscopy and
contradicts previous studies indicating that the type IV secre-
tion complexes localize predominantly to poles (Lai et al., 2000;
Atmakuri et al., 2003, 2007; Judd et al., 2005a,b). It is certainly
possible that although A. tumefaciens might establish stable polar
interactions with surfaces, upon induction of the Vir system and
initiation of T-DNA transfer to plant cells, it switches to a length-
wise association. Although we observe consistent polar association
with both living plants and abiotic surfaces, the two models are
not mutually exclusive. Polar attachment is also consistent with the
asymmetric budding division of A. tumefaciens (described below)
where newly born daughter cells are released from the attached
mother cell (Brown et al., 2012). The relationship between polar
surface binding and the orientation of the A. tumefaciens cell dur-
ing T-DNA transfer has yet to be explained, and new insights
may require time lapse analysis of surface binding and T-DNA
transfer.

EXTRUSION OF A UNIPOLAR POLYSACCHARIDE ADHESIN
The stable polar attachment of individual cells to surfaces and to
other cells seemed likely to be mediated by adhesin molecules
in some manner localized to the cell pole. Unipolar attach-
ment mediated by a polarly localized polysaccharide-containing
adhesin is particularly common among Alphaproteobacteria, and
is best studied in the Caulobacteraceae and Rhizobiaceae fam-
ilies. Among the stalked members of the Caulobacteraceae this
adhesin is called the holdfast and has been extensively studied
in C. crescentus, in which it is produced at the end of the polar
stalk (Poindexter and Cohenbazire, 1964; Poindexter, 1981). In
the related Asticcacaulis biprosthecum, and Asticcacaulis excentri-
cus with non-polar stalks, the holdfast is not localized to the stalk
ends, but rather the holdfast localizes to the cell pole (Poindex-
ter and Cohenbazire, 1964; Umbreit and Pate, 1978; Merker
and Smit, 1988). In these bacteria, holdfast synthesis and export
occurs via a Wzy-type mechanism related to capsule biosynthe-
sis in E. coli (Smith et al., 2003; Toh et al., 2008; Cuthbertson
et al., 2009). The holdfast of C. crescentus is well-characterized
in terms of synthesis, export, and physical properties, yet little is
known regarding its composition (Tsang et al., 2006; Berne et al.,
2013). Based on lectin binding the holdfast is thought to contain
N-acetylglucosamine residues and is anchored to the cell surface
via a functional amyloid protein (Merker and Smit, 1988; Hardy
et al., 2010). The strength of this adhesive is remarkable and it
has been described as “nature’s strongest glue” (Tsang et al., 2006).
Several Rhizobiaceae also attach to surfaces via a polysaccharide

adhesin localized to a single cell pole (Dazzo et al., 1984). Rhizo-
bium leguminosarum, for example, has a unipolar glucomannan
adhesin (Laus et al., 2006). This polysaccharide contains largely
glucose and mannose sugar residues, plus detectable amounts
of galactose and rhamnose, and is required for specific binding
to pea roots, recognized by a lectin produced by peas. Cur-
rent data show that this unipolar glucomannan interacts directly
with a plant lectin rather than acting as a general adhesin. An
additional acidic polysaccharide has also been shown to partic-
ipate in attachment to plastic surfaces and biofilm formation
in R. leguminosarum, although there is no indication that this
polysaccharide is polarly localized (Russo et al., 2006; Williams
et al., 2008). More recently a glucomannan-independent acidic
polysaccharide-dependent polar attachment has been observed for
R. leguminosarum, a mode of attachment that is also dependent
on the presence of plant arabinogalactan-like glycoproteins (Xie
et al., 2012).

The unipolar polysaccharide (UPP) of A. tumefaciens is an
extracellular polysaccharide with facile similarity to both the
C. crescentus holdfast and the glucomannan exopolysaccharide of
R. leguminosarum (Tomlinson and Fuqua, 2009; Xu et al., 2012).
Like the holdfast of C. crescentus and Asticcacaulis biprosthecum,
the UPP is produced at a single cell pole upon surface contact
(Li et al., 2012; Xu et al., 2012). Wild-type A. tumefaciens rarely
produces the UPP during planktonic or colony growth (Xu et al.,
2013). The C. crescentus holdfast is also developmentally regulated
and this may be the case as well for the A. tumefaciens UPP (Janaki-
raman and Brun, 1999; Kim et al., 2013). The UPP is known to
play an essential role in attachment and biofilm formation on abi-
otic surfaces, and may also be required for efficient binding to host
plants (Xu et al., 2012, 2013). Although it is not yet known how
its adhesive strength compares to the C. crescentus holdfast, it is
clearly an effective cellular adhesin.

Visualization of the UPP was achieved by staining surface-
adhered cells with fluorescently labeled wheat germ agglutinin
(WGA), an N-acetylglucosamine-specific lectin known to label
the holdfast of C. crescentus (Tomlinson and Fuqua, 2009). Later it
was shown that the N-acetylgalactosamine-specific lectin Dolichos
bifloris agglutinin (DBA) similarly labeled a polarly localized struc-
ture (Xu et al., 2012). Thus, the UPP is likely to contain at least
two sugars, N-acetylglucosamine and N-acetylgalactosamine. The
first gene verified to be required for UPP biosynthesis was uppE,
a homolog of C. crescentus hfsE, the initiating glycosyltransferase
for holdfast synthesis. The uppE locus was identified in a screen
for A. tumefaciens mutants that were deficient in attachment and
biofilm formation (Xu et al., 2012). It is clear that uppE and the
surrounding genes comprise an incomplete Wzy-type polysaccha-
ride biosynthesis cluster, uppABCDEF (Atu1235–1240), and are
orthologous to the genes required for unipolar glucomannan in
R. leguminosarum (Williams et al., 2008). This suggests that both
adhesins may share structural or functional similarities. Nonethe-
less, the unipolar glucomannan of R. leguminosarum and the
UPP of A. tumefaciens are clearly not identical, perhaps reflect-
ing different host preferences and lifestyles. It is hypothesized
that additional genes are involved in UPP biosynthesis as sev-
eral key functions including a flippase (Wzx) and a polysaccharide
polymerase (Wzy) homolog have not yet been identified.
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Interestingly, the requirement for uppE is conditional. Phos-
phate limitation abrogates the requirement for uppE. Genetic
analysis revealed a conditional redundancy for uppE and a par-
alogous initiating glycosyltransferase, Atu0102 (Xu et al., 2012).
The uppE gene is required for UPP biosynthesis under phosphate-
replete conditions whereas uppE and Atu0102 function redun-
dantly under conditions of limiting phosphate. The underlying
basis for this conditional functional redundancy remains unclear,
but may involve the intracellular signal c-di-GMP.

CONTACT-DEPENDENT ATTACHMENT AND JUST-IN-TIME ADHESIN
DEPLOYMENT
Thus far only the general requirement for the UPP in A. tumefa-
ciens attachment and biofilm formation has been described. It was
also noted that the UPP is not produced by planktonic cells, or cells
in colonies. How is such temporal control over UPP synthesis and
export achieved? In several genera of Alphaproteobacteria, includ-
ing C. crescentus, A. tumefaciens, and A. biprosthecum, contact with
a solid surface stimulates production of a polar polysaccharide-
containing adhesin such as the holdfast and UPP. Biosynthesis
and export of this adhesin enables the transition from reversible
to irreversible attachment (Li et al., 2012). Surface sensing, and
subsequent adhesin production, was demonstrated to be pili- and
flagellum-dependent in C. crescentus, requiring inhibition of the
flagellar motor. The exact molecular mechanism by which inhi-
bition of flagellar rotation regulates adhesin production is not
clear. This would not, however, be the first example of the flag-
ellum being used as an environmental sensor. In the pathogenic
marine bacterium V. parahaemolyticus, it has been shown that
the polar flagellum senses surface contact, enabling differentia-
tion of this organism into a swarming motility-competent cell
type (McCarter and Silverman, 1990; Gode-Potratz et al., 2011).
In V. cholerae flagellum interaction with a surface results in a
transient loss in membrane potential that ultimately effects the
transition to the attached state (Van Dellen et al., 2008). More
recently, inhibition of the MotA/MotB stator in Bacillus subtilis
was demonstrated to effect poly-γ-glutamate (PGA) production,
an extracellular capsular polymer (Chan et al., 2014). It is intrigu-
ing to imagine that a similar mechanism might extend into the
Alphaproteobacteria.

The mechanism of surface sensing and consequent adhesin pro-
duction in A. tumefaciens and Asticcacaulis biprosthecum is not
known. It is hypothesized that flagellar rotation and pili may par-
ticipate, as in C. crescentus. Of note, and described earlier, polar
adhesin production and just-in-time deployment functions nor-
mally in non-piliated A. tumefaciens mutants (Wang et al., 2014).
Importantly, contact-dependent polar adhesin production in A.
tumefaciens was also shown to efficiently occur on the plant root
surface (Li et al., 2012). It is likely that the regulatory signals that
direct just-in-time deployment of the A. tumefaciens UPP adhesin
control additional aspects related to attachment and biofilm for-
mation. Indeed it has been suggested that the elaboration of
cellulose fibrils occurs only after the initial attachment process
in both A. tumefaciens and R. leguminosarum (Matthysse et al.,
1981; Smit et al., 1987). Just-in-time deployment of the UPP is
hypothesized to prevent occlusion of the adhesive by soluble lig-
ands and unproductive autoaggregation of planktonic bacteria,

also allowing conservation of resources until the bacterial cell is
proximal to a solid surface. As mentioned above and described
below, planktonic A. tumefaciens cells generally do not generate
the polar adhesin unless key regulatory components and signaling
circuits are disrupted.

BIOFILM COMPOSITION
Over time surfaces colonized by irreversibly attached individ-
ual A. tumefaciens cells may undergo a profound transition to
a multicellular state, the biofilm (Figure 1). Biofilms comprise
a community of bacterial cells attached to a surface and sur-
rounded by a hydrated macromolecular matrix (Costerton et al.,
1995). Matrix components may include one or more extracellular
polymeric substances, including exopolysaccharides, extracellular
DNA (eDNA), and protein components (Flemming and Wingen-
der, 2010). The A. tumefaciens genome encodes for production of
at least six polysaccharide species, several of which play roles in
attachment and biofilm formation. These include the UPP adhesin
(described above), cellulose, succinoglycan, cyclic β-1,2-glucans,
β-1,3-glucan (curdlan), and outer membrane lipopolysaccharide
(LPS). Thus far there are no data suggesting that either eDNA
or proteinaceous components are found as structural elements
in the matrix of the mature A. tumefaciens biofilm. A possible
role for a protein adhesin, the so-called rhicadhesin (Rhizobiaceae
calcium-binding adhesin) protein has been shown for attachment.
The matrix of many bacterial species contains one or more func-
tional amyloid proteins as a structural element, with perhaps the
most well-known examples being CsgA (curlin) of E. coli and
TasA of B. subtilis (DePas and Chapman, 2012). Several strains
of A. tumefaciens and related strains from R. etli encode a clus-
ter of genes with homology to the functional amyloid curlin,
but these have yet to be assigned any physiological role in these
bacteria.

CELLULOSE
Cellulose is frequently found as a component of the biofilm matrix
in many organisms including several members of the Rhizobi-
aceae (Karatan and Watnick, 2009; Flemming and Wingender,
2010; Bogino et al., 2013). Cellulose, perhaps the most abun-
dant organic polymer on Earth, is produced by nearly all plants
and many bacteria, as well as within the animal and fungal king-
doms (Delmer, 1987; Römling, 2002; Matthysse et al., 2004; Sagane
et al., 2010). Cellulose is a homopolymer of β-1, 4-linked glucose
monomers with individual cellulose fibers consisting of thousands
of individual subunits. The mechanism of prokaryotic cellulose
biosynthesis has been well-studied in the Alphaproteobacterium
Gluconacetobacter xylinus (Ross et al., 1987). Homologous systems
for cellulose biosynthesis were later found in A. tumefaciens, E. coli,
and Salmonella enterica, among others (Amikam and Benziman,
1989; Matthysse et al., 1995b; Zogaj et al., 2001). Prior to iden-
tification of synthetic and regulatory genes involved in cellulose
production in A. tumefaciens, a role for cellulose in attachment to
plant surfaces was reported (Matthysse et al., 1981). The produc-
tion of cellulose by A. tumefaciens results in loose aggregation of
planktonic cells (flocculation), pellicle formation in static cultures,
and loose attachment to surfaces. Although not absolutely required
for virulence, cellulose mutants do show a slightly reduced ability
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to colonize plants and induce tumor formation (Matthysse, 1983).
Overproduction of cellulose enhances attachment to plant roots
in A. tumefaciens (Matthysse et al., 2005). Cellulose synthesis in
A. tumefaciens requires genes in two operons, celABCG and celDE
(Matthysse, 1995; Matthysse et al., 1995b, 2005). The celA gene
encodes a protein homologous to the catalytic subunit of cellu-
lose synthase (BcsA) from G. xylinus, and contains a PilZ domain
at the C-terminus, allowing for potential allosteric regulation via
c-di-GMP. CelB homologs are also known to bind c-di-GMP and
likely function as regulatory subunits of cellulose synthase. CelC
has homology to secreted endoglucanases while celD and celE are
soluble, cytoplasmic components involved in early steps of cel-
lulose polymerization. Several negative and positive regulators of
cellulose synthesis have been identified, including CelG and CelI
(Matthysse et al., 1995a). Mutations in either celG or celI results
in increased cellulose production, indicating that these gene prod-
ucts encode negative regulators of synthesis. Mutations in the A.
tumefaciens homologs of divK or pleD (celR) also affect cellu-
lose production (see Coordination of Division and Development;
Barnhart et al., 2013, 2014). Similar results have been observed
in R. leguminosarum (Ausmees et al., 1999). As described below,
many regulatory aspects of cellulose synthesis parallel that of UPP
regulation, with c-di-GMP being one of the primary regulators.

ROLE OF OTHER POLYSACCHARIDES IN ATTACHMENT AND BIOFILM
FORMATION
As mentioned earlier, aside from the UPP and cellulose, A.
tumefaciens produces at least three additional exopolysaccha-
rides: succinoglycan, cyclic β-1,2-glucans, and curdlan (Nakanishi
et al., 1976; Hisamatsu et al., 1978; Zevenhuizen and Vanneerven,
1983; Karnezis et al., 2003). The major acidic EPS produced by
A. tumefaciens is succinoglycan, the product of the exo genes
(Cangelosi et al., 1987). The role of succinoglycan in the biol-
ogy of A. tumefaciens is unclear. Mutants unable to synthesize
succinoglycan are fully virulent, efficiently attach to plant sur-
faces, and are not diminished in biofilm formation (Tomlinson
et al., 2010). In contrast, in S. meliloti succinoglycan (also called
EPS I) is required for biofilm formation and productive interac-
tion with the plant host (Cheng and Walker, 1998; Fujishige et al.,
2006). It was recently proposed that the physiochemical prop-
erties of succinoglycan contribute to aggregation in S. meliloti,
and that this may eventually lead to productive biofilm forma-
tion (Dorken et al., 2012). It is possible that succinoglycan may
play a similar role in some environments for A. tumefaciens,
although at present there are no supporting data to this effect.
In both A. tumefaciens and S. meliloti succinoglycan synthesis
is negatively regulated by a periplasmic protein, ExoR (Chen
et al., 2008; Tomlinson et al., 2010). ExoR is itself sensitive to pH
and thus it is possible that one function of A. tumefaciens suc-
cinoglycan is related to acid tolerance (Lu et al., 2012; Wu et al.,
2012).

β-1,2-Glucans may be generated in linear or cyclic forms and
are synthesized by many rhizobia (Breedveld and Miller, 1994).
In A. tumefaciens β-1,2-glucans are cyclic, the product of the
ChvB synthase (Puvanesarajah et al., 1985; Zorreguieta et al., 1988;
Castro et al., 1996). The chvB (chromosomal virulence) gene was
originally isolated in a transposon screen for mutants unable to

attach to plant cells and required for virulence (Douglas et al.,
1982). A second locus adjacent to chvB also identified in this
screen is chvA, the product of which is required for export of
β-1,2-glucans into the periplasm where they are believed to play a
role in osmoadaptation (de Iannino and Ugalde, 1989; O’Connell
and Handelsman, 1989). While the genes directing synthesis of
cyclic β-1,2-glucans were isolated due to their attachment and vir-
ulence phenotypes, a direct role for this polysaccharide species
in attachment has not been demonstrated. Rather, impaired
osmoregulation within the periplasmic space results in pleiotropic
effects on the cell surface, several of which likely contribute to the
attachment deficiency (Breedveld and Miller, 1998). As well as
being deficient in attachment to plant surfaces, mutants in chvA or
chvB also show a modest decrease in biofilm formation (Xu et al.,
2012).

Curdlan is a neutral β-1,3-glucan produced by many bacteria
and utilized as a gelling agent in the food industry (McIntosh
et al., 2005). While most work on curdlan biosynthesis has been
performed in the curdlan-overproducing strain Agrobacterium sp.
ATCC 31749, genome analysis of A. tumefaciens indicates that the
curdlan synthesis genes are conserved. Although the regulation of
curdlan synthesis in Agrobacterium sp. ATCC 31749 shares many
features with regulation of other exopolysaccharides, no biological
function has been described for this polysaccharide species in A.
tumefaciens (Ruffing and Chen, 2012). Deletion of crdS, encoding
the curdlan synthase homolog in A. tumefaciens has no effect on
attachment and biofilm formation (Xu et al., 2012).

Early work suggested that A. tumefaciens LPS was required for
attachment to plant surfaces (Lippincott and Lippincott, 1969;
Whatley et al.,1976). This work demonstrated inhibition of attach-
ment to wound sites with crude preparations of LPS. It is unclear
what other inhibitors may have been present in this preparation.
Other than these findings, there are no other data supporting a role
for LPS in attachment and biofilm formation, although many of
the genes encoding LPS synthesis would be essential, and genetic
studies might therefore not reveal a role for this surface polysac-
charide. The localization of LPS on the outer leaflet of the outer
membrane certainly might impart an influence on surface interac-
tions, and in other bacteria LPS has been demonstrated to impact
attachment to surfaces.

RHICADHESIN AND RAPS
Although the UPP and cellulose are important adhesins mediating
attachment and biofilm formation in A. tumefaciens, it is possible
that additional adhesins may contribute to either process. The
activity of these putative adhesins may be discernible only under
particular circumstances, indicative of temporal or developmen-
tal regulation or a specific plant host interaction. One possible
adhesin present in the rhizobia is the calcium-dependent protein
rhicadhesin, originally identified in R. leguminosarum strain 248
(Smit et al., 1987). Under calcium-limiting conditions R. legumi-
nosarum was reduced both in its ability to agglutinate to glass and
to attach to pea root hair tips. This same activity was described
for A. tumefaciens strains 1251 and LBA1010 (Smit et al., 1987,
1989b). Rhicadhesin was further characterized as a small (14 kDa),
soluble, extracellular component inactivated by heat and pro-
tease treatment (Smit et al., 1989a,b). The gene or genes encoding
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rhicadhesin have yet to be identified and therefore it is unclear
that the rhicadhesin activity isolated from each strain is due to
homologous proteins.

An additional set of calcium-binding adhesins were identified
in R. leguminosarum and R. etli in an elegant experiment designed
to identify the rhicadhesin coding sequence (Ausmees et al., 2001).
Using a phage-display cloning approach the genes for four Rap
(Rhizobium-adhering proteins) proteins were isolated. The phy-
logenetic distribution of these proteins is limited compared to
rhicadhesin and it is unlikely that they represent the same activ-
ity. The Rap proteins were originally proposed to be agglutinins
secreted by the PrsD–PrsE type I secretion system. These proteins
recognize a polar cell-surface receptor on the bacterium and are
capable of mediating autoagglutination and possibly attachment
to plant roots, glass, and polystyrene (Russo et al., 2006). Recent
work has demonstrated that RapA2 of R. leguminosarum specif-
ically binds the acidic exopolysaccharide in a calcium-dependent
manner and may contribute to development of the biofilm matrix
in this organism (Abdian et al., 2013). No Rap proteins have
been identified in A. tumefaciens and thus, as for rhicadhesin,
any role for these proteins in attachment or biofilm formation by
A. tumefaciens is speculative.

THE ROLE OF THE At PLASMID
Initial attempts at isolation and characterization of A. tumefaciens
mutants that were impaired in early stages of attachment were
extensively reported but ultimately raised several questions that
have yet to be fully resolved. Tn5 transposon mutagenesis and
microscopic observation of mutants unable to attach to carrot
suspension culture cells led to the identification of a 29-kb region
of genomic DNA that was hypothesized to harbor multiple att
genes involved in attachment (Matthysse, 1987; Matthysse et al.,
2000). At the time of the initial isolation and characterization
of the att genes the complete genome sequence of A. tumefa-
ciens had not been published. The A. tumefaciens C58 genome
sequence revealed that the att genes were located on the acces-
sory plasmid, pAtC58 (Goodner et al., 2001; Wood et al., 2001).
This result conflicted with earlier reports that the pAt plasmid
was not required for virulence (Hooykaas et al., 1977; Rosenberg
and Huguet, 1984; Hynes et al., 1985). It was later confirmed that
although the pAt plasmid can mildly influence virulence and eco-
logical fitness of the organism, pAtC58-cured derivatives remain
fully virulent with no obvious attachment or virulence deficiency
(Nair et al., 2003; Morton et al., 2013). It was further reported
that several of the original att transposon insertions generated
dominant negative alleles and thus the effect of the intact genes
was questioned (Matthysse et al., 2008). It seems likely that the
pAt plasmid may influence A. tumefaciens ecology by broaden-
ing the scope of nutritional resources in the rhizosphere via genes
that impart catabolism of several common soil compounds (Baek
et al., 2005; Chai et al., 2007). Nonetheless, the role of this plasmid
and the att genes in attachment and biofilm formation, if any, is
unclear.

IMPACT OF THE PLANT HOST ON ATTACHMENT AND BIOFILMS
It is clear that association of bacteria with plant tissues is pro-
foundly, in some cases, dominantly, influenced by the host plant.

Nutrient exudation, surface chemistry and defense responses
all combine to influence which bacteria efficiently colonize the
plant, establishing beneficial, neutral, or pathogenic interac-
tions. In several cases, specific receptors have been identified,
such as plant lectins that recognize specific polysaccharides pro-
duced by colonizing rhizobia (van Rhijn et al., 2001). There
are several candidates for plant surface receptors for A. tume-
faciens, as well as other plant functions that are required for
A. tumefaciens infection and T-DNA transfer. Using a collec-
tion of T-DNA disruption libraries in the host plant Arabidopsis
thaliana several candidate plant receptors for A. tumefaciens
were identified (Gelvin, 2010). These include mutants for an
arabinogalactan protein, AtAGP17, a cellulose synthase-like pro-
tein, CslA-09, and β-expansin, so-called rat mutants (resistant
to Agrobacterium transformation; Nam et al., 1999; Zhu et al.,
2003; Gaspar et al., 2004). Using an analogous screen for Ara-
bidopsis mutants that were hypersusceptible to Agrobacterium
transformation (hat mutants) the putative plant receptor pro-
tein AT14A was identified as required for efficient attachment
(Sardesai et al., 2013). Direct screens for proteins that interact
with the Vir machinery also identified potential targets (Hwang
and Gelvin, 2004). It remains unclear which of these candidate
functions plays a major role in initial attachment, and it is certainly
plausible that attachment processes which lead to T-DNA transfer
are not identical to those that result in benign associations. There
remains much to learn about the bacterial population dynamics
on plant tissue surfaces, the impact of plant structures and its
response to the colonizing bacteria, and how these influence the
outcome of interactions of plants with A. tumefaciens in the natural
environment.

REGULATION OF ATTACHMENT AND BIOFILM FORMATION
The transition of bacteria from the motile to the sessile lifestyle,
and then to the biofilm mode of growth involves several phe-
notypic changes mediated at both transcriptional and post-
translational levels. Following initial surface contact, flagellar
motility is often repressed post-translationally utilizing mecha-
nisms ranging from rotational slow-down to complete flagellar
ejection (Shapiro and Maizel, 1973; Aldridge and Jenal, 1999; Blair
et al., 2008). Repression of motility allows for stabilization of sur-
face interactions and irreversible attachment mediated by one or
more adhesins (Foster and Hook, 1998; Hinsa et al., 2003; Tsang
et al., 2006; Berne et al., 2013; Xu et al., 2013). Once irreversibly
attached to a surface individual cells can aggregate, forming micro-
colonies that become enmeshed by the biofilm matrix (Flemming
and Wingender, 2010). Within the biofilm cells may commu-
nicate, grow, divide, and die, resulting in a metabolically and
developmentally heterogeneous population (Stewart and Franklin,
2008). Although establishment of a biofilm is often considered an
irreversible process for an individual bacterium there are occa-
sions when the biofilm matrix is actively degraded resulting in
dispersal of embedded cells. While dispersal has been observed
for attached and biofilm-associated A. tumefaciens the mecha-
nism by which this occurs, and how it is regulated, has not been
described (Hibbing and Fuqua, 2012). Surface contact, environ-
mental conditions such as oxygen and phosphate levels and pH,
and intracellular signaling molecules, often integrated through
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transcriptional regulatory pathways or posttranscriptional con-
trols have been shown to directly influence attachment and biofilm
formation in A. tumefaciens (Figure 2).

CYCLIC-DI-GMP
One of the primary signaling molecules that controls the motile-
to-sessile transition in diverse bacteria is now recognized to be

c-di-GMP (Figure 3; Hengge, 2009; Römling et al., 2013). Cyclic
nucleotides are widespread in both prokaryotes and eukaryotes,
with phenotypic effects ranging from nutrient utilization and cell
division (cAMP), to cyst formation and pathogenesis (cGMP), to
cell cycle control (c-di-AMP; Botsford and Harman, 1992; Beavo
and Brunton, 2002; Witte et al., 2008; Gomelsky, 2011; Marden
et al., 2011; An et al., 2013). C-di-GMP was first described as a

FIGURE 2 | Multiple inputs regulate attachment and biofilm formation by

Agrobacterium tumefaciens. Depicted in the image are the known factors
regulating attachment and biofilm formation and discussed in the text. Solid
black arrows and bars indicate direct positive or negative regulation,

respectively. Hashed arrows and bars indicate regulation that is indirect or
where the molecular mechanism has not been defined. Note that the cell
envelope is represented only by the outer (red) and inner (black) membranes,
and the periplasmic peptidoglycan is not shown.
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molecule that could activate cellulose synthase in G. xylinus and
A. tumefaciens (Ross et al., 1987; Amikam and Benziman, 1989).
Over two decades of research has discovered a variety of bacterial
phenotypes regulated by c-di-GMP, including biofilm formation,
cell cycle progression, and motility, among others (Römling et al.,
2013).

The intracellular concentration of c-di-GMP is controlled by
the opposing action of two enzymatic functions: diguanylate
cyclases (DGCs), that synthesize c-di-GMP from two molecules
of the common nucleotide GTP, and phosphodiesterases (PDEs),
that degrade it (Figure 3; Schirmer and Jenal, 2009). DGC proteins
are characterized by a GGDEF catalytic motif (Paul et al., 2004).
Many DGCs also contain an allosteric inhibitory region known as
the I-site (Chan et al., 2004). C-di-GMP-specific PDEs are charac-
terized by the presence of either an EAL or HD-GYP catalytic motif
(Schmidt et al., 2005; Ryan et al., 2006; Rao et al., 2008). The ubiq-
uity of c-di-GMP signaling was evident early on, with GGDEF-
and EAL-containing domains recognized as conserved domains
of unknown function (DUF1 and DUF2, respectively) prior to
demonstration of their enzymatic activity. Many bacteria have
multiple proteins with GGDEF and EAL domains, often associated
with other regulatory domains. Many proteins also have both DGC
and EAL domains, and the same protein may catalyze c-di-GMP
synthesis and degradation. Each domain can be individually regu-
lated, hinting at the complexity and diversity of c-di-GMP-specific
signaling. C-di-GMP generally functions allosterically by binding
to regulatory domains in proteins or RNA molecules. There are
several common c-di-GMP-binding domains found in bacteria
including the PilZ domain, at least one two-component response
regulator, degenerate (non-functional) EAL domains, and I-sites
proximal to inactive GGDEF domains. Binding of c-di-GMP to
these domains may be transduced to cis regulatory domains within
the same protein or to trans signal transduction partners that ulti-
mately effect a c-di-GMP-dependent phenotype (Pratt et al., 2007;
Römling et al., 2013). Several transcription factors are c-di-GMP
responsive, transducing the signal to changes in gene expression
(Hickman and Harwood, 2008; Leduc and Roberts, 2009; Krasteva
et al., 2010). In addition, riboswitches that specifically sense c-di-
GMP with extremely high affinity (KD ∼ 1 nM) have been shown
to modulate transcriptional activity and RNA splicing (Sudarsan
et al., 2008; Lee et al., 2010).

Although c-di-GMP can control a wide range of phenotypes, a
common regulatory pattern of c-di-GMP signaling entails altered
levels reciprocally affecting two primary phenotypes: motility and
attachment. Increasing c-di-GMP levels generally leads to reduced
motility and concomitant enhanced attachment. Examples of
c-di-GMP-dependent motility phenotypes include the complete
flagellar ejection seen in C. crescentus, and the reduction of swim-
ming velocity by interaction of a c-di-GMP binding protein with
the flagellar motor, observed for E. coli (Aldridge and Jenal, 1999;
Boehm et al., 2010). C-di-GMP levels may affect both adhesin pro-
duction and maintenance of these adhesins on the cell surface. This
is demonstrated by control of secretion of MRP adhesin in Pecto-
bacterium atrosepticum and preservation of the LapA adhesin on
the Pseudomonas fluorescens cell surface (Newell et al., 2011; Perez-
Mendoza et al., 2011). In addition, production of biofilm matrix
components is often influenced by c-di-GMP. A recent example is

FIGURE 3 |The second messenger cyclic-di-GMP. Cyclic diguanylate
monophosphate, or cyclic-di-GMP (c-di-GMP) is a common second
messenger in prokaryotic systems. C-di-GMP is generated from two
molecules of guanosine triphosphate (GTP) by diguanylate cyclases (DGC)
and degraded by phosphodiesterases (PDE) to the linear form,
5′-phosphoguanylyl-guanosine (pGpG), and ultimately to two molecules of
guanosine monophosphate (GMP). In many bacteria, including
Agrobacterium tumefaciens, c-di-GMP levels reciprocally regulate the
transition between motility and attachment. In A. tumefaciens globally or
locally increased c-di-GMP levels positively regulate attachment and biofilm
formation while negatively regulating motility. The effect of c-di-GMP on
virulence in A. tumefaciens has not been described, although in many
bacteria virulence is negatively regulated by elevated c-di-GMP levels. The
chemical structure of c-di-GMP is included in the center of the figure.

the allosteric control of poly-β-1-6-N-acetylglucosamine (poly-
GlcNAc) synthesis and secretion in E. coli by direct allosteric
control of the biosynthetic enzyme complex by c-di-GMP (Steiner
et al., 2013). Finally, virulence can be modulated by c-di-GMP sig-
naling, as seen in Y. pestis and V. cholerae (Pratt et al., 2007; Bobrov
et al., 2011).

Agrobacterium tumefaciens possesses 33 proteins predicted to
be involved in modulating intracellular levels of c-di-GMP (16
GGDEF, 1 EAL, 1 HD-GYP, 13 GGDEF-EAL). This large number
of proteins likely reflects the importance of c-di-GMP signaling
in the control of A. tumefaciens phenotypes. One A. tumefaciens
phenotype influenced by c-di-GMP was recognized early on with
the observation that cellulose synthase activity in crude extracts
increased upon the addition of micromolar levels of c-di-GMP
(Amikam and Benziman, 1989). It followed from this observa-
tion that cellulose-dependent attachment to plant surfaces was
also likely influenced by c-di-GMP levels. Ectopic expression of
the wild-type A. tumefaciens PleD (homologous to C. crescen-
tus PleD, the first characterized GGDEF DGC protein) artificially
elevated the intracellular levels of c-di-GMP, resulting in a dras-
tic increase in both cellulose and UPP production (Paul et al.,
2004; Xu et al., 2013). Increased production of cellulose and
UPP coincided with enhanced cellulose-dependent aggregation,
UPP-dependent rosette formation, attachment to glass and PVC
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coverslips, and biofilm formation. C-di-GMP signaling in A. tume-
faciens appears to follow the paradigm of inverse regulation of
motility and attachment as reduced motility was also observed
upon c-di-GMP elevation (Xu et al., 2013).

Several activities are regulated by c-di-GMP in A. tumefaciens,
but it remains unclear how the activity of the various DGCs and
PDEs is controlled and how this control is integrated with the
motile-to-sessile switch and the production of adhesive polysac-
charides. Recently, it was suggested that increased attachment
under conditions of limiting phosphate was mediated, at least in
part, by a PhoB-dependent increase in c-di-GMP levels (Xu et al.,
2012). Thus, environmental conditions seem likely to contribute
to regulation of DGC and PDE activity. Transposon mutagene-
sis of a strain engineered to lack all known exopolysaccharides
except UPP identified several mutants with increased UPP pro-
duction. Of particular interest are four genetic loci in which
multiple transposon mutants were isolated (Xu et al., 2013). These
loci include two LuxR-type transcription factors (visN and visR),
a CheY-type single domain response regulator (rrpX), a putative
short-chain dehydrogenase/pteridine reductase (pruA), and a dual
GGDEF-EAL protein. Further analysis of the role of VisN and
VisR identified three DGC homologs that are regulated through
VisNR.

VisN/VisR
VisN and VisR are members of the LuxR–FixJ family of transcrip-
tional regulators that play a critical role in regulating motility in
several members of the Rhizobiaceae, including A. tumefaciens
(Sourjik et al., 2000; Xu et al., 2013). VisN and VisR were first
identified as global regulators of motility in S. meliloti (Sourjik
et al., 2000). The C-termini of both VisN and VisR show strong
homology to the DNA-binding domain of LuxR. The N-termini,
however, share little homology either with one another or with
other known LuxR-family transcriptional regulators, although
these N-terminal domains are conserved among orthologs within
the Rhizobiaceae. VisN and VisR are believed to function together
to regulate transcription of chemotaxis and flagellar motility genes
in S. meliloti, presumably forming heteromultimers (Sourjik et al.,
2000; Rotter et al., 2006; Xu et al., 2013).

As mentioned above, VisN and VisR were originally identi-
fied as negative regulators of UPP synthesis and, consequently,
attachment and biofilm formation (Xu et al., 2013). Mutations
in either visN or visR also result in a loss of motility in A.
tumefaciens, consistent with their role as positive regulators
of motility in S. meliloti and R. leguminosarum (Sourjik et al.,
2000; Tambalo et al., 2010; Xu et al., 2013). Inverse regulation of
motility and biofilm formation by VisNR resembles c-di-GMP-
dependent regulation of these same phenotypes in A. tumefaciens.
Phenotypic and transcriptomic analysis identified three DGCs,
dgcA, dgcB, and dgcC, as components of the VisNR regulatory
network (Xu et al., 2013). Curiously, deletion of dgcA, dgcB,
or dgcC, alone or in any combination does not affect average
cytoplasmic levels of c-di-GMP in A. tumefaciens cells. This
observation supports models where local pools of c-di-GMP and
c-di-GMP-dependent effectors play a more defined role in regu-
lating developmental phenotypes, over and above mean cytosolic
concentration.

Microarray analysis of the VisNR regulon identified dgcB and
dgcC as transcriptionally regulated by VisNR. DgcA, which plays
the dominant role in VisNR-dependent regulation of biofilm for-
mation, was not recognized to be transcriptionally regulated by
VisNR. Similarly, microarray analysis of a positive regulator of
attachment, ExoR (described below), does not reveal any obvious
candidates for transcriptionally controlled regulators of biofilm
formation, with the exception of a number of uncharacterized
DGC genes (Heckel et al., in review). These observations suggest
that control of biofilm formation through the VisNR and ExoR
regulons proceeds primarily through post-transcriptional mech-
anisms. Two other classes of genes are commonly regulated by
VisNR and ExoR: the exo genes controlling succinoglycan biosyn-
thesis and the imp genes controlling type VI secretion (Wu et al.,
2012; Xu et al., 2013; Heckel et al., in review). Both of these gene
groups, however, are oppositely regulated by VisNR and ExoR. The
exo and imp genes display reduced expression in a �visR mutant
and enhanced expression in �exoR strains, suggesting positive
regulation by VisNR and repression by ExoR (Heckel et al., in
review).

ExoR-ChvG/ChvI
The periplasmic regulator ExoR is a positive regulator of attach-
ment and biofilm formation in A. tumefaciens (Tomlinson et al.,
2010). ExoR was originally described as a repressor of exopolysac-
charide synthesis in S. meliloti (Doherty et al., 1988). Additional
phenotypes affected in S. meliloti exoR mutants include increased
biofilm formation, reduced motility, loss of prototrophy, and
reduced symbiotic efficiency (Yao et al., 2004; Wells et al., 2007).
Several of these phenotypes are consistent with A. tumefaciens
exoR mutants, including enhanced production of succinoglycan
and reduced motility, although in contrast to S. meliloti these
mutants exhibit attachment and biofilm defects (Tomlinson et al.,
2010; Heckel et al., in review).

ExoR exerts its effects primarily through direct inhibition of the
two-component system ChvG/ChvI (Figure 2; Wells et al., 2007;
Chen et al., 2008; Wu et al., 2012; Heckel et al., in review). The
ChvG/ChvI two-component system, homologous to ExoS/ChvI
of S. meliloti, is an acid-responsive signaling system required for
virulence (Charles and Nester, 1993; Mantis and Winans, 1993;
Li et al., 2002). A genetic interaction between ExoR and ExoS
(ChvG) was originally identified in S. meliloti (Doherty et al.,
1988; Fujishige et al., 2006; Wells et al., 2007). Direct interac-
tion between periplasmic ExoR and the periplasmic portion of
the ExoS (ChvG) histidine kinase was eventually demonstrated
for both S. meliloti and A. tumefaciens (Chen et al., 2008; Wu et al.,
2012). Under neutral conditions ExoR represses activity of ExoS
(ChvG), and through this interaction also negatively regulates
the DNA-binding activity of the ChvI response regulator. Upon
acidification of the periplasm ExoR is degraded by an uniden-
tified protease, derepressing ExoS (ChvG) activity, resulting in
phosphorylation of ChvI and transcriptional activation of sev-
eral ChvI-regulated genes (Chen et al., 2008; Lu et al., 2012; Wu
et al., 2012). The ExoR-ChvG/ChvI signaling trio is well-conserved
among the Rhizobiales, and is responsive to environmental sig-
nals relevant to the ecology of the individual organism. For
example, in the intracellular mammalian pathogen Bartonella
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henselae BatS/BatR, homologous to ChvG/ChvI, is activated at a
pH of 7.4, the physiological pH of mammalian blood (Quebatte
et al., 2010). For A. tumefaciens, low pH is a virulence-inducing
signal that is common to the rhizosphere, allowing the ExoR-
ChvG/ChvI system to play a distinct role in the ability of the
bacteria to sense and respond to potential host plants (Winans,
2008).

Although ExoR-ChvG/ChvI activity and regulation in A. tume-
faciens is quite similar to that in S. meliloti there are two important
differences. First, in A. tumefaciens mutations in this pathway dra-
matically diminish attachment and biofilm formation, whereas in
S. meliloti these mutations enhanced biofilm formation (Fujishige
et al., 2006; Tomlinson et al., 2010). Second, while exoR is readily
deleted from the genome of A. tumefaciens, it has been historically
difficult to obtain such a mutant in S. meliloti. This suggests that
control of this important regulatory circuit has diverged in these
lineages, perhaps to support the commensal lifestyle of S. meliloti
and pathogenicity in A. tumefaciens, respectively.

ENVIRONMENTAL AND NUTRITIONAL INPUTS
As with other bacteria, A. tumefaciens is responsive to local envi-
ronmental conditions. As discussed below, efficient induction of
the virulence genes of the tumor-inducing (Ti) plasmid occurs
under conditions that mimic those found in the plant host rhizo-
sphere. These conditions include low pH and limiting phosphate
concentrations. Full virulence induction also requires the pres-
ence of plant phenolics such as acetosyringone. The integration
of the virulence response with environmental conditions allows
for expression of the full suite of virulence genes to occur at
a location most likely to result in a productive host–pathogen
interaction. Attachment and biofilm formation are also respon-
sive to local environmental conditions. Within and around a
microbial biofilm there are expected to be differing environ-
mental conditions such as gradients of oxygen tension, redox
potential, and metabolites (Stewart and Franklin, 2008; Koley
et al., 2011). Multiple environmental and nutritional inputs have
been shown to regulate attachment and biofilm formation by
A. tumefaciens, including oxygen levels and phosphate concen-
trations. The pH impacts attachment and biofilm formation
through the ExoR-ChvG/ChvI regulatory pathway described above
(Figure 2). Oxygen tension is proposed to affect biofilm matura-
tion through two independent regulatory pathways, SinR/FnrN
and BigR (biofilm growth-associated repressor), both of which
are described further below (Figure 2).

Phosphorus levels and biofilm formation
In S. meliloti the production of two exopolysaccharides, EPS I
(succinoglycan) and EPS II (galactoglucan), is differentially reg-
ulated by phosphate concentration (Rinaudi et al., 2006; Rinaudi
and Giordano, 2010). Both of these exopolysaccharides partici-
pate in productive biofilm formation in S. meliloti, with increased
biofilm levels under Pi limitation (Rinaudi and Gonzalez, 2009). In
A. tumefaciens limiting Pi levels increase attachment and biofilm
formation, an effect that is not succinoglycan-dependent (Dan-
horn et al., 2004; Tomlinson et al., 2010; Xu et al., 2012). This
effect was regulated by the canonical PhoR/PhoB phosphate-
sensing two-component system (Figure 2). A. tumefaciens is

unusual in that both the phoR and phoB genes are essential, under
phosphate-replete and phosphate-limiting conditions (Danhorn
et al., 2004; Xu et al., 2012). Increased attachment under limiting
Pi is directly mediated by the UPP adhesive polysaccharide. Inter-
estingly, experimental analysis of the upp biosynthetic genes in
low phosphate revealed a conditional redundancy for the uppE
gene, described above (Xu et al., 2012). The effects of Pi lev-
els on attachment and biofilm formation have been observed in
other Rhizobiaceae, including R. leguminosarum, indicating that it
may be a conserved response among these bacteria (Janczarek and
Skorupska, 2011). However, an inverse relationship between phos-
phate concentration and biofilm formation is not universal. For
example, with Pseudomonas fluorescens elevated phosphate lev-
els increased adherence in a PhoR/PhoB-dependent manner and
ultimately through c-di-GMP (Monds et al., 2001, 2007).

