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Applications of Topological Data
Analysis in Oncology

Anuraag Bukkuri 1*, Noemi Andor 1 and Isabel K. Darcy 2

1Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, United States, 2Department of

Mathematics, University of Iowa, Iowa City, IA, United States

The emergence of the information age in the last few decades brought with it an explosion

of biomedical data. But with great power comes great responsibility: there is now a

pressing need for new data analysis algorithms to be developed to make sense of the

data and transform this information into knowledge which can be directly translated into

the clinic. Topological data analysis (TDA) provides a promising path forward: using tools

from the mathematical field of algebraic topology, TDA provides a framework to extract

insights into the often high-dimensional, incomplete, and noisy nature of biomedical data.

Nowhere is this more evident than in the field of oncology, where patient-specific data is

routinely presented to clinicians in a variety of forms, from imaging to single cell genomic

sequencing. In this review, we focus on applications involving persistent homology, one

of the main tools of TDA. We describe some recent successes of TDA in oncology,

specifically in predicting treatment responses and prognosis, tumor segmentation and

computer-aided diagnosis, disease classification, and cellular architecture determination.

We also provide suggestions on avenues for future research including utilizing TDA to

analyze cancer time-series data such as gene expression changes during pathogenesis,

investigation of the relation between angiogenic vessel structure and treatment efficacy

from imaging data, and experimental confirmation that geometric and topological

connectivity implies functional connectivity in the context of cancer.

Keywords: topological data analysis, persistent homology, oncology, single cell analysis, imaging, clonal evolution,

tumor heterogeneity

1. INTRODUCTION

With the advent of next-generation high-throughput sequencing (Roychowdhury et al., 2011;
Reuter et al., 2015), improved medical imaging (Wang, 2016; Tahmassebi et al., 2018; Aiello
et al., 2019), and an increased focus on personalized medicine (Dilsizian and Siegel, 2014; Gu
and Taylor, 2014; Alyass et al., 2015; Suwinski et al., 2019), more data is being collected than ever
before. Efficient data analysis techniques are critically needed to convert this data into meaningful,
clinically translatable information. Topological data analysis (TDA) focuses on the shape of data,
identifying both local and global structures at multiple scales. Consider a trivial example: suppose
data points lie on a circle. The data points could represent customers’ preferences or patient gene
expression. In this case if a product or drug were targeted to the average person, the target would
be the center of the circle and would thus miss the data set entirely. While this is a simple made-up
example, it illustrates the importance of understanding the shape of data. TDA can be applied to
high-dimensional and noisy data. While the output of TDA can be affected by incomplete data, it
is still effective at distinguishing between data sets that have different shapes.
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TDA has been successfully applied in a variety of medical
contexts including to discover phenotype-biomarker associations
in traumatic brain injury (Nielson et al., 2017), identify
diagnostic factors for pulmonary embolism (Rucco et al., 2015),
discriminate between healthy patients and those with diabetic
retinopathy from retinal imaging (Garside et al., 2019), map
human recombination at fine scales (Camara et al., 2016),
identify novel pathological phenotypes of asthma (Siddiqui
et al., 2018), and characterize the structure of chromatin
conformation inside the nucleus (Emmett et al., 2016). In
this review, we shall focus our attention on some recent
applications of persistent homology, a main tool of TDA, to
oncology. We specifically discuss treatment responses, clinical
outcomes, disease classification, biomarker identification, and
cellular architecture in cancer. We will also provide insights
into possible future fruitful avenues of research, including
analysis of time-series data to help with disease classification and
identification of selection events, investigation of the relation
between angiogenic vessel structure and treatment efficacy from
imaging data, and experimental confirmation that geometric and
topological connectivity implies functional connectivity in the
context of cancer. Though we focus on persistent homology
here, it is worth noting that there have been many notable
successes of the application of other TDA methods, such as the
Mapper algorithm (Singh et al., 2007). For example, Mapper
was recently used to extract information from high-throughput
microarray data and define a new subtype of breast cancer,
c-MYB+, characterized by high c-MYB expression and low
levels of innate inflammatory genes, with corresponding patients
exhibiting 100% survival and no metastasis (Nicolau et al., 2007).
In another study, Mapper was used to discover 38 new cancer-
associated genes across tumor types, some of which were then
confirmed to play a key role in tumorigenesis in mouse models
(Rabadán et al., 2020). Before delving into the applications of
persistent homology in cancer, we introduce some of the key
mathematical underpinnings needed to understand these results.

2. WHAT IS PERSISTENT HOMOLOGY?

The mathematical definition of homology/homologous is very
precise and often differs from the English common usage.
Homology uses algebra to detect topological shapes. Topology
is sometimes called rubber sheet geometry as two objects are
topologically equivalent to each other if one can be deformed into
the other without tearing or puncturing the objects. For example,
the spherical and cubical surfaces are topologically equivalent
per Figure 1A. The sphere is topologically different from the
3-dimensional ball that the sphere bounds. Homology detects
this difference by noting that the 2-dimensional spherical surface
bounds a void while the 3-dimensional ball is solid and thus does
not bound any voids.

To describe homology, we will first focus on two quantities:
β0 = the number of connected components and β1 = the number
of 1-dimensional holes (a circle that has not been filled in). One
does not need to understand the algebra of homology in order
to understand the basics of persistent homology, thus we will

only briefly introduce some concepts for the interested reader.
Two points are homologous if they are in the same connected
component. Thus, β0 = 1 if the object is connected. To describe
β1, we will focus on Figure 1B. We can use addition to represent
topological objects. For example, the rectangle in Figure 1 is
represented by the sum of edges: e1 + e2 + e3 + e4. Two 1-
dimensional cycles are homologous to each other if they form the
boundary of a surface. Thus, the rectangle is homologous to the
cycle e5 + e8 + e10 + e11 since these two cycles bound the green
surface. The cycles e5+e6+e7+e8 and e9+e10+e11+e12 are also
homologous since they bound the light green surface consisting
of two crescent moons. In fact all these cycles are homologous to
the rectangle e1+e2+e3+e4. One can see that this object contains
many cycles, many of which are homologous to the rectangle (or

a multiple of the rectangle, for example,

12∑

i=5

ei is homologous to

2

4∑

i=1

ei). A 1-dimensional cycle is homologous to 0 if it bounds a

surface. Thus the cycles e5 + e9 + e12 + e8 and e6 + e7 + e11 + e10
are both homologous to 0 since they each form the boundary of a
surface (the two crescentmoons, waning or waxing, respectively).
Since each of the cycles in this figure are homologous to 0 or to
a multiple of the rectangle, its homology is generated by a single
cycle (for example, the rectangle) and thus β1 = 1.

The intuitive definition of homology is that βn equals the
number of n−dimensional holes1. Per the Figure 1 caption,
homology can be used to distinguish the following objects from
each other: solid ball, sphere, higher dimensional balls and
spheres, solid torus, and torus. Homology cannot distinguish
all objects that are topologically different. For example,the 1-
dimensional circle, the 2-dimensional surface in Figure 1B, and
the 3-dimensional solid torus (Figure 1C) all have the same
homology. For more on themathematical definition of homology
(please see Munkres, 1984; Hatcher, 2002; Ghrist, 2014).

We will illustrate with an elementary example how persistent
homology can detect shape at multiple scales by noting the birth
and death of topological features. Our dataset will consist of 5
points from a circle as shown in Figure 2. To detect the circle, we
need to connect these points in some manner. For example, we
could connect all points whose distance is less than some fixed
ǫ. If one can visualize the data set, then the choice of ǫ may be
clear. But more often, there is no obvious choice, so instead we
analyze the data at multiple scales using persistent homology. The
first box in Figure 2 shows the five data points. At this stage,
we have five components, one for each data point (β0 = 5).
These components are represented by the five red lines in the
top part of this figure. These five red lines along with the blue
segment is called the barcode for the data set. The barcode keeps
track of the number of components (red bars) and number of
1-dimensional holes (blue bar) as the threshold for connecting

1While the intuitive definition will suffice for this paper, we have left out a number

of details. For example if we use addition with Z2 coefficients, we can detect the

Klein bottle surface (β2 = 1), while if we use Z coefficients, β2 = 0 since the

Klein bottle does not bound a void. For computational speed, Z2 coefficients are

frequently used when computing persistent homology.
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FIGURE 1 | (A) The solid ball and solid cube are topologically equivalent and thus have the same homology. Their surface boundaries also have the same homology

since these surfaces are topologically equivalent. The solid ball has one connected component and thus β0 = 1. The solid ball does not contain any voids, and thus

βi = 0 for all i > 0. The sphere, which is the boundary of the ball, has β0 = 1 since it is connected, and β2 = 1 since the 2-dimensional sphere bounds a void, while

βi = 0 for all other i since there are no lower or higher dimensional voids. For an n+ 1-dimensional ball (for example, all points of distance less than or equal to 1 from

the origin in Rn+1 ), βi = 0 for all i > 0 since it does not contain any voids. The n-dimensional sphere, which is the boundary of the n+ 1-dimensional ball, has βi = 1

for i = 0, n and βi = 0 for all other i. Since the n-dimensional sphere contains a void, it is the n-dimensional object that generates βn. (B) A surface with boundary that

is topologically equivalent to an annulus. The annulus is a 2-dimensional surface that has the same homology as a 1-dimensional circle. Since this object has one

connected component, β0 = 1. We can use addition to represent a cycle. The cycle e5 + e9 + e12 + e8 = e5 + e8 + e9 + e12 is homologous to 0 since it bounds a

surface (the light green waning crescent moon). Since all 1-dimensional cycles are either homologous to 0 or to (a multiple of) the rectangle cycle e1 + e2 + e3 + e4,
β1 = 1. Since this object lives in the 2-dimensional plane, βi = 0 for all i > 1. (C) The solid torus has βi = 1 for i = 0, 1 and βi = 0 for all other i while its boundary, the

torus, has βi = 1 for i = 0, 2, β1 = 2, and βi = 0 for all other i. The thick blue cycle is a 1-dimensional homology generator for both the solid torus and its boundary.

The thiner black cycle is a homologous to 0 in the solid torus as it bounds a meridinal disk, while this black circle is a homology generator in the torus which is not

homologous to the blue circle. The torus surface generates the 2-dimensional homology.

FIGURE 2 | A barcode captures topological features in a dataset at multiple

scales. The topology of a dataset at a fixed scale is determined by joining pairs

of data points with an edge if the distances between the pair of points is less

than the fixed scale. If three edges form a triangle, then the triangle is filled in.

This process is shown in the seven boxes as the scale for joining vertices

increases from box 1 to box 7. The corresponding barcode is shown at the

top of the figure. The persistence of a feature over multiple scales determines

the length of the bar corresponding to that feature. The number of

components (β0) that exist at a particular scale is represented by the number

of red bars that exists at the corresponding Rips diameter. The creation of the

1-dimensional cycle in box 6 is represented by the birth of the blue bar. The

blue bar dies when this cycle is filled in with triangles (box 7). This figure was

created by modifying the output of the R package TDAstat (Wadhwa et al.,

2018) and latex code written by Catalina Betancourt.

data points increases. We can visualize the increasing threshold
(or proximity parameter) by growing balls around each data
point and connecting pairs of points as soon as their respective
balls intersect. Thus, in the second box, an edge joins the two
closest points, reducing the number of connected components
by one. Thus, one bar ends (dies), and only 4 bars (β0 = 4)

continue past this threshold. Observe that every time an edge
joins two components, a bar dies (and β0 reduces by one). In the
timepoint just before 1.5 (box labeled 5), two edges are added.
One connects two components, but the third forms a triangle
with two previously created edges. These three edges surround
a small hole, but we fill in this hole (shaded in pink) as we only
want to detect large holes. We are forming a Rips complex where
whenever a triangle is formed, it is immediately filled in and
thus triangles do not contribute to β1. In the timepoint after
1.5 (box labeled 6), a cycle containing four edges is formed.
This is indicated in the barcode by the start (birth) of the blue
bar. As more edges are added, eventually this region is divided
into two triangles and the blue bar dies at timepoint close to 2
(corresponding to box labeled 7). Note we have one infinitely
long bar (top red bar with arrow) since after time 1.5 we have
one connected component.

To summarize, this example of a TDA pipeline consists of
taking a dataset, creating a sequence of Rips complexes, and
outputting a barcode (Edelsbrunner et al., 2002; Carlsson et al.,
2005; Zomorodian and Carlsson, 2005). A Rips complex is a
generalization of a graph.While in our example we only looked at
adding edges and triangles, we can also add higher dimensional
simplices. A n-simplex in a Rips complex is a collection of n +

1 points where each pair of points is connected by an edge.
Thus an edge is a 1-simplex, a triangle is a 2-simplex, and a
tetrahedron is a 3-simplex. In our circle example, when all pairs

of the 5 points are connected by edges, we add a 4-simplex
even though the data set lives in 2-dimensions. The existence

of an n-simplex means that (all pairs of) n + 1 points are close

together according to a given threshold. The Rips complex is
also called a clique complex, the latter term coming from graph
theory where a clique is a graph where every pair of vertices is
connected. Thus, our simplices correspond to clique subgraphs.
Other names for Rips complex include Vietoris-Rips complex
and flag complex.
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FIGURE 3 | A barcode can be converted into a persistent diagram. Each bar

with finite length in a barcode is represented by a point in the persistent

diagram. If a bar is born at time b and dies at time d, then the bar is

represented by the point (b,d). In Figure 2, there are four finite red bars plus

one infinite red bar. These bars are all born at time 0. In the persistent diagram,

the four finite red bars are represented by the four red points all of which have

b = 0. The one blue bar in Figure 2 is represented by the blue triangle in this

persistent diagram. This figure was created using the R package TDAstat

(Wadhwa et al., 2018).

There are other ways to form a simplicial complex from data.
For the Rips complex, an n-simplex is formed at threshold r
when all pairs of n + 1 points are of distance less than r (so that
each pair of points is connected by an edge). This is equivalent
to requiring every pair of balls of radius r centered around the
n+ 1 points to intersect. If we require the intersection of all these
balls to be nonempty in order to form an n-simplex, we instead

form the Čech complex. Thus, to form a 2-simplex (triangle),
the Rips complex only requires non-empty pairwise intersection

of three balls while the Čech complex requires the intersection
of all three balls to be nonempty. Thus, the Čech complex is
similar to the Rips complex, but an n-simplex is formed at a
slightly larger threshold in the Čech complex. Under certain

conditions, the Čech complex is guaranteed to have the same
homology as the union of all balls of radius r centered around
data points (Hatcher, 2002). But the Rips complex has much
smaller computer memory requirements as only the edges need
to be stored to determine the Rips complex, and thus the Rips
complex is normally used when calculating persistent homology.
A very different TDA technique called Mapper uses a completely
different method to create a simplicial complex from data (Singh
et al., 2007). For Mapper, each vertex represents a cluster of data
points. If n+1 of these clusters have a common intersection, then
an n-simplex is formed. Mapper can be used to reduce the size of
a data set and to visualize it.

The example in Figure 2 focused on β0 and β1. For data that
lives in a higher dimensional space, we can similarly calculate
βn = the number of n-dimensional holes. For example, β2 = 1
for both the sphere and torus as these are 2-dimensional surfaces
that bound voids in space. For more details regarding persistent
homology and barcodes (please see Ghrist, 2008; Carlsson, 2009;
Edelsbrunner and Harer, 2010; Otter et al., 2017).

In order to use persistent homology in machine learning, we
need a distance between barcodes. We first convert barcodes

to persistence diagrams as described in the next section and
use these diagrams to define a distance between barcodes. In
this section, we show how persistent homology is stable with
respect to noise: small perturbations in the data have only a
small effect on the barcode (Cohen-Steiner et al., 2007). In
section 2.2, we discuss the advantages/disadvantages of persistent
homology with regard to how it handles noise, incomplete data,
and computational complexity. In section 2.3, we discuss one
method (persistent images) of converting a persistence diagram
into a vector that can be used in machine learning. We also give
references to many other methods for using persistent homology
in machine learning.

While we have discussed the basic method for converting
Euclidean data into barcodes, there are a number of other
methods for obtaining barcodes from data. All one needs is a
method to determine when to add an edge between pairs of data
points. Thus, the data do not need to live in Euclidean space. We
also assumed that small holes correspond to noise, but there are
applications where the point of using persistent homology is to
detect small holes (Bendich et al., 2016). We also had only one
infinite bar corresponding to the one connected component we
obtained when all our data points were connected by edges. If one
is working with Euclidean data, eventually all holes will be filed
in and thus eventually a Rips complex with only one component
and no holes will be formed. But in other applications, holes
may persist forever, resulting in infinite bars. One can also obtain
additional information by looking at the group structure of the
filtered homology groups, and prove stability properties using
interleaving distance (Bauer and Lesnick, 2014; Bubenik and
Scott, 2014; Oudot, 2015; Chazal et al., 2016).

2.1. Persistence Diagrams and Stability
While barcodes are useful for visualizing changes in homology,
barcodes are generally converted into persistence diagrams for
statistical and machine learning analysis (Edelsbrunner et al.,
2002; Mileyko et al., 2011). The start of a bar represents the birth
of a cycle while the end represents its death. The plot of the points
(birth time, death time) in 2-dimensional space is called the
persistent diagram (PD). The persistent diagram corresponding
to the barcode in Figure 2 is shown in Figure 3. A persistence
diagram also includes the diagonal as shown in this figure as the
diagonal is used when computing distances between PDs. A PD
can be a multiset if multiple bars have the same birth time b and
death time d, so that the point (b, d) occurs multiple times in
the PD.

The formula for the bottleneck distance for a fixed βi

between two persistence diagrams, P1 and P2, is dB(P1, P2) : =

inf
γ : P1→P2

sup
x∈P1

‖x − γ (x)‖∞. To compute this distance we first

create a matching γ between these diagrams for the fixed βi

as shown in Figure 4. In this figure the blue triangles represent
features with the fixed βi from one data set while the purple
stars represent features from a different data set for the same βi.
A matching γ : P1 → P2 is a bijective function from P1 to P2
where both persistence diagrams include the diagonal. Features
that are close to the diagonal get matched to the diagonal unless
they are closer to another feature that does not have a better
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FIGURE 4 | Two persistence diagram, P1 and P2, are shown for a single

dimension (for example, β1). The blue triangles correspond to P1 while purple

stars are used for P2. Both persistence diagrams include the diagonal. A

matching between P1 and P2 is shown where the red dotted lines indicate

features that have been matched where some of the features are matched to

the diagonal. The length of the thicker dark red dotted lines indicate the

distance between matched features. The distance between a feature and the

diagonal is the persistence of the feature, d − b, where b = birth time and d =

death time of that feature. If feature (b,d) is matched with feature (β, δ), then

the distance between these features is max(|b− β|, |d − δ|). Since the best

matching is shown, dB(P1,P2 ) equals the length of the longest of the thick

dark red dotted lines. Any other matching would have a matched pair of

features with larger distance.

matching than to the diagonal. If x = (b, d) ∈ P1 is matched
to the point (β , δ), then the distance between these features is
‖x − γ (x)‖∞ = max(|b− β|, |d − δ|). To find the distance for a
particular matching γ , we calculate supx∈P1 ‖x − γ (x)‖∞ = the
largest distance between a point x in P1 and its match γ (x) in P2.
The bottleneck distance is obtained by taking the infimum of this
distance over all possible matchings. In Figure 4, red dotted lines
indicate best matches between features from P1 and P2.

If P1 is the PD for the data set X and P2 is the
PD for the data set Y , the stability theorem states that
dB(P1, P2) ≤ dH(X,Y) = inf{ε ≥ 0 ; X ⊆ Yε and Y ⊆ Xε}

where Xε : =
⋃

x∈X

{z ∈ M ; d(z, x) ≤ ε} (Cohen-Steiner et al.,

2007). In other words, if each data point is perturbed by at most
a distance ǫ, then the persistence of a feature will change by at
most 2ǫ since the birth and death times can change by at most ǫ.
Features with persistence <2ǫ may disappear, while new features
with persistence less than 2ǫ may be created.

2.2. Benefits and Limitations of Persistent
Homology
That persistent homology is stable with respect to noise is, of
course, a major advantage. But any method that uses Euclidean
distance is affected by the curse of dimensionality due to the effect
of noise on distance. For example, suppose a data point should
be at the origin, but due to noise, each coordinate is perturbed
by 0.01 units, then the point which should be at the origin is
now 6n

i=1(0.01
2) units away from the origin if the data lives in

R
n. Thus, for example if n = 10, 000, then the data point is

perturbed by a distance 6
10,000
i=1 (0.012) = 1. While the change

in persistent homology is bounded by the distance between the
original data set and the perturbed data set, the latter can be quite
large, depending on the amount of noise and the dimension of
the dataset. Thus, performing PCA or t-SNE or other dimension
reduction technique first may lead to stronger results.

In order to recover the shape of an object, one must have
sufficient coverage. Some holes detected by persistent homology
may be due to incomplete data. If these are small, then they only
result in short bars which may be considered noise. But in high
dimensional spaces, one has many degrees of freedom, so even
recovering the shape of simple objects in high dimensions can
be impossible as obtaining a sufficient number of data points
may not be feasible. However, differences between data sets may
still be detected even if coverage is lacking. For example, one
may have insufficient coverage to recover the topology of a
torus if one uniformly under-samples data points from a torus.
However, the resulting barcode will likely be very different than
the barcode obtained from uniformly under-sampling points
from a sphere. Also, coverage can be less of an issue if you
have some information regarding the shape of the data such as
periodicity (for example, Dequeant et al., 2008). Thus, in practice,
topological data analysis has proven to be quite robust. For more
on complexity and topological inference (see Weinberger, 2014).

Due to computational complexity, most analysis using TDA
restricts to the use of βi for i ≤ 4. Often only β0 and β1

are used, but faster algorithms such as Ripser (Bauer, 2019)
are becoming available. To calculate persistent homology of a
point cloud, one first needs to create simplicial complexes. The
number of simplices grows rapidly with the number of data
points as well as the homology dimension (not the dimension
of the data set, but the dimension of the holes one wishes to
detect—in order to calculate βi, one needs i-dimensional and
i+ 1 dimensional simplices). The TDA pipeline also requires the
computation of distances between data points. The dimension
in which the data lives can affect this step, but after distances
are calculated, it is the shape of the data that can have the
largest effect, sometimes even larger than the number of data
points as there are several algorithms that can greatly simplify the
simplicial complex (Zomorodian, 2010; Mischaikow and Nanda,
2013; Wilkerson et al., 2014; Boissonnat and Pritam, 2020). The
effectiveness of these simplification algorithms depends on both
the topology and geometry of the data set. For example, suppose
one takes n data points equally spaced on a straight line. The
topology of the line is the same as the topology of a point. Thus, to
calculate the homology of the line, one can remove all simplices
except for a single vertex. For more on computational complexity
of persistent homology (see Otter et al., 2017).

If all the data points enter at time 0, the β0 bars all start
at time 0. Thus the barcode for β0 can be created from a
single linkage hierarchical clustering dendrogram as the merge
heights of the dendrogram become the lengths of the β0 bars.
Hence the β0 barcode contains less information than a single
linkage hierarchical clustering dendrogram. However, there are
applications where the data points enter at different times such
as time series data. Thus, the β0 barcode can be applied to a
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FIGURE 5 | Pipeline for vectorizing a persistent diagram using persistent images. This figure is a modification of Figure 1 from Adams et al. (2017) which is licensed

under CC BY 4.0.

wider variety of applications than standard clustering techniques.
Clustering also cannot capture holes and voids; the higher
dimensional barcodes capture structure that other methods such
as clustering miss.

2.3. Persistent Homology and Machine
Learning
The barcode can be used as a topological signature to identify
structure in data. While homology is built to detect topology
and not geometry, persistent homology can be implemented in
a variety of ways to distinguish geometrical shapes (e.g., Turner
et al., 2014; Li et al., 2018; Bubenik et al., 2020). Machine
learning can be applied to a collection of persistent diagrams
to distinguish between data sets with different structures. Many
machine learning algorithms take a vector as input. There are
many ways to create a vector from persistent homology. A
pipeline to create a vector using persistence images (Adams et al.,
2017) is illustrated in Figure 5. A persistent diagram is first
rotated by 45◦ so that the diagonal becomes the horizontal axis
(2nd panel of Figure 5). Thus the horizontal axis represents the
birth time, while the vertical axis represents persistence = death -
birth. A heat map is then created using a Gaussian distribution
(or other weight function) about each point (3rd panel). The
height of the Gaussian distribution is indicated with color in the
heat map and is dependent on the persistence of the feature.
Points closest to the diagonal are considered to be the result
of noise and are thus given no intensity. Hence the bottom of
the heat map will always have the color corresponding to zero
intensity, in this case blue. In other words, points close to the
diagonal have no effect on the heat map. Observe that the point
furthest from the diagonal in the first panel corresponds to a
feature with the largest persistence per second panel. Thus, in
the heat map in the 3rd panel, the color at this point is given
the highest intensity (yellow). As shown in the fourth panel,
the heat map is discretized by partitioning the heat map into
n × n squares where the color of each square corresponds to the
average value of the corresponding square in the heat map. In
the discretized heat map (4th panel), the yellowish region from
the 3rd panel corresponding to the most persistent feature is
partitioned between two squares with the yellow square in the
top row of this heat map containing a larger portion than the

pinkish square next to it in the same row. In the final panel, an
n2-dimensional vector is created by concatenating the rows of the
discretized heat map.

Other methods for using persistent homology in machine
learning include persistent landscapes (Bubenik, 2015, 2020),
persistent curves (Chung and Lawson, 2019), and kernel
functions (for example, Reininghaus et al., 2015; Kusano et al.,
2016; Carrière et al., 2017; Chazal et al., 2017).

3. TREATMENT RESPONSES AND
PROGNOSIS

What impedes the success of cancer therapies is often the
coexistence of therapy resistant cells along with therapy
sensitive tumor cell populations. When administered separately,
all currently adopted therapeutic strategies—ranging from
cytotoxic chemotherapies to molecular targeted therapies—
impose a dramatic, yet homogeneous selective pressure on
an often heterogeneous group of tumor cells. Despite varying
resistance mechanisms contingent upon therapy-type and tumor
composition, every therapeutic intervention inevitably selects for
resistant cells, which expand and become the dominant cell type
of recurrent tumors, that cease to respond to therapy (Maley
and Reid, 2005; Aparicio and Caldas, 2013; Bukkuri, 2020). The
increased resolution on the clonal architecture of intermixed
tumor cell populations that has just now become available
calls for prognostic and therapeutic benefits. High intra-tumor
diversity in pre-malignant lesions has been shown to predict
progression to malignant growths and poor outcome (Maley
et al., 2006; Laurie et al., 2012). The therapeutic significance of
intratumoral heterogeneity (ITH) is exemplified in a recent study
that measured genetic and transcriptional diversity of breast
cancer tumors before and after therapy based on four genetic
markers and two transcriptional markers. The study provided
proof-of-principle that therapy-induced phenotypic changes can
be predicted based on the characterization of coexisting tumor
subpopulations (Almendro et al., 2014). Another recent study
used RNA interference to model heterogeneous tumors and
tested the efficacy of predicted drug combinations in eliminating
coexisting tumor subpopulations (Zhao et al., 2014). Their
findings suggest that the most effective drug combination for a
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given tumor cannot be achieved by targeting the predominant
subpopulation alone, but requires detailed characterization of
the genetic makeup of branched subpopulations and their
contribution to the tumor bulk.

Techniques from computational homology have been used to
develop a new algorithm to characterize comparative genomic
hybridization (CGH) profiles and identify the frequency of
cancer recurrence in early stage breast cancer patients through
identification of recurrent copy number aberrations (CNAs)
in cancer (DeWoskin et al., 2010), which serve as markers of
genomic instability and thus cancer prognosis (Hanahan and
Weinberg, 2000; Han et al., 2006). Specifically, the method uses
a sliding window algorithm to associate a set of point clouds to
each array CGH. Different window sizes allow one to analyze
the data at various scales by considering different dimensional
point clouds. Then, persistent homology is applied to these point
clouds for classification. It was found, in accordance with prior
results (Climent et al., 2007), that the Betti numbers of the
zero dimensional homology groups (β0) can distinguish between
recurrent and non-recurrent groups in patients who did not
receive anthracycline-based chemotherapy after surgery but not
in patients who were treated with anthracycline. Note that, in this
approach, no segmentation of the data was required.

In another study, a novel statistic called the smooth Euler
characteristic transform (SECT), which allows shape information
to be integrated into traditional statistical models, was developed
and applied to predict disease free survival in glioblastoma
multiforme (GBM) based on tumor shape from post-contrast
T1 axial magnetic resonance imaging (MRI) (Crawford et al.,
2020). SECT is a variation of the persistent homology transform
(PHT) introduced in Turner et al. (2014) that was created to
overcome the difficulties in integration with traditional statistical
models. Specifically, the output of SECT is a collection of smooth
vectors, while the output of PHT is a collection of persistence
diagrams (Edelsbrunner et al., 2002), thus having a complicated
representation and geometry which does not lend itself easily
into integration with statistical models. In the GBM application,
the statistical model used was a Bayesian linear mixed model
(BLMM) (Ishwaran and Rao, 2005; Guan and Stephens, 2011;
Zhou et al., 2013).When this topological approach was applied to
the GBMMRI data, it was found to outperform gene expression,
volumetric, and morphological summaries in predicting disease
free survival.

