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Editorial on the Research Topic

Bioinformatics of Genome Regulation, Volume I

This “Bioinformatics of Genome Regulation” issue presents the studies in the field of
bioinformatics of gene expression regulation. The materials were initially discussed in part
at BGRS\SB-2020 (Bioinformatics of Genome Regulation and Structure\Systems Biology)
multi-conference (https://bgrssb.icgbio.ru/2020) in Novosibirsk, Russia. The BGRS
conference series is organized by the Institute of Cytology and Genetics SB RAS every
other year since 1998. This issue consists of two parts—Volume I (https://www.frontiersin.
org/research-topics/14266/bioinformatics-of-genome-regulation-volume-i) and Volume II
(https://www.frontiersin.org/research-topics/17947/bioinformatics-of-genome-regulation-
volume-ii). It continues the tradition of Research Topics at Frontiers in Genetics journal
(https://www.frontiersin.org/research-topics/8383/bioinformatics-of-genome-regulation-
and-systems-biology), which presents the works discussed at the BGRS-2018 meeting (Orlov
et al., 2016; Tatarinova et al., 2019). Previous journal covering BGRS\SB conference were
presented in the Journal of Bioinformatics and Computational Biology in 2012 (Orlov et al.,
2015; Orlov et al., 2019a) and other platforms (Chen et al., 2017; Baranova et al., 2019; Orlov,
2019; Orlov, 2019b; Orlov et al., 2021a). Starting in 2018, actual research works on the
mechanisms of gene expression regulation are presented in Frontiers in Genetics being
extended as Volume II.

In Volume I of this Research Topic a total of 19 papers were arranged by two main
areas—biomedical bioinformatics for human health and plant model studies. Biomedical papers
start from bioinformatics applications to various cancers, including hepatocellular carcinoma,
melanoma, brain tumors, prostate cancers, and paraganglioma.

Li et al. described a bioinformatics pipeline to reveal critical genes associated with hepatocellular
carcinoma. The authors analyzed differentially expressed genes, followed by the Reconstruction of
the protein-protein interaction (PPI) network. Eight hub genes significantly upregulated in
carcinoma samples were highlighted and validated using GEPIA (Gene Expression Profiling
Interactive Analysis) and Oncomine databases.

Fedorova et al. studied NETO2 gene (neuropilin and tolloid-like 2) upregulation in diverse
tumors, including ones originating in breast, prostate, and colorectal tissues. In addition, the authors
evaluated NETO2 functions in a short-lived fish model Nothobranchius furzeri.
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Liu et al. consider how cutaneous melanoma involves ERBB
tyrosine kinase family members (ERBB receptor family) in its
progression.

Wang et al. studied immune surveillance within the
microenvironment in glioma. The authors highlighted long
non-coding RNA (lncRNA) as the key in glioma progression.

Pudova et al. showed how the gene expression landscapes
change during the progression of prostate cancer to its advanced
stages. They described relevant networks and pathways pertinent
to early recurrence. Rare neuroendocrine tumors were studied in
Snezhkina et al. for the frequencies of the mutations within
susceptibility genes such as SDHx. This work aids in
understanding the immunochemistry analysis of SDHx genes
in carotid paragangliomas reported earlier (Snezhkina et al.,
2020).

Mukushkina et al. applied bioinformatics tools to study how
miRNAs interact with other genes’ products form atherosclerotic
plaques.

Frontiers in Genetics’ publications on human disease
biomarkers are continued by the Research Topic “High-
throughput sequencing-based investigation of chronic disease
markers and mechanisms” (https://www.frontiersin.org/
research-topics/21036/high-throughput-sequencing-based-
investigation-of-chronic-disease-markers-and-mechanisms).
Thus, Shi et al. (2021) studied molecular mechanisms related to
alternative polyadenylation in gastric cancer; Chang et al. (2021)
analyzed platinum-drug resistance mutations in advanced non-
small cell lung cancer.

In this “Bioinformatics of Genome Regulation” Topic Yao et al.
have reported the results of a search for molecular markers
associated with complications of systemic lupus erythematosus.

Skuratovskaia et al. described the mechanisms regulating
carbohydrate metabolism in Type 2 diabetes mellitus using the
bioinformatics framework.

The approaches for analysis of gene expression regulation in
human diseases from the population genetics point of view were
highlighted in the Research Topic “Association Between
Individuals’ Genomic Ancestry and Variation in Disease
Susceptibility” at Frontiers in Genetics (https://www.frontiersin.
org/research-topics/15891/association-between-individuals-
genomic-ancestry-and-variation-in-disease-susceptibility).
Kamenova et al. (2021) analyzed gene expression regulation by
miRNA in Parkinson’s disease. Zinchenko et al. (2021) studied
rare hereditary diseases in Russia. Ramensky et al. (2021)
discussed targeted sequencing of a set of clinically important
genes associated with cardiovascular diseases.

Gozman et al. (2021) raised important actual problem of the
role of genetic variance in disease severity in COVID-19 Patients.
This problem is continuing to be actively discussed (Lu et al.,
2021).

The following two articles in the Volume I highlight the
mechanisms of epigenetic control revealed by gene network
reconstruction in animal models. Shen et al.investigated the
changes of DNA methylation and hydroxymethylation in
mouse genome during puberty an emphasis on the activation
of by hypothalamic gonadotropin-releasing hormone pathway.

Adonin et al. applied the methods of gene networks
Reconstruction to a fascinating model organism—sea urchin
Strongylocentrotus purpuratus.

The next group of articles in this Research Topic performed
gene expression analysis in plants. This science field was
presented at the bioinformatics conference series in
Novosibirsk (Orlov et al., 2019b). In particular, Marla et al.
performed the plant genome assembly from short sequencing
reads of Pigeonpea (Cajanus cajan). Chakraborty et al. annotated
miRNA functions in various millet species. Samarina et al.
studied cold-resistance genes in the tea plant Camellia sinensis.
Cold and drought stresses cause osmotic changes in the cells of
the tea plant (Samarina et al., 2020). This study identified
45 stress-inducible candidate genes associated with cold and
drought responses using homologous detection in related plant
species. The gene network analysis revealed upregulated
expression in the ICE1-related cluster of bHLH factors.
Pavlinova et al. presents another application of network
analysis in plant science; dynamical modeling of the core gene
network controlling the transition to flowering in Pisum sativum
was performed to extend previously developed non-linear
regression models of the flowering in wild chickpea (Kozlov
et al., 2019).

Finally, a set of novel computational techniques was developed
for deciphering gene expression regulation in cells. Arega et al.
presented a novel tool for 3D genomics modeling of long-range
chromatin interactions, the ChIAMM algorithm, which utilizes
ChIA-PET (Chromatin Interaction Analysis by Paired-End Tags
sequencing) to estimate amounts of chromosome contacts
(loops) mediated by a given transcription factor. The same
authors’ group has also described a 3D genome structure in
cervical cancer cells (Adeel et al., 2021). The topic of genome
architecture prediction based on 3D interaction maps in cell
nuclei was further advanced by Belokopytova and Fishman. The
authors reviewed high-throughput genome-wide chromatin
profiling and chromosome contacts mapping using
chromosome conformation capture techniques (Hi-C and
ChIA-PET). The Research Topic “The Role of High-Order
Chromatin Organization in Gene Regulation” (https://www.
frontiersin.org/research-topics/18088/the-role-of-high-order-
chromatin7-organization-in-gene-regulation) has been put
together at Frontiers in Genetics by Drs. Fishman and Pindyurin.

In their brief report, Glyakina and Galzitskaya discuss
bioinformatics modeling of actin molecules. Biziukova et al.
utilized Machine Learning–based analysis of the scientific texts
in HIV treatment to systematize information on small molecules,
proteins, and genes related to the disease.

Overall, we are proud of the continuing Research Topic at
Frontiers in Genetics we collated. We hope that you will find
this paper collection a stimulating reading and consider
coming to the next BGRS\SB conferences in Novosibirsk,
Russia (https://bgrssb.icgbio.ru/2022/), and read the next
continuing Research Topics in Frontiers (https://www.
frontiersin.org/research-topics/21036/high-throughput-
sequencing-based-investigation-of-chronic-disease-markers-
and-mechanisms).
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The involvement of genes and miRNAs in the development of atherosclerosis is a
challenging problem discussed in recent publications. It is necessary to establish
which miRNAs affect the expression of candidate genes. We used known candidate
atherosclerosis genes to predict associations. The quantitative characteristics of
interactions of miRNAs with mRNA candidate genes were determined using the
program, which identifies the localization of miRNA binding sites in mRNA, the free
energy interaction of miRNA with mRNA. In mRNAs of GAS6 and NFE2L2 candidate
genes, binding sites of 21 miRNAs and of 15 miRNAs, respectively, were identified.
In IRS2 mRNA binding sites of 25 miRNAs were located in a cluster of 41 nt. In
ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A mRNAs, clusters of miR-
466, ID00436.3p-miR, and ID01030.3p-miR BS were identified. The organization of
overlapping miRNA binding sites in clusters led to their compaction and caused
competition among the miRNAs. The binding of 53 miRNAs to the mRNAs of
14 candidate genes with free energy interactions greater than −130 kJ/mole was
determined. The miR-619-5p was fully complementary to ADAM17 and CD36 mRNAs,
ID01593.5p-miR to ANGPTL4 mRNA, ID01935.5p-miR to NFE2L2, and miR-5096 to
IL18 mRNA. Associations of miRNAs and candidate atherosclerosis genes are proposed
for the early diagnosis of this disease.

Keywords: gene, atherosclerosis, miRNA, mRNA, association, binding sites cluster, marker

INTRODUCTION

The diagnosis, prevention and treatment of atherosclerosis are important tasks of modern medicine
(Byrne et al., 2014; Churov et al., 2019; Solly et al., 2019; Shoeibi, 2020). In most cases, polygenic
diseases, including atherosclerosis, develop when the expression of different combinations of
candidate genes changes. As a result of a review of various publications, it seems that the approaches
used to search for markers for the diagnosis and treatment of atherosclerosis, including miRNA,
have not yet solved the problem of diagnosing and treating atherosclerosis (Chen et al., 2020;
Li et al., 2020; Ryu et al., 2020; Sun et al., 2020; Wang W. et al., 2020; You et al., 2020).
In human, it is known about 7000 miRNA and more than 20,000 genes, and it is unknown
how many miRNA and genes from them participate in the development of atherosclerosis
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(Byrne et al., 2014; Toba et al., 2014; Lu et al., 2018; Liu et al.,
2020; Shi et al., 2020). As a rule, in publications several miRNA
and some candidate genes are studied, so the combination
of such attempts is large (Wang C. et al., 2020; Wang M.
et al., 2020; Zhang et al., 2020). Considering the limitations of
existing prediction methods, we can say that the establishment of
adequate miRNA markers for diseases is unrealistic using existing
approaches in the coming years. This statement is confirmed
by the fact that over 20 years of studying miRNA participation
in various diseases, diagnostic methods and therapeutic ways of
treating diseases with miRNA are not used. Most researches study
only the correlation between changes in miRNA concentration
and expression of candidate genes, but this approach does
not establish specific associations of miRNA and target gene.
A number of publications argue that miRNA is the cause
of disease without understanding that changes in miRNA
concentration can occur through independent expression from
intergenic regions or from host gene introns (Madrigal-Matute
et al., 2013; Andreou et al., 2015; Feinberg and Moore, 2016;
Solly et al., 2019). In all cases, miRNAs appear to modify
the expression of target genes and not to cause the disease
themselves. It is not taken into account that one miRNA can
affect several or even 100s of genes, and one gene may be a
target of several miRNAs (Atambayeva et al., 2017; Kondybayeva
et al., 2018). In this article, we discuss what should be taken into
consideration when reviewing the problem of miRNA interaction
with candidate genes and show the need to use a systematic
approach in establishing the most probable associations of
miRNA and target genes.

It has been found that miRNAs, which are nanoscale
regulatory biomolecules, are involved in many biological
processes at all stages of the development of atherosclerosis,
from early endothelial dysfunction to the erosion and rupture
of an unstable atherosclerotic plaque (Cipollone et al., 2011;
Madrigal-Matute et al., 2013; Andreou et al., 2015; Maitrias et al.,
2015; Feinberg and Moore, 2016; Santovito et al., 2016; Chen
et al., 2018; Ren et al., 2018; Wang et al., 2018). In addition,
miRNAs are considered novel non-invasive biomarkers of the
instability of atherosclerotic plaques and have been associated
ischemic disorders (Churov et al., 2019). Their detection in the
blood of patients may be a promising direction for the diagnosis
of atherosclerosis complications such as ischemic stroke and
myocardial infarction (Kanuri et al., 2018; Desjarlais et al., 2019;
Moghaddam et al., 2019; Vargas-Alarcon et al., 2019; Velle-
Forbord et al., 2019; Wiese et al., 2019; Kondybayeva et al., 2020).
When the pathogenic role of a specific miRNA is confirmed,
it can be considered a potential therapeutic target (Friedman
et al., 2009; Fang et al., 2013; Moghaddam et al., 2019; Kazemi
et al., 2020). According to the miRBase database, miRNAs have
been found in many human tissues and are able to regulate
the expression of more than 60% of all protein-coding genes
(Kanuri et al., 2018; Ren et al., 2018; Wiese et al., 2019).
Full complementarity between miRNA and mRNA results in
degradation (Leidinger et al., 2012; Alagia and Eritja, 2016).
However, incomplete complementarity is most often observed, in
which case miRNAs suppress translation, generally by binding to
the 3′-untranslated regions (3′ UTRs) of mRNAs (Ivashchenko
et al., 2014a,c; Alagia and Eritja, 2016; Atambayeva et al., 2017).

In addition, miRNAs can bind to other regions of target mRNAs,
including the 5′-untranslated regions (5′ UTR) and coding
sequence (CDS) (Orom et al., 2008; Forman and Coller, 2010;
Ivashchenko et al., 2013; Zhou and Rigoutsos, 2014; Niyazova
et al., 2015; Kondybayeva et al., 2018; Yurikova et al., 2019).
We used a program that effectively determines the quantitative
characteristics of the interaction of miRNA with mRNA and
allows us to identify fundamentally new properties of the binding
of miRNA to mRNA. The aim of this work was to identify
associations between miRNAs and mRNA candidate genes of
atherosclerosis for use as markers for the diagnosis of this disease.

MATERIALS AND METHODS

The nucleotide sequences of 2565 miRNAs (we name this
set as ‘old miRNAs’) were downloaded from the miRBase
database1 (Release 22.1) and 3707 miRNAs (we name this set
as ‘new miRNAs’) obtained from a report by Londin et al.
(2015). Due to this work the number of known miRNAs had
more than doubled. The nucleotide sequences of genes were
obtained from GenBank2. A database of 68 candidate genes
including the names of the genes and publication sources
was compiled, confirming the associations of these genes with
atherosclerosis (Supplementary Table S1). A search for the
target genes of miRNAs was performed using the MirTarget
program (Ivashchenko et al., 2014b). This program determines
the following binding characteristics: the start of the miRNA
binding site (BS) of mRNA; the locations of miRNA BS (3′ UTR,
5′ UTR, CDS); the interaction free energy (1G, kJ/mole); and
nucleotide interaction schemes between miRNAs and mRNAs.
The ratio of 1G/1Gm (%) was determined for each BS, where
1Gm is equal to the free energy binding of miRNA with its
full complementary nucleotide sequence. The MirTarget program
found hydrogen bonds between adenine (A) and uracil (U),
guanine (G) and cytosine (C), G and U, A and C. The distances
between A and C were equal 1.04 nanometers, between G and C,
and between A and U were equal 1.03 nanometers, between G and
U equal to 1.02 nanometers (Leontis et al., 2002). The numbers
of hydrogen bonds in the G-C, A-U, G-U, and A-C interactions
were found to be 3, 2, 1 and 1, respectively (Kool, 2001; Lemieux
and Major, 2002). The MirTarget program determines single
miRNA BS in mRNA and miRNA BS which are in clusters
(BS arranged with overlapping of nucleotide sequences of the
same or several miRNAs) (Aisina et al., 2019). Predicted by the
MirTarget program binding sites in over 30 genes were confirmed
experimentally (Yurikova et al., 2019).

RESULTS

The BSs of the miRNAs and mRNAs of the target genes
were not uniform along the length of the mRNAs. Both
multiple and single BS were identified. BSs could be sequential
or overlap with each other. Having overlapping nucleotide
sequences in a cluster lead to the compaction of the mRNA

1http://mirbase.org
2http://www.ncbi.nlm.nih.gov
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sequence that is the target of several miRNAs. When the
1G and 1G/1Gm values of miRNA BS are close to each
other, it can be assumed that in the presence of equal miRNA
concentrations, the miRNAs with a larger number of BS will
be more likely to bind to the mRNAs of target genes. When
the miRNA-mRNA interaction strength and the degree of
their complementarity are similar, the miRNA has the highest
concentration upon binding.

Characteristics of miRNA Interactions in
the 5′ UTRs of the mRNAs of
Atherosclerosis Candidate Genes
BSs of miRNAs were identified in the 5′ UTRs of 14 mRNAs.
The GAS6 mRNA contains a large cluster with BS of 21 different
miRNAs, half of which have two or three BS, while the rest
represent single BS (Table 1). The cluster size is 39 nt, starting
at the 11 nt position and ending at position 49 nt. The total BS
length in the cluster is 824 nt, where the degree of compaction
is 21. This compaction allowed this number of miRNA BS
to be located in a 5′ UTR with a length of 153 nt. In an
association analysis of seven miRNAs with the GAS6 mRNA the
free energy interaction of the miRNAs with the mRNA is more
than −130 kJ/mole, which indicates that these associations are
promising markers of atherosclerosis.

To prove that the identified clusters are reliable, on the
example of GAS6 gene showed that the cluster exists in the
mRNA of orthological genes and is conservative in its nucleotide
composition (Figure 1). There are mainly new miRNAs in the
clusters of BSs in 5′ UTR region of mRNA of GAS6, NFE2L2
and SCAP genes. In mRNA of GAS6 gene the cluster includes
20 new miRNA and one old miRNA, in mRNA of NFE2L2
gene the cluster contains 15 BSs of new miRNA; in mRNA of
SCAP gene there is a cluster for binding of 13 new and one old
miRNA (Table 1). In the other 11 target genes, there are 28 new
and one old miRNAs are linked in 5′ UTR region of mRNA
(Supplementary Table S2). These data suggest that the use of
new miRNAs significantly increased the number of effective gene
expression modulators.

Some miRNAs have multiple BSs: ID00061.3p-miR,
ID01155.3p-miR, ID01702.3p-miR, ID01804.3p-miR,
ID02187.5p-miR, ID00296.3p-miR, ID01155.3p-miR by three,
ID01641.3p-miR by four, ID00061.3p-miR, ID00296.3p-miR,
ID01702.3p-miR by five BSs. These miRNAs are recommended
as associations for the diagnosis of atherosclerosis considering
the high free energy interaction with mRNA of candidate genes.
ID01935.5p-miR has a complete complementarity interaction
with mRNA of NFE2L2 gene, which suggests that ID01935.5p-
miR and NFE2L2 association should be recommended as a
marker. These miRNA correlations clearly demonstrate the
predominant influence of new miRNAs on gene expression
with BS in 5′ UTR. Consequently, researchers actually do not
receive information about the regulation of gene expression
by new miRNAs, the effect of which is high when only the old
miRNAs are studied.

The following circumstances need to be considered when
evaluating the effects of many miRNAs in a cluster of BSs in

TABLE 1 | Characteristics of miRNAs interaction in the 5′ UTR of mRNA of GAS6,
NFE2L2, and SCAP genes.

miRNA Start of site, nt 1G, kJ/mole 1G/1Gm, % Length, nt

GAS6

ID00061.3p-miR 17÷23 (3) −129 94 22

ID00296.3p-miR 17 −144 92 25

ID00457.3p-miR 14÷20 (2) −123÷−127 91÷94 22

ID00522.5p-miR 17 −125 89 23

ID01041.5p-miR 20 −132 90 24

ID01106.5p-miR 21 −132 89 24

ID01155.3p-miR 17÷23 (3) −129 94 22

ID01641.3p-miR 17 −134 90 24

ID01702.3p-miR 16÷21 (3) −136÷−142 86÷91 25

ID01804.3p-miR 11÷20 (3) −136÷−142 85÷93 25

ID01873.3p-miR 20÷23 (2) −123÷−125 94÷95 21

ID01879.5p-miR 22 −123 91 22

ID02064.5p-miR 24 −123 94 21

ID02084.3p-miR 22÷25 (2) −129÷−132 86÷87 24

ID02187.5p-miR 15÷19 (3) −123 89 23

ID02294.5p-miR 16÷19 (2) −132÷−136 90÷93 24

ID02538.3p-miR 24 −123 92 22

ID02950.3p-miR 13 −125 89 23

ID03367.5p-miR 17÷23 (2) −117 93 20

miR-3960 23 −115 92 20

NFE2L2

ID01935.5p-miR 271 −142 100 24

ID00061.3p-miR 444÷450 (3) −125÷−134 91÷97 22

ID00296.3p-miR 441÷448 (3) −134÷−140 85÷89 25

ID00457.3p-miR 444 −123 91 22

ID00522.5p-miR 438 −125 89 23

ID01041.5p-miR 444÷445 (2) −129÷−134 88÷91 24

ID01155.3p-miR 444÷450 (3) −125÷−134 91÷97 22

ID01641.3p-miR 444÷448 (2) −136 91 24

ID01702.3p-miR 444÷450 (3) −138÷−144 86÷92 25

ID01804.3p-miR 438÷444 (3) −138÷−144 87÷91 25

ID01873.3p-miR 444÷447 (2) −121÷−123 92÷94 21

ID02187.5p-miR 439÷445 (2) −123 89 23

ID02770.5p-miR 462 −115 92 20

ID02890.3p-miR 458 −119 89 23

ID03367.5p-miR 441÷453 (2) −115 92 20

SCAP

ID00061.3p-miR 102÷114 (5) −125÷−132 91÷95 22

ID00296.3p-miR 99÷106 (5) −140÷−144 89÷92 25

ID00756.3p-miR 105÷106 (2) −123 89 23

ID01041.5p-miR 108 −129 88 24

ID01403.5p-miR 107 −121 89 23

ID01641.3p-miR 102÷108 (4) −132÷−134 89÷90 24

ID01652.3p-miR 112 −125 89 23

ID01702.3p-miR 105÷112 (5) −138÷−144 92÷96 24

ID01804.3p-miR 109 −134 91 23

ID01873.3p-miR 108 −125 95 21

ID02294.5p-miR 101 −129 88 24

ID03151.3p-miR 103 −115 93 20

ID03367.5p-miR 108÷111 (2) −117 93 20

miR-3960 104÷106 (2) −117 93 20

In the Table 1 and other Tables in parentheses indicate the number of
miRNAs binding sites.
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FIGURE 1 | The WebLogo schemes (https://weblogo.berkeley.edu/logo.cgi) of nucleotide sequences for BS clusters in mRNA of GAS6 (A), NFE2L2 (B), SCAP (C)
orthological genes. Nucleotides of BS clusters are highlighted in blue. Nucleotides of BS clusters mRNA of GAS6 Ggo (Gîrillà gîrillà), Hsa (Homo sapiens), Mmu
(Macaca mulatta), Pab (Pongo abelii), Pan (papio anubis), Ptr (pan troglodytes); nucleotides of BS clusters mRNA of NFE2L2 Ggo, Hsa, Pab, Pan, Ptr; nucleotides of
BS clusters mRNA of SCAP Ggo, Hsa, Mmu, Pab, Pan, Ptr.

mRNA. Primarily, miRNA will bind with higher free energy
interaction, so quantitative interaction characteristics are needed.
The ratio of miRNA concentrations between alternative miRNAs
has a significant importance (miRNAs, which bind in the
cluster) and especially in relation to the concentration of mRNA.
Obviously, the total concentration of alternative miRNAs should
be lower than the mRNA concentration, otherwise the protein
will not be synthesized. A decrease of concentration of any
miRNA below mRNA concentration will not affect protein
synthesis. At the same time, an increase of one miRNA above
mRNA concentration can completely suppress gene expression.
The mRNA of many genes contains clusters of BSs of several
similar miRNAs. In this way, nature has optimized the expression
of several genes under common miRNA control. It is necessary
to consider that many genes are expressed in cells of different
tissues to different degrees, which may affect the dependence
of protein synthesis from miRNA. However, a large number
of binding miRNA may not allow the target gene expression
to increase significantly. Many miRNAs have been found in
the blood and serum in combination with AGO proteins and
within exosomes, which indicates their capability to circulate
freely throughout the body and to reach many organs and
tissues. It is necessary to remember that the synthesis of intronic
miRNAs depends on the expression of host gene, while the
synthesis of other miRNAs is made from transcripts of intergenic
regions. The reasons for changes in the expression of such
miRNA in case of disease should be known. There are known

changes of miRNA expression by several orders. Considering
the above information, the reports are perceived cautiously that
some researchers have been able to detect marker miRNA in
specific diseases.

The above examples of presence of BS clusters in mRNA
of some genes for several miRNAs suggest that such genes are
expressed under the common control of the miRNA group and,
consequently, these genes form a network of interconnected
genes controlling key metabolic processes. To confirm the
reliability of found miRNA and their BSs, it is possible to use data
about the presence of such BSs or their clusters in orthological
genes (Figure 1).

With the given examples we show the inadequacy of miRNA
BSs establishment by programs based only on a miRNA seed
sequence. The whole miRNA nucleotide sequence is important,
which is confirmed by the conservation of miRNA nucleotide
sequences and corresponding BS during millions of years.
The nucleotide sequences of miRNA and their BSs have
been conserved in the mRNA genes of animal and plant
organisms over 10s of millions of years of evolution (Bari
et al., 2013; Ivashchenko et al., 2013, 2014b; Yurikova et al.,
2019).

ID00061.3p-miR, ID00296.3p-miR, ID00457.3p-miR,
ID00522.5p-miR, ID01041.5p-miR, ID01155.3p-miR,
ID01641.3p-miR, ID01702.3p-miR, ID01804.3p-miR,
ID01873.3p-miR, ID02187.5p-miR and ID03367.5p-miR interact
not only with GAS6 mRNA but also with NFE2L2 mRNA, where
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they form a large cluster together with other miRNAs. The
cluster of miRNA BS in the NFE2L2 mRNA is one of the largest
clusters of miRNAs associated with atherosclerosis-related genes
in which BS are formed in the 5′ UTR. The cluster consists of
14 different miRNAs, ranging from the 438 to 482 nt positions,
with a size of 45 nt. The total size of all binding sites is 669 nt,
resulting in a degree of compaction of 15. Due to compaction,
this length of BS is a small fraction of the 5′ UTR length of 555
nt. A complete complementarity interaction of ID01935.5p-miR
with NFE2L2 mRNA was identified. Eight miRNAs interact with
NFE2L2 mRNA with a free energy of more than −130 kJ/mole.
These associations are recommended as valuable markers of
atherosclerosis. The above examples of associations of miRNAs
and target genes show that determining the expression level of
one or more miRNA without monitoring target gene expression
will not provide adequate data on the specific association of these
miRNAs with the disease.

The ADAM10 mRNA contains BS for ID02761.3p-miR with
overlapping nucleotide sequences (Supplementary Table S2).
The ADCY9 mRNA is characterized by the presence of two
clusters, each of which is formed by two single BS. In addition
to this gene, clusters were identified in the following mRNAs:
IRS2 and PIN1, which contain BS for two miRNAs. The PNPLA3
and mRNAs have a cluster consisting of three single BS. The
CXCL12 mRNA contains a cluster of four different miRNAs, of
which ID02036.3p-miR, ID01293.5p-miR, ID00417.3p-miR and
ID02066.5p-miR have two BS. The cluster starts at 65 nt and
ends at 93 nt, with a length of 29 nt and an average 1G/1Gm
of 93%. The sum of the BS lengths of these miRNAs was 170
nt and was six times longer than the cluster length. Due to this
compaction, all BS were located in a 5′ UTR with a length of
92 nt. The MMP2 mRNAs contained a cluster of six miRNA
BS with a total length of 136 nt and a 5′ UTR length of 311
nt. The PNPLA3 mRNA contains a cluster of three miRNA
BS. Among the clusters in the 5′ UTRs of the target genes,
one can distinguish the SCAP gene cluster formed by BS from
14 miRNAs from the 99 nt to the 136 nt position, in which
both single BS and multiple BS are found, more specifically,
seven multiple sites and seven single sites (Table 1). Of the 14
miRNAs with the exception of ID00756.3p-miR, ID01403.5p-
miR, ID01652.3p-miR and ID03151.3p-miR all were in the
group of miRNAs binding to the GAS6 mRNA. Furthermore,
ID00061.3p-miR, ID00296.3p-miR, and ID01702.3p-miR had
five BS each, which significantly increased the likelihood of
their binding compared to that of competing miRNAs. The total
length of miRNA BS was 735 nt, and the degree of compaction
was 19. Without compaction, these sites could not be located
in this 255 nt long 5′ UTR. This cluster is characterized by a
maximum 1G of −144 kJ/mole for the BS of ID00296.3p-miR
and ID01702.3p-miR. Of all the interactions of miRNAs and the
5′ UTRs of target mRNAs, five had a free energy of more than
−130 kJ/mole. Convincing evidence of the effectiveness of the
MirTarget program in determining the characteristics of miRNA
binding to the 5′ UTR, CDS and 3′ UTR of mRNA is given in
Figure 2. The diagrams show the interaction of nucleotides along
the entire length of the miRNA in the BS of the target mRNA and
the characteristics of this interaction.

Characteristics of miRNA Interactions
With the CDS of mRNAs of
Atherosclerosis Candidate Genes
Most genes contained more one BS for one miRNA in the CDS
of mRNAs. There were some genes with several BS or multiple
BS where clusters could form. It is worth noting that IRS2
is characterized by the presence of three clusters and a large
number of BS compared to other genes. This suggests that this
gene is more susceptible to regulation by miRNA (Table 2).
The first cluster was composed of 25 different miRNAs, 13 of
which had two or more BS (ID00061.3p-miR, ID00457.3p-
miR, ID00756.3p-miR, ID01155.3p-miR, ID01702.3p-miR,
ID01804.3p-miR, ID01873.3p-miR, ID01879.5p-miR
ID02064.5p-miR, ID02187.5p-miR, ID03229.5p-miR,
ID03367.5p-miR, miR-3960), and the rest were composed
of single BS. The cluster was 41 nt long, starting at 2586 nt and
ending at 2626 nt. The total length of the BS in the cluster was
1114 nt, while the degree of cluster compaction was 28. The
2-nd cluster was formed by single BS of seven miRNAs. The
3-day cluster consisted of the BS of nine different miRNAs.
ID00296.3p-miR and ID01702.3p-miR had three binding sites.
In general, the cluster was 41 nt long, extending from position
4304 to 4344 nt. The total length of all the BS of the three clusters
was 1607 nt, which is 40% of the total CDS length of 4017 nt.
Due to compaction, the total length of all clusters is 110 nt, that
is, only 2.7%. Thirteen miRNAs interacted with the IRS2 mRNA
with a free energy of more than −130 kJ/mole, which gives
reason to recommend these interactions as diagnostic markers
of atherosclerosis. Each of the three clusters in the MR of the
orthologous IRS2 genes encoded different highly homologous
oligopeptides (Supplementary Table S3).

Clusters consisting of single miRNA BS were found in the
following genes (Supplementary Table S4): two BS in ACE
with an average 1G of −128 kJ/mole; five BS in ADRB3 for
five miRNAs with an average 1G of −115 kJ/mole and BS in
FASLG for ID00061.3p-miR, ID00296.3p-miR, ID01641.3p-miR,
and ID01702.3p-miR. SIRT1 contained two sites for ID03332.3p-
miR and single BS for ID00278.3p-miR and ID00811.3p-miR,
with an average 1G of−129 kJ/mole.

TBC1D10B gene is involved in the functioning of
cardiovascular endothelial cells (Li et al., 2017) and it is a target
of miR-762 with fully complementary binding (Supplementary
Table S4). This site encodes the APAPAPAPAPAPA oligopeptide,
with the flanking oligopeptides AWVPGSAQTS and
VTGSTVVVLTL (Supplementary Table S5).

MRNA of CDKN1C gene (Rodriguez et al., 2007) contains
three clusters consisting of both single and multiple BS. The
first cluster consists of two BS for miR-762 and ID03129.3p-
miR and has a size of 36 nt, extending from 738 to 753 nt. The
second cluster is composed of 17 miR-762 BS, 3 ID00099.3p-miR
BS, and 1 ID02682.5p-miR BS. ID00036.3p-miR, ID01075.3p-
miR and ID00411.5p-miR cover a region of 31 nt, extending
from the 888 nt position to 918 nt with an average 1G
value of −125 kJ/mole. The mRNA of the candidate gene
CDKN1C has 17 sequentially located binding sites for miR-762
that encode the oligopeptide (AP)18, which indicates a strong
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FIGURE 2 | Convincing evidence of the effectiveness of the MirTarget program in determining the characteristics of miRNA binding to the 5′ UTR, CDS and 3′ UTR
of mRNA. The diagrams show the interaction of nucleotides along the entire length of the miRNA in the BS of the target mRNA and the characteristics of this
interaction. Non-canonical base pairs are in bold.

dependence of gene expression on this miRNA (Supplementary
Table S4). Orthologous primate genes (Supplementary Table S6)
encode similar oligopeptides with an AP dipeptide number up
to 33. In all primate cases, miR-762 BSs are located between
the conserved flanking nucleotide sequences that encode the

conserved AAPVAVAVLA and DAAPQESAEQ oligopeptides
(Supplementary Table S6). These animals can be used to study
the role of miR-762 in the development of atherosclerosis.
A similar type of organization of miRNA binding multiple sites
has been found in the mRNAs of many genes involved in the
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development of cardiovascular and other diseases (Kondybayeva
et al., 2018; Aisina et al., 2019; Yurikova et al., 2019).

KLF2 is characterized by the presence of two clusters
consisting of the BS for 14 and 2 different miRNAs. The first of
these clusters is formed by single BS starting from the 264 to
296 nt position with a size of 33 nt (Table 2). The total length of
all BS is 305 nt. The degree of compaction of the binding sites
in the cluster is nine. The second cluster of this gene is formed
only by two single BS. In the CDS of KLF2 mRNA BS were
detected for ID00061.3p-miR, ID00457.3p-miR, ID01155.3p-
miR, ID01702.3p-miR, ID01804.3p-miR, ID02187.5p-miR,
ID03367.5p-miR which have BS in the 5′ UTR of GAS6 mRNA.
This indicates an overall control of these genes expression by
these miRNAs. The maximum 1G/1Gm value (100%) among
these genes was detected at the ID01593.5p-miR BS, which
interact with the ANGPTL4 mRNA.

PDE4D formed two clusters. The first cluster contained the BS
for ID00061.3p-miR, ID01155.3p-miR, ID03064.3p-miR, miR-
3960 and ID01702.3p-miR, which had three BS with a free
energy value of −134 kJ/mole. ID01641.3p-miR, miR-3960 and
ID01702.3p-miR BS were found in the second cluster. The size of
the first cluster was 34 nt, extending from position 336 to 369
nt. The second cluster consisted of five multiple BS and eight
single BS; the cluster size was 49 nt, extending from 391 to 439
nt. The total length of miRNA BS was 491 nt, and the degree of
compaction was 10 (Supplementary Table S4).

There were 39 BS for new miRNAs and two BS for old miRNA
in IRS2 mRNA. Two clusters of binding sites in the KLF2 mRNA
interacted with 14 new miRNAs and one old miRNA. In addition,
there were 15 BS for new miRNA and two BS for miR-3960 in the
PDE4D mRNA. A total in CDS mRNA of 40 target genes BS were
identified for 148 new miRNAs and 32 old miRNAs.

Some miRNAs had more than two BS: ID01641.3p-
miR, ID02064.5p-miR, ID02187.5p-miR, ID02770.5p-miR,
ID03324.3p-miR, ID03367.5p-miR – 3 BS; ID00296.3p-
miR, ID01377.3p-miR, ID01804.3p-miR, miR-3960 – 4 BS;
ID00457.3p-miR, ID01155.3p-miR – 5 BS and ID00061.3p-
miR, ID01702.3p-miR – 6 BS. Most of them had free energy
interaction above−130 kJ/mole.

Three clusters of miRNA BS in CDS mRNA of orthologic
genes encode different oligopeptides because they have different
reading frames. Oligopeptides encoded by BS are clearly defined
by conservative oligopeptides, which flank oligopeptides encoded
by BS. Apparently, flanking oligopeptides carry out the important
functional role of a protein, and oligopeptides coded by
BS in the first and second clusters change for the reason
of an acceptability of incomplete complementary interactions
of miRNA and mRNA.

Characteristics of miRNA Interactions in
the 3′ UTRs of mRNAs of Atherosclerosis
Candidate Genes
The 40 genes involved in the development of atherosclerosis
were characterized by BS in the 3′ UTRs. A feature of miRNA
interactions with atherosclerosis candidate genes is the presence
of BS for miR-466, ID00436.3p-miR, and ID01030.3p-miR in

TABLE 2 | Characteristics of miRNAs interaction in the CDS of mRNA of IRS2 and
KLF2 genes.

miRNA Start of site, nt 1G, kJ/mole 1G/1Gm, % Length, nt

IRS2

ID00061.3p-miR 2589÷2601 (4) −125÷−136 91÷98 22

ID00296.3p-miR 2589 −136 86 25

ID00457.3p-miR 2592÷2595 (2) −123÷−132 91÷97 22

ID00522.5p-miR 2589 −127 91 23

ID00756.3p-miR 2587÷2593 (2) −123÷−125 89÷91 23

ID01041.5p-miR 2592 −138 94 24

ID01155.3p-miR 2595÷2601 (4) −125÷−136 91÷98 22

ID01574.5p-miR 2591 −127 90 23

ID01702.3p-miR 2589÷2599 (4) −136÷−140 90÷93 25

ID01778.3p-miR 2594 −134 90 24

ID01804.3p-miR 2589÷2596 (5) −140÷−155 88÷97 25

ID01873.3p-miR 2592÷2595 (2) −123 94 21

ID01879.5p-miR 2594÷2600 (2) −123 91 22

ID01895.5p-miR 2586 −134 90 24

ID02052.5p-miR 2589 −132 89 24

ID02064.5p-miR 2594÷2603 (4) −129÷−132 90÷91 23

ID02187.5p-miR 2591÷2593 (2) −123÷−125 89÷91 23

ID02294.5p-miR 2594 −134 91 24

ID02950.3p-miR 2586 −132 94 23

ID03064.3p-miR 2589 −140 92 24

ID03221.5p-miR 2587 −121 98 20

ID03229.5p-miR 2590÷2593 (2) −121 90 22

ID03305.5p-miR 2589 −115 95 20

ID03367.5p-miR 2592÷2598 (3) −117 93 20

miR-3960 2594÷2597 (2) −115 92 20

ID01702.5p-miR 3602 −138 88 25

ID01574.5p-miR 3603 −127 90 23

ID01804.3p-miR 3599 −140 88 25

ID01106.5p-miR 3603 −129 87 24

ID02229.3p-miR 3605 −125 95 21

ID02499.3p-miR 3605 −121 93 21

miR-3960 3604 −115 92 20

ID00061.3p-miR 4316 −125 91 22

ID00296.3p-miR 4304÷4310 (3) −134÷−144 85÷92 25

ID00457.3p-miR 4319 −123 91 22

ID01155.3p-miR 4316 −125 91 22

ID01641.3p-miR 4310 −134 90 24

ID01702.3p-miR 4310÷4316 (3) −134÷−136 89÷90 25

ID01804.3p-miR 4313 −138 87 25

ID02064.5p-miR 4321 −129 90 23

ID02187.5p-miR 4314 −125 91 23

KLF2

ID00061.3p-miR 274 −129 94 22

ID00457.3p-miR 271 −127 94 22

ID00722.5p-miR 268 −117 96 20

ID01155.3p-miR 274 −129 94 22

ID01377.3p-miR 273 −121 95 20

ID01445.3p-miR 265 −115 92 20

ID01702.3p-miR 266 −136 90 24

ID01804.3p-miR 269 −149 93 23

ID01895.5p-miR 264 −140 94 24

ID02187.5p-miR 270 −123 89 23

ID02950.3p-miR 265 −134 95 23

ID03221.5p-miR 266 −121 98 20

ID03367.5p-miR 271 −115 92 20

miR-4787-5p 269 −123 92 22
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their mRNAs (Table 3 and Supplementary Table S7). The BS of
these miRNAs can be single or multiple and could form a cluster.
For example, CD36 mRNA contains six BS for ID00436.3p-
miR and five BS for miR-466 and ID01030.3p-miR. FASLG
mRNA contains six BS for miR-466 and ID00436.3p-miR and
five BS for ID01030.3p-miR. The mRNA of the FLT1 gene
contains eight BS for miR-466 and seven BS for ID00436.3p-
miR and ID01030.3p-miR. Another feature of candidate genes
is the presence of clusters of binding sites for miR-5095 and
miR-619-5p in their mRNA. There are two clusters of BS
of miR-5095 and miR-619-5p located 12 nucleotides apart in
IL18 mRNA. In these clusters, the start sites of miR-5095
and miR-619-5p BS are located six nucleotides apart, which
is probably due to their common origin. In the mRNAs of
CD36 and ADAM17 completely complementary BS with miR-
619-5p and BS between the mRNA of IL18 with miR-5096
were revealed. The BS of miR-1273f and miR-1273e form a
cluster in the mRNAs of IGF1 gene (Supplementary Table S7).

The 3′ UTRs of the mRNAs of many candidate genes contain
only single miRNA BS that do not form clusters: ABO, ACE,
ADAM17, ADAM33, ANGPT2, APOL1, CD59, FADS2, FOXP3,
GPR132, HNF1A, IGF1R, LDLR, LPCAT3, NOS1AP, PNPLA3,
PPARA, SOAT1, SOCS3, TFPI, TNC, and ZBTB46. Some genes
are characterized by clusters consisting of two single BS:
BRCA1, F11R, IGF1, ITGA2, and TNFSF10. Some genes were
characterized by mixed clusters formed by both single and
multiple BS. NR4A2 had a cluster consisting of both single
BS of ID00470.5p-miR and multiple BS of ID02299.5p-miR
(Supplementary Table S7).

FASLG was characterized by a cluster formed from a miRNA
with single BS (ID02868.3p-miR) and three miRNAs with
multiple BS consisting of six BS for miR-466, five for ID01030.3p-
miR and six for ID00436.3p-miR, extending from 1602 to 1637
nt with an average 1G value of −108 kJ/mole. In the 3′ UTR
of FLT1, there was a cluster of three multiple BS consisting of
seven BS for ID01030.3p-miR, seven for ID00436.3p-miR and

TABLE 3 | Characteristics of miRNAs interaction in the 3′ UTR of mRNA of atherosclerosis candidate genes.

Gene miRNA Start of site, nt 1G, kJ /mole 1G/1Gm, % Length, nt

ADRB3 ID02868.3p-miR 2442 −115 92 23

miR-466 2451 −110 95 23

ID00436.3p-miR 2456 −108 93 23

ID01030.3p-miR 2456÷2462 (2) −113 93 23

CD36 miR-466 3530÷3538 (5) −106÷−108 91÷93 23

ID00436.3p-miR 3533÷3543 (6) −104 89 23

ID01030.3p-miR 3529÷3539 (5) −108 89 23

ID01727.5p-miR 3542 −106 91 23

miR-619-5p 4041 −121 100 22

miR-5096 4107 −104 92 21

miR-619-5p 4168 −117 96 22

miR-5585-3p 4175 −108 93 22

FASLG ID02868.3p-miR 1602 −113 90 23

miR-466 1603÷1613 (6) −106÷−108 91÷93 23

ID00436.3p-miR 1604÷1614 (6) −104÷−106 89÷91 23

ID01030.3p-miR 1604÷1612 (5) −108 89 23

FLT1 miR-466 6910÷6936 (8) −106÷−108 91÷93 23

ID00436.3p-miR 6913÷6925 (7) −104 89 23

ID01030.3p-miR 6909÷6923 (7) −108÷−110 89÷91 23

ICAM1 miR-466 2988 −106 91 23

ID01030.3p-miR 2987 −108 89 23

ID01360.3p-miR 3022 −104 91 21

ID00367.5p-miR 3025 −110 90 22

miR-1273g-3p 3031 −115 98 21

IL18 miR-5095 811÷823 (2) −110 95 21

miR-619-5p 817÷829 (2) −119 22

miR-5096 890÷903 (4) −102÷−113 91÷100 21

PLA2G7 miR-466 1643÷1651 (5) −106÷−108 91÷93 23

ID00436.3p-miR 1646÷1654 (5) −104 89 23

ID01030.3p-miR 1646÷1652 (4) −108 89 23

PPARGC1A miR-466 2806÷2822 (2) −106 91 23

ID00436.3p-miR 2809÷2825 (3) −104÷−108 89÷93 23

ID01030.3p-miR 2811 −115 95 23

ID01727.5p-miR 2824 −104 89 23
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eight for miR-466, extending from 6909 to 6959 nt and with an
average 1G value of−107 kJ/mole. IL18 had a cluster of two miR-
5095 and two miR-619-5p sequences, with a size of 41 nt and an
average 1G value of −114 kJ/mole. MTHFR mRNA contained
one cluster, consisting of ID01811.5p-miR, miR-5095 and miR-
619-5p with an average 1G value of −114 kJ/mole. PPARGC1A
contained a cluster formed by four different miRNAs, including
two miR-466 BS and three ID00436.3p-miR, ID01030.3p-miR,
and ID01727.5p-miR sequences. The size of this cluster was
43 nt, extending from 2806 to 2848 nt. There were some
genes with more than one cluster. The PLA2G7 mRNA had
a cluster that consisted of five miR-466, four ID01030.3p-
miR and five ID00436.3p-miR sites and a length of 35 nt,
extending from 1643 to 1677 nt, with an average 1G value
of−106 kJ/mole.

ICAM1 was characterized by the presence of two clusters,
the first of which consisted of two single BS (ID01030.3p-miR
and miR-466), extending from 2987 to 3011 nt. The second
cluster consisted of three BS of different miRNAs. ID00470.5p-
miR formed BS in OLR1 and NR4A2 mRNAs. The cluster of
miR-1273f and miR-1273e BS was formed in IGF1 mRNA.

There were miRNAs that had BS for more than one
mRNA. The unique miR-619-5p had BS in the mRNAs of
ADAM17, ADAM33, APOL1, BRCA1, F11R, IL18, ITGA2, LDLR,
MTHFR, PNPLA3, SOAT1, and TNFSF10. ID00436.3p-miR and
ID01030.3p-miR formed clusters that consisted of multiple BS for
ADRB3, F11R, FASLG, FLT1, PLA2G7, and PPARGC1A mRNA.
ID01727.5p-miR had BS for NOS1AP and PPARGC1A mRNAs.

The CD36 mRNA cluster, consisting of BS to two different
miRNAs, miR-619-5p and miR-5585-3p, extended from 4168 to
4197 nt. The CD36 mRNA cluster consisted of both single BS and
multiple BS. In general, the cluster consisted of five ID01030.3p-
miR, five miR-466, six ID00436.3p-miR and one ID01727.5p-miR
sequences. The size was 38 nt, extending from 3529 to 3566 nt,
with an average 1G value of−106 kJ/mole.

Associations of miRNA and target genes having BS in 3′ UTR
mRNA are very different from those in 5′ UTR and CDS. In the
3′ UTR mRNA there are no clusters of BS over four miRNAs.
The number of old and new miRNAs is comparable. The total
number of binding sites of new miRNA is 57 and 63 old miRNA
per mRNA of 40 target genes. This is probably due to the fact
that the GC content of old miRNAs is comparable to that of 3′
UTRs, while in 5′ UTR and CDS it is about 10% higher. In the
new miRNA GC content is comparable to that in 5′ UTR and
CDS, so the number of BS for new miRNA in these regions of
mRNA is much larger.

The choice of miRNA-gene associations is difficult to offer
as miRNAs such as miR-619-5p, miR- 5095-, miR-5096- and
miR-5585-3p, which have targets in many genes and most likely
play the role of stabilizers of protein expression. Similar to miR-
466, ID00436.3p-miR and ID01030.3p-miR, which have multiple
BS in the mRNA of many genes, which also gives them the
role of stabilizing the expression of their targets. A significant
increase in the concentration of any these miRNAs will lead
to numerous metabolic disorders and to different diseases
consequently. If about 100–200 key miRNAs are identified with
miRNA-chips, the range of candidate genes will be significantly

reduced because with bioinformatic approaches it could be done
easily and quickly.

DISCUSSION

Since it would be advisable to have lower costs for the diagnosis
of the disease, it is desirable to minimize the number of
associations of miRNA and target genes. However, in the case
of polygenic diseases, such methods could be difficult to develop
because it is not known which gene and which miRNA cause
a particular patient’s disease. Therefore, now it is necessary to
select a list of priority genes for diagnosis and then check which
miRNA could influence protein expression. With the MirTarget
program, this is easily to install and, if alternative miRNAs are
involved, it is also simple to identify miRNAs competitiveness.
The results of the present research demonstrate the effectiveness
of this approach.

It was found that the BS of some miRNAs formed clusters
in the 5′ UTR and CDS sequences of mRNA, resulting in
competition between these miRNAs for binding to mRNA and,
accordingly, for suppressing the expression of the target gene.
The quantitative characteristics of miRNA BS with mRNA
make it possible to predict which miRNAs can more efficiently
bind to mRNA at equal miRNA concentrations. At different
concentrations of these miRNAs, kinetic equations can be used
to predict their suppressive effect on the expression of the target
gene. The revealed associations of several miRNAs that bind
to mRNAs of different candidate genes make it possible to
predict the effect of these miRNAs on the corresponding genes,
which can be expressed to different degrees. For example, GAS6,
NFE2L2, and IRS2 are targets of several identical miRNAs and
bind with these miRNAs depending on their concentrations in
the cell. In cells of different tissues, the ratio of miRNA and
target gene concentrations will be different, and the effect of the
miRNAs on these target genes will also be different. This brief
discussion of the different interactions of miRNAs and candidate
genes under different circumstances shows the complexity of
these networks and begins to paint a picture of the interactions
of miRNA groups with groups of target genes. Without this
assumption, it is difficult to predict or evaluate the involvement
of a single miRNA or a single gene in the development of
a disease. From the identified interactions, it is necessary to
choose those that control more genes and miRNAs and reflect
the development of atherosclerosis. A number of mRNAs and
miRNAs strongly interacting with each other are proposed in
this study. For example, PDE4D and ID00296.3p-miR; SCAP and
ID00296.3p-miR and ID01702.3p-miR; ADCY9 and ID00296.3p-
miR; IRS2 and ID01702.3p-miR, ID03064.3p-miR, ID01804.3p-
miR, and ID00296.3p-miR; NFE2L2 and ID01935.5p-miR,
ID00296.3p-miR, ID01702.3p-miR, and ID01804.3p-miR. In
addition, miRNAs that bind with mRNAs of candidate genes
with complete complementarity are of interest. Within addition
to this condition, it is necessary to consider miRNAs interacting
with a large number of genes, since such miRNAs can
simultaneously control the expression of many genes. Genes
that are regulated by a large number of miRNAs can also be
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considered as effective markers. Unfortunately, our knowledge
is still insufficient to determine which candidate genes play a
key role in the development of the disease, and it is not known
which miRNAs are the most likely signals for the development of
atherosclerosis. However, one thing is obvious – it is necessary
to simultaneously study miRNA and gene interactions in order
to improve the likelihood of obtaining a valid result. From
the established interactions, it is first necessary to consider the
interactions between candidate genes with multiple miRNAs
that form clusters of BS and miRNA interactions with high free
energy. For example, IRS2 is the target of 41 miRNAs with BS
located in the CDS, of which ID00061.3p-miR, ID00296.3p-
miR, ID00457.3p-miR, ID01041.5p-miR, ID01155.3p-
miR, ID01641.3p-miR, ID01702.3p-miR, ID01778.3p-
miR, ID01804.3p-miR, ID01895.5p-miR, ID02052.5p-miR,
ID02064.5p-miR, ID02950.3p-miR, and ID03064.3p-miR have
free energy interactions above−130 kJ/mole. The mRNA ofGAS6
interacts with 21 miRNAs, of which those with ID00296.3p-
miR, ID01041.5p-miR, ID01106.5p-miR, ID01641.3p-miR,
ID01702.3p-miR, ID01804.3p-miR, ID02084.3p-miR, and
ID02294.5p-miR are more efficient. Associations of this type
were observed for NFE2L2, ADCY9, PNPLA3, SCAP, KLF2
and PDE4D, which bind to many miRNAs with high free
energy. Another type of association is the interaction of one
or more miRNA with many genes. For example, miR-466,
ID00436.3p-miR and ID01030.3p-miR bind with the mRNAs
of ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A. In
addition, miR-619-5p targets several candidate atherosclerosis
genes: CD36, IL18, ADAM17, ADAM33, APOL1, BRCA1, F11R,
ITGA2, LDLR, MTHFR, PNPLA3, SOAT1, and TNFSF10. The
mRNA of ANGPTL4 is fully complementary with ID01593.5p-
miR; the mRNAs of ADAM17 and CD36 with miR-619-5p;
the mRNA of IL18 with miR-5096; and the mRNA of NFE2L2
with ID01935.5p-miR.

Here, miRNA interactions with candidate atherosclerosis
genes have been established, which consist of one gene and
several miRNAs, one gene and one miRNA, one miRNA and
several genes, and two or more miRNAs with two or more

candidate genes. The revealed cluster organization of miRNA
BS in mRNA candidate genes contributes to a more accurate
diagnosis of the participation of competing miRNAs in the
development of atherosclerosis.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

AI and DM conceived of the study, drafted the manuscript, and
gave final approval of the version to be published. SL, DA, AP,
and AR conceived of the study and drafted the manuscript. All
authors made substantial contributions to acquisition of data,
to interpretation and modification of the data, were involved
in subsequent rounds of revisions, and read and approved the
final manuscript.

FUNDING

The work was carried out with the financial support of the
Ministry of Education and Science of the Republic of Kazakhstan
within the framework of the grant no. AP05132460. We thank the
European Union Horizon 2020 research and innovation program
(grant agreement no. 645648) ‘Muscle Stress Relief.’

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.605054/full#supplementary-material

REFERENCES
Aisina, D., Niyazova, R., Atambayeva, S., and Ivashchenko, A. (2019). Prediction

of clusters of miRNA binding sites in mRNA candidate genes of breast cancer
subtypes. PeerJ. 7:e8049. doi: 10.7717/peerj.8049

Alagia, A., and Eritja, R. (2016). siRNA and RNAi optimization. Wiley Interdiscip.
Rev. RNA. 7, 316–329. doi: 10.1002/wrna.1337

Andreou, I., Sun, X., Stone, P. H., Edelman, E. R., and Feinberg, M. W. (2015).
MiRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends
Mol. Med. 21, 307–318. doi: 10.1016/j.molmed.2015.02.003

Atambayeva, S., Niyazova, R., Ivashchenko, A., Pyrkova, A., Pinsky, I.,
Akimniyazova, A., et al. (2017). The binding sites of miR-619-5p in the mRNAs
of human and orthologous genes. BMC Genomics 18:428. doi: 10.1186/s12864-
017-3811-6

Bari, A., Orazova, S., and Ivashchenko, A. (2013). miR156- and miR171-binding
sites in the protein-coding sequences of several plant genes. BioMed Res. Int.
2013:307145. doi: 10.1155/2013/307145

Byrne, M. M., Murphy, R. T., and Ryan, A. W. (2014). Epigenetic modulation in
the treatment of atherosclerotic disease. Front. Genet. 5:364. doi: 10.3389/fgene.
2014.00364

Chen, W., Yu, F., Di, M., Li, M., Chen, Y., Zhang, Y., et al. (2018). MicroRNA-
124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl
4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells.
Atherosclerosis 277, 98–107. doi: 10.1016/j.atherosclerosis.2018.08.034

Chen, F., Ye, X., Jiang, H., Zhu, G., and Miao, S. J. (2020). MicroRNA-151
attenuates apoptosis of endothelial cells induced by oxidized low-density
lipoprotein by targeting interleukin-17A (IL-17A). Cardiovasc. Transl. Res. doi:
10.1007/s12265-020-10065-w

Churov, A., Summerhill, V., Grechko, A., Orekhova, V., and Orekhov, A. (2019).
MicroRNAs as potential biomarkers in atherosclerosis. Int. J. Mol. Sci. 20:E5547.
doi: 10.3390/ijms20225547

Cipollone, F., Felicioni, L., Sarzani, R., Ucchino, S., Spigonardo, F., Mandolini, C.,
et al. (2011). A unique microRNA signature associated with plaque instability
in humans. Stroke 42, 2556–2563. doi: 10.1161/STROKEAHA.110.597575

Frontiers in Genetics | www.frontiersin.org 10 November 2020 | Volume 11 | Article 6050541417

https://www.frontiersin.org/articles/10.3389/fgene.2020.605054/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.605054/full#supplementary-material
https://doi.org/10.7717/peerj.8049
https://doi.org/10.1002/wrna.1337
https://doi.org/10.1016/j.molmed.2015.02.003
https://doi.org/10.1186/s12864-017-3811-6
https://doi.org/10.1186/s12864-017-3811-6
https://doi.org/10.1155/2013/307145
https://doi.org/10.3389/fgene.2014.00364
https://doi.org/10.3389/fgene.2014.00364
https://doi.org/10.1016/j.atherosclerosis.2018.08.034
https://doi.org/10.1007/s12265-020-10065-w
https://doi.org/10.1007/s12265-020-10065-w
https://doi.org/10.3390/ijms20225547
https://doi.org/10.1161/STROKEAHA.110.597575
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-605054 October 29, 2020 Time: 17:38 # 11

Mukushkina et al. miRNA Interactions With Candidate Atherosclerosis Genes

Desjarlais, M., Dussault, S., Rivard, F., Harel, S., Sanchez, V., Hussain,
S. N. A., et al. (2019). Forced expression of microRNA-146b reduces TRAF6-
dependent inflammation and improves ischemia-induced neovascularization
in hypercholesterolemic conditions. Atherosclerosis 289, 73–84. doi: 10.1016/j.
atherosclerosis.2019.08.010

Fang, Z., Du, R., Edwards, A., Flemington, E. K., and Zhang, K. (2013). The
sequence structures of human microRNA molecules and their implications.
PLoS One 8:e54215. doi: 10.1371/journal.pone.0054215

Feinberg, M. W., and Moore, K. J. (2016). MicroRNA regulation of atherosclerosis.
Circ. Res. 118, 703–720. doi: 10.1161/CIRCRESAHA.115.306300

Forman, J. J., and Coller, H. A. (2010). The code within the code: microRNAs target
coding regions. Cell Cycle 9, 1533–1541. doi: 10.4161/cc.9.8.11202

Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009). Most
mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19,
92–105. doi: 10.1101/gr.082701.108

Ivashchenko, A., Berillo, O., Pyrkova, A., and Niyazova, R. (2014a). Binding sites
of miR-1273 family on the mRNA of target genes. Biomed Res. Int. 2014:e11.
doi: 10.1155/2014/620530

Ivashchenko, A., Berillo, O., Pyrkova, A., Niyazova, R., and Atambayeva, S.
(2014b). MiR-3960 binding sites with mRNA of human genes. Bioinformation
10, 423–427. doi 10 6026/97320630010423

Ivashchenko, A., Berillo, O., Pyrkova, A., Niyazova, R., and Atambayeva, S. (2014c).
The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-
5585-3p in the mRNAs of human genes. Biomed Res. Int. 2014:e8. doi: 10.1155/
2014/720715

Ivashchenko, A., Issabekova, A. S., and Berillo, O. A. (2013). miR-1279, miR-
548j, miR-548m, and miR-548d-5p binding sites in CDSs of paralogous and
orthologous PTPN12. MSH6, and ZEB1 Genes. Biomed. Res. Int. 2013:e10.
doi: 10.1155/2013/902467

Kanuri, S. H., Ipe, J., Kassab, K., Gao, H., Liu, Y., Skaar, T. C., et al. (2018). Next
generation MicroRNA sequencing to identify coronary artery disease patients
at risk of recurrent myocardial infarction. Atherosclerosis 278, 232–239. doi:
10.1016/j.atherosclerosis.2018.09.021

Kazemi, F. T., Tavakoli, S., Ahmadi, R., Moradi, N., Fadaei, R., Mohammadi,
A., et al. (2020). Evaluation of IP10 and miRNA 296-a expression levels in
peripheral blood mononuclear cell of coronary artery disease patients and
controls. DNA Cell Biol. 39, 1678–1684. doi: 10.1089/dna.2020.5650

Kondybayeva, A, Akimniyazova, A., Kamenova, S., Duchshanova, G., Aisina, D.,
Goncharova, A., et al. (2020). Prediction of miRNA interaction with mRNA
of stroke candidate genes. Neurol. Sci 41, 799–808. doi: 10.1007/s10072-019-
04158-x

Kondybayeva, A. M, Akimniyazova, A. N., Kamenova, S. U., and Ivashchenko,
A. T. (2018). The characteristics of miRNA binding sites in mRNA of ZFHX3
gene and its orthologs. Vavilov J. Genet. Breed. 22, 438–444. doi: 10.18699/VJ18.
380

Kool, E. T. (2001). Hydrogen bonding, base stacking, and steric effects in DNA
replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22. doi: 10.1146/annurev.
biophys.30.1.1

Leidinger, P., Keller, A., and Meese, E. (2012). MicroRNAs – important molecules
in lung cancer research. Front. Genet. 2:104. doi: 10.3389/fgene.2011.00104

Lemieux, S., and Major, F. (2002). RNA canonical and non-canonical base pairing
types: a recognition method and complete repertoire. Nucleic Acids Res. 30,
4250–4263. doi: 10.1093/nar/gkf540

Leontis, N. B., Stombaugh, J., and Westhof, E. (2002). The non-watson-crick base
pairs and their associated isostericity matrices.Nucleic Acids Res. 30, 3497–3531.
doi: 10.1093/nar/gkf481

Li, Q., Cui, H. H., Yang, Y. J., Li, X. D., Chen, G. H., Tian, X. Q., et al. (2017).
Quantitative proteomics analysis of ischemia/reperfusion injury-modulated
proteins in cardiac microvascular endothelial cells and the protective role of
tongxinluo. Cell Physiol. Biochem. 41, 1503–1518. doi: 10.1159/000470806

Li, X., He, X., Wang, J., Wang, D., Cong, P., Zhu, A., et al. (2020). The Regulation of
Exosome-Derived miRNA on Heterogeneity of Macrophages in Atherosclerotic
Plaques. Front. Immunol. 11:2175. doi: 10.3389/fimmu.2020.02175

Liu, D., Song, J., Ji, X., Liu, Z., Li, T., and Hu, B. (2020). PRDM16 upregulation
induced by MicroRNA-448 inhibition alleviates atherosclerosis via the TGF-β
signaling pathway inactivation. Front. Physiol. 11:846. doi: 10.3389/fphys.2020.
00846

Londin, E., Loher, P., Telonis, A. G., Quann, K., Clark, P., Jing, Y., et al. (2015).
Analysis of 13 cell types reveals evidence for the expression of numerous
novel primate- and tissue-specific microRNAs. Proc. Natl. Acad. Sci. U.S.A. 112,
1106–1115. doi: 10.1073/pnas.1420955112

Lu, Y., Thavarajah, T., Gu, W., Cai, J., and Xu, Q. (2018). Impact of miRNA in
Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 38, e159–e170. doi: 10.1161/
ATVBAHA.118.310227

Madrigal-Matute, J., Rotllan, N., Aranda, J. F., and Fernandez-Hernando, C.
(2013). MicroRNAs and atherosclerosis. Curr. Atheroscler. Rep. 15:322. doi:
10.1007/s11883-013-0322-z

Maitrias, P., Metzinger-Le Meuth, V., Massy, Z. A., M’Baya-Moutoula, E., Reix, T.,
Caus, T., et al. (2015). MicroRNA deregulation in symptomatic carotid plaque.
J. Vasc. Surg. 62, 1245–1250. doi: 10.1016/j.jvs.2015.06.136

Moghaddam, A. S., Afshari, J. T., Esmaeili, S. A., Saburi, E., Joneidi, Z.,
and Momtazi-Borojeni, A. A. (2019). Cardioprotective microRNAs: lessons
from stem cell-derived exosomal microRNAs to treat cardiovascular disease.
Atherosclerosis 285, 1–9. doi: 10.1016/j.atherosclerosis.2019.03.016

Niyazova, R., Berillo, O., Atambayeva, S., Pyrkova, A., Alybayeva, A., and
Ivashchenko, A. (2015). MiR-1322 binding sites in paralogous and orthologous
genes. BioMed. Res. Int. 1:e7. doi: 10.1155/2015/962637

Orom, U. A., Nielsen, F. C., and Lund, A. H. (2008). MicroRNA-10a binds the
5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell.
30, 460–471. doi: 10.1016/j.molcel.2008.05.001

Ren, K., Zhu, X., Zheng, Z., Mo, Z. C., Peng, X. S., Zeng, Y. Z., et al. (2018).
MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake
from HDL cholesterol via the post-transcriptional repression of scavenger
receptor class B type I. Atherosclerosis 270, 57–67. doi: 10.1016/j.atherosclerosis.
2018.01.045

Rodriguez, I., Coto, E., Reguero, J. R., Gonzalez, P., Andres, V., Lozano, I., et al.
(2007). Role of the CDKN1A/p21, CDKN1C/p57, and CDKN2A/p16 genes in
the risk of atherosclerosis and myocardial infarction. Cell Cycle 6, 620–625.
doi: 10.4161/cc.6.5.3927

Ryu, J., Ahn, Y., Kook, H., and Kim, Y. K. (2020). The roles of non-coding RNAs in
vascular calcification and opportunities as therapeutic targets. Pharmacol. Ther.
e107675. doi: 10.1016/j.pharmthera.2020.107675

Santovito, D., Egea, V., and Weber, C. (2016). Small but smart: MicroRNAs
orchestrate atherosclerosis development and progression. Biochim. Biophys.
Acta 1861, 2075–2086. doi: 10.1016/j.bbalip.2015.12.013

Shi, X., Xie, X., Sun, Y., He, H., Huang, H., Liu, Y., et al. (2020).
Paeonol inhibits NLRP3 mediated inflammation in rat endothelial cells by
elevating hyperlipidemic rats plasma exosomal miRNA-223. Eur. J. Pharmacol.
885:173473. doi: 10.1016/j.ejphar.2020.173473

Shoeibi, S. (2020). Diagnostic and theranostic microRNAs in the pathogenesis of
atherosclerosis. Acta Physiol. 228:E13353. doi: 10.1111/apha.13353

Solly, E. L., Dimasi, C. G., Bursill, C. A., Psaltis, P. J., and Tan, J. T. M. (2019).
MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis.
J. Clin. Med. 8:E2199. doi: 10.3390/jcm8122199

Sun, B., Shan, Z., Sun, G., and Wang, X. (2020). MicroRNA-183-5p acts as a
potential diagnostic biomarker for atherosclerosis and regulates the growth
of vascular smooth muscle cell. J. Chin. Med. Assoc. doi: 10.1097/JCMA.
0000000000000433

Toba, H., Lindsey, M. L., and Chilton, R. J. (2014). Applications of miRNA
technology for atherosclerosis. Curr. Atheroscler. Rep. 16:386. doi: 10.1007/
s11883-013-0386-9

Vargas-Alarcon, G., Perez-Hernandez, N., Rodriguez-Perez, J. M., Fragoso,
J. M., Cardoso-Saldana, G., Vazquez-Vazquez, C., et al. (2019). MRE11A
polymorphisms are associated with subclinical atherosclerosis and
cardiovascular risk factors. a case-control study of the GEA mexican project.
Front. Genet. 10:530. doi: 10.3389/fgene.2019.00530

Velle-Forbord, T., Eidlaug, M., Debik, J., Sæther, J. C., Follestad, T., Nauman, J.,
et al. (2019). Circulating microRNAs as predictive biomarkers of myocardial
infarction: evidence from the HUNT study. Atherosclerosis 289, 1–7. doi: 10.
1016/j.atherosclerosis.2019.07.024

Wang, C., Yang, W., Liang, X., Song, W., Lin, J., Sun, Y., et al. (2020). ). MicroRNA-
761 modulates foam cell formation and inflammation through autophagy in the
progression of atherosclerosis. Mol. Cell. Biochem. 474, 135–146. doi: 10.1007/
s11010-020-03839-y

Frontiers in Genetics | www.frontiersin.org 11 November 2020 | Volume 11 | Article 6050541518

https://doi.org/10.1016/j.atherosclerosis.2019.08.010
https://doi.org/10.1016/j.atherosclerosis.2019.08.010
https://doi.org/10.1371/journal.pone.0054215
https://doi.org/10.1161/CIRCRESAHA.115.306300
https://doi.org/10.4161/cc.9.8.11202
https://doi.org/10.1101/gr.082701.108
https://doi.org/10.1155/2014/620530
https://doi.org/10.1155/2014/720715
https://doi.org/10.1155/2014/720715
https://doi.org/10.1155/2013/902467
https://doi.org/10.1016/j.atherosclerosis.2018.09.021
https://doi.org/10.1016/j.atherosclerosis.2018.09.021
https://doi.org/10.1089/dna.2020.5650
https://doi.org/10.1007/s10072-019-04158-x
https://doi.org/10.1007/s10072-019-04158-x
https://doi.org/10.18699/VJ18.380
https://doi.org/10.18699/VJ18.380
https://doi.org/10.1146/annurev.biophys.30.1.1
https://doi.org/10.1146/annurev.biophys.30.1.1
https://doi.org/10.3389/fgene.2011.00104
https://doi.org/10.1093/nar/gkf540
https://doi.org/10.1093/nar/gkf481
https://doi.org/10.1159/000470806
https://doi.org/10.3389/fimmu.2020.02175
https://doi.org/10.3389/fphys.2020.00846
https://doi.org/10.3389/fphys.2020.00846
https://doi.org/10.1073/pnas.1420955112
https://doi.org/10.1161/ATVBAHA.118.310227
https://doi.org/10.1161/ATVBAHA.118.310227
https://doi.org/10.1007/s11883-013-0322-z
https://doi.org/10.1007/s11883-013-0322-z
https://doi.org/10.1016/j.jvs.2015.06.136
https://doi.org/10.1016/j.atherosclerosis.2019.03.016
https://doi.org/10.1155/2015/962637
https://doi.org/10.1016/j.molcel.2008.05.001
https://doi.org/10.1016/j.atherosclerosis.2018.01.045
https://doi.org/10.1016/j.atherosclerosis.2018.01.045
https://doi.org/10.4161/cc.6.5.3927
https://doi.org/10.1016/j.pharmthera.2020.107675
https://doi.org/10.1016/j.bbalip.2015.12.013
https://doi.org/10.1016/j.ejphar.2020.173473
https://doi.org/10.1111/apha.13353
https://doi.org/10.3390/jcm8122199
https://doi.org/10.1097/JCMA.0000000000000433
https://doi.org/10.1097/JCMA.0000000000000433
https://doi.org/10.1007/s11883-013-0386-9
https://doi.org/10.1007/s11883-013-0386-9
https://doi.org/10.3389/fgene.2019.00530
https://doi.org/10.1016/j.atherosclerosis.2019.07.024
https://doi.org/10.1016/j.atherosclerosis.2019.07.024
https://doi.org/10.1007/s11010-020-03839-y
https://doi.org/10.1007/s11010-020-03839-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-605054 October 29, 2020 Time: 17:38 # 12

Mukushkina et al. miRNA Interactions With Candidate Atherosclerosis Genes

Wang, M., Li, J., Cai, J., Cheng, L., Wang, X., Xu, P., et al. (2020). Overexpression
of MicroRNA-16 alleviates atherosclerosis by inhibition of inflammatory
pathways. Biomed Res. Int. 2020:8504238. doi: 10.1155/2020/8504238

Wang, W., Ma, F., and Zhang, H. (2020). MicroRNA-374 is a potential diagnostic
biomarker for atherosclerosis and regulates the proliferation and migration
of vascular smooth muscle cells. Cardiovasc. Diagn. Ther 10, 687–694. doi:
10.21037/cdt-20-444

Wang, Y., Zhu, J., Handberg, A., Overvad, K., Tjønneland, A., Rimm,
E. B., et al. (2018). Association between plasma CD36 levels and
incident risk of coronary heart disease among Danish men and
women. Atherosclerosis 277, 163–168. doi: 10.1016/j.atherosclerosis.2018.
08.045

Wiese, C. B., Zhong, J., Xu, Z. Q., Zhang, Y., Ramirez Solano, M. A., Zhu,
W., et al. (2019). Dual inhibition of endothelial miR-92a-3p and miR-489-3p
reduces renal injury-associated atherosclerosis. Atherosclerosis 282, 121–131.
doi: 10.1016/j.atherosclerosis.2019.01.023

You, L., Chen, H., Xu, L., and Li, X. (2020). Overexpression of miR-29a-
3p suppresses proliferation, migration, and invasion of vascular smooth
muscle cells in atherosclerosis via targeting TNFRSF1A. Biomed. Res. Int.
2020:9627974. doi: 10.1155/2020/9627974

Yurikova, O. Y., Aisina, D. E., Niyazova, R. E., Atambayeva, S. A.,
Labeit, S., and Ivashchenko, A. T. (2019). The interaction of

miRNA-5p and miRNA-3p with the mRNAs of Orthologous
Genes. Mol.Biol. 53, 692–704. doi: 10.1134/S00268984190
40189

Zhang, R., Song, B., Hong, X., Shen, Z., Sui, L., and Wang, S. (2020).
microRNA-9 inhibits vulnerable plaque formation and vascular remodeling via
suppression of the SDC2-dependent FAK/ERK signaling pathway in mice with
atherosclerosis. Front. Physiol. 11:804. doi: 10.3389/fphys.2020.00804

Zhou, H., and Rigoutsos, I. (2014). MiR-103a-3p targets the 5’ UTR of
GPRC5A in pancreatic cells. RNA 20, 1431–1439. doi: 10.1261/rna.
045757.114

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020Mukushkina, Aisina, Pyrkova, Ryskulova, Labeit and Ivashchenko.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 November 2020 | Volume 11 | Article 6050541619

https://doi.org/10.1155/2020/8504238
https://doi.org/10.21037/cdt-20-444
https://doi.org/10.21037/cdt-20-444
https://doi.org/10.1016/j.atherosclerosis.2018.08.045
https://doi.org/10.1016/j.atherosclerosis.2018.08.045
https://doi.org/10.1016/j.atherosclerosis.2019.01.023
https://doi.org/10.1155/2020/9627974
https://doi.org/10.1134/S0026898419040189
https://doi.org/10.1134/S0026898419040189
https://doi.org/10.3389/fphys.2020.00804
https://doi.org/10.1261/rna.045757.114
https://doi.org/10.1261/rna.045757.114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 08 December 2020

doi: 10.3389/fgene.2020.608421

Frontiers in Genetics | www.frontiersin.org 1 December 2020 | Volume 11 | Article 608421

Edited by:

Yuriy L. Orlov,

I.M. Sechenov First Moscow State

Medical University, Russia

Reviewed by:

Charu Lata,

National Institute of Science

Communication and Information

Resources (CSIR), India

Vetriventhan Mani,

International Crops Research Institute

for the Semi-Arid Tropics

(ICRISAT), India

Anil Kumar,

G. B. Pant University of Agriculture

and Technology, India

*Correspondence:

Nepolean Thirunavukkarasu

tnepolean@gmail.com;

nepolean@millets.res.in

Abhishek Rathore

a.rathore@cgiar.org

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 20 September 2020

Accepted: 05 November 2020

Published: 08 December 2020

Citation:

Chakraborty A, Viswanath A,

Malipatil R, Rathore A and

Thirunavukkarasu N (2020) Structural

and Functional Characteristics of

miRNAs in Five Strategic Millet

Species and Their Utility in Drought

Tolerance. Front. Genet. 11:608421.

doi: 10.3389/fgene.2020.608421

Structural and Functional
Characteristics of miRNAs in Five
Strategic Millet Species and Their
Utility in Drought Tolerance

Animikha Chakraborty 1, Aswini Viswanath 1, Renuka Malipatil 1, Abhishek Rathore 2* and
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Millets are the strategic food crops in arid and drought-prone ecologies. Millets, by virtue

of nature, are very well-adapted to drought conditions and able to produce sustainable

yield. Millets have important nutrients that can help prevent micro-nutrient malnutrition. As

a result of the adverse effect of climate change and widespread malnutrition, millets have

attained a strategic position to sustain food and nutritional security. Although millets can

adapt well to the drought ecologies where other cereals fail completely, the yield level is

very low under stress. There is a tremendous opportunity to increase the genetic potential

of millet crops in dry lands when the genetics of the drought-tolerance mechanism is fully

explained. MicroRNAs (miRNAs) are the class of small RNAs that control trait expression.

They are part of the gene regulation but little studied in millets. In the present study,

novel miRNAs and gene targets were identified from the genomic resources of pearl

millet, sorghum, foxtail millet, finger millet, and proso millet through in silico approaches.

A total of 1,002 miRNAs from 280 families regulating 23,158 targets were identified

using different filtration criteria in five millet species. The unique as well as conserved

structural features and functional characteristics of miRNA across millets were explained.

About 84miRNAswere conserved acrossmillets in different species combinations, which

explained the evolutionary relationship of the millets. Further, 215 miRNAs controlling

155 unique major drought-responsive genes, transcription factors, and protein families

revealed the genetics of drought tolerance that are accumulated in the millet genomes.

The miRNAs regulating the drought stress through specific targets or multiple targets

showed through a network analysis. The identified genes regulated by miRNA genes

could be useful in developing functional markers and used for yield improvement under

drought in millets as well as in other crops.

Keywords: microRNAs, millets, drought stress, conserved genes, functional genes

1720

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.608421
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.608421&domain=pdf&date_stamp=2020-12-08
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tnepolean@gmail.com
mailto:nepolean@millets.res.in
mailto:a.rathore@cgiar.org
https://doi.org/10.3389/fgene.2020.608421
https://www.frontiersin.org/articles/10.3389/fgene.2020.608421/full


Chakraborty et al. miRNA-Regulated Drought Tolerance in Millets

INTRODUCTION

MicroRNAs (miRNAs) are small, single-stranded, non-coding,
endogenous RNA of size varying from 21 to 24 nucleotides
mainly involved in post-transcriptional gene regulation (Zhang
et al., 2014; Aravind et al., 2017). They are highly conserved
in matured form, and the conserved nature has made it a
molecule of interest in several plant growth, development,
and stress regulatory studies without any species boundaries.
miRNAs regulate gene expression by targeting specific genes that
are involved in biological processes, such as development and
metabolic process, as well as target-specific transcription factors
(TFs). Interaction between the miRNA–mRNA target is more
important as it induces variation in the gene being expressed.
Regulation of gene expression occurs in several ways, such
as miRNA-directed mRNA cleavage, translational repression,
chromatin remodeling, or epigenetic modification (Kumar et al.,
2018). Single miRNA itself can target several genes involved in
the same cellular signaling pathway (Alptekin et al., 2017).

Studies have shown that miRNAs and their targets are
highly conserved across all major lineages of plant species,
including dicots andmonocots (Jones-Rhoades and Bartel, 2004).
There are at least four theories about the origin of miRNAs:
(1) inverted duplication events in the gene sequences; (2)
duplication events from the protein-coding genes; (3) derived
from the transposable elements, such as miniature inverted-
repeat transposable elements (MITEs); and (4) accumulation of
mutations in the inverted repeats and selection (Cuperus et al.,
2011; Nozawa et al., 2012). Evolutionarily conserved miRNAs are
mostly encoded by gene families. This, coupled with miRNA–
mRNA target interaction, results in overlapping functions of
miRNAs belonging to the same families (Jones-Rhoades et al.,
2006).

miRNA families can be divided into two categories, based on
the nature of their conservation and function. The first type is
ancient in terms of evolution, highly conserved in the systemwith
a high degree of expression. Conserved miRNAs are ubiquitous
with low sequence variation and play an important role in
basic biological functions through regulation of transcription
factors and genes. The second type is relatively young in terms
of evolution and expresses only when induced under specific
conditions. Since they recently evolved to perform a specific
function, the sequence variation is high in such types (Qin et al.,
2014). Even thoughmiRNA families are conserved among plants,
they are more specific to the species of plant, physiological stages,
type of organ/tissues, and stress conditions (Sun, 2012; Banerjee
et al., 2016; Sunkar et al., 2017). This conserved nature over
long evolutionary distances suggests the role of the evolutionarily
conserved mechanism of miRNA in gene regulation (Molnar
et al., 2007).

Abiotic stresses negatively impact plant growth, development,
and productivity by altering the gene expression patterns. In
order to cope with stress conditions, plants have developed
several mechanisms over time, including the intricate
interactions between stress-responsive elements and various
molecular and biochemical factors affecting growth and
development (Razmjoo et al., 2008). The plant molecular

responses to abiotic stresses involve interactions and crosstalk
with many molecular pathways, including miRNA-mediated
regulatory pathways (Bej and Basak, 2014). miRNA-mediated
regulation involves a change in self-concentration and modifying
the mRNA expression. These regulations, in turn, change the
protein expression when exposed to stress (Ding et al., 2009;
Wang et al., 2014).

Under drought stress, plants have evolved a series of protective
mechanisms to withstand adverse conditions (Jaworski et al.,
2010). Plants produce an array of gene regulation responses,
which include triggering the expression of several stress-related
genes, accumulation of osmotically active metabolites, and
biosynthesis of specific proteins (Nepolean et al., 2014; Mittal
et al., 2017a,b). Many studies have shown that the miRNAs
were important modulators of drought tolerance in plants,
where they modify the translation of target mRNAs that contain
sequences that are complementary to the mature miRNAs. A
study conducted in wild emmer wheat produced differential
expression patterns of 13 miRNAs in response to drought stress
(Kantar et al., 2011; Aravind et al., 2017).

Millets are a group of small grain crops of the family Poaceae,
widely grown in the arid and semi-arid tropical regions of Asia
and Africa. They are highly favored for food sustainability, owing
to climate-resilient features, such as diverse adaptation to arid,
semi-arid, and humid conditions. They tend to be less prone to
biotic and abiotic stresses, and they can be grown in marginal
lands (Kole et al., 2015). Compared to other cereals, millets show
exceptional tolerance toward diverse abiotic stresses including
drought, salinity, and heat stresses (Bandyopadhyay et al., 2017).
In earlier studies on pearl millet, miRNAs were identified using
non-pearl millet genomes (Jaiswal et al., 2018; Kumar et al., 2018).
miRNAs in sorghum for drought (Katiyar et al., 2015; Hamza
et al., 2016) and foxtail for drought (Wang et al., 2016) and
dehydration stress (Yadav et al., 2019) using NGS approaches
gave rise to a group of differentially regulating miRNAs. In our
experiment, we selected five important millet species, namely
pearl millet, sorghum, foxtail millet, finger millet, and proso
millet, to mine the miRNAs using the latest genomic resources
and in silico approaches and to track their stress-responsive
features at the cellular, molecular, and physiological levels. We
structurally characterized the miRNAs and identified conserved
domains, such as sequence signatures in mature miRNAs across
millet species. We identified target mRNAs regulated by the
miRNAs and annotated the functional genes and transcription
factors. We explained comprehensively how specific miRNAs
regulating various genes in response to drought stress can be used
to increase the productivity of millets and other crops.

MATERIALS AND METHODS

miRNA Reference and Genomic Data
KnownmicroRNAs and their precursor sequences from different
plants were obtained from miRNA databases PNRD (Yi et al.,
2015) and miRBase (http://www.miRbase.org/). Of the 16,436
miRNAs we obtained, a total of 5,906 plant miRNAs served as
reference after removal of the redundant sequences. Most of these
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miRNAs were identified or verified by experiments, and others
were computationally predicted as their close homologs.

Genomic sequences in the form of expressed sequence
tags (ESTs), genome survey sequences (GSS), and whole-
genome sequences (WGS) were retrieved from the NCBI (http://
www.ncbi.nlm.nih.gov/) for five millet species: pearl millet
[Pennisetum glaucum (L.) R. Br.], 5265 ESTs, 4105 GSS, and
WGS; sorghum [Sorghum bicolor (L.) Moench], 80461 GSS and
WGS; finger millet [Eleusine coracana (L.) Gaertn.], 2021 ESTs;
foxtail millet [Setaria italica (L.) Beauv.], 66052 ESTs and 96975
GSS; and proso millet (Panicum miliaceum L.), 216 ESTs. The
reference genome sequence assembly accessions used in our
study for pearl millet, sorghum, finger millet, foxtail millet,
and proso millet are GCA_002174835.2, GCF_000003195.3,
GCA_002180455.1, GCA_000263155.2, and GCA_002895445.2,
respectively (https://www.ncbi.nlm.nih.gov/assembly).

Pre-processing
Distinct pre-processing steps were taken to draw miRNA
candidate sequences from the respective millet genomes. The
BLAST version 2.6.0+ alignment tool was used for BLASTn
to find the homologs. All known hairpin loop sequences were
used as reference in the BLAST search against the genome
with accurate parameters as follows: word-size 11 and E value
cut-off 10−3 and 100 percent identity value, with a maximum
three mismatches allowed and default settings for the remaining
parameters. Flanking regions from both sides of the matched
sequences were cut to a length of 70 nt and scanned by a sliding
window of 100 nt (Wang et al., 2005). Duplicated sequences were
discarded, and the remaining query sequences were searched
using protein and nucleotide databases filtered to remove the
presence of rRNA, tRNA, and mRNA, leaving the candidate
sequences to be treated as miRNA precursors.

Structure Prediction
The secondary structure of the candidate precursor sequences
was predicted by RNA fold (Hofacker et al., 1994) using the
Vienna R package (Lorenz et al., 2011). The folding structures
prediction uses the minimum free energy (MFE) algorithm
and base pairing probability matrix. Sequences satisfying the
criteria are as follows: (1) precursors having no more than
three mismatches with previously known plant miRNAs; (2) the
secondary structure should be folding into a perfect or near-
perfect stem loop hairpin; (3) the mature sequence should be
located in one of the arms of the stem loop; (4) presence of loop in
the miRNA sequence is not allowed; (5) only the sequences with
MFE lower than−20 kcal/mol are kept, and (6) A+U nucleotide
content is 25–70% (Patanun et al., 2013).

The miRNAs position on the stem loop structure were
predicted by theMirDup (Leclercq et al., 2013), using the training
plant model for the candidate mature miRNAs. The classifier
uses 10-fold cross validation. The rankingmethod was performed
using the information gain evaluator inWEKA. TheMirDup uses
the random forest classifier trained with an unlimited maximum
depth of the trees.

Potential Target Identification
Putative gene targets were identified by complementarity
between miRNA and mRNA sequence. The targets against all
miRNAs of five millet species were identified using the plant
miRNA analysis psRNA Target Tool (http://plantgrn.noble.org/
psRNATarget/analysis) (Dai and Zhao, 2011). The genome and
EST sequences of the crops were taken as input, considering the
seed region 2–13 nt, maximum UPE 25, and expectation value 5
at themost. miRNA andmRNA complementary sites were scored
0.5 or 1, according to the G:Umatch or non-match. Additionally,
no more than two consecutive mismatches and no more than
four mismatches between mature miRNA and potential target
(Chai et al., 2015) were allowed. Due to lack of annotation of the
millets, protein coding genes were identified from the putative
target mRNAs using BLASTx from either the same crop or from
other plants, such as Arabidopsis or rice.

Gene Ontology
The gene ontology (GO) base is continually evolving as
biological knowledge increases and the curation of biological
process develops. Target genes were subjected to functional
annotation to reveal the miRNA-mediated gene regulatory
network on biological processes, cellular components, and
molecular functions. GO annotation was performed using
DAVID (https://david.ncifcrf.gov/) for individual crops to
understand the diverse function. The DAVID functional
annotation clustering tool provided a module-centric approach
for functional analysis of large gene lists. The grouping of data
is based on functional categories and co-expression profiles, such
as genes in the same pathway. A gene-term matrix gives different
categorical clusters, such as GO biological process, GOmolecular
function, and GO cellular component and pathways (Huang
et al., 2007). The calculation of over-representation of GO terms
was done by applying the Fisher’s exact test for count data and
p-value (Benjamini and Hochberg, 1995). Figure 1 shows the
comprehensive workflow used for miRNA.

Gene Network
A network of drought targets of the miRNAs was created using
Cytoscape (https://cytoscape.org/) (Shannon et al., 2003) to point
out the hub genes of drought responsiveness.

