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Editorial on the Research Topic

Advances in Brain Mechanics

Increasing evidence confirms that mechanics plays a critical role in brain function and dysfunction.
In recent years, computational mechanics has become a powerful tool for studying and predicting the
behavior of the human brain under both physiological and pathological conditions. Yet, important
challenges that have hindered realistic and reliable numerical predictions remain unresolved. This
Frontiers Research Topic covers recent advances, current challenges, and perspectives in brain
mechanics modeling. It encompasses novel experimental and modeling approaches, including
computational solid and fluid mechanics as well as data-driven modeling, which ultimately
target at personalized simulations that add value to clinicians.

The mechanical response of brain tissue is highly complex: it is ultra-soft with a shear modulus on
the order of 1kPa, biphasic, and heterogeneous; different brain regions show different mechanical
behavior, for example in gray matter versus white matter. Therefore, the measured properties
strongly depend on the length and time scale of the specific experimental setup. Common techniques
include large-strain compression, tension, and shear experiments, which are typically performed ex
vivo, as well as indentation measurements and magnetic resonance elastography, which can be
performed in vivo. In addition to the loading and boundary conditions, assumptions made when
analyzing the corresponding data can affect the reported values for properties like stiffness and
viscosity. These difficulties have led to apparently contradicting experimental results in the literature.
What may seem like inconsistencies at first glance, however, can often be brought together by
nonlinear continuum mechanics modeling and finite element simulations, providing material
models that capture the behavior of brain tissue across different time scales and loading
conditions. Greiner et al. demonstrate, for example, that a poro-viscoelastic model can explain
why indentation experiments suggest that white matter tissue in the human brain is stiffer than gray
matter tissue, while large-strain compression experiments show the opposite trend. This study
highlights the potential of mechanical modeling and simulation to standardize and help interpret
experimental observations in the future.

Well-designed mechanical experiments are critical to properly calibrate models for finite element
simulations of brain mechanics. So far, mechanical ex vivo testing techniques have mainly been used
to identify material parameters. However, in order to achieve the goal of establishing personalized
finite element models of the human brain, the in vivo characterization of human brain tissue
properties becomes important. The latest developments in this direction enable the live assessment of
mechanical properties using multi-modal magnetic resonance elastography (MRE), as presented in
Herthum et al. While this technique is currently limited to small deformations and relatively high
frequencies, which has limited its suitability for calibrating nonlinear material models at large strains,
Giudice et al. are now introducing a multi-stage inverse finite element approach to calibrate
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heterogeneous subject-specific material parameters for injury
prediction from MRE data. The parameters define the
underlying nonlinear deviatoric response by minimizing the
error between model-predicted brain displacements and
experimental displacement data. In the future, such MRE-based,
heterogeneous, subject-specific material properties can serve as a
basis for improving the biofidelity of finite element brain models
and enhance their potential as a tool for predicting injuries,
assisting the diagnosis of diseases and further developing
current treatment strategies.

To provide personalized predictions, subject-specific head
models are also required. Xiaogai Li presents a methodology
for personalizing a baseline model through hierarchical imaging
registrations with multiple features andmultiple modalities, mesh
morphing, and mesh grouping. The efficient generation of
subject-specific finite element head models will be an
important step for personalized simulations aimed at
addressing clinical questions.

The complex mechanical properties of brain tissue are closely
coupled to biochemical and biological processes. Therefore,
multiphysics modeling has proven to be a valuable tool for
predictively understanding phenomena related to development,
aging and disease. Blinkouskaya et al., for example, present a
model that couples tissue atrophy, the shrinking of our brain and
biomarker progression in Alzheimer’s disease. Their ultimate goal
is to develop a diagnostic tool able of distinguishing between
healthy aging and accelerated aging typically seen in Alzheimer’s
disease and related dementias. In this regard, the proposed approach
based on continuum mechanics could allow earlier and more
effective interventions. Another example of a coupled problem in
the brain involves the smaller blood vessels, which, due to the

pulsating blood flow, experience not only oscillatory forces, but
also structural and morphological changes that are controlled by the
surrounding brain cells. Corina S. Drapaca introduces a variable-
order, fractional viscoelastic model to predict how the mechanical
deformation of the cerebral artery wall is caused by pulsating blood
flow and the dynamics of the neuronal nitric oxide. Themodel could
prove to be a valuable tool to better understand the dynamic
interaction between nitric oxide and brain microvessels related to
neurometabolism in healthy and diseased states.

Another promising way to advance brain mechanics
modeling in the future is to complement physics-based
models with machine learning techniques. In Schroder et al.
a machine learning layer is integrated into a mechanical
damage model in order to accelerate the prediction of
functional deficits after traumatic brain injury. The machine
learning prediction closely matches the full simulation results
and opens the door to live predictions of changes in the
functional activity of the brain or to reverse engineering the
mechanisms of an accident. Similarly, Menichetti et al. present
an artificial neural network as a computationally efficient
surrogate of a finite element porcine brain model to predict
the localized brain strain and strain rate resulting from
experiments with controlled cortical influence. The model is
used to create tissue-level injury metrics and corresponding
thresholds for cerebral contusion. Finally, in Linka et al. a
“constitutive artificial neural network” is being established to
predict the viscoelastic stress-strain response of brain tissue
solely on the basis of microstructural data. The network then
enables the modeler to assess the relevance of certain features
such as cellular and extracellular tissue components for the
macroscopic large-strain mechanical response and thus gain

FIGURE 1 | Brain mechanics involves different scales, e.g., the cell (bottom), tissue (middle), and organ (top) scale.
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new insights into the microstructure-mechanics relationships
in the brain. These studies highlight how the combination of
physics-based modeling and machine learning techniques can
advance the field of brain mechanics.

In general, the integration of both mechanical data and modeling,
as well as imaging or medical data, will be key to bringing
computational brain mechanics models closer to their use in
clinical practice. Tan et al. present, for example, a methodology to
combine computational simulations with clinical data for the
interpretation of blunt traumatic brain injury. This study
demonstrates how the integration of techniques from
computational biomechanics and medical data assessed in the
clinic (e.g., magnetic resonance imaging) can help predict injuries,
support early medical diagnosis, or evaluate the effectiveness of
personal protective equipment. This approach can lead to
improved bicycle helmet designs that are effective in preventing
traumatic brain injury (TBI), as discussed in Abderezaei et al.

By gathering these recent advances in the rapidly evolving field
of brain mechanics, we aim to foster further synergies between
various experimental and modeling approaches that will help
overcome remaining challenges and frontiers. Together, these
advances are moving the field towards its goal of generating high-
fidelity models that can provide novel insights into brain injuries

and disease and ultimately improve strategies for their diagnosis
and treatment.

AUTHOR CONTRIBUTIONS

SB wrote the original draft, PB and GH carefully revised the
article. All authors approved the final version.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Budday, Bayly and Holzapfel. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org December 2021 | Volume 7 | Article 8031513

Budday et al. Editorial: Advances in Brain Mechanics

6

https://www.frontiersin.org/articles/10.3389/fbioe.2021.654677/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.718407/full
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


ORIGINAL RESEARCH
published: 03 March 2021

doi: 10.3389/fbioe.2021.587082

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 March 2021 | Volume 9 | Article 587082

Edited by:

Philip Bayly,

Washington University in St. Louis,

United States

Reviewed by:

Kenneth L. Monson,

The University of Utah, United States

Pamela J. VandeVord,

Virginia Tech, United States

*Correspondence:

Natalie Voets

natalie.voets@ndcn.ox.ac.uk

Jose-Maria Peña

jm.penya@lurtis.com

Antoine Jerusalem

antoine.jerusalem@eng.ox.ac.uk

†Present address:

Anna Schroder,

Department of Medical Physics and

Biomedical Engineering, University

College London, London,

United Kingdom

Daniel Garcia-Gonzalez,

Department of Continuum Mechanics

and Structural Analysis, Universidad

Carlos III de Madrid, Leganes, Spain

Specialty section:

This article was submitted to

Biomechanics,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 24 July 2020

Accepted: 18 January 2021

Published: 03 March 2021

Citation:

Schroder A, Lawrence T, Voets N,

Garcia-Gonzalez D, Jones M,

Peña J-M and Jerusalem A (2021) A

Machine Learning Enhanced

Mechanistic Simulation Framework for

Functional Deficit Prediction in TBI.

Front. Bioeng. Biotechnol. 9:587082.

doi: 10.3389/fbioe.2021.587082

A Machine Learning Enhanced
Mechanistic Simulation Framework
for Functional Deficit Prediction in
TBI
Anna Schroder 1†, Tim Lawrence 2, Natalie Voets 2*, Daniel Garcia-Gonzalez 1†, Mike Jones 3,

Jose-Maria Peña 4* and Antoine Jerusalem 1*

1Department of Engineering Science, University of Oxford, Oxford, United Kingdom, 2Nuffield Department of Clinical
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Resting state functional magnetic resonance imaging (rsfMRI), and the underlying brain

networks identified with it, have recently appeared as a promising avenue for the

evaluation of functional deficits without the need for active patient participation. We

hypothesize here that such alteration can be inferred from tissue damage within the

network. From an engineering perspective, the numerical prediction of tissue mechanical

damage following an impact remains computationally expensive. To this end, we propose

a numerical framework aimed at predicting resting state network disruption for an

arbitrary head impact, as described by the head velocity, location and angle of impact,

and impactor shape. The proposed method uses a library of precalculated cases

leveraged by a machine learning layer for efficient and quick prediction. The accuracy

of the machine learning layer is illustrated with a dummy fall case, where the machine

learning prediction is shown to closely match the full simulation results. The resulting

framework is finally tested against the rsfMRI data of nine TBI patients scanned within

24 h of injury, for which paramedical information was used to reconstruct in silico the

accident. While more clinical data are required for full validation, this approach opens

the door to (i) on-the-fly prediction of rsfMRI alterations, readily measurable on clinical

premises from paramedical data, and (ii) reverse-engineered accident reconstruction

through rsfMRI measurements.

Keywords: traumatic brain injury, resting state functional magnetic resonance imaging, default mode network,

finite element simulation, machine learning

1. INTRODUCTION

Traumatic brain injury (TBI) is one of the leading causes of death in people under the age of 45
years (Maas et al., 2008). In the EU, it is estimated that 2.5 million people suffer annually from
TBI (Maas et al., 2015). While they can also result from non-impact conditions such as blast waves
arising from an explosion, most TBIs occur as a consequence of head impacts, e.g., during falls, road
traffic accidents, assaults, and sport injuries. The impact conditions can be very diverse, as expected
from the large parameter space characterizing the boundary conditions of the contact (location,
impact velocity, angle of impact, impactor shape, impactor material properties, etc.), as well as the
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Schroder et al. ML/FE TBI Functional Deficit Prediction

high sensitivity associated to some of these (Fahlstedt et al., 2012).
Despite improvements in care, functional outcomes are equally
variable, even among those with apparently minor early injury
severity. The limited predictive power of current clinical head
injury scales raises a prominent need for tools better able to
anticipate the long-term effects of TBI.

To understand better the effects of these impact conditions,
computational models, and, in particular, finite element head
models (FEHMs), have been used to predict mechanical
deformation and stress levels on brain tissue (Raul et al., 2008;
Dixit and Liu, 2017). This approach has typically been leveraged
to correlate mechanistic measures (e.g., pressure, von Mises
stress, principal strains, etc.) with different degrees of tissue
damage. Historically, FEHMs have successfully been utilized for
the prediction of structural events such as skull fracture (Garcia-
Gonzalez et al., 2017). However, as local mechanical disturbances
in the brain can lead to time-dependent systemic biological and
multiphysics responses, these models are intrinsically unable
to mechanistically predict functional alterations or cognitive
deficits. Barring a few exceptions (Garcia-Gonzalez et al., 2018b),
very little work has focussed on correlating functional deficits,
tissue damage, and mechanical features in a fully validated
framework, e.g., with clinical or animal data. Even then, in most
of the cases, the high cost (both in man-hour and computational)
to develop, run, and analyze the underlying FEHM remains
extremely impractical and not fit for direct clinical use. While
coupling mechanistic approaches to machine learning (ML)
methods has been recently highlighted as a potential avenue for
alleviating these restrictions (Baker et al., 2018), very little has
been done in this field.

At the clinical end of the spectrum, the diagnosis and
prognosis of TBI rely heavily on the clinician’s experience.
Indeed, while a lot of effort has focused on outcome prediction—
outcome being often defined in relatively broad terms, e.g.,
“mortality” or “unfavorable outcome” (Roozenbeek et al.,
2012)—, these prognostic models are not directly usable for
individual patients (Menon and Harrison, 2008). Instead, head
injury assessment by healthcare professionals still relies on
general guidance built around a set of recommendations such as
the ones provided by the National Institute for Health and Care
Excellence (National Institute for Health and Care Excellence,
2019). Even then, the immediate cognitive evaluation of the
sufferer is generally based on the Glasgow Coma Scale (GCS)
originally defined in mid 70s (Royal College of Physicians and
Surgeons of Glasgow, 1974), and solely focused on symptoms as
opposed to cause identification.

The recent development in magnetic resonance imaging
(MRI) has allowed for the identification of new candidates for
direct functional evaluation of the brain. In particular, resting
state functional MRI (rsfMRI) is a technique that identifies
correlated networks in the absence of specific tasks (Fox and
Raichle, 2007), offering insight into network function among
unconscious patients unable to engage in active cognitive tasks
(Kondziella et al., 2016). Among the common findings in patients
with TBI is the alteration to the default mode network (DMN)
(Sharp et al., 2014). While rsfMRI could hold the key to a more
direct and straightforward diagnosis of eventual cognitive deficits

in TBI, a prognostic/diagnostic tool to link network alteration
and tissue damage still remains elusive.

To this end, this work proposes a new method aimed at
predicting rsfMRI network deficit directly from trauma data
by means of a ML layer taking as inputs a combination of
impact conditions, namely: location, velocity of impact, angle
of impact (represented by a binary input indicating whether
the impact is perpendicular or not), and shape of the impactor
(represented by their radii of curvature). The ML layer predicts
the extent of tissue damage after being trained by a library
of pre-simulated impact loaded FEHMs for which a shear
energy rate threshold is used to estimate the percentage of
tissue damage in the DMN. Our results show that it is able
to capture very well the proportion of brain damage sustained
mechanically, and thus alleviate significantly the computational
time experienced by direct FEHM simulations. In parallel to this,
a functional criterion defined as the proportion of brain voxels
statistically decoupled from the neurologically normal DMN is
proposed to quantify the functional damage to the DMN. Both
mechanistic and functional criteria are then evaluated for nine
TBI patients with clinical and rsfMRI data available in the hyper-
acute phase (first few hours) after trauma, for whom the accident
is reproduced in silico from paramedical data. Despite a very wide
variability in the extent of the predicted DMN tissue damage,
the mechanical damage values are generally aligned in trend with
the “ground truth” functional damage observed in these patients
as quantified by the functional criterion. Assuming a direct
relationship between the two criteria, the proposed framework is
ultimately used to estimate the real velocity of impact experienced
by the nine patients.

While future validation work is needed to extend these
model predictions to an even more comprehensive range of
head injuries, we propose that this virtual prediction framework
offers avenues for realistic estimation of either brain functional
deficit when knowing the accident conditions, or the accident
conditions when having access to the functional evaluation.
Such estimations have direct clinical utility in the general clinical
setting where very rare hyper-acute MRI scans, used to validate
model predictions here, are not obtainable. Once fully validated
on a larger cohort, this approach could find a direct use in clinical
and forensic environments.

2. MATERIALS AND METHODS

2.1. Clinical Data
2.1.1. Participants
Adult patients (aged 18 years and over) were prospectively
recruited from the Emergency Department at the Oxford
University Hospitals NHS Foundation Trust as early as possible
following traumatic head injury. Eighteen patients in total were
recruited, among which nine patients (mean age: 55.8 range: 22–
83) were selected for this study based on having a single defined
mechanism of injury suited to modeling. Patients underwent a
CT scan as part of standard trauma care. Once immediately
life-threatening conditions were identified and treated, patients
were recruited for a research MRI scan within 24 h of injury
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(the “hyper-acute” phase). Patients who were intubated and
ventilated at the time of recruitment were transferred to MRI
by a dedicated neuro-intensive care team consisting of a
consultant neuro-anaesthetist, neuro-intensive care nurse, MRI
research nurse, and consultant neurosurgeon. The same team
managed the patient throughout the scan before transferring to
intensive care. Patients were excluded from the study if they
had contraindications to MRI, injuries requiring urgent surgery,
or were medically unstable so that scanning would not be
safe. Patients were followed throughout their hospital stay and
returned at 6–9 months following injury for repeat assessments.
Initial severity of injury was assessed using post-resuscitation
GCS at presentation. Severity, at 1 week/short term outcome,
was assessed using both the GCS and location of the patient (in
hospital or discharged). Patients with a GCS of 12 or less were
considered moderate-severe. Patients with a GCS 13–15 were
considered mild. All patients still in hospital with a GCS 12 or
less and/or still in hospital (due to TBI) at 7 days were considered
moderate-severe at this point. A neurological examination and
GlasgowOutcome Scale (extended)—GOSe—questionnaire were
completed at 6–9 months by the patients or their relatives/carers
if they were unable. The mechanism of injury for every patient
was ascertained from medical notes recorded at the scene or in
discussion with the patient/witnesses. Patient demographics and
clinical data are presented in Table 1.

Eighteen healthy controls, age and sex-matched to the
patients, were recruited for normative data. Exclusion criteria
for controls included contraindications to MRI and any current
or historical neurological or psychiatric conditions. Healthy
controls provided informed written consent. All patients with
capacity at the time of initial recruitment gave written informed
consent. For patients lacking capacity, the lead clinician, in
consultation with the family, signed a declaration form to
confirm agreement for the patient to be recruited into the study.
Explicit patient consent was sought as soon as possible upon
recovery. The study was approved by the South Central-Berkshire
Research Ethics Committee.

2.1.2. MRI Data Acquisition
MRI data were acquired on a 3T Siemens Magnetom Verio
scanner at the Oxford Acute Vascular Imaging Centre (AVIC).
The scanning protocol included T1-weighted MPRAGE and
resting fMRI, acquired using an echo-planar T2*-weighted
imaging sequence. The resting fMRI sequence parameters were:
voxel size of 3 × 3 × 3 mm3, multiband acceleration factor: 2,
repetition time: 1,640 ms, echo time: 30 ms, acquisition time:
05:35 min. Field maps were acquired to allow for correction of
field inhomogeneity-induced geometric distortions in the fMRI
data.

2.1.3. rsfMRI Data Pre-processing
The rsfMRI data were analyzed using dedicated tools in the
FMRIB Software Library (FSL) (http://fsl.fmrib.ox.ac.uk/fsl).
First, standard pre-processing was performed, including brain
extraction, motion correction, distortion correction using field
maps, spatial smoothing (full-width at half maximum of 5
mm), and high-pass temporal filtering (100 s). To enable

between-subject comparisons, individual subjects’ functional
scans were linearly registered to their respective high resolution
structural (T1) scans and then nonlinearly aligned to the
Montreal Neurological Institute (MNI) standard template brain,
accounting for any gross brain pathology (such as contusions,
haematoma).

Next, in order to objectively extract the DMN from each
individual participant’s resting fMRI data, we performed a dual-
regression analysis, as previously described (Khalili-Mahani et al.,
2012; Voets et al., 2012). For this analysis, we obtained a template
set of 10 well-validated resting state networks (including the
DMN) identified in healthy adults (Smith et al., 2009). A two-
stage (temporal and spatial) regression was then performed.
Each template resting network has a characteristic time-course.
Therefore, in the first stage, each of the template networks
was regressed against the rsfMRI time-series acquired in our
individual subjects to identify time-courses corresponding to
each template component (Voets et al., 2012). The second stage
then identified brain voxels that shared this time course, for each
of the 10 networks separately, from which we selected the DMN
for further analysis. In this way, we obtained z-normalized single
subject spatial maps, representing for every voxel in the brain the
strength of its functional connectivity with the DMN in our nine
patients and eighteen healthy controls (see Figure 1).

2.1.4. Resting State Network Based Damage
Finally, we performed single-subject case-control statistical
analyses. The objective of these analyses was to generate a DMN
“damage load” index for every TBI patient by calculating the
number of voxels in each patient’s DMN whose connectivity was
altered when compared to healthy controls. Since distributions in
small samples may violate the assumptions underlying single case
t-test analyses, for this analysis, we performed inference testing
using Permutation Analysis of LinearModels (PALM)with signal
flipping (Winkler et al., 2014), as described previously (Voets
et al., 2017). These analyses were constrained to cortical voxels
by constructing a group mean gray matter mask from automatic
tissue segmentations of each subject’s T1-weighted anatomical
scan obtained using FSL-FAST (Zhang et al., 2001). For each
patient, we compared the whole-brain DMN connectivity map
to the distribution of connectivity maps generated from our 18
healthy controls using the general linear model framework. Two
groups were created (corresponding to n = 18 healthy control and
n = 1 patient, substituting the data for each of the nine patients in
turn) and a single contrast (controls > patient, testing for voxels
with lower DMN functional connectivity in the patient compared
with controls). We performed 5,000 permutations for each case-
control analysis and report permutation p-values for significant
voxels using the thresholding method Cluster Free Threshold
Enhancement (TFCE). TFCE offers a simple approach for
calculating cluster-like voxel-wise statistics, providing sensitivity
both to local maxima and spatial extent of signal without the
need to define an arbitrary hard initial cluster-forming threshold
(Smith and Nichols, 2009).

To obtain the individual patient DMN “damage load”
metric, the resulting t-statistic maps (not corrected for multiple
comparisons) were thresholded at a p-value of 0.05 to
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TABLE 1 | GCS, Glasgow Coma Scale; GOSe, Glasgow Outcome Score (extended).

Case Age Sex Mechanism of injury Severity at

presentation

GCS (15-point scale),

at 7–9 days

GOSe at 6–9 months

(8-point scale)

1 83 M Fall from a 2-story house, injuries suggestive of hip and left frontal

head impact

Severe Intubated and sedated 3

2 22 M Closed hand hit to the face, fell backwards Moderate 15 7

3 70 F Kicked by a horse in the abdomen and head, fell backwards Mild 15 8

4 30 M Pedestrian, hit by van traveling at 20–30 mph. Hit head on wing

mirror and knocked to the floor

Mild 15 8

5 61 F Pedestrian, hit by cyclist. Impact to right side of the head behind ear Moderate 15 4

6 52 F Pedestrian, hit by car traveling at approx. 30 mph. Impact to right

orbital/frontal region of the head

Moderate 15 8

7 41 M Fall from 3-story roof. Impact to left temporal and frontal head

regions. Additional right wrist fracture, cervical, and thoracic

transverse spinous process fractures

Severe Intubated and sedated 5

8 62 M Charge by bull running out of a cattle truck. Thrown back against a

metal fence and onto concrete. Landed on back of head

Moderate 15 6

9 72 M Cyclist, knocked off bike, landed on head. Impact to left parietal head

region and left shoulder.

Severe Intubated and sedated 3

The GOSe provides a numeric measure corresponding to the degree of disability a patient is left with after a head injury (Weir et al., 2012); lower scores indicate worse outcomes.

GOSe differs from the GCS which is a 15-point measure of a patient’s degree of consciousness, typically used as a marker of severity following injury (lower scores indicate more severe

injury). The scale is intended for use after discharge from hospital, and in particular, moderate disability and good recovery are not assessable until after discharge. Assessment beyond

6 months is considered to provide a reasonable marker of the long-term cognitive effects attributable to the TBI (Dikmen et al., 2009).

FIGURE 1 | rsfMRI DMN analysis workflow.

calculate the number of statistically “disconnected” voxels.
Finally, the number of “disconnected” voxels was expressed
as a percentage of the total DMN mask. The latter was
calculated by generating a binary mask of the DMN, by

thresholding the template DMN mask (Smith and Nichols,
2009) at z-score of 3.1 (corresponding to a p-value of
0.05) and binarizing the resulting spatial map to extract
its volume.
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2.1.5. Impact Velocity and Location Estimations
The data gathered in Table 1 were analyzed to estimate the
impact location and velocity in a fashion consistent with
medico-legal expertise. Additional data were made available by
neurosurgeon and paramedic.

• Case 1: An unwitnessed fall from a 2-story house roof, the
victim sustained abrasions to the left forehead and face, a
fracture to the left zygoma and a left intratrochanteric hip

fracture, suggesting that the left frontal region made contact
with the ground; the hip fracture suggests that the head was
unlikely to have contacted the ground first. That forehead

and facial grazes were in evidence, suggests a concomitant
or subsequent involvement of the maxilla and or temporal
bones and thus, a more diffuse, focal loading. The general
description of the grazes suggests some tangential motion of

the head, relative to a primary contact between the lower
limb and the ground. This potentially was a result of angular
motion of the trunk and upper body, relative to the contact of
the lower limb. The provision of greater detail of the grazes
may have informed the directionality and mechanics of the

relationship between the head and contact surface further. The
site and limited severity of the zygomatic fracture suggests
that the head impact was relatively low energy, certainly
compared to the potential for injury posed by a fall height
through the distance presented in this case and that the

surface was flat and firm, rather than irregular. Whether
the surface was unyielding is unknown, however, given the
overall low level of injury, the surface was probably not hard,
i.e., neither concrete nor tarmac. The first point of contact
was logically likely to have absorbed/dissipated a significant

proportion of the impact energy. If it had been the head, a
greater degree of injury severity might have been expected.
However, a glancing head contact and subsequent lateral
upper leg impact cannot be excluded. The fall height can
be assumed to have been in the region of 5.7 m (typical
height to the gutter of a 2-story house), the height of the
gutter approximately 0.1 m, the assumed standing height of
the accident victim, assumed 50th percentile male = 1.76 m,
minus the 0.1 m distance from the top of the head to the likely
point of contact around the “hat brim region.” Therefore,
a total minimum fall height of 7.3 m is assumed, since by
default, the assumption is that the male was standing at the
lower edge of the roof, with no initial velocity and simply
pitched forwards. Therefore, a simple fall is assumed, with
no initial velocity or arc of rotation considered, through 7.3
m from which a maximum impact velocity is calculated to
be 12 m/s. Forces which exceed the fracture tolerance limit
in the literature are in the region of 5.35 kN (1,200 lbf),
assuming an adult head mass of 6.82 kg (15 lb) and an
acceleration of 80 g (Pappachan and Alexander, 2012). The
fracture tolerance of the zygoma is in the order of 0.89–2.00
kN (200–450 lbf) (Pappachan and Alexander, 2012). Thus, the
minimum velocity to produce fracture would be in the order
of 2.24–5.02 m/s (5–11.25 mph). The left frontal region is

suspected to have made first contact with ground between

2.24 and 12 m/s.

• Case 2: : Involved a typical “sucker punch” (or “king hit”)
assault case (Patton and McIntosh, 2017). The male victim
was punched to the face, which resulted in him falling
backwards and striking his occiput on a rigid surface. The
resulting head injuries may have been due to the punch,
the fall, or a combination of both. A spectrum of punch
response outcomes is possible, for example, if the punch
had been delivered, such that little momentum (push)
was transferred, producing a sudden loss of consciousness
and no reflexive actions, then victim could have simply
collapsed downwards and backwards, or downwards into
sitting position and backwards. Alternatively, if the victim
had been struck squarely, then momentum transfer would
have produced an angular (arcing) motion of the upper body
relative to his fixed feet, acting as a fulcrum. This would have
resulted either in a relatively pure angular velocity about the
fixed feet, if the legs had stiffened as a result of the blow,
or alternatively, produced a combined linear and angular
velocity if the legs had given way. Thus, a higher velocity
and impact energy would have been produced. The worst
case would be for a punch with significant transference of
momentum such that the victim’s straight body is submitted
to translational velocity of 6.75 ± 0.27 m/s. The best case
would be for the victim’s body being slightly bent at waist
with a translational velocity of 4.85 ± 1.33 m/s (Patton and
McIntosh, 2017) The victim is estimated to have hit his

occiput on the ground with a velocity between 4.85 and 6.75

m/s.

• Case 3: The victim was reported to have been kicked by
a horse both to the abdomen and head and to have fallen
backwards, prior to striking her head against the ground.
Thus, the areas of impact were to the front, as a result of
contact with the kick to the abdomen and head and back
of the head (occipital region), due to the fall backwards.
This was accompanied by a loss of consciousness for a
brief period. Although the sequence was not specified, one
could assume that the abdominal kick was first, since a
kick to the head would have likely caused the victim to
have initially fallen backwards away from any subsequent
kick. With respect to the occipital impact, the velocity range
is reported as being between a straight body translational
velocity of 4.80 ± 0.22 m/s and a slightly bent at waist
translational velocity of 3.78± 0.53m/s (Patton andMcIntosh,
2017). In light of all the unknowns, an occipital impact

velocity is estimated to have been between 3.2 and 4.8

m/s.

• Case 4: The victim was a pedestrian hit by a van traveling
at an estimated 20–30 mph. The head was reported to
have contacted with the wing mirror before the victim was
knocked to the ground. Frontal and occipital scalp degloving
and significant arm and soft tissue injuries were produced.
The primary impact velocity of the van cannot be directly
attributed to the subsequent occipital contact with the ground,
which can be assumed to be a result of a secondary impact,
from momentum transfer producing a kinematic pedestrian
response. If one were to consider just the vertical velocity
of falling, one might consider the impact scenario similar
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to a crouched fall from standing, i.e., a slightly bent at
waist translational velocity of 4.85 ± 1.33 m/s (Patton and
McIntosh, 2017), though the degloving does suggest a more
complex tangential component. If the head impact had been
with a non-yielding part of the van, the fact that serious
extra- and intracranial injury is absent would indicate an
impact velocity to the front or rear of the head below 20
km/h (12 mph) (AL-Graitti et al., 2017). This is probably
not the case here, since significant arm and soft tissue
injuries were also reported. Considering all these results

in combination and comparing with other reported cases,

the occipital region was probably impacted at velocity of

between 4.17 and 9.72 m/s (15 and 35 km/h) (AL-Graitti

et al., 2017).

• Case 5:The victimwas a pedestrian hit by a cyclist. Subsequent
to a brief loss of consciousness, the victim had no recollection
of the events prior to the accident. The right side of the
head behind the ear impacted with the ground. A right
posterior fossa epidural hematoma accumulated between the
skull and dura, a consequence of skull fracture tearing an
underlying blood vessel. This is frequently caused by a
lateral force over the mastoid. Threshold velocity for impact
related fracture data is of the order of 5 m/s (Gurdjian
and Lissner, 1947; McIntosh et al., 1996; Yoganandan and
Pintar, 2004). As such, the impact is assumed to be on the

right side of the head behind the ear at a velocity of 5

m/s.

• Case 6: The victim was a pedestrian hit by a car traveling
at approximately 30 mph. The right orbital/frontal region
was impacted and fractured. This was followed by a loss
of consciousness at the scene for at least 5 min. Fracture
tolerance data does not exist for the facial fractures in
evidence in this case. The mechanism of fracture is often
associated with a “blow out,” a sudden increase in pressure
in the orbit of the eye. This is attributed to an impact or
impactor, which is larger than the orbital rim. The bones of
the orbit are very fragile and no reliable fracture tolerance
data exists. Whilst the fracture tolerance of the orbital rim
is unknown, the frontal bone is the strongest bone of the
face/head and since no fracture has occurred in this area,
this suggests that a sub fracture level of loading has occurred.
Force to the face is associated in the literature, assuming
a head mass of 6.82 kg (15 lb) and an acceleration of 80
g [easily obtainable in a 13.4 m/s (30 mph) impact], with
5.35 kN (1,200 lbf), which exceeds the fracture limit of most
of the facial bones (Pappachan and Alexander, 2012). The
fracture tolerance of the frontal bones is in the order of
3.57–7.13 kN (800–1,600 lbf) corresponding to minimum
impact velocities in the order of 8.9–17.88 m/s (20–40
mph) (Pappachan and Alexander, 2012). Thus, an absence
of frontal bone fracture suggests impact velocities below this
level. Since significantly lower average strength has been found
for the female bone structure during impact experiments, the
lowest values are considered. As a consequence, an impact

on the right orbital/frontal region at a velocity of 9 m/s

is assumed.

• Case 7 The victim fell from a 3-story roof. The left temporal
and frontal regions are reported to have made contact with
the ground and a right wrist fracture, cervical and thoracic
transverse spinous process fractures were also observed. The
hand fracture, multiple rib and transverse process fractures
suggest an impact to the back or side of the torso (no details
provided about location), and a sacrifice related injury to
the hand. As a result of a lack of detail, one can assume a
superficial contact to the front/side of the head. That these
injuries are as superficial as they are, given that cervical and
thoracic transverse process fractures are in evidence, suggests
that either the head made contact with a pliant surface,
such as sand or soil, or that the significant impact energy
was dissipated during an impact with the right hand and
subsequently the side or back. The fall height can be assumed
to be approximately 8.3 m (height to the gutter of a 3-
story house), plus the height of the gutter approximately 0.1
m, plus the assumed standing height of the accident victim,
assumed 50th percentile male = 1.76 m, minus the 0.1 m
distance from the top of the head to the likely point of
contact around the “hat brim region.” Therefore, a minimum
fall height of 10.1 m is assumed, since again by default,
the assumption is that the male was standing at the lower
edge of the roof. Therefore, a simple fall with no initial
velocity is assumed and no arc or rotation considered, with
a height of 10.1 m producing an impact velocity of 14.1
m/s. This analysis demonstrates that an impact to the left

temporal and frontal region at a peak velocity of 14.1 m/s

could have occurred, however, a lower velocity could be

expected.

• Case 8: The victim was charged by a bull running
out of a cattle truck and thrown backwards against
a metal fence and onto concrete, impacting his head,
(occiput mainly), rendering him unconscious for a few
minutes. Reverse engineering of a bull’s velocity from the
account provided, would require an appreciation of the
bull’s acceleration and velocity at the point of contact,
which is not possible here. However, it is reasonable
to assume that the victim’s secondary impact velocity
had to be at least as great as a simple fall backwards
from standing, i.e., a straight body translational from
standing velocity of 6.75 ± 0.27 m/s (Patton and McIntosh,
2017). Since there are facial fractures in evidence, and
that the fracture tolerance of the frontal bones is 3.57–
7.13 kN (800–1,600 lbf), corresponding minimum impact
velocities are of the order of 8.94–17.88 m/s (20–40
mph) (Pappachan and Alexander, 2012). As a consequence,

an impact velocity at the occiput between 6.75 and 8.94 m/s

is assumed.

• Case 9: The victim was a cyclist knocked off a bicycle and
reported to have landed on his head, such that his left
parietal region made contact with the ground. This was
accompanied by a left shoulder injury and multiple skin
abrasions. Bitemporal contusions, traumatic subarachnoid
hemorrhage and frontal and left parietal fractures were
reported. A similar case was simulated and reported in
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the literature (Fahlstedt et al., 2012) with a resultant linear
velocity of 5.3 m/s and a vertical velocity between 4 and
5.4 m/s. As a consequence, an impact velocity of between

4 and 5.4 m/s on the left parietal region is assumed

here.

While some of these estimations are probably relatively accurate,
an important proportion of these are extremely difficult to
evaluate, due to an insufficiency of detail, and may be subject to
very large variations. Those (e.g., case 7) were left anyway for the
sake of discussion.

2.2. Mechanistic Simulations
The mechanistic simulations consisted of a FEHM submitted
to different loading scenarios defined by predefined sets of
impact boundary conditions. For each simulation, a mechanistic
criterion was defined by the maximum shear energy rate each
gray matter element of the head model experiences throughout
the duration of the impact. This simulation was repeated with a
range of loading scenarios to provide a library of pre-calculated
damages.

2.2.1. Finite Element Head Model
The FEHM is adapted from a previous version proposed earlier
by Garcia-Gonzalez et al. (2018b), where it was validated for
cranial impacts. It accounts for the gray matter, white matter with
axonal anisotropy captured from diffusion tensor imaging (DTI),
cerebrospinal fluid (CSF), skull, falx, scalp, and ventricles and
consists of 2,354,594 tetrahedral elements. For each simulation,
the boundary conditions were specified as described below, and
a dynamic explicit simulation was run for 8 ms on Abaqus
(ABAQUS Inc.). The mechanical behavior of each skull and gray
matter element was tracked throughout each simulation. The
von Mises stress was calculated in the skull elements and the
shear energy rate was calculated in the gray matter elements.
The maximum value experienced by each element throughout
each simulation was recorded. A total of 445 simulations was
run, of which 407 did not result in a fractured skull (see
section 2.2.4).

One important assumption of this model is that only
the inertia of the head contributes to the impact, and the
rest of the body is left unmodeled. While this assumption
has implications on the evaluation of the brain damage, the
additional modeling of the body would be hampered by a lack
of paramedical information. As such, this assumption is kept
as a first approximation. Moreover , it is worth emphasizing
that, under this assumption, the FEHM was validated against
experimental data by means of acceleration-time curves for
three impact conditions representative of real accidents and
falls (see Garcia-Gonzalez et al., 2017 for more details): fall
of a person from a bed; bike accident reconstruction; and
experimental impact of human heads from cadavers against a
rigid plate.

2.2.2. Material Models
The constitutive framework originally developed by Garcia-
Gonzalez et al. (2018a), and further extended for blast TBI
simulations by Garcia-Gonzalez et al. (2018b), is taken as a

basis. In this regard, the mechanical response of each tissue is
decomposed into volumetric and shear components, leading to
the definition of the Cauchy stress tensor as:

σ = σ vol + σ iso (1)

where σ vol and σ iso are the volumetric and isochoric Cauchy
stress tensor components, respectively. This decomposition is
also adopted to describe the total deformation gradient F as:

F = J1/3F∗ (2)

where J = det(F) is the Jacobian and F∗ is the distortional part of
the deformation gradient.

In this work, the skull, falx, CSF, and ventricles are modeled
as proposed by Garcia-Gonzalez et al. (2017) for similar impact
conditions: skull and falx as elasto-plastic materials with their
corresponding material properties at the mean strain rate
observed in the impact conditions tested (≈ 1 s−1); CSF
and ventricles by the Mie-Grüneisen equation of state and a
dynamic viscosity. Regarding the scalp, white and gray matter,
these tissues are modeled by Garcia-Gonzalez et al. (2018b) by
more sophisticated approaches based on hyperelastic theories
to accurately describe nonlinearities. While the scalp tissue is
defined in the exact same manner by a neo-Hookean model,
the constitutive law for white and gray matter is modified
to provide a more efficient solution for the specific impact
simulations conducted here (the aforementioned work dealt
with blast scenarios rather than head impact). The modified
formulation for the total Cauchy stress contribution reads as:

σ =
µm

J

1

1−
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where B∗ = F∗F∗T , I∗1 = tr(F∗TF∗), I∗4 = tr(AoF
∗TF∗),

Ao is the structural tensor providing axonal orientation within
the white matter (see Garcia-Gonzalez et al., 2018b for more
details), ρ is the current density and I is the second order unit
tensor. Moreover, µm, jm, k1, k2, Ko, 3o, and ρo are material
parameters, whose values are provided for white and gray matter
in Tables 2, 3. The calibration of the isochoric response of both
white and gray matter was consistently performed accounting
for the mean strain rate observed in the simulations. Note
that this formulation, for the strain rate conditions observed in
the simulations, is equivalent to the full original formulation
published by Garcia-Gonzalez et al. (2018b).

2.2.3. Impact Boundary Conditions
Simulations were defined by a set of inputs for velocity, location
of incidence, angle of incidence, and impactor geometry. The
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TABLE 2 | Constitutive parameters for white matter used in the simulations.

Volumetric response

ρo (kg/m3) Ko (GPa) 3o (−)

1, 140 2.19 6.15

Isochoric response

µm (kPa) jm (−) k1 (kPa) k2 (kPa)

550 1.1 2.14 0

TABLE 3 | Constitutive parameters for gray matter used in the simulations.

Volumetric response

ρo (kg/m3) Ko (GPa) 3o (−)

1, 140 2.19 6.15

Isochoric response

µm (kPa) jm (−) k1 (kPa) k2 (kPa)

450 1.4 − −

TABLE 4 | Impact boundary conditions.

Boundary condition feature Range

Velocity 1 m/s <V< 16 m/s

Locations of impact (a) lateral fronto-parietal

(b) fronto-polar

(c) vertex

(d) occipital

(e) temporal

Angle of impact (from perpendicular) −45◦ < θ < 45 ◦

Indenter geometry (i) blunt corner

(ii) round

(iii) flat

(iv) sharp corner

range of these boundary conditions were chosen so as to
encompass the vast majority of impact cases, while avoiding
velocities either a priori too small or too high to avoid extreme
cases, e.g., no trauma or death on impact (see Table 4). All
impactors were modeled as rigid, with a friction coefficient of
0.4 (Garcia-Gonzalez et al., 2017). For the “round” impactor, a
cylindrical shape with a radius of curvature of 3.6 cm was used,
while the “blunt corner” impactor was made of a right angle
analytical surface smoothed along the edge with a 1 cm radius of
curvature quarter of a cylinder, and the “sharp corner” impactor
was made of an right angle smoothed with an edge of 0.3 cm. This
determined the range of inputs for the library of pre-calculated
FEHM simulations (see Figure 2).

2.2.4. Mechanical Damage
All cases which resulted in a fractured skull were removed from
the database. The skull was assumed to be fractured if more than
4% of all skull elements in the headmodel (4% corresponds to the
percentage of skull elements spanning the maximum thickness of
the skull) underwent a maximum von Mises stress exceeding the
ultimate strength of bone (92.72 MPa; Wood, 1971).

A binary mask of the DMNmask was created by thresholding
the template DMN mask from Smith and Nichols (2009) at a z-
score of 3.1 (corresponding to a p-value of 0.05) and binarizing
the resulting spatial map. The coordinate system of the finite
element mesh was aligned with that of the fMRI images. The
binary mask of the DMN (see section 2.1.4) was applied and
all mesh nodes with coordinates within the DMN mask were
extracted. Finally, all elements connected to these nodes were
extracted to provide a DMN element set, and hence a mapping
from the MRI domain to the element mesh. Damage to each gray
matter element was determined by a material damage criterion.
Previous studies of blast induced TBI suggested that a shear
energy rate damage criterion of 100 MJ/m3s in the gray matter
provides a good correspondence to regions with oxidative stress
in rat brains (Garcia-Gonzalez et al., 2018b). As both loading
conditions and damage pathways are different (blast injuries
and impact injuries have very different injury signatures), other
thresholds were evaluated to match the functional criterion (see
section 3). A final value of ≈ 1 MJ/m3s was eventually chosen
maximizing the correlation between mechanical and functional
criteria. Figure 3 shows the isosurface of the damaged region of
the brain for a blunt corner impact, perpendicular velocity of 8
m/s, lateral fronto-parietal location at 1.6 ms after initial contact
(note that this case resulted in a damage of 50.22% to the DMN).

For each simulation in which the skull was not fractured,
when the shear energy rate exceeded this criterion during the
simulation, the element was assumed to be damaged. The
percentage of damaged elements in theDMNwas then calculated.
This provided a library of pre-calculated loading scenarios on
which the ML model could be trained and evaluated.

2.3. Machine Learning Layer
AML layer was created to avoid the need to reproduce the FEHM
simulations for each single scenario. To this end, the model was
trained with 407 FEHM simulations for a range of combinations
listed inTable 4. The overall approach and validation is explained
below (see Figure 4).

2.3.1. Machine Learning Algorithm
A ML layer was trained on binary outcome data to predict the
probability that the extent of network damage exceeds a given
threshold during an impact. In order to do this, a separate model
was trained for each proposed threshold of network damage.
The inputs used in the layer correspond to the inputs defined in
section 2.2.3. Note that the shape of the impactor was represented
by the radius of curvature of the impactor (the flat one was given
a radius of 1m). From these inputs and the FEHM, two additional
features were extracted to be included in the ML layer inputs:
distance from the point of impact to the closest element of the
DMN; and angle between trajectory to the closest DMN node and
trajectory of impact. To define the binary outcome, the DMNwas
considered damaged if the percentage of damaged gray matter
elements exceeded the given network damage threshold.

The predictive ability of two ML approaches were compared
in this paper. Logistic regression (Pregibon et al., 1981) was
compared to a bagging ensemble method (Breiman, 1996).
Although several other algorithms have been used to analyze
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FIGURE 2 | Impact boundary conditions for the FEHM; location: (A) lateral fronto-parietal, (B) fronto-polar, (C) vertex, (D) occipital, (E) temporal (the shown impactor

corresponds to flat impactor iii); impactors: (i) blunt corner, (ii) round, (iii) flat, (iv) sharp corner.

TBI-related data (Siddiqui et al., 2015; Mitra et al., 2016; Minaee
et al., 2019), logistic regression has previously been shown
to outperform more complex models in TBI clinical outcome
prediction (Steyerberg et al., 2008). The bagging method involves
training a model with each of the following ML techniques:
logistic regression (Pregibon et al., 1981), gaussian discriminant
analysis (Fisher, 1936), k-nearest neighbor (Cover and Hart,
1967), Naïve Bayes classifier (Hand and Yu, 2001), and support
vector machines (Boser et al., 1992). Given a test point, the
ensemble method calculates the mean probability of damage
from each of these trained models. This approach reduces the
risk of incorrect classification and has been shown to outperform
single algorithms (Dietterich, 2000).

A greedy forward feature selection approach was used to select
statistically relevant input variables for each model; all other
variables were excluded from the model. This was implemented
with 5-fold cross validation and a fast algorithm (logistic
regression) to reduce computational costs (Zhang, 2009). Feature
selection was performed for each model independently. This
resulted in a range of input variable sets dependent on the
network damage threshold considered in each model.

In order to validate the ML pipeline and ensure robustness,
the network damage threshold was set to a range of values
(10, 30, 50, 70, 90%), and the model performance was assessed
for each threshold. Performance was evaluated by leave-one-
out validation (Wong, 2015). The area under the curve (AUC),
sensitivity, and specificity were calculated for each model.
When validating the model against the dummy and clinical
datasets, the network damage threshold was set to the FEHM
estimated network damage, and the clinically estimated network
damage, respectively. This allowed the ML layer to predict the

FIGURE 3 | Isosurface of the damaged region (1 MJ/m3s shear energy rate

threshold) of the brain for a blunt corner impact, perpendicular velocity of 8

m/s, lateral fronto-parietal location at 1.6 ms after initial contact. Note that,

while only the gray matter results are compared to the rsfMRI results, both

white and gray matter are shown here.

probability that at least the given proportion of the network was
damaged.

Given the trained model and model inputs from nine clinical
cases, the probability that mechanical damage exceeded the
FEHM network damage estimation was predicted. In seven of
the nine cases, there was a degree of uncertainty in the accident
reconstruction, resulting in a range of mechanical damage
predictions.

Finally, the ML models were used to predict the velocity at
which the proportion of network damage is reached. For this
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FIGURE 4 | Schematic of the ML layer.

analysis, the input velocity of each scenario was varied between
1 and 15 m/s whilst all other inputs remained constant. The
predicted probability of reaching the network damage proportion
was calculated for each velocity. This was plotted on a graph of
probability against velocity. Because the ML model predicts only
the probability that at least a given proportion of the DMN is
damaged, the velocity at which the DMN is damaged by exactly
this proportion can be understood as the velocity at which this
plateau is first reached. This is assumed to be at≈95% of the final
plateau region.

2.3.2. Dummy Validation
A series of experiments were carried out to simulate real-
world accident scenarios to illustrate the comparison between
direct FEHM and ML predictions of mechanical damage. These
experiments provide a range of realistic inputs to the models.

The experiments involved a dummy falling down a set of
stairs in a range of motions: forwards and backwards. Each
fall was captured with video and motion capture software in
Audiomotion Studios (Oxford, UK). Themotion capture enabled
accurate measurement of the velocity of impact, whilst video
footage provided the location and angle of head impact and
the impactor geometry. The dummy used in these experiments
weighed 65 kg and was approximately 1.7 m tall, whilst the full
height of the staircase was 2.07 m.

From these experiments, two scenarios were extracted, one fall
forwards and one backwards, see Supplementary Videos 1, 2,
respectively. In each of these scenarios, the stairs were the first
point of contact for the head. In the forward fall, the head of the
dummy impacted the (blunt) corner of the stairs in the fronto-
polar region with a perpendicular impact velocity of 7.12 m/s. In
the backwards fall the occipital region impacted the corner of the
stairs with a perpendicular velocity of 7.69 m/s.

The FEHM, which simulated the impact, and the ML model
were both used to predict damage to the DMN. These damage
estimates were carried out independently from one another and
the FEHM results were not used to train the ML layer. These
damage estimates provided a means of comparing the FEHM
outputs to those of the ML layer in a scenario used by the police
and medico-legal community.

3. RESULTS

3.1. DMN Functional Damage
The DMN resting brain network was successfully identified from
MRI scans conducted in the hyper-acute phase through dual
regression in each of nine TBI patients and all 18 healthy controls.
The “disconnectivity” within the DMN, i.e., the proposed
functional damage parameter, varied substantially across the nine
patients (see Figure 5), ranging from 1.5 to 19.4% (see Table 5).

3.2. Numerical Model Performance
3.2.1. Machine Learning Layer Performance
Tables 6, 7 provide a comparison of model performance
when implementing a bagging ensemble method and logistic
regression, respectively. These models were validated over a
range of network damaged proportion thresholds. All models
provide good discrimination, with AUC values consistently
>0.975 across all damage thresholds. The bagging method
outperformed the use of logistic regression alone. The average
AUC across all network damaged proportion thresholds was
0.985 for the bagging method, and 0.981 for logistic regression.

Dataset balance identifies the proportion of simulations which
resulted in damage to the brain’s network. Inmostmetrics, results
were unbiased by the dataset balance, with AUC and Brier’s scores
remaining relatively constant. However, the dataset balance had
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FIGURE 5 | Analysis of functional connectivity (rsfMRI signal correlation) within the DMN across nine patients with varying degrees of TBI and different mechanisms of

injury. Individual patient resting data were compared to 18 controls using permutation testing. Each map shows the patient-specific threshold-free

cluster-enhancement t-statistic images, depicting all voxels with significantly lower functional connectivity (p < 0.05) than the corresponding values in healthy controls.

TABLE 5 | Proportion of functional damage in the DMN as evaluated from

functional correlation disruption.

Cases 1 2 3 4 5 6 7 8 9

Damaged DMN (%) 1.48 3.2 5.17 14.67 4 2.53 8.93 19.43 6.17

an impact on the model’s sensitivity, its ability to predict the cases
that resulted in damage to the DMN. On average, the bagging
method provided improved AUC to that of logistic regression,
and was thus used subsequently.

3.2.2. Dummy Validation
In the two dummy fall scenarios, damage to the DMN
was predicted by both full FEHM simulations and the ML
model. Table 8 shows the resulting damage and velocity
predictions from these two approaches. The predictions
of 64.1 and 24.9% are the proportions of elements in
the DMN region having reached the threshold of shear
energy rate of 1MJ/m3s in the direct FEHM simulations

TABLE 6 | Bagging method performance for a range of network damaged

proportion thresholds.

DMN damaged proportion threshold (%)

10 30 50 70 90

AUC 0.987 0.986 0.986 0.989 0.976

Brier’s score 0.052 0.046 0.034 0.027 0.030

Sensitivity 0.752 0.702 0.790 0.829 0.731

Specificity 0.983 0.988 0.988 0.981 0.976

Accuracy 0.921 0.958 0.958 0.966 0.961

Dataset balance 0.268 0.206 0.1523 0.101 0.064

for the forward and backward impacts, respectively. The
ML probabilities correspond to the predicted probability
that the two impact scenarios would lead to, at least, those
proportions, i.e., the ML layer predicts that there is 50.6 and
72.7% of chance that the impact damages at least 64.1 and
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TABLE 7 | Logistic regression method performance for a range of network

damaged proportion thresholds.

DMN damaged proportion threshold (%)

10 30 50 70 90

AUC 0.979 0.981 0.978 0.988 0.979

Brier’s score 0.056 0.048 0.034 0.027 0.028

Sensitivity 0.817 0.762 0.823 0.829 0.615

Specificity 0.956 0.966 0.986 0.986 0.987

Accuracy 0.919 0.924 0.961 0.971 0.963

Dataset balance 0.268 0.206 0.1523 0.101 0.064

TABLE 8 | A comparison of FEHM and ML mechanical damage prediction for two

dummy fall scenarios: “FEHM prediction” is the proportion of the DMN region

damaged according to the finite element simulation, “ML probability” is the

ML-predicted probability that “at least that much DMN region is damaged,” “ML

velocity” is the ML-predicted velocity at which there is 95% chance that the

FEHM-predicted damaged proportion is reached.

Fall motion FEHM ML ML

(impact velocity) prediction (%) probability (%) velocity (m/s)

Forwards (7.12 m/s) 64.1 50.6 ≈8.6

Backwards (7.69 m/s) 24.9 72.7 ≈7.9

FIGURE 6 | ML predicted probability of damaging at least 64.1% of the DMN

region in forward fall and 24.9% in backward fall for different impact velocities.

24.9% of the DMN region, for the forward and backward
impacts, respectively.

Figure 6 offers another way to use the ML model by showing
the probabilities that these proportions are reached for a range of
potential impact velocities, for both scenarios. Both curves are
sigmoids with plateau regions of ≈83% (≈75% if considering
the last portion of the plateau) and ≈76.5%. Assuming that
the plateau is first reached at ≈ 95% of the plateau value, the
ML model predicts that reaching 64.1 and 24.9% a damaged
proportion would occur at ≈8.6 m/s (≈8 m/s if considering
the last portion of the plateau) and ≈7.9 m/s for the forward
and backward falls, respectively (see Table 8). In this graph, the
sigmoid never reaches 100% probability. This is due to nature of

FIGURE 7 | Improvement in ML model AUC with each additional attribute, for

ML model trained at a 50% threshold.

the MLmethods, which are unlikely to estimate 100% probability
that the given network damage threshold has been reached.

While an overall good match is confirmed between the FEHM
and the ML model in this “real life” scenario, it is worth
emphasizing that, because of the nature of the sigmoid shapes,
velocity predictions for a given proportion of damaged DMN are
less subject to noise error than the probability predictions for a
given impact velocity. Another point is that theML layer is bound
to struggle at high velocities/high proportions because of the
smallest population of training data having such large damage;
this explains why the sigmoid curves might oscillate in the upper
plateau region.

3.3. In silico Model Prediction
3.3.1. Input Sensitivity
A feature selection algorithm was implemented to identify
the most predictive model inputs. Figure 7 highlights the
improvement in model performance with each additional input
when the model is trained at a 50% threshold. Velocity was
selected as the most predictive attribute, providing an AUC of
0.985 when used alone to predict network damage. Whether
the fronto-polar region was impacted, whether the impact was
perpendicular to the head, and whether the temporal region was
impacted, best improved the prediction in this order, with the
angle between impact location to closest DMN node, and impact
direction finally allowing the AUC to reach a value of≈0.988.

3.3.2. Clinical Validation
In this section, the conditions established in section 2.1.5 were
used as inputs for the ML model. The same methodology
described in section 3.2.2 was used, but instead of taking as
input the DMN damaged proportion as predicted from FEHM
simulations, the proportion of damaged DMN calculated from
the proposed functional criterion (see section 2.1.4) was used
instead. Table 9 shows the ML predicted probabilities that the
clinically predicted damaged DMN proportion (see Table 5) was
reached for the velocity ranges evaluated in section 2.1.5 for all
nine patients.

As highlighted in section 2.3.2, the impact velocity prediction
for a given damaged DMN proportion is prone to greater error
than the damagedDMNproportion prediction for a given impact
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TABLE 9 | Proportion of functional damage in the DMN as evaluated from

correlation disruption, ML predicted probabilities that at least this proportion is

reached for the manually estimated range of impact velocities, and ML predicted

impact velocities at which 95% of the final plateau probability Pf is reached for the

clinical DMN damaged proportion, for the nine patients (see section 2.1.5 and

Figure 2).

Cases Functionally ML predicted probability (P) ML predicted

(conditions) damaged range for impact velocity (V) velocity

DMN (%) range evaluation at 95% Pf (m/s)

1 1.48 5.2% < P < 91.1%

(b-iii) (2.24 m/s < V < 12 m/s) ≈ 6

2 3.2 17.5% < P < 70.7%

(d-iii) (4.85 m/s < V < 6.75 m/s) ≈7.5

3 5.17 6.0% < P < 30.5%

(d-iii) (3.25 m/s < V < 4.8 m/s) ≈7.4

4 14.67 2.6% < P < 97.0%

(d-iii) (3.52 m/s < V < 9.72 m/s) ≈7.1

5 4 P ≈ 36.0%

(a-iii) (V ≈ 5 m/s) ≈6.9

6 2.53 P ≈ 95.3%

(b-iii) (V ≈ 9 m/s) ≈5.9

7 8.93 P < 76.5%

(e-iii) (V < 14.1 m/s) ≈7

8 19.43 56.0% < P < 77.0%

(d-iii) (6.75 m/s < V < 8.94 m/s) ≈7.9

9 6.17 18.0% < P < 71.4%

(a-iii) (4 m/s < V < 5.4 m/s) ≈6.9

FIGURE 8 | ML predicted impact velocities at which 95% of the final plateau

probability Pf is reached for the clinical DMN damaged proportion; orange

bars are the velocity range estimates from the analysis of section 2.1.5.

velocity. In addition, the probability refers to the fact that at
least a given proportion of DMN is damaged. As such, while
case 1’s results point toward a velocity of impact most likely to
be toward the end of the range (12 m/s), it is not clear whether
the probability of 91.1% for 12 m/s sits in the plateau region of
the sigmoid, i.e., if a lower velocity would also reach such high
proportion. To avoid this difficulty in the interpretation of the
results, the sigmoid curves of the ML predicted probabilities of
reaching the clinically evaluated damaged DMN against different
impact velocities were plotted for all nine cases (not shown here).

For each one of them, the velocity at which 95% of the plateau
probability is reached was extracted. This value corresponds to
the velocity at which the clinically evaluated damaged DMN
proportion is first reached according to the ML model. The
results are compared against the “manually” estimated range of
velocity of section 2.1.5 in Figure 8 and Table 9.

4. DISCUSSION

4.1. Model Limitations
4.1.1. Head Model Dependence
The FEHM used here was originally developed from high
resolution anatomical T1 and T2-weighted MRI images of a
subject available from the Human Connectome Project (HCP
Subject ID: 100307) (Essen et al., 2013; Garcia-Gonzalez et al.,
2018b). Ideally, one would use a dedicated FEHM for each
individual to offer a more tailored solution to the damage
prediction by accounting for morphological differences between
patients. Because of the time it would take to develop suchmodels
(on-the-fly in the context of clinical admission), and despite some
recent advances in this direction (Li et al., 2020), such a solution
remains impractical. Additionally, due to the very nature of the
ML layer, which first requires training on a library of FEHM
simulations, doing so would not allow forML prediction. It is also
worth mentioning that having a morphologically correct head
model scanned before injury for any TBI patient is unrealistic. An
alternative would be to create a finite library of population-wide
representative head morphologies, which would constitute one
of the inputs of the ML layer. This would however require much
larger libraries for the training of the layer, if one were to account
for sex, age, etc. A direct comparison between three different head
models has shown significant disparities in the brain mechanical
response in nearly all brain regions of the models (with the caveat
that these head models were all idealized and not constructed
from imaging) (Ji et al., 2014). More recently, the study of more
realistic head models for different morphologies has reached
similar conclusions (Li et al., 2020). However, in the former study,
the models showed similar trends in the relationship between
mechanical response and kinematic response, indicating that a
given model can be used independently of the others for a given
set of impact conditions as long as it is used consistently. While
not excluding the possibility to include more flexibility in the
morphological variations between patients in some future work
by using, e.g., novel morphing approaches (Li et al., 2020), the
approach consisting of using only one model thus seems justified
as a first approximation, while allowing for faster ML predictions.

Each FEHM requires a set of constitutive models for the
different regions identified within the head (typically, gray
and white matter, skull, CSF as a minimum). Those need
to be chosen carefully depending on the level of detail (e.g.,
homogenized brain vs. independent white and gray matter) but
also loading conditions. For instance, blast loading conditions
would typically require equations of state to adequately capture
the volumetric response under shock waves and the viscous-
relaxation processes can a priori be ignored for very short time-
scales (Moore et al., 2009), while slow loading scenarios, such
as in the second stage of labor, when the head of the foetus
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is being compressed in the vaginal canal, would ideally require
viscoelastic laws to capture the fetal head molding of the infant
head (Ami et al., 2019). Any intermediate situation, such as
the ones considered here, would need to balance the need for
time-dependent models against the timescales involved, along
with other features more or less relevant depending on the
leading deformation mechanisms: whether viscoelastic models
are required, whether tissue damage and/or fracture should be
accounted for, whether tissue anisotropy is relevant, etc. Here, a
careful analysis of the most salient features was carried out, and
each region of the used FEHM was assigned a constitutive model
with parameters identified for the range of loading considered
in this work. While more work is required to ensure that each
chosen constitutive model and its associated material parameters
are indeed optimum, the proposed setup is believed to constitute
a first good approximation. It must finally be noted that as
better models and material parameters are identified, the overall
framework function remains the same and those new changes
would be trivial to incorporate.

4.1.2. Kinematics
In the approach followed here, the kinematic behavior
immediately after impact is assumed to be solely driven by
the inertia of the head, i.e., the contribution of the rest of the
body, and in particular, the neck is not accounted for. This
approach has been proven to be deficient in some cases (Wang
et al., 2020). While it could be argued that it could still be
considered as valid in cases where the inertia of the body does
not contribute to the impact (e.g., if one falls sideways, and/or
is hit directly at the head), or when the neck does not hamper
the movement of the head (e.g., during and immediately after
the impact of an unaware or unconscious individual), it remains
an inaccurate representation of the real-life impact. An ideal
simulation would couple a multibody dynamics simulation
to the proposed FEHM to ensure that the kinematic behavior
of the head is more accurately modeled. It must, however, be
emphasized that the more complex the underlying mechanistic
model is, the more inputs a given ML layer would have to
incorporate. Therefore, while having a set of impact conditions
on the head, as done here, can easily be incorporated in the
ML layer, incorporating inputs related to the entire body based
on clinical information from the scene is realistically currently
unworkable.

4.1.3. Skull Fracture
A final limitation of the FEHM is that, while the onset of skull
fracture was predicted, its mechanical deformation post-fracture
was not modeled. As such, the choice was made to train the
ML layer exclusively on simulations which did not result in
skull fracture. However, five out of the nine patients studied in
this work experienced skull fracture (cases 1, 6, 7, 8, and 9),
and, while those were not judged to be important enough to
influence significantly the brain deformation in those cases (e.g.,
left zygoma fracture for case 1), it is clear that better predictions
would be expected with additional fracture mechanistic features
embedded in the FEHM for a more general applicability.

4.2. Predictive Accuracy
The ML layer has been shown to be very effective in the
prediction of the simulation behavior (with AUC values all
above 0.97 in the worst case), especially considering the reduced
number of simulation scenarios. This prediction could be enough
for some preliminary clinical assessment. An eventual high-
fidelity ML prediction with additional inputs could be leading
to some overfitting, owing to the relatively general nature of
the mechanistic model. The proposed approach is a trade-
off between the descriptive power of the simulation and the
granularity of the ML predictions. According to this, the number
of features and the feature selection procedure are tailored to
the overall complexity of the ML tasks (in number of instances
and features). As seen in section 3.3.1, a single feature already
provides a reasonable high accuracy level. Additionally, the
characteristics of the data also constrain the use of a given ML
algorithm. More advanced techniques, such as neural networks
(e.g., deep learning as an extreme case) are designed for two or
more higher orders of magnitude in the number of simulations
to analyze.

Another interesting aspect is the stability of the results
independently of the DMN damage proportion threshold (see
Tables 6, 7). Indeed, from 10% threshold up to 90% threshold,
there is a×4 factor in the ratio of the minority class (0.064–0.268
for 90 and 10%, respectively). In all cases, neither the AUC nor
the sensitivity or the specificity are compromised.

The stability of the sensitivity and specificity is of particular
importance in the clinical setting. Sensitivity would be crucial
to enable identification of network damage within the DMN
in the acute or hyper acute phase following injury. Specificity
would allow clinicians to rule out the possibility of injury
enabling decisions regarding discontinuation of neuro protective
interventions. Tables 6, 7 show that the specificity consistently
performs higher than the sensitivity for both models. Future
ML models could be tuned to ensure that the specificity is not
maximized at the expense of the sensitivity.

In the future, both the mechanistic simulations and the
ML layer should become more detailed. This also means that
the number of required simulations should become larger but
also the number of descriptive features (now constrained to
the primary characteristics: velocity, location, and angle). In
addition, other derived indicators shall be obtained and other
topological and spatial considerations shall be included.

4.3. Clinical Data
One of the main limitations of this work is the relative scarcity
of clinical data. However, the data were acquired within the first
24 h of head trauma, including severe injuries. This quick-paced
availability requires a specialist center, able to acquire data in
patients who are ventilated and intubated. For logistical reasons
such data are therefore exceptionally difficult to acquire in large
volumes. While our sample size is limited for this reason, the
type of data presented here is precisely what is required to make
realistic predictions in a clinically meaningful (“hyper-acute”)
time period. As such, balancing data quality and data quantity
was a necessary challenge in this work. By providing here a
novel framework with proactively gathered (albeit limited) data,
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the goal of this work is to emphasize the need for established
widespread protocols for data curation in a proactive model
driven fashion, as opposed to models making use of limited
data available after their independent retrieval, usually from
much later time-periods after injury, and likely brain recovery
processes, have occurred.

It is finally worth emphasizing that our patients were followed
for 6–9 months, which could offer further development to the
model predictions in future work.

4.4. Resting State Network Relevance for
TBI Prediction
Despite advances in the care of patients suffering TBI, long-
term clinical and neuropsychological outcomes are often poor,
irrespective of apparent injury severity (Brooks et al., 2013;
Stocchetti and Zanier, 2016). MRI studies performed in the
days, weeks, and months following TBI have uncovered a
crucial role played by diffuse axonal injury (DAI) in the
long term clinical, functional and neuropsychological outcome
(Tong et al., 2004; Li and Feng, 2009; Skandsen et al., 2010).
Midline structures, including the corpus callosum and cingulum
bundle are particularly susceptible to the shearing forces causing
DAI (Yount et al., 2002; Chan et al., 2003). Since high level
cognitive functions such as memory, attention and executive
function require the integration of information processing across
spatially distinct brain regions, it has been proposed that DAI
induces cognitive impairment by disconnecting distributed brain
networks (Inglese et al., 2005; Niogi et al., 2008; Kinnunen et al.,
2010; Bonnelle et al., 2011).

rsfMRI is not, per se, optimum to measure functional activity,
given that one cannot be certain of what function is being
measured (this applies especially in the context of the DMN,
which “shuts off” during tasks). However, this remains to date
the only method available for use in severely head injured
patients, many of whom were intubated and ventilated during
scanning. rsfMRI allows measurement of slow neuronal signal
fluctuations without the need for a task, enabling the study of
functionally relevant brain networks in TBI patients regardless
of the severity of injury. In this way, the use of rsfMRI enabled
us to measure functional brain networks in patients among our
cohort who were intubated and ventilated during MRI scanning.
Among brain networks known to be disrupted following TBI
(Stevens et al., 2012), the DMN has received particular interest
due to its proposed role in the development of attentional deficits
(Raichle, 2010; Bonnelle et al., 2011; Sharp et al., 2011) which
often follow DAI (Scheid et al., 2003; Povlishock and Katz,
2005). The brain regions that make up the DMN (Raichle et al.,
2001) are particularly susceptible to DAI, including notably the
midline posterior cingulate cortex, precuneus, and ventromedial
prefrontal cortex alongside the inferior parietal lobe, lateral
temporal cortex, and hippocampal formation. Crucially, the
regions of the DMN show highly correlated brain activity at rest.

Previous studies report differingDMN functional connectivity
according to severity of injury and timing of imaging (Zhou
et al., 2012; van der Horn et al., 2017). Here, we show that
DMN disruption can be identified within the first 24 h following

trauma, using an objective statistical metric sensitive to network
disruption at the single patient level. We propose that our
damage load metric offers advantages over typical group-based
studies in understanding and predicting the effects of trauma.
Group-based or population average studies, by definition, aim
to identify features that are common across patients. Such
approaches consequently discard the fundamental heterogeneity
in head injury mechanisms and their downstream network
impact that likely account for vast differences in outcomes among
individuals.

4.5. In silico TBI Prediction
4.5.1. Coupling of Causality and Correlation
Figure 7 shows the fivemore important attributes in theML layer
per increased order of contribution to the prediction of the layer
when used at a 50% threshold. Unsurprisingly, the velocity of
impact is the most important factor. Whether or not the impact
location is in the fronto-polar region or the temporal region
are the second and fourth most important attributes, with the
third being whether the impact was perpendicular to the head.
Finally, the angle between impact location to closest DMN node
and impact direction allows for a slight increase in the predictive
ability.

From a geometrical perspective with respect to the DMN
nodes, an impact location in the fronto-polar should indeed a
priori have a stronger influence on the DMN than a temporal
impact. The relative importance of the angle to DMN (by
0.3%) is slightly more surprising, especially considering the
fact that the binary attribute indicating whether the impact
is perpendicular or not was already selected as the third
most important attribute. This particular trait demonstrates the
advantage to couple mechanistic simulations with ML. In this
case, the mechanistic FEHM simulations incorporate indirectly
information related to the angle between impact direction with
respect to the closest DMN node. A ML layer on its own
would not be able to incorporate information of this kind
without additional preprocessing of the head morphologies and
mechanical features of stress wave propagation with respect to
impact direction. Such complementarity of causality (through
the mechanistic simulations) and correlation (through the ML
layer) has already been advocated as an ideal way to incorporate
physical mechanisms in a scalable fashion (Baker et al., 2018).
This work demonstrates that additional information driven by
a mechanistic understanding of the physical processes at play
during tissue damage can indeed allow for additional predictive
power in the ML layer.

It is worth noticing that, for each given damaged DMN
proportion, a new training session is needed. This means that,
while Figure 7 only shows the results for a 50% threshold, each
new threshold, and thus each curve in Figure 6, will select a new
set of attributes to work with. For two of the nine patients of this
study, training did not use the angle to DMN but selected the
fact that the impactor is or is not perpendicular (results not show
here). In all cases however, the velocity of impact was the main
attribute followed by either the shape of the impactor or the angle
to DMN.
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Overall, this dynamic feature selection offers an individualized
prediction of the impact on brain function based on a given head
injury. These predictions shed light onto the nature and extent
of likely associated tissue disruption in an individual patient
that is not captured by current clinical assessments. In this way,
models able to predict down-stream functional outcomes from
early paraclinical metrics offer potential to optimize treatment at
a time when crucial clinical decisions need to be made.

4.5.2. Predictive Performance
The method proposed here postulates a direct relationship
between mechanical damage and functional damage. It can be
used in two ways: (i) it can assess the probability that the DMN
has been damaged to the extent measured clinically for a given
impact, (ii) or it can predict a velocity at which such extent
of damage can be reached, assuming one knows the remaining
boundary condition attributes (impact location, angle, etc.). This
approach was tested for nine patients whose impact conditions
were estimated from paramedical and clinical notes in a manner
consistent with medico-legal methodology.