Clinically, there is a great importance in the identification
of biomarkers which can serve as predictors for metastasis and
patient prognosis in cancer. To this end, researchers have recently
used persistent homology techniques, in an exploratory data
analysis fashion, to identify biologically meaningful geometric
properties of single cell data (Lockwood and Krishnamoorthy,
2015). In this method, data was first transposed and analyzed
in its dual space with each gene represented in a much lower
dimensional sample space, thus circumventing the problem
of high dimensionality that is typical of single cell data. A
small set of genes (120–200) were then selected as landmarks
(De Silva and Carlsson, 2004) and a family of nested simplicial
complexes was constructed, indexed by a proximity parameter.
Unlike many other methods which focus on the analysis of zero

dimensional homology groups (DeWoskin et al., 2010; Nicolau
et al., 2011), thus performing analyses which are topologically
equivalent to clustering, this study focused their efforts on
identifying loops of one dimensional homology groups which
persist over a large range of values of the proximity parameter,
hypothesizing that connections around holes imply nontrivial
interactions among genes and biological functions which could
have implications for tumorigenesis. Repeating this process for
various landmarks, features which remain stable over large ranges
of both the proximity parameter and number of landmarks
could be detected. Applying these techniques to five different
cancer data sets from brain, breast, ovarian, and acute myeloid
leukemia cancers, many members of the significant loops in
the one dimensional homology groups that were found have
been previously shown to be accurate biomarkers for cancer
biogenesis, while others serve as potential new markers which
have yet to be experimentally validated.

4. TUMOR SEGMENTATION AND
COMPUTER-AIDED DIAGNOSIS

Computerized methods can efficiently and effectively identify
quantitative image features that are otherwise difficult to
spot by manual inspection (Yu et al., 2016). Quantitative
morphological features extracted from H&E stained slides,
such as Zernike shape features, have been shown to predict
survival in lung adeno- and squamous cell carcinoma (Yu
et al., 2016). Recent advances in next-generation sequencing
technologies gave rise to a plethora of approaches that quantify
and characterize the genotypic diversity within a given tumor.
Evidence supporting a quantitative relation between genotypic
and morphological ITH followed. A quantitative image analysis
approach that complements genomic profiling with geographical
information was developed (Yuan et al., 2012; Andor et al., 2016).
Furthermore, the authors characterized cellular heterogeneity
by distinguishing between well-defined cell-populations (stromal
cells, lymphocytes, cancer cells). However, so far qualitative
details of how this diversity inmorphology is structured (i.e., how
many subpopulations are present and what their geographical
boundaries are on the H&E slide) are unknown.

As a step toward a computer-aided cancer diagnosis system,
persistent homology has been used to develop an automated
tumor segmentation approach for Hematoxylin & Eosin (H&E)
stained colorectal cancer histology whole slide images (WSI)
(Qaiser et al., 2016). The authors exploit the fact that nuclei
in tumor regions have atypical characteristics such as non-
uniform chromatin texture, irregularity in shape and size, and
clustering of nuclei, and use persistent homology profiles to
characterize the degree of connectivity among nuclei and to
classify cancerous regions based on this information. Specifically,
once a WSI has been obtained, it is first divided into patches,
each of which has a persistent homology profile. Given two
patches, the symmetrized Kullback-Leibler divergence (KLD)
can be computed between the respective persistent homology
profiles, which serves as a metric for interpatch distance. Then
an input patch is classified as cancerous or non-cancerous by
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a kNN classifier, based on KLD distances between its persistent
homology patch and those of each representative patches. These
exemplar patches are chosen by training a CNN and selecting
patches whose activation during training is large (separately
for cancerous and non-cancerous classes). The benefit of this
approach over previous approaches is that only the subset of
highly activated patches from the convolutional layers are used
as exemplars rather than the set of all patches in the training
data. This method was compared against standard CNN and
HyMaP (Khan et al., 2013) approaches on 74 H&E stained WSIs
of colorectal cancers; in addition to being computationally less
expensive than the other two methods, it was also shown to have
better precision and segmentation accuracy.

Another example of tumor segmentation and algorithmic
diagnosis is a recent study which aimed to segment a diseased
area of skin and classify the type of skin lesion into one of
seven classes in a given dermatoscopic image (Tschandl et al.,
2018) using persistent homology (Chung et al., 2018). Like the
colorectal image segmentation study (Qaiser et al., 2016), the
segmentation algorithm used is a concept similar to persistent
homology (Edelsbrunner et al., 2002). Linear support vector
machines (SVMs) were used for classification on the persistence
statistics (Chung et al., 2018) and persistence curves (Chung
and Lawson, 2019) were derived from persistence diagrams.
Specifically, given an image, a segmentation algorithm was
first implemented to obtain an image mask: a binary image
in which each pixel is colored either white (if it part of the
healthy skin) or black (if it is part of a lesion). Once the
mask was applied to the original image, the RGB color space is
transformed into an RGB, HSV, or XYZ color space and each
channel was extracted. Persistent homology software was then
used to compute persistence diagrams for each channel; from
each diagram, persistence statistics and curves were computed
as features. Finally, a multi-class SVM was used to classify the
input into one of the seven types of skin lesions. When this
approach was applied to a validation set of 5,000 images, the
highest resulting accuracy scores were 65.6, 66, and 67.2%.

Similar persistent homology techniques were used to classify
H&E stained stage T3 and stage T4 colorectal adenocarcinomas
images as benign or malignant (Chittajallu et al., 2018).
To do this, given an image, it was first color normalized
(Reinhard et al., 2001) and the nuclear stain and minimum
cross entropy thresholding (Li and Tam, 1998) for nuclear
foreground segmentation were extracted using an unsupervised
color deconvolution method (Macenko et al., 2009). Then, a
fast difference-of-Gaussian implementation of the scale-adaptive
Laplacian-of-Gaussian filter of Al-Kofahi et al. (2010) was
performed to detect nuclei centroids. Then, by considering the
set of nuclei centroids as a point cloud, the persistence diagram
of its Vietoris-Rips filtration for the one dimensional homology
groups (loops) was computed using a fast multiscale approach
(Doyle et al., 2008). Then, persistence landscape (Bubenik,
2015) and image (Adams et al., 2017) representations were
computed and used as features to characterize loops formed by
glandular epithelial cell nuclei. Then given training images with
benign/malignant labels, a random forest classifier was trained
using these topological features. PCA was used to reduce the

dimensionality of each feature group so as to preserve 99% of
the variance. Hyperparameter optimization was also performed
via cross-validation using a tree-structured parzen estimator
(Bergstra et al., 2011). When this method was applied to testing
data consisting of 80 images, an accuracy of 85%, AUC of
0.85, precision of 78%, and recall of 95% was obtained, an
improvement over the traditional cell graph property approach
in all areas (Doyle et al., 2008).

5. DISEASE CLASSIFICATION

Cancers of unknown primary represent 3–5% of all cancer cases,
whereby physicians find one or multiple metastases but fail to
locate the primary tumor. Pathologic evaluation of a metastatic
biopsy often does not provide a definitive answer. Molecular data
ranging from gene expression to somatic mutations have been
shown to significantly aid classification of metastatic biopsies to
their corresponding primary tumor site (Ferracin et al., 2011;
Marquard et al., 2015; Vikeså et al., 2015; Moran et al., 2016;
Søndergaard et al., 2017).

One study used persistent homology on 150 non-contrast-
enhanced fat-suppressed 3D T1-weighted magnetic resonance
(MR) images to classify hepatic tumors into three classes:
hepatocellular carcinomas (HCC), metastatic tumors (MT), and
hepatic hemangiomas (HH) (Oyama et al., 2019). To do this,
for each image, a 3D region of interest (ROI) in the shape of
a rectangular solid enclosing the entire lesion was created by
an experienced radiologist. Then, gray-scale values of the voxels
in each ROI were normalized and persistence diagrams were
created for dimensions 0, 1, and 2 using HomCloud (Kimura
et al., 2018; Obayashi and Hiraoka, 2018). These diagrams were
vectorized into persistence images (Adams et al., 2015). Feature
vectors were then obtained from these images and inputted
into logistic regression with an elastic net penalty and extreme
gradient boostingmachine learningmodels for classification. The
results from classification showed that dimension 1 persistence
images had the highest accuracy rates: 85% for classifying HCC
and MT, 84% for HCC and HH, and 74% for HH and MT.

An alternative method to accurately classify tumor subtypes is
through the use of high throughput genomics (Nutt et al., 2003;
Freije et al., 2004). Aiming to produce more robust algorithms
than traditional classification methods, given gene expression
profile data, researchers used statistical invariants and persistent
homology to identify core patient groups associated with the
classical, mesenchymal, and proneural subtypes of GBM and a
compact set of genes most useful for this partitioning (Seemann
et al., 2012). To do this, a sufficient, but compact, panel of
genes to be used for clustering was predetermined using non-
dimensionalized standard deviation (to ensure bimodality of
gene expression distribution across patient samples; Phillips
et al., 2006; Verhaak et al., 2010) and persistent homology
(to find groups of genes whose expression levels change
coherently among patient samples; Carlsson, 2009; Horak et al.,
2009). Then, a hierarchical partitioning of patient samples
based on gene expression levels is performed using persistent
homology; specifically, samples are repeatedly bisected until
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further partitioning is not possible, thus obtaining the number
of clusters that exists and some notion of genetic proximity of
the clusters. Each bisection was implemented using 30 genes.
A predictive model was then implemented to assign cancer
subtypes to each cluster. Applying this approach to the 20 GBM
test samples, fifteen predictions were in accordance with results
from standard clustering calculations (Verhaak et al., 2010), five
of which were unassigned by both algorithms. Of the remaining
five samples, four were classified as “neural” by the clustering
algorithm, but were unassigned by this approach since the neural
group was not found in a single cluster.

Another example of the use of persistent and computational
homology on gene expression data is in Arsuaga et al. (2012),
whereby, upon application to a breast cancer gene expression
dataset, the algorithm was able to distinguish among most breast
cancer subtypes. This paper extended the work of DeWoskin
et al. (2010) to gene expression data, under the assumption that
gene expression is a measure of the underlying copy number
changes (Neve et al., 2006; Horlings et al., 2010). Before applying
the sliding window algorithm developed in DeWoskin et al.
(2010) to gene expression data, theoretical work was done to
show that under idealized conditions, the point cloud defined
by the algorithm is a good representation of the original data.
Hence, analysis of the point cloud is applicable to the original
data set. This was done using Taken’s embedding theorem,
an extension of Whitney’s embedding theorem to dynamical
systems theory, and a circularization technique. To apply the
sliding window algorithm to gene expression data, instead of pre-
selecting differentially expressed genes like traditional clustering
algorithms, all genes were ordered by their location in the
genomes. Then, the sliding window algorithm was applied to
generate point clouds, upon which topological and statistical
analysis was performed. It was shown that when only β0 was
used, the algorithm could distinguish between less aggressive
subtypes, like normal and luminal-A, and more aggressive ones,
such as luminal B, basal-like, and Her2. It was also noted that the
algorithm could not distinguish luminal B from Her2 and basal-
like, implying the close similarities among these subtypes. Thus,
it was noted that breast cancer subtypes can not only be classified
by specific sets of genes, but also by certain global relationships
among all genes.

6. CELLULAR ARCHITECTURE

Imaging is an essential part of cancer clinical protocols,
providing physicians with morphological, structural, and
metabolic information about patient tumors, thereby assisting
in clinical decision making and treatment planning (Fass,
2008). The development of new image segmentation tools
(Zhang et al., 2001; Hong and Brady, 2003; Xiaohua et al.,
2004) and quantitative multiplex immunofluorescence (Stack
et al., 2014; Dimitriou et al., 2019; Abousamra et al., 2020)
have set the stage for topological data analysis and persistent
homology techniques to be harnessed for interpretation
of high-dimensional information in histopathological
imaging data.

One example of this is using persistent homology techniques
to investigate architectural characteristics of cellular organization
and nuclear arrangements from microarray tissue samples to
distinguish among genetically derived breast cancer subtypes
(Basal, Luminal A, Luminal B, and HER2; Singh et al., 2014).
This was done through distinct topological characterizations
such as nuclear connectivity (generators of zero dimensional
homology groups) and loops (generators of one dimensional
homology groups) based on Vietoris-Rips filtration of nuclei
centers (Mischaikow and Nanda, 2013). When its performance
was compared to a standard distance weighted discrimination
classifier (Marron and Todd, 2007), nearly a four times
improvement in classification accuracy was noted. Furthermore,
for certain combinations of feature weightings, it was shown
that topological features provide complementary information to
patch based image appearance features. By using such topological
features, they solve/address two main challenges in obtaining
accurate cellular architectural characterization: the heterogeneity
of spatial arrangements, both among patients and within
single tumor samples, and differences in stain intensity which
require manually determined phenotypic thresholds (Engers,
2007; Truesdale et al., 2011; Goodman et al., 2012; Helpap
et al., 2012; Truong et al., 2013; Epstein et al., 2016; Evans
et al., 2016). This improves performance over existing standard
classifiers, which are more sensitive to noise, cannot model
stain concentration variations, and have issues with larger cell
arrangements (Aukerman et al., 2020).

In another paper, researchers used TDA to cluster prostate
cancer histology into architectural groups consistent with the
continuum of Gleason patterns, the most widely accepted system
for evaluating prostate cancer architecture (Humphrey, 2004;
Lawson et al., 2019). Persistent homology was used to compute
persistence intensity diagrams (of zero and one dimensional
components) of purely graded prostate cancer histopathology
images of Gleason patterns 3–5. This revealed key insights
into characteristics such as nuclei density, glandular shape, and
inter-glandular arrangement. Furthermore, persistent homology
was able to cluster these images into architectural groups
through a rank descending persistence vector–the six resulting
clusters provided a stable architectural continuum from well
differentiated to poorly differentiated adenocarcinoma at an even
finer level than the standard Gleason scale.

Persistent homology has also been used to characterize
the spatial arrangement of immune and epithelial (tumor)
cells within the breast cancer immune microenvironment from
quantitative multiplex immunofluorescence (qmIF) imaging
(Aukerman et al., 2020). Stain intensities and spatial coordinates
of individual cells were collected from qmIF through nuclear
segmentation, cytoplasmic definition, and stain quantification.
In order to incorporate these stain intensities, instead of directly
using a Rips or Cech filtration on the point cloud data (Chazal
et al., 2009), a discretization process was first implemented to
convert the point cloud data with stain intensity values into
an image. Then, persistence diagrams were created from these
images by using the opposite of the pixel stain intensity as
the filter function. These diagrams were assessed as potential
biomarkers of cancer subtype and prognostic biomarkers of
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overall survival using kernel mean embeddings (Gretton et al.,
2012) with the sliced Wasserstein kernel (Carrière et al., 2017)
and were shown to outperform the standard nearest neighbor
analysis with a standard Gaussian kernel. Furthermore, a
correlation analysis using constrained covariance (Herbrich et al.,
2005) showed that the correlation between nearest neighbor and
persistence diagrams were always <0.1, implying the features are
nearly statistically independent and thus complementary.

7. DISCUSSION

As we have seen in this paper, TDA has proven to be a powerful
tool, yielding critical insights in the treatment prognosis, tumor
segmentation and diagnosis, disease classification, and cellular
architecture of cancer. But despite the many recent successes
of TDA in the field of oncology, it is still a nascent field with
much fruitful work yet to be done. Experimentally, to biologically
validate the TDA methodology and results, it would be worth
performing thorough studies to assess whether geometric
and topological connectivity implies functional connectivity.
Computationally, one area which deserves further exploration
is the use of TDA to analyze time-series data (Ravishanker
and Chen, 2019) in cancer. This has been done extensively in
several other fields including climate analysis (Berwald et al.,
2014), tracking stability of dynamical systems (Khasawneh and
Munch, 2016), clustering populations of Tribolium flour beetles
(Pereira and de Mello, 2015), analyzing motion sensor data
during sports activities (Stolz et al., 2017), and financial time
series data (Gidea, 2017; Truong, 2017; Gidea and Katz, 2018;
Gidea et al., 2020). Though time series oncological data have
been analyzed with varying degrees of success (Aoto et al., 2018;
Kourou et al., 2020), TDA techniques of any sort have yet to be
applied. Applying persistent homology techniques to time series
microarray, cell anatomy imaging, or gene/pathway expression
data, for example, may further help in disease classification,
identifying intra-tumoral selection events, and contribute to a
greater understanding of tumorigenesis. Another possible avenue

of research is to investigate the process of angiogenesis, an
inherently geometric and spatially dependent process, using
persistent homology techniques. Specifically, we anticipate that
TDA will help us understand the changes that occur in tumor
vasculature morphology during cancer progression and under
treatments. More importantly, we hope that connections between
cancer vessel network and treatment prognosis can be found,
such as by testing vessel normalization theory (Jain, 2005). In
addition to the ideas presented above, it is worth noting that
research into the use of TDA in oncology is sparse and, as
such, there is much important and clinically relevant work to
be done in simply applying well-understood persistent homology
algorithms to broader classes of cancer data sets (note that most
TDA analyses have been concentrated in just melanoma, brain,
breast, and colorectal cancers) and in performing longitudinal
studies across several cancer types.
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A graph’s spectral wavelet signature determines a filtration, and consequently an

associated set of extended persistence diagrams. We propose a framework that

optimizes the choice of wavelet for a dataset of graphs, such that their associated

persistence diagrams capture features of the graphs that are best suited to a given

data science problem. Since the spectral wavelet signature of a graph is derived from

its Laplacian, our framework encodes geometric properties of graphs in their associated

persistence diagrams and can be applied to graphs without a priori node attributes.

We apply our framework to graph classification problems and obtain performances

competitive with other persistence-based architectures. To provide the underlying

theoretical foundations, we extend the differentiability result for ordinary persistent

homology to extended persistent homology.

Keywords: topological data analysis, graph classification, graph Laplacian, extended persistent homology,

spectral wavelet signatures, radial basis neural network

1. INTRODUCTION

1.1. Background
Graph classification is a challenging problem in machine learning. Unlike data represented in
Euclidean space, there is no easily computable notion of distance or similarity between graphs.
As such, graph classification requires techniques that lie beyond mainstream machine learning
techniques focused on Euclidean data. Much research has been conducted on methods such as
graph neural networks (GNNs) [1] and graph kernels [2, 3] that embed graphs in Euclidean space
in a consistent manner.

Recently, persistent homology [4, 5] has been applied as a feature map that explicitly represents
topological and geometric features of a graph as a set of persistence diagrams (a.k.a. barcodes).
In the context of our discussion, the persistent homology of a graph G = (V ,E) depends on a
vertex function f :V → R. In the case where a vertex function is not given with the data, several
schemes have been proposed in the literature to assign vertex functions to graphs in a consistent
way. For example, vertex functions can be constructed using local geometric descriptions of vertex
neighborhoods, such as discrete curvature [6], heat kernel signatures [7] and Weisfeiler–Lehman
graph kernels [8].

However, it is often difficult to know a priori whether a heuristic vertex assignment scheme will
perform well in addressing different data science problems. For a single graph, we can optimize the
vertex function over |V| many degrees of freedom in R

V . In recent years, there have been many
other examples of persistence optimization in data science applications. The first two examples
of persistence optimization are the computation of Fréchet mean of barcodes using gradients on
Alexandrov spaces [9], and that of point cloud inference [10], where a point cloud is optimized so
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that its barcode fits a target fixed barcode. The latter is an instance
of topological inverse problems (see Oudot and Solomon [11]
for a recent overview of such). Another inverse problem is that
of surface reconstruction [12]. Besides, in the context of shape
matching [13], persistence optimization is used in order to learn
an adequate function between shapes. Finally, there are also
many recent applications of persistence optimization in Machine
Learning, such as the incorporation of topological information in
Generative Modeling [14–16] or in Image Segmentation [17, 18],
the design of topological losses for Regularization in supervised
learning [19] or for dimension reduction [20].

Each of these applications can be thought of as minimizing a
certain loss function over a manifoldM of parameters:

minθ∈M L(θ),

where L :M → BarN → R factors through the space BarN

of N-tuples of barcodes. The aim is to find the parameter θ

that best fits the application at hand. Gradient descent is a
very popular approach in minimization, but it requires the
ability to differentiate the loss function. In fact, Leygonie
et al. [21] provide notions of differentiability for maps in
and out Bar that are compatible with smooth calculus, and
show that the loss functions L corresponding the applications
cited in the above paragraph are generically differentiable.
The use of (stochastic) gradient descent is further legitimated
by Carriere et al. [22], where convergence guarantees on
persistence optimization problems are devised, using a recent
study of stratified non-smooth optimization problems [23]. In
practice, the minimization of L can be unstable due to its
non-convexity and partial non-differentiability. Some research
has been conducted in order to smooth and regularize the
optimization procedure [24, 25].

In a supervised learning setting, we want to optimize our
vertex function assignment scheme over many individual graphs
in a dataset. Since graphs may not share the same vertex set
and come in different sizes, optimizing over the |V| degrees
of freedom of any one graph is not conducive to learning a
vertex function assignment scheme that can generalize to another
graph. The degrees of freedom in any practical vertex assignment
scheme should be independent of the number of vertices of a
graph. However, a framework for parameterizing and optimizing
the vertex functions of many graphs over a common parameter
spaceM is not immediately apparent.

The first instance of a graph persistence optimization
framework (GFL) [26] uses a one layer graph isomorphism
network (GIN) [1] to parameterize vertex functions. The GIN
learns a vertex function by exploiting the local topology around
each vertex. In this paper, we propose a different framework for
assigning and parameterizing vertex functions, based on a graph’s
Laplacian operator. Using the Laplacian, we can explicitly take
both local and global structures of the graph into consideration
in an interpretable and transparent manner.

1.2. Outline and Contributions
We address the issue of vertex function parameterization and
optimization using wavelet signatures. Wavelet signatures are

vertex functions derived from the eigenvalues and eigenvectors
of the graph Laplacian and encode multiscale geometric
information about the graph [27]. The wavelet signature of a
graph is dependent on a choice of wavelet g :R → R, a
function on the eigenvalues of the graph’s Laplacian matrix.
We can thus obtain a parameterization of vertex functions for
any graph F :M → R

V by parameterizing g. Consequently,
the extended persistence of a graph—which has only four non-
trivial persistence diagrams—can be varied over the parameter
space M. If we have a function Out :Bar4 → R on persistence
diagrams that we wish to minimize, we can optimize over M to
minimize the loss function

(1)

If L is generically differentiable, we can optimize the wavelet
signature parameters θ ∈ M using gradient descent methods.
We illustrate an application of this framework to a graph
classification problem in Figure 1, where the loss function L is
the classification error of a graph classification prediction model
based on the graph’s extended persistence diagrams.

In section 2, we describe the assignment of vertex functions
F :M → R

V by reviewing the definition of wavelet signatures.
While spectral wavelets have been used in graph neural network
architectures that predict vertex features [1] and compress
vertex functions [28], they have not been considered in a
persistent homology framework for graph classification. We
describe several ways to parameterize wavelets. We also show
in Proposition 2.2 that wavelet signatures are independent of
the choice of eigenbasis of the graph Laplacian from which it
is derived, ensuring that it is well-defined. We prove this result
in Appendix B in Supplementary Material.

In section 3, we describe the theoretical basis for optimizing
the extended persistent homology of a vertex function
EPH :R

V → Bar4 and elucidate what it means for L

to be differentiable. In Proposition 3.3, we generalize the
differentiability formalism of ordinary persistence [21] to
extended persistence. We prove this result in Appendix A in
Supplementary Material.

Finally, in section 4, we apply our framework to graph
classification problems on several benchmark datasets. We show
that our model is competitive with state-of-the-art persistence-
based models. In particular, optimizing the vertex function
appreciably improves the prediction accuracy on some datasets.

2. FILTER FUNCTION PARAMETERIZATION

We describe our recipe for assigning vertex functions to any
simplicial graph G = (V ,E) based on a parameterized spectral
wavelet, the first part F of the loss function

(Equation 1 recalled)

Our recipe is based on a graph’s wavelet signature, a vertex
function derived from the graph’s Laplacian. The wavelet
signature also depends on a so-called ‘wavelet function’ in
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FIGURE 1 | Given a wavelet g :R → R, we can equip any graph with a non-trivial vertex function. This allows us to compute the extended persistence diagrams of a

graph and use the diagrams as features of the graph to predict a graph’s classification in some real world setting. The wavelet g can be optimized to improve the

classification accuracy of a graph classification pipeline based on the extended persistence diagrams of a graph’s vertex function.

g :R → R, which is independent of the graph. By modulating
the wavelet, we can jointly vary the wavelet signature across
many graphs. We parameterize the wavelet using a finite linear
combination of basis functions, such that the wavelet signature
can be manipulated in a computationally tractable way. In the
following section, we define the wavelet signature and describe
our linear approach to wavelet parameterization.

2.1. Wavelet Signatures
The wavelet signature is a vertex function initially derived
from wavelet transforms of vertex functions on graphs [29],
a generalization of wavelet transforms for square integrable
functions on Euclidean space [30, 31] for signal analysis [32].
Wavelet signatures for graphs have been applied to encode
geometric information about meshes of 3D shapes [27, 32].
Special cases of wavelets signatures, such as the heat kernel
signature [33] and wave kernel signature [34], have also been
applied to describe graphs and 3D shapes [35, 36].

The wavelet signature of a graph is constructed from the
graph’s Laplacian operator. A graph’s normalized Laplacian L ∈

R
V×V is a symmetric positive semi-definite matrix, whose entries

are given by

Luv =






1 u = v

− 1√
kukv

(u, v) ∈ E

0 otherwise

(2)

where ku is the degree of vertex u. The Laplacian’s eigenvalues
λ and eigenvectors φ are known to encode various topological
and geometric information about the graph [37, 38]; for example,
the number of zero eigenvalues corresponds to the number
of connected components of the graph. The spectrum of the
normalized Laplacian have real eigenvalues in [0, 2] [37]. As such,
any function g :R → R evaluated on the eigenvalues need only

be defined on [0, 2]. Moreover, functions on a compact domain
are easily parameterized using convenient bases.

Definition 2.1. (Wavelet Signature [27]) Let L ∈ R
V×V be

the normalized Laplacian of a simplical graph G = (V ,E).
Let φ1, . . . , φ|V| be an orthonormal eigenbasis for L and
λ1, . . . , λ|V| be their corresponding eigenvalues. The wavelet
signatureW :R

[0,2] → R
V maps a function g :[0, 2] → R, which

we refer to as a wavelet, to a vertex functionW(g) ∈ R
V linearly,

where the value ofW(g) on vertex v is given by

W(g)v =

|V|∑

i=1

g(λi)(φi)
2
v , (3)

and (φi)v denotes the component of eigenvector φi

corresponding to vertex v.

If the eigenvalues of L have geometric multiplicity one (i.e.,
their eigenspaces are one dimensional), then the orthonormal
eigenvectors are uniquely defined up to a choice of sign. It
is then apparent from Equation (3) that the wavelet signature
is independent of the choice of sign. However, if some
eigenvalues have geometric multiplicity greater than one, then
the orthonormal eigenvectors of L are uniquely defined up
to orthonormal transformations in the individual eigenspaces.
However, the wavelet signature is well-defined even when the
multiplicities of eigenvalues are greater than one. This is the
content of the next Proposition, whose proof is deferred to
Appendix B in Supplementary Material.

PROPOSITION 2.2. The wavelet signature of a graph is
independent of the choice of orthonormal eigenbasis for
the Laplacian.

Remark 2.3. In addition to the traditional view of wavelets from
a spectral signal processing perspective [29], we can also relate the
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wavelet signature of a vertex v to the degrees of vertices in some
neighborhood of v prescribed by g. Consider a wavelet g :[0, 2] →
R. On a finite graph G, the normalized Laplacian L has at most
|V|many distinct eigenvalues. As such, there exists a polynomial
ĝ(x) =

∑p
n=0 anx

n of finite order that interpolates g at the
eigenvalues g(λi) = ĝ(λi). Therefore, W

(
g
)
= W

(
ĝ
)
. Moreover,

the vertex values assigned byW
(
ĝ
)
are the diagonal entries of the

matrix polynomial ĝ(L):

ĝ(L)vv =

p∑

n=0

an
(
Ln
)
vv

=

|V|∑

i=1

ĝ(λi)(φi)
2
v =

|V|∑

i=1

g(λi)(φi)
2
v

= W(g)vv. (4)

Furthermore, we can also write the matrix polynomial ĝ(L) as
a matrix polynomial in A = I − L, the normalized adjacency
matrix. From the definition of L, we can compute the diagonal
entry of a monomial Ar corresponding to vertex v as an inverse
degree weighted count of paths1 [v0, v1, . . . , vr] on the graph
which begin and end on vertex v = v0 = vr [39]:

(
Ar
)
vv

=
1

kv

∑

[v,v1 ,...,vr−1 ,v]

(
r−1∏

l=1

1

kvl

)
. (5)

By expressing the wavelet signature as a matrix polynomial in A,
we see that g controls how information at different length scales
of the graph contribute to the wavelet signature. For instance, if g
were an order p polynomial, thenW(g)v only takes the degrees of
vertices that are ⌊p/2⌋ away from v into account. As a corollary,
since W(g) can be specified by replacing g with a polynomial ĝ
of order at most |V| − 1, the wavelet signature at a vertex is only
dependent on the subgraph of G that is within ⌊|V| − 1⌋/2 steps
away from v.