RESULTS

Identification of Pre-miRNAs
The species-specific miRNAs were found by precise excision
of the stem-loop precursor and single strands with a length
of ∼22 nt (Zhang et al., 2009). After BLASTn search against
plant miRNAs from miRbase, the hits without protein coding
sequences, tRNAs, and rRNAs were kept for secondary structure
analysis. We identified 10,376, 9,064, 8,748, 8,173, and 3,055
homologous sequences in sorghum, foxtail, pearl, finger millet,
and proso millet, respectively (Table 1). The homologous
sequences were filtered by removing other RNA matches
(tRNA, mRNA, rRNA), which resulted in the removal of
8,173, 3,493, 771, 478, and 27 candidate sequences from finger
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FIGURE 1 | The workflow describes the comprehensive in silico pipeline for the identification of miRNAs from millet genomic resources.

TABLE 1 | Pre- and mature miRNAs identified through in silico tools in five millet species.

Crop Blast matches Filtered-off tRNA,

rRNA, and mRNA

homologs

Entries without

duplication

Stable match Rejected miRNA candidates Final mature miRNAs

Finger millet 8,173 8,173 0 75 58 17

Foxtail millet 9,064 771 8,293 1,615 1,242 373

Pearl millet 8,748 478 8,270 808 626 178

Proso millet 3,055 27 3,028 464 21 404

Sorghum 10,376 3,493 6,883 815 781 34

millet, sorghum, foxtail millet, pearl millet, and proso millet,
respectively (Table 1).

The stability of the hairpin must be high with the lowest free
energy of all other alternative folds for that sequence, which
were predicted by RNA fold (Mathews et al., 2010). The minimal
folding free energy (MFE) index is a major feature to distinguish
putative precursor miRNAs from other RNAs. It was observed
that more than 90% of the miRNAs had an MFE value <-30
(Zhang et al., 2006). Stable fold structures with MFE −20 were
sorted out from the remaining structures producing 1,615, 815,
804, 434, and 75 stable precursor miRNAs from foxtail, sorghum,
pearl millet, prosomillet, and finger millet, respectively (Table 1).

miRNA Clusters in Genome
Among the candidate miRNAs, unique mature miRNAs were
identified from foxtail millet, pearl millet, proso millet, and
sorghum (Figure 2). Of these families, some were frequently
present in different chromosomal regions in respective millets.
In foxtail millet, a maximum number of miRNAs was observed
in chromosome 1 (145 miRNAs), followed by chromosomes 2,

3, and 4 (50 miRNAs). Of the families, miR156 and miR157
were observed 9 times higher in chromosome 1. In pearl millet,
miR167 and miR169 were the most frequent families, located
in chromosomes 2 and 1, respectively, and chromosome 1 had
the maximum miRNA families count among all chromosomes.
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FIGURE 2 | Distribution of miRNAs across chromosomes in pearl millet, foxtail millet, proso millet, and sorghum.

Chromosome 10 in proso millet was the largest contributor
with 68 miRNA families, and the major families were miR396,
miR167, and miR166. In sorghum, chromosome 5 had the
highest number of families. In finger millet, 14 unique families
were identified, but the chromosome-specific miRNA count
could not be tagged since genome was distributed in scaffolds.

Sequence Characteristics of New miRNAs
Transformation from precursor to mature form includes one
major feature, the presence of mature 5′ and 3′ stems. Tools,
such as Mature Bayes and the MirDup tool were used to bring
out the mature form from the stable precursor miRNA molecule
(Gkirtzou et al., 2010). A total of 404, 373, 174, 34, and 17 mature
miRNAs were obtained from proso millet, foxtail millet, pearl
millet, sorghum, and finger millet, respectively (Table 1).

The conserved miRNA sequences identified were variable
in length across families, and in some families, the members
were of uniform size. There were two classes of precursors
with different structural properties. The most abundant class
included precursors that had only two strongly conserved regions
or blocks that consisted of the miRNA and miRNA∗ (∗ =

complementary sequence of hairpin loop). The foldbacks of
these precursors contained a short stem, consisting mainly of
the miRNA/miRNA duplex. The consensus structures of miRNA
families, such as miR156, miR160, miR170, miR171, miR395, and
others are shown in Figure 3. A second and less frequent class,
which includes the miRNA families miR159/319 and miR394,
displays four conserved sequence blocks (Dezulian et al., 2006).

Conserved miRNAs Across Millets
The present study has revealed 77 miRNAs were observed
commonly repeating in pearl millet, proso millet, and foxtail

millet (Figure 4). A smaller number of identified miRNAs in
finger millet was not included in the analysis. Previously known
reference miRNAs from sorghum and foxtail millet were also
considered, which infers only three were common between old
and newly discovered miRNA in sorghum, while for foxtail
millet, all the miRNAs were new. The frequently co-occurring
families (66) showed a conserved sequence pattern and consensus
folding in the secondary structure. In our study, foxtail millet,
proso millet, and pearl millet showed 27.9% conserved pattern
in identified miRNAs, whereas foxtail and proso millet had
more than 50% similarity (Figure 4). About 28–37% of miRNA
families were matching among foxtail millet, sorghum, and proso
millet. There was no conserved found in all millets together. In
finger millet, we found only two miRNA families (miR845 and
miR1873) common between pearl millet and proso millet due to
incomplete genome and lack of annotation.

Target Prediction
In all five millets, most of the genes were identified as a result
of specific stress conditions, such as drought, cold, salt, and
water deficit. A total number of 7,090, 4,063, 1,754, 238, and
121 unique targets were identified in foxtail, sorghum, pearl
millet, finger millet, and proso millet, respectively (Table 2). In
pearl millet, miR134 acts on translation initiation factor like
5A-1/2, miR164a on heat shock TF, and miR172 on TF SUI1,
which are evolutionarily conserved proteins (Koia et al., 2013).
Some miRNAs control different physiological functions, such
as miR10302, which was observed for regulating MYR1 protein
related to flowering time under low light intensity in Arabidopsis
(Zhao and Beers, 2013) and miR34 functions in seedling salt
stress in broccoli (Tian et al., 2014).

Frontiers in Genetics | www.frontiersin.org 5 December 2020 | Volume 11 | Article 6084212124

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chakraborty et al. miRNA-Regulated Drought Tolerance in Millets

FIGURE 3 | Major miRNA family precursor structure based on MFE values and base–pair probabilities.

Out of 121 mRNA targets, 104 played essential roles in
stress responses in proso millet, which was mostly targeted by
miR44, miR156, miR159, miR160, miR166, miR169, miR171,
miR172, and miR177. Enzymes, such as dioxygenase, kinases,
dehydrin, and malate translocator operating on heat shock and
ripening pathways were controlled by miR81, miR148, and
miR164. Sorghum had 4,063 unique mRNA targets, mostly
involved in different binding proteins, transcription factors,
stress-related HSPs, and dehydration stress-related proteins,
along with aminopeptidases and kinases.

In all millets, the miRNAs were mostly targeting the
TFs, stress-related genes, metal-deficit factors, enzymes,
and pathogenic factors other than normal metabolic and
physiological regulators. Although the majority of plant miRNA
targets were captured by the cut-off of expectation value <5 and
mismatches 0 to 3, several authentic targets were missed due to
lack of annotation.

GO Annotation
The target gene sets were subjected to GO analysis, which
covers three domains (biological process, cellular component,
and molecular function) to interpret the underlying functions
of miRNAs (Figure 5). The biological process category showed
a maximum number of genes participated in cellular process
(545, 424, 153, 150, and 48 in sorghum, pearl millet,
foxtail millet, finger millet, and proso millet, respectively),
followed by metabolic processes, biological regulation, and
cellular component. In cellular component, most of the genes
were grouped in the cell, cell part, organelle, and protein-
containing complex (2685, 2219, 1281, 102, and 98 genes
in sorghum, foxtail, pearl, proso millet, and finger millet,
respectively). Molecular function revealed the underlying activity
of the genes, such as binding, catalytic activity, transcription
regulation, transporter activity, molecular function regulation,
and structural molecule activity.
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FIGURE 4 | Venn diagram showing common and unique miRNAs among five millet species.

TABLE 2 | miRNA-mediated genes, transcription factors, proteins, and enzymes

identified in the genome of five millet species.

Feature Foxtail

millet

Sorghum Proso

millet

Pearl

millet

Finger

millet

Genome size (mbp) 423 666 851 1,817 1,195

Total gene target 13,714 5,882 319 2,977 266

Unique gene target 7,090 4,063 121 1,754 238

Transcription factor 902 193 – 24 14

Enzymatic activity 1,445 763 19 87 64

Stress regulatory 62 516 253 621 28

Carrier protein 43 10 21 102 21

Growth/physiological factor 39 – – – 92

DISCUSSION

Conserved miRNAs Across Millets
Identification of conserved miRNAs families on evolutionary
basis among plants has provided a powerful approach to
understanding gene regulation among related species. Identical
miRNA sequences exist in closely and distantly related plant
species. Many of the miRNAs discovered were found in a
wide range of plant groups, from mosses to angiosperms.
Some miRNA families exist broadly within the angiosperms,
including eudicots and monocots, dating back to at least the early

Cretaceous. Several miRNA families also pre-date the divergence
of gymnosperms and angiosperms (305 million years) and the
divergence between vascular plants and mosses (490 million
years). These results indicated that miRNA sequences are highly
conserved across great phylogenetic distances and that similar
selection pressures have been active in the regulation of gene
expression in plant cells since the earliest stages of their evolution
(Zhang et al., 2006).

Evolutionarily conserved miRNAs are mostly encoded by
the same gene families, and the members of these families are
physically clustered in the entire plant genome (Tanzer et al.,
2005). The mature miRNA sequences are highly conserved
among the same family members, and this extends to the entire
stem-loop precursor duplex. Axtell and Bartel (2005) identified
the occurrence of certain miRNA families (miRNA159 and
miRNA319) common in ten different plant species and similarly
the expression of miRNA165 and miRNA166 in nine plant
species. We analyzed each millet with individually discovered
potential miRNAs in other millets to find the orthologous
candidates. All five millets species belong to same sub-family
Panicoideae, in which pearl millet, fingermillet, foxtail millet, and
proso millet belong to the tribe Paniceae, while sorghum belongs
to another tribe, Andropogoneae (Vetriventhan et al., 2020).

Similar to mature miRNA sequences that are conserved
across different plant species, the targets are also specific
and conserved within the plant families by possessing highly
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FIGURE 5 | Significantly enriched GO terms for the target genes of the miRNAs across millets.

conserved sequences at their complementary sites as we found
in millet species. Although there are many nucleotide changes
among the targets of different plant species, the sequences of
the complementary sites are highly conserved. This is consistent
with the study conducted by Floyd and Bowman (2004), in which
class III HD-Zip genes targeted by miRNA 166 had specific

conserved target regions. It was observed that the sequence
similarity of miRNA coupled with specific target results in
overlapping functions of miRNAs belonging to the same families
(Jones-Rhoades et al., 2006). Families, such as miR156, miR157,
miR159, miR165, miR166, miR172, miR390, and so on were
highly conserved in all vascular plants studied (You et al., 2017).
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miRNAs are highly conserved in the plant kingdom,
irrespective of the time of evolutionary divergence. Many families
of miRNA are orthologous and homologous in different plant
species spanning the breadth of green plant phylogeny (Dezulian
et al., 2006). A comparative genomic experiment revealed that
finger millet with sorghum produced 69 pairs of syntenic
miRNAprecursors, which were conserved between them, thereby
indicating the evolutionary relationship of miRNA families
across different species (Yi et al., 2013). Comparative analysis
of miRNAs identified in A. trichopoda revealed that several
miRNA families orthologous and paralogous with other crops.
Among the conserved miRNAs identified in A. trichopoda, the
miR407 family had three orthologs in A. thaliana, Zea may,
and Gossypium hirsutum. Similarly, there were two orthologs
for A. trichopoda miR417 with A. thaliana and Oryzae sativa
(Hajieghrari et al., 2015). Relative to sorghum, proso millet and
pearl millet are evolutionarily the closest species, with their
supposed common ancestor dating back ∼27 Mya, followed by
∼8.3 Mya between pearl millet and foxtail (Singh et al., 2017).
All millets possess considerable morphological differences but
are evolutionarily well-related and thus share common structural
and functional similarities.

miRNA and Genomic Targets
Prediction of the mRNA targets of the miRNAs identified from
the millets will improve our understanding of the functions and
regulation of these miRNAs. The conserved miRNAs, such as
miR156, miR166, miR165, miR169, miR393, miR395, miR160,
miR170, miR171, and miR172 were identified with 50–100
targets in different millets. We identified 902, 194, 24, and 14
TF targets in foxtail millet, sorghum, pearl millet, and finger
millet, respectively, which were related to plant development,

phase change in growth, and other molecular functions. A set
of 74 miRNA families was identified, targeting different stress
regulatory factors, such as drought stress, dehydration stress,
oxidative stress, and salt stress. Another important functional
group of the predicted targets of miR155, miR156, miR169,
miR172, miR2180, and miR2118 families were associated with
enzymes, such as kinases, phosphate synthase, acetyltransferase,
acid dehydratase, and hydrolase. Most of the miRNA targets
were classified into the binding category and appeared to be
involved in membrane, steroid, nucleic acid, protein, and ion
binding. Around 30 miRNA families were involved in diverse
molecular functions, including DNA binding, zinc ion binding,
oxidoreductase activity, catalytic activity, protein kinase activity,
and transferase activity in all five crops. Our target prediction
results confirmed the widely held view that most plant miRNA
targets encode TFs, which operate different mechanisms in
the millets.

Drought-Responsive Target Prediction
Our study on identification ofmiRNA families targeting drought-
related factors revealed that 89 targets were found in pearl millet
regulated by 29 miRNAs. In proso millet, 64 miRNAs were
found targeting mRNAs related to stresses, including drought-
related pathways. Around 400 drought-specific mRNA targets
were found in sorghum and foxtail millet controlling diverse
pathways. In finger millet, 25 mRNAs specific to drought and
water-deficient stress were identified to target nine different
miRNAs. It was observed that many of the miRNAs families
were both functionally and structurally conserved among the
species, indicating a broad conservation of the regulatory roles
in millets.

FIGURE 6 | Stress-specific interactions explained through miRNA-gene interconnected networks. The red circle indicates the drought mRNAs, the blue diamond

indicates the miRNAs. The size of the red circle indicates the degree of connectivity of the target genes.
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Network of Drought-Responsive miRNA
and Their Targets
Our prediction of target genes revealed that multiple genes can be
targeted by one specificmiRNA, which suggested that themiRNA
research should focus on networks more than on individual
connections between miRNA and strongly predicted targets. To
investigate the relationship between drought-responsive miRNA
and their targets, a network analysis was carried out using
the Cytoscape platform. The analysis incorporated all the non-
conserved and conserved miRNAs of millet species belonging
to 22 families. Targets involved in stress tolerance or plant
development, such as genes encoding transcription factors,
protein kinases, and phosphatases, and hormone-responsive
factors were considered in the network analysis (Figure 6). It
was found that the conserved miR156, miR160, and miR167

TABLE 3A | Species-specific microRNA families associated with

drought-responsive traits.

miRNA Stress-related

mRNAs function

Species

miR104, miR105, miR1120, miR123,

miR150, miR154, miR158, miR163, miR38,

miR41, miR6, miR156, miR171, miR2108,

miR164, miR395, miR167, miR170, miR160,

miR319, miR169, miR172, miR165

Dehydration stress Foxtail millet

miR396 Dehydration stress Sorghum

miR1873, miR10095 Drought stress Finger millet

miR399 Drought stress Foxtail millet

miR160, miR164, miR167, miR169, miR171 Drought stress Pearl millet

miR165, miR395 Drought stress Pearl millet,

proso millet

miR2108, miR1432, miR159, miR160,

miR162, miR168, miR169, miR319, miR390,

miR393, miR408, miR167, miR156, miR171,

miR172, miR399

Drought stress Proso millet

miR167, miR10294, miR156, miR169,

miR156, miR396

Drought stress Sorghum

miR10290 Drought stress,

oxidative stress,

water-deficit stress

Finger millet

miR11947 Drought stress,

oxidatively

stressed leaves,

water-deficit stress

Pearl millet

miR10110, miR10133, miR10157, miR10376 Drought stress,

oxidatively

stressed leaves,

water-deficit stress

Sorghum

miR2108, miR91 Drought stress,

water-deficit stress

Finger millet

miR156, miR169, miR160, miR10403 Oxidative stress Sorghum

miR167, miR77 Oxidative stress,

water-deficit stress

Sorghum

miR845, miR8770, miR7748 Water-deficit

stress

Finger millet

miR156 Water-deficit

stress

Sorghum

targeted up to 4 mRNAs in pearl and proso millet, and 20
in sorghum and foxtail millet. miR2108, miR170, and miR171
targeted important genes, such as auxin response factors (ARFs),
NTR/PTR, NAC domain, and heat stress factors. Important TFs,
such asWRKY and bHLHwere regulated bymiR399 andmiR396
in foxtail and sorghum, respectively. Analysis of the network
showed that miR160, miR156 in sorghum, and miR155 in
foxtail millet had maximum connectivity. Drought stress–related
mRNAs were one of the hubs (high-degree node in network)
in the network with 86 connectivity. ARFs and dehydration
stress were observed with a connectivity of 46 miRNAs each.
Different TFs, such as bHLH, nst1, and WRKY were identified
as the semi-hub targets. Six to ten miRNAs were identified
as cross-interacting with drought-responsive factors and ARFs
and water-deficit stress. Approximately 10 cross-talking miRNAs
were identified between dehydration stress and TFs (bHLH
and WRKY).

miRNA-Mediated Gene Regulation of
Drought Tolerance
Plants respond to several environmental stresses, among which
drought is the major stress that limits the yield of many crops.
Regulation of gene expression through miRNA and its target
complementarity has made plants that tolerate drastic effects
caused by drought. In our study, different categories of targets
were identified across millets as being specific to that particular
family of miRNA. These include different enzymes, such as
protein kinases, peroxidase, amino/carboxy peptidases, stress-
associated proteins (HSPs, RNA binding proteins), and drought-
specific TFs (ARF, NAC family, MAD box, WRKY, bHLH,
and ZFs). The important miRNA families related to drought
along with the millet-specific target genes are presented in
Tables 3A, 3B.

During the stress conditions, excess concentration of ROS
is accumulated within the cells, resulting in cellular oxidative
damage. Studies have shown the involvement of peroxidase in
ROS scavenging under drought-stressed conditions. In sorghum,
the peroxidase family targeting six miRNA families under
drought conditions were reported (Katiyar et al., 2015). We have
also found sorghum (sbi-miR160), foxtail millet (sit-miR169p,
sit-miR171n, and sit-miR395c), and pearl millet (pgl-miR156)
miRNAs regulating different peroxidase families. Plants exposed
to drought or heat stress produce HSPs, which play a crucial
role in protecting from stress conditions (Wang et al., 2004).
They function as molecular chaperones, facilitating in folding
of proteins, which is important for plants to cope with drought
stress (Ford et al., 2011). We found miRNAs pgl-miR156 and
pgl-miR10347 mediating HSPs. In sorghum, miRNA families
targeting HSP were under down-regulation during drought stress
(Katiyar et al., 2015).

Our study identified that the pmi-miR164, pmi-miR399
were involved in targeting NCED protein. It encodes 9-cis-
epoxycarotenoid dioxygenase, which is negatively correlated with
ABA accumulation, whereas in some species, its expression
increased along with ABA accumulation under water stress
(Changan et al., 2018). The sbi-miR164a (sorghum) and
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TABLE 3B | Species-specific microRNA families associated with drought-responsive genes, transcription factors, and other molecules.

miRNA Drought-responsive genes, transcription factors, and enzymes Species

miR156 ARF, E2F, HSP, nst1, EAT1, EMB1444, LRBPK, BIG, bHLH, WRKY, HIPP, SRPK, kinase byr2-like, SAUR, BRG3, LAZ1, ANK, GLYR1,

NCA1, NRT1/PTR, Znf, STK

Foxtail millet

miR160 Serine carboxypeptidase, KN1, YUCCA4, STK, NSP1, Znf, WRKY, XET, ARF

miR162 BIG, 14-3-3-protein, NAC, HSP, STK, SRPK, GrpE

miR164 Carboxylesterase, F-box, GAUT, ANK, GLDC, HPR3, TLC, DMP, LRR receptor, NRT1/PTR, PBL, STK, bHLH, NAC, SRPK, Znf, SWI/SNF,

syntaxin, BIG, LAMP1, WSD1, WRKY, XET, 11S globulin seed storage protein

miR165 AMOT, ARF, NDR1/HIN1, GSTU6, PBL, Znf, WNK1, parC, STK, TIP41, LRR receptor, carboxylesterase, WRKY, NAC

miR167 LRBPK, LAZ1, Znf, IAA, NRT1/PTR, ARF, NAC, HS1, LRR receptor, SRPK, SAC3, PBL, STK

miR168 bHLH, carboxylesterase, ARF, NAC, serine carboxypeptidase, DMP, NRT1/PTR

miR169 12-oxophytodienoate reductase, NAC, NDR1/HIN1, PIX, STK, serine carboxypeptidase, YLS3, YUCCA4, BAT1, GSTU6, HHL1, LRR

receptor, PLS1, Znf, nst1, LAMP1, RsgI6

miR170 GAUT, argininosuccinate lyase, NAC, RsgI6

miR171 ANK, ARF, SAUR, carboxylesterase, LRBPK, SKIP35, SPIKE 1, Znf, LRR receptor, RIBA 2, GAUT, NRT1/ PTR

miR172 ARF, bHLH, Znf, STK

miR2108 GAUT, TPD1, STK, ARF, HSP, LRR receptor, NRT1/ PTR, ANK, Znf, SKIP35, TSJT1

miR319 Carboxylesterase, kinase byr2-like, NDR1/HIN1, aminotransferase, SRPK, PMT, Znf, ITN1

miR397 Znf, auxin, HSP, LRR receptor

miR399 LRBPK, NAC, syntaxin, TBC1, MKS1, WRKY, DPH, Znf, PBL, SAUR, STK

miR10347 HSP Pearl millet

miR155 Cu-Zn superoxide dismutase, eIF-4A

miR156 Glutathione S-transferase mRNA, HSP, RCI2A

miR159 Purothionin, NBS-LRR, superoxide dismutase, VATPc, protein kinase

miR44 ClpX1, NBS-LRR

miR156 LOV

miR164 NCED1

miR167 Alanine aminotransferase, aspartate aminotransferase, LOV

miR168 Dehydrin mRNA

miR172 LOV, aspartate aminotransferase

miR399 NCED1, LOV, aspartate aminotransferase, KN1

miR10403 WRKY, Oxidatively stressed Sorghum

miR156 Cyclin-T1-4, F-box, FERONIA, STK, FERONIA, GRX11, NKAP, HSP, cyclin-T1-4, F-box, MEL1, methylmalonate-semialdehyde

dehydrogenase, PBL, PHOX4, RALF, RIC10, RING-H2 finger

miR160 ARF, ACT domain-containing protein ACR4, aspartyl protease, HSP, HKT8, L-ascorbate oxidase, LECRK91, LRBP, CP12, F-box, NIR1,

MYOB, NCS, NRT1/ PTR, TBL

miR167 Agmatine deiminase, arogenate dehydrogenase 2, HSP

miR167 ANK, ARF

miR169 BoGH3B, flotillin-like protein 2, MAN2A, alpha-taxilin, ATG6, METTL13, MYOB, STK LECRK4, HSP, WRKY, aconitate hydratase,

arginine/serine-rich protein

miR396 ARF, NEP1, IAA, Lr10, NBR, KN1, LRR receptor, NRT1/ PTR, nst1, bHLH, disulfide isomerase, WRKY, YLS7, BRG3, XET, E2F

sit-miR2118d (foxtail millet) regulating protein NRT1/PTR
family in Arabidopsis was suggested as a tolerance mechanism
for abiotic stress through reallocation of nitrate to plant
roots (Corratge-Faillie and Lacombe, 2017). The pgl-miR155
regulating Cu/ZnSOD transcripts found in pearl millet had an
antioxidant protector system under water stress conditions in
L. corniculatus (Borsani et al., 2001).

The sit-miR156, sit-miR164, sit-miR166, sit-miR167,
sit-miR171, and sit-miR393 in foxtail millet and sbi-miR169 and

sbi-miR156 in sorghum were regulating the serine–threonine
protein kinases (STPKs). It is observed that the phosphorylation
state of several protein kinases changes when exposed to drought
stress, implying their regulation in the drought-response
signaling pathway. A change in concentration of free amino acid
also has an impact on induction of drought stress in many plants.
In Brassica leaves, the activities of alanine aminotransferase and
aspartate amino transferase led to an overall decrease in protein
synthesis under drought stress (Good and Zaplachinski, 1994).
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The pmi-miR399, pmi-miR2118, and pmi-miR167 from proso
millet, sbi-miR169 from sorghum, pgl-miR167 and pgl-miR528
from pearl millet, and sit-miR393, sit-miR396d, sit-miR397a,
sit-miR156a, sit-miR160a, sit-miR164a, sit-miR166, and sit-
miR172 from foxtail millet were found potentially regulating
different aminotransferases.

It was observed that during drought stress, miRNA target
genes code for specific TFs, which mediate the regulation
of drought tolerance (Nepolean et al., 2014; Tang and Chu,
2017; Mittal et al., 2018). TF-mediated gene regulation includes
several physiological and signaling pathways, such as abscisic
acid (ABA)-mediated response, auxin signaling, osmotic, and
antioxidant production (Ding et al., 2013). We found that many
miRNAs are involved in TF-mediated gene regulation in different
millet species in response to drought stress. NAC factors played
an important role in drought tolerance through ABA signaling
pathways (Wang et al., 2016; Aravind et al., 2017). It was found
that NAC factors in foxtail millet was controlled by miR164. In
rice, the overexpression of stress-responsive NAC1 (SNAC1) in
guard cells reduced the transpiration losses by increased stomatal
closure (Singh et al., 2015). ARFs are the key elements mediated
by auxins, which contribute to the drought stress tolerance. In
cowpea, the upregulation of miR160a and miR160b targeted
different ARFs, thereby resulting in drought tolerance. We also
observed that sit-miR160a-3p especially targeted several ARF
family members, including ARF10, ARF13, ARF18, and ARF22.
The sbi-miR167 and sbi-miR156 targeting ARFs were found to
play a major role in the process of plant growth and development.
A study on sweet potato revealed that IbARF5 increased the

contents of carotenoids and enhanced drought tolerance in
transgenic Arabidopsis (Kang et al., 2018).

The role of bHLH57 in tolerance to drought, salt, and
oxidative stresses was identified in finger millet (Babitha et al.,
2015). The up-regulation of miRNA targeting bHLH when
cowpea was exposed to drought stress (Barrera-Figueroa et al.,
2011) was also observed. The expression of bHLH122 was
recorded under drought and osmotic stress conditions in
Arabidopsis (Liu et al., 2014). We also identified the regulation
of bHLH by sit-miR156a, sit-miR164a, sit-miR168, sit-miR172m,
and sit-miR396e (foxtail millet) and sbi-miR160f (sorghum). ZF
proteins were associated with different developmental and other
stress responses (Golldack et al., 2011). The miRNAs pgl-miR164
in pearl millet, sbi-miR169d in sorghum, and sit-miR167d, sit-
miR2118d, sit-miR399j, sit-miR397a, and sit-miR395c in foxtail
millet targeting ZFs were identified from our comparative study.
Under drought conditions, the down-regulation of miRNA
vun_cand030, which targeted ZF, was recorded in cowpea
(Barrera-Figueroa et al., 2011).

Nuclear factor Y (NFY) is a major TF induced at the
time of drought as we found in foxtail millet, in which the
sit-miR169 family targeted NFYA 4, 5, 7, and 10. Li et al.
(2008) reported that the NFYA was induced by ABA-dependent
manner during drought stress. In Arabidopsis, miR169 targeting
NFYA was down-regulated, but in cowpea, it induced the
expression under drought stress (Barrera-Figueroa et al., 2011).
In tomato, over-expressing miR169c exhibited better tolerance

to drought due to reduced stomata opening (Zhang et al.,
2011).

Kelch repeat-containing F-box proteins are known to be
involved in response to both biotic and abiotic stresses (Sun
et al., 2010). Studies conducted in sorghum revealed that
the presence of several drought-responsive miRNAs targeting
Kelch repeat-containing F-box protein (Katiyar et al., 2015).
The expression of many F-box proteins was also noticed in
cowpea under drought stress (Jia et al., 2012). sbi-miR156a,
sbi-miR160f, sbi-miR169d, and sit-miR156a, sit-miR395b, and
sit-miR164a were found targeting F-BOX proteins in our
study. WRKY acts as positive regulators of ABA signaling
in several stress responses. Its involvement in heat stress in
sunflower was controlled negatively by miR396 (Giacomelli
et al., 2012). We have also identified sbi-miR169d, sit-miR156,
sit-miR160a, sit-miR164, sit-miR396, and sit-miR166 targeting
the WRKY.

We identified pgl-miR155, pgl-miR156 specific to MADS
box proteins. Several studies have started to identify various
members of the MADS-box gene family as an important
molecular component involved in different types of stress
responses. Studies showed that the MADS-box genes act
as critical negative regulators of growth, improving plant
survival, while others function as positive regulators of stress
tolerance, associated with regulating the maintenance of primary
metabolism, ABA signaling, ROS homeostasis, and detoxification
processes through antioxidant enzymatic activities (Causier et al.,
2002; Jia et al., 2018; Castelán-Muñoz et al., 2019; Zhao et al.,
2020).

CONCLUSION

Novel miRNAs were identified by exploring the genomic
resources of pearl millet, sorghum, foxtail millet, finger millet,
and proso millet, and by comparing the miRNAs among millet
species through a series of in silico approaches. Structural and
functional classification of the identified miRNAs explained the
unique and common features among the five millet species.
The gene targets of miRNA were identified, and based on
the GO annotation, they were classified into several functional
groups. The drought-responsive gene targets regulated by the
miRNAs were identified, and their role in drought tolerance were
comprehensively explained. The genes can be further explored
in trait improvement programs to enhance the productivity of
millets in arid and drought-prone ecologies. Considering the
conservative nature of miRNAs, the results of our experiment
can also be used in other crops to understand the drought
stress mechanism.
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It is time to review all the available data and find the distinctive characteristics of actin that
make it such an important cell molecule. The presented double-stranded organization
of filamentous actin cannot explain the strong polymorphism of actin fibrils. In this
work, we performed bioinformatics analysis of a set of 296 amino acid actin sequences
from representatives of different classes of the Chordate type. Based on the results
of the analysis, the degree of conservatism of the primary structure of this protein in
representatives of the Chordate type was determined. In addition, 155 structures of
rabbit actin obtained using X-ray diffraction analysis and electron microscopy have been
analyzed over the past 30 years. From pairwise alignments and the calculation of root-
mean-square deviations (RMSDs) for these structures, it follows that they are very similar
to each other without correlation with the structure resolution and the reconstruction
method: the RMSDs for 11,781 pairs did not exceed 3 Å. It turned out that in rabbit
actin most of the charged amino acid residues are located inside the protein, which is
not typical for the protein structure. We found that two of six exon regions correspond to
structural subdomains. To test the double-stranded organization of the actin structure, it
is necessary to use new approaches and new techniques, taking into account our new
data obtained from the structural analysis of actin.

Keywords: monomer, filamentous, polymorphism, actin, resolution, charge

INTRODUCTION

Actin was discovered in 1948 by the Hungarian biochemist Bruno Straub. This protein was named
for its ability to activate (hence actin) ATP hydrolysis catalyzed by myosin. Actin is a muscle
tissue protein, the polymerized form of which (F-actin) forms microfilaments—one of the main
components of the cytoskeleton of eukaryotic cells. Actin makes up 5–15% of the total cellular
protein and is the most important protein in eukaryotic cells (Lodish et al., 2000). Actin analogs
have also been found in bacteria (Popp et al., 2008, 2010; Galkin et al., 2009) and archaea (Izoré
et al., 2014; Braun et al., 2015). Actin monomer (G-actin) is a water-soluble globular structural
protein with a molecular weight of 42 kDa, consisting of 375 or 374 amino acid residues. Differences
in the amino acid sequences, both within the same species and between species, are extremely
insignificant, no more than 25 amino acid substitutions. In vertebrates, depending on the isoelectric
point, three actin isoforms are distinguished, α, β, and γ (Vandekerckhove and Weber, 1978).
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α-actin is mainly characteristic of muscle cells, while β- and
γ-actin are characteristic of non-muscle cells. α-actin, in turn,
is divided into three types: smooth muscle α-actin, α-actin of
skeletal muscle and α-actin of cardiac muscle (Vandekerckhove
and Weber, 1978; Gunning et al., 1983; Erba et al., 1988;
Miwa et al., 1991).

Domains have historically been divided into large and small,
although their sizes are almost the same. The N- and C-termini
of the polypeptide chain are located in a small domain. Each of
the domains has two subdomains. By definition, subdomain 1
(residues 1-32, 70-144, and 338-372) and subdomain 2 (residues
33-69) are part of a small domain. The large domain consists of
subdomain 3 (residues 145–180 and 270–337) and subdomain
4 (residues 181–269) (Selby and Bear, 1956). The domains are
separated by a deep cleft (Figure 1A). The actin monomer is
rather flat and fits into a “parallelepiped” with dimensions of
55 Å × 55 Å × 35 Å.

Actin is one of the main components of myofibrils and,
together with myosin and titin, provides muscle contraction. In
other types of cells, actin forms a system of microfilaments and,
together with other filamentous structures (microtubules and
intermediate filaments), makes up the cytoskeleton and performs
various functions (movement, cell reshaping, cytokinesis, exo-
and endocytosis, redistribution of surface receptors, and other
processes) (Carlier et al., 1997; Silacci et al., 2004; Kovar et al.,
2006; Ferron et al., 2007).

The actin polymerization and depolymerization process is
regulated by special proteins. For example, profilin, forming
a complex with globular actin, prevents actin polymerization.
Cytochalasin D binds to actin and forms a kind of “cap”
at one end of the polymerizing actin, thereby regulating the
polymerization process. There are proteins (latrunculin A) that
prevent the polymerization of globular actin and proteins that
“cut” actin filaments into short fragments. Conversely, there are
proteins that “cross-link” already formed actin filaments, thus
forming ordered rigid bundles of actin filaments or flexible coarse
networks (Carlier et al., 1997; Silacci et al., 2004; Kovar et al.,
2006; Ferron et al., 2007).

Actin monomers can interact with each other to form
F-actin. The polymerization process can be initiated by increasing
the concentration of cations or by adding special proteins.
The polymerization process becomes possible because actin
monomers can recognize each other and form intermolecular
contacts. In vitro, at physiological salt concentrations, G-actin
polymerizes into filamentous F-actin (Page et al., 1998; Oda
et al., 2009; Dominguez and Holmes, 2011; Thomasson and
Macnaughtan, 2013).

Historically examining all the structural work of actin
organization to find direct evidence of double-stranded actin
organization, we have concluded that there is no direct evidence
for the existence of a double helix. The authors of the work
on X-ray diffraction could not give an unambiguous answer
about the double helix organization of actin (Selby and Bear,
1956), and only the authors of the work (Hanson and Lowy,
1963), based on electron microscopy data, taking into account
the data of the previous X-ray work, said that actin most likely
has a double helix organization. Apparently, such a conclusion

was nevertheless dictated by the recent discovery of the DNA
double helix at that time. Over time, “the highly-likely model”
became generally accepted and entered all textbooks (Jegou and
Romet-Lemonne, 2020). A lot of data have been accumulated
that is not suitable for the proposed organization. This model,
on the one hand, cannot explain the strong polymorphism of
filamentous actin, but, on the other hand, does not contradict
the picture of interaction with partners, since the interaction
sites are located on one side of the actin molecule. The aim
of this work is to obtain more structural information about
such important molecule as actin, to validate the structure
of F-actin.

MATERIALS AND METHODS

Databases
A set of 296 amino acid sequences of actin from representatives of
different classes of the Chordate type: mammals (Homo sapiens,
Bos taurus, Mus musculus, Rattus norvegicus); aves (Gallus gallus,
Anas platyrhynchos, Meleagris gallopavo); Reptiles (Chelonia
agassizi, Pelodiscus sinesis, Anolis carolinensis); amphibian
(Xenopus tropicalis); fish (Danio rerio, Tetraodon nigrovoridis,
Oryzias latipes) were taken from the UniProt database.

A list of 155 protein structures of actin was taken from
the UniProtKB database, record number P68135, gene ACTA1,
wild rabbit species (Oryctolagus cuniculus). These structures
were deposited in the Protein Data Bank between 1991 and
early 2020. Half of these structures (72) are actin monomeric
structures, the other half (83) are structures containing two or
more actin monomers.

The canonical reviewed protein sequences (20,364 fasta
records) were extracted from the human reference proteome
(uniprot request reviewed:yes AND organism: “Homo sapiens
(Human) [9606]” AND proteome:up000005640).

Structural Characteristics
Spatial alignment of 155 actin structures, calculation of the root-
mean-square deviation (RMSD) of Cα atoms for each pair of
superimposed structures, and calculation of the accessible surface
area (ASA) for each amino acid residue in actin structures were
performed using the YASARA program (Krieger et al., 2002). If
pdb file had several actin structures, then only one (first) structure
was taken for spatial alignment and RMSD calculation. ASA was
defined as the surface area over which a water ball with a radius of
1.4 Å rolls. A residue was called external if its ASA was more than
50% of the maximum ASA observed in the Protein Data Bank for
each type of amino acid residue.

RESULTS AND DISCUSSION

Conservation and Splicing Sites
The amino acid sequence of skeletal and cardiac muscle actin
consists of 375 amino acid residues, including one unusual
amino acid residue, 3-methylhistidine, which is formed post-
translationally. The N-terminal amino acid of actin is acetylated.
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FIGURE 1 | (A) 3D structure of α-actin. Actin-bound ADP molecule and Ca2 + cation are shown. (B) Conservation of the actin amino acid sequences of
representatives of different classes of chordates was built by the Chimera program (Pettersen et al., 2004). Highly conserved regions of the polypeptide chain are
colored by red, non-conserved regions by blue. (C) Spatial alignment of two rabbit actin structures deposited in the Protein Data Bank in 1991 and 2019.

According to the results of the alignment of the actin amino
acid sequences, a high degree of conservatism of the primary
structure of actin was observed (Figure 1B). The spatial
alignment of the two rabbit actin structures resolved in 1991
and 2019 is presented in Figure 1C. The RMSD for this
pair is 0.6 Å, where the percent of amino acid residues
aligned is 94%.

Cytoplasmic actins differ from vertebrate skeletal muscle actin
only by 25 substitutions. It is essential that the region of the
polypeptide chain containing residues 18–75 is stable, while
regions 2–18 and 259–298 contain many substitutions. The high
conservatism of the primary structure of actin, apparently, is a
consequence of its high functional activity, which requires the
preservation of the centers of interaction with both other actin
molecules and actin-binding proteins. It should be noted that
regions 18–25 and 259–298 do not belong to the F-actin core
(Glyakina et al., 2020).

The data on the primary structure of actin in higher plant
obtained on the basis of the analysis of nucleotide sequences of
actin genes indicate that the variability of plant actin is much
higher than that of animal actin. In particular, soybean isoactins
contain 35–45 substitutions. In general, plant actin differs from
animal actin by 55–65 amino acid residues. Actin substitutions in
plants include significant number of charged residues; therefore,
their isoelectric point can differ by almost one unit (pH 5.1–5.8)
(Meagher and McLean, 1990).

Although more than 95% of the known protein sequences
are derived from DNA translation, there is no single reference
nucleic acid sequence for the given UniProtKB/Swiss-Prot
protein sequence. To obtain splicing sites, we aligned the
nucleotide sequence of human actin to the corresponding
gene. There are only three substitutions in amino acid
sequences between the human and rabbit actin sequences.
Therefore, the splicing sites for the human gene will
coincide with the splicing sites of the rabbit actin gene
(Supplementary Figure S1).

If we compare the 3D actin structure with the splicing sites, we
can see that exon IV (residues 205–269) is included in subdomain

FIGURE 2 | (A) Six exons of α-actin are colored on the 3D structure: I
(residues 1–42) exon is colored by blue, II (residues 43–151) – cyan, III
(residues 152–204) – green, IV (residues 205–269) – yellow, V (residues
270–329) – orange, I (residues 330–375) – red. (B) Disordered regions (1–8,
51–54, 58–60, 101–120, 228–243, 365–377) calculated using the program
IsUnstract (http://bioinfo.protres.ru/IsUnstruct/) (Lobanov et al., 2013).

4 (residues 181–269), and exon V (residues 270–329) is part of
subdomain 3 (residues 270–337) (see Figures 1A, 2A).

Amino Acid Composition
To assess the increased and decreased content of one or another
amino acid in the composition of α-actin from the skeletal
muscles of rabbit, a comparison with the mean proteomic values
of amino acid composition was carried out.

There is an increased content of amino acids such as Ile, Met,
Thr, Tyr, and a decreased content of Cys, Leu, Gln compared to
the average proteomic values for human, which are taken as a unit
(Supplementary Figure S2).

Rabbit actin contains five cysteine residues (Cys10, Cys217,
Cys257, Cys285, and Cys374). Smooth muscle actin contains
another cysteine residue at position 17. Non-muscle actin
contains two additional cysteine residues, Cys17 and Cys272.
However, Cys10 is replaced by Val10 in actin, and the total
number of cysteine residues is six. Only one of these residues,
Cys374, is exposed on the surface of an intact ATP containing
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FIGURE 3 | Amino acid residues in the rabbit actin structure (2zwh) interacting with more than one of the 11 ligands (actin, profilin, gelsolin, DBP, cofilin, DNaseI,
myosin, leiomodin, fimbrin, vinculin, tropomyosin) (Tikhomirova et al., 2018) are colored by magenta. Exon IV is colored by yellow.

FIGURE 4 | Structures of F-actin from the Protein Data Bank.

G-actin molecule. The availability of other cysteine residues is
determined by the degree of nativeness of the molecule and the
type of nucleotide. In a solution with a high concentration of
ADP, in addition to Cys374, another cysteine residue, apparently,
Cys10, becomes available for SH-reagents. However, there are no
disulfide bonds in the structure of rabbit actin.

Characteristics of Actin Surface:
Distribution of Charges and Ligand Sites
The distribution of charged amino acid residues in rabbit actin
is shown in Supplementary Figure S3. The charged amino
acid residues make up 24%: the number of Arg is 18, Lys –
19, Glu – 28, Asp – 22. Therefore, the charge of the G-actin
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molecule is negative (−13). The N-terminal segment of α-actin
contains four acidic amino acid residues Asp-Glu-Asp-Glu, in
the N-terminal segment of β- and γ-isoactins there are only
three Asp and three Glu in β- and γ-isoactin, respectively.
Substitutions of amino acid residues in the N-terminal segment
of the polypeptide chain significantly affect the total charge of
the molecule, changing the actin isoelectric point in the pH
range 5.4–5.5. When analyzing the amino acid sequence of actin,
attention is drawn to a large number of negatively charged
groups, especially at the N-terminus of the chain. So, out of five
N-terminal amino acid residues, four contain carboxyl groups in
the side chains, and among the first 25 amino acid residues, seven
are negatively charged.

Oztug Durer et al. (2010) try to investigate the constrains
in D-loop (residues 39–50) plasticity as determined by its
interactions with other dynamic elements of actin, including
the C-terminus, the W-loop (residues 165–172), and the H-loop
(residues 264–273). The involvement of these structural loops in
contacts between monomers in the actin filament was predicted
by the models of double-stranded organization of F-actin. The
authors showed that introduction of disulfide bonds between
residues 45, 47, 50 (D-loop), and residue 169 (W-loop) or 265
(H-loop) leads to the disruption of F-actin structure, which
is expressed in the appearance of amorphous aggregates in
the electron microscopy images (Oztug Durer et al., 2010).
Consequently, the double-stranded model of F-actin maybe
not the only one.

The fraction of charged amino acid residues of each type
(Arg, Lys, Glu, Asp) in rabbit actin and bovine p450 (comparable
to the size of actin, 475 amino acid residues) is shown in
Supplementary Table S1. The fractions of charged amino acid
residues in these proteins are practically the same and are
close to the proteomic values (Supplementary Table S1 and
Supplementary Figure S2). However, most of the charged amino
acid residues in rabbit actin are found within the protein as
compared to bovine p450.

Actin is a unique building material widely used by the cell to
construct various elements of the cytoskeleton and contractile
apparatus. This is due to the fact that the processes of actin
polymerization and depolymerization can be easily regulated
using special proteins that bind to actin. Thus, actin is involved
in many protein–protein interactions. The number of interaction
partners for yeast actin is 222 according to the STRING database
(Szklarczyk et al., 2015) (Supplementary Figure S4). There are
no interaction partners for human actin in this database.

The residues involved in the interactions with more than
one of the ligands (actin, profilin, gelsolin, DBP, cofilin,
DNaseI, myosin, leiomodin, fimbrin, vinculin, tropomyosin)
(Tikhomirova et al., 2018) are shown in Figure 3. Interestingly,
that such residues are located predominantly on one side of
the molecule and are not located in subdomain 4, which
includes exon IV (residues 205–269) (see Figures 2A, 3 and
Supplementary Figure S1).

Structural Alignments
Of the 155 three-dimensional (3D) structures of rabbit actin,
72 are monomeric and 83 are oligomeric. 100 structures

were obtained by X-ray diffraction analysis with a resolution
of 1.29–7.88 Å, 52 structures by cryo-electron microscopy
with a resolution of 3.6–70 Å, and one structure by fiber
diffraction with a resolution of 3.3 Å, and two model structures
(1ALM and 1UY5).

We performed pairwise spatial alignments of 154 actin
structures and calculated the RMSDs between the Cα atoms.
The RMSDs for 11,781 pairs do not exceed 3 Å: 0–1 Å for
5461 pairs, 1–2 Å for 5522 pairs, and 2–3 Å for 798 pairs
(Supplementary Figures S5A,C). The fraction of aligned amino
acid residues in each pair is more than 50% (see Supplementary
Figure S5B). It should be noted that the 3D structures of the actin
monomer are very similar. It turns out that for almost 30 years the
quality of the obtained actin structures has not improved, despite
new technologies.

It should be noted that the RMSD between monomers in
the structures of filamentous actin does not exceed 1.3 Å
(Figure 4). It is very strange that the RMSD is zero for
monomeric structures 2W49 and 1M8Q, since the actin
structure contains flexible/disordered regions that will add
polymorphism to the structural organization of actin (Figure 2B)
(Lobanov et al., 2013).

CONCLUSION

Bioinformatics analysis of actin showed that:

(1) The amino acid sequences of actin in representatives of
different classes of chordates are highly conservative;

(2) Analysis of exons showed that exon IV (residues 205–
269) corresponds to subdomain 4 (residues 181–269) and
exon V (residues 270–329) corresponds to subdomain 3
(residues 270–337);

(3) The 3D actin rabbit monomer structures resolved from
1991 to 2020 (during 30 years) are very similar: the RMSD
for 11,781 pairs does not exceed 3 Å, the RMSD is about
zero for monomeric structures in the filamentous actin
(2W49 and 1M8Q);

(4) Most of the charged amino acid residues are located within
actin structure, which is unusual for a protein structure.

Due to the high polymorphism, it has not yet been possible to
obtain the structure of filamentous actin using X-ray diffraction
analysis. Thus, all hope for obtaining this structure is for
new methods such as XFEL and cryo-electron microscopy. For
further reconstruction of filamentous actin using cryo-electron
microscopy, it is necessary to take into account the adjustment
of monomers in the organization of filament, rather than simple
copying of the “building block,” which gives a close to zero
RMSD between monomers, which is observed for some filament
structures from the Protein Data Bank.
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The NETO2 gene (neuropilin and tolloid-like 2) encodes a protein that acts as an
accessory subunit of kainate receptors and is predominantly expressed in the brain.
Upregulation of NETO2 has been observed in several tumors; however, its role in
tumorigenesis remains unclear. In this study, we investigated NETO2 expression in
breast, prostate, and colorectal cancer using quantitative PCR (qPCR), as well as the
effect of shRNA-mediated NETO2 silencing on transcriptome changes in colorectal
cancer cells. In the investigated tumors, we observed both increased and decreased
NETO2 mRNA levels, presenting no correlation with the main clinicopathological
characteristics. In HCT116 cells, NETO2 knockdown resulted in the differential
expression of 17 genes and 2 long non-coding RNAs (lncRNAs), associated with
the upregulation of circadian rhythm and downregulation of several cancer-associated
pathways, including Wnt, transforming growth factor (TGF)-β, Janus kinase (JAK)-
signal transducer and activator of transcription (STAT), mitogen-activated protein kinase
(MAPK), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathways.
Furthermore, we demonstrated the possibility to utilize a novel model organism, short-
lived fish Nothobranchius furzeri, for evaluating NETO2 functions. The ortholog neto2b
in N. furzeri demonstrated a high similarity in nucleotide and amino acid sequences with
human NETO2, as well as was characterized by stable expression in various fish tissues.
Collectively, our findings demonstrate the deregulation of NETO2 in the breast, prostate,
and colorectal cancer and its participation in the tumor development primarily through
cellular signaling.

Keywords: NETO2, breast cancer, prostate cancer, colorectal cancer, fish model

INTRODUCTION

NETO2 (neuropilin and tolloid-like 2) was first described in 2001 as a gene demonstrating
significant similarity to NETO1 (Stohr et al., 2002). Both genes encode putative transmembrane
proteins containing two CUB domains, followed by a low-density lipoprotein class A (LDLa)
module in the extracellular region and conserved FXNPXY-like motif in the cytoplasmic region.
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This structure of NETO proteins suggested their possible role in
intracellular signaling pathways. Furthermore, a series of reports
have shown the expression of NETO2 in the brain, as well as
its involvement in the modulation of most kainate receptors
(KARs) (Straub et al., 2011) and N-methyl-D-aspartate (NMDA)
receptors (Wyeth et al., 2014). Additionally, the interaction
of NETO2 with other neuronal proteins, including glutamate
receptor-interacting protein (GRIP) (Tang et al., 2012) and K(+)-
Cl(−) cotransporter (KKC2), has been reported (Ivakine et al.,
2013). Currently, NETO2 and its paralog NETO1 are widely
recognized as the main auxiliary subunits of KARs.

More recently, NETO2 was shown to be involved in
carcinogenesis. Increased expression of the NETO2 gene has
been observed in proliferating infantile hemangiomas (Calicchio
et al., 2009), hepatocellular (Villa et al., 2016) and nasopharyngeal
carcinomas (He et al., 2019), as well as in renal (Snezhkina et al.,
2018), lung (Oparina et al., 2012), colorectal (Hu et al., 2015;
Fedorova et al., 2017), gastric (Liu et al., 2019), and pancreatic
(Li et al., 2019) cancers. Hu et al. (2015) have revealed that
NETO2 overexpression significantly correlates with advanced
tumor stage, invasion, and metastasis, as well as increases the risk
of patient death in colorectal cancer. In patients with gastric and
pancreatic cancers, a similar correlation was observed between
NETO2 expression and tumor progression and worse overall
survival (Li et al., 2019; Liu et al., 2019). Reportedly, NETO2 is
related to five-gene transcriptomic signatures predicting rapidly
growing tumors and survival in patients with hepatocellular
carcinoma (Villa et al., 2016). Furthermore, NETO2 has been
observed in a macrophage-related gene signature predicting
resistance to targeted therapeutics, as well as survival, in glioma
patients (Sun et al., 2019). Additionally, NETO2 expression is
reportedly associated with the deletion of the PTEN (Phosphatase
and tensin homolog) gene and high intratumor heterogeneity in
prostate cancer (Yun et al., 2019).

In this study, we analyzed NETO2 expression in prostate,
breast, and colorectal cancer samples obtained from Russian
patients. In these sample sets, both increased and decreased
NETO2 expression were observed, with no significant correlation
between its mRNA levels and primary clinicopathological tumor
characteristics. Additionally, we performed shRNA-mediated
NETO2 knockdown in the colorectal cancer cell line, HCT116,
resulting in the differential expression of 17 genes and 2
long non-coding RNAs (lncRNAs), as well as deregulation of
several cellular pathways, including tumor-associated Wnt,
transforming growth factor (TGF)-β, Janus kinase (JAK)-signal
transducer and activator of transcription (STAT), mitogen-
activated protein kinase (MAPK), and phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT) pathways. Moreover,
we revealed a high similarity between human NETO2 and its
ortholog in fish Nothobranchius furzeri, which demonstrate the
shortest captive lifespan for a vertebrate (3 months), a novel
model for investigating aging and aging-related pathologies,
including cancer (Terzibasi et al., 2007). Additionally, we
evaluated gene expression in different tissues of N. furzeri
using quantitative PCR (qPCR). These results can help to
generate unique fishes with gene overexpression/downregulation
in the target tissues to establish its role in tumorigenesis

[for example, using CRISPR activation (CRISPRa) or interference
(CRISPRi) tools].

MATERIALS AND METHODS

Patients and Tumor Samples
In total, 74 colorectal, 40 prostate and 32 breast tumors, with
paired adjacent normal tissues, were collected at the National
Medical Research Radiological Center, Ministry of Health of
the Russian Federation. No patient received chemotherapy,
radiation, targeted therapy, and/or immunotherapy before
surgery. Postoperative tumor and normal tissues were
immediately frozen in liquid nitrogen and store at −80◦C.
This study was approved by the Ethics Committee of P.A.
Hertsen Moscow Cancer Research Institute, Ministry of Health
of the Russian Federation. All experiments were performed in
strict accordance with the principles outlined in the Declaration
of Helsinki (1964). The patients provided written informed
consent to participate in this study. The clinicopathological
characteristics of the patients and tumors are presented in
Supplementary Tables S1–S3. Additionally, colorectal cancer
samples were genetically characterized by mutations in KRAS,
NRAS, and BRAF, as well as the microsatellite instability (MSI)
status. Analysis of mutations in the “hot spots” of the KRAS,
NRAS, and BRAF genes was performed in Evrogen (Russia) using
the qPCR with following validation of the results with Sanger
sequencing. The MSI detection was carried out in the same
company using PCR amplification of microsatellite markers
(BAT25, BAT26, D2S123, D5S346, and D17S250).

RNA Isolation and cDNA Synthesis
Tumor and normal tissues were homogenized in a lysis buffer
using the MagNA Lyser Instrument (Roche, Switzerland). RNA
was isolated from these tissues, as well as from cell cultures,
using MagNA Pure Compact RNA Isolation Kit (Roche) on
a MagNA Pure Compact System (Roche). The isolated RNA
was quantified using a fluorometer, Qubit 2.0 (Thermo Fisher
Scientific, United States). RNA quality was measured on an
Agilent Bioanalyzer 2100 (Agilent Technologies, United States).
Reverse transcription was performed from 1 mg of RNA using
Mint Reagent Kit (Evrogen, Russia).

qPCR
Quantitative PCR was performed using TaqMan Gene Expression
Assay (Thermo Fisher Scientific), primers and probes, for the
NETO2 gene (Hs00983152_m1). GAPDH, GUSB, and B2M were
used as reference genes for prostate, colorectal, and breast cancer
samples, respectively. Primers and probes for reference genes are
shown in Supplementary Table S4. qPCR was performed on
an Applied Biosystems 7500 Real-Time PCR System (Thermo
Fisher Scientific) according to the scheme described in Krasnov
et al. (2015). Each reaction was performed in triplicate. Data
obtained by qPCR were analyzed using the ddCt method
and the original ATG software (Kudryavtseva et al., 2018).
NETO2 expression was considered meaningful if at least a 2-fold
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expression was determined owing to potential variations in the
reference gene expression.

Cell Culture
The human colorectal cancer HCT116 cell line was cultured in
DMEM (Dulbecco’s Modified Eagle’s medium; PanEco, Russia)
supplemented with 10% FBS (fetal bovine serum; Thermo Fisher
Scientific) and 100 units of penicillin/streptomycin (Thermo
Fisher Scientific) in a humidified incubator at 37◦C and 5% CO2.

Cell Transfection
shRNA targeting the nucleotide residues 509–529 of the human
NETO2 gene (NCBI Gene ID: 81831, location 16q12.1) protein-
coding region was designed and synthesized as follows: Sense,
5′-GATCCGCGCCAAATTATCCTGACTCATCACGTGATGAG
TCAGGATAATTTGGCGTTTTTG-3′, and antisense, 5′-AATTC
AAAAACGCCAAATTATCCTGACTCATCACGTGATGAGTC
AGGATAATTTGGCGCG-3′. This pair of oligonucleotides
and non-specific control scrambled (SCR) shRNA were cloned
into BamH and EcoR sites of pLSLP plasmid to establish the
pLSLP-anti-NETO2 lentiviral vector. Lentiviral constructs were
transfected into 293T cells using Lipofectamine LTX reagent
(Thermo Fisher Scientific). Virus-containing supernatants
were collected 24 h after the transfection and were used to
infect target HCT116 cells in triple repeats with the addition of
5 µg/mL polybrene (Sigma, United States). Infected cells were
selected using the regular growth medium containing 1 µg/mL
puromycin (Sigma).

Western Blot Analysis
Western blot analysis was performed as previously
described (Kudryavtseva et al., 2016). For NETO2 detection,
the primary recombinant antibody EPR3497 (Abcam,
United States) was used.

Transcriptome Sequencing and Analysis
For cDNA library preparation, we utilized RNA isolated from cell
cultures with RIN (RNA integrity number) values ≥8. Libraries
were prepared with TruSeq Stranded mRNA Library Prep
Kit (Illumina, United States) according to the manufacturer’s
recommendations. Transcriptome sequencing was performed on
a NextSeq 500 System (Illumina) using 76 base pair single-end
reads. At least 30M reads were obtained for each sample. The
primary analysis of raw sequences was performed as previously
described (Pudova et al., 2019). Then, data as transcripts per
million (TPM) were imported in the R environment. Differential
gene expression was analyzed using the DESeq2 package of Love
et al. (2014). The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database was used for pathway enrichment analysis.

Analysis of Orthologs
Nucleotide and amino acid sequences of NETO2 in human
samples and fishes were aligned using Blastn and Blastp,
respectively. Gene expression data were obtained from the Bgee
database1.
1https://bgee.org/

Neto2b Expression Analysis in N. furzeri
The eggs of fish N. furzeri GRZ were obtained from a
commercial supplier and were bred in the Aquatic Housing
System (Aquaneering, United States) at the Center for Precision
Genome Editing and Genetic Technologies for Biomedicine at
the Engelhardt Institute of Molecular Biology. The study was
approved by the Ethics Committee of the A.N. Severtsov Institute
of Ecology and Evolution Russian Academy of Sciences (approval
no. 27, 9.10.2019).

Eight tissue samples (brain, intestines, heart, head kidney,
liver, stomach, muscles, and skin) from a female N. furzeri
were subjected to RNA isolation using QIAzol lysis reagent
(Qiagen, Germany), subsequently treated with DNase I (Thermo
Fisher Scientific). Quantification of the isolated RNA was
performed using the NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific). Reverse transcription was carried
out with 500 ng of RNA using RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific). A pair of primers
(forward: CCACCCAACAAGGAGTGTGT and reverse:
CCCGTGGAGGTAACAAGACC) was designed for neto2b gene
detection by qPCR, performed on the Rotor-Gene Q 5 plex HRM
(Qiagen) using the following scheme: 95◦C for 10 min, 40 cycles
of 95◦C for 15 s, and 62◦C for 60 s.

Statistical Analysis
The significance of differences observed between two groups
(tumors/normal tissues and control cells/treated cells) was
assessed using the non-parametric Mann-Whitney U test.
Correlation analysis was performed using Spearman’s rank
correlation coefficient (rs). For transcriptome analysis, the
Benjamini-Hochberg method was used to calculate the adjusted
p-values [the false discovery rate (FDR)]. Differences and
correlations were considered significant at a p-value of < 0.05.

RESULTS

NETO2 Expression in Breast, Prostate,
and Colorectal Cancer
Using qPCR, we analyzed the relative NETO2 mRNA level in sets
of breast (n = 32), prostate (n = 40), and colorectal (n = 74) cancer
samples. In breast cancer, NETO2 gene expression was increased
in 31% of cases (2–24-fold), with decreased mRNA levels detected
in 44% of samples (2–18-fold) (Table 1). NETO2 expression was
characterized by a 2–33-fold average increase in 40% of prostate
cancer samples and a 2–7-fold average decrease in 22.5% of cases.
In colorectal cancer, NETO2 mRNA levels were increased in 35%
(2–14-fold) of investigated samples and decreased in 26% of cases
(2–28-fold). The highest median value of altered gene expression
was determined in prostate cancer (Table 1). In general, a similar
trend of NETO2 expression was observed in investigated cancer
types (Figure 1).

Furthermore, we performed a correlation analysis between
several clinicopathological characteristics of tumors (stage for
all cancers, differentiation for prostate and colorectal cancer,
mutation, and MSI status for colorectal cancer) and NETO2
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TABLE 1 | Frequency of mRNA level changes in breast, prostate, and colorectal
cancer.

Tumor Frequency of mRNA Median of mRNA

level changes, % (n)* level changes, n-fold

Increase Decrease

Breast cancer 31 (10/32) 44 (14/32) 1

Prostate cancer 40 (16/40) 22.5 (9/40) 1.8

Colorectal cancer 35 (26/74) 26 (19/74) 1.2

*p-value <0.05.

FIGURE 1 | Box plots for NETO2 expression changes in breast, prostate, and
colorectal cancer.

expression. The highest correlation coefficients were observed
between NETO2 expression and pathological stage for breast
cancer (rs = 0.15) and prostate cancer (rs = 0.25), tumor
differentiation for prostate cancer (rs = −0.16), and BRAF
mutation status (rs = 0.18) for colorectal cancer. Correlation
coefficients of less than 0.1 were observed between the
NETO2 mRNA level and other investigated clinicopathological
characteristics.

Stable Knockdown of NETO2 in HCT116
The pLSLP lentiviral vector expressing shRNA targeting NETO2
(pLSLP-anti-NETO2) and the vector expressing non-targeting
SCR shRNA were transfected into HCT116 in triplicate. Protein
and mRNA levels of the NETO2 gene were measured in
experimental and control HCT116 cells using western blotting
and qPCR (Figure 2). The results obtained confirmed the
NETO2 knockdown.

Effects of NETO2 Knockdown on Gene
Expression
Seventeen protein-coding differently expressed genes (DEGs)
and two lncRNAs (DE lncRNAs) were revealed through the
RNA-Seq analysis (Log2FC ≥ 1, Log2FC ≤ −1, CPM ≥ 1,
FDR < 0.05) in treated HCT116 cells when compared with
the control group. We detected the upregulation of eight genes
(CYP2U1, NR1D1, ZNF804A, SEMA3C, DBP, NT5E, NAV3,
and KDM5D) and one lncRNA (LINC02043), as well as the

FIGURE 2 | shRNA-mediated knockdown of NETO2 in the HCT116 cell line.
Relative NETO2 expression in HCT116 cells transfected with targeting shRNA
and non-specific SCR shRNA was measured using qPCR at mRNA level (A)
and western blotting (B) at the protein level.

downregulation of nine genes (MUC16, KRT6A, ACVRL1,
PTP4A1, HYAL1, CLIC3, TEX19, DES, and KCNK3) and one
lncRNAs (AL355075.4) (Figure 3A).

Additionally, we performed KEGG pathway enrichment
analysis using all DEGs with FDR < 0.05. Three significantly
enriched pathways for downregulated genes and one pathway for
upregulated genes were identified (Figure 3B). These included
“Wnt signaling pathway,” “TGF-beta signaling pathway,”
“signaling pathways regulating pluripotency of stem cells,” and
“circadian rhythm.”

NETO2 Gene Ortholog in Fish N. furzeri
We analyzed the NETO2 ortholog in the short-lived fish
N. furzeri, termed neto2b (NCBI Gene ID: 107381994, location
sgr07). Alignment of cDNA sequences demonstrated 69% of
identity, whereas amino acid sequence alignment revealed higher
similarity with 85% of conservative substitutions (positives) and
only 2% of gaps (Supplementary Figure S1). In comparison,
71% of nucleotide sequences (cDNA) and 74% of amino acid
sequence (6% of gaps) similarities were observed in Danio rerio
(Supplementary Figure S2). Using qPCR, we measured neto2b
expression in different tissues of N. furzeri (female) to estimate
its potential use as a fish model presenting gene tissue-specific
overexpression/downregulation. As observed in humans, neto2b
demonstrated the highest mRNA levels in the fish brain. The
expression of neto2b in other investigated tissues is presented in
Figure 4.

DISCUSSION

A series of studies aimed at investigating the biological functions
of NETO2 has reported its crucial role in neural glutamate
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FIGURE 3 | Differently expressed genes/lncRNAs and enriched KEGG pathways. (A) DEGs/DE lncRNAs (Log2FC ≥ 1, Log2FC ≤ −1, CPM ≥ 1, FDR < 0.05)
identified between experimental and control HCT116 cells. (B) Enriched KEGG pathways (FDR < 0.05) with DEGs (CPM ≥ 1, FDR < 0.05). KEGG, Kyoto
Encyclopedia of Genes and Genomes; DEG, differently expressed genes.

FIGURE 4 | Relative mRNA levels of the neto2b gene in different tissues of N. furzeri. The highest mRNA level of neto2b was detected in the brain tissue and was
taken as 1. The expression of neto2b in other studied tissues was measured relatively this value. Darker red indicates higher expression. Gray color indicates tissues
where the gene expression has not been measured. BR, brain; HE, heart; ST, stomach; SK, skin; IN, intestines; LI, liver; KI, head kidney; MU, muscles; SP, spleen;
BL, bladder; GI, gills; GO, gonads.

signaling. However, NETO2 was also found to be upregulated
in several tumors. Our research group was one of the first to
reveal NETO2 overexpression in solid tumors (renal and lung
cancer) (Oparina et al., 2012). Recently, it has been reported
that elevated NETO2 expression was associated with tumor
progression, poor prognosis, and reduced survival in cancer
patients (Hu et al., 2015; He et al., 2019). In this study,
we first demonstrated the deregulation of NETO2 expression
in breast and prostate cancer. The NETO2 mRNA level was
predominantly downregulated in breast cancer (44%), with
elevated gene expression observed in 31% of samples. In prostate
cancer, NETO2 mRNA levels were upregulated in 40% of cases,

with a 1.8 median change. Negligible correlations were observed
between the NETO2 expression and stage of breast and prostate
cancer, as well as differentiation of prostate tumors. For colorectal
cancer, we expanded a set of samples from a previous study
(Fedorova et al., 2017) and confirmed that NETO2 expression
was increased in about one-third of these tumors (41 and 35%
in previous and current studies, respectively). Nevertheless, a
study evaluating Chinese patients with colorectal cancer has
revealed the upregulation of NETO2 in 52.6% of cases, reporting
an association between expression and advanced tumor stage
and invasion, poor differentiation, lymph node metastasis, and
unfavorable prognosis in patients (Hu et al., 2015). In contrast, we
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failed to observe any significant correlations between the NETO2
mRNA level and tumor stage, as well as differentiation that can
be explained by the difference of the studied cohorts. Also, no
association of NETO2 expression with KRAS, NRAS, and BRAF
mutations or MSI status were found.

Despite several studies indicating the involvement of
NETO2 in tumorigenesis, the underlying mechanism remains
unclear. Li et al. (2019) have investigated NETO2 functions in
pancreatic cancer, and demonstrated that NETO2 knockdown
reduced the proliferative capacity of pancreatic cancer cells
and suppressed tumor growth in vivo; NETO2 overexpression
conversely stimulated cell proliferation, invasion, and migration
via the activation of the STAT3 pathway. Similar observations
were reportedly documented following NETO2 knockdown in
nasopharyngeal carcinoma cells (He et al., 2019). The depletion
of NETO2 expression results in decreased proliferation, invasion,
and migration of tumor cells and induced apoptosis via activating
Caspase-3 signaling. Additionally, NETO2 overexpression
promotes the invasion and metastasis of gastric cancer cells
by inducing epithelial-mesenchymal transition (EMT) by
upregulating TNFRSF12A, which mediates the activation of the
PI3K/AKT/NF-κB/Snail axis (Liu et al., 2019). In the present
work, we demonstrated that stable NETO2 knockdown in
HCT116 cells resulted in the downregulation of Wnt and TGF-β
signaling pathways, as well as signaling pathways regulating the
pluripotency of stem cells. In the KEGG database, the “signaling
pathways regulating pluripotency of stem cells” group comprises
the Jak-STAT, MAPK, PI3K-Akt, Wnt, and TGF-β signaling
pathways. All these stem cell-related pathways are extensively
implicated in tumorigenesis (Dreesen and Brivanlou, 2007).
Thus, our results demonstrated the participation of NETO2 in
the deregulation of cell signaling in tumors and confirmed its
relation to STAT and PI3K-Akt signaling as previously reported.
Conversely, NETO2 reduction leads to an upregulation of the
circadian rhythm pathway in colorectal cancer cells. Circadian
rhythm is closely associated with the cell cycle and has been
implicated in DNA-damage response (Hunt and Sassone-Corsi,
2007), with the disruption of this pathway considered a risk
factor for carcinogenesis (Straif et al., 2007). According to
literature, NETO2 is related to cell proliferation and apoptosis in
tumor cells (He et al., 2019; Li et al., 2019). These processes could
be connection points between the functions of NETO2 and the
circadian rhythm pathway.

Furthermore, we determined 17 genes presenting more than
a 2-fold change in expression following NETO2 knockdown.
Increased expression was observed in genes involved in cell
metabolism [CYP2U1 (arachidonic acid metabolism) and NT5E
(metabolism of nucleotides)], circadian rhythm (NR1D1 and
DBP), regulation of developmental processes (SEMA3C and
NAV3), histone demethylation (KDM5D), and transcriptional
regulation (ZNF804A). Decreased mRNA levels were noted for
genes related to cell adhesion (MUC16), differentiation (TEX19),
proliferation, and migration (ACVRL1, PTP4A1, and HYAL1),
as well as cytoskeleton organization (KRT6A and DES) and
ion transmembrane transport (CLIC3 and KCNK3). Most genes
(CYP2U1, SEMA3C, NT5E, KRT6A, NAV3, ACVRL1, KCNK3,
MUC16, PTP4A1, and HYAL1) were previously found to be

implicated in the development of colorectal cancer. Interestingly,
NETO2 is reportedly associated with the neuron navigator 3
(NAV3) gene, which is also predominantly expressed in the
nervous tissue. Copy number changes in the NAV3 gene have
been observed in colorectal cancer (Carlsson et al., 2012).
Moreover, NAV3 is reportedly involved in the p73-mediated
tumor suppression, as well as in Jak-STAT and GnRH signaling in
colorectal cancer cells (Carlsson et al., 2012; Uboveja et al., 2020).
Furthermore, the participation of NETO2 has been revealed in
the Jak-STAT signaling pathway during cancer. Additionally,
NETO2 silencing resulted in the altered expression of two
lncRNAs, LINC02043, and AL355075.4, for which the functions
and related cellular pathways have not been established. However,
lncRNA LINC02043 was previously reported as a prognostic
marker of recurrence-free survival in hepatocellular carcinoma
(Luo et al., 2020). Notably, regulation of NETO2 expression
with microRNAs and microRNA-lncRNA interaction has been
recently shown in esophageal cancer. NETO2 was determined as
a target of miR-206 and miR-143-5p, and participation of NETO2
tumor progression and angiogenesis through overexpression of
lncRNA FAM225A absorbed miR-206 was revealed (Wada et al.,
2020; Zhang et al., 2020). LncRNAs found in our study can
also be potential regulators of NETO2 expression in colorectal
cancer.

Although a wide range of studies has proposed increased
NETO2 expression in several tumors, we revealed its deregulation
in breast, prostate, and colorectal cancers (both decreased
and increased mRNA levels). The function of NETO2 in
tumorigenesis remains unclear; however, our findings and
those obtained in previous studies indicate its participation
in cancer-related signaling pathways. Moreover, all identified
cancer-related signaling pathways (Wnt, TGF-β, STAT, MAPK,
and PI3K-Akt) have previously been shown to be associated
with breast, prostate, and colorectal cancer (Dhillon et al.,
2007; Massagué, 2008; Pencik et al., 2016; Zhan et al., 2016;
Jiang et al., 2020).

Finally, we analyzed the ortholog of the human NETO2 gene
in the unique animal model, the short-lived fish N. furzeri.
This fish is characterized by an extremely short captive lifespan
of 3 months. The use of N. furzeri for genetic studies allows
for the rapid generation of transgenic lines and short-term
experiments. We showed that the ortholog neto2b had the high
similarity with human NETO2 in nucleotide (69%) and amino
acid (85%) sequences (even more than those for D. rerio), as
well as stable expression in the majority of the fish tissues. These
results confirm that NETO2 is a very conservative gene among
vertebrates and indicate the possibility to use N. furzeri for
the study of the gene function and its role in tumorigenesis at
the organism level.
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Background: Pulsatile pituitary gonadotropin secretion governed by hypothalamic

gonadotropin-releasing hormone (GnRH) is essential for the pubertal onset. The

epigenetic mechanism underlying the activation of GnRH-dependent regulatory axis

in hypothalamus remains elusive. This study aims to explore the potential correlation

between the signature of DNA (hydroxyl)methylation and pubertal process.

Methods: Hypothalamic arcuate nucleus (ARC) of mouse at early (4-weeks)

and late pubertal (8-weeks) stages underwent RNA-, RRBS-, and RRHP-seq to

investigate the genome-wide profiles of transcriptome, differential DNA methylation

and hydroxymethylation.

Results: A series of differential expressed genes (DEGs) involved in sexual development

could be separated into three subgroups with the significant difference of DNA

methylation or hydroxymethylation or both in promoter regions. Compared to DNA

methylation, DNA hydroxymethylation partook in more signaling pathways including

synapse morphology, channel activity and glial development, which could enhance

transsynaptic change and glia-to-neuron communication to faciliate GnRH release. The

correlation between transcription and these epigenetic modifications indicated that DNA

hydroxymethylation impacted with gene transcription independently of DNA methylation

spanning puberty.

Conclusion: Our results characterized the hydroxymethylation pattern and provided an

insight into the novel epigenetic regulation on gene expression during pubertal process.

Keywords: puberty onset, DNA methylation, DNA hydroxymethylation, GnRH, ARC
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INTRODUCTION

Pubertal development is a multi-factorial process accompanied
by maturity of skeletal height, growth spurt, and a myriad of
hormonal changes involving genetic, nutritional, socioeconomic,
and environmental factors in a systematic manner leading to
reproductive maturation. Pubertal development is governed by
the hypothalamic–pituitary–gonadal (HPG) axis, and begins
with hypothalamic gonadotropin-releasing hormone (GnRH)
neurons. Usually, the dormant HPG axis presents the silencing
GnRH, extremely low levels of luteinizing hormone (LH) and
follicle stimulating hormone (FSH), and estrogen or testosterone
until ∼8–9 years of age in human beings (Lee and Houk, 2006,
2008). The pulsatile secretion of GnRH from the hypothalamus
stimulates on the gonadotroph cells of the pituitary gland to
secrete gonadotropins, LH and FSH, and the gonadotropins
then stimulate the production of estrogen from the ovaries in
females, and testosterone from the testes in males (Chulani and
Gordon, 2014). In turn, the secretion of GnRH in hypothalamus
is majorly regulated by KiSS-1 metastasis suppressor (Kiss1) and
Kiss1 receptor (Kiss1r, also known as GPR54). Kiss1 neurons
of the arcuate nucleus (ARC) in the hypothalamus seem to be
essential for pulsatile GnRH release in both sexes. Transcriptional
activation of these genes was considered as a core mechanism
underlying the puberty initiation, which was precipitated by
epigenetic cues (Ojeda and Lomniczi, 2014).

Previous studies have indicated that hypothalamic DNA
methylation is strongly implicated in the onset of puberty
in mammals (Lomniczi et al., 2015; Yuan et al., 2019). Loss
of DNA methylation or demethylation has been observed
in specific contexts through active or passive mechanisms
(Wu and Zhang, 2010). Active DNA demethylation is the
enzymatic process that leads to the removal of the methyl

group from 5-methylcytosine (5mC) via successive oxidation
[5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-
carboxylcytosine (5caC)] catalyzed by ten-eleven translocation

(TET) family (Kohli and Zhang, 2013). TET2 has been
determined to promote transcription and peptide release of
GnRH, and consequently maintain reproductive function in
in vitro and in vivo (Kurian et al., 2016). However, the roles
of active DNA demethylation in transcriptional regulation in
puberty onset is never elucidated.

Female mice have been widely used in multiple studies on
pubertal development as they present the similar molecular
behaviors in HPG axis and stable cycles of menstrual calendar
like human (Pohl et al., 2007). Hypothalamic ARC underwent
a huge epigenetic and genetic reprogramming to adapt to the
response and feedback on sexual hormones during the stages of
early pubertal (2–5-weeks of age) and late puberty (5–8-weeks
of age). Here, we harvested 4- and 8-weeks hypothalamic ARC
and employed RNA-seq, reduced representation bisulfite
sequencing (RRBS) and hydroxymethylation profiling
(RRHP) on a genome-wide scale. Given a large number
of differential expressed genes (DEGs) and differential
5(h)mC signals across the whole genome, we discovered
novel connections between DNA (hydroxyl)methylated
modification and gene expression, emphasizing the importance

of epigenetic alterations in regulating transcription during
pubertal process.

MATERIALS AND METHODS

Experimental Animals
C57BL/6 female mice purchased from Shanghai SLAC
Laboratory Animal Co., Ltd. (Shanghai, China) were housed in
clean cages and maintained at 22 ± 2◦C with a constant 12-h
light/dark schedule. The animals were allowed free access to food
and water. 4- and 8-weeks-old mice (n= 10 per group) were used
in this study. Initially, preliminary experiment for dye injection
was used to target the location of ARC using initial orientation
(0.4mm lateral, 1.60mm posterior to bregma, 7.40mm below
the surface of the dura) as previously described (Greenwood
et al., 2014; Hu et al., 2015). Mice were sacrificed via cervical
dislocation, and the whole brains were isolated immediately.
The hypothalamic ARC tissues in each group were harvested
and gathered for the consequent experiments according to
the previous dye staining (Supplementary Figure 1A). All the
procedures were followed by the Institutional Animal Care and
Use Committee of Shanghai Jiao Tong University.

RNA-seq Library Construction and Data
Analysis
ARC tissues were stored in 1ml TRIZOL (Thermo Fisher
Scientific, Waltham, MA, USA) and grinded in liquid nitrogen,
and were added 100 µl chloroform and fully mixed, then
centrifuged with highest speed at 4◦C for 10min. The
supernatant was moved into a new tube, and added the
isopropanol with same volume, and centrifuged with highest
speed at 4◦C for 10min. The precipitate was washed by 75%
cold ethanol, and dissolved by appropriate DEPC water. The
concentration and quality of RNA was measured by Nanodrop
2000 (Thermo Fisher Scientific) and Agilent bioanalyzer 2100
(Agilent, Santa Clara, CA, USA). 4 µg of RNA in each group
were used for library preparation by NEBNext Ultra Directional
RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA)
following manufacturer’s instructions and were sequenced on an
Illumina Hiseq platform.

The raw data was trimmed adaptors and filter out low
quality reads using Trimmomatic (non-default parameters:
SLIDINGWINDOW:4:15 LEADING:10 TRAILING:10
MINLEN:35) (Bolger et al., 2014), and checked the quality
of clean reads using Fastqc (Andrews, 2013). Next, clean reads
were aligned to the latest mouse genome assembly mm10 using
Hisat2 v2.0.5 (non-default parameters: –rna-strandness RF
–dta) (Kim et al., 2015). The transcripts were assembled and
the expression levels were estimated with FPKM values using
the StringTie algorithm (non-default parameters: –rf) (Pertea
et al., 2015). Differential mRNA and lncRNA expression among
the groups were evaluated using an R package Ballgown (Frazee
et al., 2015), and the significance of differences by the Benjamini
& Hochberg (BH) p-value adjustment method were computed.
Gene annotation was described by Ensembl genome browser
database (http://www.ensembl.org/index.html). The R package
ClusterProfiler was used to annotate the differential genes with
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gene ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Yu et al., 2012).

RRBS and RRHP Library Construction and
Data Analysis
Genomic DNA of ARC in two groups were extracted using
the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany).
The 200 ng high-quality DNA was then digested by restriction
endonucleases MspI (NEB) and subjected to 3′-end blunting
and single nucleotide (A) addition and adaptor ligation. For
RRHP, 5hmC positions at the adapter junctions were modified by
T4 phage β-glucosyltransferase (NEB), and non-glucosyl-5hmCs
were removed by another round of MspI digestion. The 250–
500 bp fragments were then selected and treated with bisulfite
conversion using Epitect Bisulfite Kit (Qiagen) according to
the manufacturer’s instructions. Converted DNA were eluted
and performed PCR amplification to enrich for fragments with
adapters on both ends. The constructed libraries were quantified
using Agilent Bioanalyzer 2100 (Agilent Technologies, Carlsbad,
CA, USA) and subjected to high-throughput sequencing using
the Illumina Hiseq 2500 platform with paired-end 50 bp
sequencing (PE50).

For RRBS, Trim Galore v0.5.0 (non-default parameters:
–max-n 0 –length 35 –rrbs) were used to filter adapters,
short reads (length < 35 bp) and low quality reads. For
RRHP, Cutadapt v1.18 (non-default parameters: –max-n
0 –minimum-length 35), and Trimmomatic v0.38 (non-
default parameters: SLIDINGWINDOW:4:15 LEADING:10
TRAILING:10 MINLEN:35) were used to filter adapters, short
reads (length < 35 bp) and low quality reads. FastQC (with
default parameters) was used to ensure high reads quality.
Trimed reads of RRBS data were aligned to reference genome
(assembly GRCm38) using Bismark v0.7.0 (with default
parameters) and analyzed DNA methylation profiles using
methylKit package (Akalin et al., 2012). DMRs were selected by
false discovery rate (FDR) < 0.05 and methylation percentage
change between control and test groups are > 10%. For RRHP,
clean reads were mapped to the mouse genome (assembly
GRCm38) using the Bowtie2 v2.3.4.1 (with default parameters)
software. Aligned reads with CCGG tag at 5′ end were counted.
Differentially hydroxymethylated regions (DHMRs) were
determined using the diffReps software. DHMRs were analyzed
by log2 fold change (FC) >1 or <-1, FDR < 10−4.

Data Deposits
The raw sequencing data was deposited to ArrayExpress assigned
with the accession number E-MTAB-9420 and E-MTAB-9421.

RESULTS

The Differential Expressed Genes During
Pubertal Process
To investigate the changes of epigenome and transcriptome of
hypothalamic ARC during puberty progression, we conducted 18
libraries for RNA, RRBS, RRHP-seq derived from hypothalamic
ARC of C57BL/6 mice in two sexual developmental stages
of early and late puberty. The alignment of data and the

correlations within duplications in each group were summarized
in Supplementary Table 1 and Supplementary Figure 2, which
indicated a good quality of biological materials in this study.
As previously described (Li et al., 2017), developmental stages
of C57BL/6 mouse were roughly divided into prepuberty and
early puberty periods (2–5-weeks of age), late puberty (5–
8-weeks of age), and young adulthood (8–12-weeks of age).
Here, we detected the vulva morphology and the changes of
LH and FSH in sera of 4- and 8-weeks mice, and validated
that 8-weeks mice displayed a phenotype of higher hormome
levels and gonadal activation compared with 4-weeks mice
(Supplementary Figures 1B,C).

A total of 5,778 DEGs were obtained among which 1,787
protein coding genes were up-regulated while 3,991 were
down-regulated in 8-weeks group compared with 4-weeks one
(log2FC >1 or < −1, FDR <10−3). Take an example of
the well-acknowledged puberty associated genes, in contrast
to the high expression of Kiss1, GnRH, and Adam7 in early
pubertal stage of ARC, the presence of substantially decreased
Cbx7, Kiss1r, and Nell2 was observed during pubertal process
(Figure 1A). Moreover, the functional and signaling pathway
enrichment analysis showed that DEGs majorly involved
in neurodevelopment, synaptic behavior and transmembrane
and extracellular signal transduction (Figures 1B,C), indicating
that the specific functional neurons in ARC underwent a
complicated process of signals communication and stimulation
for maturation. We also observed a high correlation of
glutamatergic synapse with puberty (p = 5.24 × 10−8) and
the high expression of glutamate metabolism associated genes
such as Grik, Grin and Adcy families in 4-weeks compared
with 8-weeks ARC. Previous study indicates that the coordinated
activity of glutamatergic neurons and GnRH neurons facilitates
the sensitivity of GnRH secretion (Parent et al., 2005). Besides
that, choline, aldosterone and endocannabinoid did synthesize
and secrete, which likely had profound effects on puberty
initiation (Wenger et al., 2002; Biasi, 2010; Genovesi et al., 2018).
Taken together, these observations validated the known genetic
signatures and indicated multiple activated signaling pathways
during pubertal process.

Genome-Wide Landscape of DNA
Methylation and Hydroxymethylation in
ARC
To further investigate the regulatory machinery underlying
transcription, RRBS and RRHP were employed to detect the
altered genome-wide distribution of 5mC and 5hmC in 4- and 8-
weeks old hypothalamic ARC. Our data showed that DMRs and
DHMRs (RRBS: FC > or < 10%, FDR < 0.05; RRHP: log2FC >1
or < −1, FDR < 10−4) majorly occurred at the promoter, intron
and intergenic regions (Figures 2A,B). Here, we focused on the
CpG loci located at promoter region of DEGs and observed that
these genes whose promoter showed the significantly differential
DNA methylation levels between 4- and 8-weeks groups were
functionally enriched in signaling pathways closely connected
with sexual development and hormone secretion (Figures 2C,D).
Likewise, DEGs whose CpG loci at promoter had the remarkable
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FIGURE 1 | Expression profile of hypothalamic ARC in 4- and 8-weeks. (A) Scatter plot of gene expression of 4- /8-weeks. Orange dots represent genes with

significant differential expression (q < 0.001). Ontology analysis of the involved enriched functions (B) and signaling pathways (C) of DEGs (p < 0.05).

increasing or declining hydroxymethylation levels were majorly
associated with the function of synapse morphology and
channel activity including glutamatergic synapse (Figures 2E,F).
In addition, we found that most of functions and pathways
(86.8%) enriched by DHMRs overlapped with those of DEGs
compared with DNA methylation (Figures 2G,H). Previous
studies have determined that transsynaptic change and glial-
neuronal connection attribute to GnRHneuron activation (Ojeda
et al., 2010). Current data showed that DHMRs involoved in
more genes enriching the functions of glutamate and gamma-
aminobutyric acid (GABA) neuron as well as glia development
rather than DNA methylation. Our results indicated that
DNA methylation might impact with the more intuitive
phenotype of hormone secretion while the functions related
DNA hydroxymethylation were associated with various auxiliary
neurons which were not the most obvious characteristics of
sexual development, but were used to trigger and maintain the
pubertal initiation. Taken together, the given 5(h)mC patterns
in ARC suggested that DNA (hydroxyl)methylation was closely
connected with gene expression in puberty onset.

Independent Roles of DNA
Hydroxymethylation and Methylation in
Regulating Gene Expression
As well-acknowledgment that DNA methylation in promoters
usually negatively correlated with transcription, while DNA
hydroxymethylation in promoters displayed a positive
correlation with gene expression, we observed the consistent
epigenetic regulation of DNA hydroxyl(methylation) on
DEGs in our system. Given the overlap of enriched functions
between DNA (hydroxy)methylation and DEGs, we grouped
three clusters of gene which are negatively correlated
with DNA methylation, positively correlated with DNA
hydroxymethylation as well as both (Figure 3A). The presence of
nine genes including Bhlha15, Insl5, Msmp, Plcb2, Slc17a8, Sox3,
Tnfaip2, Uck2, and Ypel2 in first cluster, 3,277 genes including

Epb41, Pebp1 in second cluster, as well as 38 genes including
Areg and Nr5a1 in third cluster was observed (Figure 3B).
During pubertal development, the connection between DNA
methylation and hydroxymethylation was seemingly not closed,
maybe only in 38 genes of the third cluster.

Moreover, we obtained the FCs of transcription, 5mC and
5hmC between 4- and 8-weeks, and compared the FC of
gene expression normalized by the FC of 5(h)mC, indicating
that DNA hydroxymethylation could impact gene expression
more powerful than DNA methylation (Figure 3C). To further
investigate the relationshiop between differential 5mC and 5hmC
from the overlapped D(H)MRs, we calculated correlation using
Pearson’s chi-squared test. Unexpectedly, we failed to observe
any significant relativity between each other (r = 0.0543, p
> 0.05) (Figure 3D). Although in consideration of 5hmC as
an intermediate of demethylation, however, the results above
suggested that DNA hydroxymethylation played a regulatory role
in transcription independent of DNA methylation although they
had the closely chemical connection.