Redox regulation of biofilm formation
As biofilm growth and maturation proceed the local within-
biofilm environment experiences several changes, including a
reduction in available oxygen, particularly for actively aero-
bic bacteria (Stewart and Franklin, 2008). In order to survive
microaerobic conditions, many bacteria, including A. tumefaciens,
undertake a respiratory shift from oxic to anoxic conditions, uti-
lizing nitrate rather than oxygen as a terminal electron acceptor
(Bueno et al., 2012). In many Alphaproteobacteria, including A.
tumefaciens, this process, denitrification, is regulated by one or
more members of the FNR (fumarate and nitrate reductase) family
of transcriptional regulators. A. tumefaciens has four such regu-
lators: FixK, FnrN, NnrR, and SinR. Three of these, FnrN, NnrR,
and SinR, clearly play a role in regulating denitrification genes in
low-oxygen environments, including at the plant interface (Baek
et al., 2008). In addition, both SinR and FnrN have been shown to
affect biofilm maturation (Ramey et al., 2004b).

The sinR locus was initially identified in A. tumefaciens during
a screen to isolate mutants deficient in biofilm formation (Ramey
et al., 2004b). SinR mutants attach and initiate biofilm forma-
tion but are deficient in biofilm maturation, never reaching the
same structure and cell density achieved by wild-type A. tumefa-
ciens. Directly upstream of sinR is a canonical FNR-type binding
site, and both FnrN and SinR regulate expression of sinR. While
mutations in FnrN do not display a decrease in biofilm formation
�sinR �fnrN double mutants approximate the �sinR phenotype.
Ectopic expression of sinR in wild-type, �sinR, �fnrN, and �sinR
�fnrN backgrounds accelerates biofilm maturation and leads to
the formation of denser biofilms on both abiotic and plant surfaces
(Ramey et al., 2004b).

Oxygen-sensing FNR homologs frequently acquire an oxygen-
labile [4Fe–4S]2+ cluster under low-oxygen conditions, leading
to dimerization, DNA binding, and regulation of target genes
(Lazazzera et al., 1996). In A. tumefaciens, only FnrN is predicted
to function in this manner and FnrN upregulates both sinR and
denitrification genes under low-oxygen conditions (Ramey et al.,
2004b; Baek et al., 2008). Together these data suggest that FnrN
allows for coordinate regulation of biofilm maturation and res-
piration under microaerobic or anoxic conditions, allowing A.
tumefaciens to adjust to local environmental conditions. Although
FnrN and SinR both ultimately affect biofilm maturation their
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regulatory networks are poorly defined, and it is unclear which
target genes play a role in biofilm maturation.

BigR is a member of the ArsR/SmtB subfamily of metal-sensing
winged-helix transcription factors. In contrast with most mem-
bers of this family, BigR and its homologs act as redox switches that,
upon oxidation, form an intramolecular Cys–Cys disulfide bond.
The resulting conformational change reduces the affinity of BigR
for its DNA binding site and allows for derepression of the bigR
operon (Guimaraes et al., 2011). Thus far BigR has been shown to
regulate the activity of a single operon, found in both Xylella fas-
tidiosa and A. tumefaciens, encoding a putative sulfur dioxygenase
Blh, BigR itself, and at least three additional putative membrane
proteins, one of which likely acts as a sulfite exporter. The bigR
operon is induced when either X. fastidiosa or A. tumefaciens is
grown as a biofilm on glass coverslips, and a bigR mutant gener-
ated thicker biofilms on both glass coverslips as well as Nicotiana
tabacum roots (Barbosa and Benedetti, 2007). It was proposed
that detoxification of metabolically generated hydrogen sulfide
by Blh would be particularly important under conditions of low
oxygen tension such as those found within a biofilm. The mech-
anism by which BigR would be oxidized in these conditions, thus
derepressing transcription of the necessary detoxification genes
including blh, is not understood, although the authors speculate
that hydrogen sulfide-induced reactive oxygen species may play a
role (Guimaraes et al., 2011).

MULTICELLULARITY AND DEVELOPMENT
During its lifetime a single A. tumefaciens bacterium must precisely
coordinate cell growth and division with current environmental
conditions, including whether or not it is entering or exiting the
multicellular biofilm mode of growth. It is now recognized that
many, if not most, rhizosphere bacteria exist primarily as res-
idents of a single-species or polymicrobial biofilm. Within the
rhizosphere A. tumefaciens may attach to and form a biofilm on
soil particles or at interfaces on the plant host. Participation as
a member of a multicellular community, therefore, is a normal
and regulated aspect of A. tumefaciens biology with important
consequences for its ecology.

A NOVEL FORM OF CELL DIVISION AMONG DIVERSE
ALPHAPROTEOBACTERIA
Many members of the Rhizobiaceae, including A. tumefaciens,
are morphological rods and it was presumed that cell division
proceeded in much the same way as in the well-studied E. coli,
B. subtilis, and the more closely related Alphaproteobacterium
C. crescentus. In these model systems division occurs via binary
fission. In these systems, individual cells elongate longitudinally
by the insertion of new cell wall peptidoglycan and membrane
material throughout the length of the cell, followed by septa-
tion and cytokinesis. The processes of elongation and septation in
these bacteria are directed by conserved protein complexes includ-
ing the MreB-containing elongase and FtsZ-containing divisome
(Margolin, 2009). Other bacteria, such as the Actinobacteria, are
known to elongate at the cell poles. In these bacteria pole-directed
growth is dependent upon the conserved protein DivIVA and its
homologs. Cell growth and division in A. tumefaciens and several
other Rhizobiales contrasts with both of these known mechanisms

for rod-shaped growth. These bacteria lack elongase component
homologs as well as DivIVA, but retain one or more copies of FtsZ
plus additional divisome components. Time-lapse microscopy
coupled with fluorescent protein tracking and selective labeling
of outer membrane components detailed a novel budding growth
pattern common among A. tumefaciens, S. meliloti, Brucella abor-
tus, Ochrobactrum anthropi, and Hyphomicrobium denitrificans
(Fujiwara and Fukui, 1974; Latch and Margolin, 1997; Brown et al.,
2012; Zupan et al., 2013). Budding occurs by insertion of new
cell wall and membrane material at a single pole only, followed
by septation and cytokinesis (Figure 4). Cell division results in
two morphologically similar but distinct cell types. One cell, the
mother cell, retains old cell wall material while the newly budded
daughter cell contains de novo synthesized material. Importantly,
polar growth was observed in bacteria attached to plant roots
with the mother cell attached to the root surface by the UPP
and the daughter cell budding into the medium (Brown et al.,
2012).

COORDINATION OF DIVISION AND DEVELOPMENT
Although at first glance it may not be readily apparent, the A. tume-
faciens life cycle resembles that of the more overtly asymmetric C.
crescentus (Figure 4). C. crescentus exhibits a complex, biphasic life
cycle that results in the generation of two non-identical cell types:
a sessile, non-motile mother cell that often remains attached to a
surface, and a motile daughter cell called the swarmer cell (Brown
et al., 2009; Curtis and Brun, 2010). The regulatory components
underlying this growth, division, and differentiation are well con-
served among the Alphaproteobacteria (Brilli et al., 2010). The
core architecture of this coordination of division and development
(CDD) pathway includes two multicomponent His-Asp phospho-
relays converging on multiple response regulators affecting diverse
physiological outputs, including c-di-GMP production, motility,
biofilm formation, and DNA replication (Figure 4). In C. crescen-
tus, the master regulator of cell cycle progression is the response
regulator CtrA. CtrA directly binds DNA and both blocks replica-
tion initiation and affects transcription of multiple target genes.
CtrA activity is modulated by phosphorylation and proteolysis via
the CckA/ChpT phosphorelay. Activity of the CckA hybrid histi-
dine kinase is, in turn, modulated by the single-domain response
regulator DivK. Phosphorylation and dephosphorylation of DivK
is mediated by the PdhS family of histidine kinases. These kinases
include PleC and DivJ in C. crescentus plus additional PleC/DivJ
homolog sensor kinases in other bacteria (Hallez et al., 2004, 2007;
Pini et al., 2013). A. tumefaciens encodes four PdhS proteins: PleC,
DivJ, PdhS1, and PdhS2. While several CDD components are
essential in A. tumefaciens, deletion of many of the non-essential
components (PleC, PdhS1, PdhS2, and DivK) affected biofilm
formation. Loss of PleC, PdhS1, or DivK disrupted biofilm for-
mation. In contrast mutation of pdhS2 increased attachment and
biofilm formation. These data indicate that the ability to attach
to a surface and form a biofilm is integrated into the overall cell
cycle program of A. tumefaciens (Kim et al., 2013). One mech-
anism by which this may be achieved is through the response
regulator PleD. As described above, PleD is one of several DGCs
in A. tumefaciens responsible for biosynthesis of the second mes-
senger c-di-GMP (see Cyclic-di-GMP). The activity of PleD is
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FIGURE 4 | Agrobacterium tumefaciens generates and maintains

multiple developmental asymmetries. (A) Shown are morphological
features of A. tumefaciens known to localize primarily to one pole of the
bacterium, including multiple flagella, the unipolar polysaccharide (UPP), Vir
pilus and type IV secretion system (T4SS). (B) Cell division in A. tumefaciens
occurs by a polar budding mechanism. The cell division protein FtsZ (green)
appears at the site of early constriction, from which the daughter cell buds
and at which cytokinesis occurs. The rate of budding indicated is for growth in
defined medium (ATGN) on agar pads. (C) The coordination of division and

development (CDD) regulatory pathway. Proteins for which genetic and/or
phenotypic data confirm the suggested pathway architecture are in bold
typeface. Italicized proteins are present in the A. tumefaciens genome but do
not have experimental support; placement of these proteins in the pathway is
based on data from other model systems. Histidine kinases are colored
orange, response regulators are colored blue, and a single Hpt
phosphotransferase (ChpT) is in black text. The location of PdhS1 and PdhS2
is suggested by current data, but not confirmed. Note that the bacterial cell
envelope in all panels is depicted as described in Figure 3.

regulated by phosphorylation. In C. crescentus and S. meliloti,
and likely in A. tumefaciens, the histidine kinases interacting with
PleD are the PdhS family members (Curtis and Brun, 2010; Pini
et al., 2013; Sadowski et al., 2013). Deletion of PleD results in a
moderate increase in biofilm formation and attachment, although
there are other DGCs that appear to have more profound effects
(Xu et al., 2013). A complete understanding of CDD regulation
of these processes, the effectors, and the molecular mechanisms
involved awaits full elucidation (Barnhart et al., 2013, 2014; Kim
et al., 2013).

VIRULENCE
Though studying the motile-to-sessile transition is illuminating in
and of itself for understanding bacterial development, it is critical

to keep in mind the role that this transition may play as part of the
pathogenic lifestyle of A. tumefaciens. Virulence of A. tumefaciens
is mediated by the Ti plasmid, a part of which, called the T-DNA,
is translocated into plant host cells and integrated into the host
genome to cause tumor formation (Watson et al., 1975; Chilton
et al., 1977; Leemans et al., 1981). A critical part of the Agrobac-
terium–plant interaction is attachment of the bacterial cell to a host
plant cell, followed by translocation of the T-DNA via a type IV
secretion apparatus that spans the bacterial cell wall and somehow
provides access to plant cell cytoplasm (Lippincott and Lippin-
cott, 1969; Beijersbergen et al., 1992, 1994). Although attachment
to plant tissue frequently leads to biofilm formation, it is clear that
in laboratory conditions, biofilm formation is not required for
T-DNA transfer (Escudero and Hohn, 1997; Ramey et al., 2004a;
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Brencic et al., 2005). However, T-DNA transfer is notably inef-
ficient, and attached A. tumefaciens cells may be subject to the
plant defense response (Veena et al., 2003; Zipfel and Felix, 2005;
Zipfel et al., 2006). In natural infections, the large, concentrated
population of A. tumefaciens cells within a biofilm that forms
at a potential infection site may help to overcome these barriers
and promote the overall likelihood of a successful T-DNA trans-
fer. Though dense bacterial populations may not be required for
virulence per se, they are required for pTi maintenance and conju-
gal dissemination within populations of A. tumefaciens associated
with infected plants (Fuqua and Winans, 1994).

Biofilms in plant tumors would provide an optimal envi-
ronment for pTi conjugation, assuring maintenance of the
plasmid – and the capacity for infection – among populations of
A. tumefaciens. There exists an additional relationship between
biofilm formation and virulence. In low-phosphate environ-
ments, such as in the rhizosphere, both biofilm formation
and virulence gene expression are enhanced in A. tumefaciens
(Winans, 1990; Danhorn et al., 2004). As described above, the
phosphate-sensing two-component system PhoR/PhoB mediates
an enhanced adherence phenotype, while the pTi-encoded two-
component system VirA/VirG mediates the virulence response
(Winans, 1990; Danhorn et al., 2004). These regulatory sys-
tems potentially work in parallel to allow A. tumefaciens cells
to attach to plant cells and express virulence genes in a timely
manner.

DISPERSAL
The final“step”in the life of a biofilm is dispersal of members of the
microbial community away from the site of attachment and into
the environment (Figure 1). The ability to inhibit biofilm forma-
tion, dissociate the biofilm matrix, or induce active dispersal of the
biofilm community is economically, ecologically, and medically
relevant. There are multiple known activators of biofilm disper-
sal in diverse bacteria, including quorum sensing, production of
small molecules such as nitric oxide, and secretion of matrix-
degrading exoenzymes such as the glycoside hydrolase dispersin or
nucleases (McDougald et al., 2012). The D enantiomers of amino
acids have also been implicated in biofilm dispersal, although this
may be due to indirect effects on protein synthesis (Cava et al.,
2011; Leiman et al., 2013). Departure of motile daughter cells away
from the attached mother cell upon septation may also serve as a
coordinated aspect of biofilm development.

Although dispersal of individual cells from a mature biofilm
is proposed to occur at some point in the lifetime of most, if
not all, of these multicellular communities, there are few exper-
imental details for this activity in the Rhizobiaceae, including A.
tumefaciens. Dispersal of R. leguminosarum biofilms on abiotic
surfaces has been observed but the regulation and mechanism
of dispersal, and relevance to surface association with the plant
host, have not been defined (Russo et al., 2006). In A. tumefa-
ciens the addition of cell-free P. aeruginosa culture supernatant
stimulated dispersal, although the identity of the active com-
pound secreted by P. aeruginosa was not identified (An et al., 2006;
Hibbing and Fuqua, 2012). These data suggest that regulated dis-
persal may be a component of the normal developmental program
in A. tumefaciens.

CONCLUSIONS, FUTURE DIRECTIONS, OUTSTANDING
QUESTIONS
It is clear that A. tumefaciens actively associates with a vari-
ety of surfaces in the environment, including but not restricted
to those associated with plant hosts. As a metabolically plastic
heterotrophic bacterial species, A. tumefaciens and its avirulent,
plasmidless relatives can occupy a wide variety of environmen-
tal niches, and the ability to productively attach to surfaces and
form multicellular biofilms is an important and well developed
process under complex regulatory control. The asymmetric polar
division process exhibited by A. tumefaciens is well suited for
cells attached via their poles to surfaces in which the mother cell
remains sessile and the newly budded daughter cell is released
into the environment. Parallels with the well-studied biphasic life
cycle of C. crescentus are instructive and have led to numerous
insights into A. tumefaciens cell biology. The molecular target-
ing mechanisms that lead to polar localization and attachment,
along with their coordination, are areas under active study. The
orchestration of cell division with the assignment of specific func-
tions to the old pole of the cell or the newer pole created with
each round of cell division is a natural extension of such stud-
ies. How cytoplasmic c-di-GMP pools are modulated during the
transition of motile cells to a sessile state, and the mechanisms
by which this is linked to surface contact remain to be discov-
ered. These processes are relevant to A. tumefaciens whether or
not it is associated with host plants. In the context of plants, A.
tumefaciens has evolved remarkable mechanisms for colonizing
and manipulating its host, most notably culminating in interk-
ingdom gene transfer, neoplastic growth and opine production.
It remains unknown how the attachment and biofilm forma-
tion mechanisms that are the primary focus of this review are
integrated with the events leading to T-DNA transfer. Mutants
that are severely hampered in attachment remain virulent as
measured using in vitro plant inoculation assays. It is unclear
whether this is a limitation of these assays, or whether the events
and processes leading to T-DNA transfer are truly distinct from
those which mediate general surface attachment and subsequent
biofilm formation. One plausible explanation is that in the nat-
ural environment, there is a temporal progression from general
surface attachment, to the induction of vir genes and elabora-
tion of the type IV secretion system, plus whatever additional
intimate interactions with the plant cells are driven by these
functions (including the potential shift to lateral association),
and eventual T-DNA transfer. What is required to evaluate this
hypothesis is the ability to follow the process from tissue colo-
nization through T-DNA transfer in real time. As yet the tools
and approaches for such dynamic monitoring have not been
applied to this process, but such a high resolution view of A.
tumefaciens interactions with plant hosts is a goal for future
research.
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Agrobacterium tumefaciens binds to the surfaces of inanimate objects, plants, and fungi.
These bacteria are excellent colonizers of root surfaces. In addition, they also bind to soil par-
ticles and to the surface of artificial or man-made substances, such as polyesters and plas-
tics. The mechanisms of attachment to these different surfaces have not been completely
elucidated. At least two types of binding have been described unipolarpolysaccharide-
dependent polar attachment and unipolar polysaccharide-independent attachment (both
polar and lateral). The genes encoding the enzymes for the production of the former are
located on the circular chromosome, while the genes involved in the latter have not been
identified. The expression of both of these types of attachment is regulated in response to
environmental signals. However, the signals to which they respond differ so that the two
types of attachment are not necessarily expressed coordinately.

Keywords: Agrobacterium, attachment, adhesion, exopolysaccharides, bacterial binding

INTRODUCTION
Most terrestrial bacteria are found living on surfaces. Agrobac-
terium tumefaciens lives in the upper layers of the soil and in the
rhizosphere. These bacteria can bind to a variety of inanimate
surfaces including quartz sand, glass, plastic, polyester, and cel-
lulose (Tomlinson and Fuqua, 2009). Considering the range of
substrates to which the bacteria are able to bind, the bacteria pre-
sumably can also bind to particles in the soil. In addition, A.
tumefaciens binds to the surface of plants, particularly to roots
and root hairs, and to the surface of fungi (Matthysse et al.,
1978; Bundock et al., 1995; Matthysse, 1996; Piers et al., 1996).
Roots release a number of organic compounds into the soil
including dicarboxylic acids, amino acids, and sugars (Lugten-
berg et al., 1999). Thus, the colonization of the root surface may
be advantageous for A. tumefaciens. That binding to roots pro-
motes bacterial growth is illustrated by the interaction of two
isogenic strains of E. coli differing only in adhesin genes which
can and cannot bind to alfalfa sprouts (Jeter and Matthysse,
2005). When the strains are inoculated individually with the
sprouts only the strain which can bind grows. In addition, when
the strains are inoculated together, once again only the strain
which can bind grows. Thus, the binding of one strain did
not promote the binding or growth of the other strain. The
experiment suggests that binding to the root would confer a
considerable advantage over simple presence in the rhizosphere.
Binding to the root also results in the formation of a biofilm
(Ramey et al., 2004). Many studies have shown that bacteria in
biofilms, such as those on the root epidermis, are protected from
toxic compounds including antibiotics and from predation by pro-
tists (Ramirez and Alexander, 1980; Stewart and Costerton, 2001;
Danhorn and Fuqua, 2007).

EARLY STUDIES OF THE ATTACHMENT OF A. tumefaciens TO
PLANT CELLS
The importance of bacterial attachment to the plant surface was
first recognized by Lippincott and Lippincott (1969). They showed

that prior exposure of the plant wound site to avirulent A. tume-
faciens resulted in inhibition of tumor formation by virulent
bacteria and that the mathematics of the inhibition fit a one-
particle dose–response curve suggesting that the avirulent bacteria
were occupying sites and making them unavailable to the virulent
bacteria. Additional studies of attachment of A. tumefaciens to
plant cells and wound sites were carried out in the next 20 years.
The techniques generally used in these early studies of attachment
rely on indirect measurements of bacterial adhesion: competi-
tion between various bacterial strains as seen in the experiment
described above, removal of bacteria from sites by washing (Lip-
pincott and Lippincott, 1967), and inhibition of tumor formation
by treatment of the wound site or the bacteria with surface extracts
of the bacteria or plant cells prior to inoculation of the bacteria
into the wound site (Whatley et al., 1976; Lippincott et al., 1977;
Neff et al., 1987; Wagner and Matthysse, 1992). The first method
requires that there be a limited number of discrete attachment sites
where bacterial binding can initiate tumors so that the avirulent
strain can occupy these sites and block binding of virulent bacteria.
It has the advantage that only binding to sites which result in tumor
formation is measured. The second method only produces results
if the bacteria are bound reversibly. The third method depends on
the extracts being tested having no other effects on the plant or
bacterium in addition to their effects on the binding site. These
experiments were carried out when there was little information on
plant defense responses to bacteria and many of them are difficult
to interpret due to possible stimulation of plant defense responses
by the extracts which could then inhibit tumor formation without
having any significant effect on bacterial binding. Extracts which
were shown to inhibit tumor formation include pectin (Lippin-
cott et al., 1977; Neff et al., 1987), bacterial lipopolysaccharides
(LPS) (Whatley et al., 1976), and plant cell wall proteins (Gurlitz
et al., 1987; Wagner and Matthysse, 1992). Reviews of experiments
prior to 1986 concerning attachment of A. tumefaciens to plant
cells have been published by Lippincott and Lippincott (1975) and
Matthysse (1986).
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Direct observations of bacterial binding to plant cells have been
made using plant tissue culture cells and seedling roots of a vari-
ety of plants including Arabidopsis thaliana, tomato, tobacco, and
carrot. Microscopic studies have the advantage that the site and
orientation of bacterial attachment can be observed. Their major
disadvantage is that large numbers of bacteria are usually required.
Bacterial attachment can also be measured using radioactive bac-
teria or by washing the tissue and determining the number of
bacteria bound (retained) using viable cell counts. Washing the
tissue has the advantage that reversible and irreversible binding
can be distinguished (Neff and Binns, 1985). These methods allow
detection of small numbers of bacteria but they may remove (and
thus fail to detect) bacteria which are loosely bound to the plant
tissue.

POLAR ATTACHMENT MEDIATED BY THE UNIPOLAR
POLYSACCHARIDE (UPP)
Visually, the most prominent type of attachment of A. tumefaciens
to surfaces under a variety of conditions is polar binding of the
bacteria (for example, see Figure 1). On root hairs or polyester
threads, polar attachment of bacteria gives the appearance of a
bottlebrush. This binding occurs early in the interaction of the bac-
teria with both biological (plant and fungal) and non-biological
surfaces (Li et al., 2012). Polar attachment of A. tumefaciens is
mediated by the unipolar polysaccharide (UPP; Tomlinson and
Fuqua, 2009). This extracellular polysaccharide was first described
in Rhizobium leguminosarum where it mediates polar attach-
ment to root hairs (Laus et al., 2006). The R. leguminosarum
UPP has been shown to be composed largely of mannose and
glucose (Laus et al., 2006; Williams et al., 2008). Lectins from
the plants nodulated by this bacterium, pea and vetch, bind

FIGURE 1 | Attachment of Agrobacterium tumefaciens strain C58

(A,C,E,G) and a UPP-deletion mutant of C58 (B,D,F,H) to quartz sand

(A,B), polyester thread (C,D), yeast (Saccharomyces cerevisiae; C,F),

and tomato root hairs (G,H) in a 1/10 dilution of MS medium

containing a 1/20 dilution of AB minimal medium. Note the copious
attachment of wild-type cells and the large decrease in attachment in a UPP
deletion mutant. Approximately 106 bacteria per ml were incubated with
the substrate for 24 h.

the polysaccharide. R. leguminosarum mutants which are unable
to make the UPP are deficient in binding to root hairs under
acidic conditions (pH 5.6) but not under more alkaline condi-
tions (pH 7.2) in the presence of calcium ions (Laus et al., 2006;
Downie, 2010). A. tumefaciens makes a similar polysaccharide
localized to one pole of the cell (Tomlinson and Fuqua, 2009).
The genes required for its synthesis are located in two adjacent
operons (Atu1235–Atu1239) in A. tumefaciens strain C58. Dele-
tion of these genes results in mutant bacteria which fail to show
prominent polar binding to inanimate surfaces, fungi, and plants
(Figure 1). The formation of the UPP is required for biofilm
formation on a wide variety of surfaces (Danhorn and Fuqua,
2007).

The UPP reacts with wheat germ agglutinin (WGA), a lectin
which binds to N-acetyl-glucosamine (Tomlinson and Fuqua,
2009; Xu et al., 2013). Fluorescent WGA has been used to visu-
alize the presence of the UPP in bacteria growing under various
circumstances. Studies using fluorescent WGA have shown that
the UPP is rarely made by planktonic bacteria (Li et al., 2012).
Shortly after the bacteria come into contact with a surface, UPP is
visible at the attached pole (Tomlinson and Fuqua, 2009; Barnhart
et al., 2013; Xu et al., 2013). How the bacteria detect the presence
of a surface and how this triggers the elaboration of the UPP is not
known.

Attachment of bacteria to surfaces mediated by the UPP appears
to be irreversible. Bound bacteria are retained after washing of the
substrate to which the bacteria are bound (Tomlinson and Fuqua,
2009; Barnhart et al., 2013). In particular, the washing required for
the detection of the UPP by fluorescent WGA does not appear to
remove the bacteria.

Several genes and environmental conditions involved in the
regulation of the production of UPP have been identified. These
include concentrations of phosphate (Xu et al., 2012) and calcium
(Matthysse, manuscript in preparation) in the environment and
regulation via the intracellular, signal molecule cyclic-di-guanylic
acid (c-di-GMP) in response to unidentified signals (Xu et al.,
2013). The increased binding and biofilm formation seen with
phosphorus limitation is dependent on the presence of func-
tional UPP genes in the bacteria. Overexpression of the regulator
involved in the uptake of phosphorous, phoB, increases the amount
of UPP present and thus bacterial surface binding (Xu et al., 2012).
Increased calcium ion concentrations (3 mM or greater) cause a
reduction in UPP and a consequent decrease in polar bacteria
binding (Matthysse, manuscript in preparation). The mechanism
of this effect is unknown. The exoR gene involved in the regu-
lation of succinoglycan synthesis and flagellar gene expression is
also involved in the regulation of biofilm formation (Tomlinson
et al., 2010). A deletion of exoR results in decreased biofilm for-
mation on roots but individually bound bacteria are still seen.
ExoR mutants retain virulence. c-di-GMP also plays a role in
the regulation of the production of the UPP (Xu et al., 2013).
Constitutive expression of pleD, a diguanylate cyclase also called
celR, results in the synthesis of UPP not just at the pole of the
cell but distributed all over the bacterial surface. Deletions of a
gene visR required for motility result in increased biofilm forma-
tion and increased the production of the UPP. VisR was shown to
inhibit the expression of the diguanylate cyclase genes dcgA and
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dcgB and thus a deletion of visR should increase their activity.
Mutations in a guanylate phosphodiesterase (Atu3495) resulted
in higher levels of c-di-GMP and of the UPP (Xu et al., 2013).
When VisR is expressed, the cells are motile and the synthesis
of UPP is inhibited due to the lack of synthesis of c-di-GMP
by DcgA and DcgB. Thus the regulation of the elaboration of
the UPP is complex and is integrated with pathways in the bac-
terium controlling motility (visR and exoR), regulation of other
exopolysaccharides (exoR and pleD aka celR), and phosphate
uptake (phoB).

Binding to surfaces involving the UPP does not require the
presence of the Ti plasmid and strains lacking pTi show bind-
ing indistinguishable from that of virulent strains (Tomlinson and
Fuqua, 2009). None of the regulatory pathways involved in the
control of UPP synthesis are known to be influenced by genes
located on pTi. A UPP deletion mutant retains virulence on all
plants tested including Kalanchoe daigremontiana, potato, and
tomato (Tomlinson and Fuqua, 2009). Thus it seems likely that
there is a second mechanism of attachment of the bacteria to the
plant surface which is involved in the transfer of the T DNA.

UPP-INDEPENDENT ATTACHMENT
Although the UPP mediates the visually and numerically promi-
nent polar binding of A. tumefaciens to surfaces, it is not required
for virulence (Tomlinson and Fuqua, 2009). In a UPP deletion
mutant or under conditions in which the UPP is not made, bacte-
rial binding to the surface of plants can still be observed (Figure 2).
This binding involves very few bacteria compared to that medi-
ated by the UPP. It may require the presence of the Ti plasmid.
Attachment of A. tumefaciens strain C58 to carrot suspension cells
incubated in Murashige and Skoog medium (MS) was observed to
be dependent on the presence of the Ti plasmid (Matthysse et al.,
1978) as was bacterial attachment to protoplasts in a medium
containing 60 mM CaCl2, 7 mM sodium acetate, and 247 mM
mannitol pH 5.8 (Aguilar et al., 2011). The number of bacteria
observed to be attached was low in both of these experiments.

FIGURE 2 | Attachment of A. tumefaciens strain C58 to tomato root

hairs in a 1/10 dilution of MS medium containing a 1/20 dilution of AB

minimal medium (A) and in 60 mM CaCl2, 7 mM sodium acetate, and

247 mM mannitol pH 5.8 (B). Note the large decrease in attachment in
the presence of the CaCl2-containing medium Laterally attached bacteria
are visible at the white arrows in (B); polarly attached bacteria are indicated
by the black arrows. Approximately 106 bacteria per ml were incubated
with cut tomato roots for 24 h.

In MS medium, bacterial binding to tissue culture cells and root
hairs was both polar and lateral. In 60 mM CaCl2, 7 mM sodium
acetate, and 247 mM mannitol binding to protoplasts was exclu-
sively lateral. No UPP could be detected on bound or planktonic
bacteria in either medium suggesting that it was not made under
these conditions (Matthysse, manuscript in preparation). The fac-
tor determining whether UPP was produced appeared to be the
calcium ion concentration. MS medium contains 3 mM CaCl2 at a
pH of 5.6. Addition of calcium to media in which UPP is ordinarily
synthesized resulted in reduced or undetectable UPP production
by the bacteria and reduced bacterial binding (Figure 2).

In the absence of the production of UPP or cellulose bacterial
binding appears to be reversible and the bacteria can be removed
from the plant surface by water washing (Lippincott and Lippin-
cott, 1967; Sykes and Matthysse, 1986). Cellulose production and
irreversible bacterial binding appear to occur about 2–4 h after the
inoculation of the bacteria into wound sites or plant cell suspen-
sion cultures (Lippincott and Lippincott, 1967; Matthysse, 1983;
Neff and Binns, 1985). These experiments were all carried out in
media which contained more than 3 mM calcium and thus there
was probably little UPP produced by the bacteria.

In bacteria incubated with plant protoplasts in 60 mM CaCl2,
7 mM sodium acetate, and 247 mM mannitol pH 5.8 bacterial
binding to the plant cells was observed to be lateral. Under these
conditions, the T pilus was also localized laterally in the bacte-
ria (Aguilar et al., 2011). However, when bacteria were grown
under inducing conditions with low calcium ions, the T pilus
was reported to be exclusively localized at the end of the bacteria
(polar localization; Lai et al., 2000). Polar localization of the VirB
proteins (except VirB2) which assemble the T-pilus in cells incu-
bated under inducing conditions in low calcium concentrations
was shown by Judd et al. (2005). The observations showing polar
and lateral localization of the Ti pilus differ in the medium used
which may affect the position of the pilus. Low calcium would
favor the elaboration of the UPP which could conceivably help
to direct the T pilus to the cell pole. Lateral vs polar attachment
of the bacteria may also be affected by the plant surface to which
the bacteria are attached. The experiment showing lateral orien-
tation of the bacteria involved bacterial attachment to tobacco
protoplasts. The receptors to which the bacteria bind are likely
to differ in nature and/or orientation between intact plant cells
and protoplasts. Thus, the lateral bacterial attachment observed
by Aguilar et al. (2011) could be a result of using tobacco pro-
toplasts. However, bacteria bound to glutaraldehyde-fixed carrot
protoplasts were observed in both lateral and polar orientations
(Matthysse et al., 1982).

The role of pTi in bacterial attachment is unclear. Genes on
pTi which may be involved in binding have not been identified.
It is possible that binding is mediated by the T pilus itself, in
which case VirB2 which makes up the shaft of the pilus or VirB5
which is found at the tip of the pilus are the obvious candidates
for the proteins involved (Aly and Baron, 2007; Christie et al.,
2014). Some mutations in virB5 which alter or delete the carboxy-
terminal amino acids of the protein result in bacteria which can
transfer pTi to other bacteria but when inoculated onto plants
(K. daigremontiana) the bacteria were avirulent (Aly and Baron,
2007). It is not known which steps in DNA transfer are blocked in
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these mutants. Exogenous VirB5 enhanced DNA transfer from the
bacteria to the plant as measured by a transient gene expression
assay. The exogenous VirB5 had no effect on bacterial binding to
roots under conditions where the majority of the binding is medi-
ated by UPP (Lacroix and Citovsky, 2011). Whether VirB5 affects
binding under conditions where UPP-mediated attachment is not
seen is unknown. Binding of VirB2 to host proteins found on the
surface of Arabidopsis thaliana roots has been described suggesting
that VirB2 may play a role in bacterial attachment to host plants
(Hwang and Gelvin, 2004). Thus VirB2 and VirB5 pilus proteins
may play a role in bacterial attachment. Other genes which play a
role in bacterial binding may also be located on pTi; these could
potentially include both genes for adhesins or regulatory genes
which control the expression of adhesin genes located elsewhere
in the genome.

CELLULOSE-MEDIATED ATTACHMENT
Agrobacterium tumefaciens like many other bacteria is capable
of making cellulose (Matthysse et al., 1981). The genes required
are located in two adjacent operons on the linear chromosome
(Matthysse et al., 1995). The cellulose synthase CelA of agrobacte-
ria shares a high degree of homology with the cellulose synthases
of other proteobacteria including rhizobia, Gluconacetobacter xyli-
nus, and Escherichia coli. A. tumefaciens and the rhizobia which
produce cellulose synthesize the exopolysaccharide in microfib-
rils emerging from many points scattered over the cell surface. In
contrast, in bacteria such as G. xylinus and P. fluorescens cellulose
fibrils emerge from a linear array of sites on one side of the cell
and the cellulose produced forms a sheet (Brown et al., 1976; Can-
non and Anderson, 1991; Spiers et al., 2003). This difference in the
geometry of cellulose production influences the type of aggregates
the bacteria form in solution and on surfaces and correlates with
sequence differences in the celB gene. Cellulose fibrils bind tightly
to other cellulose fibrils and thus cellulose synthesis results in the
formation of bacterial aggregates which may be free in solution or
bound to the cellulose on the plant surface. Bacteria in aggregates
of A. tumefaciens produced by cellulose tend to be tangled in the
cellulose in random orientations. Cellulose-producing A. tume-
faciens will also bind to non-living materials containing cellulose
such as Whatman filter paper (Matthysse, 1983). The production
of cellulose by attached bacteria results in the formation of large
clumps of attached bacteria on filter paper as well as on plant
surfaces.

Cellulose synthesis is known to be regulated by a number of
genes. Mutations in celG (Atu8186, the last gene in the operon con-
taining celABCG) result in overproduction of cellulose (Matthysse
et al., 2005). An RNA or protein product of the gene must be
involved as the cellulose overproduction in a celG mutant can
be reduced to wild-type levels by the provision of the gene on
a plasmid. Mutations in celI (Atu3105) which has homology to
transcriptional regulators also cause overproduction of cellulose
(Matthysse et al., 2005). No additional information is available
about the function of this gene.

In many bacteria including A. tumefaciens cellulose synthase
(the product of the celA gene) can be directly regulated by c-
di-GMP which binds to a pilZ site in the carboxy-terminal end
of the protein (Amikam and Benziman, 1989; Ross et al., 1991).

The active site where UDP-glucose is bound is located in the
amino-terminal end. Regulation by c-di-GMP acts directly on the
enzymatic activity of the protein and can be observed in cell-
free extracts of the bacteria by measuring rate of incorporation
of UDP-glucose into cellulose. Overexpression of either of two
genes encoding a diguanylate cyclase, Atu1297 or Atu1060, causes
increased cellulose synthesis. A deletion of Atu1297 (also known
as celR or pleD) reduces the synthesis of cellulose and as well
as (an)other undefined exopolysaccharide(s). This deletion also
increased polar attachment of A. tumefaciens to the plant surface
and biofilm formation on glass due to an increase in the amount
of UPP present (Barnhart et al., 2013, 2014). Thus, regulation by
c-di-GMP serves to integrate the synthesis of cellulose and UPP.
However, Atu1297 and Atu1060 have other effects on virulence
in addition to their effects on cellulose and UPP synthesis. To
examine the effects of these genes on processes other than cel-
lulose synthesis, the effects of overexpressing either Atu1297 or
Atu1060 were examined in a cellulose synthase (celA) deletion
mutant. Overexpression of either gene resulted in reduced vir-
ulence (Barnhart et al., 2013). Deletion of cellulose synthase by
itself has little effect on virulence but does render bacterial binding
more fragile so that the bacteria can be removed by water washing
(Matthysse, 1983). Overproduction of cellulose causes the forma-
tion of large aggregates of bacteria on surfaces but has little effect
on virulence (Matthysse et al., 2005).

THE ROLE OF OTHER EXOPOLYSACCHARIDES:
CYCLIC-β-1,2-D-GLUCAN, SUCCINOGLYCAN,
LIPOPOLYSACCHARIDE, AND CURDLAN
Bacterial mutants (chvA and chvB) which fail to synthesize
the periplasmic polysaccharide cyclic-β-1,2-D-glucan were the
first mutants shown to be defective in binding to plant cells
(Douglas et al., 1982). Inability to synthesize this polysaccharide
has pleiotropic effects including increased sensitivity to osmotic
stress, overproduction of succinoglycan, and reduced motility
(Douglas et al., 1985; Puvanesarajah et al., 1985). The effects of
chvB mutations are temperature sensitive. The ability to bind to
plants, motility, and virulence are all restored in chvB mutants
when incubation of the bacteria with the plants is carried out
at temperatures below 16◦C (Bash and Matthysse, 2002). Addi-
tion of cyclic-β-1,2-D-glucan to the solution has no effect on
the attachment of wild-type A. tumefaciens to plant cell sur-
faces (Puvanesarajah et al., 1985). It seems likely that the effect
of chvA and chvB mutations is indirect, resulting from multiple
defects caused by the absence of the glucan polysaccharide from
the periplasmic space rather than from the absence of a molecule
which plays a direct role in attachment.

Succinoglycan is the most abundant of the exopolysaccharides
produced by A. tumefaciens growing on agar plates in the lab-
oratory. However, its role in the life of the bacteria in nature
remains obscure. Bacterial mutants unable to synthesize succino-
glycan retain virulence and show no obvious defects in binding
to plant surfaces (Tomlinson et al., 2010). Overproduction of suc-
cinoglycan is seen in chvA, chvB, and exoR mutants (Puvanesarajah
et al., 1985; Tomlinson et al., 2010). All of these mutants show
reduced binding to roots and reduced motility. However, unlike
chvA and chvB mutants, exoR mutants retain virulence on potato
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disks. An exoAexoR double mutant that cannot make succinogly-
can recovered the ability to bind to roots, but did not recover
wild-type motility suggesting that the overproduction of suc-
cinoglycan was responsible for the lack of binding of the exoR
mutants (Tomlinson et al., 2010). The role, if any, played by excess
succinoglycan in the phenotype of chvA and chvB mutants is
unknown.

There is little information about a possible role for LPS
in the attachment of A. tumefaciens to plant cells. The addi-
tion of purified LPS from A. tumefaciens strain C58 inhibited
bacterial binding to carrot suspension cells in MS medium
(Whatley et al., 1976; Matthysse, 1987b). However, the effects of
added bacterial substances on binding may be due to their abil-
ity to elicit plant defense reactions rather than a direct effect
on binding. A study using an inhibitor of LPS biosynthesis
found no effect on the initial attachment although the drug
did inhibit the formation of cellulose fibrils (Goldman et al.,
1992).

Agrobacterium tumefaciens strain C58 has intact genes for the
biosynthesis of curdlan; however, this strain has not been observed
to make curdlan. Curdlan synthase (crdS) mutants retain vir-
ulence and are able to colonize roots (Matthysse, unpublished
observation). Other strains of Agrobacterium such as LTU50 and
ATCC1379 are used in industry to produce large amounts of
curdlan (McIntosh et al., 2005). These strains lack pTi and thus
are not virulent. LTU50 is able to colonize plant roots and has
been observed to bind to root hairs (Aracic et al., unpublished
observations). Curdlan production in LTU50 is negatively reg-
ulated by the presence of combined nitrogen (McIntosh et al.,
2005). When bacterial growth is limited by the absence of avail-
able nitrogen and an abundant carbon source such as glucose is
present, the bacteria produce large amounts of curdlan. Bacte-
ria growing in 4% glucose can convert 95% of this glucose into
curdlan (McIntosh et al., 2005). LTU50 incubated with tomato
roots in MS medium rapidly run out of combined nitrogen
and begin to make curdlan. The bacteria embedded in a curd-
lan matrix form a blanket-like structure covering the roots.
This structure is fragile and easily removed by water washing
(Matthysse, unpublished observation). Bacteria embedded in
curdlan are protected from phagocytosis by protists such as Dic-
tyostelium discoideum (Aracic et al., unpublished observations).
Thus, curdlan production is likely to increase bacterial survival in
soil.