2.2. Parameterizing the Wavelet
We see from Remark 2.3 that the choice of wavelet g
determines how the topology and geometry of the graph is
reflected in the vertex function. Though the space of wavelets
is potentially infinite dimensional, here we only consider
wavelets gθ (x) that are parameterized by parameters θ in a
finite dimensional manifold, so that we can easily optimize
them using computational methods. In particular, we focus on
wavelets written as a linear combination of m basis functions
h1, . . . , hm :[0, 2] → R

gθ (x) : =

m∑

j=1

θjhj(x) (6)

This parameterization of wavelets in turn defines a
parameterization of vertex functions F :Rm → R

V for our
optimization pipeline in Equation (1)

F : θ ∈ R
m 7−→ F(θ) : = W

(
gθ
)

∈ R
V . (7)

1Here a path refers to a sequences of vertices that are connected to the next vertex

in the sequence by an edge.

Since W(g) is a linear function of the wavelet g, F is a
linear transformation:

F(θ) = W




m∑

j=1

θjhj(x)



 =

m∑

j=1

θjW
(
hj
)
. (8)

We can write F as a |V| × m matrix acting on a vector

[θ1, . . . θm]
⊺ ∈ R

m, whose columns are the vertex
functionsW

(
hj
)
.

Example 2.4 (Chebyshev Polynomials). Any Lipschitz
continuous function on an interval can be well-approximated
by truncating its Chebyshev series at some finite order [40]. The
Chebyshev polynomials Tn :[−1, 1] → R

Tn(x) = cos(n arccos(x)) n ∈ N≥0. (9)

form an orthonormal set of functions. We can thus consider
hj(λ) = Tj(λ−1), j = 0, 2, . . . ,m as a naïve basis for wavelets.We
exclude T1(x) = x in the linear combination asW(T1(1−x)) = 0
for graphs without self loops.

Example 2.5 (Radial Basis Functions). In the machine
learning community, a radial function refers loosely to a
continuous monotonically decreasing function ρ :R≥0 → R≥0.
There are many possible choices for ρ, for example, the
inverse multiquadric

ρ(r) =

(( r
ǫ

)2
+ 1

)− 1
2

(10)

where ǫ 6= 0 is a width parameter. We can obtain a naïve
wavelet basis hj(x) = ρ

(∥∥x− xj
∥∥) using copies of ρ offset

by a collection of centroids xj ∈ R along R. In general, the
centroids are parameters that could be optimized, but we fix
them in this study. This parameterization can be considered as
a radial basis function neural network. RBNNs are well-studied in
function approximation and subsequently machine learning; we
refer readers to [41, 42] for further details.

2.3. The Choice of Wavelet Basis
The choice of basis functions determines the space of wavelet
signatures and also the numerical stability of the basis function
coefficients which serve as the wavelet signature parameters.
The stability of the parameterization depends on the graphs
as much as the choice of wavelet basis h1, . . . , hm. We can
analyse the stability of a parameterization F by its the singular
value decomposition

F =

r∑

k=1

σkukv
⊺

k
(11)

where σ1, . . . , σr are the non-zero singular values of the matrix,
and uk ∈ R

|V| and vk ∈ R
m are orthonormal sets of

vectors, respectively. If the distribution of singular values span
many orders of magnitude, we say the parameterization is ill-
conditioned. An ill-conditioned parameterization interferes with
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the convergence of gradient descent algorithms on a loss function
evaluated on wavelet signatures. We discuss the relationship
between the conditioning of F and the stability of gradient
descent in detail in Remark 2.7.

We empirically observe that the coefficients of a naïve
choice of basis functions, such as Chebyshev polynomials
or radial basis functions, are numerically ill-conditioned.
In Figure A2 (Appendix in Supplementary Material.), we
can see that the singular values of radial basis function
and Chebyshev polynomial parameterizations, respectively, are
distributed across a large range on the logarithmic scale for some
datasets of graphs in machine learning. We address this problem
by picking out a new wavelet basis

h′k(x) =
1

σk

m∑

j=1

(vk)jhj(x), k = 1, . . . , r, (12)

where σk are the singular values of F and vk are the associated
vectors in R

m from the singular value decomposition of matrix F
in Equation (11). Then the parameterization F′ :Rr → R

V

F′(θ ′) =

r∑

k=1

θ ′kW(h′k). (13)

have singular values equal to one, since this is a linear
combination of orthonormal vectors uk ∈ R

V :

W(h′k) =

m∑

j=1

1

σk
(vk)jW(hj) =

1

σk
Fvk = uk. (14)

As an example, we plot the newwavelet basis h′
k
derived from a 12

parameter radial basis function parameterization for the MUTAG
dataset in Figure A3 inAppendix B in Supplementary Material.

Remark 2.6 (Learning a Wavelet Basis for Wavelet Signatures
on Multiple Graphs). In the case where the wavelet coefficients
parameterize the wavelet signatures over graphs G1, . . . ,GN , we
can view the maps F1, . . . , FN that map wavelet basis coefficients
to vertex functions of graphs G1, . . . ,GN , respectively, as a
parameterization for the disjoint union

⊔
i Gi:

f =




f1
...
fN



 =




F1
...
FN



 θ = : Fθ . (15)

We can then perform a singular value decomposition of
the parameterization F on

⊔
i Gi and derive a new, well-

conditioned basis.

Remark 2.7 (Why the Conditioning of F Matters). Let us
optimize a loss function L on the parameter space of wavelet
coefficients θ using a gradient descent algorithm. In a gradient
descent step of step size s, the wavelet coefficients are updated
to θ 7→ θ − s∇θL. Using the singular value decomposition of F
(Equation 11), we can write

∇θL = ∇θ f
⊺
∇fL = F⊺∇fL =

r∑

k=1

σk
〈
∇fL, uk

〉
vk. (16)

The change in the vertex function is simply the matrix F applied
to the change in wavelet parameters. Hence, the vertex function
is updated to f 7→ f − sF∇θL, where

F∇θL =

r∑

k=1

σk
〈
∇fL, uk

〉
Fvk =

r∑

k=1

σ 2
k

〈
∇fL, uk

〉
uk. (17)

If the loss function L has large second derivatives– for example,
due to non-linearities in the function on persistence diagrams
Out :Bar4 → R—the projections

〈
∇fL, uk

〉
in Equations (16)

and (17) may change dramatically from one gradient descent
update to another. If the smallest singular value is much smaller
than the largest, then updates to the wavelet signature can
be especially unstable throughout the optimization process.
This source of instability can be removed if we choose a
parameterization with uniform singular values σk = 1. In this
case, the update to f is simply the projection of ∇fL onto the
space of wavelet signatures spanned by u1, . . . , ur , without any
distortion introduced by non-uniform singular values:

f 7→ f − s

r∑

k=1

〈
uk,∇fL

〉
uk. (18)

3. EXTENDED PERSISTENT HOMOLOGY

The homology of a given graph is a computable vector space
whose dimension counts the number of connected components
or cycles in the graph. Finer information can be retained by
filtering the graph and analyzing the evolution of the homology
throughout the filtration. This evolution is described by a set
of extended persistence diagrams (a.k.a. extended barcodes), a
multiset of points

〈
b, d

〉
that record the birth b and death

of homological features in the filtration. In this section, we
begin by summarizing these constructions. We refer the reader
to Zomorodian and Carlsson [4], Edelsbrunner and Harer [5],
and Cohen-Steiner et al. [43] for full treatments of the theory
of Persistence.

Compared to ordinary persistence, extended persistence is
a more informative and convenient feature map for graphs.
Extended persistence encodes strictly more information than
ordinary persistence. For instance, the cycles of a graph are
represented as points with d = ∞ in ordinary persistence.
Thus, only the birth coordinate b of such points contain useful
information about the cycles. In contrast, the corresponding
points in extended persistence are each endowed with a finite
death time d, thus associating extra information to the cycles. The
points at infinity in ordinary persistence also introduce obstacles
to vectorization procedures, as often arbitrary finite cutoffs are
needed to ‘tame’ the persistence diagrams before vectorization.

3.1. Extended Persistent Homology
Let G = (V ,E) be a finite graph without double edges and self-
loops. For the purposes of this paper, the associated extended
persistent homology is a map

EPH :R
V → Bar4
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from functions f ∈ R
V on its vertices to the space of four

persistence diagrams or barcodes, which we define below. Themap
arises from a filtration of the graph, a sequential attachment of
vertices and edges in ascending or descending order of f . We
extend f on each edge e = (v, v′) by the maximal value of f over
the vertices v and v′, and we then let Gt ⊂ G be the sub graph
induced by vertices taking value less than t. Then we have the
following sequence of inclusions:

(19)

Similarly, the sub graphsGt ⊂ G induced by vertices taking value
greater than t assemble into a sequence of inclusions:

(20)

The changes in the topology of the graph along the filtration
in ascending and descending order of f can be detected
by its extended persistence module, indexed over the poset
R ∪ {∞} ∪ R

op:

(21)
where Hp is the singular (relative) homology functor in
degree p ∈ 0, 1 with coefficients in a fixed field, chosen to be
Z/2Z in practice. In general terms, the modules V0(f ) and V1(f )
together capture the evolution of the connected components and
loops in the sub graphs of G induced by the function f .

Each module Vp(f ) is completely characterized by a finite
multi-set EPHp

(
f
)
of pairs of real numbers

〈
b, d

〉
called intervals

representing the birth and death of homological features.
Following Cohen-Steiner et al. [44], the intervals in EPHp

(
f
)
are

further partitioned according to the type of homological feature
they represent:

EPHp

(
f
)
=
{〈
b, d

〉
| b < d < ∞

}
︸ ︷︷ ︸

=EPHord
p (f )

⊔
{〈
b, d

〉
| b < ∞ < d

}
︸ ︷︷ ︸

=EPHextp (f )

⊔
{〈
b, d

〉
| ∞ < b < d

}
︸ ︷︷ ︸

=EPHrel
p (f )

. (22)

Each of the three finite multiset EPHk
p

(
f
)
, for k ∈ {ord, ext, rel},

is an element in the space Bar of so-called barcodes or

persistence diagrams. However, EPHrel
0

(
f
)
and EPHord

1

(
f
)
being

trivial for graphs, we refer to the collection of four remaining
persistence diagrams

EPH
(
f
)
=
[
EPHord

0

(
f
)
,EPHext

0

(
f
)
,EPHext

1

(
f
)
,EPHrel

1

(
f
)]

∈ Bar4 (23)

as the extended barcode or extended persistence diagram of f . We
have thus defined the extended persistence map

EPH :R
V → Bar4.

Remark 3.1. If we only apply homology to the filtration
of Equation (19), we get an ordinary persistence module
indexed over the real line, which is essentially the first row
in Equation (21). This module is characterized by a unique
barcode PHp(f ) ∈ Bar. We refer to the map

PH : f ∈ R
V 7−→

[
PH0(f ),PH1(f )

]
∈ Bar2 (24)

as the ordinary persistence map.

3.2. Differentiability of Extended
Persistence
The extended persistence map can be shown to be locally
Lipschitz by the Stability theorem [44]. The Rademacher theorem
states that any real-valued function that is locally Lipschitz is
differentiable on a full measure set. Thus, so is our loss function

(Equation 1 recalled)

as long as Out and F are smooth or locally Lipschitz2. If a loss
function L is locally Lipschitz, we can use stochastic gradient
descent as a paradigm for optimization. Nonetheless, the theorem
above does not rule out dense sets of non differentiability
in general.

In this section, we show that the set where EPH is not
differentiable is not pathological. Namely, we show that EPH
is generically differentiable, i.e., differentiable on an open dense
subset. This property guarantees that local gradients yield reliable
descent directions in a neighborhood of the current iterate. We
recall from Leygonie et al. [21] the definition of differentiability
for maps to barcodes.

We call a map F :M → R
V a parameterization, as

it corresponds to a selection of filter functions over G
parameterized by the manifold M. Then B : = EPH ◦ F is
the barcode valued map whose differentiability properties are of
interest in applications.

Definition 3.2. A map B :M → Bar on a smooth manifold M

is said to be differentiable at θ ∈ M if for some neighborhood
U of θ , there exists a finite collection of differentiable maps3

bi, di :U → R ∪ {∞}, called a local coordinate system for B at θ ,
such that

∀θ ′ ∈ U, B(θ ′) =
{〈
bi(θ

′), di(θ
′)
〉
| bi(θ

′) 6= di(θ
′)
}
.

For N ∈ N, we say that a map B :M → BarN is differentiable at
θ if all its components are so.

In Leygonie et al. [21], it is proven that the composition
PH ◦ F is generically differentiable as long as F is so. It is possible
to show that EPH ◦ F is generically differentiable along the

2In practice, a locally Lipschitz Out can be constructed out of Lipschitz stable

vectorizationmethods, such as Persistence Landscapes [45] and Persistence Images

[46].
3By convention, a differentiable map that takes the value∞ is constant.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2021 | Volume 7 | Article 65146723

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Yim and Leygonie Optimizing Graph Wavelet Persistence

same lines, but we rather provide an alternative argument in
the Appendix. Namely, we rely on the fact that the extended
persistence of G can be decoded from the ordinary persistence
of the cone complex C(G), a connection first noted in Cohen-
Steiner et al. [44] for computational purposes.

PROPOSITION 3.3. Let F :M → R
V be a generically

differentiable parameterization. Then the composition EPH ◦ F is
generically differentiable.

For completeness, the proof provided in the Appendix
treats the general case of a finite simplicial complex K of
arbitrary dimension.

4. BINARY GRAPH CLASSIFICATION

We investigate whether optimizing the extended persistence of
wavelet signatures can be usefully applied to graph classification
problems, where persistence diagrams are used as features to
predict discrete, real life attributes of networks. In this setting,
we aim to learn θ ∈ M that minimize the classification error of
graphs over a training dataset.

We apply our wavelet optimization framework to
classification problems on the graph datasets MUTAG [47, 48],
COX2 [49], DHFR [49], NCI1 [50, 51], PROTEINS [52, 53],
and IMDB-B [54]. The former five datasets are biochemical
molecules and IMDB-B is a collection of social ego networks.
In our models, we use persistence images [46] as a fixed
vectorization method and use a feed forward neural network
to map the persistence images to classification labels. We also
include the eigenvalues of the graph Laplacian as additional
features; model particulars are described in the sections below.

To illustrate the effect of wavelet optimization on different
classification problems, we also perform a set of control
experiments where for the same model architecture, we fix the
wavelet and only optimize the parameters of the neural network.
The control experiment functions as a baseline against which we
assess the efficacy of wavelet optimization.

We benchmark our results with two existing persistence based
architectures, PersLay [7] and GFL [26]. Perslay optimizes
the vectorization parameters and use two heat kernel signatures
as fixed rather than optimizable vertex functions for computing
extended persistence. GFL optimizes and parameterizes vertex
functions using a graph isomorphism network [1], and computes
ordinary sublevel and superlevel set persistence instead of
extended persistence.

4.1. Model Architecture
We give a high level description of our model and relegate
details and hyperparameter choices of the vectorization
method and neural network architecture to Appendix C
in Supplementary Material. In our setting, the extended
persistence diagrams of the optimizable wavelet signatures
for each graph are vectorized as persistence images. We also
include the static persistence images of a fixed heat kernel
signature, W(e−0.1x), as an additional set of features, alongside
some non-persistence features. Both the optimized and static
persistence diagrams are transformed into the persistence images
using identical hyperparameters. We feed the optimizable and

TABLE 1 | Binary classification accuracy of our model where we vary whether

non-Persistence features are included and whether the wavelet is optimized.

Persistence only Non-persistence features incl.

Control Wavelet Opt. Control Wavelet Opt.

MUTAG 89.2 ± 0.6 89.8 ± 0.8 89.0 ± 0.6 90.4 ± 0.4

COX2 79.6 ± 1.0 79.4 ± 0.7 80.8 ± 1.0 80.8 ± 1.0

DHFR 79.9 ± 0.4 80.4 ± 0.4 80.3 ± 0.9 81.0 ± 0.9

NCI1 73.7 ± 0.2 74.3 ± 0.5 74.3 ± 0.3 74.4 ± 0.3

PROTEINS 72.9 ± 0.3 73.0 ± 0.4 74.5 ± 0.4 74.6 ± 0.6

IMDB-B 68.3 ± 0.5 68.6 ± 0.7 71.6 ± 0.9 72.0 ± 0.7

The reported accuracies are the mean over 10 ten-folds, recorded at epochs reported
in Table C1. We also provide standard deviations of the 10 mean accuracies of each
ten-fold. See section 4.1.2 for the particulars about the non-persistence features.

static persistence images into two separate convolutional neural
networks (CNNs) with the same architecture. Similarly, we feed
the non-persistence features as a vector into a separate multilayer
perceptron. The outputs of the CNNs are concatenated with
the outputs of the multi-layer perceptron. Finally, an affine
transformation sends the concatenated vector to a real number
whose sign determines the binary classification.

4.1.1. Wavelet Parametserization

We choose a space of wavelets spanned by 12 inverse
multiquadric radial basis functions

hj(x) =

((
x− xj

ǫ

)2

+ 1

)− 1
2

(25)

whose centroids xj are located at xj = 2(j − 1)/9, j =

0, . . . , 11. The width parameter is chosen to be the distance
between the centroids, ǫ = 2/9. On each dataset, we derive
a numerically stable parameterization using the procedure
described in section 2.2; the parameters we optimize are the
coefficients of the new basis given by Equation (12). We initialize
the parameters by fitting them via least squares to the heat kernel
signatureW(e−10x) on the whole dataset of graphs.

4.1.2. Non-Persistence Features

We also incorporate the eigenvalues of the normalized Laplacian
as additional, fixed features of the graph. Since the number of
eigenvalues for a given graph is equal to the number of vertices,
it differs between graphs in the same dataset. To encode the
information represented in the eigenvalues as a fixed length
vector, we first sort the eigenvalues into a time-series; we then
compute the log path signature of the time series up to level
four, which is a fixed length vector in R

8. The log-signature
captures the geometric features of the path; we refer readers to
Chevyrev and Kormilitzin [55] for details about path signatures.
For IMDB-B in particular, we also include the maxima and
minima of the heat kernel signatures W(e−10x) and W(e−0.1x),
respectively, of each graph.

4.2. Experimental Set Up
We employ a 10 ten-fold test-train split scheme on each dataset to
measure the accuracy of our model. Each ten-fold is a set of ten
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TABLE 2 | Binary classification accuracy on datasets of graphs.

Non-persistence state-of-the-art Persistence based

P-SAN RetGK GIN FGSD PWL GFL Perslay Control Wavelet Opt.

[57] [58] [1] [59] [8] [26] [7] This paper

Node attr. Yes No Yes No

MUTAG 92.6 90.3 ± 1.1 89.4 92.1 90.5 ± 1.3 – – 89.8 ± 0.9 89.0±0.6 90.4±1.3

COX2 – 81.4 ± 0.6 – – – – – 80.9 ± 1.0 80.8±0.4 80.8±1.0

DHFR – 82.5 ± 0.8 – – – – – 80.3 ± 0.8 80.0±0.4 81.0±0.9

NCI1 78.6 84.5 ± 0.2 82.7 79.8 85.6 ± 0.3 77.2 71.2 73.5 ± 0.3 74.3±0.3 74.4±0.3

PROTEINS 75.9 78.0 ± 0.3 76.2 73.4 75.9 ± 0.8 73.4 74.1 74.8 ± 0.3 74.5±0.4 74.6±0.6

IMDB-B 71.0 72.3 ± 0.6 75.1 73.6 73.0 ± 1.0 – 74.5 71.2 ± 0.7 71.6±0.9 72.0±0.7

# Ten-folds 10 10 1 1 10 1 1 10 10 10

The best accuracy of persistence-based models without using node attributes is made bold for each dataset. The performance of our model is reported in the column Wavelet Opt. on
the right hand side. The accuracies of the control model, where the wavelet parameters are fixed to the initial values, are shown in the column Control. Both these models use additional
features (see section 4.1.2). The accuracies of our model are the means over 10 ten-folds, recorded at epochs reported in Table C1. We also provide the standard deviations of the 10
mean accuracies of each ten-fold. For other architectures, we indicate whether their accuracies were reported as averages over 1 ten-fold or 10 ten-fold in the bottom row of the table.
To avoid confusion, we leave out the errors reported for P-SAN, GIN and GFL and refer the reader to the original sources, as they were calculated using a different formula. Errors were
not reported in [59] for FGSD.

experiments, corresponding to a random partition of the dataset
into ten portions. In each experiment, a different portion is
selected as the test set while themodel is trained on the remaining
nine portions. We perform 10 ten-folds to obtain a total of 10 ×
10 experiments, and report the accuracy of the classifier as the
average accuracy over 100 such experiments. The epochs at which
the accuracies were measured are specified in Table C1.

Across all experiments, we use binary cross entropy as the
loss function. We use the Adam optimizer [56] with learning rate
lr = 1e-3 to optimize the parameters of the neural network.
The wavelet parameters are updated using stochastic gradient
descent with learning rate lr = 1e-2, for all datasets except
for IMDB-B, where the learning rate is set to lr = 1e-1.
The batch sizes for each experiment are shown in Table C2. In
all experiments, we stop the optimization of wavelet parameters
at epoch 50 while the neural network parameters continue to
be optimized.

We use the GUDHI library to compute persistence, and make
use of the optimization and machine learning library PyTorch
for the construction of the graph classifications models.

4.3. Results and Discussion
In Table 1, we present the classification accuracies of our model.

For each dataset, we perform four experiments using our model,

varying whether the wavelet parameter is optimized and whether

additional features are included. In Table 2, we show the test

accuracy of our model alongside two persistence-based graph
classification architectures, Perslay and GFL, as well as other
state-of-the-art graph classification architectures.

We first compare the performances of our model between
cases where we optimize and fix the wavelets. In Table 1,
we see that on MUTAG and DHFR, optimizing the wavelet
improves the classification accuracy regardless of whether
extra features are included. On NCI1, wavelet optimization

improves the classification accuracy only persistence features
are included. When we include non-persistence features in
the model, the performances of the optimized and control
models are statistically indistinguishable for NCI1, suggesting
that the non-persistence features play a more significant
role in the classification. As for COX2, PROTEINS, and
IMDB-B, optimizing the wavelet coefficients do not bring
about statistically significant improvements. This indicates
that the initial wavelet signature—the heat kernel signature
W(e−10x)—is a locally optimal choice of wavelet for our neural
network classifier.

We now compare our architecture to other persistence
based architectures, Perslay and GFL, where node attributes
are excluded from their vertex function models. Except on
PROTEINS, our wavelet optimized model matches or exceeds
Perslay. While our model architecture and choice of wavelet
initialization is similar to that of Perslay, we differ in two
important respects. Perslay fixes the vertex functions but
optimizes the weights assigned to points on the persistence
diagrams, as well as the parameters of the persistence images. Our
improvements on Perslay for MUTAG, DHFR, and IMDB-B
indicate that vertex function optimization yields improvements
that cannot be obtained through vectorization optimization alone
on some datasets of graphs.

Compared to GFL (without node attributes), both Perslay
and our architecture achieves similar or higher classification
accuracies on PROTEINS and NCI1. This supports wavelet
signatures being viable models for vertex functions on those
datasets. On the other hand, both Perslay and our model
lag behind GFL on IMDB-B. We attribute this to the fact that
IMDB-B, unlike the other bioinformatics datasets, consists of
densely connected graphs. The graphs in IMDB-B have diameter
at most two and 14% of the graphs are cliques. This fact has two
consequences. First, we expect the one-layer GIN used in GFL—a
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local topology summary—to be highly effective in optimizing for
the salient features of a graph with small diameter. Second, the
extended persistence modules for cliques have zero persistence,
since all vertices are assigned the same function value due to
symmetry. In contrast, ordinary persistence used in GFL is
able to capture the cycles in a complete graph as points with
infinite persistence.

Compared to non-persistence state-of-the-art architectures in
Table 1, our model achieves competitive accuracies on MUTAG,
COX2, and DHFR. For NCI1 and PROTEINS, all persistence
architectures listed that exclude additional node attributes
perform poorly in comparison, though PWL was able to achieve
leading results with node attributes.

All in all, we observe that wavelet signatures can
be an effective parameterization of vertex functions
when we use extended persistence as features for graph
classification. In particular, on some bioinformatics datasets,
we show that optimizing the wavelet signature can lead
to improvements in classification accuracy. The wavelet
signature approach is complementary to the GFL approach to
vertex function parameterization as they show strengths on
different datasets.

5. CONCLUSION

We have presented a framework for equipping any graph G
with a set of extended persistence diagrams EPH ◦ F :M →

Bar4 parameterized over a manifold M, a parameter space
for the graph’s wavelet signature. We described how wavelet
signatures can be parameterized and interpreted. Given a
function on extended persistence diagrams Out :Bar4 → R

that is differentiable, we have shown how a loss function L =

Out ◦ EPH ◦ F can be generically differentiable with respect to
θ ∈ M as L. Thus, we can apply gradient descent methods
to optimize the extended persistence diagrams of a graph to
minimize L.

We applied this framework to a graph classification
architecture where the wavelet signature is optimized
for classification accuracy. We are able to demonstrate
an increase in accuracy on several benchmark
datasets where the wavelet is optimized, and perform
competitively with state-of-the-art persistence based graph
classification architectures.

DATA AVAILABILITY STATEMENT

The code for the computational experiments in section 4 can
be found in the GitHub repository https://github.com/kmyim/
Persistence_Opt_Spectral_Wavelets. The datasets we use are
publicly available at the repository TUDatasets https://chrsmrrs.
github.io/datasets/ [60].

AUTHOR CONTRIBUTIONS

The overall framework was jointly conceived by both authors.
KY was responsible for developing wavelet signatures as
a vertex function parameterization framework, along with
the experimental design and analysis. The proof of the
differentiability of extended persistence is due to JL. Both authors
participated in the writing of the article.

FUNDING

KY was funded by the EPSRC Centre For Doctoral Training
in Industrially Focused Mathematical Modelling (EP/L015803/1)
with industrial sponsorship from Elsevier. JL was funded by the
EPSRC grant EP/R513295/1. Both authors are members of the
Centre for Topological Data Analysis, which is supported by
the EPSRC grant New Approaches to Data Science: Application
Driven Topological Data Analysis EP/R018472/1.

ACKNOWLEDGMENTS

The authors would like to thank Ulrike Tillmann and Heather
Harrington for their close guidance and thoughtful advice on
this project. In addition, the authors would like to thank Vidit
Nanda, Peter Grindrod CBE, Andrew Mellor, Steve Oudot,
Mathieu Carrière, and Theo Lacombe for fruitful discussions
on this subject. Finally, we are indebted to the reviewers for
their thoughtful and constructive comments, which led to many
improvements of the paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2021.651467/full#supplementary-material

REFERENCES

1. Xu B, Shen H, Cao Q, Qiu Y, Cheng X. Graph wavelet neural network. arXiv

[Preprint]. (2019) arXiv:1904.07785.

2. Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM. Graph

kernels. J Mach Learn. Res. (2010) 11:1201–42.

3. Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K, Borgwardt K.

Efficient graphlet kernels for large graph comparison. In: van Dyk D, Welling

M, editors. Proceedings of the Twelfth International Conference on Artificial

Intelligence and Statistics, Vol. 5. Clearwater Beach, FL: PMLR (2009). p.

488–95. Available online at: http://proceedings.mlr.press/v5/shervashidze09a.

html

4. Zomorodian A, Carlsson G. Computing persistent homology. Discr Comput

Geom. (2005) 33:249–74. doi: 10.1007/s00454-004-1146-y

5. Edelsbrunner H, Harer J. Persistent homology-a survey. Contemp Mathe.

(2008) 453:257–82. doi: 10.1090/conm/453/08802

6. Zhao Q, Wang Y. Learning metrics for persistence-based summaries and

applications for graph classification. In:Wallach H. Larochelle H, Beygelzimer

A, dAlché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information

Processing Systems, Vol. 32. Red Hook, NY: Curran Associates, Inc. (2019). p.