DISCUSSION

Although mutations in multiple genes such as kisspeptin system,
MKRN3, DLK1 have been identified in sporadic and familial
cases of central precocious puberty (CPP), many factors involved
in pubertal initiation and transition remain poorly understood
(Aguirre and Eugster, 2018). Our data shows that the DEGs of
hypothalamic ARC between 4- and 8-weeks include a number of
well-acknowledged pubertal associated genes. However, we have
meanwhile detected ARC of adult rat, and fail to observe any
significant change of Kiss1 and GnRH compared with 4- or 8-
weeks (data not shown), which suggests that the expressions of
GnRH and other pubertal genes are fluctuant due to the pulsatile
release of GnRH and periodic estrus cycle in adult individuals,
but their expression changing law during the stages of puberty
onset seems more stable than adult stage.
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FIGURE 2 | DNA (hydroxy)methylation patterns of hypothalamic ARC in 4- and 8-weeks. The distribution of DMR (A) and DHMR (B) regions in genomic contexts of

DEGs. DMR: differential methylated regions, FC > or < 20%, q < 0.05; DHMR: differential hydroxymethylated regions, log2FC >1 or < −1, q < 1e-4. Ontology

analysis of the involved enriched functions (C) and signaling pathways (D) of differential methylated DEGs (p < 0.05). Ontology analysis of the involved enriched

functions (E) and signaling pathways (F) of differential hydroxymethylated DEGs (p < 0.05). The Venn diagram view of enriched functions (G) and signaling pathways

(H) among DEGs with differential (hydroxyl)methylation.

A large number of recent studies have suggested that CpG
methylation changes are likely to show a crucial regulatory in
controlling the transcription of the well-acknowledged pubertal

genes related to GnRH and estrogen signaling pathways in
mammalian hypothalamus (Mellen et al., 2012; Alves et al., 2017;
Thompson et al., 2018). Although our omics data indicates that
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FIGURE 3 | The relationship between DNA hydroxymethylation and transcription. (A) Heatmap of 5(h)mC FC at promoter of DEGs between 4- and 8-weeks of

hypothalamic ARC. (B) Gene browser views of transcription, 5mC and 5hmC profiles in 4- and 8-week of hypothalamic ARC for three clusters of gene regulated by

DNA methylation (Scl17a8, Uck2), DNA hydroxymethylation (Epb41, Pebp1), and both (Nr5a1, Areg). (C) Comparison of FC of DEGs and D(H)MRs at promoter

region. (D) The correlation between 5mC and 5hmC of the overlapped D(H)MR in promoter of DEGs.

DNA methylation change is associated with the expression of
a small proportion of genes on gonad development from early
to later stages of puberty onset, however, the expressions of
more genes are actually impacted by DNA hydroxymethylation
at promoter including Kiss1 and Kiss1r. The secretion of GnRH
in hypothalamus is majorly regulated by KiSS-1 metastasis
suppressor (Kiss1) and Kiss1 receptor (Kiss1r, also known as
GPR54). Kiss1 neurons of the arcuate nucleus (ARC) in the
hypothalamus seem to be essential for pulsatile GnRH release
in both sexes. We speculate that an accompanied genome-wide
demethylation processes to facilitate synapse organization to
accommodate to regulating the high-level hormone secretion
in hypothalamus. 5hmC as a hallmark and an intermediate of
demethylation process is determined to play an essential role in
normal sexual development in central nervous system in this
study. Furthermore, the differential DNA hydroxymethylated
genes and their involved functions and pathways have no more
than 15% overlap with the ones of DNA methylation, and
differences of 5hmC at the promoter of DEGs affect transcription
more robustly than 5mC even at the same “CG” loci, which
implies that DNA hydroxymethylation exerts an epigenetic
regulation independent of DNA methylation although they
tightly connect with each other from the chemical basis. 5hmC,
which is more than the intermediate of demethylation process
per se, is likely to reverse the traditional repressive functions of
MeCP2 (Mellen et al., 2012), and recruit multiple transcription
factors to create an environment to facilitate gene transcription
(Ichiyama et al., 2015).

Additionally, we focus on the associated regulatory networks
of Kiss1 and GnRH, which seems to be the most important
gene for puberty onset. We find that the enriched functions
involving Kiss1 but not GnRH from DHMR associated genes
and DEGs completely overlapped. We speculated that DNA
hydroxymethylation is likely to govern the upstream GnRH
regulatory axis in the early stage of puberty initiation. Our
data reveals the dynamic DNA (hydroxy)methylation changes
of genome of ARC during puberty process, not only indicates
the gene expression regulation, but also provides the potential
therapeutic targets by epigenetic drugs for puberty associated
diseases treatment.

CONCLUSION

Overall, our data shows the dynamic change of genome-wide
methylation and hydroxymethylation in hypothalamic ARC, and
uncovers a novel characterization of DNA hydroxymethylation
for regulating transcription during pubertal process. The
outcomes advance the understanding on a novel mechanism
of epigenetic regulation on gene, and contributes to improving
therapeutic strategy for disorders of sex development.
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Supplementary Figure 1 | The phenotype and morphology of pubertal femal

mice. (A) Dye injection for ARC location. Left: the ventral view of hypothalamus;

right: sectional view of coronal suture of hypothalamus. Red pentagon indicates

the location of ARC. (B) Comparision of vulva morphology between 4- and

8-weeks mice highlighted by the red arrows. The serum levels of LH (C) and FSH

(D) between 4- and 8-weeks mice. “∗∗” represent p < 0.01.

Supplementary Figure 2 | The repeatability and reliability of omics data.

Correlation analysis of replicate data, including RNA-seq, RRBS-seq, and

RRHP-seq for 4- and 8-weeks ARC samples. Correlations were calculated using

whole genome data.
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Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is an important
experimental method for detecting specific protein-mediated chromatin loops genome-
wide at high resolution. Here, we proposed a new statistical approach with a
mixture model, chromatin interaction analysis using mixture model (ChIAMM), to detect
significant chromatin interactions from ChIA-PET data. The statistical model is cast
into a Bayesian framework to consider more systematic biases: the genomic distance,
local enrichment, mappability, and GC content. Using different ChIA-PET datasets, we
evaluated the performance of ChIAMM and compared it with the existing methods,
including ChIA-PET Tool, ChiaSig, Mango, ChIA-PET2, and ChIAPoP. The result showed
that the new approach performed better than most top existing methods in detecting
significant chromatin interactions in ChIA-PET experiments.

Keywords: ChIA-PET, chromatin interactions, genome-wide, mixture model, bayesian framework

INTRODUCTION

Diverse high-throughput methods have been developed to detect genome-wide chromatin
interactions, including chromatin interaction analysis by paired-end tag sequencing (ChIA-
PET) and high-throughput chromosome conformation capture (Hi-C) (Fullwood et al., 2009;
Lieberman-Aiden et al., 2009). ChIA-PET was first introduced in 2009 as an essential experimental
method for studying genome-wide chromatin interactions mediated by a specific protein of interest.
It can discover many chromatin interactions at a higher resolution that are needed for studying
gene transcription regulation. It has been widely used to study various proteins such as estrogen
receptor alpha, RNA polymerase II (RNAPII), CCCTC binding factor (CTCF) in human and mouse
genome (Fullwood et al., 2009; Handoko et al., 2011; Li et al., 2012; Tang et al., 2015), and H3K4me3,
H3K9me2, and RNAPII in rice and maize (Peng et al., 2019; Zhao et al., 2019).

The processing of raw ChIA-PET data is not easy. ChIA-PET experiment will generate tens
of millions of paired reads containing a tag and linker sequence (barcode). The tag can be short
(generated by the original protocol, and it is about 20 base pairs) or long (generated by the improved
protocol, and it is about 150–250 base pairs) (Li et al., 2017). The steps to process raw ChIA-PET
data include linker trimming, read alignment, paired-end tag (PET) filtering, PCR duplicate
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removal, peak calling, and chromatin interaction calling. In
ChIA-PET data, similar to other high-throughput sequencing
data, there is a mixture of signals (fragment pairs from real
chromatin interactions, termed as true pairs) and noise (fragment
pairs from random ligation, termed as false pairs). Distinguishing
the true interaction pairs from the random noise is not a simple
task, and complicated computational tools are needed (He et al.,
2016). Up to now, there are several published tools, and ChIA-
PET Tool (Li et al., 2010), ChiaSig (Paulsen et al., 2014), Mango
(Phanstiel et al., 2015), ChIA-PET2 (Li et al., 2016), and ChIAPoP
(Huang et al., 2019) are the representative ones.

The ChIA-PET Tool is the first software package for the
automatic processing of ChIA-PET sequence data, which uses
hypergeometric distribution (HG) as the statistical method and
accounts for the sequencing depth bias. It fails to correct the
major source of bias (He et al., 2015; Phanstiel et al., 2015),
such as the genomic distance between the interacting regions.
ChiaSig (Paulsen et al., 2014) advanced the ChIA-PET Tool by
incorporating genomic distance between interacting anchors. It
uses non-central HG distribution for modeling the frequency of
chromatin interactions, and the model considers the non-specific
ligations that exist because of genomic distance proximity. As a
limitation, ChiaSig has a high false-negative rate (He et al., 2015),
it executes the final step in ChIA-PET Tool data analysis, and
users are expected to write their programs (Phanstiel et al., 2015).
Similar to ChiaSig, Mango (Phanstiel et al., 2015) is designed for
correcting the primary source of biases from genomic proximity
using the binomial model. As a limitation, Mango does not
model the interactions between different chromosomes. Besides,
it is too conservative at the significant loop calling step, just
reporting a small number of interactions, which led to a high
false-negative rate (Li et al., 2016). ChIA-PET2 (Li et al., 2016)
is a complete analysis pipeline that uses a Bayesian mixture
model to process both bridge and half-linker ChIA-PET data
from raw sequencing reads to significant chromatin loop calls.
As a limitation, it gives slightly different results for the same
input (Huang et al., 2019). ChIAPoP (Huang et al., 2019)
was proposed using zero truncated Poisson distribution for
accounting for the genomic distance and sequence biases. It
is designed for short-read ChIA-PET datasets only. ChIAPoP
considers intra- and interchromosomal interaction as a separate
model. Recently, ChIA-PIPE (Lee et al., 2020) was proposed
by integrating the special functions related to the experiment
types, data processing, and structural interpretation. ChIA-PIPE
used ChiaSig (Paulsen et al., 2014) to calculate the statistical
significance of interactions.

All the above existing tools considered only the genomic
distance or anchor depth as biases. But in different studies,
the GC content and mappability score are listed as systematic
sources of biases (Yaffe and Tanay, 2011; Hu et al., 2012; Imakaev
et al., 2012). Hence, the existing tools failed to address it.
Besides, from the existing tools, except for ChIA-PET Tool V3
(Li et al., 2019), ChIA-PET2 (Li et al., 2016), and ChIA-PIPE
(Lee et al., 2020), others are designed exclusively for short-read
ChIA-PET data analysis.

Here, we present a new statistical method called chromatin
interaction analysis using mixture model (ChIAMM) to

distinguish signals from noise in ChIA-PET data. It considers the
genomic distance between anchors, sequence depth, GC content,
and mappability as systematic sources of bias. The model was
tested on both RNAPII and CTCF ChIA-PET data from human
K562 and MCF7 and RNAPII and H3K9me2 ChIA-PET data
from rice MH63. The performance of the proposed method was
evaluated with the aggregate peak analysis (APA) plot, CTCF
coverage of anchors, and CTCF motif orientation analysis. The
results showed that the new method performed better with the
most top existing tools.

MATERIALS AND METHODS

Public Datasets Used
In this study, MCF7 and K562 RNAPII data in Li et al. (2012),
MCF7 and K562 CTCF data in GEO with accession numbers
GSM970215 and GSM970216, respectively, and MH63 RNAPII
and H3K9me2 data in Zhao et al. (2019) were processed. For
the CTCF enrichment and motif orientation analyses, the CTCF
peak regions from ENCODE ChIP-Seq datasets ENCFF990LUT
and ENCFF720OXG for MCF7, and ENCFF559HEE and
ENCFF681OMH for K562 datasets were used.

Systematic Biases Considered in the
Study
In this study, we used genomic distance, GC content,
mappability, and enrichment as systematic biases of the
ChIA-PET experiment. We used ChIA-PET Tool version 3
(V3) (Li et al., 2019) as the primary processing pipeline to
find the anchor sites, genomic distance, interaction frequency,
type of interaction, marginal count, and self-ligation PETs.
It is known that regions close together along the genomic
sequence will have a higher chance of forming random contacts.
Thus, it is essential to integrate the genomic distance into the
model (Paulsen et al., 2014), and we primarily considered the
genomic distance as a bias. The second bias is the GC content,
defined as the percentage of cytosine (C) and guanine (G) bases
in a given region. In different studies, GC content has been
reported as a systematic bias in next-generation sequencing
(NGS) applications (Yaffe and Tanay, 2011; Hu et al., 2012),
and the GC content of each anchor is calculated using bedtools
nuc (Quinlan and Hall, 2010) function. The third bias is the
mappability score, which is defined as the mappability of all
possible k-mers in a given anchor site. The mappability track
is downloaded from the UCSC Genome Browser website
(Derrien et al., 2012), and the overlap of the mappability
track with anchors was performed using bedtools. The last
systematic bias is the local enrichment in a given region. It is well
known that the anchors with more enrichment have a higher
probability of forming interligation PETs by random chance.
Different studies have considered enrichment as systematic
bias in their analysis (Li et al., 2010, 2016; Paulsen et al.,
2014; He et al., 2015; Niu and Lin, 2015; Phanstiel et al., 2015;
Huang et al., 2019). In this study, we measured the anchor
enrichment using the number of self-ligation PETs found by
ChIA-PET Tool (V3).
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Statistical Mixture Model
In many situations, like the ChIA-PET experiment, due to the
complex nature of the observed data, using single parametric
distribution is insufficient for inference. Here, we used a mixture
model. It offers a solution to this problem by assuming that
the frequency of chromatin interactions can be represented
by a weighted sum of distributions, with each distribution
representing a proportion contribution to the data.

We used a mixture model for modeling the
interaction frequency of the ChIA-PET experiment. Let
Y =

{
yi, i = 1, 2, . . . . . . ., n

}
represent the interaction

frequencies for each observed anchor pair i from n unique
anchor pairs (say, anchor Ai and Bi). The interaction frequency,
yi, has a two-component mixture distribution, i.e., signal and
noise. The mixture model integrates signal and noise interaction
frequency as follows:

yi ∼
1∑

j=0

Wjip
(
.|λji

)
i = 1, 2, ........, n

where Wji is the mixing probability (i.e., W0i and W1i represent
the probability of pair i being a false pair and true pair,
respectively), and W0i +W1i = 1.

It is well known that Poisson distribution is the most popular
distribution for modeling NGS count data, and in the above
model, p (.|λ) is the

(
k− 1

)
truncated Poisson distribution. The

model considers the interaction frequency, yi ≥ k (where k is a
cut-off point). The cut-off point is used to decide a pair that is
kept in the analysis. Most of the time, it is determined by the
researcher. In this study, the cut-off value is ≥ 2, the same as in
(Fullwood et al., 2009).

The probability mass function for Poisson distribution is
written as:

p
(
Y = y|λ

)
=

e−λ λy

y!

and the probability mass function for k− 1 truncated Poisson
distribution is written as follow:

p
(
Y = y|y ≥ k,λ

)
=

λy

y!
{
eλ −

[
1+ λ+ λ2

2! + · · · +
λk−1

(k−1)!

]}
for y = k, k+ 1, . . . .

Therefore, for k ≥ 2, p
(
Y = y|λ

)
is written as:

p
(
Y = y|y > 1, λ

)
=

λy

y!
[
eλ − (1+ λ)

] for y = 2, 3, . . . . . . .

In simplified form, we can express it using the cumulative
distribution function (CDF) as follows:

p
(
Y = y|y > 1,λ

)
=

p
(
y|λ
)

1− F (1)

For pair of i, 1 ≤ i ≤ n, p
(
Y = y|λ

)
will be p

(
.|λ0i

)
and

p
(
.|λ1i

)
, which model the interaction frequency conditional on

it being noise and signal, respectively, and F (1) = F(y ≤ 1)

represents the probability that the random variable takes a value
≤1. Besides, from the biological perspectives, the signals have
more intensity than the noises (Rousseau et al., 2011), and thus,
we put the requirements λ0i < λ1i.

From the listed biases, genomic distance has no explicit rule to
measure in interchromosomal interaction data. Hence, we model
the intra- and interchromosomal interaction data separately
and have different rate parameters (λ) and biases (xi) as well.
The rate parameters of intra- (λ) and inter chromosomal

(
λ′
)

interactions are connected with the biases using the link function.
The listed biases in this study are GC percentage

(
xgci and xi

′gc
)

,

mappability
(
xmap
i and xi

′map
)

and enrichment
(
xenri and xi

′enr
)

for intra- and interchromosomal interaction, respectively. We
considered the genomic distance only for intrachromosomal
interactions. In the intrachromosomal analysis, we considered all
the biases, but in the interchromosomal interaction analysis, we
will remove out the distance from the statistical model.

The link functions of intra- and interchromosomal interaction
are written as follows, respectively:

log (λ0i) = β0 + β1 log
(
xenri

)
+ β2 log

(
xgci
)
+ β3 log

(
xmap
i

)
+β4 log

(
xdisi

)

log
(
λ′0i
)
= β ′0 + β

′
1 log

(
x′ienr

)
+ β ′2 log

(
x′igc

)
+ β ′3 log

(
x′imap)

In Bayesian inference, the prior distribution is a crucial part,
representing the information about an uncertain parameter. The
priors and model description of inter- and intrachromosomal
interactions are similar. We used the prime symbol (′) for
parameters in the interchromosomal interaction model. To
simplify the next discussion, we will use the intrachromosomal
interaction model parameters as an example.

A normal distribution is a natural prior choice for βj.
Therefore, the coefficients of the Poisson regression model,
βj, j = 1, 2, 3, 4 have normal prior with mean zero and
reasonable variance to enable large enough deviations, βj ∼
N(0, 32) (Carlin and Louis, 2008; Gelman et al., 2013; Halla-
aho, 2015), and we declared λ1i = C + λ0i to show that the
frequency of signal is greater than the noise, where C is a
positive number that follows zero truncated normal distribution
with reasonable variance, C ∼ N(0, 32). In (Halla-aho, 2015),
different Ci were considered, but the estimated Ci has very
small variance. Therefore, the researcher recommended others
to use the same C for next work. This help us in the side of
reducing computational time. The statistical approach considers
the correlation between common anchor pairs (Niu and Lin,
2015). The dependency incorporated in the weights of the
mixture model, i.e., the weight changes from common to pair-
specific values, W1i ∼ Beta(mci, mc), where mci and mc is the
marginal count of the i-th paired anchors and the mean of
marginal count, respectively.

When we compute the marginal count, we considered
the interaction frequency yi two times; hence, we subtracted
one yi, i.e.,

mci = mcAi + mcBi − yi
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where mcAi and mcBi are the marginal count of anchor Ai and
Bi, respectively, and yi is the interaction count between anchors
(Figure 1), and mc is the average of marginal counts and

calculate as mc = 1
n

n∑
i=1

mci.

Finally, we define the new latent variable Zi, i = 1, . . . , n
that indicates the category of interaction groups, i.e., whether the
interaction frequency is in the signal or noise group:

Zi =
{

1, the pair i is a signal
0, the pair i is a noise

The indicator variable has two outcomes (0 and 1), and it
follows the Bernoulli distribution, Zi ∼ Bernoulli(W1i), for i =
1, 2, . . . , n, and it is concluded that pair i is signal pair
whenever P(Zi = 1|Y) is bigger than a cut-off value, 0.5
(Niu and Lin, 2015).

Aggregate Peak Analysis
Aggregate peak analysis is the standard and recommended plot
that measures the aggregate enrichment of putative peaks in a
contact matrix. It plots the sum of a series of submatrices around
the interaction anchors derived from the contact matrix. The
matrix is created by summing together all submatrices around
each putative individual peak. The resulting APA plot displays the
total number of contacts that lie within the entire putative peak
set at the center of the matrix. It is recommended to use peak to
lower left (P2LL) value to compare the interactions from different
methods. We generate an APA plot with 5-kb resolution contact
matrices for significant chromatin interactions. The BEDPE files
from the ChIA-PET data were used to build interaction matrices.

RESULTS

Chromatin interaction analysis using mixture model used a
mixture model to distinguish signals from noise in the ChIA-
PET experiment using the Bayesian approach. To evaluate and
compare the performance of ChIAMM with the top existing
methods, we used four short and two long-read ChIA-PET
datasets. The short reads are RNAPII- and CTCF-associated
datasets from human K562 and MCF7 cells, and the long
reads are RNAPII- and H3K9me2-associated datasets from rice

Minghui 63 (MH63). We used human genome hg19 for K562 and
MCF7 datasets and RS1 reference genome for rice datasets.

Convergence Diagnostics and Posterior
Prediction
We used Stan statistical package (rstan) and checked the
convergence of the algorithm with the trace plot and Rhat. The
rstan package allows us to conveniently fit different models and
access the outputs, including posterior inferences. In Bayesian
inference, MCMC algorithms will draw a sample from the target
posterior distribution after it has converged to equilibrium.
However, there is no guarantee about whether it is converged
or is close enough to the posterior distribution. Therefore, we
have to check its convergence using a trace plot and Rhat. It is
well known that trace plots are an essential tool for assessing the
mixing of a chain. Trace plot is a time series plot of the Markov
chains that shows the evolution of parameter vector over the
iterations of one or many Markov chains. The Rhat produces the
convergence diagnostic that compares the between- and within-
chain estimates for model parameters. It is recommended to
run at least four chains by default and use the sample if Rhat
is <1.05 (Stan Development Team, 2016). The trace plot of
intra- (βj, λ0i, W1i, and C) and inter- (βj, λ′0i, W′1i, and C′)
chromosomal interaction model parameters were checked. As we
specified in the methodology, the parameters λ0i, W1i, λ′0i ,
and W′1i are pair specific. The convergence was checked on
the random taken values. Here, as an example, we tested
the convergence diagnostic and posterior prediction on MH63
RNAPII datasets. Supplementary Figure 1 and Supplementary
Table 1 show the trace plot and Rhat value of the model
parameters in the given datasets. The Rhat value of all parameters
is 1, and chains are mixed well. Therefore, these results proved to
us the convergence of the MCMC algorithm.

Posterior prediction is used to assess the fit between a model
and the data. The fitted model has been validated using posterior
predictive checks (PPCs) through simulating data from the
model using parameters drawn from the posterior. The posterior
prediction analysis was checked using a graphical prior and PPC
plot. The PPC plot gives the graphical display that compares the
observed data to the simulated data from the posterior predictive
distribution. In Supplementary Figure 2, the dark line shows the
distribution of the observed outcomes, and the lighter line shows

FIGURE 1 | Illustration of interaction frequency in the ChIAMM model. Ai and Bi represent anchor regions with marginal PET counts mcAi and mcBi respectively, and
yi is the number of inter-ligation PETs between specified anchors Ai and Bi .
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the first 100 kernel density estimate from the posterior predictive
distribution in the MH63 RNAPII dataset. From the plot, the
simulated data is overlapped with the actual data, or we assured
that the fitted model recovered the data.

Comparing the Interactions of
Short-Read Data From Different Methods
In this study, the ChIAMM found significant interactions using
the value of W1i (the probability of pair i being a true pair). The
significant interactions from HG, ChiaSig, Mango, ChIA-PET2,
and ChIAPoP are found using the ChIA-PET Tool (V3), ChiaSig,
Mango, ChIA-PET2, and ChIAPoP pipelines, respectively. In all
methods, we used the same cut-off of interaction frequency ≥ 3.
ChIAMM detected 1,465 and 3,679 potential pairs in MCF7 and
K562 RNAPII datasets, respectively. These significant pairs are
more than those identified by ChiaSig (828 in MCF7 and 1,828 in
K562) and Mango (1,385 in MCF7 and 1,676 in K562). For CTCF-
associated datasets, ChIAMM detected 719 and 2,085 significant
pairs in the MCF7 and K562 datasets, respectively, which are
more than those identified by ChiaSig (434 in MCF7 and 923
in K562). In contrast, some methods reported more interaction
pairs than ChIAMM (Figure 2).

Supplementary Figure 3 shows the overlapped results
between ChIAMM and other existing tools. As an example,
in the MCF7 RNAPII dataset, we found higher overlapped
interactions with HG (1,465), ChiaSig (1,334), and ChIAPoP
(1,113). Similarly, in the K562 CTCF dataset, it shows higher
overlapped interactions with HG (2,084), ChIAPoP (1,852), and
ChiaSig (1,886). Besides, we found 257, 381, 387, and 1,047
overlapped significant interaction pairs among the six tools in
MCF7 RNAPII, K562 RNAPII, MCF7 CTCF, and K562 CTCF
datasets, respectively.

Aggregate Peak Analysis of the Interactions Between
Different Methods
We used the APA plots to compare interactions from ChIAMM
and other existing methods. To generate APA plots, we built

interaction matrices from BEDPE files, and the interaction counts
were summed for all pairs of loci in 5-kb bins (Servant et al.,
2015). Then, the APA score can quantify the level of a different
set of interactions. In the APA plot, it is recommended to use
P2LL value for comparison. P2LL is calculated as the ratio
of the central pixel to the mean of the pixels in the lower-
left corner of the interaction matrices. Higher scores indicate
higher enrichment of interaction, and it is always good to
find methods with higher P2LL value (Rao et al., 2014). For a
fair comparison, in all methods, we considered the significant
chromatin interactions with ≥ 3 supportive PETs. Then, we
found the overlapped and unique significant interactions between
ChIAMM and other existing tools.

For each dataset, we plotted five pairs of APA plot for
overlapped interactions and four pairs of APA plot for unique
interactions (no unique interactions found between ChIAMM
and HG). In all datasets, in the overlapped interactions, ChIAMM
has shown higher P2LL values with other tools. As expected,
ChIAMM shows similar P2LL values with HG and ChiaSig tools
(Figure 3 and Supplementary Figure 4). Besides, for unique
interactions, ChIAMM has shown better pair ranking with other
existing methods, with some exceptions, except Mango in K562
RNAPII, Mango in MCF7 and K562 in CTCF, ChiaSig in K562
RNAPII, and ChIAPoP in MCF7 CTCF ChIA-PET datasets
(Figure 4 and Supplementary Figure 5).

Comparison of CTCF Enrichment for Overlapped and
Unique Interactions
In different studies, CTCF is a ubiquitously expressed and
essential protein, and the DNA interactions are directly
related to this protein (Ohlsson et al., 2010). For comparing
enrichment of proteins in anchors, we used different CTCF
peak files, i.e., the CTCF-peak regions from ENCODE ChIP-
Seq datasets ENCFF720OXG and ENCFF990LUT for MCF7,
and ENCFF681OMH and ENCFF559HEE for K562 cell line.
For the CTCF coverage computation, we considered the
overlapped and unique interactions between ChIAMM and other

FIGURE 2 | Detected significant interactions in different tools in RNAPII and CTCF data sets. The red and blue vertical bars represent the significant interactions
detected in K562 and MCF7 data sets.
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FIGURE 3 | Aggregate peak analysis (APA) plots for overlapped significant
interactions between ChIAMM and existing methods in the K562 CTCF
ChIA-PET data set. Each row in the plot represents the comparison of
interactions between ChIAMM and one other method.

existing methods with chromatin interaction frequency ≥ 3.
A comparison of CTCF enrichment means how many anchors
are covered with the peak file. For both overlapped and unique
interactions, we found the anchors that covered with the CTCF

FIGURE 4 | Aggregate peak analysis (APA) plots for significant unique
interactions between ChIAMM and existing method in the K562 CTCF
ChIA-PET data set. Each row in the plot represents the comparison of
interactions between ChIAMM and one other method.

peak file. Supplementary Figure 6 shows the percentage of CTCF
enriched and non-enriched anchors of the overlapped and unique
interactions between ChIAMM and other methods in CTCF
associated datasets. In these figures, ChIAMM shows equal CTCF
enrichment with HG and ChiaSig in the overlapped interactions
and shows a minimal difference with others. To ensure that
this difference is statistically significant or not, we computed
the Fisher’s exact test. According to the p-value, in all datasets,
the proportion difference of enriched anchors is statistically
insignificant, except for ChIAPoP in the overlapped interactions.

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 6161606063

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616160 December 8, 2020 Time: 18:40 # 7

Arega et al. Statistical Analysis of ChIA-PET Data

Comparison of CTCF Motif Orientation for
Overlapped and Unique Interactions
It is well known that CTCF is an essential architectural protein
to mediate long-range interactions. Different studies have shown
that CTCF motif orientations at chromatin loop anchor regions
are expected to have more convergent orientation than in other
orientations (Zhang et al., 2018). Here, we compared the CTCF
motif orientation of significant interactions (intrachromosomal)
of ChIAMM with the existing tools. If the interaction is a
real signal, it is expected to have convergent orientations more
often than in other orientations. For the motif orientation
analysis, a webserver https://ccg.epfl.ch/pwmscan/ was used
for scanning the reference genome (hg19), and the predicted
CTCF motif was filtered and kept only the overlap result with
CTCF peak regions. The CTCF peak files are the same as
that we used in the previous CTCF enrichment comparison.
Then, we found the overlapped result between the filtered
predicted CTCF motif and significant chromatin interactions
that we found using different tools. After that, we counted
the number of significant pairs with convergent and other
motif orientations. Figure 5 and Supplementary Figure 7
show the CTCF motif orientation analyses results for the
overlapped and unique interactions in K562 and MCF7 CTCF
datasets. The red color represents convergent motif orientation,
and the blue color represents the other motif orientation.
Fisher’s exact p-values are given at the top of each bar. The
p-value shows the test of a proportion of convergent motif
orientation between ChIAMM and other existing methods.
For each dataset, we performed five and four pairs (no
unique interaction between ChIAMM and HG) of CTCF motif
orientation analysis for overlapped and unique interactions
between ChIAMM and existing methods, respectively. From
these plots, in all datasets, ChIAMM showed equal motif
orientation with ChiaSig (only in overlapped interactions) and
HG. Statistically, the proportional difference in convergent
orientation between methods was tested. Based on the p-value,
in the overlapped interactions, the proportion of ChIAMM

motif orientation is not significantly different from other
existing approaches, except ChIAPoP. Likewise, in the unique
interactions, it is statistically insignificant from others, except for
Mango and ChIA-PET2.

Comparing the Interactions of
Long-Read Data From Different Methods
From the existing tools, only ChIA-PET Tool V3 and ChIA-PET2
can analyze long-read ChIA-PET data. Hence, we examined
the result of ChIAMM with these two existing tools using
the H3K9me2 and RNAPII datasets from rice MH63 variety.
We used RS1 as the reference genome. In all methods, for a
fair comparison, we considered the interaction frequency ≥ 3.
Similar to the short-read ChIA-PET datasets, we validated the
interactions using the APA plot.

Chromatin interaction analysis using mixture model and
other existing tools found the different amounts of significant
chromatin interactions. Supplementary Figure 8 shows the
detected interactions in each tool; besides, it also shows the
overlap interactions between ChIAMM and existing tools. HG
found maximum significant chromatin interactions (63,745
and 6,242); ChIAMM found the next largest interactions
(23,966 and 12,448); and ChIA-PET2 detected the smallest
significant chromatin interactions (5,143 and 6,183) in MH63
RNAPII and H3K9me2 datasets, respectively. ChIAMM found
maximum overlapped interactions with HG (23,821 and
2,903). The three tools found 2,744 and 969 overlapped
significant chromatin interactions in MH63 RNAPII and MH63
H3K9me2 datasets.

Aggregate Peak Analysis of the Interactions Between
Different Methods
To compare and evaluate ChIAMM in long-read ChIA-PET
datasets, we generated the APA plot. Still, for the sake of fair
comparison, we considered the chromatin interaction frequency
≥ 3. We plotted the APA plots for overlapped and unique
significant interactions between ChIAMM and other existing

FIGURE 5 | CTCF motif orientation analyses in the K562 CTCF ChIA-PET data set between overlapped and unique interactions in ChIAMM and existing tools. The
Fisher’s exact p-values are given at each the top of the figure.

Frontiers in Genetics | www.frontiersin.org 7 December 2020 | Volume 11 | Article 6161606164

https://ccg.epfl.ch/pwmscan/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616160 December 8, 2020 Time: 18:40 # 8

Arega et al. Statistical Analysis of ChIA-PET Data

FIGURE 6 | Aggregate peak analysis (APA) plots for overlapped and unique significant interactions between ChIAMM and existing method in rice MH63 H3K9me2
ChIA-PET data set. Each row in the plot represents the comparison of interactions between ChIAMM and one other method.

tools. We plotted two pairs of APA plot for overlapped
and unique interactions. Figure 6 and Supplementary
Figure 9 show the APA plot for overlapped and unique
interactions. In unique interactions, ChIAMM has shown
higher P2LL values in both datasets. Besides, in the overlapped
interactions, ChIAMM shows similar P2LL values with HG
and lower P2LL values with ChIA-PET2 in H3K9me2 and
RNAPII MH63 datasets.

DISCUSSION AND CONCLUSION

Chromatin interaction analysis by paired-end tag sequencing
is a genome-wide, high-throughput, and high-resolution
method to detect chromatin interactions associated with a
specific protein of interest. Here, we described a new statistical
approach called ChIAMM that corrects for non-specific
interactions as a function of genomic distance, enrichment, GC
content, and mappability score. It is designed for both short-
and long-read ChIA-PET datasets. Using the RNAPII- and
CTCF-associated data from human K562 and MCF7 cell and
RNAPII- and H3K9me2-associated data from rice Minghui 63
(MH63), we demonstrated that our approach is better with the
most effective top existing tools.

In various studies, enrichment, genomic distance, GC content,
and mappability score were listed as systematic sources of
bias. All the preexisting ChIA-PET tools considered only the
genomic distance or enrichment as systematic biases. Therefore,
all tools failed to address the possible biases in their study.
Some are designed exclusively for short-read and only for
intrachromosomal interaction ChIA-PET datasets. In this study,

we filled all the above gaps using the Poisson regression
model. We considered the genomic distance, enrichment, GC
content, and mappability score in the model, and we noticed
its effect on the interaction frequency. Supplementary Table 1
shows the estimated Poisson regression coefficients of biases
in the MH63 RNAPII dataset. Each bias coefficient has a
different sign and magnitude that tells the relationship type
(positive or negative) and the degree of its effect, respectively.
Enrichment and GC content, and mappability and genomic
distance have a positive and negative effect, respectively. Besides,
in the intrachromosomal interaction dataset, mappability and
enrichment, and in the interchromosomal dataset, the GC
content show a higher effect on loop detection.

Furthermore, some tools like Mango examined
only intrachromosomal interaction. They removed all
interchromosomal interactions in their model because they
thought that interchromosomal interactions are the source of
biases; besides, they could not find a technique that measures
the genomic distance on different chromosomes. In this
study, we dealt with these challenges via modeling inter- and
intrachromosomal interaction data separately. This technique
considered all four biases in the intrachromosomal interaction
model and the three biases (we left out the genomic distance) in
the interchromosomal interactions model. Using this technique,
we salvaged essential significant interchromosomal interactions
data rather than removal. Thus, this technique is a novel idea
to consider interchromosomal interaction data into the study
instead of total eradication.

Supplementary Table S2 shows the significant intra- and
interchromosomal interaction (≥ 3) in various tools. Except
for Mango and ChiaSig, other tools detected different amounts
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of significant interchromosomal interactions. Comparatively,
ChIAPoP found the largest interchromosomal interactions;
ChIAMM found 24, 28, 24, and 11 significant interchromosomal
interactions from MCF7 RNAPII, K562 RNAPII, MCF7 CTCF,
and K562 CTCF datasets, respectively. Therefore, discarding all
interchromosomal data from the model is not a proper technique.
It is considered as removed potential chromatin interaction
from the analysis.

We compared ChIAMM results with the other five top existing
tools using APA plot, CTCF coverage of anchors, and CTCF
motif orientation. In the APA plot, we showed the performance
of ChIAMM using overlapped and unique interaction frequency
data. In all datasets, ChIAMM showed the highest enrichment
of interaction with other existing methods, except Mango, an
exceptionally conservative method, and it reports very few
chromatin interactions. In the overlapped interactions, ChIAMM
showed equal P2LL values with HG and ChiaSig, as expected,
because ChIAMM and ChiaSig used ChIA-PET Tool as a primary
processing pipeline, and this is also true for CTCF coverage
and CTCF motif orientation analysis results. In CTCF coverage
and motif orientation analysis, the new approach showed equal
CTCF coverage and motif orientation with HG and ChiaSig in
the overlapped interactions and relatively minimal differences
with others. However, in almost all comparisons, the difference
is statistically insignificant.

We compared the running time of ChIAMM with other
preexisting methods. As an example, we analyzed the MCF7
CTCF ChIA-PET with threads, 12; RAM, 64 GB; cluster
operating system, CentOS 6.6; central processing unit, Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50 GHz. ChIAMM took
48.1 min and showed better performance. ChIA-PET Tool,
ChiaSig, Mango, ChIA-PET2, and ChIAPoP took 17, 37,
36, 31, and 23 h, respectively. Overall, ChIAMM is the
outperformed novel, fastest, and user-friendly tool than the most
existing methods.
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Genome assembly of short reads from large plant genomes remains a challenge in
computational biology despite major developments in next generation sequencing. Of
late several draft assemblies have been reported in sequenced plant genomes. The
reported draft genome assemblies of Cajanus cajan have different levels of genome
completeness, a large number of repeats, gaps, and segmental duplications. Draft
assemblies with portions of genome missing are shorter than the referenced original
genome. These assemblies come with low map accuracy affecting further functional
annotation and the prediction of gene components as desired by crop researchers.
Genome coverage, i.e., the number of sequenced raw reads mapped onto a certain
location of the genome is an important quality indicator of completeness and assembly
quality in draft assemblies. The present work aimed to improve the coverage in reported
de novo sequenced draft genomes (GCA_000340665.1 and GCA_000230855.2) of
pigeonpea, a legume widely cultivated in India. The two recently sequenced assemblies,
A1 and A2 comprised 72% and 75% of the estimated coverage of the genome,
respectively. We employed an assembly reconciliation approach to compare the draft
assemblies and merge them, filling the gaps by employing an algorithm size sorting
mate-pair library to generate a high quality and near complete assembly with enhanced
contiguity. The majority of gaps present within scaffolds were filled with right-sized mate-
pair reads. The improved assembly reduced the number of gaps than those reported in
draft assemblies resulting in an improved genome coverage of 82.4%. Map accuracy of
the improved assembly was evaluated using various quality metrics and for the presence
of specific trait-related functional genes. Employed pair-end and mate-pair local libraries
helped us to reduce gaps, repeats, and other sequence errors resulting in lengthier
scaffolds compared to the two draft assemblies. We reported the prediction of putative
host resistance genes against Fusarium wilt disease by their performance and evaluated
them both in wet laboratory and field phenotypic conditions.

Keywords: assembly improvement, reconciliation, mate-pairs, disease resistance, pigeonpea genome
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INTRODUCTION

Recent rapid developments in genome sequencing technologies
have facilitated the generation of several draft assemblies in
plants. These are valuable resources for elucidating genetic
information and understanding the biology of the crop. However,
each of these draft assemblies have strengths and weaknesses
as they were sequenced and assembled based on different
technologies and algorithms (Singh et al., 2012; Varshney et al.,
2012). Draft assemblies differ depending on the sequencing
technology and the assembly software employed. One assembly
may be conservative in its selection of reads resulting in low
genome coverage with many gaps. Another assembler may be
vigorous, yielding more contigs but with many errors. Draft
genomes are typically sets of a large contingent of assembled
contigs and scaffolds that are often fragmented due to the
presence of a large number of gaps interlaced by repetitive
regions. Often in a misassembly different contigs are improperly
joined. The contig mis-join problem arises due to inversions,
relocation, or a translocation. Gaps arise also due to incorrect
insertion or deletion of a particular sequenced read. These
changes often result in the wrong placement of a contig
onto a scaffold belonging to a different chromosome. Hence,
the annotation of unfinished and partially assembled genomes
creates ambiguities while accessing complete genetic information
as desired by biologists.

Some reasons for incompleteness include: 1. gaps appearing
due to polymorphisms in complex genomes where reads on
either side of a gap represent two haplotypes that belong to
two separate chromosomes, 2. an abundance of repeat elements
that confuse the assembler and leave some gaps unfilled, and
3. lack of a sufficient number of reads to cover the part of
the genome, requiring an additional library of reads to fill
the gaps. Besides, in draft genome assembly base call errors,
variations in read coverage depth also cause gaps and pose serious
computational challenges while connecting nodes in a De Bruijn
graph (Guizelini et al., 2016).

Complex eukaryotic genomes are known to contain a large
volume of nearly identical copies of DNA repeats and fragments.
Various types of repeats present in genomes of wheat, pigeonpea,
maize, or potato include transposable elements, highly conserved
gene clusters, and segmental duplications. The presence of
identical DNA fragments further complicates computational
assembly. During pre-assembly, short reads of equal sizes tend
to be masked together and complicate the construction of a De
Bruijn graph (Compeau et al., 2011). Recently introduced third
generation single molecule real time technologies (Ardui et al.,
2018) and Oxford nanopore technologies (Brown and Clarke,
2016) generate large sized reads which can readily be inserted to
fill gaps caused by repetitive elements. Despite virtues, such as low
levels of sensitivity and the high sequencing error rates of long
read technologies, many plant researchers are opting to use short
read sequencing technologies for financial reasons.

Two draft de novo genomes compared in the present study
are short read assemblies generated from second generation
sequencing technologies. Apart from assembly complexity due to
smaller reads, repeat abundance also obviates gap closing and is

often responsible for the resulting low levels of genome coverage
reported in draft assemblies. Modern sequencing platforms
generate paired end or mate-pair read libraries. The mate-pair
libraries are generated in different sizes and orientations (ranging
from 3 to 5 bp and even up to 0.5 kb). They serve as potential
inserts while filling gaps. Mate-pair libraries are recommended
as a potential approach to mitigate repeats in computational
genome assembly (Wetzel et al., 2011; Wang et al., 2012; Grau
et al., 2019). In the present work, we demonstrated the application
of mate pairs for gap closing during meta-assembly, that resulted
in significant improvement of both the genome coverage and
quality of the improved pigeonpea assembly.

Major techniques recommended for gaining contiguity and
higher coverage in draft genomes broadly include, use of
long inserts for gap filling (Wetzel et al., 2011), assembly
reconciliation, hybrid assembly (Wang et al., 2012), filtering
repeats, and iterative mapping using short reads to close the
remaining gaps (Tarailo-Graovac and Chen, 2009; Tsai et al.,
2010). The use of paired end or mate pairs for filling the
gaps is a robust computational approach. The reconciliation
approach (Alhakami et al., 2017) for closing gaps and correcting
misassemblies involves comparing available data sets from
different draft genomes of the same or related species, mapping
their common reads, and finally merging them together to gain
improved scaffold lengths with higher contiguity (Kumar et al.,
2018; Mishra et al., 2019).

Pigeonpea [Cajanus cajan (L.) Millsp.] is a major food
legume grown in India and is a diploid (2n = 22) with a
genome size of 833.07 Mbp (Varshney et al., 2012). It is a
widely cultivated pulse crop and a major source of dietary
proteins in India with an annual production of 2.31 mt and
productivity of 678 kg/ha (Pande et al., 2013). Prevailing low crop
productivity may be attributed to the absence of high yielding
cultivated varieties possessing resistance to various pests and
diseases. In plants, resistance genes (R genes) play important
roles in the recognition and protection from invading pests and
pathogens. A few sources of resistance to biotic stresses can be
found in available germplasm collections. Resistance genes are
identified and found primarily organized in individual clusters
that are strictly linked across the genome (David et al., 2009).
Modern plant breeding techniques include marker-assisted
breeding and genomic selection-accelerated development of
superior crop varieties with the use of genomic resources and
genetic information emitting from sequenced genome projects.
The pigeonpea genome was de novo sequenced independently
by two research groups (Singh et al., 2012; Varshney et al.,
2012). These draft assemblies were made available in the public
domain (GCA_000340665.1 and GCA_000230855.2), and are
valuable resources for breeders. However, both the assemblies
are incomplete with a sizable number of fragmented contigs
and existing gaps. The lack of accurate genetic information
is a major limitation for the prediction of gene compliment
components associated with desirable traits. Hence, the primary
objective of the present work is to generate a more contagious
and complete assembly with improved genome coverage. We
report an improved version of a improved assembly based
on the genome reconciliation approach that first compares
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the two available draft assemblies, and scores the matching
blocks at each location followed by their merger. The meta-
assembler tool employed in the present study detected a
significant number of gaps and filled them iteratively using
right-sized inserts from local pair-end and mate-pair libraries.
The correctness of the mate pairs chosen by the meta-
assembler during error correction was further validated by the
mapping and alignment algorithm BIMA (Drucker et al., 2014).
Completeness and map accuracy of the reconstructed assembly
was verified for the presence of conserved plant resistance
genes (R genes). Here we report the prediction of putative R
genes, their isolation, and PCR screening of a known resistant
cultivar against Fusarium wilt disease in both laboratory and
field conditions.

RESULTS

Improvement of the Draft Genome
Assemblies Employing the
Reconciliation Algorithm
The reconciliation assembly approach was employed in the
present work to refine the incomplete draft genome assemblies,
A1 and A2. The assembly tool hybridSPAdes (Antipov et al.,
2016) was employed for the selection of optimum k-mers, with
evaluated combinations ranging from 21 to 55. We observed that
k-mer sizes of 21, 33, 55, and 77 yielded superior assemblies
with few fragmented sequences, a smaller number of contigs
with high N50, and mean and median scaffold lengths in
superior assemblies. The meta-assembler was employed for
merging the two assemblies. Merged Illumina HiSeq sequences
resulted in 46,979 reads with the N50 length of 24,087. The
meta-assembler implemented the reconciliation algorithm to
refine and obtain a reconstructed genome. In order to capture
the suitable reference assembly set for alignment during the
merger process, we examined the required order in which
assemblies A1 and A2 were to be chosen as the master set
(GCA_000230855.2) and slave sets for alignment with the former
(GCA_000340665.1). We observed that choosing A1 as the
master set with A2 as the slave set resulted in a highly contiguous
superior assembly. The superiority of the merged meta-assembly
was systematically evaluated with compression-expansion (CE)
statistics. Gaps present in the scaffolds were closed using mate
pairs. Gap sizes estimated by the LG_Gapcloser (Xu et al.,
2019) were passed on to the next round of alignment. To
locate suitably sized inserts, gaps were compared with mate-
pair libraries employing BLAST (Altschul et al., 1990) and
the single highest scoring mate-pair sequences were chosen.
Gap closing mate pairs for gap closing ranged from 200 bp
(lower side) to 1,350 bp with 500 bp as the mean size. Mate
pairs used by the meta-assembler for gap closing were further
validated by mapping and the alignment algorithm BIMA
(Drucker et al., 2014).

The remaining gaps were filled by searching unique contig
end sequences against unused reads. Analysis of the repeat
composition and the identification of their size variations in turn

aided the significant reduction of gaps and contributed to the
prediction of specific genes. The improved assembly had 46,979
contigs with a total size of 548.2 Mb covering 82.4% of the
genome with high contiguity (Table 1).

Read Mapping
Read mapping increased in the improved meta-assembly from
75.6 to 72.7% in the two compared misassemblies to 82.4% in
the improved meta-assembly. A higher number of reads were
found to be mapped to the merged assembly compared to those
in the A1 and A2 misassemblies. Mapping depth is a measure
of the number of reads used for aligning the improved genome.
It also helps to estimate the extent of similarity between the
improved assembly and the compared misassemblies. Among
the two draft assemblies, A2 was superior to A1 in the depth
of read coverage. A relatively higher read depth in the A2
misassembly can be attributed to the high-identity Illumina reads
used both in the initial assembly and in the later polishing
steps. Our final assembly in terms of depth of coverage was
superior to A2, with more gaps filled. In addition, the refined
assembly had more GC-rich regions (Table 1) with improved
gene component predictions. Many gap sequences with high
AT composition were eliminated. The total GC content in the
A1 and A2 assemblies were 37.2 and 32.8%, respectively and
were enhanced to 45.5% in the meta-assembly reported in the
present work. The improvement in GC rich fraction and of
the N50 values in both contigs and scaffolds in the improved
genome were achieved largely due to the application of mate-
pair read sequence libraries for gap filling. High GC content
is known to be associated with the concentration of coded
genes in certain regions in a genome (Rao et al., 2013). In
the present study, observed high GC content was obtained
in the refined assembly A3 which appeared to be related
to an increased number of predicted genes in the improved
genome of pigeonpea.

Meta-Assembly, Annotation, and Quality
Assessment
Two draft assemblies were compared, merged, and reassembled
employing the two approaches as described above. We initially
used unpaired reads for the assembly adopting an overlapping
read approach. As no significant improvement was observed
in read mapping depth, and eventual coverage, we resorted to
available mate paired libraries to close the gaps. We used variable
mate pairs during different alignment steps in the meta-assembly
and succeeded in resolving repeat problems.

We wanted to ascertain which type of mate-pair libraries
effectively resolved the repeat problem. In the assembly, we
employed a meta-assembler (Wences and Schatz, 2015). In
the first experiment, we only used a 648 Mb library and
in the second experiment a 605 Mb and a 548 Mb library
were taken together. Initially we used all the single paired
read data sets available (minus two mate-pair data sets) of
A1 along with all the data sets from A2. In the second
treatment, we included two mate-pair data sets from A1
along with all the data available from A2. At the end, all
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TABLE 1 | Genome assembly statistics of draft assemblies A1, A2 and improved A3 assembly.

Parameter A1, assembly GenBank
accession:

GCA_000340665.1

A2, assembly GenBank
accession:

GCA_000230855.2

A3, improved assembly
GenBank accession:

GCA_015227855.1

Number of contigs 360,028 72,923 46,979

Contig N50 5,341 22,480 24,087

Contig L50 30,054 7,524 6,925

Number of scaffolds NA 36,536 13,101

Scaffold N50 NA 555,764 574,622

Scaffold L50 NA 72 57

Total scaffold length NA 592,970,700 548,600,000

Number of gaps NA 72,774 36,561

Range of mate-pair sizes used NA NA 20–1,350 bp

Mean size of mate pairs used in gap closure NA NA 500 bp

Number of Ns NA* 34,435,295 34,188,871

Genome coverage 199× 160× 174×

Percentage mapping 75.6% 72.7% 82.4%

GC content 37.2% 32.8% 45.5%

File size (Mb) 648 Mb 605 Mb 548 Mb

Data source: https://www.ncbi.nlm.nih.gov. *“N”s masked.

the output values and statistical metrics were collected for
comparative performance analysis. We observed that all the
available pigeonpea mate-pair libraries taken together resulted in
the improvement of genome coverage. It is presumed that the
incorporation of variable size mate-pair inserts helped in gap
closing during the assembly.

In our final assembly, the contig N50 increased to 24,087,
and scaffold N50 increased by 574,622. The total number of
gaps decreased across the genome by 50.23% (Table 1). It was
observed that the order in which the input draft assemblies
were inputted into the meta-assembler drastically influenced the
alignment quality and the resulting read coverage (Lindner et al.,
2013). In the primary assembly, we treated assembly A1 as the
master and aligned it with assembly A2. In the other variant, we
used assembly A2 as the master and aligned it against assembly
A1. The output resulted in a primary assembly that yielded us a
scaffold length of 548,600,000.

Closure of Repeat-Derived Gaps
For each round of alignment undertaken between the A1 and A2
misassemblies, the meta-assembler built a graph, with vertices of
the above alignments and edges joining the two alignments. If
both had the same direction, they were readily rearranged into
a single block thus providing contiguity. In this case, where the
examined genomic segments from two misassemblies did not
share the same direction, it indicated that there was an existing
distance between them and the prevailing gaps needed to be
filled. In such cases, variable size local pair-end and mate-pair
libraries could offer right inserts to fill these gaps. While building
the graph, the meta-assembler searched the mate-pair library for
right sized inserts in order to complete the shortest path between
any two of the contigs to fill a gap.

We evaluated the closure performances of the LR Gapcloser
(Xu et al., 2019) and Gapfiller (Boetzer and Pirovano, 2012) tools

on the repeat-derived gaps. We first tested the performance of
each tool using the raw mate-pair reads. Both the above tools
used first raw pair-end and mate-pair libraries. We monitored
the gap closure efficiency by evaluating the number of gaps closed
applying indexed and hashed mate-pair libraries (Drucker et al.,
2014). In the merged pigeonpea assembly, we estimated 37,145
repeat-derived gaps of which 584 gaps and 322,780 nucleotides
out of a total 34,511,651 were closed. The gap sizes ranged from
20 to 15,510 bp. LR Gapcloser was more efficient in filling most
of the gaps, achieving 82.4% and with low error rates.

We achieved improved contiguity by using long mate pairs to
fill the gaps in the assembly and thereby achieved higher coverage
in the improved assembly. Draft assembly A1 had 360,028 contigs
with an N50 and L50 of 5,341 and 30,054, respectively. The
reported genome coverage was 199× with a similarity of 75.6%.
Draft assembly A2 had 72,923 contigs with an N50 and L50
of 22,480 and 7,254, respectively. A2 had 592,970,700 scaffolds
and reported a genome coverage of 160× with a similarity of
72.7%. We presented an improved reference assembly of the
pigeonpea genome.

Completeness of the Merged Assembly
BUSCO (Simao et al., 2015) was employed to evaluate the
completeness of the conserved proteins in all three assemblies.
The A3 assembly was found to be 94.02% complete. Of the
total 1,440 BUSCO groups that were searched, the meta-assembly
was found to contain 1,321 complete single-copy (S) BUSCOs,
33 complete duplicated (D) BUSCOs, 57 fragmented (F)
BUSCOs, and 29 missing (M) BUSCOs. Whereas comparatively
the A1 and A2 assemblies were 85.27% (S:76.87%, D:8.40%,
F:5.62%, M:9.09%) and 87.9% (S:80.9%,D:7%,F:5%,M:7.1%)
complete, respectively (Supplementary Table 1). The gene
completeness score as measured by BUSCO relatively increased
in the improved assembly, while the numbers of fragmented
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TABLE 2 | Repetitive sequences of draft assemblies A1, A2, and the improved
A3 assembly.

Transposable elements A1 assembly A2 assembly A3 assembly

Retro transposons 77,096,057 116,194,477 89,089,240

Gypsy 52,354,920 71,402,096 59,247,991

Copia 19,937,308 37,676,825 24,339,237

Line 5,261,337 6,717,918 5,914,324

Unclassified elements 216,262,607 169,378,278 158,228,382

DNA transposons 9,772,250 27,455,193 19,826,943

Total transposable elements 303,130,914 313,027,948 267,144,565

and missing BUSCO genes were reduced. This genome
comparison can be used to help such draft assemblies toward
becoming finished.

Functional Annotation of Predicted Gene
Content
The FGENESH module of the Molquest v.4.5 software package1

and Augustus were employed and 51,737 genes were predicted
for the improved meta-assembly. The number of predicted genes
was less compared to A1 but higher than A2.

In the total gene component prediction, we found 1,303
disease resistance related genes in pigeonpea. The improved
assembly yielded a total of 51,737 genes which was less than A1
but more than those reported in the A2 assembly. The variable
number of predicted genes observed in the draft assemblies
can be attributed to split genes and overestimation during
gene finding (Denton et al., 2014). The overestimation of gene
numbers often result when fragmented single genes are present
on multiple contigs or scaffolds (Pozzi and Salamini, 2007).
Improvements in gap filling and read mapping depth resulted
in the reduction of the number of genes in meta-assembly A3.
The predicted total gene number was less in A3 than in A1 but
was slightly higher than the A2 draft assembly (Table 2). In
the predicted gene set 54-resistance single copy putative genes
containing known conserved domain NBS LRR were selected
and in silico mapped onto the corresponding chromosomes
(Supplementary Table 2).

Identification of Repetitive Sequences
and Transposable Elements in the
Improved Assembly
Repeat elements are extra copies of DNA sequences generated
and planted at various locations in the genome to meet certain
challenges and improve the fitness of the organism during the
course of evolution. Repetitive elements in pigeonpea occupy
nearly half of the genome of Cajanus cajan (Macas et al.,
2015). Repeats pose many computational challenges in read
alignment and assembly (Xu et al., 2019), such as the creation
of gaps and overlaps and leads to many mapping inaccuracies in
misassemblies. One can always filter and exclude the reads but
it is essential to map them onto chromosomal locations where
gaps exist. Mate-pair libraries were used for resolving repeat

1http://www.softberry.com

TABLE 3 | Results of gene search.

Parameter A1 assembly A2 assembly A3 assembly

No. of genes predicted 56,888 48,680 51,737

Putative resistance gene
analogs against Fusarium wilt

NA NA 54

problems and obtaining contiguous scaffolds in both prokaryotic
(Wetzel et al., 2011) and eukaryotic organisms (Grau et al., 2019).
Meta-assembler searches for contigs that can be placed in the
gap using mate pairs, and then again checks to see if there
exists a recorded shortest path between any of these contigs.
In an assembly, overlapping reads are used as edges to connect
reads belonging to the same region of the genome. However in
complex genomes like pigeonpea, the abundance of repeats cause
coverage gaps and read errors thus leaving numerous gaps to fill
between contigs while scaffolding. The filling of gaps requires
the adoption of robust computational approaches to affectively
address repeat problems. Sequenced pair-end and mate-pair
reads can potentially bridge gaps efficiently in order to orient
contigs by estimating the gap lengths to the edges while filling
the scaffolding graph (Ghurye and Pop, 2019).

A high level of assembly was achieved using mate-pair reads in
wheat, a genome ridden with a large number of repeats (Clavijo
et al., 2017). We analyzed the repeat content in comparison to
the A1 and A2 assemblies and divided them into various classes
(Table 3). Among the different classes identified, transposable
elements were found to be rich in AT elements in A3. In the
course of the iterative use of reads during assembly, we observed
transposon-derived repeats collapse against identical reads
resulting in the closure of significant portions of gaps. Similar
observations were reported on gap filling using retro transposon-
related repeats in human genome assembly (Marin et al., 2018).

Identification of Microsatellites
The improved pigeonpea assembly was mined for simple
sequence repeats (SSR). A total of 297,294 were simple repeats
out of the total 298,732 repeats and the remaining 1,438 belonged
to complex types (Table 4). Mononucleotide repeats were
abundant with 56.05% of the total SSRs mined. Dinucleotides
occupied 33.45% (99,949), 8.72% (26,069) were trinucleotides,
and 1.27% were tetranucleotides (3811) repeats. The remaining
SSRs were of the complex type, 0.25% were hexa nucleotides and
0.22% were penta.

TABLE 4 | Results of microsatellite search in the improved pigeonpea
assembly A3.

Total number of sequences examined 13,101

Total size of examined sequences (bp) 584,435,790

Total number of identified SSRs 298,732

Number of SSR containing sequences 6,494

Number of sequences containing more than 1 SSR 4,603

Number of SSRs present in compound formation 41,002
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FIGURE 1 | SSR distribution frequency. (A) Distribution of different repeats type classes. (B) Frequency of classified predominant repeats.

Among the 167,465 mononucleotide repeats, the
mononucleotide motifs were in majority with A/T repeats
of 98.25 and 1.74% were occupied by C/G types. Among the
99,949 dinucleotides microsatellites, the AT/AT type (77.34%)
of microsatellites were most common in the genome followed
by the AG/CT type (13.21%), and the AC/GT type (9.40%).
The CG/CG type dinucleotides microsatellites were present in
a very low proportion (0.03%). In trinucleotide SSRs repeats
(26,069), around 66.71, 12.31, 8.07, and 5.98% of SSRs were of
AAT/AAT, AAG/CTT, ATC/ATG, and AAC/GTT types, and
were most abundant, respectively. Among the other types of
repeats, the ACG/CGT type was lowest (0.36%) in the genome of
pigeonpea. The highest distribution (68.06%) of tetra nucleotides
microsatellites was present in the genome of pigeonpea. The
maximum numbers of predominant SSRs repeats were of the
A/T type followed by AT/AT, AG/CT, AAG/CTT, AAT/ATT, and
AAAT/ATTT (Supplementary Table 3). The overall analysis
showed that the relative abundance of tetra, penta, and hexa SSRs
types were low as compared to mono, di, and tri SSRs types in
pigeonpea genome sequences (Figure 1).

Characterization and Synteny Analysis of
Pigeonpea NBS-LRR Like Resistance
Gene Analogs
We verified the presence of already known conserved disease
resistance gene families in the refined meta-assembly. The
reported resistance (R) genes containing nucleotide-binding site
(NBS)-leucine rich repeat (LRR) protein sequences from other
important legume genomes were downloaded from Phytozome
(Goodstein et al., 2012). The comparison of the predicted
coding sequences against bean (Phaseolus vulgaris) clusters
resulted in the identification of more than 100 resistance gene
analogs (RGA). An annotation of the mined predicted genes
revealed the presence of known disease resistance domains, such
as ARC-NBS-LRR, transmembranes, and kinases. Nucleotide-
binding sites (NBS) containing disease resistance genes play
an important role in defending plants from a variety of
pathogens and insect pests. Many R genes have been identified
in various plant species including the pigeonpea genome (Singh

et al., 2012; Varshney et al., 2012). However, functional R
genes targeting specific diseases in pigeonpea have not been
reported. In this study, an improved A3 meta-assembly using
computational analysis of the refined genome identified NBS-
LRR resistance (R) proteins. The 1,301 mined putative resistance
gene analogs were shown to share up to 78% of their homology
with soybean, chickpea, barrel clover, field bean, and other
species (Supplementary Table 4). Of them, 251 NBS-LRR
domains containing pigeonpea resistance gene analogs were
selected. The RGAs had a high amino acid identity in the
identified putative pigeonpea disease resistance genes, which
showed a high level of proteins in Glycine max with several
sequences with high homology up to (77–98%) (Supplementary
Table 5). We identified 54 NBS-encoding single copy genes
and characterized them on the basis of structural diversity and
conserved protein motifs.

Synteny analysis revealed significant relationships among the
selected legume genomes. Glycine max and Medicago truncatula
genomes revealed the presence of a high level of extensively
conserved regions among pigeonpea and other legumes. We
observed that nearly 89–91% of the pigeonpea assembly showed
significant signs of RGA conservation with other legumes,
viz., 41 NBS-LRR orthologs in Glycin max and 73 NBS-LRR
orthologs in Medicago truncatula. A total of 57% of NBS-LRR
pigeonpea genes were identified for the closely related organisms.
Glycine max was found to share the largest number of extended
conserved syntenic blocks with Cajanus cajan indicating its
recent ancestry, followed by Medicago truncatula. The reported
A3 meta-assembly of pigeonpea comprises 251 R gene homologs
of the disease resistance gene, of which 229 are anchored to
different pseudomolecules of pigeonpea. Of these, 23 genes are
distributed to 57 collinear blocks between pigeonpea and the
Glycine max genomes displaying a high level of collinearity
(Figure 2). Overall, all pigeonpea RGAs displayed extensive
collinearity with the different chromosomes of Glycine max
and Medicago truncatula. Synteny analysis revealed homologous
blocks connecting chr4 in C. cajan with chr4 of G. max; chr11 of
C. cajan with chr20 and chr17 of G. max; and chr3 of C. cajan
with chr19 in G. max. Similarly, comparative analysis reported in
draft assembly A2 (Varshney et al., 2012) confirms the presence
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FIGURE 2 | Circos diagram presenting syntenic relationships between NBS-LRR containing R gene proteins in pigeonpea (Cc), Glycin max (Gm), and Medicago
truncatula (Mt) pseudomolecules. Pseudomolecules of the two target species were labeled as Gm01-20 and Mt1–8. Pigeonpea pseudomolecules are labeled in
different colors and labeled as Cc01-11. Collinear blocks are colored according to the color of the corresponding pigeonpea pseudomolecules. Each ribbon
radiating block from a pigeonpea pseudomolecule represents a NBS-LRR similarity block between pigeonpea and other legumes.

of homologous blocks connecting chr3 in C. cajan with chr19 of
G. max (Varshney et al., 2012).

Cloning, Isolation, and PCR
Amplification of Identified Putative R
Gene Analogs (RGAs)
The genomic DNA samples from 25 known pigeonpea cultivars
were scanned for presence of identified putative R genes. EPrimer
(Spapé et al., 2014) was employed for designing the PCR primer
sets. A list of the primer sequences used in PCR amplification
are given in Supplementary Table 7. Eluted PCR amplificons
were sequenced by the Sanger sequencing method. Isolated
pigeonpea resistance gene analogs were deposited to NCBI
(Supplementary Table 6).

DISCUSSION

In the present work, we chose two available incomplete draft
assemblies and employed a reconciliation algorithm to correct
any errors. The two compared draft assemblies A1 and A2 had
low genome coverage with several repeats and gaps causing
disjoints between contigs. A meta-assembler was employed in the
present work based on the genome reconciliation algorithm. The
computational framework included a merger between the two
draft assemblies, A1 and A2, aligning them by selecting common
homologous sequence matches and mismatches present in both,
resolving gaps, and other sequence errors, to obtain a consensus
and complete assembly.

To begin with we wanted to select the order in which the
input draft assemblies were to be merged to gain a subsequent
superior alignment with higher read depth and read mapping.

After several permutations, we observed that treating assembly
A1 as the master and aligning it with assembly A2 yielded
better read mapping and lengthier scaffolds of 592,970,700 mb.
Merging the two draft assemblies, in course of alignment, the
meta-assembler yielded matched and mismatched portions in the
merged assembly by identifying homologous genomic regions
with a shared set of reads. Mismatches included gaps that had to
be filled with right sized read sequences.

The meta-assembler initially utilized all available raw reads
from both draft assemblies using conventional read overlapping
techniques to fill the existing gaps and join the contigs. However,
no notable success was observed in gap filling and repeat
resolution. Alternatively, we employed local pigeonpea pair-end
and mate-pair libraries to fill the gaps. The meta-assembler
generated statistics comparing the distances between the mapped
mates and the required sizes of insert reads to fill a gap. For
example, gaps measuring <500 mb were filled by pair-end reads
while mate-pair reads were utilized for filling gaps measuring
3–5 KB. Mate-pair sizes selected by the meta-assembler were
further compared and validated using indexed and hashed mate
libraries employing the alignment tool BIMA (Drucker et al.,
2014). There are reports on the use of large sized mate-pairs
for filling bigger gaps in assembly (Potato Genome Sequencing
Consortium, 2011). In the present study, we employed pair-end
and mate-pair reads which contributed significantly to filling gaps
and thereby in joining the contigs to the full length scaffolds.
Further, iterative use of pair-end and mate-pair libraries during
successive alignments resulted in the identification of maximal
portions shared by the same library of reads. This in turn
contributed to the dramatic improvement of genome coverage in
the resultant A3 assembly. The quality of the A3 assembly was
judged using metrics—contig number, scaffold lengths, N50 and

Frontiers in Genetics | www.frontiersin.org 7 December 2020 | Volume 11 | Article 6074327174

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-607432 December 9, 2020 Time: 18:38 # 8

Marla et al. Refinement of Pigeonpea Genome Assembly

FIGURE 3 | PCR amplification of resistant gene analog from pigeonpea
germplasm accessions with differential resistance reaction for Fusarium wilt
disease. Field evaluation of 25 accessions at two locations in two years
showed 14, 6 and 5 accessions as resistant, tolerant and susceptible
respectively (Supplementary Table 8).

L50, and genome coverage of 160× with a similarity of 72.7%.
The genome similarity score can also be used in estimating the
extent of redundancy present in both genomes.

Draft assembly A1 had 360,028 contigs with an N50 and L50
of 5,341 and 30,054, respectively. We obtained genome coverage
of 199× with a similarity of 75.6%. Draft assembly A2 had 72,923
contigs with an N50 and L50 of 22,480 and 7,254, respectively.
A2 had 592,970,700 scaffolds with a reported genome coverage of
160× with a similarity of 72.7%.

FGENESH predicted 51,737 genes using the improved meta-
assembly. The predicted number of genes was less in our
improved assembly (Supplementary Table 2) compared to A1
but was higher than A2 (Table 2). An annotation of the
improved assembly yielded 51,737 predicted genes. Wet lab
PCR amplification is the gold standard for verifying predicted
gene presence and their functionality. For PCR-based gene
amplification, 23 primer sets were designed to screen 34
pigeonpea cultivars. Out of the 34 genotypes screened, 14 were
found to be Fusarium wilt resistant (Supplementary Table 8),
6 were F. wilt tolerant, 5 were F. wilt susceptible, and 5
had yellow mosaic susceptible genotypes (Figure 3). Data on
yellow mosaic disease reaction are not presented here. PCR
amplified genes were isolated, cloned, and submitted to NCBI
(Supplementary Table 6). Genotype environment interaction in
the field determines the phenotypic performance of isolated plant
genes. The phenotypic evaluation of predicted resistance genes in
field trials is also required for the transfer of obtained results to
pigeonpea downstream breeding programs for the development
of disease resistant cultivars. Field experiments were conducted to
assess the disease reaction of the predicted R genes to Fusarium
wilt taking cv. Asha (object of the present study) as control with
25 pigeonpea cultivars. The replicated field experiments were
conducted at Ranchi (Jharkhand state) and Rahuri (Maharashtra
state), India during the rainy season of 2011 and 2012. Of the
25 cultivars screened along with check cv. Asha, 14 resistant
and six tolerant disease reactions at the Ranchi farm and eight
resistant, one tolerant, and six susceptible disease reactions at the
Rahuri farm were observed for the F. wilt disease of pigeonpea.
The observed variation in disease incidence reflects the natural
agro-climatic conditions prevailing at the individual trial sites.

CONCLUSION

In the present work, a genome reconciliation algorithm was
adopted to merge and reconstruct draft assemblies to produce an
accurate and near complete genome assembly of pigeonpea. We
demonstrated the successful implementation of our reassembly
framework by merging two chosen draft assemblies employing
pair-end and mate-pair libraries to correct gaps and other
sequencing errors. The resulting reconstructed meta-assembly
was superior compared to the two draft assemblies in
terms of measured assembly quality statistics, viz., N50 and
scaffold lengths. The quality of the improved assembly was
assessed for the presence of known conserved resistance
gene loci (imparting resistance to Fusarium wilt disease in
pigeonpea). An annotation of the improved assembly yielded
a prediction of 1,303 resistance genes (including six extra
genes gained from the meta-assembly). PCR screens and field
experiments validated the resistance reaction of isolated genes
against Fusarium wilt thus making the results available to
pigeonpea breeders.

MATERIALS AND METHODS

We developed a workflow model (Figure 4) based on a
reconciliation algorithm, that includes: 1. A merger of the two
misassemblies, 2. finding matches and mismatches and other
sequencing errors, 3. gap closing using pair-ends and mate-pair
libraries, and 4. the assessment of improved assembly quality,
and the prediction, isolation, and characterization of disease
resistance gene families.

Retrieval of Pigeonpea Genome Datasets
Complete data sets belonging to two whole genome sequences
of pigeonpea and the associated 23 SRA reads were downloaded
from the National Center for Biotechnology Information
(NCBI)2 to local storage—GCA_000340665.1 (SRA accessions
SRR5922904-SRR5922907) and GCA_000230855.2 (SRA
accessions SRR6189003-SRR6189021) for the cv Asha.

PCR Amplification
Genomic DNA from 15-day-old seedlings of 34 pigeonpea
cultivars was extracted employing the CTAB method. The purity
and concentration of DNA was estimated with Nanodrops
ND-1000. Nine primers were selected for the polymorphism
study (Supplementary Table 7). Polymerase chain reaction
(PCR) was performed on a total volume of 20 µl containing
60 ng of template DNA, 200 µM of dNTPs, 2.5 mM of
MgCl2, 1× PCR buffer, 0.4 µM of each primer, 0.75 U of
Taq DNA polymerase, and water to make the final volume
up to 20 µl. For designing the primer sets for the PCR
amplification of predicted resistance gene (R) orthologs, BLASTN
was employed against the soybean genome. EPrimer (Goodstein
et al., 2012) was employed for designing PCR primer sets. A list
of primer sequences used in PCR amplification are given in

2https://www.ncbi.nlm.nih.gov
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FIGURE 4 | Experimental framework depicting the reconstruction steps of the pigeonpea genome.

Supplementary Table 7. Eluted PCR amplificons were sequenced
by the Sanger sequencing method.

Amplifications were carried out using the Bioer Gene
Pro thermocycler and PCR conditions were set as an initial
denaturation at 94◦C for 5 min, 30 cycles of denaturation at 94◦C
for 30 s, primer annealing at 50◦C for 30 s, primer extension at
72◦C for 2 min, and a final extension step at 72◦C for 7 min. The
amplified products were visualized by ethidium bromide-stained
1.5% agarose gels in a SYNGENE G-Box gel documentation
unit (Figure 3).

Genome Reconstruction and Quality
Assessment
Illumina pair-end and mate-pair library sequence reads
of pigeonpea and cv Asha were quality checked using

FASTQC v0.11.83. Contaminated reads were removed to
obtain error-corrected reads. Reads with sequence quality Phred
scores of less than Q30 (base calling accuracy with less than
99.99%) were removed using PRINSEQ v0.20.44 and reads were
repaired using BBmap v37.665.

Reported pigeonpea draft assemblies A1 (Singh et al., 2012)
and A2 (Varshney et al., 2012) were both sequenced using
Illumina technology and assembled with the SoapDenovo v2.3.1
assembler. In the present work, data sets A1 (GCA_000340665.1
consisting of 4 SRA read sets) and A2 (GCA_000230855.2 of
19 SRA read sets) were analyzed employing a reconciliation
algorithm (Tarailo-Graovac and Chen, 2009). The work flow
included the steps: (1) the merger of the two misassemblies,

3http://www.bioinformatics.babraham.ac.uk/projects/fastqc
4https://sourceforge.net/projects/prinseq
5https://sourceforge.net/projects/bbmap
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(2) finding matches, mismatches, and other structural errors,
(3) closing gaps using pair-end and mate pair libraries, (4)
the validation of mate-pair sizes used in the meta-assembly
using indexed and hashed mate-pair library sets, (5) an
assessment of the quality of the improved assembly, and (6)
a prediction of disease resistance gene families, their isolation,
and characterization.

A1 consisted of 360,028 initial contigs (N50 5341, 648 Mb)
with 30% of gaps within contigs. A2 contained 72,923 scaffolds
(N50 22480, 605 Mb) with 20% intra scaffold gaps. We used all
the read datasets available belonging to A1 and A2 with NCBI.
All the computations including read pre-processing, quality
control, comparison of the two draft assemblies, their alignment,
gap filling, assembly merger, map accuracy, quality assessment,
and putative gene prediction were performed on a HPC server
employing a meta-assembler (Wences and Schatz, 2015).

LG_Gapcloser and GapFiller (Boetzer and Pirovano, 2012;
Xu et al., 2019) were employed to find the existing gaps (A1
30%; A2 20%). Mate-pair libraries were hashed and gap sizes
were validated using the alignment tool BIMA (Drucker et al.,
2014). Initially short reads were used for filling gaps, resulting
in a genome size of 648 Mb in A1 and 605 Mb in the
A2 draft assembly.

Draft assembly A1 was sequenced in 2011 and had a genome
coverage of 199× (Singh et al., 2012). However, using the same
raw read data, assembly A3 reported a gain of coverage, i.e., an
increase of ∼15% (from 60.0 to 75.6%), and was then resubmitted
to NCBI. In our present work, we used this recent assembly
set and A1 and A2 assembly data (Varshney et al., 2012) for
reassembly and improvement (Figure 4).

We observed that in our reassembly, pair-end insert read
sizes below 500 bp in our library were utilized for filling smaller
gaps. Although mate-pair sizes up to 5.0 kb are available in
our library, a 1,350 kb size was the largest used insert. In our
meta-assembly, these mate pairs were employed affectively for
closing medium and long-distanced gaps (even up to 20–25 kb).
Similar results on the use of large sized mate-pairs for filling
bigger gaps was reported in the assembly of large genomes
(Ghurye and Pop, 2019).

Merging Misassemblies and Gap Closure
Draft assembly sequences A1 and A2 were merged into a single
sequence. The alignment and merger of the A1 and A2 assemblies
resulted in a total scaffold length of 548 Mb. The resulting merged
assembly was compared to the A1 and A2 draft assemblies (75.6
and 72.7%, respectively) and had an improved genome coverage
of 82.4%. Yet the merged sequence contained 10% of gaps.

To improve further contiguity and accuracy of the merged
sequence, existing intra scaffold gaps were filled. Repeat content
and existing gaps were estimated by Gapcloser (Xu et al., 2019)
and Gapfiller (Boetzer and Pirovano, 2012). In the second round
of gap filling, various computational approaches, such as paired
end, mate-pair libraries, and remaining unused short reads were
used. The gap content and the estimation of repeats is shown
in Table 1. Iterative use of the leftover short reads (300 bp)
contributed to filling nearly 20% of the gaps. After polishing and

another round of reassembly, a scaffold length of 13,348 (scaffolds
of N50 574,622) with a coverage of 174× was yielded.

Improved Genome Assembly and Quality
Assessment
Increased N50, maximum scaffold length and minimum
number of contigs, increased N50 values together with longer
scaffolds contributed to improving the genome coverage. In the
misassemblies, the number of gaps and Ns caused by repeats
were measured. In the course of meta-assembly, we strived to
minimize gaps and other sequencing errors. We employed Quast
v4.5 (Gurevich et al., 2013) to gather extensive assembly statistics.
BUSCO v3.2 (Simao et al., 2015) was employed for assessing the
genome completeness, and the annotation and sets of predicted
genes. Mapping accuracy and the identification of resistant gene
analog loci were assessed (Supplementary Table 1). In addition,
75% of unigenes were aligned to the reassembled genome.

Gene Prediction and Function Annotation
The meta-assembly was first repeat-masked using the Repeat
Modler and Repeat Masker tools (Smit et al., 2013), followed
by ab initio gene prediction using the FGENESH module of
the Molquest v4.5 software package6. The predicted genes were
annotated using the BLASTX (E < 106) search against the
NCBI non-redundant (nr) protein database using the Blast2GO
software (Conesa et al., 2005). Synteny blocks between the
genomes of pigeonpea and other legumes were computed by
blastp combined with the Circos (Krzywinski et al., 2009) to
understand homology to the NBS-LRR gene from Glycin max
(Gm) and Medicago truncatula (Mt) pseudomolecules.

Identification of Genome Wide SSR
The refined genome sequence of pigeonpea was analyzed to
identify various simple sequence repeats (SSR) types using the
Microsatellite Identification tool (MISA)7. The minimum length
for SSR motifs per unit size was set to 10 for mono, 6 for di,
and 5 for a tri, tetra, penta, and hexa motifs. We calculated
the total lengths of all mono-, di-, tri-, tetra-, penta-, and hexa-
nucleotide repeats in terms of base pairs of SSR per mega base
pair (Mb) of DNA.

Gene Validation
The genome similarity score recorded a set of sequenced reads
originating from one draft genome correctly mapped onto
a second genome. To check the accuracy in the improved
pigeonpea genome, we wanted to verify the location of certain
genomic regions or loci present in the inputted two assemblies.
A set of genes imparting resistance against various pests and
diseases were located in the B4 cluster on chromosomes in the
two examined draft assemblies of pigeonpea (Cajanus cajan)
Asha. As a test case, the location of B4 gene cluster syntenic
regions were verified in the present study to estimate the accuracy
of read mapping achieved in the improved assembly.

6http://www.softberry.com
7http://pgrc.ipkgatersleben.de/misa/
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Computational Resources
We ran all reassembly and merging operations using HPC Cluster
with CentOS-Linux version 7,2.93 GHz 2× Intel Xeon 8 core
processors and 2 TB of RAM. The majority of the running
time was spent on the assembly process and about 1/4 of the
time was spent on graph construction and analysis. However,
Reconciliator used more than 1.5 TB of RAM to merge the
pigeonpea draft assemblies.
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Qianqian Wang and Zhaohui Zheng*
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Lupus nephritis (LN) is a well-known complication of systemic lupus erythematosus
and is its leading cause of morbidity and mortality. Our study aimed to identify the
molecular markers associated with the pathophysiology and treatment of LN. The
renal tissue gene expression profiles of LN patients in the GSE32591 dataset were
downloaded as a discovery cohort from the Gene Expression Omnibus. Differentially
expressed genes (DEGs) were identified; weighted gene co-expression network analysis
(WGCNA) was used to identify the co-expression modules of DEGs; and gene
function enrichment analysis, molecular crosstalk analysis, and immune cell infiltration
analysis were performed to explore the pathophysiological changes in glomeruli and
tubulointerstitia of LN patients. The crosstalk genes were validated in another RNA-
sequencing cohort. DEGs common in RNA-sequencing dataset and GSE32591 were
uploaded to the Connectivity Map (CMap) database to find prospective LN-related
drugs. Molecular docking was used to verify the targeting association between
candidate small molecular compounds and the potential target. In all, 420 DEGs were
identified; five modules and two modules associated with LN were extracted in glomeruli
and tubulointerstitia, respectively. Functional enrichment analysis showed that type I
interferon (IFN) response was highly active, and some biological processes such as
metabolism, detoxification, and ion transport were impaired in LN. Gene transcription
in glomeruli and tubulointerstitia might affect each other, and some crosstalk genes,
such as IRF7, HLA-DRA, ISG15, PSMB8, and IFITM3, play important roles in this
process. Immune cell infiltration analysis revealed that monocytes and macrophages
were increased in glomeruli and tubulointerstitia, respectively. CMap analysis identified
proscillaridin as a possible drug to treat LN. Molecular docking showed proscillaridin
forms four hydrogen bonds with the SH2 domain of signal transducer and activator of
transcription 1 (STAT1). The findings of our study may shed light on the pathophysiology
of LN and provide potential therapeutic targets for LN.

Keywords: systemic lupus erythematosus, lupus nephritis, bioinformatics, differentially expressed genes,
WGCNA
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease
involving multiple organs and systems, and its pathophysiology
remains unclear (Mu et al., 2015). Lupus nephritis (LN) is a well-
known complication of SLE; about 80% of children and 40% of
adults are affected by LN (Brunner et al., 2008), which is the
leading cause of morbidity and mortality in SLE patients. We
performed a retrospective study for 491 LN patients in China
and found that the cumulative probability of survival at 10 and
20 years are 77 and 45%, respectively (Zheng et al., 2012). At
present, for the treatment of SLE and LN, most clinicians use
high-dose glucocorticoids and immunosuppressants to induce
remission, followed by long-term maintenance with small doses.
However, only 30–50% of the patients achieve remission, and
10–20% of LN patients progress to end-stage renal disease
(ESRD) (Maria and Davidson, 2020). Therefore, the treatment
and prognosis of LN are generally not optimistic. It is necessary
to strengthen the study of its pathophysiology further and
find new treatment methods to improve the survival rates of
patients with LN.

In recent years, the combination of molecular biology
and information technology has led to the emergence of
bioinformatics (Li et al., 2018), which has been used to reinterpret
disease at the gene level and has revealed many clinical markers
that may be used to diagnose disease or evaluate prognosis,
especially in cancer (Zhang et al., 2018). However, there are
few studies on bioinformatics in LN. Although the etiology of
LN remains uncertain, it is strongly believed that the incidence
of LN is associated with genomic and epigenomic mechanisms
(Kwon et al., 2019). The various gene expression profiles and their
regulatory mechanisms in LN remain to be illuminated.

Here, we obtained the differentially expressed genes (DEGs)
of 32 LN renal tissues and 15 healthy renal tissues from the
GSE32591 dataset. Functional enrichment analysis, weighted
gene co-expression network analysis (WGCNA), molecular
crosstalk analysis, and immune cell infiltration analysis were
performed to explore the pathophysiological changes in
glomeruli and tubulointerstitia of LN patients. The crosstalk
genes were then validated in another cohort. Moreover, the
DEGs common in an RNA-sequencing dataset and GSE32591
were uploaded to the Connectivity Map (CMap) database to
find LN-related drugs. Molecular docking was used to verify the
association between candidate small molecular compounds and
their potential targets. The analysis of DEGs may shed light on
the pathophysiology of LN and provide potential biomarkers
for its treatment.

MATERIALS AND METHODS

Subjects and Samples
Six renal tissues were obtained from biopsies of three untreated
patients with LN and three patients with renal cancer from the
First Affiliated Hospital of Zhengzhou University. The diagnosis
of patients with LN met the 1997 American Rheumatology
Association SLE Classification Criteria and international renal

pathology criteria. Healthy renal tissues at least 5 cm from the
tumor were taken for controls, and their unaffected status was
confirmed by microscopic examination. This study was approved
by the Ethical Committee of the First Affiliated Hospital of
Zhengzhou University (2018-KY-22), and informed consent was
obtained from the patients.

Next-Generation Sequencing
Total RNA was extracted from the renal tissues using the TRIzol
LS Reagent (Invitrogen, CA, United States). After total RNA
quality check, the rRNA was removed using the Ribo-ZeroTM
rRNA removal kit (Illumina, CA, United States), and purification
and fragmentation of RNA were performed at the same time
(the fragment length was between 100 and 300 bp to facilitate
sequencing). First-strand cDNA was synthesized via reverse
transcription, followed by second-strand cDNA synthesis. After
terminal repair and purification, the cDNA library was amplified
through PCR. Finally, samples were sequenced using a 2 × 150
base paired-end configuration with the Illumina Hiseq 2500
(Illumina, CA, United States).

Gene Expression Omnibus Data
Preprocessing
The renal tissue gene expression profiles of GSE32591 from LN
patients and healthy controls were downloaded from the Gene
Expression Omnibus (GEO) database. GSE32591 is a microarray
dataset generated by the Affymetrix GeneChip Human Genome
HG-U133A Custom CDF (Berthier et al., 2012). It included 32
patients with SLE and LN and 15 healthy controls. Then, the
annotation document of corresponding platforms was used to
annotate the gene expression profiling in each dataset. Finally,
the matrix with row names as sample names and column names
as gene symbols was obtained for subsequent analysis.

Differentially Expressed Gene Analysis
For GSE32591, the DEGs in glomeruli and tubulointerstitia were
defined by p < 0.05 and log2| fold change| > 1.0 using the
“limma” package in R software 4.0.0. All the DEGs in glomeruli
and tubulointerstitia were defined as total DEGs in GSE32591.
For RNA-sequencing data, Deseq2 software was used to analyze
the DEGs by comparing the case and control groups. The DEGs
were defined by p < 0.05 and log2| fold change| > 1.0.

Weighted Gene Co-expression Network
Analysis
To explore the function of the DEGs more accurately,
we identified the co-expression modules in glomeruli and
tubulointerstitia using WGCNA, which is an algorithm that can
specially screen genes related to the clinical traits and obtain co-
expression modules with high biological significance (Langfelder
and Horvath, 2008). For glomeruli, to obtain a sufficient number
of genes for WGCNA analysis, the genes were ranked by their
log2| fold change| value. Finally, the genes with log2| fold change|
> 0.589 (| fold change| > 1.5) and p < 0.05 were selected from
the final ranked gene list. For the tubulointerstitia, the genes with
log2| fold change| > 0.380 (| fold change| > 1.3) and p < 0.05
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were selected. The WGCNA was performed using the R package
“WGCNA” (Langfelder and Horvath, 2008). First, the appropriate
soft powers β was selected according to the standard of scale-
free network using the algorithm “pickSoftThreshold.” Second,
the adjacency coefficient aij was calculated by the formula: aij = |
Sij| β . The Sij was the Pearson correlation coefficient of gene i
and gene j, β represents soft powers value. Third, a topological
overlap matrix (TOM) and the corresponding dissimilarity (1-
TOM) were calculated according to the adjacency coefficient.
Then, a hierarchical clustering dendrogram built based on 1-
TOM matrix was used to divide co-expressed genes into different
modules. Fourth, the module eigengene (ME) that represented
the expression patterns of each module was calculated and
performed a Pearson correlation analysis with the clinical trait
to obtain the modules that were significantly associated with LN.

In this study, the soft threshold was defined as 12 in
WGCNA analysis of glomeruli and 18 in WGCNA analysis
of tubulointerstitia. The other parameters were the following:
minModuleSize = 20, networkType = “unsigned,” deepSplit = 2,
and mergeCutHeight = 0.25.

Functional Enrichment Analysis
Gene Ontology (GO) analysis was used to describe the attributes
of genes and gene products, including biological process (BP),
molecular function (MF), and cellular component (CC). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enrichment analysis was used to obtain pathways at the gene level.

For the co-expression modules obtained from the WGCNA,
we focused on the DEGs with log2| fold change| > 1 and p< 0.05
due to their significant changes and performed the GO and
KEGG analyses on DEGs using DAVID1. The results of the GO
analysis related to BP and KEGG pathways were focused, and
the p-value represented the significance of the GO terms and
pathways; the smaller the p-value, the higher the significance.

