New Microbial Inoculants for Enhancing Fermentation Quality of Silage

66.9K
views
102
authors
17
articles
Cover image for research topic "New Microbial Inoculants for Enhancing Fermentation Quality of Silage"
Editors
4
Impact
Loading...

This study investigated the effects of phenyllactic acid (PL), lactic acid bacteria (LAB), and their mixture on fermentation characteristics and microbial community composition of timothy silage. Timothy silages were treated without (CK) or with PL [10 mg/kg fresh matter (FM) basis], LAB inoculant (IN; a mixture of Lactobacillus plantarum and L.buchneri, 105 cfu/g FM), and their mixture (PI) and stored at ambient temperature (5°C∼15°C) in a dark room for 60 days. Compared with CK, all treated silages showed lower (P < 0.05) levels of butyric acid and ammonia-N. Treatment with PL enhanced (P < 0.05) the crude protein preservation of silage by favoring the growth of L. curvatus and Saccharomyces cerevisiae and inhibition of lactic acid–assimilating yeast belonging to Issatchenkia during ensiling. In particular, treatment with PL advanced (P < 0.05) the productions of lactic acid and volatile fatty acid in IN-treated silage. Therefore, PL used as a new additive exhibited potential for improving silage fermentation when it is combined with LAB IN during ensiling.

5,321 views
18 citations

To better understand the mechanism underlying the citric acid (CA)-regulated silage fermentation, we investigated the bacterial community and fermentation quality of king grass (KG) ensiled without (CK) or with Lactobacillus plantarum (L), CA and the combination of L and CA (CAL). The bacterial community was characterized by using the 16Sr DNA sequencing technology. The L and CA treatments altered the silage bacterial community of KG, showing reduced bacterial diversity, while the abundance of desirable genus Lactobacillus was increased, and the abundances of undesirable genus Dysgonomonas and Pseudomonas were decreased. The additives also significantly raised the lactic acid content, dropped the pH, and reduced the contents of acetic acid, propionic acid, and ammonia-N in ensiled KG (P < 0.01). Besides, the combination treatment was more effective on silage fermentation with the highest pH and lactic acid content, while the contents of acetic acid, propionic acid, and ammonia-N were the lowest (P < 0.01). Moreover, CAL treatment exerted a notable influence on the bacterial community, with the lowest operational taxonomic unit (OTU) number and highest abundance of Lactobacillus. Furthermore, the bacterial community was significantly correlated with fermentation characteristics. These results proved that L and CA enhanced the KG silage quality, and the combination had a beneficial synergistic effect.

5,567 views
54 citations