9859–70. Available online at: https://proceedings.neurips.cc/paper/2019/file/

12780ea688a71dabc284b064add459a4-Paper.pdf

7. Carrière M, Chazal F, Ike Y, Lacombe T, Royer M,and Umeda Y. Perslay:

a neural network layer for persistence diagrams and new graph topological

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 April 2021 | Volume 7 | Article 65146726

https://github.com/kmyim/Persistence_Opt_Spectral_Wavelets
https://github.com/kmyim/Persistence_Opt_Spectral_Wavelets
https://chrsmrrs.github.io/datasets/
https://chrsmrrs.github.io/datasets/
https://www.frontiersin.org/articles/10.3389/fams.2021.651467/full#supplementary-material
http://proceedings.mlr.press/v5/shervashidze09a.html
http://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1090/conm/453/08802
https://proceedings.neurips.cc/paper/2019/file/12780ea688a71dabc284b064add459a4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/12780ea688a71dabc284b064add459a4-Paper.pdf
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Yim and Leygonie Optimizing Graph Wavelet Persistence

signatures. In: Chiappa S, Calandra R, editors. Proceedings of the Twenty

Third International Conference on Artificial Intelligence and Statistics, Vol.

108. PMLR (2020). p. 2786–96. Available online at: http://proceedings.mlr.

press/v108/carriere20a.html.

8. Rieck B, Bock C, Borgwardt K. A persistent weisfeiler-lehman procedure for

graph classification. In: International Conference on Machine Learning. PMLR

(2019). p. 5448–58.

9. Turner K, Mileyko Y, Mukherjee S, Harer J. Fréchet means for

distributions of persistence diagrams. Discr Comput Geom. (2014) 52:44–70.

doi: 10.1007/s00454-014-9604-7

10. Gameiro M, Hiraoka Y, Obayashi I. Continuation of point

clouds via persistence diagrams. Phys D. (2016) 334:118–32.

doi: 10.1016/j.physd.2015.11.011

11. Oudot S, Solomon E. Inverse problems in topological persistence.

In: Baas NA. Carlsson GE, Quick G, Szymik M, Thaule M, editors.

Topological Data Analysis. Cham: Springer (2020). p. 405–33.

doi: 10.1007/978-3-030-43408-3_16

12. Brüel-Gabrielsson R, Ganapathi-Subramanian V, Skraba P, Guibas LJ.

Topology-aware surface reconstruction for point clouds. Comp Graph Forum.

(2020) 39:197–207. doi: 10.1111/cgf.14079

13. Poulenard A, Skraba P, Ovsjanikov M. Topological function optimization

for continuous shape matching. Comp Graph Forum. (2018) 37:13–25.

doi: 10.1111/cgf.13487

14. Moor M, Horn M, Rieck B, Borgwardt K. Topological autoencoders. In:

International Conference on Machine Learning. PMLR (2020). p. 7045–54.

15. Hofer C, Kwitt R, Niethammer M, Dixit M. Connectivity-optimized

representation larning via persistent homology. In: Chaudhuri K,

Salakhutdinov R, editors. Proceedings of the 36th International Conference

on Machine Learning. Long Beach, CA: PMLR (2019). p. 2751–60. Available

online at: http://proceedings.mlr.press/v97/hofer19a.html

16. Gabrielsson RB, Nelson BJ, Dwaraknath A, Skraba P. A topology layer for

machine learning. In: International Conference on Artificial Intelligence and

Statistics. PMLR (2020). p. 1553–63.

17. Hu X, Li F, Samaras D, Chen C. Topology-preserving deep image

segmentation. In: Advances in Neural Information Processing

Systems. Red Hook, NY: Curran Associates, Inc. (2019). p. 5658–

69. Available online at: https://proceedings.neurips.cc/paper/2019/file/

12780ea688a71dabc284b064add459a4-Paper.pdf

18. Clough JR, Oksuz I, ByrneN, Schnabel JA, King AP. Explicit topological priors

for deep-learning based image segmentation using persistent homology. In:

International Conference on Information Processing in Medical Imaging.Hong

Kong: Springe (2019). p. 16–28. doi: 10.1007/978-3-030-20351-1_2

19. Chen C, Ni X, Bai Q, Wang Y. A topological regularizer for classifiers via

persistent homology. In: The 22nd International Conference on Artificial

Intelligence and Statistics. Naha (2019). p. 2573–82.

20. Kachan O. Persistent homology-based projection pursuit. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops. (2020). p. 856–7. doi: 10.1109/CVPRW50498.2020.

00436

21. Leygonie J, Oudot S, Tillmann U. A framework for differential calculus on

persistence barcodes. arXiv [Preprint]. (2019) arXiv:1910.00960.

22. Carriere M, Chazal F, Glisse M, Ike Y, Kannan H. A note on stochastic

subgradient descent for persistence-based functionals: convergence and

practical aspects. arXiv preprint arXiv:201008356. (2020).

23. Davis D, Drusvyatskiy D, Kakade S, Lee JD. Stochastic subgradient method

converges on tame functions. Found Comput Math. (2020) 20:119–54.

doi: 10.1007/s10208-018-09409-5

24. Solomon E, Wagner A, Bendich P. A fast and robust method for

global topological functional optimization. arXiv [Preprint]. (2020)

arXiv:2009.08496.

25. Corcoran P, Deng B. Regularization of persistent homology gradient

computation. arXiv [Preprint]. (2020) arXiv:2011.05804.

26. Hofer C, Graf F, Rieck B, Niethammer M, Kwitt R. Graph filtration learning.

In: Daumé III H, and Singh A, editors. Proceedings of the 37th International

Conference on Machine Learning. PMLR (2020). p. 4314–23. Available online

at: http://proceedings.mlr.press/v119/hofer20b.html

27. Li C, Hamza AB. A multiresolution descriptor for deformable 3D shape

retrieval. Visu Comp. (2013) 29:513–524. doi: 10.1007/s00371-013-0815-3

28. Rustamov RM, Guibas LJ. Wavelets on graphs via deep learning. In: Stanković
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Topology Applied to Machine
Learning: From Global to Local
Henry Adams and Michael Moy*

Department of Mathematics, Colorado State University, Fort Collins, CO, United States

Through the use of examples, we explain one way in which applied topology has evolved

since the birth of persistent homology in the early 2000s. The first applications of

topology to data emphasized the global shape of a dataset, such as the three-circle

model for 3 × 3 pixel patches from natural images, or the configuration space of the

cyclo-octane molecule, which is a sphere with a Klein bottle attached via two circles

of singularity. In these studies of global shape, short persistent homology bars are

disregarded as sampling noise. More recently, however, persistent homology has been

used to address questions about the local geometry of data. For instance, how can local

geometry be vectorized for use in machine learning problems? Persistent homology and

its vectorization methods, including persistence landscapes and persistence images,

provide popular techniques for incorporating both local geometry and global topology

into machine learning. Our meta-hypothesis is that the short bars are as important

as the long bars for many machine learning tasks. In defense of this claim, we

survey applications of persistent homology to shape recognition, agent-based modeling,

materials science, archaeology, and biology. Additionally, we survey work connecting

persistent homology to geometric features of spaces, including curvature and fractal

dimension, and variousmethods that have been used to incorporate persistent homology

into machine learning.

Keywords: persistent homology, topological data analysis, machine learning, local geometry, applied topology

1. INTRODUCTION

Applied topology is designed to measure the shape of data—but what is shape? Early examples in
applied topology found low-dimensional structures in high-dimensional datasets, such as the three
circle and Klein bottle models for grayscale natural image patches. These models are global: they
parameterize the entire dataset, in the sense that most of the data points look like some point in
the model, plus noise. In more recent applications, however, the shape that is being measured is
not global, but instead local. Local features include texture, small-scale geometry, and the structure
of noise.

Indeed, for the first decade after the invention of persistent homology, the primary story was
that significant features in a dataset corresponded to long bars in the persistence barcode, whereas
shorter bars generally corresponded to sampling noise. This story has evolved as applied topology
has become incorporated into the machine learning pipeline. In machine learning applications,
many researchers have independently found (as we survey in sections 4–6) that the short bars are
often the most discriminating—the shape of the noise, or of the local geometry, is what often
enables high classification accuracy. We want to emphasize that short bars do matter. Indeed,
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the short bars in persistent homology are currently one of the
best out-of-the-box methods for summarizing local geometry for
use in machine learning. Though humans may not be able to
interpret short persistent homology bars on our own (there may
be too many short bars for the human eye to count), machine
learning algorithms can be trained to do so. In this way, persistent
homology has greatly expanded in scope during the second
decade after its invention: persistent homology has important
applications as a descriptor not only of global shape, but also of
local geometry.

In this perspective article, we begin by outlining some of the
most famous early applications of persistent homology in the
global analysis of data, in which short bars were disregarded
as noise. Our meta-hypothesis, however, is that short bars do
matter, and furthermore, they matter crucially when combining
topology with machine learning. As a partial defense for this
claim, we provide a selected survey on the use of persistent
homology in measuring texture, noise, local geometry, fractal
dimension, and local curvature. We predict that the applications
of persistent homology to machine learning will continue to
advance in number, impact, and scope, as persistent homology
is a mathematically motivated out-of-the-box tool that one can
use to summarize not only the global topology but also the local
geometry of a wide variety of datasets.

2. POINT CLOUD AND SUBLEVEL SET
PERSISTENT HOMOLOGY

What is a persistent homology bar? The homology of a space,
roughly speaking, records how many holes that a space has
in each dimension. A 0-dimensional hole is a connected
component, a 1-dimensional hole is a loop, a 2-dimensional
hole is a void enclosed by a surface like a sphere or a torus,
etc. Homology becomes persistent when one is instead given a
filtration, i.e., an increasing sequence of spaces. Each hole is now
represented by a bar, where the start (resp. end) point of the bar
corresponds to the first (resp. last) stage in the filtration where
the topological feature is present (Edelsbrunner et al., 2000).
Short bars correspond to features with short lifetimes, which
are quickly filled-in after being created. By contrast, long bars
correspond to more persistent features.

Perhaps the two most frequent contexts in which persistent
homology is applied are point cloud persistent homology and
sublevel set persistent homology. In point cloud persistent
homology, the input is a finite set of points (a point cloud)
residing in Euclidean space or some othermetric space (Carlsson,
2009). For any real number r > 0, we consider the union
of all balls of radius r centered at some point in our point
cloud (see Figure 1). This union of balls provides our filtration
as the radius r increases1. A typical interpretation of the
resulting persistent homology, from the global perspective, is
that the long persistent homology bars recover the homology
of the “true” underlying space from which the point cloud
was sampled (Chazal and Oudot, 2008). A more modern but

1In practice, the union of balls is stored or approximated by a simplicial complex,

for example a Čech or Vietoris–Rips complex (Chazal et al., 2014).

increasingly utilized perspective is that the short persistent
homology bars recover the local geometry—i.e., the texture,
curvature, or fractal dimension of the point cloud data.

In sublevel set persistent homology, the input is instead a real-
valued function f : Y → R defined on a space Y (Cohen-
Steiner et al., 2007). For example, Y may be a Euclidean space of
some dimension. The filtration arises by considering the sublevel
sets {y ∈ Y | f (y) ≤ r}. As the threshold r increases, the
sublevel sets grow. One can think of f as encoding an energy, in
which case sublevel set persistent homology encodes the shape
of low-energy configurations (Mirth et al., 2021). The length
of a bar then measures how large of an energy barrier must
be exceeded in order for a topological feature to be filled-in: a
short bar corresponds to a feature that is quickly filled-in by
exceeding a low energy barrier, whereas a long bar corresponds to
a topological feature that persists over a longer range of energies
(see Figure 2). Sublevel set persistent homology is frequently
applied to grayscale image data or matrix data, where a real-
valued entry of the image or matrix is interpreted as the value
of the function f on a pixel.

We remark that the “union of balls” filtration for point cloud
persistent homology can be viewed as a version of sublevel set
persistent homology: a union of balls of radius r is the sublevel
set at threshold r of the distance function to the set of points in
the point cloud.

Persistent homology can be represented in two equivalent
ways: either as a persistence barcode or as a persistence diagram
(see Figure 3). Each interval in the persistence barcode is
represented in the persistence diagram by a point in the plane,
with its birth coordinate on the horizontal axis and with its death
coordinate on the vertical axis2. As the death of each feature
is after its birth, persistence diagram points all lie above the
diagonal line y = x. Short bars in the barcode correspond to
persistence diagram points close to the diagonal, and long bars
in the barcode correspond to persistence diagram points far from
the diagonal.

3. EXAMPLES MEASURING GLOBAL
SHAPE

The earliest applications of topology to data measured the
global shape of a dataset. In these examples, the long persistent
homology bars represented the true homology underlying the
data, whereas the small bars were ignored as artifacts of
sampling noise.

What do we mean by “global shape”? Consider, for example,
conformations of the cyclo-octane molecule C8H16, which
consists of a ring of eight carbons atoms, each bonded to a pair of
hydrogen atoms (see Figure 4, left). The locations of the carbon
atoms in a conformation approximately determine the locations
of the hydrogen atoms via energy minimization, and hence each
molecule conformation can be mapped to a point in R

24 = R
8·3,

as the location of each carbon atom can be specified by three

2Barcodes allow for open or closed endpoints of intervals. This information can be

also be encoded in a decorated persistence diagram (Chazal et al., 2016).
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FIGURE 1 | A point cloud, the surrounding union of balls, and its Čech complexes at different choices of scale.

FIGURE 2 | (Top right) An energy function for the molecule pentane. The domain is a torus, i.e., a square with periodic boundary conditions, as there are two circular

degrees of freedom (dihedral angles) in the molecule. (Left) Nine different sublevel sets of energy. (Bottom right) The sublevel set persistent homology of this energy

function on the torus, with 0-dimensional homology in red, 1-dimensional homology in blue, 2-dimensional homology in green. Image from Mirth et al. (2021).

coordinates. This map realizes the conformation space of cyclo-
octane as a subset of R24, and then we mod out by rigid rotations
and translations. Topologically, the conformation space of cyclo-
octane turns out to be the union of a sphere with a Klein bottle,
glued together along two circles of singularities (see Figure 4,
right). This model was obtained by Martin et al. (2010), Martin
and Watson (2011), and Brown et al. (2008), who furthermore
obtain a triangulation of this dataset (a representation of the
dataset as a union of vertices, edges, and triangles).

A Klein bottle, like a sphere, is a 2-dimensional manifold.
Whereas, a sphere can be embedded in 3-dimensional space,
a Klein bottle requires at least four dimensions in order to be
embedded without self-intersections. When a sphere and Klein

bottle are glued together along two circles, the union is no longer
a manifold. Indeed, near the gluing circles, the space does not
look like a sheet of paper, but instead like the tail of a dart
with four fins, i.e., the letter “X” crossed with the interval [0, 1].
However, the result is still a 2-dimensional stratified space. In
Figure 5, we compute the persistent homology of a point cloud
dataset of 1,000,000 cyclo-octane molecule configurations. The
short bars are interpreted as noise, whereas the long bars are
interpreted as attributes of the underlying shape. We obtain
a single connected component, a single 1-dimensional hole,
and two 2-dimensional homology features. These homology
signatures agree with the homology of the union of a sphere with
a Klein bottle, glued together along two circles of singularities.
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FIGURE 3 | (Left) A persistent homology barcode, with the birth and death scale of each bar indicated on the horizontal axis. (Right) Its corresponding persistence

diagram, i.e., a collection of points in the first quadrant above the diagonal, with birth coordinates on the horizontal axis and death coordinates on the vertical axis.

FIGURE 4 | (Left) The cyclo-octane molecule consists of a ring of 8 carbon atoms (black), each bonded to a pair of hydrogen atoms (white). (Right) A PCA projection

of a dataset of different conformations of the cyclo-octane molecule; this shape is a sphere glued to a Klein bottle (the “hourglass”) along two circles of singularity. The

right image is from Martin et al. (2010).

One of the first applications of persistent homology was to
measure the global shape of a dataset of image patches (Carlsson
et al., 2008). This dataset of natural 3 × 3 pixel patches from
black-and-white photographs from indoor and outdoor scenes
in fact has three different global shapes! The most common
patches lie along a circle of possible directions of linear gradient
patches (varying from black to gray to white). The next most
common patches lie along a three circle model, additionally
including a circle’s worth of horizontal quadratic gradients, and
a circle’s worth of vertical quadratic gradients. At the next level
of resolution, the most common patches in some sense lie along
a Klein bottle. All three of these models—the circle, the three
circles, and the Klein bottle—are global models, summarizing the
global shape of the dataset at different resolutions.

4. EXAMPLES MEASURING LOCAL
GEOMETRY

Though a single long bar in persistent homology may carry a lot
of information, a single small bar typically does not. However,
together a collection of small bars may unexpectedly carry a large

amount of geometric content. A long bar is a trumpet solo—
piercing through to be heard over the orchestra with ease. The
small bars are the string section—each small bar on its own is
relatively quiet, but in concert the small bars together deliver a
powerful message. We survey several modern examples where
small persistent homology bars are now the signal, instead of
the noise.

Birds, fish, and insects move as flocks, schools, and hordes in
a way which is determined by collective motion: each animal’s
next motion is a random function of the location of its
nearby neighbors. In a flock of thousands of birds, there is an
impressively large amount of time-varying geometry, including
for example all

(n
2

)
pairwise distances, where n is the number

of birds (see Figure 6). How can one summarize this much
geometric content for use in machine learning tasks, say to
predict how the motion of the flock will vary next, or to predict
some of the parameters in a mathematical model approximately
governing the motion of the birds? Persistent homology has
been used in Topaz et al. (2015), Ulmer et al. (2019), Bhaskar
et al. (2019), Adams et al. (2020b), and Xian et al. (2020) to
reduce a large collection of geometric content down to a concise
summary. These datasets of animal swarms do not lie along
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FIGURE 5 | 0-, 1-, and 2-dimensional persistent homology barcodes for the cyclo-octane dataset. The horizontal axis corresponds to the birth and death scale of the

bars, and the vertical axis is an arbitrary ordering of the bars (here by death scale).

FIGURE 6 | A large amount of local and global geometric information is

contained in a flock of birds.

beautiful manifolds (global shapes), but nevertheless there is a
wealth of information in the local geometry as measured by
the short persistent homology bars. For example, Ulmer et al.
(2019) show via time-varying persistent homology3 that a control
model for aphid motion, in which aphids move independently
at random, does not fit experimental data as well as a model
incorporating social interaction (distances to nearby neighbors)
between the aphids.

Other recent work has used persistent homology to
characterize the complexity of geometric objects. Bendich

3In particular, the crocker plot (Topaz et al., 2015).

et al. (2016b) apply sublevel set persistent homology to the study
of brain artery trees, examining the effects of age and sex on
the barcodes generated from artery trees. While younger brains
have artery trees containing more local twisting and branching,
older brains are sparser with fewer small branches and leaves.
The authors use the 100 longest bars in dimensions 0 and 1 in
their analysis, and they further examine which lengths of bars
give the highest correlation with age and sex. For instance, when
examining age, they find it is not the longest bars, but instead the
bars of medium length (roughly the 21st through 40th longest
bars) that are the most discriminatory.

In other datasets where points are nearly evenly spaced,
barcodes will consist of bars with mostly similar birth and
death times. Consider for instance the point cloud persistent
homology for a square grid of points in the plane: all non-
infinite 0-dimensional bars are identical and adding a small
amount of noise to the points will result in a small change
to the bars. The same is true for 1-dimensional bars. With
this in mind, Motta et al. (2018) use persistent homology
to measure the order, or regularity, of lattice-like datasets,
focusing on hexagonal grids formed by ion bombardment of
solid surfaces (see Figure 7). The authors’ techniques use the
variance of 0-dimensional homology bar lengths, and the sum
of the lengths of 1-dimensional homology bars, as well as a
particular linear combination of the two especially suited to
hexagonal lattices. Their results suggest that techniques based on
persistent homology can provide useful measures of order that
are sensitive to both large scale and small scale defects in lattices.
Point cloud persistence has also been used to summarize the local
order and randomness in other materials science and chemistry
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FIGURE 7 | Hexagonal lattices, of varying degree of regularity, created by ion bombardment. Figures from Motta et al. (2018).

contexts, including amorphous solids and glass (Nakamura et al.,
2015; Hiraoka et al., 2016; Hirata et al., 2020), nanoporous
materials used in gas adsorption (Krishnapriyan et al., 2020),
crystal structure (Maroulas et al., 2020), and protein folding (Xia
and Wei, 2014; Cang and Wei, 2018).

Though the above examples focus on point cloud persistence,
sublevel set persistent homology has also been used to detect
the local geometry of functions. Kramár et al. (2016) use
sublevel set persistence to summarize the complicated spatio-
temporal patterns that arise from dynamical systems modeling
fluid flow, including turbulence (Kolmogorov flow) and heat
convection (Rayleigh-Bénard convection). With sublevel set
persistence, Zeppelzauer et al. (2016) improve 3D surface
classification, including on an archaeology task of segmenting
engraved regions of rock from the surrounding natural rock
surface. In a task of tracking automobiles, Bendich et al. (2016a)
use the sublevel set persistent homology of driver speeds in order
to characterize driver behaviors and prune out improbable paths
from their multiple hypothesis tracking framework.

5. THEORY OF HOW PERSISTENT
HOMOLOGY MEASURES LOCAL
GEOMETRY

Recent work has begun to formalize the idea that persistent
homology measures local geometry. Bubenik et al. (2020) explore
the effect of the curvature of a space on the persistent homology
of a sample of points, focusing on disks in spaces with constant
curvature. Their work includes theoretical results about the
persistence of triangles in these spaces, and they are also
able to demonstrate experimentally that persistent homology
in dimensions 0 and 1 can be used to accurately estimate
the curvature given a random sample of points. Since the
disks in spaces with different curvature are homeomorphic, the
differences in persistent homology cannot be due to topology, but
rather result from the geometric features of the spaces.

Fractal dimension is another measure of local geometry, and
indeed some of the earliest applications of persistent homology
in Vanessa Robins’ Ph.D. thesis were motivated as a way to
capture the fractal dimension of an infinite set in Euclidean
space (Robins, 2000; MacPherson and Schweinhart, 2012). Can
this also be applied to datasets, i.e., to random collections of

finite sets of points? Given a random sample of points from
a measure, Adams et al. (2020a) use persistent homology to
detect the fractal dimension of the support of the measure. This
notion of persistent homology fractal dimension agrees with the
Hausdorff/box-counting dimension for 0-dimensional persistent
homology and a restricted class of measures; see Schweinhart
(2019, 2020) for further theoretical developments.

A related line of work studies what can be proven about the
topology of random point clouds, typically as the number of
points in the point cloud goes to infinity (Kahle, 2011; Adler et al.,
2014; Bobrowski and Kahle, 2014; Bobrowski et al., 2017). The
magnitude (Leinster, 2013) andmagnitude homology (Hepworth
and Willerton, 2017; Leinster and Shulman, 2017) of a metric
space measure both local and global properties; recent and
ongoing work is being done to connect magnitude with
persistent homology (Otter, 2018; Govc and Hepworth, 2021).
See also Weinberger (2019) for connections between sublevel set
persistent homology and the geometry of spaces of functions,
including Lipschitz constants of functions. We predict that much
more work demonstrating how local geometric features can be
recovered from persistent homology barcodes will take place over
the next decade.

6. MACHINE LEARNING

Because persistent homology gives a concise description of
the shape of data, it is not surprising that recent work has
incorporated persistent homology into machine learning. When
might one consider using persistent homology in concert with
machine learning, as opposed to other more classical machine
learning techniques measuring shape such as clustering (Xu and
Wunsch, 2005) or nonlinear dimensionality reduction (Roweis
and Saul, 2000; Tenenbaum et al., 2000; Kohonen, 2012; McInnes
et al., 2018)? We recommend persistent homology when one
desires either (i) a quantitative reductive summary of local
geometry, (ii) an estimate of the number or size of more global
topological features in a dataset, or (iii) a way to explore if either
local geometry or global topology may be discriminatory for
the machine learning task at hand. Researchers have taken at
least three distinct approaches: persistence barcodes have been
adapted to be input to machine learning algorithms, topological
methods have been used to create new algorithms, and persistent
homology has been used to analyze machine learning algorithms.
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Perhaps the most natural of these approaches is inputting
persistence data into a machine learning algorithm. Though
the persistent homology bars provide a summary of both local
geometry and global topology, for a quantitative summary
to be fully applicable it needs to be amenable for use in
machine learning tasks. The space of persistence barcodes is
not immediately appropriate for machine learning. Indeed,
averages of barcodes need not be unique (Mileyko et al.,
2011), and the space of persistence barcodes does not coarsely
embed into any Hilbert space (Bubenik and Wagner, 2020).
These limitations have initiated a large amount of research on
transforming persistence barcodes into more natural formats
for machine learning. From barcodes, Bubenik (2015) creates
persistence landscapes, which live in a Banach space of functions4.
Persistence landscapes are created by rotating a persistence
diagram on its side—so that the diagonal line y = x becomes
as flat as the horizon—and then using the persistence diagram
points to trace out the peaks in a mountain landscape profile.
A landscape can then be discretized by taking a finite sample
of the function values, allowing it to be used in machine
learning tasks (see for instance Kovacev-Nikolic et al. (2016)).
From barcodes, Adams et al. (2017) create persistence images,
a Euclidean vectorization enabling a diverse class of machine
learning tools to be applied (see also Chen et al., 2015;
Reininghaus et al., 2015). A persistence image is created by taking
a sum of Gaussians, one centered on each point in a persistence
diagram, and then pixelating that surface to form an image.
By analogy, recall that in point cloud persistent homology, one
“blurs their vision” when looking at a dataset by replacing each
data point with a ball—this is similar to the process of “blurring
one’s vision” when looking at a persistence diagram in order to
create a persistence image.

Persistence landscapes were defined as part of an effort to
give a firm statistical foundation to persistent homology. In fact,
Bubenik (2015) proves a strong law of large numbers and a
central limit theorem for persistence landscapes. This allows one
to discuss hypothesis testing with persistent homology. Another
approach to hypothesis testing is given by Robinson and Turner
(2017). Other statistical approaches include Fasy et al. (2014),
which describes confidence intervals and a statistical approach to
distinguishing important features from noise, Divol and Polonik
(2019) and Maroulas et al. (2019), which consider probability
density functions for persistence diagrams, and Maroulas et al.
(2020), which describes a Bayesian framework. See Wasserman
(2018) for a review of statistical techniques in the context of
topological data analysis.

Persistence landscapes and images are only two of the
many different methods that have recently been invented in
order to transform persistence barcodes into machine learning
input. Algorithms that require only a distance matrix, such as
many clustering or dimensionality reduction algorithms, can
be applied on the bottleneck or Wasserstein distances between
persistence barcodes (Cohen-Steiner et al., 2007; Mileyko et al.,
2011; Kerber et al., 2017). Other techniques for vectorizing

4In practice, a different metric is sometimes chosen to map landscapes into a

Hilbert space, though the restrictions of Bubenik and Wagner (2020) apply.

persistence barcodes involve heat kernels (Carrière et al.,
2015), entropy (Merelli et al., 2015; Atienza et al., 2020),
rings of algebraic functions (Adcock et al., 2016), tropical
coordinates (Kališnik, 2019), complex polynomials (Di Fabio
and Ferri, 2015), and optimal transport (Carrière et al., 2017),
among others. Some of these techniques, including those by Zhao
and Wang (2019) and Divol and Polonik (2019), allow one
to learn the vectorization parameters that are best suited for
a machine learning task on a given dataset. Others allow one
to plug persistent homology information directly into a neural
network (Hofer et al., 2017). Recent research on incorporating
persistence as input for machine learning is vast and varied, and
the above collection of references is far from complete.

As for the creation of new algorithms, persistent homology
has recently been applied to regularization, a technique used
in machine learning that penalizes overly complicated models
to avoid overfitting. Chen et al. (2019) propose a “topological
penalty function” for classification algorithms, which encourages
a topologically simple decision boundary. Their method is based
on measuring the relative importance of various connected
components of the decision boundary via 0-dimensional
persistent homology. They show how the gradient of such a
penalty function can be computed, which is important for use
in machine learning algorithms, and demonstrate their method
on several examples. Similar work using topological methods to
examine a decision boundary can also be found in Varshney and
Ramamurthy (2015) and Ramamurthy et al. (2019).

Finally, other recent work has used persistent homology
to analyze neural networks. Naitzat et al. (2020) provide
experimental evidence that neural networks operate by
simplifying the topology of a dataset. They examine the
topology of a dataset and its images at the various layers of
a neural network performing classification, finding that the
corresponding barcodes become simpler as the data progresses
though the network. Additionally, they observe the effects
of different shapes of neural networks and different activation
functions. They find that deeper neural networks have a tendency
to simplify the topology of a dataset more gradually than shallow
networks, and that networks with ReLU activation tend to
simplify topology more in the earlier layers of a network than
other activation functions.

7. CONCLUSION

Topological tools are often described as being able to stitch
local data together in order to describe global features: from
local to global. The history of applied topology, however, has in
some sense gone in the reverse direction—from global to local—
as surveyed above! Applied topology was developed in part to
summarize global features in a point cloud dataset, as in the
examples of the conformations of the cyclo-octane molecule or
the collection of 3× 3 pixel patches from images. If global shapes
are the focus, long persistent homology bars are interpreted as
the relevant features, while small bars are often disregarded as
sampling artifacts or noise. However, inmore recent applications,
and in particular when using applied topology in concert with
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machine learning, it is often many short persistent homology
bars that together form the signal. One of the biggest benefits of
applied topology is that one need not choose a scale beforehand:
persistent homology provides a useful summary of both the local
and global features in a dataset, and this summary has been made
accessible for use in machine learning tasks.