The shear energy rate damage criterion was taken to be at
≈ 1 MJ/m3s (see section 2.2.4). The quantitative evaluation
of DMN damage proposed here is a novel approach whose
correlation with mechanical damage has never been attempted.
Garcia-Gonzalez et al. (2018b) successfully observed a correlation
with oxidative stress in the context of blast injury for a much
larger value of the shear energy rate damage criterion, but as
loading conditions and damage pathways are different (blast
injuries and impact injuries have very different injury signatures),
another value needed to be estimated. The proposed threshold
of ≈ 1 MJ/m3s is interestingly close to the axonal deformation
energy rate threshold of 1.5 MJ/m3s for oxidative stress in
blasted white matter (Garcia-Gonzalez et al., 2018b). While white
matter damage was not predicted here for lack of experimental
comparison (rsfMRI measures gray matter activity), indirect
damage of white matter might also directly influence the rsfMRI
results, and the proposed model could be benchmarked in future
work against DTI data to assess damage in the whitematter tracts.
This could also be done indirectly by measuring the correlation
(or lack thereof) of the DMNwith the rest of the brain. It is finally
important to note that the results obtained here intrinsically
depend on this threshold calibration. However, to confirm with
sufficient significance that the value chosen here is indeed the
right one, a much larger dataset of patients would be needed.
Future work shall focus on gathering such data.

The two predictions made by the ML method are assessed
in Table 9 and Figure 8. Firstly, the model should be able to
assess the probability that the DMN exceeds a given threshold.
When the threshold of the model was set to the clinically
observed network damage, an ideal model should provide a high
probability that the network is damaged for the given scenario.
In Table 9, seven out of nine cases produce a probability of
damage over 70%, however some probabilities of damage range
from small to large values, for example in cases 2 and 4. This
reflects the difficulties faced in estimating the impact scenarios
from parametric data, which often resulted in a large range of
possible impact velocities.

The model also provides an estimate of the velocity at which
the clinically observed network damage was met. As shown in
Table 9 and Figure 8, four out of nine patients’ ML predicted
velocity is within the range manually estimated. As indicated
earlier, a few of these cases did not have enough information
to allow for a confident estimation; very rough values were still
proposed in the interest of discussion. All patients presented
significant TBI and the model predicts that the range of velocity
expected to lead to such TBI is much narrower than manually
evaluated. In particular, values of impact velocity between 6
and 8 m/s for all nine patients are expected, while the manual
estimation of the range was six-fold larger. Note, however, that
different ML training designs could be used to better estimate
velocities. In particular, a backward estimator (from the damage
to the characteristics of the impact) could be used instead of the
forward model proposed here (from the features to the predicted
damage).

4.5.3. Forensic Relevance
Establishing whether a traumatic head injury is a result of an
accidental or non-accidental cause is a fundamental question in
forensic investigations. Often, practitioners are provided with
only a brief third-party description of a causal event and struggle
to establish a sufficiently detailed understanding of a cause
and effect relationship with which to make a differentiation.
Current medical understanding, acquired by training, anecdote,
and experience is supplemented with scientific evidence, drawn
from specialities such as pathology, radiology, and population-
based epidemiology. The head and central nervous system may
be injured by many different mechanisms; therefore, developing
a necessary understanding of the cause from practical experience
and epidemiology alone is a significant challenge, since there are
very many biomechanical variables that require consideration.

A retrospective biomechanical engineering analysis can
assist a forensic investigation by providing cause and effect
understanding with regard to a stated or inferred injury-
causing event. This can be undertaken by characterizing
the biomechanical loading environment during the event
in question, quantifying the physical loading conditions
and evaluating their potential to produce injury by, where
possible, drawing comparisons with injury tolerance and/or
epidemiological data.

Given the wide range of velocities, locations, angles, and
materials associated with head injury mechanics, it is unrealistic
to anticipate that a single injury risk metric can exist for every
possible scenario. Specific to the head, one primary reason is
the very many different motions that can occur when a head is
struck with an object, or when a head strikes a surface and/or
is whiplashed, since the complex variety of potential responses
makes each injury-causing event potentially unique.

General characterization of the biomechanical loading
environment can, however, assist in developing a better
understanding of the mechanisms of injury in question. In
particular, the approach proposed here has a direct forensic
value in the analysis of image based evidence, e.g., CCTV
video footage, from which more accurate measures of velocity,
location, and angle of impact might be obtained.
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Central to the investigation of the biomechanics of traumatic brain injury (TBI) and
the assessment of injury risk from head impact are finite element (FE) models of the
human brain. However, many existing FE human brain models have been developed
with simplified representations of the parenchyma, which may limit their applicability
as an injury prediction tool. Recent advances in neuroimaging techniques and brain
biomechanics provide new and necessary experimental data that can improve the
biofidelity of FE brain models. In this study, the CAB-20MSym template model was
developed, calibrated, and extensively verified. To implement material heterogeneity,
a magnetic resonance elastography (MRE) template image was leveraged to define
the relative stiffness gradient of the brain model. A multi-stage inverse FE (iFE)
approach was used to calibrate the material parameters that defined the underlying
non-linear deviatoric response by minimizing the error between model-predicted brain
displacements and experimental displacement data. This process involved calibrating
the infinitesimal shear modulus of the material using low-severity, low-deformation
impact cases and the material non-linearity using high-severity, high-deformation cases
from a dataset of in situ brain displacements obtained from cadaveric specimens. To
minimize the geometric discrepancy between the FE models used in the iFE calibration
and the cadaveric specimens from which the experimental data were obtained, subject-
specific models of these cadaveric brain specimens were developed and used in the
calibration process. Finally, the calibrated material parameters were extensively verified
using independent brain displacement data from 33 rotational head impacts, spanning
multiple loading directions (sagittal, coronal, axial), magnitudes (20–40 rad/s), durations
(30–60 ms), and severity. Overall, the heterogeneous CAB-20MSym template model
demonstrated good biofidelity with a mean overall CORA score of 0.63± 0.06 when
compared to in situ brain displacement data. Strains predicted by the calibrated model
under non-injurious rotational impacts in human volunteers (N = 6) also demonstrated
similar biofidelity compared to in vivo measurements obtained from tagged magnetic
resonance imaging studies. In addition to serving as an anatomically accurate model for
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further investigations of TBI biomechanics, the MRE-based framework for implementing
material heterogeneity could serve as a foundation for incorporating subject-specific
material properties in future models.

Keywords: traumatic brain injury, material properties, magnetic resonance elastography, image registration,
morphing

INTRODUCTION

Traumatic brain injury (TBI) is a significant source of
injury, disability, and death. Recent epidemiological studies
have estimated that TBI’s account for approximately one-third
of all injury-related deaths in the United States (Faul and
Coronado, 2015). In 2010, the Centers for Disease Control
(CDC) estimated that TBIs resulted in 2.5 million emergency
department (ED) visits (87%), hospitalizations (11%), and deaths
(2%) (Centers for Disease Control and Prevention, 2015).
Finite element (FE) models of the brain have rapidly become
indispensable tools for investigating TBI mechanisms, assessing
new protective technology, and developing injury risk criteria
(Kleiven and von Holst, 2002; Giordano and Kleiven, 2014;
Gabler et al., 2018). FE models of the brain are typically used
to investigate the dynamic 3D deformation of the human brain
under simulated head impacts relevant to sports, automotive
crashes, and falls. While FE models have been instrumental
to furthering our understanding of TBI biomechanics, many
FE brain models have been developed to represent the brain
as a simplified physical system, both in their representation
of the anatomy and material properties, thus limiting their
accuracy and utility in predicting deformations experienced due
to head impacts.

Perhaps the most significant differences across brain models
in the field relate to the constitutive laws and material parameters
chosen to represent the material behavior of the simulated brain
tissue (Jin et al., 2013; Dixit and Liu, 2017; Fahlstedt et al.,
2021). At the simplest level, the brain is modeled as a single
isotropic and homogeneous material (Kleiven and von Holst,
2002; Takhounts et al., 2008; Ji et al., 2015). However, unique
material properties can be assigned to different parts of the
brain, which typically represent tissue types with different cellular
composition or segmented anatomical labels, and many FE
models include differences in material properties between white
and gray matter (Horga and Gilchrist, 2003; Kimpara et al., 2006;
McAllister et al., 2012; Panzer et al., 2012; Mao et al., 2013; Miller
et al., 2016, 2017). At the most complex level, the brain has been
modeled as an anisotropic, heterogeneous structure by explicitly
modeling axonal fiber tracts by embedding 1D elements in the
brain mesh (Garimella et al., 2019; Hajiaghamemar et al., 2019;
Wu et al., 2019). While the embedded axon approach provides
a more biofidelic structural representation of the axonal tissue,
which is known to exhibit anisotropy and regional variations in
tissue material properties (Jin et al., 2013; Budday et al., 2015,
2017a, 2019; Weickenmeier et al., 2016), the embedding of 1D
axonal tract elements can significantly increase computational
cost. A potential alternative for modeling brain heterogeneity is
to model the brain with material stiffness varying throughout the

brain regardless of the tissue classification of each element, which
can be obtained using magnetic resonance elastography (MRE).

Recently, MRE has been utilized to non-invasively measure
in vivo material properties of the human brain in healthy
volunteers (Weaver et al., 2012; Johnson et al., 2013a,b; Hiscox
et al., 2016). In MRE, an external transducer (commonly a head
pillow) mechanically vibrates the head (10–100 Hz) to induce
micron-level displacements in the brain that can be measured
and used to estimate elastic and viscous material properties
throughout the brain with high spatial resolution (Hiscox et al.,
2016). To date, MRE has been used to investigate global
brain material properties with voxel-level resolution, regional
variations in tissue stiffness, and material properties associated
with brain pathology (Hiscox et al., 2016; Johnson and Telzer,
2018; Murphy et al., 2019). While stiffness measurements vary,
most studies agree that the measured brain stiffness is dependent
on the actuation frequency (due to viscoelasticity), and that white
matter regions are stiffer than gray matter regions (Hiscox et al.,
2016). However, since the measured properties are dependent
on the actuation frequency and obtained from micron-level
displacements of the brain, additional work is needed to apply
the MRE-derived stiffness maps to a FE brain model.

The goal of this study is to calibrate and verify a heterogenous
FE brain model by leveraging experimental datasets reporting
(1) MRE-derived material properties (Hiscox et al., 2020), (2)
high rate, in situ, brain displacements measured from human
cadaveric specimens using sonomicrometry (Alshareef et al.,
2020a), and (3) low rate, in vivo, brain strain measured from
human volunteers using tagged magnetic resonance imaging
(tMRI; Knutsen et al., 2020). Material parameters for the model
were developed in three phases. First, stiffness data from an
MRE template image (average of 134 subjects; Hiscox et al.,
2020) was used to define the relative stiffness gradient throughout
the brain model. Second, the linear stiffness parameter was
calibrated using low-displacement cases from the Alshareef
et al. (2020a) dataset and verified using brain strain data
from the in vivo tMRI dataset. Finally, the non-linear stiffness
parameter was calibrated using high-deformation cases from the
Alshareef et al. (2020a) dataset. To verify that the calibrated
material parameters were physically reasonable, a comprehensive
verification was performed using the remaining rotational cases
from these datasets that were not used for calibration. The
response of the calibrated material used in the model was
also compared to experimental in vitro material test data
available in the literature (Jin et al., 2013) to ensure that the
median stiffness response was within the range of experimental
data. In addition to serving as a model for investigating
TBI biomechanics, the technique for implementing MRE-
derived heterogeneous material properties can be adapted to
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implement subject-specific material properties in future subject-
specific brain models.

MATERIALS AND METHODS

Development of CAB-20MSym Template
Model
The mesh of the CAB-20MSym template model was chosen
to represent the anatomy of the CAB-20MSym template image
developed by Giudice et al. (2020). This template was constructed
from T1-weighted MRI scans obtained from 20 young, healthy
adult males (22 ± 3 years). Details regarding these images are
provided elsewhere (Giudice et al., 2020; Reynier et al., 2020).

The CAB-20MSym template image was segmented to identify
the brain parenchyma, peripheral cerebrospinal fluid (CSF),
internal CSF, and ventricles. To generate the template model
mesh, each 1 mm isotropic voxel in the segmentation image
was directly converted into a cubic hexahedral (i.e., voxel)
element and assigned to a part based on its segmentation
label. This approach was selected as voxel meshes have the
accuracy and stability benefits of hexahedral elements and
can capture complex anatomical features at the native spatial
resolution (in this case, 1 mm) of the MRI images used
to construct them (Miller et al., 2016; Ghajari et al., 2017).
To include the sagittal sinus, falx cerebri, and tentorium
cerebelli, the voxels surrounding these regions were manually
delineated and two-dimensional shell elements were generated
at the corresponding mid-surfaces. Finally, a layer of rigid
shell elements surrounding the outermost surface of the
peripheral CSF part was generated to represent the dura,
which was assumed to be rigidly connected to the inner
surface of the skull (Miller et al., 2016). The selection of
the numerical implementation approach was informed by an
analytical review of the numerical methods utilized by the TBI
modeling community performed by Giudice et al. (2019b) and is
summarized in the Supplementary Material. All interfaces were
continuous and connected through shared nodes.

The material properties for the CSF (peripheral and internal),
ventricles, skull, sagittal sinus, falx, and tentorium were adapted
from previous brain models (Takhounts et al., 2008; Mao et al.,
2013; Miller et al., 2016). To account for the nominal stiffness
provided by the trabeculae and bridging vessels located within
the subarachnoid space, the peripheral CSF was modeled using
a linear viscoelastic material with very low stiffness (G0 = 0.5 kPa;
G∞ = 0.1 kPa). As these properties do not exist for CSF,
an elastic fluid (bulk modulus, K = 2.1 GPa) was assigned
to the ventricle and internal CSF parts. The sagittal sinus,
falx, and tentorium were modeled as elastic materials (Young’s
modulus, E = 31.5 MPa; Poisson’s ratio, ν = 0.45). Finally,
the skull was modeled as rigid to allow the implementation
of 6 degree-of-freedom head kinematic boundary conditions
for all analyses (Gabler et al., 2016). Further details regarding
these material properties are available in the Supplementary
Material. The material implementation of the brain parenchyma
is described in Sections “Implementation of Brain Heterogeneity”
and “Constitutive Modeling of Brain Parenchyma.”

Implementation of Brain Heterogeneity
The implementation of brain material heterogeneity in the CAB-
20MSym template model was derived from the MRE134 template
image (Hiscox et al., 2020). This template was constructed
using MRE data from 134 healthy, young adults (18–35 years,
78F/56M) using common MRE acquisition and data processing
protocols (Hiscox et al., 2020). To adapt the MRE134 template,
originally defined in MNI152 space with 2 mm isotropic voxels,
it was first non-linearly registered to the CAB-20MSym template
space using ANTs non-linear registration (Avants et al., 2008).
To eliminate stiffness measurements potentially influenced by
numerical artifacts or edge effects, stiffness values beyond the
98th percentile were excluded. In the CAB-20MSym template
model, CSF spaces were modeled using CSF-specific constitutive
models, however, in the MRE134 template image, CSF spaces
were not differentiated from the brain tissue. Therefore, stiffness
values below the 15th percentile, which corresponded to the
approximate stiffness in the MRE134 template in CSF areas
(approximately 0–1.5 kPa; Hiscox et al., 2020), were excluded.
From this truncated distribution, the stiffness value of each
voxel was normalized by the median stiffness and binned into
10 groups. Voxels that had original stiffnesses below the 15th
and above the 98th percentile were assigned to the lowest
and largest normalized stiffness bins, respectively. This process
yielded a normalized stiffness label image where voxels were
categorized by their relative stiffness, and not according to
an anatomical segmentation label. In doing so, this approach
accounts for stiffness variations present within tissue groups,
such as white and gray matter. Normal variations in the material
properties of various tissue groups are reported in the literature
(Hiscox et al., 2020).

Constitutive Modeling of Brain
Parenchyma
The 10 parts comprising the brain parenchyma, using the binned
groups from the previous section, were modeled using a quasi-
linear viscoelastic (QLV) model (Fung, 1993). In Fung’s QLV
theory, it is assumed that the response of a material can be
separated into a normalized function of time only, g (t), and an
elastic function of strain only, Te(ε) (Fung, 1993). For a QLV
model, the stress relaxation function, R (ε, t), is:

R (ε, t) = g(t) · Te(ε)

In this study, the instantaneous elastic response function, Te(ε),
was derived from an Ogden strain energy density (Ogden and
Hill, 1972).

W (λ1, λ2, λ3) =
µ

α

(
λα

1 + λα
2 + λα

3 − 3
)

Where λj are the three principal stretches, µ is the shear modulus,
and α is a unitless non-linearity coefficient. The infinitesimal
shear modulus (i.e., initial slope of the non-linear shear stress-
strain curve), µ0, can be obtained as a function of the material
parameters.

µ0 =
1
2
µα
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Finally, four Prony terms (N = 4) were included in the reduced
relaxation function.

g (t) = g∞ +
N∑
i=1

gie−βit

βi =
1
τi

g∞ +
N∑
i=1

gi = 1

Where, g∞ and gi are normalized coefficients associated with
the long-term response and each time constant, τi. The
density, ρ, and Poisson’s ratio, ν, of the brain parenchyma
material were 1.123 × 10−6 kg/mm3 (Miller et al., 2016) and
0.499999, respectively.

The reduced relaxation function was fit to experimental tan(δ)
data obtained from studies that characterized the viscoelastic
properties of brain tissue over wide ranges of input frequencies
(Fallenstein et al., 1969; Shuck and Advani, 1972; Arbogast
et al., 1997; Bilston et al., 1997, 2001; Arbogast and Margulies,
1998; Brands, 2000; Darvish and Crandall, 2001; Lippert et al.,
2004; Nicolle et al., 2004; Hrapko et al., 2006; Shen et al.,
2006; Garo et al., 2007). The tan(δ) response represents material
damping as a function of frequency, and is independent of the
material stiffness, making it suitable for calibrating the reduced
relaxation function. Optimization of gi and τi was performed
using a least squares optimization. The Ogden parameters
defining the median deviatoric response of the brain, to which
the brain parenchyma heterogeneity was applied relative to, was
calibrated using an iFE calibration scheme and is described in the
following sections.

Calibration Objective and Approach
To reduce the number of optimized parameters and simplify the
calibration process, it was assumed that the damping of the brain
and hyperelastic non-linearity were homogeneous throughout
the brain. As such, the reduced relaxation function parameters
were assigned to all brain parenchyma parts. Therefore, the
objective of this inverse FE approach was to calibrate two
parameters:

1. The median stiffness of the brain, µmed, that defined the
material heterogeneity.

2. The non-linearity coefficient, α, that defined the
hyperelastic non-linearity.

Material parameters were calibrated using an iFE approach
in which parameters were optimized to minimize the error
between model and experimental results. In this case, a subset
of the impact cases in the in situ brain displacement dataset
(Alshareef et al., 2018, 2020a,b) were simulated using subject-
specific models and the error between nodal displacements and
the corresponding experimental displacements were minimized.
In this dataset, in situ brain deformation was measured at discrete
locations using sonomicrometry sensors (i.e., “receivers”),

distributed throughout the brain parenchyma of cadaveric head-
neck specimens. Three subject-specific models were generated
to represent the anatomies of subjects SONO-896, SONO-900,
and SONO-904 (Table 1; Alshareef et al., 2020a). Further details
regarding this experimental dataset and the corresponding model
setup are provided in the Supplementary Materials.

To minimize the likelihood of obtaining a non-unique
solution, µmed and α were optimized independently by leveraging
specific cases in the in situ brain displacement database. To
optimize µmed a low severity case (Axial 20 rad/s, 60 ms)
was used to optimize the median infinitesimal quasi-static
shear stiffness (a function of µmed). This case was selected
as preliminary simulations indicated that the deformations
induced in this case were not sensitive to the material non-
linearity coefficient. A higher severity case (Coronal 40 rad/s,
30 ms) was used to optimize α while maintaining the optimized
infinitesimal quasi-static shear stiffness. This coronal rotation
case was selected as preliminary simulations indicated that
the deformations predicted in this case were sensitive to the
material non-linearity coefficient and avoided calibrating the
material parameters under a single loading direction. Finally,
the calibrated heterogeneous material parameters were verified
using the remaining cases in the in situ brain deformation
database, as well as low severity in vivo brain strain data obtained
using the in vivo tMRI database (Knutsen et al., 2020). This
final verification included 39 simulations; 11 simulations for
each SONO subject-specific model (not including case used
for calibration) and 6 simulations for the tMRI cases. Details
regarding these experimental datasets and the respective model
setups are provided in the Supplementary Materials. As a
final check, the material response was assessed in tension,
compression, and simple shear loading over strain rates of 0.5, 5,
and 30 1/s and compared to experimental data (Jin et al., 2013).

The material calibration process is summarized below:

1. Optimize µmed under low severity rotational impacts.
2. Intermediate verification to assess calibrated µmed under

independent low severity cases.
3. Optimize α under higher severity rotational impacts.
4. Comprehensive verification of calibrated material

parameters

TABLE 1 | Specimen information for subjects used to assess deformation
response (Alshareef et al., 2020a).

Specimen SONO-896 SONO-900 SONO-904

Axial MRI

Sex Female Female Male

Age (yrs) 57 66 67

Height (cm) 163 165 177

Body Mass (kg) 31.1 56.2 54.9

ICV (cm3) 1300 1406 1545

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 May 2021 | Volume 9 | Article 66426829

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-664268 April 28, 2021 Time: 17:17 # 5

Giudice et al. Calibration of a Heterogeneous Brain Model

All models used in this study were subject-specific,
constructed to represent the anatomies of the subjects from which
the experimental data were collected. As such, the deformation
response of each subject-specific model was compared to the
experimental data obtained from that subject only. This was
crucial to eliminate geometric effects from the calibration and
verification processes, ensuring that discrepancies between
simulation and experimental results, for each subject, were due
to variations in material parameters only. All subject-specific
models were generated using registration-based morphing
(RBM), which is a non-linear morphing technique that was
developed specifically for generating subject-specific models
of the brain by leveraging image registration transformations
(Giudice et al., 2020). Metrics of morphing accuracy and element
quality for all subject-specific models generated in this study are
provided in the Supplementary Materials.

Objective Rating and Optimization
Strategy
CORrelation and Analysis (CORA) scores were used to quantify
the error between the nodal displacements in the model
and the receiver displacements in the experimental dataset.
Since experimental displacements were 3D (i.e., x, y, and z
displacement time-histories for each receiver), a composite score
(cCORA) was calculated to obtain a single objective rating for
each receiver. cCORA was computed as the weighted average
of the CORA scores in each orthogonal direction, weighted
by the relative magnitude of the experimental signal in each
direction (Giudice et al., 2019a). Finally, the overall score for
each rotational case was computed as the weighted average of all
receiver cCORA scores, weighted by the experimental maximum
resultant displacement for each receiver (wcCORA). In this study,
the default CORA parameters were used (Gehre et al., 2009).

wcCORA =
N∑
i

αi × cCORAi

αi =
βi∑N
i βi

Where, βi is the experimental maximum resultant displacement
for the ith receiver and N is the number of receivers for
each rotation case. For the calibration of the Ogden material
parameters, wcCORA was used to quantify the error between the
nodal displacements and the experimental receiver displacements
for each rotation simulation. To obtain a set of parameters that
best represented the overall response of the three subjects used
for calibration, a joint optimization was performed where the
goal was to maximize the mean wcCORA score for subjects
SONO-896, SONO-900, and SONO-904.

f (x) =
wcCORA896 + wcCORA900 + wcCORA904

3

A golden ratio search algorithm was used to identify the
maximum mean overall wcCORA as a function of the material
parameter being optimized. In the first iteration, a series of

simulations were run to identify the bounds for the golden search
algorithm. For example, when calibrating α, three simulations
with α = 2, 6, and 10 were run to determine the bounds
for calibration. The parameters investigated in each subsequent
iteration, i (xi,1 and xi,2) were determined by the golden ratio
search algorithm.

xi,1 = ai + (1− ϕ)
(
bi − a

)
xi,2 = ai + ϕ

(
bi − a

)

ϕ =

√
5− 1
2

Where ai and bi are the lower and upper bounds for iteration,
i. The bounds were updated based on the mean wcCORA score
for each parameter investigated [f (x1) and f (x2)] in the previous
iteration (i – 1).

If f (x1) > f (x2) then ai = a(i−1) and bi = x(i−1),2

If f (x1) < f (x2) then ai = x(i−1),1 and bi = b(i−1)

This process was repeated until the termination criteria was
satisfied. The parameter that had the greatest mean wcCORA
was selected as the calibrated value. The first iteration and
termination criteria for the calibration of µmed and α are shown in
Table 2. These values were selected based on parameters reported
in the literature for human brain tissue (Miller and Chinzei, 2002;
Nicolle et al., 2004; Franceschini et al., 2006; Kleiven, 2007; Kaster
et al., 2011; Moran et al., 2014; Budday et al., 2017a).

Calibration and Verification of Median
Shear Modulus
In the first step of the material calibration process, µmed was
optimized by simulating the Axial 20 rad/s, 60 ms case (Z:
20–60). All simulations were run for 200 ms. Pilot simulations
indicated that the predicted deformations in this loading case
were not sensitive to material non-linearity that is governed
by α. Therefore, in this optimization the shear response of
the material was constrained to the linear response of a Neo-
Hookean solid (α = 2), where the shear modulus defined in the
Ogden model is identical to the infinitesimal shear modulus of
the material (µ0).

Since the model incorporates material heterogeneity relative
to the median stiffness of the brain, the stiffness of each of the 10

TABLE 2 | First iteration parameters and termination criteria for calibrated
material parameters.

Parameter 1st Iteration Termination Criteria

µmed µmed = 0.25, 0.7, 1.15, 1.6, 2.05, 2.6 kPa b(i+1) − a(i+1) < 0.1 kPa

α α = 2, 6, 10 b(i+1) − a(i+1) < 0.2
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parts was defined relative to the median stiffness defined for any
given optimization iteration.

µi = γiµmed = γiµ0,med

Where γi is the relative stiffness of the ith part and varies between
0.53 and 1.53. All stiffness values reported in this study refer to
quasi-static parameters (i.e., µmed and α represent the quasi-static
response of the material).

To verify the calibrated median shear stiffness (µ0,med =

µmed) the remaining 20 rad/s, 60 ms cases in the coronal (X:
20–60) and sagittal (Y: 20–60) directions were simulated and
compared to each specimen’s experimental data using wcCORA.
Verification of the strain response was performed by simulating
in vivo brain strain experiments (Knutsen et al., 2020). In
this dataset, three subjects (tM-3978, tM-4838, and tM-6176)
were subjected to sagittal rotations (ωmax = 1.4–1.6 rad/s) and
three subjects (tM-3978, tM-7126, and tM-9475) were subjected
to axial rotations (ωmax = 4–5.4 rad/s) of the head. This
verification step was performed to ensure that the calibrated
µ0,med was physically meaningful and resulted in biofidelic
deformation predictions under independent low-deformation
test cases. This also provided reassurance that the final set of
calibrated material parameters were unique, given the model’s
sensitivity to both µ and α.

To compare the predicted strain response of each subject-
specific model, the maximum principal strain (MPS) of each
element was computed and mapped to the corresponding voxel in
the subject image. As a global metric of strain, the 95th percentile
MPS value (MPS-95) predicted by the model was compared to
the equivalent experimental measures. In addition, the volume
fraction of elements exceeding 2% strain was compared between
the model and experimental data. These volume fractions were
computed globally, as well as regionally for the cerebral gray and
white matter and the cerebellum. These regions were identified
using a segmentation image provided in the tMRI database.
MPS-95 was also computed for the elements/voxels located
in these regions.

Calibration and Verification of Non-linear
Coefficient
In the previous steps, the median shear stiffness, which was
equivalent to the median infinitesimal shear modulus (µ0,med =

µmed) since the shear response was assumed to be linear
(α = 2), was determined and verified. In this step, the non-linear
coefficient (α) was calibrated by simulating the Coronal 40 rad/s,
30 ms rotation case. All simulations were run for 200 ms. To
preserve the previously calibrated µ0,med, µmed was also adjusted
such that µ0,med was equivalent to the value determined in the
first step of the optimization procedure. Therefore, for the ith part
in the heterogeneous CAB-20MSym template model the shear
modulus in the Ogden constitutive model, µi, was defined as a
function of µmed, α, and γi.

µi =
2γiµ0,med

α

To verify the calibrated heterogeneous material, the remaining
11 rotation cases for each subject were simulated (36 total

simulations including case used for calibration), and the nodal
displacements of the calibrated subject-specific models were
compared to the corresponding experimental brain displacement
data using wcCORA. To assess the calibrated model performance
relative to other state-of-the-art and widely used FE brain
models, wcCORA values obtained in this study were compared to
those reported for the Global Human Body Models Consortium
(GHBMC) brain model (Mao et al., 2013) and the UVA
embedded axon model (UVA-EAM) (Wu et al., 2019, 2020,
2021). These models were morphed to the anatomy of the three
subjects using surface-based morphing (Wu et al., 2019) and
simulated under identical boundary conditions, resulting in 36
simulations per model.

The set of tMRI simulations used to verify the calibrated
median infinitesimal shear stiffness were also simulated using
the final calibrated heterogeneous model to ensure that the
incorporation of material non-linearity did not influence the
model predictions. Since the brain strains in these simulations
were low (less than 6% MPS), material non-linearity was not
expected to influence the model results.

Finally, the calibrated Ogden material response was compared
to experimental material test data. To verify the optimized
parameters, the complex modulus of the derived model was
compared to the complex moduli reported in the rheological
characterization dataset. Furthermore, a series of single element
(1 mm × 1 mm × 1 mm) simulations were run with
the fit material parameters to verify the response of the
constitutive model as well as the Ogden QLV implementation
in LS-Dyna. These single element simulations were run in
tension, compression, and simple shear at loading rates of
0.5, 5, and 30 1/s to 50% engineering strain and the results
were compared to average response corridors constructed
from the material characterization data in the literature
(Jin et al., 2013).

RESULTS

Development of CAB-20MSym Template
Model
The CAB-20MSym template model had an intracranial volume
of 1439 cm3 and approximately 1.6 million elements, 1.5
million nodes, and 16 parts (Figure 1). Note that Figure 1
depicts the external surfaces of each of these parts and is
not representative of the entire volume of each part. All
interfaces (e.g., falx-brain) were continuous and defined using
shared nodes.

Implementation of Brain Heterogeneity
The original and truncated stiffness distributions from the
MRE134 template, mapped to CAB-20MSym space, are shown in
Figure 2. In the truncated distribution, the median stiffness was
2.53 kPa and the mean± standard deviation was 2.37± 0.99 kPa.
To convert the MRE134 template image into the CAB-20MSym
template model, the truncated distribution was grouped into 10
bins, which were used to classify the normalized stiffness of each
voxel in the CAB-20MSym model. The 10 relative stiffness groups
were 0.53, 0.64, 0.75, 0.86, 0.97, 1.08, 1.20, 1.31, 1.42, and 1.53,
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FIGURE 1 | Depiction of the parts of the CAB-20MSym mesh. Brain parenchmya parts are subdivided based on their stiffness relative to the median stiffness
(µ/µmed ) of the MRE134 template. The volume of each solid part is indicated in parentheses. The skull is shown in gray.

FIGURE 2 | (Left) original (blue) and truncated (orange) MRE134 stiffness distributions. Stiffness values in the original distribution were truncated between the 15th
and 98th percentile stiffness values. (Right) grouped normalized stiffness values (N = 10 bins).
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FIGURE 3 | Magnetic resonance elastography template (MRE134), normalized stiffness image, and normalized stiffness label image (used to construct
CAB-20MSym template model). Each of the 10 bins in the normalized stiffness label corresponded to an individual part in the template model.

FIGURE 4 | tan(δ) (left) and complex modulus (right) of the calibrated material parameters, demonstrating the median complex modulus of the brain (purple) as
well as the complex modulus for the softest (green) and stiffest (blue) relative stiffness parts. Note that tan(δ) is a function of damping only and not tissue stiffness.
Experimental data were obtained from the literature (see Section “Constitutive Modeling of Brain Parenchyma” for list of references).

which corresponded to the bin centers (Figure 2). The MRE134
template, normalized stiffness image, and normalized stiffness
label image are shown in Figure 3.

Constitutive Modeling of the Brain
Parenchyma
The reduced relaxation function parameters were obtained
by fitting gi and βi (i = 4) to match experimental tan(δ)
data (Figure 4). The fit reduced relaxation parameters are

shown in Table 3. These viscoelastic parameters were applied
homogeneously throughout the entire brain model.

Calibration and Verification of Median
Shear Modulus
The median shear stiffness of the material was calibrated
using the axial 20 rad/s, 60 ms rotation case in the in situ
brain displacement database. The calibrated value of µmed was
1.125 kPa. Since this initial constitutive model constrained
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TABLE 3 | Prony series parameters for the brain parenchyma.

Material Parameters

g1 = 0.8619 β1 = 10 ms

g2 = 0.0383 β2 = 1 ms

g3 = 0.0412 β3 = 0.1 ms

g4 = 0.0249 β4 = 0.01 ms

g∞ = 0.0337

the non-linear coefficient to 2 (representing a Neo-Hookean
solid), µmed was equivalent to the infinitesimal quasi-static
shear modulus, µ0,med. Six iterations (12 simulations) were
required to satisfy the termination criteria specified in
Table 2, resulting in an optimal mean wcCORA of 0.62
(Figure 5). The calibrated value was within the range of
other Ogden rubber infinitesimal quasi-static shear moduli
reported in the literature for the brain (Miller and Chinzei,
2002; Nicolle et al., 2004; Franceschini et al., 2006; Kleiven,
2007; Kaster et al., 2011; Moran et al., 2014; Budday et al.,
2017a), which varied from 0.27 to 1.49 (mean ± standard
deviation = 0.92± 0.38).

Using the jointly calibrated µmed = µ0,med value, the Coronal
and Sagittal 20 rad/s, 60 ms cases for the same specimens were
simulated to verify the subject-specific model responses. The
wcCORA scores for the coronal, sagittal, and axial simulations
were between 0.66–0.72, 0.50–0.67, and 0.58–0.69, respectively
(Table 4). In general, wcCORA scores were greatest in the coronal
rotation, and across the three subjects, the SONO-900 model
yielded the highest wcCORA scores using the jointly calibrated
µmed value.

A series of tMRI experiments were simulated using subject-
specific models to verify the calibrated value of µmed = µ0,med.
The strain response of subject tM-9475 during the axial rotation
is shown in Figure 6. Qualitatively, the tM-9475 subject-specific
model demonstrated a similar deformation pattern compared
to the experimental data. In general, MPS was largest in the
cortex and smallest in the cerebellum (Figure 6). Additionally,

in both simulation and experiment, larger strains were observed
at the apexes of the ventricles (i.e., frontal and occipital horns)
which propagated through the cerebrum. This can be seen in
slices z = 20–40 in Figure 6. However, in the experimental
data cortical strain was consistently asymmetric, with the largest
strains observed in the right hemisphere of the brain, whereas
in the simulation the MPS distribution was relatively symmetric.
These trends were similar for all subjects tested in the axial
rotation protocol.

These trends were salient in the MPS-95 and strain volume
fraction metrics used to quantify brain deformation globally
and regionally. For subject tM-9475, global and regional MPS-
95 values were similar to the experimental data, with absolute
differences between 0.0025 and 0.0084 strain. However, while
regional MPS-95 values were similar between the model and
experiment, larger differences in the volume fraction of voxels
that exceeded 2% strain was observed, particularly in the
cerebellum (simulation: 0.15; experiment: 0.33) and gray matter
(simulation: 0.34; experiment: 0.61). Figures showing MPS-95
and volume fraction results for the axial and sagittal tMRI cases
are included in the Supplementary Materials.

The strain response of subject tM-4838 during the sagittal
rotation is shown in Figure 6. Qualitatively, the tM-4838 subject-
specific model demonstrated a similar MPS pattern compared
to the experimental data with the largest MPS values observed
at the periphery of the brain, including the cortex, base of the
cerebrum, and anterior surface of the brainstem, and lowest in
the midbrain (Figure 6). However, strains in the cerebellum and
brainstem were larger in the experimental data than predicted by
the simulation. This is particularly evident in slices x = −15–5
in Figure 6. In general, global and regional MPS-95 metrics were
similar between the subject-specific model and experimental data
with absolute differences in MPS-95 between 0.0003 and 0.0067
for subject tM-4838. The volume fraction of voxels that exceeded
2% strain was also similar, except for the cerebellum, where the
experimental volume fraction was 0.16 compared to only 0.06 in
the simulation. These trends were similar for all subjects tested in
the sagittal rotation protocol.

FIGURE 5 | Calibration results for µmed (left) and α (right). Parameters were calibrated to maximize the mean wcCORA score (black) across subjects SONO-896
(blue), SONO-900 (red), and SONO-904 (yellow). wcCORA for each subject was obtained by comparing nodal displacements from corresponding subject-specific
models and experimental data.
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Calibration and Verification of Non-linear
Coefficient
The non-linearity parameter of the Ogden constitutive model, α,
was calibrated using the Coronal 40 rad/s, 30 ms rotation case
in the in situ brain deformation database. The calibrated value
of α was 6.67, which yielded a mean wcCORA of 0.67 across
subjects SONO-896, SONO-900, and SONO-904 (Figure 5).
Eight iterations (12 simulations) were required to satisfy the
termination criteria specified in Table 2. The final calibrated
material parameters for each brain parenchyma part (grouped by
stiffness relative to the median stiffness) are shown in Table 5. The
viscoelastic parameters for the brain parts are shown in Table 3.

To verify the calibrated material parameters, all 12 impact
cases for subjects SONO-896, SONO-900, and SONO-904 were
simulated and assessed using wcCORA. The three subject-
specific models demonstrated good biofidelity with a mean
wcCORA of 0.63 ± 0.06 for all 36 simulations (range: 0.50–
0.74). Across the three subjects, SONO-900 demonstrated
the highest wcCORA scores (0.68 ± 0.03) and wcCORA
was similar for SONO-896 (0.61 ± 0.07) and SONO-904
(0.61 ± 0.06). In general, wcCORA scores were highest in
the coronal impacts (0.68 ± 0.04) and similar in the sagittal
(0.61 ± 0.06) and axial (0.61 ± 0.06) impacts. A summary
of the wcCORA scores for all three subjects is shown in
Figure 7. Exemplary nodal displacement-time histories for
subject SONO-904 in the 40 rad/s, 60 ms cases are shown in the
Supplementary Materials.

The tMRI simulations were run with the final calibrated
material model to ensure that the addition of material
non-linearity did not influence the strain prediction. As
expected, the brain strain response in these simulations was
dominated by the infinitesimal shear stiffness, which was
optimized in the first stage of material calibration. The
incorporation of material non-linearity had negligible effect
on the MPS distribution since this second optimization was
performed while maintaining the infinitesimal shear modulus
previously calibrated.

The complex modulus, as a function of frequency, for the
median stiffness response and softest (µ/µmed = 0.53) and stiffest
(µ/µmed = 1.53) relative stiffness parts are shown in Figure 4.
All three responses were within the range of experimental
data. Finally, the median, softest (µ/µmed = 0.53), and stiffest
(µ/µmed = 1.53) material responses were assessed in tension,
compression, and simple shear loading at strain rates of 0.5, 5,

TABLE 4 | wcCORA scores for µ0,med joint optimization and verification.

Subject wcCORA

X: 20–60 Y: 20–60 Z: 20–60*

SONO-896 0.67 0.67 0.58

SONO-900 0.72 0.63 0.69

SONO-904 0.66 0.50 0.60

SONO-Mean 0.68 ± 0.03 0.60 ± 0.09 0.62 ± 0.06

*Axial 20 rad/s, 60 ms (Z: 20–60) case used for calibration.

and 30 1/s and compared to experimental data (Figure 8; Jin
et al., 2013). At the highest strain rate (30 1/s) and intermediate
(5 1/s), the three material responses were like the experimental
corridors for all three loading modes, simultaneously. At the
lowest strain rate (0.5 1/s), the three material responses were
similar to the experimental in compression but were stiffer in
tension and shear.

DISCUSSION

In this study the heterogeneous CAB-20MSym template model
was developed, calibrated, and extensively evaluated using
a comprehensive set of experimental data that included
measurements of material properties using in vivo MRE
experiments (Hiscox et al., 2020), in situ brain displacement
measured using sonomicrometry (Alshareef et al., 2020a), in vivo
brain strain measured using tagged MRI (Knutsen et al., 2020),
and in vitro material response (Jin et al., 2013; Meaney et al.,
2014). In all assessments of model biofidelity, the CAB-20MSym
template model demonstrated a high fidelity to the experimental
data which represented a spectrum of TBI severity, ranging
from non-injurious (tMRI cases) to moderate-to-severe TBI
(sonomicrometry cases).

Our approach to implement heterogeneity using MRE data
was selected for several reasons. This technique implemented
material heterogeneity without significantly increasing
the computational cost. Other studies have implemented
heterogeneity using embedded beam elements to explicitly
model the structural contributions of axonal fiber tracts
(Garimella and Kraft, 2017; Garimella et al., 2019; Wu et al.,
2019). However, this technique has been reported to increase the
computational cost by a factor of 2.4. For the models developed
to calibrate the material parameters, this would have increased
the computational time for each simulation from approximately
15 to 36 h (simulating 200 ms of response). As such, the
computational time required to run the battery of the 36 in situ
brain deformation simulations (Alshareef et al., 2020a) would
have increased from approximately 540 to 1300 h.

The relative stiffness approach was also chosen with
consideration of effects specific to the MRE data. The MRE
stiffness measurements we used were determined at a single
frequency of 50 Hz, though brain tissue properties from MRE
have been shown to be dependent on the actuation frequency
due to the viscoelasticity of the brain (Sack et al., 2013). Thus, the
specific shear stiffness values recovered at this frequency may not
be most relevant for a TBI model. Furthermore, MRE measures
tissue stiffness under micron-level displacements. Since the brain
is a highly non-linear material, these stiffness results may not be
applicable at the finite levels of deformation associated with TBI.
Using relative stiffness minimizes any contributions these factors
may have had on the absolute stiffness measurements.

There are also several limitations associated with the
MRE-based approach. Firstly, although brain heterogeneity was
represented as a function of tissue stiffness and not tissue type, the
implementation was still isotropic as brain MRE measurements
typically assume material isotropy, though methods for
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FIGURE 6 | Comparison of maximum principal strain distribution for subject tM-9475 under axial rotation (top) and tM-4838 under sagittal rotation (bottom).

extracting anisotropic properties are being developed (Romano
et al., 2012; Tweten et al., 2015; McGarry et al., 2020; Smith
et al., 2020). Secondly, it was assumed that the relative stiffnesses
obtained from the micron-level displacements used in MRE
were linear with strain, and that the heterogeneity observed in
MRE was applicable for higher levels of deformation. While the
validity of these assumptions is unclear, the verification of the
brain response with these material parameters over a wide range
of rotational loading conditions minimizes their significance.

An inverse FE approach was used to calibrate the material
parameters of the heterogeneous CAB-20MSym template model
using subject-specific models. However, three challenges faced by
any iFE calibration problem are overfitting, obtaining a unique
solution, and computational cost. The likelihood of overfitting
and obtaining non-unique solutions in an optimization problem
is typically increased by using an excessively complicated model
(i.e., optimizing many material parameters) and an imbalance
between the amount of data used to fit the model and the
data used to validate the model (i.e., excessive training data).
Furthermore, since one simulation is required for each test
case, the computational cost of calibrating a material model
increases significantly with the number of parameters included.
Given that each simulation in this study took approximately
15 h to run, a robust and efficient approach to material
calibration was required.

In the heterogeneous CAB-20MSym template model, each
brain parenchyma material requires two parameters to describe

bulk properties (density, ρ and Poisson’s ratio, ν), two parameters
to describe deviatoric elastic properties (µ and α), and eight
parameters to describe viscoelastic properties (g1–g4 and β1–
β4), for a total of 12 parameters per material. Without further
reduction, a full material calibration would require optimizing
120 parameters, which would likely result in non-unique
solutions and the computational cost would be prohibitive.
In this study, several assumptions were made to reduce the

TABLE 5 | Calibrated Ogden material parameters for each brain parenchyma part,
grouped by stiffness relative to the median value.

Relative Stiffness µ (kPa) α

µmed
a 0.337 6.67

µ/µmed = 0.53 0.179

µ/µmed = 0.64 0.216

µ/µmed = 0.75 0.254

µ/µmed = 0.86 0.291

µ/µmed = 0.97 0.328

µ/µmed = 1.08 0.366

µ/µmed = 1.20 0.403

µ/µmed = 1.31 0.441

µ/µmed = 1.42 0.478

µ/µmed = 1.53 0.515

aNot physically represented in model.
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FIGURE 7 | Comparison of wcCORA scores for the calibrated heterogeneous model developed in this study, the GHBMC brain model (Mao et al., 2013), and the
anisotropic UVA-EAM model (Wu et al., 2019).

number of material parameters included in the optimization
problem. First, all brain tissues were assumed to have the same
density and Poisson’s ratio, which is consistent with the TBI
biomechanics literature and is common practice in FE brain
modeling (Takhounts et al., 2008; Mao et al., 2013; Wu et al., 2019;
Alshareef et al., 2020a). This reduced the number of material
parameters from 120 to 100. By assuming homogeneous damping
and non-linearity, the total number of variables calibrated in this
study was reduced to 11 (µ for each material, and a single non-
linearity coefficient, α). For the stiffness variables, each material
was defined relative to the median value using experimental MRE
data, further reducing the total number of calibrated parameters
to 2 (µmed and α). While non-linearity and viscoelastic properties
of the brain have been shown to vary spatially throughout
the brain (Johnson et al., 2016; Budday et al., 2017a,b, 2019;
Hiscox et al., 2018), these are more challenging measurements
and the extent to which viscoelasticity and elastic non-linearity
vary remains an open question. These disparities are likely
attributed to differences in experimental protocols, including
tissue harvest sites, tissue hydration, and loading conditions

(Budday et al., 2019). The membranes implemented in the model
(falx and tentorium) and CSF parts were not included in the
optimization, as a preliminary sensitivity study indicated that the
influences of the stiffness and damping of these structures on
the deformation response was negligible, compared to the brain
parenchyma parts.

We used a combined optimization to calibrate the median
shear stiffness and non-linear coefficient, as opposed to an
individual calibration for each of the three subjects. The objective
of the study was to obtain a singular set of optimal material
parameters to be used in the CAB-20MSym template model.
Subject-specific material properties could have been combined
(e.g., averaged), however, due to the highly non-linear nature of
this optimization problem this may not have yielded an optimal
solution for the CAB-20MSym template model. Nonetheless, the
calibration process indicated that the three subjects likely had
different underlying material properties (Figure 5). For example,
the estimated optimal median shear moduli for subjects SONO-
896, SONO-900, and SONO-904 were approximately 0.70, 1.18,
and 2.05 kPa, respectively. A simple average of these values
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FIGURE 8 | Calibrated material response in tension, compression, and simple shear at rates of 0.5, 5, and 30 1/s compared to experimental material
characterization data (Jin et al., 2013). The median (purple), softest (green), and stiffest (blue) response of the brain are shown.

would have resulted in an “optimal” shear modulus of 1.31 kPa,
compared to 1.13 kPa determined by the optimization which
maximized wcCORA. An important limitation was that only
three elderly (57–67 years), cadaveric subjects were used in the
optimization process due to the availability of experimental brain
deformation data. However, the calibrated model demonstrated
a biofidelic response when verified using the in vivo tMRI
dataset, which included younger, living subjects between 21 and
42 years of age (Knutsen et al., 2020). Nonetheless, the calibrated
material parameters may not be representative of the general
population and this calibration should be repeated once brain
deformation data for more specimens is available. It should also

be noted that since these material parameters were obtained
using an inverse FE process, they are model specific and cannot
be arbitrarily applied to other models (Giudice et al., 2019b).
However, given that the calibrated materials have been verified
using experimental material characterization data, it is very likely
that they represent the underlying material response, and not the
contributions of the numerical implementation. Nonetheless, if
implemented in another model, the deformation response should
be thoroughly investigated prior to model deployment.

The final calibrated material model was verified by its response
to experimental tissue data from multiple sources. The complex
modulus of the calibrated materials and the response in tension,
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compression, and simple shear were compared to experimental
material characterization data for cortical tissue. In both
assessments, the median, softest, and stiffest material responses
in the calibrated CAB-20MSym template model were similar
the experimental data, verifying that the material parameters
obtained from the iFE calibration were physically meaningful and
representative of the underlying tissue. In these comparisons, the
full range of material response was compared to the experimental
data to account for the fact that the experimental data may not
necessarily represent the median response of the brain.

The biofidelity of the calibrated CAB-20MSym template
model was assessed using brain deformation data from the
experiments conducted by Alshareef et al. (2018, 2020a) and
Knutsen et al. (2020). Collectively, these datasets encapsulated
various magnitudes (2.5–40 rad/s), durations (30–60 ms),
and directions of rotational loading (coronal, sagittal, axial).
The model demonstrated biofidelic responses under the test
conditions used by Alshareef et al. Interestingly, differences in
wcCORA scores across subjects reflected the subject-specific
relationships between material properties and wcCORA scores
in the optimization process. For example, wcCORA scores for
SONO-900 were generally greater than those for SONO-896. In
the material calibration process, the estimated optimal material
properties for SONO-900 were similar to the joint optimal value
(µ0,med = 1.18 kPa), whereas the estimated optimal material
properties for SONO-896 were softer (µ0,med ≈ 0.7 kPa). The
opposite was true for SONO-904 (µ0,med ≈ 2.0 kPa). These
differences in calibrated parameters likely reflect variability in
material properties between these specimens. While variation
in material parameters is to be expected, future work is
required to quantify this variability across larger populations.
This may be an important factor as subject-specific models
of the brain become more prominent in research and clinical
applications. Moving forward, the MRE-based framework used
to implement material heterogeneity in this study will be adapted
to incorporate subject-specific material properties in future
models that consider the entire subject-specific brain structure.
While the CAB-20MSym template model demonstrated a
biofidelic response under the loading conditions investigated
in this study, additional verification is required if the model
is exercised under loading conditions that deviate from those
used in the current study (e.g., blast loading or micron-level
harmonic displacements).

While a high-resolution measurement of brain strain at
injurious loading conditions is not available, assessing the
biofidelity of a brain model’s strain prediction using low severity,
non-injurious loading conditions can improve the confidence
of a model’s strain response. In general, the CAB-20MSym
demonstrated good biofidelity under the axial and sagittal
tMRI cases compared to the experimental data. However, there
were some discrepancies between the model and experimental
results, particularly in the volume fraction exceeding 2% strain.
These differences could have been attributed to several factors.
Firstly, in the experimental tMRI data set, only resultant head
cradle kinematics were recorded. Therefore, to simulate these
experiments it was assumed that the head was perfectly coupled
to the head cradle and that the applied rotational head kinematics

were perfectly uniaxial (either axial or sagittal). While the head
was tightly coupled to the head cradle, it is possible that there
were slight discrepancies between the head kinematics in the
experiments and simulations. Secondly, the brain-skull interface
was implemented by modeling the CSF layer between the brain
and skull. While many approaches have been investigated to
model this interface (Wang et al., 2018), the relative motion
between the brain and skull is not well characterized and
there is no consensus on best modeling practices for this
interface. Therefore, discrepancies between the relative skull-
brain motion in the simulations and experiments could have
contributed to the observed differences in volume fraction and
deformation fields, especially in these low deformation impacts.
Furthermore, the brainstem of the CAB-20MSym template model
was truncated at the foramen magnum due to a lack of MRE
data in the inferior portions of the brainstem and superior
portions of the spinal cord. This may have attributed to some
of the observed differences, especially in the inferior regions of
the brain. However, since the deformations induced in these
experiments were small, it is possible that these factors had
an exaggerated effect on the predicted strains, and it is not
clear how these effects translate to larger deformation cases.
Finally, while tMRI is a well-established imaging technique,
it can be susceptible to experimental error (approximately
0.7% strain, introduced during filtering or interpolation), which
could affect these low strain measurements and the resulting
2% strain volume fractions (Gomez et al., 2019). Nonetheless,
the overall biofidelity of the CAB-20MSym template model’s
strain prediction under these low severity loading conditions
was satisfactory.

Summary
In this study, the CAB-20MSym template model was
developed, calibrated, and extensively verified over a wide
range of rotational head kinematic loading conditions. This
model utilized a computationally efficient approach for
incorporating material heterogeneity that leveraged data
from a MRE template image that represented the average
brain stiffness of 134 healthy adult subjects. Overall, the
developed model demonstrated a biofidelic response for
both nodal displacement and element strain metrics. Moving
forward this template model will serve as the foundation
of the registration-based morphing pipeline developed by
Giudice et al. (2020) and can serve as an anatomically accurate
model for further investigations of TBI mechanisms and
to aid the development of novel protective equipment and
safety countermeasures. Furthermore, the framework for
implementing material heterogeneity using MRE data can be
adapted to incorporate subject-specific material properties in
future models of the brain.
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Modulation of cerebral blood flow and vascular compliance plays an important role in
the regulation of intracranial pressure (ICP) and also influences the viscoelastic properties
of brain tissue. Therefore, magnetic resonance elastography (MRE), the gold standard
for measuring in vivo viscoelasticity of brain tissue, is potentially sensitive to cerebral
autoregulation. In this study, we developed a multifrequency MMRE technique that
provides serial maps of viscoelasticity at a frame rate of nearly 6 Hz without gating, i.e., in
quasi-real time (rt-MMRE). This novel method was used to monitor rapid changes in the
viscoelastic properties of the brains of 17 volunteers performing the Valsalva maneuver
(VM). rt-MMRE continuously sampled externally induced vibrations comprising three
frequencies of 30.03, 30.91, and 31.8 Hz were over 90 s using a steady-state,
spiral-readout gradient-echo sequence. Data were processed by multifrequency dual
elasto-visco (MDEV) inversion to generate maps of magnitude shear modulus | G∗|
(stiffness) and loss angle ϕ at a frame rate of 5.4 Hz. As controls, the volunteers were
examined to study the effects of breath-hold following deep inspiration and breath-hold
following expiration. We observed that | G∗| increased while ϕ decreased due to VM
and, less markedly, due to breath-hold in inspiration. Group mean VM values showed
an early overshoot of | G∗| 2.4 ± 1.2 s after the onset of the maneuver with peak values
of 6.7 ± 4.1% above baseline, followed by a continuous increase in stiffness during VM.
A second overshoot of | G∗| occurred 5.5 ± 2.0 s after the end of VM with peak values
of 7.4 ± 2.8% above baseline, followed by 25-s sustained recovery until the end of
image acquisition. ϕ was constantly reduced by approximately 2% during the entire VM
without noticeable peak values. This is the first report of viscoelasticity changes in brain
tissue induced by physiological maneuvers known to alter ICP and detected by clinically
applicable rt-MMRE. Our results show that apnea and VM slightly alter brain properties
toward a more rigid-solid behavior. Overshooting stiffening reactions seconds after onset
and end of VM reveal rapid autoregulatory processes of brain tissue viscoelasticity.

Keywords: real-time multifrequency MRE, cerebral autoregulation, Valsalva maneuver, stiffness, viscoelasticity
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INTRODUCTION

A balance of intracranial mechanical properties is of crucial
importance for normal brain function (Linninger et al., 2005;
Guyton and Hall, 2006; Wagshul et al., 2006; Schmid Daners et al.,
2012). Shear modulus and bulk modulus of brain tissue influence
cerebrovascular compliance and pulsatility as well as intracranial
pressure (ICP) (Giulioni et al., 1988; Greitz et al., 1992;
Wagshul et al., 2011; Parker, 2017). While shear modulus can
be measured non-invasively by magnetic resonance elastography
(MRE) (Hirsch et al., 2017), there is currently no method for
direct ICP measurement without an intervention or without
making model assumptions (Guyton and Hall, 2006). In complex
multiphasic mechanical systems such as the brain, shear modulus
and pressure are linked through poroelastic interactions between
the fluid and solid spaces (Bilston, 2002; Tully and Ventikos,
2011; Parker, 2014). Thus, it is likely that regulation of ICP,
which is one of the most important vital functions of intracranial
mechanics, also affects shear viscoelasticity (Perrinez et al., 2009;
McGarry et al., 2015; Lilaj et al., 2020). However, this mechanical
component of cerebral autoregulation is largely unstudied due
to a lack of imaging techniques that can measure cerebral shear
modulus in vivo with high spatial and temporal resolution.

In the past, cerebral MRE was used to study a wide
variety of physiological effects or diseases which affect the
in vivo shear modulus of brain tissue (Hiscox et al., 2016; Yin
et al., 2018). It has been shown that the brain becomes softer
during normal aging (Sack et al., 2009; Arani et al., 2015) or
pathophysiological processes such as neuroinflammation (Riek
et al., 2012; Wang et al., 2019), demyelination (Schregel et al.,
2012), or neurodegeneration (Murphy et al., 2012; Munder
et al., 2018). In patients, brain softening has been observed in
a wide set of neuronal disorders including multiple sclerosis
(Wuerfel et al., 2010; Fehlner et al., 2016), Alzheimer’s disease
(Murphy et al., 2011; Murphy et al., 2016; Gerischer et al.,
2018), Parkinson’s disease (Lipp et al., 2013, 2018) and normal
pressure hydrocephalus (Streitberger et al., 2011; Juge et al.,
2016; Murphy et al., 2020). Brain tumors can be either softer
or stiffer than normal tissue (Simon et al., 2013; Jamin et al.,
2015; Reiss-Zimmermann et al., 2015), while malignant tumors
have reduced viscosity (Streitberger et al., 2014; Schregel et al.,
2018; Streitberger et al., 2020). A higher stiffness of neural
tissue has been associated with increased perfusion pressure
(Chatelin et al., 2015; Hetzer et al., 2018, 2019; Bertalan et al.,
2019a), ICP (Hatt et al., 2015; Arani et al., 2018), formation of
cytotoxic edema in dying animals (Weickenmeier et al., 2018;
Bertalan et al., 2020), proliferation of neurons (Klein et al., 2014),
neuronal activity (Patz et al., 2019; Lan et al., 2020), and brain
maturation (Guo et al., 2019). All of these studies have revealed
that brain viscoelasticity can change within minutes (perfusion
alterations), weeks (brain maturation in mice), or years (aging,
disease progression). However, requiring several minutes of
data acquisition, conventional MRE is limited in resolving non-
periodic rapid processes such as cerebral autoregulation and ICP
alterations which cannot be consistently repeated in volunteers.

Faster techniques including time-harmonic ultrasound
elastography (Tzschatzsch et al., 2018; Kreft et al., 2020) and
real-time MRE (rt-MRE) (Schrank et al., 2020a) have been

introduced recently. While cerebral ultrasound elastography is
limited by acoustic windows and cannot generate detailed maps,
rt-MRE has the potential to map viscoelasticity with both high
spatial resolution and high frame rates. However, feasibility of
rt-MRE has as yet only been demonstrated with a small field
of view in the lower extremities (Schrank et al., 2020a) and has
never been tested in the brain.

Therefore, we here introduce real-time multifrequency MRE
(rt-MMRE) for applications in the human brain. Multifrequency
extension of rt-MRE was motivated by previous work on
multifrequency wavefield inversion promising higher stability
and consistency of parameter maps than single-frequency direct
inversion (Papazoglou et al., 2012; Hirsch et al., 2014). Moreover,
rt-MRE builds on continuous stroboscopic sampling of harmonic
vibrations (Schrank et al., 2020b), which can be spectrally
decomposed into multifrequency vibrations without extra scan
time. As such, rt-MMRE is a natural extension of rt-MRE that
yields, at no extra cost, consistent viscoelasticity maps at relatively
high frame rates in the order of 6 Hz depending on the repetition
time (TR). Since rt-MRE does not require gating and provides
multiple viscoelasticity maps per second, we consider this method
as a real-time imaging technique.

Using rt-MMRE, we investigate rapid viscoelastic changes
during cerebral autoregulation associated with the Valsalva
maneuver (VM). The VM is a standard maneuver to voluntarily
increase ICP by forceful breathing against the closed airway with
abdominal muscle contraction at the same time. VM will be
compared with normal breath-holds in inspiration (BH-in) and
expiration (BH-ex). To address frequency dispersion and to test
the overall consistency of the values measured in association
with the VM, the experiment is repeated with a second set of
drive frequencies.

Overall, this study has two aims: first, we introduce rt-
MMRE based on three simultaneous excitation frequencies
to acquire hundreds of viscoelasticity maps within less than 1
min of scan time. Second, we explore cerebral autoregulation
with the unprecedentedly high spatiotemporal resolution
offered by rt-MMRE.

MATERIALS AND METHODS

Subjects
rt-MMRE was performed in 17 healthy volunteers without a
history of neurological diseases (5 females, 36 ± 13 years, age
range: 25–81 years, randomly selected). The study was approved
by the ethics committee of Charité – Universitätsmedizin Berlin
in accordance with the Ethical Principles for Medical Research
Involving Human Subjects of the World Medical Association
Declaration of Helsinki. Every participant gave written informed
consent. Participant characteristics are summarized in Table 1.
Group mean time curves of heart rate are given in Inline
Supplementary Figure 1.

Experimental Setup
All experiments were performed in a 3T MRI scanner (Siemens
MAGNETOM Prisma, Erlangen) using a 32-channel head coil.
Triple-harmonic vibrations in a narrowband frequency regimen
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TABLE 1 | Participant characteristics with abbreviations: body mass index (BMI),
systolic blood pressure (BPsys), diastolic blood pressure (BPdis), and
heart rate (HR).

ID Sex Age in
years

BMI in
kg/m2

BPsys in
mmHg

BPdia in
mmHg

HR in bpm

1 f 37 17.5 97 56 69

2 m 29 24.2 130 77 80

3 m 43 23.6 150 88 88

4 m 46 26.3 134 85 62

5 m 34 22.7 124 68 76

6 m 25 20.8 120 70 70

7 m 27 21.6 118 70 64

8 m 30 26.3 126 78 78

9 f 28 20.7 131 85 62

10 m 36 19.9 77 50 54

11 m 26 20.2 121 75 80

12 f 26 20.5 113 60 55

13 f 29 25.7 114 72 73

14 m 51 20.7 130 85 62

15 m 37 26.2 122 72 70

16 f 27 31.6 140 78 90

17 m 81 22.5 125 80 70

Mean (SD) – 36 (13) 23 (3) 122 (16) 74 (10) 71 (10)

were synchronously induced by four pressurized air drivers
attached to a transmission plate and placed underneath the
head. The applied frequencies were: 30.03, 30.91, and 31.8 Hz

(hereinafter referred to as 31-Hz regimen). The two outmost
drivers were operated at the highest frequencies with alternated
phases relative to each other. The two inner drivers were operated
with the same frequency, again with alternated phases. This way
each frequency induced mainly lateral-rotational head motion
with minimized compression components. The setup is shown
in Figure 1.

Vibrations and radiofrequency (RF) excitation started 5 s
before data acquisition to ensure establishment of steady states
of time-harmonic oscillations and magnetization before start
of each experiment. The following rt-MMRE experiments were
performed:

i Valsalva maneuver (VM)
ii deep inspiration and breath-hold (BH-in)

iii expiration and breath-hold (BH-ex)

The VM experiment included four consecutive phases: 30 s
baseline, 5 s breath-hold in inspiration, 20 s VM and 35 s recovery
(total scan time: 90 s). Prior to the experiment, subjects were
trained to perform a moderate Valsalva maneuver that could be
easily sustained for 20 s to prevent involuntary movement after
deep breathing. This experiment was repeated with a second
narrowband frequency regimen comprising 40.77, 41.67, and
42.55 Hz (hereinafter referred to as 42-Hz regimen) in order to
check the overall consistency of MRE during VM and if there is a
noticeable influence of frequency.

BH-in and BH-ex experiments consisted of 30-s baseline
acquisition with the volunteer breathing normally, followed by

FIGURE 1 | Experimental setup. (A) Image slice position (dashed yellow line) and region of interest (ROI) based on anatomical image (yellow solid line in the insert) for
rt-MMRE of the brain. (B) Diagram of the four flask drivers with vibration frequencies and 180◦-phase alterations between the drivers. (C) Top view of positioning of
actuator setup in the 32-channel head coil. (D) Bottom view of driver setup.
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a 25-s breath-hold in inspiration or expiration, and a final 35 s
recovery phase (total scan time: 90 s).

A resting period of at least 30 s was observed between the
experiments. Start and stop commands were given as visual
signals to the volunteers. The finger pulse was continuously
recorded to track changes in heart rate.

Additionally, anatomical images were acquired using a T1-
weighted, turbo-spin echo (TSE) sequence.

rt-MMRE Pulse Sequence
Single-frequency rt-MRE using a 2D single-shot gradient echo
MRE pulse sequence with spiral readout was recently introduced
for directly mapping skeletal muscle function (Schrank et al.,
2020a). For rt-MMRE we used a similar prototype—a single-shot,
gradient-echo sequence with dual-density spiral readout, which
samples multifrequency vibrations in a stroboscopic fashion as
illustrated in Figure 2. TR was 62 ms including RF excitation with
20◦ flip angle, 20 ms TE, 28 ms readout length, signal spoiling
and fat suppression. For motion encoding, a single-cycle, bipolar
motion-encoding gradient of 17.5-ms duration (57 Hz) and 40-
mT/m amplitude was deployed within each TR according to
the principle of fractional encoding (Rump et al., 2007). Images

were reconstructed using the SPIRiT non-Cartesian parallel
imaging technique (Lustig and Pauly, 2010). Three Cartesian
motion components were encoded in an interleaved fashion
within the series of consecutive TRs, yielding a sequence of 1,458
wave images. Collapsing these three components into a single
viscoelasticity map resulted in a total MRE frame rate of 3 ×
TR = 186 ms, or approximately 5.4 Hz.

Data were acquired in a single transverse image slice with a
field of view (FoV) of 192 × 192 mm2 and 2 × 2 × 5 mm3 voxel
size. The slice was automatically positioned using the localizer-
based auto-align function at the level of the basal nuclei along the
largest diameter of the lateral ventricles in the sagittal plane as
shown in Figure 1.

Parameter Reconstruction
The 1,458 raw, complex-valued MR images were smoothed with
a Gaussian filter (σ = 0.65 px) and subsequently unwrapped
using gradient unwrapping (Hirsch et al., 2017). The three
vibration frequencies were decomposed by temporal Fourier
transformation. Due to stroboscopic undersampling of vibrations
in rt-MMRE, the frequencies appeared at aliased positions in
the spectrum (see Figure 3A). The frequencies were selected

FIGURE 2 | Steady-state gradient echo timing diagram with spiral readout trajectory for single-shot multifrequency real-time MRE. From top to bottom: Experimental
design with timing, harmonic vibrations at three frequencies over a period of 9 × 3 TRs with stroboscopic image acquisition below, interleaved wavefield encoding
over 2 × 3 TRs, simplified sequence diagram with combined RF and x-gradients to illustrate fat saturation, RF excitation, motion encoding and spiral readout by
x-gradients over a single TR period.
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by three Gaussian bandpass filters (σ = 0.1 Hz) each of which
centered at the expected (aliased) frequency of the fundamental
drive frequency. These filters were used for inverse Hilbert
transformation to compute complex-valued wave fields (wave
images) for each vibration frequency, separately yielding 4,374
(1,458 × 3 vibration frequencies) time-resolved wave images
(Schrank et al., 2020b). Nine wave images of three Cartesian field
components and three vibration frequencies (see Figure 3B) were
fed into multifrequency dual elasto-visco inversion (Papazoglou
et al., 2012), yielding 486 (4,374/3 encoding components/3
vibration frequencies) consecutive maps of stiffness (| G∗|) and

loss angle (ϕ) with 5.4-Hz frame rate over the entire examination
time. While | G∗| is a measure of stiffness, ϕ describes the ratio
of elastic to viscous tissue properties indicating fluid properties
as explained in Streitberger et al. (2020) | G∗| and ϕ maps from
the beginning and end of the series were discarded within 5-
s margins to minimize transient effects introduced by periodic
boundary conditions of the Hilbert transform. Consequently,
the final observation window was 80 s. All data processing
was done in MATLAB (version 2020a). The inversion pipeline
is publicly available at https://bioqic$-$apps.charite.de (Meyer
et al., 2019). Main results are given in Table 1, Table 2 and in

FIGURE 3 | Representative Fourier power spectra with three aliased excitation frequencies for one motion-encoding component above and wave deflections for
three encoding components and three vibration frequencies below. (A) Power spectra for vibrations at 31-Hz regimen. Color coding indicates the respective
vibration frequency with Gaussian bandpass filter used for Hilbert transformation. The frequency axis is scaled from 0 to the Nyquist frequency in Hz, which is
determined by the sampling rate of 5.4 Hz. Stroboscopic sampling of multiharmonic vibrations causes all frequencies to be aliased within this limited frequency
window. (B) Representative wave images after frequency decomposition for the three encoding components using the 31-Hz regimen (30.03, 30.91, 31.8 Hz).
[�,↔,l denote deflections through-plane (head-to-feet), left-right, and up-down (anterior-posterior), respectively].

TABLE 2 | Mean | G*| (SD) in Pa and mean ϕ (SD) in rad for each phase and participant in the Valsalva maneuver experiments using the 31-Hz regimen (30.03,
30.91, 31.8 Hz).

ID Mean | G*| (SD) in Pa Mean ϕ (SD) in rad

BSL ESM LRM REC BSL ESM LRM REC

1 1290(6) 1323(17) 1313(5) 12902 (8) 0.841(0.001) 0.831(0.001) 0.849(0.001) 0.840(0.001)

2 1243(16) 1340(17) 1327(10) 1237(11) 0.816(0.007) 0.798(0.003) 0.799(0.003) 0.817(0.001)

3 1351(11) 1415(14) 1409(5) 1336(9) 0.783(0.001) 0.769(0.003) 0.791(0.005) 0.783(0.002)

4 1490(12) 1530(29) 1525(6) 1495(8) 0.87(0.002) 0.853(0.001) 0.87(0.003) 0.868(0.004)

5 1441(6) 1484(24) 1566(14) 1456(10) 0.799(0.003) 0.777(0.005) 0.811(0.009) 0.794(0.004)

6 1502(4) 1536(7) 1609(3) 1511(7) 0.795(0.001) 0.789(0.004) 0.799(0.002) 0.795(0.002)

7 1321(8) 1363(17) 1395(14) 1301(11) 0.818(0.004) 0.815(0.006) 0.83(0.002) 0.829(0.002)

8 1495(6) 1519(20) 1655(8) 1534(16) 0.791(0.002) 0.763(0.004) 0.796(0.008) 0.79(0.004)

9 1515(7) 1620(9) 1617(6) 1549(1) 0.809(0.003) 0.765(0.008) 0.778(0.006) 0.792(0.001)

10 1395(4) 1431(8) 1473(8) 1401(8) 0.78(0.002) 0.776(0.004) 0.779(0.003) 0.778(0.001)

11 1237(12) 1238(11) 1312(15) 1242(9) 0.807(0.004) 0.806(0.003) 0.81(0.005) 0.804(0.001)

12 1312(11) 1350(7) 1416(11) 1310(11) 0.758(0.003) 0.742(0.004) 0.755(0.001) 0.754(0.003)

13 1509(4) 1510(15) 1572(2) 1509(5) 0.809(0.001) 0.807(0.001) 0.804(0.001) 0.8(0.001)

14 1373(8) 1407(14) 1392(3) 1353(4) 0.792(0.002) 0.777(0.002) 0.787(0.002) 0.786(0)

15 1295(8) 1421(35) 1407(13) 1325(15) 0.784(0.005) 0.741(0.018) 0.796(0.002) 0.781(0.003)

16 1356(7) 1391(19) 1422(2) 1330(18) 0.813(0.003) 0.795(0.004) 0.805(0.002) 0.805(0.003)

17 1157(3) 1192(9) 1175(12) 1212(6) 0.733(0.003) 0.725(0.002) 0.722(0.002) 0.728(0.001)

Mean(SD) 1370(106) 1416(108) 1446(126) 1376(108) 0.800(0.030) 0.784(0.032) 0.799(0.032) 0.797(0.031)

BSL, Baseline; ESM, established maneuver; LRM, late response maneuver; REC, recovery.
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Supplementary Tables 1a–c. Raw data can be made available
upon request without restrictions.