Molecular Crosstalk Analysis Between
Glomeruli and Tubulointerstitia
As the glomeruli and tubules are closely related anatomically,
we wanted to know whether the DEGs in the glomeruli and
tubulointerstitia can influence each other. First, we extracted
the gene expression data of DEGs from the modules identified
from WGCNA and reconstructed the matrices with row names
as sample names and column names as DEG symbols. Second,
to obtain the correlation among these matrices, we used the
principal component analysis (PCA) in SPSS 25.0 to obtain the
first principal component of each matrix. Pearson correlation
analysis was used to calculate the correlation between these first
principal components. The whole analysis process is similar to
the WGCNA “relating modules to clinical trait” analysis. Third,
to further explore the mechanism of interaction between the
glomerulus and tubulointerstitia, we selected the hub genes in
each first principal component of matrices based on the following
standards: (a) the eigengene connectivity (kME) of genes in
modules > 0.9; and (b) the correlation coefficient with the first

1https://david.ncifcrf.gov/

principal component in factor loading matrix > 0.8. Then, we
used the Search Tool for the Retrieval of Interacting Genes
(STRING) database to construct a protein–protein interaction
(PPI) network of the hub genes at the protein level. We focused
on the interaction between the hub genes located in different
modules. The hub genes with the highest degree in the network
were defined as crosstalk genes.

Immune Cell Infiltration Analysis
The CIBERSORT algorithm is an analytical tool used to estimate
the proportion of various types of immune cells in complex
tissues (such as large solid tumors) (Ali et al., 2016). Panousis
et al. (2019) have successfully used this algorithm to estimate
the proportion of blood immune cell subsets for SLE patients.
Therefore, we uploaded the gene expression data of glomeruli and
tubulointerstitia to the CIBERSORT website2 and obtained the
landscapes of immune cells in these tissues, which encompassed
T cells, B cells, monocytes, eosinophils, natural killer (NK)
cells, macrophages, plasma cells, neutrophils, dendritic cells,
and mast cells. Wilcoxon rank sum test was used to compare
the proportion of immune cells between LN renal tissues and
healthy renal tissues; p < 0.05 was considered significant.
Pearson correlation was used to evaluate the correlation between
the interferon (IFN)-induced genes and immune cells with
significantly different proportions.

Validation of Crosstalk Genes
Next-generation sequencing (NGS) technology has developed
rapidly in the past decade. It has great advantages for
discovering unknown transcripts and comparing alternative
splicing microarrays (Levy and Myers, 2016). Our team has
performed deep sequencing of three cases of LN renal tissues
and normal renal tissues and obtained a large number of
DEGs. Therefore, we used the RNA-sequencing dataset to further
validate the expression levels of crosstalk genes according to their
fold change value.

Connectivity Map Analysis and
Molecular Docking
The CMap database is a database of drug-related gene expression
profiles, and it consists of a large amount of genome-wide
transcriptional expression data of cell lines treated with small
molecular compounds to reveal the correlation among genes,
diseases, and drugs (Lamb, 2007). Based on the gene expression
profiles, researchers could quickly find the drugs with high
relevance to diseases.

To improve the accuracy of drug screening further, we
selected the common DEGs that had the same expression
trend in both GSE32591 and RNA-sequencing dataset. Then,
the common DEGs were converted to probe number HG133A
through Affymetrix3. The prober numbers of upregulated genes
and downregulated genes were transferred into the CMap website
for analysis. The p < 0.05 and Enrichment < 0 indicated that
the changes in the gene expression profiles caused by drugs were

2http://cibersort.stanford.edu/
3https://www.affymetrix.com
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FIGURE 1 | The hierarchical clustering heat maps and Venn diagrams. (A) The heat map above represents the differentially expressed genes (DEGs) in glomeruli; the
heat map below represents the DEGs in tubulointerstitia; red represents upregulation and green represents downregulation. (B) The Venn diagram of the upregulated
genes and downregulated genes in glomeruli and tubulointerstitia. LN, lupus nephritis; HCs, healthy controls; Glom, glomeruli; Tub, tubulointerstitia.

opposite to those caused by diseases, and these drugs might have
a therapeutic effect.

Molecular docking was performed using the Swissdock
website to explore whether there was a targeting association
between candidate small molecular compounds and DEGs
(Grosdidier et al., 2011). The UCSF Chimera software 1.14
was used to visualize the binding interactions between
small molecular compounds with three-dimensional (3D)
models of the target.

Statistical Analysis
The data in this article were collated from two independent
experiments. SPSS 25.0 and R software 4.0.0 were
used for statistical analysis; p < 0.05 was considered
statistically significant.

RESULTS

The Expression Profile of Differentially
Expressed Genes in GSE32591
From the GSE32591 dataset, 361 DEGs were identified
in glomeruli, including 254 upregulated genes and 107
downregulated genes. In addition, 130 DEGs were identified
in tubulointerstitia, including 105 upregulated genes and 25
downregulated genes. Hierarchical clustering heat map was used
to reveal the differences in the expressions of the DEGs between
LN and control groups (Figure 1A). Among these DEGs, 58
genes were upregulated and 13 genes were downregulated in
both glomeruli and tubulointerstitia (Figure 1B). In all, there
were 420 DEGs in GSE32591, including 301 upregulated genes
and 119 downregulated genes. Furthermore, the DEGs in the

RNA-sequencing dataset were also identified. There were 1,089
DEGs in the RNA-sequencing dataset, including 565 upregulated
genes and 524 downregulated genes (Supplementary Figure 1).

The Co-expression Modules in Glomeruli
and Tubulointerstitia
According to the previously set criteria, there were 998 genes
and 955 genes in the glomeruli and tubulointerstitia, respectively,
into the WGCNA analysis. With each module assigned a color,
a total of five modules were identified in glomeruli (excluding
a gray module that was not assigned into any cluster). Then,
a heat map was generated regarding module–trait relationships
to evaluate the association between each module and two
clinical features (LN and control). As shown in Figure 2, The
two modules “brown” and “black” were positively associated
with LN, and three modules “red,” “yellow,” and “blue” were
negatively associated with LN (Figure 2B). Similarly, two
modules in tubulointerstitia were identified; the module “brown”
was positively associated with LN, and the module “red” was
negatively associated with LN (Figure 2D).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses
In glomeruli, the DEGs in the brown module and the
black module positively correlated with LN were significantly
enriched in immune response, especially against virus infection
mediated by type I IFN, such as “response to virus,” “defense
response to virus,” and “type I interferon signaling pathway.”
The KEGG pathway analysis revealed that the abnormal
signaling pathways induced during some infectious diseases,
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FIGURE 2 | Weighted gene co-expression network analysis (WGCNA) analysis. (A) The cluster dendrogram of co-expression genes in glomeruli. (B) Module–trait
relationships in glomeruli. Each cell contains the corresponding correlation and p-value. (C) The cluster dendrogram of co-expression genes in tubulointerstitia.
(D) Module–trait relationships in tubulointerstitia. Each cell contains the corresponding correlation and p-value. LN, lupus nephritis; HCs, healthy controls; Glom,
glomeruli; Tub, tubulointerstitia.

such as those caused by influenza A, herpes simplex, and
Staphylococcus aureus, were similar to the pathways deployed
during the development of LN. The red module was negatively
related to LN, and the enrichment analysis showed some
biochemical reactions and metabolic pathways are impaired in
LN, such as cellular oxidant detoxification, sodium-independent
organic anion transport, biosynthesis of amino acids, and
protein digestion and absorption. Furthermore, the enrichment
analysis for the blue module negatively related to LN also
showed the regulation of muscle contraction, response to
toxic substances, and Rap1 signaling pathway were also
abnormal (Table 1).

In tubulointerstitia, the black module positively related to LN
was enriched in the type I IFN pathway, as in the glomerulus. In
the red module negatively related to LN, the enrichment analysis
showed the DEGs were mainly enriched in cellular response to

hormone stimulus, response to cAMP, transcriptional action, and
osteoclast differentiation (Table 2).

Gene Transcription in Glomeruli and
Tubulointerstitia Was Affected by Each
Other
As shown in Figure 3A, there was a high correlation between
the various modules. The black module in the tubulointerstitia
had different effects on almost every module in the glomeruli.
Positive correlation in the glomeruli was found with the brown
module and the black module, but negative correlation with
the blue, yellow, and red modules. Similarly, the brown module
in glomeruli is positively correlated with the black module but
negatively correlated with the red module in the tubulointerstitia.
The strong correlation between these modules suggested that
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TABLE 1 | GO and KEGG enrichment analysis of DEGs in co-expression
modules of glomeruli.

Modules The
number of

DEGs

GO and KEGG terms* p-value

Brown
module

256 GO:0009615: Response to virus 6.99E–25

GO:0051607: Defense response to virus 1.01E–23

GO:0060337: Type I interferon signaling
pathway

4.68E–19

GO:0045071: Negative regulation of viral
genome replication

1.31E–16

GO:0045087: Innate immune response 2.14E–15

hsa05150: Staphylococcus aureus infection 2.92E–09

hsa05164: Influenza A 1.12E–07

hsa05152: Tuberculosis 4.49E–06

hsa05133: Pertussis 8.99E–06

hsa05168: Herpes simplex infection 3.19E–05

Black
module

8 GO:0060337: Type I interferon signaling
pathway

0.023

hsa04622: RIG-I-like receptor signaling
pathway

0.040

Red
module#

3 – –

Yellow
module

45 GO:0098869: Cellular oxidant detoxification 6.60E–04

GO:0043252: Sodium-independent organic
anion transport

0.001

GO:0055114: Oxidation-reduction process 0.003

GO:0042157: Lipoprotein metabolic process 0.004

GO:0006094: Gluconeogenesis 0.005

hsa01100: Metabolic pathways 0.001

hsa01130: Biosynthesis of antibiotics 0.002

hsa01230: Biosynthesis of amino acids 0.004

hsa04974: Protein digestion and absorption 0.007

hsa00260: Glycine, serine, and threonine
metabolism

0.013

Blue
module

33 GO:0006937: Regulation of muscle contraction 2.24E–04

GO:0032972: Regulation of muscle filament
sliding speed

0.003

GO:0009636: Response to toxic substance 0.008

GO:0055010: Ventricular cardiac muscle tissue
morphogenesis

0.040

GO:0055010: Negative regulation of insulin
receptor signaling pathway

0.046

hsa04015: Rap1 signaling pathway 0.025

∗ If GO or KEGG terms were more than five, only the top five terms were displayed.
#The red module was not enriched in significant terms. DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes.

the genes transcribed in glomeruli and tubulointerstitia may
interact with each other. The PPI network between these
modules suggested some hub genes acted as bridges between
these modules (Figure 3B). We calculated the degree of each
hub gene using the “Network analysis” tool in Cytoscape 3.7.2.
The top 10 genes with the highest degrees were obtained,
including IRF7,HLA-DRA, ISG15, PSMB8, IFITM3,GBP2,OAS2,

TABLE 2 | GO and KEGG enrichment analysis of DEGs in co-expression modules
of tubulointerstitia.

Modules The
number of

DEGs

GO and KEGG terms* p-value

Black
module

106 GO:0060337: Type I interferon signaling
pathway

2.92E–34

GO:0009615: Response to virus 1.24E–21

GO:0051607: Defense response to
virus

2.99E–21

GO:0006955: Immune response 8.47E–19

GO:0045071: Negative regulation of
viral genome replication

3.31E–18

hsa05168: Herpes simplex infection 5.31E–15

hsa05332: Graft vs. host disease 1.61E–14

hsa05330: Allograft rejection 5.92E–14

hsa05150: Staphylococcus aureus
infection

8.92E–14

hsa04940: Type I diabetes mellitus 2.43E–13

Red
module

16 GO:0032870: Cellular response to
hormone stimulus

3.23E–10

GO:0051591: Response to cAMP 6.58E–08

GO:0006366: Transcription from RNA
polymerase II promoter

3.12E–06

GO:0045944: Positive regulation of
transcription from RNA polymerase II
promoter

9.67E–06

GO:0035914: Skeletal muscle cell
differentiation

1.04E–05

hsa05166: HTLV-I infection 3.19E–04

hsa04380: Osteoclast differentiation 7.34E–04

hsa05031: Amphetamine addiction 0.004

hsa04010: MAPK signaling pathway 0.005

∗ If GO or KEGG terms were more than five, only the top 5 terms were
displayed. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase.

SLC27A2, SLC15A3, and IFI44; hence, these genes were defined as
crosstalk genes.

Performance of Immune Cell Infiltration
Analysis
As mentioned above, the type I IFN response was very significant
in LN. Considering that some immune cells play salient roles in
the type I IFN response, we used the CIBERSORT algorithm to
estimate the proportion of various types of immune cells in the
kidney and explore their relationship with IFN-induced genes.
The results showed that the number of monocytes increased
significantly in the glomeruli of the LN group compared with that
in the control. Moreover, the number of activated NK cells was
also increased. On the contrary, the number of memory B cells, T
follicular helper cells (Tfh cells), T regulatory cells (Tregs), resting
NK cells, resting dendritic cells, and resting memory CD4 T cells
was decreased (Figure 4A). In the tubulointerstitia, the number
of M1 and M2 macrophages, gamma delta T cells, and resting
mast cells was increased, whereas that of CD8 T cells, Tfh cells,
and resting dendritic cells was decreased (Figure 4B).
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FIGURE 3 | Molecular crosstalk analysis. (A) The correlation between modules in glomeruli and tubulointerstitia. (B) The interaction of hub genes located in various
modules. Glom, glomeruli; Tub, tubulointerstitia; PC1, first principal component. Blue lines represent inclusion relationship of modules to hub genes; red lines
represent the interaction between the hub genes located in different modules; magenta lines represent the interaction between various modules; red represents
upregulation; blue represents downregulation. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001.
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FIGURE 4 | Immune cell infiltration analysis. (A) The proportion of the immune cell infiltration in glomeruli. (B) The proportion of the immune cell infiltration in
tubulointerstitia. (C) The correlation between the crosstalk genes and eight types of immune cells in glomeruli. (D) The correlation between the crosstalk genes and
seven types immune cells in tubulointerstitia. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001.

The Pearson correlation analysis showed that the IFN-induced
genes, IRF7, ISG15, IFITM3, OAS2, and IFI44, in the crosstalk
gene set were associated with immune infiltration. In glomeruli,
these hub genes were positively correlated with monocytes but
negatively correlated with memory B cells and Tregs (Figure 4C).
In the tubulointerstitia, the IFN-induced genes were positively
correlated with M1 and M2 macrophages (Figure 4D).

Validation of Crosstalk Genes by
Next-Generation Sequencing
To verify our analysis, we extracted the expression level of these
crosstalk genes using NGS and found that most crosstalk genes
had the same changes in the RNA-sequencing dataset (Table 3),
illustrating a satisfactory reliability of the result. The expression
levels of HLA-DRA, GBP2, and SLC27A2 did not differ in our
sequencing (p > 0.05), but they showed the same trends as
microarray sequencing. In the future, we will expand the sample
size to validate these crosstalk genes.

Candidate Lupus Nephritis-Related
Small Molecular Compounds
To identify LN-related small molecular compounds accurately,
we integrated the DEGs between GSE32591 and RNA-sequencing

dataset and obtained 50 common DEGs, including 38
upregulated genes and 12 downregulated genes (Table 4).
Most of the common DEGs were IFN-induced genes, and their
biological processes are mainly related to type I IFN signaling

TABLE 3 | The FC value of crosstalk genes in GSE32591 and
RNA-sequencing dataset.

Glom Tub Kidney

FC p-value FC p-value FC p-value

IRF7 3.138 < 0.001 1.579 < 0.001 1.989 0.004

HLA-DRA 1.876 < 0.001 2.152 < 0.001 1.015 0.915

ISG15 6.561 < 0.001 9.980 < 0.001 5.732 < 0.001

PSMB8 1.543 0.004 2.836 < 0.001 1.780 < 0.001

IFITM3 2.530 < 0.001 3.278 < 0.001 1.707 0.004

GBP2 3.706 < 0.001 1.509 0.007 1.042 0.878

OAS2 5.979 < 0.001 1.911 < 0.001 3.621 < 0.001

SLC27A2 0.401 < 0.001 0.988 0.895 0.655 0.607

SLC15A3 2.359 < 0.001 1.173 < 0.001 2.228 < 0.001

IFI44 9.088 < 0.001 7.989 < 0.001 3.997 < 0.001

FC, fold change; Glom, glomeruli; Tub, tubulointerstitia.

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 5836298487

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-583629 December 9, 2020 Time: 18:37 # 9

Yao et al. Bioinformatics of Lupus Nephritis

TABLE 4 | The common DEGs in GSE32591 dataset and
RNA-sequencing dataset.

Expression Genes

Up STAT1, IFI44L, MX1, IFI44, RSAD2, IFI6, MX2, HERC6,
ISG15, OAS2, OAS3, OAS1, HERC5, XAF1, IFI27, IFIT1,
IFITM1, IFIT3, PARP12, SAMSN1, RTP4, HLA-DQA1,
NNMT, PTGER2, LTF, SRGN, PSMB9, TFPI2, SLC15A3,
UCP2, ARPC1B, DDX60, LY6E, BST2, MMP7, CFB,
UBE2L6, CLU

Down ATF3, EGR1, ZFPM2, FOS, EGR3, CHI3L1, MYL9, TNNC1,
FOSB, JUNB, JUN, ZFP36

DEGs, differentially expressed genes.

TABLE 5 | Ten small molecular compounds for lupus nephritis obtained from the
Connectivity Map (CMap) database.

Rank CMap name n Enrichment p

1 Geldanamycin 15 0.661 0

2 Tanespimycin 62 0.583 0

3 Proscillaridin 3 −0.983 0.00002

4 H-7 4 0.922 0.00004

5 Lisuride 5 −0.807 0.00062

6 5155877 4 −0.860 0.00068

7 Meclocycline 4 −0.859 0.00068

8 Doxorubicin 3 0.921 0.00106

9 Lycorine 5 −0.775 0.00106

10 Lomustine 4 −0.819 0.00203

pathway (Supplementary Figure 2). Then, we queried the
CMap database using the upregulated and downregulated
genes and identified some compounds that might influence
LN; the 10 compounds are shown in Table 5. Doxorubicin and
H-7 were the first two small-molecule drugs with the highest
enrichment score, and proscillaridin was the small molecular
drug with the lowest enrichment scores; their 3D chemical
structures were also downloaded from Pubchem database
(Figures 5A–C).

Targeting Association Between Signal
Transducer and Activator of
Transcription 1 and Proscillaridin via
Molecular Docking
Proscillaridin was reported to inhibit signal transducer and
activator of transcription (STAT)3, and the protein STAT1
encoded by the upregulated DEG STAT1 has been shown to
have a structure similar to that of STAT3. We speculated
that proscillaridin could also inhibit STAT1. Molecular docking
was performed to preliminarily verify whether there is direct
targeting between compounds and the protein. The results
showed that the ARG586, HSD675, and ALA676 residues
form hydrogen bonds with proscillaridin, which indicated
that proscillaridin mainly interacts with the SH2 domain of
STAT1 (Figure 6).

DISCUSSION

In recent years, with the wide use of immunosuppressants and
biological agents, the prognosis and survival rate of patients
with LN have improved; however, 10–20% of the patients with
LN progress to ESRD, which is linked to a heavy burden and
morbidity (Aljaberi et al., 2019). So, there is a need to study
the pathophysiology and discover new therapeutic methods to
prevent LN progression and prolong patient survival. Therefore,
we performed sequencing in LN renal tissues and healthy renal
tissues to identify DEGs and explore their roles in LN.

Through GO and KEGG pathway enrichment analyses of
DEGs, we found that innate and adaptive immune response,
especially against virus infection mediated by type I IFN, was
highly active in both glomeruli and tubulointerstitia, such as
the brown module and the black module in glomeruli and the
black module in tubulointerstitia. Besides, the results also showed
that the metabolism process of carbohydrate, protein, and lipid
in LN patients was disordered, and some biochemical reactions
involving detoxification were impaired. Interestingly, we found
the blue module in glomeruli was enriched in the regulation
of muscle contraction, which indicated that the contraction of
mesangial cells (Jankowski et al., 2003), podocytes (Saleem et al.,
2008), and capillaries might be dysregulated. This may lead to
a decrease of the glomerular filtration rate (GFR) and might
be one of the causes of urine protein in LN patients (Stockand
and Sansom, 1998). In the tubulointerstitia, the red module was
enriched in response to hormone stimulus and cAMP. Many
types of ion transport are mediated via cAMP, such as Na+, K+,
Ca2+, and Cl− (Li et al., 2008). The dysregulation might affect the
tubules, then the filtration and reabsorption of tubules would be
impaired in LN patients.

Glomerular lesions and tubulointerstitial lesions often
occurred together in LN (Cimbaluk and Naumann, 2017), so we
wanted to explore whether the two lesions were related at the
genetic level. Therefore, we further used PCA and correlation
analysis to explore the interaction between glomeruli and
tubulointerstitial modules. There was a high correlation between
the various modules that suggested that the gene transcription
in glomeruli and tubulointerstitia may interact with each other.
Combined with gene enrichment results, clearly, the high
IFN response in glomeruli and tubulointerstitia revealed a
mutual promotion. For a long time, we focused on the fact
that IFN could result in autoimmune inflammation in LN
(Eloranta et al., 2013); however, our molecular crosstalk analysis
showed that the IFN response might also affect some biological
processes, such as metabolic pathways, muscle contraction, and
detoxification process in glomeruli. In the tubulointerstitia,
the cellular response to hormone stimulus and cAMP and
transcriptional activation were highly negatively correlated
with IFN response, which indicated that the IFN response
might have adverse effects on these biological processes in the
tubulointerstitia. Most crosstalk genes interpreted from the
PPI analysis were IFN-induced genes, which also indicated
that IFN-induced genes played an important role in the
transcription of each module. Except the IFN-induced genes,
we also found some new genes, such as SLC27A2, SLC15A3,
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FIGURE 5 | Three-dimensional (3D) chemical structures of the three molecules. (A) Doxorubicin. (B) Proscillaridin. (C) H-7.

FIGURE 6 | The docking simulation result showing hydrogen bonding between proscillaridin and the ARG586, HSD675, and ALA676 residues in the SH2 domain of
signal transducer and activator of transcription 1 (STAT1).

HLA-DRA, and PSMB8, which also might be important in kidney
gene transcription.

To further explore the relationship between type I IFN
response and immune cells in kidney, immune cell infiltration
analysis was performed, and the results showed monocytes were
the prominent differentially expressed cells in glomeruli and
were positively correlated with IFN-induced genes. Monocytes
are important subsets of immune cells, participate in various
types of immune responses, thereby playing an important role in
autoimmune diseases (Auffray et al., 2009). Uccellini and García-
Sastre (2018) observed high IFN response in inflammatory
monocytes during infection. Monocytes also have been reported
to produce IFN and mediate tissue damage in H1N1 IAV-infected
mouse models (Lin et al., 2014). Therefore, we speculated that
there might be a mutual promotion between the monocytes and
the high IFN response in glomeruli. However, we found that these
IFN-induced genes seemed to be negatively correlated with Tregs
and memory B cells. The function of Tregs is that they suppress
autoreactive lymphocytes, especially CD8+ T cell and B cell
activation, and maintain self-tolerance (Ohl and Tenbrock, 2015).
It has been reported that the defects in Tregs or a lack of Tregs

is associated with SLE pathogenesis (Ohl and Tenbrock, 2015).
So we speculated that the decrease of Tregs in LN leads to the
weakening of the inhibitory effect on B cells, thereby enhancing
the B cell intrinsic effect for the augmentation of IFN. Besides, the
reduction of memory B cells caused by the disturbance of B cell
homeostasis has been observed in active SLE (Odendahl et al.,
2000). We speculated that the decreased memory B cells might
be related to the abnormal activation of B cells. The activated
B cells circulate in the peripheral blood and participate in the
formation of autoantibodies and IFN response (Eloranta et al.,
2013). Therefore, there is a negative correlation between memory
B cells and IFN-induced genes. Macrophages were found to be
mainly elevated in the tubulointerstitia and positively correlated
with IFN-induced genes. There are two major polarization states
for macrophages; “M1” macrophages produce a lot of pro-
inflammatory cytokines including IFN-α to cause tissue damage.
On the contrary, “M2”-type macrophages can repair tissue
damage by secreting anti-inflammatory cytokines such as IL-10
and CCL18 (Wen et al., 2019). The increased numbers of M1
and M2 macrophages will cause repeated injury and repair of the
tubulointerstitia, leading to the fibrosis of tubulointerstitia.
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Through CMap analysis, 10 drugs (geldanamycin,
tanespimycin, proscillaridin, H-7, lisuride, 5155877,
meclocycline, doxorubicin, lycorine, lomustine) were identified
that might induce the development of LN (enrichment
score > 0) or which may be potential drugs for the treatment
of LN (enrichment factor < 0). Doxorubicin and H-7 were the
first two small-molecule drugs with the highest enrichment
scores, which indicated that the use of these small molecules or
their analogs might induce or aggravate LN. Huang et al. (2004)
reported a patient with SLE developing lupus-like symptoms,
such as fever, erythema, and exfoliative dermatitis, with a positive
lupus band test after using doxorubicin. Yang et al. (2009)
found that doxorubicin treatment in mice significantly increased
albuminuria and decreased podocytes. These results showed that
patients with LN should be cautious when using doxorubicin.
H-7 is a protein kinase inhibitor (Steele and Brahmi, 1988) and
has not been reported to be associated with LN. Proscillaridin
was the first small molecular drugs with the lowest enrichment
score, indicating that it might be a potential therapeutic strategy
for LN. In short, the abovementioned drugs might affect LN
through a variety of small molecular pathways.

The DEG STAT1 was upregulated in the common DEGs
(Table 2). STAT1 is known to occupy a central position in the
type I IFN signaling pathway. If drugs that can inhibit STAT1
and change the high IFN-response signature are identified, they
may be considered as potential candidate drugs for LN treatment.
Proscillaridin belongs to cardiac glycosides (Maryam et al., 2018),
and Ye et al. (2011) have reported that cardiac glycosides could
potently inhibit the induction of the IFN genes induced by virus,
double-stranded RNA, and double-stranded DNA, which was
consistent with our analysis. Proscillaridin was also reported
to have an inhibitory effect on STAT3 (Maryam et al., 2018).
As STAT1 and STAT3 belong to the STAT protein family and
have similar structures, and proscillaridin reverses the high
IFN-response signature, we speculated that it could also inhibit
STAT1. Through molecular docking, we found that proscillaridin
formed four hydrogen bonds with the SH2 domain of STAT1. The
SH2 domain is the most critical and conserved domain in STAT1,
located between amino acid residues 577 and 683; it is vital for
the activation and function of STAT1 (Levy and Darnell, 2002).
Proscillaridin might inhibit the activation of STAT1 and the type
I IFN signaling pathway by binding to the SH2 domain. However,
more details of the specific interactions between proscillaridin
and STAT1 need to be confirmed by future experiments.

However, there remain several limitations that need to
be resolved in the future. For example, our research was a
bioinformatic analysis based on sequencing data; therefore,
further verifications by cell and animal experiments are needed.
Besides, whether the small molecular compounds screened in
our study could influence LN and the specific interactions and
mechanisms between proscillaridin and STAT1 need further
confirmation. Next, better-designed experiments need to be
carried out based on our findings.

In conclusion, we found that type I IFN response was
highly active, and some biological processes such as metabolism,
detoxification, ion transport were impaired in LN through the
WGCNA analysis of DEGs. The gene transcription in glomeruli

and tubulointerstitia might affect each other, and some crosstalk
genes, such as IRF7, HLA-DRA, ISG15, SLC15A3, and IFITM3,
play important roles in this process. Monocytes and macrophages
may be associated with high IFN response in kidney tissues.
Proscillaridin may play a therapeutic role by targeting STAT1.
Therefore, the analysis for DEGs provided a new perspective for
the pathophysiology and treatment of LN.
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Background: The tumor immune microenvironment is closely related to the malignant
progression and treatment resistance of glioma. Long non-coding RNA (lncRNA) plays a
regulatory role in this process. We investigated the pathological mechanisms within the
glioma microenvironment and potential immunotherapy resistance related to lncRNAs.

Method: We downloaded datasets derived from glioma patients and analyzed them
by hierarchical clustering. Next, we analyzed the immune microenvironment of glioma,
related gene expression, and patient survival. Coexpressed lncRNAs were analyzed
to generate a model of lncRNAs and immune-related genes. We analyzed the model
using survival and Cox regression. Then, univariate, multivariate, receiver operating
characteristic (ROC), and principle component analysis (PCA) methods were used to
verify the accuracy of the model. Finally, GSEA was used to evaluate which functions
and pathways were associated with the differential genes.

Results: Normal brain tissue maintains a low-medium immune state, and gliomas
are clearly divided into three groups (low to high immunity). The stromal, immune,
and estimate scores increased along with immunity, while tumor purity decreased.
Further, human leukocyte antigen (HLA), programmed cell death-1 (PDL1), T cell
immunoglobulin and mucin domain 3 (TIM-3), B7-H3, and cytotoxic T lymphocyte-
associated antigen-4 (CTLA4) expression increases concomitantly with immune state,
and the patient prognosis worsens. Five immune gene-related lncRNAs (AP001007.1,
LBX-AS1, MIR155HG, MAPT-AS1, and LINC00515) were screened to construct risk
models. We found that risk scores are related to patient prognosis and clinical
characteristics, and are positively correlated with PDL1, TIM-3, and B7-H3 expression.
These lncRNAs may regulate the tumor immune microenvironment through cytokine–
cytokine receptor interactions, complement, and coagulation cascades, and may
promote CD8 + T cell, regulatory T cell, M1 macrophage, and infiltrating neutrophils
activity in the high-immunity group. In vitro, the abnormal expression of immune-related
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lncRNAs and the relationship between risk scores and immune-related indicators (PDL1,
CTLA4, CD3, CD8, iNOS) were verified by q-PCR and immunohistochemistry (IHC).

Conclusion: For the first time, we constructed immune gene-related lncRNA risk
models. The risk score may be a new biomarker for tumor immune subtypes and provide
molecular targets for glioma immunotherapy.

Keywords: tumor immune microenvironment, immune gene sets, lncRNA, glioma, risk score

INTRODUCTION

Glioma is a primary malignant tumor derived from glial cells
in the central nervous system. Its annual incidence rate is
7.08 per 100,000 people, and accounts for about 75% of whole
brain and other central nervous system malignancies (Lapointe
et al., 2018; Ostrom et al., 2019). Clinically, gliomas are often
divided into low-grade gliomas (LGGs) and glioblastomas,
which have different treatment methods and prognoses. For
example, LGGs are slow growing and are mainly treated by
total surgical resection. The patient prognosis is relatively good
(Sturm et al., 2017). However, the median survival period
is less than 2 years with malignant glioblastoma progression,
even with standard treatment (surgical resection, adjuvant
radiotherapy, and chemotherapy) (Tan et al., 2020). In 2016,
the WHO classified gliomas into five categories based on
their morphology and molecular characteristics (Louis et al.,
2016). Recently, immunotherapy has been used in clinical
applications. However, the overall prognosis of glioblastoma
patients varies greatly. This may be due to the formation
of unique tumor microenvironments during long-term tumor
formation and limited molecular markers that distinguish tumor
subtypes (Hanahan and Weinberg, 2011). Therefore, it is
important to understand the glioma immune microenvironment
and screen new molecular markers, which will guide future
glioma treatment.

The extracellular matrix, soluble molecules, and tumor
stromal cells are the basic components of the tumor
microenvironment (Cui et al., 2017). Immune cells and stromal
cells are the most common non-tumor cells. Macrophages are
the most abundant immune cells in brain tumors (Quail and
Joyce, 2017). Glioma often recruits T cells, bone marrow-derived
suppressor cells, and macrophages through several pathways
to promote immune cell accumulation and transformation
into different cell types (Gieryng et al., 2017). Microglia and
macrophages are often activated to control anti-tumor immune
responses, promote tumor cell proliferation and invasion,
and achieve immune escape (Hambardzumyan et al., 2016).
Human leukocyte antigen (HLA) (Machulla et al., 2001),
programmed cell death-1 (PDL1) (Jackson et al., 2019), cytotoxic
T lymphocyte-associated antigen-4 (CTLA4) (Nduom et al.,
2015), T cell immunoglobulin and mucin domain 3 (TIM-3)
(Das et al., 2017), and other immune-related genes participate
in the immune escape process. Therefore, treatments targeting
immune checkpoints, microglia, and macrophages are used
in the clinic (Poon et al., 2017). However, some patients are
in a state of immune tolerance. To improve the quality of

medical care and increase the understanding of the immune
microenvironment, tumor immune gene analysis is common.
Considering tumor-associated immune genes, investigating
immune gene sets with guided evolutionary simulated annealing
(GESA) can more comprehensively reflect the glioma immune
microenvironment in vivo to better establish a prognostic model,
find effective molecular markers, and perform effective targeted
treatment (Molinaro et al., 2019).

With the development of high-throughput technology
and the establishment of public databases, the molecular
understanding of tumors has rapidly developed (Serratì et al.,
2016), leading to improved understanding of tumor pathogenesis
and improved biomarker screening. Importantly, some long
non-coding RNA (lncRNA) has been identified as potential
glioma biomarkers (Peng et al., 2018). Previously, lncRNAs
were hypothesized to have no coding function and were
regarded as transcriptional noise. However, lncRNAs play
an important regulatory role in gene transcription and post-
transcriptional modification. Indeed, lncRNA can regulate
inflammation and participate in immune gene expression,
thus affecting the tumor immune microenvironment (Chen,
2016; Mathy and Chen, 2017). For example, lincRNA-Cox2
regulates chromatin complex remodeling and participates
in inflammatory gene expression (Hu et al., 2016). lncRNA
nuclear-enriched abundant transcript 1 (NEAT1) participates
in the regulation of interleukin (IL)-8 transcription, thus
affecting cytokine response, and induces immune gene
expression (Hirose et al., 2014). High HOTAIR lncRNA
expression promotes the secretion of monocyte chemoattractant
protein-1 (MCP-1/CCL2) by tumor cells and promotes the
proliferation of tumor-associated macrophages (TAM) and
myeloid-derived suppressor cells (MDSC) in the immune
microenvironment (Botti et al., 2019). The complex
relationship between lncRNAs and the tumor immune
microenvironment has been gradually revealed, and the
mechanism of immune-related lncRNA in a variety of tumors
has been reported (Hu et al., 2019). However, the relationship
between lncRNAs and the glioma immune environment
remains unclear.

We analyzed glioma samples downloaded from The Cancer
Genome Atlas (TCGA) and Chinese Glioma Genome Atlas
(CGGA), to examine the glioma immune microenvironment
using the single-sample GSEA method. Then, we screened
lncRNAs related to the analyzed immune gene set. Using survival
curve and Cox regression analysis, a five-lncRNA prognosis
model related to the immune gene set was constructed, and
the relationship between the risk score and the glioma patient
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prognosis was explored. Our results provide new ideas for the
clinical immunotherapy of glioma.

MATERIALS AND METHODS

Patient and Glioma Samples
This study was approved by the patients and the Ethics
Committee of the First Affiliated Hospital of Harbin Medical
University. All glioma tissue samples were obtained from the
surgical resection tissue of glioma patients (n = 18); non-tumor
brain tissue was used as the negative control group (n = 5).
Tissue samples are stored separately in liquid nitrogen and
paraffin embedded.

Data Extraction
Sequencing data collected from glioma patients were downloaded
from public databases. We excluded samples with incomplete
clinical information. In total, we downloaded 697 (168 GBM, 529
LGG) glioma RNA-seq and 669 (510 LGG, 159 GBM) clinical
sample information datasets from the TCGA database1, 1018 (375
GBM, 643 LGG) glioma RNA-seq and 971 (596 LGG, 375 GBM)
clinical sample information datasets from the CGGA database2

(Jiang et al., 2016; Hu et al., 2018), and 1152 normal brain
RNA-seq datasets from the Genotype-Tissue Expression (GTEX)
database3 (GTEx Consortium, 2015).

Immune Grouping and Correlation
Analysis
In the single-sample GSEA method, each sample was scored
according to 29 immune gene sets and divided into three
groups by hierarchical clustering (Molinaro et al., 2019). We
used Estimate package to calculate the tumor microenvironment
indicators for each sample and analyze the tumor purity
(Yoshihara et al., 2013). Then, we used the R-x64-4.0.2 language
package to analyze the three immune-related gene and patient
prognosis groups. Finally, we analyzed immune cell infiltration
in each tumor sample using the CIBERSORT method (Newman
et al., 2015) (p < 0.05).

Risk Model
Nine lncRNAs were screened based on the correlation between
identified lncRNAs and the immune gene sets (R2

≥ 0.62)
in CGGA. An additional five prognosis-related lncRNAs were
identified using univariate and multivariate survival analyses
by Cox regression model (Malinchoc et al., 2000). We
divided the samples from the CGGA database into high- and
low-risk groups according to the median risk score (Risk
score = correlation_lncRNA1 × expression_lncRNA1 + correla-
tion_lncRNA2 × expression_lncRNA2 + correlation_lncRNAn
× expression_lncRNAn) (Chen et al., 2007; Zhang et al., 2020b).
Survival curve and Cox regression analysis were used to construct
the immune gene set-related lncRNA risk model.

1https://www.cancer.gov/tcga
2http://www.cgga.org.cn/
3https://commonfund.nih.gov/GTex

Risk Model Assessment
We used cor.test function to detect the relationships between
lncRNAs (Zhang et al., 2020a). Then, we evaluated the accuracy
of the risk model using univariate, multivariate, and receiver
operating characteristic (ROC) curves. ggpubr package was used
to show the relationship between lncRNAs, clinical symptoms,
and immune status. Then, we use principal component
analysis for model clustering through scatterplot3d package
(Ma and Dai, 2011).

GSEA for Enrichment Analysis
We used clusterProfiler, colorspace, and enrichplot package to
perform GO and KEGG analysis based on the sequence of
genes which was sorted each gene in descending order of
log2FoldChange [log2 (Mean of high immune group genes/Mean
of low immune group genes)], and drew a bubble chart (p < 0.05)
through ggplot2 package (Cheng et al., 2019).

Quantitative RT-PCR (qRT-PCR)
Total RNA was prepared using TRIzol Reagent (Invitrogen,
Carlsbad, CA, United States) according to the manufacturer’s
instructions. The concentration of the total RNA was detected
by NanoDrop 2000 (Thermo ScientificTM). Total RNA (1000 ng)
was reverse transcribed into cDNA using qPCR RT Kit
(TOYOBO, Japan). Relative expression of target gene to the
housekeeping gene GAPDH was determined by qRT-PCR using
FastStart Universal 96 SYBR Green Master (ROX) (Roche,
Germany). All primer sequence used in this study is listed in
Supplementary Table 1. Analysis between the two groups was
performed by an unpaired t-test; P < 0.05 was considered
statistically significant.

Immunohistochemistry (IHC)
The tissue sample immersed in formalin is wrapped in
paraffin and sliced into 5 µm thick sections. Then sample
sections were incubated for PDL1, CTLA4, CD3, CD8, and
INOS primary antibodies at 4◦C overnight and secondary
antibodies at 37◦C for 30 min. Next, samples were visualized
by using the diaminobenzidine (DAB) substrate kit for 10 min.
After intensive washing, samples were counterstained with
hematoxylin, then dehydrated and coverslipped according to
manufacturer’s protocol. The results of immunohistochemistry
(IHC) were taken with Leica microscope.

Statistical Analysis
All analyses were performed with GraphPad Prism 7, R version
3.6.1 and corresponding packages. For all data, the statistical
significance is: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

RESULTS

The Tumor Immune Microenvironment
Reflects Tumor Purity
Normal brain tissue maintains a low-medium immune state,
while gliomas are clearly divided into low-immunity groups
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(immunity_L), medium-immunity groups (immunity_M),
and high-immunity groups (immunity_H) (Supplementary
Figure 1A and Figures 1A,B). From immunity_L to
immunity_H, the stromal score, immune score, and estimate
score (stromal score combined with immune score) increase,
and the tumor purity decreases. We further quantified different
immunity groups scores and drew violin plots. The changes
of immune stromal cells in the tumor microenvironment and
the decrease in tumor purity are consistent with Figures 1C,E,
Supplementary Figure 1B, Figure 1G (TCGA, p < 0.001),
Figures 1D,F, Supplementary Figure 1C, and Figure 1H
(CGGA, p < 0.001). In order to better understand the tumor
microenvironment and find potential therapeutic targets,
whether there are differences in immune-related genes is worthy
of our further study.

Immune Gene Expression in the Three
Groups
We generated boxplots to evaluate the expression of immune-
related genes during the immune response. As shown in
Figures 2A,B, HLA-related gene expression gradually increased
from the immunity_L to immunity_H groups (p < 0.001).
We also found that PDL1 (Figure 3A, TCGA; Figure 3B,
CGGA), CTLA4 (Figure 3C, TCGA; Figure 3D, CGGA), CD96
(Figure 3E, TCGA; Figure 3F, CGGA), TIM-3 (Figure 3G,
TCGA; Figure 3H, CGGA), and CD276 (Supplementary
Figure 1D, TCGA; Supplementary Figure 1E, CGGA)
expression levels also increased from the immunity_L to
immunity_H groups. However, HLA-related gene expression
promotes immune responses to clear tumors, while immune
checkpoint genes (PDL1, CTLA4, TIM-3, and CD276) suppress
immune responses and facilitate tumor proliferation and
metastasis. Therefore, we further analyzed patient outcomes.

Patient Prognosis in the Different
Immune Groups
To analyze the effect of gene expression on patient prognosis
in the different immune groups, we drew survival curves for
the TCGA (669 samples: 510 LGG and 159 GBM samples) and
the CGGA (971 samples: 596 LGG and 375 GBM samples)
(Figure 4). Among the glioma patients, patients in the immune_L
group had the best prognosis, followed by the immune_M group,
and the immune_H group had the worst prognosis (Figure 4B,
p < 0.001). Among LGGs, prognosis in the different immune
groups was similar (Figures 4C,D, p < 0.001). In GBM, the
prognosis in the immune_H group tended to be worse than
in the immune_L group, but the difference was not statistically
significant (p > 0.05).

Risk Models of Five lncRNAs Related to
the Immune Gene Sets
Nine lncRNAs were screened based on their coexpression
with immune-related genes. The nine lncRNAs we screened
were AC084018.1, AP001007.1, DICER1-AS1, HCP5, LBX2-AS1,
LINC00515, MAPT-AS1, USP30-AS1, and MIR155HG. After
univariate (Figure 5A) and multivariate (Figure 5B) analyses,

AP001007.1, MIR155HG, and LBX2-AS1 were identified as
independent risk factors [hazard ratio (HR) > 1, P < 0.05],
and LINC00515 and MAPT-AS1 were identified as independent
protective factors (HR < 1, P < 0.001). All the lncRNAs
were related to prognosis in CGGA-mRNAseq_325 and CGGA-
mRNAseq_625 samples (Supplementary Figure 2, p < 0.001).
Then, five lncRNAs (AP001007.1, MIR155HG, LBX2-AS1,
LINC00515, and MAPT-AS1) were used to construct a risk
model and draw survival (Figure 5C, p < 0.001) and risk
curves (Figure 5D). The results show that as the patient risk
increases, the survival time decreases, and the overall death rate
increases. Finally, correlation analysis showed that the primary,
recurrent, and secondary (PRS) type, World Health Organization
(WHO) grade, isocitrate dehydrogenase (IDH)-mutant, 1p/19q
co-deleted, age, and risk score were independent prognostic
factors (Figures 5E,F, p < 0.05). Importantly, the risk score [area
under the curve (AUC) = 0.732] and WHO (AUC = 0.747) had
potential diagnostic value (Figure 6A). Thus, our risk model has
clear diagnostic value.

Clinical Characteristics of the Five
lncRNAs
We next clarified the correlation between lncRNAs and clinical
characteristics based on CGGA database. The results indicated
that as the WHO level increased, AP001007.1, LBX-AS1, and
MIR155HG expression also increased, while MAPT-AS1 and
LINC00515 expression decreased (Figure 6B, p < 0.001). In
addition, 1p19q no-codeletion (Figure 6C), IDH1 wildtype
(Figure 6D), MGMT un-methylated (Figure 6E), and recurrent
glioma (Figure 6F) compared with 1p19q deletion (Figure 6C),
IDH1 mutant (Figure 6D), MGMT methylated (Figure 6E),
and primary glioma (Figure 6F), AP001007.1, LBX-AS1, and
MIR155HG also was high expression, while MAPT-AS1 and
LINC00515 were also low in CGGA (except for LINC00515
in Figure 6E and MAPT-AS1 in Figure 6F, p > 0.05). Then,
principal component analysis also showed that the risk model
could divide the high- and low-risk groups into different
subgroups (Figure 6G).

The Correlation Between lncRNA and
Immunity
Using correlation analysis, we found that the lncRNAs in the
risk model are associated (Supplementary Figure 3A). The risk
score is closely related to the lncRNAs, PDL1, TIM-3, and
B7-H3 (Supplementary Figures 3B–I). In addition, we found
that AP001007.1, LBX2-AS1, and MIR155HG had the highest
expression, while MAPT-AS1 and LINC00515 expression was
the lowest in the immune_H group. In contrast, the expression
of AP001007.1, LBX-AS1, and MIR155HG were relatively low,
while the expressions of MAPT-AS1 and LINC00515 were
relatively high in the immune_L group (Figure 6H). We
next analyzed the immune-infiltrating cells in each group.
In the immune-H group, we found that naive B cells,
plasma cells, CD8 + T cells, regulatory T cells (Tregs), M1
macrophages, M2 macrophages, resting mast cells resting, and
infiltrating neutrophils increased. CD4+ naive T cell, inactivated
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FIGURE 1 | The tumor immune microenvironment is related to the expressed immune genes. Heatmaps of the tumor immune microenvironment in the TCGA (A)
and CGGA (B) datasets. Violin plots of the stromal cell scores among immune groups in the TCGA (C) and CGGA (D) datasets. Violin plots of the immune scores
among the immune groups in the TCGA (E) and CGGA (F) datasets. Violin plots of tumor purity in the TCGA (G) and CGGA (H) datasets, ***P < 0.001.

CD4+memory T cell, monocyte, inactivated natural-killer (NK)
cell, and activated NK cell infiltration decreased (Figure 7A,
TCGA; Figure 7B, CGGA p < 0.05).

GO Enrichment and KEGG Pathway
Analysis
We used GSEA to analyze enriched differential genes in the
immune_H and immune_L groups. We observed that the

differential genes were enriched in immunoglobulin complex,
circulating, immunoglobulin receptor binding, and MHC
protein complex (Figures 7C–F). Further KEGG function
analysis (Figure 8A and Supplementary Figure 3J) showed
allograft rejection, asthma, intestinal immune network for IgA
production, and cytokine–cytokine receptor interaction may be
activated cell signaling pathways. The intersection of the two
data sets revealed 81 cell signal pathways involved in glioma
(Figure 8B). The five lncRNA we identified may regulate the
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FIGURE 2 | The correlation between HLA-related genes and immune groups. (A) TCGA. (B) CGGA.

immune microenvironment through cytokine–cytokine receptor
interaction, antigen processing and presentation, complement
and coagulation cascades, and intestinal immune network for IgA
production (Figures 8C,D).

In vitro Validation of the Risk Model
Through qRT-PCR, we confirmed that AP001007.1, MIR155HG,
and LBX2-AS1 are highly expressed, while LINC00515 and
MAPT-AS1 are low expressed in gliomas compared to the control
group (Figure 9A). Then, we further found that the risk score
was positively correlated with the expression of PDL1, CTLA4,
CD3, CD8, and INOS (Figure 9B, cor > 0.5). Finally, the
immunohistochemical results also confirmed that the expression
of PDL1, CTLA4, CD3, CD8, and INOS in the high risk group
was significantly higher than low risk group base on protein
level (Figure 9C).

DISCUSSION

Glioma cells form a complex regulatory network via the
extracellular matrix, stromal cells, and infiltrating immune cells
(Hanahan and Coussens, 2012). Some cells secrete factors and
lncRNAs to promote inflammation and angiogenesis in tumors,
thereby promoting malignant tumor progression and immune
escape (Pitt et al., 2016; Dagogo-Jack and Shaw, 2018). It is
critical to understand the tumor immune microenvironment
and screen new markers to enable targeted glioma therapy for
glioma. Abundant research on immune cells has been performed
(Charoentong et al., 2017; Jia et al., 2018). However, the cell types,
functions, and pathways associated with glioma remain unclear.
Therefore, we analyzed 1715 glioma and 1152 normal brain tissue
samples using the single-sample GSEA method. We found that

the immune environment in gliomas was very different from the
immune environment in normal brain tissues. In the immune_H
group, the tumor immune cell, and stromal cell content increases,
the tumor purity decreases, and tumor heterogeneity becomes
greater. These conclusions are in line with previous findings
(Hanahan and Coussens, 2012; Pitt et al., 2016; Dagogo-Jack and
Shaw, 2018) indicating that this method can accurately reflect the
basic conditions of the tumor microenvironment.

Human leukocyte antigens and immune checkpoints are
an indispensable regulator of the immune microenvironment
(Topalian et al., 2016; Pereira et al., 2019). In the immune_H
group, PDL1, CTLA4, TIM-3, and CD96 expression were
increased. Immune checkpoints act to negatively regulate
immune regulation. Normal immune surveillance and cell killing
ability are weakened in many tumors. Further, tumors often
have immune escape or immunotherapy resistance mechanisms,
leading to ineffective clinical treatment (Field et al., 2017; Qian
et al., 2018). We also observed that among all the glioma
samples, the immune_H group had the worst prognosis, followed
by the immune_M group, and the immune_L group had the
best prognosis. This conclusion also supports previous results.
Moreover, GSEA has been used in many studies and has a
certain degree of credibility (Ma et al., 2020; Wang et al., 2020).
Therefore, the single-sample GSEA method based on expressed
immune genes can distinguish the biological characteristics
of the immune microenvironment between different gliomas,
which provides the possibility for screening the immune
microenvironment-related biomarkers.

Long non-coding RNAs can regulate the tumor immune
microenvironment and can be used as biomarkers. For example,
NF-kappaB interacting lncRNA (NKILA) can promote the
immune escape of tumor cells by regulating T cell activity
(Huang et al., 2018). Further, SATB2-AS (the antisense transcript
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FIGURE 3 | The correlation between immune groups and immune checkpoints. PDL1 expression is based on TCGA (A) and CGGA (B), CTLA-4 expression is
based on TCGA (C) and CGGA (D), CD96 expression is based on TCGA (E) and CGGA (F), TIM-3 expression is based on TCGA (G) and CGGA (H), ***p < 0.001.
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FIGURE 4 | Correlation between immune grouping and survival time of glioma patients. (A) TCGA and (B) CGGA in all glioma patients. (C) TCGA and (D) CGGA in
low-grade glioma patients. (E) TCGA and (F) CGGA in GBM patients.
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FIGURE 5 | Construction of a five-lncRNA risk model based on CGGA. Univariate (A, p < 0.001) and multivariate (B, p < 0.001) survival model analysis of lncRNA
related to immune gene set. Survival curves of glioma patients with different risk factors (C, p < 0.001). The risk curve of five-lncRNA model (D). Univariate (E,
p < 0.001) and multivariate analysis (F, p < 0.025) of multiple clinical indicators of the risk model.
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FIGURE 6 | The clinical characteristics of the risk model are based on CGGA. (A) Roc curves of multiple clinical indicators. WHO grade (B), 1p19q status (C), IDH
status (D), MGMT methylation status (E), PRS type (F). (G) Principal component analysis of lncRNA related to immune gene set. (H) The expression of lncRNAs in
different immune groups, *P < 0.05, **P < 0.01, ***P < 0.001, ns: not statistically significant.
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FIGURE 7 | Functional enrichment analysis of genes related to immune gene set by GSEA. The correlation between immune grouping and infiltrating immune cells is
based on TCGA (A) and CGGA (B). The GO analysis of differential genes is in TCGA (C) and CGGA (D), and the results are visualized in TCGA (E) and CGGA (F),
*P < 0.05, **P < 0.01, ***P < 0.001.

of SATB2 protein) can directly combine with WDR5 (WD
repeat containing protein 5) and GADD45A (growth arrest
and DNA damage protein 45A) to regulate SATB2 expression,
thereby inhibiting tumor cell metastasis and regulating the tumor
immune microenvironment (Xu et al., 2019). Immune-related

lncRNAs have carcinogenic effects in several tumors, and can be
used as biomarkers (Li et al., 2020). Thus, it is very important
to determine whether lncRNAs related to the immune gene set
have clinical diagnostic and prognostic value. We screened five
lncRNAs using the Cox regression method and constructed a
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FIGURE 8 | Function enrichment of genes related to immune gene set by GSEA. (A) KEGG in TCGA. (B) The intersection of related pathways is based on TCGA
and CGGA. The bubble chart of the enrichment pathway is in TCGA (C) and CGGA (D).

prognostic model. We found that the risk score is related to
prognosis and is an independent factor that can be used for
clinical diagnosis. We further observed that five lncRNAs interact
and are closely related to the clinical symptoms of glioma patients
(WHO grade, IDH1 status, 1q19q status, and MGMT). Principle
component analysis (PCA) analysis showed that subgroups
within the high- and low-risk groups can be well distinguished
using our method. These conclusions show that the risk scores
of the five lncRNAs related to the immune gene set can predict
patient prognosis and clinical characteristics, and can be used as
a new biomarker to inform clinical diagnosis and treatment.

We used boxplots to visualize lncRNA expression in
each immune group. In the immune_H group, we found
that AP001007.1, LBX2-AS1, and MIR155HG were highly
expressed, while LINC00515 and MAPT-AS1 expression
was low. The immune_L group showed the opposite
trend. Survival analysis showed that AP001007.1, LBX2-
AS1, and MIR155HG were risk factors, and their high
expression predicted poor patient outcomes. LINC00515
and MAPT-AS expression were protective indicators, and
low expression predicted poor patient prognosis. LBX2-
AS1 produces malignant behavior in gliomas by conferring
resistance to cell apoptosis (Chen et al., 2020). MIR155HG
promotes immune cell infiltration and immune resistance

(Peng et al., 2019). In contrast, MAPT-AS1 expression indicates
a good prognosis for cancer patients (Wang et al., 2019).
Therefore, the immune gene set-related model we constructed
has considerable credibility.

We found that the five lncRNAs we analyzed may promote
immune cell infiltration through cytokine–cytokine receptor
interaction, antigen processing and presentation, complement
and coagulation cascades, and may contribute to immune
resistance and tolerance, ultimately leading to poor patient
prognosis. However, this study also has some limitations.
First, because there was no information regarding MGMT,
1p19q, and other related molecules in the TCGA dataset,
only a single CGGA cohort was used for statistical analysis.
The CGGA sample information is mainly clinical sample
information from Chinese patients, which may only indicate
region-specific effects. Second, basic experiments have also
verified the important role of some immune gene-related
lncRNAs in regulating glioma development. However, the
mechanism underlying our prognostic model remains unclear
and requires additional experiments to verify our in silico
results. Third, we confirmed that the five lncRNA have
potential clinical value to identify risk factors, but more
factors should be considered, especially considering multimodal
glioma development.
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FIGURE 9 | In vitro experiment based on riskScore model. (A) The abnormal expression of five lncRNAs in gliomas was confirmed by qRT-PCR. (B) The correlation
between riskScore and immune indicators is verified by qRT-PCR. (C) Immunohistochemical results of patients in different risk groups, *P < 0.05.

CONCLUSION

Immune-related genes can reflect the characteristics of the
immune microenvironment. To reveal the mechanism of partial
resistance or treatment resistance within a new risk model,
five immune-related lncRNAs were analyzed and shown to
have good stability and feasibility (AP001007.1, LBX-AS1,
MIR155HG, MAPT-AS1, and LINC00515). Thus, our study
reveals biomarkers that distinguish specific glioma groups and
can be used in the clinical diagnosis and treatment of glioma.
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Supplementary Figure 1 | (A) The heatmap of the immune microenvironment of
normal brain tissue base on GTEX. The relationship between immune grouping
and ESTIMATEScore in TCGA (B) and CGGA (C). The correlation between CD276
and immune grouping in TCGA (D) and CGGA (E).

Supplementary Figure 2 | Survival curve of glioma patients in CGGA
mRNAseq_693 and CGGA mRNAseq_325. (A) ap0001007.1, (C) LBX2-AS1, (E)
LINC00515, (G) MAPT-AS1, (I) MIR155HG in CGGA mRNAseq_325. (B)
ap0001007.1, (D) LBX2-AS1, (F) LINC00515, (H) MAPT-AS1, (G) MIR155HG in
CGGA mRNAseq_325 database.

Supplementary Figure 3 | Correlation analysis of risk score, lncRNA, and
immune checkpoint. (A) Correlation analysis of lncRNAs related to immune gene
set. (B) KEGG in CGGA. (C) Analysis of the correlation between risk scores and
lncRNAs or immune checkpoints in (B) LINC00515, (C) MIR155HG, (D)
LBX2-AS1, (E) MAPT-AS1, (F) ap0001007.1 or (G) TIM-3, (H) B7-H3, (I) PDL1,
(J) KEGG in CGGA.
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Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors that have

a high degree of heritability and are predominantly associated with mutations in ten

genes, such as SDHx, SDHAF2, VHL, RET, NF1, TMEM127, MAX, FH, MEN2, and

SLC25A11. Elucidating the mutation prevalence is crucial for the development of genetic

testing. In this study, we identified pathogenic/likely pathogenic variants in the main

susceptibility genes in 102 Russian patients with HNPGLs (82 carotid and 23 vagal

paragangliomas) using whole exome sequencing. Pathogenic/likely pathogenic variants

were detected in 43% (44/102) of patients. We identified the following variant distribution

of the tested genes: SDHA (1%), SDHB (10%), SDHC (5%), SDHD (24.5%), and RET

(5%). SDHD variants were observed in the majority of the patients with bilateral/multiple

paragangliomas. Thus, among Russian patients with HNPGLs the most frequently

mutated gene was SDHD followed by SDHB, SDHC, RET, and SDHA.

Keywords: head and neck paragangliomas, carotid and vagal paragangliomas, susceptibility genes, SDHx,

mutation frequency, pathogenic mutations

INTRODUCTION

Head and neck (HN) paragangliomas (PGLs) are rare neuroendocrine tumors of four distinct
localizations: carotid, vagal, laryngeal, and middle ear PGLs. Carotid paragangliomas (CPGLs)
arise from the carotid glomus at the carotid artery bifurcation and are the most common form
of HNPGLs (60%) (El-Naggar et al., 2017). Middle ear and vagal paragangliomas (MEPGLs and
VPGLs) are less frequent than CPGLs and account for 29% and 13%, respectively; laryngeal PGLs
are very rare (El-Naggar et al., 2017). All the HNPGLs are often characterized by slow growth and
non-aggressive behavior, but exhibit metastatic potential. The overall metastatic rate for HNPGLs
vary depending on the site of tumor localization: 2% for larynx and middle ear, 4–6% for carotid,
and up to 16% for vagal PGLs (Williams, 2017). HNPGLs can also develop as bilateral or multiple
tumors and pose significant treatment challenges.
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HNPGLs can as familial or sporadic forms (Dahia, 2014).
Familial HNPGLs together with pheochromocytomas (PCCs)
account for about 40% and are associated with four types
of hereditary paraganglioma syndromes (PGL1–5) caused by
mutations in the following genes: SDHD (PGL1), SDHAF2
(PGL2), SDHC (PGL3), SDHB (PGL4), and SDHA (PGL5)
(Burnichon et al., 2010; Boedeker et al., 2014). Patients with
hereditary HNPGLs less frequently harbor germline mutations in
TMEM127 (Bausch et al., 2017), RET (Kudryavtseva et al., 2019),
MAX (Burnichon et al., 2012), FH (Castro-Vega et al., 2014), and
SLC25A11 (Buffet et al., 2018). Germline mutations inVHL,NF1,
and MEN2 have been detected in HNPGLs in association with
other tumoral and clinical features (Boedeker et al., 2009).

In this study, we aimed to assess the frequency of variants
in the main susceptibility genes for HNPGLs, such as SDHx,
SDHAF2, VHL, RET, NF1, TMEM127, MAX, FH, MEN2, and
SLC25A11, among a representative set of Russian patients with
CPGLs and VPGLs.

MATERIALS AND METHODS

Patients
In total, 102 Russian patients with HNPGLs, including 82
patients with CPGLs and 23 with VPGLs, were enrolled
at the Vishnevsky Institute of Surgery, Ministry of Health
of the Russian Federation. Informed consent was obtained
from all patients. This study was approved by the Ethics
Committee of Vishnevsky Institute of Surgery with
ethics committee approval no. 004-2020, 03.07.2020, and

was performed in accordance with the Declaration of
Helsinki (1964) (World Medical Association, 2001). The
clinicopathologic characteristics of the patients are presented
in Table 1.

Exome Library Preparation and
Sequencing
DNA was extracted from formaldehyde fixed-paraffin embedded
(FFPE) tumor tissues using High Pure FFPET DNA Isolation
Kit (Roche, Basel, Switzerland) and quantified with a Qubit
2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA). DNA quality was assessed by quantitative PCR (qPCR)
using QuantumDNA Kit (Evrogen, Moscow, Russia). Exome
libraries were prepared from DNA using Rapid Capture
Exome Kit (Illumina, San Diego, CA, USA) or TruSeq Exome
Library Prep Kit (Illumina) according to the manufacturer’s
recommendations. High-throughput sequencing of the
exome libraries was performed on a NextSeq 500 System
(Illumina) in a paired-end mode of 76 × 2 bp. The average
coverage for each sample was at least 300X. Sequencing
data are available at NCBI Sequence Read Archive (SRA)
BioProject PRJNA639937.

Mutation Analysis
Raw sequencing read quality was assessed using FastQC (v.
0.11.9). The reads were trimmed for quality (less than Q20),
and adapter sequences were removed using Trimmomatic (v.
0.39) (Bolger et al., 2014). Alignment of reads to the reference

human genome GRCh37.75/hg19 was performed with Burrows-
Wheeler Aligner (v. 0.7.17) (Li and Durbin, 2010). To report
alignment statistics and determine read duplicates, we applied
SAMtools (v. 1.10) (Li et al., 2009) and Picard-tools (v.
2.23.4). Base quality score recalibration was carried out with
GATK4 (v. 4.1.2) (McKenna et al., 2010) and dbSNP (common
variants 2015-06-05) (Sherry et al., 2001). Variant calling
was performed with GATK HaplotypeCaller (McKenna et al.,
2010). We excluded false positives using StrandBiasBySample,
StrandOddsRatio, and BaseQualityRankSumTest annotations,
as well as mis-sequenced single-nucleotide variants in polyN
motifs, such as GGGTG > GGGGG, CCCCG > CCCCC, and
others. For functional annotation of variants, ANNOVAR (v.
20200316) (Wang et al., 2010) was used. Annotations included
allele frequency data [gnomAD (Karczewski et al., 2020), Kaviar
(Glusman et al., 2011), and ESP-6500 (http://evs.gs.washington.
edu/EVS/)], information about reported genomic variations and
its association with human pathologies [ClinVar (Landrum et al.,
2018), dbSNP, and COSMIC (Tate et al., 2019)], score for the
conservation of mutated sites [PhastCons (Siepel et al., 2005) and
PhyloP (both PHAST v. 1.5) (Pollard et al., 2010)], localization
of variants in protein domains [InterPro (v. 81.0) (Mitchell
et al., 2019)], as well as pathogenicity prediction score [SIFT
(v. 6.2.1) (Vaser et al., 2016), PolyPhen2 (v. 2.2.2) (Adzhubei
et al., 2010), MutationTaster (v. 2013-03-20) (Schwarz et al.,
2014), LRT (v. 0.2) (Chun and Fay, 2009), PROVEAN (Choi
and Chan, 2015), MetaSVM and MetaLR (Dong et al., 2015),
CADD (v. 1.6) (Kircher et al., 2014), and DANN (Quang et al.,
2015)].

Sanger Sequencing
To validate the whole exome sequencing data, Sanger sequencing
was performed in Evrogen. Primer sequences are available
on request.

RESULTS

A representative set of HNPGL samples were collected from 102
Russian patients diagnosed with CPGLs (n = 82) and VPGLs
(n = 23), including 76 patients with single CPGL, 20 patients
with single VPGL, and 6 patients with bilateral/multiple PGLs
(three of them had both carotid and vagal paragangliomas)
(Table 1). These tumor samples were analyzed for the presence of
pathogenic/likely pathogenic variants in the main susceptibility
genes for HNPGLs: SDHx, SDHAF2,VHL, RET,NF1, TMEM127,
MAX, FH, MEN2, and SLC25A11. Variants were classified as
pathogenic or likely pathogenic according to the annotations
in the ClinVar database or by using the criteria of the
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG-AMP) (Richards
et al., 2015).

Pathogenic/likely pathogenic variants were revealed in 44 out
of 102 (43%) patients with HNPGLs (Supplementary Table 1).
The prevalence of variants was as follows: SDHA (1%, 1/102),
SDHB (10%, 10/102), SDHC (5%, 5/102), SDHD (24.5%, 25/102),
and RET (5%, 5/102). Almost all patients with bilateral/multiple
paragangliomas (except a patient with no variants in any of
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TABLE 1 | Clinicopathologic characteristics of patients with HNPGLs.

Characteristic Number of patients, n (%)

Total patients 102

Tumor localization

CPGLs 82 (80%)

VPGLs 23 (22.5%)

Sex

Male 25 (24.5%)

Female 77 (75.5%)

Age at diagnosis

≥40 71 (70%)

<40 31 (30%)

Mean 48 (16–79)

Tumor characteristics

Single 96 (94%)

Bilateral/multiple 6 (6%)

Recurrent 8 (8%)

Metastasis 1 (1%)

the main susceptibility genes tested) demonstrated pathogenic
variants in SDHD (Table 2). A pathogenic variant NM_003002:
c.A305G, p.H102R (chr11: 111959726, rs104894302) was the
most frequent SDHD mutation detected among the Russian
patients. This variant has been found in nine patients with
CPGLs and three with VPGLs, including two patients with
bilateral/multiple paragangliomas (one patient among them
had both tumors subjected to genetic testing). In addition, it
is noteworthy that only one variant NM_020975: c.A2372T,
p.Y791F (chr10: 43613908, rs77724903) was determined among
all RET-mutated HNPGLs indicating its high frequency in
this population.

Also, we analyzed the frequency of variants in the main
susceptibility genes separately for CPGLs and VPGLs. In CPGLs,
pathogenic/likely pathogenic variants were detected in 38 of
82 (46%) patients and were distributed as follows: SDHA (1%,
1/82), SDHB (8.5%, 7/82), SDHC (6%, 5/82), SDHD (28%
23/82), and RET (5%, 4/82) (Supplementary Table 1, Table 2).
The majority of patients had pathogenic/likely pathogenic
variants in one of these genes, however, in two patients,
a likely pathogenic variant NM_020975: c.A2372T, p.Y791F
(chr10: 43613908, rs77724903) in RET were corepresented
with SDHA (Pat16) and SDHB (Pat142) variants. The same
variant in RET was identified in two other patients (Pat35 and
Pat155) with CPGLs. A likely pathogenic variant NM_003001:
c.G149A, p.R50H (chr1: 161298257, rs769177037) in SDHC
were also detected simultaneously in two patients (Pat102 and
Pat152). Nine patients with CPGLs carried one pathogenic
variant NM_003002: c.A305G, p.H102R (chr11: 111959726,
rs104894302) in SDHD, including two patients (Pat1 and Pat5)
with bilateral/multiple paragangliomas.

Pathogenic/likely pathogenic variants in SDHB, SDHD, and
RET genes were found in 9 out of 23 (39%) patients with VPGLs
(Supplementary Table 1, Table 2). The frequency of variants

had the following distribution: SDHB (13%, 3/23), SDHD (22%,
5/23), and RET (4%, 1/23). All the patients with VPGLs carried
pathogenic/likely pathogenic variants only in one of these genes.
Notably, a likely pathogenic variant NM_020975: c.A2372T,
p.Y791F (chr10: 43613908, rs77724903) in RET identified in
four patients with CPGLs was also found in a patient with
VPGL (Pat158). Moreover, three patients with VPGLs harbored
the pathogenic variant NM_003002: c.A305G, p.H102R (chr11:
111959726, rs104894302) in the SDHD gene detected with high
frequency in a set of CPGLs.

Next, we analyzed the age at diagnosis and sex ratio for
SDHB, SDHC, SDHD, and RET variants within the cohort of
patients with HNPGLs (Table 3). Variants in the SDHC and
SDHD genes were diagnosed with approximately equal frequency
in males and females taking into account 1:3 male to female
ratio among the studied cohort. SDHB variants were found
third-fold more frequent in females when RET variants were
detected about two-fold more frequent in males. Variants in
SDHB, SDHC, and SDHD were observed in all age groups
and were more often detected in patients aged between 19–40
and 41–60 years. RET variants were identified in two groups
of patients aged 19–40 and 41–60 years. Notably, frequency
of variants in all the genes was the lowest in patients aged
61–80 years.

DISCUSSION

In HNPGLs, the occurrence and frequency of mutations in the
SDHx genes are extensively studied and are of importance for
the diagnosis and management of the disease. The prevalence
of mutations in other susceptibility genes has been poorly
investigated. Notably, most studies have been focused on
germline variants. In this work, we cannot establish germline
and somatic mutation status for identified variants, since we
used the archival collection of tumors for which blood or other
normal tissues were not available. We obtained data on the
overall frequency of pathogenic/likely pathogenic variants in
the main susceptibility genes that allows to better understand
molecular basis of the tumor development in Russian patients.
A more similar study was performed for 24 Spanish patients
with HNPGLs, who were subjected to genetic testing for
germline and somatic mutations in the SDHx genes (Curras-
Freixes et al., 2015). In contrast to our data, the majority
of mutations were detected in SDHB (33%, 8/24) followed
by SDHD (21%, 5/24) and SDHC (4%, 1/24). Two patients
with SDHB mutations and one patient with SDHD mutation
were characterized by metastatic tumors but no SDHA variants
were detected.

In Russian patients, we revealed the likely pathogenic variant
in RET in 5% of cases (5/102), including four patients with
CPGLs and one patient with VPGL. Activation mutations in the
proto-oncogene RET lead to the development of an autosomal
dominant syndrome called multiple endocrine neoplasia type
2 (MEN2). Up to 50% of patients with MEN2 develop PCCs
(Pedulla et al., 2014). HNPGLs have been rarely described
in patients with MEN2 syndrome (Boedeker et al., 2009).
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TABLE 2 | Types of HNPGLs and number of patients with identified

pathogenic/likely pathogenic variants.

Tumor type Total

patients, n

Patients

with

variants, n

Gene variants, n

SDHA SDHB SDHC SDHD RET

CPGLs 82 38 1 7 5 23 4

VPGLs 23 9 0 3 0 5 1

Bilateral/multiple

PGLs

6 5 0 0 0 5 0

TABLE 3 | Age and sex of patients with SDHB, SDHC, SDHD, and RET variants.

Gene Age at presentation Sex (M:F)

19–40 yr 41–60 yr 61–80 yr

SDHB 4 5 1 1:9

SDHC 2 2 1 1:4

SDHD 8 12 5 7:18

RET 4 1 0 2:4

M, males; F, females.

However, several studies have reported RET mutations in
HNPGLs without any association with MEN2 syndrome. A
RET mutation was previously detected in a patient with
multiple paragangliomas (Ding et al., 2019). Moreover, the likely
pathogenic germline variant NM_020975: c.A2372T, p.Y791F
(chr10: 43613908, rs77724903) in RET was identified in two
out of four members of a family with multiple and malignant
paragangliomas (Choi Jdo et al., 2014). All four members
carried pathogenic SDHD mutations. In addition, in this family,
the RET mutation was observed in the male adult with
bilateral carotid body and jugulotympanic paragangliomas and
his son with unilateral CPGLs. Here, we also detected this
RET variant in all RET-mutated tumors. Moreover, this variant
co-occurred with the pathogenic start-loss variant in SDHA
and the pathogenic splice site variant in SDHB. Collectively,
data from our study and previous studies suggest that this
RET variant can occur both alone and together with SDHD,
SDHA, and SDHB pathogenic variants. However, according to
the ClinVar database, this RET mutation was annotated as
pathogenic variant associated with the MEN2 syndrome and its
pathogenicity has not been proved by any functional studies.
Thus, the role of the RET variant in the development of
HNPGLs is controversial taking into account that we detected
this variant in patients, who were not diagnosed with the
MEN2 syndrome.

No pathogenic/likely pathogenic variants in SDHAF2, VHL,
MAX, MEN2, NF1, FH, TMEM127, and SLC25A11 were
identified among the Russian patients. Variants in all the genes
were previously reported only as germline at a very low frequency
in HNPGLs (Boedeker et al., 2009; Burnichon et al., 2012; Castro-
Vega et al., 2014; Bausch et al., 2017; Buffet et al., 2018; Guha
et al., 2019).

In the study, we also analyzed male to female ratio and
age groups for identified variants in the SDHx and RET
genes. Currently, clinic-genetic correlations in association with
mutations in these genes in HNPGLs have been poorly
investigated. Moreover, reported data are related to germline
mutations and can be compared only conditionally with our
results. Thus, Mario Hermsen with colleagues studied 23 males
and 51 females and withHNPGLs and found 8:6 and 5:9 ratios for
SDHB and SDHDmutations, respectively (Hermsen et al., 2010).
Taking into account the initial male to female ratio approximately
1:2, we can see that SDHDmutations were detected about equally
in males and females that is concordance with our data. SDHB
mutations were more frequently revealed in males compared
with females, while we obtained opposite results. In addition, it
was observed that SDHB and SDHD mutations were diagnosed
predominantly in patients aged <50 years. We showed that
patients aged <61 years carried variants in these genes more
frequently. Also, age-related penetrance for SDHB and SDHD
mutations was shown to be increased by 50 years in HNPGLs
(Neumann et al., 2004). In our study, we also observed higher
number of patients aged 41–60 years with SDHB and SDHD
variants.
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1 Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry,
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Text analysis can help to identify named entities (NEs) of small molecules, proteins, and

genes. Such data are very important for the analysis of molecular mechanisms of disease

progression and development of new strategies for the treatment of various diseases

and pathological conditions. The texts of publications represent a primary source of

information, which is especially important to collect the data of the highest quality due

to the immediate obtaining information, in comparison with databases. In our study, we

aimed at the development and testing of an approach to the named entity recognition

in the abstracts of publications. More specifically, we have developed and tested an

algorithm based on the conditional random fields, which provides recognition of NEs of (i)

genes and proteins and (ii) chemicals. Careful selection of abstracts strictly related to the

subject of interest leads to the possibility of extracting the NEs strongly associated with

the subject. To test the applicability of our approach, we have applied it for the extraction

of (i) potential HIV inhibitors and (ii) a set of proteins and genes potentially responsible

for viremic control in HIV-positive patients. The computational experiments performed

provide the estimations of evaluating the accuracy of recognition of chemical NEs and

proteins (genes). The precision of the chemical NEs recognition is over 0.91; recall is

0.86, and the F1-score (harmonic mean of precision and recall) is 0.89; the precision of

recognition of proteins and genes names is over 0.86; recall is 0.83; while F1-score is

above 0.85. Evaluation of the algorithm on two case studies related to HIV treatment

confirms our suggestion about the possibility of extracting the NEs strongly relevant to (i)

HIV inhibitors and (ii) a group of patients i.e., the group of HIV-positive individuals with an

ability to maintain an undetectable HIV-1 viral load overtime in the absence of antiretroviral

therapy. Analysis of the results obtained provides insights into the function of proteins that

can be responsible for viremic control. Our study demonstrated the applicability of the

developed approach for the extraction of useful data on HIV treatment.

Keywords: text mining, data mining, named entity recognition, NER, virus-host interactions, HIV, viremic control
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INTRODUCTION

Scientific publications represent the main source of knowledge
for researchers in different fields of biology and medicine.
Besides, the more pressing the problem for humanity is,
the more articles devoted to this problem can be found in
the repositories of scientific publications. The extraction of
records from scientific publications provides the opportunity to
analyze the information derived from primary sources; therefore,
such an approach helps to obtain the most contemporary
information (Cash, 2004; Tarasova et al., 2015, 2019; Saik
et al., 2016). Currently, text-mining technologies aimed at
rapid automated extraction of specific information are under
rigorous development.

Analysis of interactions between named entities (NEs)
representing proteins, genes, and chemical compounds can
help investigate the particular molecular mechanisms of disease
progression, the effect of drugs, and reveal the drug-drug
interactions important for efficacy of therapy (Chen et al., 2014;
Tannenbaum and Sheehan, 2014; Lim et al., 2016; Szklarczyk
et al., 2019).

Identification of associations between NEs in the texts of
scientific publications includes two steps: (i) extraction of named
entities from the texts, and (ii) recognition of associations.
This is the focus of the Named Entity Recognition (NER)
methods. There are two main groups of approaches used for
NER: (i) based on rules and dictionaries and (ii) based on
machine learning methods. The main disadvantage of rule
and dictionary-based algorithms is the inability to extract
information about entities not included in dictionaries. Another
drawback is the requirements for the allocation of memory for
storing dictionaries.

Machine learning methods require sets of texts, in which the
names of proteins, genes, chemical compounds, and so on are
labeled by an expert or a group of experts. Then, using such
texts as a training set, it is possible to adjust the algorithm
to recognize NEs in a large number of articles. Finally, it is
possible to identify relationships between the NEs extracted.
Machine learning methods have advantages over dictionary-
based methods because they provide the recognition of new

NEs not included in dictionaries and, therefore, are the best
option for the careful extraction of information. At present, many
novel text corpora are constantly developing for the purposes of
the scientific community and provide the possibility to extract
information about a variety of NEs: genes, proteins and chemicals
names, symptoms and syndromes of the diseases, side effects and
toxicity of drugs, revealed during the clinical trials or as a result
of medical studies, cases studies, etc.

There are methods aimed at NER that have been developing
during the last years (Kaewphan et al., 2018; Korvigo et al.,
2018; Hemati and Mehler, 2019; Hong and Lee, 2020; Huang
et al., 2020; Kilicoglu et al., 2020). Most of them are based on
algorithms for NER related either to chemicals or biological
objects. In this study, we aim to develop and test an algorithm for
the extraction of named entities of genes/proteins and chemical
compounds and identify associations between them. Ourmethod
of NER is based on the conditional random fields and uses a

set of originally developed word features that allow for context
consideration. Thus, we suggest selecting a set of publications
strictly relevant to the subject and extracting a set of chemical
NEs, proteins, and genes to derive the NEs associated with one
another. After that, their functions in a particular molecular
mechanism of the disease can be analyzed.

Human immunodeficiency virus (HIV) still remains one of
the challenges for humanity (Rojas-Celis et al., 2019; Tarasova
et al., 2020). The number of new HIV cases per year reached
1.7 million (WHO, HIV incidence)1 while is, Number of People
(All Ages) Living With HIV2 is around 38 million (WHO).
Antiretroviral therapy (ART) helps to reduce viral load and
disease progression, but antiretroviral medicine should be taken
by a patient for term of life. The risk of HIV drug resistance and
side effects of antiretroviral medicines decrease the effectiveness
of ART (Iyidogan and Anderson, 2014; Tarasova and Poroikov,
2018). At the same time, an effective HIV vaccine does not exist
(Ventura, 2020).

Taking into account the importance of the problem, we
consider two main approaches for the HIV/AIDS treatment
as case studies: (1) the usage of antiretroviral drugs and (2)
studies of the ways of HIV/AIDS development in different
groups of patients and attempts to affect the key proteins of
the pathways providing a long period of disease progression.
The mechanisms identified can be used for the development
of novel strategies of HIV treatment and vaccine development.
We have validated and tested our algorithm on the tasks of
identification of (i) chemicals that can be considered as HIV
inhibitors and (ii) groups of proteins that may be important for
the different velocity of HIV/AIDS. To reach these purposes,
we used the abstracts of publications relevant to HIV/AIDS
treatment for case studies of HIV inhibition and HIV viremic
control. More specifically, the algorithm developed is aimed
at extracting (a) the names of HIV reverse transcriptase (RT)
inhibitors and (b) the protein (gene) names described in
articles relevant to the studies of HIV elite controllers, i.e., the
group of HIV-positive individuals with an ability to maintain
an undetectable HIV-1 viral load overtime in the absence of
antiretroviral therapy.

MATERIALS AND METHODS

The extraction of the NE names includes several stages. First, we
collected text corpora and made their preprocessing. Second, we
developed an algorithm of NER and its parameter optimization.
Third, we carried out validation and testing of an algorithm and
analysis of the information obtained.

To extract NEs, we used annotated text corpora and applied
an algorithm based on conditional random fields (CRF). Text
annotation in the corpus implies an indication of NE position
inside the text.

1WHO HIV Incidence. Available online at: https://apps.who.int/gho/data/node.

main.HIVINCIDENCE?lang=en (accessed October 15, 2020).
2Number of People (All Ages) Living With HIV. Available online at: https://apps.

who.int/gho/data/view.main.22100WHO?lang=en (accessed October 15, 2020).
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Text Corpora
We used the CHEMDNER3 (Krallinger et al., 2015) and
ChemProt4 as annotated corpora. Both corpora consist of freely
available abstracts of articles.

CHEMDNER consists of three sets (training, evaluation, and
development sets) and includes 10,000 abstracts. It has been
developed for the purpose of chemical NER (Krallinger et al.,
2015). Annotations include the position of NE in the text and
also the NE type: ABBREVIATION (as ATP), FAMILY (as
steroid hormones), FORMULA [as S or C (sulfur or carbon)],
IDENTIFIER (as GRN-529), MULTIPLE (as nucleoside tri- and
di-phosphates), SYSTEMATIC (as sphingosine-1-phosphate),
TRIVIAL (as progesterone).

ChemProt also consists of three sets—training, development,
and test—and includes 2,482 abstracts in total. It also includes
annotations of genes, proteins, and chemical compounds.
ChemProt includes the following types of NEs: (i) GENE-Y is
for proteins/genes that can be normalized or associated with a
biological database identifier, (ii) GENE-N is for proteins/genes
that cannot be normalized or associated with a biological
database identifier and (iii) CHEMICAL is for chemical
compounds4. The proteins and genes are not considered in
ChemProt separately, but search in the databases containing data
on genes and proteins can help identify protein names and names
of genes.

Text Preprocessing
Algorithms for entity recognition in texts require tokenization.
It is the process of splitting the whole text into elementary text
units. As a result of tokenization, the text is presented as a set of
tokens. Words, symbols, numbers, can be used as tokens. Thus,
we used this method for all symbols and spaces implemented in
the “wordpunct_tokenize” function of the NLTK Python library.

Tokens can be divided into groups: those that belong and do
not belong to NEs. If an NE originally consists of two words
(for example, reverse transcriptase) or includes any symbols (for
example, sphingosine-1-phosphate), then after tokenization it
will be presented by a list or array of tokens rather than a simple
string. We used the labeling system SOBIE (Rocktäschel et al.,
2012; Batista-Navarro et al., 2015; Dai et al., 2015; Leaman et al.,
2015) to indicate the position of the term associated with a
particular token.

SOBIE is an abbreviation for tags: “S” (Single)—if a token
belongs toNE andNE consists of one token, “O” (Out)—if a word
doesn’t belong to NE, “B” (Begin) is a label of the first word of
composite NE if NE consists of two or more words, “E” (End)—
is a label of the last word of composite NE, if NE consists of two
or more words and I (Inside)—is a label of words belong to NE
that are between “B” and “E” if NE consists of three or more
words. The example of labeling text by SOBIE is presented in
Supplementary Figure 1.

3BioCreative IV, CHEMDNER Corpus. Available online at: https://biocreative.

bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/ (accessed

August 21, 2020).
4BioCreative VI, ChemProt Corpus. Available online at: https://biocreative.

bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi (accessed

September 4, 2020).

Tokenized corpora texts with a set of SOBIE labels were placed
to the database managed by PostgreSQL DBMS. The schema of
the database is provided in Supplementary Figure 2.

We compiled a features set for each word to train a model. For
NER, it is essential to take into account the context, which means
the words should follow one another in order without mixing.
In our model, each word W is characterized by its features along
with the features of one word before and after W. Each token was
described with a triple set of features (Table 1) - the features of
a particular token and the features of two tokens: one before and
one after the considered one.

We have compiled a list of non-specific terms and used
the belonging of a token to one of them as a feature. Non-
specific terms are general words that can indicate the presence
of the term in the proximity to NEs of a protein (gene) or
a chemical compound in the text. For example, such terms
may include the words “inhibit,” “chemical” for the names of
chemical compounds and “target,” “genes” for the names of
proteins and genes. The list of all these non-specific terms for
NEs of proteins/genes and chemical compounds is presented in
Supplementary Materials. We used marks “C” for non-specific
terms used for chemical compounds and mark “G” – for proteins
and genes. If a non-specific termwas used in both lists, it received
both labels: “C” and “G.”

All the features were obtained using scripts prepared using
Python 3.7. The features were represented as dictionaries to be
able to access each feature individually by its keyword. Finally,
the data were represented in the format that is shown in Figure 1.

Algorithm Realization
As the next step, we built a model. For our approach, we
used an algorithm named CRF in realization using Python
3.7 and SciKitLearn library. This library provides a lot of
algorithms using machine learning, different metrics, etc. The
CRF algorithm allows us to take the context of a phrase into
account. We suggest that the set of features developed can help
to improve the recognition of context near the NEs. We used the
hyperparameter optimization function, which is included in the
SciKitLearn to achieve the highest accuracy of the model.

We built several models. The first model (i) was built to
provide the recognition labels of chemical entity mentions.
The second model (ii) aimed at recognizing names of proteins
and genes. The third model (iii) allowed recognition of types
(ABBREVIATION, FORMULA, IDENTIFIER etc.) of chemical
entity mentions. Based on the models (i–iii), we built the fourth
model (iv) to extract chemical compounds and proteins/genes.
This model combines algorithm for recognizing the names of
chemical compounds and proteins and identifying the types of
chemical compounds. Thus, the models (i) and (iii) were built
based on CHEMDNER as a training corpus. The model (ii) was
built using ChemProt. And the model (iv) was built using both
CHEMDNER and ChemProt. Initially, models were tested using
5-fold cross-validation (Stone, 1974).

We used precision, recall, and F1-score to assess the quality of
model recognition.

Precision is the proportion of positive identifications that
was actually correct. It is calculated as the ratio of the number
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TABLE 1 | The set of features used for CRF.

Feature Type Meaning

Word String Word string

Lower String Lowercase word string

Isupper Boolean If word is uppercase

Istitle Boolean If word’s first symbol is uppercase

Isdigit Boolean If word is digit

Hasdigits Boolean If word has digits

Isnonspecific Boolean If word belongs to non-specific terms list

Isstopword Boolean If word belongs to stop-words list

Hassymbols Boolean If word has symbols

Word[n-3:n] String Three last chars of word string

Word[n-2:n] String Two last chars of word string

Firstchar String Word’s first char

Length Integer Number of chars in word string

Postag String Word’s part of speech tag

Features which do not belong to the standard set are highlighted by gray color.

of true positive identification to the sum of true positive and
false-positive identifications (1).

Precision =
TP

TP + FP
; (1)

Recall is the proportion of actual positive NE mentions that were
identified correctly. It is calculated as the ratio of the number of
true positive identifications to the sum of true positive and false
negative decisions.

Recall =
TP

TP + FN
; (2)

F1-score is the harmonic mean of precision and recall.

F1 = 2
precision • recall

precision+ recall
; (3)

The test set was formed based on the idea that if an article
is strictly relevant to reverse transcriptase inhibition and our
algorithm is able to recognize the NE of a protein and a name of a
chemical compound or drug then there is a high probability that
the chemical named entity identified is the name of HIV reverse
transcriptase inhibitor.

We used the set of 148 publications abstracts collected
from NCBI PubMed. We used the workflow developed earlier
(Tarasova et al., 2019). In this workflow we were focused on
the publications that included the description of HIV inhibitors
and included the details of biological experiments used for their
testing. Using the Python script, we automatically extracted
over 15,000 abstracts of articles from PubMed using the query
“HIV AND reverse transcriptase AND inhibitors.” Then, using
the Lingpipe 4.1.2 tool (Carpenter, 2007), we selected a set
of over 1,000 abstracts strictly relevant to the development,
synthesis, and testing of HIV RT inhibitors. We used Lingpipe
4.1.2 since it provides the possibility of building the models

of text classification into the classes according to the content,
and the selection of the texts strictly relevant to the particular
subject. Earlier we used Lingpipe 4.1.2 to perform selection of
the abstracts of publications, which included the description of
HIV-1 reverse transcriptase inhibitors including the details of
their biological testing (Tarasova et al., 2019) with mean accuracy
over 0.83. We assume that the data on the biological experiment
details in the publication text can help to confirm its relevance to
the inhibition of HIV-1 RT.

After that, we manually selected 148 of them, which consisted
the description of HIV-1 reverse transcriptase inhibitors and
the details of their biological testing. This set of abstracts was
used to evaluate the accuracy of extracting the names of reverse
transcriptase inhibitors.