We have seen how the short bars can be a measure of
local geometry, texture, curvature, and fractal dimension; their
sensitivity to various features of datasets leads to the wide variety
of applications surveyed here. Because persistent homology
provides a concise, reductive view of the geometry of a dataset, for
instance in the examples studying brain artery trees or hexagonal
grids, it is not hard to imagine the potential applications to
machine learning problems. This has led to recent techniques
that turn barcodes into machine learning input, exemplified by
persistence landscapes and persistence images. We hope that this

wealth of recent work, which has shifted more attention to short
persistent homology bars and the geometric information they
summarize, will inspire further research at the intersection of
applied topology, local geometry, and machine learning.
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The last decade saw an enormous boost in the field of computational topology:

methods and concepts from algebraic and differential topology, formerly confined to

the realm of pure mathematics, have demonstrated their utility in numerous areas such

as computational biology personalised medicine, and time-dependent data analysis,

to name a few. The newly-emerging domain comprising topology-based techniques

is often referred to as topological data analysis (TDA). Next to their applications in the

aforementioned areas, TDA methods have also proven to be effective in supporting,

enhancing, and augmenting both classical machine learning and deep learning models.

In this paper, we review the state of the art of a nascent field we refer to as “topological

machine learning,” i.e., the successful symbiosis of topology-based methods and

machine learning algorithms, such as deep neural networks. We identify common

threads, current applications, and future challenges.

Keywords: computational topology, persistent homology, machine learning, topology, survey, topological

machine learning

1. INTRODUCTION

Topological machine learning recently started to emerge as a field at the interface of topological
data analysis (TDA) and machine learning. It is driven by improvements of computational
methods, which make the calculation of topological features (via persistent homology, for instance)
increasingly flexible and scalable to more complex and larger data sets.

Topology is colloquially often referred to as encoding the overall shape of data. Hence, as
a complement to localised and generally more rigid geometric features, topological features are
suitable to capture multi-scale, global, and intrinsic properties of data sets. This utility has been
recognised with the rise of TDA, and topological information is now generally accepted to be
relevant in the context of data analysis. Numerous works aim to leverage such information to gain
a fundamentally different perspective on their data sets. We want to focus on a recent “outgrowth”
of TDA, i.e., the integration of topological methods to enhance or augment both classical machine
learning methods and deep learning models.

Our survey therefore discusses this ongoing synthesis of topology and machine learning, giving
an overview of recent developments in the field. As an emerging research topic, topological machine
learning is highly active and rapidly developing. Our survey is therefore explicitly not intended as
a formal and complete review of the field. We rather want to identify, present, and discuss some of
the main directions of developments, applications, and challenges in topological machine learning
as we perceive it based on our own research background. Our aim is to provide newcomers to the
field with a high-level overview of some of the central developments and techniques that have been
developed, highlighting some “nuggets,” and outlining common threads and future challenges. We
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focus on publications in major machine learning
conferences (such as AISTATS, ICLR, ICML, and NeurIPS)
and journals (such as JMLR) but want to note that the selection
of topics and papers presented here reflects our own preferences
and knowledge. In particular, we decided against the inclusion of
unpublished work in this area.

The survey is broadly structured as follows: we first provide
a brief mathematical background on persistent homology,
one of the core concepts of topological data analysis, in
section 2. Following the introduction, the main part of the
survey is in section 3. Section 3.2 focuses on what we term
extrinsic topological features in machine learning. These methods
are mainly concerned with the transformation of topological
descriptors of data into feature vectors of fixed dimensionality,
permitting their use as features in machine learning frameworks.
This is in contrast to intrinsic topological features, portrayed
in section 3.3, which employ topological features to analyse
or influence the machine learning model itself, for instance by
architectural choices or regularisation. Finally, section 4 discusses
future directions and challenges in topological machine learning.

2. BACKGROUND ON ALGEBRAIC
TOPOLOGY AND PERSISTENT
HOMOLOGY

This section provides some background on basic concepts
from algebraic topology and persistent homology. For in-depth
treatments of the subject matter, we refer to standard literature
(Bredon, 1993; Hatcher, 2000; Edelsbrunner and Harer, 2010).
Readers familiar with algebraic topology and the concept of
persistent homology may safely skip this section.

A basic hypothesis in data analysis which drives current
research is that data has shape, or put differently, that data is
sampled from an underlying manifold—the so-called “manifold
hypothesis” (Fefferman et al., 2013). Instead of restricting
the analysis to statistical descriptors, topological data analysis
(TDA) aims to analyse data from a fundamentally different
perspective by investigating this underlyingmanifold structure in
an algebraic fashion. Namely, one computes descriptors of data
sets which are stable under perturbation and encode intrinsic
multi-scale information on the their shape. TDA is a rapidly
developing field of mathematics aiming to leverage concepts
of the well-established field of (algebraic) topology toward
applications for real-world data sets and machine learning.

Topology studies invariant properties of (topological) spaces
under homeomorphisms (i.e., continuous transformations); in
the following, we restrict ourselves to topological manifolds, so as
to simplify the exposition. A fundamental problem in topology
is about classification: How can two manifolds be distinguished
from each other? Algebraic topology (Bredon, 1993; Hatcher,
2000) provides sophisticated and powerful tools to study this
question. The basic idea being to associate computable algebraic
structures (e.g., groups or vector spaces) to amanifold that remain
invariant under homeomorphisms. A very important class of
algebraic invariants are the homology groups, which encode a
great deal of information while still being efficiently computable

FIGURE 1 | A simplicial complex modelling a triangle.

in many cases. Homology groups arise from combinatorial
representations of the manifold, the chain complexes.

2.1. Chain Complexes and Homology
The standard k-simplex 1k is defined as the convex hull of the
standard basis vectors in R

k+1, i.e.,

1k
: =




(x0, . . . , xk) ∈ R
k+1

∣∣∣∣
k∑

i=0

xi = 1, xi ≥ 0 ∀i




 .

Similarly, a general k-simplex [v0, . . . , vk] is the convex hull
of k + 1 affinely independent points v0, . . . , vk in a Euclidean
space. Note that deleting one of the vertices vi from a k-simplex
[v0, . . . , vk] yields a (k − 1)-simplex [v0, . . . , v̂i, . . . , vk] which
is determined by the remaining vertices and called the i-th
face of [v0, . . . , vk]. Simplices are the basic building blocks of
chain complexes that are used in algebraic topology for the
computation of homological invariants. Any topological manifold
X can be topologically modelled using simplices (see Figure 1). A
singular k-simplex in X is a continuous map σ :1k → X. It is not
required that σ is an embedding, for instance any constant map,
mapping so a single point in X is a valid singular simplex. The
inclusion of the i-th face of 1k is an important singular simplex
in 1k, which we will denote by Fki :1

k−1 → 1k. To keep the
exposition simple we will restrict ourselves to working over the
two element field F2 : = Z/2Z in what follows. Given any space
X, its singular k-chains are elements of the F2-vector space Ck(X)
generated by the set of all singular k-simplices in X. Elements
in Ck(X) are thus “formal sums” of simplices. The singular chain
complex (C(X), ∂) of X is the sequence of spaces

. . .
∂d+1
−→ Cd(X)

∂d
−→ Cd−1(X)

∂d−1
−→

. . .
∂2

−→ C1(X)
∂1

−→ C0(X)
∂0

−→ 0,

together with the boundary maps ∂k :Ck(X) → Ck−1(X) given by

∂k(σ ) : =
∑

i

σ ◦ Fki

on the basis elements and extended linearly. A crucial property
of the boundary maps is that they compose to 0, that is
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∂k ◦ ∂k−1 = 0. Elements of Zk(X) : = ker(∂k) are called k-cycles
and those of Bk(X) : = im(∂k+1) are called k-boundaries and their
well-defined quotient

Hk(X) : = Zk(X)/Bk(X)

is the k-th singular homology group of X (despite the name,
this is still technically a quotient vector space; however, the
group-theoretical viewpoint is more convenient and prevalent
in algebraic topology). The homology groups are topological
invariants, i.e., they remain invariant under homeomorphisms
and therefore encode intrinsic information on the topology of
X. Thus, homology groups and simpler invariants derived from
them, such as the Betti-numbers βk : = dimHk(X), are useful
in studying the classification question raised above. For example,
the 0-th Betti number β0 is a count of the connected components
of a space, while β1 is a count of the number of cycles.

2.1.1. Brief Example

Using the simplicial complex in Figure 1, we briefly
illustrate some of the aforementioned concepts. Let
X = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} be the
representation of the simplicial complex. The boundary of
the triangle is non-trivial, i.e., ∂2{a, b, c} = {b, c} + {a, c} + {a, b}
The boundary of this chain of edges is trivial, though,
because duplicate simplices cancel each other out. We get
∂1

(
{b, c} + {a, c} + {a, b}

)
= {c}+{b}+{c}+{a}+{b}+{a} = 0,

which is consistent with the property of compatible boundary
maps to compose to 0. To compute H1(X) : = Z1(X)/B1(X),
we only have to calculate Z1(X); the boundary group B1(X)
does not contain any non-trivial simplices because X
does not contain any 2-simplices. By definition, Z1(X) =

ker(∂1) = span
(
{a, b} + {b, c} + {a, c}

)
. This is the only cycle

in X (which we can easily verify either by inspection or based
on combinatorics). Hence H1(X) = Z1(X) = F2 and β1 = 1;
the triangle therefore exhibits a single cycle, which aligns with
our intuition.

2.2. Persistent Homology
Persistent homology (Edelsbrunner et al., 2000; Zomorodian and
Carlsson, 2005) is the flagship tool of TDA. In the analysis of real-
world data, it is typically not a priori clear at what scale interesting
topological features occur. By using a filtration (connected to
the scale parameter) persistent homology is able to capture
topological changes across the whole range of scales and store this
information in so-called persistence diagrams.

Persistent homology is an extension of homology to the
setting of filtered chain complexes. A filtered chain complex is a
(not-necessarily strictly) ascending sequence of chain complexes
Cε0 ⊂ Cε1 ⊂ Cε2 ⊂ . . . with inclusion maps ιi :Cεi Cεi+1

and ιi,j : = ιj ◦ ιj−1 ◦ · · · ◦ ιi :Cεi Cεj for i < j. Filtered chain
complexes naturally arise in situations where we have a sequence
of inclusions of spaces Xε0 ⊂ Xε1 ⊂ Xε2 ⊂ . . .. Such cases, for
instance, occur if we consider the sublevel sets Xε

: = f−1(R<ε)
of a so-called filtration function f :X → R, or if we consider a
point cloud Y in a metric space (M, d) and set

FIGURE 2 | Different stages of a Vietoris–Rips filtration for a simple “circle”

point cloud. From left to right, connectivity of the underlying simplicial complex

increases as ǫ increases.

Yε
: =

⋃

y∈Y

Bε(y) = g−1(R<ε)

with filtration function g : M→R given by g(m) : =

infy∈Y d(m, y). Here Bε(y) denotes the open ball of radius ε

centred at y and we implicitly identify ε ≃ ε′ if Xε (resp. Yε) is
canonically homeomorphic to Xδ (resp. Yδ) for all δ ∈ [ε, ε′]. An
important property of (singular) homology is that it is functorial
(see e.g., Bredon, 1993), which implies that the inclusion
maps ιi,j induce maps on the respective homology groups
Hk(ι

i,j) :Hk(C
εi ) → Hk(C

εj ). Figure 2 depicts the Vietoris–Rips
complex construction based on a distance filtration, a standard
construction in TDA. The k-th persistent homology groups are the
images of these inclusions, that is

H
i,j

k
: = im Hk(ι

i,j) = Zk(C
εi )/(Bk(C

εj ) ∩ Zk(C
εi )),

and thus precisely consist of the k-th homology classes of Cεi

that still exist after taking the inclusionHk(ι
i,j). A homology class

α ∈ Hk(C
εi ) is said to be born at Cεi if α /∈ Hi−1,i

k
, i.e., if it is

not in the image of Hk(ι
i−1,i). If α is born at Cεi , it is said to die

at Cεj if Hk(ι
i,j−1)(α) /∈ H

i−1,j−1

k
and Hk(ι

i,j)(α) ∈ H
i−1,j

k
. The

persistence of α is given by εj − εi and set to infinity if it never

dies. The persistent Betti-numbers, defined by β
i,j

k
: = dimH

i,j

k
,

carry information on how the homology (and thus the topology)
changes across the filtration.

This information can be captured in a so-called persistence

diagram, a multiset in R
2
: = R

2 ∪ R × {∞}. Specifically, the
persistence diagram of (homological) dimension k is given by the

points (εi, εj) ∈ R
2
with multiplicity

µ
i,j

k
: = (β

i,j−1

k
− β

i,j

k
)− (β

i−1,j−1

k
− β

i−1,j

k
)

for all i< j. The multiplicity µ
i,j

k
counts the number of k-

th homology classes that are born at Cεi and die at Cεj .
Figure 3 depicts a simple persistence diagram, calculated from
the Vietoris–Rips complex in Figure 2. The axes of this diagram
correspond to the ǫ values at which topological features are
created and destroyed, respectively. The single point of high
persistence corresponds to the primary topological feature of the
point cloud, namely its circular shape. Other topological features
occur at smaller scales—lower values of ǫ—and hence form a
small dense cluster in the lower-left corner of the persistence
diagram. The persistent Betti-numbers can be recovered from the
persistence diagram itself; see Edelsbrunner and Harer, 2010.
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A crucial fact that makes persistent homology valuable
for application in data analysis is its stability with respect to
perturbations of the filtration function. This means that persistent
homology is robust to noise and constitutes an encoding of
intrinsic topological properties of the data. More precisely,
the space of persistence diagrams can be endowed with a
metric induced by the bottleneck distance (or the Wasserstein
distances) Edelsbrunner and Harer, 2010. A celebrated stability
theorem (Cohen-Steiner et al., 2007) states that the L∞-distance
of two real-valued functions f and g is an upper bound for the
bottleneck distance W∞ of their respective persistence diagrams
Df and Dg , i.e.,W∞(Df ,Dg) ≤ ‖f − g‖∞. The stability theorem
and its variants (Skraba and Turner, 2020) are highly relevant for
applications because they imply that the behaviour of persistent
homology under noise is known; descriptors such as persistence
diagrams change continuously as the input function is varied, and
the “amplitude” of their change is bounded from above via the
stability theorem.

3. SURVEY

This section comprises the main part of the paper, where we
gather and discuss pertinent methods and tools in topological
machine learning. We broadly group the methods into the
following categories. First, in section 3.2, we discuss methods
that deal with extrinsic topological features. By the qualification
extrinsic, we mean that no analysis of the topology of the machine
learning model or the neural network itself is incorporated.

FIGURE 3 | A persistence diagram containing 1-dimensional topological

features (cycles).

These methods are instead mainly concerned with enabling
the use of topological features, extracted from a given data
set, in downstream machine learning models. This can be
achieved through vectorisation of topological features or by
designing specialised layers of neural networks that are capable
of handling such features. Next, section 3.3 discusses intrinsic
topological features. Those are methods that incorporate the
topological analysis of aspects of the machine learning model
itself. Whenever applicable, we further classify methods into
observational and interventionalmethods. This sub-classification
specifies how the methods are applied in a machine learning
framework. Observational methods “observe” the topology of
the data or model but they do not directly influence the model
training or architecture. Interventional methods, by contrast,
apply topological properties of the data, as well as post-hoc
analysis of topological features of machine learning models, in
order to inform the architectural design and/or model training.
See Figure 4 for an overview of the methods and their categories,
as well as Table 1 for the classification of all papers mentioned in
this survey.

3.1. Limitations
Our paper selection is a cross-section over major machine
learning conferences and machine learning journals. We
refrain from comparing methods on certain tasks—such
as classification—because there is considerable heterogeneity
in the experimental setup, precluding a fair assessment of
such methods.

3.2. Extrinsic Topological Features in
Machine Learning
This section gives an overview of methods that aim at suitably
representing topological features in order to use them as input
features for machine learning models. We will refer to this class
of methods as extrinsic topological features in machine learning,
as they take topological information of the data sets into account,
as opposed to intrinsic topological information of the machine
learning framework itself (see section 3.3). A large class of such
methods is comprised of vectorisation methods, that aim to
transform persistent homology information into a feature vector
form in order to make use of it in machine learning models.

FIGURE 4 | This overview figure shows examples of methods discussed in the survey and their range of influence. Green (red) boxes signify

observational (interventional) methods. Table 1 provides a more in-depth classification of all methods.
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TABLE 1 | The categorisation of the approaches discussed in the present survey.

Extrinsic Intrinsic

Observational Interventional Observational Interventional

Adams et al., 2017 Carrière et al., 2020 Gabrielsson and Carlsson, 2019 Chen et al., 2019

Bubenik, 2015 Kim et al., 2020 Khrulkov and Oseledets, 2018 Hofer et al., 2017

Carrière et al., 2015 Zhao and Wang, 2019 Zhou et al., 2021 Hofer C. et al., 2019

Carrière et al., 2017 Hofer et al., 2020a

Kusano et al., 2018 Hofer et al., 2020b

Reininghaus et al., 2015 Moor et al., 2020

Rieck et al., 2020a Ramamurthy et al., 2019

Rieck et al., 2020b Rieck et al., 2019b

Umeda, 2017 Zhao et al., 2020

It is interesting to note that intrinsic features tend to be used more in interventional settings, whereas extrinsic features remain observational for the most part.

However, alternative representations of topological descriptors,
such as kernels or function-based representations, are also
discussed in this section.

3.2.1. Vector-Based and Function-Based

Representations

Persistence diagrams (see section 2) constitute useful descriptors
of homological information of data. However, being multisets,
they cannot be used directly as input data for machine
learning models in the usual sense (recent paradigm shifts in
machine learning, namely the introduction of deep sets (Zaheer
et al., 2017), challenge this assumption somewhat, as we
will later see in section 3.2.3). One first needs to suitably
represent—or vectorise—persistence diagrams (PDs) in order to
use them for downstream machine learning tasks. There are
two predominant strategies for facilitating the integration of
topological features into machine learning algorithms, namely
(i) different representations that ideally give rise to feature
vectors, and (ii) kernel-basedmethods that permit the integration
into certain classifiers. Notice that these two strategies are not
necessarily exclusionary; some representations, for example, also
give rise to a kernel-based method.

Representations and kernel-based methods should ideally be
efficiently computable, satisfy similar stability properties as the
persistence diagrams themselves—hence exhibiting robustness
properties with respect to noise—as well as provide some
interpretable features. The stability of such representations
is based on the fundamental stability theorem by Cohen-
Steiner et al. (2007). In recent years, a multitude of suitable
representation methods have been introduced; we present a
selection thereof, focusing on representations that have already
been used in machine learning contexts. As a somewhat
broad categorisation, we observe that persistence diagrams
are often mapped into an auxiliary vector space, e.g., by
discretisation (Anirudh et al., 2016; Adams et al., 2017), or by
mapping into a (Banach- orHilbert-) function space (Chazal et al.,
2014; Bubenik, 2015; Di Fabio and Ferri, 2015). Alternatively,
there are several kernel methods (Reininghaus et al., 2015;
Carrière et al., 2017; Kusano et al., 2018) that enable the efficient
calculation of a similarity measure between persistence diagrams.
Representations and kernel-based methods fall into the category

of what we denote “observational” methods. The only exception
is given by PersLay (Carrière et al., 2020), which informs the
layers of the model and thus is an “interventional” method.

Arguably the most simple form of employing topological
descriptors in machine learning tasks uses summary statistics,
such as the total persistence of a persistence diagram (Cohen-
Steiner et al., 2010), its p-norm (Chen and Edelsbrunner, 2011),
or its persistent entropy (Atienza et al., 2019), i.e., the Shannon
entropy of the individual persistence values in a diagram. While
all of these approaches result in scalar-valued summary statistics,
they are often not directly applicable to complex machine
learning tasks, which require more expressive representations.
We note, however, that such statistics give rise to hypothesis
testing (Blumberg et al., 2014) based on topological information
and we envision that this field will become more prominent
as topological features find their use case for data analysis. A
simple and stable representation of persistence diagrams, suitable
for machine learning tasks, is provided by what are commonly
called Betti curves. Given a persistence diagram D, and a weight
function w :R

2 → R, its Betti curve is the function β :R → R

defined by

β(t) : =
∑

(b,d)∈D

w(b, d) · 1[b,d](t), (1)

where

1[b,d](t) : =

{
1, if t ∈ [b, d]

0, else
(2)

is the indicator function. The Betti curve was often informally
used to analyse data (Umeda, 2017); recently, Rieck et al.
(2020a) provided a summarising description of their features.
Figure 5 depicts a simple illustration of the calculation of Betti
curves. Betti curves are advantageous because they permit the
calculation of amean curve, next to providing an easy-to-evaluate
distance and kernel method. Chevyrev et al. (2018) used this
representation—and related “paths” derived from a persistence
diagram and its representations—to solve classification tasks,
using random forests and support vector machine classifiers. One
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drawback of the Betti curves is their limited expressive power.
Being a summary statistic of a persistence diagram, the mapping
from a diagram to a curve is not injective; moreover, the curve
only contains counts of topological features and does not permit
tracking single features, for example.

A more fundamental technique, developed by Carrière et al.
(2015), directly generates a high-dimensional feature vector from
a persistence diagram. The main idea is to obtain a vector
representation of some persistence diagram D based on the
distribution of pairwise distances of its elements, including
points on the diagonal 1 : = {(x, x) | x ∈ R} ⊂ R

2. More
precisely, for each pair (p, q) of points in D, they compute
m(p, q) : = min{d∞(p, q), d∞(p,1), d∞(q,1)} and associate to
D the vector of these values, sorted in descending order. As
persistence diagrams may be of different sizes, they enlarge
each of these vectors by zeros so that its length matches the
length of the longest vector in the set. Hence, the set of
persistence diagrams one considers needs to be fixed a priori. This
vectorisation does not necessarily scale well to large data sets, but
it can provide a good baseline to furnish any machine learning
classifier—including a neural network—with simple topology-
based feature vectors. The use of this technique appears to be
restricted at present; we hope that our article will help increase
its adoption.

As a somewhat more complicated, but also more expressive,
representation, Bubenik (2015) introduced topological
descriptors called persistence landscapes that map persistence

FIGURE 5 | A persistence diagram (A), its persistence barcode (B), and its

corresponding Betti curve (C). Notice that the interpretation of the axes of

different plots is different, hence we exclude labels for the

barcode representation.

diagrams into a (Banach or Hilbert) function space in an
invertible manner that satisfies stability properties with respect
to the bottleneck distance of PDs. The persistence landscape
λ : N × R → R of a PD D = {(bi, di)}i∈I can be defined in the
following way. For b < d, we consider the auxiliary function
f(b,d)(t) : = max{0,min{t − b, d − t}} and define the persistence
landscape as

λ(k, t) : = kmax{f(bi ,di)(t)}i∈I ,

where kmax denotes the k-th largest element of the set.
In addition to injectivity and stability, persistence landscapes
do not require any choice of auxiliary parameters in their
construction (see Figure 6 for a depiction of the persistence
landscape computation process). They also afford various
summary statistics, such as a norm calculation as well the
calculation of both a kernel and a distance measure, making
them a versatile representation of topological features. While,
persistence landscapes have seen applications in time series
analysis (Stolz et al., 2017), their most successful integration into
machine learning algorithms is provided in the form of a new
layer: persistence landscapes form the basis of a robust (with
respect to noise) topological layer for deep neural networks,
which is differentiable with respect to its inputs, the so-called
PLLay (persistence landscape based topological layer) established
in Kim et al. (2020). This layer exhibits good performance in
image classification tasks as well as orbit classification, where it
is shown to provide new state-of-the-art performance. We note
that persistence landscapes are often considered in a vectorised
form, which is obtained through binning their domain. While
this is possible and useful for certain applications, we want to
stress that the persistence landscape, as a lossless representation,
should ideally be treated as such. The calculation of persistence
landscapes imposes additional computational complexity, but the
empirical performance reported by Kim et al. (2020) suggests that
the landscapes are well-suited as a feature descriptor.

The persistence images (PIs), introduced by Adams et al.
(2017), constitute an elegant hierarchical vectorisation step,
representing a PD as a vector through the following steps. First
the PD D is transformed from “birth–death”-coordinates into
“birth–persistence”-coordinates via the transformation

T :R
2 −→ R

2
: (x, y) 7−→ (x, y− x).

FIGURE 6 | Computing a persistence landscape involves calculating the “area of influence” of each topological feature in a persistence diagram. Each connected

shaded region with at least k intersections forms the basis of the k-th persistence landscape, which can be obtained by “peeling off” layers in an iterative fashion.
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FIGURE 7 | A persistence image arises as a discretisation of the density function (with appropriate weights) supported on a persistence diagram. It permits the

calculation of an increasingly better-resolved sequence of images, which may be directly used as feature vectors.

Next, for each u ∈ R
2 a differentiable probability density φu on

R
2 is chosen (the standard choice being a normalised symmetric

Gaussian with E[φu] = u), as well as a weighting function
f :R2 −→ R

2
≥0 satisfying f |{0}×R ≡ 0. Additionally one chooses

a discretisation of a relevant subdomain ofR2 by a standard grid.
Each region R of this grid then corresponds to a pixel in the
persistence image with value given by

∫

R

∑

u∈T(D)

f (u)φu(z)dz.

In the process of generating persistence images, there are
three non-canonical choices to be made. First, the choice of
the weighting function, which is often chosen to emphasise
features in the PD with large persistence value, next the
distributions φu, and lastly the resolution of the discretisation
grid. Adams et al. (2017) prove that PIs are stable with respect
to the 1-Wasserstein distance between persistence diagrams.
Figure 7 illustrates their calculation. Persistence images are
highly flexible and are often employed to make a classifier
“topology-aware” to some extent (Zhao andWang, 2019; Carrière
and Blumberg, 2020; Rieck et al., 2020b). A paper by Zhao
and Wang (2019), for instance, showcases their utility for graph
classification. Interestingly, this paper constitutes also one of the
few interventional approaches that employ extrinsic topological
features; specifically, the authors use pre-defined filtrations to
obtain graph-based persistence diagrams, and learn task-based
weights for individual “pixels” (or “cells”) in the diagram.
This approach is seen to surpass several graph classification
algorithms on standard benchmark data sets—a remarkable
feat, considering that the method does not employ any label
information. The main drawbacks of persistence images are their
quadratic storage and computation complexity, as well as the
choice of appropriate parameters. While recent work found them
to be remarkably stable in practice with respect to the Gaussian
kernel parameters (Rieck et al., 2020b), there are no guidelines for
picking such hyperparameters, necessitating a (cross-validated)
grid search, for instance.

3.2.2. Kernel-Based Representations

As an alternative to the previously-discussed representations, we
now want to briefly focus on persistence diagrams again. The
space of persistence diagrams can be endowed with metrics,
such as the bottleneck distance. However, there is no natural
Hilbert space structure on it, and such metrics tend to be
computationally prohibitive or require the use of complex

approximation algorithms (Kerber et al., 2017). Kernel methods
provide a way of implicitly introducing such a Hilbert space
structure to which persistence diagrams can be mapped via the
feature map of the kernel. This then allows for a downstream use
in machine learning models. To be more specific, given a set X, a
function k :X×X → R is called a (positive definite) kernel if there
exists a Hilbert spaceHk together with a feature map φ :X → Hk

such that k(x1, x2) = 〈φ(x1),φ(x2)〉Hk
for all x1, x2 ∈ X. Thus, by

defining a kernel on the set of persistence diagrams, one obtains
a vector representation via the feature map. However, in order
for such a kernel to be useful in practice, it should additionally
preserve the metric stability properties of persistence diagrams.
Some pertinent examples of the kernel method are the following.
Reininghaus et al. (2015) define a kernel on the set of persistence
diagrams that is stable with respect to the 1-Wasserstein distance
(Villani, 2009). The kernel is based on the idea of heat diffusion
on a persistence diagram and offers a feature map that can be
discretised (in fact, there are interesting similarities to persistence
images). It was subsequently shown to satisfy universality (Kwitt
et al., 2015), a desirable property for a kernel to have because it
implies suitability for hypothesis testing. The sliced Wasserstein
kernel, which is metric-preserving, was introduced by Carrière
et al. (2017). It is based on the idea of the sliced Wasserstein
distance (Kolouri et al., 2016), which ensures positive definiteness
of the kernel through low-dimensional projections. Kusano
et al. (2018) propose persistence weighted Gaussian kernels that
incorporate a weighting and satisfy stability results with respect
to the bottleneck distance and the 1-Wasserstein distance. The
expressive power of kernels is in contrast to their computational
complexity. Naïve implementations scale quadratically in the
number of points, thus impeding the use of kernels for
persistence diagrams with a large number of points. Some
mitigation strategies exist (Greengard and Strain, 1991; Rahimi
and Recht, 2008), but have not been adopted by implementations
so far (moreover, their use is not always applicable, necessitating
additional research). Nevertheless, such kernels are attractive
because they are not limited with respect to the input data. Most
of the papers exhibit good performance for shape classification or
segmentation tasks, as well as in orbit classification.