Parameter Analysis and Statistical Tests
For every time frame, | G∗| and ϕ were quantified by averaging
values over the same region of interest (ROI). ROIs were
manually drawn based on anatomical T1-weighted images, as
shown in Figure 1A. Furthermore, these ROIs were refined
by empirical thresholds of 10 (time-averaged MRE signal
magnitude) and of 950 Pa (time-averaged | G∗| map) to remove
ventricles and larger sulci similar to Shahryari et al. (2020) (see
Figure 4).

The same ROI was also used to determine magnetization
signal-to-noise ratio (SNR) and wave displacement SNR (WSNR)
for every time frame. WSNR was derived using the blind noise
estimation method proposed by Donoho et al. (1995) as outlined
and previously applied to MRE data in Bertalan et al. (2019b) and
Schrank et al. (2020a) This noise estimation method is suited for
wave image analysis since the spatial frequencies of MRE waves
and noise are well separated in the wavelet domain (Selesnick
et al., 2005; Barnhill et al., 2017).

To test if multifrequency inversion yields more stable values
than single-frequency inversion we determined the coefficient of

FIGURE 4 | Representative rt-MMRE MRE magnitude, CSF masks, | G*| and
ϕ maps of the in vivo human brain. Time-averaged MRE magnitude, derived
CSF masks, | G*| and ϕ maps of one volunteer over the four phases [baseline
(BSL), established maneuver (ESM), late response maneuver (LRM) and
recovery (REC)] of the VM experiment using the 31-Hz regimen (30.03, 30.91,
31.8 Hz). The number of CSF associated voxels for each phase was BSL:
1079, ESM: 1128, LRM: 1069, REC: 1074. The | G*| maps show slightly
elevated values throughout the slice. The region of interest (ROI) is indicated
by white lines. The same ROI was used for all phases and for the ϕ maps as
well.

variation (CV) during the baseline phase prior to VM, BH-in
and BH-ex for both | G∗| and ϕ in all volunteers. The same raw
data was used, but for the single-frequency inversion only one
frequency from the temporal Fourier spectrum was selected.

We further analyzed difference | G∗| and ϕ values relative
to mean baseline values given as 1| G∗| = | G∗| (t) − | G∗|
(baseline) (correspondingly for 1ϕ) in order to quantify individual
parameter changes. In addition, peak viscoelasticity values and
their temporal delays relative to the onset and end of VM were
identified and tabulated for each volunteer.

Finally, group statistics was applied to the absolute values
of | G∗| and ϕ, after temporal averaging over the following
experimental phases for each participant:

(1) Baseline (BSL): 2.5–22.5 s
(2) Established maneuver (ESM): 32.5–47.5 s
(3) Late response maneuver (LRM): 52.5–57.5 s
(4) Recovery (REC): 70–80 s.

Of note, these time intervals were given by the aforementioned
study design (30-25-35 s. for baseline-breathold/VM-recovery)
minus 2.5 s transition phases at the beginnings and ends of
these phases including an additional late-response phase. The
transition phases were discarded from our analysis in order to
minimize transients resulted by the frequency bandpass filter.
Also, 5 s BH (25–30 s) and 10 s of post-VM (60–70 s) were
considered as transition phases and henceforth not included
in our group statistical analysis. All phases are demarcated in
Figure 5.

To test possible deformations of lateral ventricles due to VM
as reported previously (Ertl-Wagner et al., 2001), we applied
automatic segmentation of cerebral spinal fluid (CSF) to the
temporal averaged MRE magnitude images of the different
experimental phases using SPM12 (Penny et al., 2011; see
Figure 4). CSF probability maps were thresholded at 0.5 to
generate logical CSF-associated voxel masks. A linear mixed-
effects model with varying intercept was employed. CSF volume
was used as dependent variable and the individual phases as
independent variables. Participants were assigned as random
effect, and P-values were calculated using Tukey’s post hoc
test with Bonferroni correction for multiple comparisons. To
test for significant changes in | G∗| and ϕ between phases
(1)–(4), a linear mixed-effects model with varying intercept was
employed. | G∗| and ϕ were used as dependent variables and
the individual phases as independent variables. Participants were
assigned as random effect, and P-values were calculated using
Tukey’s post hoc test with Bonferroni correction for multiple
comparisons. This test does not account for inter-individual
slope variations of | G∗| and ϕ but analyzes the significance
of temporal changes of these parameters. SNR and viscoelastic
parameters were correlated using a linear mixed model with
| G∗| and ϕ as dependent variables and SNR or WSNR as fixed
effects with subjects as random factor. All statistical analysis
was done in R (version 3.6.2). Unless otherwise stated, errors
are given as standard deviation (SD). Correlations between
viscoelastic baseline values as well as individual peak responses
and participant characteristics (see Table 1) were analyzed
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FIGURE 5 | Time courses of group mean values of 1| G*| (top of subfigures) and 1ϕ (bottom of subfigures) using the 31-Hz regimen (30.03, 30.91, 31.8 Hz). The
gray areas show 95% confidence intervals. For Valsalva maneuver (VM), timing was as follows: breath-hold in inspiration (BH-in) at 25 s, start of VM at 30 s, stop of
VM at 50 s. For breath-hold (BH) experiments, timing was as follows: start of BH at 25 s, stop at 50 s. (A) Valsalva maneuver (VM). (B) Breath-hold in inspiration
(BH-in). (C) Breath-hold in expiration (BH-ex).

using Pearson’s correlation coefficient. P-values below 0.05 were
considered statistically significant.

RESULTS

Variation in baseline | G∗| and ϕ was smaller when using
multifrequency inversion (CV = 0.74%, 0.51%) than single
frequencies (CV = 0.99%, 0.77%, P < 0.001).

Figure 4 shows representative time-averaged MRE magnitude
images, automatically segmented CSF masks, as well as | G∗|
and ϕ maps acquired during the four phases of the experiment.
A slight increase in | G∗| was visible in the late VM response,
whereas no response of ϕ was apparent in individual maps.
Group statistics revealed no significant change of CSF-associated
voxels between the different states of the maneuver. A descriptive
statistic for the individual phases of the VM experiment
in the 31-Hz regimen and for each participant is given in
Supplementary Table 2.

Relative | G∗| and ϕ Changes
Individual analysis of | G∗| showed an increase (6.7 ± 4.1%,
P < 0.001) at approximately 2.4 ± 1.2 s after start of VM and
5.5 ± 2.0 s after end of VM (7.4 ± 2.8%. P < 0.001). ϕ decreased
during ESM (−2.1 ± 1.4%, P < 0.001). Averaged time courses of
1| G∗| and 1ϕ are presented in Figure 5. An early peak of 1|
G∗| showed a difference of 69 ± 50 Pa (P < 0.001) from baseline
values. After a short drop, 1| G∗| steadily increased during ESM.
The second overshoot differed from baseline by 82 ± 42 Pa
(P < 0.01). 1| G∗| recovered toward baseline values once the
volunteers returned to normal breathing. 1ϕ was constantly
decreased during ESM (−0.018± 0.012 rad, P < 0.01).

The BH-in experiment showed an increase in 1| G∗| after
3.0± 1.0 s (18± 16 Pa, P < 0.001) with a maximum at 17.0± 2.0 s

after start of BH-in (32± 29 Pa, P < 0.001). 1ϕ decreased during
ESM (−0.006 ± 0.004 rad, P < 0.001) reaching a minimum at
17± 2 s after start of BH-in (−0.009± 0.007 rad, P < 0.001).

The BH-ex experiment showed no clear peak, neither in
1| G∗| nor 1ϕ. | G∗| increased continuously with onset of BH-
ex and reached a maximum 2.5 ± 1.5 s after the end of BH-ex
(26± 23 Pa, P < 0.001).

Absolute | G∗| and ϕ Changes
Figure 6 shows boxplots with median effects for different states
of the maneuver for | G∗| and ϕ. The significance levels,
indicated by asterisks, were determined from a linear mixed
model analysis with varying intercept and participants as random
effect. For the VM, different individual effect sizes were observed;
however, all subjects showed an increase in | G∗| and a decrease
in ϕ due to the maneuver. Averaged | G∗| values changed
between all phases of the experiment (range: 1,370–1,446 Pa)
with significance levels indicated in the figure. Averaged ϕ values
changed both from BSL to ESM and again from ESM to LRM
(range: 0.784–0.800 rad).

By contrast, | G∗| only changed at the start and end of the
maneuver in BH-in (range: 1,338–1,372 Pa), whereas ϕ changed
between BSL and ESM as well as between ESM and LRM
(range: 0.783–0.792 rad). In the BH-ex experiment, | G∗| changed
between LRM and REC (range: 1,348–1,371 Pa) while ϕ changed
between ESM and LRM (range: 0.786–0.791 rad).

Results of the second VM experiment performed using the
42-Hz regimen are presented in Supplementary Material. No
significant differences in viscoelastic responses between the 31-
Hz and 42-Hz regimen were observed (P = 0.24).

Descriptive statistics of | G∗| in Pa and ϕ in rad for the
individual phases of the VM experiment and for each participant
are summarized in Table 2A. Correspondingly, statistical results
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FIGURE 6 | Group values as boxplots for the absolute values of | G*| (top) and ϕ (bottom) in each phase illustrate the changes in viscoelastic properties induced by
the different maneuvers using the 31-Hz regimen for each phase [baseline (BSL), established maneuver (ESM), late response maneuver (LRM), recovery (REC)].
(A) Valsalva maneuver (VM). (B) Breath-hold in inspiration (BH-in). (C) Breath-hold in expiration (BH-ex). Asterisks at the top demarcate significant changes in | G*|
and ϕ which were determined from a linear mixed-effects model with varying intercept. | G*| and ϕ assigned dependent variables and the individual phases as
independent variables. Participants were assigned as random effect, and P-values were calculated using Tukey’s post hoc test with Bonferroni correction for multiple
comparisons. (*P < 0.05, ***P < 0.001).

for the breath-hold and VM experiments performed with the
42-Hz regimen are presented in Supplementary Tables 1a–c.
Participant characteristics did not correlate with | G∗| or ϕ .

SNR Analysis
Time-averaged SNR and WSNR values did not change
significantly across volunteers and over time (P = 0.43).
Mean SNR was 29 ± 2 dB across all volunteers with minor
and insignificant variations of ± 0.5 dB over the course of
the experiment. Mean WSNR was 36 ± 2 dB with minor
and insignificant variations of ± 1 dB over the course of the
experiment. Significant correlation between group mean | G∗|
and ϕ was observed (31-Hz regimen: R =−0.4, P < 0.001, 42-Hz
regimen: R =−0.5, P < 0.001).

DISCUSSION

This paper presents a novel rt-MMRE technique for the in vivo
measurement of rapid and non-periodic changes in brain
viscoelasticity in humans. MRE exploiting stroboscopic sampling
of multifrequency harmonic vibrations revealed the viscoelastic
response of brain tissue to the Valsalva maneuver. Overall, the
extension of rt-MRE to rt-MMRE by simultaneous excitation of
multifrequency oscillations has increased the consistency of our

measurements without adding scanning time. Probably for this
reason, all subjects consistently showed an increase in | G∗| and
a decrease in ϕ with VM, resulting in high statistical significance.
This basic finding is remarkable, since the VM is known to induce
variability by subjective pressure generation. To further discuss
our results we start by briefly reviewing the basic effects of VM
on cerebral perfusion and ICP.

Physiological Effects of VM on Cerebral
Blood Flow, ICP and MRE
In this study, elevation of intrathoracic pressure during VM was
induced by deep inspiration following and increased abdominal
pressure similar to the maneuver used in Ipek-Ugay et al. (2017).
With onset of VM and elevated intrathoracic pressure, arterial
blood pressure (ABP) increases (Elisberg, 1963; Smith et al.,
1987). Intrathoracic pressure is communicated through the
vascular tree into the cranial cavity, leading to a transient
increase in ICP and obstruction of venous outflow from the brain
with, thus, increased venous pressure (Prabhakar et al., 2007).
Reduced venous return to the heart causes ABP to decrease.
Hence, cerebral perfusion pressure is reduced, leading to a
reduction in cerebral blood flow (CBF). Cerebral autoregulation
is a mechanism to maintain constant CBF. For this reason,
cerebral autoregulation, after the decrease in CBF, immediately
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FIGURE 7 | Diagram of average viscoelastic response with typical mean
arterial pressure reported by Pstras et al. (2016) and heart rate variations
during and after the Valsalva maneuver with inspiration before the maneuver
as measured in this study.

responds to reduce vascular resistance by dilating the cerebral
arteries in order to facilitate blood flow and maintain stable
CBF. At the same time, the heart rate is increased through the
baroreflex (Eckberg, 1980; Looga, 1997), which restores normal
ABP and accumulation of blood in the brain, since venous return
is still diminished. Constant influx of blood with reduced outflow
steadily increases ICP. With release of intrathoracic pressure,
there is a significant drop of ABP (Stone et al., 1965), and ICP
returns to normal. As a result, normal venous return is restored
and more blood flows back into the heart, leading to a transient
increase in cardiac output and overshoot in ABP. Since vascular
resistance is still low, CBF overshoots as well.

The time curves of MRE parameters presented in Figure 7
suggest that stiffness (| G∗|) correlates with ICP while viscosity-
related ϕ correlates with reduced venous outflow or cerebral
perfusion pressure. Perfusion pressure is proportional to CBF
normalized by mean vascular diameter (Hetzer et al., 2019)
and, thus, decreases upon vasodilation with constant CBF. The
ramp-up of | G∗| during the continuing VM phase seems to
reflect the increasing heart rate and steady accumulation of blood
in the brain, which drives ICP. By contrast, ϕ remains low
throughout the VM phase as if viscous damping in brain tissue
is lower when perfusion pressure is reduced. It is an intriguing
result that possible ICP changes during VM can be indirectly
monitored using rt-MMRE since non-invasive ICP measurement
are still an unsolved problem. These findings could help to
relate pathologically increased ICP to overall brain stiffness for
clinical applications.

In previous work we observed an increase in ϕ of the brain
due to hypercapnia (2% increase) (Hetzer et al., 2019) and
arterial pulsation (0.5% increase) (Schrank et al., 2020b). In
both studies, there was an increase in CBF with a concomitant
increase in perfusion pressure while, as explained above, CBF in
VM is, due to cerebral autoregulation, associated with a fairly
constant CBF and reduced perfusion pressure. Together, the
two rt-MMRE parameters, | G∗| and ϕ, provide complementary
information on the concert of physical parameters involved in
ICP autoregulation.

Overall, our baseline parameters of brain viscoelasticity are
in good agreement with previously reported values acquired
in similar frequency ranges (Hetzer et al., 2018, 2019; Schrank
et al., 2020b). We observed no significant differences in the
responses of rt-MMRE parameters to VM between the 31
and 42 Hz regimens. This consistency of multifrequency data
further validates the technique of rt-MMRE. Furthermore, this
observation indicates that the poroelastic response of brain
tissue (Lilaj et al., 2020) is similar at 30 and 40 Hz (McGarry
et al., 2015). Additional validation of rt-MMRE was obtained
by reference experiments performed during breath-holds but
without sustained VM. BH-in induced a similar increase in
stiffness and decrease in ϕ as observed during VM. Thus, from
an MRE perspective, deep inspiration followed by breath-holding
induces effects similar to a light VM. Otherwise, no such changes
were observed in BH-ex, rendering this maneuver neutral with
regard to ICP. Nevertheless, even BH-ex had some small effect
on MRE parameters, which, notably, were not correlated to
changes in either SNR or WSNR. Also, analysis of CSF volume
and ventricle size did not reveal any significant correlation
with VM. Previous work by us and others showed that total
brain volume increases due to VM by approximately 3% while
ventricle volume shrinks by 20% (Ertl-Wagner et al., 2001;
Mousavi et al., 2014). In contrast to these studies, our subjects
were instructed to perform a moderate Valsalva maneuver
to minimize variations in thoracic pressure, muscle strain,
and head position.

In our previous work we used ultrasound time-harmonic
elastography in a temporal bone window to acquire VM-induced
rapid changes in shear wave speed in the temporal lobes of
healthy volunteers (Tzschatzsch et al., 2018). Effect sizes in
that region were higher (10.8 ± 2.5%) than revealed by MRE
in the full brain tissue slice. It should be noted that the
regions covered by our current study do not correspond to
the medial temporal gyrus addressed by transtemporal time-
harmonic elastography, which makes a direct comparison of
effect sizes between the two studies difficult. To analyze the
spatial representation of viscoelasticity changes we performed
automatic image segmentation using MNI-based registration
as well as voxel-wise correlation analysis based on a boxcar
function. No significant patterns of viscoelasticity changes could
be detected. A more detailed analysis of the spatiotemporal
representation of brain viscoelasticity in response to the
VM is warranted.

Our study has limitations. The nature of stroboscopic
sampling of vibrations by steady-state single-shot acquisitions
limited our technique to 2D wave field sampling including
three encoding components. This intrinsic limitation of rt-
MMRE can currently not be overcome by a multishot variant
because VM is a non-periodic event and cannot be repeated
with enough temporal reliability. Consequently, our multi-
frequency inversion technique was entirely 2D, which may have
led to variability due to different slice positioning and oblique
intersection of 3D shear wavefields rendering our values as
effective viscoelasticity parameters. Nevertheless, our conclusions
are drawn from group values in two different frequency regimens.
The fact that these values changed with statistical significance
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in VM, while neither SNR nor anatomy changed, emphasizes
the robustness of the observed MRE effects. Furthermore, our
data could be used for suppression of bulk waves based on
the in-plane curl component. However, this curl-analysis did
not provide more consistent values than our standard MDEV
inversion with respect to confidence intervals and statistical
power. Finally, 2D brain MRE has a long tradition in disease
detection (Wuerfel et al., 2010; Streitberger et al., 2012, 2017,
2020; Lipp et al., 2013, 2018; Fehlner et al., 2016; Gerischer et al.,
2018) as well as in the study of brain physiology (Sack et al., 2009,
2011; Schrank et al., 2020b; Herthum et al., 2021). It remains to
be determined whether single-frequency 3D MRE can provide
similarly consistent clinical and physiological brain data. Instead,
as shown herein, unintentional breath-holds may affect 3D MRE
due to long scan times. Generally, current MRE techniques
cannot account for poroelasticity, heterogeneity, hyperelasticity,
anisotropy and temporal variations of brain tissue at the same
time. Therefore, to date all values measured by brain MRE should
be considered as effective parameters.

In summary, we studied the viscoelastic response of the
human brain to breathing and the Valsalva maneuver using
a novel real-time multifrequency MRE technique. Significant
increases in brain stiffness and decreases in ϕ due to VM were
observed with use of two different frequency regimens. Control
experiments showed that breath-holds after inhalation induce
a response similar to VM but with a smaller effect size. By
contrast, breath-holds after exhalation had the smallest effects
on cerebral MRE parameters. The time courses we report here
provide a reference for the VM response in healthy subjects and
might be of value for studying dysfunctional autoregulation as
associated with various neurological diseases. rt-MMRE is a fast
technique which can provide consistent imaging markers of brain
viscoelasticity within a fraction of a minute.
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According to the US Defense and Veterans Brain Injury Center (DVBIC) and Centers
for Disease Control and Prevention (CDC), mild traumatic brain injury (mTBI) is a
common form of head injury. Medical imaging data provides clinical insight into
tissue damage/injury and injury severity, and helps medical diagnosis. Computational
modeling and simulation can predict the biomechanical characteristics of such injury,
and are useful for development of protective equipment. Integration of techniques from
computational biomechanics with medical data assessment modalities (e.g., magnetic
resonance imaging or MRI) has not yet been used to predict injury, support early
medical diagnosis, or assess effectiveness of personal protective equipment. This
paper presents a methodology to map computational simulations with clinical data for
interpreting blunt impact TBI utilizing two clinically different head injury case studies. MRI
modalities, such as T1, T2, diffusion-weighted imaging (DWI) and apparent diffusion
coefficient (ADC), were used for simulation comparisons. The two clinical cases have
been reconstructed using finite element analysis to predict head biomechanics based
on medical reports documented by a clinician. The findings are mapped to simulation
results using image-based clinical analyses of head impact injuries, and modalities
that could capture simulation results have been identified. In case 1, the MRI results
showed lesions in the brain with skull indentation, while case 2 had lesions in both coup
and contrecoup sides with no skull deformation. Simulation data analyses show that
different biomechanical measures and thresholds are needed to explain different blunt
impact injury modalities; specifically, strain rate threshold corresponds well with brain
injury with skull indentation, while minimum pressure threshold corresponds well with
coup–contrecoup injury; and DWI has been found to be the most appropriate modality
for MRI data interpretation. As the findings from these two cases are substantiated
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with additional clinical studies, this methodology can be broadly applied as a tool to
support injury assessment in head trauma events and to improve countermeasures (e.g.,
diagnostics and protective equipment design) to mitigate these injuries.

Keywords: traumatic brain injury (TBI), computational, modeling and prediction, traffic accidents, magnetic
resonance imaging (MRI), diffusion weighted imaging (DWI), apparent diffusion coefficient (ADC), injury
assessment

INTRODUCTION

Traumatic brain injury (TBI) has become a growing health
concern worldwide, leading to a wide range of problems from
mild memory deficits to persistent vegetative states (Florence
et al., 2018). According to the 2014 Centers for Disease Control
and Prevention (CDC) statistics, over 2.8 million cases of TBI
are diagnosed in the United States alone (CDC, 2020). The
majority of cases are often the result of motor vehicle accidents,
contact sports, and falls. The Glasgow Coma Scale (GCS),
based on visual, verbal, and motor response, has been used
as the standard diagnostic tool to assess head injuries, which
are categorized as mild (GCS score: 13–15), moderate (GCS
score: 9–12), and severe (GCS score: 8 or less). Depending
upon the extent of the insult and the intensity of the impact,
injuries can result in combinations of skull fractures, brain
hemorrhage, contusions, subdural hematoma, and diffusive
axonal injuries, which can be diagnosed from mild to severe
range depending on GCS scores (Post et al., 2015). GCS score
based diagnosis can be compromised by clinician-to-clinician
variability despite attempts to adhere to the guidelines of the
American College of Emergency Physicians criteria (Holdgate
et al., 2006). Categorically similar GCS scores can be assigned
to vastly different brain injuries ranging from localized lesions
with/without skull fractures to coup and contrecoup without
any presentation of outward signs of injury. Further variation
in diagnoses stems from differences in clinical training, available
clinical tools, and also the country of training. Despite the
engineering perception that bigger impacts worsen the condition,
it was found that skull fractures have not consistently correlated
with worsened clinical prognosis. Some TBI patients with skull
fracture may have mild symptoms from brain injury, while
others with no skull fractures can have sustained severe brain
injury (Goldsmith, 2001). While moderate to severe injuries are
frequently and easily diagnosed based upon impairments that
are clinically obvious, mild injuries have been much harder to
diagnose, and distinguishing the extent of the injury based upon
clinical presentation with GCS scores is typically challenging.

Neuroimaging tools, such as computed tomography (CT)
and magnetic resonance imaging (MRI), play a critical role in
clinical evaluation of patients with TBI, specifically with mild
TBI, and help characterize the types of injury in addition to
GCS scores. Acute TBI could lead to both extra-axial and intra-
axial injuries. The former manifests as extradural, subdural,
and sub-arachnoid lesions. The latter is seen as contusions and
parenchymal hematomas, diffuse axonal injury, and vascular
injury (Kazam and Tsiouris, 2015). In contrast to CT, MRI
can depict the exquisite details of brain parenchymal changes
in mild TBI (Wu et al., 2016). Subtleties in some cases of

mild TBI with various macrostructural and microstructural
changes, including disrupted neuronal tracts and blood-related
products in the brain, have been revealed with novel and
unconventional magnetic resonance (MR) techniques including
three-dimensional MRI, susceptibility-weighted imaging (SWI),
echo-planar imaging-based diffusion-weighted imaging (DWI)
and apparent diffusion coefficient (ADC) maps, and higher-
order diffusion imaging (Van Boven et al., 2009; Hunter
et al., 2012; Lu et al., 2014). However, these modalities are
infrequently used in the clinical setting due to either lack of high-
resolution MR capabilities or a limited number of specialized
personnel required to process the data. One of the goals of
this study is to understand if these imaging modalities can help
provide information for injury prediction from computational
biomechanics and correspondence.

Over the years, numerous studies on impact head trauma
have been conducted to understand biological and biomechanical
mechanisms of traumatic brain injury. Translational and
rotational forces from rapid acceleration/deceleration of head
(coup and contrecoup injury), blows to the head/falls (local
lesions), and combinations of these loading conditions have
been shown to cause TBI. Pre-clinical models have been a great
resource to understand controlled intracranial injury outcomes,
but bridging the gap between the species to translate the data into
humans has been a challenge (Cernak et al., 2017). Moreover,
the biomechanical parameters that correspond with injury are
currently unclear as also are the intracranial manifestations of
the insult. Post-mortem human subjects have provided important
biomechanical data (Hardy et al., 2007), but the introduction
of sensors and other instrumentation alters the tissue response.
The data collected in the laboratory setting (e.g., cadaveric
studies or controlled experimental impact loading) often do not
translate to “real-world” scenario due to the variety of actual
loading conditions and the clinical presentation. Computational
biomechanics provides an alternative approach to sidestep these
confounding issues (Ji et al., 2014). The validated head model,
such as in Refs. (Mao et al., 2013; Giudice et al., 2019; Zhou
et al., 2019; Budday et al., 2020; Li et al., 2020), can establish
full relationships between the impact loading on the head and
the internal biomechanical response for actual loading conditions
that may not be practical to recreate experimentally. The severity
of injury from these biomechanical measures, such as pressures,
strains, stress, and their time variances, can be represented
using established injury criteria (Zhang et al., 2003, 2004;
Fernandes and Alves de Sousa, 2015) and applying such criteria
for each element of the model.

Our group has developed a multi-fidelity computational
model to represent the dynamics of a pedestrian fall and
subsequent structural response of the human head due to an
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impact (Tan et al., 2020). The developed high-fidelity finite
element (FE) model accurately reproduces the complex internal
and external structures of the head (Cotton et al., 2015) and has
been validated using data from human cadaver tests (Saunders
et al., 2018; Tan et al., 2020). This hybrid (biodynamics and
biomechanics analyses) approach has simplified the simulation
and provided the effect of human body kinematics in calculating
stress and strain distributions in the brain. The biomechanical
results have been compared with MRI readouts from a case of
a motor vehicle accident involving a fall to show the qualitative
correspondence between the biomechanical outcomes and the
assessed injury (Tan et al., 2020).

A key question from qualitative assessments in our previous
research (Tan et al., 2020) was if the clinical data from MR
images and their analyses can be quantitatively compared with
biomechanical simulation results of real-world blunt impact
incidents. The application of different MRI modalities to
cross-correlate clinical injury assessment with biomechanical
simulations of reconstructing an incident is a missing link.
In this work, we aim to develop a method that can map
the clinical findings onto quantitative biomechanical results,
and create a link between the clinical and biomechanics
research on brain injury models and mechanisms due to blunt
impact. We analyze two clinical cases of blunt impact, one
with coup injury and skull indentation, and the other with
coup–contrecoup injury and no skull indentation. The head
finite element (FE) model is used to reconstruct the high-
fidelity biomechanical response of the skull and brain to blunt
impact in a fall based on eyewitness reports and clinical
assessment. Different mechanical measures such as pressure,
shear stress, principal strain, strain rate, product of strain and
strain rate, and strain energy are analyzed to identify possible
correspondence between their field values and in vivo MRI
data. The thresholds of such biomechanical measures for injury
severity are determined based on the neuroimaging modality
that quantifies the injury. We found that an unconventional
MRI modality, such as DWI, is a useful diagnostic tool that
can inform computational biomechanics, irrespective of injury
type. A methodological implementation of this approach to map
computational biomechanical simulation results with clinical
image-based data is discussed.

METHODS

Ethics of Data Collection
A written informed consent was obtained from the individuals
for the publication of any potentially identifiable images or data
included in this article. The institutional Ethics Committee for
the Institute of Nuclear Medicine and Allied Sciences (INMAS)
approved the study.

Clinical Data Collection
Two clinical cases of blunt impact were considered. Both cases
had sustained blunt injury to the cranium, but through different
mechanisms. While one individual had a motor vehicle accident,
the other sustained a fall from a height. Both suffered from a

concussion with transient loss of consciousness, corresponding
to mild traumatic brain injury.

Imaging modalities like CT and MRI are widely used to assess
the extent of damage to the skull and brain parenchyma. Among
these modalities, MRI is acclaimed as the most sensitive to detect
and delineate brain injury (Amyot et al., 2015). MRI data was
collected on a Siemens Skyra 3.0T scanner using a 20-channel
phased array head coil and a 45 mT/m actively shielded gradient
system. The MR protocol used in this study consisted of the
following:

1. Three-plane localizer imaging with TR = 8.6 ms and
TE = 4.0 ms;

2. T1 weighted axial images with TR = 2,110 ms,
TE = 12.0 ms, TI = 898 ms, slice thickness = 5 mm,
field of view = 179× 220 mm;

3. T2 weighted axial images with TR = 6,000 ms, TE = 100 ms,
slice thickness = 5 mm, field of view = 179 × 220 mm,
image matrix = 175× 320;

4. Fluid attenuation inversion recovery (FLAIR) axial images
with TI = 2,500 ms, TR = 9,000 ms, TE = 81.0 ms, field
of view = 172 × 220 mm, slice thickness = 5 mm, image
matrix = 175× 320;

5. FLAIR coronal images with TI = 2,500 ms, TR = 9,000 ms,
TE = 81.0 ms, field of view = 172 × 220 mm, slice
thickness = 4.5 mm, image matrix = 175× 320;

6. T2 weighted sagittal images with TR = 4,550 ms,
TE = 87 ms, slice thickness = 4 mm, field of
view = 220× 220 mm, image matrix = 285× 384;

7. Magnetization-prepared rapid acquisition gradient
echo (MPRAGE) with 160 sagittal slices, slice
thickness = 0.9 mm, field of view = 240 mm, TR = 1,900 ms,
TE = 2.49 ms;

8. Susceptibility-weighted imaging (SWI) with TR = 28 ms,
TE = 20 ms and 3D MPRAGE images using TI = 900 ms,
TR = 1,900 ms, TE = 2.4 ms, slice thickness = 0.9 mm, field
of view = 240× 240 mm, and image matrix = 218× 256;

9. Echo-planar imaging (EPI) sequence for generation of
DWI and subsequent ADC maps with TR = 8,800 ms,
TE = 95 ms, slice thickness = 3 mm, field of
view = 230× 230 mm, and image matrix = 128× 128.

Each of the above sequences highlights a particular aspect of
the tissue, and the integrated use of these sequences provides
a holistic understanding of the organ being imaged as well as
its underlying pathology. T1-weighted sequences are best for
producing the most “anatomical” representation, resulting in
images that most closely approximate the macroscopic anatomy
of tissues (Mangrum et al., 2012). T2-weighted images are
excellent for highlighting pathology as they are very sensitive
to changes in water content (Mangrum et al., 2012). FLAIR
images are especially useful in the brain, and enable detection
of parenchymal edema without the glaring high signal from
cerebrospinal fluid (CSF) (Vaswani et al., 2014). SWI images,
with their superior sensitivity for paramagnetic deoxygenated
blood products enable the detection of hemorrhagic foci in the
parenchyma (Tong et al., 2008). Some of the abovementioned
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sequences are acquired in all three planes of axial, coronal,
and sagittal so as to better visualize the details. The MPRAGE
sequence is a three-dimensional T1-weighted sequence, which
provides a whole brain coverage in a short scan time with
isotropic images that can be viewed in multiple planes
(Nelson et al., 2008).

DWI exploits the random motion of water molecules in
tissue and thereby gives insight into cellularity, cell swelling,
and edema (Hagmann et al., 2006). This random motion can be
quantitatively assessed using the ADC value, which is displayed
as a parametric map that reflects the degree of diffusion of
water molecules through different tissues. The normal ADC value
ranges from 700 to 1,000 × 10−6 mm2/s for gray matter, from
670 to 800 × 10−6 mm2/s for white matter, and from 3,000
to 4,000 × 10−6 mm2/s for CSF (Sener, 2001). Injury to any
part of the brain would alter the ADC value, thus providing
an objective quantitative assessment of injury severity. Currently
available evidence suggests the ADC change is more sensitive in
the detection of sustained brain tissue injury than other available
imaging modalities and is better correlated with symptoms
(Goetz et al., 2004; Moen et al., 2014).

ADC image data were extracted from 45 transverse slices,
4 mm apart, using ImageJ (Schneider et al., 2012) software,
and the data results were saved for further analysis. For 3D
reconstruction, the ADC data were mapped to a rectangular
box with a 128 × 128 × 45 grid. The resulting ADC model
can be viewed in any post-processing application, such as
Paraview (Ahrens et al., 2005), and used to compare with
biomechanical measures such as pressure, shear stress, strain
rate, product of strain and strain rate, and strain energy for
the correlation.

Biomechanics Modeling and Simulation
A multi-fidelity, two-step modeling approach has been used for
simulating the brain injury biomechanics in the reconstructed
accident. The first step simulates the biodynamics of a
whole-body model by the external loading on the body,
representing a pedestrian fall. The second step applies the
initial condition and effective boundary condition from the
biodynamic simulation to the head to determine stresses and
strains in the head and brain using FE-based biomechanics
analysis. The explicit finite element solver CoBi-FEM (Tan
et al., 2017) was chosen for such impact analysis. The
solver has been verified in many biomechanics-related projects
(Teferra et al., 2018; Saunders et al., 2019; Tan et al., 2020;
Tan and Matic, 2020).

To simulate the kinematics of pedestrian fall, an articulated
human biodynamic model developed by Tan and Przekwas
(2011) was used. This articulated human body model is
partitioned into 16 major body components, such as head,
neck, chest, and abdomen. Fifteen joints connect these body
components to represent the pedestrian. The fast-running
biodynamics simulation provides the proper initial and loading
conditions for the high-fidelity head FE model, including
translational and rotational velocities of the head, and forces and
moments at the base of the neck before the head impact. The

details of the biodynamic modeling of an articulated human body
fall can be found in Tan and Przekwas (2011).

To simulate the biomechanics of blunt impact to the
pedestrian due to the fall, the US Naval Research Laboratory
high-fidelity human head FE model, developed based upon
high-resolution MRI scans of 50th percentile adult male, was
used. This model uses 4.5 million tetrahedral elements to
discretize the complicated head geometry that includes 29
anatomic tissue components (Cotton et al., 2015). The average
characteristic element size is less than 2 mm, which is suitable
for capturing impact-induced stress wave propagation in the
head. The material properties of the tissue components in the
head are based on literature findings (Brewick et al., 2017)
that are used to calibrate the material models. The gray matter
and white matter are modeled as hyper-viscoelastic materials.
The cortical and cancellous bones are modeled as elastoplastic
materials to account for large permanent deformation at the
impact region. The CSF in ventricles and subarachnoid space
surrounding the brain and the spinal cord is modeled as a
hyperelastic material with the same speed of sound as water and
a very low shear modulus. Average nodal pressure (ANP) linear
tetrahedral elements (Bonet et al., 2001) are used to circumvent
the locking problem associated with the nearly incompressible
biological tissues. Furthermore, this element does not have
hourglass instability issue and, thus, provides robust performance
in modeling of the large localized deformation in the head (Tan
et al., 2020). We have validated the current head model with the
experimental results of a cadaveric head (Nahum et al., 1977;
Trosseille et al., 1992; Hardy et al., 2007) in both the intracranial
pressure (ICP) and brain motion (Saunders et al., 2018; Tan
et al., 2020). To produce a typical 20 ms of response time, the
simulation required 24 h of computational time using 96 cores on
a high-performance computing (HPC) cluster. The cluster is an
HPE SGI 8600 system with 48 cores per node, where each node
has 192 GB of shared memory, and each core includes an Intel
Xeon Platinum 8168/2.7 GHz processor.

From the FE simulation, we obtain various biomechanical
variables including the indentation of skull and brain, pressure,
principal strain, effective strain, shear stress, von Mises stress,
strain rate, product of strain and strain rate, dilatational strain
energy density, and distortional strain energy density as listed in
Table 1. The strains are based on the Green–Lagrangian strain
tensor E since the simulations involve large strain. The stresses
are based on the Cauchy stress tensor. The strain rate is the
symmetrized velocity gradient. The effective strain is defined as√

3
2E

d : Ed where Ed is the deviatoric strain of E. Similarly, we
can define the von Mises stress and the effective strain rate.
The internal energy can be split into the dilatational energy and
distortional energy. The dilatational energy is the integration
of the product of pressure and local volume change over the
entire volume, while the distortional energy is the integration
of the product of deviatoric stress and deviatoric strain tensors
over the volume. Their maximum or minimum values in the
simulation are used to identify the possible correspondence with
the in vivo MRI injury data. For the 3D spatial dataset, different
cross sections of the head are used for both the qualitative
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and quantitative comparison between MRI data and simulation
results. More details on how to make the comparison specifically
for individual cases will be described in the results.

RESULTS

Clinical Interpretation of Brain Injury Due
to Fall
Table 2 shows the two cases used in this study. High-resolution
image data of case 1 was obtained from an MRI scan of a young
South Asian adult, who had sustained head injury from a road
traffic accident, a few days prior to the scan. The hospital report
indicated that the individual was a pedestrian who was hit by a
speeding motor vehicle from the front, sustained a concussion
due to the backward fall on the ground, and suffered from loss
of consciousness for a period of approximately 20 min. The GCS
score at the time of hospital admission, in less than 1 h from the
blunt impact, was 13, which is attributed to a mild brain injury.
A depressed fracture of the skull with underlying hemorrhagic
changes was observed in CT imaging. The MRI data revealed a
depressed fracture of the right parietal bone of the skull with a
hemorrhagic contusion in the underlying brain parenchyma and
associated subdural hematoma in the first row of Figure 1. The
maximum skull indentation at the impacted region measured
from the MRI image is found to be approximately 9 mm. No
contrecoup injury was observed in the actual medical images
(second row of Figure 1).

Case 2 was a middle-aged South Asian adult, who accidentally
fell to the ground from a height, according to the hospital
report. The individual hit his head in the occipital region and
sustained a head injury with a transient loss of consciousness
for approximately 15 min. At the time of admission to the
hospital, the patient had regained consciousness and had a GCS
score of 15. CT scan revealed hemorrhagic contusions in the
right cerebellar and left frontal regions, but no skull fracture or
visible skull deformation was observed. He underwent an MRI
scan several days after injury. This, too, revealed hemorrhagic
contusions in the right cerebellar and left frontal regions with
a fine extra-axial subdural fluid collection in the left fronto-
temporo-parietal regions suggestive of a coup–contrecoup injury
(last two rows of Figure 1). The complete set of FLAIR images
for both cases can be found in Supplementary Figures 1, 2 which
show the gross injury patterns well.

Correspondence Between Clinical
Images and Biomechanics
Conditions of Biomechanical Simulations
The biodynamics of the fall was modeled using the case reports
documented by the hospital, as well as clinicians’ assessment of
the most likely trajectory of the fall and the impact (Figure 2A).
For the cases simulated here, the assumptions were: (i) The head
was rotating backward around the first thoracic vertebra (T1)
before hitting the ground (Figure 2B). (ii) The head impacted a
solid hemispherical object on the ground. The distance between
T1 and the center of the mass of the head was approximately 0.2
m. For case 1, the biodynamic simulation of the fall suggested

a 30 rad/s angular velocity of the head around joint T1 when
impacting a 15-mm radius solid object (Figure 2C) to generate
a comparable skull indentation as in the MRI image. For case
2, the simulation suggested a 15 rad/s angular velocity of the
head around joint T1 when impacting a 60-mm radius solid
object (Figure 2D) without creating a visible skull deformation
at the impact region. The size of the solid object for each case
was determined based on the information from the emergency
room (ER) documentation and clinical report. The forces on
the head due to the impact were the boundary conditions
used to simulate the biomechanics of the blunt impact to the
head. Both simulations were carried out for a total duration
of 20 ms from the point of contact between the head and the
hemispherical object.

Kinetics of Simulated Blunt Impacts
From the biomechanical simulations, the time histories of contact
force components for case 1 and case 2 are shown in Figure 3. The
force components rise faster and last a much shorter duration
(approximately 5 ms) in case 1 compared with that in case 2
(time for the force to return to zero is approximately 8 ms). The
displacements of the head at the center of gravity are shown in
Figure 4, which show that the head initially moves toward the
impactor and then rebounds around 2.5 ms for both cases.

The change in kinetic energy from the impact of the
pedestrian’s head with the solid object is shown in Figure 5A
for case 1 and Figure 5B for case 2. Figures 5A,B also show
the energy absorbed by the skull due to elastic and/or plastic
deformation during the impact. The kinetic energy is maximum
at the onset of the impact, at approximately 80 J. Over time,
i.e., during the contact, this energy is partly absorbed by the
skull to cause elastic and plastic (permanent) deformation of
the skull, and partly transmitted into the brain. Figure 5A
shows that for case 1, the maximum energy absorbed by the
skull is approximately 50 J, which causes skull indentation
(Figure 3A). This energy is responsible for large local strains
and pressure build-up in the coup region of the brain in case
1. The concentration of the strains in the brain at the point of
impact perhaps reflects the higher energy being absorbed by the
brain in this region. The change in energy distribution for case 2,
shown in Figure 5B, on the other hand, shows a different pattern.
The total kinetic energy due to the impact is approximately 20 J,
but a smaller proportion of this energy (approximately 8 J) is
absorbed by the skull, and most of it, we assume, contributes to
an elastic deformation of the skull. The energy transmitted into
the brain is distributed more evenly in the coup region, causing
the coup–contrecoup phenomenon in the brain.

The global response in cases 1 and 2 can also be represented
through head accelerations over time, shown in Figure 6.
Although both acceleration profiles are similar, case 1 has
a higher peak (270 g) than case 2 (150 g); on the other
hand, case 1 has a shorter period of contact (approximately
4.5 ms) than case 2 (approximately 6.7 ms). These differences
suggest that both the impact energy and impactor can affect the
head acceleration. While the acceleration profile can suggest a
measurable parameter, the limited data set here is not adequate
to relate acceleration to any of the region-specific clinically
identified brain injuries for these cases. For reference, the
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TABLE 1 | Biomechanical variables used to compare with clinical data.

Biomechanical measures Variables

Deformation Indentation of skull and brain

Strain related First principal strain, effective strain

First principal strain rate, effective strain rate, shear strain rate

Product of effective strain and effective strain rate

Stress Pressure, maximum shear stress, von Mises stress

Energy Dilatational strain energy density, distortional strain energy density

TABLE 2 | Clinical assessment of brain injury due to fall accidents.

Case number Cause of blunt impact GCS score at emergency room Injury assessment

1 Road traffic accident; backward fall 13 Skull indentation; coup injury

2 Fall from height; occipital collision 15 Coup and contrecoup injury

US Army aircrew helmet requirements use an average peak
acceleration of 150 g with a maximum of 300 g, for the blunt
impact pass-fail criteria (McEntire and Whitley, 2005).

Computational Biomechanical Outcomes
In the following paragraph, we present the results related to the
observed injury in the brain for these two cases. The contour
of maximum effective strain rate on the brain during 20 ms of
biomechanical simulation for case 1 is shown in the first row of
Figure 7. Among the three types of strain rates commonly used,
the peak value of the maximum shear strain rate is the largest, the
effective strain rate is slightly smaller, and the maximum principal
strain rate is about one-half of the maximum shear strain rate
or effective strain rate. When comparing the contour pattern of
strain rate in the brain, these three strain rates are similar in their
respective value ranges in both cases (shown in Supplementary
Figure 3). In this paper, we use the effective strain rate for the
comparison. Due to the local skull indentation of case 1, the
brain is in compression, and the minimum pressure shown in
Figure 7 is small. Similar to observations from clinical imaging
of case 1, the skull deformation is observed at the impact region
with anatomical accuracy. The large value of maximum effective
strain rate mainly appears near the indented area, similar to the
injury locations seen in Figure 1 and Supplementary Figure 1.
In contrast to case 1, the skull in case 2 has no observable
deformation, and the strain rate is relatively small and distributed
around the brain, as shown in the third row of Figure 7. The
contour of minimum pressure on the brain during 20 ms of
computational simulation for case 2 is also shown in Figure 7.
The minimum pressure around -100 kPa was found at both
coup and contrecoup regions, similar to the injury locations as
observed in case 2 of Figure 1 and Supplementary Figure 2.

Unlike the effective strain rate, the large values of first
principal strain, maximum shear stress, and the product of
effective strain and effective strain rate in Figure 7 are seen in
the area beyond the indented region in case 1. In case 2, the
maximum shear stress, effective strain rate, and the product of
effective strain and effective strain rate are relatively small and
again distributed around the brain in Figure 7. In both cases, the
von Mises stress contours are similar to those of maximum shear

stress, while the contours of strain energy density are similar to
those of the product of effective strain and effective strain rate
and, thus not shown here.

Different cross sections of the 3D head can be used for
comparison between MRI data and simulation results. From
the MRI images, the most injured regions are near the impact
site and/or along the impact direction. Compared with other
planar views such as sagittal, transverse and coronal planes, the
plane passing through a line joining the impact location and its
diametrically opposite point on the skull is more representative
for visualization of the injury in the brain. Such a vertical plane,
shown by the red lines in the left column of Figure 7, was chosen
to represent the transitions in the ADC values from the MRI
as well as the simulated biomechanical measures. Details of the
computed maximum pressure, minimum pressure, maximum
first principal strain, maximum shear stress and maximum
effective strain rates for the two cases are elaborated in the second
and fourth rows of Figure 7. For case 1 with the coup injury, only
the maximum effective strain rate in the second row of Figure 7
shows a large value in the coup region and smaller values in
other areas. For case 2, with the coup–contrecoup injury, only
the minimum pressure in the fourth row of Figure 7 shows the
large value at both coup and contrecoup regions. Other variables
do not show correspondence with the clinically identified extent
of injury. Note that the maximum pressure is large in the entire
brain in case 1, while it is large only at the coup region in case 2.
The time to reach the maximum for all biomechanical variables
in the brain shown in Figure 7 during the impact events is in
Table 3.

Comparison of Magnetic Resonance
Imaging-Apparent Diffusion Coefficient Data With
Computational Biomechanics
The ADC maps for the two cases considered here are compared
with the biomechanical measures in Figures 8, 9. We identified
the location of the center of impact region of the head from
the MRI data, and the point on the diametrically opposite
surface of the cranium, and termed them as the coup and
contrecoup points, respectively. We compare below, the injury
assessment of ADC data with biomechanical measures along the
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FIGURE 1 | Modalities [T1-magnetization-prepared rapid acquisition gradient echo (MPRAGE), T2-fluid attenuation inversion recovery (FLAIR),
susceptibility-weighted imaging (SWI), and apparent diffusion coefficient (ADC)] from magnetic resonance imaging (MRI) images on two transverse planes, shown by
yellow lines on sagittal plane section for cases 1 and 2 (second column from left). For each case, the top row shows the coup region images from blunt impact, and
the bottom row shows the contrecoup region. Yellow arrows show the coup and contrecoup on modalities. C and CC stand for coup and contrecoup regions,
respectively.

TABLE 3 | The time to reach the maximum of different variables in the brain (ms).

Case number Compressive
pressure

Tensile
pressure

First principal
strain

Maximum
shear stress

Effective
strain rate

(Effective
strain) × (Effective
strain rate)

1 2.9 0.4 4.3 4.1 1.9 4.7

2 15.1 13.7 9.7 13.5 17.1 11.4

coup–contrecoup line, as a representative way to identify the
correspondence between clinical analysis and simulation results.

Figures 8, 9 show the ADC contour maps on the left and
the corresponding ADC values along the coup–contrecoup line
on the right in the top row, and maximum effective strain rate
and minimum pressure contour maps and the corresponding
distributions along the same line in the bottom row, respectively,

for cases 1 and 2. All ADC values are compared with respect
to an approximate mean value of 750 × 10−6 mm2/s of gray
matter and white matter, which is displayed by the dotted lines
in Figures 8B, 9B.

For case 1, in the brain injury region (i.e., the coup region), the
relative change in ADC from the mean normal value ranges from
-450 to 1,150 × 10−6 mm2/s (Figure 8B), and this significant
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FIGURE 2 | Simulation results showing the biodynamics of the fall, resulting in blunt impact to the head: (A) head position just before hitting the ground, (B) head
with initial velocities hitting hemispherical object and rotating about T1, and producing the forces and the moments applied to the head and neck, (C) head hitting
hemispherical object of radius 15 mm (in blue) in case 1, (D) head hitting hemispherical object of radius 60 mm (in blue) in case 2.

FIGURE 3 | The force components due to the blunt impact between the head and the impactor are shown for (A) case 1 and (B) case 2. The axes are shown in the
head finite element (FE) model.

change is observed up to a depth of approximately 10 mm
from the cerebral cortex. In the same region, i.e., at the same
depth from the brain cortex, computational simulation shows
the maximum effective strain rates to be from 250 to 950 s−1.
In the contrecoup region, there is no observable change in ADC
values from the baseline, while the effective strain rate increases
up to 150 s−1. This suggests that smaller strain rates may
represent correspondingly small or no noticeable ADC changes
in injured brain tissue.

For case 2, a comparison of ADC map with simulated
minimum pressure at the coup–contrecoup cross section is
shown in Figure 9. At the end of the 20-ms contact–rebound
simulation period, the large minimum/tensile pressure appears
at both the coup and contrecoup regions. However, when

compared with the coup region, the contrecoup exhibits larger
tensile pressures in the superficial cortical structures. In the
coup region of the brain injury, the relative change in ADC
shows a clearly identifiable range from -750 to 950 × 10−6

mm2/s, and this higher value is observed up to a depth of
approximately 30 mm from the cerebral cortex. In the contrecoup
region of the brain injury, the ADC change increases to
1,100 × 10−6 mm2/s, and this higher value is observed up
to a depth of approximately 20 mm from the cerebral cortex.
In the same coup region at the same depth, computational
simulation shows minimum pressure from -90 to -100 kPa. In the
contrecoup region at the same depth, computational simulation
shows a minimum pressure from -90 to -110 kPa. Table 4
summarizes the ADC changes from the mean value in the coup
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FIGURE 4 | The displacement components of the center of gravity of the head are shown for (A) case 1 and (B) case 2. The axes are shown in the head FE model.

FIGURE 5 | Time history of kinetic energy of the head during impact of head due to a fall, and the internal energy (IE) of skull absorbed by the skull for (A) case 1 and
(B) case 2.

and contrecoup regions and biomechanical parameters and the
influence of depth for the two cases. Additional comparison
between ADC data and simulation results in the transverse plane
showing similar outcomes for the two cases can be found in
Supplementary Figures 4, 5.

Comparison of Injury Types in Case 1 (Skull
Indentation) and Case 2 (Coup and Contrecoup
Injury)
At the impact location (i.e., coup region), the maximum ADC
change for case 1 is around 1,150 × 10−6 mm2/s, which
is larger than that for case 2 (around 950 × 10−6 mm2/s).
When the deformation of the tissue from brain surface is
considered, the depth of ADC change is relatively smaller
in case 1 (approximately 10 mm) when compared with case
2 (approximately 30 mm). For case 2, the maximum ADC
change in the coup region (around 950 × 10−6 mm2/s) is
smaller compared with that at the contrecoup region (around
1,100 × 10−6 mm2/s). The region of the brain normal to the
interior surface of the skull shows noticeable ADC change at

the coup region (approximately 30 mm) compared with that at
the contrecoup (approximately 20 mm). In comparison, for case
1, the maximum effective strain rate is above 250 s−1 up to a
depth of 10 mm in the coup region but less than 150 s−1 in
the contrecoup region. For case 2, the minimum pressure below
-90 kPa is 30 mm into the brain tissue in the coup region and
20 mm in the contrecoup region. In addition, the minimum
pressure in the coup region (-100 kPa) is less than that in the
contrecoup region (-110 kPa). The similarity of both the ADC
change and simulated minimum pressure appears to be that the
contrecoup injury is more severe than the coup injury but affects
a smaller depth in the brain.

Sensitivity of Simulation Results Related to Impact
Conditions
Sensitivity analysis was carried out with computational
simulations by assessing the effect of impact condition on
the injury outcome from the clinical analysis. A number of
simulations were performed by changing the angular velocity
of the head in case 1 and case 2. As shown in Table 5, for
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FIGURE 6 | Time history of head acceleration during impact of head due to fall for (A) case 1 and (B) case 2.

FIGURE 7 | Simulated blunt impact biomechanical responses for cases 1 and 2. For both cases, the second column from left shows the head (top), and vertical
plane through the coup–contrecoup line (bottom). For each case, the upper row shows the biomechanical contours for the brain, and the bottom row the contours
on the vertical plane passing through the coup–contrecoup line. The last row shows the legends for the maximum of each biomechanical variable specified on the
top row. Only data for cerebrum, cerebellum, and brainstem regions are shown.

case 1, when the angular velocity is varied between 28 and
32 rad/s, the skull indentation changes from 8.6 to 9.5 mm
and the head acceleration from 245 to 290 g. The region of

the brain that exceeds the effective strain rate of 250 s−1

also varies, in which the depth of this region from the brain
outer surface along the coup–contrecoup line changes from
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FIGURE 8 | Correspondence between ADC values from clinical data and simulated maximum effective strain rate for case 1. ADC (A) and maximum effective strain
rate (C) contours are shown for the coup–contrecoup plane; ADC (B) and maximum effective strain rate (D) plot along the coup–contrecoup (C-CC) line with the
points 1, 2, and 3 (inside ventricles) marked in (A). The dotted line represents approximate mean value of ADC in (B). Maximum effective strain rate shown in
cerebrum, cerebellum, and brainstem only.

TABLE 4 | Comparison between the change in ADC and biomechanical measures for the two cases.

Case number Range of ADC
change and
depth in the coup
region

Range of ADC
change and
depth in the
contrecoup
region

Depth of effective
strain rate
(>250 s−1)
in the coup region

Depth of pressure
(<-90 kPa)
in the coup region

Depth of pressure
(<-90 kPa)
in the contrecoup
region

1 (-450,1,150), ∼10 mm − ∼10 mm − −

2 (-750,950), ∼30 mm (0,1,100), ∼20 mm − ∼30 mm ∼20 mm

8.8 to 10.2 mm (see Figure 8 for the coup–contrecoup line
and the plot of strain rate contour for angular velocity of
30 rad/s). At angular velocities lower than 28 rad/s or higher
than 32 rad/s, both the skull indentation and injury depth
in brain become increasingly different from those measured
from the MRI data. This suggests that an angular velocity
close to 30 rad/s reasonably represents the actual accident
condition being modeled.

In case 2, as shown in Table 5, when the angular velocity is
varied between 12 and 15 rad/s, the head acceleration changed
from 125 to 150 g with no visible deformation on the skull.

The region of the brain with a maximum tensile pressure in
the coup and contrecoup regions below -90 kPa also changes.
On the coup side, the depth of this region (i.e., with a tensile
pressure below -90 kPa) ranges from 15 to 30 mm. On the
contrecoup side, the depth of this region is increased from
17 to 20 mm (see Figure 9 for the coup–contrecoup line and
the plot of minimum pressure contour for angular velocity of
15 rad/s). With angular velocities smaller than 12 rad/s, little
or no injury is seen at the coup or contrecoup regions based
on the given pressure criterion. At angular velocities greater
than 15 rad/s, at the coup region, the skull deforms plastically,
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FIGURE 9 | Correspondence between ADC values from clinical data and simulated minimum pressure for case 2. ADC (A) and minimum pressure (C) contours are
shown for the coup–contrecoup plane; ADC (B) and minimum pressure (D) plot along the coup–contrecoup (C-CC) line with the points 1, 2, and 3 (inside ventricles)
marked in (A). The dotted line represented approximate mean value of ADC in (B). Minimum pressure shown in cerebrum, cerebellum, and brainstem only.

TABLE 5 | Sensitivity of simulation results for the two cases.

Case number Impact angular velocity (rad/s) Head acceleration (g) Depth of indentation (mm) Normal depth into brain (mm)

Strain rate (>250 s−1) Pressure (<-90 kPa)

1 28 245 8.6 Coup: 8.8 None

30 270 9.1 Coup: 9.8 None

32 290 9.5 Coup: 10.2 None

2 12 125 None None Coup: 15 Contrecoup: 17

15 150 None None Coup: 30 Contrecoup: 20

the tensile pressure disappears, and the strain rate gradually
increased to over 250 s−1. This suggests that the angular velocity
of 15 rad/s is a realistic value to be used in the modeling of
case 2.

The effect of the impactor size is also examined by using the
same impact velocity for these two cases. When an impactor
with a large radius of curvature is used, a significantly higher
angular velocity is needed to indent the skull to the same depth
seen with an impactor with a small radius. For example, if
the same angular velocity of 15 rad/s is used, case 1 shows
an approximately 3 mm skull indentation and a small focal
injury at the coup, while case 2 of relatively large impactor

shows no visible skull deformation, but a coup–contrecoup injury
is apparent.

DISCUSSION

Clinical Observation of Injury Patterns
The present study, based upon MRI findings, has considered
two cases from subjects who sustained blunt trauma to the head
with characteristically two different types of injury that were
diagnosed as mild TBI. Both cases had GCS scores of 13–15 (mild
TBI) at the time of diagnosis by the attending physician. Based
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on eyewitness report and emergency room medical assessment
documentation, the way the injuries were sustained due to the
falls are different. In the first case, a young adult male sustained
a road traffic accident, fell backward, hit an object with a small
radius of curvature, and had a depressed fracture of the skull
at the site of impact. The underlying brain parenchyma showed
evidence of a hemorrhagic contusion. Notably, no contrecoup
lesion was visualized as reported in the clinical assessment
documentation. Since the underlying hemorrhagic contusion was
limited to a site of the injury in the brain parenchyma, adjacent
to the depressed skull, certain changes in ADC values were not
demonstrated appreciably due to the potential infiltration of
blood and meningeal encroachment into the brain parenchyma,
but a significant lesion site is visibly identifiable. In addition,
magnetic susceptibility artifacts generated by the overlying skull
bone could have contributed to those ADC values. No other
change was observed in the range of ADC values specific to
tissue/region in any other parts of the brain parenchyma.

In the second case, a middle-aged male had an accidental
fall from a height, sustained a hemorrhagic contusion in the left
cerebellar hemisphere and right frontal lobe corresponding to a
coup and contrecoup lesion, respectively, with no skull fractures.
The lesions reported in the clinical assessment documentation
and seen in the images in this paper were larger than those in
the previous case, likely owing to the impact condition and the
intact skull during impact. These changes were mirrored in the
ADC maps. The hemorrhagic areas showed restricted diffusion
corresponding to reduced ADC values at the coup, a well-known
phenomenon due to blood at the lesion site (Kang et al., 2001;
Shah et al., 2004). These areas were surrounded by edema, which
corresponded to an area of increased ADC at both sites (coup and
contrecoup). This is owing to the relatively unrestricted diffusion
in areas with increased interstitial fluid.

Both of these cases were diagnosed similarly as mild TBI
from the GCS scores, but the clinical presentation with skull
indentation with a localized lesion in case 1 is significantly
different from case 2 with no visible skull fractures but presented
with coup–contrecoup lesions when observed through MRI. The
nature of the injuries imparts different biomechanical loading on
the head, producing characteristically different injury patterns
albeit with a similar diagnosis. These injuries in the real-world
scenario with mild TBI are not necessarily diagnosed using MRI
unless enrolled in a clinical study to understand the intricacies of
case-to-case differences. Thus, reconstructing the incident from
medical reports can provide objective information on possible
real-time injury patterns and diagnosis decisions at the site of
injury or in the emergency room.

Possible Injury Mechanisms and Injury
Criteria
Comparing the simulation results and ADC data for case 1,
the maximum effective strain rate above 250 s−1 is found to
correspond with significant ADC changes in the coup side of
the brain. High strain and stress values are seen not only in
the coup but also in other regions of the brain that do not
show observable ADC changes. This suggests that if a stress-

or strain-based injury criterion is used to evaluate the brain
tissue damage, the threshold for injury cannot be constant
and needs to depend inversely on the strain rate. For impact
loading at a lower strain rate, the stress or strain threshold is
higher, while at a higher strain rate, it become slower. In other
words, the brain tissue, like other materials, may become more
brittle at a higher strain rate (Yang and Zhang, 2019). This is
probably because micromechanically, there is not enough time
for dispersion of the linear momentum into other regions of
the brain, and the localized deformation is manifested through
skull indentation and coup injury. Conversely, in vitro tissue
experiments showed that for the same strain magnitude, the
extent of injury and pathophysiology can be influenced by strain
rate (Bar-Kochba et al., 2016) and high water content in the brain
tissue (Prabhu et al., 2019).

On the other hand, for case 2, the minimum peak pressure
below -90 kPa seems to be the biomechanical parameter that best
represents the ADC change associated with the coup–contrecoup
injury. There can be several possible mechanisms for coup–
contrecoup injury. One possibility is a mismatch between brain
and skull motions causing the coup and contrecoup injury. To
evaluate this as a possible mechanism, the brain motion relative to
the skull was examined for the duration of the simulation, and no
direct skull–brain contact was found during the impact. A longer
duration simulation may reveal this information, which will be
considered in future studies. Another possible mechanism is the
stress wave inside the cranium. In the current simulation for this
case, we found a stress wave originating and propagating from the
impact site on the skull, and being reflected from the free surface
from the skull on the contrecoup side that appears to create the
tensile/negative pressure in the brain. Since materials like brain
tissue are weaker in tension than compression, we conjecture
that the excessively large tensile pressure and possibly some
cavitation could contribute to brain injury at the contrecoup
site as shown in the MRI and ADC data. Experimental and
simulation data from impact loading to tissue and gel samples
(Kang and Raphael, 2018) showed rapidly increasing tension,
which contributed to cavitation and may cause extensive damage
to the surrounding tissue. We surmise that while stress wave
propagation in the head may be a mechanism for blunt impact
injury, current understanding of possible brain cavitation in the
brain tissue is limited.

For case 1, the higher kinetic energy seems to localize the
effect by indenting the skull and creating large deformation
in the coup region in the brain, with little or no effect on
the contrecoup side of the brain. We see increased pressure
throughout the brain, which may have prevented any clinically
identifiable contrecoup injury, perhaps due to an absence of
tensile pressure in this region. In case 2, on the contrary, a lower
kinetic energy is distributed over a larger area of the skull and
the brain, resulting in a characteristic coup–contrecoup effect,
which may be attributed to how energy and acceleration change
over time (Figures 5, 6). We conjecture that the rapid transition
from kinetic energy to internal energy in case 1 compared
with the gradual transition in case 2 may explain the different
deformation mechanisms in the brain between the two cases.
The peak acceleration in case 1 is higher than that in case
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2, which corresponds to that of clinically reported GCS score
severity. It also appears that flattening the head acceleration
curve with a longer duration and lower peak could reduce brain
injury severity when comparing the accelerations between case
2 and case 1. This principle based upon the rate of energy and
acceleration increments can be applied to study various injury
types due to mechanical trauma (e.g., blunt impact and blast
exposure) to the brain.

A Methodology to Map Clinical
Assessments With Biomechanical
Simulations
Most, if not all, analyses of traumatic brain injury to date
have been approached through three major disciplines: pre-
clinical, clinical, and computational studies. The pre-clinical
studies have been conducted to understand the pathogenesis
through molecular, biochemical, imaging, and behavioral studies
by replicating real-world injury scenarios using animal subjects.
The clinical studies have used Warfighter and civilian clinical
cases of TBI with several techniques, such as imaging data
and post-mortem histopathology/biochemical analyses. The
computational modeling and simulation approaches have
attempted to quantify biomechanical responses at multiple
scales to predict the observed injury in pre-clinical and clinical
scenarios, both with and without protective equipment. All three
approaches have explored blast overpressure, blunt, and ballistic
impact loadings.

The clinical imaging and computational simulation data for
the two cases considered in this paper represent two aspects
of injury presentation. The key clinical aspect here was the
utilization of post-incident T2-FLAIR to establish the type and
location of injury, and ADC maps derived from DWI modality
to obtain quantitative data for clinical quantification of injury.
Several multi-parametric MRI data sets were acquired such as
MPRAGE, DWI, SWI, FLAIR, and ADC. Of these data sets, ADC
was deemed to be quantitatively the most discriminatory for the
injury types assessed clinically, and utilized for the comparison
between computational simulation and clinical MRI. The ADC
allowed representing the changes in the state of the tissues due
to the insult by parameterizing and representing the degree of
diffusion of water molecules to identify multiple forms of brain
injury (Sener, 2001; Hagmann et al., 2006; Nelson et al., 2008;
Tong et al., 2008). ADC also identified transition of a volume
in the brain occupied by CSF (with higher diffusion values
due to large water content) to a mixture of blood (with lower
diffusion values due to less water content) or other fluids and
CSF, and quantified such changes. ADC is limited because it
provides an average value over a plurality of layers (i.e., thicker
slices of brain) from T1 and T2 MRI slices. This reduces the
resolution and sensitivity to an extent in a given plane when
compared with the sensitivity in T1 and T2 data (The details
in T2 shown in Supplementary Materials apply for T1 data;
not shown here).

Computational biomechanical analyses of these cases
primarily address the energy distribution and absorption from
blunt impact to the head and the brain, and the biomechanical

parameters that correlate with clinical imaging of such insults.
For blunt impact insults, the energy is transferred from the
skull into the brain. Positive (compressive) and negative
(tensile) pressure waves as well as shear stress waves could
be generated in the brain tissue. In most biological tissues,
tensile stress is more injurious than the compression mostly
because the interstitial fluid cannot resist the tension in
supporting tissue structural components. Compared with
pressure waves, shear waves propagate within the brain
at a much slower speed, last longer, and cause larger
deformations of tissues and tearing of adjacent structures.
Strain rate represents how fast the shear is happening with
respect to time. For the viscoelastic brain tissue, material
shearing behaves differently with the increase in strain
rates. Figure 7 showed our consideration of a multitude
of biomechanical measures to identify the best mapping
parameters with ADC maps and clinical assessment of the injury
for both the cases.

Hydrostatic pressure is used here because it includes stresses
in multiple directions by considering the mean of normal stress
components in the tissue. Gradual increase in pressure, as in
deep sea diving, where the pressures are excessive, does not
adversely affect a diver while diving deeper. However, it is well
known that if the diver comes up to the sea level quickly,
this rapid ascent creates a pressure difference between the
inside of the body and the outside, and can subject the diver’s
organs to tensile loading, which is injurious to the tissues.
The same phenomenon is possible in brain tissue due to large
negative pressures when the head is subjected to impacts or
shock fronts.

For the two cases studied here, strain rate and tensile pressure
show correspondence with quantifiable changes in ADC values in
the tissue and clinical diagnosis from evaluation of MRI images.
It is conceivable that in case 1, with the high strain rate in the
coup region (but not in the contrecoup region), the impact yields
very localized deformation patterns, as supported by high ADC
values in this region. Likewise, in case 2 with the head impacting
a larger object at a lower velocity, the momentum distribution is
over a larger area showing no localized deformation. In this case,
the tensile pressure shows a closer correspondence with the ADC
values in both coup and contrecoup regions.

Based on the above correspondence, we develop a
methodology that can map clinical diagnosis, clinical
information, and quantitative data, with biomechanical
simulation data. The key is creating a biomechanical analogy
of quantitative measurements from clinical assessment, e.g.,
ADC, and establishing how these biomechanical measures can
be used as mapping or equivalent corresponding parameters. As
more clinical cases are collected and quantified, biomechanical
simulation data can be generated by model reconstruction
of incidents using the approach as presented in this paper.
With more cases analyzed, the aggregated knowledge of
correlating biomechanics and clinical outcomes will improve
the understanding for various injury classifications. Artificial
intelligence tools and machine learning algorithm utilizing such
knowledge can then be created to predict the nature of the insults
and injury modalities of brain (Raj et al., 2019).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 July 2021 | Volume 9 | Article 65467768

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-654677 June 25, 2021 Time: 19:22 # 15

Tan et al. TBI Simulation From Clinical Imaging

Future research can cross-validate these findings using a large
dataset to relate biomechanical assessment of TBI with image-
based assessment and analysis. Other avenues are to explore
possible correspondence between biomechanical prediction and
other MRI data such as fractional anisotropy (FA) values
representing demyelination due to oligodendrocyte ischemia and
subsequent apoptosis, as well as explore injury modalities due to
blast overpressure and ballistic impact loadings.

Assumptions and Limitations
There are several limitations in this study: (1) We recognize the
differences in head sizes in our design of experiments (shown
in Supplementary Table 1). Although the differences due to
head size variations are small, they may affect the simulation
results. Morphing the computational head model to reflect
the dimensions of the actual head geometry could improve
simulation accuracy and mapping with clinical image-based data.
Advanced morphing techniques such as the ones developed in
Refs. (Jolivet et al., 2015; Zhang et al., 2017; Hu, 2018) could be
utilized and extended to develop a subject-specific head model
based on the current head model. Incorporating such modeling
nuances to quantify errors introduced by using a 50th percentile
human head computational model has not been addressed in this
paper. (2) We have used simplified material models for different
tissues. For example, we modeled the cortical and trabecular
skull bones as isotropic elastoplastic materials, as found in the
literature, although the skull bone is recognized to be anisotropic
in nature and has been known to exhibit viscoelastic strain-
rate sensitive behavior under dynamic loading. Another material
model aspect that we did not consider is person-to-person
variability of human tissue properties. We did not consider
such uncertainties treating them as higher-order factors. (3) We
treated the CSF in the head as a highly incompressible elastic
solid. Treating the CSF as a fluid and applying a fluid–tissue
interface to solve the fluid–structure interaction between the
CSF and surrounding tissues by a sophisticated coupled fluid–
solid solver might refine the approach but would add significant
complexity and computational challenge. (4) The accidents in
both cases were reconstructed based on information from the
hospital where emergency care was provided to the patients,
eyewitness reports, clinical assessment reports, and imaging
data by the clinicians. Unlike the blunt impact data obtained
from a controlled scientific experiment, the reconstruction of
uncontrolled real-world incidents such as the two cases may
not be unique. We assumed that the impactor is a stone with a
spherical shape with a radius that is varied for different cases.
Using a non-smooth surface or object with multiple edges will
increase the complexity of computational simulation, but may
not be consequential to refining the methodology. (5) Due
to logistical constraints, we recognize that there is inevitably
a time delay between the accident and the MRI scan at the
hospital. During this period, the level of interstitial edema may
increase slowly following the injury. However, the region of
ADC abnormality caused by hemorrhage is unlikely to change
significantly within this time frame (Gasparetto et al., 2011). (6)
Longer simulation times combined with the proper simulation
of large brain rotation can predict other outcomes that may

be necessary for lower speed impact loading conditions. In the
future, applying the techniques in this paper to other head
trauma cases, together with proper pattern match and statistical
analyses, will result in more objective correlative metrics, which
enhance biomechanical simulations in predicting the injury risk
and patterns and can inform additional diagnosis considerations
to the attending physicians.