The texts of abstracts can include the NEs of such chemical
compounds as ATP, various ions, DNA, etc. If we want to
extract the small drug-like compounds mainly, we would like
to filter out ions and biological molecules remaining only drug-
like compounds with molecular weight ranged from 300 to 700
(Da). So, to filter them out, we have additionally introduced filters
for the classes of chemical compounds obtained based on the
results of recognition using CRF. The classes FORMULA and
FAMILY were excluded because the class FORMULA is mainly
represented by ions, and the class FAMILY contains groups of
chemical compounds that do not include the specific names of
small molecule inhibitors of HIV RT.

Once we have developed an algorithm providing recognition
of proteins (genes) names, we also tested the applicability of our
algorithm to the extraction of proteins and genes responsible
for the slow disease progressions of HIV-positive patients. To
perform this analysis, we have collected a set of abstracts of
publications from NCBI PubMed and NCBI PubMed Central
(PMC) databases. We collected the abstracts strictly relevant to
(1) the HIV elite controllers (ECs), a group of patients who do not
progress into HIV/AIDS for years in the absence of antiretroviral
therapy, and (2) the whole cohort of HIV-positive patients. The
first set related to HIV elite controllers was obtained based on
the query “(HIV[Title/Abstract] OR “human immunodeficiency
virus”[Title/Abstract] OR “HIV”[Mesh] OR AIDS[Title/Abstract]
OR “acquired immunodeficiency syndrome”[Title/Abstract] OR
“Acquired Immunodeficiency Syndrome”[Mesh]) AND (“elite
control∗”[Title/Abstract] OR “Elite suppress∗”[Title/Abstract]).”
We obtained over 840 abstracts strictly relevant to the HIV
elite controllers. The second set of abstracts was collected using
the query “HIV positive AND HIV/AIDS” and included over
30 thousand of abstracts. We excluded from the group (1)
the abstracts belonging to the group (2) because the group
(2) may include HIV-positives ECs and we are interested in
the differences between the protein profiles of groups (1, ECs)
and (2, HIV-positives excluding ECs) mainly. The abstracts of
groups (1) and (2) were processed using the NER algorithm
developed, and names of proteins (genes) were extracted from
them. Then, we excluded the proteins found in the abstracts
of the group (2) from a list of proteins obtained for the
group (1). We suggest that it provides the opportunity to
compile a list of proteins responsible for the slow HIV/AIDS
disease progression.
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FIGURE 1 | Scheme for the organization of data that are input for the models.
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The results of our computational experiments are described
and discussed below.

RESULTS

Extraction of Chemical Named Entities
In our study, we performed several computational experiments
using CHEMDNER and ChemProt corpora and the texts
related to (i) the inhibition of HIV-1 reverse transcriptase
and (ii) HIV ECs. Earlier (Tarasova et al., 2019), we collected
a set of papers consisted mainly of those relevant to the
development and testing of HIV reverse transcriptase (RT)
inhibitors, the “HIV-RT-inhibitors corpus.” In the current study,
we curated this corpus carefully and enlarged it with publications
strictly relevant to the inhibition of HIV RT. The chemical
compounds extracted were supposed to be inhibitors of reverse
transcriptase based on a specific selection of texts for the test set
described below.

We built the models for chemical and protein/gene NER
based on CHEMDNER and ChemProt corpora, respectively,
and calculated their accuracy using five-fold cross-validation.
We performed several computational experiments for predicting
SOBIE labels of belonging a token to a chemical and protein/gene
named entity (NE) as well as prediction of certain types
of chemical entity mention (ABBREVIATION, FORMULA,
IDENTIFIER etc.). We evaluated the best way of NER using
the features of text developed. The detailed description of text
corpora and our computational experiments are provided in the
section Materials and Methods.

First, we built a model to predict SOBIE—the labels for the
parts of chemical NE: S - Single—for NE that contains one token;
B, E—Begin, End—as the labels for the first and the last token of
NE, respectively, if NE contains at least two tokens; I—Inside—as
a label for the tokens that located between B and E, if NE includes
three or more words; O—Out—as a label for the words that does
not belong to NE. The results of five-fold cross-validation for
annotated corpora CHEMDNER and ChemProt are represented
in Table 2.

Table 2 displays that the recognition of chemical entity
mentions occurs with reasonable accuracy (F1-score is 0.89).
We carried out an experiment combining the CHEMDNER and
ChemProt to recognize the names of chemical compounds. The
volume of training set increased by more than two thousand
articles (more than 25%). However, this did not lead to a
significant increase in accuracy.

We assumed that the next task might require filtering the
names of chemical compounds by their type. Thus, for example,
the texts may contain the names of ions (Ca2+, Mn2+), which
can be filtered out in case if we are focused on the small drug-
like compounds only with molecular weight range from 300 to
700 (Da). Based on this conclusion, we built a model identifying
the types of recognized names of chemical compounds. Accuracy
was assessed with five-fold cross-validation and is presented
in Table 3.

From the values of precision, recall, and F1-score displayed
in Table 3, one can conclude that filtering by the types of NEs of

TABLE 2 | Precision, recall, and F1-score for model that predicts SOBIE for

chemical entity mentions.

Precision Recall F1-score

S 0.906 0.8388 0.871

O 0.9908 0.996 0.9934

B 0.861 0.7898 0.8238

I 0.9216 0.8782 0.8994

E 0.8764 0.8032 0.8378

Avg 0.9112 0.8612 0.8851

The average values of precision, recall and F1-score are given in bold.

TABLE 3 | Precision, recall, and F1-score for predicting types of chemical entity

mentions.

Precision Recall F1-score

ABBREVIATION 0.9092 0.8946 0.9016

FAMILY 0.8700 0.8074 0.8368

FORMULA 0.9176 0.9030 0.9098

IDENTIFIER 0.8574 0.8954 0.8748

MULTIPLE 0.8334 0.8288 0.8226

SYSTEMATIC 0.9008 0.9394 0.9196

TRIVIAL 0.9200 0.9198 0.9198

Avg 0.8869 0.8841 0.8836

The types of chemical compounds are explained in Supplementary Material

(Supplementary Table 1). The average values of precision, recall and F1-score are

given in bold.

chemical compound can be used for the selection of the particular
type of chemical NE of interest.

The algorithms obtained for recognition of the names of
chemical compounds and their types and names of proteins
(genes) were then combined and applied on a test set of
texts devoted to inhibition of HIV reverse transcriptase. The
prediction of genes and proteins names was obtained using the
SOBIE labels only. The principle of the combined algorithm was
the sequential recognition of the names of chemical compounds,
their types, and then the names of proteins.

As a result, the names of proteins and chemical compounds
were obtained. The rule for extraction of NEs of HIV RT
inhibitors was the presence in the abstract of at least one
recognized protein name and one named entity of chemical
compound. So, in addition to the names of potential reverse
transcriptase inhibitors, it is possible to extract NEs of chemical
compounds that can interact with twoHIV proteins, for instance,
reverse transcriptase and protease.

Evaluation of the results was carried out so that if the
recognized chemical compound is not an actual inhibitor of
reverse transcriptase, then the number of false positives (FP)
increased by one. If an inhibitor was encountered in the text and
was not recognized, then the number of false negatives (FN) also
increased by one.

Also, we evaluated the accuracy of the recognition of
all chemical compounds in the text. The results are shown
in Table 4.
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TABLE 4 | Precision, recall and F1-score obtained when testing the algorithm on

a sample of texts devoted to the inhibition of HIV reverse transcriptase.

Precision Recall F1-score

Chemical compounds 0.83 0.94 0.88

Reverse transcriptase inhibitors 0.80 0.97 0.88

Based on the value of the recall metric, we can conclude
that, in general, we managed to extract almost all names of
reverse transcriptase inhibitors and chemical compounds from
the test set. However, there are wrong recognized inhibitors and
chemical compounds too. This is in agreement with the overall
value of accuracy of NEs recognition in the text according to
the results of 5-fold cross-validation. As we have mentioned
earlier, we applied filters on classes of chemical compounds to
reduce the number of false-positive results. This step allowed us
to increase the precision of value to 0.85. We built automatic
queries to PubChem database5. For all recognized chemical
named entities we obtained PubChem identifiers, if PubChem
identifier was found.

We also tried to extract the names of chemical compounds
from a set of texts dedicated to elite HIV/AIDS controllers. We
assumed that if the texts contain proteins (genes) responsible
for the non-progression of HIV/AIDS, then they can also
indicate chemical compounds that slow down the progression of
HIV/AIDS by influencing the protein (gene). Thus, using model
(i), we recognized the names of chemical compounds in texts
related to the non-progression of HIV/AIDS and then manually
checked the presence of chemical compounds that slow down the
progression of HIV/AIDS. Unfortunately, there are few texts of
the set in which such chemical compounds are mentioned. We
provide some examples of extracted chemical compounds in the
Discussion section.

Extraction of the Protein and Gene Names
As the next step, we aimed at testing the algorithm for the
extraction of protein and gene names from the texts. We
built CRF using SOBIE labels similar to the algorithm for the
extraction of chemical named entities. The results of protein
(gene) recognition based on ChemProt are provided in Table 5.

Despite the fact that the recognition of the named entities of
genes and proteins is carried out with a slightly lower accuracy
than the recognition of the NEs of chemical compounds, the
prediction accuracy still remains reasonable.

We tested the algorithm developed for evaluation a
performance of extraction of proteins responsible for HIV/AIDS
control and non-progression. To obtain the results, we
applied the developed algorithm and the model (ii) to the
set of papers, relevant to (1) ECs and (2) the whole cohort
of HIV-positive patients retrieved from NCBI PubMed and
NCBI PMC databases. The number of proteins and genes
extracted from the texts of group (1) and group (2) abstracts

5PubChem. Available online at: https://pubchem.ncbi.nlm.nih.gov/ (accessed

November 20, 2020).

TABLE 5 | Precision, recall, and F1-score for model that predicts SOBIE for

names of proteins/genes.

Precision Recall F1-score

S 0.8616 0.828 0.8442

O 0.9732 0.983 0.978

B 0.8314 0.7764 0.803

I 0.8444 0.8078 0.8254

E 0.834 0.7792 0.806

Avg 0.86892 0.83488 0.85132

The average values of precision, recall and F1-score are given in bold.

TABLE 6 | Numbers of proteins (genes) names associated with different velocity

of HIV/AIDS progression.

The number of proteins (genes)

unique names retrieved

ECs (group 1 of papers abstracts) 478

HIV-positive (group 2 of papers abstracts) 1,443

Overlap between groups 1 and 2 75

Proteins specific for group 1 only 403

Proteins specific for group 2 only 1,368

is given in Table 6. The full list of proteins extracted for
each of the groups represented in Table 6 is given in the
Supplementary Materials.

As Table 6 displays, there are different protein profiles of the
names of genes and proteins extracted from the set of abstracts
relevant to the ECs (group 1) and the overall group of HIV-
positive patients. For further analysis, we automatically obtained
the synonyms of protein (gene) names and UniProt6 identifiers
for each name of gene or protein extracted from group 1 of
abstracts (i.e., articles relevant to ECs). We also identified the
main functions of the proteins of this group. The interpretation
of our results is given below in the Discussion section.

DISCUSSION

Comparison of the NER Algorithm With
Earlier Developed Approaches
We have compared the models obtained for NER of chemical
compounds and proteins/genes with those developed earlier by
other authors. Earlier NER approaches reached on average F1-
score between 77.70 and 88.06% before post-processing (Campos
et al., 2015; Khabsa and Giles, 2015; Xu et al., 2015; Korvigo
et al., 2018), and for recognizing proteins/genes. Taking into
account the results provided, one can conclude that the accuracy
of NER for our method is comparable with that of some methods
developed earlier. We suggested modifying the text features that
lead to an increase in the recognition accuracy: in particular, we

6UniProt. Available online at: https://www.uniprot.org/ (accessed November 20,

2020).
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expanded the list of non-specific terms used for the recognition
of genes and proteins.

We tried to merge two corpora, CHEMDNER and ChemProt,
to improve the accuracy of chemical compounds recognition.
Despite the assumption that if we increase the number of
examples to train the model, the accuracy may increase,
this did not happen in our case. A detailed comparison of
the precision, recall, and F1-score values for the recognition
of chemical NE (i) based on CHEMDNER and (ii) merged
CHEMDNER and ChemProt corpora and (ii) recognition of
proteins and genes NE based on ChemProt corpus is provided
in Supplementary Figure 1.

The lower recognition accuracy of chemical compounds based
on the combined corpus may be due to ChemProt was primarily
aimed at finding relationships between proteins and genes.
Therefore, chemical NEs in ChemProt are less common in the
texts compared to CHEMDNER.

The algorithms obtained for recognizing the names of
chemical compounds and proteins (genes) were examined on the
test sets of abstracts related to (i) the inhibition of HIV reverse
transcriptase (ii) the identification of proteins associated with
HIV control and non-progression.

Extraction of Chemicals Names That Can
Be Considered as Potential Medicines for
HIV Treatment: A Case Study for HIV
Reverse Transcriptase Inhibitors
From the texts relevant to the inhibition of HIV reverse
transcriptase, we were able to extract inhibitors that actually
exist and are currently used for the therapy. This allows us
to conclude that using our method we can extract the names
of chemical compounds considered as new inhibitors and can
be used to treat HIV infection. The examples of the names of
HIV reverse transcriptase inhibitors extracted from the texts
of abstracts with their PubChem identifiers and their chemical
structures are shown in Supplementary Figure 4.

Identification of the Chemical Compounds
Responsible for the Velocity of HIV/AIDS
Progression: A Case Study for HIV Elite
Controllers
Many of extracted compounds from elite controllers test set
were parts of HAART or names of amino acids. But among all
extracted compounds we were able to detect some that influenced
HIV/AIDS progression.

For example, the article by Bermejo et al. (2016) describes the
effect of the tyrosine kinase inhibitor dasatinib. During T-cell
activation phosphorylation of SAMHD1 allows HIV infection.
Dasatinib stopped SAMHD1 phosphorylation, which led to
disruption of HIV reverse transcription.

Joshi et al. (2016) reported the relationship between heat shock
protein 90 (Hsp90) inhibitors and HIV transcription. It has been
shown that administration of Hsp90 inhibitors tanespimycin
[17- (allylamino)−17-demethoxygeldanamycin] and AUY922
durably prevented viral rebound in mice.

As was mentioned above (in Results section) there were
not plenty recognized chemical compounds that may lead
to HIV/AIDS non-progression. But some of them were
extracted, it demonstrates the usefulness of the approach
developed and the possibility of working out this direction in
the future.

Identification of the Proteins and Genes
Responsible for the Velocity of HIV/AIDS
Progression: Case Study for HIV Elite
Controllers
Once we were able to extract the set of protein and gene
names from the texts relevant to HIV/AIDS ECs, we aimed
to automatically identify the main biological processes and
functions associated with them based on Gene Ontology (Gene
Ontology Consortium, 2015) terms available from UniProt.

Automated queries to the UniProt database allow us to
identify the belonging of a protein or a gene to either organism
“homo sapiens” or a virus. There were some NEs associated
with HIV, such as “gag-pol protein” or “pol peptide.” Also, we
found that 11 names were not associated with any proteins,
they represent false-positive results of our algorithm. Therefore,
the automated verification using a database or a dictionary of
proteins can help filter out the named entities that represent false
positive results and therefore improve the recognition accuracy
obtained using CRF (Song et al., 2015; Perera et al., 2020). It
also helps select the names of protein belonging to the species
of interest. We selected only proteins that were found in UniProt
database and included the names of a protein extracted as one of
the synonyms of names presented in UniProt. Therefore, some of
proteins were filtered out because they were not associated with
one unique record in UniProt.

As a result of automated processing of the files with
gene/protein identifiers and their GO terms, we collected the
most important biological processes associated with proteins
extracted. They can be can be associated with HIV infection
and can have an impact on the velocity of HIV/AIDS
disease progression. We divided them into several groups
according to the function most important for HIV-progression
(see Table 7).

For some proteins, the names of which had been extracted
from the texts of publications relevant to the studies of HIV
ECs, we found direct associations of these proteins with the HIV
progression (Taylor et al., 2000; Oleksyk et al., 2009; Marras
et al., 2013; Slavov et al., 2015; Roy et al., 2017; Parodi et al.,
2019; Hersberger et al., 2020; Wendel et al., 2020). We provide
a few examples of the association between biological processes
known for the proteins identified and their possible role in HIV
disease progression. For instance, H. Fausther-Bovendo and co-
authors reported that the increased expression of NKp44L was
observed in CD4+ T cells of HIV-positive patients (Fausther-
Bovendo et al., 2009); that leads in an increased sensitivity
of NKp44LCD4T cells to the NK lysis activity. The cd85j
receptor (LIR-1) was extracted from abstracts and is found to
be associated with negative regulation of CD8-positive T cell
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TABLE 7 | The main functions of some proteins and genes found in the Uniprot database by the search using named entities extracted from abstracts of publications

selected by their relevance to the description of HIV elite controllers.

The list of proteins

Immune response Human leukocyte elastase; nkg2a; nkg2d receptor; nkp30; nkp44; antileukoproteinase (ALP), apolipoprotein A-I, c4b-binding protein

alpha chain (C4bp), complement C4-B (Basic complement C4), interferon-gamma;

Calcitonin gene-related peptide 1 (Alpha-type CGRP); Antileukoproteinase (ALP);

C4b-binding protein alpha chain (C4bp); Complement C4-B (Basic complement C4);

HLA class I histocompatibility antigen (HLA-B27K protein) (MHC class I antigen) (Major histocompatibility complex); HLA-B alpha

chain (B*5703GB) (MHC class I antigen); Interferon beta (IFN-beta) (Fibroblast interferon),

Apolipoprotein A-I (Apo-AI); Interferon beta (IFN-beta) (Fibroblast interferon)

Autophagy Alpha-1A adrenergic receptor; putative peripheral benzodiazepine receptor-related protein; forkhead box protein O3; interferon

gamma;

micotubule-associated proteins 1A/1B; microtubule-associated protein 1S (MAP-1S); microtubule-associated protein tau

(Neurofibrillary tangle protein); Platelet-activating factor acetylhydrolase IB subunit beta; Microtubule-associated proteins 1A;

Nicotinamide phosphoribosyltransferase (NAmPRTase)

inflammatory response Adenosine deaminase (EC 3.5.4.4) (Adenosine aminohydrolase); angiotensin-converting enzyme 2; antithrombin-III (ATIII) (Serpin C1);

calcitonin; 5’-nucleotidase (5’-NT); Integrin beta-2; human leukocyte antigen b57;

interferon-gamma; tumor necrosis factor(nf)- alpha, interleukin (il)-2, C-reactive protein;

Interferon gamma (IFN-gamma) (Immune interferon); Platelet factor 4 (PF-4); prostaglandin F2-alpha receptor (PGF receptor)

(PGF2-alpha receptor) (Prostanoid FP receptor); prothrombin (EC 3.4.21.5) (Coagulation factor II)

Negative regulation of T cell

mediated cytotoxicity

Carcinoembryonic antigen-related cell adhesion molecule 1; leukocyte immunoglobulin-like receptor subfamily B member 1 (CD85

antigen-like family member J); leukocyte immunoglobulin-like receptor subfamily B member 1 (LIR-1); HLA class I histocompatibility

antigen, alpha chain G (HLA G antigen)

Negative regulation of

CD8-positive, alpha-beta T cell

activation

Leukocyte immunoglobulin-like receptor subfamily B member 1 (LIR-1) (cd85j receptor)

Regulation of gene expression Progonadoliberin-1 (Progonadoliberin I), lhrh, Prostaglandin F2-alpha receptor (PGF receptor); Angiotensin-converting enzyme (ACE);

Myc proto-oncogene protein (Proto-oncogene c-Myc); Calcitonin receptor (CT-R); Leukocyte immunoglobulin-like receptor subfamily

B member 1 (LIR-1); Core histone macro-H2A.2, C-reactive protein; Estrogen receptor (ER); Pro-epidermal growth factor (EGF);

Fibronectin (FN); Interferon gamma (IFN-gamma)

activation according to UniProt data (Table 7). Also, there are
data on its role in the control of HIV-1 replication in autologous
dendritic cells (Scott-Algara et al., 2008). Also, we found the
studies aimed at the identification of the interactions between
S100A9 protein (a calcium-binding protein of the S100 family)
and cd85j receptor. In particular, it was shown that HIV-1
infection modulates S100A9 expression on the surface of the
monocyte-derived dendritic cells. Interaction between S100A9
protein and cd85j receptor, in turn, can have an impact on the
anti-HIV activity of human NK (natural killer) cells (Arnold
et al., 2013). Vincent Arnold, and co-authors suppose that an
exogenous peptide S100A9 can be considered as the potential
ligand for the control HIV-1 replication by NK cells (Arnold
et al., 2013). Therefore, we can identify the existing novel
approaches for HIV infection control that can be useful for
the development of novel strategies to cure HIV. It also can
help to create new hypotheses about potential mechanisms of
HIV control leading to the development of new approaches
to HIV treatment.

For some other proteins, there was no direct evidence of their
role in HIV infection control and progression. But the analysis
of their functions led to understanding that the differences in
the expression of these proteins in the CD4+ or CD8+ T
cells and some other immune cells may be associated with the
velocity of HIV/AIDS progression. For instance, since HIV-
1 glycoprotein 41 (gp) 41 prefers to interact with the cell-
surfaced human leukocyte elastase (Bristow et al., 2003), one can
suggest that the low levels of HLE expression can slow down the

dissemination of HIV particles and therefore have an important
role in HIV/AIDS progression.

There are experiments that provide the insights into CD8+ T
cell response associated with the function of carcinoembryonic
antigen-related cell adhesion molecule 1 (Khairnar et al.,
2018). Base on the experiments carried out with lymphocytic
choriomeningitis virus it was shown that carcinoembryonic
antigen-related cell adhesionmolecule 1 is essential for activation
of CD8+ T cells. However, such results should be considered
with awareness and more experiments are needed to adopt these
hypotheses to HIV-1 viremic control.

Based on the text and data mining, we have earlier identified a
set of proteins and discussed somemolecular mechanisms shared
by a novel coronavirus SARS-CoV-2 and HIV-1 (Tarasova et al.,
2020). There were a few molecular pathways, including those
related to immunology, autophagy, cell cycle regulation, shared
by these two viruses if they infect humans. The present study is
focused on the possibilities of text mining to extract data from
the strictly relevant publications and investigate whether such an
approach can address questions related to the aspect of biological
studies. Our approach is based on a particular set of proteins that
can be associated with the slow HIV/AIDS disease progression.

The two case studies aimed at the extraction of chemical
names from the texts relevant to HIV reverse transcriptase
inhibition, proteins and genes from the texts relevant to HIV
control allow us to determine the advantages and disadvantages
of text mining approaches to new information. The main
advantage of text mining approaches is the possibility of covering
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the huge amount of textual data (Ruusmann and Maran, 2013;
Capuzzi et al., 2017, 2018; Kandhro et al., 2017; Azam et al., 2019;
Gambardella and di Bernardo, 2019; Guin et al., 2019; Ivanisenko
et al., 2019; Alves et al., 2020). Text mining approaches allow
retrieving the most recent and important information about
chemicals, proteins, and genes associated with HIV treatment
including their tissue-specific expression level (Ivanisenko et al.,
2019). The main disadvantage is that our approach does not
consider the expression level of the proteins extracted; this
is due to the incomplete description of expression data in
abstracts. On the other hand, we have evaluated the fully
automated workflow for the purposes of extraction and analysis
of the proteins or genes names that can be associated with
the investigation of HIV ECs. Our study demonstrates that
automated analysis of protein functions associated with HIV
elite controllers allows us to hypothesize about the role of this
protein in the HIV/AIDS progression. These observations and
hypotheses may help to plan new experiments and develop
new methods for HIV/AIDS treatment including the search
for novel chemical compounds that can modulate the level of
expression of target proteins, and vaccine development. We
suppose that the suggested approach can be applied to an analysis
of other viral infections, including those that have been affecting
humanity for the last years (Basak et al., 2019; Tarasova et al.,
2020; Tworowski et al., 2020). In addition it may help provide
the possibility to analyze other various pathological processes
non-related to viral infections that can involve the changes in
gene expression (Kovalenko et al., 2016; Kandhro et al., 2017;
Bizzarri et al., 2020) and find possible strategies to combat
pathological conditions.

CONCLUSIONS

In our study, we have developed and tested a new approach for
automated extraction of named entities representing proteins and
chemical compounds from the texts of scientific publications.
Our method is based on the conditional random fields algorithm.
We have developed a set of text features providing the reasonable
accuracy of named entity recognition. We proposed the retrieval
of named entities from the set of papers strictly relevant to
(i) HIV reverse transcriptase inhibition and (ii) to the control
of HIV/AIDS progression to test the ability of the algorithm
developed to extract both the names of chemicals and proteins
(genes). Our algorithm was tested on the retrieval of data on
inhibitors of HIV reverse transcriptase. We were able to identify
the HIV RT inhibitors with the precision 0.80 and recall 0.94.

Then, we tested the applicability of our algorithm to identify a
set of proteins potentially responsible for slow HIV/AIDS disease
progression and HIV control. For this purpose, we collected a set
of abstracts strictly relevant to the HIV elite controllers, a group
of HIV positive patients who did not progress into HIV/AIDS
for years in the absence of antiretroviral therapy. The extraction
of proteins unique for the studies of HIV elite controllers allows
us to identify the set of proteins responsible for the velocity of
HIV/AIDS disease progression. Investigation of these proteins
and their functions can provide insights into novel approaches
for HIV/AIDS treatment.
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Cold and drought are two of the most severe threats affecting the growth and productivity

of the tea plant, limiting its global spread. Both stresses cause osmotic changes in the

cells of the tea plant by decreasing their water potential. To develop cultivars that are

tolerant to both stresses, it is essential to understand the genetic responses of tea plant to

these two stresses, particularly in terms of the genes involved. In this study, we combined

literature data with interspecific transcriptomic analyses (using Arabidopsis thaliana and

Solanum lycopersicum) to choose genes related to cold tolerance. We identified 45

stress-inducible candidate genes associated with cold and drought responses in tea

plants based on a comprehensive homologous detection method. Of these, nine were

newly characterized by us, and 36 had previously been reported. The gene network

analysis revealed upregulated expression in ICE1-related cluster of bHLH factors,

HSP70/BAM5 connected genes (hexokinases, galactinol synthases, SnRK complex,

etc.) indicating their possible co-expression. Using qRT-PCR we revealed that 10 genes

were significantly upregulated in response to both cold and drought in tea plant: HSP70,

GST, SUS1, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. SnRK1.2,

HXK1/2, bHLH7/43/79/93 were specifically upregulated in cold, while RHL41, CAU1,

Hydrolase22were specifically upregulated in drought. Interestingly, the expression of CIP

was higher in the recovery stage of both stresses, indicating its potentially important role

in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54,

SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between

the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed

significantly negative correlations between the cold and drought responses. Our results

provide valuable information and robust candidate genes for future functional analyses

intended to improve the stress tolerance of the tea plant and other species.

Keywords: gene expression regulation, homologs detection, genetic markers, principal component analysis,

expression profile, candidate genes, abiotic stress, tea plant
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INTRODUCTION

Cold and drought reduce the yield and geographical distribution
ofmost horticultural crops worldwide. Both can lead to decreased
water potential of tissues and induce reactive oxygen species
accumulation, which causes severe damage to various cellular
components (Minhas et al., 2017). Plant responses are complex,
particularly in perennial woody crops, and hundreds of genes
are involved in them (Chaves et al., 2003; Hao et al., 2018; Xia
et al., 2019a). Earlier studies showed that plants have specific
and non-specific responses to both stresses (Beck et al., 2007).
Cold and drought induce common stress-inducible genes, while
one of the stresses specifically induce some genes (Zhou et al.,
2019). It is important to identify these common and unique
responses under cold and drought stress for understanding the
cross-talk mechanisms. To develop cultivars that are tolerant
to both cold and drought, it is necessary to reveal the genes
that are involved in both stresses and elucidate their response
mechanisms to develop genetic markers that can help facilitate
breeding programs (Minhas et al., 2017).

The tea plant (Camellia sinensis L.) is one of the most
important economic crops in China, India, Sri Lanka, Kenya,
and certain Caucasian countries (Turkey, Georgia, Russia, and
Azerbaijan). This perennial woody evergreen crop is grown in
more than 60 countries on five continents, from 49◦N in Ukraine
to 33◦S in South Africa (Turkozu and Sanlier, 2017). Caucasus
tea germplasm collection (44◦36′40′′ N, 40◦06′40′′ E) is located
in the border region of the possible tea production and can be
the source of the most tolerant cultivars; some genotypes here
survive −15–17◦C (Tuov and Ryndin, 2011). In most countries,
tea plantations are affected by drought and cold stress that
significantly reduces the yield and decreases the distribution
of the crop in colder areas. Due to out-breeding and its long
gestation period, the tea plant requires next-generation breeding
strategies to improve its drought and cold tolerance through a
deeper understanding of key regulators and their variants for
precision introgressions to have better yield and quality under
stress conditions. Therefore, efforts are needed to elucidate the
global transcriptomic dynamics of multiple tea genotypes in
drought and cold stress to critically discern key molecular players

(Parmar et al., 2019).
Many transcription factors and metabolite-related genes have

been shown to be involved in both the cold and drought
responses of plants. For example, the key cold regulators ICE,
CBF, and DHN transcription factors participate in both cold and
drought and in other abiotic stresses (Liu et al., 2015; Liu S.-C.
et al., 2016; Yin et al., 2016; Ban et al., 2017; Hu et al., 2020).
The genes involved in the ABA-independent responsive pathway
and the bZIP-mediated ABA-dependent pathway (Wang et al.,
2012; Ban et al., 2017) also participate in tolerance to cold and
drought. The overexpression of CsbZIP6 in Arabidopsis resulted
in hypersensitivity to several abiotic stresses (Cao et al., 2015). In
addition, many other transcription factors (WRKY, bHLH, NAC,
HSP, LEA, CML, and others) have been shown to be activated
in tea plants in response to cold and drought (Yue et al., 2015;
Wang Y.-X. et al., 2016; Chen et al., 2018; Cui et al., 2018;
Ma et al., 2019). Recently, Li Y. et al. (2019) revealed that the

genes LEA2, HSP70, PRP, CIPs, PEIs, TLPs, and ChiA were more
strongly expressed under cold stress in tolerant cultivars than
in susceptible cultivars. Recent transcriptomic data on tea plant
showed that 12 TF families (AP2/EREBP, bHLH, bZIP, HD-ZIP,
HSF, MYB, NAC, WRKY, zinc-finger protein TFs, SCL, ARR,
and SPL) might play crucial roles in tea plant responding to
drought (Liu S.-C. et al., 2016). In Arabidopsis thaliana, forty
three transcription factor families (primarily,WRKY, NAC, MYB,
AP2/ERF, and bZIP) were found to regulate 56% of common
genes expressed in drought and cold stress (Sharma et al., 2018).

However, we continue to lack a complex picture of the
interactions between the core network and their downstream-
regulated target proteins. Additionally, comparison of molecular
profiles of an organism under different stresses would make it
possible to identify the conserved stress mechanisms (Amrine
et al., 2015; Muthuramalingam et al., 2017; Chamani Mohasses
et al., 2020). Thus, we have to continue searching for new
evolutionarily conserved and species-specific genes related to
the stress response. In this study, we combined literature
data with interspecific transcriptomic analyses (A. thaliana and
Solanum lycopersicum) to select genes that are related to cold
tolerance. We built a network of candidate genes to reveal their
interactions with the corresponding homologs for A. thaliana.
We phenotypically screened a panel of Caucasian tea genotypes
for cold and drought tolerance. Further expression analyses of 45
genes were performed in the most tolerant genotype under long-
term stress induction and during the following recovery. The cold
and drought expression profiles for each gene were compared
to analyze overlapping responses in tea plant to both stresses,
and correlations between cold and drought were revealed. Our
results provide valuable information and robust candidate genes
for future functional analyses intended to improve the stress
tolerance of the tea plant and other species.

MATERIALS AND METHODS

Candidate Genes Selection
To evaluate the cross-talk of the genetic response between
cold and drought, cold responsive genes were selected as

described below. The same genes have been tested in response
to drought conditions.

We performed the interspecific analysis of transcriptomic
data from the NCBI GEO database (ncbi.nlm.nih.gov/geo/,
Barrett et al., 2012) for revealing candidate genes with
increasing expression during cold. Using the datasets GSE103964,
GSE112225, GSE116964 for A. thaliana and GSE78154 for S.
lycopersicum the fold changes of gene expression under cold were
calculated and ranks of genes were assigned according to their
upregulation quartile (from 1 to 4) (Supplementary Table 1).
Next, we compared top quartile genes between A. thaliana and S.
lycopersicum using standalone BLAST (Camacho et al., 2009). As
a result, nine orthologs were detected as genes with the highest
rank in both species, and their nine corresponding orthologs of
Camellia sinensis were added in experiment.

Further corresponding homologs in tea plant were
characterized using BLAST against the Tea Plant Information
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TABLE 1 | Candidate cold responsive genes in tea plant.

Source Gene ID Description Trivial name

Best hit of interspecies top ranked genes TEA003328 Galactinol synthase 1 GOLS1

TEA006793 Galactinol synthase 3 GOLS3

TEA030611 Glycine-rich RNA-binding protein 3 GR-RBP3

TEA021045 Endotransglucosylase HYDROLASE 22

TEA020473 Responsive to high light 41 RHL41

TEA010353 Calcium underaccumulation 1 CAU1

TEA003997 Pectin methylesterase 41 PME41

TEA004079 Dehydration response element-binding protein 26 DREB26

TEA024722 Aba- and osmotic-stress-inducible ARCK1, CRK45

Upregulated cold responsive gene (Li Y.

et al., 2019)

CSA032195 G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290 [Vitis vinifera] GsSRK

CSA031147 G-type lectin S-receptor-like serine/threonine-protein kinase RKS1[Theobroma cacao] GsSRK1

CSA001565 LRR receptor-like serine/threonine-protein kinase FLS2-like FLS2

CSA020614 Receptor-like serine/threonine-protein kinase ALE2 [Nicotiana sylvestris] RPK2

CSA000608 Ethylene-responsive transcription factor ERF021[Arabidopsis lyrata subsp. Lyrata] AP2/ERF-AP21

CSA000348 Ethylene-responsive transcription factor SHINE 2-like [Cucumis melo] AP2/ERF-ERF2

CSA034862 Ethylene response factor 6 AP2/ERF-ERF6

CSA023474 Bhlh transcription factor bhlh102 bHLH102

CSA033910 Probable WRKY transcription factor 42 WRKY42

CSA002423 PREDICTED: zinc finger CCCH domain-containing protein 30 [Ricinus communis] ZAT30

CSA003726 Late embryogenesis abundant protein 3L-1 [C. sinensis] LEA3

CSA031822 Late embryogenesis abundant protein [C. sinensis] LEA2

CSA012537 Heat shock 70 kda protein, mitochondrial-like HSP70

CSA014200 36.4 kda proline-rich protein-like [Malus domestica] PRP

CSA016010 Putative cold-inducible protein [C. sinensis] CIP

CSA001876 Probable pectinesterase/pectinesterase inhibitor 54 PEI54

CSA035791 Endoglucanase 11-like [Jatropha curcas] EGase11

CSA000129 thaumatin-like protein 1b TLP1

CSA028426 Peroxidase 73 [Vitis vinifera] POD73

CSA006422 Glutathione S-transferase [Camellia japonica] GST

CSA010521 Beta-amylase 5 [C. sinensis] BMY5

CSA000011 Sucrose synthase 1 [C. sinensis] SUS1

The genes are retrieved from the TPIA database and the study from Li Y. et al. (2019). For detailed information please see Supplementary Table 2.

Archive database (Xia et al., 2019b, Supplementary Table 2).
The corresponding A. thaliana orthologs of C. sinensis were also
identified from Li Y. et al. (2019) using the best-scored BLAST
result. The selected genes (Table 1, Supplementary Table 2) were
further annotated by the blast to the A. thaliana TAIR database
(Lamesch et al., 2012). Primers were designed using PrimerQuest
(eu.idtdna.com/Primerquest) with default parameters and
amplicon size between 100 and 250 bp. The quality of the
primers was revised using service Multiple Primer Analyzer by
Thermofisher Scientific and PCR electrophoresis.

Analysis of Relevance of Selected Genes and Their

Interactions
A combined scored method was used to rank the identified
genes from 1 to 9 points. In particular, we valued from 2 to 4
if genes have GO terms related to cold response [GO:0009409
Response to cold (“4”), GO:0006979 response to oxidative stress
(“3”), GO:0050896 response to a stimulus (“2”)]. Also, we added
a score from 1 to 4 if corresponded ortholog was detected in an

upregulated cluster according to A. thaliana and S. lycopersicum
data. Finally, we added 1 point if the gene was presented in related
articles. Therefore, genes were ranked (Supplementary Table 2)
from 1 to 9 points using a combined criterion.

Gene Network Reconstruction and Layout
The data from the literature sources and transcriptome analysis
(see Supplementary Table 2) were used for the gene network
reconstruction. Since most of the data for plant protein-protein
interactions were obtained for A. thaliana, we identified the best-
hit orthologs for Arabidopsis (Supplementary Table 2, column
“AT ID”) and used them as source for building the corresponding
gene network.

The network was reconstructed using the String database
(https://string-db.org; Szklarczyk et al., 2019) with the following
attributes: Textmining/Experiments/Databases interactions and
threshold of interaction score = 0.15. For further layout and
visualization, we used the Cytoscape (cytoscape.org; Shannon
et al., 2003) and algorithm Radial Layout by yFiles.
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FIGURE 1 | Three-year old tea plants used for the cold and drought treatments. Pot diameters−20 cm, plant heights 40–55 cm.

Plant Material
Three-year-old plants of ten elite tea genotypes obtained by
vegetative propagation in FRC SSC RAS (Federal Research
Center the Subtropical Scientific Center of the Russian Academy
of Sciences) were used for leaf samplings. Ten genotypes
of the local breeding were included in this study: Quimen,
Gruzinskii7, GP, Sochi, Clone#22, M#527, M#855, Form#62,
Kolkhida, Karatum. Among them, Quimen, Gruzinskii7 were
earlier showed to be the cold- and drought-tolerant genotypes;
Kolkhida and Karatum were earlier showed to be cold-
susceptible and drought-susceptible genotypes. Other clones
and mutant forms showed medium cold-tolerance of drought-
tolerance (Gvasaliya, 2015). Plants were grown in 2-liter pots
filled with brown forest acidic soil (pH = 5.0) (Figure 1).
Only healthy plants were selected for these experiments.
Ten plants of each genotype were included in the study.
For each assessed parameter, 2nd, 3rd, and 4th mature
leaves were used for samplings. Experimental treatments
with these plants were replicated twice in the period 2019
to 2020.

Stress Induction and Phenotypical
Screening for Tolerance
Control treatment: Before the stress treatments, plants were
grown for 3months in control conditions with the temperature of
+22–25◦C (with an illumination regime of 16 h of light and 8 h of
dark, with the light intensity of 4000 lux with normal irrigation).

Cold treatment: Cold stress was induced in cold chambers HF-
506 (Liebherr, Denmark) as follows: decreasing the temperature
by 0- +2◦C for 10 days to reveal the cold acclimation responses.
After that, the temperature was gradually increased to +10◦C
during 10 days (Recovery-Cold treatment). Drought treatment:
Drought stress was induced in a laboratory climatic chamber by

gradually decreasing the watering till 15–17% of water content in
soil (comparing with control 28–30%) during 10 days (drought
treatment) to reveal the drought acclimation response. After
that, watering was gradually increased until 28–30% for 10
days (Recovery-Drought treatment). During the treatments, the
illumination regime was the same as in the control conditions.

For phenotypical evaluation of the tolerance to stress relative
electrical conductivity was measured before the stress induction
and after the stress inductions. Relative electrical conductivity
was measured using a portable conductivity meter ST300C
(Ohaus) to assess the electrolyte leakage indicating the damage
of leaf tissues. The leaf sample was immersed in 150ml of
deionized water. The measurement of electrical conductivity was
done immediately after immersion (L1) and 2 h later (L2). The
relative electrical conductivity (REC, %) was calculated as:REC =
L1
L2∗100 (Bajji et al., 2001).

Gene Expression Analysis
Total RNA was extracted from the third mature leaf in
three biological replicates by the CTAB method (Doyle and
Doyle, 1991) with minor modifications. The concentration
and quality of RNA were determined using BioDrop µLite
spectrophotometer and integrity was assessed by agarose gel
electrophoresis. RNA samples were treated with DNase I and
reverse transcription was performed using the MMLV-RT kit
(Biolabmix, Russia). The efficiency of DNaseI treatment and
reverse transcription were tested by agarose gel electrophoresis
and by qRT-PCR. The results of this verification were evaluated
by the presence/absence of a PCR product in RNA samples
before and after DNaseI treatment, and by observing the size of
PCR fragments in RNA samples before treatment and its cDNA
synthesis. Only those samples that confirmed the absence of
genomicDNA contaminationwere included in further analysis of
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gene expression. Actin (F: 5′-CCATCACCAGAATCCAAGAC-
3′; R 5′-GAACCCGAAGGCGAATAGG-3′) (Hao et al., 2014)
was taken as a reference gene and results were quantified using
a Light Cycler 96 analyzer (Roche, Japan). The relative gene
expression level was calculated by the Livak and Schmittgen
(2001) using the following algorithm: 2−11Cq, where:

11Cq = (Cqgene of interest − Cqinternal control)treatment

−(Cqgene of interest − Cqinternal control)control

Statistical Analysis
All analyses were repeated twice with three biological replications
in each. Statistical analyses were carried out using XLSTAT
software. Student t-test, principal component analysis, and
Pearson’s correlation tests and Wards-clusterization were
performed to evaluate data and confirm the significant
differences (at the level p ≤ 0.05) between the genes expression
profiles and respective treatments.

RESULTS

Reconstruction of the Cold Stress
Response Gene Regulation Network in Tea
Plant for Selection of Priority Targets for
Experimental Expression Profiling
A set of 52 genes was involved in the analyses, including nine
de novo predicted genes from transcriptomic data analyses and
43 from recent articles related to the cold tolerance of C.
sinensis. The following genes were drawn from the literature:
bHLH factors (9), GsSRK (2), SnRK1 (3), HXKs (3), ERF (3),
WRKY (2), dehydrins (2), late embryogenesis abundant proteins
(2), and others (CBF1, ICE1, ZAT, HSP70, PRP, CIP, PEI54,
TLP, POD, GST, BMY, ALE2, and FLS2). In addition, using
interspecies transcriptome analyses we stressed nine orthologs
that were highly upregulated in both species (A. thaliana and
S. lycopersicum) using cold treatment: two galactinol synthases
(GOLS1 and GOLS3), glycine-rich RNA-binding protein 3 (GR-
RBP3), xyloglucan endotransglucosylase/hydrolase protein 22
(XTH22, Hydrolase22), zinc finger protein RHL41, histone
methylase SKB1, pectinesterase inhibitor PME41, dehydration
response element-binding protein DREB26, and protein kinase
superfamily protein ARCK1. For a better overall understanding
of the interactions and to verify our chosen gene set, the gene
network was reconstructed usingA. thaliana data (Figure 2). The
core gene network was classified using the three indicated clusters
and had 42 genes with 111 edges between them, which indicate
their tight interconnection. Interestingly, 30 of 46 genes were
upregulated, and seven genes were downregulated.

Phenotypical Selection of Tolerant
Genotype Under Cold and Drought
Treatments
Cold resulted in increased relative electrical conductivity (REC)
that reached 50–60% in most genotypes. Maximum REC was
observed in three genotypes: Clone#22, Form#62, and cultivar
Kolkhida. The lowest REC was observed in two cold-tolerant

genotypes, Gruzinskii7 and Quimen, at 39 and 31%, respectively.
Drought stress resulted in increased REC, which reached 40–
49% in most genotypes. The highest REC, 54%, was observed
in cv. Kolkhida. The lowest REC, 31%, was observed in cv.
Quimen. The recovery stage showed no significant differences
among the ten genotypes. Thus, the lowest REC under drought
and cold induction was observed in Quimen, indicating the
lowest damage of leaf tissues under cold and drought stress
(Figure 3). This cultivar showed a similar REC for cold and
drought treatment, which produced equal damage to tissues in
both stresses, so this cultivar was used as the tolerant one in
further gene expression analyses.

Relative Expression Levels of the Studied
Genes in Response to Cold and Drought
Of the 45 studied genes, the highest level of expression (hundred-
fold) was observed in the four candidate genes in response to
a given stress treatment: HXK2 (Cold), HSP70 (Cold, RecCold,
Drought, and RecDrought), SUS1, and GST (Cold and RecCold)
(Figure 4).

A heat map and hierarchical clustering revealed several
clusters characterized by similar gene expression profiles
(Figure 4). Cluster 1 combined the two genes DHN1 and SnRK1.
2 with an over 30-fold induced expression in Cold. DHN1
was also significantly upregulated in Drought and RecCold,
indicating its importance in both stress responses.

The other two distant clusters with the most elevated
expression were Cluster 3 and Cluster 4, including genes with
a 10- to 19-fold upregulation in Cold and RecCold. Cluster
3 included the genes GOLS3, LEA2, bHLH7, and bHLH93,
with a 13- to 19-fold upregulation under cold stress. Among
these, GOLS3 was also significantly upregulated in RecCold and
Drought. Cluster 4 combined five genes (SnRK1.1, SnRK1.3,
LEA3, TLP, and FLS2) that were significantly upregulated under
Cold and RecCold, but no elevation in Drought or RecDrought
was observed.

The most abundant cluster, Cluster 2, contained 30 genes
separated into six sub-clusters. The first subcluster included two
genes (BMY5 and bHLH102) with the highest expression level
in Drought (7- to 15-fold higher), and significantly induced
expression in Cold (3- to 4-fold higher), and no elevated
expression in recovery treatments. The second sub-cluster
combined eight genes (CBF1, PEI54, HXK1, bHLH43, bHLH79,
WRKY42, PRP, GR-RBP). These genes showed 3- to 9-fold
upregulation in Cold. Of these,WRKY42, CBF1, and PEI54 were
significantly elevated in RecCold and RecDrought. In addition,
four were downregulated in Drought and RecDrought: PRP,
HXK1, bHLH43, and bHLH79. The third sub-cluster included
eight genes (AP-ERF-AP, EGASE11,CRK45, PME,DREB26,RHL,
Hydrolase22, and CAU1), which were significantly upregulated in
Drought with 2- to 4-fold change, but most were not elevated in
Cold. Four genes of the bHLH family composed the fourth sub-
cluster and were characterized by decreased expression in most
treatments: bHLH12, bHLH21, bHLH45, and bHLH95. DHN3,
POD73, andHXK3 combined in the fifth sub-cluster, with about a
2- to 3-fold greater expression under Cold and RecCold but very
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FIGURE 2 | Core gene network of the stress-involved candidate genes. (A) Venn diagram of matched orthologs between top quartile of upregulated genes from

transcriptomic analysis; (B) Reconstructed gene network using corresponding orthologs genes of A. thaliana. Red color gamut refers to upregulation by experimental

data during cold treatment, blue color gamut refers to downregulation. Thickness of node border is proportional to combined score of gene. (C) Table of gene network

legend and matches between CS (C. sinensis) and AT (A. thaliana) genes sorted by their combined rank (CR) score.

little expression in Drought and RecDrought. The last sub-cluster
was formed by ICE1, GOLS1, WRKY2, and ZAT and showed 2-
fold greater expression in Cold and Drought, as well as being
slightly elevated in Recovery treatments.

In summary, the genes significantly upregulated in both
Drought and Cold were HSP70, SUS1, GST, DHN1, BMY5,
bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3, indicating
that they may have important roles in both types of stress
response. The genes that were specifically upregulated in Cold
were SnRK1.2, HXK1, HXL2, bHLH43, bHLH79, bHLH7, and
bHLH93. The genes that were specifically upregulated in Drought
were RHL41, CAU1, and Hydrolase22. The transcripts of CIP

were mostly accumulated in RecCold and RecDrought, and the
transcripts of PME41 were mostly accumulated in RecDrought
indicating the possibly important role of these two candidate
genes in plant recovery after stress. Generally, the cold response
was more active in our study than the drought response. More
genes with the highest expression levels were induced in response
to cold than to drought.

PCA Analyses and Correlations in Different
Responses
Pair comparison of treatments showed that the gene data points
were clearly distributed between the two principal components
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FIGURE 3 | Relative electrical conductivity of leaf tissues during stress induction (dark blue color–tolerant cultivar selected for gene expression analysis) in ten tea

germplasm accessions.

Cold and RecCold. Most genes were densely grouped and showed
similar expression profiles in Cold and RecCold, indicating a
systemic response to cold stress. On the other hand, more genes
were related to the principal component Cold. The RecCold
cluster combined eight genes grouped distantly, which were
strongly expressed in the recovery stage: SnRK1.1, SnRK1.3,
TLP, LEA2, LEA3, FLS2, EGase11, and CIP. The genes SnRK1.2,
DHN1, GOLS3, and bHLH7 clustered distantly around the
principal component Cold (Figure 5A).

The biplot Drought/RecDrought showed that most genes
were densely grouped together with a similar expression
pattern during both treatments. However, nine genes were
distantly clustered around the RecDrought principal component:
CRK45, PME41, CBF1, CIP, PEI54, WRKY42, DREB26, ZAT,
and ICE1. Another eight genes were distantly clustered
around the principal component Drought: EGase11, RHL41,
GOLS3, BMY5, bHLH102, DHN1, Hydrolase 22, and CAU1
(Figure 5B).

Finally, in the Cold/Drought biplot, most data points were
clearly divided between the two principal components and
showed the different characters of expression in the two stress
responses. The two clusters with the greatest distances between
Cold and Drought PCs were obtained. The first combined the
six genes with the highest expression level in Drought: GOLS3,
BMY5, bHLH102, RHL41, CRK45, and GR-RBP3. The second
one combined the six genes with the highest expression level in
Cold: SnRK1.2, DHN1, FLS2, LEA2, SnRK1.1, and bHLH7. Most
of the other genes were also clearly divided between the principal
components Cold and Drought (Figure 5C).

The correlation analyses of responses to Drought, Cold,
RecDrought, and RecCold resulted in three large clusters of
candidate genes (Figure 6). The first, the largest cluster, included
18 genes with the highest positive and significant correlations
between the treatments. This cluster combined three main
subclusters. The first included the genes ICE1 and bHLH7,
which had a high positive correlation between RecCold and
RecDrought. The second sub-cluster combined four genes

that had a high positive correlation between Cold/RecCold
and Drought/RecDrought: POD73, bHLH79, AP-ERF-AP, and
LEA3. The third sub-cluster included genes with high positive
correlations between Drought/Cold (PEI54, SnRK1.2, SnRK1.3,
andHydrolase22) andDrought/Recovery (Hydrolase22, SnRK1.2,
CRK45, BMY5, and bHLH93).

The second large cluster combined nine genes. Of these,
DHN3 showed a positive correlation between Cold and Drought.
PRP and HXK1 showed a high positive correlation between
Cold and RecCold. Three genes showed a strong negative
correlation betweenDrought and RecDrought: DHN1,CBF1, and
GOLS1. Additionally, DHN1 was negatively correlated in Cold
and RecCold; CBF1 and GOLS1 were negatively correlated in
Drought and Cold.

The third big cluster combined 16 genes, divided into two big
sub-clusters. One sub-cluster included eight genes, of which three
showed a significant negative correlation between RecCold and
RecDrought: HXK2, DREB26, and bHLH45. However, another
three of these genes showed high positive correlations in Drought
and RecDrought. Finally, the second small sub-cluster of Cluster
3 included six genes, of which four showed significant negative
correlations between Cold and RecCold (SnRK1.1 and SUS1)
RecCold and RecDrought (SUS1), and Cold and Drought (HXK3
and CIP).

In summary, the following genes were significantly positively
correlated between Cold and Drought: DHN3, bHLH79, PEI54,
SnRK1.2, SnRK1.3, and Hydrolase22. On the other hand,
CBF1, GOLS1, HXK2, and HXK3 showed significant negative
correlations. Many genes were positively correlated between
Drought and RecDrought, namely, POD73, bHLH79, AP-ERF-
ERF, LEA3, Hydrolase 22, SnRK1.2, CRK45, BMY5, bHLH93,
bHLH95, DREB26, and HXK2. Three genes showed negative
correlations: DHN1, CBF1, and GOLS1. Six genes were positively
correlated between Cold and RecCold: bHLH79, AP-ERF-ERF,
LEA3, PRP, HXK1, and TLP1. Three genes were negatively
correlated: SnRK1.1, SUS1, and DHN1. Finally, RecCold and
RecDrought analyses resulted in four positively correlated genes
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FIGURE 4 | Heat map, hierarchical clustering and relative expression levels of studied genes in response to four treatments (Cold, Recovery-cold, Drought,

Recovery-drought). The mean values of three replicates ± standard error (SE); asterisks and letters indicate significant differences at P < 0.05.

(ICE1, bHLH7, POD73, and CBF1) and four negatively correlated
genes (bHLH45, DREB26, HXK2, and SUS1).

DISCUSSION

Reconstruction of the Cold Stress
Response Gene Regulation Network in Tea
Plant
To develop tolerant genotypes, breeders need reliable sets of
informative genetic markers to select donors from germplasm
collections. The homolog databases of candidate genes can
be an efficient tool for finding these markers with in silico
searches in model plant species. In our study, we used this
approach to identify new possible candidate genes and their
homologs in tea plants. We selected possible candidate genes

and built a core network for 42 genes with 111 edges between
them, which indicates their tight interconnection. DREB26,
GOLS1, GOLS3, GR-RBP3, Hydrolase22, PME41, and RHL41
are commonly found in A. thaliana and S. licopersicum. It is
known that the evolutionary distance between A. thaliana and
S. lycopersicum is very similar to distance between A. thaliana
and C. sinensis (timetree.org). Thus, we proceeded from the
assumption that nine identified genes may have a similar role
for C. sinensis. Based on the constructed gene network we
revealed that eight of the nine candidate genes are linked to
the main network of the stress response. So it can be suggested
that they belongs to the core part of the stress response, their
functions are evolutionarily conservative and these genes can
be predicted for the other plant species based on interspecific
analysis. The hypothesis of the strong upregulation of galactinol
syntases (GOLS1 and GOLS3) and GR-RBP3 and DREB26 in
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FIGURE 5 | PCA analysis of expression profiles of candidate-genes distributed around treatments: (A) Cold/RecCold, (B) Drought/RecDrought, (C) Cold/Drought.

tea stress responses was confirmed experimentally in our study
(Figure 4).

We combined bioinformatics and experimental approaches
to test nine new candidate genes that could be relevant for
different plant species. However, among their orthologs in C.
sinensis, only GOLS3 and GR-RBP3 were found to be upregulated
during cold treatment. On the other hand, CIP, which has the
highest score according to bioinformatics data (Figure 2), is
highly upregulated during recovery. This can indicate a large
difference between woody crops and grasses in responses to
stress. In addition, well-known regulators such as DHN1, HXK1,
PEI, and CBF1 were confirmed to be highly upregulated during
cold treatment. Therefore, experimental testing of well-known
regulators with their new target genes for particular genotypes
may be a useful and iterative approach for evaluating complex
regulatory networks of stress adaptation in plants.

The gene-regulatory networks for cold and drought response

remain an open topic for investigation due to the complex nature

of genetic interactions and their genotype-specific character. For

example, the divergence and specialization of gene networks

involved in trichome development may be connected with the
emergence of the plant taxa (Doroshkov et al., 2019). In our
study, many regulators were connected to HSP70 and tightly
interconnected among each other. The ICE1-related bHLH
cluster and WRKY factors were mostly upregulated, similarly
to the SnRK complex, hexokinases, and galactinol synthases.
However, XTH22-PME41-DREB26, and bHLH12-bHLH45 were
downregulated, whichmay indicate their coordinated repression.

Phenotypical Selection of Tea Under Cold
and Drought Treatments
North-Western Caucasus in Russia is the one of the
northernmost regions of commercial tea growing in the
World. Tea plantations in the region are not of a large scale,
but the climate here is colder that is why tea growth without
chemical plant protection because there is no pest and diseases.
Seeds of tea plant were introduced to Caucasus in nineteenth
century from China, Japan, India, Sri Lanka and Indonesia and
represent a wide range of hybrid genetic diversity. Domestication
of the tea plant in the Caucasus occurred within 150 years,
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FIGURE 6 | Correlation heat map and corresponding gene subnetworks (A. thaliana) of clusters marked by numbers 1–3. D-Drought, C–Cold, RD–Recovery drought,

RC–recovery cold. Values in bold are different from 0 with a significance level alpha = 0.05.

during which the tea crop moved from the southern regions of
Ozurgetti in Georgia (41◦55′27′′ N, 41◦59′24′′ E) to the Northern
region in Maykop in Russia (44◦36′40′′ N, 40◦06′40′′ E) (Tuov

and Ryndin, 2011). Tea breeding was conducted here from
1950th and as the result many local cultivars were developed,
such as Kolkhida, Qimen, Gruzinskii7, Karatum, Sochi, and
many others. Also the set of mutant forms such as M#527,
M#855, F#62, Clone #22 and many others were developed by
UV and chemical mutagenesis (Gvasaliya, 2015). The genotypes

included in our study characterized by high yield and quality
in the local conditions. Phenotyping of the tolerance was done

using the common approach – the measurement of the relative

electrical conductivity (see for example, Ban et al., 2017), that
help to assess the electrolyte leakage caused by stress. The results

confirmed that genotypes with large and thin leaf (for example,

Karatum, Kolkhida) are less tolerant to cold and drought than the

genotypes with small and thick leaf blades (such as Quimen and

Gruzinskii7) (Figure 1). Our results on phenotypical evaluation

correspond with the other studies on several plant species in

which the drought-resistant genotypes showed tolerance to cold
as well (Zheng et al., 2016; Lu et al., 2017; Li X. et al., 2019).

Relative Expression Levels of the Studied
Genes in Response to Cold, Drought and
Recovery
Genes Upregulated in Response to Both Cold and

Drought
In the tolerant genotype the expression levels of the genesHSP70,
DHN1, GST, SUS1, bHLH102, BMY5, GR-RBP3, ICE1, GOLS1,
and GOLS3 were significantly higher in both Cold and Drought
than in control, suggesting shared upstream pathways for signal
transduction and regulation under these stimuli.

Among the nine bHLH genes included in this study, only
bHLH102 was increasingly expressed in both stress treatments,
and we suppose that this new candidate gene can also be
an important marker for abiotic stress tolerance in tea. In A.
thaliana, this gene encodes positive brassinosteroid-signaling
protein, and functional validation is necessary in tea plant.

The Hsp70s are highly conserved and widespread and
important for protein folding, protein translocation, and the
stress response in almost all subcellular compartments (Su
and Li, 2008). The HSP70 genes are upregulated in drought-
tolerant Indian tea cultivars that are subjected to water stress
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(Maritim et al., 2016). In our study, the highest level of
expression for HSP70 (several hundred-fold) was observed
in all experimental treatments (Cold, RecCold, Drought, and
RecDrought) (Figure 3); however, it was more actively induced
by Cold compared to Drought, indicating its possible importance
in preventing the dehydration of cell compartments during
low temperatures.

Another gene that was upregulated in cold and drought was
GST. GSTs are a superfamily of enzymes that are notable for their
role in phase-II detoxification reactions of quenching reactive
molecules by adding glutathione (GSH) and protecting the cell
from oxidative damage (Kumar and Trivedi, 2018). In previous
work, GST and POD were upregulated in a tolerant tea cultivar
under cold stress (Li Y. et al., 2019), which corresponds with
our results. However, these genes were more strongly induced by
cold, and we suppose that the cold response is characterized by
stronger ROS-scavenging activity than the drought response.

The next gene with a multi-fold change in Cold and RecCold
and significant upregulation in Drought was SUS1. It encodes
sucrose synthase (Sus), a key enzyme of sucrose metabolism.
Previous studies reported that the transcription levels of Sus1
increased after exposure to cold and drought (Dejardin et al.,
1999; Stein and Granot, 2019). However, based on the expression
profile of SUS1, we speculate that sucrose–raffinose conversion
is more strongly induced by cold than by drought in tea plant.
Also, the bulk degradation of sucrose into glucose and fructose
maybe a strategy employed by tea plants to double its osmotic
contribution in response to severe drought and cold stress (Zheng
et al., 2016).

Another new gene that was significantly overexpressed in
response to both drought and cold was GR-RBP3, a class-IV GRP
(RBP), which is involved in alternative splicing, transcriptional
regulation, and developmental processes (Czolpinska and Rurek,
2018). Some GRPs have been described as proteins that mainly
enhance plant tolerance to low temperatures. Here, we suppose
that they may also be an important genetic marker of both cold
and drought tolerance, with a functional role in the tea plant that
it is necessary to clarify.

One more gene that was significantly upregulated during
drought and cold stress was BMY5. BMYs degrade starch to
soluble sugar, which leads to increased maltose, glucose, fructose,
and sucrose levels after further conversion.We suggest that starch
degradation is an important mechanism in tea, not only for cold
tolerance but also for drought tolerance. This is consistent with
the results recently published by Yue et al. (2019), who found
that BMY genes contain many stress-related cis-acting elements,
such as drought stress-related ABRE, DRE1, MBS, and STRE;
cold stress-related LTR; and stress phytohormone-related ERE
and TCA. Taken together, these results suggest that BMY genes
are involved in the response of tea plants to multiple challenging
environmental conditions and may be an important marker for
the tea plant.

The last two genes that feature strong upregulation in response
to drought and cold are GolS1 and GolS3. GolS is a key enzyme
in the synthesis of raffinose family oligosaccharides that function
as osmoprotectants in plant cells.GolS1- orGolS2-overexpressing
Arabidopsis has high intracellular levels of galactinol and raffinose

in transgenic plants, which correlates with increased tolerance to
drought and chilling stress (Panikulangara et al., 2004; Nishizawa
et al., 2008; Li Y. et al., 2019). Our results support these findings
and confirm that the mechanism of protecting salicylate from
attack by hydroxyl radicals mediated by galactinol and raffinose
is important for drought and cold defense.

Genes Specifically Upregulated in Drought
The genes specifically upregulated to a higher level in Drought
were RHL41, CAU1, Hydrolase22, CRK45, PME41which suggests
that these genes are conservative and may play vital specific roles
in response to drought stress.

RHL41, which relates to the zinc-finger protein Zat12, is a
representative of the small group of genes that respond similarly
to many different environmental stresses (Iida et al., 2000;
Davletova et al., 2005). A recent study of transgenic plants
suggested that Zat12 plays a role in different stress responses
in Arabidopsis (Rizhsky and Liang, 2004; Vogel et al., 2005).
Some authors have reported that Zat12 acts as a suppressor of
CBF transcription (Davletova et al., 2005; Vogel et al., 2005). We
observed increased accumulation of Zat12 (RHL41) transcripts
during drought, indicating that this gene may have a specific
function for drought stress responses in tea plant.

CAU1 encodes an H4R3sme2-type histone methylase and acts
as an immediate upstream suppressor of the CAS gene (encoding
a putative Ca2+ binding protein that is proposed to be an
external Ca2+ sensor). Elevated extracellular calcium decreases
CAU1 protein levels and consequently the methylation level
of H4R3sme2 in the CAS chromatin, thus derepressing CAS
expression to close stomata (Fu et al., 2013). Our results indicate
the specific activation of CAU1 under drought. It may be that
stomata closure mediated by CAU1 is an important mechanism
of defense against drought in tea plant. This corresponds
with previous studies that have reported increased drought
tolerance and stomatal closure in cau1 mutants of Arabidopsis
(Fu et al., 2013).

Hydrolase22 was also specifically upregulated during drought
stress. This gene encodes proteins that maintain the plasticity
of the cell wall and increase its thickness by reinforcing the
secondary wall with hemicellulose and lignin deposition (Le Gall
et al., 2015). We thus consider that the adjustment to the cell
wall mediated by this enzyme is an important mechanism in
adaptation to drought in tea plant.

Different families of protein kinase had positive regulatory
roles in responding to drought stress in tea plant, leading
to maintain homeostasis of drought stress and water signal
transduction (Liu S.-C. et al., 2016). Our result showed that
CRK45 was upregulated in Drought and RecDrought but not
in Cold. It is a member of the membrane-anchored receptor-
like protein kinases (RLKs), which recognize extracellular signals
at the surface of the cell and activate a downstream signaling
pathway by phosphorylating specific target proteins (Tanaka
et al., 2012). CRKs make up a large subgroup of the RLKs family
and play important roles in plant growth, development, and the
stress response (Afzal et al., 2008; Wrzaczek et al., 2010; Tanaka
et al., 2012). Thus, negative ABA-signaling mediated by CRK45
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may play a specific and important role in the drought response of
the tea plant.

Increased PME41 expression was observed in the tea
plant in Drought and RecDrought but not in Cold. PME
participates in pectin remodeling, which keeps cells from
separating, maintains plasma membrane integrity, and prevents
cellular leakage. However, distinct genotype-, species- or tissue-
dependent mechanisms of temperature control of PME activity
have been found (Le Gall et al., 2015). For example, the
overexpression of Arabidopsis PME5 and PMEI3 resulted in
softer and harder shoot apical meristem cell walls, respectively
(Peaucelle et al., 2011). We suppose that the mechanism of
demethylesterification of pectin may be more important for
drought defense rather than for cold defense in the tea plant.
Further studies with more cultivars are necessary to check the
involvement of PME41 in the cold response of the tea plant.

Genes Specifically Upregulated in Cold
The genes specifically upregulated to a higher level in Cold
were SnRK1.2, HXK1, HXK2, bHLH43, bHLH79, bHLH7, and
bHLH93, which suggests that these genes are conservative and
may play vital specific roles in response to cold stress.

HXKs phosphorylate glucose and fructose and participate
in sugar signal transduction by modulating the abundances
of diverse gene transcripts and integrating stress response
substrates, including ABA and ethylene (Yue et al., 2015). In
cold stress, HXKs are more induced in tolerant tea cultivars than
in susceptible ones (Yue et al., 2015; Li Y. et al., 2019), which
is consistent with our results. Another signaling intermediate,
SnRK1, is involved in Suc, G6P, and T6P sensing and plays an
important role in the plant response to sugar starvation (Wang
Y. et al., 2019). Yue et al. (2015) found that CsSnRK1.2 was
induced by cold in the tea plant, whereas CsSnRK1.1 was not
elevated, and CsSnRK1.3 was sharply suppressed. In our study,
these three genes were activated in Cold and RecCold, but
none was induced in Drought. These results indicate that sugar
signal transduction and phosphorylation are more important
defense mechanisms for cold tolerance in tea plant than for
drought tolerance. However, more genotypes must be examined
to confirm this conclusion.

Among the nine studied bHLH genes, some were specifically
upregulated in response to cold stress. Cui et al. (2018) studied
the bHLH family and proposed the following stress-related
members in tea plant: CsbHLH007, CsbHLH012, CsbHLH021,
CsbHLH043, CsbHLH045 (ortholog of ICE2), CsbHLH079,
CsbHLH093, and CsbHLH095. In our study, some of the genes
were specifically upregulated in Cold, namely, bHLH93, bHLH79,
bHLH43, and bHLH7, and these may play an important specific
role in cold defense in the tea plant. We also observed that
CsbHLH012, CsbHLH021, CsbHLH045, and CsbHLH095 were
downregulated in tea in Cold and/or Drought or did not differ
from the control (Figure 4). This contradiction with Cui et al.
(2018) can be explained by the variance in stress conditions: we
evaluated long-term stress responses, whereas they evaluated 24 h
stress induction (Cui et al., 2018). It may be that the mentioned
TFs are more strongly induced by short-term cold stress.

Other genes that were upregulated in both Cold and RecCold
were WRKY42, ZAT30, POD73, LEA2, LEA3, TLP1, and FLS2.
Among them, the LEA proteins protect plant metabolism against
abiotic stresses, marshaling properties that include antioxidant
activity, metal ion binding, membrane and protein stabilization,
hydration buffering, and DNA and RNA interactions (Chen et al.,
2019). They also play an important role in stress acclimation
(Ling et al., 2016). Liu Y. et al. (2016) investigated a maize LEA3
gene expressed in E. coli and reported enhanced tolerance to
low temperature. In rice, the LEA2, LEA3, and DHN groups
have been found to show strong responses to osmotic stress (Yu
et al., 2016). Our results on the tea plant showed no enhanced
expression of LEA2 and LEA3 in Drought or RecDrought;
however, Cold and RecCold greatly induced expression of both
genes, indicating that these two genes can have specific functions
on regulating cold tolerance in the tea plant.

WRKY42 and ZAT30 (CCCH) are zinc-finger proteins
involved in the ABA-mediated stress response. We observed
specific upregulation of WRKY42 and ZAT30 during cold and
recovery in the tea plant. The WRKY genes are involved
in stress and hormone signaling (Phukan et al., 2016; Jiang
et al., 2017) during the drought stress response (Wang et al.,
2016) and cold response (Samarina et al., 2020) in the tea
plant. ZAT30 (CCCH) is a zinc finger protein that is involved
in developmental processes, responses to cold and osmotic
stress (Pi et al., 2018), and participates in signal transduction.
Both of these TF families are of particular interest, as they
are involved in various biotic/abiotic stress responses and in
developmental/physiological processes (Jiang et al., 2015). Maybe
further studies are needed to confirm the role of the both genes
in tea plant.

TLP is another gene with no elevated expression in Drought
but greatly induced in Cold and RecCold. It is a member of
the TLPs, made up of five pathogenesis-related proteins that
are responsive to biotic and abiotic stress. The previous results
indicate potential applications of TLP for crop improvement
through a genetic transformation with applications in both biotic
and abiotic stress protection, with strong evidence for a role
in the crosstalk between the stress types. Transgenic plants
that overexpress the TLP gene in different plant crops showed
resistance to pathogens and tolerance to salinity and drought
(Jesus-Pires et al., 2019). Our data confirm the possibly important
role of TLP1 in the cold stress response and in recovery in
tea plant.

FLS2, which encodes receptor-like protein kinase, was also
highly upregulated during Cold and RecCold in our study. FLS2
is representative of the RLK family, playing an important role in
mediating early flagellin signaling (Lu et al., 2010) upregulated
in the cold response and recovery to stress. Our results are
consistent with those of Li Y. et al. (2019), who found that FLS2
exhibited a higher level of expression in tolerant tea cultivars
with many-fold change under cold. We also speculate that plant-
pathogen-related immunity mediated by FLS2may be important
specifically for cold tolerance rather than for drought tolerance.

PRP and GRP, are covalently linked with pectin or
hemicellulose and thus contribute to the strengthening of the
cell wall in response to abiotic stress (Hijazi et al., 2014). In our
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study, significantly elevated expression of both GRP and PRP
was observed in response to cold stress, which could indicate
that the cell wall strengthening through pectin remodeling may
be an important mechanism of tea plant cold tolerance. Earlier
investigations also showed that one of the specific mechanisms
of cold response in plants is the strengthening the cell wall, in
contrast to the drought response (Beck et al., 2007).

Genes Upregulated at Recovery Treatments
Interestingly, some stress-inducible genes were seen to have
higher transcript abundance during the recovery stages than had
been seen in previous stress treatments. In RecCold, these genes
were AP-ERF-AP, LEA3, GST, SnRK1.3, SUS1, CIP, EGASE11,
and TLP1. In RecDrought, they were WRKY42, CBF1, DREB26,
ZAT, PEI54, CIP, CRK45, and PME41. This indicates that the
recovery of the tea plant after stress is a complex process and is
important for defensive responses, and its regulation pathways
differ from those for Cold and Drought. Moreover, we observed
that RecCold and RecDrought produce very different responses,
and CIP was the only gene upregulated in both recovery
treatments in the tea plant. CIP belongs to the dehydrin family,
and functional predictions suggest that this protein protects
the membranes and prevents macromolecular coagulation or
sequestration of calcium ions by association or disassociation
with membrane under low-temperature conditions (Liu et al.,
2006). We conclude that this gene may have a specific important
function in recovery in tea plant.

Among the upregulated transcription factors, AP-ERF-AP,
DREB26, and CBF1 are representatives of the AP2/ERF family
and mediate the transcriptional regulation of osmotic stress-
responsive genes (Licausi et al., 2013; Parmar et al., 2019). Our
results demonstrate that these genes are not only involved in
the stress response but also in the recovery of the tea plant
after cold and drought stresses. Previous gene expression studies
have reported that most AP2/ERFs are expressed at low levels
under normal conditions, but their expression can be induced
or repressed at certain growth stages by hormones and stress
stimuli (Xie et al., 2019). The DREB subfamily may be a key
candidate for future exploration of a means to enhance drought
and cold tolerance in tea (Ban et al., 2017; Parmar et al.,
2019; Wang et al., 2019; Hu et al., 2020). It has been classified
into six subgroups (A1–A6) (Sakuma et al., 2002). Among
these, DREB08 and DREB26, the A5 subgroup, encode repressor
proteins inhibiting the expression of other DREB TFs (Dong
and Liu, 2010). This means that they can suppress defense and
stress-inducible genes in the absence of stress. In our study,
increased expression of DREB26 was observed during drought
stress and also during recovery. This partly contradicts previous
results that indicated that transcription levels of DREB26 were
hardly changed under drought and cold in Vitis vinifera (Zhao
et al., 2014). Further studies of this gene in the tea plant are
necessary for a comprehensive understanding of its role in
stress responses.

Out of the other studied genes, with the pronounced
expression profile during Recovery two genes are related to
the cell wall remodeling, these are EGases and PEI. EGases
are important cell wall-related proteins that modulate cell wall

extensibility, which mediates cell enlargement and expansion.
The EGase11 gene in the tea plant was significantly upregulated
in RecCold, Drought, and RecDrought, indicating cellulase
growing activity. This result is not easy to explain, and further
investigation is necessary. Earlier studies of these genes reported
that increased hydrolases activity is evidence of cell wall
degradation (Le Gall et al., 2015). PEIs are invertase inhibitor-
related proteins and play an important role in the regulation of
metabolic enzymes and viscoelastic properties of the cell wall
(Wu et al., 2010). In our study, the elevated expression of PEI54
observed in Cold, RecCold, and Rec Drought indicates that
pectin methylesterification in cell walls is activated in these stress
treatments. These results showed that the cell wall remodeling
activity is enhanced not only during the stress response but
also during the recovery in tea plant. The genes encoding
the cell wall remodeling enzymes can be further studied more
comprehensively in tea plant as they might play a very important
role in the responses to abiotic stresses and recovery after stress.

Correlations in Different Responses
Based on expression profiles we tried to find correlations
between responses to drought and cold. Highly correlated
gene modules with specific expression patterns can help
illustrating the framework of stress transcriptome. This analysis
provides evidences about common and unique stress mechanism
components under cold and drought stress in C. sinensis. In A.
thaliana gene co-expression network analysis revealed 21 and
16 highly inter-correlated gene modules with specific expression
profiles under drought and cold stress respectively (Sharma et al.,
2018). In oil palm the significant correlations were found between
cold-responsive genes and physiological parameters that helped
to better understand the regulation networks (Li J. et al., 2019).

In our study, six genes (DHN3, bHLH79, PEI54, SnRK1.2,
SnRK1.3, and Hydrolase22) were correlated positively and four
genes (CBF1, GOLS1, HXK2, and HXK3) were correlated
negatively in response to Cold and Drought. This indicated
that the mentioned genes have the similar expression character
during cold and drought. Under drought induction in tea
plant we found twelve genes (POD73, bHLH79, AP-ERF-ERF,
LEA3,Hydrolase 22, SnRK1.2, CRK45, BMY5, bHLH93, bHLH95,
DREB26, and HXK2) that were positively correlated and three
genes (DHN1, CBF1, and GOLS1) that were negatively correlated
between Drought and RecDrought. On the other hand, under
cold induction in tea plant we found six genes (bHLH79, AP-
ERF-ERF, LEA3, PRP, HXK1, and TLP1) that were positively
correlated and three genes (SnRK1.1, SUS1, and DHN1) that
were negatively correlated between Cold and RecCold. Based
on these results it can be speculated that recovery stage after
drought is more similar to Drought response than RecCold–to
Cold response.

In general, our results showed that more genes were activated
in response to cold rather than drought in tea plant. These
results corresponds with the transcriptomic studies reported that
much more DEGs were upregulated under cold rather than
drought in tea plant (Zheng et al., 2016), apple (Li X. et al.,
2019) and in maize (Lu et al., 2017). Cold induces an extensive
activation of transcription, drought stress, however, induced
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fewer transcriptional changes (only 15% as many), than cold in
maize (Lu et al., 2017) suggesting that themore sensitive response
to cold rather than drought would be a conserved mechanism in
many plant species.

In other studies, an overlap between the expression patterns
of stress-responsive genes in several plant species was observed
after drought and cold stress induction (Li X. et al., 2019). In
apple they found evidence of crosstalk between drought and
cold stress signaling, with 377 commonly upregulated and 211
commonly downregulated genes (Li X. et al., 2019). In tomato,
only about 10% of the drought-inducible genes were also induced
by cold indicating different molecular strategies in their reaction
to the two stresses (Zhou et al., 2019). In maize, only 194 DEGs
were shared in cold and drought and, nearly 90% among them
are regulated in a similar manner by both stresses, indicating
that there is a shared network to regulate the cold and drought
induced responses (Lu et al., 2017). On the other hand, specific
regulations in response to cold or drought were also clearly visible
in these crops. Nevertheless, in some plant species, the induction
of cold resistance also promotes drought resistance and high-
salinity tolerance, which is consistent with an increase in the
levels of osmo-regulatory compounds and antioxidant enzyme
activities (Hossain et al., 2013).

The effects of drought and cold reported here have arisen
from a limited range of potential types and severities of stress. A
greater range of treatments for (e.g., timing, severity, frequency)
need to be examined in future studies to provide more clues
for understanding the adaptation and tolerance mechanisms in
tea plant.

CONCLUSION

Using an in silico approach combined with an experimental
approach, we confirmed the involvement of the nine new genes
in the cold and/or drought response of tea plant: GOLS1, GOLS3,
GR-RBP3, HYDROLASE22, RHL41, CAU1, PME41, DREB26,
and CRK45. We hypothesized that many genes have similar
expression profiles between the cold and drought responses
of the tea plant. However, of 45 genes studied, only ten
were significantly upregulated in response to both cold and
drought: HSP70, GST, SUS1, DHN1, BMY, bHLH102, GR-RBP3,
ICE1, GOLS1, and GOLS3. These genes can be considered as
genes of non-specific stress response. SnRK1.2, HXK1/2, and
bHLH7/43/79/93 were upregulated in response to cold only,
and the expression levels of RHL41, CAU1, and Hydrolase22
were increased in the drought response. Interestingly, we found
that the expression of CIP was higher in the recovery stage of
both stresses, indicating its potentially important role in plant
recovery after stress. In addition, some genes, such as DHN3,

bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were
significantly positively correlated between the cold and drought
responses. CBF1, GOLS1,HXK2, andHXK3, by contrast, showed
significantly negative correlations between the cold and drought
responses. Because overexpression of many new candidate genes
can confer stress tolerance, these proteins may play a promising
role in agriculture in the context of plant genetic engineering. The
isolation, cloning, characterization, and functional validation of
novel candidate genes in response to diverse stress conditions
are expected to be growth areas of research in coming years. In
addition, the identification of the interaction partners of these
proteins and the factors affecting these interactions is necessary
to understand their role in conferring protection against different
stress conditions in tea plants. These results provide valuable
information and robust candidate genes for future functional
analyses to improve the stress tolerance of the tea plant.
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The purple sea urchin Strongylocentrotus purpuratus has been used for over 150 years 
as a model organism in developmental biology. Using this model species, scientists have 
been able to describe, in detail, the mechanisms of cell cycle control and cell adhesion, 
fertilization, calcium signaling, cell differentiation, and death. Massive parallel sequencing 
of the sea urchin genome enabled the deciphering of the main components of gene 
regulatory networks during the activation of embryonic signaling pathways. This knowledge 
helped to extrapolate aberrations in somatic cells that may lead to diseases, including 
cancer in humans. Furthermore, since many, if not all, developmental signaling pathways 
were shown to be controlled by non-coding RNAs (ncRNAs), the sea urchin organism 
represents an attractive experimental model. In this review, we discuss the main discoveries 
in the genetics, genomics, and transcriptomics of sea urchins during embryogenesis with 
the main focus on the role of ncRNAs. This information may be useful for comparative 
studies between different organisms, and may help identify new regulatory networks 
controlled by ncRNAs.

Keywords: sea urchin, gene expression, cell signaling, long non-coding RNA, genomics

INTRODUCTION

The first use of animals for experimental purposes dates back to Ancient Greece. “Generation 
of Animals” of Aristotle (1942) describes the first systematic study of embryonic development 
as a phenomenon, which recognizes the key questions about the emergence and relations 
between hierarchically organized parts of an organism.

Model organisms help in the testing of novel biological hypotheses, which come from in 
cellulo observations and need to be  tested at the whole organism level. Hence, model organisms 
represent a very important tool in modern biology. Currently, the list of model organisms 
includes over 100 species of animals, plants, protozoa, and viruses. The most popular model 
species include the frog, zebrafish, сhicken, mouse, fruit fly, and nematode (Rzepnikowska 
et  al., 2017; Kuo et  al., 2018; Chatterjee and Deng, 2019; Marques et  al., 2019; Nielsen, 2019; 
Tang et  al., 2019). All these species are used by researchers in a wide range of molecular 
biological applications, but, unfortunately, none of them are versatile enough to satisfy various 
experimental needs.

In this review, we  focus on the main discoveries in genetics and genomics that were made 
using a popular model object – the purple sea urchin Strongylocentrotus purpuratus, which 
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has been used in biology for over 150  years (Stimpson, 1857). 
The species was chosen as a model object for several objective 
reasons: sea urchins are easy to propagate in the laboratory; 
it is easy to get synchronous embryo cultures and induce rapid 
embryogenesis; the embryo is transparent and has a simple 
structure. Genome sequencing and the description of complex 
gene regulatory networks during the sea urchin embryogenesis 
made this model object indispensable for the study of gene 
expression regulation.

Echinoderms are a sister group of the Chordate phylum. 
This group has branched out from Chordate before the Cambrian 
period (more than 500 million years ago, Figure  1; McClay, 
2011). Other studies, based on the multigene and multiprotein 
studies, indicate a more accurate time of divergence (Hedges, 2002;  
Zaidel-Bar, 2009).

The first studies, which describe the normal embryogenesis 
of a sea urchin, date back to the middle of the 19th century. 
Since then, sea urchin embryos have become a popular model 
in developmental biology. The normal life cycle of sea urchins 
is shown in Figure  2. At present, certain echinoid species (e.g., 
S. purpuratus, Strongylocentrotus droebachiensis, Strongylocentrotus 
intermedius, Hemicentrotus pulcherrimus, Lytechinus variegatus, 
Paracentrotus lividus, and Mesocentrotus franciscanus) are widely 
used as experimental models in developmental biology (McClay, 
2011). The early stage of embryogenesis of the purple sea urchin 
was used for studying intercellular communication and cell 
adhesion (Horstadius, 1939; Giuduce, 1962; McClay and Fink, 
1982), cell cycle control mechanisms (Evans et al., 1983), calcium 
signaling (Whitaker, 2006), fertilization (Briggs and Wessel, 
2006), cell differentiation (Giudice, 1973), and cell survival and 
death (Chiarelli et  al., 2016).

The genome size of the purple sea urchin is only a quarter 
of the human genome, despite it having about the same number 
of genes. Genome analysis has shown that most of its genes 
are common to representatives of deuterostomes, which has 

in turn uncovered an unexpectedly close relation to humans 
among all used invertebrate model species (Davidson, 2006; 
Sea Urchin Genome Sequencing Consortium et  al., 2006; 
Cameron, 2014). For example, the sea urchin genome contains 
orthologs of human disease-associated genes, which are expressed 
in sea urchin embryogenesis.

The sea urchin genome was shown to contain more than 
400 genes, whose products are involved in the regulation of 
cell homeostasis. Most of these genes display a remarkable 
conservation of their sequences during the evolution (Goldstone 
et  al., 2006; Rast et  al., 2006). The sea urchin genome contains 
65 genes of the ATP-binding cassette transporter superfamily 
(Hamdoun et  al., 2004; Goldstone et  al., 2006), while, in 
humans, only 48 members of this family are known to date 
(Dean and Annilo, 2005). Mutations in these genes lead to 
several pathologies in humans, including degeneration of the 
retina, cystic fibrosis, neurological diseases, cholesterol transport 
disorders, anemia, and many others (Dean et  al., 2001). The 
sea urchin as an experimental model is also frequently used 
in toxicology and in environmental human health science since 
it allows an accurate estimate of cancer risk before any 
epidemiologic evidence is available (Bellé et  al., 2007).

Furthermore, sea urchin embryos are used by scientists as 
a convenient object for elucidating common cellular molecular 
mechanisms involved in human health and disease. In particular, 
the sea urchin is used as a model system for studying 
neurodegenerative disorders that can cause dementia and memory 
loss (Nakajima et  al., 2004).

In the past, it was hypothesized that certain signaling pathways 
involved in the embryo’s morphogenesis could be  aberrantly 
activated during tumorigenesis. Unfortunately, to develop this 
idea further, scientists did not have an appropriate human 
experimental model. This is due to various ethical aspects that 
restricted human embryo studies (De Wert et  al., 2002;  
De Wert and Mummery, 2003; Holm, 2003; Lo and Parham, 
2009). Therefore, an early embryogenesis of sea urchins could 
be  a good model for cancer research.

The normal processes of cell proliferation and differentiation 
are controlled by several developmental gene regulatory networks. 
Disunity in these networks leads to the initiation and progression 
of tumors (Hanahan and Weinberg, 2000; Reya et  al., 2001; 
Pires-daSilva and Sommer, 2003).

Notch, Wnt, and Hedgehog (Hh) signaling pathways are 
highly conserved from sea urchins to humans. The current 
model of these pathways, including general components shown 
on Figure 3 and their main roles in embryogenesis and cancer, 
is described on Table  1.

The Hh pathway plays a crucial role in many fundamental 
processes of metazoan organisms, including tissue homeostasis 
and their embryonic development. In the development of the 
sea urchin, this pathway controls the establishment of the 
left–right asymmetry in embryos (Warner et al., 2016). According 
to the previously proposed model, this signaling pathway, similar 
to vertebrates, provides an asymmetrical expression of Nodal, 
which is an important cytokine of the TGF beta superfamily. 
Moreover, in humans, the aberrant activation of this signaling 
pathway is increasingly associated with various cancers.  

FIGURE 1 | Truncated phylogenetic tree of popular model organisms based on 
combined analyses of morphology and molecular data (Laumer et al., 2015; 
Telford et al., 2015; Torruella et al., 2015; Cannon et al., 2016). The tree illustrates 
the evolutionary relationship between Homo sapiens and Strongylocentrotus 
purpuratus as members of the deuterostome branch of the animal kingdom. 
Caenorhabditis elegans and Drosophila melanogaster are members of the 
protostome branch. (Branch lengths are not proportional to time).
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For example, Hh was shown to control proliferation, malignancy, 
and metastasis (Sari et  al., 2018). In particular, while the Hh 
signaling pathway is mainly repressed during mammary 
embryonic development, overexpression of some components 
(PTCH1, GLI1/2) of the Hh are up-regulated in tumor stem 
cells of human breast cancer (Liu et  al., 2006).

The key components of Notch signaling are present in all 
metazoan organisms (Gordon et  al., 2008). The canonical 
Notch pathway begins when a ligand of the Delta/Serrate/
LAG-2 (DSL) family binds to the transmembrane receptor 
protein, Notch (Fehon et  al., 1990). The schema of all stages 
of the process is shown in Figure  3 (part NOTCH). It is 
well established that the Delta/Notch signaling pathway is 
intimately involved in mesoderm formation. Subsequently, 
deregulation of this pathway leads to the elimination of 
mesoderm derivatives during the embryogenesis of sea urchins 
(Sherwood and McClay, 1999, 2001; Sweet et  al., 2002; Croce 
and McClay, 2010). In humans, members of the Notch signaling 
pathway play a key role in embryonic vasculature development 

(Patel et  al., 2005). Notch can in fact be  either oncogenic 
or tumor suppressive depending on the tissue and cellular 
context. In addition, this pathway is one of the most activated 
in cancer cells and contributes to metastasis (Venkatesh et al., 
2018). For example, the development of squamous cell 
carcinomas in various epithelial tissues is directly related to 
mutations in members of the Notch family. These mutations 
represent the most common cause of misregulation of this 
signaling pathway (Nowell and Radtke, 2017).

The Wnt signaling pathway regulates the embryogenesis and 
homeostasis of multicellular organisms. In sea urchin embryos, 
the Wnt signaling pathway contributes to the activation of the 
endomesodermal gene regulatory network, whose genes start 
their expression on the 16-cell stage of embryos (Kumburegama 
and Wikramanayake, 2008). Also, this pathway regulates the 
formation of the animal–vegetal (A–V) axis in sea urchin and 
sea anemone embryos.