PROTEIN ADHESINS
A 14-kDa calcium-binding protein named rhicadhesin has been
reported to be involved in the binding of rhizobia and A. tumefa-
ciens to root hairs (Smit et al., 1989a,b). Rhicadhesin is reported to
be released from the surface of the bacterial cell when the cells are
placed in medium with low concentrations of calcium. Addition of
the purified protein inhibited the binding of rhizobia and A. tume-
faciens to pea roots (Smit et al., 1992). The purified protein was
also able to restore the binding of an A. tumefaciens chvB mutant to
pea roots and virulence on K. daigremontiana (Swart et al., 1994).
The gene encoding this protein has not been identified. However,
the protein is made by rhizobia lacking the sym plasmid and by
A. tumefaciens lacking pTi suggesting that the relevant gene(s) are

chromosomal (Smit et al., 1987). There are many possible rea-
sons why the rhicadhesin gene has not been identified. Among the
likeliest is the existence of multiple copies of the gene so that a
mutation in one copy has no evident phenotype or the possibil-
ity that mutations in the gene are lethal. The role of rhicadhesin
in attachment remains uncertain. It was defined by its ability to
inhibit bacterial attachment. The major case in which it promotes
attachment involves its addition to chvB mutants. However, as
discussed above the phenotype of these mutants probably result
from indirect effects of the lack of cyclic-β-1,2-D-glucan. Thus, the
mechanism of the restoration of the wild-type phenotype may be
indirect. The experimental data do support a role for rhicadhesin
in the structure and stability of the bacterial surface. The defini-
tion of its role in attachment will have to await the identification
of the gene(s) encoding this protein.

Other protein adhesins which play a role in the binding of R.
leguminosarum to roots have been identified. These include the
Rap proteins which are secreted bacterial proteins that bind to
the surface of the bacteria. RapA1 is a calcium-binding protein
with two binding sites which agglutinates the bacteria by binding
at the pole. These genes for these proteins are restricted to only
a few members of the Rhizobiaceae (Ausmees et al., 2001). The
overexpression of RapA1 from the gene cloned into a plasmid
resulted in increased bacterial binding to roots but had no effect
on binding to abiotic surfaces (Mongiardini et al., 2008). The gene
is not required for nodulation. The suggested role for this protein
is in root colonization by the bacteria. RapA2 is also a calcium-
binding protein. It interacts with the acidic exopolysaccharide of
the bacteria and is apparently a calcium-dependent lectin (Abdian
et al., 2013). No genes homologous to the rap genes have been
identified in A. tumefaciens.

Several genes on the cryptic plasmid pAT (att genes) have been
identified as being involved in attachment. Transposon insertions
in these genes block attachment in calcium-containing medium
in which the UPP is not made (Matthysse, 1987a; Matthysse et al.,
2000). The mutations have no effect on attachment in medium in
which the UPP mediates the majority of bacterial attachment.
Their effect on the synthesis of the T pilus is unknown. The
genes cannot be required for virulence as bacterial strains lack-
ing pAT are virulent (Nair et al., 2003). The transposon insertions
in some of the att genes (attC and attG) resulted in dominant-
negative mutations (Matthysse et al., 2008) suggesting that they
act by causing the synthesis of partial proteins (affected gene
translated to the site of the insertion) or partial protein com-
plexes (only some of the genes in an operon expressed) perturbing
the bacterial surface so as to block the ability of the bacteria to
bind to plants in medium containing moderate levels of calcium
ions. Whatever the mechanism of action of the transposon inser-
tion mutations in genes found on pAT, it appears certain that
the effects of these mutations, similar to those of the chvA and
chvB mutations, on bacterial attachment are indirect and that
the genes do not encode molecules directly involved in bacterial
attachment.

GENERAL CONCLUSIONS
It appears that A. tumefaciens has at least two mechanisms by
which it can bind to plant surfaces (Figure 3). One, the UPP,
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FIGURE 3 | A model of the initial binding of A. tumefaciens to root

hairs. In the presence of low levels of calcium UPP is formed and mediates
polar bacterial attachment to the root hair surface. This results in binding of
large numbers of bacteria to the root hair. The genes for synthesizing the
UPP are required for this binding. In the presence of moderate or high
levels of calcium UPP is not formed and bacterial binding is sparse.

is quite non-specific and aids the bacteria in binding to a wide
variety of both animate and inanimate surfaces. This binding
is visually striking because it is a polar attachment and results
in the binding of large numbers of bacteria to the surface. The
UPP is produced optimally under conditions of low calcium, low
phosphate, and acidic pH. UPP-mediated binding to surfaces is
likely to play a prominent role both in attachment to soil par-
ticles and in colonization of plant surfaces. The genes for the
production of this exopolysaccharide are located on the chromo-
some and appear to be widely distributed in the agrobacteria and
rhizobia.

The second mechanism of attachment is mediated by unknown
molecule(s). It can be detected when the interactions between the
bacteria and surfaces are carried out in media containing moderate
to high concentrations of calcium where the UPP is not pro-
duced or by the examination of the binding of UPP mutants. The
numbers of bacteria bound are very small when compared with
bacterial binding mediated by the UPP. This UPP-independent
attachment may result in both polar and lateral attachment to
plant surfaces. It is not known what conditions control the polar
vs lateral orientation of the bacterium or whether bacteria bound
in these two orientations use different mechanisms of attachment.
No mutants unable to show UPP-independent attachment have
been identified. Thus it is not known whether more than one type
of UPP-independent attachment exists nor is there any informa-
tion on the genes or adhesins involved in this binding. It seems
clear that the major mechanism of attachment of A. tumefaciens
to surfaces both biological and inanimate has been identified as
the binding of the UPP but there clearly remains more to be dis-
covered about the surface interactions of this bacterium with its
plant hosts particularly those which result in T-DNA transfer.
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Many cellular processes critically depend on the membrane composition. In this review, we
focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen
Agrobacterium tumefaciens.The major components of A. tumefaciens membranes are the
phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidyl-
choline (PC) and cardiolipin, and ornithine lipids (OLs). Under phosphate-limited conditions,
the membrane composition shifts to phosphate-free lipids like glycolipids, OLs and a
betaine lipid. Remarkably, PC and OLs have opposing effects on virulence of A. tumefaciens.
OL-lacking A. tumefaciens mutants form tumors on the host plant earlier than the wild
type suggesting a reduced host defense response in the absence of OLs. In contrast,
A. tumefaciens is compromised in tumor formation in the absence of PC. In general, PC is a
rare component of bacterial membranes but amount to ∼22% of all PLs in A. tumefaciens.
PC biosynthesis occurs via two pathways. The phospholipid N -methyltransferase PmtA
methylates PE via the intermediates monomethyl-PE and dimethyl-PE to PC. In the second
pathway, the membrane-integral enzyme PC synthase (Pcs) condenses choline with CDP-
diacylglycerol to PC. Apart from the virulence defect, PC-deficient A. tumefaciens pmtA
and pcs double mutants show reduced motility, enhanced biofilm formation and increased
sensitivity towards detergent and thermal stress. In summary, there is cumulative
evidence that the membrane lipid composition of A. tumefaciens is critical for agrobacterial
physiology and tumor formation.

Keywords: membrane lipids, phospholipid biosynthesis, phosphatidylcholine, phosphorus-free lipids, ornithine

lipids, glycolipids, betaine lipids, Agrobacterium tumefaciens

INTRODUCTION
The structure of biological membranes is mainly defined by
heterogeneous amphipathic phospholipids (PLs) forming the
phospholipid bilayer. PLs contain a diacylglycerol (DAG) as
hydrophobic component with saturated or unsaturated fatty acyl
chains of variable length and a polar head group attached to
the phosphate group (Korn, 1966; van Meer et al., 2008; Wolf
and Quinn, 2008). The general structure of PLs and common
head groups are shown in Figure 1. Phosphatidylethanolamine
(PE) and phosphatidylcholine (PC) are zwitterionic lipids whereas
phosphatidic acid (PA), phosphatidylglycerol (PG), cardiolipin
(CL), phosphatidylserine (PS), and phosphatidylinositol (PI)
represent the anionic lipid class. Contrary to previous assump-
tions based on the fluid mosaic model (Singer and Nicolson,
1972), the lipid distribution in pro- and eukaryotic mem-
branes is dynamic and asymmetric (Fadeel and Xue, 2009;
Clifton et al., 2013). Specialized lipid micro domains (in eukary-
otes referred to as lipid rafts) serve as platform for various
cellular processes such as signal transduction and transport
(Edidin, 2003; Zhang et al., 2005; Pike, 2006; Donovan and
Bramkamp, 2009; Lingwood and Simons, 2010; LaRocca et al.,
2013).

All biological membranes share the same basic membrane
structure but the lipid composition differs tremendously between
the domains of life and even within a domain. The lipid repertoire

of eukaryotic cells is very complex. Combination of different head
groups and variations in fatty acid tails results in more than a
thousand different lipids. The major lipids in eukaryotes are PLs
with PC as the most abundant, followed by PE, PS, PI, and PA
(van Meer et al., 2008). PG is also present in eukaryotes and is
used as precursor for CL synthesis, exclusively found in mitochon-
dria (Bligny and Douce, 1980). Further important constituents of
eukaryotic membranes are sphingolipids (SLs) and cholesterol,
which are enriched in lipid rafts (Lingwood and Simons, 2010;
Sonnino and Prinetti, 2013).

Bacterial membrane lipids are more diverse than previously
thought (Parsons and Rock, 2013). Most bacteria, like the Gram-
negative model organism Escherichia coli have a simple membrane
lipid composition with the major PLs PE, PG, and CL (Ames, 1968;
Cronan, 2003; López-Lara et al., 2003; Dowhan, 2009). However,
many other bacteria are known to produce additional and uncom-
mon lipids. PS is abundant in eukaryotic membranes but most
prokaryotes contain only minor PS amounts as it serves as precur-
sor for PE biosynthesis (Bunn and Elkan, 1971; López-Lara et al.,
2003). Although PI is a rare component of bacterial membranes
it is a major lipid in Mycobacterium tuberculosis where it is essen-
tial for viability (Jackson et al., 2000). SLs have been described in
Sphingobacterium, Sphingomonas, and Bacteroides species (Heung
et al., 2006). Sphingomonas paucomobilis contains two glyco-SLs
in its outer membrane important for pathogenesis (Kinjo et al.,
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FIGURE 1 | General structure of phospholipids and common head

groups. PLs contain two fatty acids ester-linked to glycerol at C-1 and C-2,
and a polar head group attached at C-3 via a phosphodiester bond. The fatty
acids in PLs can vary in carbon group length and saturation degree. The
different common polar head groups and charges are indicated. PA,
phosphatidic acid; PE, phosphatidylethanolamine; PC, phosphatidylcholine;
PS, phosphatidylserine; PG, phosphatidylglycerol; CL, cardiolipin; PI,
phosphatidylinositol.

2005; Mattner et al., 2005). Some bacteria such as Methylococcus
capsulatus or Rhodopseudomonas palustris TIE-1 can also syn-
thesize steroid lipids and/or sterol homologues (hopanoid lipids;
Tippelt et al., 1998; Bode et al., 2003; Doughty et al., 2011). The
membrane of the Gram-positive model organism Bacillus sub-
tilis comprises lysyl-PG (LPG) and up to 40% neutral glycolipids
(GLs; Salzberg and Helmann, 2008). In some bacteria such as
Agrobacterium tumefaciens, Sinorhizobium meliloti, and Rhodobac-
ter spaeroides phosphate limitation stimulates the production of
phosphate-free lipids including ornithine lipids (OLs), sulfolipids,
betaine lipids, and GLs (López-Lara et al., 2003, 2005; Vences-
Guzmán et al., 2012; Geske et al., 2013; Parsons and Rock, 2013).
The major eukaryotic membrane lipid PC is not widespread in
bacteria. It has been estimated that ∼15% of all bacterial species
produce PC (Sohlenkamp et al., 2003; Aktas et al., 2010; Geiger
et al., 2013). It is frequently found in symbionts or pathogens and
in bacteria with extensive intracytoplasmic membranes (Hagen
et al., 1966; Goldfine, 1984; Geiger et al., 2013). Often, PC is critical
for bacteria–host interactions.

COMMON METABOLIC PATHWAYS FOR PHOSPHOLIPIDS IN
BACTERIA
All major PLs in bacteria are formed from a common precursor,
namely cytidine diphosphate diacylglycerol (CDP-DAG) gener-
ated by a CDP-DAG synthase (CdsA) using PA and cytidine
triphosphate (CTP; Figure 2; Zhang and Rock, 2008; Parsons

FIGURE 2 | Phospholipid pathways and enzymes in bacteria. CDP-DAG
is the central precursor for synthesis of the PLs. Thick arrows and boldface
letters indicate the most common pathways and enzymes in bacteria. For
details see text. CMP, cytidine monophosphate; CTP, cytidine triphosphate;
EA, ethanolamine; cho, choline; G3P, glycerol 3-phosphate; gly, glycerol; lys,
lysine; L-ser, L-serine; myo-I-P, myo-inositol 1-phosphate; SAM,
S-adenosylmethionine; SAH, S-adenosylhomocysteine.

and Rock, 2013). CDP-DAG can be directly converted to PS, PG
phosphate (PGP) or in some bacteria to PI phosphate (PIP) and
PC. These reactions are catalyzed by specific CDP-alcohol phos-
phatidyltransferases releasing a CMP molecule from CDP-DAG
and transferring the phosphatidyl moiety to different polar head
groups (Sohlenkamp et al., 2003; Parsons and Rock, 2013). PS syn-
thases (Pss) use L-serine as the phosphatidyl acceptor to generate
the anionic lipid PS, which serves as precursor for PE synthesis via
PS decarboxylases (Psd). In mycobacteria, a PIP synthase (Pips)
converts CDP-DAG and myo-inositol 1-phosphate to PIP which is
dephosphorylated via a PIP phosphatase (Pipp) to PI (Morii et al.,
2010; Morii et al., 2014). PG synthases (Pgs) transfer the phos-
phatidyl group from CDP-DAG to a glycerol-3-phosphate (G3P)
resulting in PGP, which serves as precursor for PG synthesis by
PGP phosphatases (Pgp). Two PG molecules are condensed via a
cardiolipin synthase (Cls) to CL. Most bacteria possess more than
one Cls. E. coli encodes three Cls with distinct specificities. ClsA
uses two PG molecules for CL formation whereas ClsC condenses
a PE and PG molecule to CL. Like the other Cls enzymes, ClsB
utilizes PG but the second substrate is unknown (Pluschke et al.,
1978; Nishijima et al., 1988; Guo and Tropp, 2000; Tan et al., 2012).
In Streptomyces coelicolor a eukaryotic-type Cls using CDP-DAG
and PG for CL synthesis was identified. This enzyme belongs to
the CDP-alcohol phosphatidyltransferase family and seems to be
common in actinobacteria (Sandoval-Calderón et al., 2009).

In several Gram-positive bacteria such as Staphylococcus aureus
and Bacillus subtilis, PG is converted to the positively charged lipid
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LPG by aminoacylation using lysyl-tRNA as the lysine donor by
the Mprf (multiple peptide resistant factor) enzyme (Ernst and
Peschel, 2011). In Staphylococcus aureus, LPG confers resistance
towards cationic antimicrobial peptides (CAMPs) by perturbation
of the electrostatic attraction of CAMPs (Kilelee et al., 2010; Andrä
et al., 2011). MprF homologs namely LpiA (low pH inducible A)
are also present in some Gram-negative bacteria such as Rhi-
zobium tropici and Sinorhizobium medicae and confer tolerance
to acid stress and selected cationic peptides (Reeve et al., 2006;
Sohlenkamp et al., 2007).

Two common PC synthesis pathways operate in bacteria: the
PE-methylation pathway and the PC synthase (Pcs) route. Several
bacteria contain both PC synthesis pathways such as A. tume-
faciens and S. meliloti. However, some species like Rhodobacter
sphaeroides or Zymomonas mobilis only have the methylation
pathway for PC synthesis. Some important pathogens including
Borrelia burgdorferi, Brucella abortus, or Pseudomonas aerugi-
nosa only possess the Pcs pathway (Martínez-Morales et al., 2003;
Sohlenkamp et al., 2003; Aktas et al., 2010; Geiger et al., 2013).
In the methylation pathway, one or several phospholipid N-
methyltransferase (Pmt) enzymes transfer a methyl group from
S-adenosylmethionine (SAM) to the amino group of PE generat-
ing the intermediates monomethyl-PE (MMPE) and dimethyl-PE
(DMPE) and finally PC (Figure 2). The methyldonor SAM is con-
verted to S-adenosylhomocysteine (SAH) during this reaction. In
the bacteria-specific Pcs pathway, choline is condensed with CDP-
DAG to PC releasing a CMP molecule (Sohlenkamp et al., 2000;
Aktas et al., 2010; Solís-Oviedo et al., 2012; Geiger et al., 2013).

A eukaryotic-like CDP-choline pathway has been postulated in
Treponema denticola (Kent et al., 2004) and might be also present
in other Treponema species. This pathway involves a choline kinase
(LicA) generating choline phosphate which serves as substrate
for a CTP: phosphocholine cytidylyl transferase (LicC) to pro-
duce CDP-choline. In the final step, PC is formed by transferring
the phosphocholine moiety to DAG by a CDP-choline transferase
(CPT; Kent et al., 2004; Geiger et al., 2013).

Recently, a new PC biosynthesis route was discovered in Xan-
thomonas campestris, which produces PC via a yeast-like two-step
acylation of the precursor glycerophosphocholine (Moser et al.,
2014) demonstrating that quite different strategies acting on the
head or tail group have evolved for PC synthesis in bacteria.

Following this general information, the remainder of this
review will present an overview of biosynthetic pathways and
enzymes for membrane lipids in the plant pathogen A. tumefa-
ciens and discuss the physiological relevance of those lipids in this
organism.

MEMBRANE LIPID REPERTOIRE AND PHOSPHOLIPID
BIOSYNTHESIS ENZYMES IN A. tumefaciens
Agrobacterium membranes contain a rich setup of polar lipids
(Randle et al., 1969; Das et al., 1979; Thompson et al., 1983;
Vences-Guzmán et al., 2013; Moser et al., 2014). The lipid reper-
toire of several Agrobacterium strains has been quantified. Under
full nutrition, A. tumefaciens membranes are mainly composed
of the PLs PE and PG (account together ∼45%), PC (∼22%),
CL (∼15%), MMPE (∼15%) and traces of DMPE (∼4%; Moser
et al., 2014). Two-dimensional thin layer chromatography and

mass spectrometry analysis revealed that A. tumefaciens mem-
branes also contain two OLs (Geske et al., 2013; Vences-Guzmán
et al., 2013). A broad variety of membrane lipids in this organism
is reflected by a lysine-containing lipid with a backbone structure
similar to OLs (Tahara et al., 1976). Most of the PL synthesis path-
ways and enzymes in Agrobacterium, except for PC synthesis, are
still uncharacterised. However, with the exception of a pgp gene,
homologs for all common PL biosynthesis genes described above
are encoded in the A. tumefaciens genome (Figure 3; Wood et al.,
2001).

The putative A. tumefaciens pss (atu1062) gene is homol-
ogous to the pss gene from the non-pathogenic, high beta-
1,3-glucan (curdlan) producing Agrobacterium sp. ATCC31749
(Karnezis et al., 2002; Ruffing et al., 2011). Functional analy-
sis of its recombinant Pss protein in E. coli demonstrated a
Mn2+-dependent [3H]serine incorporation into a chloroform-
soluble product, most likely PS. Localisation studies in E. coli and
topology predictions suggest that Pss is an integral membrane
protein of ∼30 kDa with eight transmembrane domains (TM).
A cytosolic loop connecting the second and third TM contains a
conserved motif (DX2DGX2ARX5S/TX2GX3DSX2D) characteris-
tic for amino alcohol phosphatidyltransferases and thought to be
involved in catalysis. A pss mutant is unable to produce PE sug-
gesting that PE synthesis exclusively occurs via decarboxylation
of PS. Loss of PE seems to be compensated by increased PG and
CL levels in the pss mutant. Interestingly, the PE-deficient mutant
is dramatically reduced in curdlan production and grows poorly
in minimal medium. This growth defect can be compensated by
Mg2+ ions, which presumably stabilize the membrane. However,
curdlan production of the mutant strain cannot be cured by Mg2+.

FIGURE 3 | Phospholipid synthesis in A. tumefaciens. Characterized
pathways are indicated by thick arrows and enzymes in boldface letters.
Dashed arrows indicate the putative pathways. For details see text.
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PE seems to be required for proper assembly and function of the
integral inner membrane protein curdlan synthase as shown for
several other membrane proteins (Karnezis et al., 2002, 2003; Raja,
2011; Bogdanov and Dowhan, 2012).

A. tumefaciens codes for a putative LPG synthase (Atu2521,
LpiA) but LPG has not yet been identified in this organism. LPG
is a major lipid in some Gram-positive bacteria but only low lev-
els are formed in Gram-negatives. Transcription of the related
lpiA gene in S. medicae is activated at low pH and is required for
survival during acid stress. However, LPG was not detected even
under acidic conditions in this organism suggesting production
of very small amounts or rapid turnover of LPG (Reeve et al.,
2006). Small amounts of LpiA-produced LPG were detected in
R. tropici CIAT899 (∼1% of the total lipids) in low pH minimal
medium. Here, LPG confers resistance against the cationic peptide
polymyxin B under acidic growth conditions (Sohlenkamp et al.,
2007). Interestingly, lpiA/mprF homologs are present in many bac-
teria interacting with eukaryotes such as symbionts, pathogens and
commensals suggesting that LPG might be important for bacteria–
host interactions (Vinuesa et al., 2003; Sohlenkamp et al., 2007).
Since low pH is one of the signals inducing virulence factors in A.
tumefaciens, it will be of great interest to determine whether lpiA
contributes to Agrobacterium pathogenesis.

THE METHYLATION PATHWAY IN A. tumefaciens
The two PC biosynthesis pathways and corresponding enzymes
(Pcs and PmtA) in A. tumefaciens have been well characterized
(Figure 3). Initial work on PC synthesis in Agrobacterium demon-
strated incorporation of the 14C-methyl moiety of SAM into
MMPE, DMPE, and PC and 14C-choline uptake and incorpora-
tion into PC (Kaneshiro and Law, 1964; Sherr and Law, 1965;
Kaneshiro, 1968). In earlier studies, two distinct Pmts were postu-
lated in A. tumefaciens. A soluble Pmt catalyzing MMPE formation
only and a Pmt associated with the particulate cell fraction pro-
ducing all methylated PE-derivatives (Kaneshiro and Law, 1964).
The A. tumefaciens genome, however, contains only a single con-
stitutively expressed pmt gene (pmtA, atu0300) on the circular
chromosome (Wessel et al., 2006; Klüsener et al., 2009). The lack
of MMPE, DMPE, and PC in a pmtA mutant grown without
choline demonstrated that PmtA is the only enzyme responsible
for MMPE, DMPE, and PC synthesis via the methylation pathway
(Wessel et al., 2006). Purification of recombinant PmtA from the
soluble cell fraction suggests that it is a peripheral membrane pro-
tein reversibly attaching to its site of action, the membrane (Aktas
and Narberhaus, 2009; Aktas et al., 2011a). PmtA is a monomeric
small enzyme (∼22 kDa) catalyzing the methylation of PE to
MMPE, DMPE, and PC. In vitro lipid binding experiments with
PmtA revealed strong binding to the anionic lipids PI and PG.
Interestingly, overall PmtA activity is stimulated by PG. Associ-
ation of peripheral proteins with membranes is often mediated
via electrostatic interactions with negatively charged PLs such as
PG and a similar mechanism is proposed for the A. tumefaciens
PmtA enzyme (Figure 4). SAM binding by PmtA occurs only in
the presence of its substrates PE, MMPE, DMPE or the end prod-
uct PC. PG alone does not influence SAM binding suggesting that
two distinct binding sites for its substrates or products and for PG
exist (Aktas and Narberhaus, 2009).

FIGURE 4 | Phosphatidylcholine biosynthesis in A. tumefaciens. In the
PC synthase pathway, the integral membrane protein Pcs condenses
CDP-DAG and choline to PC. Choline is taken up via the ChoXWV
transporter. In the PmtA pathway, a single peripheral phospholipid
N -methyltransferase (PmtA) converts PE via three successive methylations
to PC. PmtA is stimulated by the anionic lipid PG and inhibited by PC and
SAH. CM, cytoplasmic membrane.

In vitro PmtA activity is negatively regulated by the end prod-
ucts SAH (via interfering with SAM binding) and by PC. End
product-mediated inhibition might also be relevant in vivo to bal-
ance proper lipid composition (Aktas and Narberhaus, 2009). Like
all Pmt enzymes, PmtA contains a highly conserved N-terminal
SAM binding motif [VL(E/D)XGXGXG] (Sohlenkamp et al.,
2003). Within this motif, the amino acids E58, G60, G62, and E84
were found to be essential for activity and SAM binding (Aktas
et al., 2011a). A. tumefaciens PmtA seems to follow an ordered Bi–
Bi reaction mechanism with initial substrate binding followed by a
conformational change allowing SAM binding. Subsequently, the
methyl group might be transferred to the lipid substrate releasing
the first product SAH followed by the release of the methylated
lipid product (Aktas et al., 2010).

Bacterial Pmts are classified into Sinorhizobium and Rhodobac-
ter type enzymes. Enzymes belonging to the Sinorhizobium family
including A. tumefaciens PmtA, are homologous to rRNA methy-
lases, whereas Rhodobacter-like Pmt enzymes are similar to UbiE,
ubiquinone/menaquinone biosynthesis methyltransferases. Sim-
ilarities between these two Pmt families are restricted to the
conserved SAM-binding motif (Sohlenkamp et al., 2003; Aktas
et al., 2010; Geiger et al., 2013). The product spectrum of Pmt
enzymes varies in different organisms. While A. tumefaciens and
S. meliloti pmtA release small amounts of the intermediates MMPE
and DMPE, expression of R. sphaeroides pmtA in E. coli exclusively
resulted in PC formation (Arondel et al., 1993; de Rudder et al.,
2000; Klüsener et al., 2009). The Sinorhizobium type PmtA from
X. campestris produces MMPE exclusively and is unable to further
methylate it to DMPE and PC (Moser et al., 2014).

Most bacteria contain one Pmt enzyme for all three methylation
steps but in some cases several Pmts with different specifici-
ties are required (Sohlenkamp et al., 2003). In the soybean
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symbiont Bradyrhizobium japonicum, PmtA methylates PE to
MMPE, which serves as substrate for PmtX1-catalyzed methy-
lation to DMPE and PC. B. japonicum encodes three further
Pmt enzymes with distinct specificities (PmtX2-4), which are
not expressed under standard laboratory conditions. PmtX1 and
PmtX2 are similar to R. sphaeroides PmtA, whereas PmtA, PmtX3
and PmtX4 are homologous to S. meliloti PmtA (Minder et al.,
2001; Hacker et al., 2008a,b). Like B. japonicum, Rhizobium legu-
minosarum, Rhodopseudomonas palustris, and Rhizobium etli seem
to encode more than one pmt homolog (López-Lara et al., 2003;
Martínez-Morales et al., 2003).

THE PC SYNTHASE PATHWAY: A MEMBRANE-INTEGRATED ENZYME
USES EXOGENOUS CHOLINE FOR PC SYNTHESIS
The second PC synthesis pathway in A. tumefaciens is catalyzed by
the Pcs enzyme (Figure 4). Like pmtA, the pcs gene (atu1793) is
located on the circular chromosome and is constitutively expressed
(Wessel et al., 2006; Klüsener et al., 2009; Wilms et al., 2012).
Pcs uses exogenous choline, which is transported via the high-
affinity choline transport system ChoXWV. A choXWV -deficient
strain is largely impaired in choline transport but can still pro-
duce PC when choline is present suggesting alternative choline
uptake systems in A. tumefaciens (Aktas et al., 2011b). Similar to
A. tumefaciens, the Pcs pathway in S. meliloti and B. abortus rely
on exogenous choline delivered by a homologous Cho transport
system (de Rudder et al., 1999; Dupont et al., 2004; Herrmann
et al., 2013). Choline is a major component of eukaryotic mem-
branes liberated by phospholipases from PC. Large amounts of free
choline is found in homogenized plant tissues (Zeisel et al., 2003)
and a recent study showed that considerable choline pools are
also present on leaf surfaces. Pseudomonas syringae produces PC
exclusively via the Pcs pathway and contains three choline trans-
port systems with different specificities (Chen and Beattie, 2008).
P. syringae exhibits chemotaxis towards choline and other quater-
nary amines. Extracellular choline is scavenged by P. syringae and
enhances fitness during leaf colonization (Chen et al., 2013).

An A. tumefaciens pcs mutant produces PC via the remaining
PmtA pathway and conversely PC production in a pmtA mutant
depends on extracellular choline which might be delivered by the
host plant. Only a pmtA/pcs double mutant lacks PC exclud-
ing alternative PC synthesis pathways in this organism (Wessel
et al., 2006). Both A. tumefaciens PC biosynthesis pathways can be
functionally reconstituted in E. coli demonstrating that PmtA and
Pcs do not require A. tumefaciens specific cofactors or substrates
(Klüsener et al., 2009).

The best-characterized Pcs enzyme derives from S. meliloti
(de Rudder et al., 1999; Sohlenkamp et al., 2000; Solís-Oviedo
et al., 2012). It catalyses the transfer of a phosphatidyl group
from CDP-DAG to choline releasing a CMP molecule and PC.
Enzyme activity depends on divalent cations like Mn2+ or
Mg2+ and on detergents such as triton X100 (de Rudder et al.,
1999). A topological study suggested that sinorhizobial Pcs is
an integral membrane protein containing eight TM with N-
and C- termini located in the cytosol. Pcs is a member of the
CDP-alcohol phosphotransferase (CDP-OH-PT) protein super-
family containing a modified version of a conserved CDP-OH-PT
motif (DX2DGX2ARX12GX3GX3D) characteristic for this enzyme

family. Most of the conserved amino acids are located within a
cytosolic loop connecting the TM domains II and III and are crit-
ical for enzyme activity as shown via mutagenesis (Solís-Oviedo
et al., 2012; Geiger et al., 2013). Since the membrane-bound nature
of Pcs enzymes has precluded their purification and biochemical
characterisation, the precise reaction mechanism of Pcs enzymes
is presently unknown but most likely proceeds via a sequential
Bi–Bi reaction as in other CDP-OH-PT enzymes (Geiger et al.,
2013).

It is not clear why two PC biosynthesis pathways operate simul-
taneously in Agrobacterium and some other bacteria. Although
the Pcs pathway is energetically more favorable than the PE-
methylation route, under conditions of choline limitation during
competition with other bacteria, the Pmt pathway might be ben-
eficial. In Agrobacterium both pathways seem to be constitutively
present. PmtA activity is detected even in the presence of choline,
when Pcs is active (Wessel et al., 2006; Klüsener et al., 2009). When
two alternative PC synthesis pathways are present in eukaryotes,
PC production via PE-methylation is repressed in the presence
of choline used by the CDP-choline dependent pathway (Vance
and Ridgway, 1988; Vance et al., 1997). It remains to be examined
whether PmtA and Pcs pathways produce distinct PC pools with
different fatty acyl chains as it is the case in eukaryotes (DeLong
et al., 1999). Clearly, PC biosynthesis in Agrobacterium deserves
further studies.

NON-PHOSPHORUS LIPIDS AND BIOSYNTHETIC PATHWAYS
Since inorganic phosphate is limiting in most soils, bacteria have
evolved exquisite strategies to deal with phosphate deficiency. One
strategy is to partially replace membrane PLs by phosphorus-
free lipids as shown for S. meliloti, Pseudomonas fluorescens,
R. sphaeroides, and A. tumefaciens. Various phosphorus-free lipids
appear in these organisms upon phosphate limitation such as
sulfolipids, GLs, betaine lipids, or OLs (Benning et al., 1995;
López-Lara et al., 2003; Geiger et al., 2010; Zavaleta-Pastor et al.,
2010; Geske et al., 2013).

The A. tumefaciens-related α-proteobacterium S. meliloti has
served as model system in this context. Its membranes are
composed of the PLs PG, PE, MMPE, and PC when grown
under phosphate-rich conditions. Phosphate limitation triggers
the degradation of PE, MMPE, and PC and accumulation of the
phosphate-lacking lipids DGTS-(N,N,N,-trimethyl)homoserine
(DGTS), sulfoquinovosyl-DAG (SQD), and OLs. Phosphate-
dependent membrane remodeling is regulated by the PhoR-PhoB
system: under phosphate-limitation, the response regulator PhoB
activates expression of genes responsible for OL and DGTS syn-
thesis and for synthesis of an intracellular phospholipase C (PlcP).
PlcP degrades the PLs PE, MMPE, and PC to the correspond-
ing phosphoalcohols and DAG. Inorganic phosphate is released
from the phosphoalcohols by yet unknown phosphatases and is
used as a source for essential phosphate-dependent biological pro-
cesses. The released DAG serves as substrate for the formation of
the non-phosphorus lipids DGTS and SQD (Geiger et al., 1999;
Zavaleta-Pastor et al., 2010).

Ornithine lipids are fatty-acylated amino acids free of phos-
phate and glycerol. The non-proteinogenic amino acid ornithine
is connected via its α-amino group to a 3-hydroxy fatty acid and
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FIGURE 5 | Structure of the ornithine lipids OLS1/OLS2 and

diacylglycerol trimethylhomoserine (DGTS) in A. tumefaciens. The OLs
contain C16 3OH and C19:0 cyclo fatty acids. OLS2 is hydroxylated within
the ornithine moiety. DGTS contains 18:1 and 19:0 cyclo fatty acids (Geske
et al., 2013; Vences-Guzmán et al., 2013).

a second fatty acid chain is esterified to the 3-hydroxy group of
the first fatty acid (Figure 5). OLs are widely distributed among
eubacteria but absent from archaea and eukaryotes. Biosynthesis
of OLs occurs via an acyl-ACP dependent two-step acylation of
ornithine by two different acyltransferases. The first OL acyltrans-
ferases were discovered in S. meliloti (Weissenmayer et al., 2002;
Gao et al., 2004). Acylation of ornithine occurs here via OlsB at
the α-amino group to form lyso-ornithine (LOL), which in turn
is acylated by OlsA at the 3-hydroxyl group to form OL (Gao
et al., 2004; Geiger et al., 2013). Some bacteria modify their OLs by
hydroxylation of the ornithine moiety or the ester- or amide-linked
fatty acid. Three different OL hydroxylases are known in bacteria
so far. OlsE homologs hydroxylate the ornithine moiety and the
fatty acid portion is hydroxylated by OlsD (amide-linked) or OlsC
(ester-linked) hydroxylases (Geiger et al., 2010; González-Silva
et al., 2011; Vences-Guzmán et al., 2012). Several studies showed
a contribution of hydroxylated OLs in microbe–host interactions
and pH or thermal stress resistance (Rojas-Jiménez et al., 2005;
González-Silva et al., 2011; Vences-Guzmán et al., 2011, 2012). It
has been suggested that the additional hydroxyl groups increase the
interaction between lipids via hydrogen bonds and thus, decrease
the membrane fluidity and permeability, which might be advan-
tageous under different stress conditions (Geiger et al., 2013). A
recent study revealed a modification of OLs via methylation of the
ornithine head group to mono-, di- and trimethyl-OL in planc-
tomycetes isolated from an acidic and nutrient-poor ecosystem
(Moore et al., 2013). Methylation of OLs increases their polarity
and confers a more cylindrical shape, which possibly increases
membrane stability similar to the bilayer forming lipid PC. There-
fore, producing methyl-OLs might be an adaptation strategy to
cope with acidity and nutrient scarcity in these organisms (Moore
et al., 2013).

FIGURE 6 | Phosphorus-free lipid synthesis pathways in A.

tumefaciens. (A) Characterized pathways are indicated by thick arrows and
enzymes in boldface letters. Putative biosynthetic pathways/enzymes are
indicated with dashed arrows (Geske et al., 2013; Vences-Guzmán et al.,
2013; Semeniuk et al., 2014). For details see text. (B) Relative proportion of
phosphorus-free lipids in A. tumefaciens C58C1 under phosphate-replete
(+P) and phosphate depleted (−P) conditions (Geske et al., 2013). Gal,
galactose; Glu, glucose; Glca, glucoronic acid.

TWO ORNITHINE LIPIDS ARE SYNTHESIZED IN A. tumefaciens
In contrast to S. meliloti and R. sphaeroides, which produce only
minor amounts of OLs under phosphate-replete conditions, A.
tumefaciens accumulates significant amounts of two different OLs
namely OLS1 and OLS2 even under full nutrient supply (Geske
et al., 2013; Vences-Guzmán et al., 2013). In A. tumefaciens the
OLs are composed of the fatty acids C16 3OH and C19:0 cyclo
as shown by mass spectrometry analyses. OLS2 is the hydrox-
ylated form of OLS1 containing the hydroxyl group within the
ornithine moiety (Geske et al., 2013; Vences-Guzmán et al., 2013;
Figure 5). Agrobacterium encodes the three ols homologs olsA
(atu0355), olsB (atu0344), and olsE (atu0318) on the circular chro-
mosome (Vences-Guzmán et al., 2012). olsE and olsB mutants in
the A. tumefaciens A208 strain revealed that olsB is essential for
formation of both OLS1 and OLS2 whereas olsE is only required
for OLS2 synthesis (Figure 6). Heterologous expression of olsE
resulted in OLS2 formation providing further evidence that OlsE
is the hydroxylase responsible for OLS2 formation. Thus, the first
step in OL synthesis in Agrobacterium is mediated by the acyl-
transferase OlsB forming ornithine to the lyso-ornithine lipid
(LOL). Subsequently, LOL might be acylated via the putative
OlsA to form OLS1. OLS2 formation is completed by hydrox-
ylation of the ornithine moiety by OlsE (Vences-Guzmán et al.,
2013).

Under low phosphate conditions, both OLs accumulate to a
total amount of 45–50% whereas the total PL content decreases in
A. tumefaciens A208. A putative Pho box is located in the promoter
region of olsB suggesting PhoB-induced expression under phos-
phate starvation (Geske et al., 2013; Vences-Guzmán et al., 2013).
In the olsB mutant, lack of OLs seems to be compensated by an
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increase in DGTS and GL accumulation under phosphate reduced
conditions (Vences-Guzmán et al., 2013).

Ornithine lipids production under phosphate starvation condi-
tions seems to vary in different Agrobacterium strains. In contrast
to A. tumefaciens A208, the total amount of OLs does not change
under phosphate-limiting conditions in A. tumefaciens C58C1 but
the degree of hydroxylation is ninefold increased (Geske et al.,
2013; Vences-Guzmán et al., 2013). Deviations in the experimen-
tal setups such as the growth media and the precise phosphate
concentrations might account for these differences.

A. tumefaciens PRODUCES FOUR DIFFERENT GLYCOLIPIDS AND A
BETAINE LIPID UNDER PHOSPHATE DEPRIVATION
Glycolipids contain carbohydrate residues, which are glycosidically
bound to the 3-position of a sn-1,2-DAG (Shaw, 1970). Different
GLs are produced in bacteria under phosphate starvation. The
photosynthetic bacterium R. sphaeroides produces the unique GL
glucosylgalactosyl-DAG (GGD) with α-glucose (1−→4)-linked
to β-galactose (Benning et al., 1995). A series of GLs found in
the nitrogen-fixing symbiont Mesorhizobium loti differs from the
rhodobacterial GL. M. loti produces the GLs GGD, digalactosyl-
DAG (DGD), and different molecular species of triglycosyl-DAG
with various combinations of galactose and glucose in the head.
All of the sugars are in β-configuration and (1−→6)-linked to
each other. Additionally, M. loti contains two further GLs with yet
unknown head groups (Devers et al., 2011).

A. tumefaciens produces under phosphate deprivation four dif-
ferent GLs and DGTS accounting to 35% of the total lipids (Geske
et al., 2013). The GLs have been identified recently as GGD and
DGD with a β-configuration and monoglucosyl-DAG (MGlcD)
and glucuronosyl-DAG (GlcAD) with a α-configuration (Geske
et al., 2013; Semeniuk et al., 2014). The relative amount of these
lipids in A. tumefaciens C58C1 is given in Figure 6B. Similar to
M. loti, GGD and DGD are synthesized in A. tumefaciens via a pro-
cessive glycosyltransferase namely Pgt (Figure 6) by a successive
transfer of glucosyl and/or galactosyl residues to DAG. Functional
characterisation of Pgt in E. coli and Pichia pastoris and overex-
pression in Agrobacterium revealed a broad substrate specificity
concerning the glycosyl acceptor (DAG or ceramides) and sugar
residues (uridine diphospho, UDP-galactose or UDP-glucose).
However, Pgt favors DAG over ceramide and UDP-galactose over
UDP-glucose (Hölzl et al., 2005). The promoter region of pgt con-
tains a predicted Pho box suggesting an induced Pgt synthesis upon
phosphate limitation mediated via the PhoR-PhoB system. A pgt
mutant lacks GGD and DGD but the remaining lipids accumulate
wild type-like (Geske et al., 2013).

Synthesis of MGlcD and the acidic GlcAD in A. tumefaciens is
catalyzed by a single promiscuous glycosyltransferase namely Agt
encoded by atu2297 (Figure 6). Enzyme assays with recombinant
Agt in E. coli protein extracts provided evidence that Agt uses UDP-
glucose and UDP-glucuronic acid as sugar donors for MGlcD and
GlcAD synthesis, repectively (Figure 6; Semeniuk et al., 2014).
A. tumefaciens Agt is the first described glycosyltransferase using
sugars with different chemistry. An A. tumefaciens agt mutant is
deficient in MGlcD and GlcAD formation and loss of these GLs is
compensated by a twofold increase in GGD and DGD. Remarkably,
while DGTS and all other PLs are not influenced in the agt mutant,

PC amount is strongly reduced. Deletion of both pgt and agt genes
results in the loss of all GLs, which is compensated by a strong
DGTS accumulation. Similar to the single agt mutant, the PC
content of the double mutant is strongly reduced. One reason
might be that PC is degraded to provide DAG for GGD/DGD
synthesis in case of the agt mutant or for DGTS synthesis in the
double mutant. It is unclear, however, why specifically PC and
no other PL is turned over to supply DAG for the synthesis of
phosphate-free lipids. Another reason might be that reduction of
the bilayer-stabilizing PC in membranes missing the acidic GlcAD
is necessary to sustain membrane structure and fluidity (Semeniuk
et al., 2014). In S. meliloti, loss of the acidic glycolipid SQD is
compensated by an increase of the anionic and bilayer-forming
lipid PG (Weissenmayer et al., 2000).