CONCLUSION

We showed a methodology to map computational biomechanical
simulation results for blunt impact loading with clinical brain
imaging data for two cases. Biomechanical parameters such as
pressure, shear stress, principal strain, strain rate, product of
strain and strain rate, and strain energy were considered to
quantitatively compare biomechanical simulations with clinical
assessments. Based on the simulation result analysis, we found
different biomechanical measures to explain different blunt
impact injury modalities. The minimum pressure (i.e., maximum
tensile pressure) and maximum strain rate in brain tissue
were seen to best represent tissue damage/injury identified by
in vivo ADC values from MRI analysis. Specifically, for case
1, a blunt impact with a small solid object resulting in an
indented skull, the ADC contours of contusion corresponded
well with those for effective strain rates higher than 250 s−1.
For case 2, a blunt impact with a larger solid object producing
a coup–contrecoup injury and no noticeable skull indentation,
the ADC contours showing contusion and edema mapped well
with a negative pressure of -90 kPa or more. The methodology
comparing biomechanical simulations with ADC from image-
based clinical analysis presented here can lead to a future
roadmap to understand and interpret injury criteria, and to
improve accuracy in biomechanical prediction.
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Supplementary Figure 4 | Correspondence between ADC values and maximum
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plotted along horizontal line through the coup between points C and A. 1, 2, and 3
mark the location filled with fluid, C stands for coup region. The dotted line
represents approximate mean ADC value of brain tissue.
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pressure at showing coup location in transverse plane at the coup of case 2.
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regions. The dotted line represents approximate mean ADC value of brain tissue.
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computational head model.
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Brain Shape Changes AssociatedWith
Cerebral Atrophy in Healthy Aging and
Alzheimer’s Disease
Yana Blinkouskaya and Johannes Weickenmeier*

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States

Both healthy and pathological brain aging are characterized by various degrees of
cognitive decline that strongly correlate with morphological changes referred to as
cerebral atrophy. These hallmark morphological changes include cortical thinning,
white and gray matter volume loss, ventricular enlargement, and loss of gyrification all
caused by a myriad of subcellular and cellular aging processes. While the biology of brain
aging has been investigated extensively, the mechanics of brain aging remains vastly
understudied. Here, we propose a multiphysics model that couples tissue atrophy and
Alzheimer’s disease biomarker progression. We adopt the multiplicative split of the
deformation gradient into a shrinking and an elastic part. We model atrophy as region-
specific isotropic shrinking and differentiate between a constant, tissue-dependent
atrophy rate in healthy aging, and an atrophy rate in Alzheimer’s disease that is
proportional to the local biomarker concentration. Our finite element modeling
approach delivers a computational framework to systematically study the
spatiotemporal progression of cerebral atrophy and its regional effect on brain shape.
We verify our results via comparison with cross-sectional medical imaging studies that
reveal persistent age-related atrophy patterns. Our long-term goal is to develop a
diagnostic tool able to differentiate between healthy and accelerated aging, typically
observed in Alzheimer’s disease and related dementias, in order to allow for earlier
and more effective interventions.

Keywords: cerebral atrophy, brain aging, Alzheimer’s disease, multiphysicsmodeling, finite element modeling, brain
shape changes

1 INTRODUCTION

Brain aging is characterized by a myriad of biological, chemical, and mechanical hallmark features.
While biological and chemical aging processes have been studied for decades, the mechanical aspects
of brain aging remain understudied (Raz and Rodrigue, 2006; Hall et al., 2020). The brain undergoes
several key morphological changes referred to as cerebral atrophy which manifests primarily as gray
and white matter volume loss, ventricular enlargement, and sulcal widening (Fjell and Walhovd,
2010). While healthy brain aging is characterized by these changes, neurodegenerative diseases, such
as Alzheimer’s disease (AD) and related dementias, exhibit a significant acceleration of brain aging
mechanisms that cause a noticeable divergence from the healthy atrophy trajectory observed in
cross-sectional studies (Coupé et al., 2019). Figure 1 shows a qualitative comparison between a
healthy brain (left hemisphere) and a brain exhibiting severe age-related atrophy features (right
hemisphere). Strikingly, the changes in the aging brain become so pervasive that they are clearly
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visible in medical images (Lockhart and DeCarli, 2014).
Despite each person’s brain looking differently, cross-
sectional imaging studies reveal significant trends in volume
loss, ventricular enlargement, cortical thinning, and the
emergence of white matter lesions (Walhovd et al.,
20112011; Suzuki et al., 2019).

Brain aging is a highly heterogeneous process that is strongly
linked to local cellular composition as well as the gradual
aggregation of neurotoxic proteins and waste products that fail
to drain into the glymphatic system (Boland et al., 2018). The
superposition of metabolic slowing and decreased cellular
regeneration in most of the brain, leads to structural and
functional degeneration that drives cognitive decline (Ownby,
2010; Mattson and Arumugam, 2018). AD is characterized by the
accumulation of neurotoxic amyloid beta plaques that interfere
with normal synaptic transmission (Reddy and Beal, 2008; Milà-
Alomà et al., 2020) and neurofibrillary tangles that disrupt axonal

transport causing loss of signal transmission and axon death
(Malpetti et al., 2020). Both proteins exhibit a prion-like behavior
in that they recruit healthy protein, trigger their misfolding, and
gradually form growing plaques and tangles (Jack and Holtzman,
2013). This leads to their systematic spread throughout the brain
(Jack et al., 2013). While plaques spread extracellularly, tangles
spread primarily along the structural axonal network and are able
to eventually reach distant brain regions (Kim et al., 2019). This
systemic infiltration of the brain has major implications for brain
function such as memory, motor control, behavior, and
ultimately death (Mattson, 2004).

From a mechanics perspective, brain aging is drastically
understudied as it may provide new avenues to broaden our
understanding of the relationship between cell- and tissue-level
neurodegeneration and their aggregated effect on organ level
morphological shape changes (Hall et al., 2020). Only a few
studies have presented a mechanistic model of cerebral
atrophy and are based on either non-rigid registration of two
medical images (Karaçali and Davatzikos, 2006; Khanal et al.,
2017) or the finite element method (Camara et al., 2006;
Weickenmeier et al., 2018; Harris et al., 2019; Schäfer et al.,
2019). Registration methods aim at minimizing intensity
differences between two images by iteratively distorting a
moving image to match the reference image. This
minimization process may be subject to elasticity constraints
derived from mechanics (Hamamci and Unal, 2013; Garcia et al.,
2018). Finite element-based approaches are based on a
constitutive model of volume loss that is implemented for two
or three dimensional simulations (Budday and Kuhl, 2020).
Harris et al. developed a two dimensional sagittal and coronal
brain model to simulate volume loss representative for the brain’s
response following a traumatic brain injury (Harris et al., 2019).
The model is calibrated such that gray matter (GM) and white
matter (WM) undergo different atrophy rates and shows an
overall contraction of the cross-sectional brain image. The
model does not capture aging-related ventricular enlargement,
most likely due to the boundary conditions imposed on the model
at the inferior edge of the brainstem. In a similar approach,
Schäfer et al. presented a multiphysics model that couples protein
spread in AD and volume loss (Schäfer et al., 2019). The model
incorporates anisotropic diffusion of intracellular tau protein
along the axon network. The two dimensional finite element
(FE) model is characterized by an overall uniform area shrinking,
although ventricular area marginally increases and cortical folds
remain close together. In order to use computational modeling as
a diagnostic tool to differentiate between healthy and pathological
aging, simulation accuracy hast to be improved.

Here, we expand on a multiphysics model of cerebral atrophy
which allows to differentiate between healthy and pathological
aging (Weickenmeier et al., 2018; Schäfer et al., 2019). We employ
classical continuum theory and model cerebral atrophy as
negative growth via a multiplicative split of the deformation
gradient into an atrophy part and an elastic part (Schäfer et al.,
2019). Accelerated aging is driven by the gradual accumulation of
an AD biomarker. We assume the atrophy factor to increase
proportional to the biomarker concentration which we diffuse in
the brain via a reaction-diffusion model, see Section 2. Using a

FIGURE 1 | The aging brain undergoes cerebral atrophy which
describes the morphological shape changes observed in both healthy and
pathological aging. They include neurodegeneration, cortical thinning, volume
loss, white matter degeneration, sulcal widening, and ventricular
enlargement. As we age, subcellular and cellular aging mechanisms gradually
result in these organ-level changes that are visible in cross-sectional imaging
studies. Gradually growing availability of longitudinal data provides new insight
into progressive brain deterioration over several years and allows to quantify
personalized progression of brain aging, underlying pathology, and its
cognitive impact. Here, we show two coronal slices of a subject with severe
Alzheimer’s disease from the Alzheimer’s disease Neuroimaging Initiative, that
highlight their significant atrophy during a 3-year period.
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subject specific FE model, we simulate healthy and AD-related
brain aging and compare our model’s response to cross-sectional
data reported in literature. Our comparison focuses on the
hallmark features of cerebral atrophy and shows good
qualitative agreement with the persistent trends observed in
large-scale imaging studies.

2 METHODS

2.1 Multiphysics Model of Cerebral Atrophy
Our goal is to identify differences in spatiotemporal atrophy
patterns characteristic for healthy and AD-related brain aging.
Therefore, we formulate a multiphysics approach that couples
mechanics-driven volume loss and the biology-driven spreading
of toxic proteins (Weickenmeier et al., 2018). In our constitutive
model, we pose that healthy aging is linked to a steady volume loss
in gray and white matter tissues, while AD accelerates atrophy
proportional to the local toxic protein level (Schäfer et al., 2019).
We solve our continuum problem on an anatomically accurate
finite element (FE) brain model and quantify hallmark features of
cerebral atrophy including volume loss, cortical thinning,
ventricular enlargement, and sulcal widening.

2.1.1 Continuum Model for Protein Spread
AD is characterized by the accumulation and spreading of
misfolded, neurotoxic proteins (Jucker and Walker, 2018).
Post-mortem studies on AD patients have shown that protein
spread follows a characteristic spatial pattern that is characterized
by consistent onset locations and spreading pathways (Jack et al.,
2013). Mathematically, these progression patterns are well
approximated by a reaction-diffusion model known as the
Fisher-Kolmogorov equation (Fisher, 1937; Kolmogorov et al.,
1937). We define the concentration of misfolded protein, c, that
spreads via linear diffusion.

zc
zt

� d Δc + α c[1 − c], (1)

where d is the isotropic diffusion constant, Δ c denotes the
Laplacian of the protein concentration c, and α controls the
growth rate of the concentration. For a derivation of the kinetic
equations governing the prion-like behavior of proteins linked
to AD, we refer the reader to our previous works (Schäfer et al.,
2019; Weickenmeier et al., 2019). In brief, we derive a kinetic
model that accounts for two configurations of the protein, a
healthy state and a misfolded state. We then derive a kinetic
equation that balances the total amount of healthy protein p
and misfolded protein ~p, as a function of production rate of
healthy protein k0, clearance rate of healthy and misfolded
proteins k1 k1, and conversion of healthy to misfolded
protein k12.

zp
zt

� k0 − k1 p − k12 p~p and
z~p
zt

� −~k1 ~p + k12 p~p. (2)

Through introduction of the misfolded protein concentration
c, which may vary between 0 and 1, equilibrium considerations,

and re-parameterization of the governing Eq. 2, we arrive at the
partial differential Eq. 1, with

α � k12
k0
k1

− ~k.1. (3)

Model parameters d and α allow to adjust for the amount of
spread and progression speed of misfolded proteins observed in
individual subjects affected by varying AD severity.

2.1.2 Continuum Model for Cerebral Atrophy
To model the mechanical behavior of the brain, we use the
nonlinear equations of continuum theory and introduce the
mapping φ from the undeformed, unloaded configuration B0

at time t0 to the deformed, loaded configuration Bt at time t. We
adopt the conventional notation, x � φ(X, t), where x ∈ Bt

denotes the position vector in the deformed configuration at
time t and X ∈ B0 denotes the position vector of the initial
configuration at time t0. We characterize local deformations
by introducing the deformation gradient, F(X, t) � ∇Xφ(X, t),
and local volume changes by its determinant, J � det(F).
Following previous work, we model cerebral atrophy as
volumetric shrinking and use the classical approach of
splitting the deformation gradient into an elastic part Fe and
an atrophy part Fa (Schäfer et al., 2019). The multiplicative
decomposition of the deformation gradient, F � ∇Xφ, yields

F � Fe · Fa with J � JeJa. (4)

The multiplicative split extends to the Jacobian J which breaks
down into an elastic volume change Je � det(Fe) and volume loss
by cerebral atrophy Ja � det(Fa). To characterize the hyperelastic
material behavior of brain tissue, we adopt the neo-Hookean
strain energy density function Ψ0 as the atrophy-weighted elastic
stored energy Ψ, which depends exclusively on the elastic part of
the deformation gradient,

Ψ0 � JaΨ,with Ψ � 1
2
μ[Fe : Fe − 3 − 2ln(Je)] + 1

2
λln2(Je). (5)

Parameters μ and λ are the standard Lamé coefficients which
can be expressed via Young’s modulus E and the Poisson’s ratio ν
in the elastic limit as λ � E]/[[1 + ]][1 − 2]]] and
μ � E/[2[1 + ]]]. Following arguments of thermodynamics, we
can derive the first Piola-Kirchhoff stress tensor P,

P � dψ0

dF
� Ja

dψ
dFe � Ja[μFe + [λln(Je) − μ]FeT]. (6)

The Piola-Kirchhoff stress tensor is governed by the
quasistatic balance of linear momentum,

0 � Div(P) + FφinΩ, (7)

where Ω denotes the domain which is the brain. We assume that
we can neglect external body forces Fφ � 0. In our multiphysics
framework here, the atrophy problem is coupled to the protein
spreading problem through the atrophy part of the deformation
gradient Fa, which is considered to be a function of age and
biomarker concentration c. More specifically, we assume that gray
and white matter atrophy is purely isotropic,
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Fa � ��
ϑ3

√
I and Fe � F��

ϑ3
√ , (8)

where we introduced a measure for volume loss ϑ which is related
to cerebral atrophy Ja,

ϑ � Ja and Je � J
ϑ
. (9)

We propose a constitutive model for the evolution of the
atrophy measure ϑ that allows to differentiate between healthy
brain aging and accelerated aging observed in many
neurodegenerative diseases such as AD (Weickenmeier et al.,
2018; Schäfer et al., 2019). As such, we introduce a health atrophy
rate, Gh, as well as a biomarker concentration, c, dependent
atrophy rate, Gc, which allows us to capture accelerated cerebral
atrophy due to the progressive accumulation of misfolded,
neurotoxic protein. Our model is formulated such that natural
atrophy is accelerated if the biomarker concentration, c, exceeds a
critical threshold, ccrit, such that the evolution equation reads.

_ϑ � [1 + c(c)]Gh � {Gh if c< ccrit

Gh + Gc if c≥ ccrit
,

where c(c) � Gc

Gh
H(c − ccrit ).

(10)

Here, H(c − ccrit) denotes the Heaviside step function and
marks the transition from healthy to accelerated, or diseased,
atrophy at ccrit. Healthy and diseased atrophy rates, Gh and Gc,
may be treated as subject-specific aging parameters that can be
tuned to capture their specific progression behavior.

2.2 Finite Element Implementation
We implemented our continuum model in the finite element
software Abaqus (Simulia, Providence RI) and solved our coupled
problem as a thermo-mechanical analysis. We add the nonlinear
source term of the protein spreading equation (Raz and Rodrigue,
2006) to the standard heat transfer problem using the subroutine
HETVAL which requires the flux, f c � α c [1 − c] and rate of
change of heat flux per temperature, df c/dc � α[1 − 2c].
Similarly, we incorporate our constitutive material model
using the user subroutine UMAT which requires Cauchy
stress and its Jaumann rate. To determine Cauchy stress at the
integration point level, we calculate the atrophy factor via a finite
difference scheme,

_ϑ � ϑ − ϑ n

Δt , such that ϑ � ϑ n + [1 + c(c)]GhΔt, (11)

where (+) and (+)n denote the unknown quantity at t � tn+1 and
the converged quantity at the previous time step t � tn,
respectively, and Δt � t − tn > 0 is the current time increment.
Here, we approximate the Heaviside step functionH in c(c) (Eq.
10) as a smooth function,

H(c − ccrit) � 1
1 + exp(β(c − ccrit)), (12)

where β controls the transition between the two states. We store
the converged atrophy factor as a state variable for post-processing,

then calculate the atrophy part and the elastic part of the
deformation gradient Fa and Fe (Eq. 4). We then calculate
Cauchy stress, σ � J−1PFT , and its Jaumann rate,

cabaqus � c + 1
2
[σ⊗ I + I⊗ σ + σ⊗

�
I + I⊗

�
σ], (13)

with the consistently linearized tangent stiffness matrix, c,

c � 1
Je
[I⊗Fe] : z2ψ

zFe⊗zFe : [I⊗FeT], (14)

where we used the tensor operators {•⊗+}ijkl � {•}ik⊗{+}jl and
{•⊗_+}ijkl � {•}il⊗{+}jk.

2.3 Finite Element Model Generation
We created an anatomically accurate FE brain model from T1-
weighted magnetic resonance images of a healthy adult male
brain. We used ScanIp from Simpleware (Synopsis Inc.,
Mountain View CA) to semi-automatically segment the
regions of interest and generate the FE mesh. Our model
differentiates between gray matter (GM), white matter (WM),
the hippocampus, ventricles, and cerebrospinal fluid (CSF).
Figure 2A) shows representative sagittal, axial, and coronal
MRI slices of the subject’s brain, as well as the volumetric
reconstructions of the respective substructures. We built our
model sequentially and began segmentation with
reconstruction of the ventricles, followed by WM, GM, and
finally CSF. We avoided reconstructing the skull by defining
zero-displacement Dirichlet boundary conditions on the
peripheral surface of CSF. Here, we merged the lateral
ventricles, third ventricle, and fourth ventricle into a single
volume in order to quantify ventricular enlargement, one of
the hallmark features of brain aging. We paid close attention
to the segmentation of WM tissue to accurately capture
individual sulci and gyri across all lobes. To realistically
simulate cortical thinning and sulcal widening, we must
prevent self-contact of the cortical layer. Therefore, we
inflated the WM segmentation by a constant thickness of
3 mm to obtain the GM layer. We then manually modified the
GM layer to remove self-contact between lobes and folds in
each slice. Ultimately, we aimed for a balance between
agreement of segmentation and MRI on the one hand, and
obtaining a FE mesh that may realistically predict structural
shape changes of the brain on the other. Following WM and
GM segmentation, we isolated the hippocampus as a separate
substructure, given its relevance in AD as one of the first brain
structures to markedly shrink. Finally, we inflated the GM
layer by 5 mm and applied smoothing to obtain the CSF layer.
This layer allows us to anchor the brain in our atrophy
simulations while minimizing external forces on the
GM layer.

Model Properties: Our model consists of 1,361,277
tetrahedral elements: 7,925 elements for the ventricles, 2,898
elements for the hippocampus, 121,904 elements for WM,
172,238 elements for GM, and 98,755 elements for CSF. We
restricted element edge length to vary from 2.0 to 2.3 mm to
minimize element distortion and obtain similarly sized elements.
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We imported the mesh into Abaqus for analysis. Specifically, we
use linear tetrahedral elements C3D4 and define two simulation
cases. We simulate healthy aging by simply solving the atrophy
problem and simulate accelerated aging by running a thermo-
mechanical analysis. In both cases, we only prescribe zero-
displacement Dirichlet boundary conditions to the outer
surface of the CSF layer to fix the model in space. In the AD
case, we additionally prescribe an initial concentration of c0 � 0.3
in the hippocampus. We used model parameters from our
previous experimental and computational studies (Schaer
et al., 2008; Weickenmeier et al., 2018; Weickenmeier et al.,
2016) and summarize the model parameters for the atrophy
and protein problem (Eq. 1, Eq. 5, Eq. 10) in Table 1. To
assess long-term brain shape changes we simulate an age
range of 40 years. Literature provides a myriad of large cohort
studies that assess volumetric changes across this age-range
(Apostolova et al., 2012; Coupé et al., 2019). Moreover, this
allows us to review the impact of AD-onset time by varying
the critical prion load necessary to trigger accelerated aging.

2.4 Data Analysis
We wrote custom python codes for post-processing of our
simulations in order to determine volume ratios, anterior-
posterior variations of the gyrification index, sulcal widening,
and cortical thinning.

To calculate relative volume ratios of WM, GM,
hippocampus, and ventricles, we sum the volume of all
elements belonging to one of these subregions and divide by
the total brain volume; we repeat this step for each time
increment to obtain longitudinal changes as shown in
Figure 7.

The gyrification index (GI) is determined by slicing our 3D
model into 160 coronal slices (1 mm spacing between slices)
and creating a binary image showing the domain associated
with brain tissues, i.e., GM, WM, hippocampus, and ventricles
wherever present. The subsequent steps are based on functions
in the scikit-image processing package. Specifically, we
determine the convex hull that fully encapsulates the brain
domain to obtain the smoothed outer circumference and

FIGURE 2 | We create an anatomically accurate finite element model of the brain based on semi-automatic segmentation of a T1-weighted MRI. (A) The brain’s
primary cortical and subcortical structures, as well as fluid volumes, are clearly visible in the representative sagittal, axial, and coronal slices shown here. (B) For the
brain, we reconstruct the ventricles, white matter (WM), and gray matter (GM); we encase GM by cerebrospinal fluid (CSF) and approximate the skull by imposing
zero-displacement boundary conditions on the CSF’s outer surface. (C)We create the GM layer by projecting the WM surface outward; this approach minimizes
self-contact of the outer GM surface and provides an FE mesh that does not prevent sulcal widening due to shared nodes on the GM surface.

TABLE 1 |Multiphysics atrophy model parameters which include Lamé constants, healthy and pathological atrophy rates, critical biomarker concentration, and biomarker
spreading parameters for white matter, gray matter, the hippocampus, ventricles, and cerebrospinal fluid.

Lamé constants Atrophy model parameters Biomarker model parameters

λ [kPa] μ [kPa] Gh [−] Gc [-−] ccrit [−] d [W/kg m3] α [−]

White matter 64.67 2 0.0015 0.0035 0.5 15 0.09
Gray matter 32.33 1 0.001 0.002 0.5 15 0.09
Hippocampus 32.33 1 0.001 0.002 0.5 15 0.09
Ventricles 29.77 15.34 — — — 0 0.09
CSF 7.22 14.43 — — — 0 0.09
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extract the contour tightly lining the pial surface. We repeat
this process for each slice and determine the gyrification index
as the local ratio between exact pial surface length and smooth
outer circumference, as shown in Figure 11.

Our cortical thickness measurement is based on the
approach used in FreeSurfer (http://surfer.nmr.mgh.
harvard.edu) (Han et al., 2006). We create triangulated
surfaces of the outer GM surface and the outer WM
surface and define cortical thickness tc as the average of
two distance measures, dij and djk. We iterate over every
node of the GM surface, ni, identify the closest node on the
WM surface, nj, and save the Euclidian distance between
these two nodes as dij. We repeat this search for that
particular WM node, nj, and save the Euclidian distance
between nj and GM node nk as distance djk. We ultimately
obtain a cortical thickness measure at each GM surface node
as tc � 0.5[dij + djk] and plot the result as a surface plot, as
shown in Figure 8. We export nodal coordinates of our
surfaces in the undeformed and the deformed
configuration in order to determine cortical thickness at a
young and an old age.

We introduce sulcal widening as the volume increase in the
fluid-filled cavity of five prominent sulci, i.e., the intra-parietal
sulcus, the superior temporal sulcus, the central sulcus, the
sylvian fissure, and the superior frontal sulcus, as shown in
Figure 10. Similar to determining the relative volume
fractions, we sum the volume of all elements of a particular
sulcal fold for each time increment of our simulation.

3 RESULTS

We evaluate our simulations with respect to hallmark features
of cerebral atrophy and aim at identifying key differences
between healthy brain aging and accelerated aging associated
with AD.

3.1 Spatiotemporal Progression of Toxic
Proteins in Alzheimer’s Disease
We simulate the spreading of neurofibrillary tangles (NFT)
consisting of misfolded tau protein based on the toxic
protein spreading model described in §2.1. Pathological
studies have shown that NFTs first appear in the entorhinal
cortex and subsequently spread throughout the brain. Figure 3
shows the spatiotemporal propagation of the NFT
concentration through the brain. We observe that the
hippocampus is affected first, then infiltrates the temporal
lobe next, followed by the parietal lobe, occipital lobe, and in
the late stages reaches the frontal lobe. Our observations are in
line with cadaver studies that show a similar progression pattern
of NFTs (Jucker and Walker, 2018). The coronal view shows a
highly symmetric protein spread in the left and right
hemisphere; from the axial and coronal cross-sections, it can
be seen that deep gray matter structures tend to saturate with
NFTs first. Early deep gray matter involvement, such as
putamen and thalamus (de Jong et al., 2008), is linked to
well-known early symptoms of AD, including short-term
memory loss, difficulty performing daily tasks, and mood
changes. The delay between onset and cortical layer
involvement is part of the long pre-symptomatic phase of
AD (Hanseeuw et al., 2019) and consistent with imaging
studies that observed spatially heterogeneous atrophy
patterns (Anderson et al., 2012).

3.2 Spatiotemporal Distribution of the
Atrophy Factor in Healthy Brain Aging and
Alzheimer’s Disease
The atrophy model allows us to differentiate between healthy and
AD aging. On top of an age-proportional atrophy factor in
healthy aging, we added additional toxic protein
concentration-related atrophy to simulate AD. Figure 4 shows
the spatiotemporal distribution of the atrophy factor, i.e. the

FIGURE 3 | The spatiotemporal spreading behavior of our biomarker for neurodegenerative disease is governed by a reaction-diffusion equation. We seed the
biomarker in the hippocampus and observe a gradual infiltration of the whole brain. The temporal lobe is affected first, followed by the occipital, then parietal, and finally
the frontal lobes, see 3D view. Moreover, we observe an early affect on deep gray and white matter structures before diffusing outward into the cortical layer, see axial
view. In our current version of the model, we prescribe equal diffusion in gray and white matter tissue, which is reflected in the diffuse spreading of the biomarker
concentration.
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volume shrinking fraction, which ranges from 1 (no shrinking) to
0.8 (maximum volume loss). We differentiate between WM and
GM atrophy rates due to tissue specific neurodegenerative
processes. Therefore, GM and WM have the same atrophy
factors in healthy aging, respectively. In AD, we see a spatially
heterogeneous distribution with maximum atrophy in deep WM
and GM structures and in the frontal lobe. The coronal view
shows that the cortex exhibits an atrophy gradient that ranges
from the temporal lobe to the frontal lobe; in WM we observe a

gradient ranging from the temporal lobe to the parietal lobe. Both
are consistent with imaging studies investigating regional atrophy
rates in the cortex (McDonald et al., 2009).

3.3 Brain Deformations in Healthy Brain
Aging and Alzheimer’s Disease
Figure 5 shows the temporal progression of the predicted
deformation field and corresponding equivalent structural

FIGURE 4 |We show the spatial distribution of the atrophy factor over our simulation period of 40 years. In our model we differentiate between healthy (top rows)
and accelerated, or pathological, aging (bottom rows). We prescribe a constant, albeit different, atrophy rate for gray and white matter tissue in healthy aging. In
pathological aging, the atrophy factor in Alzheimer’s disease is coupled to the biomarker concentration and increases the atrophy factor once biomarker concentration
exceeds a critical value; therefore, the AD-related atrophy factor follows a similar spatiotemporal progression pattern as the biomarker concentration. Atrophy factor
of one corresponds to no volume change and we observe a maximum volume loss of 0.798. Since cross-sectional studies have identified more white matter volume loss
in comparison to gray matter, we prescribe a higher atrophy rate which leads to more pronounced WM atrophy, see coronal and axial view.
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image for healthy aging and AD for representative axial and
coronal sections. We observe maximum displacement
magnitudes of 7.17 mm for healthy aging and 8.58 mm in AD.
Maximum displacements concentrate around the lateral
ventricles which undergo significant enlargement, especially in

the AD brain. In comparison to the atrophy factor, which affects
the hippocampus first, ventricles, and the surrounding white and
gray matter regions, appear to deform early, followed by cortical
deformations. For late stages we observe higher displacement
magnitudes for the GM layer in comparison to deep white matter

FIGURE 5 | Representative axial and coronal views of the displacement magnitude and structural images at six time points during the aging process. We show
healthy aging and Alzheimer’s disease-related aging in the top and bottom rows, respectively. Brain deformation is higher in Alzheimer’s disease than healthy aging, and
is largest around the ventricles. Moreover, we observe significant enlargement of the ventricular horns in the vicinity of the hippocampus, see coronal view. The forth time
point clearly shows a distinct separation of the displacement trajectories.
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structures. The structural scans reveal hallmark features of
cerebral atrophy: hippocampal shrinking, early onset of deep
GM shrinking, cortical thinning, and ventricular enlargement.
We generally observe that these features are exacerbated in AD in
comparison to healthy aging. These observations are strongly
correlated with medical imaging based studies that observe
hippocampal shrinking, cortical thinning, and ventricular
enlargement as early predictors for AD (Apostolova et al.,
2012). Previous computational studies typically prescribe a
zero-boundary condition on nodes of the brainstem in
order to fix the model in space (Harris et al., 2019; Schäfer
et al., 2019). These boundary conditions significantly impact
the simulated deformation field and limit these models’
abilities to resolve temporospatial patterns or critical
features such as ventricular enlargement. Here, the
cerebrum is loosely tethered to the skull via the ultrasoft
CSF layer which allows for physical features to emerge
naturally. Strikingly, we observe global brain involvement
despite scattered atrophy features.

3.4 Ventricular Enlargement in Healthy Brain
Aging and Alzheimer’s Disease
Figure 6 shows the gradual expansion of the lateral ventricles
for healthy aging and AD. We observe significantly larger

ventricles in AD, which increase by a factor 2.66, in
comparison to healthy aging, where ventricles increase by a
factor 1.76. The simulation predicts a predominantly uniform
inflation of the entire ventricular cavity in healthy brain aging
at a moderate expansion rate. In AD, we observe consistent
overall ventricular dilation, but notice a significant
concentration of maximum expansion in the body of the
ventricles and the posterior horns. This observation is
consistent with a medical imaging study that reported a
temporal pattern that starts in the occipital horn, then
affects the body, and ultimately reaches the frontal horns
(Apostolova et al., 2012). The sagittal view of the brain
shows the corresponding white and gray matter loss. As the
ventricles expand, we observe a smoothing of the superior
horn, temporal horn, and occipital horns with an overall
decrease in curvature of the ventricular surface.

4 DISCUSSION

4.1 The Origin of Brain Volume Loss
Cerebral atrophy is caused by diverse tissue damage mechanisms
that culminate in brain volume loss (Oschwald et al., 2020;
Blinkouskaya et al.). While healthy aging and AD share some
of the gray and white matter damage mechanisms there is a

FIGURE 6 | Ventricular enlargement is one of the most prominent features of the aging brain. The ventricular body expands most and the anterior and posterior
horns inflate in response to tissue loss. Alzheimer’s disease has a larger affect than healthy aging. Overall the ventricular volumemore than doubles in Alzheimer’s disease
and increases by 165% in healthy aging. The sagittal view of the brain shows the effect on deep gray matter structures.
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distinct point during the lifespan where the atrophy trajectory in
AD diverges from the healthy model due to accelerated
neurodegeneration (Callaghan et al., 2014; Coupé et al., 2019).
Most common damage mechanisms are neurodegeneration in
GM (Farokhian et al., 2017), demyelination in WM (Vernooij
et al., 2008), activation of microglia cells (Von Bernhardi et al.,
2015), and cerebral small vessel disease which is associated with
microbleads, lacunes, and perivascular spaces (Cuadrado-Godia
et al., 2018).

In gray matter, neurons undergo morphological changes
linked to a reduction in the complexity of dendrite
arborization (Dickstein et al., 2007). The underlying
dendritic shortening and loss of dendritic spines leads to a
progressive decrease in synaptic density and synaptic
transmission with major implications on cognitive decline
(Dickstein et al., 2013). Unlike healthy aging, AD is
accompanied by neuron death due to the ever-increasing
presence of neurotoxic proteins such as amyloid beta
plaques and neurofibrillary tangles (Serrano-Pozo et al.,
2011). GM volume loss is therefore exacerbated in AD and
manifests in accelerated atrophy rates (Anderson et al., 2012)
and increased cortical thinning (Du et al., 2007). It is well
established today that the very first morphological changes
associated with AD appear in the entorhinal cortex and
hippocampus at least 10 years before the diagnosis
(Dickstein et al., 2007).

In WM the most prevalent tissue changes are characterized
by partial loss of myelin, axons, and oligodendroglial cells
(Xiong and Mok, 2011); mild reactive astrocytic gliosis linked
to WM lesions (Rodríguez-Arellano et al., 2016);
arteriolosclerosis of small vessels resulting in incomplete
ischemia and cell death (Pantoni, 2002); and the emergence
of perivascular spaces that interfere with the glymphatic
drainage of the brain’s waste products (Rasmussen et al.,
2018; Wardlaw et al., 2020).

During normal aging, amyloid beta plaques can be found in
the frontal lobe, hippocampus, and entorhinal cortex of healthy
elderly. In addition, neurofibrillary tangles, although much rarer
than plaques, are commonly found in the medial temporal areas
after 50 years of age (Dickstein et al., 2007). In AD, however, the
progressive aggregation of plaques and NFTs has detrimental
effects on neuronal morphology and synapses. Unlike in normal
aging when neurons shrink, AD triggers sustained neuronal loss
in neocortical and entorhinal regions of up to about 30%
(Mattson, 2004).

4.2 Atrophy Dynamics During Aging
Figure 7 shows brain volume fractions of GM, WM, and
ventricles representative of a brain aged 40 years and older.
We extracted atrophy data from Coupe et al. who identified
volume changes from a cross-sectional study with 4,329
subjects (2,944 healthy subjects and 3,262 subjects with AD
and mild cognitive impairment) (Coupé et al., 2019), see
dashed lines. We focus on brain aging and calibrate our
model parameters such that our model provides good
qualitative agreement for healthy brain aging, (Figure 7A).
Our model successfully reproduces GM and WM volume loss
and ventricular enlargement. The offset between GM, WM,
and ventricular volume fractions is due to comparison of a
personalized brain model with cross-sectional data. More
importantly, the numerically observed atrophy trajectories
paint a representative picture that demonstrates the ability
of our modeling approach to predict shape changes associated
with brain aging. Our model predicts GM volume fraction to
drop from 52.36% at age 40 years to 50.49% at age 80 years in
healthy aging and 49.34% in AD; WM volume fraction to drop
from 47.63% at age 40 years to 40.29% at age 80 years in
healthy aging and 32.95% in AD; ventricular volume
fraction increases from 3.22% at age 40 years to 5.66% at
age 80 years in healthy aging and 8.57% in AD. AD clearly

FIGURE 7 |Cross-sectional studies, with subjects covering many decades of life, provide insight into the transient brain volume changes and how they break down
into the brain’s cortical and subcortical regions. Here, we compare our model’s predicted graymatter, white matter, and ventricular volume fraction with data reported by
Coupe et al. (2019) for (A) healthy aging and (B) AD. In AD, we clearly observe a deviation from healthy aging in the form of accelerated atrophy. The grey area shows the
loss of tissue volume that is replaced by fluid.
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exacerbates tissue loss and exhibits an accelerating atrophy
rate with increasing age, (Figure 7B). Tissue lost due to
atrophy is replaced by fluid (volume fraction shown in
grey) linked in one part to ventricular enlargement and in
another part to sulcal widening and loss of gyrification (Scahill
et al., 2003).

4.3 Cortical Thinning
The cortical layer is subject to spatially heterogeneous age-related
cortical thinning. The deterioration of dendritic connections and
the loss of GM neurons cause volume loss that can be broken
down into cortical thickness and surface area. These two
properties do not necessarily follow each other chronologically
(Dickerson et al., 2009). The differentiation between both
measures has proven useful, however, because of increased
sensitivity with respect to age-related changes (Storsve et al.,
2014; Dotson et al., 2016). In our computer model, we observe a
mean cortical thickness of 2.79 mm in the young brain and
2.64 mm in the aged brain. In Figure 8, we report our model’s
brain thickness which ranges from 1.5 to 4.3 mm in the young
brain and decreases to a range from 1.3 to 3.9 mm in the aged
brain. These values compare well to results presented by Fjell et al.
who observed a progressive decline in overall cortical thickness in
their three subject groups aged < 40, 40–60, and > 60 (Fjell et al.,
2001; Fjell and Walhovd, 2010). They report that sulci undergo
more pronounced thinning than gyri and that thinning is
unevenly distributed across the cortex. Based on data extracted
from Fjell et al., the cortex appears to thin by roughly 0.1% per
year, or 0.00745 mm, which corresponds to an overall thickness
decrease of about 0.3 mm over the course of 4 decades for subjects
aged > 40 (Fjell et al., 2015). The linearly decreasing relationship
between cortical thickness and age across several datasets
provides strong support for our modeling approach which

assumes a constant atrophy rate for all ages (Fjell et al., 2001;
Du et al., 2006). Despite significant efforts to identify common
thinning trajectories in the human brain, cortical thinning is
driven by molecular and cellular processes that are not limited to
individual regions. Cross-sectional studies report that the frontal
cortices are most strongly affected and that the medial-temporal
cortices, i.e., parahippocampal and entorhinal cortex, are
moderately affected. Lateral inferior parts of the temporal
lobes show least thinning and the superior parts of the lateral
temporal lobes exhibits more pronounced thinning than the
inferior parts (Fjell et al., 2001; Fjell and Walhovd, 2010). In
our model, we observe slightly higher thinning in the frontal and
temporal region, while the occipital lobe thins less. In aging
research the temporal lobes play a significant role because they
are functionally related to the hippocampus and other GM
structures that are associated with memory loss and cognitive
decline (Dickerson et al., 2009; Dhikav et al., 2014). In the end,
our model leads to fairly similar cortical thinning across the entire
brain due to the prescribed constant GM atrophy rate. Coupling
to the spreading of neurotoxic proteins may lead to a stronger
heterogeneity in terms of thinning.

4.4 Hippocampal Shrinking and Ventricular
Enlargement
The hippocampus is one of the, if not, the earliest cortical
substructures to undergo detectable atrophy in Alzheimer’s
disease and related dementias (Henneman et al., 2009).
Hippocampal changes can be detected as early as 10 years
prior to the onset of symptoms and is therefore considered to
be a strong indicator for abnormal aging processes (Ritchie
et al., 2016; Kinnunen et al., 2018). Hippocampal shrinking
precedes most cortical changes by up to 5 years and is reported

FIGURE 8 |We measure cortical thickness changes in the healthily aging brain and observe a clear difference between increased sulcal thinning in comparison to
gyri that remain nearly unchanged. Only few locations are predicted to thicken and are located in deep gray matter locations. Overall the mean cortical thickness
decreases from 2.79 mm in the young brain to 2.64 mm in the aged brain.
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to shrink by 5.2% per year based on data from cross-sectional
brain imaging studies (Thompson et al., 2004; Henneman
et al., 2009). It is primarily linked to de-arborization of
subcortical GM neurons (Esiri, 2007; Dickstein et al., 2013).
In comparison to healthy aging, Alzheimer’s disease
accelerates neuronal degeneration due to accumulation of
neurotoxic amyloid beta plaques and neurofibrillary tangles
(Bobinski et al., 1999). Figure 9 shows our model’s predicted
volumetric shrinking for healthy aging and AD. We observe a
decrease of the hippocampal brain volume fraction by 8.87%
for healthy aging and by 24.1% for AD. The direct comparison
illustrates the distinct difference in the atrophy trajectory in
accelerated aging in AD observed in cross-sectional studies
(Coupé et al., 2019).

The brain tissue volume lost due to cerebral atrophy, is
replaced by fluid. Structurally, this manifests in significant
ventricular enlargement (Pagani et al., 2008; Apostolova et al.,
2012) and an increase in the space between folds, i.e., sulcal
widening (Liu et al., 2013; Jin et al., 2018). Ventricular
enlargement is one of the most prominent features in
longitudinal medical images and represents a major change
in brain topology (Sengoku, 2020). Mechanically, the extent of
ventricular enlargement is significant and will lead to high
loads on the membrane separating ventricle and cerebrum.

The ependymal cells lining the ventricular wall are likely to be
fatigued with age, leading to CSF leakage into white matter and
causing tissue degeneration, such as leukoaraiosis in the
vicinity of ventricular horns (Milhorat et al., 1970; Todd
et al., 2018). Our model predicts a uniform volumetric
expansion of the entire ventricles which is reflective of
findings from imaging studies (Salat et al., 2009; Coupé
et al., 2019). Our simulation is able to reproduce this
deformation mode due to our physically motivated
boundary conditions on the FE model. Instead of
constraining individual nodes in the brainstem (Harris
et al., 2019; Schäfer et al., 2019), here, we suspend the brain
inside the skull by mimicking CSF as an ultrasoft, highly
compressible solid. The suspension of the shrinking
cerebrum allows for the ventricles to expand. This leads to
a fairly symmetric displacement field with respect to the left
and right hemisphere. In our model, the initial ventricular
volume corresponds to 2.37% of the total intracranial volume.
In our simulation, we observe an increase to 4.15% of total
intracranial volume, or a 75.03% volume increase in healthy
aging; In AD, ventricular volume fraction increases to 6.28%,
or an overall volume increase by 164.98%. Our data aligns well
with data reported by Coupe et al. that observe significant
acceleration of ventricular expansion at age 40 (Coupé et al.,
2019). Microstructurally, ventricular expansion is
accompanied by a progressive deterioration of the
ventricular wall which is composed of ciliated ependymal
cells that undergo significant cellular stretch during each
pulsation cycle. Over the course of a lifetime, these cells
accumulate significant mechanical fatigue and cause
membrane failure (Milhorat et al., 1970; Jiménez et al.,
2014). The subsequent leakage of CSF into white matter
tissue causes leukoaraiosis and white matter deterioration.

4.5 Sulcal Widening and Loss of Gyrification
Ventricular enlargement is accompanied by an increase in the
space between folds and loss of gyrification (Hamelin et al.,
2015; Aso et al., 2020). This feature is less prominent on medical
images, but is another indicator for the significant topological
changes of the brain (Plocharski et al., 2016; Shen et al., 2018).
From a FE modeling perspective, creating an anatomically
accurate mesh that properly capture sulcal widening
represents a major challenge. Most folds touch each other
such that the segmentation process typically does not
produce a GM surface without self-contact. This leads to
node sharing of elements that belong to different folds and
ultimately, prevents models to allow for separation of the GM
surface upon tissue atrophy. Here, we specifically address this
issue and produced a FE mesh that has minimal node sharing
between neighboring folds. Therefore, our model exhibits this
hallmark feature of cerebral atrophy and allows us to compare
model response with imaging data. Jin et al., for example, report
that the mean sulcal width between primary sulci increases by
∼ 17.3% from 1.27 ± 0.17 mm in middle-aged persons to
1.49 ± 0.20 mm in older adults (71). In Figure 10 we report
sulcal widening, a measure of the volume increase of the fluid
between folds. We segment these volumes for five prominent

FIGURE 9 |Hippocampal shrinking and ventricular enlargement differ for
healthy aging and Alzheimer’s disease. The initial overlap between healthy
aging and Alzheimer’s disease is due to the gradual spread of our biomarker
through the brain which ultimately accelerates brain changes passed the
age of 60 years. This deviation from the healthy trajectory is used as a
biomarker for detecting Alzheimer’s disease (Apostolova et al., 2012).
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sulci, the intra-parietal sulcus, the superior temporal sulcus, the
central sulcus, the sylvian fissure, and the superior frontal sulcus
(Kochunov et al., 2005; Liu et al., 2013). We observe that the
overall volume change of all sulci follow a similar trend and
increase by up to 40%. Similar to previous work, the sylvian
fissure exhibits the largest increase in width and is noticeably
larger in individuals with AD in comparison to cognitively
normal subjects (Park et al., 2013; Cai et al., 2017). Overall,
we observed that the technical challenges associated with
detailed geometric interpretation of sulcal changes, such as
sulcal widening and changes in sulcal depth, represent a
barrier to serving as a reliable biomarker for morphological
changes in the aging brain. Especially, subject-specificity will
limit absolute comparisons with any healthy or diseased cohort
(Shen et al., 2018).

The gyrification index (GI), defined as the ratio between actual
GM surface divided by the smooth surface surrounding the cortex,
is another parameter that is closely linked to the topology of brain
folds (Madan, 2021). In Figure 11 we show the gyrification index
for 164 coronal slices calculated for the healthy young brain,
healthy aged brain, and the brain affected by Alzheimer’s
disease. The GI is highest across the brain for the young brain.
With aging or AD, the GI decreases due to decreased folding. We
observe the highest GI in the temporal lobe with 3.28 for young,
3.27 for aged, and 3.19 for the AD brain; minimum GI is observed
in the frontal lobe with 1.22 in young, 1.06 in aged, and 0.64 in the
AD brain. We observe a mean GI of 2.48 ± 0.38 in the young,
2.42 ± 0.4 in the aged, and 2.32 ± 0.44 in the AD brain. The most
prominent and persistent drop in GI is observed in the temporal
and parietal lobes which are heavily affected by early infiltration of
our neurotoxic biomarker and corresponding accelerated atrophy.

FIGURE 11 | The gyrification index is a measure for the degree of folding. Here, we compute a gyrification index for 164 coronal slices generated from our finite
element model. We compare the gyrification index for the young brain, aged brain, and in Alzheimer’s disease and observe a noticeable decrease in Alzheimer’s disease
in the temporal and parietal lobes while the frontal lobe, which is affected least in terms of atrophy, shows only small deviations. Peak gyrification is observed in the vicinity
of the sylvian fissure which is widens significantly as discussed before.

FIGURE 10 | Cerebral atrophy includes sulcal widening, or the increase
in intra-sulcal volume due to the shrinking of surrounding tissue. The sylvian
fissure, which separates the frontal and parietal lobes from the temporal lobe,
increases most by 39%, while the other sulci increase on average by
36% over a 40 years time period.
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Our reported values compare well with cross-sectional studies
reported in literature (Jockwitz et al., 2017; Madan, 2021). In a
cross-sectional study by Cao et al., the GI drops from 3.4 at age 10
to 2.6 at age 85, following the curve GI � a + b ln(A + c), with ageA
and parameters a � 3.4, b � −0.175, and c � −2.9991 (Cao et al.,
2017). According to this formula, GI drops from 2.8 at age 40 to 2.6
at age 80, or by 4.5% between ages 40 and 80. Our model predicts a
2.7% change for the most folded coronal slice.

4.6 Limitations
Our computational model is based on several assumptions and
thus not without limitations. For example, when creating the
FE mesh, we uniformly inflate the WM surface to create a GM
layer which results in a fairly homogeneous GM thickness
across the brain. In reality, the gray matter layer is
characterized by thickness differences between sulci and gyri
(Lin et al., 2021) and varies across the brain (Fischl and Dale,
2000). We chose this approach due to the necessity to avoid
self-contact between GM folds in order to capture sulcal
widening during atrophy. Furthermore, our current
constitutive model differentiates between GM and WM
atrophy rates, but assumes a uniform parameter across the
brain. Cross-sectional studies have demonstrated significant
regional variation in brain shrinking rates in healthy aging and
AD (Fox and Schott, 2004; Fjell et al., 2014). The coupling of
biomarker concentration and atrophy rate in our model
introduces, however, a degree of heterogeneity that
exacerbates spatiotemporal differences between healthy aging
and AD. Our model shows good agreement with cross-
sectionally observed image-based atrophy patterns. Going
forward, there is a need to develop a validation approach
that allows to calibrate model parameters against
longitudinal imaging data of individual subjects (Rusinek
et al., 2003). To that end, we will develop a non-rigid
registration technique that delivers the full-field
displacements of the brain between two images (Wang et al.,
2021). And lastly, AD is characterized by two different protein
spreading mechanisms: connectivity-based spread via
intracellular diffusion of neurofibrillary tangles along the
axon network and proximity-based spread of amyloid beta
via extracellular aggregation of plaques (Jack and Holtzman,
2013). Here, we only consider isotropic diffusion through the
bulk tissue. As a next step, we will integrate the diffusion tensor
imaging-based tractome to more accurately represent
intracellular spreading of tau which has shown to better
correlate with neurocognitive decline (Raj et al., 2015).

5 CONCLUSION

Brain shape undergoes many changes throughout life. Advanced
aging is characterized by progressive atrophy which appears as brain
volume loss, cortical thinning, sulcal widening, and ventricular
enlargement. These morphological changes are part of healthy
brain aging and it remains unclear how these changes relate to
cognitive decline. In case of accelerated aging, such as in
neurodegenerative diseases like AD, these structural changes are
exacerbated due to the presence of neurotoxic proteins that spread
through the brain. Here, we developed a constitutive framework for
the simulation of three-dimensional morphological changes of the
brain in healthy aging and AD. Our anatomically accurate FEmodel
nicely captures volume loss, GM thinning, ventricular enlargement,
and loss of gyrification. We compare our numerical results to
commonly studied structural properties extracted from medical
images and demonstrate that our generalized model shows good
agreement with cross-sectional aging data. As a next step, we will
utilize our modeling approach to create subject-specific FE models
and validate our simulations against their longitudinal imaging data.
This work has the potential to systematically investigate the impact
of gray and white matter aging mechanisms, such as cerebral small
vessel disease, leukoaraiosis, lacunes, and the dearborization of
neurons, on the evolving morphology of the healthily and
pathologically aging brain.
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Brain tissue is one of the softest tissues in the human body and the quantification of its
mechanical properties has challenged scientists over the past decades. Associated
experimental results in the literature have been contradictory as characterizing the
mechanical response of brain tissue not only requires well-designed experimental
setups that can record the ultrasoft response, but also appropriate approaches to
analyze the corresponding data. Due to the extreme complexity of brain tissue
behavior, nonlinear continuum mechanics has proven an expedient tool to analyze
testing data and predict the mechanical response using a combination of hyper-,
visco-, or poro-elastic models. Such models can not only allow for personalized
predictions through finite element simulations, but also help to comprehensively
understand the physical mechanisms underlying the tissue response. Here, we use a
nonlinear poro-viscoelastic computational model to evaluate the effect of different intrinsic
material properties (permeability, shear moduli, nonlinearity, viscosity) on the tissue
response during different quasi-static biomechanical measurements, i.e., large-strain
compression and tension as well as indentation experiments. We show that not only
the permeability but also the properties of the viscoelastic solid largely control the fluid flow
within and out of the sample. This reveals the close coupling between viscous and porous
effects in brain tissue behavior. Strikingly, our simulations can explain why indentation
experiments yield that white matter tissue in the human brain is stiffer than gray matter,
while large-strain compression experiments show the opposite trend. These observations
can be attributed to different experimental loading and boundary conditions as well as
assumptions made during data analysis. The present study provides an important step to
better understand experimental data previously published in the literature and can help to
improve experimental setups and data analysis for biomechanical testing of brain tissue in
the future.

Keywords: human brain, viscoelasticity, poroelasticity, constitutive modeling, mechanical properties,
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1 INTRODUCTION

In recent years, it has increasingly been recognized that
mechanical signals play an important role for brain
development (Budday et al., 2015b; Koser et al., 2016;
Thompson et al., 2019), injury (Meaney et al., 2014; Hemphill
et al., 2015; Keating and Cullen, 2021), and disease (Murphy et al.,
2016; Barnes et al., 2017; Gerischer et al., 2018; Park et al., 2018).
In silico modeling based on the theory of nonlinear continuum
mechanics has therefore proven a valuable tool to, on the one
hand, computationally test hypotheses that complement
experimental studies and provide a predictive understanding
of processes in the brain under physiological and pathological
conditions (Goriely et al., 2015; Budday et al., 2020). On the other
hand, computational modeling can assist diagnosis and treatment
of neurological disorders through personalized predictions
(Angeli and Stylianopoulos, 2016; Lytton et al., 2017;
Weickenmeier et al., 2017).

A major challenge when aiming to explore the role of brain
mechanics in health and disease is reliably quantifying the
mechanical properties of brain tissue. Brain tissue is
ultrasoft—arguably softer than any other tissue in the human
body—and deforms noticeably when it is taken out of its
physiological environment within the skull, e.g., for ex vivo
mechanical testing. In addition, it has an exceptionally high
water content, 0.83 g/ml in gray matter and 0.71 g/ml in white
matter (Whittall et al., 1997). From the total of about 80% water,
approximately 20–40% is free-flowing cerebrospinal fluid, while
the rest resides inside the cells. The extreme softness and biphasic
nature of brain tissue pushes mechanical testing and modeling
approaches to their limits. Early studies had therefore
significantly overestimated the stiffness of brain tissue (Galford
and McElhaney, 1970; Chatelin et al., 2010), but more recent
studies indicate that the stiffness lies on the order of 1 kPa
(Budday et al., 2020). Still, the exact values have varied
notably depending on the testing setup (Chatelin et al., 2010;
Budday et al., 2020). It is thus difficult to control specimen
geometry, local deformation states, and their relation to the
recorded forces (Rashid et al., 2012).

Partially, the observed discrepancies can be attributed to
the fact that different testing techniques measure the
properties on different length scales (cell, tissue, organ)
and different time scales (quasistatic, dynamic). But even
on a seemingly similar spatial and temporal resolution,
experimental observations may differ, both qualitatively
and quantitatively. For instance, gray matter shows a stiffer
response than white matter during large-strain compression,
tension, and shear experiments (Budday et al., 2017a), while
one observes the opposite regional trends during tissue-scale
indentation (Van Dommelen et al., 2010; Budday et al.,
2015a). Here, we hypothesize that these observations may
be attributed to different boundary and drainage conditions in
combination with the biphasic, poro-viscoelastic nature of
brain tissue (Franceschini et al., 2006; Comellas et al., 2020).
Depending on the testing setup, the fluid is trapped within the
tissue or free to escape, which may largely affect the recorded
reaction forces. Therefore, realistic computational predictions

and the profound understanding of brain tissue behavior
require sophisticated mechanical models that capture the
complex and unique characteristics of this ultrasoft and
biphasic tissue.

Several poroelastic models have been proposed to reproduce
the biphasic nature of brain tissue, but with specific applications
in mind, e.g., drug delivery (Ehlers and Wagner, 2015),
hydrocephalus (Kim et al., 2015), tumor growth and treatment
(Angeli and Stylianopoulos, 2016), decompressive craniotomy
(Fletcher et al., 2016), or tissue fracture (Terzano et al., 2021).
Early numerical studies that specifically focused on elucidating
the mechanisms behind the observed mechanical properties of
brain tissue studied its nonlinear ultrasoft viscous behavior
without incorporating the biphasic nature of the tissue
(Bilston et al., 2001; Prevost et al., 2011; Budday et al., 2017b,c).

Initial models incorporating both porous and viscous
responses aimed at fitting a single experimental setup (Cheng
and Bilston, 2007) or included important analytical
simplifications and were tailored to particular applications
related to cerebrospinal fluid circulation (Mehrabian and
Abousleiman, 2011; Hasan and Drapaca, 2015; Mehrabian
et al., 2015). To our knowledge, the formulation proposed by
our group (Comellas et al., 2020) and the model described by
Hosseini-Farid et al. (2020) are the only approaches to date with
the potential of capturing the wide range of characteristics
observed in the response of brain tissue under different
biomechanical loading scenarios.

In this study, we use a finite poro-viscoelastic model to
evaluate the individual porous and viscous contributions in
numerical simulations of quasi-static unconfined compression
and tension as well as indentation experiments (with loading
frequencies on the order of 0.01 Hz). Through systematic
parameter studies, we identify parameter ranges that can
explain the phenomenon observed when comparing the
mechanical properties of gray and white matter brain tissue,
where indentation yields the opposite regional trend than large-
strain compression experiments. By exploring the effects of
permeability, shear moduli, nonlinearity, and viscosity on the
numerical response during the different experimental loading
conditions, we discuss their individual physical meaning by
closely considering the underlying poro-viscoelastic modeling
framework.

2 MATERIALS AND METHODS

2.1 Human Brain Experiments
As a reference and to confirm the validity of seemingly
contradictory results in the literature, we performed
indentation and large-strain compression and tension
experiments on exactly the same sample extracted from
human gray and white matter tissue, respectively, as illustrated
in Figure 1. Human brain tissue was extracted from a body donor
(female, age 77) who had given her written consent to donate her
body to research. The study was additionally approved by the
Ethics Committee of Friedrich-Alexander-University Erlangen-
Nürnberg, Germany, with the approval number 405_18 B.
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For indentation experiments, we used the ZHN-
Nanoindenter by ZwickRoell GmbH and Co. KG (Ulm,
Germany), as shown in Figure 1A, and closely followed
the indentation procedure established in Budday et al.
(2015a). We prepared tissue slices in a 120 mm-diameter
Petri dish and stabilized the samples using a 10 mm-
diameter stainless steel washer (see Figures 1C,D). To
ensure a homogeneous specimen response, we used a
circular flat punch indenter with a diameter of 1.8 mm and
a ceramic shaft extension. We conducted all indentation tests
at room temperature under displacement control using a
trapezoidal loading-holding-unloading profile with a
maximum indentation depth of 50 μm, as illustrated in
Figure 2, bottom right, and recorded the corresponding
force (see Figure 1G).

For compression and tension experiments, we extracted
cylindrical samples with a radius of r � 4 mm (see Figures
1E,F) and used a Discovery HR-3 rheometer from TA
instruments (New Castle, Delaware, United States), as shown
in Figure 1B. We fixed the specimens to the upper and lower
specimen holder using sandpaper and superglue. After a waiting
period of 30–60 s to let the glue dry, we immersed the specimen in
PBS to keep it hydrated during the experiment. We conducted all
rheometer tests at 37°C. We note that previous studies have
indicated that the mechanical response of brain tissue is not
significantly affected by temperature in the range between 22°C

and 37°C (Rashid et al., 2012). We first applied three cycles of
compression and tension with a loading velocity of 40 μm/s, and
minimum andmaximum overall vertical stretches of λ � [h +Δz]/
h � 0.85 and λ � 1.15, where h denotes the initial specimen height
and Δz the displacement in the direction of loading (see
Figure 1I). Subsequently, we performed a compression
relaxation test at λ � 0.85 with a loading velocity of 100 μm/s
and a holding period of 300 s (see Figure 1J). We recorded the
corresponding force fz and determined the nominal stress as
Pexp � fz/A, where A � πr2 is the undeformed cross-sectional area
of the specimen. For more details on the testing procedure, we
refer to Linka et al. (2021).

2.2 Nonlinear Poro-Viscoelastic Model
We model brain tissue as a poro-viscoelastic material where the
viscoelastic solid represents the network of cells embedded within
the extracellular matrix (ECM) and the free-flowing pore fluid is
the interstitial fluid bathing the ECM. We use the numerical
framework based on the Theory of Porous Media presented in
our previous work (Comellas et al., 2020). In this section we
summarize the main characteristics of the formulation, which
assumes a fully-saturated compressible biphasic material, and
that the solid and fluid constituents are separately incompressible.
A detailed description of the derivation of all equations presented
here can be found in Comellas et al. (2020) and its supplementary
material.

FIGURE 1 | Experimental evidence for the effect of the testing setup on the recorded regional mechanical response of human brain tissue. During indentation
measurements (A), white matter (D) shows higher forces (G) and a higher effective modulus (H) than gray matter (C). During rheometer measurements (B) under large-
strain cyclic compression and tension (I) as well as compression relaxation (J), white matter (F) yields lower stresses than gray matter (E).
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2.2.1 Continuum Kinematics
Following the Theory of Porous Media, the same spatial position
x in the current configuration at a given time t is occupied
simultaneously by the solid and fluid components. However,
the material particles of each component originate from
different reference positions at time t0. Then, the constituent
deformation map is x � χS(XS, t) � χF(XF, t), where XS and XF

indicate the reference position of the solid and fluid components,
respectively. The displacement of the solid component is, thus,

uS � x − XS, (1)

and

FS � zx / zXS (2)

is its material deformation gradient.

2.2.2 Governing Equations
The weak form of the governing equations in the reference
configuration is

∫
B0

∇(δu): τ dV0S � 0 ∀δu, and (3)

∫
B0

δp J ̇S dV0S − ∫
B0

∇(δp) · wJS dV0S � 0 ∀δp. (4)

The linear momentum balance Eq. 3 introduces the
viscoelastic solid displacement test function δu while the mass
balance Eq. 4 introduces the fluid pore pressure test function δp.
Both equations are defined in the reference configuration B0 of
the biphasic material, where dV0S refers to the volume element of
the material in the reference configuration of the solid. The
Kirchhoff stress tensor τ is given by the constitutive equation
of the solid component while the constitutive equation of the fluid
provides the volume-weighted seepage velocity w. The Jacobian JS
is the determinant of the material deformation gradient of the
solid component JS � det(FS) > 0, and J

̇
S indicates its material

time derivative. We neglect volumetric forces due to the effect of
gravity and do not prescribe any external traction vector in Eq. 3.
Forced fluid flow across the boundaries in Eq. 4 is not prescribed
either. Note that the time dependencies of the mass balance
equation result in a nonstationary nature of the governing
equations, even though they are formulated in a quasi-static
framework.

2.2.3 Constitutive Equations
The deformation gradient of the solid component is split
multiplicatively into elastic and viscous parts, FS � Fe

S · Fv
S,

such that the “extra” part of the stress tensor is the sum of the
equilibrium (eq) part, the non-equilibrium (neq) part, and a
volumetric (vol) contribution,

FIGURE 2 | Numerical setup for the three experimental studies described in Figure 1 simulated with the poro-viscoelastic model. Finite element discretization of
sample geometries, predicted deformed states using the base material parameters, and loading curves applied for each.
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τ � τSE − pJS1 � τeqE + τneqE + τvolE − pJS1. (5)

Based on previous studies (Budday et al., 2017a, Budday et al.,
2020), we select a one-term Ogden material model for both the
equilibrium and non-equilibrium parts. Then,

τeqE � ∑3
A�1

β∞,A nS,A ⊗ nS,A with β∞,A

� μ∞ λ̃
α∞
S,A − 1

3
λ̃
α∞
S,1 + λ̃

α∞
S,2 + λ̃

α∞
S,3[ ][ ], (6)

where α∞ and μ∞ are the equilibrium Ogden shear and
nonlinearity parameters, λS̃,a for a ∈ 1, 2, 3{ } are the isochoric
principal stretches, and nS,A are the eigenvectors of the left
Cauchy-Green tensor bS � FS · FT

S , such that
bS � ∑3

A�1λ
2
S,A nS,A ⊗ nS,A. Note that the Ogden shear parameter

μ∞ is related to the classical shear modulus, known from the
linear theory, through μ0∞ � 1

2μ∞α∞.
The non-equilibrium counterpart is

τneqE � ∑3
A�1

β1,A ne
S,A ⊗ n

e
S,A with β1,A

� μ1 λ̃
e
S,A( )α1[ − 1

3
λ̃
e
S,1( )α1 + λ̃

e
S,2( )α1 + λ̃

e
S,3( )α1[ ]], (7)

where α1 and μ1 are the non-equilibrium Ogden shear and
nonlinearity constitutive parameters, which again are related
to the corresponding classical shear modulus through
μ01 � 1

2μ1α1. The terms λ̃
e
S,a for a ∈ 1, 2, 3{ } are the isochoric

elastic principal stretches, and neS,A are the eigenvectors of the
elastic part of the left Cauchy-Green tensor beS � Fe

S · (Fe
S)T , such

that beS � ∑3
A�1[λeS,A]2 neS,A ⊗ neS,A.

An evolution equation is required to complete the definition of
the viscous solid behavior. To this aim, we introduce

−Lvb
e
S · beS( )−1 � 1

η
τneq, (8)

which assumes isotropy and introduces the viscosity of the solid
component, η, such that we a priori satisfy a non-negative viscous
dissipation term, i.e.,

Dv � 1
2η
τneq: τneq ≥ 0 for η> 0. (9)

The viscous dissipation density rate Dv derives from the
Clausius–Duhem inequality and represents the dissipation due
to internal processes occurring within the viscous solid
component.

Finally, the definition of the solid stress tensor 5) is completed
with the volumetric contribution,

τvolE � λ* 1 − nS
0S[ ]2 JS

1 − nS0S
− JS
JS − nS

0S

[ ]1, (10)

where λ* is the first Lamé parameter of the solid component and
nS0S is the volume fraction of the solid component with respect to
the solid reference configuration at the initial time. The term τvolE
accounts for the compressibility effects of the deforming biphasic
material. It ensures the correct modeling of the compaction point,

which occurs when all pores are closed such that no fluid remains
in the material. Further volume deformations are not possible at
this point due to the incompressibility constraint of the solid
component (Ehlers and Eipper, 1999).

The constitutive behavior of the fluid component follows a
Darcy-like law,

w � − 1
μFR

JS − nS0S
1 − nS

0S

[ ]KS
0 · ∇p, (11)

where μFR is the effective shear viscosity of the pore fluid andKS
0 is

the initial intrinsic permeability tensor, which is assumed to be
isotropic, i.e., KS

0 � K01. Here, we have neglected the effect of
gravity on the fluid behavior.

Like its counterpart Dv in Eq. 9, the porous dissipation rate
density derives from the Clausius-Duhem inequality and
represents the dissipation due to the seepage process related to
the material porosity. It is defined as

Dp � μFR
1 − nS0S
JS − nS

0S

K01( )−1 · w[ ] · w ≥ 0, (12)

which will always be non-negative, given that μFR and K0 are
necessarily positive and nS0S ∈ (0, 1).

2.2.4 Finite Element Implementation
We implemented the discretized governing equations using the
open source finite element library deal.ii (Arndt et al., 2020).
A detailed derivation of the constitutive equations and dissipation
terms as well as the discretization and numerical implementation
details are available in Comellas et al. (2020) and its associated
supplementary material.

2.2.5 Numerical Setup
We investigate the behavior of the poro-viscoelastic
formulation for three distinct loading scenarios
corresponding to the experimental studies in Section 2.1: 1)
cyclic compression-tension (see Figure 1I) and 2) compression
relaxation (see Figure 1J) of a cylindrical specimen (see Figures
1E,F) using a rheometer (see Figure 1B) as well as 3)
indentation with a flat punch (see Figures 1A,C,D,G,H).
Figure 2 summarizes the numerical setup for the three test
cases. A quarter of the cylindrical specimen is spatially
discretized with 384 full integration Q2P1 elements for the
cyclic loading and compression relaxation studies. That is, we
approximate the solid displacement with quadratic shape
functions and the pore pressure with linear ones. A
quadrature of order 3 is considered. The degrees of freedom
at the bottom of the geometry are fixed in space, while the
vertical displacement shown in the right-most column is
prescribed to the top surface. Symmetry boundary
conditions are applied to the flat lateral surfaces. Solely the
cylinder hull is drained, i.e. fluid can only leave the solid
through the curved lateral surface. The deformed geometry
depicts the local vertical stretch distribution on the fully
compressed and extended states of the specimen for the
cyclic loading, and the fully compressed state for the
compression relaxation test. These states correspond to a
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15% overall vertical strain. The spatial discretization to
simulate the indentation experiments is composed of 2048
full integration Q2P1 elements. Again, in order to save
computational effort, the computations are carried out only
on one quarter of the real geometry. The finite element mesh is
refined towards the center of the sample to approximate the flat
punch indentation as accurately as possible, while maintaining
a feasible computational cost. The bottom of the geometry is
fixed in space and a vertical load shown in the bottom right of
Figure 2 is applied to the degrees of freedom within the radius
of the flat punch. Symmetry boundary conditions are applied to
the inner lateral surfaces. All surfaces are undrained, except the
unloaded part of the top surface, which is drained.

The material parameters used are given in Table 1. The
initial solid volume fraction is set to 0.75. The first Lamé
parameter λ* is fixed to a value large enough that the quasi-
incompressibility of the solid component is correctly
enforced. The effective shear fluid viscosity of the free-
flowing fluid in the brain tissue is assumed to be that of
water at room temperature. Based on our previous findings
(Budday and Steinmann, 2018; Budday et al., 2020), the same
nonlinearity Ogden parameter is used for the equilibrium and
non-equilibrium parts α � α∞ � α1. Throughout our
simulations, we vary the equilibrium shear modulus μ0∞,
the non-equilibrium shear modulus μ01, the nonlinearity
Ogden parameter α, the solid viscosity η and the initial
intrinsic permeability K0. The ranges considered are given
in Table 1.

The numerical implementations of the three new experimental
setups in the original code available from the deal.ii code
gallery website and an exemplary input file for each type are
provided in Supplementary Material.

2.3 Data Analysis
We derive a series of useful quantities based on the experiments
and our finite element results with the aim of analyzing the effect
of different material parameters on computational measures with
a direct experimental counterpart or numerical quantities that
have a recognizable physical meaning.

The total reaction force on the loaded surfaces is computed at
each integration point of the element faces of the loaded
boundary zB0,l , given in the reference configuration, from

r � ∫
zB0,l

σ · N dA0S. (13)

Here, σ � τ/JS is the total Cauchy stress and N is the outward
unit vector of the loaded surface with area element dA0S, which is
defined in the reference configuration of the solid component.
Based on the definition of the Kirchhoff stress (5), the reaction
force can also be split into a solid and a fluid contribution,

rS � ∫
zB0,l

σE · N dA0S and rF � ∫
zB0,l

− pN dA0S. (14)

For the cyclic loading and compression relaxation tests, we
calculate the total, solid, and fluid contributions to the nominal
stresses as the vertical component of the corresponding reaction
force divided by the original cross-section of the sample. The total
reaction force and total nominal stress are measures that are
comparable to those typically obtained in experimental setups, as
shown in Figure 1. Our modeling approach allows us to break
them into solid and fluid contributions, and, in this way, explore
how they respond to different loading scenarios and material
parameters.

We compute numerically the values of the viscous and porous
total dissipation rates in the whole sample at each time step from
the corresponding dissipation density rates defined in Eq. 9 and
Eq. 12, respectively. In particular,

Dtotal
i � ∫

B0

Di dV0S, (15)

where i � {p, v} for the porous and viscous contributions,
respectively. Here, B0 refers to the domain of the biphasic
material in the reference configuration and dV0S is the volume
element of the material in the reference configuration of the solid
component. To obtain the accumulated dissipation over time, we
determine the product Dtotal

i Δt at each time step, and sum over
time. These dissipation terms are a measure of the porous and
viscous contributions to the overall deformation process
simulated in our numerical examples.

The solid volume of the sample is numerically computed as

VS � ∫
B0

nS
0SJS dV0s, (16)

where the term nS0SJS is known as the (current) solid volume
fraction nS at a given integration point. As in the previous
equation, both B0 and dV0S correspond to the reference
configuration. Ideally, the total solid volume should be
constant due to the incompressibility assumption, but we
compute it as a means of measuring how well the
incompressibility has been enforced in our simulations.

Similarly to the reaction forces, the fluid flow across the
drained boundaries zB0,d , given in the reference configuration,
is computed as

Q � ∫
zB0,d

w · N dA0S. (17)

Here, w is the volume-weighted seepage velocity as defined in
Eq. 11 and N is the outward unit vector of the drained surface

TABLE 1 | Poro-viscoelastic material parameters used in the simulations
described in Figure 2.

Parameter Value

Solid component
nS0S 0.75
λ* 1 MPa
μ0∞ {0.12, 0.32, 0.84} kPa
μ01 {1.2, 3.2, 8.4} kPa
α {−5, −8, −13}
η {14, 28, 56} kPa·s
Fluid component
μFR 0.89 Pa·s
K0 {10–8, 10–10, 10–12} mm2
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with area element dA0S, which is defined in the reference configuration
of the solid component. The fluid flow predicted in our simulations
provides additional insights into the porous behavior of the material
and can potentially be related to experimental measures, e.g., fluid
collected after confined compression of a sample.

Finally, following the procedure described in Budday et al.
(2015a), we compute the effective modulus for the indentation
simulations as

Eeff � 3
4

k
2ri

(18)

from the contact stiffness k and the punch radius ri. The contact
stiffness k is defined as the average slope of the upper 50% of the
reaction force curve during loading, as commonly used for the
analysis of indentation experiments (Oliver and Pharr, 2004;
Gupta et al., 2007; Budday et al., 2015a).