In humans, cancer, obesity, and diabetes are the result 
of the Wnt pathway dysregulation (Langton et  al., 2016; 

FIGURE 2 | Simplified S. purpuratus life cycle, stages of which are connected by black arrows. The name of each stage is shown in the picture. The beginning of 
the life cycle is fertilization, which is marked by a black dotted line. In the center, the black and gray time scale represents hours and days after fertilization, 
correspondingly. The red circular gradient line represents the degradation of the general maternal transcripts. The circular blue gradient shows the beginning of 
zygotic genome activation and increases in transcribed gene numbers.
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Mzoughi et  al., 2017). It is shown that the pathway is 
involved in the regulation of the metabolism of cancer cells, 
which facilitates tumor progression (Lu et  al., 2010; Wang 
and Kunze, 2015; Poli et  al., 2018; Sun et  al., 2018).

In the comparison analysis, it was shown that the sea 
urchin genome contains about 90% of the described 
homologous components of Wnt signal transduction pathways 
(Croce et  al., 2006; Robert et  al., 2014). However, from 13 
known Wnt subfamilies, S. purpuratus has only 11: it is 
missing only Wnt2 and Wnt11 homologs. Meanwhile, last 
year Croces’ group identified a gene encoding Wnt2 ortholog 
in the genome of a related sea urchin P. lividus. However, 
they found no evidence of a bona fide wnt2 gene in S. 
purpuratus when they reanalyzed its genome (Robert et  al., 
2019). A consortium of scientists was able to find only about 
half of the Wnt transcriptional target genes that were reported 
in the literature.

The purple sea urchin can also be  considered as a model 
of gene expression in the normal developmental processes 
and is used now as an in vivo model to evaluate the Epithelial/
Mesenchymal Transition (EMT; Romancino et  al., 2017). In 
humans, reactivated EMT drives organ fibrosis and tumor 
progression (Lim and Thiery, 2012; Wu et  al., 2012; Nieto 
et  al., 2016). The process of EMT is regulated by a cohort 
of specific transcription factors that includes Zeb1/Zeb2, Snail, 
Slug, and Twist (Tulchinsky et  al., 2019). Together with 
chromatin-modifying enzymes, these factors exert both 
repressive and activating functions. For example, Zeb1, by 
binding to the E-box consensus site in the DNA, inhibits 
the transcription of the CDH1 gene, whose product plays a 
critical role in forming cell-cell junctions. On the other hand, 
when Zeb1 complexes with Yap1, a member of the Hyppo 
pathway, it becomes a transcriptional activator to control the 
transcription of CTGF and AXL genes (Lehmann et al., 2016).

FIGURE 3 | Simple outline of the current models of the canonical Notch, WNT, and Hh pathways. NOTCH: Delta, delta-like ligand, Notch, ADAM, ADAM-family 
metalloprotease; γ-sec, γ-secretase; NICD, notch intracellular domain; Co-A, transcription coactivator; MAM, conserved and essential nuclear factor mastermind; 
CSL, DNA-binding transcription factor. WNT: Frizzled; WNT, wingless-type MMTV integration site; LRP, low-density lipoprotein receptor-related protein; APC, 
adenomatous polyposis coli; Disheveled, cytoplasmic phosphoprotein; GSK3ß, glycogen synthase kinase-3; CK1α, casein kinase 1 alpha; TCF, T-cell-specific 
transcription factor; LEF, lymphoid enhancer-binding factor. Hedgehog: Hh, hedgehog; PTCH, patched; SMO, smoothened; SUFU, suppressor of fused; GLI, GLI-
family zinc finger.
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THE POSTGENOMIC ERA IN SEA 
URCHIN-RELATED RESEARCH

Sea Urchin Genome Sequencing and 
Analysis
As mentioned before, the sea urchin genome reveals striking 
similarities to humans and shares with the latter a lot of 
common gene regulatory pathways.

The first assembly and annotation of the sea urchin genome 
results were published in 2006 (Sea Urchin Genome Sequencing 
Consortium et  al., 2006) and initiated an active exploration 
of its genomics and transcriptomics. Over the past 14  years, 
researchers refined the assembly and annotation of the sea 
urchin genome. Additional genomic and transcriptomic resources 
were created, for example, EchinoBase.1

The primary assessment of the purple sea urchin genome 
was estimated as ∼800  Mb in size (Hinegardner, 1971). After 
the deep-sequencing refinement, the purple sea urchin genome 
was predicted to contain 23,300 genes (Sea Urchin Genome 
Sequencing Consortium et  al., 2006). The current genome 
analysis revealed 33,491 genes (and 556 pseudogenes) that 
encode 38,439 proteins.2

A comparative analysis of the sea urchin genome with 
vertebrates revealed an unprecedented complexity relative to 
other animals in terms of their innate immune recognition 
receptors (Rast et al., 2006). The SUGSC research team assumed 
that about 4–5% of all the sea urchin genes identified are 
involved directly in the immune functions (Sea Urchin Genome 
Sequencing Consortium et  al., 2006).

Around 222 members of the Toll-like receptor family and 
203 genes of the NACHT domain–LRR family were described 

1 http://legacy.echinobase.org/Echinobase/
2 https://www.ncbi.nlm.nih.gov/genome/86

in the sea urchin genome in addition to genes from a large 
family of cysteine-rich receptor proteins (Rast et  al., 2006). 
The sea urchin immune system showed the presence of a 
complement system similar to the chordate (Hibino et al., 2006).

Since transcriptional networks are regulated by transcription 
factors, it is important to mention the work of Howard-Ashby’s 
team that described the main families of genes coding for 
transcription factors in the S. purpuratus genome (bHLH, 
Nuclear Receptor, Basic Leucine Zipper, T-box, Smad, Sox, 
and other smaller families). The number of genes encoding 
transcription factors of each family in the sea urchin is comparable 
to that found in the Drosophila genome, but it is almost twice 
less than the number of such genes found in the human 
genome. A similar result was obtained when analyzing the 
situation with HomeoBox genes (Howard-Ashby et  al., 2006). 
The evolvement of new genes during the evolution since 
branching Echinodermata from the common Deuterostome 
branch is associated with the adaptation process, increasing 
the level of complexity and/or changing the key 
cellular mechanisms.

During the course of genome analysis, the SUGSC team 
identified more than 1,200 genes involved in signal transduction. 
The S. purpuratus genome contains 353 protein kinases (Sea 
Urchin Genome Sequencing Consortium et  al., 2006) and 14 
lipid kinases (Bradham et al., 2006). The number of sea urchin 
protein kinases is higher than that described in the Drosophila 
genome (about 230 members) but less than in the human 
kinome (518). Although most of the sea urchin kinase subfamilies 
are often represented by only a single member, their diversity 
is surprisingly high and corresponds to approximately 97% of 
the whole human kinome. Only four subfamilies of kinases 
are missing (Axl, FastK, H11, and NKF3) in the sea urchin 
compared to the human kinome, whereas the fruit fly kinome 
lacks 20 of those, and the kinome of worms misses 32 subfamilies 
(Bradham et  al., 2006). Importantly, it has been shown that 

TABLE 1 | Major Notch, WNT, and Hedgehog (Hh) pathways roles in multicellular organisms’ embryo development and cancer.

NOTCH WNT Hedgehog

Functions in 
development

The Notch pathway is a major determinant of cell 
fate across all metazoans (Artavanis-Tsakonas 
and Muskavitch, 2010; Bray, 2016; Henrique and 
Schweisguth, 2019; Lloyd-Lewis et al., 2019).

The Wnt signaling pathway regulates many cell 
functions, including proliferation, migration, 
apoptosis, and differentiation. It also plays a 
key role in controlling body axis formation. It is 
essential during embryonic development and 
also in the homeostasis of several adult tissues 
including the GI tract (Flanagan et al., 2015, 
2017), liver, breast, and skin (Nusse and 
Clevers, 2017).

The Hedgehog signaling pathway plays a significant 
role in the normal embryonic development of 
invertebrates and vertebrates (Skoda et al., 2018). 
The Hh genes are played in organization of the 
polarity of the organism and the development of 
many tissues and organs. The pathway is involved 
in the maintenance of somatic stem cells and 
pluripotent cells important for tissue repair (Beachy 
et al., 2004; Karhadkar et al., 2004; Zhou et al., 
2006; Stecca et al., 2007; Lowry et al., 2008).

Role in 
cancer

Notch plays an oncogenic role: it is 
overexpressed in breast cancer (Kontomanolis 
et al., 2018), gastric cancer (Zhou et al., 2013), 
pancreatic cancer (Ma et al., 2013), and 
colorectal cancer (Vinson et al., 2016).

Notch acts as a tumor suppressor gene: its 
expression is downregulated in skin cancer (Lefort 
et al., 2007), liver cancer (Viatour et al., 2011), 
non-small cell lung cancer (Konishi et al., 2010), 
and some breast cancers (Parr et al., 2004).

Mutations of Wnt pathway members cause 
cancer development in humans (Segditsas 
and Tomlinson, 2006). It is known that Wnt 
signaling is deregulated in gastric tumors 
(Clements et al., 2002; Flanagan et al., 2017). 
The WNT pathway plays critical roles in 
epithelial ovarian cancer development 
(Nguyen et al., 2019), colorectal cancer 
(Wang et al., 2018), and thyroid 
carcinogenesis (Ely et al., 2018).

Hh signaling is involved in the development of 
pancreatic, and esophageal cancer (Bailey et al., 
2009), gastric, and prostate cancer (Sheng et al., 
2004), as well as basal cell carcinoma (Gutzmer 
and Solomon, 2019) and medulloblastoma 
(Gordon et al., 2018).
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approximately 88% of described kinases are expressed during 
embryogenesis (Bradham et  al., 2006; Byrum et  al., 2006).

To follow the compilation of similarities in the gene ontology 
of the sea urchin and of humans, it is important to note that 
they share common mechanisms of cell cycle control. Perhaps, 
not surprisingly, a number of genes involved in cell cycle 
control and DNA metabolism have been described for the sea 
urchin, although its number is lower compared to the human 
genome. In addition, a few cases of echinoderm-specific gene 
diversifications have been described (Fernandez-Guerra et  al., 
2006). Notably, the sea urchin genome contains orthologs of 
almost all cyclin-dependent kinases, except CDK3. Members 
of the NIMA-related kinases family (NEK proteins) are, judging 
by their complexity, close to vertebrates, whereas the complexity 
of Polo and Aurora mitotic kinase families are close to those 
found in the worm (Fernandez-Guerra et  al., 2006).

Furthermore, a number of known genes involved in DNA 
replication, repair, and the mitotic checkpoint were also found 
in the sea urchin. Interestingly, the sea urchin has a single p63/
p73 hybrid homologous to the p53, p63, and p73 members of 
the p53 family of tumor suppressors (Belyi et  al., 2010). In 
addition, the sea urchin contains two homologs of the pRB tumor 
suppressor and also one homolog of the p21/p27 family of CDK 
inhibitors (Fernandez-Guerra et  al., 2006). Furthermore, the sea 
urchin genome shares four families of RAS GTPases with humans: 
Ras, Rho, Rab, and Afr, although 90% of all small GTPases are 
expressed during embryogenesis (Beane et  al., 2006).

Gene Regulatory Networks
As early as in the pre-genome era, common features, and 
concepts, of the gene regulatory network (GRN) were described 
by researchers who used the S. purpuratus sea urchin as a 
model organism. Genome sequencing and annotation made it 
possible to structure the information, which led to the creation 
of one of the most complete networks for the regulation of 
genes during the early embryogenesis (Davidson et  al., 2002; 
Sea Urchin Genome Sequencing Consortium et al., 2006; Oliveri 
et  al., 2008; Peter and Davidson, 2010, 2017; Peter et  al., 2012; 
Martik et  al., 2016).

The key step toward the understanding of basic mechanisms 
of embryogenesis and global GRN was the deep sequencing 
of RNA. This allowed the accumulation of data on gene 
expression networking during the embryogenesis of S. purpuratus 
(Rafiq et  al., 2014; Tu et  al., 2014; Barsi et  al., 2015; Gildor 
et  al., 2016; Israel et  al., 2016; Janies et  al., 2016; Pérez-Portela 
et  al., 2016). The described schemes of the GRN became the 
best tool for the analysis of the development of the genetic 
control (Peter and Davidson, 2017).

In the study by Tu et  al. (2014), the expression profiles of 
more than 16,000 genes were measured during embryogenesis. 
For a clearer presentation of the expression profiles of embryonic 
genes, the authors performed a cluster analysis. The clusters 
were grouped into four main groups according to their overall 
dynamics: “off,” “on,” “transient,” and “other” (Tu et  al., 2014). 
They showed that complex expression patterns of many genes 
underlie embryonic development, especially in the early stages 
preceding gastrulation.

A study of Rafiq (2014) sets a basis for understanding the 
genomic regulatory control of a major morphogenetic process 
– skeletal morphogenesis for embryogenesis. The authors have 
identified 420 transcripts whose expression levels in primary 
mesenchymal cells (PMC) were significantly different from other 
samples. Most of these genes are transcribed at relatively low 
levels at the stage of mesenchymal blastula. They were targeted 
at Ets1 and Alx1, key transcription factors that provide regulatory 
inputs at the top of the PMC regulatory differentiation network.

It was shown that more than half of the identified transcripts 
received essential inputs from Ets1 and/or Alx1, most of which 
were positive. All these data point to their key role in the 
cell-specific identity of PMCs (Rafiq et  al., 2014). Additionally, 
the authors described about 200 transcripts that were not 
significantly affected by Ets1 or Alx1 knockdown.

The name of the GRN concept implies that exons play a 
major role in gene cascades. However, The Human Genome Project 
and the subsequent deciphering of a large number of genomes 
made it obvious that the bulk of the genome consists of sets of 
repetitive DNA (Lander et  al., 2001). Coding DNA fragments 
(exons) occupy no more than 2–3% of the genome (Carey, 2017). 
The major components of the genome are represented by two 
groups of repetitive DNA sequences: tandem repeats and dispersed 
repeats or transposons [transposable elements, (TE); Paço et  al., 
2019]. Almost all eukaryotic genomes contain TE, for example, 
it occupies about half of the human genome (Wang and Kunze, 2015).

Non-coding RNA in the Sea Urchin
It is well established that almost all of the human genome is 
transcribed into RNA. Surprisingly, most of the transcribed RNA 
does not code for proteins and is called non-coding RNA (ncRNA; 
Lander et  al., 2001; Carninci et  al., 2005; ENCODE Project 
Consortium et al., 2007; Djebali et al., 2012; Laurent et al., 2015; 
Carey, 2017), including microRNA (miRNA, 22–25 bp) and long 
non-coding RNA (lncRNA, >200  bp). NcRNAs are involved in 
the transcription regulation of genes and other ncRNA (Li and 
Liu, 2019). The primary source of all kinds of ncRNA in the 
genome is transposons (Hadjiargyrou and Delihas, 2013).

MicroRNAs control gene expression via multiple modes (Cai 
et  al., 2009; Steitz and Vasudevan, 2009). In general, the 5' 
proximal “seed” region (nucleotide 2–8) of miRNAs exhibits 
imperfect complementarity to the 3’UTR of the target mRNA 
(Lewis et  al., 2005). Subsequently, this newly formed double-
stranded RNA is destroyed by dsRNAse, RISC. However, a few 
cases have been reported when miRNAs regulated the expression 
by binding the 5'UTR of mRNAs, thereby interfering with the 
binding of translation initiation factor, eIF4 (Lee et  al., 2009; 
Brümmer and Hausser, 2014).

To date, several models have been proposed describing the 
consequences of the interaction between the miRNA complex 
and their targets. The miRNA-dependent gene silencing can 
be  achieved at three stages, including pre-translational, 
co-translational, and post-translational steps (Finnegan and 
Matzke, 2003; Garneau et  al., 2007; Grewal and Elgin, 2007; 
Fabian et  al., 2010; Carroll et  al., 2014).

The lncRNA-driven transcriptional regulation is more complex 
and includes several mechanisms: (1) lncRNA can recruit a 
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regulatory protein complex to a gene or an entire chromosome; 
(2) the binding of a transcriptional factor is inhibited by lncRNA; 
(3) transcription of lncRNAs regulates the transcription of adjacent 
protein-coding genes; and (4) the heterochromatic or euchromatic 
organization of regions in close proximity stabilizes these territories 
and controls the spreading of post-translational modifications 
to nearby chromatin (Long et  al., 2017). Furthermore, lncRNAs 
play a key role in stem cell differentiation, immune response, 
epigenetic regulation, inflammation-related diseases, and tumor 
development (Briggs et  al., 2015; Huarte, 2015; Boon et  al., 2016; 
Chen et  al., 2017).

Description and analysis of ncRNA regulatory networks 
could provide new insights into gene transcription regulation 
not only during the embryonic development, but also in cancer, 
when specific developmental programs are aberrantly reactivated. 
Thus, understanding the complexity of these regulatory networks 
will make it possible to determine the consequences of their 
disruption in the course of various diseases.

REGULATORY NETWORKS BASED ON 
NON-CODING RNAS

After the publication of the sea urchin genome annotation, 
miRNAs were identified (Peterson et  al., 2009; Wheeler et  al., 
2009; Campo-Paysaa et  al., 2011). These studies revealed that 
a few, very conserved, miRNAs are also present in humans 
(Song et  al., 2012). The authors had cloned and sequenced 
small RNAs (18–40 nucleotides) from different embryo stages, 
ranging from unfertilized eggs to larva pluteus. Around 49 
miRNAs were identified, in which three of these were novel 
miRNAs (not annotated in miRBase previously). Most of the 
miRNAs are present in the egg and have dynamic accumulation 
profiles, with the majority of these being upregulated 
during gastrulation.

To test the function of miRNA during the embryonic 
development, authors decided to suppress the dsRNA processing 
enzyme, Dicer, with Dicer morpholino antisense oligonucleotides 
(MASO). The majority of injected embryos successfully developed 
to the stage of blastula. However, at the stage of 48  h p.f., 

embryos that expressed Dicer MASO failed to enter the 
gastrulation stage (Song et  al., 2012). Developmental defects 
varied from general retardation to cell death.

One interesting example of opposing functions exerted by 
one micrRNA is miR-31. Importantly, it is expressed during 
the embryogenesis of S. purpuratus and suppresses several 
components of PMC GRN (Pmar1, Alx1, Snail, and VegfR7). 
Knockdown of miR-31 causes a disturbance of the function 
of PMC that forms the embryonic skeleton (Stepicheva and 
Song, 2015). Meanwhile, in humans, miR-31 is considered as 
a tumor suppressor. Yet, it can affect several signaling pathways 
that have opposite effects on the proliferation: RAS/MARK 
and PI3K/AKT stimulate growth, whereas RB/E2F inhibits it. 
Unfortunately, specific molecular mechanisms that regulate 
miR-31  in the sea urchin are not known at the moment.

The latest analysis of the sea urchin genome showed that 
known transposons3 occupy about 15% of the genome, including 
the major class DNA transposons (Figure  4; Lebedev et  al., 
2019). The percentage of genome occupied by transposons is 
higher than that of the worm Caenorhabditis elegans but less 
than that of fruit fly or human (Kazazian and Moran, 2017).

The development of new sequencing techniques, such as 
RNA-Seq, has greatly advanced our understanding and knowledge 
of new RNAs. In one of the latest studies on this, Hezroni 
and co-authors, using a PLAR-algorithm, predicted more than 
5,000 new sequences of lncRNA in sea urchin transcriptomes 
(Hezroni et  al., 2015).

Genes that code for lincRNAs are more species-specific 
and less conserved than the gene encoding proteins. In the 
genome of the sea urchin, synthenic (homologous genes 
situated on the same chromosomes but in different species) 
lncRNA genes were identified for more than 2,000 human 
lincRNA genes. This suggests that the sea urchin likely contains 
a lot of conserved functional vertebrate lincRNA homologs 
(Hezroni et  al., 2015). Of all detected syntenic lincRNAs, 
only 18 were found in other amniotes.

One example is LINC00261, located downstream of the 
Foxa2 gene, which codes for a transcription factor. In all 

3 https://www.girinst.org/repbase

FIGURE 4 | The percent content of transposable elements (TE) in genomes of the sea urchin S. purpuratus and other invertebrates. TE classes are marked with a 
color: nonLTR SINE – blue; LINE – red; LTR TE – yellow; DNA transposons – green; non-annotated repeats – lilac (from Lebedev et al., 2019).
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vertebrates, this lincRNA is expressed in endodermal tissues, 
and in sea urchins, it is expressed in the gut. LINC00261 
plays the tumor suppressive role being involved in the regulation 
of DNA damage (Shahabi et  al., 2019).

Another syntenic lincRNA (partially annotated as LINC01122 
and LOC101927285  in humans) is expressed in the brain and 
reproductive tissues across vertebrates. In sea urchins, it is 
expressed in the adult ovary. Unfortunately, the specific functions 
of both orthologs are unknown. However, this region is located 
between the Fancl and Bcl11a loci and one can assume that 
ncRNA expressed from this locus, at least in humans, may 
participate in the regulation of DNA damage response and/
or apoptosis possibly through the p53 regulatory network.

Well-known embryogenesis signaling pathways conserved 
between different species can serve as the starting point for 
understanding the complex network of development organization. 
In recent years, ncRNAs have rapidly emerged as crucial regulators 
of main signaling pathways in embryo development and cancer 
(Fu et  al., 2019). Regulation takes place at different levels: from 
the transcriptional to the post-transcriptional and translational 
levels, for example, LncRNA is involved in the regulation of 
WNT, Notch, and other signaling pathways in cancer (Li and 
Kang, 2014; Trimarchi et al., 2014; Yuan et al., 2014; Ong et al., 2017; 
Peng et  al., 2017; Shen et  al., 2017).

FUTURE OF THIS MODEL ORGANISM 
FOR GENE EXPRESSION STUDIES

Embryogenesis is regulated by complicated mechanisms to 
ensure that different types of cells and tissues develop from 
one cell. All processes of embryogenesis are strictly coordinated 
by signaling pathways. Next-generation sequencing and 
bioinformatics methods have made it possible to describe the 
main components of these pathways (Figure 3) and the branched 
gene regulatory networks.

Studying the regulatory networks of development and its 
organization on all levels requires experimental models. It seems 
to us that this model object – the purple sea urchin S. purpuratus 
– is the most suitable system for studying the regulation system 
based on ncRNAs. Further deep bioinformatic analysis of the 
genome, and the transcriptomic profiling of embryogenesis 

stages of this model object, will promote important discoveries 
in gene networking.

Spontaneous alterations in these coordinated gene expression 
programs can lead to the development of an unhealthy 
embryo. Furthermore, reactivation of these pathways in 
somatic cells can cause many diseases, including cancer in 
humans (Table  1).

Interestingly, the history of modern cancer research begins 
with the sea urchin: in the first decade of the 20th century, 
the German biologist Boveri discovered that unproper fertilization 
of sea-urchin eggs with two sperm rather than one led to 
chromosomal aberrations and to the failure of proper 
development (Laubichler and Davidson, 2008). Furthermore, 
purple sea urchins and some other urchin species (L. variegatus, 
M. franciscanus) retain the ability to regenerate lost or damaged 
tissues with age (Bodnar and Coffman, 2016).

However, cancers have not been detected in sea urchins. 
In fact, the life span of some sea urchin species reaches 
100  years (Ebert, 2010; Kober and Bernardi, 2013). How such 
genomic stability is achieved and what the regulatory transcription 
mechanisms involved in the longevity of these organisms are 
require further investigation. Thus, sea urchins can provide 
insights into the processes in cases of serious human diseases 
associated with the regulation of transcription.
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Prostate cancer (PC) is one of the most common cancers among men worldwide, and 
advanced PCs, such as locally advanced PC (LAPC) and castration-resistant PC (CRPC), 
present the greatest challenges in clinical management. Current indicators have limited capacity 
to predict the disease course; therefore, better prognostic markers are greatly needed. In this 
study, we performed a bioinformatic analysis of The Cancer Genome Atlas (TCGA) datasets, 
including RNA-Seq data from the prostate adenocarcinoma (PRAD; n = 55) and West Coast 
Dream Team – metastatic CRPC (WCDT-MCRPC; n = 84) projects, to evaluate the transcriptome 
changes associated with progression-free survival (PFS) for LAPC and CRPC, respectively. 
We identified the genes whose expression was positively/negatively correlated with PFS. In 
LAPC, the genes with the most significant negative correlations were ZC2HC1A, SQLE, and 
KIF11, and the genes with the most significant positive correlations were SOD3, LRRC26, 
MIR22HG, MEG3, and MIR29B2CHG. In CRPC, the most significant positive correlations 
were found for BET1, CTAGE5, IFNGR1, and GIMAP6, and the most significant negative 
correlations were found for CLPB, PRPF19, ZNF610, MPST, and LINC02001. In addition, 
we performed a gene network interaction analysis using STRINGdb, which revealed a 
significant relationship between genes predominantly involved in the cell cycle and characterized 
by upregulated expression in early recurrence. Based on the results, we propose several 
genes that can be used as potential prognostic markers.

Keywords: prostate cancer, gene expression, PFS, TCGA, PRAD, WCDT-MCRPC

INTRODUCTION

Prostate cancer (PC) is the second most common cancer in men worldwide (Rawla, 2019). Advanced 
PC presents as locally advanced and castration-resistant tumors. Locally advanced PC (LAPC) is 
characterized by the spread of the tumor beyond the prostate capsule and is more aggressive than 
localized PC. Androgen deprivation therapy aimed at reducing the level of circulating testosterone is 
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often used in LAPC treatment (Yap et al., 2016). However, despite 
rapid patient responses to this therapy, after 18–36  months, the 
disease frequently progresses to castration-resistant PC (CRPC; 
Yap et al., 2016). Metastatic CRPC is a prognostically unfavorable 
disease that requires regular systematic examination and monitoring 
and significantly impairs quality of life.

During therapy, in some patients, PC has an aggressive 
course, leading to metastasis, while in others, the disease has 
an indolent course, with a low tendency for progression. For 
prognostic assessment of the disease course, various clinical 
parameters are used, such as the level of prostate-specific antigen 
(PSA) and/or Gleason score; however, these parameters are 
not sufficiently informative (Keyes et  al., 2013). To solve this 
problem, new molecular markers are needed that are highly 
associated with disease progression, which, when used in 
combination with existing clinical parameters, have a high 
predictive value. Currently, a promising area in the search for 
potential markers is the analysis of the most significant and 
consistent changes in the tumor transcriptome (Larkin et al., 2012; 
Cao et  al., 2019; Pudova et  al., 2019; Song et  al., 2019).

An important criterion in the study of cancer data is 
progression-free survival (PFS). This parameter is the time 
from a random assignment in a clinical trial to disease progression 
or death from any cause (Forsythe et  al., 2018). The study of 
PFS-specific molecular events will help to identify the major 
changes associated with the onset of disease progression.

This study aimed to analyze the transcriptome profiles of 
LAPC and CRPC based on the RNA-Seq data from the prostate 
adenocarcinoma (PRAD) and West Coast Dream Team – 
metastatic CRPC (WCDT-MCRPC) projects in The Cancer 
Genome Atlas (TCGA), respectively. We  analyzed the changes 
in gene expression and molecular pathways related to PFS. 
The results of this study improve our understanding of the 
mechanisms underlying PC progression and identify molecules 
with potential as prognostic markers.

MATERIALS AND METHODS

Data Collection
The study included RNA-Seq data for LAPC samples from the 
PRAD project (n  =  55) and CRPC samples from the WCDT-
MCRPC project (n  =  84), which were donated to the TCGA 
consortium. We  focused on the study of Caucasian patients 
(Caucasians were identified as “white” in the databases). The 
trimmed mean of M-values (TMM) method was used to normalize 
the RNA-Seq data of each dataset. Ethical approval was not available 
for the study as our data were revealed from the public database.

Relative Gene Expression and 
Downstream Analysis
RNA-Seq data from the TCGA project (read counts per gene 
evaluated by HTSeq) were downloaded from the repository 
of GDC Data Portal1 and then analyzed in the statistical 

1 https://portal.gdc.cancer.gov/

environment R.2 Data normalization and gene expression analysis 
with generalized linear models was performed using edgeR 
package (Robinson et  al., 2010). The obtained results were 
considered statistical significance when the p-value of the quasi-
likelihood F-test (QLF test) of <0.05. We did not use Benjamini-
Hochberg (BH) p-value adjustment here because very few genes 
pass the threshold after it is applied.

In order to identify the genes whose expression change is 
most strongly associated with PFS, we  evaluated Spearman’s 
rank correlation coefficient between the normalized gene 
expression level and PFS. Here, the obtained results were also 
considered statistically significant when both Spearman’s p < 0.05 
and QLF test p  <  0.05. For this analysis, we  pre-filtered genes 
by the following parameters: read counts per million (CPM) > 8 
and gene expression fold change is two- or (LogFC)  >  1.

Next, we  performed KEGG (Kyoto Encyclopedia of Genes 
and Genomes database) pathway enrichment analysis using 
the clusterProfile package (Yu et  al., 2012). Additionally, 
we  performed interaction network reconstruction and Gene 
Ontology (GO) pathway enrichment analysis using the STRINGdb 
(Szklarczyk et al., 2017). For enrichment analyses, BH adjustment 
to calculate the false discovery rate (FDR) was applied. The 
obtained results of this analysis were considered statistically 
significant when the FDR-value of <0.05. When constructing 
the networks, only data on direct protein-protein interactions 
were used (other associations such as co-expression, 
co-occurrence, gene fusions, and neighborhood, which are set 
by default, were excluded).

RESULTS

Using PRAD and WCDT-MCRPC datasets, we analyzed changes 
of the relative gene expression associated with PFS (the number 
of days to recurrence) and found 889 genes for the LAPC 
and 1,889 genes for CRPC with the p  <  0.05 according to 
the QLF test (Supplementary Tables S1 and S2).

Pathways Enrichment Analysis
First, we  focused on the pathways enrichment analysis (KEGG 
database) to identify the major pathways, the expression of 
whose members may be positively or negatively associated with 
PFS (Figure  1). For this analysis, we  selected top-80 genes, 
increased expression of which was positively associated with 
PFS (further – “upregulated genes”) and top-80 genes with 
negatively associated expression (further – “downregulated 
genes”). In LAPC, the most statistically significant enrichment 
with upregulated genes was noted for “Transcriptional 
misregulation in cancer” pathway (hsa05202). The analysis of 
downregulated genes showed a significant enrichment for the 
“Cell cycle” pathway (hsa04110; Table  1).

For CRPC, a pathway enrichment analysis (top-250 up- and 
downregulated genes) revealed two pathways, “Complement and 
coagulation cascades” (hsa04610) and “Drug metabolism-cytochrome 

2 https://www.r-project.org/
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P-450” (hsa00982), which were enriched with genes that have 
expression positively associated with PFS. When considering 
pathways negatively associated with PFS, we  have seen an 
overrepresentation of genes participating in such cancer-associated 
pathways as the “TGF-beta signaling pathway” (hsa04350), “Hippo 
signaling pathway” (hsa04390), and others (Figure  2; Table  2).

Correlation Analysis Between Gene 
Expression and PFS
Further, a correlation analysis between the gene expression 
and PFS was performed in LAPC and CRPC using Spearman’s 
rank correlation calculation.

For the LAPC, 34 genes were found to be  correlated with 
PFS (p < 0.05); an equal number of genes had positive (17/34) 
and negative (17/34) correlation with PFS (Figure  3).

For the CRPC, 118 genes were found, including 81 genes 
with positive correlation and 37 genes with negative correlation 
with PFS (Figure  4).

Interaction Network Analysis Using STRINGdb
To analyze the LAPC, we  examined 190 genes, expression of 
which is negatively, and 115 genes – positively associated with PFS. 

These genes passed a threshold of p  <  0.05 (both QLF test 
and Spearman’s rank correlation analysis), irrespectively of CPM 
and abs(LogFC) values. A statistically significant result was 
obtained for genes with a negative correlation. For these genes, 
the network has a strong enrichment of protein-protein 
interactions (PPI) with p  <  1.0e-16 (Figure  5).

The genes shown in Figure 5 encode for proteins participating 
in such processes as the “Cell cycle” (GO: 0007049; enrichment 
FDR  =  2.24e-15), “Organelle organization” (GO: 0006996; 
FDR  =  8.53e-06), “Response to stress” (GO: 0006950; 
FDR  =  0.0490) terms. We  have also noted the cluster with 
the highest number of interactions, including RAD21, SGOL1, 
DYNC1LI1, CKAP5, CENPI, PPP2R5C, SKA2, SPC25, MAD2L1, 
CENPL, BUB1, ERCC6L, SGOL2, and CDCA8 genes. Most of 
them participate cell cycle process.

Next, we  performed a protein-protein interaction network 
analysis using 196 genes with negative expression correlation 
with PFS for CRPC. The analysis (PPI enrichment p = 0.000112) 
revealed involved enrichment in genes participating the “Cell 
cycle” (GO: 0007049; enrichment FDR  =  0.0207), “Regulation 
of gene expression” (GO: 0010468; FDR = 0.0215), and “Metabolic 
process” (GO: 0008152; FDR  =  0.0345) terms (Figure  6). 

A B

FIGURE 1 | Dotplot showing the results of KEGG pathways enrichment analyses performed for top-80 upregulated (A) and downregulated (B) genes associated 
with PFS in LAPC. The x-axis indicates k/n ratio (“gene ratio”), where k is the number of genes participating in the current KEGG pathway in the top-80 list and n is 
the total number of genes that participate this pathway. Dot color indicates the false discovery rate (FDR) values according to the Fisher’s exact test.

TABLE 1 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that are significantly enriched with genes associated with progression-free survival (PFS) 
in locally advanced prostate cancer (LAPC).

KEGG ID Pathway name Enrichment p-value Enrichment FDR Genes

Enriched with upregulated genes

hsa05202 Transcriptional misregulation in cancer 1,53E-05 1,98E-03 CEBPB, RARA, GADD45B, CDKN1A, NR4A3, IGF1, SUPT3H
hsa04668 TNF signaling pathway 1,12E-04 7,29E-03 BCL3, CEBPB, JUNB, SOCS3, IRF1
hsa04975 Fat digestion and absorption 8,31E-04 3,60E-02 PLA2G5, CD36, PLA2G2A
Enriched with downregulated genes

hsa05160 Hepatitis C 2,81E-05 2,84E-03 RSAD2, IFIT1, MX1, DDX58, OAS3, EIF2AK2
hsa04110 Cell cycle 1,17E-04 5,89E-03 E2F5, CCNB1, RAD21, CCNB2, BUB1
hsa05164 Influenza A 5,08E-04 1,71E-02 RSAD2, MX1, DDX58, OAS3, EIF2AK2
hsa04114 Oocyte meiosis 1,57E-03 3,96E-02 CALML3, CCNB1, CCNB2, BUB1
hsa05162 Measles 2,07E-03 4,17E-02 MX1, DDX58, OAS3, EIF2AK2
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The interaction network formed with genes positively correlated 
with PFS did not pass the PPI enrichment p-value threshold.

DISCUSSION

In the present study, we  examined RNA-Seq data from the 
two most advanced stages of PC, LAPC and CRPC, with an 
aim to reveal the major changes in the transcriptome associated 
with disease progression within each analyzed category. The 
pathological manifestation of LAPC is invasion of the prostatic 
capsule as well as invasion beyond it, whereas CRPC, which 
is the next progressive stage, is characterized by the presence 
of distant metastases.

Using KEGG pathway enrichment analysis, we found several 
pathways, activation of which is possibly associated with PFS 
period, either positively or negatively. In LAPC, the most 
prominent associations were the increased expression of the 
participants of “TNF signaling pathway” and “Transcriptional 
misregulation in cancer.” Transcriptional misregulation involves 
an extensive network of processes that play dual roles in cancers, 
and probably in LAPC.

In CRPC, we  identified putative activation of “Complement 
and coagulation cascades” and “Drug metabolism-cytochrome 

P-450” KEGG pathways to be  associated with increased PFS 
time. According to various studies, the expression levels of 
complement system genes vary in different cancers. In PC, 
upregulated expression of complement system genes in both 
the classical and alternative pathways is associated with a good 
prognosis and long-term patient survival (Roumenina et  al., 
2019). Based on our results, putative activation of the complement 
pathway increased the relapse time in CRPC. Therefore, in 
patients with activation of the complement pathway genes, a 
longer response to therapy is expected, which may lead to 
the elimination of tumor-induced immunosuppression and 
increased antitumor immunity. Among the identified pathways 
enriched with genes negatively associated with PFS in CRPC, 
we  noticed several cancer-associated pathways such as the 
“Hippo signaling pathway” and “TGF-beta signaling pathway” 
as well as “Transcriptional misregulation in cancer.”

Next, we  performed PPI network and GO enrichment 
analysis using the STRINGdb. We  examined the interaction 
networks for sets of genes that were positively and negatively 
correlated with PFS. In both datasets, statistically significant 
results were obtained only for genes with negative correlations. 
In LAPC, an extensive network of protein-protein interactions 
was identified for downregulated genes, which suggests close 
biological relationships among the genes and proteins under study. 

A B

FIGURE 2 | Dotplot showing the results of KEGG pathways enrichment analyses performed for top-250 upregulated (A) and downregulated (B) genes associated 
with PFS in CRPC. The x-axis indicates k/n ratio (“gene ratio”), where k is the number of genes participating in the current KEGG pathway in the top-250 list and n is 
the total number of genes that participate this pathway. Dot color indicates the FDR values according to the Fisher’s exact test.

TABLE 2 | KEGG pathways that are significantly enriched with genes associated with PFS in castration-resistant prostate cancer (CRPC).

KEGG ID Pathway name Enrichment p-value Enrichment FDR Genes

Enriched with upregulated genes

hsa04610 Complement and coagulation cascades 8,14E-05 1,88E-02
CPB2, SERPIND1, CFI, VTN, KNG1, 
SERPING1, SERPINA1, C3

hsa00982 Drug metabolism – cytochrome P450 1,45E-04 1,88E-02
ADH6, ADH1B, CYP3A4, CYP2E1, 
CYP2C8, GSTP1

Enriched with downregulated genes

hsa05202 Transcriptional misregulation in cancer 3,28E-03 3,65E-01
HIST1H3C, TAF15, ASPSCR1, NCOR1, 
EYA1

hsa04390 Hippo signaling pathway 1,04E-02 5,17E-01 BMP4, TGFB2, BMP5, NKD1
hsa04350 TGF-beta signaling pathway 1,45E-02 5,17E-01 BMP4, TGFB2, BMP5
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We observed significant enrichment with participants of several 
biological processes such as “Cell cycle,” “Organelle 
organization,” and “Response to stress.” In CRPC, we observed 

strong enrichment with genes involved “Cell cycle,” “Regulation 
of gene expression,” and “Metabolic process.” This suggests 
that the activation of the cell cycle and an increase in the 

FIGURE 3 | List and heatmap demonstrating log relative expression level of genes with significant Spearman’s rank correlation coefficient relative to PFS for LAPC. 
Cell colors (blue-white-orange gradient) correspond to the binary logarithm of the ratio of the expression level in a current sample to the average level across all the 
samples (per each gene). Blue – expression level is below the average, orange – above the average. LogFC – binary logarithm of the ratio of GLM-approximated 
expression values between samples with maximal and minimal PFS; LogCPM – binary logarithm of read counts per million (CPM); p-value (QLF test) –  p-value 
according to quasi-likelihood F-test (edgeR); Spearman r – Spearman’s rank correlation coefficient between gene expression level and PFS; p-value (Spearman) –  p-value 
according to Spearman’s rank correlation test.

FIGURE 4 | List and heatmap demonstrating log relative expression level of genes with significant Spearman’s rank correlation coefficient relative to PFS for CRPC. 
For comments, see the Figure 3 legend.
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expression of cell cycle-related genes may be  behind the 
formation of more aggressive tumor phenotype and shortened 
PFS period, for both LAPC and CRPC. This is to be expected. 
Needless to say once again, the cell cycle, in particular cellular 
mitosis, and cancer are closely related, as cancer cells undergo 
abnormal, uncontrolled mitosis, which supports tumor growth 
and metastasis, two processes that are integral to disease 
progression (Weaver and Cleveland, 2005).

In our study, we  also focused on identifying potential 
prognostic markers among the genes that have the strongest 
correlations with PFS. In LAPC, KIF11 (Spearman’s rank 
correlation coefficient, rs  =  0.41), ZC2HC1A (rs  =  −0.41), 
and SQLE (rs = −0.40) had the greatest negative correlations 
with PFS, while SOD3 (rs  =  0.36) and LRRC26 (rs  =  0.34) 
had the highest positive correlations. We  reviewed the 
literature regarding the role of these genes in cancer, 
especially PC.

The kinesin family member 11 (KIF11) gene encodes mitotic 
kinesin, which plays a central role in mitosis (Wojcik et  al., 
2013). In PC, assessment of tumor cell differentiation, which 
is recorded as the Gleason score, is an important prognostic 
parameter. A value of 8 or higher corresponds to a poorly 
differentiated tumor and is associated with an unfavorable 
prognosis (Gordetsky and Epstein, 2016). A value of 8 or 
higher corresponds to a poorly differentiated tumor and is 
associated with an unfavorable prognosis. It was shown that 
KIF11 gene expression was higher in PC tumor samples with 
a Gleason score of 8 (poorly differentiated tumors) than in 
tumor samples with a Gleason score of 7 (moderately 
differentiated tumors; Piao et al., 2017). In our study, we found 
that KIF11 gene expression was negatively correlated with 
an increase in the number of days before recurrence, which 
confirms the relationship of this gene with unfavorable 
prognosis in PC.

FIGURE 5 | The protein-protein interaction network of 190 genes with a significant negative expression correlation with PFS in LAPC. Circle colors indicate proteins 
participating in the cell cycle regulation (red), organelle organization (green), and response to stress (dark blue). If a gene does not belong to these categories, it is 
marked with gray. The thickness of lines indicates the reliability of evidence of the interaction between two proteins (direct or indirect experimental confirmation, 
predictions from homologues, etc.).
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There are few data regarding zinc finger C2HC-type containing 
1A (ZC2HC1A). However, Zhu et  al. (2019) showed that 
overexpression of the ZC2HC1A gene was associated with 
unfavorable prognosis in hepatocellular carcinoma. In our study, 
ZC2HC1A expression was increased in PC samples with early 
onset recurrence.

The SQLE gene encodes squalene epoxidase, which is involved 
in cholesterol synthesis. Cholesterol is an essential component 
of cell membranes and a precursor for the synthesis of androgens 
(Pelton et  al., 2012). According to previous data, the SQLE 
gene is expressed in aggressive PC, and its expression is 
correlated with the Gleason score. It has been suggested that 
the progression of PC depends on the de novo synthesis of 
cholesterol catalyzed by SQLE (Stopsack et  al., 2017). In our 
study, we  observed higher SQLE gene expression in samples 
with early onset relapse.

Prostate cancer can also progress due to oxidative stress, 
which produces reactive oxygen species (ROS; Shiota et al., 2011). 
Cells are protected against ROS by antioxidant enzymes, such 

as superoxide dismutase (SOD), which functions as a first 
line antioxidant enzyme. The SOD3 gene encodes an extracellular 
isoform of the enzyme, and data suggest that SOD3 acts as 
a tumor suppressor in PC (Faraci and Didion, 2004). Thus, 
the effect of SOD3 gene expression on cell proliferation, 
migration, and invasion of PC-3 cells was assessed, and the 
results showed that overexpression of SOD3 inhibits these 
processes (Kim et  al., 2014). Our data also demonstrate that 
SOD3 gene expression was increased relative to time to relapse 
and was lower in tumor samples from patients with an 
unfavorable prognosis.

Studies on the function of LRRC26 gene in LNCaP cell 
culture have shown that its overexpression leads to suppression 
of the NF-κB pathway, which is involved in cancer progression 
and metastasis (Liu et  al., 2012). Thus, decreased expression 
of the LRRC26 gene is associated with an unfavorable prognosis 
in PC, which is consistent with our results.

Correlation analysis of gene expression with PFS in CRPC 
revealed that the following genes had the strongest Spearman 

FIGURE 6 | The protein-protein interaction network of 196 genes with a significant negative expression correlation with PFS in CRPC. Circle colors indicate 
proteins participating in the cell cycle regulation (red), metabolic process (yellow), and regulation of gene expression (light blue). The thickness of lines indicates the 
reliability of evidence of the interaction between two proteins (direct or indirect experimental confirmation, predictions from homologues, etc.).
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correlation coefficients: CLPB (rs = −0.49), PRPF19 (rs = −0.43), 
MPST (rs  =  0.41), IFNGR1 (rs  =  0.44), CTAGE5 (rs  =  0.42), 
GIMAP6 (rs  =  0.40), and BET1 (rs  =  0.40).

The caseinolytic mitochondrial matrix peptidase chaperone 
subunit B (CLPB) is an ATPase associated with a variety 
of cellular processes. Currently, there are no data on the 
role of this gene in cancer. Our study showed that an 
increase in expression was associated with an unfavorable 
prognosis, as evidenced by the strong correlation and high 
statistical significance.

The pre-mRNA processing factor 19 (PRPF19) gene encodes 
the hPrp19 protein, which is involved in many physiological 
processes, such as the ubiquitin-proteasome system, DNA 
damage response, proliferation, and apoptosis (Yin et al., 2012). 
The hPrp19 protein has been reported to play a potential 
pro-oncogenic role due to its proliferation-promoting activity. 
hPrp19 is also required for the expression of p21, which has 
an intense cell cycle arrest-promoting effect (Chen et al., 2011). 
The mechanism of hPrp19  in cancer is still unclear; however, 
its involvement in DNA repair is expected to be  correlated 
with tumor progression. According to our results, in CRPC, 
increased expression of the PRPF19 gene is associated with 
early relapse.

The mercaptopyruvate sulfurtransferase (MPST) gene encodes 
an enzyme involved in the catalysis of endogenous hydrogen 
sulfide from L-cysteine. Various studies have shown that 
endogenous hydrogen sulfide can regulate the occurrence and 
development of tumors and can participate in cancer progression 
by stimulating angiogenesis and cell growth in colon and 
ovarian cancer (Bhattacharyya et  al., 2013; Szabo et  al., 2013; 
Hellmich and Szabo, 2015). In CRPC, we observed an increase 
in MPST expression at relapse, which suggests the involvement 
of this gene in PC progression.

Interferon-gamma receptor 1 (IFNGR1) encodes a subunit 
of the IFN-γ receptor that acts in IFN-γ pathways and regulates 
the immune response. Reduced expression of this gene was 
observed in MYC-dependent metastatic PC. Experiments that 
activate IFNGR1 gene expression demonstrated strong activation 
of tumor-suppression signaling and sustained apoptosis (Wee 
et  al., 2014). We  observed similar results in CRPC, which 
showed decreased expression of the IFNGR1 gene in tumor 
samples with early relapse.

The CTAGE family member 5 (CTAGE5) gene product (an 
ER export factor) is involved in the transport of collagen VII 
in the endoplasmic reticulum. In PC, the CTAGE5 gene is 
involved in tumor-specific splicing (Ren et  al., 2012). Our 
study showed a decrease in the expression of CTAGE5 in 
samples with early relapse.

The GTPase, IMAP family member 6 (GIMAP6) gene 
encodes a protein belonging to the GIMAP family of proteins, 
which are mainly expressed in immune system cells and 
contribute to the development of thymocytes, apoptosis of 
peripheral lymphocytes, and T-helper differentiation (Filen 
et al., 2009). Dysregulation of GIMAP6 expression is observed 
in non-small cell lung cancer, where the GIMAP6 gene 
expression is decreased in tumor samples (Shiao et  al., 2008). 
Decreased expression of the GIMAP6 gene has also been 

noted in hepatocellular carcinoma (Huang et  al., 2016). In 
CRPC, we also observed that decreased expression of GIMAP6 
was associated with the onset of disease relapse.

Bet1 Golgi vesicular membrane trafficking protein (BET1) 
is a membrane protein associated with the Golgi complex 
that is involved in vesicular transport. There are few published 
studies on the function of this gene in cancer. There is a 
report that BET1 was identified as part of a gene expression 
signature associated with a favorable prognosis in glioblastoma 
(Cai et al., 2020). We showed that decreased BET1 expression 
was associated with early relapse in CRPC. In addition to 
the identified protein-coding genes, in our correlation analysis, 
we also found long non-coding RNAs (lncRNAs) with altered 
expression patterns. LncRNAs are involved in the regulation 
of various biological processes, including many cancer-
associated pathways (Spizzo et  al., 2012; Flynn and Chang, 
2014; Quinn and Chang, 2016). Aberrant lncRNAs expression 
has been observed in a variety of cancers, and many studies 
have shown a link between these molecules and cancer 
development and progression. In LAPC, we  found changed 
expression of the following lncRNAs that were associated 
with PFS: MIR22HG (rs  =  0.27), MEG3 (rs  =  0.27), and 
MIR29B2CHG (rs  =  0.31).

Regarding the role of MIR22 host gene (MIR22HG) in PC, 
decreased MIR22HG expression has been shown to 
be  significantly associated with a higher Gleason score and 
shorter PFS time, highlighting its prognostic potential (Shen 
et  al., 2019). In our analysis, we  also observed an association 
between decreased MIR22HG expression and early onset of 
disease recurrence.

Studies on maternally expressed 3 (MEG3) have shown that 
this lncRNA inhibits the proliferation and metastasis of gastric 
cancer through p53 signaling (Wei and Wang, 2017). In PC, 
MEG3 is characterized by a downregulated expression, and 
increased expression has an inhibitory effect on tumor growth 
(Wu et  al., 2019). Therefore, our results are consistent with 
the published data.

There are currently no data on the role of MIR29B2 and 
MIR29C host gene (MIR29B2CHG) in cancer. Therefore, 
we  report here, for the first time, the involvement of 
MIR29B2CHG in the progression of LAPC.

In CRPC, we  identified an association between an increase 
in the expression of LINC02001 (small nucleolar RNA host 
gene 30 [SNHG30]; rs  =  −0.38) and early onset of disease 
relapse. No studies on the involvement of LINC02001 in cancer 
have been reported.

Summing up, in this study, genes and pathways associated 
with PFS in advanced-stage PC (LAPC and CRPC) were 
identified. Our results are consistent with the previous 
studies that reported the participation of KIF11, SQLE, 
SOD3, LRRC26, IFNGR1, MIR22H6, and MEG3 in the 
carcinogenesis and progression of PC. The possible association 
with the progression of PC was first shown for genes 
ZC2HC1A, CLPB, PRPF19, MPST, GIMAP6, BET1, 
MIR29B2CH6, and LINC02001. All listed genes showed 
strong correlations with PFS and thus could be  considered 
as potential prognostic markers.
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Genome architecture plays a pivotal role in gene regulation. The use of high-
throughput methods for chromatin profiling and 3-D interaction mapping provide rich
experimental data sets describing genome organization and dynamics. These data
challenge development of new models and algorithms connecting genome architecture
with epigenetic marks. In this review, we describe how chromatin architecture could
be reconstructed from epigenetic data using biophysical or statistical approaches.
We discuss the applicability and limitations of these methods for understanding the
mechanisms of chromatin organization. We also highlight the emergence of new
predictive approaches for scoring effects of structural variations in human cells.

Keywords: Hi-C, modeling, polymer physics, machine learning, predicting approaches

STUDYING GENOME ARCHITECTURE: METHODS AND
MECHANISMS

The human genome has a three-dimensional structure, which folds in the nucleus, producing
specific chromatin interactions. These chromatin interactions can be experimentally assessed by
modern microscopy methods (reviewed in Boettiger and Murphy, 2020) or sequencing approaches,
such as genome-wide modifications of chromatin conformation capture (Hi-C) (Lieberman-Aiden
et al., 2009; Rao et al., 2014), split-pool recognition of interactions by tag extension (Quinodoz
et al., 2018), and genome architecture mapping (Beagrie et al., 2017). These methods are covered by
comprehensive reviews (Kempfer and Pombo, 2020) and comparative studies (Fiorillo et al., 2020).
Here, we focus mainly on the Hi-C technique and its results because this method was most widely
applied in various genomic studies during the last decade, allowing the accumulation of a huge
amount of experimental data. Both methodological aspects of the Hi-C technique (Fiorillo et al.,
2020) and biological principles revealed by applying this method to study genome architecture
(Szabo et al., 2019) are discussed in detail in several recent reviews. We refer readers to Box 1,
where we briefly discuss the main concepts of this field for the sake of completeness.

WHY MODELING 3-D GENOME FOLDING?

The models and algorithms predicting genome architecture can be used in different ways. First,
we can apply modeling to get new insights or test our hypotheses of molecular mechanisms
underlying 3-D genome folding. Polymer modeling is used more often for this purpose, but
convolutional neural networks, such as, for example, Akita (Fudenberg et al., 2020) and DeepC
(Schwessinger et al., 2020), also enable identifying the main chromosome features contributing
to genome architecture. Such approaches give remarkable results. During the last few years, we
gained a significant amount of data describing the main features of 3-D genome folding and
understanding the molecular mechanisms underlying these data, including loop extrusion and
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BOX 1 | Start of Box 1 Hi-C Technology Uncovers Principles of Genome Organization
Hi-C includes crosslinking and digestion of chromatin, followed by proximity ligation and sequencing of ligation products (Lieberman-Aiden et al., 2009; Rao et al.,
2014). During the proximity ligation step, only those genomic regions that spatially co-localize have a chance to be ligated. Thus, counting ligation products by
next-generation sequencing allows deciphering the spatial proximity of loci. Although several single-cell Hi-C methods are published (Flyamer et al., 2017), the
technique is most often applied to large cell populations, and ligation event frequency (also referred to as interaction or contact frequency throughout this review)
should be interpreted as the average frequency of loci co-localization among the studied cell population. This snapshot of averaged chromatin contacts in a
population, typically represented by a matrix of pairwise interaction frequencies, is known as a Hi-C map.
Using Hi-C and other methods, several important principles of genome architecture were recently discovered. At the largest scales, chromosomes occupy distinct
territories, showing only limited intermingling (Tavares-Cadete et al., 2020) and characterized by an exponential decay of contact frequencies with the genomic
distance between loci (Lieberman-Aiden et al., 2009). Within the territories, one can distinguish compartments that correspond to different chromatin types
(Lieberman-Aiden et al., 2009). Mechanisms underlying compartment formation are actively debated, and there is a growing body of theoretical and experimental
pieces of evidence suggesting the essential role of liquid–liquid phase separation in these processes (Kantidze and Razin, 2020; Razin and Gavrilov, 2020; Razin and
Ulianov, 2020). At a finer scale, specific loci may preferentially interact with each other, forming topologically associated domains (TADs) (Dixon et al., 2012), stripes
(Vian et al., 2018), cliques (Petrovic et al., 2019), and loops (Rao et al., 2014). Although the terminology is not well established in this field (de Wit, 2020), the current
mechanisms underlying the formation of these structures fall into two categories.
First is a recently proposed loop extrusion mechanism (Sanborn et al., 2015; Fudenberg et al., 2016). It is considered that ring-shaped cohesin and condensin
proteins bind chromatin and form and continuously extend loops in an ATP-dependent manner. Extrusion stops encountering another extrusion complex or, in the
case of cohesins, when reaching CTCF protein bound to DNA in a specific orientation. This results in increased interaction frequency between loci bound by cohesin,
displayed on Hi-C maps as loops (two-point interactions) (Rao et al., 2014) or stripes (one-to-many-points interactions) (Vian et al., 2018). The chromatin interaction
patterns arising from loop extrusion mechanisms could be qualitatively described by the landscape of CTCF binding and also depend on the loading and
processivity of cohesin (Fudenberg et al., 2016). Moreover, loop extrusion results in increased proximity of all loci located between convergently oriented CTCF sites,
which is captured by the formation of looping domains (Rao et al., 2014).
The second mechanism responsible for the formation of loops and cliques is mediated by the formation of regulatory protein complexes, for example, polycomb
complexes (Eagen et al., 2017), and certain transcription factors (Petrovic et al., 2019). This mechanism is at least partially independent of cohesin-mediated
extrusion because the subset of loops remains stable upon degradation of the cohesin complex (Rao et al., 2017).
It is important to note that profiles of chromatin interactions captured by the Hi-C experiment are formed by the joint action of different mechanisms. For example,
the formation of TADs, which represent self-interacting regions in the genome, is affected both by loop extrusion and compartmentalization processes (Szabo et al.,
2019; de Wit, 2020), which is consistent with both convergent CTCF sites and chromatin state transition enrichment at TAD boundaries (Dixon et al., 2012; Rao
et al., 2014; Huang et al., 2015).

phase separation, which was largely facilitated by biophysical
modeling and statistical analysis of chromatin properties. This
field of research is well described in reviews (Imakaev et al., 2015;
Lin et al., 2019). However, known mechanisms do not explain all
3-D chromatin features, which limits hypothesis-driven models
and further research is required to explain them.

Second, 3-D genome models can be used to predict functional
consequences caused by changes in 3-D genome folding. It is
shown that alterations of chromatin topology accompanying
genomic variations, especially large structural variations, can
cause changes of gene expression (Franke et al., 2016; Rodríguez-
Carballo et al., 2017; Kraft et al., 2019). One can find examples of
such gene expression changes and their underlying mechanisms
in the last part of this review. In these cases, modeling of 3-D
genome architecture is essential for accurate prediction of the
consequences of the genomic mutations.

Last, one can use modeling for predicting the 3-D genome
architecture of new data. It is possible to predict chromatin
interactions for different cell types lacking experimental Hi-C
data (Belokopytova et al., 2020). Machine learning methods often
gain applicability in this way.

WHICH 3-D GENOME STRUCTURES
CAN BE PREDICTED, AND WHY THEY
ARE RELEVANT?

Chromosome-capturing methods, such as Hi-C, allow
deciphering the main features of chromatin folding. Since the
first Hi-C experiments, chromatin structures as compartments,

TADs, and loops were revealed (see Box 1 for details of
mechanisms underlying these structures). In the following, we
describe the main Hi-C map features and algorithms used to
predict them. Also, it may be helpful for readers new to the field
to use the table of algorithms (Table 1) containing algorithms for
predicting different 3-D genome features.

Promoter–Enhancer Interactions
Interactions between promoters and enhancers are essential
for expression regulation. Pioneering attempts to find such
regulatory connections rely on either the correlation of epigenetic
marks of promoters and enhancers across different cell types
or evolutionary conservation of promoter–enhancer proximity
in the linear DNA molecule (Spicuglia and Vanhille, 2012;
Andersson and Sandelin, 2020). With the advent of genome-wide
3C-methods, we gain the ability to measure spatial proximity
between genomic segments. The question about the exact role
of spatial contacts between regulatory elements in the control
of gene expression is still under active debate; however, much
research defines “interacting” enhancers and promoters as pairs
of loci belonging to the anchors of one Hi-C loop. Although
we argue that using this loop-based definition of interacting
promoters and enhancers might be confusing (see Box 1 and
limitations section below for additional discussion), several
algorithms are designed to predict enhancer–promoter pairs
located within the anchors of one loop (Whalen et al., 2016).

Loops
Instead of predicting whether promoters and enhancers overlap
loop anchors, some algorithms, such as Lollipop (Kai et al., 2018),
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TABLE 1 | Tools for modeling and predicting chromatin interactions.

Tool name Input features Target features Method/algorithm

See review by Xu et al. (2018) Histone marks, TFs binding, DHS Promoter–enhancer
interactions

See review by Xu et al. (2018)

MacPherson et al. (2018) model HP1, H3K9me3 Compartments Polymer modeling

MichroM + MEGABASE (Di Pierro et al.) Histone marks, TFs binding Compartments NN classifier + polymer modeling

Huang et al. (2015) model Histone marks TADs BART

3Disease Browser (Li et al., 2016) Enhancers and TAD boundaries Rearranged TADs Linear model

Lollipop (Kai et al., 2018) Chip-seq data, CTCF directionality Loops ML ensemble classifier (random forest)

3DEpiloop (Al Bkhetan and Plewczynski, 2018) Histone marks, TFs binding Loops ML ensemble classifier (random forest)

CTCF-MP (Zhang et al., 2018) CTCF binding, DHS, nucleotide
sequence

Loops ML ensemble classifier/NN (Boosted
trees/word2vec)

EpiTensor (Zhu et al., 2016) Histone marks, TFs binding Loops Tensor modeling + PCA

DeepMILO (Trieu et al., 2020) Sequence of loop anchors Rearranged loops CNN and RNN

3D-GNOME (Sadowski et al., 2019) CTCF ChIA-PET Rearranged loops linear models

3DPredictor (Belokopytova et al., 2020) CTCF, RNA-seq Whole hi-c map ML ensemble regression (gradient boosting)

Hi-C Reg (Zhang et al., 2019) Histone marks, TFs binding, DHS Whole hi-c map ML ensemble regression (random forest)

Akita (Fudenberg et al., 2020) Sequence Whole hi-c map CNN

DeepC (Schwessinger et al., 2020) Sequence Whole hi-c map CNN

Yifeng Qi and Bin Zhang model (Qi and Zhang,
2019)

CTCF binding, Chromatin states Whole hi-c map Polymer modeling

HiP-HoP (Buckle et al., 2018) CTCF and cohesin binding, Histone
marks or DHS

Whole hi-c map Polymer modeling

Rowley et al. (2017) model GRO-seq + CTCF binding Whole hi-c map Explicit algebraic model

PRISMR (Bianco et al., 2018) Wild-type Hi-C data Whole hi-c map in mutated
cells

Polymer modeling

DHS, DNAse I hypersensitivity sites; TFs, transcription factors; TADs, topologically associated domains; ML, machine learning; NN, neural network; CNN, convolutional
neural network; RNN, recurrent neural network; BART, Bayesian additive regression trees; PCA, principle component analysis.

3DEpiloop (Al Bkhetan and Plewczynski, 2018), and EpiTensor
(Zhu et al., 2016), are designed to directly infer all loop
positions using epigenetic data. In mammals, most of the
looping interactions are formed due to the cohesin-mediated loop
extrusion process (see Box 1 for details). Thus, some algorithms,
such as CTCF-MP (Zhang et al., 2018) or Lollipop (Kai et al.,
2018), are focused exclusively on the prediction of CTCF-
mediated interactions or separately access quality of prediction
for CTCF-mediated and all other loops as in the DeepMILO
algorithm (Trieu et al., 2020).

TADs
TADs have the shape of triangles on Hi-C maps, which
indicates an increase of chromatin interaction frequency within
TADs and insulation at TAD borders. These structures are
largely dependent on the extrusion process and also influenced
by other mechanisms (see references provided in Box 1
for discussion of the TAD definition and current views on
mechanisms explaining TAD formation). TADs are also relevant
for promoter–enhancer interactions as the majority of the
functional interactions occur within the same TAD. It is known
that TAD boundaries are enriched by CTCF binding sites
(usually in convergent orientation) and different epigenetic
marks (Dixon et al., 2012). Based on these observations, Huang
et al. (2015) use ChIP-seq data for different proteins in a
computational model predicting TAD boundaries and chromatin
interaction hubs.

Compartments
Chromatin compartments are the main features of distant
contacts revealed by chromosome conformation capture. Hi-
C maps show that interactions occur more often within each
compartment rather than across compartments (Lieberman-
Aiden et al., 2009). The presence of compartments results in
a checkerboard-like (or “plaid-like”) pattern of contacts on Hi-
C maps. It is shown that compartments reflect the clustering
of different types of chromatin (see Box 1 for details). Seminal
work proposed binary division of the genome into eu- and
heterochromatin, which correspond to A- and B-compartments.
Subsequent research extends this view, suggesting that multiple
chromatin states exist, each described by a unique profile
of spatial interactions (Rao et al., 2014). In accord with
this, several models are proposed, allowing the prediction of
compartmental interactions based on epigenetic data (Di Pierro
et al., 2017; MacPherson et al., 2018). Most of these algorithms
utilize physical modeling to infer spatial chromatin interactions.
Machine learning methods are often used as a part of the
algorithm to attribute genomic loci to a certain compartment
based on its epigenetic signatures.

Hi-C Maps
Predictions of all aforementioned features require similar
epigenetic information. Thus, it should be possible to
develop an algorithm predicting all topological structures
simultaneously. Because it is widely assumed that biologically
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relevant interactions do not occur at a distance above several
megabases, most of the algorithms limit their prediction to these
distances, which reduces computational time and resources.
For instance, machine learning algorithms, such as 3Dpredictor
(Belokopytova et al., 2020), HiC-Reg (Zhang et al., 2019), Akita
(Fudenberg et al., 2020), and DeepC (Schwessinger et al., 2020),
predict all interactions within an ∼1–3 Mb window. In addition,
some polymer modeling approaches, such as Hip-Hop (Buckle
et al., 2018) and PRISMR (Bianco et al., 2018), could be used to
predict the whole Hi-C heat map.

From Contact Frequencies to 3-D
Models
Hi-C and other 3C-based methods provide a snapshot of
pairwise interactions between loci. Although we call this “3-
D” information, it cannot be trivially transformed into 3-D
structures. An approach known as restraint-based (RB) modeling
interprets the 3C-based data as a set of spatial restraints to
build a 3-D model of the chromatin fiber by satisfying the input
restraints. The chromatin fiber is represented as a polymer of
consecutive monomers, and several computational optimization
strategies can be employed to find 3-D models of chromatin
(Dekker et al., 2013; Serra et al., 2015). The challenge of predicting
3-D genomic structures from high-resolution chromosome
conformation capture data was recently taken by several groups,
and we refer the reader to the recent review by Kimberly MacKay
and Anthony Kusalik describing problems and solutions in this
field (MacKay and Kusalik, 2020) and to the articles collected in
the recently published book Modeling the 3D Conformation of
Genomes (Tiana and Luca, 2019).

HOW DO THE MODELING ALGORITHMS
WORK? PROBLEMS AND LIMITATIONS

All models and algorithms that are currently used to infer
chromatin contacts from epigenetic data could be divided
into two categories. First are the models derived from
the physical simulation of chromatin behavior, i.e., polymer
modeling. The second includes statistical algorithms searching
for interdependencies between genetic and epigenetic properties
and patterns of 3-D contacts. Here, we described the principles
and limitations of both approaches.

POLYMER MODELING

The physics of chromatin has been the subject of intense research
over many decades. Seminal studies by de Gennes and Witten
(1980) provide basic rules describing polymer behavior under
different conditions. Importantly, these studies show that, when
a polymer is large (i.e., its size increases the size of individual
monomers significantly), its physical properties do not depend
on the monomer’s chemical structure. Instead, the behavior
of a polymer depends on several physical parameters, such as
monomer concentration, solvent quality, and temperature. For
different combinations of these parameters, the polymer would

exist in one of the well-described equilibrium states, such as the
random coil, the swollen coil, the equilibrium globular state, and
others (Fudenberg and Mirny, 2012). Thus, knowing the key
parameters and using the laws of polymer physics would allow
the description (and prediction) of chromatin behavior within
the nucleus. These ideas gave rise to the first physical models of
chromatin architecture.

Development and validation of physical models during
recent decades are linked to the development of experimental
techniques measuring genome architecture (Figure 1). The
presence of chromosome territories as well as measures
of mean distances between defined loci by FISH disagree
with basic swollen coil or random coil polymer properties
(Hahnfeldt et al., 1993). There were multiple attempts to
improve these disagreements, of which the fractal globule
(Mirny, 2011) is currently the most accepted. This model,
originally proposed by Grosberg et al. (1988) suggests that
chromatin exists in a highly unknotted fractal-like non-
equilibrium state, and the predictions obtained using this model
fit well with the experimentally measured scaling of Hi-C contacts
(Lieberman-Aiden et al., 2009).

Although the fractal globule recapitulates the experimentally
observed scaling of chromatin contacts better than the
equilibrium globule state, it is still far from a complete
description of chromatin folding in a real cell. Not to mention
all disagreements (see Grosberg, 2016, for a detailed review), the
fractal globule represents a pictorial description of the chromatin
structures and does not include locus-specific features. Thus,
to build a more comprehensive description of chromatin
conformation and dynamics in a real cell, active (energy-
consuming) locus-specific mechanisms should be introduced
into the system.

One such mechanism, which maintains the structure of
chromatin, is a loop extrusion process (see Box 1 for details
on this mechanism). This process was recently introduced into
physical models of chromatin by Fudenberg et al. (2016) and
Sanborn et al. (2015), and later experimentally validated by Ganji
et al. (2018), Davidson et al. (2019), and Kim et al. (2019).
A recent preprint from Banigan et al. (2020) shows another
impressive application of polymer modeling in which it helps to
investigate if a one- or two-sided loop extrusion model works
in the cell and to identify a class of one-sided extrusion models
that can reproduce in vivo experiments. The models of loop
extrusion show good agreement with the experimental Hi-C data.
Importantly, loop extrusion models use epigenetic information
about CTCF binding to account for CTCF-mediated extrusion
barriers. This allows making the model locus-specific; moreover,
modifying CTCF anchors in silico results in different chromatin
packaging as revealed by the models (Sanborn et al., 2015). Thus,
such physical models allow predicting chromatin packaging and
its perturbations knowing CTCF-binding sites.

Another class of locus-specific models is designed to study
and predict the packaging of different chromatin types. Distinct
types of chromatin differentially interact with themselves and
surrounding proteins. This can be imagined as a polymer
composed of several distinct units or blocks. Such polymers are
called block copolymers, and their behavior could be modeled
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FIGURE 1 | Modeling and predicting the main features of the 3-D-genome organization using physical and statistical approaches. The features row contains a
schematic representation of the main features of 3-D-genome organization: scaling of contacts with genomic distance, compartments, TADs, loops, and inter-cell
variability of genome architecture (from left to right). The 3C methods row shows that contact scaling and compartments could be found using low-resolution Hi-C
data, whereas identification of loops and dissection of TAD structure requires high resolution. Studying inter-cell variability is challenging and could be done using
single-cell Hi-C approaches (scHi-C). Microscopy methods shown in the second row include conventional 3D-FISH (fluorescent in situ hybridization) to measure
spatial distances; electron microscopy, which is helpful to visualize segregation of eu- and heterochromatin; and modern super-resolution microscopy methods,
which, in combination with oligopaints, allow dissection of the internal structure of TADs in individual cells (Boettiger and Murphy, 2020; Szabo et al., 2020). Physical
description of chromatin interactions (fourth row) includes generic models such as the fractal globule as well as locus-specific models. For the latter, researchers
employ block-copolymer models and models with chromatin binders, such as strings and binders switch (SBS) and diffusive transcription factor (TF) models and
concepts of liquid–liquid phase separation (LLPS). All these physical models allow studying the dynamics and inter-cell variability of 3-D structures, providing
ensembles of possible chromatin conformations (this is schematically shown in the last cell of the physical models row). Statistical methods (the last row) could utilize
interconnections between epigenetic data and chromatin organization using different approaches. This includes approaches in which explicitly defined algebraic
expressions contain free parameters, which could be fit from the data, hidden Markov models (HMM), and various machine learning (ML) algorithms. TADs, loops,
and compartments were predicted using these methods. However, for single-cell data, these approaches are not applicable, mainly due to the large amount of data
required for the implementation of these algorithms.

knowing the interaction potential between blocks (Bates and
Fredrickson, 1990). Several attempts have been made to apply
this logic for modeling chromatin interactions in Drosophila
and Human (Jost et al., 2014; Di Pierro et al., 2016; Ulianov
et al., 2016). These models predict that specific preferences of
interactions between similar blocks of chromatin result in spatial
segregation of distinct chromatin domains in the process of
liquid–liquid phase separation (Nuebler et al., 2018).

Block copolymer models rely on the epigenetic information
about histone modifications and/or architectural factor binding
to assign DNA segments to specific chromatin types. Once
developed, these models could be used to predict chromatin
architecture if epigenetic data is available. Indeed, several studies
show that such prediction recapitulates Hi-C data very well (Di
Pierro et al., 2017), especially when accounting for the loop
extrusion process (Nuebler et al., 2018; Qi and Zhang, 2019).

To further extend block copolymer models, one should
consider the physical nature of interactions between blocks. In
a nucleus, these interactions are mediated by specific factors,
such as polycomb-group proteins (Plys et al., 2019; Eeftens et al.,
2020), BRD-domain containing proteins (Gibson et al., 2019),

HP1 (Larson et al., 2017; Sanulli et al., 2019), mediator and RNA
polymerase II (Cho et al., 2018), or interactions between DNA
and nuclear lamina proteins (Chiang et al., 2019; Ulianov et al.,
2019). The above-described block copolymer models account
for these interactions implicitly by setting specific interaction
potentials between different block types. Other models explicitly
introduce binder proteins that mediate interactions in the system.

There are multiple ligand-binding theories applied to model
DNA–protein interactions in chromatin, reviewed, for example,
in Teif and Rippe, 2010. Among recent models that aim to
explain genome-wide interaction profiles revealed by 3C-based
methods, several consider specific chromatin binders, such
as HP1 (Teif et al., 2015; MacPherson et al., 2018), lamina
proteins (Chiang et al., 2019; Ulianov et al., 2019), or generic
active and inactive complexes (Brackley et al., 2016b), whereas
others describe binders, such as abstract molecules with defined
physical properties but unknown biological nature (Nicodemi
and Prisco, 2009; Barbieri et al., 2012; Brackley et al., 2013, 2017;
Chiariello et al., 2016). Mechanistically, chromatin clustering
may be reproduced by these models either due to the affinity of
binders or because of multivalent interactions between binders
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and chromatin, which results in bridging-induced attraction
(Brackley et al., 2013, 2017; Johnson et al., 2015). In addition
to compartmentalization, these mechanisms could explain TAD
and loops formation (Brackley et al., 2016b). For more details on
these and other physical models, we refer the reader to a recently
published extensive review (Brackey et al., 2020) and a collection
of articles provided with the book (Tiana and Luca, 2019).

Here, it is pertinent to note that the binder positions are
inferred from epigenetic data even in those models that use
“abstract” binders. This allows predicting chromatin folding in
normal and mutated genomes, knowing epigenetic data with
high accuracy (Scialdone et al., 2011; Bianco et al., 2012,
2018; Brackley et al., 2016a,b; Barbieri et al., 2017; Chiariello
et al., 2017; Kragesteen et al., 2018). For example, the Hip-
Hop model (Buckle et al., 2018) infers binder positions based
on H3K27 acetylation data and/or chromatin accessibility, and
the authors show that this epigenetic information is sufficient
for prediction of chromatin interactions. In the PRISMR model
(Bianco et al., 2018), Hi-C data obtained from wild-type cells are
used to define the number of binder types and their affinities,
and this information can be further used to model chromatin
conformation after a deletion or duplication event occurs.

The examples mentioned above show that physical modeling
could be a powerful tool for both validation of proposed
molecular mechanisms underlying chromatin architecture and
predicting spatial interactions based on epigenetic data. In the
following, we discuss some limitations that should be addressed
to allow a comprehensive description of genome organization by
physical modeling.

Limitations of Physical Models
Physical Modeling Is Hypothesis-Driven
As was mentioned above, physical models rely on an explicitly
defined set of rules to describe polymer behavior. However, we
are still far from a complete understanding of all biophysical
processes involved in chromatin organization. Thus, it is clear
that none of the currently developed models can accurately
explain all details of genome architecture and dynamics.

For example, PRISMR and Hip-Hop models introduce specific
binders whose positions and affinity could be inferred from
experimental Hi-C or ChIP-seq data. The problem is not only
that we do not know the correspondence between the model’s
abstract binders and real proteins. The major concern is that
these abstract binders might not be given the same physical
properties as real proteins. Biochemical dissection of regulatory
complexes, such as PRC1 or Mediator, show the complexity
of their structural organization and regulation, which is not
described by current models. This limits modeling approaches
to qualitative predictions of trends rather than quantitative
comparison with contact maps.

Inferring Key Physical Parameters Might Be
Challenging
There are many biophysical parameters that are currently
unknown but essential for modeling. This includes affinity
constants and concentrations of chromatin binders, the position
of boundaries, and processivity of loop extruders and other

factors. One solution to this problem is extracting the missing
parameters from available ChIP-seq data. For example, in the
MEGABASE + MiChroM model developed by Di Pierro and
colleagues, chromatin states are first inferred from epigenetic
data using a machine learning approach and then used in a
block copolymer model optimized to fit Hi-C data (Di Pierro
et al., 2017). However, in many cases, available ChIP-seq data
is only indirectly connected to the affinity and concentration of
the key architectural factors, and the dependence between ChIP-
seq signals and biophysical properties of chromatin may vary in
different cell types. Thus, the model developed using one cell type
might not be well transferable to another.

There are also models that fit their parameters directly using
Hi-C data. This is, for example, the PRISMR model (Bianco
et al., 2018), which defines binder types and positions based on
Hi-C maps. The transferability of this model to other cell types
or loci without knowing corresponding experimental Hi-C data
could be problematic.

There are also several technical parameters of simulation
that could influence the results, including the finite volume
effect, polymer conformation used for model initialization,
equilibration time, sampling size, etc. We refer those readers
interested in this subject to a recent review describing potential
pitfalls and methods developed to overcome these limitations
(Gartner and Jayaraman, 2019).

Physical Modeling Is Computationally Intensive and
Often Requires Coarse-Graining
Using a polymer modeling approach is computationally
intensive. Technically, the vast majority of the physical models
describe chromatin as a string with beads. Ideally, each bead
should represent a single nucleosome as histone octamers are
monomers of chromatin organization. However, this leads to a
huge number of beads required to simulate chromosome-scaled
loci. The behavior of beads is typically simulated using LAMMPS
software, which is computationally intensive for such a large
number of objects. Great computational resources are needed
for every modeling attempt, and these are not always accessible.
Although it is possible to model only a particular chromosomal
region, whole chromosome or whole genome modeling is
computationally too expensive.

One solution could be to decrease the resolution and use more
coarse-grained models, with which several atoms or molecules
are grouped and represented by a single simple object. However,
this comes at a cost of the inability to resolve fine patterns
of interactions. There are multiple levels of chromatin coarse-
graining, starting from atomic resolution and up to hundreds of
thousands of base pairs, each suitable for the specific problem of
interest (see Table 1 in the recent review published by Brackey
et al., 2020). The choice of coarse-graining should be considered
carefully in order to find a balance between the detail of the model
and computational cost.

To sum up, physical modeling is essential for validating
hypotheses about mechanisms driving chromatin organization.
When using epigenetic data to infer properties of chromatin
monomers, it is easy to repurpose a physical model from
hypothesis validation to prediction of locus-specific chromatin
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organization. However, there are several limitations of these
predictions, and we next describe another class of approaches
based on machine learning techniques that have the potential to
overcome some of the aforementioned limitations.

STATISTICAL APPROACH

It is known that different epigenetic marks and transcriptional
factors correlate with various regulatory elements, chromatin
states, and other genomic features. For example, histone
modification H3K9me3 correlates well with constitutive
heterochromatin, which correlates with the B compartment
(Strom et al., 2017), TAD boundaries are enriched by CTCF
protein (Dixon et al., 2012; Rao et al., 2014), and open chromatin
regions are enriched by specific histone modification. Thus, one
can simply use regression to predict 3-D genome features based
on epigenetics data. For example, correlation-based methods are
used for the prediction of enhancer–promoter interactions using
histone modifications, CAGE, ChIP-seq, and other chromatin
features as input (Xu et al., 2020).

Although linear models could explain 3-D organization to
some extent, it is clear that certain dependencies between genetic
features and chromatin interactions are not linear. The most
prominent example of such non-linearity is the scaling of the
average chromatin contact frequency with genomic distance,
which could be well described as a power law. This dependence,
P(s) ∼ sˆx, has only one free parameter x, which could be
easily obtained by fitting experimental data. Of course, it is
not enough to account for distance dependence to obtain
accurate estimations of contact frequencies. One should also
describe locus-specific insulation, compartmentalization, and
other features of genome organization. This description should
be done in the form of algebraic expressions with some free
parameters that could be fit from the data. This was utilized
recently by Rowley et al. (2017), who proposed an algebraic
expression combining linear and exponential terms to predict
genomic contacts based on GRO-seq transcription data, CTCF
binding, and genomic distance. As a result, Rowley et al. simulate
Hi-C maps including main 3-D structures, such as TADs and
loops with high accuracy.

However, there might be multiple non-linear dependencies
between histone modifications, transcription factor binding, and
chromatin interactions, which cannot be defined analytically
as an algebraic expression, such as a power law. These
dependencies could be found by sophisticated machine learning
algorithms, such as logistic regression, gradient boosting, random
forest regression, neural networks, and others (Eraslan et al.,
2019; Figure 2).

Machine learning algorithms operate with a numerical
representation of input information (features): nucleotide
sequence; genomic distance or epigenetic marks; and
experimentally measured target feature values, such as contact
frequency between loci, positions of loop anchors, etc. The main
result of machine learning training is a function that transforms
input features into predictions of target values. The similarity
between predictions and experimental data is measured using a

user-defined loss function. During a training step, the portion of
available data called the training subsample is used to optimize
the transforming function so that the loss function is minimal;
this is how the algorithm finds interdependencies between
features and target values. These interdependencies might
represent general biological mechanisms or be subsampling
artifacts specific to the training subsample. Moreover, the
function transforming the input features into predictions of
target values typically has numerous adjustable parameters. This
could allow fitting the detail and noise in the training data to
the extent that it negatively impacts the performance of the
model on held-out data. In this case, the developed algorithm
is of no use even if prediction accuracy is high as it cannot
generalize over unseen samples. This problem is well known in
the machine learning field under the name of “overfitting.” To
verify that any increase in accuracy over the training subset is
generalizable, an evaluation of the algorithm using a portion of
unseen data (validation subset) should be done. It is essential
that the validation subset does not contain samples presented
in the training subset. However, during the design of training
and validation subsets, one should note that genomic objects
that are not equivalent from a mathematical point of view might
share a large amount of biological information. For example,
nested chromatin loops might share a large portion of epigenetic
information encoded by the window spanning loop anchors
although the anchors themselves do not overlap and formally
represent different pairs of genomic regions. Such indirect
overlapping results in the sharing of information between
training and validation data sets, leading to the overestimation
of prediction accuracy (Belokopytova et al., 2020). To overcome
this problem, one can use different chromosomes for training
and validation data sets.

It is considered that machine learning–based algorithms
can find complex non-linear patterns when fitting the model.
Machine learning is used for binary classifiers for regression-
based models, enabling the prediction of structures ranging from
two-point interactions to whole Hi-C maps. Several algorithms
employing these methods for promoter–enhancer interaction
prediction were recently developed, including TargetFinder
(Whalen et al., 2016), DeepTACT (Li et al., 2019), 3DPredictor
(Belokopytova et al., 2020), and HiC-Reg (Zhang et al., 2019).
We refer the reader to the informative review of Xu et al. (2020)
describing different algorithms for the prediction of enhancer-
promoter interactions. Other spatial chromatin structures, such
as loops (Zhu et al., 2016; Al Bkhetan and Plewczynski, 2018;
Kai et al., 2018; Zhang et al., 2018; Trieu et al., 2020) and
contact probabilities (Zhang et al., 2019; Belokopytova et al.,
2020; Fudenberg et al., 2020; Schwessinger et al., 2020) also
can be predicted by machine learning–based algorithms (see
the section above). Furthermore, a machine learning–based
approach enables revealing biological features underlying 3-D
genome folding, which improves our understanding of biological
mechanisms. For example, extracting matrix positional weights
from layers of convolution neural networks helps to find the main
features, in particular, sequences giving the main contribution to
the prediction and consequently to the 3-D chromatin structure.
Another example is the analysis of feature importance in a
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FIGURE 2 | In designing a machine learning–based algorithm, one should carefully choose the main “ingredients” required for good prediction.

gradient-boosting algorithm that gives the ranked list of features
that helps to find the best feature. Anyway, analysis of features
and algorithm parameters can inspire thoughts of biological
mechanisms underlying the studying process.

Challenges and Limitations
Defining Target Features and Their Properties
The development of a predictive algorithm should start from
a clear statement of biological features one wants to predict.
Clear definitions of the features are important for the selection
of positive and negative samples as well as for the choice of the
machine learning algorithm.

Let us consider the goal of the prediction of interacting
promoter–enhancer pairs. How would one define positive cases,
i.e., interacting pairs? Now, it is clear that the majority of
loops (see Box 1 for details of mechanisms underlying these
structures) observed on Hi-C maps are due to the synergetic
activity of cohesin and CTCF proteins. These complexes
form loops that might facilitate interactions of promoters and
enhancers located within the looping region by reducing the
spatial distance between them but do not necessarily directly

mediate contacts between these regulatory elements. In accord
with this, direct functional tests based on targeted enhancer
deletions or CRISPR-interference approaches (Gasperini et al.,
2019) indicate that the vast majority of interacting enhancer–
promoter pairs do not overlap with loop anchors although
they are often located within a reasonable distance from
them (Belokopytova et al., 2020). Thus, functionally interacting
enhancer–promoter pairs might show only a slight increase in
contact frequency. It is worth noting that the NG Capture-C
approach (Davies et al., 2015) provides more sensitive and robust
quantitation and enables detecting more significant interactions
than Hi-C; however, typical Hi-C data are more widespread
and available. At the same time, the majority of algorithms
predicting 3-D genome structures are classifiers, so they solve
the question of whether the promoter and enhancer interact,
answering yes or no. We argue that quantitative measurement
and prediction of spatial enhancer–promoter interactions are
more informative than qualitative attribution to the loop
anchors, and regression-based methods are more suited for
such predictions.

Another example of varying feature definition is loop
prediction. In this case, authors often use loops called by
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specific algorithms as positive samples. A large proportion of
loop calls varies between algorithms and visually assessed loops
(Belokopytova et al., 2020; Salameh et al., 2020). Methods for loop
detection, such as for TAD detection, are constantly improving.
For example, the last published method Peakachu for loop calling
can detect more loops than previous algorithms (Salameh et al.,
2020). The same applies to TAD calling: Zufferey et al. (2018)
compared 22 different TAD caller algorithms and found that
TAD sizes and numbers vary significantly among callers and
data resolutions.

To sum up, it is very important to consider the nature
and biological properties of target features and carefully design
positive and negative samples if using classifiers for prediction.

Predicting Single-Cell Data
The statistical approach is well applicable for 3-D genome
structure prediction and investigation, but it uses population
data. It allows getting a prediction that is actually a mean
value for a cell population, which does not provide information
about the 3-D genome organization of a single cell and
differences of spatial contacts between distinct cells. Conversely,
physical modeling always produces ensembles of single-cell
chromatin configurations. Nevertheless, it does not mean that
this prediction matches a real biological cell exactly even if
its average matches population Hi-C data. However, recently
Conte et al. (2020) show the consistent agreement between the
predicted structures and independent single-cell super-resolution
microscopy data, which provides evidence that, at least in the
studied loci, polymer physics approaches accurately capture
single-cell chromatin conformation. This issue is under active
debate, however.

Understanding Mechanisms Underlying Prediction
Another limitation is that one cannot extract a simple algebraic
formula transforming features into target feature values from
a trained machine learning model. Therefore, the statistical
dependencies found by machine learning algorithms are difficult
to interpret in biological terms. Nevertheless, it is possible
to evaluate the feature’s contribution to prediction. We have
already discussed several approaches for estimation of feature
importance above; in addition, modifying features in silico and
accessing how the modifications impact prediction could provide
insights about the role of biological features used for prediction
(Fudenberg et al., 2020).

Choosing Data Parameterization Function
To train a machine learning model, input data should be
represented in a specific format, typically as a numeric vector
of fixed length. The process of conversion of the input
data into the desired format is called parameterization, and
choosing the parameterization function might not be trivial.
For example, ChIP-seq data is often used for the prediction of
spatial chromatin contacts. There are several ways to submit
these data to the algorithm: as a sum of ChIP-seq signals
in the interval between two genome loci of interest, the
total number of peaks in this region, the signal value of the
nearest ChIP-seq peaks, or the p-values of peaks, etc. In our

experience, differences in parameterization could significantly
affect prediction accuracy. Thus, the most challenging part is
to choose the best way of parameterization to achieve the best
performance of the algorithm.

Input Data Quality
Another important issue is the quality of the training data. Some
machine learning algorithms are sensitive to outliers presented in
the data. In this case, data smoothing should be performed before
training the model. For example, for Hi-C and RNA-seq data, it
is often useful to log-transform values.

Recently, high-resolution Hi-C maps were published (Hsieh
et al., 2015, 2020; Krietenstein et al., 2020). They reveal chromatin
structures in more detail and thereby improve predictions.
Moreover, we noticed that the prediction of higher resolution
heat maps is more accurate than the prediction of the same
heat map but with a lower resolution (Belokopytova et al.,
2020). This aspect is explained by features used for prediction.
We gain lots of information from ChIP-seq data, in which the
protein-binding event is attributed to a small locus (usually
less than 200 base pairs). In this case, using an ultra-high
resolution of Hi-C maps provides a better correspondence
between protein-binding sites and interacting loci, allowing
the model to learn effects mediated by specific proteins in a
more direct way.