Since loss of all GLs has no impact on growth and virulence even
under phosphate-limited conditions, A. tumefaciens seems to com-
pensate the lack of all GLs by DGTS (Geske et al., 2013; Semeniuk
et al., 2014). A S. meliloti mutant deficient in all phosphate-free
lipids shows decreased growth under phosphate starvation but is
not influenced in nodule formation on its host alfalfa (López-Lara
et al., 2005) suggesting that these lipids function as bulk membrane
lipids. Whether lack of all GLs and DGTS impacts A. tumefaciens
physiology and virulence remains to be seen.

The acidic GlcAD in A. tumefaciens might be the counter-
part of the glycolipid SQD which is absent in Agrobacterium but
widespread in photosynthetic organisms and present in a few non-
photosynthetic bacteria such as some rhizobia (López-Lara et al.,
2003). The role of SQD in these organisms is still unclear. It has
been speculated that SQD might have a special role in photosyn-
thesis or is required for nodule formation and nitrogen fixation.
However, SQD-free mutants of the photosynthetic purple bac-
terium R. sphaeroides and the nitrogen fixing S. meliloti are not
compromised in photosynthesis and symbiosis, respectively sug-
gesting no general function of bacterial SQD in these processes
(Benning et al., 1993; Weissenmayer et al., 2002; López-Lara et al.,
2003).

DGTS-(N,N,N,-trimethyl)homoserine is a betaine-ether linked
glycerolipid abundant in membranes of plants, algae, and fungi
and is found in a few bacteria (Dembitsky, 1996; López-Lara
et al., 2003). In Agrobacterium membranes DGTS is a major
non-phosphorus lipid (∼20 mol%) during phosphate starvation
(Figure 6B). Similar to PC, DGTS is a zwitterionic lipid con-
taining a quaternary amino head group (Figure 5). It has been
observed that the content of PC and DGTS within a cell is recip-
rocal. Organisms containing major amounts of PC produce only
traces of DGTS and vice versa (Geiger et al., 2010). The struc-
tural similarity and the inverse relationship between DGTS and
PC concentrations led to the speculation that these two lipids are
functionally interchangeable (López-Lara et al., 2003; Geiger et al.,
2010; Devers et al., 2011).

DGTS-(N,N,N,-trimethyl)homoserine synthesis in R. sphae-
roides and S. meliloti occurs via the BtaA/B system (Klug
and Benning, 2001; López-Lara et al., 2005). BtaA is a
SAM/DAG 3-amino-3-carboxypropyl transferase that converts
DAG to DAG-homoserine (DGHS) using SAM as homoseryl
donor. Subsequently, DGHS is threefold methylated via
BtaB, a SAM:DAG-homoserine-N-methyltransferase, to DGTS.
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Expression of the sinorhizobial btaA and btaB genes is PhoB
regulated. BtaA (atu2119) and BtaB (atu2120) homologs which
have not been characterized yet are encoded in the A. tumefaciens
genome suggesting a similar DGTS biosynthesis and regulation
(Yuan et al., 2006; Figure 6). In A. tumefaciens, DGTS and GL accu-
mulation under phosphate limitation also seems to be controlled
not only on transcriptional level of the responsible biosynthesis
genes but also via DAG substrate availability. A PlcP homolog,
encoded by atu1649 in the A. tumefaciens genome (Geske et al.,
2013) suggests a similar membrane remodeling mechanism as
described in S. meliloti (Zavaleta-Pastor et al., 2010; Geiger et al.,
2013). Interestingly, phosphate starvation results not only in the
replacement of PLs by non-phosphorus lipids in A. tumefaciens
but also in changes in fatty acid composition of DAG and PLs
with a shift from 18:1 to 19:0 cyclo fatty acids (Geske et al., 2013).
Whereas under full nutrition PLs are mainly composed of 18:1
(50–60%) fatty acids and contain low proportions of 19:0 cyclo
(20 and 40% in PC) fatty acid, phosphate limitation results in a
decrease in 18:1 (10%) and a strong increase in 19:0 cyclo (60%)
fatty acids (Geske et al., 2013). A. tumefaciens codes for a putative
cyclopropane fatty acid (CFA) synthase presumably responsible
for this modification (Geske et al., 2013). Cyclopropanation of
pre-existing unsaturated fatty acids is widespread in bacteria and
maximal activity is observed during stationary phase. The biologi-
cal role of CFA containing lipids in bacteria is not fully understood.
Accumulation of CFAs in E. coli is correlated with acid tolerance
and seems to be important for pathogenic bacteria–host interac-
tions as shown for Mycobacterium tuberculosis (Chang and Cronan,
1999; Glickman et al., 2000; Zhang and Rock, 2009). A twofold
increase in CFA content under phosphate starvation and acid con-
ditions is also observed in S. meliloti. Here, two CFA synthases have
been described, with Cfa1 essential for cyclopropanation of fatty
acids under tested conditions. Both cfa genes are not required
for symbiotic nitrogen fixation in S. meliloti (Saborido Bascon-
cillo et al., 2009). Whether cyclopropanated lipids are required for
A. tumefaciens virulence remains to be determined.

IMPORTANCE OF MEMBRANE LIPIDS FOR A. tumefaciens
PHYSIOLOGY AND PATHOGENESIS
PHOSPHATIDYLCHOLINE IS CRUCIAL FOR AGROBACTERIUM
VIRULENCE
Although the typical eukaryotic membrane lipid PC is rarely found
in bacteria it is a main constituent of A. tumefaciens inner and
outer membranes suggesting an important role for this organism
(Klüsener et al., 2009). Indeed, loss of PC causes different phys-
iological defects. A PC-deficient mutant is impaired in growth
on solid medium at elevated temperatures and is unable to grow
in the presence of the anionic detergent SDS. Furthermore, it
is less motile and produces larger amounts of surface-attached
biomass (Klüsener et al., 2009). The motility defect is explained
by reduced flagellar proteins (FlaA and FlaB) in minimal medium
(Klüsener et al., 2009, 2010). The most striking phenotype of a
PC-deficient mutant is its defect in tumor formation due to loss
of the VirB/D4 Type 4 SS (T4SS) essential for T-DNA transfer
(Wessel et al., 2006). In response to plant stimuli the two compo-
nent system VirA/G controls the expression of 11 transcriptional
units, among them the virB and virD operons encoding the T4SS.

The homodimeric histidine kinase VirA is anchored in the inner
membrane. Plant-released signals, e.g., phenolic compounds are
recognized by a cytoplasmic linker domain whereas acidic pH and
monosaccharides are perceived by the periplasmic domain (Nair
et al., 2011). The global response to PC-deficiency in A. tumefaciens
as determined by proteomics and transcriptomics shows that the
VirA/G-controlled vir gene expression under virulence-induced
conditions is drastically reduced thus explaining the absence of
the T4SS (Klüsener et al., 2010). Only a limited set of other
genes coding for membrane-related proteins were changed in the
absence of PC. Expression of virG in the PC-deficient mutant
was also dramatically reduced suggesting that lack of virulence
gene induction is due to low virG expression. Since the loss of
vir gene expression in a PC-deficient mutant cannot be comple-
mented by expression of a plasmid-encoded wild type virG but
by a constitutively active VirG, it seems that a non-functional
VirA sensor kinase is responsible for the loss of virulence gene
expression in the PC-lacking Agrobacterium mutant. These obser-
vations suggest that signal transduction between VirA and VirG
is impaired in the absence of PC, possibly due to limitations in
membrane insertion or folding of VirA (Figure 7). It remains
to be seen whether the observed phenotypic defects in the PC-
deficient mutant are PC-specific or a consequence of altered bulk
physico-chemical properties of the membrane in the absence of
PC. The structural organization of membranes is defined by the
physical properties and shape of membrane lipids. Cylindrical-
shaped lipids such as PG or PC are bilayer-forming lipids whereas
cone-shaped lipids such as PE are considered non-bilayer forming
lipids (van Meer et al., 2008). However, non-bilayer lipids can form
bilayer-structures depending on solvent conditions, alkyl chain
composition, and temperature.

We do not know yet whether loss of other PLs such as PE,
PG, or CL in A. tumefaciens causes similar effects on physiology
and VirA/G-mediated signal transduction. It has been shown that
PE can act as molecular chaperone for proper folding and func-
tion of membrane proteins such as the lactose permease LacY
in E. coli (Bogdanov et al., 1999; Bogdanov and Dowhan, 2012).
Replacement of PE by PC during reconstitution of the ABC mul-
tidrug exporter HorA from Lactobacillus brevis into membrane
vesicles altered the orientation of TM helices and abolished trans-
port function (Gustot et al., 2010). The effect of PC depletion on
membrane proteins (Klüsener et al., 2010) suggests that PC and
probably other PLs play a role in membrane protein homeostasis
in A. tumefaciens.

It is important to note that the requirement of PC for produc-
tive host–microbe interactions is not restricted to A. tumefaciens.
PC-deficient S. meliloti mutants are unable to establish nitrogen-
fixing symbiosis with their host plant alfalfa (Sohlenkamp et al.,
2003). Reduced PC levels in B. japonicum, the symbiont of the
soybean Glycine max cause formation of nodules with impaired
nitrogen fixation activity (Minder et al., 2001). A PC-deficient
mutant of the intracellular human pathogen Legionella pneu-
mophila shows lowered cytotoxicity and adhesion to the host cell.
Loss of PC affects the Dot/Icm T4SS, system which delivers viru-
lence factors into the cytosol of infected cells and is required for
intracellular growth (Conover et al., 2008). In P. syringae PC is
essential for secretion of the HrpZ harpin effector protein possibly
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FIGURE 7 | Model of PC- or OL-dependent effects on A. tumefaciens

infection efficiency. OL-lacking A. tumefaciens induces accelerated tumor
formation on potato disks compared to wild type (WT) probably due to
reduced plant defense (Vences-Guzmán et al., 2013). A PC-deficient mutant is

unable to elicit tumors on Kalanchoë leaves since VirA/G controlled vir gene
expression is impaired. As a consequence, the type4 secretion system (T4SS)
is not produced which is essential for tumor formation (Wessel et al., 2006;
Klüsener et al., 2010).

due to a non-functional T3SS (Xiong et al., 2014). B. abortus, the
causative agent of brucellosis produces PC via the Pcs pathway.
A pcs mutant is defective in PC formation and attenuated in vir-
ulence when assayed in the mouse model (Comerci et al., 2006).
PC is not generally critical for physiology or microbe–host inter-
actions. Loss of PC in the opportunistic pathogen P. aeruginosa
did not affect physiology and virulence (Malek et al., 2012). It is
important to note here that PC is only a minor (∼4%) component
of P. aeruginosa membranes (Geiger et al., 2013).

LACK OF THE HYDROXYLATED ORNITHINE LIPID OLS2 IN A. tumefaciens
CAUSES ACCELERATED TUMOR FORMATION
Although various bacteria deficient in OL biosynthesis have been
characterized, the function of OLs still is largely unclear. OLs have
been implicated in high-temperature tolerance in Burkholderia
cepacia (Taylor et al., 1998). In Bordetella pertussis and Flavobac-
terium meningosepticum OLs are involved in hemagglutination
and stimulation of macrophages (Kawai and Yano, 1983; Kawai
and Akagawa, 1989; Kawai et al., 1999). In Rhodobacter capsulatus
OL is critical for optimal yields of cytochrome c (Aygun-Sunar
et al., 2006). In Gram-negative bacteria OLs are enriched in the
outer membrane. It has been postulated that the zwitterionic OLs
increase outer membrane stability via stabilization of the nega-
tive charges of LPS. Hydroxylation of OLs often correlates with
bacterial stress response (Vences-Guzmán et al., 2012). It is spec-
ulated that the additional OH group increases hydrogen bonding
between the lipid molecules as shown for the 2-hydroxylated lipid
A in Salmonella typhimurium. This would decrease the mem-
brane fluidity and make it less permeable (Gibbons et al., 2000;
Vences-Guzmán et al., 2012).

In A. tumefaciens A208 grown at low temperatures (15◦C)
unmodified OLS1 is completely hydroxylated to OLS2 suggest-
ing a role of this modified OL in temperature stress. However, lack
of both OLs has no impact on growth even under high osmo-
larity or at low temperature. Interestingly, A. tumefaciens A208
mutants devoid of OLS2 induce about 1 week earlier tumors and
consequently, the tumor size is increased compared to wild type
induced tumors (Vences-Guzmán et al., 2013). OLs share a 3-acyl-
oxyacylamide structure with lipid A of Gram-negative bacteria,
which is an elicitor in plant–microbe interactions (Scheidle et al.,
2005; Silipo et al., 2008; Madala et al., 2011). It has been specu-
lated that hydroxylated OLs cause a plant defense response, which
might be lowered in the absence of OLs thus explaining accelerated
tumor formation (Figure 7).

The role of OLs in plant interaction cannot be generalized and
it seems that OLs have different functions in different bacteria. In
contrast to A. tumefaciens, the two modified OLs P1 and P2 are
necessary for a successful symbiotic interaction in the nitrogen-
fixing symbiont R. tropici CIAT899, which is highly tolerant to
different environmental stresses (Rojas-Jiménez et al., 2005). The
OL in S. meliloti is required for normal growth under phosphate-
limiting conditions but not necessary for symbiotic performance
(López-Lara et al., 2005).

CONCLUSION
Recent progress in lipid analysis technologies has revealed a sur-
prising diversity in bacterial membrane lipid biosynthesis. The
membrane composition is very dynamic and substantially remod-
eled in response to environmental changes. A future challenge will
be to define the physiological role of specific lipids at the molecular
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level. The phenotypic characterisation of lipid biosynthesis
mutants has already provided interesting insights into the in vivo
function of various lipids but has considerable limitations. Some-
times it is difficult to interpret whether the observed phenotypes
are direct or indirect because most bacteria are able to compensate
the loss of one lipid by changing the overall lipid composition.
One interesting model organism in this context is A. tumefaciens,
the natural genetic engineer of plants. Two specific membrane
lipids, the PL PC and a phosphate-free lipid OL affect virulence
with opposing outcomes. PC-deficiency causes a loss of viru-
lence gene expression and tumor formation whereas lack of OLS2
accelerates tumorigenesis. Biophysical and biochemical studies
combined with genetic manipulation are needed to understand
the precise molecular mechanisms, by which these lipids influ-
ence membrane properties and Agrobacterium-mediated tumor
formation.
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The value of Agrobacterium tumefaciens for plant molecular biologists cannot be
appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA
(T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and
it is the orchestration of these factors that determines the success of transformation.
Some plant species readily accept integration of foreign DNA, while others are recalcitrant.
The timing and intensity of the microbially activated host defense repertoire sets the
switch to “yes” or “no.” This repertoire is comprised of the specific induction of
mitogen-activated protein kinases (MAPKs), defense gene expression, production of
reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens
abuses components of the host immunity system it mimics plant protein functions and
manipulates hormone levels to bypass or override plant defenses. A better understanding
of the ongoing molecular battle between agrobacteria and attacked hosts paves the way
toward developing transformation protocols for recalcitrant plant species. This review
highlights recent findings in agrobacterial transformation research conducted in diverse
plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized
and discussed in a thought-provoking manner.

Keywords: Agrobacterium tumefaciens, transformation, plant defense, reactive oxygen species, VIP1

INTRODUCTION
In their natural habitats, plants live in close contact with
a myriad microorganisms. Plant-microbe associations can be
mutually beneficial, such as the root nodule symbiosis with
nitrogen-fixing bacteria or the more wide-spread association
of plant roots with arbuscular mycorrhizal fungi (reviewed
in Parniske, 2008; Markmann and Parniske, 2009). In con-
trast, pathogenic fungi or bacteria impair plant development
and cause various disease symptoms in their hosts. The gram-
negative Agrobacterium tumefaciens of the family Rhizobeaceae
is a “special case.” It is a biotroph pathogen, which markedly
alters the physiology and morphology of infected host plants.
What makes Agrobacterium so special is its capability for interk-
ingdom gene transfer. In nature, wild type A. tumefaciens (as
well as A. rhizogenes and A. vitis) causes “crown gall disease,”
characterized by the growth of tumor-like structures (calli)
on host species. The genetic information for this anatomical
reprogramming is encoded on the tumor-inducing (Ti) plas-
mid. The transfer DNA (T-DNA) derived from the Ti plasmid
is imported into the host cell’s cytoplasm and subsequently
into the nucleus (Gelvin, 2003, 2005; Dafny-Yelin et al., 2008;
Pitzschke and Hirt, 2010b). T-DNA transport is mediated by
agrobacterial virulence factors, and—involuntarily—supported
by proteins of the attacked host. Over the last decade, microbiol-
ogists and plant scientists have disclosed an impressive portfolio
of agrobacterial infection strategies, some of which resemble
those in other pathogen-host interactions. Plant defense mech-
anisms counteracting these strategies are equally diverse and
impressive.

PRINCIPAL STEPS
The principal steps and factors involved in Agrobacterium-
mediated plant transformation are comparatively
well-understood, and reviews can be found in e.g., (Gelvin,
2009, 2010a,b; Pitzschke and Hirt, 2010b). Briefly, agrobacteria
sense phenolic substances that are secreted by wounded plant
tissue. Reception of these signals drives the expression of bacterial
virulence (vir) genes. Subsequently, Vir proteins are produced,
and single-stranded T-DNA molecules are synthesized from the
Ti plasmid. The T-complex, i.e., T-DNA associated with certain
Vir proteins, is injected into the host cytoplasm. A sophisticated
network of bacterial and plant factors mediates translocation of
the T-DNA to its final destination, the host cell’s nucleus.

Agrobacterium inserts substrates (T-DNA and virulence pro-
teins including VirD2, VirE2, VirE3, VirD5, and VirF) into
the host cell by a type IV secretion system (Cascales and
Christie, 2003). This strategy is also employed for the deliv-
ery of microbial factors by other plant pathogens, including
Xanthomonas campestris (Thieme et al., 2005) and Burkholderia
(Engledow et al., 2004). Likewise, mammalian pathogens includ-
ing Bordetella pertussis, Legionella pneumophila, Brucella spp.,
and Helicobacter pylori, use type IV machineries to export
effector proteins to the extracellular milieu or the cell cytosol
(Christie and Vogel, 2000). Remarkably, under laboratory condi-
tions, agrobacteria can genetically transform virtually any type of
eukaryote, ranging from yeast (Bundock et al., 1995) to human
cells (Kunik et al., 2001) (reviewed in Michielse et al., 2005;
Lacroix et al., 2006). The T-complex, consisting of T-DNA,
bacterial virulence proteins (VirE2, VirD2) and the host factor
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VIP1 (VirE2-interacting protein 1) is imported into the nucleus.
Subsequently, the proteinaceous components are stripped off,
releasing the T-DNA from the T-complex. This step relies on
degradation of VirE2, VirD2, and VIP1 by the plant SCF protea-
somal machinery (see below). The bacterial F-box protein VirF,
which is contained in and confers substrate specificity to the SCF
complex, participates in this degradation. If the T-complex dis-
integrates before it is in contact with the host’s chromatin, the
delivered transgenes are expressed for only a few days. The loss
of transgene activity at later stages likely results from the T-DNA
being degraded by host nucleases (Gelvin, 2003). In contrast, if
the T-DNA is shielded until the T-complex is in contact with chro-
matin, stable transformants can be obtained. Due to its affinity
for histones, VIP1 most probably guides the T-DNA to its target
destination, the chromatin (Lacroix et al., 2008).

Since the discovery of the gene transfer mechanism (Schell and
Van Montagu, 1977; Holsters et al., 1978), Agrobacterium strains
have been converted (“disarmed”) into efficient delivery systems
for the genetic manipulation of plants. While transient expres-
sion approaches can provide rapid answers on e.g., subcellular
localization, protein-protein interaction and promoter/effector
relationships (Andrews and Curtis, 2005; Li et al., 2009; Pitzschke,
2013b), genetic engineering requires the transgene(s) to be stably
integrated in the host genome.

The so-called disarmed/non-oncogenic A. tumefaciens strains
employed are deprived of their Ti properties, and the T-DNA
region is used as a vehicle for the introduction of tailor-made
DNA sequences. Any DNA sequence placed between T-DNA
“border sequences” (Ti-plasmid-derived 25-bp direct repeats)
can be transferred (Gelvin, 2012). Disarmed strains, therefore,
facilitate transformation, but do not provoke callus growth or
other abnormalities caused by oncogenic strains. Consequently,
phenotypic abnormalities that may be exhibited by transformed
plants are primarily due to the particular transgene being
expressed. Furthermore, by using armed and disarmed strains
side-by-side, host responses that are independent of or dependent
on Ti sequences can be distinguished.

TRANSCRIPTIONAL RE-PROGRAMMING OF HOST CELLS
The advent of full genome sequencing and microarray technolo-
gies has created the opportunity to draw a complete picture
on Agrobacterium-induced changes at the transcript level. Gene
expression profiling data have been generated for various plant
species, and comprehensive databases (e.g., http://www.plexdb.

org) and bioinformatics resources even allow comparison of tran-
scriptional responses across multiple plant species (Dash et al.,
2012). One major finding from diverse microarray studies was
that agrobacteria largely modify host gene expression, particularly
that of defense-related genes.

This fact had already been recognized in the “pre-microarray
era.” cDNA-AFLP analysis of Ageratum conyzoides plant
cell cultures enabled the identification of (non-oncogenic)
Agrobacterium-induced transcripts, many of which encoded
putative defense factors (Ditt et al., 2001). In a subsequent
study the same research group observed an anti-correlation
between Agrobacterium-mediated transformation efficiency
and defense gene expression levels (Ditt et al., 2005). By the

approach of suppression subtractive hybridization and DNA
macroarrays, Veena Jiang et al. (2003) provided the first insight
into the molecular kinetics of Agrobacterium -plant interactions.
Transcriptional responses of tobacco BY-2 cell cultures to a subset
of agrobacterial strains, impaired in T-DNA and/or Vir protein
transfer, were monitored over a 36-h-period. All strains elicited
a general defense response during early stages of infection.
However, expression of defense-related genes was repressed
at later stages—exclusively by the transfer-competent strains.
More detailed expression profiling of selected genes furthermore
disclosed the “unintentional” participation of the host cellular
machinery in the transformation process (Veena Jiang et al.,
2003).

MICROBIAL ATTACK AND PLANT DEFENSE
Microbes attempting to invade their hosts betray themselves
by the presence of so-called microbe- or pathogen-associated
molecular patterns (MAMPs or PAMPs). These molecules, which
are recognized as “non-self” initiate the first line of defense,
known as PAMP-triggered immunity (PTI) (Nurnberger et al.,
2004; Sanabria et al., 2008; Boller and He, 2009) (see below).
Pathogens, in turn, aim to overcome PTI activation by inject-
ing certain effector proteins into the host cytoplasm. Perception
of these pathogen-encoded effectors by cognate intracellular
plant proteins raises the second line of defense, effector-triggered
immunity (ETI) (Bonardi and Dangl, 2012; Gassmann and
Bhattacharjee, 2012). This response is characterized by the induc-
tion of localized apoptosis (hypersensitive response, HR) and
systemic defense signaling. Plants capable of activating ETI can
thus not only restrict pathogen spread, but they can also fortify
themselves against subsequent attacks (Shah and Zeier, 2013).

MAMPs AND THEIR PERCEPTION
MAMPs are best described as molecular “signatures” typical
of whole classes of microbes (Boller and Felix, 2009). MAMP
perception through specific cell-surface-located proteins (“pat-
tern recognition receptors”) is a conserved strategy of eukary-
otic innate immune systems. Because MAMPs initiate defense
responses in many plant species, they are also referred to as
“general elicitors” (Nurnberger et al., 2004). Prominent examples
of MAMPs include oligopeptide elicitors such as those derived
from EF-Tu (elongation factor thermo unstable), flagellin, and
cryptogein (a fungal sterol-scavenging protein), as well as glycol-
conjugates, including bacterial lipopolysaccharides and peptido-
glycan, and the fungal MAMPs beta-glucan, chitin and chitosan
oligosaccharides (reviewed in Silipo et al., 2010).

The two undoubtedly best-characterized MAMP receptors
in plants, FLS2 and EFR, recognize the oligopeptides flagellin
and EF-Tu, respectively. Owing to their composite structure,
these membrane-located leucine-rich repeat-receptor-like kinases
(LRR-RLK) convert and transmit perceived “attack signals” into
the interior of cells to initiate appropriate defense responses.
On the contrary, the primary “aims” of pathogens are to claim
nutrients from and multiply to high levels in their hosts. To
avoid or block defense responses during early stages of infec-
tion, pathogens have two options: (1) evade recognition and
“sneak in” or (2) “step in self-consciously” and counteract the
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elicited warfare attack. Biotrophs, such as Pseudomonas syringae,
A. tumefaciens, Xanthomonas campestris, and Botrytis cinerea,
have developed sophisticated strategies to block defense signaling
in their hosts at several steps (Pitzschke et al., 2009c).

A total of 292 and 165 LRR-RLK genes were retrieved from the
rice and Arabidopsis genomes, respectively (Hwang et al., 2011).
These large numbers provide an idea of the versatility of LRR-
RLK applications. Specific roles have been ascribed to individual
family members. Studies in individual LRR-RLK mutants have
contributed to our understanding of pathogen perception in gen-
eral. They also demonstrate the similarity of early plant responses
to agrobacteria and other microbial pathogens.

For instance, fls2 mutants fail to recognize flagellin and are
more susceptible to infection by the pathogen Pseudomonas
syringae (Zipfel et al., 2004). Similarly, mutants deficient in EFR,
the receptor for the agrobacterial MAMP EF-Tu, are hypersen-
sitive to Agrobacterium-mediated transformation (Zipfel et al.,
2006). These examples demonstrate that “ignoring” the invader is
not advisable. Instead, perception is the first and mandatory step
to restrict bacterial invasion. FLS2 gene induction upon pathogen
exposure or flagellin treatment (Boutrot et al., 2010), as well as
EFR1 induction by EF-Tu-derived peptides (Zipfel et al., 2006)
reflect additional host mechanisms to better target the suspected
invaders.

MAPK SIGNALING
One of the early intracellular events following pathogen percep-
tion is signal transduction and amplification through mitogen-
activated protein kinases (MAPKs) (Nakagami et al., 2005;
Pitzschke et al., 2009c; Huang et al., 2012; Rasmussen et al., 2012).
MAPK cascades are conserved eukaryotic signaling modules.
Their minimal components, a MAPK kinase kinase (MAPKKK),
a MAPKK and a MAPK, represent multigene families. Exogenous
or developmental signals are perceived by a receptor which subse-
quently (directly or indirectly) initiates the MAPK cascade. Once
activated, a MAPKKK phosphorylates its downstream MAPKK
which in turn phosphorylates and thereby activates its down-
stream MAPK (Nakagami et al., 2005). MAPK-mediated phos-
phorylation of target proteins can alter their properties, such as
subcellular location, DNA-binding specificity, enzymatic activity
or stability. There is ample evidence for disturbed MAPK signal-
ing markedly affecting biotic and abiotic stress tolerance (Rohila
and Yang, 2007; Pitzschke and Hirt, 2009; Pitzschke et al., 2009a;
Rodriguez et al., 2010; Sinha et al., 2011; Persak and Pitzschke,
2013; Zhang et al., 2013b). It is very likely that such a scenario
will hold true in many plant species.

MAPK SIGNALING AND THE MULTIFUNCTIONAL PROTEIN VIP1
In the context of agrobacteria and pathogen defense, one mem-
ber of the Arabidopsis MAPK family has merited special attention:
MPK3. This protein is activated within few minutes upon treat-
ment with pathogens or bacterial elicitor-derived peptides such
as flg22 and elf18 (Djamei et al., 2007; Lu et al., 2009). MPK3 is
an important positive regulator in defense signaling (Nakagami
et al., 2005; Pitzschke et al., 2009c). From a pathogen’s point
of view, activation of MPK3 should be avoided to circumvent
repelling. Accordingly, agrobacteria have evolved strategies to

co-opt induction of this kinase. MPK3 phosphorylates the host
protein VIP1 and thereby triggers cyto-nuclear translocation of
this bZIP transcription factor (Djamei et al., 2007). VIP1, which
enters the nucleus via interaction with importin alpha (Citovsky
et al., 2004) subsequently induces expression of defense genes
such as PR1 (pathogenesis-related protein 1) (Djamei et al., 2007;
Pitzschke et al., 2009b; Pitzschke and Hirt, 2010a). Agrobacteria,
on the other hand, hijack VIP1 as a shuttle for nuclear import of
the T-complex (Citovsky et al., 2004). A number of plant species
lack putative VIP1 homologs; yet these species are transformable.
This apparent paradox was solved by the discovery and character-
ization of virulence factor VirE3. VirE3 functionally replaces the
“shuttle” function of VIP1, thus ensuring nuclear import of the
T-DNA (Lacroix et al., 2005). In contrast to VIP1, VirE3 is not a
transcription factor and is therefore unlikely to (directly) induce
defense gene expression. VirE3 may thus be an attractive target
for biotechnological approaches.

VIP1 as transcriptional regulator
A random-DNA-selection-assay (RDSA) enabled the identifica-
tion of putative VIP1 target sequences. The DNA consensus
motif recognized by VIP1 (VRE—VIP1 response element) was
found to be enriched in promoters of stress-responsive genes
(Pitzschke et al., 2009b). Notably, this motif does not resem-
ble known regulatory DNA elements. In vivo, VIP1 directly
binds to VRE sites in the promoter of MYB44 (Pitzschke et al.,
2009b), a stress-related transcription factor (Jung et al., 2008;
Persak and Pitzschke, 2013). Importantly, this binding occurs in
a stress-dependent manner that correlated with the MPK3 acti-
vation profile (Pitzschke et al., 2009b). Through binding to VRE
sites, VIP1 might directly regulate expression of another stress-
responsive gene, thioredoxin Trxh8. In protoplast cotransfection
experiments, VIP1 triggered the expression of the pathogen-
responsive PR1 gene (Djamei et al., 2007). However, this PR1
induction is likely an indirect effect. The PR1 promoter is devoid
of VRE sites; and PR1 is known as a late stress-responsive gene,
in contrast to the early and transient nature of MPK3 activa-
tion and VIP1 cyto-nuclear translocation. A very recent report
(Lacroix and Citovsky, 2013) provides a deeper insight into the
VRE-VIP1 mechanism. In agreement with the original study
(Pitzschke et al., 2009b), VIP1 bound VRE in vitro, and VIP1-
VRE binding strongly correlated with transcriptional activation
levels in vivo. Presence of the agrobacterial F-box protein VirF
did not affect VIP1-VRE binding in vitro. In contrast, coexpres-
sion of virF markedly decreased VIP1 transcriptional activation
ability in vivo. The most likely explanation for this effect is
that in vivo, VirF prevents VRE induction by triggering pro-
teasomal degradation of VIP1 (Lacroix and Citovsky, 2013).
In fact, agrobacteria have learned to control VIP1 abundance
by abusing the host proteasome machinery (see below). Being
aware of the ongoing host-pathogen arms race, it is tempting
to speculate that VIP1 may not only turn on expression of host
defense genes. Instead, agrobacteria may benefit from one or
more VIP1-induced gene products involuntarily provided by the
plant. Discovering the VIP1-targetome seems a highly rewarding
undertaking. Screening of the Arabidopsis genome for promoters
enriched in VRE and related motifs isolated by RDSA (Pitzschke
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et al., 2009b) could be a first step in that direction (Pitzschke,
unpublished).

Overexpression studies in tobacco have shown that VIP1
also promotes transformation efficiency in heterologous systems
(Tzfira et al., 2002). The cross-species functionality of VIP1 as
transcription factor was further documented in a rather non-
conventional expression system: protoplasts from red leaves of
poinsettia (Euphorbia pulcherrima). Polyethylenglycol-mediated
cotransfection experiments showed that VIP1 efficiently induces
VRE-mediated gene expression (Pitzschke and Persak, 2012). For
this transactivation to occur neither a tissue context, chloroplasts
nor external stimuli are required.

In its unquestionable key role in Agrobacterium-mediated
transformation, VIP1 presents an attractive target for manip-
ulation. It appears feasible to uncouple the T-complex-vehicle
from the defense-gene-inducer function. Experiments with a C-
terminally truncated VIP1 variant have shown that full-length
VIP1 is required for stable, but not for transient transforma-
tion (Li et al., 2005a). The transgenesis-enhancing effect most
likely derives from VIP1 acting as mediator between host nucleo-
somes and T-DNA/VirE2 complexes. Therefore, replacing critical
residues rather than deleting certain domains/peptides seems a
more purposeful approach. Indeed, mutation of Lys212, located
in the bZIP domain, rendered VIP1 fully incapable of transacti-
vating the PR1 promoter or a synthetic VRE promoter (Pitzschke
et al., 2009b).

THE SCF PROTEASOMAL MACHINERY, VirF AND VBF
Many biological processes, including host-pathogen interactions,
are controlled by SCF (Skp1-Cul1-F-box protein) ubiquitin ligase
complexes. These complexes mediate the proteasomal degrada-
tion of specific target proteins. The F-box protein contained in
SCF complexes confers substrate specificity (Lechner et al., 2006).

Although prokaryotes lack SCF complexes, F-box-encoding
genes are found in some pathogenic bacteria. The translocation
of F-box effectors appears to be a wide-spread “infection strat-
egy.” Pathogens secrete F-box proteins into their hosts to abuse
the SCF machinery, resulting in high infection rates. However, F-
box effectors are intrinsically unstable proteins which are rapidly
degraded by the host proteasome pathway (Magori and Citovsky,
2011b). The Citovsky laboratory uncovered yet another level of
agrobacterial cleverness and callousness: Destabilization of the
agrobacterial F-box protein VirF is counteracted by the bacte-
rial effector, VirD5 (Magori and Citovsky, 2011a). As if this was
not enough, agrobacteria also exploit additional host factors to
maximize infection: Diverse pathogens, including Agrobacterium,

induce expression of VBF (VIP1-binding factor), a host-encoded
F-box protein. VBF can functionally replace the agrobacterial
VirF in regulating VIP1 and VirE2 protein levels (Zaltsman
et al., 2010b). Analogous to VirF, VBF destabilizes VirE2 and
VIP1, most likely via SCF-mediated proteasomal degradation
(Zaltsman et al., 2010a). A very recent study extends on this find-
ing and highlights the importance of VBF at the final stage of
T-DNA pre-integration (Zaltsman et al., 2013). As reported ear-
lier, T-complexes can be reconstituted from ssDNA and VirE2 in
vitro (Zupan et al., 1996). Its tight packaging by VirE2 molecules
shields the ssDNA from the outside and makes it inaccessible
to degradation by exogenously added DNAse. In the presence
of extracts from wild type, but not from VBF antisense plants,
this “shielding effect” was found to be rapidly lost. Thus, VBF-
mediated uncoating of the T-complex indeed results in unmasking
of the T-DNA (Zaltsman et al., 2013).

Micro-bombardment studies in N. benthamiana leaves have
disclosed a cytoplasmic-nuclear distribution of VBF. In con-
trast, VBF/VIP1 complexes occur exclusively in the nucleus.
Based on these observations, VBF may have additional func-
tions in the cytoplasm, besides acting in T-complex disassem-
bly in the nucleus, (Zaltsman et al., 2010b). Alternatively, VBF
may re-locate upon pathogen attack (similar to VIP1). If this—
currently hypothetic—scenario was true, a straight-forward ques-
tion arises. Is VBF distribution phosphorylation-dependent; is it
controlled by MAPKs? At least in silico, such scenario appears
possible (Pitzschke, unpublished). MAPKs phosphorylate their
targets at serine or threonine residues adjacent to a proline.
A kinase interaction motif [KIM; R/K-x2-6-I/Lx(/L)], known
to be recognized by mammalian MAPKs (Tanoue and Nishida,
2003), assists MAPK binding also in substrate proteins of plant
MAPKs (Schweighofer et al., 2007). The VBF protein sequence
contains one Ser-Pro dipeptide motif as well as one KIM (posi-
tion 164-171) (Figure 1). Pathogen-activated MAPK(s), such as
MPK3, may phosphorylate residue Ser17 and thereby initiate VBF
nuclear translocation.

THE ROLE OF PLANT HORMONES IN TRANSFORMATION
AND TUMOR FORMATION
A plethora of developmental and stimulus-triggered responses
are signaled via phytohormones. Auxin is involved in essen-
tially all aspects of plant growth and development (Benjamins
and Scheres, 2008; Ljung, 2013). Ethylene controls fruit ripening
and plant senescence. It also mediates biotic stress and numer-
ous other environmental responses (Merchante et al., 2013).
Abscisic acid controls seed germination, stomatal movement

FIGURE 1 | Arabidopsis VBF protein sequence. A peptide matching the consensus motif for MAPK interaction [R/K-x2-6-I/Lx(/L)], and a putative MAPK
phosphorylation site are highlighted.

Frontiers in Plant Science | Plant-Microbe Interaction December 2013 | Volume 4 | Article 519 |118

http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Pitzschke Agrobacterium infection and plant defense

and is tightly connected with diverse abiotic and biotic stress
responses (Nakashima and Yamaguchi-Shinozaki, 2013). Salicylic
acid (SA), jasmonate and ethylene primarily act in biotic stress
protection. There is ample evidence for the existence of substan-
tial crosstalk between plant hormone defense pathways (De Torres
Zabala et al., 2009; Robert-Seilaniantz et al., 2011a; Boatwright
and Pajerowska-Mukhtar, 2013). These reports highlighted the
importance of the plant’s need to dynamically balance absolute
and relative levels of phytohormones. A complex and compre-
hensive review on plant hormones and pathogen response was
published very recently (Denance et al., 2013).

Agrobacteria largely shift the “hormone balance” in their
infected hosts. This effect on endogenous growth regulators will
ultimately lead to agrobacterium-induced tumor formation. An
elaborate study provided an insight into Agrobacterium-induced
phytohormonal changes, and it allowed the researchers to sepa-
rate tumor-dependent and-independent host responses. Lee et al.
(2009) examined the physiological changes and adaptations dur-
ing tumor development provoked by an oncogenic strain (C58)
or a disarmed derivate (GV3101), which only lacks the T-DNA
but not the Vir factors (VirD2, VirE2, VirE3, VirF) (Holsters
et al., 1980). The oncogenic strain was found to cause much
stronger host responses than the disarmed strain. The authors
monitored the kinetics of Agrobacterium-induced concentration
changes of plant hormones, including SA, ethylene, jasmonic
acid and indole-3-acetic acid (IAA, the most important auxin).
In parallel, they assessed transcriptional changes, with a focus
on hormone biosynthesis genes. At the early stage of infection,
IAA and ethylene started to accumulate, while later, after T-DNA
integration, primarily SA levels increased.

In the subsequent sections particular attention is given to the
roles of auxin and SA in the agrobacterium/plant interaction.

AUXIN
Auxin-controlled processes are tightly linked to the intracellular
auxin gradient. As reviewed recently (Korbei and Luschnig, 2011),
this asymmetric hormone distribution arises from polar deploy-
ment and intracellular trafficking of auxin carriers. The stability
and activity of these auxin transport proteins, in turn, is con-
trolled by a number of post-translational modifications (Lofke
et al., 2013; Rahman, 2013).

Upon its perception by a small number of F-box proteins,
auxin rapidly induces the expression of two types of transcrip-
tional regulators, encoded by the aux/IAA and ARF (auxin
response factor) gene families. In fact, each physiological response
might result from the combinatorial interaction between indi-
vidual members of these two families (Kim et al., 1997). ARFs
directly induce or repress the transcription of their target genes
that contain auxin responsive elements in the promoter. By bind-
ing to their partner ARFs, aux/IAA proteins keep ARFs in an
inactive state. In the presence of auxin, this inhibition is released
by degradation of the aux/IAA protein. Recent comprehensive
reviews on these principles of auxin responses can e.g., be found
in (Korbei and Luschnig, 2011; Lofke et al., 2013; Rahman, 2013).

Several plant pathogens interfere with auxin signaling. This
interference can occur at several levels. For instance, Pseudomonas
syringae was shown to alter Arabidopsis auxin physiology via

its type III effector protein AvrRpt2 (Cui et al., 2013). In this
scenario, AvrRpt2 promotes auxin response by stimulating the
turnover of aux/IAA proteins, the key negative transcriptional
regulators in auxin signaling. Furthermore, some P. syringae
strains were found to produce auxin themselves (Glickmann et al.,
1998).

miR393 as regulator of auxin signaling and bactericide synthesis
Agrobacteria employ an impressive strategic repertoire to manip-
ulate host auxin levels and signal transduction. First, auxin is
one of the T-DNA products introduced by oncogenic A. tume-
faciens (Weiler and Schroder, 1987). Because auxin stimulates
cell growth and gall formation, T-DNA-based auxin biosynthe-
sis serves the pathogen directly in remodeling its host. Attacked
host plants, on the other hand, try to evade or at least restrict
this remodeling. They employ a gene silencing-based mechanism
involving production of a particular micro RNA. miR393 tar-
gets three major auxin receptors (F-box proteins TIR1, AFB2,
AFB3) and contributes to antibacterial resistance (Navarro et al.,
2006). Increased levels of miR393 were found in C58-infiltrated
zones, but not in areas infiltrated with the disarmed control
(Pruss et al., 2008). miR393 appears to be a versatile instru-
ment to keep pathogen invasion in check. miR393 expression is
induced by the PAMP-derived peptide flg22 (Robert-Seilaniantz
et al., 2011b). Notably, flagellin sequences from Agrobacterium
(as well as Rhizobium) are exceptionally divergent from this PTI-
triggering conserved 22-amino-acid motif (Felix et al., 1999).
Arabidopsis plants overexpressing miR393 have a higher resis-
tance to biotrophic pathogens (Robert-Seilaniantz et al., 2011b).
The authors showed that miR393/auxin-related resistance is due
to interference with another hormone pathway, SA. Generally,
auxin and SA act as negative and positive regulators of plant
defense, respectively (Denance et al., 2013). These opposing
effects are largely due to the repressive effect of auxin on SA levels
and signaling, although auxin also represses defense in an SA-
pathway-independent manner (Kazan and Manners, 2009; Mutka
et al., 2013). As proposed by (Robert-Seilaniantz et al., 2011b),
miR393 represses auxin signaling and thereby prevents auxin
from antagonizing SA signaling. Infection studies with auxin sig-
naling mutants furthermore indicated that the auxin-regulated
transcription factor ARF9 induces accumulation of camalexin,
but represses accumulation of glucosinolate (Robert-Seilaniantz
et al., 2011b). Compared to camalexin, glucosinolates are con-
sidered more effective protectants against biotrophic invaders.
Therefore, miR393-related stabilization of ARF9 in inactive com-
plexes may present a means to shift camalexin toward glucosino-
late production. Whether miR393 synthesis upon agrobacterial
attack “only” serves to repress auxin-related callus growth or
whether it has additional functions in the defense remains to be
established. As noticed recently, naturally high contents of glu-
cosinolates per se are no obstacle to transformation. Tropaeolum
majus, a glucosinolate-rich plant of the order Brassicales, is trans-
formed by agro-infiltration of leaves (GV3101, disarmed strain)
to high efficiency (Pitzschke, 2013b).