While most of the aforementioned kernels are used to
directly compare persistence diagrams, there are also examples
of kernels based on topological information. An interesting
example is provided by Rieck et al. (2019a), who introduce
the Persistent Weisfeiler–Lehman (P-WL) kernel for graphs. It
computes topological features during aWeisfeiler–Lehman (WL)
procedure. The WL procedure refers to an iterative scheme in
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which vertex label information is aggregated over the neighbours
of each vertex, resulting in a label multiset. A perfect hashing
scheme is now applied to every multiset and the graph is
relabelled with the ensuing hashes. This process can be repeated
until a pre-defined limit has been reached or until the labels do
not change any more. While originally intended as a test for
graph isomorphism, it turns out that there are non-isomorphic
graphs that cannot be distinguished by the WL procedure.
However, it turns out to be an exceptionally useful way of
assessing the dissimilarity between two graphs in polynomial
time, leading to the WL kernel framework (Shervashidze and
Borgwardt, 2009; Shervashidze et al., 2011), which enjoys great
popularity for graph learning tasks (Borgwardt et al., 2020; Kriege
et al., 2020). The P-WL extension of WL is characterised by its
capability to extract topological information of the graph with
respect to the current node labelling for each WL iteration. This
kernel is particularly notable since it constitutes the first (to
our knowledge) method that imbues data-based labels into the
calculation of persistent homology.

3.2.3. Integrating Topological Descriptors Into Neural

Networks

One of the seminal methods that built a bridge between modern
machine learning techniques and TDA is a work by Hofer
et al. (2017). Using a differentiable projection function for
persistence diagrams (with learnable parameters), the authors
demonstrate that persistence diagrams of a data set can be
easily integrated into any deep learning architecture. While the
primary focus of the paper lies on developing such a projection
function, the authors demonstrate the general feasibility of
topological descriptors in both shape and graph classification
tasks. A follow-up publication (Hofer C. D. et al., 2019) discusses
more theoretical requirements for learning representations of
topological descriptors.

This approach, as well as the development of the “DeepSets”
architecture (Zaheer et al., 2017), which makes deep learning
methods capable of learning sets, i.e., unordered sequences of
varying cardinalities, spurred the development of layers that can
be easily integrated into a deep learning workflow. An excellent
example of such a layer is Carrière et al. (2020), which employs
extended persistence (Cohen-Steiner et al., 2009) and heat kernel
signatures to learn a vectorisation of persistence diagrams suited
to the learning task at hand. PersLay is a neural network layer,
defined by

PersLay(D) : = op({w(p) · φ(p)}p∈D),

whereD is a persistence diagram, op is and permutation invariant
mapping, w :R

2 −→ R is a weight function and φ :R
2 −→ R

d

is a vector representation function. Its generic definition allows
PersLay to subsume and recover many existing representations
by appropriate choices of op and φ (Carrière et al., 2020).

3.3. Intrinsic Topological Features in
Machine Learning
This section reviews methods that either incorporate topological
information directly into the design of a machine learning model

itself, or leverage topology to study aspects of such a model. We
refer to such features as intrinsic topological features. The primary
examples are regularisation techniques as well as techniques for
analysing neural network architectures.

3.3.1. Regularisation Techniques

As a recent example, Moor et al. (2020) propose a topological
autoencoder, which aims to preserve topological features of the
input data in low-dimensional representations. This is achieved
via a regularisation term that incentivises the persistence
diagrams of both the latent and input space to be topologically
similar. This method acts on the level of mini-batches, treating
each of them as a point cloud. Persistence diagrams are obtained
from the Vietoris–Rips complex of each space. By tracking the
simplices that are relevant for the creation and destruction of
topological features, and by consistently mapping simplices to
a given edge in the Vietoris–Rips complex, each filtration can
be interpreted as a selection of distances from the full distance
matrix of the point cloud. The proposed regularisation term
then compares the “selected” distances in the data space with
the corresponding distances in the latent space (and vice versa).
Finally, this regularisation is differentiable under the assumption
that the persistence diagram is discrete (i.e., for each of its points,
there is an infinitesimal neighbourhood containing no other
points). The scheme can thus be directly integrated into the
end-to-end training of an autoencoder, making it aware of the
topology in the data space. This work can also be considered as
an extension of previous work by Hofer C. et al. (2019), who
introduced a differentiable loss term for one-class learning that
controls the topology of the latent space; in effect, their loss term
enforces a preferred “scale” for topological features in the latent
space. It does not have to harmonise topological features across
different spaces. It turns out that an autoencoder trained with this
loss term on unlabelled data can be used on other data sets for
one-class learning. This hints at the fact that enforcing a certain
topological structure can be beneficial for learning tasks; we will
later see that such empirical observations can also be furnished
with a theoretical underpinning.

An approach by Chen et al. (2019) takes a different
perspective. The authors develop a measure of the topological
complexity (in terms of connected components) of the
classification boundary of a given classifier. Said topological
information is then used for regularisation in order to force the
topological complexity of the decision boundary to be simpler,
containing fewer features of low persistence. Thus, topological
information serves as a penalty during classification such that
training the classifier itself can be improved. In contrast to the
aforementioned approach, differentiability is obtained through
a “surrogate” piecewise linear approximation of the classifier.
The method is seen to yield competitive results and the authors
observe that the method performs well even in the presence of
label noise. Analysing the decision boundary of a classifier also
turns out to be advantageous for model selection, as we will later
see in section 3.3.2.

Hofer et al. (2020a) analyse more fundamental principles
of regularisation by means of topological features. Specifically,
they study regularisation in a regime of small sample sizes
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with over-parametrised neural networks. By developing a
new topological constraint for per-class probability measures,
mass concentration effects in the vicinity of the learned
representations of training instances are observed, leading
to overall improvements of generalisation performance. The
authors observe that controlling topological properties of learned
representations presents numerous avenues for future research.
These theoretical findings validate the empirical improvements
observed in previous works of this domain.

As a more involved example of methods that make use
of intrinsic features, Zhao et al. (2020) include topological
features of graph neighbourhoods into a standard graph neural
network (GNN) architecture. Their method combines a shortest-
path filtration with persistence images, which are subsequently
compressed to a single scalar value using a multilayer perceptron.
The resulting scalar is then used to re-weight the message
passing scheme used in training the GNN, thus obtaining
topologically-based representations of graph neighbourhoods. In
contrast to the previously-described loss terms, this method is
not end-to-end differentiable, though, because the conversion
from persistence diagrams to persistence images involves non-
continuous parameters, i.e., the image dimensions. Zhao et al.
(2020) primarily propose this method for node classification
tasks, but we hypothesise that other graph tasks would profit from
the integration of topological features.

Last, to provide a somewhat complementary perspective to
preceding work, a paper by Hofer et al. (2020b) discusses how to
employ graph neural networks (GNNs) to learn an appropriate
filtration in an end-to-end fashion. The authors demonstrate
that a GNN can be used to successfully initialise a scalar-
valued filtration function, which can then subsequently be trained
under mild assumptions (specifically, injectivity at the vertices
of the graph needs to hold). The learned filtration turns out to
surpass fixed filtrations combined with a persistent homology
baseline, thus demonstrating the benefits of making topological
representations differentiable—and thus trainable.

3.3.2. Model Analysis

Shifting our view from regularisation techniques, topological
analysis has been applied to evaluate generative adversarial
networks (GANs). A GAN (Goodfellow et al., 2014) is comprised
of two sub-networks, a generator and a discriminator. Given
a data distribution Pdata, the generators objective is to learn
a distribution Pmodel with the same statistics, whereas the
discriminator learns to distinguish generated samples from
actual data samples. The topological evaluation of GANs is
motivated by the manifold hypothesis (Fefferman et al., 2013),
which poses that a data distribution Pdata is sampled from an
underlying manifold Mdata. The idea is to assess the topological
similarity of Mdata and the underlying manifold Mmodel of the
model generated distribution Pmodel. Based on the persistent
homology of witness complexes, Khrulkov and Oseledets (2018)
introduce the Geometry Score, which is a similarity measure of
the topologies of Mdata and Mmodel and can be used to evaluate
generative models. Later work by Zhou et al. (2021) generalises
this approach and additionally extends it to the disentanglement
evaluation of generative models in unsupervised settings.

In a different direction, the topological analysis of the intrinsic
structure of a classifier, such as a neural network, makes it
possible to improve a variety of tasks. This includes the analysis
of training behaviour as well as model selection—or architecture
selection in the case of neural networks.

While the literature dedicated to the better understanding
of deep neural networks has typically focused on its functional
properties, Rieck et al. (2019b) took a different perspective to
focus on the graph structure of a neural network. Specifically,
they treat a (feed-forward) neural network as a stack of bipartite
graphs. From this view, they propose “neural persistence,”
a complexity measure which summarizes topological features
that arise when calculating a filtration of the neural network
graph where the filtration weights are given by the network
parameters. They showed that neural persistence can distinguish
between well-trained and badly-trained (i.e., diverged) networks.
This measure is oblivious to the functional behaviour of the
underlying network, but only focuses on its (weighted) structure.
Nevertheless, Rieck et al. (2019b) showed that it can be used for
guiding early stopping solely based on topological properties of
the neural network, potentially saving validation data used for the
early stopping decision.

Ramamurthy et al. (2019) employ labelled variants of
simplicial complexes, such as a labelled Vietoris–Rips complex,
to analyse the decision boundary (i.e., classification boundary)
of a given classifier. The authors are able to provide theoretical
guarantees that the correct homology of a decision boundary can
be recovered from samples, thus paving the way for an efficient
approximation scheme that incorporates local scale estimates
of the data set. Such a construction is required because the
density of available samples is not guaranteed to be uniform,
leading to simplicial complexes with spurious simplices in high-
density regions, while running the risk of “undersampling” low-
density regions. Next to “matching”models based on theDecision
Boundary Topological Complexity (DBTC) score, Ramamurthy
et al. (2019) also enable matching data sets to pre-trained models.
The underlying assumption is that a model that closely mimics
the topological complexity of a data set is presumably a better
candidate for this particular data set.

Gabrielsson and Carlsson (2019) utilise topological data
analysis to analyse topological information encoded in the
weights of convolutional neural networks (CNNs). They show
that the weights of convolutional layers encode simple global
structures which dynamically change during training of the
network and correlate with the network’s ability to generalise to
unseen data. Moreover, they find that topological information on
the trained weights of a network can lead to improvements in
training efficiency and reflect the generality of the data set on
which the training was performed.

4. OUTLOOK AND CHALLENGES

This survey provided a glimpse of the nascent field of
topological machine learning. We categorised existing work
depending on its intention (interventional vs. observational)
and according to what type of topological features are being
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calculated (extrinsic vs. intrinsic), finding that most extrinsic
approaches are observational, i.e., they do not inform the
choice of model afterwards, while most intrinsic approaches are
interventional, i.e., they result in changes to the choice of model
or its architecture.

Numerous avenues for future research exist. Of the utmost
importance is the improvement of the “software ecosystem.”
Software libraries such as GUDHI (Maria et al., 2014) and
giotto-tda (Tauzin et al., 2021) are vital ingredients for
increasing the adoption of TDA methods, but we envision
that there is a specific niche for libraries that integrate directly
with machine learning frameworks such as pytorch. This
will make it easier to disseminate knowledge and inspire more
research. A challenge that the community yet has to overcome
involves the overall scalability of methods, though. While certain
improvements on the level of filtrations are being made (Sheehy,
2013; Cavanna et al., 2015), those improvements have yet to
be integrated into existing algorithms. A more fundamental
question is to what extent TDA has to rely on “isotropic”
complexes such as the Vietoris–Rips complex, and whether scale-
dependent complexes that incorporate sparsity can be developed.

On the side of applications, we note that several papers
already target problems such as graph classification, but they are
primarily based on fixed filtrations (with the notable exception
of Hofer et al. (2020b), who learn a filtration end-to-end). We
envision that future work could target more involved scenarios,
such as the creation of “hybrid” GNNs, and the use of end-to-
end differentiable features for other graph tasks, such as node
classification, link prediction, or community detection.

As another upcoming topic, we think that the analysis of time-
varying data sets using topology-based methods is long overdue.
With initial work by Cohen-Steiner et al. (2006) on time-varying
topological descriptors providing a theoretical foundation, there
are nevertheless few topology-based approaches that address time
series classification or time series analysis. Several—theoretical
and practical—aspects for such an endeavour are addressed by
Perea et al. (2015), who develop a persistence-based method for
quantifying periodicity in time series. The method is based on
the fundamental embedding theorem by Takens (1981) and is
combined with a sliding window approach. Future work could
build on such approaches, or find other ways to characterise
time-series, for instance based on complex networks (Lacasa
et al., 2008). This could pave the road toward novel applications
of TDA such as anomaly detection.
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Topology-Inspired Method Recovers
Obfuscated Term Information From
Induced Software Call-Stacks
Kelly Maggs1 and Vanessa Robins2*

1Mathematical Sciences Institute, Australian National University, Canberra, ACT, Australia, 2Research School of Physics,
Australian National University, Canberra, ACT, Australia

Fuzzing is a systematic large-scale search for software vulnerabilities achieved by feeding a
sequence of randomly mutated input files to the program of interest with the goal being to
induce a crash. The information about inputs, software execution traces, and induced call
stacks (crashes) can be used to pinpoint and fix errors in the code or exploited as a means
to damage an adversary’s computer software. In black box fuzzing, the primary unit of
information is the call stack: a list of nested function calls and line numbers that report what
the code was executing at the time it crashed. The source code is not always available in
practice, and in some situations even the function names are deliberately obfuscated
(i.e., removed or given generic names). We define a topological object called the call-stack
topology to capture the relationships between module names, function names and line
numbers in a set of call stacks obtained via black-box fuzzing. In a proof-of-concept study,
we show that structural properties of this object in combination with two elementary
heuristics allow us to build a logistic regression model to predict the locations of distinct
function names over a set of call stacks. We show that this model can extract function
name locations with around 80% precision in data obtained from fuzzing studies of various
linux programs. This has the potential to benefit software vulnerability experts by increasing
their ability to read and compare call stacks more efficiently.

Keywords: fuzzing, crash-triage, software vulnerability research, call-stack analysis, topology, TDA, specialization
pre-order

1 INTRODUCTION

A black-box fuzzing campaign is one conducted without explicit knowledge of the source code or its
intermediate representations. Generally, methods in this area require a brute-force generation of inputs.
This can lead tomasses of crashes wheremany are duplicates of one another. For practitioners, untangling
the output of a black-box fuzzing campaign is a time-consuming task. The goal of this article is to
investigate methods that alleviate the difficulty of comprehending such results.

1.1 Call Stacks
When a program crashes, the slew of error text it returns to the user is referred to as the call-stack
(Example in Figure 1). The call-stack is a record of the nested functions traced out by the program in
its final moments and is one of the few pieces of information available to us when analyzing black-
box fuzzing. The lines in the call-stack are called frames, and while contingent on the operating
system’s debugging syntax, decompose roughly into three columns: 1) the module (or filename), 2)
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the function and 3) the line number. We will refer to the set of all
constituent modules, functions and line numbers in a set of call-
stacks C as the terms in C.

Further complicating matters is that—depending on whether
the source code is available—call-stacks may have partial
information excluded. In particular, when fuzzing programs
without possession of source code or full knowledge of terms,
the partially obscured call-stack may be the only source of
information available.

1.2 Goals
The ANU researchers [1] provided to us a data set of call stacks
generated by fuzzing several Linux programs with the afl fuzzing
algorithm (See [2]). They were interested in answering two key
research questions:

1. Clustering and Deduplication: determining the extent to
which there are discernible clusters in the set of call-stacks.

2. Term Removal: quantifying how much information about
function terms can be recovered given they are obscured
(for example, as in Figure 1).

While the first question has been studied in a number of
contexts [3, 4], to the best of our knowledge no attempt has been
made at the second. In this paper, we show that once the data has
been suitably whitelisted, the set of crashes contain a high number
of exact duplicate call-stacks. This observation highlights a
fundamental lack of diversity in the data generated by fuzzing,
and alone is enough to answer the first question to a large extent.

To address the question of function term removal, we
introduce a model of call-stack information using finite
topological spaces, posets and the theory of [5]. This not only
helps to quantify the significance of removing function terms, but
is a useful object to capture the dependencies between terms in
the set of call-stacks.

2 DATA-SET OVERVIEW

Six common Linux programs were fuzzed using the program afl.
Key aspects of the program: the binary name, file extension, and

version are presented in Table 1. Call-stacks were generated
within the framework of the GDB debugger using the
AddressSanitizer (ASAN) [6] tool.

Upon recommendation by the ANU cyber-security
researchers, we performed several pre-processing whitelisting
steps to each call-stack text file. Firstly, frames appearing up to
and including the ASAN error frame were considered superfluous
and hence deleted. In crashes that did not call the ASANmodule,
frames up to assert_fail were deleted. For every file, the two final
generic end-of-file frames were deleted. Finally, we extracted
three salient features from each frame: the module, the
function and intra-module line number, and discarded the
other information in the call-stack file.

Unlike the afl protocol–where crashes are de-duplicated based
on a hashing scheme–we labeled two call-stacks to be deplicates
whenever their text files were identical after the pre-processing
described above. A striking result of frequency analysis is that
there are dramatically fewer distinct crashes relative to total
crashes (see Figure 1). Further, the frequency of distinct
crashes is unevenly distributed. Across programs, the call-stack
data displayed largely the same pattern: most of the weight was
distributed among a few crashes, with the rest rarely occurring
(See Figure 2).

3 TOPOLOGICAL MODEL

In this section, we propose a model to frame the complex
dependency relationships between the terms T appearing
across a set of call-stacks C. Our model is inspired by the
work of [5] on finite topological spaces, where pre-orders,
equivalence classes and posets capture certain topological
interactions between points. Our applications will use
primarily the poset representation of the data, but we have
included the topological perspective which motivated the
original idea with the hope that future work may be able
to further incorpate the topological characteristics of
the model.

Recall that in any topological space X, the open neighborhood
N (x) of a point x ∈ X is the set of open sets containing x. A rough
intuition of point-set topologies over finite sets is that elements

FIGURE 1 | A simplified call-stack in our data-set with and without function terms.
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are considered close when they have similar open
neighbourhoods. Our goal is to create a topology over the set
of terms T where those that occur in a similar set of call-stacks
are close.

3.1 Call-Stack Topology
Given a set of call-stacks C comprised of terms T , we define the
call-stack topology T (C) on T to be that generated by treating
each call-stack c ∈ C as an open set of terms. The complete

TABLE 1 | The number of crashes generated by fuzzing each program, and the number of unique crashes after whitelisting and removed exact duplicates. Within the set of
call-stacks, some files were either blank or unable to be opened. We discarded such files, as appears in the second column from the right.

Binary Extension Version Call stacks Discarded (per 1,000) Distinct

SoX mp3 14.4.2 40,017 1 (0.02) 12
Librsvg Svg 2.40.20 6,276 94 (15) 68
Libtiff Tiff 4.0.9 5,486 2 (0.36) 9
Freetype Ttf 2.5.3 17,034 1 (0.06) 51
SoX Wav 14.4.2 30,856 1 (0.03) 11
Libxml2 Xml 2.9.0 240,821 7,467 (31) 3,175

FIGURE 2 | Frequency (logarithmic scale) distribution of crashes in each binary, where the crash ID is with respect to distinct call-stacks.
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collection of open sets in T (C) is then formed by taking all
possible intersections and unions of call-stacks from C.

Unlike many topologies we are familiar with, e.g., topologies
generated by open balls in a metric space, the call-stack topology
is seldom Hausdorff. In our context, the looser criterion of a T0

space is a more useful notion of point separation. Recall that a T0

space (X,N ) is one where points may be distinguished by their
open neighbourhoods; explicitly, for each pair of points x, y ∈ X
there exists either an open set in N containing x without y or y
without x.

Since distinct terms can appear in the same subset of call-
stacks, T (C) is not even T0. However, we can transform T (C)
into a T0 space by taking the Kolmogorov quotient (see [7]). The
Kolmogorov quotient ~X is obtained from (X,N ) by the
equivalence relation x ∼ y whenever they have the same open
neighborhoodN (x) � N (y). It is known that ~X and (X,N ) have
the same homotopy type. By taking the Kolmogorov quotient of
the call-stack topology, one reduces the object of study from a
potentially large set of terms T into a more manageable set of
equivalence classes of terms ~T .

The following simple lemma shows that one may characterize
equivalence classes in the Kolmogorov quotient of the call-stack
topology by examining the set of call-stacks directly rather than
the topology. For t ∈ T , we refer to the set of call-stacks in C
which contain t as the call-stack neighborhood, using the
notation C(t).

LEMMA 1. For a set of call-stacks C comprised of terms T , two
terms t1 ∼ t2 are equivalent if and only if C(t1) � C(t2).

PROOF. The definition of the equivalence relation is t1 ∼ t2
whenever N (x) � N (y) in the call-stack topology. Hence, we
need to show that open neighbourhoods N (x) � N (y) are
equal if and only if call-stack neighbourhoods C(t1) � C(t2)
are equal.

Suppose that C(t1)≠ C(t2). Without loss of generality, suppose
there exists c ∈ C such that t1 ∈ c and t2 ∉ c. By the definition of
call-stack topology, c is open and hence a member ofN (t1). Since
t2 ∉ c, it follows that N (t1)≠N (t2), proving one side of the
statement.

Conversely, suppose that C(t1) � C(t2), and further suppose
that U ∈ N (t1). All open sets in the topology generated by a set C
may be expressed in the form

U � ∪
j
∩
i
Ci,j (1)

where each Ci,j ∈ C is a generating set. The assumptionU ∈ N (t1)
implies that t1 ∈ U and further that there exists j such that t1 ∈ Ci,j
for all i. Since we have assumed that C(t1) � C(t2), t1 ∈ ∩iCi,j
implies that t2 ∈ ∩iCi,j4U as well. This implies that
N (t1)4N (t2). By the same argument N (t2)4N (t1), thus
N (t1) � N (t2), and finishing the proof.

According to the above lemma, equivalence classes in the
Kolmogorov quotient of the call-stack topology consist of terms
that occur in the same set of call-stacks. The intuition is that by
taking the Kolmogorov quotient, we only consider terms up to the
information of which call-stacks they appear in. The composition
of equivalence classes in such a quotient will be a key feature for
analysis in our application.

In theory, calculating such equivalence classes requires
knowledge of open neighbourhoods and, ergo, the entire
gamut of open sets in the call-stack topology. Aside from
providing useful intuition, the above lemma also ensures that
we can avoid this computationally expensive task, attaining
equivalence classes indirectly by comparing the call-stack
neighbourhoods of pairs of terms.

Example 1. In Figure 3, we depict a set of three call-stacks. In
the center of the Figure, the three circles each represent a
generating set for the call-stack topology T (C) over the
constituent terms T of C. The coloring of the terms represents
their partition into equivalence classes under the Kolmogorov
quotient operation. Following Lemma 1, equivalence classes
consist of terms sharing identical call-stack neighbourhoods.
This example also highlights that both the ordering of terms
in the call-stack and the frequency of each term within it are both
disregarded by the model.

3.2 Call-Stack Partial Order
In this section we equip the set of call-stack terms with the
additional structures of a pre-order and partial order. Our
approach in later sections is to use this structure to examine
relations between terms in different equivalence classes. For any
topological space, one may use the structure of the open sets to
define a pre-order over its points called the specialization pre-
order. This may be defined in the following equivalent
statements.

DEFINITION 1. For a topological space X, the specialization pre-
order (X,<�) over X is given by either

x ≤ y wheneverN (y)4N (x)
or equivalently

x ≤ y whenever y ∈ ∩
U ∈ N (x)

U

The specialization pre-order forms a partial order over X
precisely when X is a T0 space, with the T0 condition ensuring
that the order relation satisfies the anti-symmetry condition: x ≤ y
and y ≤ x implies x � y.

DEFINITION 2. The call-stack pre-order on a set of call-stacks
T ≤ (C) is the specialization pre-order over the call-stack
topology T (C).

DEFINITION 3. The call-stack poset on a set of call-stacks ~T ≤ (C)
is the specialization pre-order over the Kolmogorov quotient
~T(C) of the call-stack topology.

Unlike the call-stack topology T (C) in general, the
Kolmogorov quotient ~T(C) of the call-stack topology is
guaranteed to be T0 space (see [7] for a full survey of
Kolmogorov quotients). Note here that the call-stack poset is
defined over equivalence classes of terms within the call-stacks,
rather than the individual terms themselves. In moving to this
construction, we reduce the space of information we are working
with; order theoretic notions are considered between blocks of
terms rather than individual ones.

As is the case for equivalence classes, the call-stack partial
order can be computed without explicitly calculating the open
sets in the call-stack topology.
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LEMMA 2. Two classes of terms [t1], [t2] ∈ ~T(C) satisfy an order
relation [t1]≤ [t2] in the call-stack partial order if and only
if C(t2)4C(t1).

PROOF. Suppose first that C(t2)4C(t1). Let U ∈ N (t2) be an
open neighborhood of t2 in the call-stack topology. As in
Equation 1, U may be expressed in the form

U � ∪
j
∩
i
Ci,j

where there exists j such that t2 ∈ ∩iCi,j. Since C(t2)4C(t1), it
follows that t1 ∈ ∩iCi,j also, implying that U ∈ N (t1) and
N (t2)4N (t1). Thus, [t1]≤ [t2] as required.

In the other direction, suppose that C2 is not a subset of C1.
Then there exists c ∈ C(t2) such that c ∉ C(t1). Since c is open in

the call-stack topology, c ∈ N (t2) and c ∉ N (t2), implying that
N (t2)?N(t1) and thus [t1]≤ [t2].

The above lemma suggests how one should interpret the call-
stack partial order: two sets of terms [t1], [t2] ∈ [t1], [t2] ∈ ~T(C)
satisfy an order relation [t1]≤ [t2] when every call-stack
containing the [t2] terms also contains the [t1] terms. In this
sense, witnessing the terms in [t2] depends on witnessing the
terms in [t2] across the call-stacks in C.

Example 2. In Figure 4, we depict the call-stack poset
corresponding to the example call-stack topology provided in
Example 1. Each circle contains an equivalence class of terms that
have identical call-stack neighbourhoods. Lemma 2 tells us that an
order relation [t1]≤ [t2] between classes occurs when C(t2)4C(t1);
namely, when all call-stacks containing t2 also contain t1.

FIGURE 3 | Three call-stacks C and their corresponding generating sets over their constituent terms T .

FIGURE 4 | The call-stack poset corresponding to the call-stack topology defined in Example 1.
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3.3 Function Term Obfuscation
One of the key research questions is how much information can
be extracted from the call-stack when terms are removed. Let C be
a collection of call-stacks, tokenized into a set of terms T . To
consider the effect on the model of removing a single term t ∈ T ,
let T ’bT ∖{t} and

C’b{c∖(c∩{t})|c ∈ C}
be the set of call stacks with the term t removed. Note here that
each c ∈ C is a set of terms c4T , so the set notation c∖(c∩{ t })
makes sense. The following lemma describes the effect on the call-
stack poset when t is removed.

LEMMA 3. Suppose t1, t2 ∈ T . Then

1. [t1]≠ [t2] in ~T(C)if and only if[t1]≠ [t2]inT̃ ′(C′).
2. [t1]≤ [t2]in ~T ≤ (C)if and only if[t1]≤ [t2]in T̃ ′(C′).

PROOF. For (1), [t1]≠ [t2] in ~T(C) if and only if there exists
c ∈ C such that either t1 ∈ c and t2 ∉ c or t1 ∉ c and t2 ∈ c. This
occurs if and only if there exists C′ ∈ C such that either t1 ∈ C′ and
t2 ∉ C′ or t1 ∉ C′ and t2 ∈ C′, which is equivalent to [t1]≠ [t2] in
~T ′ ≤ (C). For (2), [t1]≤ [t2] in ~T ≤ (C) 5
C(t2)4C(t1)5C′(t2)4C′(t1)5[t1]≤ [t2] in ~T ′ ≤ (C′).

One can summarize the above result as the fact that ~T ′(C′) is
isomorphic to ~T (C) whenever the singleton {t} is not an
equivalence class. When it is an equivalence class, it is the
only difference between the two call-stack posets ~T ≤ (C) and
~T ′ ≤ (C′). By inductively removing all of the function terms,
F ⊂ T , and applying the lemma at each step, we attain the
following corollary.

COROLLARY 1. Let T̃″(C″) be the call-stack poset over
~T ″bT ∖F generated by

C″b{c∖(c∩F )|c ∈ C}
Then ~T ″ ≤ (C″) is the sub-poset of ~T(C) spanned by equivalence
classes

{[x] ∈ ~T(C)
∣∣∣∣∣∣[x]?F}

In other words, whenever we remove function terms from the
model, the structure of the call-stack poset is unchanged away
from classes comprised solely of function terms. When a
function term t shares an equivalence class with non-
function terms, these may be used to recover its structural
dependency information even when t is removed. The point of
the above theorems is to motivate the idea that many attributes
of the call-stack poset are retained in the case where some
terms are missing.