Overfitting
Another problem of machine learning approaches is overfitting.
In this case, the model performs well on the training data set
but does not perform well on a holdout sample, actually not
capturing real complex patterns underlying the 3-D genome
structure. Non-overlapping subsets for training and validation
help to detect overfitting. There are two main ways to minimize
overfitting: training the network on more examples and changing
the complexity of the network. However, in the case of biological
data, it is not always possible to have enough training samples. To
increase the number of samples, it may be necessary to combine
data from multiple sources. This leads to the next challenge: to
normalize data from different sources that require rigorous data
preprocessing (Xu and Jackson, 2019).

WHAT DO WE CONSIDER A GOOD
PREDICTION?

Any data type has its data specificities, and this is also
true for the Hi-C maps discussed below. It should be
remembered that, usually for 3-D chromatin architecture,
prediction binary classifiers or regression-based methods are
used. There are some common metrics to access the binary
classifier’s performance, such as f1-score, AUC, and others.
These metrics do not have any special characteristics related
to genomic data.

The performance estimation of regression-based methods is
more specific for Hi-C maps. How can we understand that one
heat map is similar to another? Actually, a Hi-C map is a matrix
of numbers, so we can apply any metrics for matrices comparison.

Frontiers in Genetics | www.frontiersin.org 9 January 2021 | Volume 11 | Article 617202169172

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617202 January 18, 2021 Time: 17:35 # 10

Belokopytova and Fishman Predicting Genome Architecture: Challenges and Solutions

FIGURE 3 | The choice of the baseline plays a key role in assessing the prediction accuracy. Experimental data are from Rao et al. (2014); predictions generated
using 3DPredictor (Belokopytova et al., 2020) supplemented with following data: genomic distance, CTCF, and RNA-seq (model 1); (Qi and Zhang, 2019) (model 2).

The basic metric is Pearson’s correlation. Let us consider,
for instance, a Pearson’s correlation equal to 0.8: Does this
correspond to a good or bad prediction? Intuitively, it seems

that a Pearson’s correlation equal to 0.8 indicates accurate
prediction. However, using absolute values is not a good idea.
As we discussed above, contact probability shows prominent
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dependence from distance, and even very simple prediction
algorithms efficiently capture this dependence. Even when
the distance between loci is not directly provided, it could
be inferred from many epigenetic features. For example,
cumulative ChIP-seq signals scale with the length of the
genomic region, allowing prediction of contact probability. As
we show in Figure 3, using randomly shuffled ChIP-seq signals,
which have no biological meaning, allows the generation of
predictions highly correlating with experimental data. Also,
the whole-map correlation coefficient does not reflect the
prediction of specific topological structures, such as TADs, loops,
or compartments.

There are several workarounds allowing the comparison of
Hi-C maps using correlation coefficients. First, one can compare
the correlation between predicted and experimental data with
the correlation between experimental replicates. Ideally, the
prediction should be as similar to the experimental data as
replicates among themselves. However, replicates are not always
available; in addition, Tao Yang et al. show that Pearson’s
correlation between unrelated samples sometimes is equal to
differences between replicates (Figure 3 in Yang et al., 2017).

Another baseline could be obtained by scoring differences of
Hi-C maps between distinct cell types. Chromatin organization
is moderately conserved between different cell types (Dixon
et al., 2012; Battulin et al., 2015) and even between different
species (Fishman et al., 2019; Nuriddinov and Fishman, 2019),
thus predicting cell type–specific features might be more
challenging than an overall 3-D organization. For a high-quality
algorithm, one would expect the difference between prediction
and experimental data on the target cell type to be less than
between different cell types. Besides this, one should carefully
select data sets for comparison, accounting for their noise level.
The lower noise level in the experimental data on target cell type
results in higher measures of prediction accuracy, whereas a high
noise level in a cell type used for baseline results in low baseline
metrics, thus overestimating predictive power.

To overcome the limitations of standard correlations as
measurements of Hi-C map similarity, Tao Yang et al. propose
a framework that minimizes the effect of noise and biases
by smoothing the Hi-C matrix, and then it addresses the
distance-dependence effect by stratifying Hi-C data according
to their genomic distance (Yang et al., 2017). This SCC metric
distinguishes subtle differences between closely related cell lines,
biological replicates, and pseudoreplicates, which was shown in
the paper (Figure 3 in Yang et al., 2017).

Besides Pearson’s correlation and SCC standard metrics for
comparison of matrices, such as MAE, MRE and others can be
used for algorithm performance estimation. Similar to Pearson’s
correlation, understanding the values of these metrics requires
a comparison with the baseline. Overall, we recommend using
several metrics and several baselines for the optimal assessment
of prediction accuracy (Figure 3).

Nevertheless, it is useful to visualize the predicted Hi-C map
for empirical assessment to be confident that the chosen metric
correctly reflects the differences between heat maps. Another way
is to estimate the prediction of 3-D chromatin structures, such
as TADs and loops. For some statistics, one can call loops or

insulator boundaries at experimental and predicting maps and
then compare and overlap detected structures.

The selection of metrics for prediction accuracy estimation is
an important issue for every algorithm. It should correctly reflect
differences of 3-D chromatin features.

PREDICTION OF FUNCTIONAL
CONSEQUENCES OF
REARRANGEMENTS

Some rearrangements have been known to change the 3-D
chromatin structure, causing diseases. Several works show the
importance of chromatin folding in the gene regulation process
(Franke et al., 2016; Rodríguez-Carballo et al., 2017; Kraft
et al., 2019). Inversions, duplications, and other rearrangements
can lead to TAD disruption, changing of promoter–enhancer
interactions, and the emergence of new interactions between
regulatory elements and genes. These insights are significant
for medical genetics because the interpretation of chromosomal
rearrangements in non-coding regions remains a big challenge.
Zepeda-Mendoza et al. (2018) suggest detailed instructions on
how to run a computational pipeline that identifies relevant
candidates of non-coding balanced and apparently balanced
chromosomal abnormality position effects. This pipeline includes
analysis of TADs and the possibility of changing enhancer–
promoter interactions due to rearrangement. Hence, the analysis
of chromosomal rearrangement consequences in the context
of the 3-D genome structure becomes a routine assay.
The recently published machine learning algorithm TADA
(Hertzberg et al., 2020) can prioritize large chromosomal
alterations, such as copy number variants (CNVs) based on
their pathogenicity.

Besides the prediction of the overall rearrangement effect,
it is possible to predict changes in 3-D genome structures
as TADs and loops. The 3D-GNOME algorithm (Sadowski
et al., 2019; Wlasnowolski et al., 2020) generates chromatin 3-
D structures using a Monte Carlo approach based on chromatin
conformation capture (3C) data. It uses high-quality CTCF or
RNA polymerase II ChIA-PET data as a reference chromatin
interaction pattern. For rearrangement prediction, it applies a
series of simple rules to recover chromatin interaction patterns.
The 3D-GNOME algorithm can visualize alterations emerging
in genomic structures after the introduction of SVs1. Another
approach is to predict changes in chromatin loops by a machine
learning–based DeepMilo algorithm (Trieu et al., 2020). The
algorithm can extract features directly from DNA sequences of
loop anchors not using information about the presence and
orientation of CTCF motifs. It allows predicting true Hi-C loops
not having a CTCF signal at their anchors. DeepMILO can
predict effects even of small mutations, and authors identified
insulator loops predicted to change in multiple cancer patients
and genes affected by these loops.

The aforementioned algorithms predict the perturbation of
specific chromatin structures, such as loops and TADs. Other

1https://3dgnome.cent.uw.edu.pl/

Frontiers in Genetics | www.frontiersin.org 11 January 2021 | Volume 11 | Article 617202171174

https://3dgnome.cent.uw.edu.pl/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617202 January 18, 2021 Time: 17:35 # 12

Belokopytova and Fishman Predicting Genome Architecture: Challenges and Solutions

tools are capable of predicting a complete Hi-C map of the
mutated locus. Algorithms such as Akita (Fudenberg et al., 2020),
DeepC (Schwessinger et al., 2020), 3DPredictor (Belokopytova
et al., 2020), PRISMR (Bianco et al., 2018), and others can
predict alterations of 3-D chromatin architecture induced by
structural variants.

An area of increasing interest and active research is
the effect of small INDELs and single base pair variants
on chromatin architecture. It is known that even single
nucleotide replacement can lead to changes in 3-D genome
structure, for example, by modifying CTCF binding sites
(Schmiedel et al., 2016; Sun et al., 2020). A separate mission
of predictive algorithms is to foresee the consequences of
such mutations. Some algorithms, such as DeepMILO (Trieu
et al., 2020), Akita (Fudenberg et al., 2020), and DeepC
(Schwessinger et al., 2020) use a nucleotide sequence as the
main feature for prediction. These algorithms are very powerful
in predicting changes induced by small mutations because
the mutations directly affect input features. On the other
hand, training these algorithms requires knowledge of 3-D
chromatin organization in wild-type cells of the same type
because a nucleotide sequence does not provide cell type–specific
epigenetic information.

Other algorithms do not use nucleotide sequences for
prediction directly. In this case, it is important to model
changes in input features caused by SNP or small INDEL.
For instance, in the case of polymer modeling, it needs
to change binder position or to remove the part of the
polymer corresponding to the mutated DNA. All the same is
about statistical approaches not using nucleotides as features
for the prediction.

CONCLUSION

The mechanisms that underlie genome organization are
intensively studied. Multiple groups developed computational
algorithms to explain mechanisms underlying genome
architecture and predict chromatin folding in normal and
mutated cells. However, there is still no approach that is
able to completely describe the whole complexity of the

nuclear organization. Physical models are limited by incomplete
knowledge of mechanisms and relevant system parameters, such
as interaction affinities and concentrations. Statistical methods
do not allow understanding of the exact mechanisms underlying
captured dependencies. And for both methods, it is not clear
whether developed algorithms trained and validated using several
cell types could be broadly and efficiently transferred to other cell
types and conditions.

The latter question could be answered using the rapidly
growing number of high-resolution Hi-C data sets. There are
multiple published experimental data studying 3-D genome
structure in normal and rearranged genomes. Such experiments
provide detailed Hi-C maps of mutated regions that can
be used as validation data for predictive algorithms. We
believe that benchmarking and comparing existing predictive
algorithms using these data sets would help to describe their
power and limitations and to develop new, comprehensive
approaches for the prediction of chromatin organization and
dynamics in the future.
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Background: The four ERBB tyrosine kinase family members [ERBB1 (epidermal
growth factor receptor, EGFR), ERBB2 (HER2), ERBB3 (HER3), and ERBB4 (HER4)]
(ERBB receptor family) have been shown, according to previous studies, to be related
to the cutaneous melanoma. ERBB3 is the only member of the ERBBs that lacks
tyrosine kinase activity and thus needs to dimer with other tyrosine kinases receptors to
trigger the signaling pathway, while ERBB3 may dimer with all members of the ERBB
family. Melanoma progression depends on activation of ERBB signaling, especially the
ERBB3/ERBB2 cascade. There are lymphocytes and T cell infiltrates in melanoma.
Numerous pieces of evidences indicate that local immune status plays an important role
in the formation of anti-tumor immune responses. However, the relationship between
the ERBBs and prognosis and immune infiltration in cutaneous melanoma is not
completely clear.

Methods: The expression of the ERBBs was analyzed through the Oncomine
database, Gene Expression Profiling Interactive Analysis (GEPIA), respectively.
Immunohistochemistry of ERBBs was obtained from the Human Protein Atlas is
increased before HPA database. ERBBs genes expression and mutation analysis
in cutaneous melanoma from the cBioPortal. Functional annotation and Kyoto
Encyclopedia of Genes and Genomes is increased before KEGG pathway enrichment
analysis from the Metascape. Correlations between ERBBs and 31 genes that were
close to each other and frequently altered were explored by GEPIA. Using the GEPIA
database, we also investigated the relationship between ERBBs and myeloid-derived
suppressor cells (MDSC) in cutaneous melanoma. The disease-free survival and different
tumor stages of ERBBs were evaluated by GEPIA. The correlation of ERBBs and tumor-
infiltrating immune cells and prognostic(5 years survival rates) was tested by the Tumor
Immune Estimation Resource (TIMER).

Results: In general, the expression levels of ERBB1/2 in cutaneous melanoma were
lower than those in normal skin tissue. By contrast, the ERBB3 expression level
was higher in cutaneous melanoma than in normal skin tissue. Low expression of
ERBB1/2 and high expression of ERBB3 were detrimental to the 5 years survival of
cutaneous melanoma patients (ERBB1: log-rank P: 0.03; ERBB2: log-rank P: 0.008;
ERBB3: log-rank P: 0.039). ERBB4 expression may not affect the prognosis of patients
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with cutaneous melanoma. ERBBs may not play a role in the tumor stage and
disease-free survival in cutaneous melanoma patients. The relationship between the
ERBB family and 31 genes that were close to each other and frequently altered is
demonstrated as the genes regulated by the ERBB family being mainly concentrated
in the RAS/RAF/MEK/ERK signaling pathway. ERBB2 can induce infiltration of CD8+ T
cells and B cells, while ERBB3 can induce infiltration of CD4+ T cells, CD8+ T cells,
and Neutrophil cells. ERBBs are more significantly associated with M1 macrophages,
dendritic cells, Th1, Th2, Th17, and Treg cellular immune markers (Cor > 0.2).
ERBB2/3 were related to MDSC in cutaneous melanoma, including human mononuclear
myeloid-derived suppressor cells (M-MDSC) and polymorphonuclear myeloid-derived
suppressor cells (PMN-MDSC), and may influence the progression of cutaneous
melanoma through MDSC, but the conclusion needs further probing.

Conclusion: This study investigated the prognosis and immune infiltration of the ERBB
family in cutaneous melanoma. Our results suggest that ERBB1/2/3 may serve as early
prognostic markers and potential therapeutic targets in cutaneous melanoma.

Keywords: ERBB family, immunochemistry, immune infiltrates, prognostic, cutaneous melanoma

INTRODUCTION

Melanoma originates from melanocytes and accounts for the
highest proportion of skin cancer-related deaths. At present,
the treatment of melanoma metastasis is still difficult, although
researchers have explored a variety of methods. The 5 years
overall survival (OS) of patients with early melanoma is higher,
ranging from 24 to 29%, but the 5-year OS of patients with
stage IIIC and IV is only 10–19%. In recent years, biological
immunotherapy has gradually emerged, which can prolong the
survival period of patients (Homet Moreno and Ribas, 2015).
Therefore, further searching for potential pathogenic factors and
pathogenic mechanisms can help identify potential prognostic
markers and drug targets in melanoma.

The ERBB family belongs to the tyrosine kinase I subfamily
and is composed of four closely related transmembrane tyrosine
kinase receptors, all of which are encoded by the proto-oncogene
HER1–4: ERBB1 (EGFR), ERBB2 (HER2), ERBB3 (HER3), and
ERBB4 (HER4). They all have tyrosine kinase activity and play a
key role in signal transduction. The tyrosine kinase active domain
of each member of the ERBBs family is highly conserved, with a
high degree of homology in structure and function. It is mainly
expressed during human embryonic development and regulates
the growth, survival, transformation, and apoptosis of normal
(Jørgensen and Hersom, 2012; Griffin and Ramirez, 2017).

The overexpression and activation of the ERBB family are
closely related to the clinicopathological characteristics and
prognosis of various cancers, including melanoma, lung cancer,
gastric cancer, breast cancer, etc. (Bittoni et al., 2015; Oudard
et al., 2015). It is generally believed that abnormally functional
carcinogenic pathways lead to melanoma. These pathways may
include the EMT signaling pathway (Pietraszek-Gremplewicz
et al., 2019), PI3K signaling pathway (Mujoo et al., 2014; Song
et al., 2015), and so on. ERBBs can enhance the ability of
tumor cells to migrate and invade, promote tumor angiogenesis,

and inhibit tumor cell apoptosis (Iqbal and Iqbal, 2014)
through these pathways.

Previous studies have shown that ERBBs disorders are closely
related to the clinicopathological characteristics and prognosis
of human cutaneous melanoma. However, the potential role
of ERBBs family members in cutaneous melanoma remains
unintelligible. In this study, we analyzed the expression,
mutation, prognosis, and immune infiltration of ERBBs family
members in cutaneous melanoma through a variety of databases.

MATERIALS AND METHODS

Oncomine Database Analysis
Oncomine1 is an online bioinformatics analysis tool that includes
18,000 cancer gene expression microarrays (Rhodes et al., 2007).
Through the Gene Summary view in the Oncomine database,
we determined the expression level of ERBB in cutaneous
melanoma. Use the following values: P-value 0.01, fold change
2, top 10% of the gene ranking, and mRNA data type to
determine the threshold.

GEPIA Database Analysis
Online database GEPIA2 is an online database utilized to analyze
the expression data of RNA sequencing in TCGA and GTEx
projects. It can also generate gene Expression profiles, the
expression in the box plot, and the main stages of pathology
(Tang et al., 2017). The expression of ERBB was determined
by the SKCM data set of GEPIA. The following values were
used to determine the threshold: the P-value was 0.01, the
multiple changes were 2, and it matched the normal value of
TCGA and GTEx data.

1https://www.oncomine.org/resource/login.html
2http://gepia.cancer-pku.cn/index.html

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 602160177180

https://www.oncomine.org/resource/login.html
http://gepia.cancer-pku.cn/index.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-602160 February 23, 2021 Time: 17:50 # 3

Liu et al. Melanoma Expression and Immune Research

Human Protein Atlas Database Analysis
The HPA (version 19.3)3 (Navani, 2016) is a large-scale
research project, the database will help researchers to explore
protein expression in human tissue and cells. In this study,
immunohistochemical images were used to analyze ERBBs
protein expression in cutaneous melanoma and normal tissues.

cBioPortal Database Analysis
cBioPortal4 was used to further analyze the expression of
ERBB (Gao et al., 2013) through the skin melanoma data
set, which included 479 pathological reports. Co-expression
and network analysis were performed based on the online
instructions of cBioPortal.

Functional Annotation and KEGG
Pathway Enrichment Analysis
Gene function annotation and KEGG pathway analysis were used
to uncover the underlying mechanism of cutaneous melanoma.
MetaScape5 (Zhou et al., 2019) was updated in 2018 and is
a web-based tool that provides gene function annotation and
enrichment analysis.

TIMER Database Analysis
The TIMER6 is used to study the expression characteristics of
tumor-immune interaction genes in more than 30 cancer types
(Li et al., 2017) to evaluate various the clinical impact of different
immune cells of immune type. We analyzed the relationship
between the expression of ERBBs and immune infiltration in
cutaneous melanoma through the TIMER database.

Statistical Analysis
The results we generate using Oncomine were displayed by
P-values, fold changes, and ranks (p < 0.05, fold change
> 2). P-value and fold change were used to show the
outcomes of GEPIA (p < 0.01, fold change > 2). Also, the
Spearman correlation analysis is used to evaluate the relationship
between genes and determine the strength of the correlation
between genes by absolute value. P < 0.05 were considered
statistically significant.

RESULTS

Transcriptional Levels of ERBBs in
Cutaneous Melanoma and Other
Cancers
The transcription levels of ERBBs were compared in cutaneous
melanoma and normal samples by the ONCOMINE database
(Figure 1A and Table 1). ERBB3 was upregulated in cutaneous
melanoma in two datasets. In Riker’s and Talantov’s datasets
(Talantov et al., 2005; Riker et al., 2008), ERBB3 is overexpressed
compared with the normal samples: cutaneous melanoma with

3https://www.proteinatlas.org/
4https://www.cbioportal.org/
5http://metascape.org
6https://cistrome.shinyapps.io/timer/

a fold change of 4.667 and 2.264, respectively. In Riker’s dataset
(Riker et al., 2008), ERBB1 (EGFR) is under-expressed in
cutaneous melanoma with a fold change of −8.110. Talantov’s
dataset (Talantov et al., 2005) revealed another mRNA expression
ERBB1 with a fold change of −7.657; that is, ERBB2 has a
fold change of −3.952 and −2.229 in cutaneous melanoma
compared with normal skin tissues in Riker’s and Talantov’s
datasets, respectively. Based on the information afforded by
the GEPIA database, a comparative study of ERBBs mRNA
expression in normal skin tissue and cutaneous melanoma tissue
was carried out. The results showed that, compared with normal
skin tissue, cutaneous melanoma tissue had lower expression
levels of ERBB1/2 and a higher expression level of ERBB3
(Figure 1B). In the immunohistochemistry supplied by the HPA
data set, we discovered that ERBB1 was moderately expressed,
ERBB2 was lowly expressed, and the ERBB3/4 proteins were
highly expressed in cutaneous melanoma (Figure 2).

Further,we explored the expression of the ERBBs in other
cancers models by ONCOMINE database (Figure 1A) showed
that ERBB1 mRNA level was significantly higher in the bladder,
brain and CNS, head and neck, kidney, lung, lymphoma cancer
tissues, and markedly lower in the breast, colorectal, gastric,
myeloma, ovarian, and sarcoma cancers compared with the
corresponding normal tissues. The ERBB2 mRNA level was
observably higher in the bladder, brain and CNS, breast, and
pancreatic cancer tissues and signally lower in the colorectal,
esophageal, head and neck, kidney, lung, lymphoma, and
sarcoma cancers compared with the corresponding normal
tissues. The ERBB3 mRNA level was dramatically higher in
bladder, colorectal, kidney, lung, ovarian, and prostate cancer
tissues and significantly lower in the brain and CNS, esophageal,
head and neck, lymphoma, myeloma, and sarcoma cancers
compared with the corresponding normal tissues. The ERBB4
mRNA level was higher in the breast and colorectal cancer
tissues and observably lower in the bladder, brain and CNS,
head and neck, kidney, and lung cancers compared with the
corresponding normal tissues. These results show that ERBB1/2
are of low expression, and ERBB3 is of high expression, which
suggests that ERBB1/2/3 may be potential prognostic markers in
cutaneous melanoma.

ERBBs Mutation Rates, Their Influence
on Neighboring Genes, and Their
Correlation in Cutaneous Melanoma
cBioPortal is used to analyze the changes and network of ERBBs
in cutaneous melanoma. In 479 cases, ERBBs were changed in
158 samples (33%), and two or more changes were detected
in 53 samples (11%) (Figure 3A). Besides, we analyzed the
mRNA expression of ERBBs (RNA Seq V2 RSEM) through
Pearson correlation to calculate the relationship between ERBBs,
and the results showed that ERBB1 and ERBB2 are positively
correlated (Figure 3B). Subsequently, we established a network
of ERBBs through the 31 most frequently changing neighbor
genes [The Network TAB provides interaction analysis and
network visualization of cancer changes in cBioPortal, the
network includes Pathway, HPRD (human reference protein
database), Reactome, NCI (National Cancer Institute)—Nature
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FIGURE 1 | Expression of the ERBB receptor family in different types of human cancers. (A) High or low expression of ERBB receptor family in different human
cancer tissues compared with normal tissues (ONCOMINE). The mRNA expression levels of ERBB1 and ERBB2 were decreased, but the mRNA expression level of
ERBB3 was increased in cutaneous melanoma. (B) The expression of ERBBs in cutaneous melanoma (GEPIA) is consistent with ONCOMINE.

TABLE 1 | Conspicuous variation of ERBBs expression in transcription level between cutaneous melanoma and skin tissues (ONCOMINE database).

Type vs. normal Fold change P-value t-test Reference

ERBB1 Cutaneous melanoma vs. normal −8.110 2.44E-8 −10.259 Riker

Cutaneous melanoma vs. normal −7.657 1.84E-12 −16.418 Talantov

ERBB2 Cutaneous melanoma vs. normal −3.952 2.70E-6 −6.762 Riker

Cutaneous melanoma vs. normal −2.229 5.86E-5 −6.116 Talantov

ERBB3 Cutaneous melanoma vs. normal 4.667 4.73E-9 12.658 Talantov

Cutaneous melanoma vs. normal 2.264 0.006 2.891 Riker

ERBB4 NA NA NA NA NA

Fold change >> 2, P-value< < 0.05.

Pathway Interaction Database, Memorial Sloan Kettering Cancer
Center (MSKCC), map of cancer cells7, From The Open
Source Pathway Commons Project. By default, cBioportal

7http://cancer.cellmap.org

automatically generates a network containing all queries about
the genetic neighbors (adjacent nodes), sequenced according to
the alternating frequency of the genome of the selected cancer].
This shows that there is a close pertinence between changes
of ERBBs and cell proliferation or differentiation, Fibroblast
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FIGURE 2 | Expression of ERBB receptor family in the cutaneous melanoma (HPA). (A) The expression of ERBB1 protein was moderate in the cutaneous melanoma
tissues, and (B) ERBB2 was lower in the cutaneous melanoma tissues. (C,D) The expression of ERBB3/4 proteins were higher in the cutaneous melanoma tissues
than that in the normal skin tissues by the HPA database (N: normal; T: tumor).
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FIGURE 3 | ERBBs genes expression and mutation analysis in cutaneous melanoma (cBioPortal). (A) ERBB1, ERBB2, ERBB3, and ERBB4 mutation rates were 10,
8, 10, and 14%, respectively. (B) Calculate the pertinence of the ERBB receptor family with each other by analyzing their mRNA expression, positive correlations
were detected in ERBB1and ERBB2. (C) Network for ERBB receptor family and the 31 most frequently altered neighbor genes.

growth factor receptor (FGFR), including FGFR1/2/3/4, as well
as MAPK pathways-related genes, including MAPK1, MAP2K1,
and MAP2K2 (Figure 3C). Evaluate the function of clustering
genes through GO and pathway analysis, and these enriched
pathways are closely interrelated to each other. Figure 4
provides the consequence of the functions and pathways of
the markedly enriched genes. We discovered that the enriched
genes are related to multiple pathways, such as MAPK family
signal cascade, MAPK cascade regulation, EGFR tyrosine kinase
inhibitor resistance, receptor tyrosine kinase signal transduction,
and transmembrane receptor protein tyrosine kinase signal
transduction pathway, etc.

Further, through the GEPIA database (Supplementary
Table 1), in cutaneous melanoma, we examined the association
between the ERBBs and 31 genes were close to each other and
frequently altered and observed that all the genes except KIT,
ALK, NTRK1, FGFR4, and MET were affected by the changes of
some ERBB family members. In this network, ERBB-regulated
genes are mainly concentrated in the RAS-RAF-MEK-ERK

signaling pathway, while the ERBB family may have no direct
regulatory relationship with SOS, NF1, PDGFRA, FGFR1,
RASA1, ROS1, FGFR3, RAC1, PTPN11, NTRK2, FLT3, FGFR2,
ERRFI1, and RIT1 genes.

Immune Cell Infiltration of ERBBs in
Cutaneous Melanoma
ERBBs affect the clinical prognosis of patients by participating
in the inflammatory response and immune cell infiltration.
TIMER displays the relationship between ERBBs and immune
infiltrating cells. There was a positive pertinence between ERBB1
expression and the infiltration of CD4+ T cells (Cor = 0.152,
p = 1.30e-03), Macrophages (Cor = 0.258, p = 2.66e-08),
and Neutrophils (Cor = 0.143, p = 2.36e-03; Figure 5A).
ERBB2 expression was negatively related to the infiltration
of B cells (Cor = −0.116, p = 1.42e-02) and CD8+ T cells
(Cor = −0.109, p = 2.24e-02) and positively associated with
the infiltration of CD4+ T cells (Cor = 0.19, p = 5.39e-05;
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FIGURE 4 | GO and KEGG analysis of ERBB receptor family (Metascape). (A) Bar graph of enriched terms across these enriched genes in patients with cutaneous
melanoma, colored by p-values. (B,C) A network of enriched terms: (B) colored by cluster-ID, where nodes that share the same cluster-ID are typically close to each
other; (C) Protein–protein interaction network and MCODE components identified in the genes enriched in patients with cutaneous melanoma.

Figure 5B). ERBB3 expression was positively interrelated to
the infiltration of CD8+ T cells (Cor = 0.121, p = 1.15e-02)
and CD4+ T cells (Cor = 0.148, p = 1.72e-03) and Neutrophil
(Cor = 0.147, p = 1.69e-03; Figure 5C). There was a positive
correlation between ERBB4 expression and the infiltration of
CD8+ T cells (Cor = 0.141, p = 3.12e-03) and neutrophils
(Cor = 0.122, p = 9.21e-03; Figure 5D). These results reveal
that ERBB2/3 are more closely related to immune infiltration in
cutaneous melanoma, which suggests that the role of ERBB2/3 in
regulating tumor immunity.

ERBBs CNV Is Correlated With Immune
Infiltration Levels in Cutaneous
Melanoma
ERBB CNV has a signal related to infiltrating levels of B
cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils,
and Dendritic Cells. ERBB 1 (EGFR) induces the infiltrating
levels of B cells, CD4+ T cells, Neutrophils, and Dendritic
Cells in cutaneous melanoma (Figure 6A). ERBB2 induces

the infiltrating levels of B cells, CD8+ T cells, CD4+
T cells, Macrophages, Neutrophils, and Dendritic Cells
(Figure 6B). ERBB3 induces the infiltrating levels of B cells,
CD4+ T cells, Macrophages, Neutrophils, and Dendritic
Cells (Figure 6C). ERBB4 induces the infiltrating levels of
B cells, CD4+ T cells, and Dendritic Cells (Figure 6D).
ERBB1/2/4 CNV are correlated with arm-level deletion.
ERBB3 CNV is connected with arm-level gain. These results
suggest that ERBBs CNV induces immune infiltration in
cutaneous melanoma.

Correlation Analysis Between ERBBs
and Markers of Immune Cells in
Cutaneous Melanoma
We further evaluated the relationship between the ERBBs levels
and immune infiltrating cells through the TIMER database and
according to the expression levels of immune marker genes
in cutaneous melanoma tissues. The immune cells analyzed
by the TIMER database include CD8+ T cells, CD4+ T
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FIGURE 5 | The Cox proportional hazard model of ERBBs and six tumor-infiltrating immune cells in cutaneous melanoma (TIMER). (A) ERBB1 (EGFR) expression
had noteworthy positive interrelated to infiltrating levels of CD4+ T cells, Macrophage, and Neutrophil. (B) ERBB2 was negatively correlative with the infiltration of B
cells and CD8+ T cells but positively related to the infiltration of CD4+ T cells. (C) ERBB3 expression was positively associated with the infiltration of CD8+ T cells,
CD4+ T cells, and Neutrophil. (D) ERBB4 expression was positively related to the infiltration of CD8+ T cells and neutrophils. The correlation between ERBBs and
immune cells were used to analyze by Spearman’s correlation.

cells, B cells, monocytes, tumor-associated macrophages (TAM),
M1 and M2 macrophages, neutrophils, dendritic cells, and
different subgroups of T cells, namely, T helper 1 (Th1),
Th2, Tfh, Th17, regulatory T (Tregs), and T cell exhaustion.
Because tumor purity will affect the level of immune infiltration
of clinical samples, the purity of the relevant analysis was
adjusted (Table 2).

Specifically, ERBB1 expression displayed dramatically
interrelated to the expression of specific immune cells markers,
such as B cell marker, CD79A, Monocyte marker, CD115, TAM
marker, CCL2, M1 macrophage marker, iNOS and COX2,
M2 Macrophage marker, CD163, Neutrophils marker, CD11B,
Dendritic cell marker, BDCA-1 and BDCA-4.Th1 markers,
STAT4 and TNF-α, Th2 markers, GATA3 and STAT6, the
Tfh marker, BCL6, Th17 and STAT3, Treg markers, CCR8,
STAT5 and TGFβ, T cell exhaustion markers, PD-1, LAG3,
and GZMB. The memorable pertinence between ERBB2

expression and the expression of specific immune cells markers
is shown, such as the B-cell marker, CD19 and CD79a,
Monocyte marker, CD115, Dendritic cell marker, HLA-DPB1
and HLA-DPA1, Th1 marker IFN-γ, Th2 marker, STAT5A,
Tfh marker, BCL6, Th17 marker, STAT3, Treg marker, CCR8,
STAT5B, and TGFβ, T cell exhaustion marker, CTLA4, and
GZMB. ERBB3 expression indicated significantly related to
the expression of specific immune cells markers, such as the
CD8+ T cell marker, CD8A, T cell (general) marker, CD2,
TAM marker, CD68, Neutrophils, CD66b, Dendritic cell,
HLA-DPB1, HLA-DRA and HLA-DPA1, Th1 marker, STAT4,
STAT1 and IFN-γ, Th2 marker, STAT6 and STAT5, Th17
marker, STAT3, Treg marker, CCR8, STAT5B, and TGFβ.
ERBB4 expression manifested memorably relevant to the
expression of specific immune cells markers, such as the CD8+
T cell marker, CD8A, T cell (general) marker, CD2, B cell
marker, CD19, CD79A, Monocyte marker, CD86, CD115,
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FIGURE 6 | Relationship between ERBBs CNV and invasion levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in
cutaneous melanoma. (A) ERBB 1(EGFR) affects the infiltrating levels of B cells, CD4+ T cells, Neutrophils, and Dendritic Cells in cutaneous melanoma. (B) ERBB2
affects the infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells. (C) ERBB3 affects the infiltrating levels of B cells,
CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells. (D) ERBB4 affects the infiltrating levels of B cells, CD4+ T cells, and Dendritic Cells.

TAM marker, CCL2, M1 Macrophage marker, COX2, M2
Macrophage marker, CD163, VSIG4, MS4A4A, Neutrophils
marker, CD11b, and CCR7, Dendritic cell marker, BDCA-1
and BDCA-4, Th1 marker, T-bet, STAT4 and STAT1, Th2
marker, GATA3 and STAT5A, Tfh marker, BCL6 and IL21,

Th17 marker, STAT3, Treg marker, CCR8 and STAT5B, T
cell exhaustion marker, and TIM-3. The study shows that the
ERBBs and M1 Macrophage, Dendritic cell, Th1, Th2, Th17, and
Treg cells have a more significant relationship (Cor > 0.2) in
cutaneous melanoma.
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TABLE 2 | Correlation analysis between ERBBs and related markers of immune cells.

Description Gene markers SKCM

Purity

ERBB1 ERBB2 ERBB3 ERBB4

Cor P Cor P Cor P Cor P

CD8+ T cell CD8A −0.053 2.62e-1 −0.045 3.37e-01 0.133 ** 0.1 *

CD8B −0.078 9.74e-02 −0.066 1.61e-01 0.086 6.62e-02 0.086 6.65e-02

T cell (general) CD3D −0.041 3.85e-01 −0.088 5.90e-02 0.047 3.18e-01 0.08 8.59e-02

CD3E −0.029 5.32e-01 −0.05 2.85e-01 0.047 3.11e-01 0.087 6.26e-02

CD2 −0.015 7.48e-01 −0.066 1.58e-01 0.102 * 0.107 *

B cell CD19 −0.007 8.85e-01 −0.117 * 0.021 6.57e-01 0.155 ***

CD79A −0.094 * −0.111 * 0 9.98e-01 0.13 **

Monocyte CD86 0.072 1.22e-01 −0.001 9.85e-01 0.062 1.85e-01 0.151 **

CD115 0.175 *** 0.102 * 0.08 8.57e-02 0.123 **

TAM CCL2 0.128 ** 0.009 8.52e-01 −0.021 6.57e-01 0.11 *

CD68 −0.015 7.50e-01 −0.041 3.77e-01 −0.147 ** −0.054 2.49e-01

IL10 0.063 1.77e-01 −0.016 7.27e-01 0.002 9.63e-01 0.056 2.31e-01

M1 Macrophage iNOS −0.205 *** 0.012 8.01e-01 0.044 3.43e-01 −0.006 8.92e-01

IRF5 0.073 1.21e-01 0.033 4.86e-01 −0.076 1.07e-01 −0.006 8.94e-01

COX2 0.215 *** 0.043 3.57e-01 −0.006 8.94e-01 0.127 **

M2 Macrophage CD163 0.124 ** 0.045 3.40e-01 0.047 3.17e-01 0.148 **

VSIG4 0.063 1.77e-01 0.073 1.20e-01 0.05 2.84e-01 0.106 *

MS4A4A 0.091 5.30e-02 −0.007 8.74e-01 0.044 3.43e-01 0.139 **

Neutrophils CD66b 0.049 2.94e-01 −0.062 1.88e-01 −0.116 * 0 9.94e-01

CD11b 0.104 * 0.062 1.84e-01 0.085 7.00e-02 0.102 *

CCR7 0.042 3.73e-01 −0.076 1.07e-01 0.06 2.01e-01 0.1 *

Dendritic cell HLA-DPB1 0.036 4.42e-01 0.113 * 0.107 * 0.052 2.65e-01

HLA-DQB1 0.05 2.91e-01 0.039 4.11e-01 0.066 1.58e-01 0.068 1.46e-01

HLA-DRA 0.046 3.26e-01 0.055 2.42e-01 0.115 * 0.084 7.19e-02

HLA-DPA1 0.027 5.67e-01 0.1 * 0.119 * 0.064 1.69e-01

BDCA-1 0.214 *** −0.01 8.26e-01 0.084 7.32e-02 0.162 ***

BDCA-4 0.434 *** 0.079 9.06e-02 0.053 2.59e-01 0.182 ***

CD11c 0.011 8.17e-01 −0.029 5.41e-01 −0.059 208e-01 0.067 1.54e-01

Th1 T-bet −0.017 7.22e-01 −0.06 2.02e-01 0.066 1.56e-01 0.121 **

STAT4 −0.114 * 0.007 8.83e-01 0.181 *** 0.172 ***

STAT1 −0.01 8.25e-01 0.043 3.56e-01 0.242 *** 0.107 *

IFN-γ −0.068 1.45e-01 −0.102 * 0.107 * 0.084 7.22e-02

TNF-α 0.106 * 0.026 5.73e-01 0.046 3.25e-01 0.026 5.85e-01

Th2 GATA3 0.327 *** 0.089 5.76e-02 0.015 7.42e-01 0.144 **

STAT6 0.141 ** 0.228 8.32e-07 0.337 *** 0.069 1.40e-01

STAT5A −0.045 3.33e-01 0.159 *** 0.326 *** 0.103 **

IL13 0.049 2.93e-01 −0.052 2.68e-01 −0.018 7.06e-01 0.007 8.80e-01

Tfh BCL6 0.255 *** 0.158 *** 0.023 6.27e-01 0.158 ***

IL21 0.08 8.66e-02 0.077 1.01e-01 0.057 2.27e-01 0.179 ***

Th17 STAT3 0.282 *** 0.331 *** 0.29 *** 0.195 ***

IL17A 0.034 4.63e-01 0.079 9.02e-02 0.003 9.50e-01 −0.037 4.28e-01

Treg FOXP3 0.072 1.22e-01 −0.013 7.76e-01 −0.004 9.28e-01 0.044 3.44e-01

CCR8 0.138 ** −0.039 4.09e-01 0.145 ** 0.133 **

STAT5B 0.174 *** 0.235 *** 0.331 *** 0.174 ***

TGFβ 0.276 *** 0.177 *** −0.1 * 0.048 3.02e-01

T cell exhaustion PD-1 −0.099 * −0.048 3.01e-01 0.065 1.66e-01 0.063 1.78e-01

CTLA4 −0.086 6.49e-02 −0.171 *** −0.076 1.05e-01 0.071 1.29e-01

LAG3 −0.129 ** −0.034 4.65e-01 0.058 2.19e-01 0.053 2.59e-01

TIM-3 0.036 4.42e-01 0 9.94e-01 0.069 1.41e-01 0.118 **

GZMB −0.097 * −0.132 ** −0.011 8.17e-01 0.016 7.31e-01

TAM, tumor-associated macrophage; Th, T helper cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R-value of Spearman’s correlation; Purity, correlation
adjusted by purity. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 7 | Relationship between ERBB receptor family and tumor stage and survival outcome in cutaneous melanoma. (A) The ERBB receptor family may not
affect the tumor stage in cutaneous melanoma patients (GEPIA). (B) Kaplan-Meier analysis uncovers that immune cells (B cells, CD8+ T cells, CD4+ T cells,
Macrophages, Neutrophils, and Dendritic Cells), ERBB1 (EGFR), ERBB2, and ERBB3 impact the 5 years survival rates of patients with cutaneous melanoma
(TIMER). (C) ERBB receptor family may not influence disease-free survival in cutaneous melanoma.

TABLE 3 | ERBB2/3 is associated with myeloid-derived suppressor cells (MDSC) in cutaneous melanoma.

SKCM

Description Gene markers ERBB1 ERBB2 ERBB3 ERBB4

Cor P Cor P Cor P Cor P

Human M-MDSC CD11b 0.038 0.41 0.068 0.14 −0.093 * 0.061 0.19

CD14 0.026 0.57 0.099 * −0.19 *** 0.023 0.61

Human PMN-MDSC CD66b 0.032 0.49 −0.032 0.49 −0.026 0.58 −0.023 0.62

CD33 −0.0095 0.84 0.072 0.12 −0.013 0.77 0.076 0.1

CD62L −0.0065 0.89 −0.14 ** −0.19 *** −0.0089 0.85

CD54 −0.077 0.1 −0.022 0.64 −0.054 0.25 0.15 **

CD63 −0.13 ** −0.12 ** 0.26 *** −0.075 0.11

CD274 0.024 0.6 −0.035 0.46 −0.12 * −0.0075 0.87

ARG1 0.14 ** 0.28 *** −0.019 0.68 −0.03 0.52

CXCR2 0.21 *** 0.28 *** −0.15 ** −0.051 0.28

CXCR4 0.015 0.75 −0.083 0.076 −0.19 *** 0.038 0.41

*P<0.05, **P<0.01, ***P<0.001.
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Expression of ERBBs With Tumor Stage
and Survival Outcome in Cutaneous
Melanoma
We analyzed the relationship between ERBBs expression and
tumor stage and disease-free survival, whereas ERBBs may
not affect tumor stage and disease-free survival in cutaneous
melanoma (Figures 7A,C). Also, we found that ERBB1/2/3 and
immune infiltration cells (B cells, CD4+ T cells of CD8+ T
cells, macrophages, neutrophils, and dendritic cells) influenced
the 5 years survival of patients with cutaneous melanoma,
while ERBB4 may not affect the 5-year survival of cutaneous
melanoma patients (Figure 7B). These results show that the
expression of ERBB1/2/3 in early cutaneous melanoma have
prognostic significance.

ERBB2/3 Are Associated With
Myeloid-Derived Suppressor Cells
(MDSC) in Cutaneous Melanoma
In the GEPIA database, we found that ERBB2 was positively
correlated with Human monocytic myeloid-derived suppressor
cell(s) (M-MDSC) markers CD14 (Table 3), while ERBB3 was
negatively related to Human M-MDSC markers CD11b and
CD14. ERBB1 was positively correlated with Human PMN-
MDSC markers ARG1, CXCR2, and negatively relevant to CD63.
ERBB2 was negatively connected with Human PMN-MDSC
markers CD62L and CD63 and positively correlated with ARG1
and CXCR2. ERBB3 was negatively correlated with Human
PMN-MDSC markers, CD62L, CD274, CXCR2, and CXCR4 and
positively correlated with CD63. ERBB4 was positively associated
with Human PMN-MDSC marker CD54. These results suggest
that ERBB2/3 may be closely related to MDSC (Human M-MDSC
and Human PMN-MDSC) in cutaneous melanoma. In terms of
specific mechanisms, further research is needed in the future.

DISCUSSION

Previous studies have shown (Alaoui-Jamali et al., 2015; Elster
et al., 2015) that ERBB family members can encode a type
I transmembrane protein with common structural properties
and be activated by homo-or hetero-dimerization with ERBB
family members. For example, when ERBB3 binds to its specific
ligand NRG1, it can form a heterodimer with other ERBB
partners. Ng et al. (2014) found synergistic activation of ERBB2
and ERBB3 as well as synergistic activation of ERBB3 and
ERBB4 in cutaneous melanoma cell lines after NRG1 stimulation.
This dimerization activates PI3K/AKT and MAPK/ERK signal
transduction pathways. It has been widely recognized that
ERBB family members participate in tumorigenesis and tumor
therapeutic resistance by activating PI3K and MAPK signaling
pathways (Elster et al., 2015). ERBB3 is often highly expressed
in primary melanoma and metastatic tumors, and high levels
of ERBB2 and ERBB3 are often detected in BRAF WT and
mutant cells. Other studies have shown that ERBB4 detected in
human melanoma cells (Gordon-Thomson et al., 2005) is mainly
a truncated type (120 kD) rather than a full-length protein. So far,

ERBB4 has not been widely studied in melanoma. Although the
significance of ERBBs has been confirmed, it is still necessary to
clarify the function of ERBBs in cutaneous melanoma.

ERBB1 expression is upregulated in many cancers, but
gene expression is inconsistent in cutaneous melanoma. Some
studies have stated that ERBB1 over-expression often occurs
in advanced stages of melanoma. The expression of ERBB1 in
cutaneous melanoma tissues was lower than that in normal
tissues. However, in immunohistochemistry, ERBB1 showed
moderate expression. ERBB1 autophosphorylation is the key
to the PI3K/AKT and MAPK pathways. ERBB1 participates
in regulating cell proliferation, apoptosis, and promoting cell
invasion through these cascade reactions. We found that ERBB1
is the low expression and may not be associated with tumor stage
and disease-free survival but is with 5 years survival.

ERBB2 is a HER2-receptor tyrosine kinase that can cause
uncontrolled cell proliferation and tumorigenesis through
various mechanisms (Hynes and Lane, 2005). ERBB2 is a vital
cancer marker, and no ligand for ERBB2 has been found yet.
ERBB2 forms a heterodimer with another ERBB family member
to form a more stable and strong signaling function and is
considered to be an important therapeutic target for cancer
(Giroux, 2013; Milik et al., 2017; Khanjani et al., 2018). ERBB2
is associated with poor clinical prognosis, even though its
expression is low (Gilcrease et al., 2009). In our study, it was
found that ERBB2 is the low expression in cutaneous melanoma
tissues, but this expression may not affect tumor stage and
disease-free survival; however, it is related to the 5 years survival
rates of cutaneous melanoma patients.

ERBB3 plays a meaningful role in cell proliferation and
survival (Yarden and Pines, 2012). Because ERBB3 lacks tyrosine
kinase activity, which cannot initiate a signal cascade through
autophosphorylation, it must heterodimerize with ERBB1 or
ERBB2 to phosphorylate tyrosine in the C-terminal domain
of ERBB3 (Campbell et al., 2010). Ueno et al. (2008) found
that ERBB3 and ERBB1 dimerized in melanoma cells and
promoted the metastasis of melanoma to a certain extent. ERBB3
is overexpressed and activated in a variety of cancers. The
regulation of ERBB3 expression and signaling involves many
HER3 interacting proteins, including PI3K, Shc, and E3 ubiquitin
ligases NEDD4 and Nrdp1 (Mujoo et al., 2014). In our report, we
confirmed that ERBB3 exhibits high expression and influences
the 5 years survival rates of cutaneous melanoma patients but
may not play role in the tumor stage and disease-free survival.

ERBB4 has been shown to have a crucial role in the normal
growth of the central nervous system, breast, and fetus (Chuu
et al., 2008; Liu et al., 2010; Iwakura and Nawa, 2013). However,
the role of ERBB4 in human cancer is still debatable. ERBB4
tyrosine kinase activates through ligand-bound dimerization and
induces activation of mitogen-activated protein kinases (MAPKs)
and phosphatidylinositol kinase (PI3K)/AKT pathway (Prickett
et al., 2009). Prickett et al. (2009) reported that somatic mutations
of ERBB4 in malignant melanoma are widespread and proved
that ERBB4 mutations are new drug targets for the treatment of
metastatic melanoma. However, Zhou et al. (2013) and others
reported that ERBB4 hotspot mutations were not detected in
melanoma patients in southern China, suggesting that in Chinese
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melanoma patients, ERBB4 mutations can only play a limited
role. These conclusions prove that there may be geographical
differences in mutations of susceptibility genes in melanoma
(Casula et al., 2009). In this chapter, we found that ERBB4 is the
highest mutation rate in the ERBB family, but it may not impact
the tumor stage, disease-free survival, and 5 years survival rates
of melanoma patients.

We analyzed the relationship between the ERBB family
and 31 genes that are close and frequently altered. In
melanoma, KIT, ALK, NTRK1, FGFR4, and MET may not
be regulated by the ERBB family, while the genes regulated
by the ERBB family are mainly concentrated in the RAS-
RAF-MEK-ERK signaling pathway (Wee and Wang, 2017),
which is one of the core pathways in the pathogenesis of
melanoma (McCubrey et al., 2007) and also a pharmacological
target for cancer treatment. CBL, as a ubiquitin ligase, can
ubiquitinate ERBB1 to activate downstream signaling pathways
(Levkowitz et al., 1998; Grøvdal et al., 2004). The heterodimer
combination of ERBB2 and ERBB1 or ERBB3 has strong
signal activity (Pinkas-Kramarski et al., 1996), which activates
downstream Ras/Raf/MEK/ERK cascade reaction pathway under
the stimulation of external factors (Djerf Severinsson et al.,
2011). Among them, RAS family genes include HRAS, NRAS,
and KRAS; RAF family genes include ARAF, BRAF, and
RAF1. ERK signaling pathway includes MAPK1, MAPK2P1,
and MAPK2P2. Besides, ERBB1/IGF-1R/CRAF can reduce the
proliferation of melanoma cells by inhibiting MAPK and/or
PI3K/AKT signaling pathways (Sun et al., 2016). In cutaneous
melanoma, the direct association of the ERBB family with
other genes (SOS, NF1, PDGFRA, FGFR1, RASA1, ROS1,
FGFR3, RAC1, PTPN11, NTRK2, FLT3, FGFR2, ERRFI1,
and RIT1) had not been reported, and so the relationship
between ERBB family and these genes remains to be further
studied and determined.

In some studies, the presence of tumor-infiltrating
lymphocytes (TIL) in melanoma is associated with better
prognosis and has been interpreted as an indicator that the
host promotes a more effective immune response to the tumor
(Clemente et al., 1996; Anichini et al., 2012). However, the
significance of TIL remains to be further demonstrated. Gooden
et al. (2011) conducted a meta-analysis on the impact of TIL
on cancer prognosis in 2011 and found that the presence of
CD3+ and CD8+ cells had a beneficial impact on the survival
of patients. In our study, ERBB2 can induce infiltration of
CD8+ T cells and B cells, while ERBB3 can induce infiltration
of CD4+ T cells, neutrophils cells, and CD8+ T cells. CD8+T
cells combine antigens and MHC I molecules to form complexes.
Once CD8+T cells are fully activated, they can induce the
apoptosis of melanoma cells by releasing perforin and granules
(Giavina-Bianchi et al., 2017; Zhang et al., 2017). Forsthuber
et al. (2019) found that neutrophils play an environmentally
dependent role in melanoma in a mouse tumor transplantation
model and can be actively switched to an anti-tumor model.
CD4+ T cells with MHC class II molecules present antigens; the
combination of cytokines in the microenvironment under the
action of cells can differentiate into various kinds of effects and
can be turned into CD4+ T helper cells (Th) to activate CD8+ T

cells, B cells, and natural killer cells (NK) to tumor cells to play
an antitumor immune response (Giavina-Bianchi et al., 2017).

We investigated the relationship between ERBB and immune-
infiltrating cell markers (Cor > 0.2). The downstream of EGFR,
the MAPK pathway, stimulates the activation of NF-KappaB
heteromorphs and homodimers to drive the expression of iNOS,
thus supporting the occurrence of melanoma. COX2, as the
downstream of the NF-kappa B pathway, plays a pro-oncogenic
role in the NF-kB-iNOS-COX-2 signaling pathway (Uffort
et al., 2009). Neuropilin-1 (NRP1, BDCA-4) induces a c-Jun
N-terminal kinase (JNK)-dependent signaling cascade that leads
to the upregulation of EGFR or IGF1R, thereby promoting cancer
cell growth (Rizzolio et al., 2020). Studies have shown that the
TGF-β pathway can initiate EGFR expression (Sun et al., 2014),
making EGFR fully pathogenic. Epidermal growth factor binds to
receptors and triggers a variety of signal transduction pathways,
one of which activates signal transduction and transcriptional
activator (STAT) (Olayioye et al., 1999). From the table we can
see that ERBBs are closely related to STAT1, STAT3, STAT5A,
STAT5B, and STAT6 (Cor > 0.2). ERBB1 induced low expression
of STAT3, STAT5B, and STAT6. ERBB2 induced low expression of
STAT3, STAT5A, and STAT5B. ERBB3 induced high expression
of STAT1, STAT3, STAT5A, and STAT6. ERBB1/2 can induce
low expression of STAT3 and STAT5B may be related to the
formation of heterodimer combination. In malignant melanoma,
Insulin-like growth factor binding protein 2 (IGFBP2) regulates
the expression of PD-L1 by activating the EGFR-STAT3 signaling
pathway (Li et al., 2020). The irreversible inhibition of Canertinib
on ERBB1-3 was more effective in inhibiting Akt, ERK1/2,
and STAT3 signaling pathways (Djerf Severinsson et al., 2011).
Phosphorylated STAT5 is regulated by rEGF in melanoma, and
inhibition of STAT5B expression can significantly reduce the
expression of BCL-2, resulting in decreased cell survival rate and
increased apoptosis (Mirmohammadsadegh et al., 2006). Studies
have shown that high STAT1, STAT3, and STAT5B expression
and low STAT6 expression are associated with better prognosis
in SKCM patients. These studies suggest that ERBBs may be
closely related to the STAT signaling pathway in cutaneous
melanoma. Also, the direct relationship between ERBBs and
immune-infiltrating cell markers (COR > 0.2) BDCA-1, GATA3,
and BCL6 has not been supported in the literature and requires
further study. In conclusion, our study shows that ERBBs and
M1 Macrophage, Dendritic cell, Th1, Th2, Th17, and Treg cells
have a more significant relationship (Cor > 0.2) in cutaneous
melanoma. Together, these findings uncover that ERBBs may
play an essential role in recruitment and supervision.

MDSCs are the heterogeneous population of immature bone
marrow cells derived from bone marrow (Dumitru et al.,
2012), which are composed of bone marrow progenitors,
immature macrophages, immature granulocytes, and immature
dendritic cells. MDSCs play a strong immunosuppressive role
(Goh et al., 2013; Ostrand-Rosenberg et al., 2017) through
their involvement in infection, inflammation, and cancer and
have a significant ability to inhibit the T cell response
(Gabrilovich and Nagaraj, 2009; Scapini et al., 2016). In
addition to inhibiting the adaptive immune response, MDSCs
also regulate the innate immune response by regulating the
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production of cytokines in macrophages. MDSC also has non-
immune functions that promote tumor growth and metastasis
by paracrine stimulation of tumor cell proliferation, movement,
and angiogenesis (Veglia et al., 2018). Macrophages and
myeloid-derived suppressor cells (MDSC), further subdivided
into monocytic MDSC (M-MDSC) and polymorphonuclear
MDSC (PMN-MDSC) (Cassetta et al., 2019). Human M-MDSC
is present in the same density fraction as monocytes but
differs from monocytes by the low presence or absence
of HLA-DR expression. They are further characterized as
lymphocyte lineage marker negative cells with the following
phenotype CD11b+HLA−DR−CD14+CD15−. It is possible
to use a CD33 myeloid cell marker instead of a CD11b.
Human PMN-MDSC are typically described as CD66b+
CD15+CD14−/dim CD33dim HLA-DR−cells. CD66b or CD15
can be used as lineage markers. PMN-MDSC have been
shown to also express other markers, including chemokine
markers (e.g., CXCR2, CXCR4), activation markers (e.g.,
Markers including CD274/ PD-L1, CD54/ICAM-1, CD62L,
CD63), and functional markers [e.g., arginase 1(ARG1)], at
variable levels depending on the disease type and severity
(Dumitru et al., 2012; Scapini et al., 2016; Cassetta et al.,
2019). MDSCs are associated with a poor prognosis of human
melanoma (Meyer et al., 2014). In this study, we found that
ERBB2/3 may be closely related to MDSC (Human M-MDSC
and Human PMN-MDSC) in cutaneous melanoma. Further
experimental studies are needed to support this conclusion,
which may be studied by our laboratory in appropriate
circumstances, due to the lack of evidence in literature
for the direct effects of ERBBs and MDSCs markers in
cutaneous melanoma.

In summary, we systematically analyzed ERBBs expression,
prognosis, immune infiltration, and its relationship with MDSC.
In cutaneous melanoma, ERBB3 high expression and ERBB1/2
low expression were strongly associated with 5 years survival
rates of cutaneous melanoma patients but may not affect

tumor stage or disease-free survival. ERBB1/2/3 are associated
with infiltration of multiple immune cells, especially the M1
Macrophage, Dendritic cell, Th1, Th2, Th17, and Treg cells,
which suggests that ERBBs may affect survival rate in cutaneous
melanoma patients by affecting immune cell infiltration. Besides,
ERBB2/3 are closely related to MDSC, but the role of ERBB2/3
in the cutaneous melanoma population with MDSC remains to
be further studied. According to current studies, ERBB1/2/3 may
serve as potential therapeutic targets in cutaneous melanoma.
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Background: Hepatocellular carcinoma (HCC) is a type of primary liver tumor with
poor prognosis and high mortality, and its molecular mechanism remains incompletely
understood. This study aimed to use bioinformatics technology to identify differentially
expressed genes (DEGs) in HCC pathogenesis, hoping to identify novel biomarkers or
potential therapeutic targets for HCC research.

Methods: The bioinformatics analysis of our research mostly involved the following two
datasets: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA).
First, we screened DEGs based on the R packages (limma and edgeR). Using the
DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of DEGs were carried out. Next, the protein-
protein interaction (PPI) network of the DEGs was built in the STRING database. Then,
hub genes were screened through the cytoHubba plug-in, followed by verification
using the GEPIA and Oncomine databases. We demonstrated differences in levels
of the protein in hub genes using the Human Protein Atlas (HPA) database. Finally,
the hub genes prognostic values were analyzed by the GEPIA database. Additionally,
using the Comparative Toxicogenomics Database (CTD), we constructed the drug-gene
interaction network.

Results: We ended up with 763 DEGs, including 247 upregulated and 516
downregulated DEGs, that were mainly enriched in the epoxygenase P450
pathway, oxidation-reduction process, and metabolism-related pathways. Through the
constructed PPI network, it can be concluded that the P53 signaling pathway and
the cell cycle are the most obvious in module analysis. From the PPI, we filtered out
eight hub genes, and these genes were significantly upregulated in HCC samples,
findings consistent with the expression validation results. Additionally, survival analysis
showed that high level gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B,
CCNB1, and CCNA2 were connected with the poor overall survival of HCC patients.
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Toxicogenomics analysis showed that only topotecan, oxaliplatin, and azathioprine
could reduce the gene expression levels of all seven hub genes.

Conclusion: The present study screened out the key genes and pathways that were
related to HCC pathogenesis, which could provide new insight for the future molecularly
targeted therapy and prognosis evaluation of HCC.

Keywords: hepatocellular carcinoma, bioinformatics, differentially expressed genes, survival, biomarker, GEO,
TCGA

INTRODUCTION

Accounting for 75-85% of all primary liver cancer, hepatocellular
carcinoma (HCC) is the main histological classification of liver
cancer, which is the fourth most frequent cause of cancer-related
death globally (Harris et al., 2019; Yang J.D. et al., 2019). The
liver is the second most common cancer-prone organ, after the
lungs, as was shown by the recent cancer study in China (Fu
and Wang, 2018). On the whole, the estimated morbidity of
HCC per 100,000 world standard population is 40.0 in males
and 15.3 in females (Zhu et al., 2016). Major risk factors for
HCC include genetic predisposition, epigenetic variation, chronic
hepatitis B infection, hepatitis C virus infection, smoking, obesity,
aflatoxin exposure, and diabetes (Puszyk et al., 2013; Baecker
et al., 2018). Transplantation is the most useful way to treat HCC;
however, after the transplantation process, the tumor recurrence
and metastasis rates are high (Au and Chok, 2018; Aufhauser
et al., 2018). More than 70% of patients at advanced stage
are not suitable for transplantation, whether due to the tumor
burden or liver dysfunction (Wang et al., 2019). Therefore, it is
urgent to recognize new biomarkers that can act as molecular
targets for therapy, and predictors of the prognosis of HCC.
With the development of times and technological progress,
microarray and high-throughput sequencing technologies have
matured and become more reliable, and public databases are
improving, such as the Gene Expression Omnibus (GEO)1

and the Cancer Genome Atlas (TCGA)2. The advancement
of microarray (Yang X. et al., 2018) and high throughput
sequencing technologies (Weinstein et al., 2013) has provided
a highly efficient tools to explore key genetic or epigenetic
changes in disease to identify biological markers that can be
applied to disease diagnosis, therapy, and prognosis (Weinstein
et al., 2013; Wang et al., 2018; Yang X. et al., 2018; Li et al.,
2019). Additionally, the application of integrated bioinformatics
methods in cancer research can solve the problem of different
results due to errors caused by different technical platforms
or small sample size, thus finding much valuable biological
information (Liu X. et al., 2018; Deng et al., 2019; Yan et al., 2019;
Yang K. et al., 2019).

In this research, by analyzing and distinguishing genes in
human HCC samples and normal hepatocyte samples using
TCGA and GEO datasets, we firstly screened out differentially
expressed genes (DEGs). Then, GO and KEGG pathway
enrichment analyses were applied in the further exploration of

1https://www.ncbi.nlm.nih.gov/geo/
2http://tcga-data.nci.nih.gov

the main biological functions, which regulated by the DEGs. After
that, the final step is to utilize a protein–protein interaction (PPI)
network, survival analyses and drug-gene interaction network
analyses to ascertain crucial genes and pathways which affecting
the pathogenic mechanism and prognosis of HCC patients.

MATERIALS AND METHODS

Gene Expression Datasets
The microarray gene expression dataset of GSE121248, which
comprises 70 hepatocellular carcinoma samples and 37 normal
liver samples, was obtained from the GEO website and exploited
as discovery dataset to identify DEGs. The included dataset
met the following criteria: (1) dataset included human HCC
samples and normal liver samples. (2) they contained at least ten
samples. (3) dataset was obtained from the Affymetrix Human
Genome U133 Plus 2.0 Array [HG-U133_Plus_2] microarray
platform. The raw RNA sequencing data, which comprises 374
HCC samples and 50 normal liver tissue samples, was selected
from the TCGA liver hepatocellular carcinoma (TCGA-LIHC)
dataset and used as a validation dataset.

Identification of DEGs
We used the R language to analyze the original CEL files of the
GSE121248 dataset.

The preprocessing procedures: using the “affy” R package
to RMA background correction, Log2conversion, Quantile
normalization, and Median polish algorithm summarization
(Bolstad et al., 2003; Gautier et al., 2004). Using the bioconductor
annotation package to convert microarray data probes into gene
symbol. If multiple probes were mapped to a gene symbol, take
the average value as the final expression value of the gene (Zhang
et al., 2018). Next, | log2fold change (FC)| > 1 and adjusted p
value <0.05 were used to select the DEGs between tumor and
normal tissues using the LIMMA package (Ritchie et al., 2015;
Nagy et al., 2018).

DEGs Validation Using the TCGA Dataset
The DEGs from the GSE121248 dataset were validated using the
TCGA-LIHC dataset.

The edgeR package of R software was applied to normalize
and analyze the TCGA-LIHC dataset (Robinson et al., 2010). |
log2fold change (FC)| > 1 and p-value <0.05 were considered
significant differences. The overlapping DEGs between
GSE121248 and TCGA-LIHC datasets were clustered using the

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 571231193196

https://www.ncbi.nlm.nih.gov/geo/
http://tcga-data.nci.nih.gov
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-571231 March 3, 2021 Time: 20:0 # 3

Li et al. Potential Biomarkers for Hepatocellular Carcinoma

pheatmap and were retained for further study. The overlapping
DEGs were analyzed using VennDiagram and ggplot2 packages
in R software to draw Venn diagrams and volcano plots, to
visualize the identified DEGs (Chen and Boutros, 2011).

Functional Enrichment Analysis of
Overlapping DEGs
We used the Database for Annotation, Visualization and
Integrated Discovery (DAVID version 6.8)3 to elucidate potential
GO function [including biological processes (BP), molecular
functions (MF), cellular components (CC)] and signaling
pathways (KEGG) related to the overlapping DEGs (Dennis et al.,
2003; Kanehisa et al., 2017). We used threshold p-value 0.05.

Protein–Protein Interaction Network
Construction and Module Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING
version 11)4 database was one of the largest online databases
of known protein-protein interactions covering the largest
number of species (Szklarczyk et al., 2017). The parameter
of interactions was set with a confidence score >0.7. The
confidence score refers to the strength of data support in terms
of the thickness of the line. Confidence score >0.7 means high
confidence. Overlapping DEGs were entered into Cytoscape
software (version 3.7.2)5 to construct and analyze PPI network
(Shannon et al., 2003). Moreover, the Cytoscape plug-in MCODE
was used to screen crucial clustering modules in the entire
network (Bader and Hogue, 2003).

Identification of Hub Genes
The Cytoscape plug-in CytoHubba was used to calculate the
protein node degree (Chin et al., 2014; Cao et al., 2018). The top
three methods [(Maximal Clique Centrality (MCC), Maximum
Neighborhood Component (MNC), and Density of Maximum
Neighborhood Component (DMNC)] were selected to provide
the analyzed results. Each method displayed their top ten genes.
A Venn diagram was generated to visualize common hub genes
based on these three methods.

Expression Analysis of Hub Genes in
Multiple Databases
The hub genes mRNA expression levels were finally validated
in two databases, Gene Expression Profiling Interactive Analysis
(GEPIA)6 (Tang et al., 2017) and Oncomine. Oncomine
(Version4.5)7 is an online database that has the comprehensive
cancer mutation spectrum, gene expression data and related
clinical information, which can be used to discover new
biomarkers or new therapeutic targets (Rhodes et al., 2004). In
addition to detecting the mRNA expression levels of the hub
genes, we also investigated the protein levels in HCC tissues and

3https://david.ncifcrf.gov/
4http://string-db.org/
5http://www.cytoscape.org/
6http://gepia.cancer-pku.cn/
7https://www.oncomine.org/

normal liver tissues using the human protein atlas database (HPA
v19)8 (Thul and Lindskog, 2018).

Survival Analysis
Gene Expression Profiling Interactive Analysis is a newly
developed online database for cancer and normal gene expression
profiling. In the current study, the overall survival of each hub
gene was analyzed using LIHC dataset in the GEPIA database.
The patients were divided into two groups (the high- and low-
expression group) according to the median expression level of
each hub gene. This division method could evaluate the difference
in overall survival probability between these two groups. We were
drawn the overall survival curves of each hub gene using the
GEPIA database, with a p-value <0.05.

Drug-Gene Interaction Network Analysis
The Comparative Toxicogenomics Database (CTD)9, an online
database providing information on the interactions between gene
products and chemotherapeutic drugs, and their relationships
to diseases) was used to construct the chemotherapeutic drug-
gene interaction network (Davis et al., 2019). The networks were
visualized by Cytoscape software 3.7.210.

RESULTS

Identification of DEGs
The gene expression dataset of GSE121248, which contains 70
LIHC samples and 37 normal liver samples, was analyzed in the
limma package using | logFC| > 1 and corrected p-value <0.05 of
R software. In total, 1,518 DEGs (557 high expression genes and
961 low expression genes) were identified between HCC tissue
samples and normal liver tissue samples. The volcano map and
heatmap of all DEGs are shown in Figures 1A,C. Additionally,
compared with normal liver tissues in the TCGA-LIHC dataset,
2,898 DEGs were obtained in LIHC tissues, comprising 1,299
upregulated genes and 1,599 downregulated genes (Figure 1B).
Furthermore, 763 overlapping DEGs (247 high expression genes
and 516 low expression genes) were identified between the
GSE121248 and TCGA-LIHC datasets using a Venn diagram
(Figure 1D). Figure 1E shows clustering analysis results of the
763 overlapping DEGs based on the TCGA-LIHC dataset.

Enrichment Analysis of Overlapping
DEGs
We conducted GO and KEGG pathway enrichment analysis to
further elucidate potential biological functions associated with
the 763 overlapping DEGs of HCC. The GO analysis results
of the DEGs were classified into molecular functions, biological
processes and cellular components. For molecular functions, the
overlapping DEGs were mainly associated with oxidoreductase
activity, monooxygenase activity, heme binding and oxygen
binding (Figure 2A). In the BP category, the epoxygenase P450

8https://www.proteinatlas.org/
9http://ctdbase.org/
10https://cytoscape.org/
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FIGURE 1 | Identification of DEGs. (A,B) show the volcano maps of DEGs for (A) GSE121248 dataset, (B) TCGA-LIHC dataset. (C) The heatmap of the top 50
DEGs in dataset GSE121248. The green color and red color in the heatmap indicate low and high expression of DEGs. (D) Venn diagrams of the DEGs between the
GSE121248 dataset and the TCGA-LIHC dataset. (E) The heatmap of the top 100 overlapping DEGs according to the value of | logFC| in TCGA-LIHC dataset. The
color in heatmaps from green to red shows the progression from down-regulation to up-regulation.
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FIGURE 2 | Enrichment analysis of the overlapping DEGs. (A–C) illustrate the GO enrichment analysis results: (A) molecular function, (B) biological process and (C)
cellular components. (D) KEGG pathway enrichment analysis results.

pathway, oxidation-reduction process, response to drug and
cell division were enriched (Figure 2B). In the CC category,
they were enriched in extracellular regions, such as extracellular
exosomes and the extracellular space (Figure 2C). The pathway
enrichment analysis results showed that overlapping DEGs
mainly participated in multiple metabolism pathways, such as
fatty acid degradation, glycine, serine and threonine metabolism,
and tryptophan metabolism (Figure 2D).

PPI Network Establishment and Module
Analysis
To further reveal the potential relationships between proteins
encoded by DEGs, a PPI network was constructed using
the STRING database. Network analysis of overlapping DEGs
revealed 526 nodes and 4,173 edges in the PPI network.
Additionally, we conducted module analysis using the MCODE
plug-in to detect crucial clustering modules. In total, 29 clusters

were obtained in MCODE, and the top three modules with
the highest scores were selected as hub modules. Module 1
contained 63 nodes and 1,752 edges with the highest score of
56.516 and was mainly enriched in cell cycle, oocyte meiosis, P53
signaling pathway and progesterone-mediated oocyte maturation
(Figure 3A). Module 2 contained 17 nodes and 80 edges with a
score of 10 and mainly participated in PPAR signaling pathway
and glycerolipid metabolism (Figure 3B). Module 3 comprised
28 nodes and 100 edges with a score of 7.407 and was mainly
implicated in Chemical carcinogenesis, Peroxisome, Metabolic
pathways and Drug metabolism cytochrome P450 (Figure 3C).

Hub Genes Selection From the PPI
Network
The Cytoscape plug-in cytoHubba including the top three
algorithms (MCC, MNC, and DMNC) was applied to select hub
genes, and the top 10 genes were selected by each of the three
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FIGURE 3 | Venn diagram and the top three clustering modules of PPI network. (A) Module 1 with an MCODE score of 56.5. The red nodes are the hub genes.
(B) Module 2 obtained a score of 10.0 from MCODE. (C) Module 3 with an MCODE score of 7.4. Edges represent the protein-protein associations. The higher the
module score, the more important the module is in the PPI network. (D) Venn diagrams of the hub genes between three methods (MNC, MCC, and DMNC).

methods. The Venn diagram identified eight overlapping hub
genes based on these three methods (Figure 3D): cell division
cycle protein 20 homolog (CDC20), cyclin-dependent kinase1
(CDK1), mitotic spindle assembly checkpoint protein MAD2A
(MAD2L1), threonine-protein kinase BUB1 (BUB1), threonine-
protein kinase BUB1 beta (BUB1B), mitotic-specific cyclin-B1
(CCNB1), mitotic-specific cyclin-B2 (CCNB2) and cyclin-A2
(CCNA2). These eight hub genes were used for further analysis.

Validation of Hub Genes in Multiple
Databases
Oncomine and GEPIA were applied to validate the differentially
expression levels of 8 hub genes between HCC tissues and
normal liver tissues in HCC. These eight hub genes were
all remarkably overexpressed in HCC samples (Figure 4).
Moreover, a summary of hub genes in multiple tumors

indicated that hub genes were significantly overexpressed in
HCC (Figure 5). Furthermore, we also investigated the protein
expression levels in HCC tissue samples and normal liver
tissue samples using the human protein atlas database. Because
the HPA dataset could not provide immunohistochemical
information on BUB1 and BUB1B, we showed the results of
the remaining six staining pairs in Figure 6. The protein
expression levels of hub genes were agreed with the mRNA
expression results, and most genes were overexpressed in
HCC tissue (Figure 7). These findings indicate that the
overexpression of these hub genes may play a critical role
in HCC mechanism.

Survival Analysis
We further used the GEPIA database to analyze the prognostic
value of these 8 hub genes in HCC patients. The survival analysis
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FIGURE 4 | Validation of eight hub genes mRNA expression levels in HCC tissues vs. normal liver tissues using the GEPIA database (A–H). The red color represents
the tumor samples and the gray color represents the normal liver samples.

of patients in the GEPIA database was based on the TCGA-
LIHC data set. We used threshold p-value 0.05 and calculated
the hazards ratio based on Cox PH Model (Xu et al., 2020).
The relatively higher expression of CDC20 (HR = 2.3; P = 3.8e-
06), CDK1 (HR = 2; P = 0.00017), MAD2L1 (HR = 1.7;
P = 0.0047), BUB1 (HR = 1.8; P = 0.001), BUBIB (HR = 1.7;
P = 0.0028), CCNB1 (HR = 2; P = 0.00015), and CCNA2
(HR = 1.7; P = 0.0037) were associated with a poor prognosis
in HCC patients, while only CCNB2 (HR = 1.4; P = 0.052)
showed no statistical significance in the overall survival of
patients (Figure 6).

Drug-Gene Interaction Network Analysis
To investigate the potential information on the interactions
between hub genes and cancer chemotherapeutics drugs, we used
the CTD database to construct chemotherapeutics drug-gene
interaction network. Various drugs could influence the mRNA
expression level of seven hub genes, namely, CDC20, CDK1,
MAD2L1, CCNA2, CCNB1, BUB1, and BUB1B (Figure 8).
However, only topotecan, oxaliplatin and azathioprine could
reduce expression levels of all seven hub genes.

DISCUSSION

Hepatocellular carcinoma is a type of primary liver tumor
with poor prognosis and high mortality, and the progress in

its diagnosis and treatment has always attracted widespread
attention from researchers around the world. Because the high
recurrence and metastasis rate of HCC remains a challenge,
identifying new molecules as biological markers is urgently
needed. Integrated bioinformatics analysis, which focuses on
screening of DEGs, discovering hub node of network-based
and doing survival analysis, which has been diffusely used to
recognize latent biological markers related to cancer diagnosis,
therapy, and prognosis estimation. In recent years, increasing
researches have demonstrated that abnormal gene expression is
a factor in the tumorigenesis and development, so it is feasible
to screen differential genes as biomarkers to assist diagnosis
and treatment. In 2017, by developing an integrated approach
including GO and KEGG analysis, PPI network creation, hub
gene identification, and overall survival analysis, Li L. et al. (2017)
picked out 16 hub genes for HCC from three GEO datasets, five
of which may be playing a part in the occurrence, development,
invasion, metastasis or recurrence of HCC. In 2018, Zhang L.
et al. (2018) used bioinformatics methods to select 10 genes
from the GEO dataset GSE64041 for the identification of hub
genes and pathways of HCC. Gu et al. (2020) recognized 13
crucial genes correlated with progression and prognosis of HCC
from the TCGA-LIHC dataset by weighted gene coexpression
network analysis. Compared with previous similar studies, our
study not only integrated a large sample size of mRNA expression
data from the GEO database but also analyzed RNA sequencing
result and clinical data from the TCGA-LIHC database to screen
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FIGURE 5 | An summary of mRNA expression results of 8 hub genes in multiple tumors using the Oncomine database. The numbers in colored cells show the
quantities of datasets with high (red) or low (blue) mRNA expression of the hub genes.

out potential hub genes in HCC. And in the second place, this
study validated the DEGs through multiple databases. Finally, we
explored the relationship between seven hub genes and existing
drugs for cancer therapy, which may provide some guidance for
the molecular targeting therapy of HCC in the future.

In our research, DEGs in HCC based on the GEO expression
profile of GSE121248 (70 HCC samples and 37 normal samples)
and TCGA-LIHC RNA sequencing data (374 HCC samples
and 50 normal samples) were identified by bioinformatics
analysis. In total, 763 significantly robust DEGs, including
247 upregulated DEGs and 516 downregulated DEGs, were
identified. The enrichment analysis results of GO indicated
that the DEGs were mostly relevant to “oxidoreductase
activity, acting on paired donors,” “monooxygenase activity,”
“arachidonic acid epoxygenase activity,” “oxidation-reduction
process,” “epoxygenase P450 pathway,” “response to drug,”
“extracellular exosome,” “extracellular region,” and “cytosol.” The
analysis of KEGG pathway showed that the DEGs were mainly
concentrated in the following: “fatty acid degradation pathway,”
“metabolic pathways,” “chemical carcinogenesis pathway,” “cell
cycle pathway,” and “biosynthesis of antibiotics pathway.”

Previous studies have reported that the arachidonic acid-derived
metabolites and cytochrome P450 epoxygenase CYP2J2 possibly
play vital roles in regulating malignant tumor, stimulating
tumor cell growth, and inhibiting tumor cell apoptosis (Liu L.
et al., 2011; Xu et al., 2011; Yarla et al., 2016). Additionally,
metabolic pathways are important for cancer cell survival because
the metabolic demands of cancer cells are often expressed
as increased, and HCC shows a significant alteration in lipid
metabolism (Pope et al., 2019). Moreover, dysregulation of the
cell cycle processes and mitotic cell cycle plays a vital role in
the tumorigenesis and progression (Williams and Stoeber, 2012;
Wlodarchak and Xing, 2016). These theories are consistent with
our results in GO and KEGG enrichment analysis.

Through building PPI network and analyzing it, we identified
crucial hub genes in the PPI network, including CDC20, CDK1,
MAD2L1, BUB1, BUB1B CCNB1, CCNB2, and CCNA2. Using
Oncomine and GEPIA validation, the mRNA expression of these
eight hub genes in HCC samples was higher than normal liver
samples, the finding that was in accord with the microarray
results. Subsequently, HPA database data displayed that the
protein and mRNA expression of hub genes were consistent,
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FIGURE 6 | The OS analysis of 8 hub genes in the HCC patients using the GEPIA database. The red curve is the high expression group and the blue curve is the
low-expression group. p-value < 0.05.

and most genes were overexpressed in HCC tissue. To inquire
prognostic biological markers of HCC, we applied the GEPIA to
analyze the influence of hub genes expression level on survival
of HCC patients and found that, except CCNB2, the high level
gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B,
CCNB1, and CCNA2 were related to HCC patients poor overall
survival. Therefore, these seven genes may be functional in HCC
occurrence and development.

It was reported that high expression of CDC20 (cell division
cycle protein 20) is associated with poor survival in astrocytoma
(Ding et al., 2017), cutaneous squamous cell carcinoma (Chu
et al., 2019) and pancreatic ductal adenocarcinoma (Dong et al.,
2019). CDC20 promotes the progression of prostate cancer by
stabilizing hypo-catenin in tumor-like dry cells (Zhang et al.,
2019). However, the expression of cell division cycle protein
20 in HCC still lacks accurate experimental data. As a part
of the Ser/Thr protein kinase family, CDK1 (cyclin-dependent
kinase 1) is a key molecule that controls the eukaryotic cell
cycle. By phosphorylating Bora, Cyclin A/cdk1 could facilitate
the phosphorylation, activation and mitotic entry of Aurora
A-dependent Plk1 (Vigneron et al., 2018). It is reported that
CDK1 overexpression has been found in colorectal cancer,
pancreatic ductal adenocarcinoma and thyroid cancer (Zhang P.
et al., 2018; Piao et al., 2019; Zheng et al., 2019). It was also
reported that CDK1 amplification rate in HCC tissues was usually
up to 46% (18/39), which was meaningfully related to poor overall
survival (p = 0.008) (Wu et al., 2018). These results were in accord
with our study findings.

As a pro-oncogene upregulated in gastric cancer, MAD2L1
(mitotic arrest deficient 2-like protein 1) can be downregulated
expression by miR-30a-3p, resulting in inhibition of the
proliferation of gastric cancer cells (Wang et al., 2019). Besides,

by restraining MAD2L1, miR-200c-5p can inhibit HCC cells
proliferation, migration and invasion (Li Y. et al., 2017),
suggesting that MAD2L1 can be used in HCC patients prognostic
evaluation and targeted therapy. As a cyclin controlling the
G1/S and G2/M phases in the cell cycle, CCNA2 (cyclin-
A2) is more expressed in CRC samples than in normal
samples. The reduction of CCNA2 gene expression would
disrupt cell cycle progression and induce apoptosis, thus
significantly inhibiting the growth of CRC cells (Gan et al.,
2018). By maintaining the expression of CCNA2 protein
and the production of arginine, arginine metabolic enzyme
argininosuccinate lyase (ASL) can promote the production of
nitric oxide synthase, thus promoting the formation of HCC
(Hung et al., 2017).

As a mitotic checkpoint serine/threonine kinase, BUB1 is
related to tumorigenesis in many cancers. shRNA silencing
inhibits the expression of BUB1 gene in glioblastoma tumor
cells, thereby reducing the proliferation and tumorigenicity
of tumor cells in vivo and in vitro (Yu et al., 2019).
Increased BUB1 expression signally facilitates cell proliferation,
while decreased BUB1 expression restrains liver cancer cells
proliferation (Zhu et al., 2020). The proliferation, migration,
and invasion of PCa cell lines can be enhanced via BUB1B
overexpression (Fu et al., 2016). Worse OS and DFS of
HCC patients can be predicted by the high expression
of BUB1B (Zhuang et al., 2018). CCNB1, an important
protein regulating the G2/M (mitotic) cell cycle, is activated
by Chk1, exerting its oncogenic role in colorectal cancer
cells growth in vivo and in vitro (Fang et al., 2014).
Abnormal FOXM1 expression can transcriptionally activate
CCNB1 expression, thereby promoting the proliferation of HCC
cells (Chai et al., 2018).
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FIGURE 7 | Immunohistochemical staining analysis of hub genes (CCNA2, CCNB1, CCNB2, CDC20, CDK1, and MAD2L1) in HCC tissues and normal liver tissues.

After exploring the potential information about the
interactions between the seven hub genes and existing
chemotherapeutic drugs, we found that various drugs could
influence the expression levels of these hub genes. However, only
topotecan, oxaliplatin and azathioprine could simultaneously
reduce the expression level all seven hub genes. And it should
be noted that further experiments are needed to support
whether HCC patients with hub gene overexpression can benefit
from hub gene inhibition or whether these key genes may be
targets of drug treatment of tumor need ulteriorly biological
experiments support.

In the current study, we have discussed that the development
of HCC is associated with the overexpression of seven hub
genes, which lead to poor overall survival, indicating that they
may be considered as potential prognostic biomarkers for HCC.
However, our study has several limitations: (1) some important
clinical information (for example, different age, tumor size, TNM
stage and grade) were not considered; (2) biological experiments

must be carried out in the future to verify the results of our
research; (3) the molecular mechanism of hub gene upregulation
remains unclear. Therefore, the verification of hub genes will be
the focus of our next work.

CONCLUSION

Adopting a series of bioinformatics analysis methods, the current
study identified 763 DEGs and seven hub genes (CDC20,
CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2) that
may be involved in hepatocellular carcinoma tumorigenesis and
progression. Additionally, multiple database analysis and survival
analysis demonstrated that these seven hub genes may regard
as a latent prognostic biomarker and the overexpression of
these seven hub genes might lead to reduced overall survival in
HCC patients. These results provide a theoretical basis for the
molecularly targeted therapy and prognosis evaluation of HCC.
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FIGURE 8 | Drug-gene interactions network with chemotherapeutic drugs and seven hub genes was constructed using the CTD database. (A–G) shows the
relationship between existing chemotherapeutic drugs and the expression levels of hub genes. (A) BUB1, (B) BUB1B, (C) CCNA2, (D) CCNB1, (E) CDC20,
(F) MAD2L1, and (G) CDK1. The red and green arrows represent that the chemotherapy drugs will increase or decrease the expression of the hub genes. The
number of arrows between hub genes and chemotherapy drugs indicates the number of references supported by previous studies.
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Transition to flowering is an important stage of plant development. Many regulatory 
modules that control floral transition are conservative across plants. This process is best 
studied for the model plant Arabidopsis thaliana. The homologues of Arabidopsis genes 
responsible for the flowering initiation in legumes have been identified, and available data 
on their expression provide a good basis for gene network modeling. In this study, 
we developed several dynamical models of a gene network controlling transition to 
flowering in pea (Pisum sativum) using two different approaches. We used differential 
equations for modeling a previously proposed gene regulation scheme of floral initiation 
in pea and tested possible alternative hypothesis about some regulations. As the second 
approach, we applied neural networks to infer interactions between genes in the network 
directly from gene expression data. All models were verified on previously published 
experimental data on the dynamic expression of the main genes in the wild type and in 
three mutant genotypes. Based on modeling results, we made conclusions about the 
functionality of the previously proposed interactions in the gene network and about the 
influence of different growing conditions on the network architecture. It was shown that 
regulation of the PIM, FTa1, and FTc genes in pea does not correspond to the previously 
proposed hypotheses. The modeling suggests that short- and long-day growing conditions 
are characterized by different gene network architectures. Overall, the results obtained 
can be used to plan new experiments and create more accurate models to study the 
flowering initiation in pea and, in a broader context, in legumes.

Keywords: pea, gene network, flowering initiation, differential equations, neural networks, dynamical model

INTRODUCTION

Flowering is associated with a significant physiological change in plant development which 
manifests the transition from vegetative growth to reproductive development. For the reproductive 
success of plants, it is important for this transition to occur at the most appropriate moment. 
Various exogenous and endogenous pathways contribute to the control for the flowering time, 
and these pathways are best studied for the model plant Arabidopsis thaliana (Srikanth and 
Schmid, 2011; Andrés and Coupland, 2012; Khan et  al., 2014). The key factor in the activation 
of the photoperiodic pathway of flowering initiation in Arabidopsis is the protein encoded by 
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the FLOWERING LOCUS T (FT) gene. The FT, a 
phosphatidylethanolamine binding protein (PEBP), is a mobile 
signal transported from the leaves to the top of the shoot apex, 
where it promotes the plant’s transition to flowering. Expression 
of the FT gene depends on the influence of external and internal 
signals, which allow the plant to regulate the flowering initiation 
time (Kardailsky et  al., 1999; Kobayashi et  al., 1999; Jaeger 
et al., 2013). After synthesis in the leaves, the FT protein moves 
to the shoot apical meristem and forms a complex with the 
bZIP-type transcription factor FLOWERING LOCUS D (FD; 
Abe et  al., 2005), which belongs to the 14-3-3 protein family 
(Taoka et  al., 2011). Main target genes of the FT-FD complex 
are the flower meristem identity gene AP1 (APETALA1; Wigge 
et  al., 2005) and SUPPRESSOR OF OVEREXPRESSION OF 
CONSTANS1 (SOC1; Yoo et al., 2016). The latter is an activator 
of the gene LEAFY (LFY), which also controls the transition 
of shoot apical meristems to flower meristems (Lee et al., 2008). 
The flower meristem identity genes AP1 and LFY transcriptionally 
activate each other (Jaeger et  al., 2013).

The balance between activation and repression of flowering 
initiation is important for plants with indeterminate inflorescence 
architecture, in which newly forming flowers do not stop further 
plant growth (Benlloch et  al., 2015). The key repressor of 
flowering initiation in Arabidopsis is the gene TERMINAL 
FLOWER1 (TFL1), which is a close relative of FT and encodes 
a protein belonging to the PEBP family. This protein is expressed 
during floral transition in the center of the shoot apical meristem 
and maintains it in the vegetative state by suppressing the 
expression of LFY and AP1 (Jaeger et  al., 2013; Goretti et  al., 
2020). In turn, AP1 represses TFL1 by directly binding its 
regulatory elements (Kaufmann et  al., 2010). This mutual 
repression between TFL1 and LFY/AP1 explains the inflorescence 
meristem maintenance and flower meristem formation on its 
flanks (Benlloch et al., 2015). The minimal graph summarizing 
the genetic control of the photoperiod pathway in flower 
transition in Arabidopsis is shown in Figure  1A.

During evolution of legumes, the floral transition regulation 
has become more complex. This class of plants is characterized 
by the formation of a more complicated, the so-called compound, 
inflorescence architecture (Benlloch et al., 2015). In the process 
of growth, two meristems (primary and secondary) are 
successively formed. Moreover, multiple copies of the PEBP 
genes were identified in legumes homologous to FT and TFL1, 
associated with multiple genome duplication events during 
evolution (Hecht et  al., 2011). The legume FT-like genes are 
subdivided into three subclasses: FTa, FTb, and FTc. Five FT-
like genes from these subclasses were identified in pea (Pisum 
sativum; FTa1, FTa2, FTb1, FTb2, and FTc). These genes are 
characterized by variable expression patterns under different 
conditions. Under long day (LD) conditions, FTa1 and FTb2 
are expressed in the leaves, while under short day (SD) conditions 
only decreased expression of FTa1 is observed. In the plant 
apex, only FTc and FTa1 are expressed. Such differences indicate 
distinct functions of the FT genes in floral initiation in pea 
(Hecht et  al., 2011).