Besides camalexin and glucosinolates, plants produce vari-
ous other secondary metabolites to defend themselves against
biotrophic pathogens. Agrobacteria can defy at least one major
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group of bactericides. Several phenolic compounds are enzymat-
ically converted by the agrobacterial protein VirH; and a virH2
mutant was found to be more susceptible to growth inhibition by
these substances (Brencic et al., 2004).

One member of the bactericidal polyamines deserves special
attention, putrescine. A recent study (Kim et al., 2013) docu-
mented that putrescine accumulation is controlled by MAPK
signaling involving MPK3 and MPK6. In Arabidopsis, ADC genes,
encoding key enzymes for putrescine biosynthesis, are induced by
infection with P. syringae. adc-deficient mutants are impaired in
P. syringae-induced PR1 expression. Disease susceptibility in these
mutants can be recovered by exogenous putrescine. ADC tran-
script and putrescine levels are elevated in transgenic Arabidopsis
plants expressing a constitutively active MAPK3/6 regulatory
kinase in the wild-type background. In the mpk3 or mpk6 mutant
background, however, this effect is largely reduced. An earlier
study in tobacco had shown that plants accumulate putrescine
derivatives also to combat agrobacterial infection. Auxin likely
is involved in this response (Galis et al., 2004). It remains elu-
sive whether P. syringae- and A. tumefaciens-induced putrescine
synthesis are mediated by a common MPK3/MPK6 signaling
pathway.

SALICYLIC ACID
Plants produce SA in response to pathogen attack or microbial
elicitors. Mutants with constitutively elevated SA levels are gener-
ally more resistant toward biotrophic pathogens (Boatwright and
Pajerowska-Mukhtar, 2013). Previously, SA was shown to atten-
uate A. tumefaciens-induced tumors (Yuan et al., 2007; Anand
et al., 2008). Additional experimental data documented that the
antagonism of auxin to SA responses (see above) is reciprocal. SA
represses expression of several auxin-related genes. Moreover, by
stabilizing Aux/IAA proteins, SA inhibits auxin responses (Wang
et al., 2007). Elevated SA levels were observed in Arabidopsis stalks
during later stages (>6 dpi) of agrobacterial infection, indicat-
ing defense activation. This response was provoked by both the
oncogenic (C58) and the disarmed strain (GV3101) (Lee et al.,
2009). However, Arabidopsis stems infected with C58 contained
higher levels of SA, which further increased in 35-day-old tumors.
The authors (Lee et al., 2009) also found that high SA levels in
mutant plants (npr1, cpr5) prevented tumor development, while
low levels promoted it (nahG, eds1, pad4). One specific role of SA
in the Agrobacterium-plant interaction is its inhibitory effect on
vir gene expression, which is accomplished by shut-down of the
vir regulon (Yuan et al., 2007). What is more, SA indirectly inter-
feres with pathogen multiplication by activating the expression
of quormone-degrading enzymes (Yuan et al., 2007). In sum-
mary, SA appears to counteract agrobacterial invasion at several
levels. It represses vir regulon genes (Yuan et al., 2007; Anand
et al., 2008) and induces quormone-quenching genes (Yuan et al.,
2007). Furthermore, SA antagonises auxin responses (Wang et al.,
2007) and acts as antimicrobial agent (Gershon and Parmegiani,
1962). Interestingly, SA accumulation in Agrobacterium-infected
Arabidopsis stalks was not accompanied by the induction of SA-
responsive pathogenesis-related genes (3 h, 6 d, 35 dpi tested) (Lee
et al., 2009). This effect is different from what is known from
other plant-pathogen interactions and from pharmacological

studies. Generally, in pathogen-infected plants, elevated SA syn-
thesis triggers PR gene expression. Likewise, PR genes are induced
by exogenous application of SA or its analog BTH (Lawton et al.,
1996). Despite the lack of PR gene induction, SA does play a
role in agrobacterial infection, as evidenced by the altered tumor
size in SA-deficient/accumulating mutants (Yuan et al., 2007; Lee
et al., 2009). Apparently, A. tumefaciens cannot prevent SA accu-
mulation, but it can suppress some SA-related defense responses.
As suggested by (Lee et al., 2009), abnormally high SA levels in the
host may have overextended the agrobacterial control machinery.

A recent comprehensive survey of Arabidopsis transcriptome
profiling data (including diverse stress treatments and biotic
stress signaling mutants sid2, npr1, coi1, ein2) provided a deeper
insight into the SA/PR gene relation (Gruner et al., 2013). In
P syringae-treated Arabidopsis, PR1 expression fully depends on
(isochorismate-synthase1) ICS1-mediated SA biosynthesis and
on (non-expressor of PR1) NPR1-mediated downstream signal-
ing. PR1 is not induced by exogenous hydrogen peroxide, abscisic
acid or flg22, and it is independent of jasmonic acid and ethylene
signaling (Gruner et al., 2013).

The small set of genes induced by Agrobacterium (strain C58:
35genes; strain GV3101: 28 genes) (Lee et al., 2009) is in strik-
ing contrast to the high number (948) of elicitor-responsive
(EF-Tu-derived peptide elf26) transcripts. Agrobacteria clearly
dampen host responses (Lee et al., 2009). This dampening is
not restricted to the transcriptional level. Histological analysis
(using diaminobenzidine) revealed that agrobacteria efficiently
repressed H2O2 accumulation in wounded stalks over several
days post-infection. The agrobacterial interference with the host’s
redox-regulatory machinery is also mirrored by the differential
expression of several oxidative-stress-related genes (Ditt et al.,
2001; Veena Jiang et al., 2003; Lee et al., 2009). By repressing
H2O2 production agrobacteria may also avoid activation of ROS-
dependent defense genes. Given the known sensitivity of any
living cell to reactive oxygen species (ROS), the blocking of accu-
mulation appears an agrobacterial strategy to protect both itself
and its living food source, i.e., the host.

PLANT ATTEMPTS TO REPRESS ONCOGENE EXPRESSION
Plants exhibit an admirable perseverance in their battle against
microbial manipulation. Even after unsuccessful attempts to
escape Agrobacterium-induced genetic re-programming, the host
cell does not surrender. Instead, transformed cells employ gene
silencing mechanisms to limit the levels of T-DNA-derived tran-
scripts. Evidence for the involvement of post-transcriptional gene
silencing had been provided in a pioneering work by Dunoyer
et al. (2006). Small interfering RNAs (siRNAs) directed against T-
DNA oncogenes (tryptophan 2-monooxygenase and agropine syn-
thase) were detected in Nicotiana benthamiana leaves 3 days after
infiltration with virulent agrobacteria. Additional experiments
in Arabidopsis further stressed the importance of gene silencing
as a disease-limiting strategy. RNA interference-deficient mutant
plants (rdr6, lacking a RNA-dependent RNA polymerase) were
found to be hypersusceptible to agrobacterial infection, as evi-
denced by extensive tumor formation (Dunoyer et al., 2006). The
researchers also conducted infection studies in leaves and stems of
Nicotiana bethamiana carrying a post-transcriptionally-silenced
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reporter gene (green fluorescent protein, GFP). This approach
enabled them to show that the siRNA protection strategy against
T-DNA genes is efficient only at early stages of infection: Strong
green fluorescence, high GFP mRNA concentrations and low
siRNA concentrations were detected specifically in young tumors.
Later in the infection process, the pathogen takes command. By
specifically inhibiting siRNA synthesis, agrobacteria induce an
anti-silencing state—thereby ensuring oncogene expression and
tumor maturation (Dunoyer et al., 2006).

A more recent study furthermore documented that DNA
methylation also plays a critical role in the regulation of T-DNA
transcript levels (Gohlke et al., 2013). The authors compared
the methylation pattern of mock- and Agrobacterium-inoculated
Arabidopsis inflorescence stalks on a genome-wide level. Four-
week-old tumors, arising from inoculation with the oncogenic
A. tumefaciens strain C58 contained a globally hypermethylated
genome. Intriguingly, a specifically low degree of methylation was
observed in T-DNA-derived oncogenes (Ipt IaaH, IaaM). Data
obtained from experiments with DNA methylation mutants lead
to the conclusion that crown gall formation and oncogene expres-
sion correlate with the unmethylated state and, consequently that
hypermethylation is a strategy to inhibit plant tumor growth.

RECALCITRANCE TO AGROBACTERIUM-MEDIATED
TRANSFORMATION
Agrobacterium naturally has a wide host range in plants, primar-
ily dicot species. Driven by the demand for higher yields and
improved stress tolerance the accessibility to transformation has
become a prime issue in crop science. Despite intensive research
it is still poorly understood why some plant species can be
transformed easily, while others are recalcitrant to Agrobacterium-
mediated transformation. Transformation methods of model
plants and important crop species are frequently updated, doc-
umenting the striving for simpler, more robust and more efficient
protocols (reviewed in e.g., Pitzschke, 2013a). These protocols
primarily focus on optimizing the conditions of Agrobacterium—
explant co-incubation. Here, duration, light conditions and the
concentration of supplemented acetosyringone and plant hor-
mones are key parameters.

One central message emerges from enumerable transforma-
tion studies. The outcome of co-cultivation is primarily deter-
mined by the timing and intensity at which host defense responses
are activated. Understanding the molecular language of the
plant—Agrobacterium dialogue is therefore of substantial interest
both to basic research and agricultural science.

Studies that compare different cultivars of the same species
are particularly informative, and one such study shall be men-
tioned here. Transformation efficiencies between rice cultivars
differ greatly. The indica variety lags far behind the japonica
cultivars. A comparative study of the two cultivars in transient
and stable transformation assays revealed that the lower transfor-
mation efficiency in indica rice was mainly due to less-efficient
T-DNA integration into the host genome (Tie et al., 2012).
Microarray analyses (1, 6, 12, and 24 h post-infection) revealed
major differences in the Agrobacterium-induced changes in tran-
scriptome profiles of the two cultivars. These differences were
most pronounced at the early stages of infection (within the first

6 h). The authors observed an overall stronger response in the
indica cultivar (Zs), with several genes being repressed, and they
postulated that some of these genes may be required for the trans-
formation process. From this study, one may conclude that (1)
although T-DNA integration represents a late step in the trans-
formation process, the “decision” that leads to failure or success is
made early. This decision is made in a narrow time window, since
many Zs-specific transcripts are repressed only transiently (at the
1 OR 6 h time-point only). (2) Agrobacteria manage to actively
prevent repression of integration-assisting genes in the suscep-
tible cultivar. Among others, gene ontology (GO) annotations
“stress-responsive” and “lipid transport” are overrepresented in
the group of indica-specific transcripts. The lower T-DNA inte-
gration efficiency in the indica cultivar may also be attributable
to the specific repression of genes related to DNA damage repair.
This assumption is in good agreement with the importance of
the host DNA repair machinery in T-DNA integration reported
earlier (Li et al., 2005b; Citovsky et al., 2007).

THE ROLE OF REACTIVE OXYGEN SPECIES IN RECALCITRANCE
A promising approach for converting hitherto non-transformable
plant species is to determine the basis of this recalcitrance.
Poor transformation rates can have entirely different reasons. As
outlined above, bacterial and host factors contribute and need
to be well-balanced. In pro- and eukaryotic organisms alike,
ROS play important roles in the transmission of information.
ROS- and MAPK signaling in plants is strongly inter-connected
(Pitzschke and Hirt, 2009; Meng and Zhang, 2013). Because
high ROS levels trigger cell death, their targeted stress-dependent
production serves host organisms to restrict pathogen spread.
Inappropriate ROS concentration or distribution can therefore
be a barrier to successful transformation. For instance, recalci-
trance in Hypericum perforatum (St. John’s wart; medicinal herb),
cell cultures was found to be due to an early oxidative burst,
which killed 99% of the co-cultivated agrobacteria within 12 h of
infection. Interestingly, the oxidative burst only affected agrobac-
terial viability but did not trigger plant apopotosis (Franklin et al.,
2008). Antimicrobial factors likely also have a negative effect on
transformation efficiency and agrobacterial viability in H. perfo-
ratum. A 12-fold increase in xanthone levels was observed in H.
perforatum cells 1 day after infection. Increased xanthone levels
correlated with an elevated antimicrobial and antioxidative com-
petence. On the basis of these observations one may conclude that
the plant can divert its antioxidant capacity to prevent itself, but
not the invader, from oxidative damage.

One known agrobacterial factor determining oxidative resis-
tance levels is the ferric uptake regulator Fur. A fur-deficient
mutant was found to be hypersensitive to H2O2 and to
have reduced catalase activity (a H2O2-detoxifying enzyme).
Agrobacterial fur mutants were also compromized in tumori-
genesis on tobacco leaves (Kitphati et al., 2007). Similarly, A.
tumefaciens mutants in the RirA gene (rhizobial iron regulator;
repressor of iron uptake) exhibited a peroxide-sensitive pheno-
type and were impaired in tumor formation on tobacco. In
addition, induction of the virulence genes virB and virE was
reduced in rirA mutants (Ngok-Ngam et al., 2009). Furthermore,
A. tumefaciens mutants affected in oxidative stress tolerance
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FIGURE 2 | The molecular arms race between host and microbe in Agrobacterium-mediated plant transformation. The activities of both partners need
to be well-balanced for successful transformation. Numbers in brackets refer to the corresponding sections in the manuscript.
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have been characterized, e.g., mbfA (membrane-bound ferritin)
(Ruangkiattikul et al., 2012).

The above examples document the vital importance of ROS
balancing for both invader and invaded cell. It is tempting to
speculate that, the reduced tumor formation in the fur/tobacco
and rirA/tobacco interaction is caused by the poor viability of
agrobacteria in a ROS-rich environment of infected host cells.
Such a scenario would be in analogy to the situation in H. per-
foratum (Franklin et al., 2008), At this point, concerted efforts of
microbiologists and plant biologists are needed to systematically
define the proportion and identity of ROS-related agrobacterial
factors playing a limiting role in plant transformation.

Another recalcitrant species of agricultural importance that
has attracted attention is grapevine (Vitis vinifera). Proteomic
profiling in grapevine calli grown in the absence or presence of
agrobacteria allowed identification of 38 differentially expressed
proteins (Zhao et al., 2011). ROS scavenging enyzmes were down-
regulated in co-cultivated cells (ascorbate peroxidase, tocopherol
cyclase). The authors concluded that low transformation rates
and extensive necrosis in A. tumefaciens-treated grapevine derive
from an impaired ROS scavenging system and an over-activation
of apoptotic/hypersensitive response pathways.

APPROACHES TO OVERCOME RECALCITRANCE
Because strong and prolonged host defense responses generally
correlate with reduced transformation success (Figure 2), exter-
nal attenuation of these responses may be a means to improve
transformation efficiencies. The experimental approaches that
can be taken to manipulate host defenses are as manifold as
the defense strategies themselves. The problem can be tackled
from different sides: (1) by using modified agrobacterial strains
that elicit a weaker defense, as e.g., shown in a study on potato
(Vences-Guzman et al., 2013); (2) by modifying the composi-
tion of plant media and/or growth conditions to keep defense
levels low, e.g., Zhang et al. (2013a); (3) by transient and tar-
geted manipulation of the plants non-self-recognition machinery
(see below); (4) by counteracting the effect of antimicrobial sub-
stances. This strategy proved successful in tea, where L-glutamine
was found to overcome the bactericidity of polyphenols (Sandal
et al., 2007).

In an innovative study Tsuda and colleagues demonstrated
how detailed knowledge on plant-microbe interactions can be
employed for successful transformation. AvrPto encodes an effec-
tor protein from the bacterial plant pathogen Pseudomonas
syringae. The protein suppresses plant immunity by interfer-
ing with plant immune receptors. The AvrPto gene was placed
under the control of a dexamethasone-inducible promoter. In
transgenic Arabidopsis plants carrying the inducible construct,
dexamethasone pre-treatment largely improved transformation
in agro-infiltrated leaves (Tsuda et al., 2012).

An entirely different “pre-treatment strategy” proved success-
ful in perennial ryegrass (Lolium perenne L.) (Zhang et al., 2013a).
Stable transformants were obtained at an impressively high rate
(84%), and 60% of the transgenic calli were regenerated into
green plantlets. This was achieved by combining two strategies,
while either treatment alone had little effect (10–20% transforma-
tion efficiency): (1) Myo-inositol, a component of many standard

media, was removed from the callus culture medium. (2) A cold
shock pre-treatment was applied prior to agrobacterial infection.

Myo-inositol levels in plants are primarily controlled by a
specific oxygenase, which catalyses the first step in the conver-
sion of this sugar into plant cell wall polysaccharides (Endres
and Tenhaken, 2009). The basis of the effect observed by Zhang
and colleagues is still largely elusive. It appears that myo-inositol
acts in different ways and at multiple levels: omission of myo-
inositol promoted Agrobacterium binding to the cell surface. It
also repressed H2O2 production in infected tissue. One indirect
consequence of ROS production, callus browning, could fur-
thermore be suppressed when including the cold pre-treatment
(Zhang et al., 2013a). Worthwhile questions are: Does growth of
cold-pre-treated calli on myo-inositol-free medium alter cell wall
composition to support agrobacterial attraction, invasion and/or
survival in L. perenne cells? If so, what is the critical difference?
Can such favorable cell wall characteristics be imitated to facilitate
agrobacterial transformation of other recalcitrant species?

CONCLUSIONS
The molecular battle between agrobacteria and plants is impres-
sive, instructive and challenging (Figure 2). Impressive, because
the arms race takes so many forms. Instructive, because dis-
coveries from Agrobacterium-plant interaction studies may drive
progress in other fields of microbe-host association research.
Challenging, because the external conditions that permit or pro-
hibit transformation including transgene expression are diverse,
and the balance needs to be determined empirically. The current
state of research provides substantial breeding ground for plant
scientists to search for this balance in their favorite species in a
more targeted manner.
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Agrobacterium tumefaciens causes crown gall disease on various plant species by
introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively
studied both as a pathogen and an important biotechnological tool. The infection process
involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the
gene expression patterns of host plants differ depending on the Agrobacterium strain, plant
species and cell-type used. Later on, integration of the T-DNA into the plant host genome,
expression of the encoded oncogenes, and increase in phytohormone levels induce a
fundamental reprogramming of the transformed cells. This results in their proliferation and
finally formation of plant tumors.The process of reprogramming is accompanied by altered
gene expression, morphology and metabolism. In addition to changes in the transcriptome
and metabolome, further genome-wide (“omic”) approaches have recently deepened
our understanding of the genetic and epigenetic basis of crown gall tumor formation.
This review summarizes the current knowledge about plant responses in the course of
tumor development. Special emphasis is placed on the connection between epigenetic,
transcriptomic, metabolomic, and morphological changes in the developing tumor. These
changes not only result in abnormally proliferating host cells with a heterotrophic and
transport-dependent metabolism, but also cause differentiation and serve as mechanisms
to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the
coexistence of the crown gall and host plant.

Keywords: plant defenses, phytohormones, morphological adaptions, metabolomic changes, epigenetics

INTRODUCTION
Agrobacterium tumefaciens causes crown gall disease on a wide
range of host species by transferring and integrating a part of
its own DNA, the T-DNA, into the plant genome (Chilton et al.,
1977). This unique mode of action has also made the bac-
terium an important tool in plant breeding. After attachment
of Agrobacterium to plant cells and expression of multiple viru-
lence (vir) genes, several effector proteins, together with T-DNA,
are transported into the plant cell by a type-IV-secretion system
(Thompson et al., 1988; Ward et al., 1988, 2002; Kuldau et al., 1990;
Shirasu et al., 1990; Beijersbergen et al., 1994). Plant factors assist
with T-DNA integration into the plant genome (Gelvin, 2000;
Mysore et al., 2000; Tzfira et al., 2004; Magori and Citovsky, 2012).
After integration, expression of the T-DNA-encoded oncogenes
iaaH, iaaM, and ipt induces biosynthesis of auxin and cytokinin
(Morris, 1986; Binns and Costantino, 1998). Increased levels of
these phytohormones result in enhanced proliferation and for-
mation of crown galls. Despite the transfer of bacterial proteins
into the plant cell, most Agrobacterium strains do not elicit a
hypersensitive response (HR), which is associated with rapid and
localized death of cells (Staskawicz et al., 1995). Such a response
often occurs when plants are challenged by bacterial pathogens
and serves to restrict the growth and spread of pathogens to other
parts of the plant. Accordingly, no systemic, broad-spectrum resis-
tance response throughout the plant (systemic acquired resistance,

SAR) is induced. Within the first several hours of co-cultivation,
pathogen defense response pathways are activated more or less
strongly depending on the plant system and Agrobacterium geno-
type used for infection (Ditt et al., 2001, 2006; Veena et al.,
2003; Lee et al., 2009). Defense responses become stronger during
crown gall development. Furthermore, the physiological behav-
ior of the transformed cells changes drastically. In contrast to
the articles which focus on the molecular mechanism utilized
by the bacterium to transform the plant cell, here we review
the latest findings on the responses of the host plant and in the
crown gall to Agrobacterium infection. Special attention is paid
to the role of gene expression regulation, phytohormones, and
metabolism.

HOST RESPONSES TO Agrobacterium tumefaciens BEFORE
T-DNA TRANSFER
PATHOGEN DEFENSE
The recognition of microbial pathogens plays a central role in the
induction of active defense responses in plants. The conserved
flagellin peptide flg22 is recognized by the receptor kinase FLS2
and induces the expression of numerous defense-related genes
to trigger resistance to pathogenic bacteria (Gómez-Gómez et al.,
1999, 2001; Zipfel et al., 2004; Chinchilla et al., 2006). However,
the genus Agrobacterium fails to induce this type of rapid and
general defense response because of an exceptional divergence in

www.frontiersin.org April 2014 | Volume 5 | Article 155 | 127

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/journal/10.3389/fpls.2014.00155/abstract
http://community.frontiersin.org/people/u/136651
http://community.frontiersin.org/people/u/96707
mailto:deeken@botanik.uni-wuerzburg.de
http://www.frontiersin.org/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Gohlke and Deeken Plant responses to Agrobacterium tumefaciens

the N-terminal conserved domain of flagellin (Felix et al., 1999).
When comparing early gene expression changes after infection
with the virulent Agrobacterium strain C58 with application of the
bacterial peptide elf26 (after 1 and 3 h, respectively), dampening of
host responses becomes apparent with Agrobacterium treatment.
The elf26 peptide, a highly conserved motif of one of the most
abundant proteins in microbes recognized by the receptor kinase
EFR, is a fragment of the elongation factor Tu (EF-Tu). EF-Tu
triggers innate immunity responses associated with disease resis-
tance in Arabidopsis (Kunze et al., 2004). While treatment with
pure elf26 induces gene expression changes of 948 Arabidopsis
genes (Zipfel et al., 2006), only 35 genes are induced after infec-
tion with the virulent Agrobacterium strain C58, suggesting that
the bacterium somehow neutralizes the response to elf26 by the
host plant (Lee et al., 2009). It should be mentioned that the Ara-
bidopsis ecotype and age (seedling vs. adult stalk) used in the
studies may also account for some of the differences in defense
response.

Concerning the transcriptional activation of genes involved
in early plant defense responses, several studies have come to
different conclusions. Ageratum conyzoides cell cultures showed
differential expression of defense genes as early as 24 h post
infection with a non-oncogenic hypervirulent Agrobacterium
strain (Ditt et al., 2001). In tobacco suspension cultures infected
with different Agrobacterium strains, transcription of defense
genes increased within 3–6 h, but started to decrease with the
onset of T-DNA-transfer (Veena et al., 2003). A study using
suspension-cultured cells of Arabidopsis did not show changes
in transcript levels within 4 to 24 h but activation of defense
genes 48 h after infection (Ditt et al., 2006). When agrobac-
teria are inoculated at the base of wounded Arabidopsis stems
just very few defense genes are activated 3 h post infection
compared to uninfected wounded stems (Lee et al., 2009). In
contrast to cell cultures, the latter experimental setup does nei-
ther require phytohormone pre-treatment nor virulence gene
induction prior to infection. Phytohormone pre-treatment of
the cell culture systems of the earlier studies may alter host
cell defense responses. Thus, discrepancies between these stud-
ies probably result from the different plant inoculation systems
used. Nevertheless, agrobacteria can abuse host defense responses
for T-DNA delivery. The mitogen-activated protein kinase MPK3
phosphorylates the Arabidopsis VIP1 protein, inducing VIP1 relo-
calization from the cytoplasm to the nucleus. Nuclear localization
of VIP1 increases T-DNA transfer and transformation efficiency
(Djamei et al., 2007).

PHYTOHORMONES
Agrobacteria produce auxin and cytokinin themselves in order
to modulate plant responses (Figure 1A). These phytohormones
have been determined in the cells as well as cultivation medium
(Morris, 1986). It was postulated that biosynthesis of the phy-
tohormones is catalyzed by enzymes of the T-DNA encoded
oncogenes, as transcripts and proteins of these genes were
detected in agrobacterial cells (Schröder et al., 1983; Janssens
et al., 1984). Pronounced amounts of auxin have been deter-
mined in the virulent Agrobacterium strain C58 and at lower
levels also in plasmidless and T-DNA depleted strains (Liu and

Kado, 1979; Kutáèek and Rovenská, 1991). More recent data
have confirmed the latter results (Lee et al., 2009). The finding
that a strain without a Ti-plasmid still can make auxin implies
localization of genes also outside of the Ti-plasmid. However,
this assumption is not supported by sequencing data for strain
C58 (Wood et al., 2001). Genes known to be involved in auxin
biosynthesis seem to be encoded only by the T-DNA of the
Ti-plasmid. Recently, these authors determined the presence of
iaaH and iaaM transcripts by PCR in Agrobacterium cells of
strain C58 and confirmed the earlier findings. It remains to
be proven whether these genes are responsible for auxin pro-
duction or if auxin is synthesized by a different mechanism
in Agrobacterium cells. The mechanism for cytokinin biosyn-
thesis by agrobacteria is far better understood. In nopaline
utilizing Agrobacterium strains cytokinin is produced in high
amounts by the Ti-plasmid encoded trans-zeatin synthesizing
(tzs) enzyme of which the gene is located in the vir regulon
(Akiyoshi et al., 1985, 1987; Hwang et al., 2010). A substantial
smaller source for cytokinin production is isopentenylated trans-
fer RNA (tRNA) catalyzed by the chromosomal-encoded enzyme
tRNA:isopentenyltransferase (MiaA) present in all Agrobacterium
strains (Gray et al., 1996).

Earlier studies have shown that pre-treatment of explants with
either auxin alone or both auxin and cytokinin increase T-DNA
transfer efficiency and stable transformation (Krens et al., 1996;
Chateau et al., 2000) as well as crown gall growth (Gafni et al.,
1995). In this respect, Agrobacterium produced phytohormones
play a role at very early time points of infection (Figure 1A),
before T-DNA-encoded enzymes catalyze synthesis of cytokinin
and auxin in the transformed host cell. Concerning the mecha-
nism causing an increase in susceptibility it was speculated that
phytohormones induce plant cell division and that the cell cycle
phase influences agrobacterial attachment and stable transforma-
tion. It seems likely that phytohormone-mediated modification
of the physiological state of the cell increases competence for T-
DNA transformation and integration. More recent investigations
addressed the question about the molecular mechanism and the
signaling pathways by which these phytohormones influence host
cell susceptibility. Transcriptome microarray data from 3 h after
inoculation of Agrobacterium strain C58 into Arabidopsis stems
revealed that the genes known to be involved in phytohormone-
dependent signaling are not induced in host cells at this very
early time point of infection before transfer of the T-DNA (Lee
et al., 2009). It has been shown that indole-3-acetic acid (IAA)
has an impact on agrobacterial virulence by inhibiting vir gene
induction and growth of agrobacteria (Liu and Nester, 2006).
However, this effect was observed with relatively high concen-
trations of auxin (25–250 μM). In Agrobacterium cells the total
(free and conjugated) IAA content is 0.3 ± 0.1 μM and in
Arabidopsis stems 3 h after inoculation with strain C58 it is
2.1 ± 1 μM, whereas in Arabidopsis crown galls the content
is ca. 10 times higher (17.3 ± 8.8 μM) due to the expres-
sion of the T-DNA encoded iaaH and iaaM genes and their
enzyme activity (own data and Thomashow et al., 1986). Appli-
cation of 1 μM IAA, a concentration found in wounded and
uninfected Arabidopsis stems (0.8 ± 0.2 μM), stimulated growth
of Agrobacterium cells, whereas growth stimulation vanished at
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FIGURE 1 | Responses of the model plant Arabidopsis thaliana to

Agrobacterium tumefaciens and crown gall development. (A) Virulent
(pTi) agrobacteria cells themselves produce and release cytokinin and auxin,
which increase host susceptibility and inhibit hydrogen peroxide production
(H2O2) and hypersensitive response (HR) at initiation of infection. (B) After
integration of the bacterial T-DNA into the plant genome, cytokinin and auxin
is synthesized by T-DNA encoded enzymes and accumulate inside the tumor.
(C) This causes massive changes in the gene expression pattern, resulting in
metabolomic and morphological adaptations that are necessary for tumor
growth and differentiation. (D) Loss of water is minimized by drought stress
protecting mechanism, which causes an increase in the levels of the stress
hormone ABA, and ABA-dependent suberization of cells to prevent water
loss. Evaporation of water (H2O) from the disrupted crown gall surface drives

the flow of water and minerals into crown galls. (E) Because photosynthesis
is down-regulate the oxygen levels are low, the tumor produces C and N
compounds heterotrophically and gains energy mainly anaerobically by
alcoholic fermentation. (F) Consequently the developing tumor becomes a
metabolic sink for the host plant, which accumulates metabolites produced
by source leaves and minerals taken up by the roots. (G) Auxin and cytokinin
also cause an increase in ethylen (ET) which together with salicylic acid (SA)
inhibits agrobacterial virulence. (H) ABA also induces DNA methylation of the
plant genome, thereby regulating gene expression of drought-stress
responsive genes. Overall, the crown gall genome becomes hypermethylated
(Me) after Agrobacterium infection and possibly contributes to the strong
changes in gene expression during tumor growth. The oncogenes of the
T-DNA remain unaffected by methylation of the plant genome.

10 μM and higher IAA concentrations (personal communication,
J. Ludwig-Mueller, Technical University Dresden, Germany). It is
known that the effect of auxin is strongly dose dependent with a
growth promoting effect at low concentrations and an inhibitory
effect at high concentrations, which slightly varies dependent on

the plant and tissue type. One may speculate that at initiation
of infection, the relatively low auxin levels of agrobacterial cells
and/or of wounded plant tissue stimulate growth of agrobacte-
ria, whereas the higher concentrations produced in the crown
gall inhibit virulence as well as growth of Agrobacterium. Such an
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antagonistic auxin effect would promote transformation of the
host cell at the beginning of the infection process and inhibit
agrobacterial virulence and growth to prevent further transfor-
mation events in developing crown galls. In contrast to auxin, the
role of cytokinin signaling in plant susceptibility is well known.
Recently, it has been shown that cytokinin secreted by Agrobac-
terium controls virulence via bacterial cell growth and vir gene
expression at early stages of the infection process (Hwang et al.,
2010). Some, but not all plant species showed a cytokinin-
dependent increase in transformation efficiency (Hwang et al.,
2013). Agrobacterium-derived cytokinin not only acts on bacterial
physiology but also influences host gene expression via the clas-
sical cytokinin-dependent signaling pathway including cytokinin
receptors and the phosphotransfer cascade (Sardesai et al., 2013).
Activation of this signaling cascade through agrobacterial-derived
cytokinin results in inhibition of gene expression of the Arabidop-
sis MYB family transcription factor, MTF1 (Sardesai et al., 2013).
MTF1 turned out to be a negative regulator of transformation
susceptibility by blocking expression of the integrin-like protein
At14a, a plant membrane receptor. At14A serves as anchor points
for bacterial attachment at the host cell surface. Thus, at early
stages of infection agrobacterial auxin and cytokinin manipulates
plant phytohormone signaling pathways to prepare the host cell
for transformation.

In addition to auxin and cytokinin, plant defense signaling
involves a network of interconnected pathways in which salicylic
acid (SA) and jasmonic acid (JA) together with ethylene (ET)
function as essential signaling molecules (Kunkel and Brooks,
2002). Exogenous application of the plant defense molecule SA
to Agrobacterium cells inhibited expression of vir genes includ-
ing tzs, bacterial growth, bacterial attachment to plant cells and
virulence (Yuan et al., 2007; Anand et al., 2008). However, at ini-
tiation of infection (3 h post infection) neither SA nor JA levels
nor the genes of these signaling pathways are elevated in Agrobac-
terium-infected Arabidopsis tissues (Lee et al., 2009). At this time
point only the level of 1-amino-cyclopropane-1-carboxylic acid
(ACC), an ET precursor, is increased in the presence of both
virulent and disarmed Agrobacterium strains, but not expression
of marker genes of the ET-dependent defense-signaling pathway.
Inoculation of melon (Cucumis melo) explants with Agrobac-
terium also increases ET production (Ezura et al., 2000). ET is
known to trigger plant auxin production due to increased expres-
sion of plant genes involved in auxin biosynthesis (Stepanova
et al., 2005). Auxin enhances host susceptibility whereas plant ET
production has a negative effect on agrobacterial virulence. Appli-
cation of ACC reduces Agrobacterium-mediated gene transfer to
melon explants whereas addition of aminoethoxyvinylglycin, an
inhibitor of ACC synthase, increased it (Ezura et al., 2000). A
reduction in transformation efficiency results from suppression
of vir gene expression, but not Agrobacterium growth (Nonaka
et al., 2008). The promoting effect of low auxin concentra-
tions on agrobacterial growth and the inhibiting effect of ET
on virulence illustrates that both, Agrobacterium and the host
plant control host cell transformation. Taken together, at early
stages of the infection process, cytokinin and auxin produced
by Agrobacterium cells have a promoting effect on transforma-
tion efficiency, which is in part counteracted by the inhibitory

effect of host plant-derived ET and SA on agrobacterial virulence.
Thus, the correct phytohormone balance decides on the success of
infection.

HYPERSENSITIVE RESPONSE
Examination of early events in pathogenesis has demonstrated
that virulent Agrobacterium does not induce HR in Arabidopsis
(Figure 1A; Lee et al., 2009). Moreover, Agrobacterium is able to
suppress HR induced by Pseudomonas syringae pv. phaseolus in
plants (Robinette and Matthysse,1990). This suppression is depen-
dent on the activity of the iaaH and iaaM oncogenes which encode
enzymes for auxin synthesis, since several Agrobacterium transpo-
son mutants in the iaa genes failed to inhibit a HR. Likewise,
transcription of several genes involved in oxidative stress signaling
are only induced by the oncogenic, but not the T-DNA-depleted
Agrobacterium strain (Lee et al., 2009). Production of H2O2 pre-
cedes HR, which is degraded via a chromosomally encoded catalase
of Agrobacterium (Xu and Pan, 2000). H2O2 acts both as a local
trigger for the programmed cell death and as a diffusible signal
for the induction of cellular protectant genes in surrounding cells
(Levine et al., 1994). Apart from its signaling functions, H2O2 is
also involved in toughening of cell walls in the initial stages of plant
defense by cross-linking of cell wall structural proteins (Bradley
et al., 1992). Accumulation of H2O2 is prevented only at the early
stages of agrobacterial infection, but proceeds in the course of
tumor development (Lee et al., 2009).

HOST RESPONSES TO CROWN GALL DEVELOPMENT
MORPHOLOGICAL ADAPTATIONS
Development of crown galls is accompanied by profound changes
in the gene expression profile, metabolism, and morphology. The
uncontrolled synthesis of auxin and cytokinin by cells transformed
with a T-DNA of tumorigenic Ti-plasmids drives tumor develop-
ment, while the auxin to cytokinin ratios determine the crown
gall morphology (Figure 1B). In the early days of studies about
the molecular basis of crown gall development it was observed
that mutations in the tmr locus encoding ipt cause rooty crown
galls and those in the tms loci coding for iaaH and iaaM induce
shooty phenotypes (Garfinkel et al., 1981; Akiyoshi et al., 1983;
Barry et al., 1984; Buchmann et al., 1985; Black et al., 1994). A
recent study on the T-DNA locus Atu6002 of strain C58 indi-
cated that when the encoding protein C is expressed, it increases
host cell sensitivity to auxin (Lacroix et al., 2013). In addition
to the T-DNA-encoded genes, the expression of several host
genes involved in auxin and cytokinin metabolism and signal-
ing are expressed in crown galls (Lee et al., 2009). Cytokinin and
auxin together with ET are known to be essential for growth of
crown gall tumors and differentiation of cell types with differ-
ent morphology and function (Figure 1C). Particularly, ET has
been shown to be essential for the formation of vascular tissue
and crown gall tumor development (Aloni et al., 1998; Wächter
et al., 1999, 2003; Ullrich and Aloni, 2000). Application of the
ET synthesis inhibitor aminoethoxyvinyl-glycine prevents vascu-
larization in castor bean (Ricinus communis) stems and inhibits
tumor growth completely (Wächter et al., 2003). When the ET-
insensitive tomato (Lycospersicon esculentum) mutant, never ripe,
is infected with virulent Agrobacterium cells it does not develop
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tumors despite integration and expression of the T-DNA encoded
oncogenes for auxin and cytokinin biosynthesis (Aloni et al.,
1998). Thus, neovascularization is a prerequisite for crown gall
development.

Growth and expansion of crown gall tumors cause disruption
of the epidermal cell layer and thereby loss of guard cells and
an intact cuticle. Accordingly, expression of genes involved in
cutin biosynthesis is downregulated (Deeken et al., 2006). As a
disrupted surface area provides access for pathogens and leads
to uncontrolled loss of water for the host plant, the crown gall
surface has to be sealed. This is achieved by differentiating a
periderm-like surface layer (Efetova et al., 2007). The polymeriza-
tion of suberin monomers involves peroxidases for which H2O2

is the electron donor. Thus, H2O2 produced in crown galls func-
tions in strengthening of cell walls rather than in induction of
a HR. The stimulus for inducing suberization is drought stress-
mediated ABA signaling (Figure 1D). Drought stress signaling
seems to play a central role in crown gall development. ABA
accumulates in crown galls in high amounts and transcription
of a set of drought and/or ABA-inducible genes is elevated (Mis-
trik et al., 2000; Veselov et al., 2003; Efetova et al., 2007). ABA
synthesis is triggered by ET as demonstrated by the application
of various inhibitors of ET or ABA biosynthesis and the use of
ET-insensitive or ABA-deficient tomato mutants (Hansen and
Grossmann, 2000). Among the genes which play a role in drought
stress protection of crown gall tumors is FAD3, encoding a fatty
acid desaturase. The fad3-2 mutant with impaired biosynthesis in
α-linolenic acid (C18:3) develops much smaller crown gall tumors
particularly in low but not high relative humidity (Klinkenberg
et al., 2014). Elevated levels of C18:3 were found in the phos-
pholipid fraction of Arabidopsis crown gall tumors and maintain
membrane integrity under drought stress conditions. In addition
to gene expression changes, crown galls accumulate high amounts
of osmoprotectants, such as proline (Pro), gamma aminobutyric
acid (GABA), and alpha-aminoadipinic acid. The retarded tumor
growth in abi and aba mutant plants underlines the importance of
an ABA-mediated drought stress-signaling pathway in crown gall
development (Efetova et al., 2007).

NUTRIENT TRANSLOCATION AND METABOLISM
Expression profiles of genes involved in energy metabolism, such
as photosynthesis, mitochondrial electron transport, and fermen-
tation together with physiological data revealed that Arabidopsis
tumors produce C and N compounds heterotrophically and gain
energy mainly anaerobically by alcoholic fermentation (Figure 1E;
Deeken et al., 2006). The change from autotrophy to heterotrophy
reduces the oxygen level in crown gall tumors thereby inducing
expression of hypoxia-sensitive genes, such as SAD6. This gene
encodes a stearoyl-acyl carrier protein desaturase, which belongs
to a class of enzymes known to catalyze the first step in fatty
acid desaturation, an oxygen-dependent process. Despite limited
oxygen availability in crown galls, SAD6 provides the monoun-
saturated fatty acid, oleic acid, for membrane phospholipids
(Klinkenberg et al., 2014). Thus, expression of SAD6 maintains
fatty acid desaturation under hypoxic conditions.

Crown gall tumors primarily use organic carbon and nitro-
gen for growth and are therefore a strong sink for the host plant.

Metabolites and minerals have to be provided by the host plant
and translocated into the crown gall tumor (Figure 1F). The
mechanisms of nutrient translocation and their accumulation
have been studied on crown gall tumors by applying cytolog-
ical staining, eletrophysiological, and 14CO2 tracer techniques
as well as a viral movement protein (Marz and Ullrich-Eberius,
1988; Malsy et al., 1992; Pradel et al., 1999). Solutes enter the
crown gall tumor via vascular tissue, which is connected to that
of the host plant and consists of phloem for the transport of
assimilates and xylem for water and minerals (Aloni et al., 1995;
Deeken et al., 2003). Assimilates are produced by source leaves and
are apoplastically and symplastically unloaded from the phloem
in crown gall tumors. High apoplastic invertase activity indi-
cated that sucrose is unloaded apoplastically (Malsy et al., 1992).
After cleavage of sucrose by sucrose-degrading enzymes, hexoses
can be taken up via hexose transporters into tumor cells. Ara-
bidopsis crown galls show elevated expression of several genes
encoding sucrose degrading enzymes and a monosaccharide trans-
porter (Deeken et al., 2006). In addition, a high-affinity hexose
transporter has been isolated from meristematic tobacco cells
transformed with a tumor inducing T-DNA and was character-
ized as energy independent hexose uptake transporter (Verstappen
et al., 1991). Application of the membrane impermeable fluores-
cent probe, carboxyfluorescein (CF) to source leaves and transient
expression of the GFP-labeled potato virus X (PVX) coat pro-
tein (CP), exclusively exploiting plasmodesmata for distribution,
demonstrated the existence of a symplastic transport pathway
between the phloem and tumor cells (Pradel et al., 1999). Both
reporters show extensive cell-to-cell movement in the parenchyma
of crown gall tumors but not in uninfected stem tissues of differ-
ent plant species ranging from symplastic (Curcubita maxima) to
apoplastic loaders (R. communis, Nicotiana benthamiana). The
disrupted and enlarged surface of the crown gall tumor drives
water and mineral translocation into crown gall tumors since
the evaporation rate of crown galls exceeds that of leaves and
non-infected stems (Schurr et al., 1996; Wächter et al., 2003).
The periderm-like layer of suberized cells that covers the crown
gall surface provides a considerable diffusion resistance against
water vapor, but it is not an impermeable barrier for water
(Figure 1D; Kolattukudy and Dean, 1974; Vogt et al., 1983;
Schreiber et al., 2005). Cations and anions are taken up into the
tumor cells through the function of membrane-localized chan-
nels and transporters expressed in the crown gall (Deeken et al.,
2003). Potassium channel mutants with impaired crown gall
growth underline the importance of optimal nutrient supply for
growth.