4 FUNCTION TERM RECONSTRUCTION

The goal of this paper is to reconstruct information about
function terms from call-stacks in which they are obscured. In
this section, we present a small-scale experiment on our linux
data set using features extracted from the call-stack
topology model.

Accordingly, we must first define what we mean by ‘function
information.’ When the function names are missing, it is not
possible to recover them explicitly from the call-stack data. The
next best data, and what we choose to focus on in this paper, is to
recover the set of positions within the call-stacks that share a
common function name. This notion is captured in the following
definition.

DEFINITION 4. For a term t ∈ T within a set of call stacks C,
define the frame trace FTC(t) of t to be the set of pairs

FTC(t)b{(c, n)|t ∈ c[n]}
where c[n] is the nth frame of call stack c.

If t appears in multiple frames c[n] and c[n′] within the same
crash c ∈ C, then both (c, n) and (c, n′) are elements of FTC(t).
For any pair of terms of the same type in a set of call stacks, their
frame traces must be disjoint. It is impossible to guess the explicit
names of obscured function terms. However, if one can recover
the frame traces of every function, then one can generate call
stacks that are equivalent up to re-naming function terms.

By performing logistic regression over features extracted from
the call-stack model, we will show that a surprising number of
function frame traces can be recovered without any explicit
knowledge of function names. This is particularly striking
given that the user also knows nothing about the internal
structure of the program. Additionally, we provide an
algorithm for generating fake function names based on the
guessed frame traces, making sets of call stacks more human-
readable in the setting where function names are missing.

4.1 Preliminary Analysis of Call-Stack
Equivalence Classes and Poset Structure
To motivate the use of our novel tools in the task of recovering
function frame traces, we first present a basic analysis of the data
through the lens of the call-stack topology and poset. In
particular, we study the characteristics of equivalence
classes—their size and the types of terms of which they
comprise—as well as the order relations and dependencies
they exhibit on one another.

4.1.1 Basic Statistics
Recall that the equivalence classes in the call-stack topology
consist of terms that occur in the same set of call stacks.
Table 2 shows the extent of reduction from the number of
terms to their equivalence classes under the quotient
operation.

Our primary interest is to understand the effect of obscuring
function terms. Corollary 1 states that removing the function
terms only alters the model’s structure at equivalence classes
consisting of function terms alone. Accordingly, we say a function
term f is retained under the quotient operation when it is
equivalent to a non-function term t. Notably, in the case
f ∈ F is retained, there exists a term t ∈ T ∖F with call-stack
set equivalent to f.

Table 2 shows that, on average, 86% of function terms are
retained. Extensive term equivalences in the call-stack topology
mean that a dramatic reduction in the available terms has little
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effect on the call-stack poset structure. The main takeaway from
this analysis is that function terms rarely occur in an equivalence
class on their own.

4.1.2 Patterns Relating Line Numbers and Function
Terms
When two terms are in the same equivalence class, they occur in
the same set of call-stacks. However, our topological model
encodes none of the information about which frame they
occur in. Our toy example (Example 1) suggested that line
numbers and functions in the same equivalence class tend to
occupy similar frames in the call-stack. In a thorough
examination of the data, we observed two patterns,
demonstrating each with the example call stacks in Figure 5.

• Pattern 1: When multiple line numbers belong to an
equivalence class, they are usually paired with functions
in the same frame except for the line number in the bottom
frame. The lowest line number appears to act as a switch
point between blocks of terms, instigating a run of function
calls that are either seen in only one call-stack or always
together. In Figure 5, this occurs in the brown and green
equivalence classes of the example on the left.

• Pattern 2: When a single line number is in an equivalence
class with a function, it is likely paired with a function one
frame above. In Figure 5, this occurs in the purple and
orange boxes of the left call-stack, and the purple, orange and
green boxes of the right.

It is important to state that neither pattern reflects an
underlying mathematical truth. Rather, they seem to be a
symptom of programming convention. Namely, as source code
tends to decompose into many different simple functions nested
within one another, runs of frames in the call-stack tend to cycle
through distinct function names. Further, these patterns only
apply in the case that a line number occurs in the same set of
crashes as a function, in which case we assume that they describe
how the frames of a function and line number are related.

4.2 Method
Our method for frame trace recovery is centered around
leveraging structure of the call-stack topology and poset. To
do so, we generate the call-stack equivalence classes T̃″(C)
and poset ~T″ ≤ (C) from the incomplete data T ″, i.e., the set
of terms with function names omitted. The intuition of Corollary
1 — as well as the empirical observations of Table 2 — suggest
that such objects should be relatively similar to their counterparts
~T (C), ~T≤ (C) generated from the full data that we aim to
partially reconstruct.

Once such objects are constructed, our approach consists of
the following two steps.

1. Classifying Equivalence Classes: Within the incomplete
data model, the terms of an equivalence class [t] ∈ T̃″(C)
consist only of line numbers and module names. However,
in the complete data model, there may exist function terms
that are also in the corresponding class. The first step of

TABLE 2 | Call-stack model and term statistics for each linux program.

SoX (m) Librsvg Libtiff Freetype SoX (w) Libxml Mean

Modules 15 15 8 23 14 17
Functions 36 92 17 48 34 151
Line num 43 99 21 81 40 361
Total terms 94 206 46 152 88 529
Classes 33 113 14 66 27 343
Reduction % 65% 45% 70% 56% 69% 35% 57%
Order relations 108 1,024 22 352 89 2,220
F-loss 4 32 0 6 2 29
F-retention % 89% 65% 100% 88% 94% 81% 86%

FIGURE 5 | Example call stacks from the Linux data exhibiting the behavior described by the two patterns. The left and right examples are taken from two separate
libraries, where each of the seven colors represents an equivalence class in the call-stack topology; that is, a set of terms which have identical call-stack neighbourhoods.
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our method is to estimate the likelihood that an
equivalence class [t] ∈ T̃″(C) in the incomplete data
corresponds to an equivalence class containing a
function term in the full data ~T(C).

2. Pairing Frame Traces: The second step of our method is to
apply our two observations above to obtain a heuristic for
predicting frame trace locations of function terms. This is
done by selecting line numbers within a given equivalence
class whose frame traces are likely to be paired with a function
term frame trace in the complete data. The frame traces of
these line numbers serve as our set of predictions for function
frame traces and enable us to partially reconstruct the data set.

4.2.1 Classifying Equivalence Classes Within Libxml
The first step in our method of frame trace recovery is learning to
detect when an equivalence class contains a function term. Before
tackling the task of classifying equivalence classes in the
incomplete data, we restrict our focus to a small study of
libxml, which offers the largest base of terms and equivalence
classes fromwhich to garner information.We outline our method
here to examine the relationship between the structure of an
equivalence class within the libxml call-stack poset and the types
of terms that it contains.

Consider the following three binary classification problems
over the equivalence classes ~T (C) in the call-stack topology.

1. Modules: each equivalence class [t] ∈ ~T(C) is labeled 1 if
there exists a module m ∈ M∩[t] and 0 otherwise.

2. Functions: each equivalence class [t] ∈ ~T (C) is labeled 1 if
there exists a function f ∈ F ∩[t] and 0 otherwise.

3. Line Numbers: each equivalence class [t] ∈ ~T(C) is labeled
1 if there exists a line number l ∈ L∩[t] and 0 otherwise.

We address each of the above by performing a simple logistic
regression based on four features in the call-stack model. For an
equivalence class [t] ∈ ~T(C), these are as follows.

1. The size |{t′ ∈ [t]}| of an equivalence class.
2. The frequency (number of call-stacks) of the class

|{C ∈ C|[t]4C}|.
3. The weighted in-degree

∑
[t′]

ϕ([t′]≤ [t])

of the class within the order graph of the call-graph poset ~C≤ (T).

4. The weighted out-degree

∑
[t′]

ϕ([t]≤ [t′])

of the class within the order graph of the call-graph poset
~C≤ ([T]).

The names given to features 3 and 4 reference the fact that a
poset p can be represented as a graph whose nodes are elements of
p and edges are order relations p≤ q. The in- and out-degree of [t]
are the number of equivalence classes that [t] depends on and
that depend on [t] respectively. To incorporate the magnitude of
such dependencies, the weight of an order relation is determined
by the function

ϕ([t]≤ [t′]) � |{C ∈ C|[t′]4C}|
|{C ∈ C|[t]4C}|

Lastly, for normalization each of the four variables is scaled by
minimum and maximum to lie within [0, 1], making the logistic
regression weights comparable across variables.

Since the classification labels are unbalanced, the classes were
re-weighted according to the to sci-kit learn class re-weighting
scheme. To prevent over-fitting, the data was randomly split into
an 80% training set and 20% testing set. To measure results, we
use the F1 score and Area Under (precision-recall) Curve, which
is suggested to be the most sensible measurements when
predicting heavily weighted classes in binary classification
(See [8]).

As a baseline to compare the statistical significance of our
method, we propose the following binary classification null-
model. Firstly, we empirically derive three probabilities from
the ratio of the number of equivalence classes containing each
term over the total number of equivalence classes. For each type
of term, the null-model randomly guesses whether each class
contains that particular term type with the empirically derived
probability

4.2.2 Classifying Incomplete-Data Equivalence
Classes
Once we have attained logistic regression weights for the libxml
data, we then apply them to other programs. An important point
of this stage is that, unlike the libxml program experiment, we
withhold the full-data with function names as a validation set.
This means that the call-stack topology and poset are generated
for each program from the call-stacks C″ with function terms
obscured T ″.

From each of these objects, we extract the same four features as
above, normalizing in the same way to ensure that the learned
libxml weights scale appropriately. The goal of this stage is to
predict whether an equivalence class in the incomplete data is
likely to contain a function in the full-data, thus predicting a set of
call-stacks which share a common missing function term.

4.2.3 Pairing Line Numbers With Function Frame
Traces
The outline of our approach to predicting function frame traces is
to 1) guess when a line number in the incomplete-data model was
likely to have been in an equivalence class with a function name
and 2) generating predicted frame traces for functions from line
number frame traces using our two heuristics. Algorithm LABEL:
predict_FTs ties these two steps together, taking in the set of
obscured call-stacks T ″(C″) and their frame traces FTC″ then
returning a set of predicted frame traces. The value p is a cut-off
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likelihood for using logistic regression weights to decide when a
pattern should be applied to predict a frame trace.
Algorithm 1PredictFTs(~T ″(C″),FTC″ , p).
CT
predicted fts � []
[t] ∈ ~T ’’(C’’)

P(∃f ∈ [t])≥ p
8|[t]∩L|> 1

8lines � ([t]∩L).drop bottom linenum( )
l ∈ lines

predicted fts � predicted fts + [FTC’’(l) for l ∈ lines]
|[t]∩L| � 1
8l � [t]∩L

predicted fts.append((c,min(n − 1, 0))|(c, n) ∈ FTC’’(l))
predicted fts

In our algorithm, the logistic regressionweights in Line 3 learned over
libxml serve as the basis for detecting whether there exists a function
in each line number’s equivalence class. Using only the libxmlweights
ensures that when we predict function frame traces, we require no
information about function names in other programs beforehand.

The logistic regression is learned over the full-term model of
libxml then performed over the call-stack topology models
generated without terms in other programs. There are two
significant obstacles that the model must overcome to be
successful. Firstly, the model must exhibit transference if the
regression weights from libxml are to work for other programs.
Secondly, the model must be robust to term removal given that it
classifies over amodel without function terms. On the second point,
Corollary 1 states that the call-stack model retains much of its
structure when function terms are removed, which suggests that the
logistic regression weights have a chance of still being applicable.

The role of the logistic regression model is primarily to act as a
gate-keeper, probabilistically determiningwhen a given line number
is not in the same class as any function. This prevents the model from
over-predicting instances where a function’s frame trace should be
paired to that of a line number. The method drop bottom lineum in
Line 5 removes the line number with the lowest average frame trace
from the set, which is necessary to apply pattern 1.

4.3 Results
4.3.1 Learning Libxml Logistic Regression Weights
In Table 3 we present the results of our binary classification
experiment within the libxml data described in Subsection 4.2.1.
The results show that the inclusion of call-stack topology features
significantly improves the quality of prediction across terms when
compared with the null model. To quantify the effect of each feature

in classification, we plot the logistic regression weights in Figure 6.
In all cases, the frequency of a term has little effect on classification.
For individual term types, there are several observations about the
model variables that detect its presence in an equivalence class.

• Modules are likely to be in smaller equivalence classes with
lower weighted in-degree and higher weighted out-degree. This
means more terms depend on them than they depend on.
• Functions are likely to be in large equivalence classes, with high
out-degree. This means many terms are likely to depend on them.
• Line Numbers are likely to be in larger equivalence classes,
with a low weighted out-degree. This means terms are unlikely
to depend on line numbers.

Each observation agrees with the structure of library dependencies,
where line numbers depend on functions, and functions depend on
modules. The logistic regressionmodel is notably adept at detecting
the presence of function terms within a given equivalence class.

4.3.2 Frame Trace Recovery
The PREDICTFTS algorithm is run over each Linux program. Since
the function term information in libxml was used to generate the
logistic regression weights, we exclude it from the analysis. To
measure the results, we compare the set of predicted function
frame traces generated by the algorithm against the set of actual
function frame traces in each set of call stacks.

Table 4 contains the results of each experiment with three
different cut-off probabilities 0.4, 0.5 and 0.6. Despite the heavy
reliance on fairly naïve heuristics, our model has a reasonable mean
precision of above 0.75 is each case. Notably, both precision and
recall of frame traces are relatively stable across each program. This
suggests that the libxml logistic regressionweights and the heuristics
both exhibit some degree of transference across programs.

In Figure 7, we analyze the effect of the cut-off probability
parameter in detail. When this parameter is high, the algorithm
requires a large degree of confidence that an equivalence class
contains a function term before predicting a frame trace. This is
reflected in an increasing precision and decreasing recall as the
cut-off probability increases.

The cut-off probability parameter indirectly allows the user to
dictate the importance of precision at the expense of recall. Given
that the purpose of our experiment is to reliably reconstruct what
function names we can, the importance of precision outweighs
that of recall. Indeed, there exist function names in the data that
could not possibly be recalled from the module and line number
information alone. For example, large swathes of function names
are hidden behind the repeated line number 0 in the librsvg data
(Figure 8), rendering their recall impossible by our method.

TABLE 3 | Proportion of equivalence classes containing each term type, and logistic regression F1 score and AUC improvements on the null-model for the libxml call-stacks.

Module Function Line number

% Equivalence Classes 4.76% 65.01% 88.06%
F1 0.40 0.89 0.92
Null model 0.00 0.40 0.90
AUC 0.20 0.94 0.97
Null model 0.04 0.43 0.93
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Example 3. To make call stacks without function terms more
readable we insert random words into each predicted frame trace.
Keeping with the afl theme, we sample random words from the
surnames of champion players from the Richmond Tigers
Australian Football League (AFL) team. These words are
consistent across the set of call stacks, making it easier for the
user to visually compare different call stacks.

Figure 9 demonstrates two reconstructed call stacks from the
SoX program. In the original call-stacks, the coloring represents

equivalence classes in the model. We color the reconstructed call-
stacks the same, noting that when we attempt to reconstruct we
do not know what equivalence classes will contain functions a
priori.

As is evident, words representing functions are consistent
across the set of call-stacks when frame traces are correctly
predicted. The ???? terms in the reconstructed call-stacks
represent function frame traces that the algorithm did not
attempt to predict.

FIGURE 6 | Logistic regression weights for libxml fitted to each term type.

TABLE 4 | Precision and recall of PREDICTFTS algorithm at cut-off probabilities 0.4, 0.5 and 0.6.

SoX (m) Librsvg Libtiff Freetype SoX (w) Mean Cut-off probability

Precision 0.71 0.57 1.0 0.78 0.67 0.75
Recall 0.47 0.29 0.71 0.6 0.47 0.50 0.4
Precision 0.71 0.71 1.0 0.76 0.66 0.77
Recall 0.47 0.22 0.71 0.52 0.47 0.48 0.5
Precision 0.73 0.89 1.0 0.86 0.74 0.84
Recall 0.44 0.18 0.53 0.52 0.41 0.42 0.6

FIGURE 7 | Precision and recall for the PredictFTs algorithm on each program indexed by the cut-off probability parameter.
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In Figure 10, we explain which fake function names were
paired with which line numbers. We describe how each fake
function name pairs with an original in the case that it was a
correct prediction, as well as which of the two heuristics were used

to pair it with the frame trace of a given line number. The only
incorrect prediction was the fake function name DELEDIO,
which erroneously predicted that the line number 219 was
paired with a function in the original call-stack set via heuristic 2.

FIGURE 8 | The top eight frames from an example librsvg call-stack.

FIGURE 9 | Two call stacks from the SoX data set, along with their reconstructions using the PredictFTs algorithm.
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5 RELATED WORK

There is a large collection of research centered on crash triage, in
particular in crash de-duplication. The most common tasks are
either 1) to automatically de-duplicate full bug-reports submitted
to open-source software or 2) to bucket crashes by dissimilarity.
In contrast to the setting considered in this paper, most research
concerns full bug reports where call-stacks are only a subset of the
entire information. In particular, the language in user-reported
comments is incorporated, and in some cases the central
object [9].

Some of the highest rates of an expert-validated crash
duplicate recall are attributed when program execution traces
are also recorded [10]. Including call stacks in bug report data has
been shown to increase de-duplication recall of full bug reports
significantly [11] validating that they are an important object of
study in crash triage. We refrained from using the common
methods outlined in the above research, showing that a
reasonable whitelisting and de-duplication was enough to
significantly reduce the number of call-stacks.

Other models of call-stacks exist, albeit with slightly different
machinery. For example, the crash-graph defined in [12] serves as
a way to graphically compare the similarity between call-stacks.
The use of such a model for function frame trace recovery could
be an avenue for future research.

6 LIMITATIONS

One of the main limitations of our work is that it is performed on
a relatively small data-set. Indeed there are less than 100 distinct
call-stacks in each Linux program we have tested, barring the
libxml data used to generate the logisitic regression weights.
When the set of call-stacks is not very diverse, there may be a
tendency to only see function terms with a single line number,
making them easier to recover using our method.

A second limitation of our model is that it relies on two fairly
naïve patterns. It is not clear if 1) such patterns yield similar
results on larger data-sets or 2) whether such patterns could be
improved upon or replaced with a more scientific approach. At

present, the heuristic method means that our model can only
predict function terms that are consistently associated with a
single line number across the call-stack set. Our hope is that more
sophisticated pattern recognition techniques applied to our
topological model could accommodate cases such as frames
that pair a particular function with various line numbers. In
particular, since the call-stack poset can be thought of as a graph,
we expect that more sophisticated techniques from the graph-
learning literature could be leveraged 1) in lieu of our logistic
regression model and 2) to derive better heuristics and push recall
beyond 40 − 50% while preserving precision.

7 CONCLUSION

In summary, our main contribution has been to present a novel
topological model to address the problem of function term
reconstruction in call-stack data. We performed a small-scale
experiment, providing an algorithm to predict the frame-traces of
function terms which have been obscured in the call-stack data.
Despite the limitations, the performance of the model is relatively
encouraging, showing that more information about obscured
function terms can be recovered than one may initially suspect.
In the future, we envision further research could be done within this
framework to improve the recall of the PREDICTFTS algorithm.

We also showed that there is a fundamental lack of diversity in
our call-stack data, and we hypothesize that the brute-force
nature of fuzzing means that this will probably occur in most
data-sets generated by a fuzzer. It is an open question whether our
method will work on larger, more diverse call-stack data-sets.
Given that some level of dependence between terms is required to
form equivalence classes, there is no guarantee that similar results
will be achieved.

Lastly, the topological model used here is an example of a
larger framework defined in [13]. The extended model is used to
tackle applications in gray-box fuzzing, with the goal being to
help guide fuzzing campaigns to generate more diverse call-stack
data. The use of these models of dependency relations may be
applicable in broader contexts outside of fuzzing, such as
analyzing dependencies between genes in medical data.

FIGURE 10 | The list of functions whose frame trace was recovered, and the fake function names and line numbers that were paired.
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Deep Graph Mapper: Seeing Graphs
Through the Neural Lens
Cristian Bodnar*, Cătălina Cangea* and Pietro Liò

Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom

Graph summarization has received much attention lately, with various works tackling the
challenge of defining pooling operators on data regions with arbitrary structures. These
contrast the grid-like ones encountered in image inputs, where techniques such as max-
pooling have been enough to show empirical success. In this work, we merge the Mapper
algorithm with the expressive power of graph neural networks to produce topologically
grounded graph summaries. We demonstrate the suitability of Mapper as a topological
framework for graph pooling by proving that Mapper is a generalization of pooling methods
based on soft cluster assignments. Building upon this, we show how easy it is to design
novel pooling algorithms that obtain competitive results with other state-of-the-art
methods. Additionally, we use our method to produce GNN-aided visualisations of
attributed complex networks.

Keywords: mapper, graph neural networks, pooling, graph summarization, graph classification

1 INTRODUCTION

The abundance of relational information in the real world and the success of deep learning
techniques have brought renowned interest in learning from graph-structured data. Efforts in
this direction have been primarily focused on replicating the hierarchy of convolutional filters and
pooling operators, which have achieved previous success in computer vision Sperduti. (1994); Goller
and Kuchler. (1996); Gori et al. (2005); Scarselli et al. (2009); Bruna et al. (2014); Li et al. (2015),
within relational data domains. In contrast to image processing applications, where the signal is
defined on a grid-like structure, designing graph coarsening (pooling) operators is a much more
difficult problem, due to the arbitrary structure typically present in graphs.

In this work, we introduce Structural Deep Graph Mapper (SDGM)1—an adaptation of Mapper
(Singh et al., 2007), an algorithm from the field of Topological Data Analysis (TDA) (Chazal and
Michel, 2017), to graph domains. First, we prove that SDGM is a generalization of pooling methods
based on soft cluster assignments, which include state-of-the-art algorithms like minCUT (Bianchi
et al., 2019) and DiffPool (Ying et al., 2018). Building upon this topological perspective of graph
pooling, we propose two pooling algorithms leveraging fully differentiable and fixed PageRank-based
“lens” functions, respectively. We demonstrate that these operators achieve results competitive with
other state-of-the-art pooling methods on graph classification benchmarks. Furthermore, we show
how our method offers a means to flexibly visualize graphs and the complex data living on them
through a GNN “lens” function.
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2 RELATED WORK

In this section, we investigate the existing work in the two broad
areas that our method is part of—graph pooling (also deemed
hierarchical representation learning) and network visualisations.

2.1 Graph Pooling
Algorithms have already been considerably explored within
GNN frameworks for graph classification. Luzhnica et al.
(2019) propose a topological approach to pooling, which
coarsens the graph by aggregating its maximal cliques into
new clusters. However, cliques are local topological features,
whereas our methods leverage a global perspective of the graph
during pooling. Two paradigms distinguish themselves among
learnable pooling layers: Top-k pooling based on a learnable
ranking (Gao and Ji, 2019), and learning the cluster
assignment (Ying et al., 2018) with additional entropy and
link prediction losses for more stable training (DiffPool).
Following these two trends, several variants and incremental
improvements have been proposed. The Top-k approach is
explored in conjunction with jumping-knowledge networks
(Cangea et al., 2018), attention (Huang et al., 2019; Lee et al.,
2019) and self-attention for cluster assignment (Ranjan et al.,
2019). Similarly to DiffPool, the method suggested by Bianchi
et al. (2019) uses several loss terms to enforce clusters with
strongly connected nodes, similar sizes and orthogonal
assignments. A different approach is also proposed by Ma
et al. (2019), who leverage spectral clustering.

2.2 Graph Visualization
Graph visualization is a vast topic in network science. We
therefore refer the reader to existing surveys, for a complete
view of the field (Nobre et al., 2019; von Landesberger et al., 2011;
Beck et al., 2017), and focus here only on methods that, similarly
to ours, produce node-link-based visual summaries through the
aggregation of static graphs. Previous methods rely on grouping
nodes into a set of predefined motifs (Dunne and Shneiderman,
2013), modules (Dwyer et al., 2013) or clusters with basic
topological properties (Batagelj et al., 2010). Recent
approaches have considered attribute-driven aggregation
schemes for multivariate networks. For instance, PivotGraph
(Wattenberg, 2006) groups the nodes based on categorical
attributes, while van den Elzen and van Wijk. (2014) propose
a more sophisticated method using a combination of manually
specified groupings and attribute queries. However, these
mechanisms are severely constrained by the simple types of
node groupings allowed and the limited integration between
graph topology and attributes. Closest to our work, Mapper-
based summaries for graphs have recently been considered by
Hajij et al. (2018). Despite the advantages provided by Mapper,
their approach relies on hand-crafted graph-theoretic “lenses,”
such as the average geodesic distance, graph density functions or
eigenvectors of the graph Laplacian. Not only are these functions
unable to fully adapt to the graph of interest, but they are also
computationally inefficient and do not take into account the
attributes of the graph.

3 BACKGROUND AND FORMAL PROBLEM
STATEMENT

3.1 Formal Problem Statement
Consider a dataset whose samples are formed by a graph
Gi � (Vi, Ei), A d-dimensional signal defined over the nodes of
the graph hi : V→Rd and a label yi associated with the graph,
where i ∈ I, a finite indexing set for the dataset samples. We are
interested in the setting where graph neural networks are used to
classify such graphs using a sequence of (graph) convolutions and
pooling operators.While convolutional operators act like filters of
the graph signal, pooling operators coarsen the graph and reduce
its spatial resolution. Unlike image processing tasks, where the
inputs exhibit a regular grid structure, graph domains pose
challenges for pooling. In this work, we design topologically
inspired pooling operators based on Mapper. As an additional
contribution, we also investigate graph pooling as a tool for the
visualization of attributed graphs.

We briefly review the Mapper (Singh et al., 2007) algorithm,
with a focus on graph domains (Hajij et al., 2018). We first
introduce the required mathematical background.

Definition 3.1: Let X,Z be two topological spaces, f : X→Z, a
continuous function, and U � (Ui)i ∈ I a cover of Z. Then, the pull
back cover f −1(U) of X induced by (f ,U) is the collection of open
sets f −1(Ui), i ∈ I, for some indexing set I. For each f −1(Ui), let
{Ci,j}j ∈ Ji be a partition of f −1(Ui) indexed by Ji. We refer to the
elements of these partitions as clusters. The resulting collection of
clusters forms another cover of X called the refined pull back
cover R(f −1(U)) � {Ci,j}i ∈ I,j ∈ Ji.

Definition 3.2: LetX be a topological space with an open cover
U � (Ui)i ∈ I. The 1-skeleton of the nerve N (U) of U , which we
denote by sk1(N (U)), is the graph with vertices given by (vi)i ∈ I,
where two vertices vi, vj are connected if and only if Ui∩Uj ≠∅.

3.2 Mapper
Given a topological space X, a carefully chosen lens function
f : X→Z and a cover U of Z, Mapper produces a graph
representation of the topological space by computing the 1-
skeleton of the nerve of the refined pull back cover
sk1(N (R(f −1(U)))), which we denote by M(f ,U). We note
that, more generally, the skeleton operator might be omitted, in
which case the output of the algorithm becomes a simplicial
complex. However, for the purpose of this work, we are only
interested in graph outputs. Typically, the input to the Mapper
algorithm is a point cloud and the connected components are
inferred using a statistical clustering algorithm, with the help of
a metric defined in the space where the points live.

Mapper for Graphs. More recently, Hajij et al. (2018)
considered the case when the input topological space X �
G(V , E) is a also a graph with vertices V and edge set E. In a
typical point cloud setting, the relationships between points are
statistically inferred; in a graph setting, the underlying relationships
are given by the edges of the graph. The adaptation of Mapper for
graphs proposed by Hajij et al. (2018) uses a lens function f :
V→R based on graph-theoretic functions and a cover U formed of
open intervals of the real line. Additionally, the connected
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components {Ci,j}j ∈ Ji are given by the vertices of the connected
components of the subgraph induced by f −1(Ui).

However, the graph version of Mapper described above has
two main limitations. Firstly, the graph-theoretic functions
considered for f are rather limited, not taking into account the
signals which are typically defined on the graph in signal
processing tasks, such as graph classification. Secondly, by
using a pull back cover only over the graph vertices, as
opposed to a cover of the entire graph, the method relies
exclusively on the lens function to capture the structure of the
graph and the edge-connections between the clusters. This may
end up discarding valuable structural information, as we later
show in Section 7.7.

4 STRUCTURAL DEEP GRAPH MAPPER

Structural Graph Mapper. One of the disadvantages of the graph
version of Mapper (described in the background section) is that
its output does not explicitly capture the connections between the
resulting collections of clusters. This is primarily because the lens
function f is defined only over the set of vertices V and,
consequently, the resulting pull-back cover only covers V. In
contrast, one should aim to obtain a cover for the graph G, which
automatically includes the edges. While this could be resolved by
considering a lens function over the geometric realization of the
graph, handling only a finite set of vertices is computationally
convenient.