3 RESULTS

To evaluate the influence of different material properties on the
response of human brain tissue during different quasi-static
biomechanical experiments, we perform parameter studies in
the following and systematically vary the intrinsic permeability,
equilibrium and non-equilibrium shear moduli, nonlinearity, and
viscosity. We simulate the tissue behavior during cyclic
compression–tension experiments, stress relaxation in
compression, and indentation measurements, and analyze the
corresponding behavior. The parameter ranges are chosen to
represent different brain regions, e.g., cortex and corona radiata,
with the aim to explain the contradictory results between large-
strain compression and indentation experiments illustrated in
Figure 1 based on the complex poro-viscoelastic model
introduced in Section 2.2 with the setup-dependent boundary
conditions introduced in Section 2.2.5.

3.1 The Effect of the Intrinsic Permeability
Figure 3 illustrates the effect of varying initial intrinsic
permeabilities K0 on the response during cyclic
compression–tension experiments. The total nominal stress is

plotted on the left, the solid contribution in the middle and the
fluid contribution on the right. While the total stress is only
marginally affected by the intrinsic permeability, the individual
contributions of the solid and fluid component change
significantly. The solid nominal stress decreases with
decreasing permeabilities, while the fluid nominal stress
increases: A lower permeability results in a higher fluid
contribution to the total nominal stress. For intrinsic
permeabilities of K0 ≥ 10–6 mm2, the contribution of the fluid
is negligible, while it makes up about one sixth of the total
nominal stress under compressive loading and about one
fourth under tensile loading for smaller permeabilities.

Depending on the intrinsic permeability, the stress-stretch
curves for the fluid nominal stress change notably. This can
be directly related to the fluid’s ability to move through the
solid faster or slower, which may generate inertial-like effects
due to a delayed response or resistance to change of the fluid
flow. For high permeabilities, the fluid moves easily through
the solid structure such that, after overcoming inertia effects
when the loading rate or direction changes, the fluid stress
decreases rapidly. In contrast, for low permeabilities, the fluid
moves slower through the solid experiencing more resistance.
For the case with the smallest permeability, the fluid stress
increases throughout the entire loading time before a delayed
response to the change of loading direction takes place,
resulting in stress-stretch curves more similar to the
viscous solid itself.

Figure 4 shows the accumulated viscous dissipation over the
set of three cycles on the left, the accumulated porous dissipation
in the middle and the volume change of the solid component on
the right. For the present choice of parameters, the viscous
dissipation is distinctly larger than the porous dissipation. In
addition, changing the intrinsic permeability barely influences the
viscous dissipation. Interestingly, for the porous dissipation, we
observe a maximum for an intrinsic permeability of K0 �
10−10 mm2. This effect is associated with Eq. 12, which
indicates that a decreasing initial intrinsic permeability leads
to an increase in the porous dissipation but also a decrease in
the volume-weighted seepage velocity w, which results in the
observed maximum.

FIGURE 3 | Cyclic compression–tension test up to 15% strain. Total nominal stress (left), solid nominal stress (middle) and fluid nominal stress (right) versus
overall stretch for μ0∞ � 0.32 kPa, μ01 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10–6, 10–8, 10–9, 10–10, 10−12} mm2.
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The slight variations in the solid volume in Figure 4, right,
show that the intrinsic permeability affects how strictly the
incompressibility is enforced. As the formulation has a
volumetric stress defined in terms of the first Lamé parameter
λ* (see Eq. 10), we have selected a constant λ* instead of a
constant Poisson’s ratio ] in our parameter study. Enforcing a
constant ] when exploring variations of the shear modulus and

nonlinearity parameter in the Ogden model would result in
different λ* values for each combination of parameters, given
that λ* � 2μ0]/(1 − 2]), where μ0 is the classical shear modulus. By
selecting a constant λ*, we ensure that the volumetric part of the
stress is independent of these parameters and, hence, avoid
unwanted interference in the sensitivity study. In addition,
initial attempts to explore the effect of the Poisson’s ratio on

FIGURE 4 | Cyclic compression–tension test up to 15% strain. Accumulated viscous dissipation (left), accumulated porous dissipation (middle) and solid volume
(right) over time for μ0∞ � 0.32 kPa, μ01 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10−6, 10−8, 10−9, 10−10, 10−12} mm2.

FIGURE 5 | Compression relaxation test up to 15% strain. Left: Normalized fluid nominal stress (top left) and fluid flow over the boundary (bottom left) over time
for μ0∞ � 0.32 kPa, μ01 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10−8, 10−10, 10−12} mm2. Right: Corresponding finite element
results of the seepage velocity at the end of loading (t � 6 s) and for the subsequent time step (t � 6.5 s). The depicted arrows on the selected vertical plane of the sample
are sized proportional to the magnitude of the seepage velocity, given in mm/s, scaled by the factor indicated below each colorbar legend. Corresponding videos
with the full simulation results are available in Supplementary Material.

Frontiers in Mechanical Engineering | www.frontiersin.org August 2021 | Volume 7 | Article 7083508

Greiner et al. Poro-Viscoelasticity of Human Brain Tissue

96

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


the predicted material response resulted in numerical instabilities
around peak loading times for the compression relaxation tests,
even with values above 0.49. In these simulations we converted
the Poisson’s ratio to λ* using the equilibrium shear modulus,
i.e., with μ0 � 1

2μ∞α. Upon closer inspection we realized that the
sum of the equilibrium and non-equilibrium shear moduli should
be used instead, μ0 � 1

2 (μ∞ + μ1)α, to avoid the instabilities. We
realized conversion from ] to λ* is not straightforward for the
viscoelastic case, supporting our decision of selecting a constant
λ* to remove any unsought effect of changes in the parameter
used to enforce the quasi-incompressibility. Yet, even with a
constant λ*, we note that a lower permeability results in a better
quasi-incompressibility of the solid component. This could be
attributed to the fact that a lower permeability results in more
fluid “trapped” in the pores of the biphasic material, which then
exerts a larger hydrostatic pressure on the solid component.

During stress relaxation and indentation experiments, trends
in fluid flow over the boundary can directly be tied to the behavior
over time of the fluid nominal stresses, as illustrated in Figures 5,
6. For high permeabilities, we observe that the fluid stresses adopt
positive values as soon as the loading rate is zero (holding period).
This can be attributed to the fact that fluid immediately starts to
flow back into the sample. For lower permeabilities, in contrast,
fluid continues to flow out, but at smaller rates. Therefore, we
suppose that there is a longer period of inertial-like effects. It is
interesting to note that we may observe a negative fluid flow over

the boundary, i.e., overall fluid is entering the sample, but locally
have fluid flowing outwards. This can, for instance, be seen during
indentation experiments in Supplementary Figure S1. Another
interesting effect we observe is that when the biphasic material
deforms and occupies new volume in space, it can potentially
incorporate new fluid. This occurs when the loading inertia
forcing fluid outwards is negligible or does not offer enough
resistance to the potential inward flow. In summary, as the sample
is immersed in fluid during the experiments to avoid dehydration,
small and slow displacements may result in fluid flow into the
sample across drained boundaries.

In the sequel, we will evaluate the effects of the equilibrium
and non-equilibrium shear moduli, nonlinearity, and viscosity
on the tissue response for different initial intrinsic permeabilities
K0 � {10−8, 10−10, 10−12} mm2.

3.2 The Effect of the Shear Modulus
Figure 7, first column, shows the effect of varying shear moduli
μ0∞ and intrinsic permeabilities K0 on the maximum overall
nominal stress with individual solid and fluid contributions
during cyclic compression (A1) and tension (A2), the
corresponding accumulated viscous (A3) and porous (A4)
dissipation, the maximum stress during stress relaxation (A5),
and the effective modulus during indentation experiments (A6).
Under compressive loading, the maximum overall nominal stress
increases for increasing shear modulus and also increases slightly

FIGURE 6 | Indentation test with an indentation depth of 50 μm. Left: Reaction force due to the fluid (top left) and fluid flow over the boundary (bottom left) over
time for μ∞ � 0.32 kPa, μ1 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10−8, 10−10, 10−12} mm2. Right: Corresponding finite element
results of the seepage velocity at the end of loading (t � 10 s) and for the subsequent time step (t � 11 s). Results are shown for the whole sample and for the indicated
vertical cross-section. The depicted arrows are sized proportional to the magnitude of the seepage velocity, given in mm/s, scaled by the factor indicated below
each colorbar legend. Corresponding videos with the full simulation results on the vertical cross-section are available in Supplementary Material.
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for increasing permeability (see Figure 7 A1 and A5). The
effective modulus from indentation also increases for
increasing μ0∞, but is only marginally affected by a change in
the permeability (see Figure 7 A6). Under tensile loading, the
maximum nominal stress shows the opposite trend and decreases

for increasing equilibrium shear modulus (see Figure 7 A2). It
reaches a maximum for K0 � 10−10 mm2, which can be attributed
to the significant increase in the fluid contribution between
K0 � 10−8 mm2 and K0 � 10−10 mm2. In general, the fluid
contribution is higher in tension than in compression.

FIGURE 7 | Effect of (A) the equilibrium shear modulus μ0∞, (B) the non-equilibrium shear modulus μ01, (C) the nonlinearity Ogden parameter α, and (D) the solid
viscosity η for different initial intrinsic permeabilities K0 � {10−8, 10−10, 10−12} mm2 on the maximum stresses, and viscous and porous dissipations during cyclic
compression–tension (rows 1-4), maximum stresses and the total/solid/fluid contributions to stress relaxation after 300 s in percent for compression relaxation (row 5),
and the effective modulus from indentation (row 6). For nominal stress plots, the fluid contribution to the total stress is indicated in a darker shade.
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The viscous dissipation remains almost constant for different
shear moduli and permeabilities (see Figure 7 A3). The porous
dissipation, in contrast, shows a coupled dependency on the shear
modulus and the intrinsic permeability (see Figure 7 A4). It
increases with increasing shear modulus and again shows its
maximum for an intrinsic permeability of K0 � 10−10 mm2. These
results demonstrate that the stiffness of the solid has a strong
influence on the fluid response. Varying the shear modulus also

noticeably affects the stress-stretch curves for the fluid nominal
stress, as illustrated in Figure 8, first row. We note that,
depending on the shear modulus, the maximum tensile stress
is not necessarily reached for the maximum stretch.

The stress relaxation experiments in Figure 7 A5 reveal that
the stress relaxed after 300 s of holding time decreases with
increasing shear modulus. Independent of the shear modulus and
permeability, the fluid stress relaxes faster than the solid stress.

FIGURE 8 | Effect of the equilibrium shear modulus μ0∞ (first row), the non-equilibrium shear modulus μ01 (second row), the nonlinearity Ogden parameter α (third
row), and the solid viscosity η (fourth row) on the stress-stretch response during cyclic compression–tension for an initial intrinsic permeability K0 � 10−10 mm2.
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While for higher permeabilities, the fluid stress has fully relaxed
after five minutes, it still contributes to the total stress for the
lowest intrinsic permeability of K0 � 10−12 mm2 as only between
75 % and 95% of the fluid nominal stress have relaxed. Still, the
overall stress relaxation remains almost constant, as the
increasing fluid contribution takes over some part of the solid
relaxation.

Figure 7, second column, shows the effect of the non-
equilibrium shear modulus μ01 on cyclic compression–tension,
compression stress relaxation, and indentation experiments. The
maximum nominal compressive stress increases with increasing
shear modulus (see Figure 7 B1 and B5), but this effect is less
pronounced than for the equilibrium shear modulus. In contrast
to the influence of μ0∞, the maximum nominal tensile stress also
increases with increasing μ01 (see Figure 7 B2). The opposite effect
on the total tensile stresses is also well visible in the stress-stretch
curves in Figure 8. When comparing the first and second row, the
trends are similar in compression, but differ in tension. Both
viscous and porous dissipation strongly depend on the non-
equilibrium shear modulus (see Figure 7 B3 and B4): the
dissipation increases with increasing μ01. Consequently, while
the effect of a varying non-equilibrium shear modulus on the
maximum stress during the stress relaxation experiments is
similar to the effect of the equilibrium shear modulus (see
Figure 7 B5), the total stress relaxed after 5 min holding time
increases instead of decreasing. In addition, the effective modulus
from indentation simulations shows significantly different trends
(see Figure 7 B6). Here, the effective modulus reaches a
maximum for an intermediate non-equilibrium shear modulus
but decreases again, when the shear modulus is further increased.

3.3 The Effect of the Nonlinearity
Figure 7, third column, shows the effect of the nonlinearity
parameter α on cyclic compression–tension, compression
stress relaxation, and indentation experiments. We chose
negative values for α to capture the stiffer response under
compression than under tension, which is an important
feature of brain tissue behavior, as shown in Figure 1I. Under
compressive loading, increasing α values result in an increase of
the maximum nominal stress, both in cyclic loading and stress
relaxation (Figure 7 C1 and C5). Under tensile loading, we
observe the opposite trend (Figure 7 C2), similar to the effect
of μ0∞. This can be attributed to similar stress-stretch curves
during cyclic loading in Figure 8 for α (third row) and μ0∞ (first
row). We further observe increased fluid nominal stresses under
both compressive and tensile loading, showing that the fluid
response also depends on the nonlinearity of the viscous solid.
The accumulated viscous dissipation increases with increasing
nonlinearity (see Figure 7 C3) and this effect is even more
pronounced for the porous dissipation (see Figure 7 C4). This
clearly shows that the nonlinearity not only affects the viscous
response but also the behavior of the fluid. A high nonlinearity of
α � −13 not only produces larger stresses associated to the solid
part (“extra” Cauchy stress τSE in Eq. 5, see Figure 9, bottom left),
but also largely affects the pore fluid values and distributions (see
Figure 9, bottom right). Higher nonlinearities result in a longer
porous relaxation (the pore pressure takes much longer to relax to

zero). These individual components add up to the total Cauchy
stress shown in Figure 9, top left. We observe that higher
nonlinearities yield higher stresses during loading and,
additionally, stress relaxation progresses more slowly. The total
stress relaxed after 5 minutes decreases for increasing α (see
Figure 7 C5). Larger “extra” stresses can be associated with
the larger solid volume fraction values (see Figure 10, top
left), which in turn are linked to the fluid flowing out of the
sample (see seepage velocities in Figure 10, top right). This is
another example of how the behavior of the solid and fluid
components is linked and, thus, the coupling of porous and
viscous contributions. For larger α values the viscous (see
Figure 10, bottom left) and porous (see Figure 10, bottom
right) dissipation rates are slightly higher at the end of
loading. However, the viscous dissipation reduces faster for
α � −13 than for lower nonlinearities, while we observe the
opposite trend for the porous dissipation. We note that the finite
element results in Figures 9, 10 also demonstrate that all values
are inhomogeneously distributed in the vertical cross-section of
the sample due to the loading conditions not being purely
uniaxial.

Since the nonlinearity parameter has an exponential character,
its influence becomes more pronounced for larger deformations.
Therefore, the indentation results (see Figure 7 C6), which are
associated with smaller strains than the compression and tension
experiments, are only marginally affected by changes in α.
Interestingly, the effective modulus is lowest for the
intermediate α, and increases for higher or smaller values.
This shows that the relation between α and the indentation
modulus is not linear.

3.4 The Effect of the Viscosity
Figure 7, fourth column, shows the effect of the viscosity η on
cyclic compression–tension, compression stress relaxation, and
indentation experiments. Increasing the viscosity leads to a
significant increase in the maximum nominal stress during
both compression and especially tension (see Figure 7 D1, D2,
and D5). Interestingly, increasing the viscosity leads to a less
nonlinear and less compression–tension asymmetric response
(see Figure 8, bottom left). In addition, the fluid contribution to
the total nominal stress increases notably. The effect of the
viscosity on the fluid nominal stress can also be seen in the
corresponding stress-stretch curves in Figure 8, bottom right.
Depending on η, the amount of stretch at which the maximum
fluid stress is reached shifts. In addition, both viscous and porous
dissipation increase significantly for increasing viscosity (see
Figure 7 D3 and D4). As expected, also the stress relaxed
after 5 min during stress relaxation experiments increases with
increasing η (see Figure 7D5). Finally, the viscosity largely affects
the effective modulus from indentation simulations (see Figure 7
D6)—more than any other material parameter.

4 DISCUSSION

In this work, we have used a poro-viscoelastic computational
model for brain tissue behavior to systematically analyze the
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viscous and porous contributions to the quasi-static response
recorded during common biomechanical testing setups,
i.e., large-strain compression and tension as well as
indentation experiments. Through systematic parameter
studies, we have demonstrated the effects of the initial
intrinsic permeability, shear moduli, nonlinearity, and viscosity
on the test-setup-dependent recorded mechanical response and
associated read-outs. Our analyses allow us to evaluate and
explain differences in the reported data on human brain tissue
mechanics that stem from poro-viscoelastic effects in
combination with different drainage and loading conditions
that differ greatly depending on the experimental procedure.

4.1 The Poro-Viscoelastic Nature of Brain
Tissue Explains Discrepancies Between
Indentation and Compression Experiments
Common biomechanical testing techniques to quantify the quasi-
static, continuum scale, region-dependent mechanics of brain
tissue include indentation experiments (Van Dommelen et al.,
2010; Chen et al., 2015; Budday et al., 2015a; MacManus et al.,
2017, 2018) and large-strain measurements under multiple
loading modes, i.e., compression (Galford and McElhaney,
1970; Miller and Chinzei, 1997), tension (Miller and Chinzei,

2002), shear (Donnelly and Medige, 1997; Prange and Margulies,
2002; Chatelin et al., 2012), or combinations thereof (Jin et al.,
2013; Budday et al., 2017a). Strikingly, while white matter tissue
shows a “stiffer” response than gray matter during indentation
measurements, we observe the opposite trend during large-strain
compression, tension, and shear. To confirm this trend, we have
tested one and the same human brain tissue specimens with both
indentation and large-strain compression–tension experiments,
as illustrated in Figure 1. While the effective modulus from
indentation is higher for white matter (see Figures 1G,H), the
maximum stresses reached during cyclic compression–tension
and compression relaxation are higher for gray matter tissue (see
Figures 1I,J).

In this study, we have made an effort to trace this observation
to the poro-viscoelastic nature of brain tissue—and the
differences in the permeability, shear moduli, nonlinearity, and
viscosity in different regions—through systematic numerical
simulations. Our results show the tight coupling between the
properties of the viscoelastic solid and the fluid behavior; the
porous dissipation is highest for intermediate permeabilities and
largely depends on the shear moduli, nonlinearity, and viscosity
of the solid. Naturally, these complex and nonlinear dependencies
cannot be captured by a single effective modulus determined
from indentation experiments at relatively low strains or

FIGURE 9 | Compression relaxation test up to 15% strain. Finite element results for K0 � 10−10 mm2, μ0∞ � 0.32 kPa, μ1 � 8.4 kPa, η � 14 kPa ·s and different
nonlinear Ogden parameters α � {−5, −8, −13}. Results are shown for the selected vertical plane (top right) at the end of loading (t � 6 s), for the subsequent time step
(t � 6.5 s) and at t � 30.5 s. Vertical component of the total Cauchy stress (top left), vertical component of the ‘extra’ Cauchy stress (bottom left), and fluid pore pressure
(bottom right), all given in Pa. Additional results provided in Figure 10. Corresponding videos with the full simulation results are available in Supplementary Material.
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maximum stresses during large-strain loading. Such values may
change depending on the loading and boundary conditions and
do not necessarily represent the actual stiffness of the material.
Since the nonlinearity parameter α has an exponential character,
for instance, its influence becomes more pronounced for larger
deformations during compression and tension experiments than
during indentation measurements. Therefore, certain material
properties may affect the maximum stresses during large-strain
compression differently than the effective modulus from
indentation. Our results demonstrate that increasing μ01 from
3.2 to 8.4 kPa leads to an increase in maximum compressive and
tensile stresses, while—for the same sets of parameters—it leads
to a decrease in the effective modulus from indentation. We
observe a similar but less pronounced effect when increasing the
nonlinearity from α � −5 to α � −8. These computationally-
observed phenomena can explain the experimental results in
Figure 1, which might seem contradictory at first sight.
Interestingly, our previous results indeed suggest that the non-
equilibrium shear modulus is higher for cortical gray matter than
for white matter (Budday et al., 2017b; Budday and Steinmann,
2018) in agreement with the results in Figure 7B. In summary,
the different trends for compression and indentation experiments
can, on the one hand, be attributed to the complex coupling
between porous and viscous effects and the material nonlinearity.

On the other hand, these trends can result from different methods
used to analyze experimental data. Here, we determined the
effective modulus from the averaged contact stiffness over the
region between 50 and 100% of the maximum indentation force
(as introduced in Section 2.3), similar to previous approaches in
the literature (Oliver and Pharr, 2004; Budday et al., 2015a). This
ensures to minimize the influence of adhesion (Gupta et al.,
2007), but can significantly affect the results for highly nonlinear
materials. Figure 11 illustrates that the numerically-predicted
indentation curve changes with varying non-equilibrium shear
modulus and that it might make a difference to use a different
portion of the curve to determine the effective modulus.

These considerations emphasize that when testing ultrasoft
and biphasic materials such as brain tissue, one needs to be
particularly careful when post-processing recorded experimental
data. Our simulations further show that the fluid flow within and
across the boundaries of the sample is key to the overall response
of the tissue (as measured by traditional methods). Therefore, also
experimental setups should be carefully designed in the future to
avoid unwanted effects and measure the particular property
relevant for a certain application. In this respect, finite element
modeling provides a useful tool to explore the complex behavior
under different loading conditions and better understand the role
of individual material properties, such as permeability, stiffness,

FIGURE 10 | Additional finite element results corresponding to the simulation described in Figure 9. Solid volume fraction (top left), seepage velocity (top right),
viscous dissipation rate (bottom left) and porous dissipation rate (bottom right). Dissipation rates are given in nJ/s. The depicted arrows representing the seepage
velocity are sized proportional to its magnitude, given in mm/s, scaled by the factor indicated to the left of each row. Corresponding videos with the full simulation results
are available in Supplementary Material.
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nonlinearity, and viscosity, on the measured response, as
discussed in detail in the following.

4.2 The Role of the Intrinsic Permeability on
the Tissue Response
Although the initial intrinsic permeability K0 barely affects the
total nominal stress and effective modulus (see Figures 3, 7), the
individual fluid and solid contributions change noticeably. The
permeability regulates how “fast” the fluid flow reacts to loading.
In addition, our results demonstrate that there are significant
local variations in the fluid flow within the sample for the
different testing setups investigated here (e.g., see Figures 5,
6). We consistently observe that the amount of fluid “trapped”
in the viscoelastic solid network is proportional to the
contribution of the fluid part to the biphasic tissue response:
Lower intrinsic permeabilities result in a larger fluid contribution
to the total nominal stresses (see rows 1,2 and 5 in Figure 7).
From a physical perspective, one can explain these trends
considering that lower intrinsic permeabilities result in smaller
relative movement between solid and fluid phases and, hence, less
overall fluid flowing out of the loaded sample. Therefore, the
incompressible fluid is “trapped” inside the sample and notably
contributes to the stress response. For higher permeabilities, in
contrast, there is a smaller proportion of fluid component in the
biphasic material, so that the solid part must take on a larger part
of the load.

Interestingly, our simulations further show that variations in
the intrinsic permeability can result in extreme differences in the
temporal course of the response, as observed in Figures 5, 6.

Here, we see for both compression relaxation and indentation
loading that abrupt changes in loading rate, e.g., from loading to
the holding period, can completely reverse the fluid flow and
increase its magnitude (K0 � 10−8 mm2) or only reduce the
magnitude without changing the flow direction (K0 �
10−10 mm2 and K0 � 10−12 mm2). As the fluid flow has a
direct impact on the global material response, reliably and
accurately assessing the permeability of tissue samples in
experiments is key to thoroughly understand how brain tissue
deforms under different loading scenarios. This becomes an
imperative under ‘“real-life” loading conditions that are not
homogeneous, where we see complex local interactions of the
biphasic tissue deformation, seepage velocity and resulting fluid
flow directions.

Our results demonstrate that for the testing setups considered
here, unconfined large-strain compression and tension as well as
indentation experiments, the fluid flow within the sample and
across the boundary is not well controlled. Therefore, it may be
important to redesign experimental setups in the future in order
to avoid unwanted effects of the fluid flow on the measured
response, especially when comparing different regions of brain
tissue where there seem to be local differences in permeability.
This becomes even more relevant as we observed that the fluid
flow also depends on the viscoelastic properties (as discussed in
detail in the next section) and such coupling effects can lead to
additional effects during experiments that are rather related to
different boundary conditions than the actual material properties.

4.3 Coupling Between Viscous and Porous
Effects
The thorough exploration of the poro-viscoelastic parameters in
our computational model confirms that the viscous and porous
responses to loading are highly interrelated. Typically, we
associate the fluid constituent behavior to the porous response,
while the solid component is linked to the viscous one. Yet,
changes in a single parameter, either linked to the viscoelastic
solid (μ0∞, μ01, α, η) or the pore fluid (K0) have considerable effects
on both porous and viscous features of the tissue behavior (see
rows 3 and 4 in Figure 7). For all loading cases studied here, the
fluid response depends on the stiffness and nonlinearity of the
viscoelastic solid in addition to the initial intrinsic permeability.
While the latter is evidently the main determinant in the fluid part
of the biphasic response, (Figures 5, 6), interestingly, also
different combinations of the solid parameters μ0∞, μ01, α, and
η have a noticeable effect (see fluid nominal stress in Figure 8,
pore pressure in Figure 9 and seepage velocity in Figure 10).
These observations agree well with our previous findings (Reiter
et al., 2021), showing that cells inside brain tissue still keep
moving in the direction of loading during the holding period
of compression relaxation experiments—only with decreasing
velocity. This further supports the idea that the porous and
viscous contributions to the response of brain tissue are
strongly coupled, i.e., the moving fluid might exert a drag
force on cell bodies and thereby displace them.

Porous dissipation results, surprisingly, are not directly
proportional to the initial intrinsic permeability (see Figure 4

FIGURE 11 | Indentation test with an indentation depth of 50 μm. Total
reaction force versus indentation depth for K0 � 10−10 mm2, μ0∞ � 0.32 kPa,
α � −8, η � 14 kPa ·s and different μ01 � {1.2, 3.2, 8.4} kPa. The effective
modulus shown in Figure 7 B6, corresponds to the slope of the fitted
lines shown here in red.
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center and Figure 7, row 4), but rather peak for intermediate
values of K0. This hints at complex interactions between the
deforming viscoelastic solid and the fluid flow behavior under
loading. From a numerical perspective, and considering the
definitions (11) and (12), the unexpected response can be
attributed to the coupling between the pressure and
displacement variables. Solid deformation and stresses are
affected by a hydrostatic component due to the fluid
constituent exerting pressure on the solid. At the same time,
seepage velocity incorporates the effect of the deformations in the
changing intrinsic permeability value to account for the “closing”
of the pores under loading. However, for different values of the
solid parameters and loading conditions, we observe important
variations in local pressure distributions and, hence, in the
gradients of pressure, which determine seepage velocity
together with the intrinsic permeability. Consequently, from a
computational perspective, the pressure variable is the key—and
its effects are nuanced as we have repeatedly observed in our
simulations.

Our results indicate that the viscoelastic solid influences the
porous response to a much larger extent than the fluid
constituent affects the viscous response. While the solid
nominal stress shows a slight dependence on the intrinsic
permeability (Figure 3 center), the accumulated viscous
dissipation remains unaltered by the change in K0 (see
Figure 4, left, and Figure 7, row 3). These observations are
highly relevant when aiming to design experimental
procedures and protocols to reliably determine poro- and
viscoelastic material parameters for brain tissue. We could
previously show that a combination of cylic and stress
relaxation experiments under multiple loading modes are
well suited to calibrate viscoelastic material parameters
(Budday et al., 2017b; Budday and Steinmann, 2018). By
considering multiple loading modes simultaneously, one can
avoid that the optimization problem is ill-posed. To reliably
calibrate poro-viscoelastic models for brain tissue, however,
experimental designs need to be adopted to test the unique
property of interest. Ideally, experimental setups are optimized
under close consideration of the modeling framework and with
the help of computational simulations. This has the advantage
that the effects we have observed in the current study can be
taken into account.

4.4 Perspectives and Future Directions
In this study, we have performed computational parameter
studies to systematically understand the individual viscous
and porous contributions to brain tissue behavior under
different biomechanical testing conditions, but have not
aimed at calibrating material parameters through an
inverse parameter identification scheme. The reason for
that is that current experimental setups and data available
in the literature are not sufficient to reliably determine the
model parameters. For the setups investigated here, for
instance, which have previously been successfully used to
calibrate viscoelastic material parameters (Budday et al.,
2017b; Budday and Steinmann, 2018), porous and viscous
effects are strongly coupled. This makes it difficult to

uniquely identify poro-viscoelastic parameter sets. Also,
previously reported viscoelastic parameters are not readily
transferable. As an example, the first Lamé parameter in our
poro-viscoelastic model is not equivalent to the first Lamé
parameter in a single-phase viscoelastic material because
ours only represents the solid component behavior, while
the latter implicitly incorporates the whole tissue behavior,
including the fluid contribution to the material bulk
behavior. Therefore, in the future we plan to design new
experimental setups and protocols, e.g., to determine the
intrinsic permeability of brain tissue, under close
consideration of the continuum mechanics modeling
framework and systematic predictions from finite element
simulations. The latter are a valuable tool to evaluate the
sensitivity of certain parameters towards specific loading
conditions and, like this, optimize experiments. This will
eventually allow us to develop more realistic simulations for
personalized medicine.

We note that we only focused on quasi-static experiments in
the current work, which are relevant for applications on
intermediate time scales, such as the well-known phenomenon
of brain shift: When the skull is open during a neurosurgery,
brain tissue immediately undergoes large deformations and
“shifts” compared to the situation on preoperative images.
This is a major issue in neuronavigation (Gerard et al., 2017).
In the future, the model can also be adopted to study effects
during further experimental setups, for instance magnetic
resonance elastography (MRE) and ultrasound elastography
(USE), where the brain is loaded under small strains at high
frequencies. Importantly, these techniques allow for in vivo
measurements. Therefore, it will be interesting to investigate,
on the one hand, the capability of the model to capture the tissue
behavior in this small-strain high-frequency regime, and, on the
other hand, to evaluate the suitability of in vivomeasurements for
the calibration of biphasic, large-strain mechanical models as the
one presented here. Expanding our numerical inquires to
additional experimental setups will also provide a more
comprehensive set of data to analyze the general sensitivity of
the model parameters.

From a purely modeling perspective, it would be interesting to
challenge certain assumptions made in the current form of the
formulation. In particular, an alternative to Darcy’s law for the
fluid behavior would likely have a significant impact on the
results, especially the effect of the intrinsic permeability. For
example, one could introduce a direct solid-dependence in the
definition of the volume-weighted seepage velocity (11) to model
stress-assisted diffusion. Regarding the well-known regional
differences in brain tissue, these could be numerically
investigated in several ways, e.g., with a non-isotropic
permeability tensor and/or viscous evolution equation that
better reflect the local microstructure of the tissue. In addition,
adhesion effects could be introduced. Finally, for certain
applications, it may be necessary to incorporate the effects of
gravity as well as an osmotic pressure to predict swelling in the
brain. The computational approach presented in this study
provides a robust numerical framework on which to build
increasingly sophisticated models tailored to specific applications.
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The regional mechanical properties of brain tissue are not only key in the context of brain
injury and its vulnerability towards mechanical loads, but also affect the behavior and
functionality of brain cells. Due to the extremely soft nature of brain tissue, its mechanical
characterization is challenging. The response to loading depends on length and time
scales and is characterized by nonlinearity, compression-tension asymmetry, conditioning,
and stress relaxation. In addition, the regional heterogeneity–both in mechanics and
microstructure–complicates the comprehensive understanding of local tissue
properties and its relation to the underlying microstructure. Here, we combine large-
strain biomechanical tests with enzyme-linked immunosorbent assays (ELISA) and
develop an extended type of constitutive artificial neural networks (CANNs) that can
account for viscoelastic effects. We show that our viscoelastic constitutive artificial neural
network is able to describe the tissue response in different brain regions and quantify the
relevance of different cellular and extracellular components for time-independent
(nonlinearity, compression-tension-asymmetry) and time-dependent (hysteresis,
conditioning, stress relaxation) tissue mechanics, respectively. Our results suggest that
the content of the extracellular matrix protein fibronectin is highly relevant for both the
quasi-elastic behavior and viscoelastic effects of brain tissue. While the quasi-elastic
response seems to be largely controlled by extracellular matrix proteins from the basement
membrane, cellular components have a higher relevance for the viscoelastic response. Our
findings advance our understanding of microstructure - mechanics relations in human
brain tissue and are valuable to further advance predictivematerial models for finite element
simulations or to design biomaterials for tissue engineering and 3D printing applications.
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1 INTRODUCTION

The human brain is a fascinating organ, which has been studied
intensively by researchers from various fields but still remains
incompletely understood. Recent studies have highlighted the
important role of mechanical properties and forces for certain
processes during brain development (Budday et al., 2015b; Koser
et al., 2016; Thompson et al., 2019; injury Meaney et al., 2014;
Hemphill et al., 2015; Keating and Cullen, 2021), and disease
(Murphy et al., 2016; Barnes et al., 2017; Gerischer et al., 2018;
Park et al., 2018). Mechanical instabilities seem to underlie
cortical folding during brain development (Budday et al.,
2015b; Garcia et al., 2018), and brain cells react to their
mechanical environment by converting mechanical stimuli
into neural signals through mechanotransduction, which again
triggers cellular or extracellular reactions (Moshayedi et al., 2010,
2014; Tyler, 2012; Franze et al., 2013; Blumenthal et al., 2014;
Humphrey et al., 2014; Irianto et al., 2016; Koser et al., 2016;
Urbanski et al., 2016; Barriga et al., 2018). Consequently, the
human brain continuously changes its microstructure,
mechanical properties, and shape during its lifetime (Budday
and Kuhl, 2020), which makes it one of the most complex organs
in the human body. For many pathological conditions, such as
degenerative diseases, microstructural changes have been
investigated by neuropathologists (Alafuzoff, 2018). However,
the link between changes in microstructural components, the
corresponding tissue mechanics, and the effect induced through
the mechanosensing of cells remains to be clarified (Begonia et al.,
2010). Better understanding whether and how microstructural
components contribute to the macroscopic mechanical behavior
of brain tissue is key to gain further insights into the mechanisms
underlying mechanics-related injury and disease. In addition,
computational models based on nonlinear continuum mechanics
can be a valuable tool to predictively understand the processes in
the human brain (Goriely et al., 2015; Budday et al., 2020a).
Eventually, they could even be used to assist diagnosis and
treatment of neurological disorders or the detailed planning of
surgical procedures (Weickenmeier et al., 2017a; Zarzor et al.,
2021). In this respect, understanding the link between
microstructure and mechanics of brain tissue can help to
develop more realistic material models that capture local
variations in tissue properties (Budday et al., 2020b; Reiter
et al., 2021).

One challenge when modeling the behavior of brain tissue is
the exceptional heterogeneity in mechanical properties resulting
from regional differences in the microstructure due to local
functional demands. While we can clearly distinguish two
tissue types on the macroscopic scale, gray and white matter
(see Figure 1), the microstructure will locally vary
significantly–even within those regions. Previous research on
the microstructural composition of brain tissue has largely
focused on the brain’s cellular components with an emphasis
on neurons. However, also support cells called neuroglia as well as
the extracellular matrix highly contribute to normal and
abnormal brain functioning (Lau et al., 2013). In general, the
neuroglia can be divided into macroglia and microglia. The
macroglia originate from the neural tube, i.e., are of
ectodermal origin, the microglia originate from the mesoderm.
The most important types of macroglia are astrocytes with
mechanical and metabolic tasks such as maintaining the
blood-brain barrier, oligodendrocytes, which support
transduction through myelin sheath formation, and ependymal
cells, which line the inner cerebrospinal fluid spaces (the latter,
however, do not play a role for the investigations made in this
work). The microglial cells are the macrophages of the central
nervous system. All the glial cells mentioned (except ependym)
have numerous cell processes. Unlike nerve cells, glial cells can
proliferate. They support neurons and contribute to tissue
homeostasis, and thereby influence the mechanical properties
of the tissue. The majority of brain tumors originate from glial
cells, which further highlights their importance for pathological
processes. Furthermore, extracellular matrix components, such as
proteoglycans, hyaluronic acid, and non-fibrillar collagens
surround the cells, as illustrated in Figure 2 (Novak and Kaye,
2000; Lau et al., 2013; Budday et al., 2020b). They embody
approximately 40% of the brain’s volume during development
(Rauch, 2004) and 20% during adulthood (Bellail et al., 2004;
Rauch, 2004; Oohashi et al., 2015) and might thus also play an
important role in brain tissue mechanics.

An important challenge associated with the aim to define the
relations between mechanics and microstructure is to reliably and
consistently quantify these features. In terms of mechanics, the
exceptionally complex mechanical response–characterized by
nonlinearity, compression-tension-asymmetry, conditioning
effects, and stress relaxation–makes it impossible to describe
the mechanical properties through a single stiffness value. The

FIGURE 1 | Human brain tissue samples. (A) Locations where (C) specimens were harvested from (B) complete brains. Circles marking the location of specimen
extraction were enlarged for better visibility.
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measured modulus highly depends on the loading mode, strain
regime, strain rate, drainage conditions, and length scale
(Chatelin et al., 2010; Budday et al., 2020a). Therefore, to
account for nonlinear and time-dependent effects, it is
important to, on the one hand, perform large-strain
biomechanical tests combining cyclic and stress relaxation
experiments, and, on the other hand, analyze the
corresponding experimental data based on the theory of
nonlinear continuum mechanics (Miller and Chinzei, 1997;
Bilston et al., 2001; Miller and Chinzei, 2002; Prevost et al.,
2011; Rashid et al., 2012; Budday et al., 2017a, 2020a).

In terms of microstructure, previously used techniques to
investigate tissue components include histological and
immunohistochemical stains or western blots (Yang and
Mahmood, 2012; Alafuzoff, 2018), which can provide
information about the presence, morphology, local
distribution, or molecular weight of certain tissue components.
In neuropathology, they are frequently used to distinguish the
diseased from the healthy state. Yet, these methods only show a
small section of the tissue and fail to provide trustworthy
quantitative values on the amount of specific molecules
(Taylor and Levenson, 2006; Yang and Mahmood, 2012;
Dabbs, 2014). An alternative enabling a more reliable
quantitative assessment is another immunological method
called enzyme-linked immunosorbent assay (ELISA). It is an
extremely sensitive colorimetric method to quantify biological
molecules by using antibody-antigen complexes (Gan and Patel,
2013). As ELISA is an accurate, cost-effective, and quick
technique, it has become a widely used method for the
qualitative or quantitative analysis of molecules in versatile

fields. Still, it has to the best of the authors’ knowledge not
been used in the context of microstructure - mechanics relations
in brain tissue yet.

Previous studies relating microstructure and mechanics of
brain tissue have indicated that tissue stiffness increases with
myelination during development in white matter (Weickenmeier
et al., 2016; Weickenmeier et al., 2017b), negatively correlates
with the fractional anisotropy (a structural parameter from
magnetic resonance imaging and diffusion tensor imaging)
(Budday et al., 2017a), and negatively correlates with the
density of cell nuclei (Antonovaite et al., 2018; Budday et al.,
2020b). However, these studies were based on the evaluation of
imaging data which quantify the tissue composition much less
accurately than ELISAs. In addition, they evaluated only the
correlation between composition and individual mechanical
parameters, such as the shear modulus, nonlinearity, or stress
relaxation, but did not consider the entire loading history.

While first studies have successfully incorporated distinct
microstructural parameters into analytic constitutive laws for
brain tissue (Budday et al., 2020b: Reiter et al., 2021), data-driven
approaches such as machine learning bear the potential to open
up a much more comprehensive view. First attempts to use
machine learning for relating tissue microstructure to
macroscopic mechanical properties used simple end-to-end
model architectures (Liang et al., 2017). To overcome the large
amount of data required by such approaches, (Linka et al., 2021)
recently introduced constitutive artificial neural networks
(CANNs) as a novel machine learning architecture that
incorporates substantial prior knowledge from materials
theory. Thereby, it can learn to describe and in fact also

FIGURE 2 | Schematic illustration of the cellular and extracellular components of human brain tissue (components greyed out are not further considered in the
present work). White matter contains oligodendrocytes, which wrap myelin sheath around axons, as well as fibrous astrocytes and microglia. Gray matter contains
mainly neurons, protoplasmic astrocytes, and microglia. The extracellular matrix has three principal compartments: the basement membrane (BM), which lines cerebral
microvessels and the pial surface, the neural interstitial matrix (NIM), which is diffusely distributed in the brain’s interstitial space, and perineuronal nets (PNN), which
surround inhibitory interneurons in certain areas of gray matter. In different compositions, these compartments contain proteoglycans, hyaluronic acid, link proteins,
glycoproteins (e.g., tenascin, laminin, fibronectin), and non-fibrillar collagens type IV and VI (Lau et al., 2013). This is a schematic figure for identification purposes only with
no claim of being complete or true to scale. Reprinted from Budday et al. (2020b) with permission from Elsevier.
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predict the nonlinear behavior of soft biological tissue from
information about its microstructure and composition based
on a much smaller amount of training data than previous
methods.

In this paper, we generalize the concept of CANNs to
viscoelasticity and apply it to experimental data from human
brain tissue. These data include results from large-strain
mechanical tests and compositional analysis using ELISAs.
Using relevance propagation, a concept of explainable artificial
intelligence (Samek et al., 2021), we identify the importance of the
different tissue constituents for the mechanical response of
human brain tissue, where quasi-elastic and viscous effects
show distinct regional trends.

2 MATERIALS AND METHODS

2.1 Human Brain Tissue
We obtained five whole human brains including the cerebrum,
cerebellum, and brainstem (see Figure 1B) from one female and
four male body donors who had given their written consent to
donate their body to research. The body donors were aged
between 62 and 92 years and none of them had suffered from
any neurological disease known to affect the microstructure of the
brain (see Table 1). We note that for subjects 3 and 5, we could
not find metastases in the brain. The brains 1-3 and 5 were
immersed in cerebrospinal fluid surrogate (CSFS) during
transport. Brain 4 was kept in phosphate buffered saline
solution (PBS). We received the brains between 9 and 24 h
post mortem and directly cut them into 1 cm thick coronal
slices. After that, we kept the slices refrigerated at 4 °C in
CSFS or PBS until mechanical testing. We completed the
mechanical experiments within 72 h post mortem. The study
was approved by the Ethics Committee of Friedrich-Alexander
University Erlangen-Nürnberg, Germany, with the approval
number 405_18 B.

2.1.1 Specimen Preparation
The samples for the ELISAs of brain 3–5 were extracted
directly after cutting the brains into slices to minimize the
post mortem degradation of proteins before the samples were
frozen and stored at −20°C. Figure 1A shows the anatomical
brain regions that we included in our study. For brains 1 and
2, we extracted the ELISA samples simultaneously with the
respective mechanical sample. Therefore, the ELISA samples
of those two brains were frozen at different post
mortem times.

The specimens for the mechanical characterization were
extracted directly next to the locations of the ELISA specimens
and were prepared right before testing. We used a biopsy punch
to extract cylindrical samples of 8 mm diameter, as shown in
Figure 1C. We punched the specimens out of the coronal slices
while they were immersed in CSFS so that the cylindrical
specimens could slide out of the biopsy punch without
adhering to it. Like this, we could ensure that our samples
only experienced small deformations before they were probed
mechanically. If the small cylinders had a height of more than
6 mm, we carefully shortened them with a surgical scalpel. The
specimen height ranged between 3.5 and 6 mm. For most regions,
it was possible to extract homogeneous specimens of this size. The
only exception were the deep cerebellar nuclei: The
corresponding samples contained a certain amount of
cerebellar white matter, which might affect the results.

We included a total number of n � 86 samples for mechanical
experiments and n � 78 samples for the ELISAs, as, for eight of the
ELISA samples, we were able to extract two corresponding
mechanical specimens. Table 2 summarizes the samples
extracted from each brain region.

2.1.2 Mechanical Testing
We used a Discovery HR-3 rheometer from TA instruments
(New Castle, Delaware, United States) to measure the tissue
response under compression and tension (see Figure 3B).
After calibration, we fixed the specimens to the upper and
lower specimen holder using sandpaper and superglue. We
waited 30–60 s to let the glue dry before immersing the
specimen in PBS to keep it hydrated during the experiment.
We conducted all tests at 37°C. We first applied three cycles of
compression and tension with a loading velocity of 40 μm/s and
minimum andmaximum stretches of λ � [H +Δz]/H � 0.85 and λ
� 1.15, where H denotes the initial specimen height and Δz the
displacement in the direction of loading. Subsequently, we
performed a compression relaxation test at λ � 0.85 with a
loading velocity of 100 μm/s and a holding period of 300 s,
and a tension relaxation test at λ � 1.15, with the same
loading velocity and holding period. We recorded the
corresponding force fz and determined the nominal stress as
Pexp � fz/A, where A is the cross-sectional area of the specimen in
the undeformed configuration.

2.1.3 ELISA
We used commercially available enzyme-linked immunosorbent
assay kits (ELISAs from Cloud-Clone and Cusabio, Wuhan,
China) to quantify the amount of GFAP, MBP, Iba1, Col I,
Col IV, CS, LAM, FN, HA, Col VI, and LUM (see Table 3) in
samples of protein extracts from human brain tissue (see
Figure 3B). We isolated protein out of the brain samples
using 300 μl Triton buffer containing 0.2% protease and 0.2%
phosphatase inhibitors. The brain solutions were incubated on ice
for 30 min. After centrifuging at 13,000 rpm and 4°C for 5 min,
we diluted the solutions to 1 ml with Triton buffer to ensure that
we could perform all ELISAs. Subsequently, we decanted the
supernatant and measured the protein concentration with a
Bradford assay. The analysis was performed using a microplate

TABLE 1 | Human brains.

Brain Sex Age Cause of death

1 Male 92 dotage
2 Female 62 liver and kidney failure
3 Male 68 metastasizing bronchial carcinoma
4 Male 75 cardiac insufficiency
5 Male 75 metastasizing bronchial carcinoma
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spectrophotometer (ELISA-reader) at a wavelength of 450 and
405 nm for measuring the absorbance. The received optical
density results for the standard dilutions were then utilized to
create standard curves using the software MARS Data Analysis
from BMG Labtech and the 4- or 5-parameter best fit. By
comparing with the standard series and the determined values
for antigen concentration (protein concentration), we calculated
the content of the protein in ng/total protein in mg in each
sample.

2.2 Viscoelastic Constitutive Artificial
Neural Network
Constitutive artificial neural networks (CANNs) have recently
been introduced as a novel machine learning architecture and

shown to be a powerful tool for using machine learning for
mechanical constitutive modeling (Linka et al., 2021). To
empower them to deal with brain tissue, we use herein an
extension that combines a standard CANN for the quasi-
elastic response to loading (i.e., on very short time scales) with
an additional, parallel deep neural network computing so-called
Prony parameters accounting for the time-dependent stress
relaxation observed in viscoelastic materials. In the following,
we discuss the technical details of this architecture under the
assumption that brain tissue can be modeled as a quasi-linear
viscoelastic incompressible isotropic material.

2.2.1 Constitutive Artificial Neural Networks
To reduce the amount of training data required to learn the
mechanical constitutive behavior of materials, CANNs exploit the

TABLE 2 | Samples for mechanical testing and ELISA.

Anatomical region Number
of mechanical samples

Number
of ELISA samples

Cortex C 15 15
Thalamus TH 4 4
Basal ganglia BG 14 14
Amygdala AMY 3 3
Corona radiata CR 19 19
Corpus callosum CC 10 5
Brainstem BS 15 12
Cerebellar white matter cWM 5 5
Deep cerebellar nuclei cNC 1 1

FIGURE 3 | 11 ELISA parameters (11 E) and strain data from mechanical tests (in the form of invariants I1, I2,. . . ) form the input of an extended type of constitutive
artificial neural network. Machine learning adjusts its stress output to the one measured experimentally. Thereby, the neural network learns to describe the mechanical
behavior of brain tissue and to predict it from the ELISA parameters. The extended CANN consists of a standard CANN block and a parallel deep neural network
computing the Prony parameters of the viscoelastic constitutive behavior. Note that the stress response P is computed by a recursive update in time t. The hidden
neurons in the network are illustrated as blank circles, while the associated network weights are depicted as black arrows.
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role of symmetries in materials theory. For the simple special case
of incompressible isotropic materials, on which we focus herein,
this means that CANNs capture the constitutive behavior of
materials via a deep neural network mapping the first (I1) and
second (I2) principal invariants

I1 � tr(C), I2 � 1
2

(trC)2 − trC2[ ], (1)

of the right Cauchy-Green deformation tensor C � FTF on the
strain energy

Ψ(C) � Ψ I1, I2( ). (2)

Here, F denotes the deformation gradient. The first and second
Piola-Kirchhoff stress tensors P0 and S0 can be obtained in this
setting simply by symbol-to-symbol automatic differentiation of
the output Ψ of the neural network. We note that the first Piola-
Kirchhoff stress tensor P0 corresponds to the nominal stress
recorded during the experiments described in section 2.1.2. An
important feature of CANNs is that their input is formed not only
by invariants of the deformation state but also by any kind of
additional quantities potentially carrying information about the
constitutive behavior of the material of interest. In our case, these
additional quantities are the 11 parameters measured in our
experiments by ELISAs (see Figure 3 and section 2.1.3). This
architecture enables CANNs to learn not only how to resemble
stress-strain curves of brain tissue but also to predict such curves
from ELISAs, as discussed in more detail in Linka et al. (2021).

2.2.2 History Dependence
The response to loading of viscoleastic materials is in general
governed not only by the current loading but also by the
loading history. Skipping herein the complex theory of
general nonlinear viscoelastic materials, we adopt the theory
of quasi-linear viscoelasticity as introduced by Y. C. Fung in
particular for biological tissues (Fung, 2013). This theory
allows stress to depend nonlinearly both on strain and time.
However, it assumes that the role of strain and time can be
separated by a multiplicative split. While this limits the
generality of the theory, it has been found that many
biological materials of interest can be modeled at least in
very good approximation as quasi-linear viscoelastic

materials. Within this setting, the history-dependent stress
can be expressed by the convolution integral

P � ∫t

0
g(t − s) zP0

zs
ds, (3)

where P0 denotes the quasi-elastic stress response (i.e., on very
short time scales) of a material under a Heaviside strain as
approximated by a CANN, and g is a kernel function
characterizing stress relaxation over time t. In this work, we
assume a Prony-type kernel function (Taylor et al., 2009)

g(t) � g0 +∑p
i�1

gi exp − t
τi

[ ] (4)

with scalar weighting coefficients gi with a partition of unity
property

g0 +∑p
i�1

gi � 1 (5)

and relaxation time constants τi. The set of Prony parameters is
denoted herein by

v � g0, g1, τ1, g2, τ2, . . . ,{ }. (6)

The stress response P can be split into a long-term elastic and a
transient viscoelastic contribution as

P � g0 P0 +∑p
i�1

∫t

0
gi exp − t

τi
[ ] dP0

ds
ds

︸�����������︷︷�����������︸
hi

(7)

with the i-th history integral hi(t). Following Goh et al. (2004),
this formula can be used to evaluate the current stress P over time
t efficiently in a time-discrete setting with time points tn by the
pair of recursive formulae

P tn+1( ) � g0P0 tn+1( ) +∑p
i�1

hi tn+1( ),

hi tn+1( ) � exp −Δt/τi( ) hi tn( ) + gi
1−exp −Δt/τi( )

Δt/τi
P0 tn+1( ) − P0 tn( )[ ]. (8)

TABLE 3 | Proteins investigated by ELISA.

Investigated protein Manufacturer Cat. nr ELISA type Detection range
[ng/ml]

Glial fibrillary acidic protein GFAP Cloud-Clone SEA068Hu sandwich 0.156–10
Ionized calcium-binding adapter molecule 1 Iba1 Cloud-Clone SEC288Hu sandwich 0.0312–2
Myelin basic protein MBP Cloud-Clone SEA539Hu sandwich 0.156–10
Hyaluronic acid HA Cusabio CSB-E04805h sandwich 0.156–10
Chondroitin sulfate CS Cloud-Clone CEA723Ge competitive 0.03906–10
Lumican LUM Cloud-Clone SEB496Hu sandwich 0.312–20
Collagen I Col I Cloud-Clone SEA571Hu sandwich 0.156–10
Collagen IV Col IV Cloud-Clone SEA180Hu sandwich 7.8–500
Collagen VI Col VI Cloud-Clone SED123Hu sandwich 0.78–50
Fibronectin FN Cloud-Clone SEA037Hu sandwich 1.56–100
Laminin LA Cloud-Clone SEA082Hu sandwich 7.8–500
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Altogether, the extended type of CANN used herein computes the
quasi-elastic stress response P0 of the materials and its Prony
parameters by two separate, parallel deep neural networks.
Subsequently, it computes the time-dependent current stress
using Eq. (8), as illustrated in Figure 3. Note that the
dependence of the stress response on the 11 ELISA values is
learned by the viscoelastic CANN. In agreement with previous
studies (Prange and Margulies, 2002; Budday et al., 2015a;
Budday et al., 2017b), we used p � 2 Prony terms in our
machine learning architecture.

2.2.3 Model Training and Hyperparameter Tuning
To train our viscoelastic CANNs, we used Adam optimization
Kinga and Adam, (2015) for minimizing the mean-squared-error
(MSE) loss function

MSE � ∑
i

|Pi
zz − Pi

exp|2. (9)

Here, Pi
zz is the stress component in loading direction as

computed by our viscoelastic CANN and Pi
exp is the

corresponding experimentally observed value. The index i
loops through all experimentally collected stretch-stress tuples
included in the training process. Our whole framework was
implemented using Keras with TensorFlow backend (Chollet,
2015; Abadi et al., 2020). We used Glorot weight initialization
(Glorot and Bengio, 2010) at the beginning of the training and
fixed the learning rate at 0.001 during the training of different
layers. Training was performed with 250 data pairs in each
iteration (also referred to as batch size), which was chosen
corresponding to the amount of cyclic stress-stretch data
points of a single tissue specimen. Before starting the actual
training, we performed a hyperparameter tuning for the network
topology, dropout rate, L2-regularization and the activation
functions using a Bayesian optimization with a Gaussian
process model (Mockus, 1994; Chollet, 2015). This tuning was
performed on cyclic loading data of one representative tissue
specimen. It led to a CANN architecture with three hidden layers
with (32, 32, 48) computational units (neurons) with hyperbolic
tangent activation functions, an elu activation function (Clevert
et al., 2015) for the output, and a dropout layer after the first
hidden layer with a rate of 0.5. For the network computing the
Prony parameters, hyperparameter tuning resulted in a single
hidden layer with 12 computational units and a sigmoid
activation function.

Leave-one-out cross validation (LOO-CV) was used to train
the model on the full range of available cyclic loading data. Here,
the number of evaluation folds is equal to the number of samples
in the data set (N � 86). Accordingly, each model was first trained
based on N − 1 data sets, and then the trained model was applied
to the single left out validation sample to evaluate the ability of the
trained neural network to generalize (predict). In this way, each
individual sample was used for one particular model training as
validation sample. Each model instance was trained for 4,000
epochs, and the epoch with the best validation set accuracy was
chosen for evaluation purposes to prevent overfitting that might
occur after too many epochs. More details on training and

validation are provided in the supplementary materials Model
Training and Validation.

For validation of our trained machine-learning model, we
computed for the validation sample the coefficient of
determination

R2 � 1 − Sres/Stot( ), with Sres � ∑
i

Pi
exp − Pi

11( )2,
Stot � ∑

i

Pexpi − P
̄

exp( )
2

, (10)

where P
̄
exp is the mean of the experimental data points.

2.2.4 Layer-wise Relevance Propagation
A primary goal of this work is the evaluation of the impact of
the different compositional parameters measured by the
ELISAs on the mechanical properties. To this end, we use
the concept of layer-wise relevance propagation. It is a
method from the research area of explainable artificial
intelligence and particularly suitable for deep neural
networks, which map some input through a series of
layers to an output layer. The lth layer consists of
computational units (neurons) passing the values xli to the
next layer, where i is the index of the neuron within layer l.
The propagation of values from layer l − 1 to layer l can in
general be described by

zlij � wl
ijx

l−1
i , zlj � ∑

i

zlij + blj, xlj � nlj z
l
j( ). (11)

Here wl
ij is the weight connecting the neuron i in layer l − 1 with

neuron j in layer l; zlj is the input neuron j in layer l receives from
all neurons of the previous layer plus the bias blj of this neuron; x

l
j

is the output this neuron passes to the neurons on the subsequent
layer after application of its in general nonlinear activation
function nlj.

Within this general setting, layer-wise relevance propagation
aims at tracing back a given output to individual components of
the input layer of the deep neural network. To this end, it starts at
the output layer. Then it recursively computes the relevance score
Rl−1
i of all neurons i in layer l − 1 from known relevance scores Rl

j
of the neurons j in layer l, see also Figure 4. In this procedure, the
relevance Rl

j is propagated backwards from layer l to layer l − 1 by
dividing it into relevance contributions Rl−1, l

i←j for each neuron i in
layer l − 1, observing the conservation property

∑
i

Rl−1, l
i←j � Rl

j. (12)

The relevance of neuron i in layer l − 1 is then generally
computed as

Rl−1
i � ∑

j

Rl−1, l
i←j . (13)

The key of such relevance propagation schemes is the formula by
which the relevance contributions Rl−1, l

i←j propagated from layer l
back to layer l − 1 are computed. Herein, we follow Bach et al.
(2015) and define

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 7047387

Linka et al. Human Brain Composition and Mechanics

113

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Rl−1, l
i←j � Rl

j α
zl+ij
zl+j

+ β
zl−ij
zl−j

[ ] (14)

where the superscripts − and + denote the negative and positive
parts of zlij and blj. For example, if zlj ≥ 0, then zl+j � zlj and zl−j � 0.
By contrast, if zlj < 0, then zl+j � 0 and zl−j � zlj α and β are
coefficients partitioning unity and weighting the positive and
negative parts.

In our relevance analysis we included only the training
samples of training folds where R2 ≥ 0.7 was reached for the
validation sample to guarantee a high model accuracy and, thus, a
high reliability of the relevance analysis itself. Our machine
learning architecture consists of a standard CANN block and
an additional deep neural network block for the computation of
the Prony parameters. We performed our relevance analysis
separately for both blocks. In both cases, we quantified the
relevance of the 11 ELISA values. For the entire relevance
analysis we used α � 2 and β � −1 in (14).

FIGURE 5 | Total protein content (upper left) and protein mass fractions of 11 species (glial fibrillary acidic protein (GFAP), microglia- and macrophage-specific
protein Iba1 (Iba1), myelin basic protein (MBP), hyaluronic acid (HA), chondroitin sulfate (CS), lumican (LUM), collagen I (Col I), collagen IV (Col IV), collagen VI (Col VI),
fibronectin (FN), and laminin (LA)) evaluated by ELISAs in 9 different brain regions (cortex (C), thalamus (TH), basal ganglia (BG), amygdala (AMY), cerebral white matter
(CR), corpus callosum (CC), brainstem (BS), cerebellar white matter (cWM), and deep cerebellar nuclei (cNC)).

FIGURE 4 | Illustration of layer-wise (backwards) relevance propagation
in a CANN. In a trained neural network, recursive application of this scheme
from the output layer to the input layer can quantify the relevance of the
individual input parameters such as the ELISA values for the output.
Neurons are illustrated as empty circles, weights as black arrows.
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3 RESULTS

3.1 Regional Microstructural Components
Quantified Through ELISA
Figure 5 summarizes the total protein content (per millimeter
solution) and the results of the ELISAs reported in nanogram
per microgram total protein for the different brain regions
specified in Figure 1A. The total protein content quantifies
the amount of proteins per milliliter solution. It ranges from
1 to 11.5 mg/ml solution. We note that these absolute values
do not necessarily refer to how much proteins are present in
different brain regions as they represent the protein content
per milliliter solution but not the protein content per
milligram tissue.

The ELISA results vary significantly for the different
microstructural components introduced in Figure 2, and range

from extremely small values on the order of 10–5 ng/mg total
protein for chondroitin sulfate to values of up to 60 ng/mg total
protein for collagen IV and fibronectin. Interestingly, the content
of cellular proteins (GFAP, MBP, Iba1) is rather small compared
to specific extracellular proteins (FN, Col IV).

The glial fibrillary acidic protein (GFAP) values
quantifying the amount of the hallmark intermediate
filament protein in astrocytes lie in the range of
0.1–1.1 ng/mg total protein. The GFAP concentration is
highest in the corpus callosum, thalamus and cerebellar
white matter, while it is lowest in the amygdala and deep
cerebellar nuclei. The amount of GFAP in the brainstem is
relatively low compared to all other white matter regions. The
values for the microglia- and macrophage-specific protein
Iba1 range from 0.04 to 0.35 ng/mg total protein. The amount
of Iba1 is generally higher in white matter than in gray matter

FIGURE 6 |CANNs extended by the ability to account for viscoleastic effects and can learn to resemble the stress-strain curves provided as training data (A,B) and
to predict the stress response also for loading scenarios not included in the training data such as the relaxation experiments shown in (C–F). The first column (A,C,E)
corresponds to mechanical data of one representative sample from the basal ganglia, while the second column (B,D,F) corresponds to a sample from the cerebellar
white matter brain region.
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regions. The brainstem shows a lower content than other
white matter regions, while the corpus callosum has the
highest content of Iba1. The myelin basic protein (MBP)
concentration lies in the range of 0.02–0.54 ng/mg total
protein. It is highest in the amygdala and lowest in the
brainstem. Most regions, including both gray and white
matter, show a value of approximately 0.2 ng/mg total
protein.

The hyaluronic acid (HA) content ranges from 0.13 to 0.71 ng/
mg total protein. In the cerebrum, gray matter regions (TH, C,
BG, AMY) have a higher amount of HA than white matter
regions (BS, CR, CC). In the cerebellum, we observe the
opposite trend with a higher HA value for the cerebellar white
matter than the deep cerebellar nuclei. The amount of the
proteoglycan chondroitin sulfate is at least two orders of
magnitude lower than for all other proteins. Despite the
exception of the thalamus with a relatively low value, gray
matter regions have a higher content of chondroitin sulfate
than white matter regions. The concentration of the
proteoglycan lumican ranging from 0.002 to 0.032 ng/mg total
protein is higher than for chondroitin sulfate but still low.
Collagen I was the only fibrillar collagen we analyzed in the
current work. Its content varies between 0 and 0.015 ng/mg total
protein with highest values in the cerebellar white matter and
lowest in the corpus callosum. Our results show that the most
abundant collagen type in brain tissue is the non-fibrillar collagen
IV with concentrations ranging from 0 to 62 ng/mg total protein.
The collagen IV concentrations are higher in deep gray matter,
the brainstem and the cerebellum than in the cortex, corona
radiata, and corpus callosum. Collagen VI, another non-fibrillar
collagen type, shows concentrations ranging from 0 to 4.3 ng/mg
total protein. The collagen VI content is consistently higher in
white than in gray matter regions. The fibronectin content ranges
from 1 to 58 ng/mg total protein, similar to collagen IV. It also
shows a similar regional distribution as collagen IV with lowest
values for the cortex, corona radiata, and corpus callosum. The
concentration of laminin lies between 0 and 2.7 ng/mg total
protein.

3.2 Performance of Viscoelastic CANNs
In the training process, the neural networks employed in our
study learned to resemble the stress-stretch curves provided as
training data. Representative examples are depicted in Figures
6A, B. Moreover, the trained networks were able to predict the
stress response of relaxation experiments not included in the
training data, as shown in Figures 6C–F. Once trained for each
fold in the LOO-CV scheme, the neural networks could
reproduce the stress-stretch curves of the training data with a
median coefficient of determination R2 � 0.94 (standard deviation
0.24) and predict such curves for the validation samples with R2 �
0.90 (standard deviation of ±0.51), see Figure 7.

3.3 Relevance Analysis Revealing the Link
Between Mechanics and Microstructure
Figure 8 illustrates the relevance (quantified through the
backward pass in the viscoelastic CANN) of different

microstructural components (quantified through ELISAs) for
the quasi-elastic (Figure 8A) and viscoelastic (Figure 8B)
contributions of the complex mechanical response of brain
tissue. Fibronectin has the highest relevance for both the
quasi-elastic response and viscoelastic effects. Concerning the
quasi-elastic response, fibronectin is–with a certain
distance–followed by Iba1 associated with microglia, the
extracellular matrix proteins laminin and hyaluronic acid, as
well as MBP associated with myelination of nerve fibers. Our
results further suggest that collagen IV and GFAP slightly affect
the quasi-elastic tissue response, while the influence of collagen
VI, collagen I, lumican, and chondroitin sulfate seems to be
negligible.

Concerning viscoelastic effects, interestingly all cellular
components, quantified through GFAP (astrocytes), MBP
(myelin, oligodendrocytes), and Iba1 (microglia), have the
highest relevance after fibronectin. In addition, the
extracellular matrix components collagen VI and hyaluronic
acid seem to affect the viscoelastic behavior of brain tissue.
We note that we find the lowest relevance for collagen IV,
which is actually the protein with the highest amount per total
protein, as illustrated in Figure 5. But, it appears to be irrelevant
for the viscoelastic response of the tissue.

3.3.1 Regional Trends for the Quasi-Elastic Stress
Response
Figure 9 displays the relevance of the different ELISA values for
the quasi-elastic stress response in each brain region. The cortex
and thalamus show a similar sequence. In the basal ganglia,
laminin has a higher relevance than in all other gray matter
regions, but the general trends are the same. In general, the
relevance of Iba1 is higher for white matter than for gray matter
regions. Furthermore, in all white matter regions (CR, CC, cWM)
with the exception of the brainstem, GFAP shows a higher
relevance than in gray matter regions. We observe that
laminin has a relatively high relevance of approximately 1.2 in

FIGURE 7 |Our trained viscoelastic CANNs could reproduce the stress-
strain curves in the training data with a median coefficient of determination
R2�0.94 and predict such curves for the validation samples with a median
R2�0.90 in a LOO-CV scheme.
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the corona radiata and cerebellar white matter. The relevance of
hyaluronic acid lies on the order of 1 for the cerebral gray matter
regions and cerebellar white matter, and around 0.5 for cerebral
white matter regions and deep cerebellar nuclei. Interestingly, the
only region, where fibronectin does not have the highest
relevance, is the corpus callosum; here, Iba1 seems to control
the quasi-elastic tissue response.

3.3.2 Regional Trends for Viscoelastic Effects
Figure 10 displays the relevance of the different ELISA values for
the viscoelastic behavior in each brain region. The regional trends
are more diverse than for the quasi-elastic stress response in
Figure 9. In different orders, MBP, hyaluronic acid, GFAP, Iba1,
and fibronectin are most relevant for viscoelastic effects in gray
matter regions. In cerebral white matter regions (CR, CC, BS),
especially GFAP and Iba1 appear to play an important role. In
addition, MBP, hyaluronic acid, and collagen VI show a certain
relevance.

4 DISCUSSION

In this study, we have combined mechanical large-strain
compression and tension experiments (cyclic loading and
stress relaxation) with microstructural investigations using

enzyme-linked immunosorbent assays (ELISA) and an
extended type of constitutive artificial neural network (CANN)
that can account for viscoelastic effects to identify the link
between the microstructural composition and complex
mechanical response of human brain tissue.

4.1 Insights Into the Regional
Microstructural Composition of Brain
Tissue
To quantify the tissue composition in different regions of the
human brain (see Figure 1), we have used ELISAs for selected
cellular (GFAP - astrocytes, Iba1 - microglia, MBP -
oligodendrocytes/myelin sheaths) and extracellular (hyaluronic
acid, chondroitin sulfate, lumican, collagen I/IV/VI, fibronectin,
laminin) proteins. The amount of cellular proteins was relatively
low compared to certain extracellular components, which can be
attributed to the fact that the investigated proteins only represent
part of the cell. For instance, the myelin basic protein (MBP)
represents 25–30% of all myelin proteins (Deber and Reynolds,
1991), and quantifies only part of the oligodendrocytes and
myelin sheaths. We found MBP to be present in both gray
and white matter regions. Interestingly, the MBP
concentration was lowest in the brainstem. The microglia- and
macrophage-specific protein Iba1 was more abundant in white

FIGURE 8 |Relevance of the ELISA values for the (A) quasi-elastic stress response on very short time scales (governed byΨ) and (B) viscoelastic effects (governed
by the Prony series parameters collected in the set v).
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matter than gray matter regions. This agrees well with a previous
study reporting slightly higher densities of microglia in white
matter tissue of different mammals (Dos Santos et al., 2020).
Similar to Iba1, the astrocyte-specific protein GFAP was highest
in the corpus callosum and the cerebellar white matter and lowest
in the amygdala and cerebellar nuclei. The brainstem showed a
significantly lower concentration of GFAP than all other white
matter regions but was in the same range as the analyzed gray
matter regions. This may be related to the fact that our brainstem
samples included various small gray matter regions, such as the
red nucleus and the substantia nigra in the midbrain, the pontine
nuclei in the pons, and the medullary reticular formation and
inferior olive in the medulla.

Overall, the most abundant proteins were fibronectin and
collagen IV–both extracellular matrix components. Fibronectin is
produced by endothelial cells, pericytes, and macrophages, and is
predominant in perineural nets (Wang et al., 2011), as
schematically illustrated in Figure 2. The high content of
collagen IV agrees with findings in the literature reporting that
collagen IV takes up about 50% of the basement membrane (Kim
et al., 2018). Interestingly, the variation in the fibronectin and
collagen IV content between different brain regions was relatively
low, both having the lowest concentrations for tissue from the
corpus callosum. Collagen VI was more abundant in white matter
than gray matter regions with the highest content in the cerebellar
white matter, closely followed by corona radiata and corpus
callosum. For tissue from the cerebrum, hyaluronic acid (HA)

showed the opposite trend with higher concentrations in gray
matter than in white matter regions. This may be attributed to the
fact that HA is an important component of perineuronal nets (see
also Figure 2) that help regulate neuronal activity. In white
matter, HA is more diffusely distributed around astrocytes and
oligodendrocytes (Sherman et al., 2015).

The proteoglycan chondroitin sulfate appeared to be more
abundant in the amygdala and the cerebellar nuclei than in all
other brain regions–although its content was generally extremely
low. In the amygdala, chondroitin sulfate is an important
component of perineural nets (Pantazopoulos et al., 2008), and
abnormalities in the chondroitin sulfate content are related to
disorders like schizophrenia (Pantazopoulos et al., 2015). Similar
to the proteoglycans, the concentration of fibrillar collagen I is
particularly low in all brain regions, which is related to the
ultrasoft mechanical response of brain tissue (Barnes et al., 2017).

4.2 Link Between Microstructural
Composition and Macromechanical
Properties
To quantify the mechanical properties of human brain tissue, we
have introduced an extended type of CANN that incorporates
substantial prior knowledge from materials theory and
viscoelastic effects. It was able to learn the complex
mechanical response of human brain tissue with a high
accuracy over a large range of stress-stretch states. Moreover,

FIGURE 9 | Relevance of the ELISA (see Table 3) values for quasi-elastic stress response (determined by Ψ) different brain regions (see Table 2).
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it learned to predict the mechanical behavior of brain tissue from
the 11 constituent concentrations measured through ELISAs. A
layer-wise relevance propagation analysis allowed us to quantify
the importance of the 11 individual constituent concentrations
for the complex mechanical response.