DEFENSE RESPONSES
Gamma aminobutyric acid and Pro not only serve as osmoprotec-
tants in drought-stress related processes of the host plant, but have
also an impact on Agrobacterium virulence (Haudecoeur et al.,
2009a,b). GABA produced in crown gall tumors can be taken
up by Agrobacterium cells and causes a delay in accumulation
of 3-oxo-octanoylhomoserine lactone (OC8HSL) and Ti plasmid
conjugation. GABA activates the AttKLM operon of which the
AttM lactonase degrades the quorum sensing signal, OC8HSL,
thereby turning on quorum quenching to protect the host plant
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against infections with bacterial pathogens (Yuan et al., 2008).
However, Pro interferes with the import of GABA and thereby pre-
vents GABA-induced degradation of the bacterial quorum sensing
signal OC8HSL. Thus, Pro antagonizes the GABA-induced degra-
dation of OC8HSL and therefore may be used by the pathogen to
by-pass the GABA-based host plant defense.

In addition to growth and developmental processes regulated
by auxin and cytokinin, crown gall biology also involves pathogen
defense signaling pathways. Hormones such as SA, JA, and ET
are the primary signals inducing defense responses (López et al.,
2008). In Arabidopsis crown galls the levels of SA and ET, but
not JA, are elevated (Figure 1G). JA has no obvious impact
on crown gall tumor development, as the development on Ara-
bidopsis JA-insensitive mutants is wildtype-like (Lee et al., 2009).
SA and ET contents together with the expression of pathogen-
related marker genes of the SA- and ET-dependent signaling
pathways increase with accumulation of the T-DNA-encoded
iaa and ipt transcripts. Thus, auxin and/or cytokinin seem to
be important for defense signaling in crown gall tumors, since
the non-tumorigenic Agrobacterium strain which contains a dis-
armed pTiC58 does not induce expression of marker genes of
the SA- and ET-dependent signaling pathways (Lee et al., 2009).
It is known that high levels of auxin and cytokinin stimulate
ET synthesis and its accumulation in crown galls (Goodman
et al., 1986; Aloni et al., 1998; Johnson and Ecker, 1998; Vogel
et al., 1998; Wächter et al., 1999). In contrast to ET, the clas-
sical marker genes of the SA-dependent signaling pathways are
not induced most likely as a result of the high auxin content,
which has been shown to inhibit SA responses to avoid the induc-
tion of SAR (Robert-Seilaniantz et al., 2011). Despite the lack of
induction of SA-dependent defense signaling, Arabidopsis mutant
plants with high SA levels strongly reduce while those with low
SA levels promote tumor growth (Lee et al., 2009). Instead of
inducing host defense pathways, high SA levels act directly on
oncogenic agrobacteria by inhibiting vir gene expression and
thereby reducing agrobacterial virulence (Yuan et al., 2007; Anand
et al., 2008). Besides SA-mediated inhibition of Agrobacterium vir-
ulence, SA activates the AttKLM operon, just like GABA does,
to down regulate quorum sensing in Agrobacterium (Yuan et al.,
2008). Thus, activation of quorum quenching by auxin, SA, and
GABA, is part of the plant defense program against Agrobac-
terium in the developing crown gall. In addition to SA, ET
and IAA also inhibit the vir regulon and T-DNA transfer into
plant cells (Figure 1G; Ezura et al., 2000; Nonaka et al., 2008).
Thus, the interaction between the host plant and Agrobacterium
is very much based on phytohormone cross talk which provides
a balance between pathogen-defense by the host and crown gall
development promoted by Agrobacterium.

EPIGENETIC PROCESSES IN DNA INTEGRATION, ONCOGENE
EXPRESSION, AND CROWN GALL DEVELOPMENT
EPIGENETIC CHANGES ASSOCIATED WITH T-DNA INTEGRATION AND
ONCOGENE EXPRESSION
Epigenetic changes that affect chromatin structure play an impor-
tant role in regulating a wide range of cellular processes. His-
tones for example are subject to post-translational modifica-
tion including acetylation, phosphorylation, methylation, and

ubiquitination. These modifications may influence crown gall
development on different levels, either by affecting chromatin
structure and DNA integration or by influencing gene expression
in the host tissue. Up-regulation of several members from the core
histone gene families after Agrobacterium infection indicates that
they are important for the transformation process (Veena et al.,
2003). For example, Arabidopsis mutants lacking histone H2A are
defective in T-DNA integration (Mysore et al., 2000). In addition,
a truncated version of VIP1, an Arabidopsis protein proposed to
interact with the T-DNA-protein-complex (T-complex), which is
not able to interact with histone H2A, strongly decreases Agrobac-
terium tumorigenicity (Li et al., 2005). As this decrease is most
likely due to a reduced T-DNA integration efficiency, this suggests
that association of the VIP1 with the host chromatin is critical
for integration of the T-DNA. One hypothesis of how epigenetic
information affects DNA integration is that chromatin modifi-
cations surrounding double-strand breaks (DSBs) of the DNA
can be recognized by the T-complex. The resulting chromatin-T-
complex may then bring T-DNA into close proximity to DSBs and
facilitate its integration by the DSB repair pathway (Magori and
Citovsky, 2011). Alternatively, histones may also enhance trans-
formation by protecting incoming DNA from nuclease digestion
during the initial stages of transformation. Indeed, overexpres-
sion of several histone genes in Arabidopsis results in higher
amounts of transferred DNA and increased transient transgene
expression in transformed cells (Tenea et al., 2009). Other epige-
netic modifications like DNA methylation do not correlate with
the T-DNA integration pattern, suggesting that T-DNA integra-
tion occurs without regard to this type of modification (Kim
et al., 2007). Concerning post-translational modifications of his-
tones, RNA-mediated knockdown of two histone deacetylases
(HDT1 and HDT2) decreases Agrobacterium-mediated transfor-
mation efficiency of Arabidopsis root segments (Crane and Gelvin,
2007). Histone deacetylation functions in chromatin compaction
and transcriptional repression (Strahl and Allis, 2000). Therefore,
the observed effect on transformation may either be a result of
effects on chromatin structure or gene expression of plant factors
involved in the integration process. Histone deacetylation may also
influence DNA integration by affecting DSB repair, as several his-
tone deacetylases are critical for the DNA repair process in yeast
(Munoz-Galvan et al., 2013).

After T-DNA is integrated into the plant genome, the host
plant often silences transgenes. Gene silencing can occur by two
different mechanisms. Transcriptional gene silencing (TGS) is a
result of promoter inactivation while post-TGS (PTGS) occurs
when the promoter is active but the mRNA fails to accumulate.
DNA methylation of promoter sequences is frequently associated
with inactivation of transgenes (Linne et al., 1990; Matzke and
Matzke, 1991; Kilby et al., 1992). Screening of a large collection of
transgenic Arabidopsis lines with single T-DNA copies including
a pNOS-NPTII reporter gene has shown that promoter methyla-
tion is required but not sufficient for transcriptional inactivation
(Fischer et al., 2008). Silencing only occurs when the plants, chal-
lenged by the silencer transgene, also provide an RNA signal.
Concerning local features of the host genome affecting gene silenc-
ing, repeats flanking the site of integration seem to promote
inactivation whereas flanking genes rather attenuate it. RNA
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silencing is triggered only if the transcript level of a transgene sur-
passes a gene-specific threshold, suggesting that the inactivation
is part of plant defense mechanism corresponding to excessively
transcribed genes (Schubert et al., 2004).

Apart from the down-regulation of transgenes that are inte-
grated into the plant genome along with the T-DNA, the T-DNA
itself may also be subject to modification by the plant silencing
machinery. The first comprehensive analysis of T-DNA methyla-
tion revealed that methylation can occur in different plant tumor
lines induced by Agrobacterium. At least one T-DNA copy in each
tumor genome remained unmethylated, thereby allowing onco-
gene expression and crown gall proliferation (Gelvin et al., 1983).
Experiments using the demethylating agent 5-azacytidine indi-
cates that methylation negatively correlates with gene expression
in plant tumors (Hepburn et al., 1983). A more recent study on
T-DNA methylation in crown gall tumors induced on Arabidopsis
stems demonstrates that the oncogene sequences are only methy-
lated to a very low degree (Gohlke et al., 2013). The two intergenic
regions, which serve as promoters for expression of the oncogenes
iaaH, iaaM, and ipt, are completely unmethylated in Arabidopsis
crown galls. As the gene products of these oncogenes are essen-
tial for an increase in levels of cytokinin and auxin, they are
always actively transcribed in crown gall tumors of Arabidopsis
stems (Deeken et al., 2006). The low degree of T-DNA methyla-
tion in crown galls suggests that this is a prerequisite to maintain
the expression levels of oncogenes required for tumor formation.
Indeed, induction of DNA oncogene methylation by production
of double-stranded RNAs is sufficient to repress oncogene tran-
scription and prevent tumor development (Gohlke et al., 2013).

EPIGENETIC MODIFICATIONS IN THE CROWN GALL GENOME
Analysis of Agrobacterium-infected inflorescence stalks allowed
monitoring of gene expression in the crown gall tumor at later
developmental stages and revealed massive changes in its tran-
scriptome (Deeken et al., 2006). A large part of the Arabidopsis
genome (about 22% of genes) was found to be expressed dif-
ferentially between crown galls and mock-infected stems. Of
these genes, a slightly higher percentage was found to be down-
regulated in crown galls (12%) compared to up-regulated genes
(10%). Distinct expression changes occur at genes pivotal for
energy metabolism, such as those involved in photosynthesis,
mitochondrial electron transport, and fermentation. This reflects
the induced host cell changes from an auxotrophic, aerobic
metabolism to a heterotrophic, transport-dependent, sugar-
dependent anaerobic metabolism (see Nutrient Translocation and
Metabolism).

Considering that a high percentage of the Arabidopsis genome
is differentially regulated in crown gall tumors, transcriptional
reprogramming probably occurs on several levels. For example,
the transcript levels of several transcription factor families (MYB,
bHLH, bZIP, AP domain) change after Agrobacterium infection
(Ditt et al., 2006; Sardesai et al., 2013), thereby inducing a tumor-
specific gene expression pattern. Gene expression may also be
regulated by epigenetic mechanisms like chromatin modification
or DNA methylation. Apart from modifications which play a
role during T-DNA integration and silencing of oncogenes (see
Epigenetic Processes in DNA Integration, Oncogene Expression

and Crown Gall Development), DNA methylation of plant genes
can also influence tumor growth (Figure 1H). Indeed, 8% of
protein-coding genes are differentially methylated in crown galls
compared to mock-infected stems, with an overall tendency
toward being hypermethylated (Gohlke et al., 2013). Depending
on the position of DNA methylation, different effects on the gene
expression levels are observed. In agreement with trends observed
for DNA methylation changes in Arabidopsis (Zhang et al., 2006),
increased methylation at transcription start and end sites has a
negative impact on gene expression, while the two processes are
positively correlated in the transcribed region. Mapping of DNA
methylation in tumors revealed hypomethylation in the upstream
regions of genes as well as hypermethylation in transcribed
regions. Both of these may, in turn, influence gene expression
and contribute to the tumor-specific expression pattern. Not sur-
prisingly, pathways that are associated with tumor development
like genes associated with cell division, biotic stress, and redox
regulation are differentially methylated. Changes in the methyla-
tion pattern also have an impact on tumor growth, as Arabidopsis
mutants in de novo methylation pathways promote crown gall
development. Intriguingly, callus induction, which like crown gall
development is also associated with dedifferentiation of plant cells,
is increased in the methyltransferase mutant cmt3 (Berdasco et al.,
2008). In addition, treatment with the methyltransferase inhibitor
5-acacytidine results in increased callus formation. Recently, the
DNA methylation pattern has been extensively studied in calli from
Populus trichocarpa and Oryza sativa. In Oryza sativa calli, hyper-
methylation was detected compared to wild-type plants (Stroud
et al., 2013). Gene bodies are hypermethylated in Populus tri-
chocarpa calli compared to explants, while promoter methylation is
reduced (Vining et al., 2013). Consistent with the methylation pat-
tern in crown galls, DNA hypermethylation seems to be a general
feature of a dedifferentiated status.

An attempt to identify internal plant signals which may influ-
ence DNA methylation suggests that high levels of ABA induce
DNA methylation of promoter sequences (Figure 1H; Gohlke
et al., 2013). Therefore, this phytohormone may at least partly
be responsible for the methylation pattern found in crown galls.
It is tempting to speculate that ABA induces DNA methylation
as a response to abiotic stresses such as drought stress acclima-
tion due to the increased water loss in crown gall tumors (Schurr
et al., 1996). Possibly, ABA signaling pathways are interconnected
with methylation processes in crown galls, as has been suggested
for Physcomitrella patens (Khraiwesh et al., 2010). In the future, it
would be interesting to analyze ABA knockout mutants concerning
their methylation pattern in order to map ABA-induced methyla-
tion changes in a comprehensive manner and thereby improve our
understanding of the connection between the different pathways.
In addition, other phytohormones would also be interesting to
study regarding their influence on the DNA methylation pattern
in crown galls, as they display not only increased levels of ABA,
but also of cytokinin, auxin, ET, and JA (Veselov et al., 2003; Lee
et al., 2009).

SUMMARY AND OUTLOOK
At the beginning of infection, sensing of Agrobacterium does not
induce a strong defense response of the host plant. Agrobacterium
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rather exploits defense responses to increase host susceptibility
for transformation and host signaling pathways to promote bac-
terial growth. In crown galls, however, pathogen defense pathways
are considerably activated and inhibit Agrobacterium virulence.
Accordingly, the host plant is able to limit the number of further
T-DNA transformation events and to control the growth dimen-
sion of crown galls, which represent a strong metabolic sink for the
host plant. Metabolic and morphological adaptations accompany
the development of crown galls and generate an import-oriented
tissue. The heterotrophic metabolism together with anaerobically
gain of energy requires translocation of metabolites, water and
minerals from the plant into the proliferating crown gall tissue.
As a basis for nutrient translocation the vascular tissue needs
to differentiate and the disrupted and suberized crown gall sur-
face provides the driving force for nutrient flow. In fact, the
suberized surface minimizes water loss, but still allows enough
evaporation of water. Membrane integrity is maintained under
the low oxygen and elevated ROS levels in crown galls by adapta-
tion of lipid metabolism. The transcriptional changes underlying
the physiological changes are partially caused by differential DNA
methylation of the crown gall genome. In conclusion, both
Agrobacterium infection and crown gall growth are highly regu-
lated processes, which are accompanied by pathogen defense of
the host and counter-defense launched by Agrobacterium. This
regulation takes place on different levels including epigenetic con-
trol of gene expression, changes in phytohormone content as well
as metabolic and morphological adaptions.

Despite the fact that the Agrobacterium-plant-interaction has
been studied since more than 100 years and is most likely one of
the best-known pathogen-host-relationships, there are still some
questions left, which one may aim to answer. In addition to the
one raised about the role of phytohormones other than ABA on
DNA methylation in crown gall development, another one would
be about the molecular mechanisms of how Agrobacterium cells
produce auxin and how auxin increases host susceptibility for
transformation. Furthermore, the status and type of plant cell
susceptible for T-DNA integration is as yet unknown. The knowl-
edge about the cellular identity sensitive for transformation will
improve our understanding of transformation recalcitrant plant
species. Moreover, differentiation processes in crown galls do not
follow the usual patterning, unlike the situation in plant organs
where developmental patterning underlies a precise spatiotempo-
ral expression of signals and their cognate receptors. Since the
original/typical developmental program seems to be overruled,
crown gall tumors provide a unique opportunity for studying
the molecular and biochemical mechanisms underlying cellular
de-differentiation as well as differentiation processes. Not all of
the questions raised may be easy to address, as some require
sophisticated techniques, which at first have to be developed and
established. However, invention of new techniques will benefit
the entire scientific community as they have done before when
Agrobacterium became the biotechnological tool for generation of
genetically modified plants.
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Agrobacterium-plant defense tango
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Coevolutionary forces drive adaptation of both plant-associated microbes and their
hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each
plant–pathogen relationship reflects escalating adversarial strategies, but also external
biotic and abiotic pressures on both partners. Innate immune responses are triggered
by highly conserved pathogen-associated molecular patterns, or PAMPs, that are
harbingers of microbial presence. Upon cell surface receptor-mediated recognition
of these pathogen-derived molecules, host plants mount a variety of physiological
responses to limit pathogen survival and/or invasion. Successful pathogens often
rely on secretion systems to translocate host-modulating effectors that subvert plant
defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize
these effectors, activating what has typically been characterized as a pathogen-specific
form of immunity. Recent data support the notion that PAMP-triggered and effector-
triggered defenses are complementary facets of a convergent, albeit differentially
regulated, set of immune responses. This review highlights the key players in the
plant’s recognition and signal transduction pathways, with a focus on the aspects
that may limit Agrobacterium tumefaciens infection and the ways it might overcome
those defenses. Recent advances in the field include a growing appreciation for the
contributions of cytoskeletal dynamics and membrane trafficking to the regulation of
these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate
the interwoven hormonal pathways that mediate host responses. Emerging systems-
level analyses include host physiological factors such as circadian cycling. The existing
literature indicates that varying or even conflicting results from different labs may well
be attributable to environmental factors including time of day of infection, temperature,
and/or developmental stage of the host plant.

Keywords: immunity, pathogen, Agrobacterium, hormones, actin, trafficking, temperature, light

Overview

At its most basic, any form of immunity must distinguish between self, or beneficial, and harm-
ful non-self interactions. In animals, adaptive immunity is delegated to specialized immune cells
that undergo selection to recognize new pathogens and mount specific, targeted defenses more
rapidly during a second attack. This adaptive immunity is only possible because innate immunity,
consisting of evolutionarily ancient, non-specific and rapidly mobilized defenses, staves off – or
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eliminates – the pathogen while adaptive immunity is activated.
Innate immune responses are triggered by highly conserved
“pathogen-associated molecular patterns,” or PAMPs, that are
widely shared within distinct classes of pathogens, such as bac-
teria or fungi. Due to their structural and sequence-level evolu-
tionary conservation, PAMPs are often found in non-pathogenic
microbes as well and hence are also called microbial-associated
molecular patterns, orMAMPs. These PAMPs/MAMPselicit a set
of defense mechanisms tailored to the type of microbe perceived
(Ausubel, 2005).

Plants lack specialized immune cells, but have a robust and
sophisticated system of innate defenses. Extra- and intra-cellular
receptors detect microbial presence and trigger signal transduc-
tion pathways that lead to immediate physiological changes.
These include the production of damaging reactive oxygen
species (ROS), extracellular alkalization, Ca2+ fluxes, callose
deposition, seedling growth inhibition, stomate closure, and
localized programmed cell death [hypersensitive response (HR);
Boller and Felix, 2009]. One of the earliest signal transduction
events regulating these responses is the mitogen-activated protein
kinase (MAPK) pathway, which modulates defense gene expres-
sion (Asai et al., 2002). Hormone biosynthesis genes, notably for
salicylic acid (SA), jasmonate (JA) and ethylene, are among those
expressed, and play a crucial role in plant defenses. These hor-
mones can induce systemic defenses throughout the plant to slow
or prevent the pathogen from spreading beyond the infection
site. They also upregulate hormone-specific defense genes fur-
ther downstream and in their volatile forms, can even signal to
neighboring plants (Shulaev et al., 1997).

Two arms of the plant innate immune system control the
selective activation of these responses: effector-triggered immu-
nity (ETI) and PAMP (or pattern)-triggered immunity (PTI; also
called MTI, or MAMP-triggered immunity). Unlike PAMPs or
MAMPs, effectors are secreted only by specific bacterial strains
and are highly polymorphic (Spoel and Dong, 2012). Effectors
are generally virulence-promoting factors that typically sup-
press host defenses. Particular plant genomes encode R proteins
that specifically recognize and bind bacterial effectors to reduce
their efficacy, decreasing plant susceptibility (Jones and Dangl,
2006).

A unifying theme of this review is the interplay between
Agrobacterium tumefaciens and the defense responses mounted
by its hosts. Agrobacterium, the causative agent of crown gall
disease, is best known for its ability to genetically transform
host plants by delivering a portion (the “T-DNA”) of its tumor-
inducing (Ti) plasmid or a foreign DNA construct that has been
inserted into a Ti plasmid-derived vector (Lacroix and Citovsky,
2013a). A number of studies (e.g., Ditt et al., 2005; Zipfel et al.,
2006; Tie et al., 2012; Zhang et al., 2013b) in a range of host
species including rice, ryegrass, and Arabidopsis thaliana indi-
cate that Agrobacterium-elicited defenses limit transformation
efficiency. However, unlike several other well-characterized phy-
topathogens, Agrobacterium does not appear to incite an HR
on most host species. Consistent with this observation, there is
growing evidence that Agrobacterium modulates host defenses,
at least in part by regulating hormone accumulation, although
the mechanism(s) mediating this host manipulation are not yet

known. Given the relative paucity of published studies on the
defenses affected by Agrobacterium, our goal here is to syn-
thesize for the reader those facets of the host response that
appear most relevant to Agrobacterium infection. Because there
are no known Agrobacterium-encoded effectors or cognate host
R proteins, we focus primarily on PAMP-triggered immune sig-
naling and its downstream consequences. Nonetheless, in light
of recent arguments questioning the distinction between PTI
and ETI (see PTI and ETI: A False Distinction?), we briefly
consider ETI as well before reviewing in detail the hormonal
regulatory pathways (particularly SA) that appear to be a crit-
ical target for agrobacterial counter-defense strategies. Finally,
we highlight both host physiological and environmental fac-
tors that may impact the outcome of the host-Agrobacterium
interaction.

Pathogen Elicitors and Host
Recognition/Response Systems

PAMP Perception and PTI
PAMP-triggered immunity is elicited by highly conserved molec-
ular features, such as bacterial flagellin. These patterns are specific
epitopes derived from molecular structures that are essential
for microbial fitness. In general, evolutionary selective pressure
prevents the loss or modification of the PAMPs and, in the-
ory, distinguishes PAMPs from host-specific pathogen-derived
effectors. As universal harbingers of microbial presence, known
PAMPs predictably include a number of cell wall components
such as peptidoglycan, lipopolysaccharides, and fungal chitin
(Felix et al., 1999; Gust et al., 2007; Miya et al., 2007; Erbs et al.,
2008; Thomma et al., 2011). The two best-characterized bacte-
rial PAMPs are peptides derived from flagellin (flg22) and the
elongation factor EF-Tu (elf18; Felix et al., 1999; Kunze et al.,
2004). Flagellin and more generally, pathogen motility, play key
roles in pathogenesis, as chemotaxis and entry into the host are
often essential early in infection (Josenhans and Suerbaum, 2002).
EF-Tu is themost abundant protein found inmany bacteria expe-
riencing rapid growth (Furano, 1975) and is released into the
extracellular space upon disruption of bacterial cell membrane
integrity (Zipfel et al., 2006; Nicaise et al., 2009).

PAMPs and MAMPs are perceived by the extracellular
domains of plant pattern recognition receptors (PRRs), typically
receptor-like kinases that trigger downstream kinase-dependent
signaling pathways. No intracellular PRRs have yet been found
(Thomma et al., 2011). In Arabidopsis, the flagellin receptor FLS2
and the EF-Tu receptor (EFR) detect subnanomolar concentra-
tions of flg22 and elf18, respectively (Chinchilla et al., 2006;
Zipfel et al., 2006). The presence of EFR only in Brassicaceae
(Boller and He, 2009) suggests that it is evolutionarily younger
than FLS2 (Nekrasov et al., 2009; Saijo et al., 2009). The demon-
strated success in conferring resistance to Agrobacterium and
other pathogens by introducing the EFR gene from Arabidopsis
into Nicotiana benthamiana and tomato (Solanum lycopersicum)
raises the possibility of engineering broad-spectrum bacterial
resistance by heterologous expression of PRRs in vulnerable crops
(Lacombe et al., 2010).
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Significantly, some pathogens exhibit enough divergence in
their PAMP sequences to avoid host detection (Boller and Felix,
2009). In particular, the Arabidopsis FLS2 is unable to per-
ceive flagellin from Agrobacterium (Bauer et al., 2001). Instead,
EFR appears to be the key determinant of susceptibility to
Agrobacterium in Brassicaeceae. Co-inoculation with the elicitor
peptide elf18 reduces transformation efficiency of the bacterium,
while an efr mutant plant line exhibits enhanced susceptibility
to infection and transgene transformation (Zipfel et al., 2006).
Agrobacterium cell-wall derived peptidoglycans do elicit defense
responses, including rapid increases in ROS and extracellular pH
in Arabidopsis, albeit at much reduced levels as compared to
those from the necrotrophic pathogen Xanthomonas campestris
pathovar campestris; this difference may reflect the agrobacterial
requirement to maintain host viability for successful transforma-
tion (Erbs et al., 2008).

Effectors and ETI
Since microbes unwittingly elicit PTI with passive expression of
conserved microbial patterns, successful infection often requires
the secretion of virulence effectors to subvert those defenses
(Jones and Takemoto, 2004). While many effectors act enzy-
matically, others decrease plant defenses by increasing tran-
scription of genes that further down-regulate defense activation
genes (Chisholm et al., 2006). Still other effectors, including the
Pseudomonas syringae pv. tomato DC3000 Type III secretion
system (T3SS)-delivered avirulence factors AvrPto and AvrPtoB,
directly target PRRs for inactivation and suppress PTI signal-
ing events, thus increasing host susceptibility to the incoming
pathogen (Abramovitch et al., 2006; He et al., 2007; Zipfel, 2009).

Predictably, many plant hosts have evolved a second branch
of immunity called ETI to detect these virulence-promoting
effectors via polymorphic nucleotide-binding leucine-rich repeat
(NB-LRR) or extracellular leucine-rich repeat (eLRR) proteins
encoded by R genes (Jones and Dangl, 2006). ETI is also known
as “gene-for-gene immunity” because R proteins have evolved
to specifically detect and recognize particular pathogenic effec-
tors (Chisholm et al., 2006). Some R proteins can also indirectly
recognize the changes in host proteins targeted by pathogen effec-
tors, a phenomenon initially articulated as the “guard hypothesis”
(Jones and Takemoto, 2004). R gene-mediated resistance results
in severe host defense activation, including a HR, or apoptosis
at the infection site, in an effort to limit the pathogen’s spread
throughout the plant and hence the development of disease (He
et al., 2007).

Unlike MAMPs, effectors are not required for microbe sur-
vival, and are thus under strong evolutionary pressure to mutate
and evade host plant detection by R proteins. This force similarly
drives R genes tomutate tomore successfully detect effectors. The
“four phased ‘zigzag’ model” (Jones and Dangl, 2006) maps the
dance between pathogen attack and plant defense. In this model,
the plant’s detection of PAMPs triggers PTI, which is dampened
by the pathogen’s secretion of effectors. These effectors (some-
times referred to as Avr proteins) are then recognized by plant R
proteins, increasing plant defense via ETI, until mutated effectors
can evade plant detection and successfully hamper plant defense
activation (Jones and Dangl, 2006). The co-evolution or Red

Queen-like relationship between effectors and R proteins drives
the ‘zigzag’ as the plant or the pathogen temporarily gains the
upper hand.

As noted above, there are no reports to date of a classic
gene-for-gene mechanism of resistance in any host species to
Agrobacterium. There is, however, mounting evidence that the
pathogen has the capability to disable or dampen defenses. Ditt
et al. (2006) reported no difference in gene expression between
Agrobacterium-infected and mock-infected Arabidopsis at 4–24 h
post-infection (hpi), although their microarray analysis did reveal
distinct sets of up-regulated defense genes, as well as down-
regulated cell-proliferation genes, at 48 hpi. In contrast, other
studies (e.g., Veena et al., 2003; Lee et al., 2009; Zhang et al.,
2015) uncovered a variety of alterations in the host transcriptome
at earlier time points. Given the rapidity of the basal defenses
described here, it seems likely that Ditt et al. (2006) missed many
of the changes in gene expression that may well have returned
to pre-infection levels by 4 hpi. Using subtractive hybridization
and macroarray analysis for expression profiling, Veena et al.
(2003) noted that defense gene induction in tobacco BY2 sus-
pension cells was suppressed at 30–36 hpi by a strongly virulent
Agrobacterium strain but not by a Ti plasmid-deficient strain,
although early defense gene induction (3–6 hpi) appeared to be
largely similar between the two. Consistent with the observed
capacity of the pathogen to suppress accumulation of ROS within
3 h of infection (Lee et al., 2009), a catalase-deficient mutant is
highly attenuated for virulence (Xu and Pan, 2000). Somewhat
paradoxically, Anand and Mysore (2013) found that RAR1, a
plant protein required for R-gene mediated resistance to fungal
pathogens, contributes to efficient Agrobacterium transforma-
tion. Finally, hormones produced by Agrobacterium block the
HR that would normally result from subsequent infection with
P. syringae pv. phaseolicola (Robinette and Matthysse, 1990)
and enhance host susceptibility by suppressing expression of an
infection-inhibiting transcription factor (Sardesai et al., 2013).
Compared to the plethora of data on effectors produced by other
pathogens, especially those with T3SS, we still know very little
about the mechanisms Agrobacterium employs to thwart host
defenses. The examples cited here hint at a diversified portfolio
of strategies that may fail to conform to the canonical effector-
R gene-mediated duel for dominance (Anderson et al., 2010).
Instead, it seems reasonable to hypothesize that molecules deliv-
ered via the Ti-plasmid and/or chromosomally borne secretion
systems in Agrobacterium could promote host transformation by
repressing defense activation (or inducing expression of defense
repressors). Similar to ETI, such Agrobacterium-derived sabo-
teurs might in turn induce additional host responses.

PTI and ETI: A False Distinction?
Several lines of evidence have recently called into question the
notion of clear temporal, evolutionary and structural distinc-
tions between PTI and ETI (Qi et al., 2011; Thomma et al.,
2011). For example, the Arabidopsis proteins RPM1, RPS2, and
RPS5 were identified as R proteins that indirectly detect effec-
tor activity on the plant protein RIN4 (Jones and Takemoto,
2004), a regulator of PAMP-triggered responses (Kim et al., 2005).
Qi et al. (2011) recently demonstrated that RPM1, RPS2, and
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RPS5 also physically interact with FLS2 to trigger PTI. Moreover,
certain PAMPs such as Ax21 and Pep-13 from Xanthomonas
oryzae pv. oryzae and the Phytophthora species, respectively,
are narrowly distributed and conserved in only a few strains of
pathogens, characteristics classically attributed to effectors rather
than PAMPs (Thomma et al., 2011).

Transcriptome analysis of inoculated plants also indicates that
PAMP- and ETI may regulate similar sets of defense responses
(Tsuda and Katagiri, 2010). Navarro et al. (2004) found overlap
between Arabidopsis flg22-induced genes and their P. syringae
effector-induced tobacco orthologs, though the extent of overlap
was weak and diminished over time. Parallels in the early stages
of the response indicate that both PAMPs and effectors may ini-
tially trigger a common signaling mechanism(s). Indeed, Boller
and Felix (2009) have argued that there exists a single, convergent
innate immune system whose kinetics and strength of response
are fine-tuned depending on the type of perceived ligand (e.g.,
flg22). From this perspective, responses are ligand-dependent and
an elicitor cannot be categorized as a PAMP or an effector based
solely on its evolutionary conservation or role in virulence.

Events Downstream of PRR-Mediated
Perception of Bacterial Pathogens, and their
Exploitation by Agrobacterium
Signal Transduction Cascades and Early Downstream
Responses
Despite differences between FLS2 and EFR in mechanisms of
biogenesis and desensitization to be discussed below, stimu-
lation of Arabidopsis seedlings by flg22 or elf18 shows strik-
ing similarities in physiological responses and in the genes
induced or repressed (Zipfel et al., 2006). For example, both
peptides rapidly induce extracellular alkalization (Felix et al.,
1999; Kunze et al., 2004), which would be predicted to enhance
host resistance by attenuating the acid-dependent activation of
the Agrobacterium virulence genes required for T-DNA trans-
fer (Lacroix and Citovsky, 2013a). One mechanism that explains
these overlapping responses is the use of a shared signaling path-
way, which has been explored at two non-mutually exclusive
levels: that of an adaptive co-receptor, and that of a sharedMAPK
signaling cascade.

The strong similarity in downstream responses led to a search
for a common signaling element shared by EFR and FLS2.
In particular, LRR receptor kinases belonging to the somatic-
embryogenesis receptor-like kinase (SERK) family, particularly
the Brassinosteroid receptor-associated kinase 1 (BAK1), have
emerged as candidate co-receptors of EFR and FLS2. Using
a reverse genetic screen to identify flg22-insensitive mutants,
Chinchilla et al. (2007) discovered bak1 mutants that were
largely deficient in their flg22- and early elf18-induced ROS pro-
duction but also showed a reduced response to brassinolide.
Immunoprecipitation of MYC-tagged BAK1 in vitro in the pres-
ence of flg22 provided evidence for ligand-triggered formation
of a FLS2-BAK1 complex. In a parallel experiment Heese et al.
(2007) isolated the flg22-induced FLS2 complex and usedMS/MS
peptide sequencing to identify the co-immunoprecipitated BAK1
(also called SERK3). Roux et al. (2011) coimmunoprecipitated

EFR with BAK1 and additionally showed that other SERK fam-
ily members interact with EFR as well as with FLS2. Their results
indicated that EFR can form strong complexes with several SERK
family members (SERK1, SERK2, BAK1, and BKK1), while FLS2
complexes most strongly with BAK1, implying that functional
redundancy between the SERK family members explains the
observation that EFR is less dependent than FLS2 on BAK1
(Chinchilla et al., 2007; Roux et al., 2011; Schwessinger et al.,
2011). Further experiments revealed that bak1 null mutants are
also impaired in their responses to lipopolysaccharides and pep-
tidoglycans. Thus, BAK1 appears to act broadly as a co-receptor
(Heese et al., 2007; Schulze et al., 2010). BAK1 also enhances
FLS2 and EFR-mediated signaling by trans-phosphorylating the
cytoplasmic kinase BIK1, a positive regulator of PTI shown to
directly induce ROS production (Monaghan and Zipfel, 2012;
Kadota et al., 2014). The recently identified BAK1-interacting
receptor-like kinase BIR2 negatively regulates PTI by sequester-
ing sub-pools of BAK1 from PRR interactions in the absence of
a PAMP ligand, thereby controlling the availability of BAK1 to
engage with its PRR partners (Halter et al., 2014a,b). The discov-
ery of other critical co-receptors (e.g., BAK1-LIKE1, or BKK1), as
well as other positive (e.g., SUPPRESSOR-OF-BIR1, or SOBIR1)
and negative (e.g., BIR1) LRR-receptor-like kinase regulators has
led to an appreciation of the cross-phosphorylation events that
occur within an entire signaling complex, rather than an isolated
BAK1-PRR interaction (Liebrand et al., 2014).

As its name implies, BAK1 was originally discovered to com-
plex with a brassinosteroid receptor, BRI1 (Nam and Li, 2002).
Brassinosteroids are plant hormones involved in cell growth
and elongation, as well as in developmental processes including
senescence (Clouse, 2011). A priori, it appeared plausible that a
limiting pool of BAK1 could be responsible for the phenomenon
of PAMP-triggered seedling growth inhibition, if FLS2/EFR-
BAK1 complex formation competed with BR-mediated growth
signals. However, elegant work by the Zipfel lab refuted this
theory by showing brassinolide could inhibit PAMP-triggered
responses without interfering with FLS2-BAK1 complex forma-
tion or downstream signaling (Albrecht et al., 2012). A forward
genetic screen for elf18-insensitive mutants uncovered a new
bak1mutant allele, bak1-5. Unlike the bak1-4 bkk1-1 null mutant,
the bak1-5 bkk1-1 mutant shows far fewer pleiotropic effects
and, in particular, normal brassinosteroid signaling and cell
death control (Schwessinger et al., 2011). bak1-5 is still severely
impaired in characteristic PAMP-triggered responses, as well as
in the ability to transphosphorylate BIK1 (Schwessinger et al.,
2011).

Ligand binding to PRRs activates both MAPK and calcium-
dependent protein kinase (CDPK) signaling cascades (Boudsocq
et al., 2010; Tena et al., 2011). Asai et al. (2002) elucidated
one such pathway, demonstrating that MEKK1, MKK4/5, and
MPK3/6 mediate downstream responses upon flg22 perception.
Chitin, peptidoglycan, and elf18 were also shown to induce
MAPK activation. Interestingly, low concentrations of flg22 and
elf18 act additively upon extracellular alkalization and MAPK
activation, while high concentrations saturate both responses
(Zipfel et al., 2006); these data indicate that a shared pool of MAP
kinases may exist downstream of PAMP detection, although it
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remains unclear whether the MAPKs themselves are responsible
for limiting the amplitude of defense responses. Upon reaching
a duration and magnitude threshold, the MAPK cascade protein
activation interfaces with calcium-activated pathways to activate
further defense responses (Tena et al., 2011), including regulation
of defense hormone synthesis, metabolite synthesis, stomatal clo-
sure, and antimicrobial compound synthesis (Meng and Zhang,
2013).

Another response mediated by the MAPK pathway upon
PAMP activation is the induction of early defense genes such as
WRKY29 and FRK1 (Asai et al., 2002). WRKY29 is part of the
WRKY superfamily of transcription factors that affect pathogen
defenses, wounding, senescence, and trichome development by
interacting withW-box motifs (TTGAC) in the promoter regions
of a large variety of target genes (Maleck et al., 2000). These
regulatory proteins are characterized by a DNA-binding motif
whose amino acid sequence (WRKYGQK) gives the family its
name (Eulgem et al., 2000). The WRKY superfamily is very large,
and WRKY proteins tend to interact and work in redundant and
antagonistic roles depending on the type of pathogenic attack
(Xu et al., 2006). While many WRKY factors promote resistance,
many others suppress basal defenses to prevent deleterious effects
on the host. In at least some cases, the same WRKY proteins that
down-regulate PAMP-induced responses are inactivated upon R
protein recognition of their cognate effectors during ETI, thus
derepressing defense mechanisms (Kim et al., 2008). The com-
plexity of the WRKY network is further embellished by multiple
positive and negative feedback loops and feed-forward modules
(Taj et al., 2014).

Given the complexity of the receptor network and the cen-
trality of the MAPK pathway to PTI, it should come as no
surprise that multiple pathogen-derived effectors target these var-
ious components. A complete catalog of such effectors is beyond
the scope of this review (for a recent review, see Deslandes
and Rivas, 2012). As one example, HopAI1 is delivered by the
T3SS of P. syringae into the host cytoplasm, where it interacts
physically with MPK3 and MPK6, deactivating the pathway via
dephosphorylation (Zhang et al., 2007). Likewise, the P. syringae
effector HopAO1 suppresses PAMP-induced resistance by revers-
ing the ligand-induced tyrosine phosphorylation of EFR required
for signal transduction (Underwood et al., 2007; Macho et al.,
2014). The afore-mentioned P. syringae effector AvrPtoB phys-
ically associates with the FLS2/BAK1 complex, and acts as a
ubiquitin ligase to target FLS2 for degradation (Gohre et al.,
2008). In a classic tit-for-tat strategy, the host resistance protein
Pto is able to inactivate the effector’s ligase domain, thus thwart-
ing the pathogen’s attempt to block host immunity (Ntoukakis
et al., 2009).

Exploitation of Early Host Defenses by
Agrobacterium
Although there is no evidence that Agrobacterium can sup-
press the initial recognition by EFR and/or any associated co-
receptors, both the downstream phosphorylation cascade and
specific WRKY proteins are important targets for subversion by
this pathogen. Within 5 min of exposure of Arabidopsis seedlings
toAgrobacterium, the key defense modulators MPK3,MPK4, and

MPK6 are phosphorylated (Djamei et al., 2007). One of the sub-
strates of MPK3 is the stress-responsive transcription factor VIP1
(Pitzschke et al., 2009), which was initially identified as interact-
ing with the Agrobacterium virulence protein VirE2 (Tzfira et al.,
2001). Since MPK3-catalyzed phosphorylation of VIP1 results in
its translocation to the nucleus, Djamei et al. (2007) proposed
that nuclear localization of the interacting single-stranded DNA
binding protein VirE2 would neatly serve to deliver the associ-
ated T-DNA as well. In this “Trojan horse” model,Agrobacterium
co-opts the MAPK-mediated defense pathway it has triggered
to ensure nuclear entry of its transgene “gift.” However, a very
recent study from Shi et al. (2014) called this model into ques-
tion by showing that under their experimental conditions neither
the location of VirE2 nor host susceptibility to transformation
correlate with, respectively, subcellular localization or abundance
of VIP1. These authors’ alternative model posits that instead of
shuttling the T-DNA to the nucleus, VirE2 promotes tumorige-
nesis by sequestering the low-abundance VIP1 in the cytoplasm,
thus serving as a true effector to dampen the activity of this host
defense-related transcription factor.

Expression of the VIP1 gene is repressed in roots (but not in
shoots) by WRKY17, a negative regulator of host defenses that
may function to prevent over-reactive responses to pathogens.
Mutant Arabidopsis deficient in WRKY17 exhibit elevated lev-
els of Agrobacterium-mediated transformation (Lacroix and
Citovsky, 2013b), although they are more resistant than wild-
type plants to P. syringae (Joumot-Catalino et al., 2006). This
discrepancy between the responses of these two bacteria to a
wrky17 mutant illustrates a prevailing observation that enhanced
resistance to one pathogen can correlate with elevated suscep-
tibility to another, a phenomenon often attributed to shifts in
the antagonistic SA–jasmonic acid balance discussed in Section
“Salicylic Acid” below (Joumot-Catalino et al., 2006). More gen-
erally, the difference serves as a cautionary note about the
potential pitfalls of predicting precise defense-related outcomes
for different pathogens, even if dealing with the same host
species.