Pea homologues of the flower meristem identity genes AP1 
and LFY are PROLIFERATING INFLORESCENCE MERISTEM 

(PIM/PEAM4) and UNIFOLIATA (UNI), respectively (Hofer 
et  al., 1997; Taylor et  al., 2002). Homologues of the floral 
repressor TFL1 in pea include DETERMINATE (DET), which 
is a marker of the primary inflorescence meristem (Berbel 
et  al., 2012), and LATE FLOWERING (LF), whose function 
is not entirely clear (Foucher et  al., 2003). The secondary 
inflorescence meristem is under control of VEGETATIVE1 
(VEG1; Berbel et  al., 2012). A pea homologue of FD is 
VEGETATIVE2 (VEG2), which is thought to form the complex 
with FTs similarly to Arabidopsis (Sussmilch et  al., 2015).

Hecht et  al. (2011) qualitatively analyzed the expression of 
these genes in pea, both in the leaves and in the shoot apical 
meristem, under different growth conditions and genotypes. 
Later, Sussmilch et al. (2015) proposed a scheme for regulations 
underlying the compound inflorescence development and floral 
transition in pea, as depicted in Figure  1B. In our study, 
we  apply modeling to test whether the proposed regulation 
scheme fits the expression data quantitatively.

Methods of mathematical modeling are widely applied to 
the analysis of gene networks. These methods include Boolean 
models, ordinary differential equations (ODEs), neural networks, 
Bayesian networks, and stochastic modeling (Chai et  al., 2014; 
Le Novère, 2015). The choice between different modeling 
approaches depends on the type of data used to calibrate 
the model.

Various modeling techniques were used for the quantitative 
analysis of gene networks involved in plant growth and 
development (Haque et  al., 2019), in particular, in the 
photoperiodic pathway of floral transition. A method of neural 
networks was applied to study the transition to flowering of 
Arabidopsis (Welch et  al., 2003). This model had a prescribed 
neural network architecture and described the interaction of 
the main genes responsible for various pathways of flowering 
initiation in the plant. The model was trained on values of 
such phenotypic parameters as the daylight length and the 
number of days after sowing. Later, the main regulatory elements 
underlying the photoperiodic pathway of Arabidopsis transition 
to flowering were identified using a dynamical model based 
on differential equations, which was applied to the data on 
flowering time of the wild and mutant genotypes (Jaeger et al., 
2013). It was shown that the dynamics of flowering initiation 
can be  explained by dividing the gene network into several 
feedback and forward loops with specific functional roles 
(Pullen et  al., 2013). A more advanced model was developed 
later by Leal Valentim et  al. (2015), in which additional 
regulators (SOC1 and AGL24) were added into the activation 
of LFY by the FT-FD complex, and the model was fitted to 
gene expression data. This approach allowed to test various 
hypotheses about LFY regulation by SOC1 and AGL24 and 
elucidated a nonlinear nature of the flowering network. Wang 
et  al. (2014) investigated different approximations used to 
formulate model equations and compared their influence on 
the model performance in describing floral initiation in 
Arabidopsis. Apart from Arabidopsis, similar models of floral 
transition were also elaborated for chickpea (Cicer arietinum), 
which is a member of the legume family. Like pea, it has multiple 
homologous of the FT and TFL1 genes (Ridge et  al., 2017). 
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A dynamical model of the flowering gene network was developed 
and used for testing various hypotheses on how the FT- and 
TFL1-like genes combine in regulating the flower meristem 
identity genes in the ICCV 96029 chickpea cultivar (Gursky 
et  al., 2018). The same model was not successful for CDC 
Frontier, which is another chickpea cultivar. A machine learning-
based modeling approach was developed and applied for this 
cultivar, predicting that SD and LD growing conditions may 
be  associated with different architectures of the flowering gene 
network (Podolny et al., 2020). Extending a classical qualitative 
model for the control of flowering initiation, Wenden et  al. 
(2009) elaborated a quantitative model of flowering in pea 
(Wenden and Rameau, 2009). This model was used to formulate 
new hypotheses about the signals controlling flowering. More 
sophisticated modeling and software platforms were proposed 
taking into account mechanical processes during flower 
development and, more generally, morphogenesis in plants, 
and using advanced data quantification methods (Barbier de 
Reuille et  al., 2015; Boudon et  al., 2015).

We extend the previous modeling attempts to floral transition 
in pea. We  construct several dynamical models and apply 
them to the previously published data on the photoperiodic 
pathway of flowering initiation in pea (Hecht et  al., 2011; 
Sussmilch et  al., 2015). We  specifically investigate the 
compatibility of the network from Figure  1B to the data at 
the quantitative level.

RESULTS

We calibrated our models on the previously published dynamic 
expression data of genes responsible for flowering initiation 
in pea (cultivar NGB5839; Hecht et  al., 2011; Sussmilch et  al., 
2015). We extracted the expression data for three FT-like genes 
(FTa1, FTb2, and FTc), two homologues of the TFL1 gene 
(DET and LF), one homologue of the FD gene (VEG2), a 
homologue of the flower meristem identity gene AP1 (PIM), 
and the VEG1 gene responsible for secondary meristem formation. 
For all genes except VEG1, data were available for the SD 
and LD growth conditions in the wild type; VEG1 expression 
data were available only for LD. In addition, expression data 
for the same genes were extracted for three mutant genotypes: 
late1-2, dne-1, and gigas-2. late1-2 is a mutant for gene LATE1, 
which has delayed flowering under LD. dne-1 represents a 
mutant for gene DNE1, which starts flowering under SD at 
the same time as a wild-type plant under LD. gigas-2 is the 
FTa1 null mutant.

Dynamical Models Based on the Proposed 
Regulation Scheme
We developed a dynamical model describing gene expression 
according to the regulation scheme shown in Figure  1B. 
We  formulated ODEs implementing the Michaelis–Menten 
kinetics for the expression of each gene under the influence 

A B

FIGURE 1 | Schemes for genetic control of floral initiation in (A) Arabidopsis and (B) pea (Pisum sativum). (A) The core gene network controlling floral transition in 
Arabidopsis thaliana (Jaeger et al., 2013). IM, inflorescence meristem; FM, flower meristem. (B) The core gene network controlling floral transition in pea. FTb2 is 
expressed in plant leaves under LD conditions; it then moves to the apex, where it interacts with VEGETATIVE2 (VEG2). The resulting complex VEG2-FTb2 
stimulates the formation of the primary inflorescence meristem (I1M) by activating the meristem identity gene DETERMINATE (DET). Within the apex, FTb2 also 
activates FTa1 and FTc and downregulates LF. FTa1 is expressed both in the leaves and in the apex. By means of the complex with VEG2, FTa1 probably stimulates 
FTc expression and activates VEGETATIVE1 (VEG1). The latter activation leads to higher expression of VEG1, enhanced by the reduced repression from LF, and this 
expression initiates the secondary inflorescence meristem formation (I2M). FTa1-VEG2 also activates the floral meristem (FM) identity gene PROLIFERATING 
INFLORESCENCE MERISTEM (PIM). The mutual repression between the three meristem identity genes (DET, VEG1, and PIM) ensures a spatial separation of the 
corresponding developmental compartments, maintaining the indeterminate inflorescence development. Dashed arrow-headed lines indicate movement of proteins 
from leaves to apex and protein complex formation within the apex. Red solid arrow-headed lines correspond to transcriptional activation, and blue solid T-like lines 
indicate transcriptional repression. The regulation scheme is based on a figure by Sussmilch et al., 2015.
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of its regulators and fitted this model to the expression data, 
in order to understand how the proposed regulation scheme 
matches the data at the quantitative level. We  first investigated 
a baseline model [the MM model; equations (1)–(11) in Materials 
and Methods] which includes only regulations shown in Figure 1B 
and, in particular, considers the competitive binding of VEG2 
by FTa1, FTb2, and FTc. We  found values of free parameters 
by fitting this model to the wild-type expression data. In order 
to reduce the probability of overfitting, we analyzed all solutions 
resulted from a series of the numerical optimization runs 
(Figure 2). These solutions qualitatively match the data dynamics 
but have several quantitative discrepancies. In SD, insufficient 
repression at early times and insufficient activation at later times 
of PIM and FTc are observed. As data for VEG1 were absent 
in SD, the solution for this protein was not fitted to data. As 
a consequence, most of the VEG1 solutions have unrealistically 
high expression values in SD. The defects in LD include deficient 
activation at later times in most solutions for PIM, FTc, and 
apical FTa1, and deficient activation of LF at early times. Testing 
the model on the data from mutants also showed a qualitative 
correspondence between the model and the data, but with 
quantitative defects (Supplementary Figures  1, 2).

Testing Alternative Hypotheses About Gene 
Regulations
To improve the baseline model, we  tested several alternative 
hypotheses about additional interactions in the gene network. 
TFL1 inhibits floral initiation in Arabidopsis by repressing 

expression of AP1. Among two pea homologues of the TFL1 
gene (DET and LF), only DET was suggested as a repressor 
of PIM, which is the pea homologue of AP1 (Figure  1B). 
We assumed that LF also represses PIM and that this repression 
would reduce overexpressed PIM at early times in SD. To test 
this hypothesis, we  formulated the MM_LF model by adding 
the new regulation into equations of the baseline MM model 
[see equation (12) in Materials and Methods] and fitted the 
new model to the wild-type data. The MM_LF model showed 
a slightly better performance as compared to the MM model 
in SD, but the performance became worse in LD (Figure  3A). 
Taking into account that the early dynamics of PIM is not 
improved essentially (Supplementary Figure  3) and MM_LF 
is much worse than MM on data from the gigas-2 mutant 
(Supplementary Figure  4), we  can reject the hypothesis about 
PIM repression by LF.

On the next step, we tested whether the competitive binding 
of VEG2 by FTa1, FTb2, and FTc is essential. We  adjusted 
the MM model by assuming that the binding is uncompetitive, 
so that the concentrations of the complexes were taken equal 
to the product of the concentrations of the corresponding 
proteins [equations (13)–(15) in Materials and Methods]. This 
new alternative model (MC model) demonstrated a better 
performance on the wild-type data as compared to the MM 
model, both in SD and in LD (Figure  3B), and was also 
better than the MM model on the data from mutant genotypes 
(Supplementary Figure  4; Supplementary Table  3). The wild-
type solutions in the MC model are less variable than in the 

FIGURE 2 | Solutions in the baseline MM model in comparison with the wild-type data. The model solutions (red curves) corresponding to all parameter sets found 
by multiple optimization runs are shown for six genes and for the short day (SD, right panels) and long day (LD, left panels) conditions. The black dots and error 
ranges are the mean expression data and standard deviations, respectively, extracted from (Hecht et al., 2011; Sussmilch et al., 2015). The arrows indicate the most 
significant discrepancies between the solutions and data.
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MM model and show improvement in expression dynamics 
of PIM and FTc in LD (Supplementary Figure  5). VEG1  in 
the MC model also has a more reasonable expression dynamics 
range in SD (Supplementary Figure  5). These results suggest 
that the binding of VEG2 by the FT proteins is uncompetitive.

In SD, the MM and MC models both have solutions with 
an overstated early and understated late expression of PIM. One 
possible solution to this problem is to make the dynamical curve 
of PIM respond in a more nonlinear way to the monotonically 
increasing expression curve of the complex VEG2-FTa1, which 
is the only activator of PIM. This nonlinearity can be  achieved 
by adding a cooperativity parameter into the model, responsible 
for the putative cooperative binding of VEG2-FTa1 to the PIM 
promoter. It was shown that homologues of the FD (VEG2) and 
FT proteins form a complex consisting of several subunits in 
rice (Oryza sativa), thus sustaining the hypothesis about cooperative 
regulation by the VEG2-FT complexes (Taoka et  al., 2011; Tsuji 
et  al., 2013). We  implemented the cooperativity hypothesis into 
the MC model by assuming that the cooperativity parameter n 
(n  >  1) in the term responsible for the regulation of PIM by 
VEG2-FTa1 is an additional free parameter (MC_PIM model). 

However, the new model neither improved the total performance 
as compared to the MC model (Figure  3C) nor fixed the PIM 
expression dynamics in SD (Supplementary Figure  6), thus 
suggesting that the regulation of PIM is noncooperative.

Models Trained on Full Data
The models described above were trained on the wild-type data 
and tested on the mutant data. In these computational experiments, 
the MC model outperformed other alternative models on both 
the wild-type and mutant data (Figure  3; Supplementary 
Figure  4). However, most of the defects shown for the baseline 
MM model persisted in the MC model. In order to increase 
the amount of data used to optimize parameter values, we used 
the same equations as in the MC model and fitted them to 
gene expression data for all genotypes (wild type, dne-1, late1-2, 
and gigas-2). Since we  used all the available data to fit the 
model, we aimed to investigate the maximal possible performance 
of the model in this computational experiment. Later, we  will 
split both the wild-type and mutant data into training and 
testing subsets when modeling with neural networks.

We refer to this model trained on the complete data set 
as MC_Cdata. In terms of the normalized error, the MC_Cdata 
model expectedly outperforms MC on the mutant data but 
has a bit worse performance on the wild-type data 
(Supplementary Figure  7). However, the wild-type expression 
dynamics is qualitatively similar in the two models 
(Supplementary Figures  5, 8).

One of the defects observed in all models is a low FTa1 
concentration at later times in the wild type (Figure  2; 
Supplementary Figures  5, 8). According to the proposed 
regulation scheme, FTa1 in the apical meristem is activated 
only by the VEG2-FTb2 complex. In order to add activation 
to the FTa1 expression, we  suggested that FTa1 activates its 
own production in the apex. We  tested this hypothesis by 
inserting an additional term into the equation for FTa1 that 
characterized FTa1 activation by the VEG2-FTa1 complex 
[equation (16) in Materials and Methods] and fitting the 
resulted model to the complete data set (MC_Cdata_FTa1 
model). The new model did not show improved performance 
as compared to the MC_Cdata model (Figure 4), thus rejecting 
the hypothesis.

It was shown for soybean (Glycine max); another representative 
of legumes, that activation of flowering initiation under LD 
conditions involves different regulatory blocks than under SD 
conditions (Wu et al., 2019). We  investigated whether the model 
performance can be  improved if we  use the same proposed 
regulatory scheme for pea but fit the model to the SD and LD 
data separately (MC_SDdata and MC_LDdata models, respectively). 
The SD data comprise the SD part from the wild type and data 
from the dne-1 mutant, and the LD data include the LD portion 
of the wild-type data and data from the late1-2 and gigas-2 
mutants. MC_SDdata and MC_LDdata showed better performance 
than the MC_Cdata model for the SD and LD growing conditions, 
respectively (Figure  4). It should be  noted that the comparison 
between these models is not a rigorous test, because the  
MC_SDdata and MC_LDdata models were fitted to fewer data 
points than MC_Cdata for the same number of parameters.  

A

B

C

FIGURE 3 | Normalized root-mean-square error (NRMSE) calculated on the 
wild-type data and solutions obtained from multiple optimization runs in 
various models. NRMSE is shown for the following couples of a baseline and 
alternative models: (A) MM and MM_LF, (B) MM and MC, (C) MC and MC_
PIM. The model names are introduced in the text. The Mann–Whitney–
Wilcoxon test was applied to check that the alternative model provides better 
performance (smaller NRMSE) than the baseline model; p-values: (ns) 
0.05 < p ≤ 1, (*) 0.01 < p ≤ 0.05, (****) p ≤ 10−4.
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However, this computational experiment shows that it is possible 
to reduce the modeling error by narrowing the model to either 
SD or LD. This suggests that it may be  not feasible to use 
uniform regulatory assumptions under the two growing conditions. 
The analysis of individual genes reveals that the MC_LDdata 
model most significantly improves the expression dynamics of 
PIM and FTc (both in the wild type, LD), while MC_SDdata 
improves the expression dynamics of DET (wild type, SD, and 
dne-1) and FTa1 in the apex (dne-1; Supplementary Figures 9–13).

Dynamical Models Based on Neural 
Networks
The previously described dynamical models were based on the 
suggested regulation scheme underlying floral initiation in pea 
(Figure  1B), so studying these models was aimed at answering 
the question about the quantitative correspondence between this 
scheme and the expression data. In the next stage of the study, 
we  developed models without prescribing a specific topology 
of the gene regulatory network, thus trying to answer the 
question of what regulations can be inferred from the expression 
data ab initio. Along with changing the question, we also changed 
the formalism of ODEs to the neural network method to 
formulate new models, so as not to be  dependent on only one 
modeling method and, thus, increase the robustness of conclusions.

We developed three models (NN, NN_SDdata, and NN_LDdata) 
based on neural networks, all of which were constructed on 
the same principles and differed from each other only by the 
data used for their training. The models were formulated as 
dynamical regression models in which the apical expression of 
all genes on the current day was determined by the apical 

expression of the same genes and the expression of the FT-genes 
from the leaves from the previous day (Podolny et  al., 2020). 
As VEG1 data were present only in LD, we  excluded VEG1 
from the model for simplicity; we  also considered VEG2 as an 
independent variable. The NN model was trained on the full 
data (wild-type, dne-1, late1-2, and gigas-2), NN_SDdata on the 
SD portion of the full data (wild-type, SD, and dne-1), and 
NN_LDdata on the LD portion of the full data (wild-type, LD, 
late1-2, and gigas-2). For the NN and NN_SDdata models, 
we separated data from several days for each condition (daylight 
and genotype) as the testing dataset, and all data from the late1-2 
mutant were used as the testing dataset for the NN_LDdata model.

The solutions in the NN_SDdata and NN_LDdata models 
show better correspondence to the wild-type data compared 
to the models based on the proposed regulation scheme 
(Figures 5–6). There are improvements in expression dynamics 
of DET, LF, and FTa1 in the apex under the LD conditions 
and of PIM, FTc, and FTa1 in the apex under the SD conditions 
(arrows in Figure  5). The solutions in the NN model is close 
to NN_SDdata and NN_LDdata but have defects for FTa1 and 
DET in LD and for LF and FTc in SD. In contrast to the 
wild-type data, the neural network models do not show a 
definite difference with the ODE-based models on the mutant 
data (Figure  6). NN and NN_LDdata are better for gigas-2, 
while the comparison is in favor of the ODE-based models 
for the other two mutants. A worse performance of NN_LDdata 
for late1-2 can be  explained by the fact that the whole data 
from this mutant were used as a testing set in this model.

In order to understand what interactions were restored in 
the neural network models, we  simulated gene knockouts in 

FIGURE 4 | NRMSE in models trained on the full data (MC_Cdata and MC_Cdata_FTa1) or on the SD and LD portions of the full data (MC_SDdata and MC_
LDdata, respectively). The Mann–Whitney–Wilcoxon test was applied to check that the alternative models provide better performance (smaller NRMSE) than the 
MC_Cdata model; p-values: (ns) 0.05 < p ≤ 1, (**) 0.001 < p ≤ 0.01, (****) p ≤ 10−4.

214

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Pavlinova et al. Modeling Transition to Flowering in Pea

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 614711

FIGURE 5 | Best solutions in the neural network models (NN, NN_SDdata, and NN_LDdata) in comparison with the models based on the proposed regulation scheme 
and ordinary differential equations (ODEs; MC_Cdata, MC_SDdata, and MC_LDdata), for the wild type and two growing conditions. The black dots and error ranges are the 
mean expression and standard deviation, respectively, in the data. The arrows indicate the improvements in expression dynamics achieved in the neural network models.

FIGURE 6 | NRMSE for neural network models (NN, NN_SDdata, and NN_LDdata) and models based on ODEs (MC_Cdata, MC_SDdata, and MC_LDdata), for 
different genotypes and growing conditions. NRMSE was calculated for five genes shown in Figure 5. For gigas-2, PIM was excluded from the NRMSE calculation in 
NN and NN_LDdata as PIM was also excluded from the ODE-based models by construction. The two-tailed Mann–Whitney–Wilcoxon test was applied to check the 
performance difference between the indicated models; p-values: (ns) 0.05 < p ≤ 1, (**) 0.001 < p ≤ 0.01, (***) 10−4 < p ≤ 0.001, (****) p ≤ 10−4.
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the models. In these knockouts, we  set a potential regulator 
protein concentration to zero in the model and calculated how 
the area under the dynamic expression curve changed for each 
potential target as the result of such perturbation. We  kept the 
concentrations of all other proteins fixed at their values from 
the data during this simulation in order to estimate the direct 
influence of the regulator on the target, excluding possible 
feedbacks from other genes whose dynamics may also be altered 
by the perturbation. The resulted gene network topology exhibits 
some deviations from the proposed regulation scheme from 
Figure 1B and is qualitatively different in SD and LD (Figure 7). 
In the proposed regulation scheme, FTa1 is the only activator 
of the floral meristem identity gene PIM, while the neural 
network models predict FTc as an additional activator both in 
SD and LD. Other noticeable differences include strong FTa1 
self-activation in LD and FTc self-activation in SD.

Concerning differences between LD and SD, the regulatory 
topology exhibits more activation on the whole in LD compared 
to SD (Figure  7). Interestingly, VEG2 and FTa1 are predicted 
to be  independent activators. VEG2 is the main activator in 
SD, with FTa1 almost not influencing other genes. FTa1 serves 
as the main activator in LD, while VEG2 is either non-active 
or even shows some repressive potential under this growing 
condition. Overall, these results show that the improvement 
in the solution quality demonstrated by the neural network 
models comes at the price of perturbations to the regulation 
scheme from Figure  1B.

DISCUSSION

The classical approach to elucidating functional regulations in 
a gene network consists in obtaining and qualitatively analyzing 
the expression patterns of genes involved in the network in 

various genetic backgrounds. As more data are collected on 
the genes controlling floral initiation in legumes (Hecht et al., 2011; 
Sussmilch et  al., 2015; Ridge et  al., 2017; Cheng et  al., 2018), 
more quantitative approaches are required to infer the interactions 
in the gene regulatory network underlying this process (Jaeger 
et  al., 2013; Leal Valentim et  al., 2015; Gursky et  al., 2018). 
Just as it has successfully been done for Arabidopsis, modeling 
gene networks responsible for the transition to flowering in 
legumes can be  used for testing various hypotheses about the 
network structure and other properties of the process, in order 
to better understand the mechanism or to find possible flaws 
in the current understanding. In this study, we  elaborated 
several models of the core gene network involved in flowering 
initiation in pea and applied them to the previously obtained 
expression data in the wild type and in mutants. In order to 
make our results more robust, we  used two different methods 
to construct models. We  showed that both formalisms, ODEs 
and neural networks, can be  utilized to formulate dynamical 
models suited for the gene expression data used in the study.

Our modeling results indicate that the regulation scheme that 
was previously proposed by analyzing the expression data qualitatively 
does not fully correspond to these expression data at the quantitative 
level. There are two types of evidence in our results for this conclusion. 
Firstly, the best models implementing the proposed gene regulations 
(the MC and MC_Cdata models) consistently generated solutions 
with defects in the expression dynamics of several genes. These 
defects comprise wrong expression dynamics of PIM and FTc in 
SD, LF in LD, and inconsistent apical expression of FTa1. Moreover, 
we  showed that this picture cannot be  fixed by targeted and fine-
tuned modifications of the regulation scheme. The rejected alternative 
interactions include repression of PIM by LF, cooperative activation 
of PIM by the VEG2-FTa1 complex, and FTa1 self-activation. As 
a floral meristem identity gene, PIM is of a special interest. One 
of the strongest constrains for introducing new potential activators 

FIGURE 7 | Gene interactions predicted by the neural network models on the wild-type data. The heatmaps show gene knockout simulations in (left) the NN_
LDdata and (right) NN_SDdata models; similar results for the NN model and for all three models but on the mutant data are shown in Supplementary Figures 14, 
15. Gene knockouts were simulated as described in Materials and Methods. Values below 1 mean activation, above 1 mean repression, and equal to 1 mean no 
interaction.
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of PIM for testing in the model is in the fact that PIM expression 
is almost zero in FTa1 mutant gigas-2 (Hecht et al., 2011). Therefore, 
more complicated regulatory modules have to be devised to provide 
an additional activation to PIM, so that they can be  deactivated 
in the absence of FTa1.

Secondly, gene interactions reconstructed from the data by 
the neural network-based dynamical models contain new 
regulations compared to the proposed scheme. It is interesting 
that one of these new regulations was FTa1 self-activation, which 
was rejected at the stage of fine-tuning the proposed scheme 
with the help of the ODEs-based modeling. This is an example 
of a hypothesis about a new regulation that does not work 
when implemented alone but fits in when the regulation acts 
in concert with other modifications. Another such new regulation 
is PIM activation by FTc. The solution for PIM in the neural 
network model with this regulation is not zero on the gigas-2 
data but is small enough to stay within error ranges 
(Supplementary Figure  16), i.e., the activation by FTc is 
compensated by all other PIM’s regulators in the absence of FTa1.

Our modeling results also support the possibility that different 
regulatory modules are active in SD and LD. The models based 
on the proposed regulation scheme show the best performance 
when fitted to the SD and LD data separately. The use of these 
data in the neural network models lead to qualitatively different 
regulatory topologies. In SD, VEG2 acts as the main activator, 
while FTa1 does not play a significant role, and the opposite 
situation is observed in LD. This possible activating role of 
VEG2 is in accordance with a previously obtained result showing 
that the model of floral initiation in Arabidopsis is effective 
under the assumption that FD (VEG2) can activate AP1 (PIM) 
as a monomer (Leal Valentim et  al., 2015). However, it is also 
possible that this VEG2 and FTa1 decoupling somehow reflects 
the activating role of the VEG2-FTa1 complex captured by the 
model differently for different daylight conditions. Another finding 
about VEG2 concerns cooperative binding in the formation of 
complexes between VEG2 and FT proteins, which appears to 
be  less favorable than the assumption about binding without 
constraints. This result can indicate that FTa1, FTb2, and FTc 
bind VEG2 without essential competition.

Not all regulations predicted by the neural network approach 
should be  considered as real, so that conclusions about those 
regulations should be  made with caution. The inconsistencies 
observed in the models based on the prescribed regulation scheme 
most probably mean that some important regulators are missing. 
A nonlinear response of the gene network to the unknown 
dynamic expression of these unknown regulators can be encoded 
in spurious interactions between the genes in the current version 
of the network. The defects in the model solutions highlight 
possible genes involved in missing regulations and, thus, can 
be  used to plan further experimental searches.

MATERIALS AND METHODS

Flowering Gene Expression Data
For model calibration, we  used previously published dynamic 
expression data of genes responsible for flowering initiation 

in pea (cultivar NGB5839; Hecht et  al., 2011; Sussmilch et  al., 
2015). The expression data in the wild type and in mutants 
were extracted from the published sources using the web-based 
tool WebPlotDigitizer (Rohatgi, 2018). The data represent the 
means and SDs of the expression levels of the following genes: 
FTa1, FTb2, FTc, DET, LF, VEG1, VEG2, and PIM. The wild 
type data comprise the expression dynamics from 7 to 35th 
days after sowing under LD conditions and from 7 to 56th 
days under SD. Only LD data in the wild type were available 
for VEG1. The mutant data contain the gene expression 
dynamics from the mutants dne-1 (mutation in the DNE1 
gene; 7–35  days after sowing under SD), late1-2 (mutation 
in LATE1; 14–56  days under LD), and gigas-2 (mutation in 
FTa1; 7–56  days under LD).

Dynamical Model Based on Differential 
Equations
We use the same methodology to construct the model as in Gursky 
et  al. (2018). We  model the expression of DET, PIM, VEG1, LF, 
FTc, and FTa1 in the apex with the following set of ODEs:
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where ui  describes protein concentrations. The 
concentrations of complexes of VEG2 with the FT proteins 
are denoted as uVEG FTa2 1  in the case of FTa1, and similarly 
for other FTs. As FTa1 is expressed both in the leaves and 
in the apex, the concentration of apically expressed proteins 
is written as uFTa apex1 . The parameters vi are the maximal 
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protein synthesis rates, and Ki are the Michaelis–Menten 
constants, which can be interpreted as equilibrium dissociation 
constants for regulator-promoter binding in the case of direct 
transcriptional regulation. The Hill constant n is used to 
account for the potential cooperative binding effect in PIM 
regulation by the VEG2-FTa1 complex; n  =  1  in all versions 
of the model except the MM_PIM model, in which n was 
a free parameter. The parameters li  are protein degradation 
constants. The translation process is not explicitly considered 
in these equations; we  assume that protein concentrations 
are proportional to the concentrations of corresponding  
mRNAs.

FTb2  in the apex comprises the protein transported from 
the leaves, while FTa1  in the apex additionally include the 
apically expressed fraction. Considering a time delay 𝜏 for the 
transport process, we write the total apical concentrations uFTa1 
and uFTb2 of FTa1 and FTb2, respectively, as follows:
 u t u t u tFTa FTa apex FTa leaf1 1 1( ) = ( ) + -( )t (7)

 u t u tFTb FTb leaf2 2( ) = -( )t (8)
where uFTa leaf1  and uFTb leaf2  are the concentrations of 

corresponding proteins expressed in the leaves.
The baseline model considers competitive binding between 

VEG2 and FTa1, FTb2, and FTc. Under equilibrium competitive 
binding conditions, the concentrations of VEG2 complexes with 
the corresponding FT proteins are as follows:

 u K u u
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Therefore, the baseline model MM consists of the equations 
(1)–(11).

Model Modifications to Test Alternative 
Hypotheses
The MM_LF model is equivalent to MM but with an additional 
repression of PIM by LF, introduced by adding a repressive 
term into equation (2) as follows:
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The MC model is equivalent to MM but with the binding 
between VEG2 and FT proteins assumed to be noncompetitive. 
Under this assumption, the concentrations of complexes are 
written as follows:
 u u uVEG FTa FTa VEG2 1 1 2= (13)

 u u uVEG FTb FTb VEG2 2 2 2= (14)

 u u uVEG FTc FTc VEG2 2= (15)

It is not necessary to add free constants of proportionality 
into (13)–(15), since they can be  effectively scaled into free 
Ki already present in equations (1)–(6).

The MC_PIM model is equivalent to MC but leaves the 
Hill parameter n free in equation (2). This value, together with 
values of all other parameters, is found by parameter optimization. 
A value n larger than one would suggest the cooperative binding 
of the VEG2-FTa1 complex to the promoter of PIM.

The models described above were fitted to the wild type data. 
The MC_Cdata model is the model MC in which the values 
of free parameters were found by fitting to combined data, which 
join the wild-type data and data from dne-1, late1–2, and gigas-2 
mutants. The MC_Cdata_FTa1 model is equivalent to MC_Cdata 
but with added FTa1 self-activation in the apex, which was 
introduced by changing equation (6) to the following one:
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The MC_SDdata model is the MC model in which free 
parameters were found by fitting to the combined SD data, 
consisting of the SD part of the wild type data and dne-1 
mutant data. Similarly, MC_LDdata is the MC model fitted 
to the combined LD data, consisting of the LD part of the 
wild type data together with late1-2 and gigas-2 mutant data. 
Supplementary Table 1 summarizes all the models investigated 
in the study with their main characteristics.

Numerical solutions of the model equations were obtained 
using the ode23s solver in Octave. The concentrations of all 
regulators on the right-hand side of the equations were replaced 
by data interpolated in time. The initial conditions for all 
proteins were set to the data values at the first day.

Parameter Optimization
The parameter values were found by minimizing the following 
weighted residual sum of squares (wRSS):

 wRSS
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where the difference between the model solution ug and the 
data ugdatfor gene g is summed over all genes and times for 
which the data is available; ug ,max and ug ,min  are the maximum 
and minimum concentrations in the data for gene g. Since VEG1 
data was absent in SD, the numerical solution for this protein 
was calculated in the model but did not participate in the cost 
function (17). The data portion (wild type, mutant, SD, and 
LD) used in equation (17) depended on a model, as described 
above. This cost function was minimized using the DEEP software, 
which implements an entirely parallelized version of the differential 
evolution optimization method (Kozlov et  al., 2016).

To reduce the number of free parameters in the models, we set 
λi  =  0.199 for all proteins based on an experimental estimate 
of 3.49  days for the protein half-life in Arabidopsis grown at 
20°C (Ishihara et  al., 2015). To further reduce the possibility for 
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overfitting, we applied an ensemble approach (Samee et al., 2015; 
Gursky et  al., 2018). The optimization for each model was 
performed 20 times, and the judgment about the model performance 
was made by analyzing the resulted distribution of the wRSS values.

We compared the models using the normalized root-mean-
square deviation:
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(18)

The Mann–Whitney–Wilcoxon test was used to compare 
the normalized root-mean-square error (NRMSE) distributions 
resulted from the parameter optimization in the models.

Neural Network Models
The neural network models were constructed as described in 
full details elsewhere (Podolny et  al., 2020). The data set was 
expanded to 1,000 gene expression values per time point by 
sampling from normal distributions with the mean and variance 
taken from the initial data. The expanded data set was used 
for training and testing the models. The models were constructed 
as dynamical regression models in which the apical expression 
levels of six target genes (DET, PIM, FTc, FTa1, LF, and VEG2) 
on the current day was determined by the apical expression 
levels of seven genes (DET, PIM, FTc, FTa1, LF, VEG2, and 
FTb2) taken from the expanded data on the previous day.

The models were trained using the multilayer-perceptron 
regressor “MLPRegressor” of the Scikit-learn package (Pedregosa 
et  al., 2011), with f x x( ) = + -( )( )-1

1
exp

 as the activation 

function and the Adam stochastic method as the parameter 
optimization method (Kingma and Ba, 2015). The network 
architecture was chosen by training the models with different 
topologies and picking up the best one. Each model was trained 
20 times using 5-fold cross-validation, and the ensemble approach 
was applied for the performance analysis, as described above.

The NN model is the neural network model trained on the 
combined data (wild type and all mutant conditions). The NN_
SDdata model was trained on the SD data (SD wild type data 
and mutant dne-1 data). For these two models, the testing sample 
was constructed by taking data values from the last day of each 
separate condition. The NN_LDdata model was trained on the 
portion of the LD data that included the LD wild-type data and 
the gigas-2 mutant data, while data from the late1–2 mutant 
served as a testing sample for this model. Supplementary Table 2 
summarizes the neural models with their main characteristics.

Simulating Knockouts in Neural Network 
Models
In order to find out which interactions between genes are restored 
in the neural network models, a gene knockout analysis was 

performed. The models were tested on the wild type data in 
which the expression of one regulator gene was set to zero. 
Then the AUC of a target gene expression dynamics was calculated 
in this simulation (Sknock_out) and in the non-perturbed case (Swt). 
The ratio of these quantities provides information on the influence 
type that the regulator directly exerts on the target, as follows:

 S
S

knock out

wt

repressor
_

,> ®1  S
S

knock out

wt

activator
_ < ®1

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This 
data can be  found here: the source code of the models used 
in the study and analyzed expression data extracted from the 
published sources can be  found in the Zenodo repository (doi: 
10.5281/zenodo.4059688; https://zenodo.org/record/4059688#.
X8-ho2QzZpQ). The source code of the DEEP software used 
for parameter optimization in our study can be  found in the 
Gitlab repository (https://gitlab.com/mackoel/deepmethod/-/tree/
master).

AUTHOR CONTRIBUTIONS

MS and VG conceived and coordinated the study. PP conducted 
the computational experiments and wrote the first draft of the 
manuscript. PP, MS, and VG analyzed the results. All authors 
contributed to the article and approved the submitted version.

FUNDING

The research was funded by the Ministry of Science and Higher 
Education of the Russian Federation as part of World-class 
Research Center program: Advanced Digital Technologies 
(contract No. 075-15-2020-934 dated 17.11.2020).

ACKNOWLEDGMENTS

We are grateful to Konstantin Kozlov for his help in setting 
up the optimization program.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fgene.2021.614711/
full#supplementary-material

 

REFERENCES

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., 
et al. (2005). FD, a bZIP protein mediating signals from the floral pathway 

integrator FT at the shoot apex. Science 309, 1052–1056. doi: 10.1126/
science.1115983

Andrés, F., and Coupland, G. (2012). The genetic basis of flowering responses 
to seasonal cues. Nat. Rev. Genet. 13, 627–639. doi: 10.1038/nrg3291

219

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://dx.doi.org/10.5281/zenodo.4059688
https://zenodo.org/record/4059688#.X8-ho2QzZpQ
https://zenodo.org/record/4059688#.X8-ho2QzZpQ
https://gitlab.com/mackoel/deepmethod/-/tree/master
https://gitlab.com/mackoel/deepmethod/-/tree/master
https://www.frontiersin.org/articles/10.3389/fgene.2021.614711/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.614711/full#supplementary-material
https://doi.org/10.1126/science.1115983
https://doi.org/10.1126/science.1115983
https://doi.org/10.1038/nrg3291


Pavlinova et al. Modeling Transition to Flowering in Pea

Frontiers in Genetics | www.frontiersin.org 12 March 2021 | Volume 12 | Article 614711

Barbier de Reuille, P., Routier-Kierzkowska, A., Kierzkowski, D., Bassel, G., 
Schüpbach, T., Tauriello, G., et al. (2015). MorphoGraphX: a platform for 
quantifying morphogenesis in 4D. elife 4:e05864. doi: 10.7554/eLife.05864

Benlloch, R., Berbel, A., Ali, L., Gohari, G., Millán, T., and Madueño, F. (2015). 
Genetic control of inflorescence architecture in legumes. Front. Plant Sci. 
6:543. doi: 10.3389/fpls.2015.00543

Berbel, A., Ferrándiz, C., Hecht, V., Dalmais, M., Lund, O. S., Sussmilch, F. C., 
et al. (2012). VEGETATIVE1 is essential for development of the compound 
inflorescence in pea. Nat. Commun. 3:797. doi: 10.1038/ncomms1801

Boudon, F., Chopard, J., Ali, O., Gilles, B., Hamant, O., Boudaoud, A., et al. 
(2015). A computational framework for 3D mechanical modeling of plant 
morphogenesis with cellular resolution. PLoS Comp. Biol. 11:e1003950. doi: 
10.1371/journal.pcbi.1003950

Chai, L. E., Loh, S. K., Low, S. T., Mohamad, M. S., Deris, S., and Zakaria, Z. 
(2014). A review on the computational approaches for gene regulatory network 
construction. Comput. Biol. Med. 48, 55–65. doi: 10.1016/j.compbiomed.2014.02.011

Cheng, X., Li, G., Tang, Y., and Wen, J. (2018). Dissection of genetic regulation 
of compound inflorescence development in Medicago truncatula. Development 
145:dev.158766. doi: 10.1242/dev.158766

Foucher, F., Morin, J., Courtiade, J., Cadioux, S., Ellis, N., Banfield, M. J., 
et al. (2003). Determinate and late flowering are two terminal flower1/
centroradialis homologs that control two distinct phases of flowering initiation 
and development in pea. Plant Cell 15, 2742–2754. doi: 10.1105/tpc.015701

Goretti, D., Silvestre, M., Collani, S., Langenecker, T., Méndez, C., Madueno, F., et al. 
(2020). TERMINAL FLOWER 1 functions as a mobile transcriptional cofactor in 
the shoot apical meristem. Plant Physiol. 182, 2081–2095. doi: 10.1104/pp.19.00867

Gursky, V. V., Kozlov, K. N., Nuzhdin, S. V., and Samsonova, M. G. (2018). 
Dynamical modeling of the core gene network controlling flowering suggests 
cumulative activation from the FLOWERING LOCUS T gene homologs in 
chickpea. Front. Genet. 9:547. doi: 10.3389/fgene.2018.00547

Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., and Sozzani, R. (2019). 
Computational prediction of gene regulatory networks in plant growth and 
development. Curr. Opin. Plant Biol. 47, 96–105. doi: 10.1016/j.pbi.2018.10.005

Hecht, V., Laurie, R., Schoor, J., Ridge, S., Knowles, C., Liew, L. C., et al. 
(2011). The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary 
for graft-transmissible specification of flowering but not for responsiveness 
to photoperiod. Plant Cell 23, 147–161. doi: 10.1105/tpc.110.081042

Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A., et al. 
(1997). UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. 
Biol. 7, 581–587. doi: 10.1016/S0960-9822(06)00257-0

Ishihara, H., Obata, T., Sulpice, R., Fernie, A. R., and Stitt, M. (2015). Quantifying 
protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling 
and analysis of enrichment in individual amino acids in their free pools 
and in protein. Plant Physiol. 168, 74–93. doi: 10.1104/pp.15.00209

Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J., and Wigge, P. A. (2013). 
Interlocking feedback loops govern the dynamic behavior of the floral 
transition in Arabidopsis. Plant Cell 25, 820–833. doi: 10.1105/tpc.113.109355

Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., 
Nguyen, J. T., et al. (1999). Activation tagging of the floral inducer FT. 
Science 286, 1962–1965. doi: 10.1126/science.286.5446.1962

Kaufmann, K., Wellmer, F., Muiño, J. M., Ferrier, T., Wuest, S. E., Kumar, V., 
et al. (2010). Orchestration of floral initiation by APETALA1. Science 328, 
85–89. doi: 10.1126/science.1185244

Khan, M., Ai, X., and Zhang, J. (2014). Genetic regulation of flowering time 
in annual and perennial plants. Wiley Interdiscip. Rev. RNA 5, 347–359. 
doi: 10.1002/wrna.1215

Kingma, D. P., and Ba, J. L. (2015). “Adam: A method for stochastic optimization” 
in ICLR 2015: Proceedings of 3rd International Conference for Learning 
Representations; May 7–9, 2015; 1–15.

Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair 
of related genes with antagonistic roles in mediating flowering signals. Science 
286, 1960–1962. doi: 10.1126/science.286.5446.1960

Kozlov, K., Samsonov, A. M., and Samsonova, M. (2016). A software for 
parameter optimization with differential evolution entirely parallel method. 
PeerJ Comput. Sci. 2016, 1–20. doi: 10.7717/peerj-cs.74

Leal Valentim, F., Mourik, S. V., Posé, D., Kim, M. C., Schmid, M., van 
Ham, R. C. H. J., et al. (2015). A quantitative and dynamic model of the 
Arabidopsis flowering time gene regulatory network. PLoS One 10:e0116973. 
doi: 10.1371/journal.pone.0116973

Lee, J., Oh, M., Park, H., and Lee, I. (2008). SOC1 translocated to the nucleus 
by interaction with AGL24 directly regulates LEAFY. Plant J. 55, 832–843. 
doi: 10.1111/j.1365-313X.2008.03552.x

Le Novère, N. (2015). Quantitative and logic modelling of molecular and gene 
networks. Nat. Rev. Genet. 16, 146–158. doi: 10.1038/nrg3885

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Podolny, B., Gursky, V., and Samsonova, M. (2020). A machine-learning analysis 
of flowering gene expression in the CDC frontier chickpea cultivar. Biophysics 
65, 225–236. doi: 10.1134/S0006350920020189

Pullen, N., Jaeger, K. E., Wigge, P. A., and Morris, R. J. (2013). Simple network 
motifs can capture key characteristics of the floral transition in Arabidopsis. 
Plant Signal. Behav. 8:e26149. doi: 10.4161/psb.26149

Ridge, S., Deokar, A., Lee, R., Daba, K., Macknight, R. C., Weller, J. L., et al. 
(2017). The chickpea early flowering 1 (Efl1) locus is an ortholog of arabidopsis 
ELF3. Plant Physiol. 175, 802–815. doi: 10.1104/pp.17.00082

Rohatgi, A. (2018). WebPlotDigitizer [Internet]. Version 4.1. Austin, Texas (USA). 
Available at: https://automeris.io/WebPlotDigitizer (Accessed September 01, 2019).

Samee, M. A. H., Lim, B., Samper, N., Lu, H., Rushlow, C. A., Jiménez, G., et al. 
(2015). A systematic ensemble approach to thermodynamic modeling of gene 
expression from sequence data. Cell Syst. 1, 396–407. doi: 10.1016/j.cels.2015.12.002

Srikanth, A., and Schmid, M. (2011). Regulation of flowering time: all roads 
lead to Rome. Cell. Mol. Life Sci. 68, 2013–2037. doi: 10.1007/s00018-011-0673-y

Sussmilch, F. C., Berbel, A., Hecht, V., Schoor, K. V., Ferrándiz, C., Madueño, F., 
et al. (2015). Pea VEGETATIVE2 is an FD homolog that is essential for flowering 
and compound inflorescence. Development 27, 1046–1060. doi: 10.1105/tpc.115.136150

Taoka, K. I., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., et al. 
(2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. 
Nature 476, 332–335. doi: 10.1038/nature10272

Taylor, S. A., Hofer, J. M., Murfet, I. C., Sollinger, J. D., Singer, S. R., Knox, M. R., 
et al. (2002). PROLIFERATING INFLORESCENCE MERISTEM, a MADS-
box gene that regulates floral meristem identity in pea. Plant Physiol. 129, 
1150–1159. doi: 10.1104/pp.001677

Tsuji, H., Nakamura, H., Taoka, K. I., and Shimamoto, K. (2013). Functional 
diversification of FD transcription factors in rice, components of florigen 
activation complexes. Plant Cell Physiol. 54, 385–397. doi: 10.1093/pcp/pct005

Wang, C., Chang, P., Ng, K., Chang, C., Sheu, P., and Tsai, J. (2014). A model 
comparison study of the flowering time regulatory network in Arabidopsis. 
BMC Syst. Biol. 8:15. doi: 10.1186/1752-0509-8-15

Welch, S. M., Roe, J. L., and Dong, Z. (2003). A genetic neural network model 
of flowering time control in Arabidopsis thaliana. Agron. J. 95, 71–81. doi: 
10.2134/agronj2003.0071

Wenden, B., Dun, E. A., Hanan, J., Andrieu, B., Weller, J. L., Beveridge, C. A., 
et al. (2009). Computational analysis of flowering in pea (Pisum sativum). 
New Phytol. 184, 153–167. doi: 10.1111/j.1469-8137.2009.02952.x

Wenden, B., and Rameau, C. (2009). Systems biology for plant breeding: the example 
of flowering time in pea. C. R. Biol. 332, 998–1006. doi: 10.1016/j.crvi.2009.09.011

Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U., 
et al. (2005). Integration of spatial and temporal information during floral 
induction in Arabidopsis. Science 309, 1056–1059. doi: 10.1126/science.1114358

Wu, F., Kang, X., Wang, M., Haider, W., Price, W. B., Hajek, B., et al. (2019). 
Transcriptome-enabled network inference revealed the GmCOL1 feed-forward 
loop and its roles in photoperiodic flowering of soybean. Front. Plant Sci. 
10:1221. doi: 10.3389/fpls.2019.01221

Yoo, S. K., Chung, K. S., Kim, J., Lee, J. H., Hong, S. M., Yoo, S. J., et al. 
(2016). CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF 
CONSTANS 1 through FLOWERING LOCUS T to promote flowering in 
Arabidopsis. Plant Physiol. 139, 770–778. doi: 10.1104/pp.105.066928

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Copyright © 2021 Pavlinova, Samsonova and Gursky. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with these terms.

220

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://doi.org/10.7554/eLife.05864
https://doi.org/10.3389/fpls.2015.00543
https://doi.org/10.1038/ncomms1801
https://doi.org/10.1371/journal.pcbi.1003950
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1242/dev.158766
https://doi.org/10.1105/tpc.015701
https://doi.org/10.1104/pp.19.00867
https://doi.org/10.3389/fgene.2018.00547
https://doi.org/10.1016/j.pbi.2018.10.005
https://doi.org/10.1105/tpc.110.081042
https://doi.org/10.1016/S0960-9822(06)00257-0
https://doi.org/10.1104/pp.15.00209
https://doi.org/10.1105/tpc.113.109355
https://doi.org/10.1126/science.286.5446.1962
https://doi.org/10.1126/science.1185244
https://doi.org/10.1002/wrna.1215
https://doi.org/10.1126/science.286.5446.1960
https://doi.org/10.7717/peerj-cs.74
https://doi.org/10.1371/journal.pone.0116973
https://doi.org/10.1111/j.1365-313X.2008.03552.x
https://doi.org/10.1038/nrg3885
https://doi.org/10.1134/S0006350920020189
https://doi.org/10.4161/psb.26149
https://doi.org/10.1104/pp.17.00082
https://automeris.io/WebPlotDigitizer
https://doi.org/10.1016/j.cels.2015.12.002
https://doi.org/10.1007/s00018-011-0673-y
https://doi.org/10.1105/tpc.115.136150
https://doi.org/10.1038/nature10272
https://doi.org/10.1104/pp.001677
https://doi.org/10.1093/pcp/pct005
https://doi.org/10.1186/1752-0509-8-15
https://doi.org/10.2134/agronj2003.0071
https://doi.org/10.1111/j.1469-8137.2009.02952.x
https://doi.org/10.1016/j.crvi.2009.09.011
https://doi.org/10.1126/science.1114358
https://doi.org/10.3389/fpls.2019.01221
https://doi.org/10.1104/pp.105.066928
http://creativecommons.org/licenses/by/4.0/


fgene-12-612501 April 14, 2021 Time: 15:9 # 1

ORIGINAL RESEARCH
published: 20 April 2021

doi: 10.3389/fgene.2021.612501

Edited by:
Yuriy L. Orlov,

I.M. Sechenov First Moscow State
Medical University, Russia

Reviewed by:
Dmitriy N. Atochin,

Harvard Medical School,
United States

Anastasia Efimenko,
Lomonosov Moscow State University,

Russia

*Correspondence:
Daria Skuratovskaia

DariaSK@list.ru

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 30 September 2020
Accepted: 15 March 2021

Published: 20 April 2021

Citation:
Skuratovskaia D, Vulf M,

Chasovskikh N, Komar A,
Kirienkova E, Shunkin E, Zatolokin P

and Litvinova L (2021) The Links
of Ghrelin to Incretins, Insulin,

Glucagon, and Leptin After Bariatric
Surgery. Front. Genet. 12:612501.
doi: 10.3389/fgene.2021.612501

The Links of Ghrelin to Incretins,
Insulin, Glucagon, and Leptin After
Bariatric Surgery
Daria Skuratovskaia1* , Maria Vulf1, Nataliya Chasovskikh2, Aleksandra Komar1,
Elena Kirienkova1, Egor Shunkin1, Pavel Zatolokin1 and Larisa Litvinova1

1 Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia,
2 Department of Medical and Biological Cybernetics, Siberian State Medical University, Tomsk, Russia

Type 2 diabetes mellitus (T2DM) is one of the most prominent and socially significant
problems. The present study aimed to identify the mechanisms of interaction of
critical regulators of carbohydrate metabolism using bioinformatics and experimental
methods and to assess their influence on the development of T2DM. We conducted
an in silico search for the relationship of hormones and adipokines and performed
functional annotation of the receptors for ghrelin and incretins. Hormones and
adipokines were assessed in the plasma of obese patients with and without T2DM
as well as after laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass
(RYGB) surgeries. Incretin- and ghrelin-associated functions and metabolic processes
were discovered. Low ghrelin levels were observed in obese patients without T2DM
compared with healthy volunteers and the other groups. The highest ghrelin levels
were observed in obese patients with T2DM. This defense mechanism against
insulin resistance could be realized through the receptors G-protein-coupled receptor
(GPCR), growth hormone secretagogue receptor (GHSR), and growth hormone-
releasing hormone receptor (GHRHR). These receptors are associated with proliferative,
inflammatory, and neurohumoral signaling pathways and regulate responses to nutrient
intake. Signaling through the GPCR class unites ghrelin, glucagon, glucose-dependent
insulinotropic polypeptide (GIP), and glucagon-like peptide (GLP)-1. Ghrelin impairs
carbohydrate and lipid metabolism in obese patients. Ghrelin is associated with elevated
plasma levels of insulin, glucagon, and leptin. Specific activation of receptors and
modulation by posttranslational modifications of ghrelin can control IR’s development
in obesity, which is a promising area for research.

Keywords: gene annotation, type 2 diabetes mellitus, bariatric surgery, GHSR, GIPR, GLP-1r, adipokines, obesity

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is one of the most prominent and socially significant problems
(Dedov et al., 2017; Statistics About Diabetes | ADA, 2020). T2DM and associated diseases, in
particular, abdominal obesity, occupy a leading position among the causes of mortality in the
population (WHO | Raised fasting blood glucose, 2020). T2DM is characterized by the impaired
metabolic response of insulin-dependent tissue [e.g., muscle, adipose tissue (AT), liver] to insulin,
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which leads to an increase in its concentration in human plasma
(Finan et al., 2013). It is known that gastroduodenal zone
hormones and mediators of AT, namely, adipokines, regulate
carbohydrate metabolism components and play an important
role in the pathogenesis of IR in T2DM (Finan et al., 2013;
Vejrazkova et al., 2017). Different parts of the intestine secrete
many hormones, and the key role belongs to incretin glucose-
dependent insulinotropic polypeptide (GIP) and glucagon-like
peptide-1 (GLP-1) (Skow et al., 2016; Brandt et al., 2018).

The main function of incretins is to stimulate insulin secretion
by the pancreatic β-cells of the islets of Langerhans (Yabe
and Seino, 2011; Campbell et al., 2016). GLP-1 promotes
the normalization of carbohydrate metabolism and decreases
body mass index (BMI) (Hong et al., 2016), while GIP has
multidirectional effects on carbohydrate metabolism. The role
of GIP in incretins is still controversial (Finan et al., 2013).
It has been demonstrated that incretins are interrelated with
the regulation of leptin and ghrelin production, the main
modulators of carbohydrate metabolism (Kim and Egan, 2008;
Karim et al., 2015; Ronveaux et al., 2015). Ghrelin is an
orexigenic hormone that increases ingestion by activating
agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons
(Yanagi et al., 2018). Fasting plasma ghrelin level increases,
then ghrelin activates gluconeogenesis in the liver, suppresses
insulin production, and maintains glucose levels within control
parameters. Postprandial hormone production decreases when
there is a glucose-stimulated increase in insulin secretion.

In addition to metabolic functions, leptin is a pleiotropic
inflammatory mediator and modulates glucose homeostasis and
insulin release by reducing glucagon secretion (Hong et al.,
2016; Vejrazkova et al., 2017). Glucagon stimulates glucose
production in the liver, preventing hypoglycemia under normal
physiological conditions; hyperglucagonemia is an indicator of
T2DM (Vejrazkova et al., 2017; Brandt et al., 2018). It has
been established that resistin also promotes the development
of IR (Stofkova, 2010; Vejrazkova et al., 2017). Visfatin has
pro-inflammatory and immunomodulatory properties and has
insulin-sensitizing and insulin-mimetic effects. Thus, visfatin is
of interest as a possible target for modulating blood glucose
(Stofkova, 2010; Vejrazkova et al., 2017).

Incretin-stimulated insulin secretion accounts for
approximately 50% of the total insulin production (Kim
and Egan, 2008). Insulin biosynthesis and secretion are closely
related to incretin receptors (Kim and Egan, 2008). In patients
with T2DM, the sensitivity of cells to insulin is reduced, and
glucose-dependent secretion of insulin is impaired (Nielsen
et al., 2015). It has been established that in patients with T2DM,
the absence and decrease in response to incretin therapy may
be associated with dysregulation of expression or defects in
incretin receptors (Yabe and Seino, 2013). Therefore, incretins
play an important role in the regulation of insulin production.
Consequently, studies of the causes of impaired secretion of
incretins and decreased insulin-dependent receptor sensitivity in
T2DM are relevant.

The present study aimed to identify the mechanisms of
interaction of critical regulators of carbohydrate metabolism
using bioinformatics and experimental methods, and

to assess their influence on the development of T2DM
complicated by obesity.

MATERIALS AND METHODS

Experimental Research Methods
The study included 225 obese patients. Of these, 113 obese
patients had T2DM (45.18 ± 8.29 years; 45.69 ± 10.51 kg/m2;
46 men and 67 women), and 115 obese patients did not
have carbohydrate metabolism disorders (46.41 ± 9.3 years;
46.31 ± 7.56 kg/m2; 41 men and 74 women). The presence
of arterial hypertension was noted in 43% of patients. Obese
patients with T2DM underwent surgery with two types of
surgical treatment: laparoscopic sleeve gastrectomy (LSG)
(48.53 ± 6.13 years; 40.59 ± 6.55 kg/m2) and Roux-en-Y gastric
bypass (RYGB) (46.08 ± 10.63 years; 33.52 ± 6.08 kg/m2). The
results of these patients were recorded 6 months after surgery.
The control group of healthy volunteers included 102 apparently
healthy donors with normal anthropometric and biochemical
parameters (39.3 ± 6.51 years; 22.82 ± 2.18 kg/m2; 61 men and
41 women). Venous blood was obtained before and 60 min after
the test breakfast. In the test breakfast, the protein content was
9.1 g, the carbohydrate content was 88.1 g, and the fat content
was 10.6 g. In 45% of the patients, essential hypertension was
diagnosed according to the classification of arterial hypertension
by the arterial pressure level (EHS/ESC 2003–2013).

All the study participants provided informed consent to
participate in the research study. The study was carried out
according to the World Medical Association (WMA) Declaration
of Helsinki (2000) and the Protocol to the Convention on Human
Rights and Biomedicine (1999). The Local Ethics Committee
approved the study protocol of the Innovation Park of the
Immanuel Kant Baltic Federal University (protocol no. 4 from
October 23, 2013).

The analysis of biochemical parameters in the blood serum
was carried out on a Furuno CA-180 automatic biochemical
analyzer (Furuno Electric Company, Japan) using DiaSys test
systems (DiaSys Diagnostic Systems, Germany). Plasma hormone
levels were assessed by flow fluorimetry (Bio-Plex Protein
Assay System, Bio-Rad, United States) using commercial test
systems (Bio-Plex Pro Human Diabetes 10-Plex Assay, Bio-
Rad, United States). In obese patients and healthy donors, the
concentrations of mediators (hormones: ghrelin, GIP, GLP-1,
insulin, C-peptide, and glucagon) and the mediator SERPINE1
(PAI-1) and adipokines (resistin, leptin, and visfatin) were
assessed in plasma.

A block diagram of the research is presented in Figure 1.

Bioinformatic Research Methods
Interactions of the studied proteins (nodes: proteins; edges:
cooperations between them) were evaluated using the Cytoscape
version 3.2.1 (United States) network.

Initial data on protein–protein interactions were obtained
from the Human Protein Reference Database (HPRD). Protein–
protein interactions from the HPRDs were used to construct
a network of interactions for the proteins under study

Frontiers in Genetics | www.frontiersin.org 2 April 2021 | Volume 12 | Article 612501219222

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-612501 April 14, 2021 Time: 15:9 # 3

Skuratovskaia et al. The Ghrelin After Bariatric Surgery

FIGURE 1 | A block-diagram of the research.

(Keshava Prasad et al., 2009). In the resulting network, proteins
from the HPRDs interacting with these proteins and common
bonds were identified. All studied proteins were applied to the
protein–protein interaction HPRD network and then extracted
together with the associated proteins.

The functional annotation of the gastric inhibitory
polypeptide receptor (GIPR) and glucagon-like peptide-1
receptor (GLP-1R) genes and the analysis of their representation
in the signaling and metabolic pathways were carried out
using the algorithm implemented in the ClueGO Cytoscape
version 3.2.1 plugin (Bindea et al., 2009) based on the use of the
hypergeometric test (p < 0.05). The value of the kappa statistic,
reflecting the functional relationships between genes, was set
at 0.4. The functional characterization of genes was carried out
based on the terminology of Gene Ontology within the categories
of “biological process” and “molecular function” (Ashburner
et al., 2000; Rivals et al., 2007). In this study, the functions were
described from the third to the eighth levels of the hierarchy. The
representation of genes in signaling and metabolic pathways was
determined using the KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway and Reactome pathway analyses.

Statistical Analysis of Experimental Data
The normal distribution of quantitative indicators was checked
using the Kolmogorov–Smirnov test. If the normal law of

distributing a feature in the studied samples was consistent,
the hypothesis about the average sample values’ equality was
tested using Student’s t test. If the data distribution did not
obey the normal distribution law, further assessment of the
sample differences was calculated using the non-parametric
Mann–Whitney test for pairwise comparisons. According to the
Spearman method, a relationship between the studied parameters
was carried out using correlation analysis. Differences were
considered significant at a significance level of p < 0.05. Statistical
processing of the obtained results was carried out using the R
statistical software (version 3.3.1).

RESULTS

Ghrelin Is Related to Insulin
Body mass index and biochemical parameters of carbohydrate
metabolism (glucose and insulin) and lipid metabolism
(cholesterol, triglycerides, HDL, and LDL) were measured
in obese patients. Predictably, we observed a disturbance in
carbohydrate and lipid metabolism parameters in obese patients
with T2DM (Supplementary Table 1). We investigated a
comparison group of obese patients without T2DM to look for
the involvement of mediators in maintaining normal glucose
levels. These obese patients had a high BMI, but carbohydrate
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and lipid metabolism were within normal limits, and hormone
levels were comparable or lower than healthy volunteers. We did
not find any sex differences in parameters between groups.

Disorders of carbohydrate and lipid metabolism can inhibit
various compensatory mechanisms. A likely compensation
mechanism could be an abnormal decrease in the total ghrelin
level in obese patients without T2DM relative to healthy
volunteers and obese patients with T2DM (Figure 2).

We analyzed patients after LSG surgery to determine the
importance of lowering ghrelin levels in maintaining normal
carbohydrate metabolism in obese patients. This surgery removes
the fundus of the stomach (the main area of food addiction)
that produces ghrelin. Basal ghrelin level was lower in patients
operated on LSG than that in healthy donors and in patients
before surgery. Thus, a low plasma total ghrelin level is a
compensatory mechanism for IR in obese patients.

After eating, ghrelin levels increased in patients after LSG
surgery. This may seem contradictory if we do not consider the
correlation results and data from Gene Ontology and compare
them in patients with T2DM before and after LSG surgery. The
ghrelin level was positively correlated with insulin before surgery
(r = 0.420) (Figure 3C) and negatively correlated in patients after
LSG surgery (r = −392) (p < 0.05) (Figure 3D). We showed
in silico that ghrelin was associated with insulin, leptin, glucagon,
and CRP (Figure 4). In particular, we found in silico connections
between ghrelin and insulin through several pathways: GHRL–
MLNR–GPRASP1–LRP2–INS, GHRL–HK3–LEP–A2M–CTSE–
INS, GHRL–HK3–LEP–CLU–CPE–INS, and GHRL–HK3–LEP–
LEPR–CLU–CPE–INS (Figure 4). These pathways can be
activated depending on the microenvironment. The high levels
of insulin after breakfast and the associated mediators stimulated
ghrelin production in an endocrine manner.

Ghrelin level negatively correlated with BMI and glucagon
in patients with T2DM (Figure 3C) and with insulin after
LSG (Figure 3D). Stimulation of ghrelin can occur not
only by irritating the stomach’s fundus but also at the
endocrine level.

Ghrelin Is Associated With Incretins
Laparoscopic sleeve gastrectomy is an effective weight loss
surgery with the removal of the central ghrelin production gastric
zone. Ghrelin levels were negatively correlated with BMI and
decreased in patients after surgery. Ghrelin levels were lower
in patients after LSG than in patients after RYGB. The reason
for the differences is the peculiarities of the surgery themselves.
In patients after surgery, BMI decreased, and lipid metabolism
indicators returned to normal but not glucose and CRP levels.
Despite this, the patients, after LSG and RYGB, are characterized
by low insulin levels.

The association of ghrelin and incretins confirms the revealed
positive correlations between ghrelin and GIP in obese patients
with T2DM (Figure 3C); in patients after LSG, positive
correlations were noted between ghrelin and GLP-1 (Figure 3D).
In silico, ghrelin has been shown to bind GLP-1 (Figure 4) via
insulin or glucagon. In this regard, ghrelin is associated with
GLP-1 and may affect GLP-1 levels after LSG in obese patients
(r = 0.401) (Figure 3).

Functional Annotation of Ghrelin and Its
Receptors
The effects of ghrelin are multidirectional and depend
on its isoforms and the activation of the corresponding
receptors. There are several receptors for ghrelin. With the
functional annotation of these receptor names, only one
was found: G protein-coupled receptor (GPCR). This gene
is designated FZD4 in the search results. The following
functions were revealed in GO terms (Supplementary
Table 4). The participation of FZD4 in the regulation of
the morphogenesis of the organs of vision and the brain and
the regulation of the secretion of steroid hormones, including
progesterone, has been shown.

Enrichment analysis of the pathways for this receptor showed
that GPCR (FZD4) belongs to the following signaling pathways:

R-HSA: 4641263 Regulation of FZD by ubiquitination;
R-HSA: 5099900 WNT5A-dependent internalizations of
FZD4;
R-HSA: 5340588 RNF mutants show enhanced WNT
signaling and proliferation.

Figure 4 shows that ghrelin is associated with the
growth hormone secretagogue receptor (GHSR). The
functional annotation of the GHSR gene is provided in the
Supplementary Material (Supplementary Table 5). GHSR
is associated with food responses and negative appetite
regulation. In the gastrointestinal tract, the GHSR receptor
is associated with food transit through the intestine and
intestinal musculature contraction. GHSR is associated
with the synthesis of neurotransmitters, norepinephrine,
and catecholamines to synthesize growth hormones. GHSR
negatively regulates the apoptosis of macrophages and
myeloid cells and is associated with blocking inflammation:
it inhibits tumor necrosis factor-alpha (TNF-a) and interleukin-6
(IL-6) functions.

Ghrelin is also associated with the growth hormone-releasing
hormone receptor (GHRHR) (Figure 4). Functional annotation
of GHRHR revealed the functions (signaling pathways were
also not identified) and are listed in Supplementary Table 8.
GHRHR was associated with the activation of the growth
hormone-releasing receptor, regulating the production of growth
hormone, and insulin-like growth factor. Additionally, receptor
activation has been associated with the regulation of the
sleep/wake cycle.

Thus, activation of GHSR has protective effects on
carbohydrate and lipid metabolism.

Functional Annotation of the Gastric
Inhibitory Polypeptide Receptor and
Glucagon-Like Peptide-1 Receptor
Incretin Receptors
Incretins mediate their effects through the receptors GIPR and
GLP-1R. According to our earlier data (Skuratovskaia, 2018),
a special role in the disturbance of carbohydrate metabolism
in obesity is played by the occurrence of polymorphisms
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FIGURE 2 | Plasma levels of the studied mediators in obese patients with type 2 diabetes mellitus (T2DM) before and after laparoscopic sleeve gastrectomy (LSG)
and Roux-en-Y gastric bypass (RYGB). (A) Plasma level of C-peptide. (B) Plasma level of ghrelin. (C) Plasma level of GIP. (D) Plasma level of GLP-1. (E) Plasma level
of insulin. (F) Plasma level of resistin. (G) Plasma level of leptin. (H) Plasma level of visfatin. (I) Plasma level of PAI-1. (J) Plasma level of glucagon. ∗p < 0.05;
differences in significance level were determined using one-way ANOVA. 1 – healthy volunteers before breakfast; 2 – healthy volunteers after breakfast; 3 – obese
patient without T2DM before breakfast; 4 – obese patient without T2DM after breakfast; 5 – obese patient with T2DM before breakfast; 6 – obese patient with T2DM
after breakfast; 7 – 6 months after LSG before breakfast; 8 – 6 months after LSG after breakfast; 9 – 6 months after RYGB before breakfast; 10 – 6 months after
RYGB after breakfast.
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FIGURE 3 | Correlation of mediators. (A) Correlation in the healthy volunteers; (B) Correlation in an obese patient without T2DM; (C) Correlation in an obese patient
with T2DM; (D) Correlation in patients 6 months after LSG; (E) Correlation in patients 6 months after RYGB. The analysis was performed using Pearson’s test
correlation.

in the GIPR and GLP-1R genes. To identify possible
mechanisms of these genes’ participation in metabolic processes,
functional annotation and analysis of their involvement
in metabolic and signaling pathways were carried out
(Supplementary Table 9).

Based on the functional annotation results, the GIPR gene was
assigned to the following terms in the Gene Ontology category
“biological process”: realization of mechanisms of development
of many diseases, including those associated with digestion
processes. GIPR has been associated with the development of a
response to fatty acids, as well as with the processes responsible
for the development of the pancreas from its formation to
a mature structure, including islet cells that produce insulin,
glucagon, and somatostatin.

Molecular functions corresponding to these biological
processes were also identified: selective non-covalent interaction
with a protein with hormonal activity (GO: 0017046, peptide
hormone binding) and activity of the GIP receptor, that is,
binding to GIP and signal transduction across the membrane to
activate the G-protein (GO: 0016519, gastric inhibitory peptide
receptor activity) (Usdin et al., 1993).

The functional annotation of GLP-1R was performed,
which showed the participation of the GLP-1R
gene in the regulation of adenylate cyclase activity
(category “biological process”) (Supplementary
Table 6).

In this regard, the effects of GLP-1R are not only implemented
through glucose-dependent stimulation of insulin but are also
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FIGURE 4 | Subnetwork of the proteins insulin, ghrelin, glucagon-like peptide-1 (GLP-1), leptin, and their nearest neighbors. Light nodes represent the proteins
under study; dark nodes are their nearest neighbors.

associated with many other metabolic processes. Thus, GLP-
1R activation can participate in the regulation of adenylate
cyclase activity and cAMP-mediated signaling. Additionally, the
relationship between GLP-1R and glucagon was shown, which

was reflected in experimental studies: the level of glucagon
positively correlated with GLP-1 in patients in the healthy donors
(r = 0.527, p < 0.05) and negatively correlated with GLP-1 in
patients with T2DM (r = −0.343, p < 0.05).
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Contribution of C-Peptide, Insulin,
Leptin, PAI, Glucose-Dependent
Insulinotropic Polypeptide,
Glucagon-Like Peptide-1, Ghrelin,
Resistin, and Visfatin to the Formation of
Insulin Resistance
The data obtained indicate a change in carbohydrate and lipid
metabolism, as the content of cholesterol, triglycerides, and LDL
increased in both groups of patients (Supplementary Table 1).

The levels of hormones of the gastroduodenal zone,
adipokines, and PAI-1 on an empty stomach (odd numbers of
groups) and after a test breakfast (even numbers of groups) were
studied in the following groups of patients: 1 and 2 – healthy
volunteers, 3 and 4 – a comparison group of obese patients
without T2DM, 5 and 6 – obese patients with T2DM, 7 and 8 –
obese patients with T2DM 6 months after LSG, and 9 and 10 –
obese patients with T2DM 6 months after RYGB (Figure 2). We
measured mediator levels on an empty stomach and 60 min after
the test breakfast, as the intensity of their production depends on
the amount of nutrient intake.

Postprandial dynamics of mediators were observed only in
patients with T2DM (groups 5 and 6). Significant differences
between hormones (ghrelin, C-peptide, GIP, GLP-1, insulin,
leptin, and resistin) and PAI-1 from other study groups were
found in patients with T2DM. Thus, in patients with T2DM on an
empty stomach and/or after a test breakfast, C-peptide, insulin,
GIP, GLP-1, glucagon, ghrelin, leptin, PAI-1, and resistin were
higher than those in obese patients without T2DM. The same
changes in C-peptide levels, insulin leptin, PAI, and GIP were
revealed; the maximum value was found in patients with T2DM
after a test breakfast compared with the other groups.

Simultaneously, changes in the concentration of these
mediators (C-peptide, insulin, GIP, GLP-1, glucagon, ghrelin,
leptin, PAI-1, resistin, and visfatin) before and after the test
breakfast did not depend on food intake. The GLP-1 and
ghrelin levels reached maximum values in patients with T2DM
relative to the other groups, but their change was associated
with food intake.

In patients without T2DM, significant differences from the
healthy volunteers were revealed only with respect to the ghrelin
level, which was significantly lower. In general, in obese patients
without T2DM, C-peptide, insulin, leptin, PAI, GIP, GLP-1,
ghrelin, and resistin were significantly lower than those in obese
patients with T2DM.

We investigated hormone and adipokine levels in patients
with T2DM 6 months after LSG and RYGB bariatric surgeries.

In our study, all patients had hyperglycemia, normalization of
lipid metabolism, and decreased body weight after 6 months.

Thus, in patients after LSG and RYGB surgeries, there was
a decrease in C-peptide levels, insulin, leptin, PAI, GIP, GLP-1,
ghrelin, resistin, and visfatin compared with obese patients with
T2DM before surgery (Figure 2). After LSG, it was found that
the level of ghrelin on an empty stomach and after breakfast was
significantly lower than that in the other groups. The ghrelin
level after the test breakfast was higher than the fasting values
in LSG patients.

After RYGB, it was found that the level of GLP-1 did not
change relative to the obese patients with T2DM before surgery,
and the level of GIP after the test breakfast was lower compared
with obese patients with T2DM (Figure 2). However, after RYGB,
fasting, and the test breakfast, GLP-1 levels were higher than
those in obese patients without T2DM (Figure 2).

The ghrelin level in patients after RYGB was higher than that
in patients after LSG but lower than that in patients with T2DM
before surgery (Figure 2). This finding indicates the regulatory
role of these hormones on plasma glucose.

Visfatin levels changed only after RYGB. The concentration
of visfatin in patients after RYGB was higher than obese
patients without T2DM and compared with obese patients with
T2DM (Figure 2).

Thus, C-peptide, insulin, leptin, PAI, GIP, GLP-1, ghrelin,
resistin, and visfatin are closely related to carbohydrate and
lipid metabolism and BMI. It contributes to the formation
of IR in obese patients. However, the nature of these
relationships is unclear.

Enrichment Assay for GIPR, GLP-1R, Insulin, Ghrelin,
GIP, GLP-1, Leptin, and Resistin
Identifying the functions of the studied genes correlates with
the data on participation in the corresponding processes
of signal transduction in cells. The following pathways
were identified in which the GIPR and GLP-1R genes are
involved: the cAMP signaling pathway, GPCR ligand binding,
G alpha(s) signaling events, and glucagon-type ligand receptors
(Supplementary Table 9).

Thus, activation of GIPR and GLP-1R is associated with the
following signaling pathways: cAMP, neuroactive interaction,
secretin family receptor class B/2, glucagon-type ligand
receptors, G alpha(s) signaling events, and GPCR ligand
binding. It was shown that GIP was negatively correlated with
glucagon in patients with T2DM (r = −0.283, r = −0.343,
p < 0.05) (Figure 3C). In patients with T2DM after RYGB,
glucagon levels negatively correlated with GLP-1 (r = −0.420,
p < 0.05) (Figure 3E).

Interestingly, the GPCR receptor can also interact with
ghrelin. In obese patients with T2DM, ghrelin positively
correlated with GIP (r = 0.305), insulin (r = 0.420), and
resistin (r = 0.313) and negatively correlated with BMI
(r = −0.318), glucagon (r = −0.426), and visfatin (r = −0.319)
(p < 0.05) (Figure 3C).

Pathway enrichment analysis for the remaining proteins under
study was performed to assess the possible mechanisms of the
involvement of key regulators of carbohydrate metabolism in
metabolism and intracellular signaling processes. These were the
identified pathways: FOXO-mediated transcription of oxidative
stress, metabolism, and neuronal genes; synthesis, secretion, and
deacylation of ghrelin.

The results obtained demonstrate the joint participation
of the studied regulators of carbohydrate metabolism in
incretin-mediated and ghrelin-mediated functions and
metabolic processes. In this case, these factors’ mutual
influence is implemented through a network of direct and
indirect interactions.
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DISCUSSION

C-peptide, ghrelin, GIP, GLP-1, insulin glucagon, PAI-1,
resistin, leptin, and visfatin have been studied for assessing
insulin sensitivity after bariatric surgery. It has been shown
that these hormones have glucose-dependent secretion, have
close relationships with each other, and have indicators of
carbohydrate and lipid metabolism (Goktas et al., 2013; Pérez-
Pevida et al., 2019). However, the results are multidirectional, and
some relationships have not yet been deciphered. In our study, we
combined an in silico and in vivo analysis unit.

Analyzing the data obtained, in obese patients with T2DM,
the function of β-cells and the mechanism of substrate regulation
works were not impaired, i.e., the higher the glucose level was, the
more insulin the β-cells of the pancreas produced.

Interestingly, changes in the concentration of ghrelin
were observed in various pathological conditions. Ghrelin is
metabolically active with a negative metabolic balance (Al Qarni
et al., 2017). At the excess intake of nutrients in obesity, the
pathways that control energy balance became dysfunctional
(Pöykkö et al., 2003; Al Qarni et al., 2017).

We showed in silico that ghrelin was associated with
insulin, leptin, glucagon, and CRP. In particular, we found
in silico connections between ghrelin and insulin through several
pathways: GHRL–MLNR–GPRASP1–LRP2–INS, GHRL–HK3–
LEP–A2M–CTSE–INS, GHRL–HK3–LEP–CLU–CPE–INS, and
GHRL–HK3–LEP–LEPR–CLU–CPE–INS.

The level of ghrelin in obese patients with T2DM significantly
increased relative to the other groups. The high levels of ghrelin
may be due to the influence of high insulin levels in obese patients
with T2DM, and its level depends on the level of other hormones.

The levels of C-peptide, insulin, GIP, GLP-1, leptin, and PAI-
1 increased only in patients with T2DM. We have shown several
links of ghrelin with hormones in silico: leptin, glucagon, insulin,
GLP-1R, and PAI-1. Overall, this was consistent with our findings
in obese patients.

The levels of total ghrelin and acyl-ghrelin are reduced
in obese patients. The diacyl-ghrelin/acyl-ghrelin balance may
change in obesity. The presence of one form or another can
bind to different receptors and contribute to a change in ghrelin’s
effects. Interestingly, ghrelin levels were lower in obese patients
without T2DM than in obese patients with T2DM and healthy
volunteers. We emphasize this as a compensatory mechanism
for maintaining normal carbohydrate and lipid metabolism in
obesity. In patients after LSG and RYGB, against the background
of a decrease in BMI, the blood plasma content of ghrelin was less
than that in obese patients with T2DM before surgery.

Other authors have shown that ghrelin deficiency does not
prevent diet-induced obesity (McFarlane et al., 2014). This
proves that all patients showed hyperglycemia after 6 months, in
contrast to our previous results (Skuratovskaia et al., 2019), where
normoglycemia was noted after 12 months. Patients 6 months
after LSG and RYGB are in an adaptive rehabilitation period,
as evidenced by high glucose and C-reactive protein levels,
indicating an acute phase of inflammation.

We believe that the compensation mechanism consists of the
activation of specific receptors.

To elucidate the interaction pathways, we performed an
in silico analysis of ghrelin receptors. It is known that
preproghrelin undergoes posttranslational processing to form
at least five products. Acyl-ghrelin is biologically active and
interacts with the GHSR, and deacyl-ghrelin acts independently
of GHSR1 (Gray et al., 2019). Acyl-ghrelin stimulates food intake,
gastrointestinal motility, lipogenesis, and glycemia and reduces
energy expenditure and insulin secretion/sensitivity (Gray et al.,
2019). Deacyl-ghrelin inhibits food intake, gastrointestinal
motility, and glycemia and stimulates insulin secretion through
an as yet unknown receptor (Cui et al., 2017). Deacyl-ghrelin
prevents the development of obesity and positively affects insulin
sensitivity (Cui et al., 2017).

According to the latest data, the ghrelin receptors are
GPCRs, GHSR1a, GHSR1b, ghrelin receptor-like receptor,
and seven- and five-transmembrane GPCR to motilin
(Sanger and Furness, 2016).

According to the functional annotation of ghrelin receptors,
it is known that it activates three receptors: GPCR, GHSR,
and GHRHR (Sanger and Furness, 2016). GPCRs have been
associated with FZD4 modifications and the proliferative Wnt
signaling pathway. GHSR has been associated with food
responses, gut muscle contraction, and neurotransmitter and
growth hormone synthesis. The role of GHSR in the immune
response is interesting. GHSR blocks TNF-a and IL-6 functions
and apoptosis of macrophages and myeloid cells (Cabral
et al., 2017). GHRHR is associated with the production of
growth factors, somatotropin, and insulin-like growth factor.
Additionally, receptor activation is associated with the regulation
of the sleep/wake cycle (Sanger and Furness, 2016).

It has been shown that ghrelin stimulates appetite by activating
the hypothalamus and activates lipogenesis, leading to obesity
(Qader et al., 2005). However, in our study, there was no
relationship with lipid metabolism indicators.

It has been suggested that ghrelin and its receptor expressed
in α-cells of the pancreas affect glucose metabolism not only by
directly inhibiting the stimulation of insulin secretion by glucose
(Qader et al., 2005) but also by stimulating glucagon secretion
by α-cells (Chuang et al., 2011). In patients with T2DM, ghrelin
positively correlated with insulin (r = 0.402, p < 0.05) and
negatively correlated with glucagon (r = −0.426, p < 0.05), which
indicates a violation of the relationship between hormones.

Thus, the predominance of one form or another of ghrelin
and the activation of its receptors determine the fate of many
links in the pathogenesis of IR in obesity. Our study measured
total ghrelin; however, all its posttranslational modifications and
effector pathways are of interest.

Association of Ghrelin With Incretins
In healthy people, the effects of ghrelin and GLP-1 on glucose
metabolism are oppositely directed, but ghrelin can modulate
postprandial GLP-1 secretion (Gagnon et al., 2015; Tong et al.,
2016, 1; Gray et al., 2019) in silico. It was found that ghrelin
interacts with GLP-1 and glucagon: GHRL–HK3–LEP–CRP–
GLP2R–GCG, GHRL–HK3–LEP–LEPR–CLU–CPE–GCG, and
GHRL–NPY–MEP1B–GCG. The incretin receptors GIPR and
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GLP-1R have been implicated in the regulation of the cAMP
signaling pathway.

We obtained earlier data on the important role of defects in
incretin receptors in IR development. Thus, it was shown that
the genotypes associated with an increased risk of developing
T2DM, CC rs1042044, and AA rs6923761 of the GLP-1R gene
polymorphism, are characterized by an increase in the plasma
level of incretin in the group of obese patients with T2DM and
serum glucose levels in the group of obese patients without
T2DM (Skuratovskaia, 2018). Impaired activation of GIPR and
GLP-1R contributes to a decrease in the secretion of insulin and
ghrelin and, on the contrary, to an increase in leptin and glucagon
in the circulation, which contributes to the formation of insulin
resistance in obese patients with T2DM.

Glucagon-like peptide-1 receptor is involved in the glucagon-
type ligand-receptor family signaling pathway, which regulates
the activity of GPCRs from the class II/B secretin receptor
subfamily (Yabe and Seino, 2011). GLP-1R is synthesized in
intestinal L cells in response to the presence of glucose and fatty
acids (Tong et al., 2016). Most GLP-1 is in the GLP-1 (7–36)
amidated form; some are the GLP-1–GLP-1 (7–37) form (Farr
et al., 2016). GLP-1 circulates to the pancreas, where it binds to
GLP-1R (Tong et al., 2016). GLP-1R is a transmembrane protein
and a member of the B family of GPCRs with an N-terminal
extracellular domain (Gagnon et al., 2015).

We performed functional annotation and analysis of the
involvement of the GLP-1R gene in the signaling pathways,
indicating its participation in the initiation of cAMP signaling,
neuroactive interaction, and the provision of cell response to
a stimulus in the form of glucagon, which was reflected in
experimental studies: in patients of the healthy volunteers, the
glucagon level positively correlated with GLP-1 (r = 0.527,
p < 0.05). In obese patients with and without T2DM, as well as
in healthy volunteers, GLP-1 and insulin levels were positively
correlated. However, after RYGB surgery, no such relationship
was found. GLP-1 and glucagon levels were negatively correlated.

Although GLP-1 and glucagon are formed from a common
precursor (Hayashi, 2019), glucagon levels did not change among
the study groups.

We have shown the dependence of the total ghrelin content
on other mediators, such as insulin, leptin, GIP, GLP-1, and
PAI-1. Our data suggest the cooperative interaction of mediators
associated with ghrelin, which realizes their obesity effects,
depending on the presence or absence of IR. However, the effects
of ghrelin may depend on how its effects are realized.

We used models of different surgeries to study in detail
the mutual regulation of hormones. LSG removes most of the
ghrelin-producing zone in the stomach. Unusually, the ghrelin
level after the breakfast test did not decrease but was significantly
higher than the fasting values in patients after LSG. This fact
may indicate that other additional stimulatory signals exist for
the secretion of ghrelin, acting differently from the mechanical
stimulation of the cells of the fundus of the stomach and
depending on remote regulation by the intake of nutrients.
Moreover, it is believed that the return of insulin sensitivity is
facilitated by a decrease in the inhibitory effect of ghrelin on
insulin (McFarlane et al., 2014), which is consistent with our

results on the construction of a network of interactions of the
studied proteins. We found an indirect interaction of ghrelin
and insulin (through three nodes: MLNR, GPRASP1, and LRP2).
Of interest is the study of some links of this pathway: MLNR
is a motilin receptor involved in hormone binding, GPRASP1
promotes the degradation of G protein-coupled receptors in
lysosomes (Whistler et al., 2002), and LRP2 is required for
insulin-dependent internalization of IR (Seo et al., 2020).

According to the results of the study, two groups of pathways
were identified in which the studied molecules are involved:
FOXO-mediated transcription of genes for oxidative stress,
metabolism, and neurons (through the participation of INS
and RETN) and the synthesis, secretion, and diacylation of
ghrelin (with the involvement of GCG, GHRL, INS, LEP, and
GIP). The results obtained demonstrate the joint participation
of the studied regulators of carbohydrate metabolism in
incretin-mediated and ghrelin-mediated functions and metabolic
processes. Simultaneously, the mutual influence of these factors is
realized through a network of direct and mediated interactions.

Interestingly, the GPCR can also interact with ghrelin.
Moreover, this same receptor can be activated by GLP-1 and GIP
(Abdullah et al., 2016). In obese patients with T2DM, ghrelin
positively correlated with GIP (r = 0.305), insulin (r = 0.420),
and resistin (r = 0.313) and negatively correlated with BMI
(r = −0.318), glucagon (r = −0.426), and visfatin (r = −0.319)
(p < 0.05). Thus, C-peptide, insulin, leptin, PAI, GIP, GLP-
1, ghrelin, resistin, and visfatin are closely associated with
carbohydrate and lipid metabolism and BMI in obese patients,
which contributes to the formation of IR in obesity.

The use of ghrelin receptor antagonists is effective in
correcting carbohydrate metabolism. There is one clinical trial
in humans that promoted glucose-dependent insulin secretion
by blocking the GHSR1a receptor (Schalla and Stengel, 2019).
Despite the significant effect, ghrelin did not have the desired
effect in treating metabolic disorders, and the drug is currently
used to treat insomnia (Schalla and Stengel, 2019).

The animal models have recently shown that GHS-R1b
antagonists lead to decreased food intake (Schalla and
Stengel, 2019). The development of GHSR antagonists leads
to unpredictable results and requires a detailed study of the
mechanisms of action. The predominance of one form or
another of ghrelin and the activation of its receptors determine
the fate of many links in the pathogenesis of IR in obesity.
The search for new receptors for ghrelin and the study of
posttranslational modifications of ghrelin will make it possible to
study the regulation of metabolic disorders more closely. Further
studies can help identify the mechanisms of participation of
ghrelin in metabolic disorders in patients.

CONCLUSION

A decreased level of total ghrelin before and after breakfast
is typical only for obese patients without insulin resistance.
Its increased level is typical for obese patients with T2DM.
Ghrelin exerts its effects through the receptors GPCR, GHSR, and
GHRHR, which are associated with proliferative, inflammatory,
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and neurohumoral signaling pathways and regulate responses to
nutrient intake. The signaling pathway for realizing the effects of
ghrelin, GIP, GLP-1, and GCG lies through the class of GPCRs.
This demonstrates common regulatory mechanisms and cross-
talk between ghrelin and incretins. This will help draw attention
to posttranslational modifications and the associated ghrelin and
incretin receptors for use in targeted therapy of insulin resistance.

The results obtained demonstrate the joint participation
of the studied regulators of carbohydrate metabolism in
incretin-mediated and ghrelin-mediated functions and metabolic
processes. Simultaneously, the mutual influence of these factors is
realized through a network of direct and mediated interactions.
A cooperative exchange of ghrelin and mediators associated with
it, such as insulin, leptin, GIP, GLP-1, glucagon, and PAI-1, was
revealed, which realizes their effects on obesity. Insulin, leptin,
GIP, GLP-1, glucagon, and PAI-1 are linked directly or indirectly
(see the “Results” section for more details). Thus, ghrelin and
incretins can modulate insulin, leptin, glucagon, and PAI-1.

This does not exclude the influence of insulin and glucose on
the joint change in mediators due to other factors not included
in the study. The influence of the microenvironment on the
production of these mediators should be taken into account.
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