The results of this analysis suggest that the content of
fibronectin is by far the most relevant of the examined
features for both the quasi-elastic stress response to loading
and viscoelastic effects. This may be attributed to the fact that
fibronectin forms fibrillar networks, which provide mechanical
support. Interestingly, in a recent study on somite formation
during embryogenesis, the fibronectin matrix was specifically
perturbed to tune tissue mechanics (de Almeida et al., 2019).
It has further been shown that the amount of fibronectin
decreases in the aging brain (Syková et al., 1998; Wang et al.,
2011), which may thus crucially contribute to the observed
softening of brain tissue with age (Sack et al., 2009). Our
results further indicate that the elastic tissue response is
especially controlled by extracellular matrix proteins that are
part of the basement membrane (Eriksdotter-Nilsson et al., 1986;
Abhijit and Yao, 2019), i.e., fibronectin, laminin and collagen IV.
Therefore, we suppose that the degree of vascularization plays an
important role for brain stiffness, not least because we expect a
higher stiffness for blood vessels compared to the brain
parenchyma. It has been shown that both fibronectin and
laminin are upregulated after traumatic brain injury (George
and Geller, 2018). In addition, increased collagen IV and

fibronectin signals were observed during ischemia (Michalski
et al., 2020). This motivates the hypothesis that, in the future,
altered mechanical properties could serve as a potential
biomarker for such disorders. In addition to basement
membrane proteins, hyaluronic acid (HA) appears to be
relevant for the quasi-elastic tissue response. This agrees well
with the general notion that HA plays the main structural role in
the formation of the brain extracellular matrix (Bignami et al.,
1993). Interestingly, HA appeared to be even more relevant for
the elastic than for the viscoelastic response of brain tissue, which
is surprising considering its hydrophilic nature.

The most relevant cellular protein for the quasi-elastic
response is Iba1, which is specific to microglia and
macrophages. Interestingly, microglia have been shown to
preferably migrate towards stiffer regions (Bollmann et al.,
2015). This could explain why the presence of microglia
correlates with local mechanical tissue properties. The
additional relevance of the cellular protein MBP also agrees
well with previous findings showing that brain tissue stiffness
correlates with myelin content (Weickenmeier et al., 2016;
Weickenmeier et al. 2017b).

Viscoelastic effects seem to depend in particular on all cellular
proteins, GFAP, MBP and Iba1, even though the absolute
quantities of these proteins were rather low in all samples.
This observation also agrees with our previous findings (Reiter
et al., 2021), where we could show that the network of
intercellular connections behaves viscoelastically. Interestingly,

FIGURE 10 | Relevance of the ELISA (see Table 3) values for the Prony series parameters in different brain regions (see Table 2).
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GFAP showed a higher relevance for the viscoelastic than for the
quasi-elastic response of the tissue, which further supports the
importance of the cellular network for brain viscoelasticity. In
addition to fibronectin and cellular proteins, collagen VI showed
a certain relevance, which we attribute to its ability to interact
with fibrils and cells suggesting that it takes part in the viscoelastic
network.

Despite the relatively high content of collagen IV in brain
tissue, it is only moderately relevant for the quasi-elastic response
and has the lowest relevance of all investigated proteins for the
viscoelastic response. This demonstrates the effectiveness of the
chosen approach using the backward pass through the
viscoelastic CANN to evaluate the relevance of different
microstructural components for complex brain tissue
mechanics. The proteoglycans lumican and chondroitin sulfate
and the fibrillar collagen I generally have only a very low influence
on the mechanical properties of the tissue. They also exhibit the
lowest concentrations.

4.3 Regional Differences in the Relevance of
Constituents for Tissue Mechanics
When comparing the relation between composition and mechanical
response of the tissue in different brain regions, we observe that
relevances for the quasi-elastic tissue response are relatively
insensitive towards the brain region. The only region that
deviates from the highest relevance of fibronectin is the corpus
callosum. Here, Iba1 seems to largely control the quasi-elastic tissue
response. This might be related to the regional heterogeneity of
microglia in the brain, where a different gene expression pattern was
observed for the corpus callosum than for all other brain regions
(Tan et al., 2020). Interestingly, GFAP is especially relevant in the
corona radiata and corpus callosum–for the viscoelastic relaxation
additionally in the brainstem–indicating that reactive astrocytes may
significantly contribute to the mechanical response in these regions.
Laminin was only relevant for the quasi-elastic response of the
corona radiata, cerebellar white matter, basal ganglia, amygdala, and
brainstem. In these regions, it was also most abundant. While
fibronectin had a high relevance for the quasi-elastic response in
all regions, it was also relevant for viscoelastic effects in gray matter
regions. In general, we found that the regional trends were much
more diverse for viscoelastic effects than for the quasi-elastic
response. For instance, MBP was identified as most relevant in
the cortex, fibronectin in the thalamus and cerebellar nuclei, HA in
basal ganglia and amygdala, GFAP in cerebral white matter and the
brainstem, and Iba1 in cerebellar white matter.

4.4 Implications for
Microstructure-informed Constitutive
Modeling
Independent of the brain region, fibronectin, HA, MBP, and Iba1
have a notable relevance for the quasi-elastic tissue response.
Therefore, these constituents should be considered when
developing refined microstructure-based material models for
brain tissue in the future. We note, however, that ELISAs can

only be performed post mortem or when tissue is surgically
resected. Consequently, one may consider other techniques,
potentially also in vivo imaging, to quantify the distribution
of the constituents relevant for brain mechanics. Despite the
relatively high content of collagen IV, our results indicate that
its relevance for tissue mechanics is negligible. This could be
attributed to the fact that collagen IV is a non-fibrillar collagen
type. Also, fibrillar collagen I, which has previously been
incorporated in material models for arteries (Gasser et al.,
2006) or cartilage (Linka and Itskov, 2016), plays a negligible
role for brain tissue mechanics as its concentration is very low.

With regard to viscoelastic effects, the most relevant
constituents of the tissue seem to be Iba1, HA, MBP, and
GFAP. As the relevance of the different proteins varied
notably between different brain regions, it may be necessary to
introduce region-specific constitutive models. According to our
results, it might even be expedient to introduce different regional
classifications for the quasi-elastic and viscoelastic contributions.

4.5 Limitations
As the samples for the ELISA analyses were extracted between 12 and
72 (brains 1 and 2) or 12 and 26 (brains 3–5) hours postmortem, some
of the investigated proteins could already have degraded (Fountoulakis
et al., 2001) and themechanical response of the tissue could differ from
the in vivo situation.When comparing the samples taken from the five
human brains investigated here, which all reached our lab after
different post mortem times, we did not detect noticeable
differences in the protein content or mechanical response.
Therefore, we anticipate that at least the comparison of the
different brains and brain regions is reasonable. Here we focused
on the relevance of different components on tissue mechanics and the
comparison of different brain regions rather than only on determining
the content of the individual proteins in the human brain.

4.6 Future Directions
In the future, we will further evaluate the predictive capabilities of
the extended CANN framework. Potentially, it could be used to
predict disease- or injury-related changes in tissue properties
based on ELISA results performed on tissue extracted during a
biopsy. In addition, it will be interesting to use a similar approach
to predict the complex mechanical response of human brain
tissue based on in vivo imaging data. In terms of the relation
between microstructure and mechanics in the human brain, the
next step is to not only consider the total amount of
microstructral components, but also their morphology and
three-dimensional arrangement. Concerning cellular
components, it may be more reliable to quantify the number
of nuclei instead of the concentration of GFAP and Iba1, which
only represent part of the cell. In addition, we will consider the
contribution of neurons and their connectivity.

5 CONCLUSION

In this study, we have followed a new paradigm by combining
large-strain mechanical testing, enzyme-linked immunosorbent
assays (ELISA), continuum mechanics theory and machine
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learning techniques to reveal the relation between human brain
tissue composition and its mechanical properties. We
introduced a viscoelastic constitutive artificial neural network
model and were able to capture the mechanical response of the
tissue during cyclic compression - tension experiments, and to
predict the response during stress relaxation in compression
and tension. By including the specimen-specific ELISA results
into the network to model the mechanical response, and
subsequently evaluating the backward pass through the
viscoelastic CANN, we were able to reveal the relevance of
the local tissue composition on the corresponding nonlinear
and viscoelastic mechanical response. We have assessed the
individual contribution of several cellular (GFAP, Iba1, MBP)
and extracellular (hyaluronic acid, chondroitin sulfate, lumican,
collagen I/IV/VI, fibronectin, laminin) proteins and evaluated
region-dependent trends. Our results suggest that the
extracellular matrix protein fibronectin has the highest
overall relevance for both the elastic and viscous behavior of
human brain tissue. While the quasi-elastic response seems to
be largely controlled by extracellular matrix proteins from the
basement membrane, cellular components have a higher
importance for the viscoelastic effects. The tissue
components relevant for the quasi-elastic response
(fibronectin, hyaluronic acid, MBP, Iba1) are relatively
insensitive towards the brain region. In contrast, regional
trends for viscoelastic effects are more diverse. GFAP has a
high relevance for white matter regions in the cerebrum and
brainstem, and hyaluronic acid for most gray matter regions.
Our results can have important implications for the
development of microstructure-informed constitutive models
to predict the regional behavior of brain tissue in finite element
simulations. The latter promise to become a useful tool in
assisting diagnosis and treatment of diseases or preventing
injury. In addition, the relation between human brain tissue
composition and mechanical properties facilitates the design of
biomaterials for neural tissue engineering and 3D printing
applications, where the investigated extracellular components
could be valuable to enhance the biocompatibility and
properties of matrix materials.
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An Overview of the Effectiveness of
Bicycle Helmet Designs in Impact
Testing
Javid Abderezaei1†, Fargol Rezayaraghi 1†, Brigit Kain2†, Andrea Menichetti 3 and
Mehmet Kurt1,4*

1Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States, 2Department of
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Cycling accidents are the leading cause of sports-related head injuries in the US.
Conventional bicycle helmets typically consist of polycarbonate shell over
Expanded Polystyrene (EPS) foam and are tested with drop tests to evaluate
a helmet’s ability to reduce head kinematics. Within the last decade, novel helmet
technologies have been proposed to mitigate brain injuries during bicycle
accidents, which necessitates the evaluation of their effectiveness in impact
testing as compared to conventional helmets. In this paper, we reviewed the
literature to collect and analyze the kinematic data of drop test experiments
carried out on helmets with different technologies. In order to provide a fair
comparison across different types of tests, we clustered the datasets with
respect to their normal impact velocities, impact angular momentum, and the
type of neck apparatus. When we analyzed the data based on impact velocity
and angular momentum clusters, we found that the bicycle helmets that used
rotation damping based technology, namely MIPS, had significantly lower peak
rotational acceleration (PRA) and Generalized Acceleration Model for Brain Injury
Threshold (GAMBIT) as compared to the conventional EPS liner helmets (p <
0.01). SPIN helmets had a superior performance in PRA compared to
conventional helmets (p < 0.05) in the impact angular momentum clustered
group, but not in the impact-velocity clustered comparisons. We also analyzed
other recently developed helmets that primarily use collapsible structures in their
liners, such as WaveCel and Koroyd. In both of the impact velocity and angular
momentum groups, helmets based on the WaveCel technology had significantly
lower peak linear acceleration (PLA), PRA, and GAMBIT at low impact velocities
as compared to the conventional helmets, respectively (p < 0.05). The protective
gear with the airbag technology, namely Hövding, also performed significantly
better compared to the conventional helmets in the analyzed kinematic-based
injury metrics (p < 0.001), possibly due to its advantage in helmet size and
stiffness. We also observed that the differences in the kinematic datasets
strongly depend on the type of neck apparatus. Our findings highlight the
importance and benefits of developing new technologies and impact testing
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standards for bicycle helmet designs for better prevention of traumatic brain
injury (TBI).

Keywords: bicycle helmets, concussion, traumatic brain injury, TBI, brain injury risk, mitigation system, impact
biomechanics, drop test

1 INTRODUCTION

Traumatic brain injury (TBI) is a major cause of death and
disability, affecting millions of people every year in the U.S.
(Taylor et al., 2017). Sport-related TBIs which annually affects
about 300,000 to 3.8 million people in the U.S. makes up a large
portion of these TBI cases (Winkler et al., 2016; Taylor et al.,
2017).

Even though contact sports such as football have amassed
extensive attention from the public and media due to frequent
reports of career-ending head injuries (Bland et al., 2020), cycling
has contributed the highest number of sports-related head
injuries (Coronado et al., 2015). The popularity of cycling has
been increasing and the number of bicycle-related injuries
(Sanford et al., 2015) and fatalities are growing,
correspondingly (Fischer, 2017). According to the American
Association of Neurological Surgeons, cycling injuries
estimated 85,389 of the 446,788 sports-related head injuries
reported in the emergency rooms in 2009 (Healy, 2015;
AANS, 2018). Besides being a regular form of exercise or an
enjoyable pastime for all age groups, cycling is often used as a
daily means of transportation in dangerously crowded cities for
many individuals which has made cycling-related head injuries a
growing cause of concern nationwide.

In the U.S., a recent study found that only 22% of cyclists who
sustained head and neck injuries were wearing helmets during the
accident; an overwhelming 78% of cyclists were not wearing
proper safety equipment for injury prevention (Scott et al., 2019).
As of yet, bicycle helmets are the best strategy to protect the head
against severe head and brain injuries (Cripton et al., 2014; Joseph
et al., 2017; Olivier and Creighton, 2017; Høye, 2018). According
to the Fatality Analysis Reporting System, 62% of cyclists killed in
2019 were not wearing a helmet, 15% were helmeted, and 23%
were unknown (FARS, 2019). Therefore, substantial attention has
been given to the design of protective equipment for cyclists
(Sacks et al., 1991; Karkhaneh et al., 2006). Over the years, bicycle
helmet designs have employed similar approaches to combating
TBIs and have consistently utilized similar, if not the same,
materials. These helmets are usually made up of an external
shell and a soft polymeric foam liner (Andena et al., 2016).
Expanded Polystyrene (EPS) or Polypropylene (EPP) are
common material that have been used in the inner liner
(Andena et al., 2016). Traditional EPS liners are primarily
designed and manufactured to dampen the impacts and
reduce the head impact force (Stigson et al., 2017).
conventional bicycle helmets have been shown to mitigate
linear acceleration which is a requirement by bicycle helmet
safety standards such as U.S. Consumer Product Safety
Commission (CPSC), Australian and New Zealand Standard
(AS/NZS 2063), EN 1078, Snell Memorial Foundation (e.g.

B95) and American Society for Testing and Materials (ASTM
F1447) (Commision, 1998; Hansen et al., 2013; McIntosh et al.,
2013). In these tests, helmets are placed on a headform and
dropped onto a steel anvil coated with adhesive-backed 80-grit
paper (Commision, 1998; Hansen et al., 2013; McIntosh et al.,
2013; Bland, 2019; Bliven et al., 2019; Petersen et al., 2020). The
head kinematics during the drop tests are then measured using
accelerometers and gyroscopes, which are attached at the center
of gravity of the headforms. As outlined in these mandatory safety
standards, the linear acceleration of the headform should not
exceed a certain threshold (i.e., 300 g outlined in CPSC, 1998,
Snell B95 Cheung et al., 2004, and ASTM F1447 Chang, 2003, as
well as 250 g outlined in AS/NZS 2512.1, 2009, and Sandberg
et al., 2018, EN, 1078, 1997). However, cyclists often fall off their
bicycles and impact their heads at angles that are not always direct
and usually varies between 30° and 60° (Bourdet et al., 2012;
Bourdet et al., 2014). These impacts not only can cause linear
acceleration but can also result in rotational acceleration due to
the tangential forces to the head (McIntosh et al., 2013; Willinger
et al., 2019). Many studies have shown that the rotational
acceleration or rotational velocity rather than the linear
acceleration are responsible for causing large shear strains in
the brain tissue, which could lead to strain concentration (Laksari
et al., 2015; Laksari et al., 2018; Abderezaei et al., 2019; Laksari
et al., 2020; Mojahed et al., 2020), and potentially result in mild
TBI (Holbourn, 1943; Holbourn, 1944; Hardy et al., 2007; Post
and Blaine Hoshizaki, 2015; Deck et al., 2019).

Recently, new technologies that are aimed towards mitigating
the head’s kinematics through rotation-damping systems have
been introduced. These mitigation systems either include
spherical slip interfaces (Bliven et al., 2019), and collapsible
structures (Hansen et al., 2013; Stigson et al., 2017) in the
liner structure, or use a new form of protective gear based on
airbag technology (Kurt et al., 2017). Multi-directional Impact
Protection System (MIPS) is a relatively new concept that
introduces a slip liner inside the helmet; MIPS aims to
mitigate rotational impact forces by allowing the head to slide
relative to the helmet during the impact (Bottlang et al., 2020).
Other technologies, such as WaveCel and Koroyd, utilize a
collapsible cellular structure that absorbs the force of impact
and minimizes the energy transferred to the cyclist’s head
(Hansen et al., 2013; Bliven et al., 2019). Although these
advancements are opening the door to the future of cycling
safety and TBI prevention, a robust and thorough evaluation
of the effectiveness of these novel helmets in mitigating impacts is
still incomplete. The aim of this paper is to perform a literature
review in PubMed and SCOPUS databases and collect the
kinematics of drop test experiments performed on bicycle
helmets. We will investigate the kinematic-based injury
metrics including peak linear acceleration (PLA), peak

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7184072

Abderezaei et al. Effectiveness of Bicycle Helmet Designs

125

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


rotational acceleration (PRA), and Generalized Acceleration
Model for Brain Injury Threshold (GAMBIT) of each new
mitigation technology as compared to the conventional
helmets. Additionally, the effect of different drop test
protocols such as anvil angle, headform position, presence or
absence of the neck will be considered in the above analysis.

2 METHODS

2.1 Searching Methodologies and Data
Collection
The articles retrieved from the electronic databases PubMed and
SCOPUS were selected in a multi-step process. The following key
terms were used for PubMed and SCOPUS respectively: 1- (helmet*
AND(cycl*ORbicycle*)AND(drop test*OR impact test*OR impact
pendulum test*)), 2- helmet* AND (cycl* OR bicycle*) AND ((drop
test*) OR (impact test*) OR (impact pendulum test*)). After inputting
the key terms into each database, the titles and abstracts of each article
were manually screened to determine the relevance to the topic of
bicycle helmet testing. After excluding irrelevant articles, the full text of
each article was reviewed for the following exclusion criteria: 1) Does
not perform bicycle helmet drop tests, 2) Does not specify the helmet
model, 3) Does not test adult bicycle helmets, 4) Does not test side or
front impact performance of the bicycle helmets (since these are the
most common impact locations in real-life cycling accidents (Larsen,
1991)), 5) Does not have quantitative information about impact
velocity of the drop test, 6) Does not provide quantitative
information on kinematic parameters including PLA, and PRA.

The date of the last search was May 13, 2021, and the search was
restricted to the English language. The inclusion criteria and data
extraction of the papers were cross-checked by three independent
reviewers.

Having identified all the relevant articles in the two databases,
we retrieved the following information for each of the helmet tests
from each paper: 1) Type of mitigation technology in the bicycle
helmet, 2) PLA, PRA, and PRV, 3) Drop test impact velocity, 4)
Anvil angle, 5) Headform model, 6) Presence or absence of the
neck surrogate in the headform, 7) Impact location.

2.2 Types of ImpactMitigation Technologies
in Bicycle Helmets
The helmets collected and analyzed in this paper were mainly
organized into two different categories: 1) Conventional helmets,
which only use one layer of EPS or Expanded Polypropylene
(EPP) as a liner (Table 1; Supplementary Table S1). 2) Helmets
with a mitigation system that use one of the followingmaterials or
technologies in the liner or the overall design: MIPS, Shear Pad
Inside (SPIN), Omni-Directional Suspension (ODS), WaveCel,
Angular Impact Mitigation (AIM), Koroyd and H€ovding
(Table 1; Supplementary Table S1).

Conventional bicycle helmets consist of three layers: an ABS
plastic outer shell, an EPS or EPP foam liner, and an inner layer of
soft foam padding. MIPS seeks to reduce rotational kinematics of
the head by permitting sliding between the helmet and head
during the impact (Halldin et al., 2003; Bliven et al., 2019;
Bottlang et al., 2020). In these helmets, the slip liner that is

TABLE 1 | Overview of the literature with relevant kinematic information of the bicycle helmet drop test experiments.

Study Mitigation type Headform model Anvil
angle (°)

Impact
location

Impact
velocity (m/s)

Number of
side impact
locations(s)b

Number of
front impact
locations(s)b

Mills and
Gilchrist (2008)

Conventional Ogle headform w/o the necka 0 Side 4.5 1 1

Hansen et al.
(2013)

Conventional, AIM Magnesium ISO headform on
the HIII neck

0, 30 Front 4.8 0 2

Cripton et al.
(2014)

Conventional HIII headform on the ball arm
neck

0 Front 5.4, 6.3, 7.7 1 1

Stigson et al.
(2017)

Conventional, MIPS,
Hövding, Koroyd

HIII headform w/o the neck 45 Side, Front 6 1 1

Kurt et al. (2017) Conventional, Hövding NOCSAE headform on the
rigid neck

0 Side 6 1 0

Bland et al.
(2018a)

Conventional NOCSAE or HIII headform
with and w/o the HIII neck

45 Side, Front 6 1 1

Bland et al.
(2018b)

Conventional, MIPS,
Koroyd

NOCSAE headform on the HIII
neck

30 Side 5.1, 6.6 1 0

Bland et al.
(2018c)

Conventional, MIPS,
Koroyd

Magnesium ISO headform on
the ball arm neck

0 Side 3.4, 6.2 1 0

Bliven et al.
(2019)

Conventional, MIPS,
WaveCel

HIII headform on the HIII neck 30, 45, 60 Front 4.8, 6.2 0 3

Petersen et al.
(2020)

Conventional NOCSAE headform on the HIII
neck

45 Side, Front 6.5 1 1

Bottlang et al.
(2020)

Conventional, MIPS,
SPIN, ODS

HIII headform on the HIII neck 45 Front 6.19 0 1

Abayazid et al.
(2021)

Hövding, SPIN,
WaveCel

HIII headform w/o the neck 45 Side, Front 6.3 2 1

aThe Ogle headform in Mills and Gilchrist (2008) was connected to a partial neck which was considered in the no-neck group in our analysis.
bShows the variation of impact locations on the side and front of the helmet.
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attached underneath the EPS layer allows for relative motion in all
directions and aims to reduce the amount of energy transferred to
an individual’s head (Bottlang et al., 2020). SPIN is a technology
that replaces comfort padding with silicone padding (Bottlang
et al., 2020). These specially developed pads are placed in critical
locations in the helmet under the EPS layer and can shear in any
direction to produce the same effect as a moving slip liner (Bliven
et al., 2019; Abayazid et al., 2021). ODS utilizes two EPS liners
that are connected by an array of elastomeric dampers (Bottlang
et al., 2020). The array of dampers is designed to support the EPS
liners to isolate impact energy from the brain and deflect angular
impacts (Bottlang et al., 2020). The collapsible structure
mitigation systems we considered in this paper are WaveCel
and Koroyd technologies. WaveCel is made from a cellular
copolymer material that flexes and glides to absorb energy
from impacts and redirect energy away from the head (Bliven
et al., 2019; Abayazid et al., 2021). The V-shaped collapsible cellular
structure is recessed within the helmet liners and provides rotational
suspension (Bliven et al., 2019). Koroyd utilizes thousands of co-
polymer extruded tubes that are thermally welded together to create
thermo-formed sheets of the helmet liner (Gokhale, 2016). The large
compression volumes of the structures create a crumple zone that
allows forminimal energy transfer to the head (Gokhale, 2016). AIM
is another helmet that uses collapsible structure mitigation system.
The AIM system is a non-commercially available cellular structure
technology developed by (Hansen et al., 2013). The AIM system
replaces EPS by an elastically suspended aluminumhoneycomb liner
between an inner and outer shell that absorbs linear and angular
acceleration (Hansen et al., 2013; Bliven et al., 2019). The
honeycomb structure creates a crumple zone that dissipates
impact energy through in-plane deformation (Hansen et al.,
2013). Additionally, we also considered H€ovding, an expandable
helmet that uses high-rate micro-electrical-mechanical sensors that
can detect a collision and expand to protect the rider’s head before
impact (Kurt et al., 2017). Unlike most helmets, H€ovding protective
gear (all versions including 1, 2, and 3) employs air pressure as a
means of protection rather than a typical foam padding (Kurt et al.,
2017).

2.3 Post Processing of the Extracted Data
In order to provide a fair comparison across different types of
tests, we clustered the datasets with respect to their normal
impact velocities and impact angular momentums. In the first
part, to be able to compare all the extracted headform kinematics
whose drop tests were performed at anvil angles ranging from 0°

to 60°, an impact velocity clustering step was performed so that
the velocity vector would be perpendicular to the anvil:

VN � Vcosθ (1)

where VN is the impact velocity perpendicular to the anvil plate
with angle θ.

In the second part, to investigate the effect of headform
position and presence or absence of the neck on the rotational
acceleration, we clustered the data according to the impact
angular momentum HImpact. For more information regarding
the calculation of HImpact please see Supplemental Material.

Next, the K-means algorithm from Python’s machine
learning library Scikit-learn (Pedregosa et al., 2011) was
used to cluster the data according to VN and HImpact. For
VN, two cluster centers were calculated by using K-means
algorithm for low and high VN and the impact tests with
VN within ±10% of the cluster centers were retained for
each group. For HImpact, after removing outliers with HImpact

> 5.2, we calculated one cluster center and the impact tests with
HImpact within ±15% of the cluster center were retained.

The kinematic-based injury metrics including PLA, PRA, and
GAMBIT were then compared between the helmets within each
group of low and high VN as well as HImpact. Here, we used
GAMBIT since it can be directly calculated from the available
kinematics data, and can be used as injury criteria investigating
the combined effect of linear and rotational impulses (Newman,
1986; Newman and Shewchenko, 2000; Klug et al., 2015). The
GAMBIT value in its general form can be written as:

G � max
a(t)
ac

( )
n

+ α(t)
αc

( )
m

[ ]
1/s⎛⎝ ⎞⎠ (2)

where a(t) and α(t) are translational and rotational accelerations
at time t, respectively. n, m, and s are empirically derived constant
parameters that were fitted to experimental data (Newman and
Shewchenko, 2000). ac and αc are thresholds derived for a pure
translational and rotational acceleration, respectively. Here, we
selected n � m � s � 2, ac � 250 g, and αc � 25,000 rad/s2 as was

FIGURE 1 | Flowchart outlining the selection of relevant studies.
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suggested by (Newman and Shewchenko, 2000). It should be
noted that when analyzing GAMBIT, G � 1 correspond to a 50%
probability of Abbreviated Injury Scale (AIS) > 3 which
corresponds to serious injury (Newman and Shewchenko,
2000).

2.4 Statistical Analysis
In the next step, we investigated the collected drop test results
for the following parameters: 1) Presence or absence of the
mitigation system, 2) Effect of mitigation type, and 3)
Presence or absence of the neck surrogate. To analyze the
effect of the presence of the mitigation system, PLA, PRA,
and GAMBIT at low and high VN were compared between the
conventional helmets and helmets that used a mitigation
system. We then restricted our data to tests that had either
included or excluded the neck surrogate in their experiments
and performed the same analysis. Finally, the data was
clustered according to HImpact and the effect of mitigation
systems and neckform on PRA was analyzed.

Before performing the statistical analysis, we used Shapiro-
Wilk’s test to verify the normality of the distribution of the data
within each group (Shapiro and Wilk, 1965). We then tested the
equal variance of every couple of sample groups considered for
the comparisons via Levene’s test (Olkin et al., 1960). We carried
out the two-sample t-test if both of the compared groups were
normally distributed, otherwise we performed the two-sided
Kolmogorov-Smirnov test (Hodges, 1958).

3 RESULTS

A flowchart is used to show the procedure of the literature
review and the articles that were excluded and included
(Figure 1). The PubMed database search resulted in 53
articles pertaining to bicycle helmet testing and the
SCOPUS search resulted in 147 articles. Each resulting
article was screened and excluded if the title and abstract
were not deemed relevant, which resulted in the removal of
133 studies from the data pool. The remaining 67 articles
were screened for the necessary inclusion criteria, such as
PLA, PRV, PRA (Section 2.1), as well as duplicates. In the
end, 12 articles were eligible for inclusion in this review paper
(Figure 1; Table 1; Supplementary Table S1).

A total of 148 bicycle helmet drop tests were collected from the
selected papers (It should be mentioned that those data in the
studied papers that didn’t pass our criteria, were not included in
this review paper). 88 of these helmet drop tests were carried out
on the conventional helmets which only used one layer of EPS or
EPP as a liner in their design (Figure 2; Table 1; Supplementary
Table S1). The remaining 60 of the drop tests were performed on
MIPS, SPIN, ODS, WaveCel, AIM, and Koroyd helmets and
H€ovding protective gear (Figure 2; Table 1; Supplementary
Table S1). The impact velocities of the tests varied between
3.4 m/s and 7.7 m/s. After applying the k-mean clustering
algorithm (Pedregosa et al., 2011), we found VN � 4.2 m/s and
VN � 5.9 m/s to be the cluster centers of low and high impact

FIGURE 2 | Head kinematics and the GAMBIT value at low and high clustered impact velocity (VN) for all of the extracted bicycle helmets. (A) Peak rotational
velocity, (B) peak rotational acceleration, (C) peak linear acceleration, (D) and GAMBIT in bicycle helmets with different mitigation technologies which were tested on
headforms with or without a neck surrogate. Dashed lines in each figure indicate the cluster centers of low and high VN and the shaded areas show those impact tests in
which the velocities are within 10% of the cluster centers. No data were available in the high VN range for peak rotational velocity.
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velocities, respectively (Figure 2; Table 1; Supplementary Table
S1). Impact tests outside the 10% of the cluster centers were then
removed, resulting in 75 conventional and 51 mitigation type
helmet drop tests. Among the studied literature for this paper,
four different types of neck-headform attachments were
observed: 1- No neckform was attached to the head (N in
Figure 2), 2- The headform was attached to a ball-arm neck

(Ball arm in Figure 2), 3- The headform was attached to a rigid
neck (Rigid in Figure 2), and 4- The headform was attached to a
Hybrid III 50th-percentile male neck (Y in Figure 2).

Having collected all the existing bicycle helmet drop test
results from the literature survey, we first analyzed the effect of
the presence or absence of the impact mitigation systems on the
resultant kinematics and the associated injury metrics during

FIGURE 3 | Effect of the presence or absence of the mitigation system on bicycle helmet performance in impact tests. Helmets using a mitigation technology had a
significantly lower (A) PRA, (B) PLA, and (C) low VN as compared to the conventional helmets (p <0.001). No statistical significancewas observed in highVN (5.9 ± 0.6 m/s)
drop tests between the two different helmet types. A shows the outlier data.

FIGURE 4 | Effect of the presence of the mitigation system on bicycle helmets that were tested on headforms without a neck surrogate. Helmets with a mitigation
technology had a significantly lower (A) PRA (p < 0.001), (B) PLA (p < 0.001), and (C) GAMBIT (p < 0.001) in drop tests at low VN (4.2 ± 0.4 m/s). No statistical
significance was observed in PLA at high VN (5.9 ± 0.6 m/s) drop tests. In high VN drop tests, no data were available for PRA and GAMBIT.A depicts the outlier data.
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drop tests (Figure 3). We observed that at low VN (4.2 ± 0.4 m/s)
drop tests, the bicycle helmets with a mitigation system, on
average, had significantly lower PLA, PRA, and GAMBIT values

compared to conventional helmets (approximately 20.2, 21.8,
and 52.6% lower respectively, Figures 3A–C, p < 0.01). Here, the low
VN (4.2 ± 0.4m/s) drop test experiments of the bicycle helmets with a

FIGURE 5 | Effect of the presence of the mitigation system on bicycle helmets that were tested on headforms with a neck surrogate. (A) No statistical significance
was observed in PRA between the two groups at both low and high VN (5.9 ± 0.6 m/s) drop tests of neck included groups. Helmets with a mitigation system had a
significantly lower (B) PLA and (C)GAMBIT at low VN as compared to the conventional helmets (p < 0.05). No statistical significance was observed for PLA and GAMBIT
at high VN (5.9 ± 0.6 m/s). A depicts the outlier data.

FIGURE 6 | Effect of different mitigation systems in drop tests at low and high VNs. (A) Compared to the conventional bicycle helmets, PRA was significantly less in
WaveCel (p < 0.0001), SPIN (p < 0.05), H€ovding (p < 0.001) and MIPS (p < 0.05) at low VN (4.2 ± 0.4 m/s) drop tests. (B) Compared to the conventional bicycle helmets,
PLAwas significantly less in H€ovding (p < 0.0001) andWaveCel (p <0.05) in drop tests at low VN (4.2 ± 0.4 m/s). (C)GAMBIT was significantly less in H€ovding (p < 0.001),
WaveCel (p < 0.05) and SPIN (p < 0.05) compared to the conventional ones in low VN (4.2 ± 0.4 m/s) drop tests. No statistically significant differences were
observed at high VN (5.9 ± 0.6 m/s) drop tests between the conventional helmets and other technologies. In this figure, only technologies with at least 4 data points were
included. A depicts the outlier data.
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mitigation system resulted in average PLA, PRA, and GAMBIT of
100.1 ± 30.4m/s, 5,043.6 ± 1740.8 rad/s2, and 0.062 ± 0.066,
respectively. The conventional bicycle helmets, on the other hand,
experienced an average PLA, PRA and GAMBIT of 125.5 ± 26.9m/s,
6,448.8 ± 1985.6 rad/s2, and 0.131 ± 0.111, respectively. In the drop
tests at high VN (5.9 ± 0.6m/s), we did not observe any statistically
significant differences between the kinematics of the bicycle helmets
with and without the mitigation systems (Figures 3A–C). For these
experiments, we observed average PLA, PRA, and GAMBIT values of
169.5 ± 61.0m/s, 6,504.7 ± 1,370.0 rad/s2, and 0.261 ± 0.198, for the
helmetswith amitigation system, respectively. The experiments on the
conventional helmets resulted in average PLA, PRA, and GAMBIT
values of 179.6 ± 41.6m/s, 6,075.7 ± 548.9 rad/s2, and 0.215 ± 0.126,
respectively.

One crucial difference in the different drop tests we considered
for this paper was the presence or absence of the neck surrogate.
We found that 65 experiments were performed on headforms
with an attached neck surrogate and the remaining 52 were tested
on headforms without a neck component. 8 helmets were tested
with a rigid neck attached to the headform and 23 were tested
while being attached to a ball arm. In our analysis, we considered
the headforms attached to a ball arm in the no-neck group since
in both of these groups the headform could rotate without
resistance at the time of the impact. Our first finding was that
in almost all of the categories, tests without a neck component
experienced a higher PLA, PRA, and GAMBIT on average as
compared to the group with an attached neck component
(Figures 4, 5). Here, in the low VN (4.2 ± 0.4 m/s) drop tests,
PLA, PRA, and GAMBIT, on average, were approximately 10.3,
7.3, and 59.3% higher in the no-neck group, respectively. At high
VN (5.9 ± 0.6 m/s) drop tests, PLA was on average 51.0% higher in
the no-neck group. It should be noted that no PRA values were
available at high VN (5.9 ± 0.6 m/s) drop tests for the no-neck
group. Next, we analyzed the effect of the presence of an impact
mitigation system in each of the neck and no-neck groups. We
observed that for the low VN (4.2 ± 0.4 m/s) tests, in the no-neck
group the bicycle helmets with a mitigation system had a
significantly lower PLA (24.7%), PRA (27.5%), and GAMBIT
(59.7%) as compared to the conventional bicycle helmets
(Figure 4, p < 0.001). Whereas, in the neck-included group,
only PLA (13%) and GAMBIT (36.2%) were significantly lower in
the helmets with a mitigation system (Figure 5, p < 0.05).
Additionally, we did not observe any statistically significant
differences of PLA between the helmet models at high VN

(5.9 ± 0.6 m/s) drop tests. No data points were available for
PRA and GAMBIT in the no-neck group at high VN

(Figures 4A–C)).
In the next step, we investigated the efficacy of the different

mitigation technologies by comparing PRA, PLA, and GAMBIT
of each specific mitigation technology with conventional bicycle
helmets (Figure 6). Here, we only considered helmet types with at
least 4 data points for the comparison. We found that among the
helmets that used rotation-damping based technologies, only
MIPS had approximately 16.8 and 49.3% lower PRA and
GAMBIT at low VN (4.2 ± 0.4 m/s) as compared to the
conventional helmets, respectively (Figures 6A,C, p < 0.05).
While SPIN helmets had on average lower PLA, PRA, and

GAMBIT of about 14.5, 11.9, and 53.8%, respectively, we did
not find any statistically significant differences in these helmets as
compared to the conventional ones. Next, we analyzed the
effectiveness of helmets that used collapsible structures in their
liner. In this category, helmets based on the WaveCel technology
had a significantly lower PLA, PRA, and GAMBIT of
approximately 31.0, 46.6, and 81.1% at low VN (4.2 ± 0.4 m/s)
as compared to the conventional helmets, respectively (Figures
6A–C), p < 0.05). Whereas, Koroyd which is another helmet
based on collapsible structures did not show any statistical
differences compared to the conventional ones (Figure 6A–C),
p < 0.05). Compared to the investigated helmets in the literature,
the H€ovding protective gear had the best performance in the
analyzed kinematic based injury metrics with PLA, PRA, and
GAMBIT of about 70.9, 74.8, and 99.5% lower than the
conventional helmets (p < 0.0001). At high VN (5.9 ± 0.6 m/s),
we observed no statistical significance when we compared PRA,
PLA, and GAMBIT between the conventional and each of the
other helmet types (Figurse 6A–C)). It should also be noted that,
for high VN (5.9 ± 0.6 m/s) we did not have data points for PRA,
and GAMBIT values of SPIN, WaveCel, and H€ovding protective
gears. Moreover, the Koroyd helmets only had two data points at
high VN (5.9 ± 0.6 m/s) experiments for PRA, and GAMBIT,
therefore, were not compared with the conventional helmets in
this category.

To take into account the effect of headform orientation at the
time of impact, as well as the presence or absence of the neckform,
we clustered the data according to the impact angular momentum
(HImpact) and checked the rotational acceleration of the helmets
(Figure 7). After removing the outlier data (HImpact > 5.2 kgm2/s)
we found HImpact � 3.0 ± 0.5 kgm2/s to be the cluster center. This
narrowed the data from the literature to 79 tested helmets within
the range of HImpact � 3.0 ± 0.5 kgm2/s (Figure 7A). In the next
step, we analyzed the effect of the mitigation system on PRA of
the headforms. We observed that withinHImpact � 3.0 ± 0.5 kgm2/
s, the PRA of the helmets that used a mitigation system was
approximately 31.0% lower compared the conventional helmets
(p < 0.0001; Figure 7B). Next, we separately analyzed the PRA of
the groups with and without the neckform. We observed in both
of these two groups that the PRA of the helmets with a mitigation
system was significantly lower compared to the conventional
helmets (p < 0.01; Figure 7B). Finally, within the range ofHImpact

� 3.0 ± 0.5 kgm2/s, we analyzed the performance of each of these
individual mitigation technologies against the conventional
helmets. For this analysis, we only considered mitigation
technologies with at least 4 data points. We observed that
within this HImpact range, H€ovding protective gear had the best
performance, with a lower PRA of approximately 78% in
comparison to the conventional helmets (p < 0.0001;
Figure 7C). WaveCel with a lower PRA of about 58% as
compared to the conventional helmets was the next best
performing technology in PRA that followed H€ovding
(p < 0.001; Figure 7C). Helmets with a dedicated rotation-
damping technologies including MIPS and SPIN also had a
significantly lower PRA of approximately 27% (p < 0.001) and
22% (p < 0.05) as compared to the conventional helmets,
respectively (Figure 7C).
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4 DISCUSSION

The recent developments in bicycle helmet design technologies
have been promising for the future of cycling safety and TBI
prevention. In this paper, we performed a literature review on the
recent advancements and improvements of these new bicycle
helmets and analyzed their performance in reducing the head
kinematics compared to the conventional designs. To do so, we
extracted kinematic datasets of more than 140 helmet drop tests
from the retrieved articles and investigated several kinematics-
based injury metrics including PLA, PRA, and GAMBIT.

Overall, we observed that the new protective gear technologies
including MIPS, WaveCel, and H€ovding significantly decreased
PLA, PRA, and the GAMBIT value of the headform at low VN

(4.2 ± 0.4 m/s) drop tests. While the bicycle helmets based on
MIPS had a significantly lower PRA, PLA and GAMBIT as
compared to the conventional helmets, no statistical
differences was observed for the SPIN helmets. The
significantly lower PRA values of the MIPS helmets could be
due to the dedicated rotation-damping systems in these helmets.
In these helmets, the rotational damping mechanism works by
adding slip liners underneath the main EPS liner, which allows
sliding between the head and the helmet during the impact
(Halldin et al., 2003; Bland et al., 2018b; Bottlang et al., 2020).
Additionally, the improved PLA response of the MIPS helmets
might be due to the improved design and manufacturing quality
of these helmets such as the changes in the thickness of EPS
padding and the helmets weight. These encouraging findings,
highlight the benefit of including rotation damping technologies
in helmets in order to reduce the TBI risk during cycling
accidents. It should be noted that the lack of statistical
differences for the PRA values of the SPIN helmets could be
due to grouping the data only according to their impact velocity,
which might cause some errors and will be discussed
further below.

Next, we investigated the kinematics of other recently
developed bicycle helmets based on collapsible structure
mitigation systems including WaveCel and Koroyd (Stigson

et al., 2017; Bland et al., 2018b; Bland et al., 2018c), our
analyses were inconclusive. While the WaveCel helmets
performed significantly better than the conventional helmets
in linear and rotational kinematics, and the consequential
brain injury risk at low VN (4.2 ± 0.4 m/s) drop tests, the
Koroyd based helmets did not show any statistical differences.
One of the reasons for the observed kinematics of the Koroyd
helmets is potentially due to the low number of available data
points. Only 6 drop test results from 3 different Koroyd helmets
were available in the literature. When we investigated the
performance of each of these helmets, we observed that one of
the Koroyd helmets had a significantly better performance than
the conventional ones, whereas, the other two had either the same
level or much worse performance in the metrics considered. This
shows that in addition to incorporating the new technologies in a
helmet, it could be important to optimize the conventional helmet
design parameters such as weight and liner thickness. The
WaveCel helmets, on the other hand, performed consistently
better than all others except for H€ovding. The significant
reduction of PLA as compared to the conventional helmets
suggests that the buckling of WaveCel’s organized cellular
structure might attenuate radial forces better than the
commonly used EPS material (Bland et al., 2018b; Bliven
et al., 2019). The significant mitigation of PRA by these
helmets could be due to the folding properties of its
cellular structure (Bliven et al., 2019). First, each cell can
deform tangentially which allows absorption of the shear
force between the head and the helmet (Bliven et al., 2019).
Second, these cells can also have an elastic in-plane
deformation allowing a rotational suspension that
decouple the head from the helmet (Bliven et al., 2019).
Overall, in addition to the impact performance of WaveCel
helmets in the mitigation of kinematic based injury metrics,
advantages such as its light weight, high heat transfer rate,
and airflow permeability, make such honeycomb based
helmets potentially a good candidate to replace the
conventional EPS/EPP helmets (Caserta et al., 2011;
Caccese et al., 2013; Hansen et al., 2013; Bliven et al., 2019).

FIGURE 7 | Effect of the presence of mitigation systems on the bicycle helmets after normalization of the data with respect to the impact angular momentum
HImpact. (A) Peak rotational acceleration of the helmets with different mitigation technologies clustered with respect to HImpact. (B) Presence of the mitigation system on
bicycle helmets that were tested on headforms with and without a neck surrogate showed significantly less PRA as compared to the conventional helmets (p < 0.001).
(C) Compared to the conventional bicycle helmets, PRA was significantly less in WaveCel (p < 0.001), SPIN (p < 0.05), H€ovding (p < 0.0001) and MIPS (p < 0.001).
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The H€ovding protective gear had a lower PLA, PRA, and
GAMBIT as compared to the other helmets. The reasons for this
performance stem from the helmet’s large size and low stiffness
(Kurt et al., 2017; Abayazid et al., 2021). Such properties result in
an increased duration of the impact and significantly lower peak
acceleration values (Kurt et al., 2017; Abayazid et al., 2021).
Despite the substantial mitigation of PLA and PRA, it should be
noted that the prolonged duration of the impact could potentially
result in a high PRV, which could carry increased injury risks
(Ommaya and Hirsch, 1971; Margulies and Thibault, 1992;
Rowson et al., 2012; Hernandez et al., 2015a; Abayazid et al.,
2021). Additionally, the H€ovding’s large size and its increased
duration of the impact, could mean increased coupling of the
neck and shoulder during real-life impacts (Abayazid et al., 2021).
Therefore, further tests regarding the potential neck injuries (as
with any newly developed technology that might introduce such
injuries), and other relevant TBI metrics are a necessary step
before the widespread use of this type of helmet (Kurt et al., 2017).
For instance, due to the lack of standard testing procedures, this
type of helmet cannot be sold in the U.S. market (Kurt et al.,
2017). However, regardless of these factors, the existing kinematic
data highlight the potential of these airbag type bicycle helmets in
mitigating the risks of TBI.

Having analyzed the effect of the mitigation systems after
grouping the data with respect to the normal impact velocity VN,
we also analyzed the effect of headform positioning at the time of
the impact. In the experiments gathered from the literature, the
helmets have been dropped at various angles of 0–90° on anvils
with varying angles of 0–60°. The differences in the impact
location of the headform could result in increased or
decreased PRA. To analyze this effect, the data was also
clustered with respect to the impact angular momentum
HImpact. Similar to our previous observations, we found that
the helmets with the mitigation technologies still had a
significantly lower PRA as compared to the conventional ones
(Figure 7). Interestingly, we observed that while the SPIN
helmets did not have statistically different PRA compared to
the conventional helmets in the normal low VN group, in the new
HImpact group, they had a significantly lower PRA. This suggests
that in the initial grouping according to the low VN, some of the
drop tests might have been performed at an angle that caused
high angular momentum and high PRA values.

Our analyses of the kinematics data from the literature
demonstrate the necessity of taking new steps toward the
standardization of bicycle helmet testing procedures. We
observed that the presence or absence of the neckform in the
drop test experiment affected the recorded kinematics. Initially
we grouped the data according to their impact velocity VN

(Figures 4, 5). We observed that at low VN for the no-neck
group, the bicycle helmets with the mitigation system showed a
significant reduction of the PLA, PRA,and GAMBIT. Whereas, in
the neck included group, there were only statistical differences in
the PLA, and GAMBIT values (Figures 4, 5). Additionally, the
PRA, PLA, and GAMBIT were substantially larger in the no-neck
group. The observed lack of statistical significance of PRA in the
neck included group could be due to the absorption of part of the
rotational kinematics by the stiff neck (Hernandez et al., 2015b).

It has been shown in laboratory testing that the Hybrid III neck
surrogate (the most commonly used neck model in the analyzed
studies, Table 1; Supplementary Tables S1,S2) produces impact
dynamics with a higher damping factor and lower natural
frequency as compared to real-world impacts (Gwin et al.,
2010; Hernandez et al., 2015b). Due to this slowing of the
dynamics (Gwin et al., 2010), the mitigation systems might
become less engaged in decreasing the head kinematics.
Others have also reported similar findings, where the presence
or absence of the neck surrogate could result in markedly
different kinematics (Hering and Derler, 2000; Bartsch et al.,
2012; Camarillo et al., 2013; Bland et al., 2018a), with significantly
larger PLA, PRV, and PRA in the no-neck tests of the same
helmets (Bland et al., 2018a). Another interesting observation we
had was with regards to the presence of the neckform in the
impact velocity (VN) and impact angular momentum HImpact

cluster analyses. While the PRA comparisons in the VN cluster
analysis strongly depended on the presence of the neckform
(Figures 4, 5), this dependence was not observed in the
HImpact cluster analysis (Figure 7B). These findings, further
highlight the importance of standardized testing and analysis
of helmet drop tests.

Our results are subject to several limitations. The experimental
drop tests in the literature are performed at various heights which
result in different impact velocities across the studies. To address
this issue, we applied k-mean clustering algorithm to the
extracted data and selected two cluster centers and 10% of
their surrounding as the impact velocities of interest. This
allowed removing outlier data which might have affected the
findings because of their high or low impact velocities. To correct
for the effect of impact location on the headform which might
affect PRA, we also created another group according to the
impact angular momentum with one cluster center and 15%
standard deviation. Another limitation of our study is the lack of
enough data points for some of the compared categories. This was
more evident in the lack of PRA values of the drop tests at highVN

(5.9 ± 0.6 m/s) performed without a neck surrogate, as well as,
lack of sufficient kinematic data for some of the newly developed
helmet technologies. In our results, we observed no statistical
significance in the effect of mitigation system for high VN (5.9 ±
0.6 m/s) tests, which could mainly be due to the lack of enough
data points in that testing category. Moreover, in the literature we
observed that the drop tests were carried out at various
configurations such that the headform and anvil had relative
angles in the range of 0–90°. These differences in the experimental
procedures could lead to increased or decreased PLA and PRA
between similar helmets that were tested in different
configurations. To address this limitation we clustered the data
according to normal impact velocity (VN) and impact angular
momentum (HImpact), which allowed comparison of these helmets
with each other. Additionally, it should be noted that, here, we
analyzed different mitigation technologies across various helmets.
A more accurate analysis would be to do this investigation on the
same helmets under the same impact conditions, with or without
the specific technologies. As such, other parameters such as the
liner thickness, helmet mass, presence or absence of the neck
surrogate (Fahlstedt et al., 2016; Bland, 2019; Fahlstedt et al.,
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2021), as well as the headform model (Kendall et al., 2012; Cobb
et al., 2016; Bland, 2019) might also confound the interpretation
of these results significantly.

5 CONCLUSION

With the introduction of various new bicycle helmet technologies
in the last decade, there is a dire need to compare their efficacy in
reducing head kinematics with respect to the commonly used
conventional bicycle helmets. In this work, we reviewed the
literature to collect and analyze various bicycle helmet
technologies, by investigating their resultant kinematic-based
head injury data from drop test experiments. We observed
that the helmets that used new technologies such as rotation
damping systems, collapsible cellular structures, and expandable
models, performed significantly better than the conventional
helmets for kinematics-based metrics at low impact velocities
and low impact angular momentum. Additionally, we observed
that presence or absence of the neck surrogate in the experimental
procedure could result in different kinematics. These findings

highlight the importance of rethinking conventional helmet
designs, consideration of novel technologies for better
prevention of cycling-related TBIs, and the need for more
thorough evaluation and impact testing of bicycle helmets.

AUTHOR CONTRIBUTIONS

All authors contributed to the conception and design of the study.
JA, FR, and BK organized the database. AM performed the
statistical analysis. All authors contributed to the data analysis.
JA, FR, and BK wrote the first draft of the manuscript. AM wrote
sections of the manuscript. All authors contributed to manuscript
revision, read, and approved the submitted version.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2021.718407/
full#supplementary-material

REFERENCES

Abderezaei, J., Zhao, W., Grijalva, C. L., Fabris, G., Ji, S., Laksari, K., and Kurt, M.
(2019). Nonlinear Dynamical Behavior of the DeepWhite Matter During Head
Impact. Phys. Rev. Appl. 12, 014058.

AANS (2018). Sports-related Head Injury, American Association of Neurological
Surgeons (Aans). American Association of Neurological Surgeons. Available at:
https://www.aans.org/patients/neurosurgical-conditions-and-treatments/sports-
related-head-injury.

Abayazid, F., Ding, K., Zimmerman, K., Stigson, H., and Ghajari, M. (2021). A New
Assessment of BicycleHelmets: the Brain InjuryMitigation Effects ofNewTechnologies
in Oblique Impacts. Ann. Biomed. Eng. 2021, 1–18. doi:10.1007/s10439-021-02785-0

Andena, L., Caimmi, F., Leonardi, L., Ghisi, A., Mariani, S., and Braghin, F. (2016).
Towards Safer Helmets: Characterisation, Modelling and Monitoring. Proced.
Eng. 147, 478–483. doi:10.1016/j.proeng.2016.06.224

AS/NZS 2512.1 (2009). “Definitions and Headforms,” inMethods of Testing Protective
Helmets (Sydney, New Zealand: Standards Australia/Standards New Zealand).

B. EN, 1078 (1997). Helmets for Pedal Cyclists and for Users of Skateboards and
Roller Skates. London: British Standards Institution.

Bartsch, A., Benzel, E., Miele, V., and Prakash, V. (2012). Impact Test Comparisons
of 20th and 21st century American Football Helmets. Jns 116, 222–233.
doi:10.3171/2011.9.jns111059

Bland, M. L., McNally, C., and Rowson, S. (2018b). Differences in Impact Performance of
BicycleHelmets duringOblique Impacts. J. Biomech. Eng. 140, 1. doi:10.1115/1.4040019

Bland, M. L. (2019). Assessing the Efficacy of Bicycle Helmets in Reducing Risk of
Head Injury. Virginia: Virginia Tech. Ph.D. thesis.

Bland, M. L., McNally, C., and Rowson, S. (2018a). “Headform and Neck Effects on
Dynamic Response in Bicycle Helmet Oblique Impact Testing,” in Proceedings
of the IRCOBI Conference (Athens, Greece: International Research Council on
Biomechanics of Injury), 413–423.

Bland,M. L.,McNally, C., Zuby,D. S.,Mueller, B. C., andRowson, S. (2020). Development
of the star Evaluation System for Assessing Bicycle Helmet Protective Performance.
Ann. Biomed. Eng. 48, 47–57. doi:10.1007/s10439-019-02330-0

Bland, M. L., Zuby, D. S., Mueller, B. C., and Rowson, S. (2018c). Differences in the
Protective Capabilities of Bicycle Helmets in Real-World and Standard-Specified
Impact Scenarios.Traffic Inj. Prev. 19, S158–S163. doi:10.1080/15389588.2017.1388915

Bliven, E., Rouhier, A., Tsai, S., Willinger, R., Bourdet, N., Deck, C., et al. (2019).
Evaluation of a Novel Bicycle Helmet Concept in Oblique Impact Testing.
Accid. Anal. Prev. 124, 58–65. doi:10.1016/j.aap.2018.12.017

Bottlang, M., Rouhier, A., Tsai, S., Gregoire, J., and Madey, S. M. (2020). Impact
Performance Comparison of Advanced Bicycle Helmets with Dedicated Rotation-
Damping Systems. Ann. Biomed. Eng. 48, 68–78. doi:10.1007/s10439-019-02328-8

Bourdet, N., Deck, C., Carreira, R. P., and Willinger, R. (2012). Head Impact
Conditions in the Case of Cyclist Falls. Proc. Inst. Mech. Eng. P: J. Sports Eng.
Tech. 226, 282–289. doi:10.1177/1754337112442326

Bourdet, N., Deck, C., Serre, T., Perrin, C., Llari, M., and Willinger, R. (2014). In-
depth Real-World Bicycle Accident Reconstructions. Int. J. Crashworthiness 19,
222–232. doi:10.1080/13588265.2013.805293

Caccese, V., Ferguson, J. R., and Edgecomb, M. A. (2013). Optimal Design of
Honeycomb Material Used to Mitigate Head Impact. Compos. Structures 100,
404–412. doi:10.1016/j.compstruct.2012.12.034

Camarillo, D. B., Shull, P. B., Mattson, J., Shultz, R., and Garza, D. (2013). An
Instrumented Mouthguard for Measuring Linear and Angular Head Impact
Kinematics in American Football. Ann. Biomed. Eng. 41, 1939–1949.
doi:10.1007/s10439-013-0801-y

Caserta, G. D., Iannucci, L., and Galvanetto, U. (2011). Shock Absorption
Performance of a Motorbike Helmet with Honeycomb Reinforced Liner.
Compos. Structures 93, 2748–2759. doi:10.1016/j.compstruct.2011.05.029

Chang, C.-Y., Ho, C.-H., and Chang, S.-Y. (2003). Design of a Helmet, ME 499, 599.
Cheung, A., and Gibson, T. (2004). Assessing the Level of Safety Provided by the

Snell B95 Standard for Bicycle Helmets, CR 220.
Cobb, B. R., Zadnik, A. M., and Rowson, S. (2016). Comparative Analysis of

Helmeted Impact Response of Hybrid Iii and National Operating Committee
on Standards for Athletic Equipment Headforms. Proc. Inst. Mech. Eng. Part P:
J. Sports Eng. Tech. 230, 50–60. doi:10.1177/1754337115599133

Commision, C. P. S. (1998). Cpsc 16 Cfr Part 1203-safety Standard for Bicycle
Helmets. Fed. Registry 63, 11711–11747.

Coronado, V. G., Haileyesus, T., Cheng, T. A., Bell, J. M., Haarbauer-Krupa, J.,
Lionbarger, M. R., et al. (2015). Trends in Sports- and Recreation-Related
Traumatic Brain Injuries Treated in US Emergency Departments. J. head
Trauma Rehabil. 30, 185–197. doi:10.1097/htr.0000000000000156

CPSC (1998). Safety Standard for Bicycle Helmets Final Rule (16 CFR Part 1203).
United States: Standard, United States Consumer Product Safety Commission.

Cripton, P. A., Dressler, D. M., Stuart, C. A., Dennison, C. R., and Richards, D.
(2014). Bicycle Helmets Are Highly Effective at Preventing Head Injury during
Head Impact: Head-form Accelerations and Injury Criteria for Helmeted and
Unhelmeted Impacts. Accid. Anal. Prev. 70, 1–7. doi:10.1016/j.aap.2014.02.016

Deck, C., Bourdet, N., Meyer, F., and Willinger, R. (2019). Protection Performance
of Bicycle Helmets. J. Saf. Res. 71, 67–77. doi:10.1016/j.jsr.2019.09.003

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 71840711

Abderezaei et al. Effectiveness of Bicycle Helmet Designs

134

https://www.frontiersin.org/articles/10.3389/fbioe.2021.718407/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2021.718407/full#supplementary-material
https://www.aans.org/patients/neurosurgical-conditions-and-treatments/sports-related-head-injury
https://www.aans.org/patients/neurosurgical-conditions-and-treatments/sports-related-head-injury
https://doi.org/10.1007/s10439-021-02785-0
https://doi.org/10.1016/j.proeng.2016.06.224
https://doi.org/10.3171/2011.9.jns111059
https://doi.org/10.1115/1.4040019
https://doi.org/10.1007/s10439-019-02330-0
https://doi.org/10.1080/15389588.2017.1388915
https://doi.org/10.1016/j.aap.2018.12.017
https://doi.org/10.1007/s10439-019-02328-8
https://doi.org/10.1177/1754337112442326
https://doi.org/10.1080/13588265.2013.805293
https://doi.org/10.1016/j.compstruct.2012.12.034
https://doi.org/10.1007/s10439-013-0801-y
https://doi.org/10.1016/j.compstruct.2011.05.029
https://doi.org/10.1177/1754337115599133
https://doi.org/10.1097/htr.0000000000000156
https://doi.org/10.1016/j.aap.2014.02.016
https://doi.org/10.1016/j.jsr.2019.09.003
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Fahlstedt, M., Abayazid, F., Panzer, M. B., Trotta, A., Zhao, W., Ghajari, M., et al.
(2021). Ranking and Rating Bicycle Helmet Safety Performance in Oblique
Impacts Using Eight Different Brain Injury Models. Ann. Biomed. Eng. 49,
1097–1109. doi:10.1007/s10439-020-02703-w

Fahlstedt, M., Halldin, P., S Alvarez, V., and Kleiven, S. (2016). “Influence of the
Body and Neck on Head Kinematics and Brain Injury Risk in Bicycle Accident
Situations,” in IRCOBI 2016 (Malaga, Spain International Research Council on
the Biomechanics of Injury), 459–478.

FARS (2019). National Highway Traffic Safety Administration, Fatality Analysis
Reporting System (Fars), National Highway Traffic Safety Administration.
Washington: National Highway Traffic Safety Administration. Available at:
https://www-fars.nhtsa.dot.gov/main/index.aspx.

Fischer, P. (2017). A Right to the Road: Understanding and Addressing Bicyclist
Safety. Governors Highway Safety Association.

Gokhale, V. V. (2016).Design of a Helmet with an Advanced Layered Composite for
Energy Dissipation Using a Multi-Material Compliant Mechanism Synthesis.
United States: Purdue University. Ph.D. thesis.

Gwin, J. T., Chu, J. J., Diamond, S. G., Halstead, P. D., Crisco, J. J., and
Greenwald, R. M. (2010). An Investigation of the Nocsae Linear
Impactor Test Method Based on In Vivo Measures of Head Impact
Acceleration in American Football. J. Biomech. Eng. 132, 011006.
doi:10.1115/1.4000249

Halldin, P., Aare, M., Kleiven, S., and von Holst, H. (2003). “Improved Helmet
Design and Test Methods to Reduce Rotational Induced Brain Injuries,” in
RTO Specialist Meeting, The NATO’s Research and Technology
Organization (RTO).

Hansen, K., Dau, N., Feist, F., Deck, C., Willinger, R., Madey, S. M., et al. (2013).
Angular Impact Mitigation System for Bicycle Helmets to Reduce Head
Acceleration and Risk of Traumatic Brain Injury. Accid. Anal. Prev. 59,
109–117. doi:10.1016/j.aap.2013.05.019

Hardy, W. N., Mason, M. J., Foster, C. D., Shah, C. S., Kopacz, J. M., Yang, K. H.,
et al. (2007). A Study of the Response of the Human Cadaver Head to Impact.
Stapp Car Crash J. 51, 17. doi:10.4271/2007-22-0002

Healy, D. G. (2015). Head Injuries in Sport. ABC of Sports and Exercise Medicine.
United States: Blackwell Publishing Ltd, 10.

Hering, A., and Derler, S. (2000). “Motorcycle Helmet Drop Tests Using a Hybrid
Iii Dummy,” in IRCOBI Conf (Montpellier, France: International Research
Council on the Biomechanics of Injury), 307–320.

Hernandez, F., Shull, P. B., and Camarillo, D. B. (2015b). Evaluation of a
Laboratory Model of Human Head Impact Biomechanics. J. Biomech. 48,
3469–3477. doi:10.1016/j.jbiomech.2015.05.034

Hernandez, F., Wu, L. C., Yip, M. C., Laksari, K., Hoffman, A. R., Lopez, J. R., et al.
(2015a). Six Degree-Of-freedomMeasurements of HumanMild Traumatic Brain
Injury. Ann. Biomed. Eng. 43, 1918–1934. doi:10.1007/s10439-014-1212-4

Hodges, J. L. (1958). The Significance Probability of the Smirnov Two-Sample Test.
Ark. Mat. 3, 469–486. doi:10.1007/bf02589501

Holbourn, A. H. S. (1943). Mechanics of Head Injuries. The Lancet 242, 438–441.
doi:10.1016/s0140-6736(00)87453-x

Holbourn,A.H. S. (1944). TheMechanics of Traumawith Special Reference toHerniation
of Cerebral Tissue. J. Neurosurg. 1, 190–200. doi:10.3171/jns.1944.1.3.0190

Høye, A. (2018). Bicycle Helmets–ToWear or Not toWear? aMeta-Analyses of the
Effects of Bicycle Helmets on Injuries. Accid. Anal. Prev. 117, 85–97.

Joseph, B., Azim, A., Haider, A. A., Kulvatunyou, N., O’Keeffe, T., Hassan, A., et al.
(2017). Bicycle Helmets Work when it Matters the Most. Am. J. Surg. 213,
413–417. doi:10.1016/j.amjsurg.2016.05.021

Karkhaneh, M., Kalenga, J.-C., Hagel, B. E., and Rowe, B. (2006). Effectiveness of
Bicycle Helmet Legislation to Increase Helmet Use: a Systematic Review.
Inj. Prev. 12, 76–82. doi:10.1136/ip.2005.010942

Kendall, M.,Walsh, E. S., and Hoshizaki, T. B. (2012). Comparison between Hybrid
III and Hodgson-WSU Headforms by Linear and Angular Dynamic Impact
Response. Proc. Inst. Mech. Eng. Part P: J. Sports Eng. Tech. 226, 260–265.
doi:10.1177/1754337112436901

Klug, C., Feist, F., and Tomasch, E. (2015). Testing of Bicycle Helmets for
Preadolescents. Lyon, France: International Research Council on the
Biomechanics of Injury (IRCOBI), 136–155.

Kurt, M., Laksari, K., Kuo, C., Grant, G. A., and Camarillo, D. B. (2017). Modeling
and Optimization of Airbag Helmets for Preventing Head Injuries in Bicycling.
Ann. Biomed. Eng. 45, 1148–1160. doi:10.1007/s10439-016-1732-1

Laksari, K., Kurt, M., Babaee, H., Kleiven, S., and Camarillo, D. (2018). Mechanistic
Insights into Human Brain Impact Dynamics Through Modal Analysis.
Physical Rev. Lett. 120, 138101.

Laksari, K., Wu, L. C., Kurt, M., Kuo, C., and Camarillo, D. C. (2015). Resonance of
Human Brain Under Head Acceleration. J. R. Soc. Interface 12, 20150331.

Laksari, K., Fanton, M., Wu, L. C., Nguyen, T. H., Kurt, M., Giordano, C., et al.
(2020). Multi-Directional Dynamic Model for Traumatic Brain Injury
Detection. J. Neurotrauma 37, 982–993.

Larsen, L. (1991). “Epidemiology of Bicyclist’s Injuries,” in 1991 International
IRCOBI Conference on the Biomechanics of Impacts (Berlin: International
Research Council on the Biomechanics of Injury), 217–230.

Margulies, S. S., and Thibault, L. E. (1992). A Proposed Tolerance Criterion for Diffuse
Axonal Injury in Man. J. Biomech. 25, 917–923. doi:10.1016/0021-9290(92)90231-o

McIntosh, A. S., Lai, A., and Schilter, E. (2013). Bicycle Helmets: Head Impact
Dynamics in Helmeted and Unhelmeted Oblique Impact Tests. Traffic Inj. Prev.
14, 501–508. doi:10.1080/15389588.2012.727217

Mills, N. J., and Gilchrist, A. (2008). Oblique Impact Testing of Bicycle Helmets. Int.
J. Impact Eng. 35, 1075–1086. doi:10.1016/j.ijimpeng.2007.05.005

Mojahed, A., Abderezaei, J., Kurt, M., Bergman, L. A., and Vakakis, A. F. (2020). A
Nonlinear Reduced-Order Model of the Corpus Callosum Under Planar
Coronal Excitation. J. Biomech. Eng. 142.

Newman, J. A. (1986). “A Generalized Acceleration Model for Brain Injury
Threshold (Gambit),” in Proceedings of International IRCOBI Conference
(Zurich: International Research Council on Biomechanics of Injury).

Newman, J. A., and Shewchenko, N. (2000). “A Proposed New Biomechanical
Head Injury Assessment Function-The Maximum Power index,” in
Proceedings of the 44th STAPP Car Crash Conference, Atlanta, Georgia,
November 6–8, 2000 SAE paper no. 2000-01-SC16.

Olivier, J., and Creighton, P. (2017). Bicycle Injuries and Helmet Use: a Systematic
Review andMeta-Analysis. Int. J. Epidemiol. 46, 278–292. doi:10.1093/ije/dyw153

Olkin, I., Ghurye, S. G., Hoeffding, W., Madow, W. G., and Mann, H. B. (1960).
Contributions to Probability and Statistics: Essays in Honor of harold Hotelling.
Stanford University Press, 278–292.

Ommaya, A. K., andHirsch, A. E. (1971). Tolerances for Cerebral Concussion from
Head Impact and Whiplash in Primates. J. Biomech. 4, 13–21. doi:10.1016/
0021-9290(71)90011-x

Pedregosa, F., Varoquaux, G., Gramfort, A.,Michel, V., Thirion, B., Grisel, O., et al. (2011).
Scikit-learn: Machine Learning in Python. J. Machine Learn. Res. 12, 2825–2830.

Petersen, P. G., Smith, L. V., and Nevins, D. (2020). The Effect of Surface
Roughness on Oblique Bicycle Helmet Impact Tests. Proc. Inst. Mech. Eng.
Part P: J. Sports Eng. Tech. 234, 320–327. doi:10.1177/1754337120917809

Post, A., and Blaine Hoshizaki, T. (2015). Rotational Acceleration, Brain Tissue Strain,
and the Relationship to Concussion. J. Biomech. Eng. 137, 1. doi:10.1115/1.4028983

Rowson, S., Duma, S. M., Beckwith, J. G., Chu, J. J., Greenwald, R. M., Crisco, J. J., et al.
(2012). Rotational HeadKinematics in Football Impacts: an Injury Risk Function for
Concussion. Ann. Biomed. Eng. 40, 1–13. doi:10.1007/s10439-011-0392-4

Sacks, J. J., Holmgreen, P., Smith, S. M., and Sosin, D. M. (1991). Bicycle-associated
Head Injuries and Deaths in the United States from 1984 through 1988. How
many Are Preventable? Jama 266, 3016–3018. doi:10.1001/jama.266.21.3016

Sanford, T., McCulloch, C. E., Callcut, R. A., Carroll, P. R., and Breyer, B. N. (2015).
Bicycle Trauma Injuries and Hospital Admissions in the united states, 1998-
2013. Jama 314, 947–949. doi:10.1001/jama.2015.8295

Sandberg, M., Tse, K. M., Tan, L. B., and Lee, H. P.(2018). A Computational Study
of the en 1078 Impact Test for Bicycle Helmets Using a Realistic Subject-
Specific Finite Element Head Model. Comput. Methods Biomech. Biomed. Eng.
21, 684–692.

Scott, L. R., Bazargan-Hejazi, S., Shirazi, A., Pan, D., Lee, S., Teruya, S. A., et al.
(2019). Helmet Use and Bicycle-Related Trauma Injury Outcomes. Brain Inj.
33, 1597–1601. doi:10.1080/02699052.2019.1650201

Shapiro, S. S., and Wilk, M. B. (1965). An Analysis of Variance Test for Normality
(Complete Samples). Biometrika 52, 591–611. doi:10.1093/biomet/52.3-4.591

Stigson, H., Rizzi, M., Ydenius, A., Engström, E., and Kullgren, A. (2017).
“Consumer Testing of Bicycle Helmets,” in International Research Council
on the Biomechanics of Injury Conference (IRCOBI Conference) (Antwerp,
Belgium, Sept: International Research Council on Biomechanics of Injury),
13–15.

Taylor, C. A., Bell, J. M., Breiding, M. J., and Xu, L. (2017). Traumatic Brain Injury-
Related Emergency Department Visits, Hospitalizations, and Deaths -

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 71840712

Abderezaei et al. Effectiveness of Bicycle Helmet Designs

135

https://doi.org/10.1007/s10439-020-02703-w
https://www-fars.nhtsa.dot.gov/main/index.aspx
https://doi.org/10.1115/1.4000249
https://doi.org/10.1016/j.aap.2013.05.019
https://doi.org/10.4271/2007-22-0002
https://doi.org/10.1016/j.jbiomech.2015.05.034
https://doi.org/10.1007/s10439-014-1212-4
https://doi.org/10.1007/bf02589501
https://doi.org/10.1016/s0140-6736(00)87453-x
https://doi.org/10.3171/jns.1944.1.3.0190
https://doi.org/10.1016/j.amjsurg.2016.05.021
https://doi.org/10.1136/ip.2005.010942
https://doi.org/10.1177/1754337112436901
https://doi.org/10.1007/s10439-016-1732-1
https://doi.org/10.1016/0021-9290(92)90231-o
https://doi.org/10.1080/15389588.2012.727217
https://doi.org/10.1016/j.ijimpeng.2007.05.005
https://doi.org/10.1093/ije/dyw153
https://doi.org/10.1016/0021-9290(71)90011-x
https://doi.org/10.1016/0021-9290(71)90011-x
https://doi.org/10.1177/1754337120917809
https://doi.org/10.1115/1.4028983
https://doi.org/10.1007/s10439-011-0392-4
https://doi.org/10.1001/jama.266.21.3016
https://doi.org/10.1001/jama.2015.8295
https://doi.org/10.1080/02699052.2019.1650201
https://doi.org/10.1093/biomet/52.3-4.591
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


United States, 2007 and 2013.MMWR Surveill. Summ. 66, 1–16. doi:10.15585/
mmwr.ss6609a1

Willinger, R., Deck, C., Halldin, P., and Otte, D. (2019). “Towards Advanced
Bicycle Helmet Test Methods,” in International Cycling Safety Conference
(Brisbane, Australia: The Centre for Accident Research and Road Safety-
Queensland), 18–19.