In an intriguing twist, Agrobacterium has very recently been
shown to exploit the WRKY network by co-opting several mem-
bers of this transcription factor family to drive expression of
a key gene on the T-DNA. The three major Agrobacterium-
derived cancer-causing transgenes encode enzymes that direct
the production of the phytohormones auxin and cytokinin
(Lacroix and Citovsky, 2013a). Zhang et al. (2015) discovered
that although the auxin-production genes IaaH and IaaM are
constitutively expressed in Arabidopsis, the promoter for the
cytokinin synthesis gene Ipt contains severalW-boxes and is acti-
vated by the mutually interacting trio of WRKY18, WRKY40
and WRKY60. WRKY40 and WRKY60 are induced within 2 h
of Agrobacterium infection, while WRKY18 is turned on slightly
later. WRKY40 binds directly to the Ipt promoter, and its abil-
ity to activate expression is synergistically enhanced by auxin.
Predictably, mutants deficient in any of the three WRKY genes
form smaller tumors than wild-type plants (Zhang et al., 2015).
These three host factors apparently normally function to dampen
host defenses to bacterial and fungal pathogens, perhaps as part of
the plant’s feedback mechanism to prevent the deleterious effects
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of over-reaction to a pathogen (Pandey et al., 2010). The findings
of Zhang et al. (2015) reveal that Agrobacterium has evolved to
capitalize on this host self-defense strategy. Given the complex
and varied repertoire of steps choreographed by the large WRKY
superfamily, it seems likely that other family members may also
be unwitting partners in the Agrobacterial thrust for control of its
host’s metabolism.

Contributions of Cytoskeletal
Dynamics and Membrane Trafficking
to the Regulation of Defense
Responses

Genetic dissection of the molecular mechanisms underlying PTI
and ETI has led to several illuminating discoveries linking plant
immunity to intracellular trafficking and cytoskeletal dynamics.
Both of these fundamental cell biology processes are critical and
well-documented facets of mammalian innate immune responses
and bacterial pathogenesis (reviewed in Day et al., 2011), but
represent under-studied and exciting new areas of research with
respect to plant defenses. In particular, recent findings specific to
EFR are likely to be of potential interest to researchers interested
in the host responses to Agrobacterium.

Actin Dynamics
The efficiency of Agrobacterium-mediated transient transfor-
mation is reduced in actin-deficient roots and in cultured
tobacco cells treated with actin microfilament or myosin light
chain kinase inhibitors (Gelvin, 2012). Furthermore, exposure
of Arabidopsis cotyledons to Agrobacterium causes an increase
in actin filament density, without a concomitant change in
the bundling of those filaments, within 6–9 h post-inoculation
(Henty-Ridilla et al., 2013). These data are consistent with
a growing appreciation for the involvement of actin dynam-
ics in plant defenses. In light of recent discoveries in other
host–pathogen interactions summarized here, the effects of
Agrobacterium-induced changes in the host cytoskeleton on the
progression of the infection is a question that warrants further
investigation.

Changes in actin dynamics have been associated with both PTI
and ETI in Arabidopsis. Susceptibility to P. syringae pv. tomato
is increased upon pharmacological disruption of host actin fila-
ments (Henty-Ridilla et al., 2013; Kang et al., 2014). Among the
consequences that contribute to this outcome are defects in the
actin-dependent protein transport and movements of endocytic
vesicles required for immune system function (Kang et al., 2014).
The P. syringae effector HopW1 promotes virulence by reduc-
ing the density of the actin filament network (Kang et al., 2014).
Independently, Henty-Ridilla et al. (2013) also noted a change in
actin bundling late in the infection only with a T3SS-competent
pathogenic strain of this bacterium and that was hence attributed
to effector-triggered events.

Using reverse genetics, Tian et al. (2009) identified the
Arabidopsis actin depolymerizing factor 4 (ADF4) as essential for
effector-specific HR. The sensitive phenotype of an adf4 mutant
could be partially rescued by exogenous application of an actin

depolymerizing agent, supporting the claim that actin dynam-
ics per se are required. In contrast with fungal and oomycete
infections, in which ADF4 contributes to a block in pathogen
entry, ADF4-dependent protection against the bacterial pathogen
is linked to MAPK signaling (Tian et al., 2009; Porter et al.,
2012). Taken together, the observation that ablation of ADF4
specifically compromises resistance conferred by recognition
of one specific bacterial effector, yet results in a reduction in
expression of a PTI-specific target gene, provides additional evi-
dence for coordinated regulation of PTI and ETI (Porter et al.,
2012).

Subsequent experiments documented transient PTI-
associated increases in actin filament density in Arabidopsis
cotyledons as early as 3 h after challenge with bacterial or fungal
pathogens, and with flg22 or chitin but not elf26; the flg22-
induced changes required FLS2 as well as the co-receptors BAK1
and BIK1 (Henty-Ridilla et al., 2013). In contrast, in hypocotyls,
high spatial and temporal resolution microscopic imaging of
cortical actin filament architecture revealed EFR/BAK1/BIK1-
and ADF4-dependent changes in single filament turnover within
minutes following elf26 treatment (Henty-Ridilla et al., 2014).
These changes lead to a rapid increase in the stability and hence
overall number of actin filaments. Significantly, several hallmarks
of elf26-triggered, but not chitin-triggered, PTI are dependent on
ADF4 function; callose deposition and transcriptional changes
downstream of CDPKs are disrupted in the adf4 mutant, while
MAPK-mediated responses to elf26 are unaffected. These find-
ings strongly implicate ADF4 as an elf26-specific mediator of
actin rearrangements and other downstream innate immune
responses.

Among the other potential roles for actin dynamics in medi-
ating host resistance is the regulation of stomate closure (Day
et al., 2011). These openings serve as an important portal for
bacterial entry into the host apoplast (Zeng et al., 2010). Both
PAMPs (through their cognate PRRs) and effectors can trigger
stomatal closure as an early line of host defense (Melotto et al.,
2006; Zeng et al., 2010), and alterations in the arrays of actin
filaments within the guard cells are associated with changes in
stomate aperture (Gao et al., 2008; Day et al., 2011). To our
knowledge, there is no published information on the stomatal
response to Agrobacterium, although the elf18 peptide from E.
coli can trigger closure in Arabidopsis (Zeng and He, 2010). As
discussed below (see Pathogen Manipulation of Plant Hormone
Responses), certain P. syringae strains have the ability to suppress
closure (Melotto et al., 2006). Given that the guard cell transduc-
tion pathway mediating closure involves SA (Zeng andHe, 2010),
an early target of Agrobacterium intervention (see Modulation of
Host Hormonal Responses by Agrobacterium), it seems plausi-
ble that Agrobacterium also has the ability to thwart the stomatal
barrier.

Membrane Trafficking
Membrane trafficking has also emerged as having important
consequences for defense signaling. Within 1 h of ligand bind-
ing, FLS2, but not EFR, is internalized by endocytosis; bak1-4
mutants bind flg22 with wild type-like efficiency but are inhib-
ited in endocytosis of the bound ligands (Chinchilla et al., 2007).
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This cytoskeletal-dependent process results in localization of the
PRR to late endosomal compartments called multi-vesicular bod-
ies (Robatzek et al., 2006; Spallek et al., 2013). Ligand-bound
endocytosed FLS2 is ultimately degraded, but this turnover is
significantly slower than the internalization, leading to accumu-
lated intracellular pools of activated receptor (Robatzek et al.,
2006). In mammalian innate immunity, the analogous PAMP-
responsive Toll-like receptors initiate certain signaling pathways
from the endosome (McGettrick and O’Neill, 2010); whether the
internal flg22-FLS2 pools are similarly functional is an open and
potentially important question (Smith et al., 2014). Genetic abla-
tion of the endosomal sorting complex required for transport
(ESCRT-1) reduces FLS2 re-localization without affecting over-
all endocytic trafficking; the mutant plants are significantly more
susceptible to colonization by P. syringae and are defective in
flg22-induced stomatal closure, but not in other flg22-triggered
responses such as oxidative burst, MAPK activation or cal-
lose deposition (Spallek et al., 2013). Pharmacological interfer-
ence with the molecular machinery responsible for intracellular
trafficking provided an additional approach to experimentally
decouple various flg22-elicited responses. Collectively, the data
to date suggest that ligand-triggered internalization and degra-
dation of FLS2 desensitizes cells, potentially mitigating the costs
associated with constitutive activation of FLS2-mediated defenses
(Smith et al., 2014).

Genetic screens for EF-Tu-insensitive mutants and for FLS2-
interacting partners uncovered several proteins involved in endo-
plasmic reticulum quality control and trafficking. Mutants defi-
cient in the former process specifically abrogate EFR-mediated,
but not FLS2-dependent, responses by abolishing accumulation
of EFR (Li et al., 2009; Lu et al., 2009; Nekrasov et al., 2009;
Saijo et al., 2009). At the same time, alterations in reticulon-
like proteins that interact with FLS2 impair its accumulation at
the plasma membrane and consequently FLS2-dependent signal-
ing; FLS2 retention in the ER and its glycosylation, but not its
stability, are affected (Lee et al., 2011). The dependence of EFR
but not FLS2 on endoplasmic reticulum-associated folding fac-
tors for biogenesis is consistent with the notion that EFR may
have evolved more recently than FLS2 and thus may not yet have
undergone selection for high protein stability (Nekrasov et al.,
2009; Saijo et al., 2009). It remains to be seen, however, whether
this relative instability could also have mechanistic significance
if, for example, different EFR conformers activate different, and
separable, branches of the downstream signaling pathway (Saijo
et al., 2009).

Unexpectedly differential fates for the two closely related
receptors were also discovered through a yeast two-hybrid screen
for BAK1 interactors. The results of this screen led to the find-
ing that FLS2, but not EFR, is subject to polyubiquitination by
PUB12 and PUB13, two E3 ubiquitin (Ub) ligases that are acti-
vated by BAK1-mediated phosphorylation. Upon flg22 binding
to FLS2, the constitutively assembled PUB12/PUB13/BAK1 com-
plex is recruited to FLS2. BAK1 then phosphorylates and thereby
activates the Ub ligases, which rapidly ubiquitinate FLS2 but
not BAK1 or BIK1. FLS2 ubiquitination appears to be unlinked
to its internalization, but as expected modulates the ability of
FLS2 to confer immunity; a pub12/pub13 double mutant exhibits

significantly higher resistance to P. syringae challenge (Lu et al.,
2011).

These differences between FLS2- and EFR-centered intra-
cellular events underscore again the need for caution when
extrapolating from other, better-characterized plant pathogens
to Agrobacterium. Despite the existence of multiple PAMPs and
hence the possibility of functionally redundant or additive modes
of elicitation by a given pathogen, at least some facets of the
defenses induced in Arabidopsis by P. syringae appear to rely
solely on FLS2 (Zeng and He, 2010). Conversely, as noted pre-
viously, Agrobacterium is detected primarily through EFR. In
certain endoplasmic reticulum-quality control mutants in which
EFR-mediated signaling is not completely abolished, the down-
stream outputs (MAPK signaling, callose deposition, and ROS
production) are uncoupled, i.e., only partially and differentially
impaired. Significantly, the characterization of these mutant plant
lines has led to the proposal that there may be differences between
FLS2 and EFR in the order of these post-recognition defense
events (Lu et al., 2009).

Hormone Regulation of Systemic and
Local Plant Immunity

Plant hormones typically act as mediators between external input
and internal responses on both a systemic and intracellular
level, often by influencing developmental processes. Their wide-
ranging effects require tight control, as evidenced by the extensive
antagonistic and synergistic cross-regulation that occurs among
them. Three plant hormones, ethylene, JA, and SA are known
as classic defense regulators, though other abiotic and develop-
mentally induced hormones, including auxin, cytokinins, abscisic
acid and giberellins, are also thought to be involved (Robert-
Seilaniantz et al., 2011). In the sections below, we summarize
briefly the roles of each of the three major defense hormones,
before expanding on the pathways downstream of SA that, based
on existing data, are most likely to represent potential foci of
subversion by Agrobacterium.

Ethylene
Ethylene is a gaseous olefin that is critical for plant developmental
processes including fruit ripening, senescence, and leaf abscission
(Schaller, 2012). It accumulates in response to herbivore damage
and mechanical wounding and is believed to fine-tune the bal-
ance between JA and SA-induced defenses (described below), as it
can alternately reinforce or repress either in a context-dependent
manner. ein2 and ein1 mutants, which overproduce ethylene
but are characterized by ethylene insensitivity, exhibit increased
disease susceptibility compared to wild-type plants (Guzmán
and Ecker, 1990; Boutrot et al., 2010; Mersmann et al., 2010).
Several lines of evidence indicate that ethylene contributes sig-
nificantly to PTI. First, expression of the FLS2 receptor gene is
controlled by the binding of an ethylene response transcription
factor, EIN3, to its promoter. Conversely, flg22 treatment induces
both EIN3 expression and ethylene synthesis (Felix et al., 1999;
Chen et al., 2009; Boutrot et al., 2010). Thus, ethylene may play
a role in regulating the positive feedback of FLS2 accumulation
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observed in response to EF-Tu and flg22 stimulation (Zipfel et al.,
2006; Robert-Seilaniantz et al., 2011). Significantly, although ein2
mutants are less sensitive to elf18 as well as flg22, the mechanisms
underlying these dependencies are different; in contrast to FLS2,
both EFR expression and accumulation of the encoded recep-
tor are unaffected by the EIN2 deficiency (Tintor et al., 2013).
Ethylene signaling is also required for the FLS2-triggered oxida-
tive burst (Mersmann et al., 2010). Furthermore, MPK6, activated
by FLS2-triggered PTI, has a role in stabilizing ACS2 and ACS6,
enzymes necessary for ethylene biosynthesis (Liu and Zhang,
2004). These results suggest a close connection between the ini-
tial events that trigger PTI and ethylene-induced plant immunity
(Liu et al., 2013).

Jasmonate
Jasmonate is a lipid-derived signaling molecule ubiquitous to
plants, animals, fungi, and some algae (Thaler et al., 2012). In
plants, JA has roles in root growth inhibition, tuber formation,
touch-mediated responses, flower development, and senescence
(Wasternack, 2007). JA synthesis occurs via a linoleic acid pre-
cursor in response to herbivores and mechanical wounding, and
both JA- and ethylene-dependent responses are required for resis-
tance to necrotrophic pathogens. Some genes regulated by jas-
monic acid are also regulated by ethylene, so many discussions of
hormonal defense pathways tend to invoke JA and ET pathways
together. For example, at least one transcription factor, ERF1,
requires both hormones to activate defense gene transcription
(Glazebrook, 2005). Moreover, EIN2, a necessary component of
the ET-induced pathway can itself restore both ethylene and jas-
monic acid signal responses in ethylene insensitive plants (Alonso
et al., 1999).

Salicylic acid
The phenolic acid SA can be synthesized through twomajor path-
ways in plants, including one that uses phenylalanine as a pre-
cursor (Seyfferth and Tsuda, 2014). However, defense response-
induced SA is typically only synthesized through the isochoris-
mate (ICS) pathway, and a key enzyme (ICS1), encoded by the
gene SID2, is often a target for SA regulation by downstream
transcription factors (Wildermuth et al., 2001; Wang et al., 2006).
The conservation of ICS1 in algae and bacteria suggests that the
pathway may have originated from a plastid through an evolu-
tionary endosymbiotic event (Wildermuth et al., 2001). Such a
relationship could explain one way that certain pathogens, e.g.,
P. syringae, have evolved mechanisms to subvert plant hormone-
mediated defenses. A well-known example is the bacterial NahG
hydrolase that metabolizes SA. SA is critical for the induction
of systemic acquired resistance, or SAR (Vlot et al., 2009). As
initially described more than half a century ago, SAR results
in enhanced resistance to secondary infection in locations far
from the primary site of pathogen exposure (Ross, 1961). nahG-
expressing plants have long been used in plant immunity research
because they are unable to accumulate SA, induce SAR or express
the pathogenesis-related (PR) genes that act as hallmarks and
mediators of SAR. It should be noted, however, that pleiotropic
effects caused by nahG overexpression have been reported (Heck
et al., 2003). Similarly, sid2-2mutant plants with a defective ICS1

enzyme are unable to induce PR1 (Wildermuth et al., 2001) and
conversely, exogenous application of SA or its functional analogs
is sufficient to trigger PR gene expression (White, 1979).

The bioactive form of SA can only act on a local level
or through phloem transport. Long-distance SAR induction is
mediated by the volatile and biologically inactive form, methyl
SA; interestingly, the extent to which SAR requires MeSA is light-
dependent (discussed in more detail below). Perhaps the most
intriguing recent discovery in this field is the existence of “trans-
generational” SAR, in which enhanced resistance was observed in
the progeny of primed hosts, even after a biotic stress-free gener-
ation. This epigenetic phenomenon is due to changes in histone
modification and DNA methylation state, rather than hormone
levels (Luna et al., 2012). Future exploration of this imprinting
might prove fruitful in the development of disease-resistant seed
stock.

The ethylene, SA and JA hormonal pathways work with
other defense responses to orchestrate different defenses against
biotrophic and necrotrophic pathogens (Glazebrook, 2005). Since
biotrophic pathogens acquire sustenance from live plant tissue
and nectrophic pathogens feed on dead plant tissue, the HR
responses that result in plant cell apoptosis would provide resis-
tance against biotrophic pathogens and encourage necrotrophic
pathogen growth. Generally speaking, the SA-dependent path-
way is elicited in defenses against biotrophic pathogens such as
Agrobacterium, while as mentioned above, the ET/JA-dependent
pathways are activated in the presence of necrotrophic pathogens
(Glazebrook, 2005). However, more detailed multi-mutant anal-
ysis has revealed that all three hormonal pathways positively
regulate defenses induced by both necrotrophic and biotrophic
pathogens to different degrees (Tsuda et al., 2009). These data
suggest a model in which an unspecialized and highly intercon-
nected network may enable plants to maximize survival upon
simultaneous attack by multiple pathogens on a single plant
(Bar-Yam et al., 2009).

Evolutionary evidence suggests that JA–SA antagonism dates
to the last common ancestor of land plants, although this antag-
onism may have arisen multiple times. In animals, an SA-
derivative (acetyl salicylic acid, or aspirin) also inhibits JA-like
prostaglandins, blocking platelet aggregation and pain transmis-
sion (Thaler et al., 2012). In plants, low concentrations of JA and
SA can synergistically increase levels of PR1 gene expression, but
high levels work antagonistically, inducing ROS production and
cell death. The regulatory mechanisms mediating this antago-
nism are complex, involving proteins (e.g., MAPK4) that sup-
press SA signaling but are required for the JA-induced pathway,
and others (PAD4 and EDS1) that act to repress the JA/ET path-
ways while simultaneously increasing the SA-induced defense
pathway (Loake and Grant, 2007). Like JA, the ethylene signal
transcription factor EIN3 can also decrease SA levels by directly
binding to the SID2 promoter sequence and down-regulating
gene expression (Chen et al., 2009).

NPR1 Mediates SA-Responsive Modulation of
Defenses
NPR1 is a critical mediator of SA action and nexus of SA/JA
crosstalk. This positive regulator of SA-induced defenses is
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responsible for SA-responsive transcriptional reprogramming
on a global genomic level through both direct and indirect
mechanisms. At the same time, NPR1 acts through a neg-
ative feedback loop to limit SA accumulation (Shah, 2003).
The NPR1 (non-expresser of PR genes 1) gene was first
identified through a screen of mutants deficient in SAR-
induced PR gene expression (Cao et al., 1994). Further genetic
screening for SA-insensitive mutants repeatedly revealed only
mutants of npr1 alleles, suggesting that either SA directly
regulates NPR1 or that there are functionally redundant sig-
naling factors between SA recognition and NPR1 activation
(Dong, 2004). NPR1 expression occurs at a low constitutive
level and does not change dramatically upon SA induction
or pathogen infection. Its overexpression confers a protective
effect but does not correlate with constitutive expression of
PR genes (Ryals et al., 1997; Cao et al., 1998; Durrant and
Dong, 2004), suggesting that NPR1 is primarily regulated post-
transcriptionally.

Cytosolic NPR1 is held inactive as oligomers and released
NPR1 monomers translocate to the nucleus, where they associate
with the TGA family of transcription factors; this complex binds
to SA-responsive cis-acting promoter elements to induce PR gene
expression (Dong, 2004). How SA activates NPR1 remains an
intriguing, if challenging, open question. Much of what we know
thus far comes from the Dong and Després labs, whose mech-
anistic studies have slowly unraveled the mechanisms of NPR1
activation over the past decade. One recent study demonstrated
that two NPR-family proteins, NPR3 and NPR4, bind SA with
differing affinities and act as adaptors for proteasomal degra-
dation of NPR1. In a yeast two-hybrid system, exogenous SA
promoted NPR1-NPR3 association while disrupting the inter-
actions between NPR1 and NPR4 (Fu et al., 2012). These and
other data led these authors to propose a model in which basal
levels of NPR1 are modulated upon ETI by the gradient of
SA that develops in and around the site of infection. In this
model, high SA concentrations in the center of the HR lesion
facilitate NPR3-mediated degradation of NPR1, allowing pro-
grammed cell death to proceed, while lower SA levels at the
margins enable NPR1 accumulation which inhibits the spread of
the HR and promotes SAR. In the absence of pathogen challenge,
the high-affinity binding of NPR4 with SA relieves the consti-
tutive NPR4-directed turnover of NPR1 that prevents inappro-
priate defense activation. Other data and models, however, argue
that NPR1 binds SA directly, leading either to a conformational
change that induces oligomer disassembly and thereby releases
auto-inhibition of NPR1 (Wu et al., 2012) or to diminished
inhibitory interactions between NPR1 and the negative defense
regulator NIMIN2 (Maier et al., 2011). Additionally, sequential
interactions with various members of the NIMIN protein fam-
ily may enable NPR1 to respond to differential concentrations
of SA, preventing inadvertent PR activation (Hermann et al.,
2013).

While SA-dependent activation of NPR1 seems to be a critical
node in SAR regulation, NPR1 expression may itself be mod-
ulated by other defense genes. Its promoter contains W-boxes
for WRKY binding (Yu et al., 2001), and conversely, NPR1
directly targets and upregulates expression of many WRKY

genes. Elucidation of NPR1 targets has proven difficult because
NPR1 requires SA activation, and simple transcriptome analy-
sis of SA-induced cells would yield many indirect or non-NPR1
targets. Using a transgenic plant line expressing NPR1 under
glucocortecoid-inducible promoter control and comparing SA-
induced changes in the transcriptomes of a protein synthesis-
inhibited and a non-inhibited sample, Wang et al. (2006) iden-
tified candidate genes that were directly regulated by NPR1. Of
these, mutant analysis revealed both positive (e.g., WRKY18) and
negative (e.g., WRKY58) regulators of SAR. NPR1 also targets
WRKY70 and its functional homolog, WRKY54, which both act
as positive regulators of SA-mediated gene expression and resis-
tance, but repress SA biosynthesis through ICS1, thus regulating
SA/JA cross-talk.

Pathogen Manipulation of Plant Hormone
Responses
Pathogens may modulate host hormone responses to increase the
likelihood of successful infection or, as in the case of biotrophic
pathogens, to create a more favorable environment for long-
term survival. One of the most direct examples of modula-
tion comes from the hemibiotrophs P. syringae pv. tomato (Pst
DC3000) and pv. maculicola ES4326, which repress SA accu-
mulation in Arabidopsis through a JA analog and phytotoxin,
coronatine (Bereswill et al., 1994; Kloek et al., 2001; Brooks et al.,
2005). Mechanistically, coronatine upregulates NAC transcrip-
tion factors. In guard cells, this prevents the stomatal closure
defense response (Melotto et al., 2006), while in neighboring leaf
cells, it suppresses ICS1 and induces the SA-metabolizing genes
SAGT1 and BSMT1 (Zheng et al., 2012). Thus, certain strains of
Pseudomonas take advantage of the plant’s natural hormone JA,
and its antagonistic relationship to SA, by producing an effector
that mimicks JA, thereby suppressing SA-mediated host defenses
necessary for establishing local and systemic bacterial resistance
(Brooks et al., 2005).

Modulation of Host Hormonal Responses by
Agrobacterium
Several lines of evidence indicate that Agrobacterium also
engages in hormonal dueling to attenuate host defense responses,
although this story is far from fully resolved. Extensive tran-
scriptome profiling of JA/SA/ethylene and auxin-induced genes
in Agrobacterium-inoculated Arabidopsis stems over three time-
points (3 hpi, 6 dpi, 35 dpi) revealed that a number of auxin
and ethylene-signaling genes were upregulated in response to
the virulent Agrobacterium C58 strain, while only a few auxin-
related genes responded to inoculation with the avirulent T-DNA
deficient Agrobacterium strain GV3101 (Lee et al., 2009). Since
ethylene has been demonstrated to suppress Agrobacterium vir-
ulence, the increase in host ethylene levels upon infection may
contribute to the plant’s ability to combat agrobacterial infec-
tion at a relatively early stage (Nonaka et al., 2008; Lee et al.,
2009). Indeed, although Agrobacterium lacks the ACC deaminase
used by other plant-associated bacteria to enzymatically cleave
the ethylene precursor, engineering the bacteria to express this
enzyme enhances transformation efficiency (Nonaka and Ezura,
2014).
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In contrast, the relationship between Agrobacterium infection
and SA-mediated defenses defies simple characterization based
on known paradigms for SA activity. Tomato seedlings respond
to Agrobacterium exposure by altering which pathway is utilized
for SA synthesis (Chadha and Brown, 1974). On tobacco leaves,
48 h of exposure to Agrobacterium is sufficient to dampen the SA
production elicited by subsequent P. syringae inoculation, and
confers resistance both to P. syringae colonization (Rico et al.,
2010) and to tobacco mosaic virus by a mechanism that is at
least partially SA-dependent (Pruss et al., 2008). Interestingly,
neither of these effects requires Ti-plasmid encoded functions. In
Arabidopsis stems, SA accumulates in C58-inoculated plants at
6 days, but not at 3 h, post-infection, suggesting a role for SA in
regulating late defenses (Lee et al., 2009). In contrast, an earlier
study had found that within an hour after bacterial attachment,
SA accumulation is reduced by 40% and PR genes are down-
regulated in Arabidopsis roots infected with the avirulent strain
GV3101 (Gaspar et al., 2004). The Agrobacterium-triggered acti-
vation of MPK4 as rapidly as 5 min post-inoculation (Djamei
et al., 2007) may be one of the ways this plant response is atten-
uated, as MPK4 has been shown to negatively regulate both
pathogen-induced SA accumulation and ROS production (but
not callose deposition; Berriri et al., 2012). Since SA directly
inhibits expression of theAgrobacterium virulence genes required
for T-DNA delivery (Yuan et al., 2007; Anand et al., 2008), down-
regulation of SA accumulation in the first hour(s) of infection
would enable the bacterium to initiate the transformation pro-
cess. Indeed, tumor growth is significantly higher in mutant
plants with low endogenous SA levels (nahG, eds1, pad4), and
lower in mutant plants with high endogenous SA levels (npr1,
cpr5; Yuan et al., 2007; Anand et al., 2008; Lee et al., 2009).
Paradoxically, stems from sid2 mutants have been reported to
exhibit wild-type amounts of tumor formation (Lee et al., 2009).
Furthermore, neither ICS1 expression nor PR1 gene expression
(typically induced by elevated SA levels) is affected by either
virulent or avirulent agrobacterial strains at the time points exam-
ined, although genes implicated in SA methylation and other
PR genes are upregulated after T-DNA integration (Lee et al.,
2009).

Taken together, these data implicate ethylene and an NPR1-
independent function for SA in protecting the host against
Agrobacterium, likely in part by attenuating the bacterial viru-
lence machinery at early stages of the infection process (Yuan
et al., 2007; Anand et al., 2008; Lee et al., 2009). Conversely,
by manipulating hormonally regulated plant defense pathways,
Agrobacterium is able to confer resistance to subsequent pathogen
challenge.

Host Physiology Influences Defense
and Hormonal Pathways

Circadian Effects
Given that both hormones and light control many aspects of plant
life, it is not surprising that the defense and hormonal pathways
interact and crosstalk with the plant circadian clock in a vari-
ety of ways (Robertson et al., 2009). In Arabidopsis, P. syringae

infections during morning and midday elicit higher SA levels
and greater defense responses than in the evening (Griebel and
Zeier, 2008). The circadian-regulated PHT4;1 (phosphate trans-
porter 4;1), also named ANTR1, acts upstream of the SA-induced
pathway (Wang et al., 2011). JA accumulates in a circadian-
regulated fashion that coincides with the feeding patterns of
Trichoplusia ni insects, allowing Arabidopsis an advantage over
herbivores by perpetually mounting a timely resistance against
attack (Goodspeed et al., 2012). Ethylene production peaks at
midday in Arabidopsis; the ACS genes necessary for ethylene
biosynthesis are both circadian- and light-regulated, although
mutants with aberrant ethylene production exhibit normal cir-
cadian control over cycles of growth (Thain et al., 2004). Finally,
circadian gating of light-responsive, hormone-triggered stomata
opening (Robertson et al., 2009) may have important implica-
tions for pathogen entry.

The circadian clock also affects hormone-independent defense
pathways, although this is less well-studied. Circadian clock
component transcription factors CCA1 (circadian clock associ-
ated 1) and LHY (late elongated hypocotyls) directly regulate
defense activation independent of SA-induced defense responses
(Schaffer et al., 1998; Wang and Tobin, 1998; Zhang et al., 2013a).
A number of defense-related genes including PHT4;1 and the
PCC1 (pathogen and circadian controlled) gene, which plays a
role in defenses specifically against virulent oomycetes, are under
CCA1 transcriptional control (Sauerbrunn and Schlaich, 2004;
Wang et al., 2014). CCA1 and LHY synergistically affect both
PTI and ETI, in part by regulating stomatal control. Significantly,
P. syringae infection or the PAMP flg22 feed back to affect the
circadian clock, thus demonstrating cross-talk between innate
defenses and the circadian clock (Zhang et al., 2013a).

Involvement of the circadian clock in defenses enhances the
plant’s ability to anticipate potential infection and to mount
defenses accordingly (Eriksson and Millar, 2003). In Arabidopsis,
the circadian clock modulates PTI-related responses to antic-
ipate dawn infection of P. syringae pv. tomato DC3000 by
up-regulating levels of downstream responders, including the
MKK4/5-MAPK3/6-WRKY22 protein module and WRKY29
(Bhardwaj et al., 2011). Similarly, in the case of the fungal
pathogen Hyaloperonospora arabidopsidis, circadian-regulated
defense gene activation increases at dawn and decreases at dusk,
consistent with the fact that H. arabidopsidis releases spores at
dawn (Wang et al., 2011). As these examples illustrate, it is clear
that plants with functional circadian rhythms may have an advan-
tage in combating pathogenic attack by anticipating pathogen
infection and priming defenses at peak-infection times to max-
imize growth time and resources (McClung, 2011). There are as
yet no published reports on the impact of day length or time-of-
day of inoculation on the outcome of Agrobacterium infection.
The data reviewed here suggest, however, that such effects would
not be surprising, and would point to the importance of early
defenses in determining the success of the agrobacterial assault.

Developmental Stage of the Plant
More mature hosts are often more resistant than younger plants,
a phenomenon that has been referred to generically as age-
related resistance (ARR). A variety of forms of resistance are
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encompassed by this term; they vary with host species and
with pathogen, and can be either broad-spectrum or specific to
one pathogen, pathovar, or strain. Lasting resistance emerges at
multiple major life cycle transitions, such as juvenile to adult,
flowering or upon the onset of senescence, although neither flow-
ering nor senescence per se appears to be required or sufficient
for ARR (Carella et al., 2015). In some cases, race-specific ARR
reflects the induction of R genes at a particular point in the plant’s
development (Develey-Riviere and Galiana, 2007). Hormonal
pathways, central as they are to various developmental processes,
also contribute to ARR. For example, although ARR is distinct
from SAR, SA accumulation is required (Kus et al., 2002), and
both developmental and pathogen modulation of SA may be key
determinants of ARR (Carella et al., 2015). The developmental
transition from susceptibility to resistance includes the accumu-
lation of anti-microbial compounds, possibly SA itself, in the
intercellular fluids (reviewed in Carella et al., 2015), although the
mechanisms of resistance differ between Arabidopsis and tobacco
(Kus et al., 2002; Develey-Riviere and Galiana, 2007). Given
the apparent centrality of SA in the Agrobacterium-host inter-
change, these observations raise the possibility that the outcome
of Agrobacterium infection may be exquisitely sensitive to ARR,
and that different labs could obtain distinctly non-concordant
results depending on the precise developmental stage of the host
at the time of infection.

Environmental Influences on Plant
Defenses and Microbial Virulence

Light-Dependent Effects
Though the circadian clock is entrained by the presence and
absence of light to regulate plant defenses, light stimulus can
itself affect plant responses to pathogen encounters (Roden and
Ingle, 2009). The strength of both PR gene induction and the
HR response depend on the presence of light (Genoud et al.,
2002; Chandra-Shekara et al., 2006). Moreover, the time-of-day
dependence of defenses is at least partially due to the availability
of light and phytochrome photoperception during local and sys-
temic defense induction, independent of any circadian-regulated
stomatal control (Griebel and Zeier, 2008). For example, both
accumulation and activation of the radish-derived defense reg-
ulator Raphanusanin require light (Moehninsi et al., 2014). More
generally, Sano et al. (2014) recently showed that 30% of the genes
up-regulated upon flg22 perception require light, and specifically
photoelectron flow, for that induction; several of those genes are
involved in SA biosynthesis, and flg22-treated plants accumu-
lated more SA in the light than in the dark. In this study plants
were illuminated for 4 h prior before the flg22 elicitation. Overall,
there was significant overlap between the pool of flg22-responsive
genes and those that were light-dependent or light-repressed.

Thus, the success of a pathogenic infection may be partially
determined by the prior (or subsequent) light exposure, and
hence time of day of the inoculation, which can impact laboratory
research experiments on plant defenses (Roden and Ingle, 2009).
Perhaps the clearest illustration of this principle to date is the
influence of light on the requirements for SAR signaling. Several

lines of evidence in multiple host species have implicated methyl
salicylate (MeSA), a volatile form of SA, as the signal molecule
that is translocated through the phloem to distal leaves, where it is
converted to active SA (Park et al., 2007). However, Attaran et al.
(2009) showed that A. thaliana mutant lines deficient in methyl
SA production are nonetheless able to mount SAR in leaves dis-
tal to the site of pathogen inoculation. Liu et al. (2011) resolved
this apparent conflict by discovering that MeSA is essential for
SAR development in plants infected late in the day but not in the
morning; the key determinant was shown to be the length of time
of light exposure subsequent to the inoculation.

While light stress induces excess excitation energy (EEE) rel-
ative to that needed for normal physiological photosynthetic
activity, pathogen infection can also induce EEE by affecting pho-
tosynthetic rates. Moreover, EEE-induced plant responses share
similarities to defense responses including increases in ROS, SA-
induced signaling through EDS1 and PAD4, and programmed
cell death. Interestingly, plants acclimated to high intensities of
light also display high levels of resistance against pathogens, sim-
ilar to the effect of SAR in resistance to secondary infections
(Roden and Ingle, 2009).

Light also seems to have an effect on the virulence of some
pathogens. In Agrobacterium, the presence of constant light dur-
ing co-cultivation with host plants correlates with higher levels
of T-DNA transfer, potentially by affecting attachment to plant
cells and/or plant cell’s ability to take up the Agrobacterium
T-DNA (Zambre et al., 2003). Additionally, in the Dendrobium
orchid and Agrobacteriummodel, synthesis of the virulence gene
inducer coniferyl alcohol is stabilized in the presence of light
(Nan et al., 1997). Paradoxically, the presence of light has been
reported to decrease Agrobacterium accumulation of flagellar
proteins FlaA and FlaB, reducing bacterial motility, attachment
to plant cells, and bacterial virulence on cucumber (Oberpichler
et al., 2008).

Temperature-Dependent Effects
In addition to light, SA-mediated responses and susceptibility
to pathogen attack are affected by temperature. Cheng et al.
(2013) recently demonstrated that PTI, as measured by expres-
sion of the MAPK target genes WRKY29 and FRK1 in response
to flg22, is most activated in Arabidopsis at temperatures between
23 and 32◦C (with an optimum of 28◦C). In contrast, activa-
tion of ETI and resultant cell death by inducible expression
of a bacterial effector transgene peaked at 16◦C and was sig-
nificantly less pronounced at 28◦C or higher. In tobacco, the
failure of the HR or SAR at elevated temperatures is corre-
lated with a lack of PR gene induction, which can be over-
come by exogenous application of SA (Yalpani et al., 1991).
The preferential activation of ETI at low ambient temperatures
correlates well with the temperature range at which bacterial
secretion systems and effector production are optimally func-
tional (Cheng et al., 2013). In the case of Agrobacterium, we
and others have shown that elevated temperature (28◦C) pre-
vents biogenesis of the VirB/VirD4 Type IV secretion system
responsible for export of the T-DNA and several virulence pro-
teins (Banta et al., 1998; Baron et al., 2001). Conversely, bacterial
proliferation, and hence synthesis of PAMP elicitors, thrive at the
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elevated temperature range at which the PTI is most responsive
(Cheng et al., 2013).

Areas Ripe for Future Research

In conclusion, the success of pathogenic infection on plants
results from a complex network of interwoven interactions
among host recognition/response systems, plant hormonal path-
ways, circadian rhythms, light perception, and other plant-
specific events such as host developmental stage, as well as
bacterial and fungal virulence factors. For practical as well as his-
torical reasons, much of the research to date on plant defenses
has focused on a rather limited subset of pathogens and host
species. The great majority of these investigations have uti-
lized leaf tissue and/or seedlings as a model system. Yet as
the plant tissue exposed to the remarkable microbial richness
of the rhizosphere, roots represent perhaps the most relevant
site for studying many in situ host–microbe interactions (De
Coninck et al., 2014). Recent work in the Ausubel lab has
confirmed that Arabidopsis roots mount complex, highly chore-
ographed, tissue-specific responses to PAMP/MAMP elicitation
(Millet et al., 2010). Some of these responses are ethylene-
dependent, and some are suppressed by coronatine mimick-
ing of JA but, unlike in leaves, in a manner that is indepen-
dent of SA–JA antagonism. Significantly, these authors detected
no root response to the EF-TU-derived elicitor elf26 (Millet
et al., 2010), implying that this host lacks a critical mode
of surveillance for Agrobacterium in the pathogen’s primary
habitat.

Given that defense gene expression patterns are not always
conserved in timing or magnitude among different host tissues,
future efforts will be needed to explore the similarities and differ-
ences between the canonical model systems and the other “native”
settings in which chance or deliberate host–microbe encounters
occur. In nature, of course, every such encounter is perturbed
by countless bystander microbes, some hoping to “cut in” to
the dance while others are merely milling around, crowding the
dance floor. While some bystanders may suppress host defenses,
others induce defenses, priming the host for enhanced resistance
to subsequent pathogen exposure. Indeed, this resistance forms
the basis for one common assay for the capacity of a pure elici-
tor to incite basal defenses. The nature of the activated defenses
will almost certainly vary depending on the partners tested, but
many such studies to date have relied upon a single bacterial
model, P. syringae. Deepening the pool of well-characterized
host defense-pathogen relationships to include Agrobacterium
will likely uncover previously uncharacterized PAMPs and their
cognate receptors, as well as novel mechanisms by which the
microbes suppress or thwart their hosts’ responses.
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Most genetic engineering of plants uses Agrobacterium mediated transformation to
introduce novel gene content. In nature, insertion of T-DNA in the plant genome and
its subsequent transfer via sexual reproduction has been shown in several species in
the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer
from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of
A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium
rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years
ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted
repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13,
NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found
in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA
genes are still expressed, indicating that they may play a role in the evolution of these
plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and
L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a
tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB,
LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants
screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests
that there were several independent T-DNA integration events into the genomes of these
plant genera. We speculate that ancient plants transformed by A. rhizogenes might have
acquired a selective advantage in competition with the parental species. Thus, the events
of T-DNA insertion in the plant genome might have affected their evolution, resulting in the
creation of new plant species. In this review we focus on the structure and functions of
cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.

Keywords: Agrobacterium, T-DNA, horizontal gene transfer, Nicotiana, Linaria

INTRODUCTION
Horizontal gene transfer (HGT) takes place widely in prokary-
otes, where its ecological and evolutionary effects are well-studied
(Koonin et al., 2001). Comparative and phylogenetic analy-
ses of eukaryotic genomes show that considerable numbers of
genes have been acquired by HGT. Gene acquisition by HGT
is therefore a potential creative force in both eukaryotic and
prokaryotic genome evolution. However, mechanisms of HGT
are poorly understood in the Eukaryota in comparison to gene
transfer among the Procaryotae. The persistence of horizon-
tally transferred genes in some organisms may confer selective
advantages (Koonin et al., 2001; Richardson and Palmer, 2007).
Most examples of HGT in higher plants involve the transfer
of chloroplast or mitochondrial DNA and have been the sub-
ject of numerous reviews (Dong et al., 1998; Richardson and
Palmer, 2007). There are few descriptions of horizontal trans-
fer of nuclear genes between species. One example is transfer
of the gene that codes for the cytosolic enzyme phosphoglu-
cose isomerase predicted to have occurred between Festuca ovina
and some species from the genus Poa (Ghatnekar et al., 2006;
Vallenback et al., 2008, 2010). Evidence of gene transfer from bac-
teria to the nuclei of multi-cellular eukaryotes is rare (Richards

et al., 2006; Acuna et al., 2012). HGT from bacteria to plants
has been restricted to Agrobacterium rhizogenes and represen-
tatives of genera Nicotiana and Linaria, and represents some
of the most recent transfers in evolution (White et al., 1983;
Intrieri and Buiatti, 2001; Matveeva et al., 2012; Pavlova et al.,
2013).

A. rhizogenes, and the related bacterium A. tumefaciens, trans-
form a wide variety of host plants by transferring a segment
of the large tumor-inducing plasmid, called T-DNA, into host
cells (White et al., 1982; Otten et al., 1992; Veena et al., 2003;
Tzfira and Citovsky, 2006; Vain, 2007). The T-DNA is inte-
grated through non-homologous recombination into the host
cell genome where it is expressed. Expression of T-DNA genes
results in the formation of hairy roots or crown galls, that are
transgenic tissues, formed on a non-transgenic plant. This phe-
nomenon is called “genetic colonization,” one of the examples
of the host-parasite relationship (Tzfira and Citovsky, 2006). It
is unclear whether or not colonized plants have received bene-
fits from such colonization, however, we could expect that it is
beneficial in some cases since there are footprints of HGT from
Agrobacterium to plants in the genomes of several present day
plant species.
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T-DNA IN NICOTIANA GLAUCA
In early investigations of Agrobacterium mediated transformation
of plants, most researchers assumed that there was no signifi-
cant homology to the T-DNA in untransformed plant genomes.
White et al. (1982) attempted to detect pRiA4b T-DNA sequences
in the genome of Nicotiana glauca, transformed in laboratory
conditions by Agrobacterium rhizogenes strain A4. Southern anal-
ysis detected a fragment of pRiA4 in the transgenic tissue.
Surprisingly, a hybridization signal was also detected in unin-
fected tissues of N. glauca. Further analysis confirmed the pres-
ence of DNA homologous to T-DNA in the N. glauca genome.
This homologous DNA was referred to as “cellular T-DNA”
(cT-DNA) (White et al., 1983).

Furner et al. (1986) investigated Nicotiana glauca plants, col-
lected in geographically separated territories. Southern analy-
ses showed the presence of cT-DNA in all studied varieties of
N. glauca. Sequencing of the N. glauca cT-DNA demonstrated
that it was organized as an imperfect inverted repeat. The left
arm of cT-DNA, containing rolB and rolC homologs (NgrolB and
NgrolCL) was more extended than the right arm, which con-
tained only the rolC homolog (NgrolCR). The coding sequences
of NgrolB and NgrolCR were found to contain early stop codons.

Subsequent analysis of the nucleotide sequence of this cT-DNA
identified open reading frame 13 (ORF13) and ORF14 homologs
in both the left and right arms, called NgORF13L, NgORF14L,
NgORF13R, and NgORF14R, respectively (Aoki et al., 1994).

In 2001 Suzuki et al. characterized A. rhizogenes strain
MAFF301724 and described a new opine synthase gene (miki-
mopine synthase gene mis). A part of the mis gene displayed
strong homology to distal fragments of N. glauca cT-DNA, called
NgmisL and NgmisR, respectively (Suzuki et al., 2002). Suzuki
et al. (2002) suggested that the complete cT-DNA region of
N.glauca is comprised of the 7968 bp left arm and 5778 bp right
arm that were derived from the T-DNA of a mikimopine Ri
plasmid similar to pRi1724. The level of nucleotide sequence sim-
ilarity between the left and right arms is greater than 96% and
the gene order is conserved suggesting a duplication event. The
structure of the N.glauca cT-DNA is summarized in Figure 1.
Since cT-DNA has been identified in all studied varieties of
N. glauca (Furner et al., 1986), it is reasonable to suggest that

FIGURE 1 | Structure of cT-DNA in the Nicotiana glauca genome (based

on Suzuki et al., 2002). The cT-DNA and its flanking regions are indicated.
Lines with a single arrowhead indicate the imperfect inverted repeat. Lines
with arrowheads at both ends indicate regions sequenced by each of three
groups.

the transformation event occurred before the formation of this
species. This suggests that other related species may contain
cT-DNA.

T-DNA IN OTHER NICOTIANA SPECIES
The genus Nicotiana is one of the largest genera in the Solanaceae
and contains 75 species that are characterized by a wide range
of variations among their floral and vegetative morphology
(Clarkson et al., 2004). The different Nicotiana species evidence
interspecific crosses which complicates Nicotiana phylogeny.
Goodspeed hypothesized that there are two distinct lineages
in Nicotiana which arose from two ancestral pre-petunioid
and pre-cestroid lineages. He supposed that the base chromo-
some number of the genus was 12 and stressed the role of
doubling and hybridization in Nicotiana evolution. Goodspeed
divided Nicotiana into three sub-genera Rustica, Tabacum, and
Petunioides and 14 sections (Goodspeed, 1954). Since then, the
number of subgenera of Nicotiana has remained constant, while
the number and composition of the sections has been revised
(Clarkson et al., 2004). 75% of tobacco species originate from
the Americas and 25% of species are from Australia (Goodspeed,
1954; Clarkson et al., 2004).

Identification of T-DNA in N. glauca raises two questions:
what other Nicotiana species contain cT-DNA, and what was the
pattern of dissemination within the group?

To answer the first question Furner et al. (1986) exam-
ined the genomes of 17 species of the genus Nicotiana. Using
Southern analyses he showed that only six species from the sub-
genera Rustica and Tabacum contained sequences homologous
to the rol genes of Agrobacterium rhizogenes. These species are
N. glauca, N. otophora, N. tomentosiformis, N. tomentosa, N. bena-
videsii, N. tabacum. Examination of T-DNA- like sequences in
N. tabacum has shown that it contains a rolC homolog and two
ORF13 homologs (trolC, tORF13-1 and tORF13-2, respectively)
(Meyer et al., 1995; Frundt et al., 1998). Intrieri and Buiatti
studied the distribution and evolution of Agrobacterium rhizo-
genes genes in the genus Nicotiana. Forty two species representing
all Nicotiana sections were examined for the presence of rolB,
rolC, ORF13, and ORF14 homologs in their genomes. T-DNA-
like sequences detected were compared with each other and with
contemporary sequences of Agrobacterium. The results demon-
strated the presence of at least one T-DNA gene in each of 15
Nicotiana species representing all three subgenera. All currently
available data on the distribution of cT-DNA among Nicotiana
species are summarized in Table 1.

It is important to note, that there are some inconsistencies
among the data by Furner et al. (1986) and Intrieri and Buiatti
(2001). For example, Intrieri and Buiatti (2001) showed that
T-DNA is present in N. debneyi and N. cordifolia. Furner et al.
(1986) found no T-DNA in these species. This contradiction
requires additional studies.

Thus, to date, T-DNA was found in every Nicotiana sub-
genus which include species, native to America and Australia
(Goodspeed, 1954).

Phylogenetic analyses were performed by Intrieri and Buiatti
(2001) to compare nucleotide sequences of cT-DNA in sev-
eral Nicotiana species with the T-DNA of Agrobacterium.
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Table 1 | Distribution of T-DNA-like sequences among Nicotiana species.

Section* Species T-DNA genes Sequence Acc# References

Rustica Paniculatae N.glauca * +(rolB-mis) X03432.1; D16559.1
AB071334.1; AB071335.1

1, 2, 3, 4**

N.paniculata – 2, 5
N.knightiana – 2, 5
N.solanifolia – 5
N.benavidesii +(rolC) n/a*** 2, 5
N.cordifolia +(rolB-ORF14) AF281252.1 AF281248.1

AF281244.1
2, 5

N.raimondi – 5
Rusticae N.rustica – 2, 5

Tabacum Tomentosae N.tomentosa +(ORF13-mis) n/a 2, 4
N.tomentosiformis +(rolC-mis) AF281249.1 AF281245.1

AF281241.1
2, 4,5

N.otophora +(rolC-ORF14) AF281250.1 AF281247.1
AF281243.1

2, 5

N.setchelli +(rolC) n/a 2
Nicotiana N.tabacum +(rolC-mis) AF281246.1 AF281242.1 2,4,5

Petunioides Undulatae N.glutinosa – 2, 5
N.undulata – 5
N.arentsii +(rolC) n/a 5

Trigonophyllae N.trigonophylla – 5
Sylvestris N.sylvestris – 5
Alatae N.langsdorffi – 2, 5

N.alata – 5
N.longiflora – 5
N.forgetiana – 5
N.sanderae – 5
N.plumbaginifolia – 5

Repandae N.nesophila – 5
N.stocktonii – 5
N.repanda – 5
N.nudicaulis – 5

Noctiflorae N.noctiflora – 5
N.petunioides – 5

Petunioides N.acuminata (rolC) n/a 5
N.pauciflora – 5
N.attenuata – 5
N.miersii +(rolB) n/a 5

Bigelovianae N.bigelovi +(rolB) n/a 5
Polydiclae N.clevelandi – 5
Suaveolentes N.umbratica – 5

N.debneyi +(rolC) AF281251.1 5
N.gossei +(rolC) n/a 5
N.rotundifolia – 5
N.suaveolens +(rolC) n/a 5
N.exigua +(rolC) n/a 5
N.goodspeedii – 5

*Nicotiana sections from Knapp et al. (2004) and N.glauca section is from Goodspeed (1954); ** 1, White et al., 1983; 2, Furner et al., 1986; 3, Aoki et al., 1994;

4, Suzuki et al., 2002; 5, Intrieri and Buiatti, 2001; ***n/a, not available.

The following species were used in the analyses and rep-
resented all three subgenera: N. cordifolia (subgenus Rustica
sec. Paniculatae); N. tomentosiformis and N. otophora (sub-
genus Tabacum), N. tomentosiformis (participated in N. tabacum

speciation together with N. sylvestris); N. glauca used to be
included in the subgenus Rustica sec. Paniculatae (Goodspeed,
1954), but later it was moved to the sec. Noctiflorae of the
subgenus Petunioides (Knapp et al., 2004); and N. debneyi
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[Suaveolentes, an Australian section of Nicotiana, and a polyploid
species of the subgenus Petunioides (Knapp et al., 2004)].

Analysis of nucleotide sequences revealed that N. cordifolia
and N. glauca rolB, rolC, ORF13, and ORF14 genes show a high
level of sequence similarity (93.5–98.5%). These data indicate
that N. cordifolia and N. glauca are related species and are con-
sistent with the proposal of Goodspeed (1954) that both species
should be included in subgenus Rustica sec. Paniculatae. Similar
clustering was found between the representatives of the subgenus
Tabacum. Sequence similarities were lower between Rustica and
Tabacum species, ranging from 66.3 to 68.6% for rolC and from
70.2 to 82.9% for ORF13 but was higher for ORF14 (94–97%).
Surprisingly, the petunioid N. debneyi rolC gene demonstrates
high sequence similarity (93.4%) with the N. glauca rolC gene,
but lower similarity (around 67%) with those found in species
belonging to the subgenus Tabacum. It was speculated that the
polyploid species N. debneyi got cT-DNA from an ancestor of sec.
Paniculatae. The homologies suggest that the Nicotiana rol genes
parallel Nicotiana spp. evolution, being divided into two clusters,
one that includes N. glauca, N. cordifolia, and N. debneyi, the
second comprising species from the subgenus Tabacum (Intrieri
and Buiatti, 2001).

Present day cT-DNA genes clustered with each other, making
it difficult to predict which Ri-plasmid would be the source of
the cT-DNA in each Nicotiana species. Since the pace of evolution
differs between bacteria and plants, and since the pRi T-DNAs
may have undergone rearrangements with each other (Moriguchi
et al., 2001), it is difficult to define which ancient T-DNA was
the origin of cT-DNA in different Nicotiana species using such
phylogenetic analysis (Tanaka, 2008).

Another option for exploring the origin of cT-DNA is opine
typing which was performed by Suzuki et al. (2002). They iden-
tified opine gene homologs in N. glauca (NgmisL and NgmisR,
respectively) and screened 12 Nicotiana species for mis homologs
using Southern blot hybridization. The analyses included five
species from the subgenus Rustica (N. glauca, N. benavidesii,
N. paniculata, N. knightiana, N. rustica), five species from the sub-
genus Tabacum (N. tomentosa, N. tomentosiformis, N. otophora,
N. tabacum and N. glutinosa), and two species from the sub-
genus Petunioides (N. langsdorfii and N. sylvestris). Homologs of
gene mis were detected in the genomes of N. glauca, N. tomen-
tosa, N. tomentosiformis and N. tabacum, however, the size of
the hybridized fragments was different between N. glauca and
species in the subgenus Tabacum and the hybridization pattern
in N. tomentosa was different from that of the two species in
the subgenus Tabacum (N. tabacum and N. tomentosiformis).
Since T-DNA fragments of N. tabacum were identical to those
of N.tomentosiformis and were not detected in the genome of
N. sylvestris, the mis gene of N. tabacum likely came from
N. tomentosiformis.

Suzuki et al. (2002) sequenced DNA in N. glauca adjacent
to the cT-DNA. To investigate regions adjacent to the cT-DNA
in other species, Southern hybridization was carried out using
either a DNA fragment outside the left or right arms of the
cT-DNA of N. glauca as a probe. All examined Nicotiana genomes
showed the presence of sequences homologous to both sides of
the cT-DNA suggesting that these are original sequences existing

in the genomes of Nicotiana plants. Similar size fragments were
found in most species of the subgenus Rustica and Tabacum,
which likely represent subgenus-specific restriction fragments.
Interestingly, the signals using NgL and NgR as probes fell into
the same fragment in the genomes of N. tomentosa, N. tomentosi-
formis, N. tabacum. Although the same DNA sequences bordering
the cT-DNA in N. glauca were found in the genome of these three
species, the sequences were not contiguous to the cT-DNA there-
fore the location of the cT-DNA in N. glauca is different from that
in the species of the subgenus Tabacum.

Thus, the phylogenetic analysis undertaken by Intrieri and
Buiatti (2001), and the study of opine genes and T-DNA integra-
tion sites performed Suzuki et al. (2002), suggest that there have
been no less than two acts of Agrobacterium mediated transfor-
mation in the evolution of Nicotiana species (Figure 2). While the
comparison of DNA sequences and the detection of mis homologs
clearly demonstrates that the origin of the cT-DNA in N. glauca,
N. tabacum, N. tomentosa, and N. tomentosiformis is derived from
a mikimopine-type Ri plasmid similar to pRi1724, the origins of
the cT-DNA in other species are still unknown.

EXPRESSION OF NICOTIANA cT-DNA GENES
pRi transgenic plants exhibit a specific phenotype (dwarfing, loss
of apical dominance, increased root mass, and decreased rate of
fertilization) (Tepfer, 1984). However, Nicotiana species that con-
tain cT-DNA in their genomes show no such phenotype. Are these
genes expressed and functional, or they are pseudogenes?

Early experiments by Taylor et al. (1985) did not detect
transcripts of the cT-DNA genes in Nicotiana glauca. Other
researchers were able to detect transcripts of NgrolB, NgrolC,
NgORF13, NgORF14 in callus tissues of N. glauca (Aoki and
Syono, 1999a) as well as in genetic tumors of F1 N. glauca ×
N. langsdorffii hybrids, but not in leaf tissues of the same hybrid
(Ichikawa et al., 1990; Aoki et al., 1994). Northern analyses of
N. tabacum oncogenes showed that a trolC transcript accumu-
lated in shoot tips and young leaves. The expression pattern of
tORF13 was similar to trolC, however, tORF13 expression was
detected in flowers (Meyer et al., 1995; Frundt et al., 1998).

Intrieri and Buiatti studied transcription of the cT-DNA genes
using RT-PCR in a number of species, using N. langsdorffii as
a negative control. For their analyses authors used leaves from
young in vitro-grown plantlets and hormone autotrophic (habit-
uated) callus tissues grown on a hormone-free cultural medium
as previously described by Bogani et al. (1985).

In this study rolB transcripts were found to be present in all
cases in habituated callus tissues, but not in leaves; rolC was
expressed in calli as well as in leaves of Rustica species (N. glauca
and N. cordifolia), and only in calli in species representing the sub-
genus Petunioides; no expression was demonstrated to occur in
species from the subgenus Tabacum. ORF13 and 14 mRNA was
always detected in calli and ORF13 transcripts were found in leaf
tissues of N. tabacum and N. tomentosiformis.

Aoki and Syono (1999b, 2000) analyzed the function of Ngrol
genes by transforming leaf explants of N. tabacum and N. debneyi
with A. tumefaciens that harbored either a rolB-rolC-ORF13-
ORF14 fragment from pRi or cT-DNA of N. glauca. Nearly all
of the leaf segments inoculated with pRi fragment developed
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FIGURE 2 | Phylogenetic analysis of Nicotiana (Clarkson et al., 2004),

using ITS and chloroplast sequences together with T-DNA marker.

(A) Bayesian analysis of diploids only combined dataset (plastid and ITS).
Consensus of 40,001 trees with posterior probabilities shown above
branches. Bars indicate Nicotiana sections according to Knapp et al. (2004),

Black and white arrows indicate the deduced insertion events by
mikimopine-type or unknown opine-type pRi T-DNAs correspondingly (Suzuki
et al., 2002). (B) Phylogenetic analysis of rolC, gene (Intrieri and Buiatti, 2001)
by neighbor-joining method. Ovals show results of possible independent
transformation events.

hairy roots. No significant root growth, however, appeared on the
explants treated with A. tumefaciens that harbored Ng cT-DNA.

A comparison of the nucleotide sequences of NgrolB and
RirolB indicates that these oncogenes have different length cod-
ing regions. Each ORF starts at the same position, but NgrolB
ends at early termination codon 633 bp from the initiation site.
The authors suggested that N. glauca plants do not exhibit the
hairy-root phenotype due to the truncation of the NgrolB reading
frame.

A comparison of the DNA sequences of NgrolC and RirolC
indicates that the reading frame of NgrolC begins and termi-
nates at the same positions as RirolC. Nicotiana tabacum leaf
disks were transformed with the P35S-NgrolC chimeric con-
struction, yielded transformants that expressed a dramatically
dwarfed phenotype, probably because of the reduced length of
internodes. The leaves of these P35S-NgrolC transgenic plants
were lanceolated and pale green, with floral organs that were
thin and small. These characteristics were identical to the phe-
notype of the P35S-RirolC transgenic plants, described earlier
(Schmülling et al., 1988). Transgene expression was detected only
in transformants that demonstrated these characteristic morpho-
logical shifts, no transcripts were detected in leaf tissues from a

comparable T0 plant demonstrating a normal phenotype (Aoki
and Syono, 1999b).

To compare the expression patterns between the Ngrol genes
of N. glauca and the Rirol genes of Agrobacterium rhizogenes,
Nagata et al. (1996) carried out fluorometric and histochemical
analyses of the tissues from transgenic genetic tumors, growing
on the hybrid of Nicotiana glauca × N. langsdorffii (F1) that
contained a beta-glucuronidase (GUS) reporter gene fused to
the promoter of (NgrolB, NgrolC, RirolB, or RirolC. In all con-
structs they studied, significantly higher GUS activity was found
in tumors than in the other organs (roots, stems, and leaves)
of transgenic plants. The tendency toward higher GUS activi-
ties in tumors than in normal tissues seen with the RirolB and
RirolC promoters was also seen with the NgrolB and NgrolC
promoters. GUS activities from the rolB promoter expressed in
normal F1 plants were, however, different from those seen from
the rolC promoter. The expression of the RirolB and NgrolB pro-
moters in stems, roots, and leaves were 10–100 fold lower than in
genetic tumors. Almost no activity was detected in leaves. By con-
trast, expression from the RirolC and NgrolC promoters was only
1.5–10 fold lower than in genetic tumors and a significant activity
was detected in leaves.
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Histochemical analysis of transgenic normal Fl plant tissues
showed that NgrolB-GUS and NgrolC-GUS, as well as RirolB-
GUS and RirolC-GUS, had common tissue-specific expression
patterns. NgrolB-GUS normal Fl transgenic plant tissues dis-
played high GUS activity in the meristematic zones of roots and in
the apexes of shoots. A similar pattern of staining was ob-served
in the RirolB-GUS transgenic plants. In the case of NgrolC-GUS
and RirolC-GUS normal Fl transgenic plant tissues, GUS activity
was observed primarily in the apices, vascular bundles of leaves,
stems, and roots.

Expression of the mis gene homologs in N. glauca was detected
by RT-PCR (Suzuki et al., 2002). It was shown that both homologs
of the mis gene were amplified by RT-PCR using separate ortholog
specific primers. These data support the hypothesis that the mis
homologs are not pseudogenes. Transgenic plants transformed by
the T-DNA of the wild type plasmid Ri1724 or by the mis gene
alone, synthesize mikimopine in different organs (Suzuki et al.,
2001), although no mikimopine accumulation was detected in
wild-type N. glauca by paper electrophoresis. It is therefore likely
that Ngmis homologs are transcribed at a very low level.

A full-length NgmisR homolog was isolated and integrated
into an expression vector in Escherichia coli. The purified Mis pro-
tein was able to catalyze synthesis of mikimopine from L-histidine
and α-ketoglutaric acid in a reaction buffer supplemented with
NADH as a co-factor (Suzuki et al., 2002).

Thus, the oncogenes of Nicotiana cT-DNA are expressed in dif-
ferent tissues of present day tobacco plants at a low level and are
therefore not pseudogenes.

cT-DNA AND GENETIC TUMORS IN NICOTIANA
Genetic tumors appear in certain genotypes spontaneously with-
out being induced by any detectable environmental factor, and
the tumor state is hereditary. Spontaneous genetic tumors in
Nicotiana were first reported by Tanaka (2008). They have been
detected throughout the plant and in whole progeny popula-
tions of certain crosses of Nicotiana species (Kehr and Smith,
1954). In some hybrids, genetic tumors have been reported to
be formed irregularly in some of the offspring or limited to cer-
tain organs of the plants (Smith, 1958). It has been proposed
that certain genes appropriately combined in a hybrid promote
the development of these genetic tumors (Naf, 1958; Ahuja,
1968). Naf (1958) divided Nicotiana species into two groups,
so called “plus” and “minus” groups. The “plus” group consists
mainly of the species of the section Alatae whereas the minus
group contains species from several sections. Crosses between
the species within “plus” or “minus” groups do not produce
tumorous progeny, while crosses between species from “plus” and
“minus” groups do. Ahuja (1968) hypothesized that the species
belonging to the “plus” group have a gene or a locus defined
as initiator (I) and the species belonging to the “minus” group
have a number of genes or loci (ee) for tumor enhancement
and expression. For tumor formation both I and ee loci must be
present.

Fujita (1994) expect that most species belonging to the
minus group contain cT-DNA and that its genes could some-
how be associated with the formation of genetic tumors on the
Nicotiana hybrids. However, since there are no reports showing

a connection between the ee genes and cT-DNA genes so far,
this promising hypothesis has not yet been validated (Tanaka,
2008). As already mentioned, NgrolB, NgrolC, NgORF13 and
NgORF14 genes are transcribed in genetic tumors on N. glauca
× N. langsdorffii F1 hybrids (Ichikawa et al., 1990; Aoki et al.,
1994). Some of these genes function in several organs of non-
tumorous hybrid plants, like their counterparts in pRi T-DNA
(Nagata et al., 1995, 1996; Udagawa et al., 2004). As soon as
tumorigenesis is initiated by aging or stress, these genes are active
in the developing outgrowth in a regulated manner. This means
that a high level of expression of Ngrol genes is correlated with
tumor formation on an F1 hybrid. However, it has not been deter-
mined if the formation of tumors is caused by the expression of
Ngrol genes (Tanaka, 2008). Moreover, the stem and leaf tissues
of Nicotiana species accumulate transcripts of the Ngrol genes
(Meyer et al., 1995; Frundt et al., 1998). These observations sug-
gest that the expression of these Ngrol genes might be unrelated
to the induction of tumors. Overexpression of NgrolC, NgORF13,
or tORF13 cause the proliferation of cells on carrot disks (Frundt
et al., 1998), and morphological alterations of tobacco explants,
similar to hairy root syndrome on transgenic plants (Aoki and
Syono, 1999a,b). Therefore, cT-DNA oncogenes may be respon-
sible for enhancing the development of genetic tumors (Tanaka,
2008).

It is widely discussed that phytohormones contribute to
genetic tumor formation. The role of auxin and cytokinins in
genetic tumor formation in Nicotiana, however, has been dis-
puted. On the one hand, in the light-grown tissues of genetic
tumors, indole acetic acid (IAA) was found to be the predomi-
nant auxin and its level increased during tumor initiation (Bayer,
1967; Ichikawa et al., 1989). On the other hand, in dark conditions
endogeneous IAA remained at a constant, low level through-
out the tumorigenetic process (Fujita et al., 1991). A higher
cytokinin level was associated with tumorigenesis in tumor-prone
hybrid tissues. While analyzing the role of cytokinins in Nicotiana
genetic tumor formation, Feng et al. (1990) have shown that
tumor formation of X-ray-induced non-tumorous mutants of
N. glauca × N. langsdorffii was restored either by the insertion
of the A. tumefaciens ipt gene, which encodes the key enzyme
of cytokinin biosynthesis, or by the addition of cytokinin. Nandi
et al. (1990) determined the profile of endogenous cytokinins in
genetic tumors of N. glauca (Grah.) × N. langsdorffii (Weinm.)
hybrids. They showed that while zeatin is predicted to be the pre-
dominant endogenous cytokinin in tissues of all ages, the genetic
tumor tissue derived from this hybrid does not contain notably
high endogenous cytokinin levels.

Since tumor growth may be caused not only by high concen-
trations of hormones, but also by enhanced sensitivity to them,
this may explain the contradictory data on the content of hor-
mones in tumors. Even if hormone levels are increased in tumors,
it is not necessarily caused by the expression of the cT-DNA genes:
rol genes can be regulated by hormones. For example, it was
shown that expression of NgrolB was induced by auxin, as was
RirolB, probably through the presence of the auxin-responsive
cis-element ACTTTA found in the promoters of NgrolB and
RirolB which is acted upon by the trans-factor NtBBF1 (Tanaka,
2008).
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It is clear that further work will be needed to establish the rela-
tionship between cT-DNA oncogenes and genetic tumorigenesis
in Nicotiana.

SEARCH FOR T-DNA-LIKE SEQUENCES IN OTHER
SOLANACEAE SPECIES
The Solanaceae is a large angiosperm family containing many
economically important crops. A. rhizogenes is known to infect
species belonging to different Solanaceae genera. Intrieri and
Buiatti (2001) attempted to identify T-DNA-like sequences in
species belonging to genera Cestrum, Petunia, and Solanum
(C. parqui, C. foetidus, P. hybrida, S. tuberosa, S. melongena,
C. annuum, and S. lycopersicon) using the same screening pro-
cedure, as they did for Nicotiana. None of the species screened
showed amplification by PCR and no hybridization was obtained
using A. rhizogenes and N. glauca probes. Kulaeva et al. (2013)
extended the analysis to species from genus Solanum looking
for T-DNA-like sequences. The authors used TaqMan real-time
PCR with degenerate primers and probes for rolB, rolC, ORF13,
ORF14 to analyze the following species: S. chmielewskii, S. esculen-
tum var. cerasiforme, S. glabratum, S. habrochaites, S. peruvianum,
S. pimpinellifolium, S. cheesmanii, S. parviflorum, S. chilense,
S. acaule, S. ajanhuiri, S. albicans, S. andigenum, S. berthaultii,
S. boyacense, S. boyacense, S. canarense, S. canarense, S. car-
diophyllum, S. chacoense, S. chaucha, S. chocclo, S. curtilobum
S. demissum, S. demissum, S. doddsii, S. dulcamara, S. fendleri,
S. goniocalyx, S. hjertingii, S. hondelmanii, S. hougassi, S. jame-
sii, S. juzepczukii, S. kurtzianum, S. mamilliferum, S. phureja,
S. pinnatisectum, S. pinnatisectum, S. polytrichon, S. riobam-
bense, S. rybinii, S. sparsipilum, S. spegazzinii, S. stenotomum,
S. stoloniferum, S. tarijense, S. tenuifilamentum, S. tuberosum,
S. vernei, S. verrucosum, S. oplocense. They used N. tabacum
DNA as positive control and N. langsdorffii as negative control.
Amplification of specific sequences was not detected in any of the
tested species.

This data shows that the presence of cT-DNA is not a feature
of whole Solanaceae family, but has only been described to date
for members of the genus Nicotiana.

T-DNA IN OTHER DICOTYLEDONOUS FAMILIES
Given the documented occurrence of cT-DNA, it is reasonable
to hypothesize that other plant species, outside of the family
Solanaceae, would have been transformed by Agrobacterium and
contain at least remnants of cT-DNA.

The existence of cT-DNAs in species outside of the family
Solanaceae has been reported by several groups. Using Southern
analyses, sequences similar to pRi T-DNA were found in the
genomic DNA of normal carrot (Daucus carota) (Spano et al.,
1982), field bindweed (Convolvulus arvensis) (Tepfer, 1982); and
carpet bugleweed (Ajuga reptans) (Tanaka, 2008). These studies
did not involve DNA sequencing so they were not able to confirm
whether there is T-DNA in the analyzed species.

Prior work in our group (Matveeva et al., 2012) attempted
to clarify whether fixed T-DNA is present in other species out-
side the genus Nicotiana, and to evaluate the evolutionary rel-
evance of natural T-DNA transfer. We sought to quickly screen
a large number of plant genomes for the presence of T-DNA

from both A. tumefaciens and A. rhizogenes using a modification
of TaqMan-based real-time PCR (Livak et al., 1995) that com-
bines the positive features of PCR and DNA blot hybridization
in a single reaction (Matveeva et al., 2006). The search was lim-
ited to dicotyledonous plants native to temperate zones (mild
winter, warm summer, and sufficient rainfall) due to the com-
mon occurrence of Agrobacterium in soils under these climate
conditions.

This work analyzed 127 dicotyledonous plant species belong-
ing to 38 different families. Species included carrot (Daucus
carota) and field bindweed (Convolvulus arvensis), mentioned
above. Each of the plants was screened for DNA sequences homol-
ogous to two different sets of T-DNA oncogenes: The first set
included sequences homologous to A. rhizogenes oncogenes (rolB,
rolC, ORF13, and ORF14), and the second contained sequences
homologous to A. tumefaciens oncogenes (tms1 and tmr). Plant
DNA samples from 126 species did not display detectable flu-
orescent signals for the T-DNA genes from either A. rhizogenes
or A. tumefaciens. However, DNA samples isolated from several
plants of L. vulgaris gave a positive result. In contrast, amplifica-
tion was not observed using primers for the tms1 and tmr genes
of A. tumefaciens (Matveeva et al., 2012).

The absence of T-DNA homologs in most of the plant
species investigated leads us to the conclusion that HGT from
Agrobacterium is a rare event in the plants. However, find-
ing cT-DNA sequences in the genomes of species other plants
than Nicotiana indicates that HGT from Agrobacterium to plants
occurs outside of this genus.

It is interesting to note that the only examples of HGT demon-
strated thus far occur in plants transformed by A. rhizogenes, but
not A. tumefaciens. This may suggest that infection induced by
A. rhizogenes is more efficient than that induced by A. tumefaciens
(Tepfer, 1984).

cT-DNA IN THE GENOMES OF THE GENUS LINARIA
Sequences homologous to T-DNA oncogenes in Linaria vulgaris,
were identified by real time PCR and named LvrolB, LvrolC,
LvORF13, LvORF14. BLAST analyses demonstrated the highest
level of sequence identity (93%) between LvrolC and RirolC from
the pRiA4 of A. rhizogenes. LvORF14 had the lowest similarity to
the corresponding Agrobacterium oncogene (85%). A homolog
of a gene for mikimopine synthase (mis) was also identified. To
define the full extent of the cT-DNA integrated into Linaria vul-
garis genome, a chromosome walking approach was performed
to identify the upstream fragment of the Lv cT-DNA. This work
indicated that the L. vulgaris genome contains two copies of cT-
DNA which are organized as an imperfect direct repeat. Analysis
of the cT-DNA copies demonstrated that both of them contain
sequences similar to the following genes: ORF2, ORF3, ORF8,
rolA, rolB, ORF 13, ORF1, and mis. The left side of the repeat
contains additional sequence, homologous to part of the agro-
cinopine synthase (acs) gene. Analysis of the flanking regions of
the Lv T-DNA was performed by real-time thermal asymmetri-
cal interlaced (TAIL)-PCR with primers and probes to the Lvmis
gene. The flanking plant DNA identified in this analysis was found
to be similar to the Ty3/gypsy-like retrotransposon (Matveeva
et al., 2012).
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Samples of L. vulgaris were collected in the European part of
Russia in Moscow, Voronezh and Krasnodar regions, and in the
Asian part of Russia in the Novosibirsk, Tumen, and Chelyabinsk
regions. The distance between the most western to the most east-
ern points was about 4000 km. The distance from the most north-
ern to the most southern points was about 2000 km. Two to three
plants were analyzed from each of these collection points. All
of the samples contained T-DNA-like sequences, however, there
was polymorphism among their nucleotide sequences (Matveeva
et al., 2012).

Analysis of the sequences for both L. vulgaris homologs of rolC
demonstrated that they contained intact open reading frames.
The fragments corresponding to the coding regions of genes
LvrolB, LvORF13, LvORF14, and Lvmis contain several stop
codons or frameshifts that alter the ORFs. An analysis of the
expression of these genes was carried out in tissues from the
internodes, leaves, and roots of 1 month old, in vitro aseptically
grown plants using RT real-time PCR. No mRNA correspond-
ing to LvrolB, LvrolC, LvORF13, LvORF14 and Lvmis genes
was amplifiable from these samples, therefore, the rol genes do
not appear to be transcribed in L. vulgaris (Matveeva et al.,
2012).

Toadflaxes (Linaria Mill.) form the largest genus within the
tribe Antirrhineae. Linaria includes about 150 species that are
widely spread in the Palearctic region, but the representatives
of the genus are the most variable in the Mediterranean basin.
The origin of the genus has been placed in the Miocene era
(Fernandez-Mazuecos and Vargas, 2011) predating the Messinian
Salinity Crisis (Hsu et al., 1977). The latest classification of the
genus Linaria accepts seven sections (Linaria, Speciosae, Diffusae,
Supinae, Pelisserianae, Versicolores, and Macrocentrum) (Sutton,
1988).

Studies indicate that cT-DNA exists in a number of Linaria
species belonging to the sections Linaria and Speciosae (Matveeva
and Kosachev, 2013; Pavlova et al., 2013). No cT-DNA was
detected in Linaria species outside these sections. It appears that
rolC is concerved among studied Linaria species based on the
sequencing analysis of rolC homologs in L. genistifolia subsp. dal-
matica (sec. Speciosae) and L. acutiloba (sec. Linaria) (Matveeva
and Kosachev, 2013; Pavlova et al., 2013).

Thus, HGT of T-DNA from Agrobacterium to plants is not lim-
ited to Nicotiana spp, it has also occurred in the genus Linaria.
The rolC homolog is the most conserved gene among the cT-DNA
genes in Linaria and Nicotiana spp. In both genera plants were
transformed by a mikimopine strain of A. rhizogenes.

POSSIBLE FUNCTION OF T-DNA IN PLANT GENOMES
The existence of several independent acts of Agrobacterium
mediated transformation of plants and the maintenance of the
cT-DNA in plant genomes during the process of evolution pro-
pose, that T-DNA-like sequences may give some selective advan-
tages to the transformed plants (Ichikawa et al., 1990; Matveeva
et al., 2012).

Suzuki et al. (2002) mentioned two possible functions of
cT-DNA: increasing root mass leading to tolerance to drought,
and changing the biological environment, particularly the soil
microbiome represented by root-associated bacterial populations.

Increasing root mass would seem beneficial for tolerance to dry
conditions. Hence, ancient transformed plants with increased
root mass might have demonstrated increased tolerance to
dry environments surviving in arid conditions (Tanaka, 2008).
However, no phenotype of the hairy root disease is observed in
Nicotiana and L. vulgaris plants. In contrast, L. vulgaris explants
show in vitro a shooty phenotype and in representatives of both
genera rolB is mutated. Among the oncogenes of pRi T-DNA,
rolB gene function seems to be the most important for hairy root
induction because transformation of plants by the RirolB gene
alone can induce hairy root formation. In contrast to the pRirolB,
the NgrolB gene alone or in combination with other N. glauca
homologs of A. rhizogenes oncogenes did not induce adventitious
roots (Aoki and Syono, 1999a,b).

Aoki and Syono (1999b) performed base substitutions at two
nucleotide positions, using site-directed mutagenesis, with the
aim of producing a full-length form of NgrolB capable of stim-
ulating adventitious root induction. Transgenic plants overex-
pressing this altered NgrolB demonstrated typical morphogenetic
abnormalities. This experiment shows the possibility that a func-
tional rolB gene may have operated during early steps of the
evolution of transgenic Nicotiana.

Identification and sequencing of the mis homologs in
Nicotiana and Linaria suggests that the origin of their cT-DNA
is probably the mikimopine Ri plasmid. The presence of this gene
may be related to plant–microbe interactions. Oger et al. (1997,
2000) reported that producing opines in genetically modified
plants alters their ecological environment, in particular, changing
the soil microbiome and root-associated microbe populations. If
the synthesis of opines were beneficial for a plant species (even at a
low level, in a specific tissue, or at a specific stage of oncogenesis),
it may impact the appearance of advantageous plant–bacterium
interactions. Plants maintaining cT-DNA in the genome could
potentially maintain certain species of microorganisms in their
rhizosphere via the secretion of opines in the root zone. Such
potentially beneficial bacteria in the rhizosphere may in turn
influence the root microbiome and convey nutritional and/or
defensive features.

Early flowering or a shift from biennial to annual lifecycle
without vernalization can take place on pRi transgenic Cichorium
intybus and Daucus carota plants (Limami et al., 1998). These
flowering features are beneficial when propagating such trans-
genic plants over the untransformed parentals. When considering
the adaptational potential of natural transformation, the authors
focused on the occurrence of flowering in the absence of a
cold treatment. Given the mobility of seeds by wind, animals,
and water, it is likely that biennial varieties or ecotypes may be
transported to the southern latitudes where annualism would be
beneficial. However, Nicotiana and Linaria species are not bienni-
als (Goodspeed, 1947; Sutton, 1988; Blanco-Pastor et al., 2012).
In addition, cT-DNA containing Linaria species from the sec-
tions Linaria and Speciosae are perennial, while other sections
contain annual species. It is interesting to note that the cT-DNA
containing sections are found worldwide while other sections are
in the Mediterranean region and the Pyrenees (Table 2) (Sutton,
1988). It is unclear if this observation is due to the rarity by which
plants acquire permanent cT-DNA, or if its foundation is related
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Table 2 | Major features of infrageneric taxa of the genus Linaria

(according to Sutton, 1988).

Section Habit Distribution

Linaria Perennial Eurasia

Speciosae Perennial Europe

Diffusae Annual or perennial Mediterranean

Supinae Annual or perennial Mediterranean

Pelisserinae Annual or perennial Mediterranean

Versicolores Annual or perennial Mediterranean, Iberian Peninsula

Macrocentrum Annual Mediterranean

to some fitness benefit conferred by the cT-DNA. It can be spec-
ulated, however, that the ecological plasticity of species within
the sections Linaria and Speciosae is somehow associated with the
presence of cT-DNA in their genomes.

It would appear, therefore, that annualism is not related to
natural transformation in Nicotiana and Linaria.

It is interesting to note that rolC is the most conserved gene
among the cT-DNA oncogenes found in Nicotiana and Linaria
(Intrieri and Buiatti, 2001; Mohajjel-Shoja et al., 2011). In some
representatives of the Nicotiana, only rolC is able to encode a
functional product (Mohajjel-Shoja et al., 2011). The same trend
was observed for Linaria T-DNA-like sequences (Matveeva et al.,
2012; Matveeva and Kosachev, 2013). The function of rolC, how-
ever, is poorly understood. It has been speculated that the product
of rolC releases cytokinins from conjugates (Estruch et al., 1991).
Other researchers demonstrated that the RolC protein partici-
pates in the processes of sucrose metabolism and/or transport
(Nilsson and Olsson, 1997; Mohajjel-Shoja et al., 2011). RolC
has also been proposed to promote somatic embryogenesis in
plants (Gorpenchenko et al., 2006). Such data are consistent
with a cytokinin function of the gene. Constitutive expression of
rolC in cultured plant tissues activates secondary metabolism: the
rolC gene alone increases production of tropane alkaloids, pyri-
dine alkaloids, ginsenosides, and anthraquinones among others
(Bulgakov et al., 1998, 2002; Palazon et al., 1998a; Bonhomme
et al., 2000a,b; Bulgakov, 2008) and stimulates the expression of
pathogenesis-related proteins (Kiselev et al., 2007). It is unclear
how the rolC gene product mediates such pleiotropic effects, fur-
ther biochemical characterization of RolC is required. This is
complicated by the fact that rolC has no significant homology
with any other genes (of prokaryotic or eukaryotic organisms)
whose function is known (Bulgakov, 2008).

Activation of secondary metabolism in transformed cells
may be due to the action of other rol genes (Chandra, 2012).
Shkryl et al. (2008) studied the influence of rol genes prod-
ucts on secondary metabolism of Rubia cordifolia. They investi-
gated rol genes individually and studied their combined action.
They found that individual rolA, rolB, and rolC genes were
able to stimulate biosynthesis of anthraquinones in trans-
formed calli. The strongest anthraquinone—stimulating activ-
ity was detected for an R. cordifolia culture overproducing
RolB where they saw a 15-fold increase of anthraquinone
accumulation as compared to untransformed calli. The rolA-
and rolC-expressing calli produced 2.8- and 4.3-fold higher
amounts of anthraquinones, correspondingly. Palazon et al.

(1998b) reported that the rolA gene stimulated production of
nicotine.

Thus, increasing the amount of secondary metabolites is a
characteristic of tissues where rol genes are expressed. This prop-
erty can be useful for plants, because secondary metabolites may
contribute to the resistance of plants to pests. It seems likely that a
possible function cT-DNA is to mediate how plants interact with
their environment by secreting opines and/or by changing the
amounts of secondary metabolites. It will be essential to confirm
such hypotheses through additional experimentation that might
include silencing or excision experiments that are now possible
using CRISPR technology (Qi et al., 2013).

The study of the long term impacts of HGT by Agrobacterium
in plant lineages is in the early stages. However, we can note some
trends:

– HGT of T-DNA from Agrobacterium to plants occurred in
the evolution of several genera, at least Nicotiana (family
Solanaceae) and Linaria (family Plantaginaceae);

– in both genera plants were transformed by a mikimopine
strain of A. rhizogenes;

– a rolC homologe is the most conserved gene among the T-
DNA genes in Linaria and Nicotiana spp;

– In Linaria vulgaris and Nicotiana glauca there are more than
one copy of T-DNA per genome.

Continued studies of the genetic and biochemical effects of cT-
DNA integration in naturally transgenic plants are important and
will continue to provide insights into the impact of such rare
acquisitions on plant evolution.
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