Winkler, E. A., Yue, J. K., Burke, J. F., Chan, A. K., Dhall, S. S., Berger, M. S., et al.
(2016). Adult Sports-Related Traumatic Brain Injury in united states Trauma
Centers. Foc 40, E4. doi:10.3171/2016.1.focus15613

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Abderezaei, Rezayaraghi, Kain, Menichetti and Kurt. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 71840713

Abderezaei et al. Effectiveness of Bicycle Helmet Designs

136

https://doi.org/10.15585/mmwr.ss6609a1
https://doi.org/10.15585/mmwr.ss6609a1
https://doi.org/10.3171/2016.1.focus15613
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


A Machine Learning Approach to
Investigate the Uncertainty of
Tissue-Level Injury Metrics for
Cerebral Contusion
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Controlled cortical impact (CCI) on porcine brain is often utilized to investigate the
pathophysiology and functional outcome of focal traumatic brain injury (TBI), such as
cerebral contusion (CC). Using a finite element (FE) model of the porcine brain, the localized
brain strain and strain rate resulting from CCI can be computed and compared to the
experimentally assessed cortical lesion. This way, tissue-level injury metrics and
corresponding thresholds specific for CC can be established. However, the variability
and uncertainty associated with the CCI experimental parameters contribute to the
uncertainty of the provoked cortical lesion and, in turn, of the predicted injury metrics.
Uncertainty quantification via probabilistic methods (Monte Carlo simulation, MCS)
requires a large number of FE simulations, which results in a time-consuming process.
Following the recent success of machine learning (ML) in TBI biomechanical modeling, we
developed an artificial neural network as surrogate of the FE porcine brain model to predict
the brain strain and the strain rate in a computationally efficient way. We assessed the
effect of several experimental and modeling parameters on four FE-derived CC injury
metrics (maximum principal strain, maximum principal strain rate, product of maximum
principal strain and strain rate, and maximum shear strain). Next, we compared the in silico
brain mechanical response with cortical damage data from in vivo CCI experiments on pig
brains to evaluate the predictive performance of the CC injury metrics. Our ML surrogate
was capable of rapidly predicting the outcome of the FE porcine brain undergoing CCI. The
now computationally efficient MCS showed that depth and velocity of indentation were the
most influential parameters for the strain and the strain rate-based injury metrics,
respectively. The sensitivity analysis and comparison with the cortical damage
experimental data indicate a better performance of maximum principal strain and
maximum shear strain as tissue-level injury metrics for CC. These results provide
guidelines to optimize the design of CCI tests and bring new insights to the
understanding of the mechanical response of brain tissue to focal traumatic brain
injury. Our findings also highlight the potential of using ML for computationally efficient
TBI biomechanics investigations.
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INTRODUCTION

Cerebral contusion (CC) is a common type of traumatic brain
injury (TBI) found across all age groups, which is often associated
with lifelong disability and mortality (Alahmadi et al., 2010;
Kirkman et al., 2013; Melvin and Yoganandan, 2015). CC is a
focal TBI occurring from direct impacts and consisting of a bruise
on the brain’s surface (Hardman and Manoukian, 2002). CC is
pathologically characterized by hemorrhagic lesions
accompanied by necrosis and edema that generate within the
cortex. In severe cases, CC can develop in the subcortical white
matter, which may require immediate surgical intervention
(McGinn and Povlishock, 2016). Besides falls and assaults,
accidents on public roads are a major cause of CC (Ratnaike
et al., 2011). Depreitere et al. (2004) found that 73% of the victims
of bicycle-related casualties were diagnosed with CC. There is still
no consensus on the mechanism causing CC, although a few
theories have been proposed; these include the cavitation arising
from the negative pressures generated at the opposite side with
respect to the impact location (Gross, 1958) and the shear strain
at bony protuberances consequent to the relative motion between
skull and brain tissue (Holbourn, 1943), which could explain why
the majority of CC are observed in the frontal and temporal lobes
(Ommaya and Ommaya, 1995; Depreitere et al., 2004; Ratnaike
et al., 2011).

Controlled cortical impact (CCI) is commonly used as a model
of brain trauma to investigate the mechanopathology of CC in
vivo on different animal species, including ferret, rodent, swine,
and nonhuman primates (Xiong et al., 2013; Osier and Dixon,
2017; Kinder et al., 2019). In CCI experiments, a pneumatically or
electromagnetically driven piston delivers the impact on the
animal’s exposed brain with a preestablished velocity and
depth of indentation, therefore inducing a reproducible and
localized injury. The swine model has been largely used
because of the similarities with humans in terms of
pathological features (Kinder et al., 2019) and brain tissue’s
mechanical properties (MacManus et al., 2020). However, a
large span of values has been reported in the literature for
experimental parameters, including but not limited to, the
geometrical characteristics of the impactor or the depth and
velocity of impact (Duhaime et al., 2000; Alessandri et al.,
2003; Manley et al., 2006; Meissner et al., 2011; Sindelar et al.,
2017; De Kegel et al., 2021). The variability and the uncertainty of
the experimental parameters all contribute to the uncertainty in
the injury outcome provoked by CCI.

Computational models of the head have been extensively used
to quantify in mechanical terms the intracranial response to TBI
by analyzing the relationship between the functional/structural
damage and the brain tissue’s stress and strain fields (Chen et al.,
2014). In particular, finite element (FE) models have been
regarded as valuable tools to determine tissue-level local injury
thresholds for specific types of TBI (Kleiven, 2007; Scott et al.,
2016; Giordano et al., 2017; Zhao et al., 2017; Horstemeyer et al.,

2019; Zhou et al., 2019; Hajiaghamemar et al., 2020; Trotta et al.,
2020; Wu et al., 2021). Regarding CC, several injury metrics have
been proposed based on different quantities, with lack of
agreement on which criterion outperforms the others. These
metrics include maximum principal strain (Shreiber et al.,
1997; Miller et al., 1998; Viano and Lövsund, 1999; Mao et al.,
2010b; Mao and Yang, 2011), shear strain (Mao and Yang, 2011),
strain rate (Viano and Lövsund, 1999; King et al., 2003), product
of strain and strain rate (Viano and Lövsund, 1999; King et al.,
2003), strain energy density (Shreiber et al., 1997; Mao and Yang,
2011), von Mises stress (Shreiber et al., 1997; Miller et al., 1998),
maximum principal stress (Shreiber et al., 1997), shear stress
(Huang et al., 2000), and intracranial pressure (Miller et al., 1998;
Huang et al., 2000; Takhounts et al., 2003; Mao and Yang, 2011;
Mao et al., 2013). In the case of focal injury patterns resulting
from, for example, CCI or dynamic vacuum pressure tests, the use
of strain and strain rate injury criteria is preferred over other
metrics assessed in the literature, such as those based on stress,
intracranial pressure, or strain energy (Shreiber et al., 1997; Mao
and Yang, 2011). While several FE models of the pig brain have
been developed to investigate different diffuse TBI scenarios
(Coats et al., 2012; Zhu et al., 2013; Yates and Untaroiu, 2016;
Hajiaghamemar and Margulies, 2021; Wu et al., 2021), no
computational model has specifically targeted the localized
brain response to CCI experiments.

A recognized disadvantage of FE head models that have a
high degree of geometrical complexity and biofidelity is the
significant simulation runtime (Takhounts et al., 2008; Wu
et al., 2020; Ghazi et al., 2021; Zhan et al., 2021) even when
using high-performance computing platforms. This hampers
the feasibility of studies that require repeated simulations,
such as design optimization workflows, parameter
estimation, or uncertainty quantification analyses. For the
latter category, probabilistic methods are commonly used in
biomechanics (Pal et al., 2008; Laz and Browne, 2010;
Strickland et al., 2010; Bartsoen et al., 2021). Among them,
the Monte Carlo simulation (MCS) is regarded as the gold
standard technique because of its robustness and ability to
converge to the correct uncertainty distribution solution (Laz
and Browne, 2010). However, MCS is a time-consuming
technique since it involves random sampling of the
complex model, for example, the FE porcine brain model,
depending on the statistical distribution of the input
parameters. The accuracy of the solution (i.e., the
uncertainty of the outcome of the model) depends on the
number of samples considered, which can lead to
computationally costly analyses. A time-efficient
alternative is to use surrogates of the computationally
expensive FE models. The development and
implementation of supervised machine learning
(ML)–based surrogates of complex biomechanics models is
relatively recent. Promising applications of the ML surrogates
include parameter estimation and uncertainty quantification
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problems across several fields, such as TBI (Cai et al., 2018;
Wu et al., 2019; Ghazi et al., 2021; Schroder et al., 2021; Zhan
et al., 2021), cardiovascular (Davies et al., 2019; Cai et al.,
2021) and musculoskeletal biomechanics (Pal et al., 2008;
Strickland et al., 2010; Bartsoen et al., 2021). Regarding the
research on head impact biomechanics, Wu et al. (2019),
Ghazi et al. (2021), Zhan et al. (2021) employed machine
learning algorithms to predict the brain strain response of
computationally expensive FE models of the human head in
an accurate and time-efficient way. Once trained and tested,
the ML surrogates can estimate the outcome of the complex
model in a conveniently short time frame. In the case of
uncertainty quantification problems, an MCS can be directly
performed on the ML surrogate outcome with the advantage
of reducing dramatically the computational cost, albeit
accepting a degree of approximation (Laz and Browne, 2010).

This study has four main outcomes. First, we present the FE
model of an atlas-based porcine brain undergoing CCI, which
predicts the mechanical response of the brain tissue to the
impact. Second, we develop an artificial neural network as a
computationally efficient ML surrogate of the FE pig brain
model. Third, by means of the ML surrogate model, we
evaluate the effect of different experimental and modeling
parameters on four potential CC injury metrics, that is,
maximum principal strain, maximum principal strain rate,
product of maximum principal strain and strain rate, and
maximum shear strain. Finally, we compare the experimental
cortical injury data from in vivo CCI tests on pig brain with
the in silico results in order to evaluate the prediction
performance of the tissue-level injury metrics specific for CC.

MATERIALS AND METHODS

Controlled Cortical Impact Tests
The experimental data on the assessment of CC damage were
retrieved from a previous study within our research group, where
34 Landrace male domestic pigs, aged 4–5 months, and weighing
on average 60.7 ± 10.9 kg underwent controlled cortical impacts in
vivo (Figure 1). The full description of the experimental protocol
can be found in De Kegel et al. (2021) and it is briefly summarized
here. General anesthesia was induced to the animals prior to
performing craniotomy, which was done unilaterally on the left
hemisphere and was located immediately parasagittal and posterior
to the coronal suture. Afterward, the impact was delivered directly
on the exposed dura mater by means of an electromagnetically
controlled cortical impactor (PinPoint PCI3000, Hatteras
Instrument Inc.), which regulated the impact depth (range
between 1.1–12.6 mm), velocity (range between 0.4–2.2 m/s),
and dwell time (� 200 ms) of an hemispherical stainless steel tip
(diameter � 10mm). A brain magnetic resonance (MR) scan
(Prisma Fit 3T scanner, Siemens) was performed under general
anesthesia 48 h after the impact to ensure full development of CC.
The presence of cortical damage and underlying white matter
edemawere evaluated on theMR scans by a senior neuroradiologist
and a senior neurosurgeon. The volume of white matter edema was
quantified using image segmentation (Mimics, Materialise). After
the scans, the animals were euthanized and the brain was extracted
for histology processing with the aim of confirming the presence of
cortical necrosis, an indicator of the provoked CC. Table 1
summarizes the combination of impact parameters chosen and
the cortical damage evaluation in the 14 cases of the cohort for
which full CC assessment was possible.

Development and Validation of the FEModel
of the Porcine Brain Undergoing CCI
The FE model mimics the experimental loading conditions that
the porcine brains underwent during CCI testing. The model

FIGURE 1 | Controlled cortical impact setup [adapted from De Kegel
(2018)] and positioning of the animal prior to testing. The white arrow indicates
the point where the craniotomy is performed after sedating the animal. The
circular image on the top right corner illustrates how the probe is
mounted on the electromagnetically driven actuator and is placed over the
closed dura mater before the impact.

TABLE 1 | Experimental impact parameters and results of the CCI performed in
vivo on the pig brain (De Kegel et al., 2021) for which medical imaging and
histological assessment of CC were available. In case of detectable disruption of
the cortical layer the “Cortical damage” is marked as “ + ,” otherwise as “ −. ” The
animal number in parentheses refers to the numbering used in De Kegel et al.
(2021).

Animal # Peak depth (mm) Velocity (m/s) Cortical damage

I (12) 11.2 2.1 +
II (13) 8.9 2.2 −

III (14) 9.1 1.8 +
IV (15) 10.8 1.8 +
V (16) 10.8 1.8 +
VI (17) 12.6 1.7 +
VII (18) 8.9 2.2 +
VIII (19) 6.9 2.2 +
IX (20) 5.5 2.0 +
X (21) 4.3 1.5 −

XI (22) 2.3 0.8 −

XII (31) 2.0 0.4 −

XIII (33) 1.1 0.4 −

XIV (34) 2.8 0.4 +
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consists of the impacting probe, the skull, the meningeal complex,
the cerebrospinal fluid, and the brain. The geometry of the brain
was generated in 3-Matic (Materialise) after segmentation in
Mimics (Materialise) using a high voxel resolution (100 μm ×
150 μm × 100 μm)MR image-based 3D atlas of the domestic pig’s
brain (Saikali et al., 2010). The obtained mask was smoothed
while preserving the gyral pattern. The 3D atlas-based geometry
was rescaled by a factor of 1.27 to match the average brain size of
the pigs of the experimental cohort, calculated by measuring the
anteroposterior length of the corpus callosum in the sagittal plane
of every post-CCI MR scan. Since the standard deviation of the
scaling factors was relatively low (� 0.07), we used a single brain
size for all CCI cases. In order to reduce the computational cost,
only the left hemisphere was considered for the model. This is a
fair approximation, justified by the fact that unilateral CCI has a
negligible effect on the unimpacted hemisphere (Elliott et al.,
2008; Mao and Yang, 2011). The two outermost meningeal
membranes (i.e., the dura-arachnoid mater (DAM)) were
modeled as a unique part, while the third and innermost layer
(the pia mater) was integrated into the brain part, in a similar
fashion as MacManus et al. (2017). The DAM geometry was
generated in 3-Matic by offsetting the cortical surface of the brain
outwards and subsequently wrapping and smoothing the brain
convolutions. Similar to Coats et al. (2012), an average gap of
1 mm was maintained between the surface of the brain and the
inner surface of the DAM to account for the subarachnoid space
in which the cerebrospinal fluid (CSF) flows.

The skull was generated by extending the DAM geometry
outwards. A circular hole (diameter � 23 mm) on the superior
part of the skull was created in 3-Matic to mimic the unilateral
craniotomy and to virtually expose the dura mater. Here, the
discrete rigid skull surface is acting as a geometrical boundary to
constrain unrealistic deformations of the DAM and the brain,
rather than being a strict anatomical representation of the porcine
cranial bones (Figure 2).

All the porcine geometrical parts were imported into ANSA
(BETA CAE Systems) for mesh generation, which was performed
using quality control criteria that included an aspect ratio <3,
skewness >0.7, Jacobian >0.7, minimum angle for triangles and
tetrahedrons >30°, and maximum angle for triangles and
tetrahedrons <120°. The meshes of the brain and DAM were
refined in the vicinity of the impact point of the probe. A
convergence analysis was carried out on the brain mesh to
ensure stability and sufficient resolution of the mesh while
minimizing the computational runtime. The optimal brain
mesh resulting from the convergence analysis findings counted
203,167 quadratic tetrahedral elements of type C3D10M from the
Abaqus/Explicit v.2019 (Dassault Systémes) library. This was
preferred over the regular second-order tetrahedrons of type
C3D10 due to its superior performance in minimizing
volumetric locking for nearly incompressible materials. The
skull mesh consists of 3,090 linear triangular discrete rigid
elements, while the DAM consists of 20,590 linear triangular
shell elements (type S3R) with thickness that varies between 0.413

FIGURE 2 | Finite element model of the porcine brain undergoing CCI. (A)Overview of the assembly of the model. The skull, the DAM, and the CSF are represented
with parallel sectioned views. The mesh of the discrete rigid parts (skull � yellow and probe � gray) is depicted in black, while the mesh of the deformable bodies (brain
hemisphere � pink, DAM � cyan), which is finer in the vicinity of the impact point, is colored in blue. The cavity filled by CSF is represented in light blue. (B) The zone
highlighted in red represents the elements of the brain (in the undeformed configuration) belonging to the region of interest (ROI), considered for the computation of
the 95th percentile of MPS, MPSR, MPSXSR, and MSS. (C) Maximum principal strain distribution on a parasagittal cross section of the brain when the probe reaches
maximum depth. The image is taken from one of the FE CCI simulations used to train the ANN. The input parameters were: a hemispherical probe (diameter � 15 mm),
velocity of indentation � 1.8 m/s, depth of indentation � 5.4 mm, angle of inclination � 3°, DAM-probe friction coefficient � 0.24, and thickness of the meninges �
0.655 mm. The highest MPS values are concentrated around the impact point, within the ROI.
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and 1.058 mm (see Input and Output Parameters of the FEModel)
to cover the range of values reported by Vanmol (2017) and
Walsh et al. (2018). Linear triangular discrete rigid elements were
used to mesh the probe, with the number of elements varying
between 498 and 5,324 depending on the diameter size.

Both the brain and the DAM were considered to be
homogeneous and isotropic materials, using neo-
Hookean–based quasi-linear viscoelastic models. The material
properties were retrieved from MacManus et al. (2017), who
characterized the mechanical behavior of the porcine brain and
the DAM under large deformation by means of dynamic
indentation in situ. Specifically, the viscoelastic parameters
were obtained by fitting the results of an inverse finite element
model of the indentation experiments with simulated loading
conditions representative for the CCI.

The presence of CSF was included by using the fluid-filled
cavity definition available in Abaqus to model liquid-filled
structures enclosed by surfaces. The density and bulk modulus
of water were used to approximate the CSF (Kleiven, 2007).
Table 2 provides a summary of all the material parameters used
in the FE model of the porcine brain.

The “general contact” definition was used to govern the
interactions between parts, with a penalty friction formulation
tomodel the interaction between the probe and the outer surface of
the DAM. The friction coefficient varied between 0.07 and 0.26 (see
Input and Output Parameters of the FE Model) or the range of
values reported by Rashid et al. (2012), who estimated the friction
between the porcine brain and metal platens with unconfined
compression tests. Here, we assumed that the porcine brain and
DAM have the same frictional behavior against metal. Only one
hemisphere was considered in the FE model; therefore, we
constrained the out-of-sagittal plane linear and rotational
motion of the medial side of the DAM to mimic the presence
and mechanical role of the falx (Walsh et al., 2021). In a similar
way, given the distance from the area of influence to the impacting
probe, we simplified the presence of the diencephalon, the
brainstem, and the cerebellum by constraining any translation
of the inferior part of the DAM. The simulated time was varied as a

function of the assigned probe’s displacement-time profile to
include 50 ms of dwell time after the probe reached the
maximum indentation depth. The simulations were run
using the explicit solver of Abaqus v. 2019, which
accounted for geometric nonlinearities throughout the
whole computation. Element mass scaling was introduced if
the stable time increment decreased below 1.2 × 10−6 s. We
verified that the total percent change in mass of the model
resulting from mass scaling was <4% for all simulations.

With the aim of collecting data to validate the assumptions made
in the FE model, we performed an additional test in vivo on a pig
(from an unrelated experiment) to measure the reaction force
exerted by the brain on the probe during a CCI, since De Kegel
et al. (2021) reported no quantitative assessment of the mechanical
response of the pigs’ brains to the impacts. To this extent, a dynamic
load cell (PCB 208B, load capacity � ±45 N, resolution � 0.0009 N)
was mounted on the CCI device using a custom-made nylon
support. The hemispherical probe was connected to the load cell
by means of a lightweight, aluminum threaded support. The pig
underwent the same testing protocol as described in De Kegel et al.
(2021), with the same velocity and depth of indentation of case III
(Table 1), that is, 1.8 m/s and 9.1 mm. During the impact, the force
in the direction of the axis of the probe was measured with a
sampling rate of 5,000 Hz. Subsequently, the CCIwas simulatedwith
the porcine brain FEmodel, and the force exerted by the brain on the
probe in the direction of its axis was computed. The computational
and experimental force-time signals were compared and their
correlation was quantified using the software CORA (Correlation
and Analysis, Version 3.6.1) (Gehre et al., 2009) to verify that the
brain impact mechanics was correctly modeled. The CORA software
combines two independent rating techniques (the cross-correlation
and the corridor method) to express the level of similarity between
the experimental and computational curves with a score between 0
and 1, with 1 meaning perfect correlation. The two ratings had equal
weight on the overall rating (G1 � G2 � 0.5). Regarding the cross-
correlation–based score, we set equal weights (� 1/3) to amplitude,
shape, and phase errors. A linear transition between ratings was
chosen (kV � kP � kG � 1).

TABLE 2 | Material properties used in the FE model of the porcine brain FE.

Part Density Material model Material parameters

Brain 1,060 kg/m3 Neo-Hookean–based quasi-linear viscoelastic μ � 6.97 kPa
ν � 0.49995MacManus et al. (2017)
g1 � 0.451
g2 � 0.301
τ1 � 0.021 s
τ2 � 0.199 s

Dura-arachnoid mater (DAM) 1,000 kg/m3 Neo-Hookean–based quasi-linear viscoelastic μ � 19.10 kPa
ν � 0.4MacManus et al. (2017)
g1 � 0.568
g2 � 0.240
τ1 � 0.034 s
τ2 � 0.336 s

Cerebrospinal fluid (CSF) 1,000 kg/m3 Homogeneous fluid–filled cavity K � 2.1 GPa

μ, shear modulus; ν, Poisson’s ratio; g1 and g2, first and second term of the relaxation function of the Prony series that describes the viscoelastic behavior; τ1 and τ2, first and second term
of the time constant of the Prony series that describes the viscoelastic behavior; K, bulk modulus.
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Input and Output Parameters of the FE
Model
Seven parameters of the FE model were considered for the
uncertainty and sensitivity analyses due to the relatively large
spread of values reported in the literature. The list included the
probe’s diameter and shape (hemispherical or cylindrical), the
velocity and the depth of indentation, the friction between the
DAM and the probe, the inclination angle between the axis of
the probe and the normal of the DAM surface, and the thickness of
the DAM. Each of these input parameters varied between a lower
and upper bound with specific statistical distributions (Table 3).
The lower and upper bounds for the probe geometrical and
kinematics parameters (i.e., diameter, shape, angle of
inclination, and velocity and depth of indentation) were chosen
to comprise the values reported in the literature for CCI tests on pig
brain (Madsen and Reske-Nielsen, 1987; Duhaime et al., 2000;
Alessandri et al., 2003; Manley et al., 2006; Meissner et al., 2011;
Sindelar et al., 2017; De Kegel et al., 2021). For the friction between
the probe and the DAM, the coefficients obtained experimentally by
Rashid et al. (2012) were used. Finally, the measures on the porcine
meninges performed byVanmol (2017) andWalsh et al. (2018) were
used to determine the lower and upper bound of theDAM thickness.

The FE porcine brain model was used to compute the
mechanical response of the brain to the CCI. We considered
four different tissue-level injury metrics: the logarithmic
maximum principal strain (MPS), the logarithmic maximum
principal strain rate (MPSR), the product of logarithmic
maximum principal strain and strain rate (MPSXSR), and the
logarithmic maximum shear strain (MSS). As estimators of CC,
we computed the 95th percentile of the peak MPS, MPSR,
MPSXSR, and MSS of the brain elements belonging to the
region of interest (ROI) in the brain that is directly affected by
the CCI, namely, where the primary focal traumatic brain injury
can arise (Figure 2). The elements were considered as a part of the
ROI if their centroid was within a 40 mm distance from the
impact point on the brain surface. We did not consider the 100th
percentile of the peaks in order to discard any unrealistically high
values due to computational artifacts (Panzer et al., 2012).

Machine Learning–Based Surrogate Model
To perform the uncertainty quantification in a computationally
efficient way, we developed a surrogate of the FE porcine brain
model. An artificial neural network (ANN) was employed as the
surrogate modeling technique, which was implemented in

TensorFlow 2.0.2 (Abadi et al., 2016). The ANN algorithm
was adapted from Bartsoen et al. (2021), who demonstrated
the superior accuracy performance of ANN with respect to
other probabilistic modeling techniques based on the response
surface method, such as 2nd order polynomial, Gaussian process
regression, or support vector regression (Laz and Browne, 2010).
To train and validate the ANN, we generated a total of n samples,
where each sample consisted of a set of seven input values (one
per input parameter) selected with the Sobol sequence among the
ranges indicated in Table 3, and four outputs (the 95th percentile
of MPS, MPSR, MPSXSR, and MSS) computed with the FE
porcine brain model. The amount of training and validation
samples were 0.9 n and 0.1 n, respectively.

The architecture of the network consisted of fully connected
layers (7:256:128:64:32:16:4) with the Softplus activation function
a(x) � ln(1 + exp(x)), where x is the input to a neuron. The
output layer had the ReLU activation function a(x) � x+ �
max(0, x) to exclude negative outputs. As our loss function,
we used the Huber loss function, as given below:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
e2 if |e|≤ d

1
2
d2 + d(|e| − d) if |e|> d

, (1)

where e represents the residuals, that is, the difference between
the observed (y) and predicted values (ŷ): e � y − ŷ, while d is a
parameter set equal to 0.1. The Huber loss computed using Eq. 1
has a similar behavior as the mean squared error (MSE) for small
errors but the mean absolute error (MAE) for large errors so that
it is less affected by outliers. The network was trained using an
Adam optimizer with a learning rate � 0.001 that decays upon
convergence of the loss. To prevent overtraining, L2 kernel
regularization was applied. The ANN accuracy was further
improved with ensemble averaging, in which we considered a
weighted average of six networks trained on the same training
and validation data. The weights were optimized by minimization
of the validation MSE. The normalized mean absolute error
(nMAE), normalized root mean squared error (nRMSE), and
95% absolute error (95% AE) were evaluated. The nMAE
and nRMSE were computed after normalizing the output
range to [0;1], while the 95% AE gives the 95th percentile of
the AE. The optimal number of samples used to train and validate
the ANN was selected after carrying out a 5-fold cross-validation.

TABLE 3 | Range of values and statistical distribution of the input parameters of the porcine brain FE model considered for the uncertainty and sensitivity analyses. For the
DAM-probe friction and DAM thickness parameters normal distributions are used, since their values are measured experimentally. The parameters that are selected
upon designing the CCI experiments have either a discrete or uniform distribution.

Input parameter Lower bound Upper bound Statistical Distribution

Diameter probe 5 mm 20 mm Discrete
Shape of the tip of the probe 0 (�cylindrical) 1 (�hemispherical) Discrete
Velocity of indentation 0.4 m/s 4 m/s Uniform
Depth of indentation 1.1 mm 12.6 mm Uniform
Inclination of the probe −15° 15° Uniform
DAM-probe friction 0.07 0.26 Normal
Thickness DAM 0.413 mm 1.058 mm Normal
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The ANN performance was evaluated considering the nMAE,
nRMSE, and 95% AE on the validation and training samples for
each of the four outputs, considering a total of 10, 20, 40, and 80
samples. The minimum number of samples that yielded nMAE,
nRMSE, and 95% AE < 4% was 80 (training samples � 72,
validation samples � 8).

With the ML surrogate model, we achieved a considerable
increase in computational efficiency compared to a typical FE
model simulation. The average computational time to simulate a
CCI with the FE porcine brain model was approximately 2 h
when parallelizing the execution between 144 domains (Xeon
Gold 6140, CPUs at 2.3 GHz) using the high-performance
computing centrum (VSC—Flemish Supercomputer Center).
On the contrary, generating 80 FE samples took ∼160 h, while
the training of the ANN was completed in about 7 min.
Predicting the values of the CC injury estimators with the
trained ANN was immediate (<0.01s); therefore, the advantage
of utilizing a surrogate model for uncertainty and sensitivity
analyses is clear, especially when considering the large number of
simulations necessary for the sensitivity analysis (see Sensitivity
Analysis).

Sensitivity Analysis
Once the ANN was trained and tested, we utilized the surrogate
model as basis for the Monte Carlo simulations because of its very
low computational cost in generating a large number of samples
(Laz and Browne, 2010). Knowing the statistical distributions of the
input parameters (Table 3), we performed the uncertainty analysis
using the MCS with 10,000 samples. In each MCS, one parameter
was kept constant and equal to a value inside the bounds according
to its statistical distribution. In particular, the shape had two
possible levels (0 � cylindrical probe and 1 � hemispherical
probe), the diameter of the probe had four (5–10–15–20mm),
and all the other parameters had ten each (ten values equally
spaced between the lower and the upper bound, shown inTable 3).
Therefore, we repeated the MCS 56 times in order to assess the
effect of each individual input on the injury metrics.

To rank the importance of the influence of the input
uncertainty on the output distribution, we computed two
global indicators using the open source Python’s library
SALib. The first one is the δ moment-independent measure
(Borgonovo, 2007)

δi � 1
2
EXi[s(Xi)],

where δi is the moment-independent indicator of the sensitivity
of the output, Y, to the input parameter Xi, and EXi[s(Xi)]
represents the expected shift in the distribution of Y provoked
by Xi.

The second indicator considered here is the first-order
sensitivity index S1(Sobol, 2001),

S1i � Vi

V[Y],

where S1i is the first-order sensitivity index specific to the input
parameter Xi, which represents the expected reduction in the

variance of the output V[Y] in a hypothetical case in which the
uncertainty relative to the input parameter, Xi, would be
excluded.

One common mathematical property for both indicators is
that given an input parameter,Xi, for a fixed output, Y, the closer
δi or S1i are to 1, the more important the parameterXi is for Y. In
the extreme case, if δi or S1i � 1, then Y only depends on Xi;
conversely if δi or S1i � 0, then Xi has no influence on Y. The
seven δi’s and seven S1i’s were estimated after generating 10,000
sets of input parameters by means of Latin Hypercube sampling,
which were used in the ML surrogate model to predict the 95th
percentile of MPS, MPSR, MPSXSR, and MSS.

Performance Evaluation of the CC Injury
Metrics
The case-specific 95th percentile MPS, MPSR,MPSXSR, andMSS
were predicted by the trained ANN using the known
experimental parameters of each CCI test as input. For all the
CCI cases we used diameter of the probe � 10 mm, inclination of
the probe � 0°, and shape of the tip � 1 (hemispherical). We
assumed friction of the DAM-probe � 0.163 mm and thickness of
the DAM � 0.736 mm, that is, the mean values of the
corresponding normal distributions (Table 3). The velocity
and depth of indentation were chosen depending on the
values specific for each test (Table 1). In order to use binary
values to express the presence or absence of visible disruption of
the cortical layer (Table 1), we used the dummy variable “1”when
CC was confirmed and “0” when no injury was detected.

A Wilcoxon Rank-Sum test (significance level � 0.05) was
carried out to assess the effectiveness of each injury estimator in
distinguishing between CCI cases with cortical damage and
without cortical damage.

The injury risk curves that express the likelihood of sustaining
CC depending on the different FE-derived injury predictors were
obtained by performing univariate logistic regression, a technique
that has been broadly used to determine injury tolerances based
on experimental data and predict the outcome of TBI (Shreiber
et al., 1997; Takhounts et al., 2003; Kleiven, 2007; Steyerberg et al.,
2008; Cai et al., 2018; Anderson et al., 2020; Hajiaghamemar et al.,
2020). We selected a logistic regression classifying method due to
the binary nature (CC or no CC) of the outcome of the CCI data,
obtained by means of the post-injury MR scans and histology
assessments (De Kegel et al., 2021). In the logistic regression
model the probability p of sustaining CC as function of an injury
predictor X is described by the relationship

p(X) � 1
1 + exp( − b0 + b1 ·X),

where b0 and b1 are the regression coefficients.
The accuracy of the injury metric-specific prediction of CC

likelihood was evaluated using a leave-one-out cross-validation
(LOOCV). We selected a LOOCV framework because of its low
bias and the limited size of our dataset (14 samples) (Beleites et al.,
2005; Cai et al., 2018; Anderson et al., 2020). In order to perform
an objective comparison between the performances of the
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univariate logistic regression classifiers, we computed the
LOOCV accuracy, sensitivity, and specificity. We also reported
the AUC, that is, the area under the receiver operating
characteristic (ROC) curve, for both the training and the
testing datasets, similar to Cai et al. (2018) and Anderson
et al. (2020). In particular, the metric-specific AUC value for
the training dataset was calculated as the average of the AUCs of
14 independent injury predictions and each one obtained
considering 13 simulated CCI cases, conforming to the
LOOCV framework. The metric-specific AUC value for the
testing dataset was determined taking into account the 14
independent injury predictions. The implementation of the
LOOCV framework and the performance evaluation of the
injury estimators were carried out using Python’s machine
learning library scikit-learn.

RESULTS

To validate the FEmodel of the porcine brain undergoing CCI, we
calculated the CORA score by comparing the experimentally
measured and the simulated force-time curves of the probe. The
overall CORA rating was equal to 0.827 (the cross-correlation
method � 0.880 and the corridor method � 0.773), which
corresponds with the “good biofidelity” category. Therefore,
the FE model yielded a sufficiently accurate prediction of the
localized force-time response of the pig’s brain to CCI (Figure 3).

The 95th percentiles of the MPS, MPSR, MPSXSR, and MSS of
10,000 simulations were predicted using the ML-based surrogate of
the porcine brain’s FE model. The results of the MCS are shown in
Figure 4, which displays the effect (indicated by the slope of the curves
representing the median response) that each individual input
parameter has on the predicted injury metrics, as well as on their
variability. Interestingly, the angle of inclination, the DAM-probe
friction, and the thickness of the DAM have minimal or no influence

on the four injury metrics. The difference in shape of the probe’s tip
has little effect onMSS andMPS, while it produces more pronounced
discrepancies in terms of MPSR and MPSXSR. In particular, a
hemispherical probe yields both lower strain and strain rates. The
median of all four injury metrics increases quasi-linearly with the
diameter of the probe; however, their variability (i.e., the 95%
confidence interval bound) increases nonlinearly when considering
larger diameters. Although all injury metrics increase with the velocity
of indentation, the quasi-linear relationship observed with MPS and
MSS is not apparent for MPSR and MPSXSR where large variability
for higher speeds is visible. Large variability at higher values and
nonlinearity of themedian are also noticeable forMPSR andMPSXSR
as a function of the depth of indentation.MPS andMSS exhibit quasi-
linear and monotonically increasing relations with the depth of
indentation. The variability of MPS and MSS as a function of the
depth of indentation is the lowest of all, suggesting that the depth of
indentation has a prominent role in the definition of the brain
strain field.

The results of the sensitivity analysis with 10,000 samples are
displayed in Figure 5. Both sensitivity indicators show a very
similar trend in terms of ranking the importance of the input
parameters despite showing different absolute values. In
particular, the most important parameter for MPS and MSS is
the depth of indentation (MPS: δ � 0.414 ± 0.008, S1 � 0.683 ±
0.008; MSS: δ � 0.477 ± 0.007, S1 � 0.772 ± 0.004), while the
parameter with the biggest influence on MPSR and MPSXSR is
the velocity of impact (MPSR: δ � 0.372 ± 0.008, S1 � 0.546 ±
0.015; MPSXSR: δ � 0.341 ± 0.007, S1 � 0.453 ± 0.011). On
the contrary, the angle of inclination, the DAM-probe friction,
and the thickness of the DAM exhibited little or no influence on
any of the four injury metrics, which was demonstrated by both δ
(<0.05 for all injury metrics) and S1 (<0.005 for all injury
metrics). The diameter of the probe ranked as the third most
influential parameter on all injury metrics (MPS: δ 0.063 ± 0.003,
S1 � 0.036 ± 0.007; MPSR: δ � 0.167 ± 0.004, S1 � 0.148 ± 0.010;
MPSXSR: δ � 0.135 ± 0.008, S1 � 0.120 ± 0.011; MSS: δ � 0.060 ±
0.003, S1 � 0.031 ± 0.007). The shape of the probe exhibited
limited influence on the outcome of the simulations, with slightly
higher δ in case ofMPSR andMPSXSR (0.059 ± 0.005 and 0.061 ±
0.003, respectively) and slightly higher S1 when considering
MPSR (� 0.030 ± 0.005). The complete table with δ moment-
independent measures and first order sensitivity indices S1 of the
injury metrics as a function of the input variables is available in
the Supplementary Material.

The effectiveness of each scalar injury metric in separating
between cases with CC and without CC based on the magnitude
of the estimator was assessed via the Wilcoxon Rank-Sum test. The
statistical analysis (Figure 6) confirmed that the 95th percentiles of
MPS and MSS were significantly different between the simulated
cortical damage and no damage cases (p-value � 0.0234 in both
cases). Conversely, within the considered dataset, the 95th percentile
of MPSR and MPSXSR of the injury and no injury groups were not
significantly different (p-values � 0.110 and 0.083, respectively).

The LOOCV procedure was implemented to test the robustness
and compare the performance of the metric-specific univariate
logistic regressions. Within the LOOCV framework, the accuracy,
sensitivity, specificity, and AUC on the testing dataset scores were

FIGURE 3 | Results of the validation of the FE porcine brain model. The
reaction force exerted by the impacted brain on the probe during the CCI was
measured experimentally and compared with the force-time history simulated
with the FE model.
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equivalent for all the FE-based injury predictors (Table 4). However,
the AUC score calculated on the training datasets revealed that MPS
and MSS (both average AUC � 0.878) outperformed MPSR (0.767)
and MPSXSR (0.789). The ROC curves for both the testing and
training datasets are available in the Supplementary Material.

Figure 7 illustrates the injury risk curves representing the
probability of sustaining CC as a function of the 95th percentile
of MPS, MPSR, MPSXSR, and MSS predicted with the porcine
brain ML surrogate model and based on the in vivo CCI data.
We determined the metric-specific injury thresholds by
computing the value of the predictors that corresponds to a
50% probability of sustaining CC, estimated using the univariate
logistic regression curve of the whole dataset. The obtained
thresholds were MPS � 0.16, MPSR � 245 s−1, MPSXSR � 45 s−1,
and MSS � 0.22.

DISCUSSION

FE Porcine Brain Model
The FE model simulated the intracranial response of the porcine
brain undergoing CCI to explore the relationship between the
deformation and rate of deformation of the cerebral tissue and the
risk of sustaining CC. Besides the reduced simulation runtime
resulting from using a simplified geometry, the rationale behind
the development of a single brain hemisphere model was the focal
nature of CC induced by CCI tests, which are designed to damage
only the ipsilateral side of impact (Alessandri et al., 2003; Elliott
et al., 2008). Contrary to other porcine head FE models that cope
with loading conditions involving the kinematics of the whole
head (Coats et al., 2012; Yates and Untaroiu, 2016;
Hajiaghamemar and Margulies, 2021), the current model is

FIGURE 4 | Outcome of the MCS performed on the surrogate of the porcine brain FE model. The variability of the CC injury metrics (i.e., 95th percentile of MPS,
MPSR, MPSXSR, and MSS in the ROI) is shown as a function of the input parameters. The solid line represents the median while the shaded area delimits the 90%
confidence interval.

FIGURE 5 | Sensitivity indicators (with 95% confidence interval) of the injury metrics with respect to the input parameters (d_probe � diameter of the probe, v_ind �
velocity of indentation, d_ind � depth of indentation, theta � inclination of the probe, mu � DAM-probe friction, t_m � thickness DAM, and shape � shape of the tip of the
probe). (A) δ moment-independent measure; (B) S1 first-order sensitivity index.
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conceived to simulate localized impacts only, therefore the
geometrical simplification adopted is sufficient. The validation
carried out by comparing the impact forces supported the
suitability of the FE model and its boundary conditions.
However, no experimental measurement of the brain tissue
deformation was available for further validation, which,
therefore, represents a limitation. In vivo measurements of the
deformation of the brain tissue during CCI are practically very
challenging, given the very limited visibility of the cortex and
accessibility between the probe and the craniotomy burr hole.
Future validation efforts could consider measuring dynamic
cortical deformation in vivo by applying vacuum pulses on the

exposed parenchyma, as reported by Schreiber et al. (1997) and
Mao et al. (2006) using rat brains. The stability of the model was
ensured for all the simulations, where no excessive distortion of
the deformable parts (i.e., brain and DAM) was observed.

The assumptions of homogeneity and isotropy of both the
brain-pia mater and DAM complexes could represent a matter of
debate for the present FE model. Indeed, various studies have
reported that porcine gray and white matter might display
different stiffness, although these differences seem to depend
on the testing conditions (Prange andMargulies, 2002; Gefen and
Margulies, 2004; van Dommelen et al., 2010; Elkin et al., 2011;
Kaster et al., 2011; Li Z. et al., 2020). Moreover, integrating the pia
mater with the underlying brain tissue might underestimate the
protective role of the innermost meningeal layer, which exhibits a
higher elastic modulus than the brain (Li Y. et al., 2020; Walsh
et al., 2021). While it is generally agreed upon that gray matter
shows an isotropic behavior, it has been reported that white
matter exhibits a degree of anisotropy in regions with significant
axonal fiber alignment such as the corpus callosum (Prange and
Margulies, 2002; vanDommelen et al., 2010; Feng et al., 2017). On
the other hand, the homogeneity and isotropy of the mechanical
behavior of the cerebral dura mater, in spite of the presence of
collagen fibers, has been confirmed in different studies (De Kegel
et al., 2018; Pierrat et al., 2020). Nevertheless, there is no
constitutive law capable of capturing the mechanical behavior
of the cerebral and meningeal tissues under any arbitrary
loading condition, which necessitates that the selected material
models be calibrated under testing conditions similar to the
problem considered (de Rooij and Kuhl, 2016). Therefore, the
neo-Hookean quasi-linear viscoelastic models for the brain-pia
mater and DAM complexes obtained by MacManus et al. (2017)
were a reasonable choice, as they were calibrated with dynamic
indentations of the brain surface.

Several approaches have been adopted in the literature to model
the presence of CSF in FE head models, such as the use of linear
elastic solid elements for the CSF (Kleiven, 2007; Coats et al., 2012;
Trotta et al., 2020), or fluid-structure interaction (Zhou et al.,
2019). Other studies incorporated the cerebral vasculature in the
FE head models and found that it reduces the brain strains
resulting from blast exposures (Unnikrishnan et al., 2019) and
head collisions (Zhao and Ji, 2020b). Coats et al. (2012) explored
the possibility ofmodeling the brain-skull interface by replacing the
pia-arachnoid mater complex, CSF, and blood vasculature with
spring connector elements with assigned stiffness of cortical veins.
This suggests that the vascular structure is an important
constituent that is affected by nonimpact large head rotations.
These rotations, however, do not reflect the mechanical loading
scenario of a CCI. Therefore, we hypothesize that the fluid-filled
cavity approach used here is sufficient to model the presence of an
incompressiblematerial between the impactedDAMand the brain.
Future developments of the porcine brain FEmodel should explore
the load-bearing behavior of the structural interaction between the
CSF and the cortical vasculature during direct impacts.

Machine Learning Model
A surrogate of the porcine brain FE model was fitted using an
artificial neural network with the aim of performing uncertainty

FIGURE 6 | Estimated values of the injury metrics for the CCI injury
(orange) vs. no injury (blue) cases. Maximum principal strain (MPS) and
maximum shear strain (MSS) are different for cases with observed cortical
damage vs. no damage. No statistical difference is observed in terms of
maximum principal strain rate (MPSR) and maximum principal strain x strain
rate (MPSXSR) between injury and no injury cases. * � p-value < 0.05.
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and sensitivity analyses with reduced simulation runtime and
computing resources. The trained and tested ANN was able to
predict the 95th percentile MPS, MPSR, MPSXSR, andMSS of the
porcine brain undergoing CCI in <0.01s using a low-end laptop,
contrarily to the ∼2 h runtime required to simulate a single
impact with the “traditional” FE porcine brain model using a
high-performance computing platform. Considering the large
number of samples required by the MCS (56 times 10,000),
the computational time saved by performing the uncertainty
analysis on the ML surrogate model is evident.

We reached the desired accuracy for uncertainty
quantification by using only 80 samples in the training and

testing process for the ANN. Most machine learning–based
models would require more samples to be able to achieve
errors <4%; however, since only three out of the seven input
parameters were proved to be highly influential, this relatively low
number of training and validation samples is plausible.

The fully connected seven-layers ANN architecture used in
this study is relatively simple and only considers a one-
dimensional array as input. There exist more complex deep
learning–based surrogates of FE head models in the literature,
such as convolutional neural networks (CNN) (Wu et al., 2019;
Ghazi et al., 2021). Improving the outcomes from Wu et al.
(2019), Ghazi et al. (2021) combined the head impact rotational

FIGURE 7 | Injury risk curves representing the probability of sustaining CC as a function of the 95th percentile of MPS, MPSR, MPSXSR, and MSS predicted with
the porcine brain ML surrogate. The solid black line represents the logistic regression curve performed on the whole dataset. The light gray lines represent the logistic
regression curves of each training dataset of the leave-one-out cross-validation procedure. The green vertical dashed lines indicate the thresholds corresponding to the
50% chance of CC (MPS � 0.16, MPSR � 245 s−1, MPSXSR � 45 s−1, and MSS � 0.22), while the blue dots represent the experimental data (cortical damage � 1
and no damage � 0) collected by means of the MR and histology assessments post-CCI.

TABLE 4 | Summary of the performance scores of the four different injury predictors. The scores were obtained using the leave-one-out cross-validation framework. The
AUC-training values are presented as the average (standard deviation) of the testing datasets. The best and worst AUC-training measures are also reported.

Injury metric Accuracy Sensitivity Specificity AUC-testing AUC-training Best AUC-Training Worst AUC-Training

95th MPS 0.784 0.8 0.75 0.711 0.878 (0.032) 0.972 0.847
95th MPSR 0.784 0.8 0.75 0.711 0.767 (0.055) 0.944 0.708
95th MPSXSR 0.784 0.8 0.75 0.711 0.789 (0.049) 0.944 0.736
95th MSS 0.784 0.8 0.75 0.711 0.878 (0.032) 0.972 0.847
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velocity and acceleration temporal profiles into a two-
dimensional input to train a CNN architecture composed of
convolutional, pooling, flattening, and fully connected layers. The
CNN was trained to predict the MPS distribution across the
whole brain of the anisotropic Worcester Head Injury Model
(Zhao and Ji, 2020a). With a conceptually similar workflow, Zhan
et al. (2021) utilized features describing the characteristics of
rotational kinematics of football and mixed martial arts’ head
impacts as input of a five-layer deep neural network to predict the
MPS map of the brain elements of the KTH head model (Ho and
Kleiven, 2007).

The remarkable advantage of these approaches is the
preservation of the information about the nonlinear
impact–whole brain deformation relationship, which is
otherwise inevitably lost when considering discrete inputs and
single-value metrics outputs as in our study. Nevertheless, the
focal nature of the cortical damage induced by the CCI reduces
the relevance of predicting the brain mechanical response outside
the ROI that is directly affected by the impacting probe. The ANN
was, therefore, sufficient to achieve the goal of estimating the
effect of the experimental and modeling parameters on the
localized strain and strain rate of the impacted pig brain.
Future studies should investigate the use of more sophisticated
deep learning networks that include the nonlinear temporal
profile of input parameters such as depth and velocity of
indentation, which, due to the dynamic nature of the brain
tissue properties, might influence the predicted intracranial
mechanical response.

Sensitivity to the CCI Model Parameters
The uncertainty and sensitivity analyses demonstrated that
the selected input parameters have different degrees of
influence on the deformation and rate of deformation of
the porcine cerebral tissue undergoing CCI. Both sensitivity
indices, S1 and δ, highlighted the predominant effect of the
depth of indentation on strain-based injury metrics. The
crucial effect that increasing the depth of indentation has
in terms of both functional responses and tissue structural
injury pattern is well reported in the literature of CCI on
rodent (Goodman et al., 1994; Saatman et al., 2006; Elliott
et al., 2008; Mao et al., 2010a) and pig brains (Manley et al.,
2006; Baker et al., 2019). The evaluation of the uncertainty
propagation showed that by eliminating the uncertainty on
the depth of indentation in a CCI experiment, one could
dramatically reduce the variability of MPS and MSS. This
demonstrates that this input parameter should be carefully
selected and measured when performing a CCI experiment.
Interestingly, MPSR and MPSXSR seem to reach a plateau for
depths of indentation approaching 12 mm, which suggests
that it may not be crucial for the impactor to reach depths
larger than 12 mm in order to produce further damage. This is
in agreement with Manley et al. (2006) and Baker et al. (2019),
who both observed that CCI carried out on pig brain with a
depth of indentation greater or equal than 12 mm produces
largely extended areas with neuroparenchymal damage and
loss and intraparenchymal hematoma, which overshadows the
mere cortical contusion.

The other critical parameter is the velocity of impact, which
unsurprisingly ranked first in order of importance with the strain
rate injury metrics, MPSR and MPSXSR. This is a logical
consequence of the viscoelastic nature of the brain tissue. The
strain rate dependence introduced by the brain tissue viscoelastic
material model could also explain why large asymmetry in the
uncertainty distribution are observed for MPSR and MPSXSR,
especially for higher values of velocity and depth of indentation.
Indeed, it is known that brain tissue shows more viscous behavior
and its shear modulus exhibits a more rapid decay with increasing
strain rates (Qian et al., 2018).

The effect of the interaction between the depth and velocity of
indentation was not investigated in our study. However, CCI
experiments on pig brain by Baker et al. (2019) showed that the
interaction between these two parameters influence the cortical
lesion size and the observable functional deficit. The combined
effect of depth and velocity of indentation on brain tissue
deformation and deformation rate should be object of future
research.

The trends of the median of all four injury predictors
observable in Figure 4 reveal that the geometrical properties
of the probe influence the brain’s response to the CCI, although
less than the depth or the velocity of impact. Unsurprisingly, a
larger diameter of the probe results into larger strains and strain
rates. Moreover, hemispherical probes are associated with lower
MPS, MPSR, MPSXSR, and MSS than cylindrical flat tips, which
is explained by the higher concentration of stresses due to smaller
radii. This is confirmed by the CCI experiments on mice by
Pleasant et al. (2011), who observed a greater acute cortical
hemorrhage and neural loss with a flat probe when compared
to a hemispherical one.

The uncertainty of the angle of indentation, the friction
coefficient between the DAM and the probe, and the thickness
of the DAM show no meaningful effect on the propagation of the
uncertainties of all the injury metrics. This demonstrates that
committing an error in positioning the axis of the probe with an
angle relative to the surface of the brain parenchyma in the range
[−15°; 15°] is tolerable in terms of achieving the desired localized
cortical damage in a CCI experiment. A similar consideration
holds for the assessed ranges of the two modeling parameters,
namely the thickness of the DAM shell elements and the friction
between the DAM and the probe.

The choice of a neo-Hookean material model was dictated by
the similarity of the loading scenario between the material
calibration tests (MacManus et al., 2017) and the CCI
experiments considered here. Nevertheless, there exist other
more refined hyperelastic material model definitions (e.g.,
Mooney–Rivlin, Ogden) which might better capture the
asymmetry in the tension-compression response of the
tissues (de Rooij and Kuhl, 2016; Zhao et al., 2018; Budday
et al., 2019). Provided that these constitutive laws are calibrated
with experimental loading conditions that are similar to a CCI,
future studies should include the material model as an input
variable for the sensitivity analysis and assess the effect of the
uncertainty of the hyper-viscoelastic parameters on the injury
metrics. Another possible extension of this study should regard
the assessment of the effect of the location of the point of impact
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on the DAM surface on the brain’s mechanical response.
However, in order to assess the influence of the impact
location, the limitation of the current FE model in
considering a scaled average brain must be first overcome.
These analyses could be repeated using subject-specific FE
brain models with geometry obtained from high-resolution
images, which were not available for this study. This could
bring more insight, since these models could then capture the
accurate morphology of the superficial gyral pattern, as it can
alter the strain and the strain rate pattern (Ho and Kleiven,
2009). Finally, it is worth mentioning that the importance
ranking of the input parameters refers to the brain’s response
localized around the area that is directly affected by the CCI.
The influence of the parameters on the spatial distribution of the
whole brain strains and strain rates might differ; however, this
was outside of the scope of our study.

CC Tissue-Level Injury Metrics
The use of FE head models to investigate the mechanical tolerances
associated with specific traumatic brain injuries is regarded as a
promising area of brain biomechanics research with potential
applications in the engineering and optimization of protective
devices such as helmets, as well as in forensics. With the current
investigation, we assessed the injury prediction performance of four
strain and strain rate-based injury metrics for cerebral contusion
using in silico porcine brain models.

Given the very localized injury pattern resulting from CCI, the
use of strain and strain rate injury criteria has been preferred over
other metrics assessed in the literature, such as those based on
stress, intracranial pressure, or strain energy. Interestingly, the
uncertainty analysis highlights thatMPS exhibits, indeed, the least
variability in comparison with the other injury metrics (Figure 4).
Mao and Yang (2011) developed a FE model of the rat brain
undergoing a CCI and confirmed the predictive capability of
maximum principal strain and maximum shear strain as injury
thresholds, finding no correlation between CC and the
intracranial pressure. This can be ascribed to the fact that CCI
affects only a limited area in proximity of the brain surface, and it
is different than the coup-contrecoup contusions that result from
impacts where the global head kinematics are involved.

Among the injury metrics considered, only the strain-based
indicators were tested as being statistically significantly
effective in distinguishing between injury and no injury
cases. The LOOCV model evaluation confirmed the superior
robustness and performance of MPS and MSS compared to
MPSR and MPSXSR in terms of predicting CC. This suggests
that the mechanical deformation pattern of the brain
tissue—rather than its rate of deformation—shows potential
in predicting focal TBI. Despite the small size of the CC injury
dataset, the 50% injury risk thresholds are in line with the
values reported in the literature, even though from different
animal models. Our estimates of the MPS and MSS-based
thresholds (0.16 and 0.22, respectively) are close to the 0.265
MPS and 0.281 MSS reported by Mao and Yang (2011) who
performed CCI on rat brains. An engineering strain of 0.19 was
suggested by Viano and Lövsund (1999) for 50% risk of
contusion, after analyzing the results of CCI tests on ferrets.

They also determined the threshold for the product of strain
and strain rate as equal to 30.7 s−1, which is in the
neighborhood of the value estimated here (MPSXSR �
45 s−1). Nevertheless, the interpretation of the comparison
across species needs to be done with caution, given the
considerable anatomical and structural brain differences. To
the best of the authors’ knowledge, no other studies reported
CC injury thresholds obtained by analyzing data from CCI
experiments in vivo on pig brains.

An evident limitation of this study is the small size of the
experimental dataset, which yields broad confidence intervals for
the estimated CC injury thresholds, thus discouraging the use of
these values as ultimate CC criteria. It is nevertheless unrealistic to
presume the existence of a single injury metric capable of predicting
with absolute certainty the risk of CC resulting from any loading
scenario. Indeed, the use of injury metrics based on FE-derived
mechanical quantities hypothesizes a direct relationship between the
outcome of a TBI and the biomechanical response of brain tissue.
Even in a well-controlled testing scenario as a CCI, this inevitably
excludes all the complex pathophysiological mechanisms typical of
secondary injury responses, which can arise during the 48 h
considered by De Kegel et al. (2021) for the postimpact
contusion evaluation. These biological processes are not
pathognomonic to CC and depend on the genetic variability
between animals. It is also unknown how they influence the
targeted injury outcome, which complicates the establishment of
an injury threshold and therefore represents a shortcoming.
Nevertheless, a scan taken immediately following the impact
could be interpreted as falsely negative. Therefore, the only
objective way to determine the actual cerebral contusion damage
was a binary assessment of disruption vs. no disruption of the thin
cortical layers 48 h post-CCI.

Machine learning-based algorithms (e.g., deep neural networks,
support vector machine, and random forest classifiers) have been
regarded as promising tools to predict TBI in a more accurate and
effective way (Hernandez et al., 2015; Cai et al., 2018; Wu et al.,
2018;Wu et al., 2020). The advantage of these techniques is that the
injury classification is performed utilizing multiple features such as
elementwise brain strain. On the contrary, the FE-based scalar
metrics considered here via the predictor-specific LOOCV suffer
from information loss, since they basically reduce the complex
mechanical response of the brain to a single value. Provided that a
larger injury vs. no injury dataset is available, future studies should
consider the evaluation of machine learning feature-based CC
predictors, which can overcome the limitation of the use of
single value injury metrics.

CONCLUSION

We investigated the effect of common experimental and
computational variables on the mechanical response of the
porcine brain undergoing CCI. We successfully developed a
machine learning surrogate of the finite element porcine brain
model to perform the uncertainty and sensitivity analyses in a
computationally efficient way. We observed that the depth and
velocity of indentation should be chosen carefully when designing
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CCI experiments as they produce the largest influence on the brain
tissue’s deformation and rate of deformation. Four strain and strain
rate-based criteria have been evaluated as injury metrics to predict
cerebral contusion. The maximum principal strain and maximum
shear strain were found to be good candidates as tissue-level metrics
specific for cerebral contusion. We demonstrated that the proposed
blended in vivo-in silico methodology shows potential in predicting
CC, although the reliability depends on the size of the animal
experimental injury vs. no injury dataset. Accurate CC injury
classification methods and tolerances will find practical application
in the development of safer protective headgear and in forensics.
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A Nitric Oxide–Modulated
Variable-Order Fractional Maxwell
Viscoelastic Model of Cerebral
Vascular Walls
Corina S. Drapaca*

Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States

It is well known that the mechanical behavior of arterial walls plays an important role in the
pathogenesis of vascular diseases. Most studies existing in the literature focus on the
mechanical interactions between the blood flow and wall’s deformations. However, in the
brain, the smaller vessels experience not only oscillatory forces due to the pulsatile blood
flow but also structural and morphological changes controlled by the surrounding brain
cells. In this study, the mechanical deformation of the cerebral arterial wall caused by the
pulsatile blood flow and the dynamics of the neuronal nitric oxide (NO) is investigated. NO is
a small diffusive gaseousmolecule produced by the endothelial cells and neurons, which is
involved in the regulation of cerebral blood flow and pressure. The cerebral vessel is
assumed to be a hollow axial symmetric cylinder whose wall thickness is much smaller than
the cylinder’s radius and longitudinal length is much less than the propagating wavelength.
The wall is an isotropic, homogeneous linear viscoelastic material described by an NO-
modulated variable-order fractional Maxwell model. A fractional telegraph equation is
obtained for the axial component of the displacement. Patterns of wall’s deformation are
investigated through numerical simulations. The results suggest that a significantly
decreased inactivation of the neuronal NO may cause a reduction in the shear stress
at the blood-vessel interface, which could lead to a decrease in the production of shear-
induced endothelial NO and neurovascular disease.

Keywords: variable-order fractional Maxwell viscoelastic model, cerebral nitric oxide dynamics, vascular wall
deformation, variable-order fractional telegraph equation, separation of variables method

INTRODUCTION

Cerebral vasculature plays a critical role in brain’s metabolism and neurovascular conditions. The
literature abounds with studies of cerebral blood flow and its interactions with the vasculature and
brain cells [reviews of models and computer simulations can be found in chapter 4 of Drapaca and
Sivaloganathan (2019)]. Recent advancements in technology have allowed researchers to gain
invaluable knowledge about the intricate chemo-mechanical connections among neurons, glial,
vascular, and blood cells. It is now acknowledged that the neurons and glial cells control the cerebral
blood flow through the chemo-mechanical activation of the cells within the vascular wall (Attwell
et al., 2010).

One of the many particles that facilitate the chemo-mechanical communications among the brain
cells, blood, and the vascular wall is the nitric oxide (NO). A small diffusive gaseous molecule, the
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cerebral NO is mainly produced by shear-induced
mechanotransduction at the blood-vessel interface (Sriram
et al., 2016) and by synthesis reactions within the endothelial
cells of the blood vessels and neurons (Forstermann and Sessa,
2012). NO diffuses and is removed from brain through some
specialized chemical processes (Palacios-Callender et al., 2007;
Unitt et al., 2010; Santos et al., 2011; Santos et al., 2012; Helms
et al., 2016). In its role as a neuro-glial-vascular messenger, NO
controls the cerebral blood flow and the release of
neurotransmitters (Huang, 1999; Iadecola, 2004; Attwell et al.,
2010; Contestabile et al., 2012; Iadecola, 2017). The regulation of
the blood flow in brain is achieved through vasomotor
mechanisms in which both the neuronal and endothelial NO
are involved (Cockcroft, 2005; Metea and Newman, 2006; Attwell
et al., 2010; Atochin and Huang, 2011; Petzold and Murthy, 2011;
Contestabile et al., 2012; Lourenco et al., 2014; Haselden et al.,
2020). However, throughout the entire cardiovascular system, the
endothelial NO usually acts as a vasodilator (Attwell et al., 2010;
Schuler et al., 2014). While the cerebral NO activity causes the
local vasodilatation of downstream cerebral vessels at the neuro-
glial-vascular unit site, the NO diffusion within the vascular wall
relaxes the smooth muscle cells leading to the so-called remote
vasodilation due to the propagation of muscle’s relaxation to the
upstream arteries via the intercellular communications among
endothelial and smooth muscle cells (Freed and Gutterman,
2017) facilitated by vascular gap junctions (Iadecola, 2004;
Iadecola, 2017). Impaired cerebral NO production and/or
decay can signal the presence of a neurovascular disease
(Parker and Parks, 1995; Maurer et al., 2000; Wilkinson et al.,
2004; Unitt et al., 2010; Santos et al., 2011; Haselden et al., 2020).

Although the NO-modulated vasodilation contributes to the
mechanical deformation of the vascular walls of intracerebral
vessels, existing mathematical models and corresponding
numerical simulations of blood flow interacting with the
deformable vascular wall do not account for it since their
focus is the mechanics of big arteries in the presence of the
pulsatile blood flow. The arteries are usually modeled as
anisotropic, incompressible, nonlinear elastic materials whose
constitutive stress-strain relationships may also incorporate
collagen fibers’ orientations and waviness, and/or the
activation of smooth muscle cells (see Ebrahimi, 2009;
Holzapfel and Ogden, 2010; Kim and Wagenseil, 2014;
Espinosa et al., 2018 and references within). For instance,
muscle activation has been modeled using 1) the (original or
modified) Hill model (Hill, 1938), 2) an elastic strain-energy
function dependent on the concentration of free intracellular
calcium (Rachev and Hayashi, 1999), 3) a strain-energy function
dependent on the chemical kinetics of the smooth muscle
(Stalhand et al., 2008), and 4) a lumped Hodgkin-Huxley-like
electrical circuit of the smooth muscle cell membrane coupled
with a fluid compartment model describing the mass balances of
considered ions and a contractile kinematics model regulated by
intracellular calcium (Yang et al., 2003). Given the viscoelastic
behavior of constituent cells (Kasza et al., 2007) of the blood
vessels (and biological tissues, in general), the vascular wall has
also been modeled as a viscoelastic material (Toth et al., 1998;
Orosz et al., 1999; Holzapfel et al., 2002; Hodis and Zamir, 2008;

Ebrahimi, 2009). Since these models do not incorporate the NO
influence on the vascular wall, they are not able to predict
neurovascular pathologies in which NO plays a critical role.
Furthermore, the coupling of most of the above models with
the cerebral NO dynamics will probably increase the already large
number of model parameters that are practically impossible to
find in a living brain with minimally invasive procedures using
present-day technologies.

The aim of this study is to propose a novel mechanical model
for cerebral arterioles that accounts for changes in the wall’s
mechanical behavior due to the NO-activated vascular cells and
has few parameters. Orosz et al. (1999) used stress-relaxation
measurements in cerebral arteries of human cadavers to show
that four- and five-element generalized Maxwell viscoelastic
models provide more accurate descriptions of the vascular wall
mechanics than the two-element Maxwell viscoelastic model.
One way to obtain a linear viscoelastic constitutive law with
fewer parameters that perform as well as (or better) a spring-
dashpot model with many elements is to use an integral
formulation instead of the differential operator representation
commonly associated with rheological (spring-dashpot) models.
Integral constitutive laws admit equivalent differential
formulations only for certain expressions of their relaxation
functions (Gurtin and Sternberg, 1965; Drapaca et al., 2007).
It was observed experimentally that relaxation functions
represented as power functions of negative fractional
exponents accurately describe the fading memory of many
viscoelastic materials, including polymers and soft biological
tissues (Nutting, 1921; Gemant, 1935; Gemant, 1936; Scott
Blair and Coppen, 1939; Scott Blair and Coppen, 1942;
Nutting, 1943; Guttinger, 1966; Caputo and Mainardi, 1971;
Bagley and Torvik, 1983a; Bagley and Torvik, 1983b; Koeller,
1984; Torvik and Bagley, 1984; Suki et al., 1994; Mainardi, 2010).
Integral constitutive laws with decaying fraction power-law
relaxation functions have equivalent differential
representations like those used in classic rheological models
where integer-order derivatives were replaced by fractional-
order derivatives (convolutions between decaying fraction
power functions and integer-order derivatives). These
fractional viscoelastic models are causal at zero time (Bagley
and Torvik, 1983b; Torvik and Bagley, 1984) and can be derived
from molecular theories that incorporate the molecular
complexity of various polymers (Bagley and Torvik, 1983b;
Suki et al., 1994). In this context, the fractional order of the
strain history models the “contribution of the long-chain
molecules to the macroscopic stress” (Suki et al., 1994). Also,
Suki et al. (1994) noticed the structural similarities between the
lung tissue and some polymers and showed that a fractional
viscoelastic model can successfully predict the viscoelastic
behavior of lung tissue. Given that lungs are highly
vascularized, it is reasonable to assume that a fractional
viscoelastic model could be employed in studies of blood
vessels mechanics.

Therefore, this study proposes a new NO-modulated variable-
order fractional Maxwell viscoelastic model for the cerebral
vascular wall and investigates its predictions through
numerical simulations. The suggested constitutive equation is
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a generalization of the (constant order) fractional Maxwell
viscoelastic model (see, for instance, Mainardi, 2010). The
classic (first-order) Maxwell viscoelastic model has been
previously used in the literature to model vascular walls (see,
for instance, Hodis and Zamir, 2008), and therefore, this is the
model which was chosen to be generalized here. According to
Lorenzo and Hartley (2002), variable-order fractional operators
are suitable in modeling, for instance, the fading memory
characteristic of viscoelastic materials and the order memory
which records the order in which memories are recalled [a
recent review of applications of variable-order fractional
operators can be found in Patnaik et al. (2020)]. In the model
proposed here, the neuronal NO dynamics controls the order
memory. With only three parameters, the proposed model can
account for vessel’s mechanics and the fact that the order memory
of chemo-mechanical events is essential to the proper
functionality of the constituent cells of the vascular wall.
Lastly, the vascular wall is assumed to be isotropic and
homogeneous.

As in Hodis and Zamir (2008), it is further assumed that the
cerebral vessel is a hollow axial symmetric cylinder whose wall
thickness is much smaller than the cylinder’s radius, and
longitudinal length is much less than the propagating
wavelength. These assumptions together with the new
constitutive equation led to a variable-order fractional
telegraph equation for the unknown axial displacement of
the vessel’s wall. By assuming that the blood-vessel interface
was exposed to the pulsatile blood flow and the vessel-tissue
interface was tethered (Hodis and Zamir, 2008), an initial-
boundary value problem was obtained and solved using the
separation of variables method and finite difference schemes.
The assumption of a tethered vessel-tissue interface is
supported by experiments performed using high-resolution
ultrasonic scanning that shows significantly larger longitudinal
displacements of the wall’s middle layers than the
corresponding displacements of the wall’s outer layers
(Persson et al., 2003; Cinthio et al., 2006). Lastly, the
variable fractional order was taken to be proportional to the
concentration of neuronal NO. Two cases of neuronal NO
synthesis (NOS) were considered: 1) a stepwise activation of
NO with drastically decreased NO inactivation and 2) a
dynamic activation of NO (Hall and Garthwaite, 2006).
Case 1 may not be physiological because the main neuronal
NOS activation matches the short pulsatile Ca2+- calmodulin
binding activation in dendritic spines (Hall and Garthwaite,
2006), and thus, this case may model impaired neuronal NO
dynamics. Indeed, the temporal variation of NO resembles a
stepwise function when the NO inactivation is drastically
reduced by either brain ischemia (Santos et al., 2011) or the
inhibition of cytochrome c oxidase (COX) (Palacios-Callender
et al., 2007; Unitt et al., 2010). Brains of Alzheimer disease
(AD) patients may suffer from a COX inhibition and thus an
accumulation of NO (primarily in the temporal cortex and
hippocampus) because a selective defect of COX causing a
significant reduction in COX activity was found in AD brains
(Parker and Parks, 1995; Maurer et al., 2000). Numerical
simulations generated in MATLAB show smaller

displacements within the vascular wall in the case of
stepwise NOS than in the case of dynamic NOS. Also, the
shear stress at the bloodvessel interface is smaller in the case of
stepwise neuronal NOS. Since the production of shear-induced
endothelial NO is proportional to the shear stress at the inner
boundary of the vessel’s wall (Sriram et al., 2016), it follows
that less endothelial NO will be produced in this case which
could ultimately lead to neurovascular disease. Thus, the
model could be used as a complementary clinical tool for
early detection of disease and intervention (Alzheimer, for
instance).

The study is structured as follows. The proposed mathematical
model and the initial-boundary value problem under
investigation are presented in Mathematical Model. The
corresponding semi-analytic solution is given in Semi-Analytic
Solution. Numerical simulations are shown in Results, which is
followed by the last section containing a discussion of the results
and final conclusions.

MATHEMATICAL MODEL

The vessel is modeled as a hollow horizontal axial symmetric
circular cylinder of radius a and thickness h (Figure 1). As inHodis
and Zamir (2008), it is assumed that the vessel’s wall is made of a
homogeneous, linear viscoelastic material that is tethered at the
outer boundary (the wall-tissue interface) and exposed to
oscillations caused by the heart pulsations at its inner boundary
(the blood-wall interface). In addition, it is assumed that the spatial
variations of the oscillations can be neglected in a first
approximation because they are of the same order of magnitude
as the propagating wavelength (which is approximately 10m at a
frequency of 1Hz in the systemic circulation) while the vessel’s
length is much smaller than the wavelength. Thus, only the time
variations of the oscillations at the inner boundary of the vessel’s
wall will contribute to the wall’s deformation. If (r, θ, x) are the
cylindrical coordinates, then the modeling assumptions made so
far reduce the equation of motion which is relevant to the work
presented here to the following equation (Hodis and Zamir, 2008):

ρ
z2ξ

zt2
� zσrx

zr
+ σrx

r
, (1)

FIGURE 1 | A schematic of the geometric domain occupied by a vessel
of radius a and wall thickness h. The model assumes a hollow horizontal axial
symmetric circular cylinder whose wall has a fixed outer boundary and an
oscillatory inner boundary.
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for (r, t) ∈ (a, a + h)×[0,T]. In Eq. 1, ρ is the mass density,
ξ(r, t) is the axial displacement of a material point of the vessel’s
wall, and σrx(r, t) is the shear stress of a wall’s point. Lastly,
because the wall thickness h is usually much smaller than the
radius a, the curvature term σrx/r is smaller than the other terms
of Eq. 1, and thus, it can be neglected. Therefore, Eq. 1 reduces to
(Hodis and Zamir, 2008):

ρ
z2ξ

zt2
� zσrx

zr
. (2)

In this study, it is assumed that the mechanical behavior of the
vessel’s wall is described by the constitutive equation of a
variable-order fractional Maxwell linear viscoelastic material:

zα(t)t σrx � E(zα(t)t εrx − σrx

μα
), (3)

where, based on the model’s assumptions, the infinitesimal strain
εrx reduces to:

εrx � zξ

zr
. (4)

The constitutive Eq. 3 has three physical parameters: E, the
modulus of elasticity, μα, and α(t), 0< α(t)≤ 1. Without loss of
generality, it is assumed further that εrx(r, 0+)� 0 and
σrx(r, 0 + )� 0 (Bazhlekova and Bazhlekov, 2017). Lastly, the
variable-order fractional derivative used in Eq. 3 is as follows
(see for instance Ramirez and Coimbra, 2010; Moghaddam and
Machado, 2017):

zα(t)t φ(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(1 − α(t))∫

t

0

φ(m)(s)ds
(t − s)α(t), if m − 1< α(t)<m,∀t > 0

φ(m)(t), ifα(t) � m,∀t > 0

1
Γ(−α(t)) ∫

t

0

φ(s)ds
(t − s)1+α(t), ifα(t)< 0,∀t > 0

,

(5)

wherem ∈ 1, 2, 3 . . . ,}{ φ(t) is an arbitrary, continuously
mth-order differentiable function whose mth-order derivative is
denoted by φ(m)(t) such that φ(k)(0+) � 0, k ∈ 0, 1, . . .m − 1}{ ,
α(t) is a continuously differentiable function, and Γ(z) �∫∞
0
yz−1 exp(−y)dy(Re(z)> 0) is the gamma function. For

α(t) constant, the fractional derivative given by Eq. 5 reduces
to the Caputo fractional derivative (see, for instance, Caputo and
Mainardi, 1971).

According to Ramirez and Coimbra (2010), Eq. 5 is desirable
in modeling of physical processes since a physical interpretation
of the variable fractional order α(t) ∈ (0, 1) can be provided in
this case: the order of a variable-order model describing the
dynamics of a viscoelastic oscillator in stationary motion is a
normalized phase shift. Since Eq. 5 preserves the well-known
formula of calculating the integer-order derivative of a monomial
(Samko and Ross, 1993), the following property holds for
nonconstant analytic functions satisfying the zero initial

conditions mentioned above (Theorem 1, pg. 82 in West et al.,
2003):

zα(t)t zβ(t)t φ(t) � zβ(t)t zα(t)t φ(t) � zα(t)+β(t)t φ(t), (6)

Equation 6 yields zα(t)t z−α(t)t φ(t) � φ(t).
From Eq. 5 and the zero initial conditions satisfied by εrx and

σrx , it follows that Eq. 3 becomes the fractional Maxwell model
for α(t) a constant in the interval (0, 1) and reduces to the
classic Maxwell model for α(t) � 1,∀t > 0. Note that in the
classic Maxwell model parameter μα becomes the viscosity
denoted by μ. When the fractional order is a constant
α ∈ (0, 1), properties of the (Caputo) fractional derivative
Eq. 5 and the Laplace transform can be combined to obtain
the following expressions for the creep compliance J and
relaxation modulus G (Mainardi, 2010; Bazhlekova and
Bazhlekov, 2017):

J(t) � 1
E
( g
Γ(1 + α)t

α + 1),G(t) � EEα(−gtα), (7)

where g � E/μα and the Mittag-Leffler function is, by
definition, Eα(z) � ∑∞

k�0 zk
Γ(αk+1) . Figure 2 shows plots of

dimensionless material functions EJ and G/E given by Eq. 7
versus the dimensionless time �t � t/T for various values of α.
Thus, the material functions for a variable order α(t) ∈ (0, 1)
will combine the behavior of multiple material functions
shown in Figure 2.

Replacing Eq. 4 in Eq. 3, applying operator z−α(t)t to Eq. 3, and
using Eq. 6 give:

σrx � E(zξ
zr

− 1
μα

z−α(t)t σrx). (8)

FIGURE 2 | Plots of dimensionless material functions (A)EJ and (B)G/E
given by Eq. 7 versus the dimensionless time �t for various constant values of
α ∈ (0, 1).
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Differentiating Eq. 8 with respect to the spatial variable r and
using Eq. 2 yield:

zσrx

zr
� E(z2ξ

zr2
− ρ

μα
z2−α(t)t ξ). (9)

Lastly, by replacing Eq. 9 in Eq. 2 the following equation is
obtained:

z2ξ

zt2
+ gz2−α(t)t ξ � E

ρ

z2ξ

zr2
, (10)

Eq. 10 is a variable-order fractional telegraph equation (or two-
term time-variable fractional diffusion-wave equation).

The initial and boundary conditions are as follows:

ξ(r, 0) � 0,
zξ

zt
(r, 0) � ξ0ω, (11)

ξ(a, t) � ξ0 sinωt, ξ(a + h, t) � 0. (12)

It is assumed that the variable fractional order α(t) ∈ (0, 1)
models the temporal effects of the neuronal NO on the
vessel’s wall. At this incipient stage, the shape of α(t) is
considered to look like the temporal profile of the
concentration of neuronal NO. Hall and Garthwaite (2006)
proposed two models of neuronal NO dynamics: 1) stepwise
activation of NO and 2) dynamic activation of NO. Both
models include the NO inactivation. The equation of the first
model is as follows:

d[NO]
dt

� ν1 − Vmax[NO]
Km + [NO],

whose approximate analytic solution for zero initial condition is
(Mehala and Rajendran, 2014) as follows:

[NO](t) � ν1
κ
(1 − exp(−κt)). (13)

The equation of the second model is as follows:

d[NO]
dt

� ν1(1 − exp(−k1t)) exp(−k2t) − Vmax[NO]
Km + [NO]

whose approximate analytic solution for zero initial condition is
(Mehala and Rajendran, 2014) as follows:

[NO](t) � ν1(−exp(−k2t)k2 − κ
+ −exp( − (k1 + k2)t)

k1 + k2 − κ

+ exp(−κt)( 1
k2 − κ

− 1
k1 + k2 − κ

)). (14)

Here, [NO] is the concentration of NO, ν1 is the constant rate
of NOS, Vmax is the maximum rate at saturating concentration of
NO, Km is the concentration of NO at which the reaction rate is
Vmax
2 , k1 and k2 are constant kinetic parameters, and κ � Vmax/Km.

The values in Table 1 were chosen such that the numerical
solutions to the above differential equations for [NO] and the
corresponding approximate analytic solutions agree (Mehala and
Rajendran, 2014). Figures 3A,B show plots of the NO
concentrations given by Eqs 13, 14, respectively, while Figures
3C,D show two proposed profiles for the variable order
α(t) ∈ (0, 1) which are obtained by simply multiplying the
NO concentrations shown in Figures 3A,B by a factor of 102.
The scaling factor was chosen as follows. As seen in Figures 3A,B,
the maximum concentrations of NO are in the low picomolar
rage, while physiological values are in the low nanomolar range
(Hall and Garthwaite, 2006). A mere multiplication of the NO
concentrations by 102 brings the maximum values within the
physiological range for the NO concentrations. Since these scaled
concentrations are still less than 1 nM , they can be used as
expressions for α(t). Another advantage of this scaling factor is
that significant differences are observed between the
displacements and the shear stresses at the blood-vessel
interface corresponding to the two profiles of α(t) shown in
Figures 3C,D (see later).

The aim of the study is to find a semi-analytic solution to the
initial-boundary value problem (10–12) for two variable orders
given by scaled Eqs 13, 14. The first step is to formulate a
corresponding non-dimensional problem. By introducing the
dimensionless quantities:

�r � r − a
h

, �t � t
T
, �ξ � ξ

ξ0
,

TABLE 1 | List of parameters with corresponding values and units. Due to a lack of experimental data, the value of T was fixed first, and then, the values of f and g were
chosen such that a semi-analytic solution could be found for the initial boundary value problem Eqs 15–17. The normalized value of the wall’s density was chosen for
mathematical simplicity.

Considerations Parameters Values
and units [reference]

Geometry and Viscoelasticity ρ 1 Kg/m3

ω 1Hz [Hodis and Zamir, 2008]
f 0.1 s−2

g 0.5 s−α

T 10 s
NO synthesis and inactivation (Hall and Garthwaite, 2006; Mehala and Rajendran, 2014) v1 1 nM/s

k1 2 s−1

k2 1.5 s−1

Vmax 2 × 103nM/s
Km 10 nM
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the initial-boundary value problem (10–12) transforms into the
following dimensionless form:

z2�ξ

z�t2
+ gTα(�t)z2−α(�t)�t

�ξ � f T2z
2�ξ

z�r2
, (�r, �t) ∈ (0, 1)2, (15)

�ξ(�r, 0) � 0,
z�ξ

z�t
(�r, 0) � ωT, (16)

�ξ(0, �t) � sin(ωT�t), �ξ(1, �t) � 0. (17)

In Eq. 15, f � E/(ρh2). The solution for problem (15–17) is
presented in the next section.

SEMI-ANALYTIC SOLUTION

A classic approach of solving initial-boundary value problems for
partial differential equations is used. Look for a solution to
problem (15–17) of the form:

�ξ(�r, �t) � V(�r, �t) +W(�r, �t), (18)

such that V(0, �t) � �ξ(0, �t) � sin(ωT�t),V(1, �t) � �ξ(1, �t) � 0 and
z2V
z�r2 � 0. It is straightforward to solve for V(�r, �t) and find that:

V(�r, �t) � (1 − �r) sin(ωT�t). (19)

Combining Eqs 18, 19 yields:

�ξ(�r, �t) � (1 − �r) sin(ωT�t) +W(�r, �t). (20)

By substituting Eq. 20 in problem (15–17), the following
initial-boundary value problem for W(�r, �t) is obtained:

z2W

z�t2
+ gTα(�t)z2−α(�t)�t W � f T2z

2W
z�r2

+ (1 − �r)[(ωT)2 sin(ωT�t)
− gTα(�t)z2−α(�t)�t (sin(ωT�t))],

(21)

W(�r, 0) � 0,
zW
z�t

(�r, 0) � ωT�r, (22)

W(0, �t) � 0,W(1, �t) � 0. (23)

The first step in solving problem (21–23) is to look for a
solution to the corresponding homogeneous equation:

z2W

z�t2
+ gTα(�t)z2−α(�t)�t W � f T2z

2W
z�r2

. (24)

The method of separation of variables suggests looking for a
solution of the form W(�r, �t) � F(�t)G(�r). Then, Eq. 24 and the
boundary conditions (Eq. 23) yield the following Sturm-Liouville
problem for G(�r):

f T2d
2G
d�r2

− λG � 0, G(0) � G(1) � 0 (25)

Thus, the eigenfunctions satisfying problem (25) are Gn(�r) �
sin(nπ�r), n ∈ 1, 2, 3 . . . ,}{ and the corresponding eigenvalues are
λn � −(nπT)2f , n ∈ 1, 2, 3 . . .}{ . The solution to problem (21,
22) is thus of the form:

W(�r, �t) � ∑∞
n�1

An(�t) sin(nπ�r). (26)

FIGURE 3 | Plots of NO concentrations versus the dimensionless time �t for (A) the dynamic synthesis of NO (Eq. 14) and (B) the stepwise synthesis of NO (Eq. 13).
The proposed shapes for the variable order α(t) corresponding to the two cases of NOS (A) and (B) are shown in plots (C) and (D), respectively.
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Substituting Eq. 26 in problem (21, 22) and using the half-
range Fourier sine series expansions of the functions 1 − �r and �r
yield the following initial value problem
for An(�t), n ∈ 1, 2, 3 . . .}{ :

d2An

d�t2
+ gTα(�t)z2−α(�t)�t An � −f (nπT)2An + 2

nπ
[(ωT)2 sin(ωT�t)

− gTα(�t)z2−α(�t)�t (sin(ωT�t))],
(27)

An(0) � 0,
dAn

d�t
(0) � 2ωT

(−1)n+1
nπ

. (28)

Let

Zn(�t) � An(�t) + 2
nπ

sin(ωT�t), n ∈ {1, 2, 3 . . .}. (29)

By replacing expression (29) in problem (27, 28), the following
problem for the unknown function Zn(�t), n ∈ 1, 2, 3 . . .}{ is
obtained:

d2Zn

d�t2
+ Bz

2−α(�t)
�t Zn + CnZn � Dn sin(ωT�t), (30)

Zn(0) � 0,
dZn

d�t
(0) � Fn, (31)

where B � gTα(�t),Cn � (nπT)2f ,Dn � 2nπT2f , and
Fn � 2ωT (−1)n+1+1

nπ . Once the solution to the initial value
problem (30, 31) is found, Eqs 20, 26, and 29 can be
combined to find the solution to the original problem (15–17):

�ξ(�r, �t) � (1 − �r) sin(ωT�t) +∑∞
n�1

[Zn(�t)
− 2
nπ

sin(ωT�t)] sin(nπ�r), (32)

Thus, the last step is finding a solution to problem (30, 31).
If the fractional order is a constant α ∈ (0, 1), then a closed-
form solution of problem (30, 31) can be obtained by using
either the Laplace transform method (Gorenflo et al., 2014) or
an operational method proposed by Luchko and Garenflo
(1999) (it is worth noticing here that the Laplace transform
method belongs to the class of operational methods). Not only
that this analytic solution is cumbersome and difficult to
implement in a computer program but also may not be
generalizable to the case of variable fractional order.
Therefore, looking for a numerical solution to problem
(Eqs 30, 31) is a better approach. Eq. 30 is a linear multi-
term fractional differential equation which for a constant
fractional order α ∈ (0, 1), can be solved numerically using
the elegant explicit, implicit, and predictor-corrector methods
involving product-integration rules proposed by Garrappa
(2018). For the variable-order fractional differential Eq. 30,
the finite difference schemes given by Moghaddam and
Machado (2017) can be used. Thus, in this study, the
second-order derivative of Eq. 20 will be approximated by a
center difference scheme, and the variable-order fractional
derivative will be approximated by the forward difference

scheme proposed in theorem 3.1 of Moghaddam and
Machado (2017). For the sake of completeness, the
numerical discretization of Eq. 30 is presented further.

Let 0 � t0 < t1 < . . . < tN � 1 be an equally spaced
discretization of the interval [0, 1] of constant step size
Δ�t � 1/N . Denoting by Zk

n � Zn(tk), k ∈ 0, 1, . . . ,N , n fixed}{ ,
and αk � α(tk), k ∈ 0, 1, . . . ,N}{ , the numerical
approximations of the derivatives in Eq. 30 can be written as:

d2Zn

d�t2
(�tk+1) ≈ Zk+2

n − 2Zk+1
n + Zk

n

Δ�t2
, (33)

z
2−α(�tk+1)
�t Zn(�tk+1) ≈ Δ�t−2+αk+1

Γ(1 + αk+1) ∑
k

j�0
ψ2,k,j(Zk−j+2

n − 2Zk−j+1
n + Zk−j

n ),
(34)

where ψ2,k,j � (j + 1)αk+1 − jα
k+1

(Moghaddam and Machado,
2017). The truncation error of scheme Eq. 33 is of order
O(Δ�t2), while for scheme Eq. 34, it is of order O(Δ�t). By
replacing approximations Eqs 33, 34 in problem (30, 31), the
following explicit scheme is obtained:

Z0
n � 0,Z1

n � FnΔ�t

Zk+2
n − 2Zk+1

n + Zk
n + B

Δ�tαk+1

Γ(1 + αk+1) ∑
k

j�0
ψ2,k,j(Zk−j+2

n − 2Zk−j+1
n

+ Zk−j
n ) + CnΔ�t2Zk+1

n

� DnΔ�t2 sin(ωT�tk+1), k ∈ {0, 1, . . . ,N − 2}.
(35)

The semi-analytic solution to problem (15–17) is then
obtained by replacing the discrete solution (35) for
n ∈ 1, 2, . . . .}{ in Eq. 32.

The shear stress distribution within the vessel’s wall is
obtained from the dimensionless form of Eq. 2 by integration
(Hodis and Zamir, 2008):

�σrx(�r, �t) � 1

f T2 ∫�r

0

z2�ξ(~r, �t)
z�t2

d~r + �σrx(0, �t), (36)

where the following non-dimensionalization was used for the
shear stress: �σrx(�r, �t) � σrx(r, t)/(Eξ0h ). By replacing Eq. 32 in Eq.
36, the following expression for the shear stress at the blood-
vessel interface is obtained:

τw ≡ �σrx(0, �t) � ∑∞
n�1

−1
nπf T2 [d

2Zn(�t)
d�t2

− 2ω2T2

nπ
sin(ωT�t)] (37)

RESULTS

Numerical scheme Eq. 35 was implemented in MATLAB, and
plots of the distributions of dimensionless displacements within
the vessel’s wall (Eq. 32) and the dimensionless shear stress at the
blood-vessel interface (Eq. 37) were generated for two
expressions of the variable fractional order: the stepwise NOS
and the dynamic NOS. The values of the parameters used in the
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numerical simulations are given in Table 1. Numerical
simulations used a step size Δ�t � 0.00025 and 20 terms of the
Fourier series in Eq. 32.

Figure 4 shows temporal profiles of the dimensionless axial
displacement �ξ(�r, �t) at various radial locations inside the
vascular wall and for constant fractional orders. These
plots were generated using MATLAB’s function

MT_FDE_PI12_PC developed by Garrappa which is an
implementation of the predictor-corrector scheme proposed
by Garrappa (2018). The same results are obtained with the
forward scheme Eq. 35 when α is constant. This agreement of
numerical solutions validates scheme Eq. 35. The plots of
Figure 4 show that while the amplitudes of the oscillations are
approaching zero as �r→ 1 for all values of α, the decaying in

FIGURE 4 | Plots of the dimensionless axial displacement �ξ versus the dimensionless time �t at various dimensionless radial locations �r within the vascular wall
(A) r―�0, (B) r―�0.09, (C) r―�0.24, (D) r―�0.49, (E) r―�0.74, and (F) r―�−0.94 and for various constant values of α ∈ (0, 1).

FIGURE 5 | Spatio-temporal variations of the dimensionless axial
displacement �ξ(�r, �t) for the variable fractional order α(t) corresponding to the
case of dynamic NOS.

FIGURE 6 | Spatio-temporal variations of the dimensionless axial
displacement �ξ(�r, �t) for the variable fractional order α(t) corresponding to the
case of stepwise NOS.
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amplitude decreases faster as α increases. The solutions for
constant fractional orders provide a first glimpse into the
shapes of the displacements for variable fractional orders
since these are expected to be a combination of the
behaviors of the solutions for constant α.

Figures 5, 6 show spatio-temporal variations of the
dimensionless axial displacement �ξ(�r, �t) for the variable
fractional order α(t) corresponding to the case of decaying
dynamic NOS (Figure 5) and to the case of stepwise NOS
(Figure 6). The amplitude of the oscillations appears to be
bigger in the dynamic NOS case than in the stepwise NOS
case. This is confirmed in Figure 7 which shows temporal
profiles of the dimensionless axial displacement at various
radial locations inside the vascular wall which was extracted
from the surfaces presented in Figures 5, 6. Since the results
in Figure 7 resemble those in Figure 4, it can be concluded that
the solutions for variable fractional orders are plausible.
According to Figures 3C,D, the maximum value of α(t) for
the case of dynamic NOS is 0.15 which is smaller than the almost
constant value of 0.5 that α(t) in the case of stepwise NOS. The
results in Figure 7 confirmed what was already known from
Figure 4, namely that the amplitude of oscillations corresponding
to the higher values of α(t) is smaller than the one corresponding
to lower values of α(t).

To better understand the differences noticed between the
oscillatory patterns corresponding to the two cases of stepwise
NOS and dynamic NOS, the dimensionless shear stress at the
blood-vessel interface was calculated using Eq. 37 and
MATLAB’s built-in function gradient. The results of this
comparison are shown in Figure 8. The amplitude of the
shear stress is bigger in the case of dynamic NOS which was
expected given that the amplitude of the axial displacement is also
bigger in this case. By varying the scaling factor of order α(t)
corresponding to the case of stepwise neuronal NOS, the

FIGURE 7 | Plots of the dimensionless axial displacement �ξ versus the dimensionless time �t at various dimensionless radial locations �r within the vascular wall
(A) r―�0.09, (B) r―�0.24, (C) r―�0.49, and (D) r―�0.74 for the variable fractional order α(t) corresponding to the case of dynamic NOS (solid line) and to the case of
stepwise NOS (dashed line).

FIGURE 8 | Plots of the dimensionless shear stress at the bloodvessel
interface τw versus the dimensionless time �t for the variable fractional order
α(t) corresponding to the case of dynamic NOS (solid line) and to the case of
stepwise NOS (dashed line).
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difference between the shear stresses at the inner boundary of the
vessel wall corresponding to the two cases 1) vanishes when the
fractional order of the stepwise neuronal NOS gets smaller and 2)
is almost unchanged when the fractional order of the stepwise
neuronal NOS approaches 1. The possible implications of this
finding will be discussed in the next section.

DISCUSSION

The main contribution of this study is modeling the wall of a
cerebral blood vessel using an NO-modulated variable-order
fractional Maxwell viscoelastic model. The variable fractional
order is assumed to be proportional to the neuronal NO
dynamics, and thus, the order memory introduced by this
choice guides the pattern of the fading memory of this
viscoelastic material. Two cases of NOS are considered: a
stepwise activation of NO and a dynamic activation of NO.
Following the approach of Hodis and Zamir (2008), a
variable-order fractional telegraph equation for the axial
displacement of the wall was obtained which was solved under
the assumptions that the outer boundary of the vascular wall was
tethered, and the inner boundary of the wall was exposed to the
pulsatile blood flow. Numerical simulations were created in
MATLAB using numerical scheme (Eq. 35) and Garrappa’s
function MT_FDE_PI12_PC (Garrappa, 2018) for constant
fractional orders. The function MT_FDE_PI12_PC was used
to validate scheme (Eq. 35) in the case of constant fractional
orders. The main finding of these simulations is that a
significantly decreased inactivation of the neuronal NO causes
a reduction in the shear stress at the blood-vessel interface which
could lead to a decrease in the production of shear-induced
endothelial NO and ultimately to neurovascular disease.

Testing the computer code for various values of the parameters
f , g , and T which are present in the coefficients of Eq. 15 showed
that both approaches, scheme (Eq. 35) and MT_FDE_PI12_PC,
were sensitive to these parameters for variable and constant
fractional orders. These numerical schemes are stable only for
narrow ranges of f , g , and T. These parameters couple
mechanical parameters E, μα, wall thickness h, and the
characteristic time T. Thus, if these narrow ranges of f , g , and
T are subsets of their corresponding physiological ranges, this
stability issue could be disregarded. However, for
E � 6 × 105N/m2, μα � 1.5 × 105Kg/(m × s2−α) derived from
Hodis and Zamir (2008) for arteries and (α � 1), a wall
thickness h � 10−3 m measured in human intracranial arteries
in vivo (Yuan et al., 2021), and a more accurate value of the wall
density ρ ≈ 1.1 × 103Kgm3 (IT’IS Foundation, 2021), the following
values are obtained: f � 5.45 × 108 s−2 and g � 4 s−α. These
values, together with the chosen T � 10 s, make Eq. 15 stiff
since the order of magnitude of the coefficient of the right-
hand side term is much bigger than the magnitudes of the
coefficients of the left-hand-side terms. For a smaller wall
thickness which is more appropriate for an intracerebral
arteriole which experiences NO-modulated vasodilation, the
order of magnitude of the coefficient of the right-hand-side
term of Eq. 15 becomes even bigger. The proposed numerical

schemes are unstable for a stiff Eq. 15, and a mere decrease of the
step size Δ�t does not resolve this issue. Finding algorithms for stiff
variable-order fractional differential equations is an open
problem in numerical analysis. Nevertheless, for a
characteristic time T of order of ms which may be more
suitable for NO dynamics in vivo (Hall and Garthwaite, 2006),
a possibly lower value of E corresponding to cerebral arterioles
(Medical Physiology, 2021), and a more realistic value of the wall
density, the numerical stiffness can be avoided, and thus, the
presented results will hold.

Emerging imaging techniques could help validate the
proposed model in animal models and thus make the model
relevant to clinical applications. For instance, a multimodal in
vivo magnetic resonance (MR)/electron paramagnetic resonance
(EPR) spectroscopy/fluorometry could be used to visualize NO
production and spatio-temporal distribution (Sharma et al.,
2014). Also, intravascular optical coherence tomography could
be used for the in vivo real-time estimation of the vascular
stiffness (Potlov et al., 2020). By combining these imaging
techniques and the high-resolution ultrasonic scanning of
Persson et al. (2003) and Cinthio et al. (2006) for the
visualization of wall’s longitudinal displacements, the cerebral
NO dynamics and vascular wall mechanics may be investigated
simultaneously. This approach can be used to estimate α(t), f , g ,
and T and validate the mathematical model proposed here. If a
significant decrease in the neuronal NO inactivation is observed,
then the model’s prediction could suggest the use of a preventive
therapy [such as NO inhalation proposed by Terpolilli et al.
(2016)] to reduce imminent brain damage.

Until the above-mentioned imaging techniques are adapted and
approved for clinical applications, animal models can be used to find
healthy physiological ranges for the model’s parameters and
investigate the potential of using these parameters as biomarkers.
For example, animal models of cerebral ischemia have shown that
the decreasing amount of endothelial NO will act as a protective
agent for a few minutes after the injury, while the amount of
neuronal NO will increase causing neuronal injury (Huang, 1999;
Wei et al., 1999). If the production of shear-induced endothelial NO
mediated by the blood flow ceases to happen following ischemia,
then the stepwise concentration of neuronal NO is a consequence of
the significantly decreased NO inactivation caused by ischemia
(Santos et al., 2011) and thus, according to the prediction made
by the proposed model, may contribute to the reduction of the
localized endothelial NO produced by the lower shear stress in the
vessel wall at its inner boundary. Thus, the model’s prediction may
explain the interplay between the endothelial and neuronal NO seen
in cerebral ischemia. Lastly, model’s parameters estimated using the
multimodal in vivo imaging techniques mentioned above could
suggest the presence of cerebral ischemia and thus be used as a
complementary diagnostic tool.

Improving the mathematical model may provide more
sensitive biomarkers and helps avoiding the numerical stiffness
issue mentioned earlier. According to Iadecola (2004), the NO-
modulated local vasodilation of the intracerebral arterioles and
capillaries propagates upstream in the vascular network which
causes an increase of blood flow in the upstream arteries that
leads to increased shear stress at the blood-vessel interface and
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thus an increase in the amount of shear-induced endothelial NO
and a further flow-mediated vasodilation. The proposed model
represents the blood flow as an inner boundary condition, and
thus, this mechanism of global production of shear-induced
endothelial NO is not accounted for. Thus, the decrease in the
local production of the shear-induced endothelial NO due to a
stepwise neuronal NOS predicted by the model proposed in this
study might not be significant enough to cause adverse effects if
the cerebral blood flow is intact. Coupling the deformation of the
vessel’s wall and the blood flow and incorporating in the model
the mechanism described above should provide a better
prediction of the amount of shear-induced endothelial NO
and the possible role that the neuronal NO dynamics may
play in this process. Introducing more detailed information
about the complex, multi-layered structure of the vascular wall
could also enhance the accuracy of model’s predictions. Lastly,
the full three-dimensional fluid-structure interaction problem
should be formulated and solved since the simplifying
assumptions made by Hodis and Zamir (2008) and
implemented here that reduced the model to a one-
dimensional problem might not be valid for cerebral arterioles
given the overly complex geometry of the cerebral vascular
network (Reina-De La Torre et al., 1998). The parameters of
this enhanced mathematical model could be found either from
in vitro/in situ measurements or from in vivo, real-time
observations using medical imaging techniques.

In conclusion, the study proposes a novel NO-modulated
variable-order fractional Maxwell viscoelastic model of the
cerebral arterioles and investigates the effects of the neuronal
NOS on the mechanical behavior of the vessel’s wall. Numerical
simulations show how neuronal NO dynamics influence the
deformation and shear stress within the vascular wall. A
generalization of this model to a three-dimensional geometry
and the incorporation of the blood flow into the model should
provide a better understanding of the coupling between NO
dynamics and mechanical damage and their combined role in
neurovascular diseases.
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Subject-Specific Head Model
Generation by Mesh Morphing: A
Personalization Framework and Its
Applications
Xiaogai Li*

Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology,
Stockholm, Sweden

Finite element (FE) head models have become powerful tools in many fields within
neuroscience, especially for studying the biomechanics of traumatic brain injury (TBI).
Subject-specific head models accounting for geometric variations among subjects are
needed for more reliable predictions. However, the generation of such models suitable for
studying TBIs remains a significant challenge and has been a bottleneck hindering
personalized simulations. This study presents a personalization framework for
generating subject-specific models across the lifespan and for pathological brains with
significant anatomical changes by morphing a baseline model. The framework consists of
hierarchical multiple feature and multimodality imaging registrations, mesh morphing, and
mesh grouping, which is shown to be efficient with a heterogeneous dataset including a
newborn, 1-year-old (1Y), 2Y, adult, 92Y, and a hydrocephalus brain. The generated
models of the six subjects show competitive personalization accuracy, demonstrating the
capacity of the framework for generating subject-specific models with significant
anatomical differences. The family of the generated head models allows studying age-
dependent and groupwise brain injury mechanisms. The framework for efficient generation
of subject-specific FE head models helps to facilitate personalized simulations in many
fields of neuroscience.

Keywords: finite element modeling, personalized simulation, traumatic brain injury, brain stimulation, neuroimage
registration, biomechanics

INTRODUCTION

Finite element (FE) head models have become powerful tools to simulate brain stimulations with
direct current (tDCS) (Datta et al., 2009; Datta et al., 2012; Huang et al., 2013; Windhoff et al., 2013;
Opitz et al., 2015; Alekseichuk et al., 2019; Li et al., 2020; Wang et al., 2020), magnetic (TMS) (Opitz
et al., 2013), and ultrasound (TUS) (Legon et al., 2014). Such models are also being used to study the
development of neurodegenerative diseases (Fornari et al., 2019; Noël and Kuhl, 2019;Weickenmeier
et al., 2019) and biomechanical consequences of neurosurgery (Weickenmeier et al., 2017; von Holst
and Li, 2014; Li et al., 2015; Ji et al., 2009; Hu et al., 2007; Miller et al., 2010). In particular, FE head
models have been tremendously used to study traumatic brain injuries (TBIs) in the last decades (see
reviews (Giudice et al., 2019; Horstemeyer et al., 2019; Madhukar and Ostoja-Starzewski, 2019)).
Meshing is a first step in generating FE models by discretizing a continuous domain into a finite
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number of elements, e.g., tetrahedral or hexahedral elements.
Generation of FE head models is often time-consuming and
challenging due to its complex geometry, though tetrahedral
elements are relatively easier to generate, e.g., automatic
pipelines have been reported to efficiently generate tetrahedral
head models for simulating brain stimulations (Huang et al.,
2013; Windhoff et al., 2013). Such efficiency is partially attributed
to the well-developed automatic tetrahedral meshing algorithms
within mathematics and computer science (Baker, 2005); it is also
because the involved partial differential equations (PDEs) are less
computationally demanding, permitting a huge number of
tetrahedral elements (up to >10 million (Datta et al., 2009)) to
capture anatomical details of the brain. Thus, personalized
simulations with anatomically detailed subject-specific head
models are largely facilitated in these brain stimulation fields.

In contrast to tetrahedrons, hexahedral elements are much
more challenging to generate (Baker, 2005; Shepherd and
Johnson, 2008) but are preferred in FE head models intended
for studying TBIs (hereafter called head injury models) due to
their higher efficiency for simulating the incompressible brain
under impact (Li et al., 2021). Furthermore, the involved PDEs in
head impacts consist of geometrical, material nonlinearity, and
complex contacting algorithms, which are more computationally
demanding. As a result, many state-of-the-art head injury models
(Zhang et al., 2001; Horgan and Gilchrist, 2003; Kleiven, 2007;
Takhounts et al., 2008; Mao et al., 2013a; Sahoo et al., 2014; Ji
et al., 2015a; Atsumi et al., 2016) use hexahedrons despite the
meshing challenges and have simplified brains to reduce the
number of elements for computational efficiency. For example,
these models have smoothed out brain surfaces and do not have
sulci, and gyri, resulting in fewer elements (often <1 million).
While a simplified representation of the brain is a reasonable
trade-off for computational efficiency, it’s also partially due to the
challenges for meshing techniques (e.g., the blocking technique
(Mao et al., 2013b)) to capture the anatomical details. It is worth
mentioning that the voxel approach is efficient in generating
hexahedrons by converting image voxels to hexahedral elements,
either directly or with smoothing algorithms. However, a known
concern is a less accurate peak strain/stress predicted from such
models, especially on the surfaces due to jaggedness.
Nevertheless, careful choice of sufficiently refined mesh and
result analysis allow such models to provide valuable insights
due to their anatomical accuracy (see discussion in (Li et al.,
2021)). Besides the much less developed automatic algorithms for
generating hexahedrons (Baker, 2005; Shepherd and Johnson,
2008), a necessity to include falx and tentorium to account for
their important structural influence on brain mechanical
responses during impact (Ho et al., 2017) poses an additional
challenge for subject-specific head injury model generation while
both structures are often neglected in head models for simulating
tDCS, TMS, and TUS. A detailed analysis of the current meshing
challenge for head injury models is found in a previous study (Li
et al., 2021).

Therefore, the generation of FE head injury models with
anatomical details remains a challenge and has become a
bottleneck hindering personalized simulations. FE head models
without anatomical details such as sulci and gyri also hinder

studying detailed mechanisms at areas of interest, such as chronic
traumatic encephalopathy (CTE) with pathologies observed at
sulcal depth (McKee et al., 2015). Studies have also shown that the
brain size/shape influences brain mechanical responses
significantly under impact (Kleiven and von Holst, 2002; Li
et al., 2021), suggesting the importance of using personalized
models to study the onset of TBI in real life. Along with the many
existing adult healthy FE head models, there are only a few
elderly, children, and infant models (e.g., (Li et al., 2011;
Giordano et al., 2017; Li et al., 2017; Li and Kleiven, 2018;
Hajiaghamemar et al., 2019; Li et al., 2019; Zhou et al., 2019;
Zhou et al., 2020)). TBIs are influencing all age groups, especially
infants and the elderly are overrepresented (Pedersen et al., 2015).
Thus, it is imperative to investigate efficient approaches for
generating detailed subject-specific head injury models across
the lifespan and for pathological brains to understand the injury
mechanisms and develop preventions.

This study addresses the challenge of generating subject-
specific head injury models with hexahedrons, especially
concerns about mesh morphing, which is an efficient approach
for generating subject-specific models. The approach has been
used in many biomechanics fields on different organs (Couteau
et al., 2000; Castellano-Smith et al., 2001; Fernandez et al., 2004;
Sigal et al., 2008; Bucki et al., 2010; Bijar et al., 2016; Park et al.,
2017), full-body models (Davis et al., 2016; Beillas and Berthet,
2017; Liu et al., 2020), as well as for detailed (Giudice et al., 2020;
Giudice et al., 2021; Li et al., 2021; Montanino et al., 2021) and
simplified brain models (Hu et al., 2007; Ji et al., 2011; Ji et al.,
2015b; Wu et al., 2019). A typical procedure involves image
registration (rigid or affine and followed by nonlinear
registrations), from which a displacement field representing
the geometrical difference between the subject and baseline
model is obtained. The displacement field is then applied to
morph the baseline model, resulting in a personalized model with
updated nodal coordinates while preserving element connections.
The displacement field derived from image registrations should
generally comply with continuum mechanics conditions on
motion, requiring diffeomorphic, non-folding, and one-to-one
correspondence to avoid excessive element distortions (Bucki
et al., 2010).

In particular, deformable image registration-based mesh
morphing has been applied to personalize detailed brain
models of healthy subjects (Giudice et al., 2020; Giudice et al.,
2021; Li et al., 2021; Montanino et al., 2021). However, despite
intensive efforts, inter-subject registration between brains with
significant anatomical differences is still challenging within
neuroimaging field with limited registration accuracy (Kim
et al., 2015). Moreover, when applying image registration for
mesh morphing, there is a higher requirement on the smoothness
of the obtained displacement field to ensure acceptable element
quality in the morphed mesh. Therefore, one major challenge for
using mesh morphing to generate subject-specific FE head
models is how to design an image registration pipeline that
leads to high registration accuracy, meanwhile, not causes
excessive element distortions. In a previous study (Li et al.,
2021), we proposed a hierarchical image registration pipeline
that allows efficient generation of subject-specific headmodels for
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healthy adult subjects. But a pipeline that allows morphing a
baseline model to subjects with significant anatomical differences
is yet to be developed.

Thus, this study aims at developing a personalization
framework capable of generating subject-specific head models
across the lifespan and for pathological brains with significant
anatomical changes. The framework consists of hierarchical
multiple feature and multimodality image registration pipelines,
mesh morphing, and mesh grouping. Six subject-specific head
models are generated to demonstrate its capacity, including a
newborn, 1Y, 2Y, adult, 92Y, and a hydrocephalus brain. The
results show that the framework is robust to generate subject-
specific models across the lifespan and for pathological brains with
significant anatomical changes by morphing a baseline model. This
framework helps to facilitate personalized simulations in many fields
within neurosciences, especially for studying TBIs in which
personalized simulations are hindered due to the meshing challenge.

MATERIALS AND METHODS

Subjects
Images of the six subjects (Figures 1A–F) are acquired from
previously published open-access datasets, except the
hydrocephalus brain is from the author’s previous study. The
baseline ICBM image (Figure 1G) corresponds to the baseline
head model. For detailed preprocessing steps for these images, the
readers are referred to the original studies. A brief description is
found below and summarized in Table 1.

• Images of a newborn (denoted as 0Y afterward), 1Y, and
2Y are obtained from the UNC Infant 0-1-2 atlases

(Shi et al., 2011) constructed based on 95 subjects with
complete 0-1-2Y longitudinal scans of T1W and T2W
images acquired with a 3T MRI scanner. Each atlas
consists of T1W images, tissue probability maps, and
anatomical parcellation maps.

• Image of a single subject from the WU-Minn HCP database
in the 26–30 age group, including T1W and T2W images, was
acquired with a 3T MRI scanner (Van Essen et al., 2013).

• Image of an elderly (92Y) from the Brain Imaging of Normal
Subjects (BRAINS) atlas was created from 48 healthy elderly
subjects within age group 9193Y as detailed by Dickie et al.
(2016). The atlas contains T1W and tissue probability maps.

• Image of a hydrocephalus subject with a mass lesion at the
brain stem front is reused from a previous study (Li and von
Holst, 2013).

• The 1-mm isotropic ICBM 2009c Nonlinear Symmetric
template (Fonov et al., 2009; Fonov et al., 2011) was
constructed based on T1W images from 152 subjects
between 18.5–43.5Y acquired on a 1.5 T MRI scanner.

Baseline FE Head Model
A previously developed FE head injury model (the ADAPT
model) (Li et al., 2021) serves as a baseline in this study,
which is morphed to obtain subject-specific head models. The
ADAPT model has been generated based on and has the same
geometry as the ICBM template. The model includes the brain,
skull, meninges, CSF, and superior sagittal sinus (SSS) (Figure 2).
The brain is divided into primary structures of cerebral gray
matter (GM) (i.e., cerebral cortex), cerebral white matter (WM),
corpus callosum (CC), brain stem (BS), cerebellum GM andWM,
thalamus, and hippocampus. The cerebrum is further divided
into frontal, frontal, parietal, temporal, and occipital lobes; CSF is

FIGURE 1 | Image data used in this study. Axial, coronal, and sagittal views of (A) 40-week-old newborn, (B) 1-year-old, (C) 2-year-old, (D) an adult, (E) an elderly
of 92-year-old, (F) hydrocephalus brain, and (G) the ICBM baseline (the same length scale applies).
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divided into outer CSF and ventricular system including lateral
ventricles and 3rd and 4th ventricles connected by the cerebral
aqueduct. Continuous mesh is used between brain components
throughout the model. The total number of elements in the head
model is 4.4 million hexahedral and 0.54 million quad elements.
The minimum Jacobian in the brain is 0.45. The brain is modeled
as hyper-viscoelastic material to account for large deformations
and strain rate dependence of the tissue. Pia, dura/falx/tentorium
are modeled with nonlinear hyperelastic material using simplified
rubber/foam based on the average stressstrain experimental data
(van Noort et al., 1981; Aimedieu and Grebe, 2004). The model
has been validated against experimental data of close to or injury
level brainskull relative motion, brain strain, and intracranial
pressure. Details of the model development, validation, and
capacity to study brain responses under impact are presented
earlier (Li et al., 2021).

Personalization Framework for
Subject-specific Head Model Generation
The personalization framework consists of image registration
pipelines, mesh morphing, and mesh grouping (Figure 3). Image
registration is an essential part of the framework. A complete
registration pipeline involves hierarchical registrations with
multiple features and multimodality images shown at the
lower row of Figure 3. The sum of dense displacement fields

obtained from each registration step is used to morph the baseline
headmodel to obtain subject-specificmodels. Afterward, theWM
of the morphed brain is regrouped according to the segmented
WM image mask of the subject, resulting in the final subject-
specific model. Details of each component of the framework are
presented in the following subsections.

Registration Pipeline With Multiple Features and
Multimodality Imaging
A complete registration pipeline contains five steps (Figure 3
lower row). First, Demons registration is performed between the
segmented cranial masks of the baseline ICBM (corresponding to
the baseline ADAPT head model) and the subject after being
rigidly aligned, resulting in a transformation, i.e., dense
displacement field gdemo. Second, Demons registration of
features is performed, obtaining gf1, gf2 . . .. Third, Dramms
registration is performed on T1W images inherited from
Demons steps, obtaining gdram. Next, Dramms registration is
performed with multimodality images, obtaining gm1,gm2 . . ..
Finally, brain lesions are handled by more Demons feature
registration steps, obtaining gfn . . .. In all registration steps,
the subject’s image serves as moving image, and the baseline
ICBM image serves as fixed image. Note that features in this study
refer to the segmented binary images of anatomical regions such
as lateral ventricles, corpus callosum, or lesion. The input images
to Demons registration steps are segmented binary masks. Thus,

TABLE 1 | Subjects involved in this study.

Subject ICV (ml) Imaging modality used
for registration

Image sources

0-year-olda 463 T1W (atlas) Shi et al. (2011)

1-year-old 1,015

2-year-old 1,274

adult 1,480 T1W, T2W (single subject in age group “26–30”) Van Essen et al. (2013)

92-year-oldb 1,323 T1W (atlas) Dickie et al. (2016)

Hydrocephalus 1,255 T1W (single subject) Li and von Holst, (2013)

ICBM baseline 1,885 T1W, T2W (atlas) (Fonov et al., 2009; Fonov et al., 2011)

aThe cerebellum in the T1W atlas was stripped in the original database. The available T2W atlas has a cerebellum but is not chosen in this study as per the requirement of the pipeline.
bAtlas of age group 91-93Y denoted as 92Ys throughout this study for simplicity.

FIGURE 2 | The baseline ADAPT head model with major components illustrated. The meshes are not shown for a better illustration.
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these steps capture local anatomical changes between the moving
and fixed images only in size and shape, while subsequent
Dramms registrations capture the internal anatomical
differences within the volumes of the binary image masks. The
practical usage of the registration pipeline is demonstrated in
Application of the Framework for Subject-specific Model
Generation with six subjects.

In particular, for all Demons steps described above, the
diffeomorphic Demons registration algorithm (Vercauteren
et al., 2009) implemented in the open-source software Slicer
3D is used. Dramms registration algorithm (Ou et al., 2011)
implemented as open-source code by the authors (Dramms
version 1.5.1, 2018) is used on MRI images of different
modalities. Note that for all the six subjects, a smoothness
weight, i.e., the -g option (see DRAMMS Software Manual), is
always set to 1.0 in Dramms registration to ensure a smooth
displacement field.

Morphing
The sum of dense displacement fields from all registration steps
(Eq. 1) represents the anatomical differences between the subject
and the baseline ICBM images.

gsubj � gdemo + gf1 + gf2 . . . + gdram . . . + gm1 + gm2 . . . + gfn.

(1)

As the baseline, ADAPT model is in the same space as the
ICBM image; thus, applying gsubj to the baseline head model
(Figure 2) leads to a subject-specific head model of the subject.
For this, the following step is performed to morph the nodes of
the baseline head model to new positions:

xi � Xi + ui, (2)

where Xi is the nodal coordinate of node i, ui is the linearly
interpolated displacement vector at node n from gsubj, xi is the
updated nodal coordinate, together with the same element
definitions as the baseline, forming a subject-specific head model.

Grouping of WM
To capture the subject’s WM, the morphed brain elements
are regrouped based on the segmented binary image of the
subject’s cerebral WM. This is achieved by assigning
brain FE elements as WM based on Cartesian
coordinates of the segmented WM voxels with the
following procedures:

- For each element, all WM voxels inside or intersect to a single
element of the brain are identified based on spatial
coordinates.

- The eight vertices and one centroid of each voxel (i, j, k) are
judged; vertices gain a weight of one if falling inside the
element; the centroid gains a weight of two if falling inside
the element. Weights of the eight vertices and the centroid of
the voxel add up, resulting in a total weighting factor for each
voxel wi,j,k

wi,j,k � ∑9
m�1

wm
i,j,k (3)

.

- Finally, weights of each voxel belong to the same
label (e.g., the segmented binary image with label A)
added up, obtaining a final weight factor for each label.
The element is grouped to the label with the largest
weight.

wA � ∑
(i,j,k)∈A

wi,j,k. (4)

Figure 4 shows the regrouped WM elements of the morphed
brain enclosed by the reconstructed surface of the
segmented WM.

Evaluation of Personalization Accuracy
To evaluate registration accuracy, the baseline ICBM image
(imgbaseline), which corresponds to the baseline head model, is
warped via the inverse of displacement fields from each

FIGURE 3 | Overview of the personalization framework.
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registration step (g−1
subj) (Eq. 5), resulting in a warped image

(imgwarped) (Eq. 6).

g−1
subj � g−1

fn(g−1
m2(g−1

m1(g−1
dram(g−1

f2(g−1
f1(g−1

demo))))), (5)

imgwarped � g−1
fn(g−1

m2(g−1
m1(g−1

dram(g−1
f2(g−1

f1(g−1
demo(imgbaseline))))))).

(6)

DICE and 95th percentile Hausdorff distance (HD95) between
the imgwarped and subjects’ images are then calculated to evaluate
registration performance. As imgwarped corresponds to the
personalized subject-specific model, both metrics also reflect
the personalization accuracy of the generated subject-specific
models.

To calculate DICE and HD95, automated segmentation is
performed using the software FreeSurfer (version 7.1.0) with the
default brain segmentation pipeline (recon-all) for both the
warped ICBM and subjects’ T1W images. The segmented
binary masks for the whole brain and local regions of cerebral
GM, WM, CC, BS, hippocampus, thalamus, and cerebellum are
used for DICE and HD95 calculation. For the cranial mask, the
metrics are calculated based on manually segmented cranial by
thresholding followed by noise removal. Similarly, one sagittal
slice of CC is manually segmented and used to calculate both
matrices. The use of manual segmentation for both regions is due
to the insufficient quality (not reflecting the actual anatomy) by
recon-all for the current dataset. Note that these segmented
binary masks are only used for DICE and HD95 calculation,
and the quality of the automatic segmentation has no influence
on the subject-specific mesh development process.

DICE
DICE is a single metric to measure the spatial overlap between
images defined as twice the number of elements common to both
sets divided by the sum of the number of elements in each set (Ou
et al., 2014):

DICE(A, B) � 2|A ∩ B|
|A| + |B|, (7)

where A and B denote the binary segmentation labels, |A| and |B|
are the number of voxels in each set, and |A ∩ B| is the number of
shared voxels byA and B. The DICE value of 0 implies no overlap
between both, whereas a DICE coefficient of one indicates perfect
overlap between the warped and the target image.

HD95
Hausdorff distance is defined as

HD(C,D) � max(h(C,D), h(D,C)), (8)

where C,D are the two sets of vertices from two segmented
images

h(C,D) � max
c ∈ C

max
d ∈ D

‖c − d‖. (9)

The 95th percentile Hausdorff distance (HD95) is used
following earlier studies (Ou et al., 2011; Ou et al., 2014).
HD95 ranges from 0 to above; a lower value indicates a better
registration accuracy between the warped and the target image.

Application of the Framework for
Subject-specific Model Generation
A complete registration pipeline is only needed for the most
challenging case; fewer registration steps are sufficient for brains
with small anatomical differences compared with the baseline.
The following three typical subtypes of the pipeline are used to
generate subject-specific models for the six subjects.

Type I This is the basic pipeline containing two steps: Demons
registration of the cranial mask and Dramms
registration of T1W image. This two-step pipeline
has been shown to achieve good registration

FIGURE 4 | Regrouped WM based on subjects’WM image mask for all the six subjects. The red color shows the WM elements, and the white transparent shows
the surfaces reconstructed from the subject’s segmented WM image mask.
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accuracy for six healthy adult subjects (Li et al., 2021).
The capacity of this pipeline is further demonstrated
with a 2Y brain.

Type II Multiple feature steps are added to the Type I pipeline,
allowing align brains with significant anatomical
changes. The capacity of this pipeline is
demonstrated with a hydrocephalus brain using
three feature steps.

Type III Multi-modality imaging registration steps are added
to the Type I pipeline to improve brain alignment as
demonstrated with an adult brain.

2YO Model Generation via Pipeline Type I: Two Steps
First, T1W images of ICBM and the 2Y brain are segmented to
obtain the cranial masks, which are used as input for Demons
registration, from which a dense displacement field gdemo is
obtained (Figure 5). Next, the baseline ICBM T1W image is
warped by g−1

demo. The warped ICBM and subject’s T1W images
are then skull stripped and serve as input for Dramms
registration, obtaining gdram. The two displacement fields add
up gsubj 2YO � gdemo + gdram which is used to morph the baseline
mesh, obtaining the subject-specific head model. Finally, the
baseline ICBM image warped to the subject is obtained via
imgwarped 2Y � (g−1

dram(g−1
demo(imgbaseline))), which is compared

with the T1W image of the 2Y brain to evaluate personalization
accuracy.

Hydrocephalus Model via Pipeline Type II: Multiple
Features
The workflow is similar to the above, but three additional feature
steps are added to capture the enlarged LV, deformed CC, and

brain lesion, resulting in five dense displacement fields that add
up as gsubj hydro � gdemo + gf1 + gf2 + gdram + gf3, which is
used to morph the baseline mesh and obtain a subject-specific
head model (Figure 6). The baseline ICBM image warped to
the subject is obtained via imgwarped hydro �
(g−1

dram(g−1
f2(g−1

f1(g−1
demo(imgbaseline))))), which is compared with

the T1W image of the hydrocephalus subject to evaluate
personalization accuracy.

Adult Brain Model via Pipeline Type III: Multimodality
The workflow is similar to Type I, but an additional
multimodality T2W registration step is performed to further
align the LVs resulting in three dense displacement
fields added up as gsubj adult � gdemo + gdram + gm1, which is
used to morph the baseline mesh and obtain the
subject-specific head model (Figure 7). The baseline ICBM
image warped to the subject is obtained via imgwarped adult �
g−1
m1(g−1

dram(g−1
demo(imgbaseline))), which is compared with the

T1W image of the hydrocephalus subject to evaluate
personalization accuracy.

Pipeline for the 0Y, 1Y, and the 92Y
The 92Y uses Type II pipeline, similar to the hydrocephalus
subject, except only one feature step for LV is used,
i.e., gsubj 92Y � gdemo + gf1 + gdram. Interestingly, the Dramms
registration captures the thinning of CC without the CC feature
step as for the hydrocephalus subject. It could be due to the higher
quality image of the 92Y than the hydrocephalus brain.

The 1Y could use the same pipeline as the 2Y. However, in
this study, an alternative approach is used, using the 2Y as an
intermediate step, i.e., align 1Y T1W (asmoving image) to that of
the 2Y (as fixed image) by Dramms registration, obtaining

FIGURE 5 | Type I pipeline applied for personalizing the baseline ADAPT model to a subject-specific model of a 2Y. The pipeline consists of two steps: (i) Demons
registration with cranial masks; (ii) Dramms registration with T1W image. The displacement field obtained from each step is visualized on the grid together with the warped
baseline ICBM images to show its effect. The final warped ICBM is overlaid with the subject’s image to visualize registration accuracy.
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a displacement field g1Y to 2Y. The final displacement field used
for personalizing the baseline model to the 1Y writes: gsubj 1Y �
gsubj 2YO + g1Y to 2Y, and the warped image is obtained via
imgwarped 1Y � (g−1

1Y to 2Y(g−1
subj 2Y(imgbaseline))).

The 0Y uses the same pipeline as the 1Y by having 2Y as an
intermediate step, i.e., align the 0Y T1W (as moving image) to
that of the 2Y (as fixed image) by Dramms registration. Since
the cerebellum for the 0Y was stripped in the original
database (Figure 1A), a paired T1W image of the 2Y with

cerebellum stripped (readily available in the database) is used for
registration, from which a displacement field g0Y to 2Y is
obtained. The remaining steps for personalization and
image warping are the same as for the 1Y described above.
Note that although the registered images do not have
cerebellum, the obtained displacement field g0Y to 2Y defined
in the entire image space does cover the cerebellum region
despite values close to zero. The displacement field when used
to morph the baseline model that has cerebellum, resulting in

FIGURE 6 | Type II pipeline applied for personalizing the baseline ADAPT model to a subject-specific model of a hydrocephalus brain. The pipeline consists of five
steps: (i) Demons registration with cranial masks; (ii) Demons registration with segmented lateral ventricle (LV) mask for capturing the enlarged LV; (iii) Demons registration
with segmented CC mask for capturing the CC shape; (iv) Dramms registration with T1W image for capturing local brain anatomy; (v) Demons registration to drag back
the skull mesh which is pushed due to the lesion in the cranial mask in step (i). The displacement field obtained from each step is visualized on the grid together with
the warped baseline ICBM images and morphed meshes to show its effect. The final warped ICBM is overlaid with the subject’s image to visualize registration accuracy.

FIGURE 7 | Type III pipeline applied for personalizing the baseline ADAPTmodel to a subject-specificmodel of an adult subject. The pipeline consists of three steps:
(i) Demons registration with cranial masks; (ii) Dramms registration with T1W image; (iii) Dramms registration with T2W image for further alignment. The displacement field
obtained from each step is visualized on the grid together with the warped baseline ICBM images to show its effect. The final warped ICBM is overlaid with the subject’s
image to visualize registration accuracy.
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a final subject-specific model of the 0Y with cerebellum
included.

RESULTS

Subject-specific Head Models and Element
Quality
The generated head models (Figure 8) and cross-sections
(Figure 9) demonstrate the capacity of the framework for
generating subject-specific head models with significant
anatomical differences; all morphed from a baseline model.
Especially, the extensively enlarged LVs and the varying
shapes of CC in the hydrocephalus and the elderly 92Y brain
are captured (Figures 10, 11). The element quality for the models

is listed in Table 2, showing that most brain elements (95.9 ±
1.5% on average for the six subjects) have a Jacobian over 0.5,
and the minimum Jacobian in all the six head models is above
0.13 (in the hydrocephalus brain). In this study, the mesh quality
is considered satisfactory when at least 95% of the elements have a
Jacobian over 0.5.

Personalization Accuracy
The baseline ICBM image (Figure 10A) is warped to the six
subjects. The warped images (Figure 10B) and subjects’ images
(Figure 10C) are compared to evaluate registration accuracy. The
segmented binary masks of the final warped baseline and subjects
are overlaid to further visualize personalization accuracy
(Figure 11A). The evaluated masks include cranial, brain, and
six local brain regions. The boxplots of the DICE and HD95 are

FIGURE 8 | Six subject-specific head models generated including the 0Y, 1Y, 2Y, adult, 92Y, and a hydrocephalus brain (the same length scale applies).

FIGURE 9 | Six subject-specific models are aligned together, showing the generated models have widely varying intracranial volumes (upper row) and significant
anatomical differences as exemplified with lateral ventricles and corpus callosum (lower row).
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presented in Figure 11, with values listed in Tables 3, 4. The
average DICE scores are all >0.9 for the cranial mask, the brain,
cerebellum, CC, being 0.97, 0.90, 0.89, and 0.94, respectively.
Since the cerebellum for the 0Y subject image has been stripped,
the evaluation of registration accuracy is without this region. The
average DICE score for LV is 0.80. DICE score can be improved
by incorporating multimodality step, e.g., with T2W image that
has higher contrast for CSF/LVs. For example, the pipeline for the
adult subject adding the T2W multimodality step improves
personalization accuracy than previously achieved (see
Supplementary Appendix S1). The DICE values are
comparable to that achieved in neuroimaging field (Ou et al.,

2014) despite the higher requirement on the smoothness of
displacement field for satisfactory element quality in the
personalized head FE models.

Hydrocephalus and the Elderly Brain:
Importance of the Feature Step and the
Higher Requirement on Displacement
Smoothness for Mesh Morphing
The mesh after each morphing step shown in Figure 12 illustrates
the effect of the feature steps, which allow capturing subject’s cranial
shape (Figure 12A), enlarged LVs (Figure 12B), CC (Figure 12C),
as well as pushing back of the skull mesh (Figure 12E), while local

FIGURE 10 | (A) T1W image of the ICBM baseline; (B) ICBM baseline warped to the six subjects; (C) T1W image of the six subjects. Transverse, sagittal, and
coronal cross-sections are captured for each brain.
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TABLE 2 | Element quality of the baseline ADAPT model and the six subject-specific head models generated by morphing.

Head
model

Element quality index

Jacobian ≥0.5 Warpage (°) ≤30 Skew (°) ≤60 Aspect ratio ≤8 Min. angle (°) ≥30 Max angle (°) ≤150

percent min percent max percent max percent max percent min percent max

ADAPT 98% 0.45 92% 111.76 99.9% 69.95 99.9% 6.62 99.8% 17.98 99.9% 161.94

Personalized models

0Y 96% 0.34 92% 112.60 99.9% 70.93 99.9% 7.99 99.9% 14.58 98.0% 168.41
1Y 97% 0.31 92% 111.99 99.9% 69.68 99.9% 8.20 99.9% 16.23 99.0% 167.85
2Y 97% 0.36 92% 110.26 99.9% 67.19 99.9% 6.64 99.9% 16.39 99.0% 166.38
Adult 93% 0.17 90% 139.66 99.9% 74.43 99.9% 10.09 99.0% 8.95 98% 215.91
92Y 96% 0.15 94% 121.81 99.9% 78.53 99.9% 16.09 99.0% 5.56 98% 177.29
Hydrocephalus 95% 0.13 91% 118.31 99.9% 77.71 99.9% 11.07 99.0% 7.80 97% 176.79

FIGURE 11 | T1W image of the subject is overlaid with the segmented binary masks of the warped baseline, including the cranial mask, the brain, and local brain
regions of the cerebellum, hippocampus, thalamus, CC, BS, and lateral ventricles (A). Boxplots of DICE and 95HD. The boxplots show the median, minimum, and
maximum values shown (B).
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brain structures are captured by Dramms registration (Figure 12D).
The meshes from these intermediate steps are morphed from the
baseline ADAPT head model with displacement fields obtained via
the image registration pipeline shown in Figure 6.

To further illustrate the importance of the feature
registrations, a parametric pipeline without the LV feature step
is performed for the 92Y brain, i.e., a complete pipeline writes
gsubj 92Y � gdemo + gdram and imgwarped 92Y �
g−1
dram(g−1

demo(imgbaseline)) (Figure 13). The results show that
the Dramms registration, even using the largest allowable
smoothness weight (g � 1), leads to FE mesh with negative
Jacobian in some elements. For example, one FE element at the
frontal horn of the LVs with a Jacobian (JFE � 0.5) in the baseline
mesh (Figure 13A, right upper), when morphed by the parametric
pipeline resulting in a negative Jacobian (JFE � -0.05) (Figure 13C,
right upper). In contrast, when morphed by the original three-step
pipeline, the same element has a positive value (JFE � 0.31)
(Figure 13B, right upper). This parametric pipeline also results in
lower registration accuracy than the three-step pipeline (Figures
13A,B). This example also demonstrates the higher requirement
on the smoothness of displacement than in the neuroimaging field
when only Jacobian of the displacement field (Jimg) is of concern
(more detailed analysis presented in Supplementary Appendix S2).

DISCUSSIONS

This study presents a personalization framework for the efficient
generation of subject-specific head models. The framework
consists of hierarchical multiple feature and multimodality
imaging registration pipelines, mesh morphing, and mesh
grouping. The registration pipeline achieves competitive
registration accuracy despite a higher requirement on the
smoothness of the displacement field concerning the element

quality of the morphed mesh. The Demons feature registration
steps capture significant anatomical differences, allowing a good
initialization before applying Dramms registration to further
capture the inter-subject anatomical details. The Dramms
registration step with multimodality imaging further improves
brain alignment. As a final step of the framework, mesh grouping
of WM according to the subject’s image mask allows
incorporating subject-specific WM directly. The framework is
successfully applied to subjects across the lifespan and a
hydrocephalus brain with significant anatomical changes,
achieving competitive personalization accuracy. The results
demonstrate that the framework can personalize the baseline
head model to brains with significant anatomical differences,
resulting in subject-specific models ready for personalized
simulations without manual repairing. To the knowledge of
the author, this is the first study aligning such a broad scope
of brain images suitable for mesh morphing.

The efficiency of the hierarchical two-step pipeline combining
Demons and Dramms (Type I) has been previously assessed with
six healthy adult subjects that have high-quality T1W images (Li
et al., 2021). In this study, an extended pipeline is proposed for
obtaining high-quality alignment across heterogeneous data of
lifespan and for pathological brains with significant anatomical
changes by introducing multiple feature steps as demonstrated
with the hydrocephalus (Figure 12) and the 92Y brain
(Figure 13). The registration accuracy for these more
challenging cases is comparable with the six healthy adults,
with average DICE scores for the cerebellum, CC, and brain
all above 0.89. Notably, the average DICE score for LV for the six
subjects in this study is 0.80, higher than that of the six adult
subjects (0.71) (Li et al., 2021). Note that the same adult subject in
an early study (Li et al., 2021) (subject ID 771354) is used here by
adding T2W multimodality registration step (Type III). T2W
images with higher contrast for CSF/LVs improve personalization

TABLE 4 | HD95 for the six subjects.

Subject ID Cranial Brain Cerebellum Hippocampus Thalamus CC BS LV

0Y NaN 10.06 NaN 10.21 7.14 1.0 NaN 2.22
1Y 3.24 5.41 4.5 1.71 2.24 0 5.01 1.41
2Y 2.34 4.10 4.61 1.41 2.0 0.5 4.37 1.41
Adult 3.3 3.56 4.95 2.12 2.0 1 5.00 2.92
92Y 2.24 3.0 3.56 2.62 2.34 0 6.96 3.56
Hydrocephalus 1.41 3.87 5.61 3.56 2.64 0.5 6.47 4.35
Average 2.51 5.0 4.65 3.61 3.06 0.50 5.56 2.65

TABLE 3 | DICE coefficients for the six subjects.

Subject ID Cranial Brain Cerebellum Hippocampus Thalamus CC BS LV

0Y NaN 0.82 NaN NaN 0.60 0.92 NaN 0.78
1Y 0.96 0.93 0.89 0.83 0.89 0.96 0.79 0.85
2Y 0.98 0.92 0.90 0.85 0.90 0.94 0.84 0.83
Adult 0.97 0.91 0.88 0.77 0.88 0.90 0.73 0.68
92Y 0.97 0.91 0.91 0.73 0.80 0.97 0.84 0.90
Hydrocephalus 0.99 0.88 0.86 0.66 0.80 0.92 0.65 0.78
Average 0.97 0.90 0.89 0.77 0.81 0.94 0.77 0.80
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accuracy compared with previous results (see Supplementary
Appendix S1). The mesh grouping step incorporates subject-
specific WM directly, which is important for infant models to
accurately capture the rapid transition between GM and WM in
early infancy. Thus, the promising performance demonstrates the
potential of the framework to personalize the baseline model to
almost any brains with significant anatomical changes. Besides
hydrocephalus, personalized models for brains with other
structural changes such as decompressive craniotomy with
brain expanded outside the skull (Holst et al., 2012) can also
be achieved.

Inter-subject registration between brains with significant
anatomical differences is still challenging in neuroimaging field
and has limited registration accuracy (Kim et al., 2015); even
more challenging is to apply image registration for mesh
morphing due to the higher requirement on the smoothness

of the obtained displacement fields concerning element quality of
the morphedmesh. There is often a trade-off between registration
accuracy and element quality, and higher registration accuracy
tends to worsen element quality according to the experience with
the six subjects in this study. Especially, FE elements become
invalid if their Jacobian become negative, which are not accepted
by most FE analysis software. While in neuroimaging field, for
physically plausible morphing, only positive Jacobian
determinant of displacement field is to be ensured, which is
often a looser requirement than FE Jacobian (see detailed analysis
in Supplementary Appendix S1). Despite the higher
requirement, this study achieves competitive registration
accuracy compared with that reported in the neuroimaging
field (Ou et al., 2014). For example, a previous study reported
Jaccard index below 0.6 for all brain regions using popular
deformable registration algorithms for inter-subject

FIGURE 12 | Morphed FE meshes after each of the five steps for the hydrocephalus subject.

FIGURE 13 | Parametric pipeline for the 92Y without the LV feature step compared with the default pipeline. The warped baseline image by the parametric pipeline
(B) does not capture the enlarged LV compared with that achieved by the default pipeline (A). The parametric pipeline leads to negative Jacobian in some elements in the
personalized mesh (right figure), although the Jacobian map (Jimg) of the final obtained displacement field is all positive. One representative axial slice is shown with the
minimum and the maximum value of Jimg in the entire brain indicated (C,D).
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registration (Ou et al., 2014), while the average Jaccard index
(converted from DICE according to Jaccard index � DICE/(2-
DICE) (Ou et al., 2014)) for the six subjects is all above 0.66 for all
regions in this study.

The applications of the framework show that different
pipelines can be used depending on the anatomical differences
between the subject and baseline ICBM, as well as the subject’s
image quality and available imaging modalities. For brains that
are similar to the baseline, Type I pipeline with fewer steps is
sufficient, while for brains with significant anatomical differences
compared with the baseline, e.g., the hydrocephalus and elderly
brain, Type III pipeline is needed to achieve a proper alignment.
Furthermore, when T2W images are available, multimodality
image allows better alignment of the brain and CSF/LVs. In
principle, more multimodality registrations can be performed if
available from the subject as the baseline image contains imaging
modalities of T1W, T2W, proton density (PD), and tissue
probability maps. Besides, more feature steps can be
introduced to handle even more challenging cases. Choosing
the proper pipeline for a specific case needs trial and error.
An overall guideline is to start from Type I then add more
registration steps if needed. Note that the multiple feature
steps can be combined into one image with multiple binary
masks and perform Demons registration at once. However,
one feature in each step, as done in this study, tends to be
more robust. Furthermore, the framework, though
demonstrated with the ADAPT baseline head model, is equally
applicable for personalizing other head models as a baseline, e.g.,
models with tetrahedral elements as commonly used for tDCS,
TMS, TUS, as well as smoothed-voxel brain models.

Compared with existing studies registering adult brains, fewer
studies align infant brains, which are more challenging partially
due to the rapid development of brain anatomy within the first
year, especially T1W images are inversed with densities. Not only
more challenging for registration algorithms but also the evaluation
of performance is also more difficult as most segmentation
algorithms are developed based on adult images, such as
FreeSurfer. It’s worth noting that the lowest registration
accuracy in all brains is for the thalamus in the 0Y; a visual
check shows FreeSurfer automatically segmented thalamus not
accurate enough. Future studies can employ infant Freesurfer
(Zöllei et al., 2020) for more accurate segmentation for infant
brain images, thus allows more objective evaluation of
personalization accuracy. For adult brain mesh morphing,
image registration-based morphing pipelines proposed earlier
show promising performance in generating detailed subject-
specific head models of healthy adult brains (Giudice et al.,
2020; Li et al., 2021) while the framework proposed in this
study allows generating models across the lifespan and for
brains with significant anatomical changes, which can be used
for studying age-specific and groupwise TBIs. Especially, brains
with neurological diseases such as hydrocephalus with extensively
enlarged LVs mimicking the elderly brain may provide a possible
clue for new insights into TBIs. The approach also opens the
opportunity for studying how a potentially vulnerable brain, e.g., a
hydrocephalus patient, may sustain a TBI injury risk under fall
impact, especially hydrocephalus patients who are more prone to

fall. Until today, the biomechanics of TBIs in these groups are
much understudied, partially due to the meshing challenge.

Compared with the many existing studies of TBIs for healthy
adults, the injury mechanisms of infants and children are
understudied. There are few child/infant head models (Li
et al., 2011; Giordano et al., 2017; Li et al., 2017). In addition
to the meshing challenge for adult models, the development of
additional unique features of suture and fontanel plays an
essential role in head impact response (Li et al., 2017).
Previously, mesh morphing has also been used for morphing a
baseline infant head model to different ages using radial basis
function (RBF) to interpolate the displacement field obtained
from land markers the anatomical features of suture and skull
surface (Li et al., 2011). Unlike the image registration-based
morphing, the RBF approach needs manual indentation of
land markers, which is often tedious (Wu et al., 2019). The
RBF approach also does not account for brain anatomies.
Comparatively, the morphed detailed infant brain models in
this study, when combined with the detailed skull and scalp
models (Li et al., 2017; Li et al., 2019), will allow studying brain
injury biomechanics under impact for infant head model for
abusive head trauma with important legal applications for
forensic diagnosis. The newborn infant head models may be
used for studying delivery-related neurotrauma and studying new
intervention approaches for clinical problems.

Some limitations and future works need to be mentioned here.
First, the proposed framework allows efficient generation of
subject-specific head models with competitive personalization
accuracy and satisfactory element quality without mesh
repairing. However, the morphing technique involves manual
intervention when selecting which morphing pipeline to use.
Thus, there could be user-to-user variability based on which
pipelines are chosen and concerns regarding repeatability. For
example, selecting improper pipelines could result in reduced
morphing accuracy, and certain regions may not be morphed
accurately if they are not selected as features by the user. Secondly,
this framework requires segmentation for the Demons steps, which
may need manual effort to ensure accurate segmentation and
would require significant time and effort for large-scale studies.
Nevertheless, considering the challenge of generating subject-
specific head models, this effort is considered acceptable. Note
that this morphing technique generates subject-specific models
from a geometric perspective only and does not account for
subject-specific material properties. Thirdly, the current
framework allows generating head models reflecting the
subject’s internal brain structures, but the major sulci and gyri
lines are not evaluated like most studies in the neuroimaging field.
It should also be noted that the framework does not ensure the
same characteristic lengths among generated models of different
sizes; the infant brains, in general, have smaller elements than that
of an adult model. In this regard, the block-based method has an
advantage that allows adjusting mesh densities to maintain similar
element characteristic lengths (Mao et al., 2013b). Furthermore,
Dramms registration algorithm is chosen for registering brainMRI
images in this study since it has a clear advantage to align largely
different anatomies such as the ventricles in comparison with other
popular registration algorithms (Ou et al., 2014). However, other
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algorithms, such as implemented in ANTs (Avants et al., 2011) and
DARTEL (Vercauteren et al., 2009), when used within the current
framework, may achieve similar performance, but it is yet to be
investigated. Finally, the framework can be extended to include
more registration steps and other advanced nonlinear registration
algorithms to handle even more challenging cases.
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