To balance these trade-offs, we add an extra step to the
Mapper algorithm. Concretely, we extend the refined pull back
cover into a cover over both nodes and edges. Given the set of
refined clusters {Ci,j}i ∈ I,j ∈ Ji, we compute a new set of clusters
{C′i,j}i ∈ I,j ∈ Ji where each cluster C′i,j contains the elements of Ci,j

as well as all the edges incident to the vertices in Ci,j. We use RE

(the edge-refined pull back cover) to refer to this open cover of the
graph G computed from f −1(U). Then, our algorithm can be
written as sk1(N (RE(f −1(U)))) and we denote it by GM(f ,U).

Remark 1:We note that Structural Mapper, unlike the original
Mapper method, encodes two types of relationships via the edges
of the output graph. The semantic connections highlight a
similarity between clusters, according to the lens function (that
is, two clusters have common nodes—as before), while structural
connections show how two clusters are connected (namely, two
clusters have at least one edge in common). This latter type of
connection is the result of considering the extended cover over
the edges. The two types of connections are not mutually
exclusive because two clusters might have both nodes and
edges in common.
We now broadly outline our proposed method, using the three

main degrees of freedom of the Mapper algorithm to guide our
discussion: the lens function, the cover, and the clustering
algorithm.

4.1 Lens
The lens is a function f : V→Rd over the vertices, which acts as a
filter that emphasizes certain features of the graph. Typically, d is

a small integer—in our case, d ∈ {1, 2}. The choice of f depends on
the graph properties that should be highlighted by the
visualization. In this work, we leverage the recent progress in
the field of graph representation learning and propose a
parameterized lens function based on graph neural networks
(GNNs). We thus consider a function fθ(v) � gθ(V , E,X)v , where
g is a GNN with parameters θ taking as input a graph G � (V , E)
with n nodes and node features X ∈ Rn×k. For visualization
purposes, we often consider a function composition

fθ(v) � (r+gθ)v, where r : Rn×d′ →Rn×d is a dimensionality
reduction algorithm like t-SNE (van der Maaten and Hinton,
2008).

Unlike the traditional graph theoretic lens functions proposed
by Hajij et al. (2018), GNNs can naturally learn to integrate the
features associated with the graph and its topology, while also
scaling computationally to large, complex graphs. Additionally,
visualisations can be flexibly tuned for the task of interest, by
adjusting the lens gθ through the loss function of the model.

4.2 Cover
The cover U determines the resolution of the output graph. For
most purposes, we leverage the usual cover choice for Mapper,
Rd . When d � 1, we use a set of equally sized overlapping
intervals over the real line. When d � 2, this is generalized to
a grid of overlapping cells in the real plane. Using more cells will
produce more detailed visualisations, while higher overlaps
between the cells will increase the connectivity of the output
graph. When chosen suitably, these hyperparameters are a
powerful mechanism for obtaining multi-scale visualisations.

Another choice that we employ for designing differentiable
pooling algorithms is a set of RBF kernels, where the second
arguments of kernel functions are distributed over the real line.
We introduce this in detail in Section 5.2.

4.3 Clustering
Clustering statistically approximates the (topological) connected
components of the cover sets Ui. Mapper does not require a
particular type of clustering algorithm; however, when the input
topological space X is a graph, a natural choice, also adopted by
Hajij et al. (2018), is to take the connected components of the
subgraphs induced by the vertices f −1(Ui), i ∈ I. Therefore, in
principle, there is no need to resort to statistical clustering
techniques.

However, relying on the topological connected components
introduces certain challenges when the aim is to obtained a
coarsened graph. Many real-world graphs comprise thousands
of connected components, which is a lower bound to the number
of connected components of the graph produced by GM. In the
most extreme case, a graph containing only isolated nodes
(namely, a point cloud) would never be coarsened by this
procedure. Therefore, it is preferable to employ statistical
techniques where the number of clusters can be specified. In
our pooling experiments, we draw motivation from the
relationship with other pooling algorithms and opt to assign
all the nodes to the same cluster (which corresponds to no
clustering).
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We broadly refer to this instance of Structural Graph Mapper,
with the choices described above, as Structural Deep Graph
Mapper (SDGM). We summarize it step-by-step in the
cartoon example in Figure 1 and encourage the reader to refer
to it.

5 STRUCTURAL GRAPH MAPPER FOR
POOLING

We begin this section by introducing several theoretical results,
which provide a connection between our version of Mapper and
other graph pooling algorithms.We then use these results to show
how novel pooling algorithms can be designed.

5.1 Relationship to Graph Pooling Methods
An early suggestion that Mapper could be suitable for graph
pooling is given by the fact that it constitutes a generalization of
binary spectral clustering, as observed by Hajij et al. (2018). This
link is a strong indicator that Mapper can compute “useful”
clusters for pooling. We formally restate this observation below
and provide a short proof.

Proposition 5.1: Let L be the Laplacian of a graphG(V , E) and
l2 the eigenvector corresponding to the second lowest eigenvalue
of L, also known as the Fiedler vector (Fiedler, 1973). Then, for a
function f : V→R, f (v) � l2(v), outputting the entry in the
eigenvector l2 corresponding to node v and a cover
U � {(−∞, ε), (−ε,+∞)}, Mapper produces a spectral bi-
partition of the graph for a sufficiently small positive ϵ.
Proof: It is well known that the Fiedler vector can be used to

obtain a “good” bi-partition of the graph based on the signature of
the entries of the vector (i.e., l2(v)> 0 and l2(v)< 0) (please refer
to Demmel. (1995) for a proof). Therefore, by setting ϵ to a
sufficiently small positive number ε<minv|l2(v)|, the obtained
pull back cover is a spectral bi-partition of the graph.
The result above indicates that Mapper is a generalization of

spectral clustering. As the latter is strongly related to min-cuts
(Leskovec, 2016), the proposition also links them to Mapper. We
now provide a much stronger result in that direction, showing
that Structural Mapper is a generalization of all pooling methods

based on soft-cluster assignments. Soft cluster assignment
pooling methods use a soft cluster assignment matrix
S ∈ RN×K , where Sij encodes the probability that node i
belongs to cluster j, N is the number of nodes in the graph
and K is the number of clusters. The adjacency matrix of the
pooled graph is computed via A′ � ST(A + I)S. Below, we prove a
helpful result concerning this class of methods.

Lemma 5.1: The adjacency matrix A′ � ST(A + I)S defines a
pooled graph, where the nodes corresponding to clusters encoded
by S are connected if and only if there is a common edge
(including self-loops) between them.
Proof: Let L � AS. Then, A′

ij � ∑N
k S

T
ikLkj � 0 if and only if STik �

0 (node k does not belong to cluster i) or Lkj � 0 (node k is not
connected to any node belonging to cluster j), for all k. Therefore,
A′
ij ≠ 0 if and only if there exists a node k such that k belongs to

cluster i and k is connected to a node from cluster j. Due to the
added self-loops,A′

ij ≠ 0 also holds if there is a node k belonging to
both clusters.

Proposition 5.2: GM(f ,U) generalizes approaches based on
soft-cluster assignments.
Proof: Let s : V→△K−1 be a soft cluster assignment function

that maps the vertices to the (K − 1)-dimensional unit simplex.
We denote by sk(v) the probability that vertex v belongs to cluster
k≤K and ∑K

k sk(v) � 1. This function can be completely specified
by a cluster assignment matrix S ∈ RN×K with Sik � sk(i). This is
the soft cluster assignment matrix computed by algorithms like
minCut and DiffPool. Let U � {Ui}i≤K with Ui � {x ∈ △K−1x �
∑jλjuj,∑jλj � 1 and λi〉0} be an open cover of △K−1. Then
consider an instance of GM where everything is assigned to a
single cluster (i.e. same as no clustering). Clearly, there is a one-to-
one correspondence between the vertices of GM(s,U) and the soft
clusters. By Remark 1, the nodes corresponding to the clusters are
connected only if the clusters share at least one node or at least one
edge. Then, by Lemma 5.1 the adjacency between the nodes of
GM(s,U) are the same as those described by A′ � ST(A + I)S.
Thus, the two pooled graphs are isomorphic.
We hope that this result will enable theoreticians to study pooling

operators through the topological and statistical properties of Mapper
(Dey et al., 2017; Carriere et al., 2018; Carrière and Oudot, 2018). At

FIGURE 1 | A cartoon illustration of Structural Deep Graph Mapper (SDGM) where, for simplicity, a graph neural network (GNN) approximates a “height” function
over the nodes in the plane of the diagram. The input graph (A) is passed through the GNN, which maps the vertices of the graph to a real number (the height) (B–C).
Given a cover U of the image of the GNN (C), the edge-refined pull back cover U is computed (D–E). The dotted edges in (D) illustrate connections between the node
clusters (strucutal connections), while the dotted boxes show nodes that appear in multiple clusters (semantic connections). The 1-skeleton of the nerve of the
edge-refined pull back cover provides the pooled graph (F).
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the same time, we encourage practitioners to take advantage of it and
design new pooling methods in terms of a well-chosen lens function f
and cover U for its image. To illustrate this idea and showcase the
benefits of this new perspective over graph pooling methods, we
introduce two Mapper-based operators.

5.2 Differentiable Mapper Pooling
The main challenge for making pooling via Mapper differentiable
is to differentiate through the pull back computation. To address
this, we replace the cover of n overlapping intervals over the real
line, described in the previous section, with a cover formed of
overlapping RBF kernels ϕ(x, xi) � exp(−||x − xi||2/δ), evaluated
at n fixed locations xi. The overlap between these kernels can be
adjusted through the scale δ of the kernels. The soft cluster
assignment matrix S is given by the normalized kernel values:

Sij �
ϕ(σ(fθ(Xl))i, xj)

∑ n
j�1ϕ(σ(fθ(Xl))i, xj)

, (1)

where the lens function fθ is a GNN layer, σ is a sigmoid function
ensuring the outputs are in [0, 1], andXl are the node features at layer
l. Intuitively, the more closely a node is mapped to a location xi, the
more it belongs to cluster i. By Proposition 5.2, we can compute the
adjacency matrix of the pooled graph as ST(A + I)S; the features are
given by STX. This method can also be thought as a version of
DiffPool (Ying et al., 2018), where the low-entropy constraint on the
cluster assignment distribution is topologically satisfied, since a point
cannot be equally close tomany other points on a line. Therefore, each
nodewill belong only to a few clusters if the scale δ is appropriately set.

In Figure 2we show two examples of RBF kernel covers for the
output space. The scale of the kernel, δ, determines the amount of
overlap between the cover elements. At bigger scales, there is a
higher overlap between the clusters, as shown in the two plots.
Because the line is one-dimensional, a point on the unit interval
can only be part of a small number of clusters (that is, the kernels
for which the value is greater than zero), assuming the scale δ is
not too large. Therefore, DMP can be seen as a DiffPool variant
where the low-entropy constraint on the cluster assignment is
satisfied topologically, rather than by a loss function enforcing it.

5.3 Mapper-Based PageRank Pooling
To evaluate the effectiveness of the differentiable pooling
operator, we also consider a fixed and scalable non-
differentiable lens function f : V→R that is given by the
normalized PageRank (PR) (Page et al., 1999) of the nodes.
The PageRank function assigns an importance value to each of
the nodes based on their connectivity, according to the well-
known recurrence relation:

f (X)i �Δ PRi � ∑
j∈N(i)

PRj

|N (i)| , (2)

where N (i) represents the set of neighbors of the ith node in the
graph and the damping factor was set to the typical value of
d � 0.85. The resulting scores are values in [0, 1] which reflect the
probability of a random walk through the graph to end in a given
node. Using the previously described overlapping intervals cover
U , the elements of the pull back cover form a soft cluster
assignment matrix S:

Sij �
Ii∈ f −1(Uj)∣∣∣∣{Uk|i ∈ f − 1(Uk)}

∣∣∣∣ (3)

where Un is the nth cover set in the cover U of [0, 1]. It can be
observed that the resulting clusters contain nodes with similar
PageRank scores. Intuitively, this pooling method merges the
(usually few) highly connected nodes in the graph, at the same
time clustering the (typically many) dangling nodes that have a
normalized PageRank score closer to zero. Therefore, this method
favors the information attached to the most “important” nodes of
the graph. The adjacency matrix of the pooled graph and the
features are computed in the same manner as for DMP.

5.4 Model
For the graph classification task, each example G is represented by
a tuple (X,A), where X is the node feature matrix and A is the
adjacency matrix. Both our graph embedding and classification
networks consist of a sequence of graph convolutional layers
(Kipf and Welling, 2016); the lth layer operates on its input
feature matrix as follows:

FIGURE 2 | Two covers of RBF kernels with different scales: δ � 0.002 and δ � 0.01. The x-axis corresponds to the unit interval where the nodes of the graph are
mapped. The y-axis represents the value of the normalized RBF kernels.
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Xl+1 � σ(D̂− 1
2ÂD̂

− 1
2XlWl), (4)

where Â � A + I is the adjacency matrix with self-loops, D̂ is the
normalized node degree matrix, Wl is the weight matrix of the l-
th layer and σ is the activation function. After E layers, the
embedding network simply outputs node features XLE , which are
subsequently processed by a pooling layer to coarsen the graph.
The classification network first takes as input node features of the
Mapper-pooled graph,2 XMG, and passes them through LC graph
convolutional layers. Following this, the network computes a
graph summary given by the feature-wise node average and
applies a final linear layer which predicts the class:

y � softmax⎛⎝ 1

|MG| ∑
|MG|

i�1
XLCWf + bf⎞⎠. (5)

We note that either of these pooling operators could readily be
adapted to the recently proposed message passing simplicial
neural networks (MPSNs) (Bodnar et al., 2021) as a tool for
coarsening simplicial complexes by dropping the 1-skeleton
operator after computing the nerve. We leave this endeavor
for future work.

5.5 Complexity
The topology of the output graph can be computed in O(V + E)
time when using a cover over the unit interval, as described above.
The output graph can be computed via (sparse) matrix
multiplication given by ST(A + I)S, to take advantage of GPU
parallelism and compute the coefficients associated with the edges.

6 POOLING EXPERIMENTS

6.1 Tasks
We illustrate the applicability of the Mapper-GNN synthesis
within a pooling framework, by evaluating DMP and MPR in
a variety of settings: social (IMDB-Binary, IMDB-Multi, Reddit-
Binary, Reddit-Multi-5k), citation networks (Collab) and
chemical data (D&D, Mutag, NCI1, Proteins) (Kersting et al.,
2016).

6.2 Experimental Setup
We adopt a 10-fold cross-validation approach to evaluating the
graph classification performance of DMP, MPR and other
competitive state-of-the-art methods. The random seed was set
to zero for all experiments (with respect to dataset splitting,
shuffling and parameter initialisation), in order to ensure a fair
comparison across architectures. All models were trained on a
single Titan Xp GPU, using the Adam optimiser (Kingma and Ba,
2014) with early stopping on the validation set, for a maximum of
30 epochs. We report the classification accuracy using 95%
confidence intervals calculated for a population size of 10 (the
number of folds).

6.3 Baselines
We compare the performance of DMP and MPR to two other
pooling methods that we identify mathematical connections
with: minCUT (Bianchi et al., 2019) and DiffPool (Ying et al.,
2018). Additionally, we include Graph U-Net (Gao and Ji,
2019) in our evaluation, as it has been shown to yield
competitive results while performing pooling from the
perspective of a learnable node ranking; we denote this
approach by Top-k in the remainder of this section. The
non-pooling baselines evaluated are the WL kernel
(Shervashidze et al., 2011), a “flat” model (2 MP steps and
global average pooling) and an average-readout linear
classifier.

We optimize both DMP and MPR with respect to the cover
cardinality n, the cover overlap (δ for DMP, overlap percentage
g for MPR), learning rate and hidden size. The Top-k
architecture is evaluated using the code provided in the
official repository, where separate configurations are defined
for each of the benchmarks. The minCUT architecture is
represented by the sequence of operations described by
Bianchi et al. (2019): MP(32)-pooling-MP(32)-pooling-
MP(32)-GlobalAvgPool, followed by a linear softmax
classifier. The MP(32) block represents a message-passing
operation performed by a graph convolutional layer with 32
hidden units:

X(t+1) � ReLU(~AX(t)Wm + X(t)Ws), (6)

where ~A � D⁻1/2AD⁻1/2 is the symmetrically normalized adjacency
matrix and Wm,Ws are learnable weight matrices representing

TABLE 1 | Results obtained on classification benchmarks. Accuracy measures with 95% confidence intervals are reported. The highest result is bolded and the second
highest is underlined. The first columns four are molecular graphs, while the others are social graphs. Our models perform competitively with other state of the art models.

Model D&D Mutag NCI1 Proteins Collab IMDB-B IMDB-M Reddit-B Reddit-5k

DMP (ours) 77.3 ± 3.6 84.0 ± 8.6 70.4 ± 4.2 75.3 ± 3.3 81.4 ± 1.2 73.8 ± 4.5 50.9 ± 2.5 86.2 ± 6.8 51.9 ± 2.1
MPR (ours) 78.2 ± 3.4 80.3 ± 6.0 69.8 ± 1.8 75.2 ± 2.2 81.5 ± 1.0 73.4 ± 2.7 50.6 ± 2.0 86.3 ± 4.8 52.3 ± 1.6
Top-k 75.1 ± 2.2 82.5 ± 6.8 67.9 ± 2.3 74.8 ± 3.0 75.0 ± 1.1 69.6 ± 3.8 45.0 ± 2.8 79.4 ± 7.4 48.5 ± 1.1
minCUT 77.6 ± 3.1 82.9 ± 6.0 68.8 ± 2.1 73.5 ± 2.9 79.9 ± 0.8 70.7 ± 3.5 50.6 ± 2.1 87.2 ± 5.0 52.9 ± 1.3
DiffPool 77.9 ± 2.4 94.7 ± 7.1 68.1 ± 2.1 74.2 ± 0.3 81.3 ± 0.1 72.4 ± 3.1 50.3 ± 1.8 79.0 ± 1.1 50.4 ± 1.7
WL 77.4 ± 2.6 74.5 ± 6.5 76.4 ± 2.7 74.7 ± 3.2 78.5 ± 1.1 72.1 ± 3.1 50.7 ± 2.9 66.7 ± 10.4 49.2 ± 1.4
Flat 69.9 ± 2.2 71.8 ± 4.3 65.5 ± 1.7 70.2 ± 2.6 80.9 ± 1.4 73.6 ± 4.2 48.5 ± 2.4 70.0 ± 10.8 49.5 ± 1.7
Avg-MLP 63.7 ± 1.4 69.1 ± 5.8 55.7 ± 2.8 61.8 ± 1.7 74.8 ± 1.3 71.5 ± 2.9 49.5 ± 2.2 53.6 ± 6.2 45.9 ± 1.6

2Note that one or more {embedding → pooling} operations may be sequentially
performed in the pipeline.
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the message passing and skip-connection operations within the
layer. The DiffPool model follows the same sequence of steps.

6.4 Evaluation Procedure
The best procedure for evaluating GNN pooling layers remains a
matter of debate in the graph machine learning community. One
may consider a fixed GNN architecture with a different pooling
layer for each baseline; alternatively, the whole architecture can be
optimized for each type of pooling layer. The first option, more
akin to the typical procedure for evaluating pooling layers in
CNNs on image domains, is used in papers like minCUT (Bianchi
et al., 2019). The second option is more particular to GNNs and it
is employed, for instance, by DiffPool (Ying et al., 2018). In this
work, we choose the latter option for our evaluation.

We argue that for non-Euclidean domains, such as graph ones,
the relationships between the nodes of the pooled graph and the
ones of the input graph are semantically different from one
pooling method to another. This is because pooling layers
have different behaviors and may interact in various ways with
the interleaved convolutional layers. Therefore, evaluating the
same architecture with only the pooling layer(s) swapped is
restrictive and might hide the benefits of certain operators. For
example, Top-k pooling (one of our baselines) simply drops
nodes from the input graph, instead of computing a smaller
number of clusters from all nodes. Assume we fix the pooled
graph to have only one node. Then Top-k would only select one
node from the original graph. In contrast, DiffPool would
combine the information from the entire graph in a single
node. DiffPool would thus have access to additional
information with respect to Top-k, so it would be unfair to
conclude that one model is better than the other in such a
setting. These differences implicitly affect the features of the
output graph at that layer, which in turn affect the next

pooling layer, as its computation depends on the features. This
can have a cascading effect on the overall performance of the
model. One might also argue that this procedure makes the
evaluated models more homogeneous and, therefore, easier to
compare. While this is true, the conclusions one can draw from
such a comparison are much more limited because they are
restricted to the particular architecture that was chosen.

For this reason, we have either run models with
hyperparameters as previously reported by the authors, or
optimized them ourselves end-to-end, where applicable. The
best-performing configurations were (Appendix A details the
hyperparameter search):

• MPR—learning rate 5e−4, hidden sizes {128, 128} (except for
{64, 64} on IMDB-Binary and {32, 32} on IMDB-Multi),
interval overlap 25% on Proteins, Reddit-Binary, Mutag,
IMDB-Multi and 10% otherwise, batch size 32 (except for
128 on Proteins) and:

• D&D, Collab, Reddit-Binary, Reddit-Multi-5K: cover
sizes {20, 5};

• Proteins, NCI1: cover sizes {8, 2};
• Mutag, IMDB-Binary, IMDB-Multi: cover sizes {4, 1};
• DMP—learning rate 5e−4, hidden sizes
{128, 128}, δ � 1/(cluster size)2 and:

• Proteins: cover sizes {8, 2}, batch size 128;
• Others: cover sizes {20, 5}, batch size 32;
• Top-k—specific dataset configurations, as provided in the
official GitHub repository3;

FIGURE 3 | SDGM visualization using as a lens function the GNN-predicted probability of a node in the network to be Spam. The (A) is colored with the average
predicted spam probability in each cluster, whereas the (B) is colored by the proportion of true spammers in each node.

3https://github.com/HongyangGao/Graph-U-Nets/blob/
48aa171b16964a2466fceaf4cb06fc940d649294/run_GUNet.sh
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• minCUT—learning rate 1e− 3, same architecture as reported
by the authors in the original work (Bianchi et al., 2019);

• DiffPool—learning rate 1e− 3, hidden size 32, two pooling
steps, pooling ratio r � 0.1 for D&D, Proteins, Collab and
Reddit-Binary and r � 0.25 forMutag, NCI1, IMDB-Binary,
IMDB-Multi and Reddit-Multi-5K, global average mean
readout layer, with the exception of Collab and Reddit-
Binary, where the hidden size was 128;

• Flat: hidden size 32.

6.5 Pooling Results
The graph classification performance obtained by these models is
reported in Table 1. We reveal that MPR ranks either first or
second on all social datasets, or achieves accuracy scores within
0.5% of the best-performing model. This result confirms that
PageRank-based pooling exploits the power-law distributions in
this domain. The performance of DMP is similar on social data
and generally higher onmolecular graphs.We attribute this to the

fact that all nodes in molecular graphs tend to have a similar
PageRank score—MPR is therefore likely to assign all nodes to
one cluster, effectively performing a readout. In this domain,
DMP performs particularly well on Mutag, where it is second-
best and improves by 3.7% over MPR, showing the benefits of
having a differentiable lens in challenging data settings. Overall,
MPR achieves the best accuracy on two datasets (D&D, Collab)
and the next best result on three more (Proteins, Reddit-Binary
and Reddit-Multi-5k). DMP improves on MPR by less than 1%
on NCI1, Proteins, IDMB-Binary and IMDB-Multi, showing the
perhaps surprising strength of the simple, fixed-lens poolingMPR
operator.

7 MAPPER FOR VISUALISATIONS

Graph pooling methods and summarized graph visualisations
methods can be seen as two sides of the same coin, since both aim

FIGURE 4 | Qualitative comparison between SDGM (first column), Mapper with an RBF graph density function (Hajij et al., 2018) (second), and Mapper with a
PageRank function (Hajij et al., 2018) (third). The Graphviz visualization of the graph cores (fourth column) are added for reference. The rows show plots for Cora,
CiteSeer, and PubMed, respectively. The graphs are colored based on the most frequent class in each cluster to aid the comparison. SDGM with unsupervised lens
implicitly makes all dataset classes appear in the visualization more clearly separated. This does not happen in the baseline visualisations, which mainly focus on the
class with the highest number of nodes from each graph.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805358

Bodnar et al. Deep Graph Mapper

70

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


to condense the information in the graph. We now turn our
attention to the latter.

7.1 Visualisations in Supervised Learning
The first application of DGM is in a supervised learning
context, where fθ is trained via a cross entropy loss function to
classify the nodes of the graph. When the classification is binary,
fθ : V→ [0, 1] outputs the probability that a node belongs to
the positive class. This probability acts directly as
the parameterization of the graph nodes. An example is shown

in Figure 3 (left) for a synthetic dataset a network formed of
spammers and non-spammers. Spammers are highly connected
to many other nodes in the network, whereas non-spammers
generally have fewer neighbors. For the lens function, we use a
Graph Convolutional Network (GCN) (Kipf and Welling, 2016)
with four layers (with 32, 64, 128, 128 hidden units) and ReLU
activations trained to classify the nodes of the graph. For the
spammer graph, the lens is given by the predicted spam
probability of each node and the cover consists of 10 intervals
over [0, 1], with 10% overlap.

FIGURE 5 | Ablation for dimensionality reduction methods; left–right, top–bottom: t-SNE, PCA, Isomap, UMAP. While t-SNE and UMAP produce slightly better
visualisations, the graph features displayed by the visualisations are roughly consistent across all of the four dimensionality reduction techniques.
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Through the central cluster node, the SDGM visualization
correctly shows how spammers occupy an essential place in the
network, while non-spammers tend to form many smaller
disconnected communities. When labels are available, we also
produce visualisations augmented with ground-truth
information. These visualisations can provide a label-driven
understanding of the graph. For instance, in Figure 3 (right)
we color each node of the SDGM visualization according to the
most frequent class in the corresponding cluster. This second
visualization, augmented with the ground-truth information, can
also be used to compare with the model predictions.

7.2 Visualization in Unsupervised Learning
The second application corresponds to an unsupervised learning
scenario, where the challenge is obtaining a parameterization of
the graph in the absence of labels. This is the typical use case for
unsupervised graph representation learning models (Chami et al.,
2020). The approach we follow is to train a model to learn node
embeddings in Rd′ (in our experiments, d′ � 512), which can be
reduced, as before, to a low-dimensional space via a
dimensionality reduction method r. Unsupervised
visualisations can be found in the qualitative evaluation in
Section 7.3.

7.3 Qualitative Evaluation
In this section, we qualitatively compare SDGM against the two
best-performing graph theoretic lens functions proposed by Hajij
et al. (2018), on the Cora and CiteSeer (Sen et al., 2008) and
PubMed (Yang et al., 2016) citation networks. Namely, we
compare against a PageRank (Page et al., 1999) lens function
and a graph density function f (v) � ∑u ∈ Vexp((−D(u, v)/δ)),
where D is the distance matrix of the graph. For SDGM, we use a
composition of an unsupervised Deep Graph Infomax (DGI)
(Veličković et al., 2018) model gθ : V→R512 and a
dimensionality reduction function r : R512 →R2 based on
t-SNE. To aid the comparison, we mark the nodes with the
color of the most frequent class in the corresponding cluster.
Additionally, we include a Graphviz (Gansner and North, 2000)

plot of the full graph. We carefully fine-tuned the covers for each
combination of model and graph.

As depicted by Figure 4, SDGM successfully summarizes
many of the properties of the graphs that are also reflected by
full graph visualisations. For instance, on Cora, Genetic
Algorithms (in dark orange) are shown to be primarily
connected to Reinforcement Learning (orange). At the same
time, related classes that largely overlap in the full
visualisation—Probabilistic Methods and Neural Networks
(NNs) on Cora or Information Retrieval (IR) and ML on
CiteSeer—are connected in the SDGM plot. In contrast, the
baselines do not have the same level of granularity and fail to
capture many such properties. Both PageRank and the graph
density function tend to focus on the classes with the highest
number of nodes, such as the IR class on CiteSeer or the NNs class
on Cora, while largely de-emphasizing other classes.

7.3.1 Limitations
The proposed visualisations also present certain limitations. In an
unsupervised learning setting, in the absence of any labels or
attributes for coloring the graph, the nodes have to be colored
based on a colourmap associated with the abstract embedding
space, thus affecting the interpretability of the visualisations. In
contrast, even though the graph theoretic lens functions produce
lower quality visualisations, their semantics are clearly
understood mathematically. This is, however, a drawback
shared even by some of the most widely used data
visualization methods, such as t-SNE or UMAP (McInnes
et al., 2018). In what follows, we present additional
visualisations and ablation studies.

7.4 Ablation Study for Dimensionality
Reduction
We study how the choice of the dimensionality reduction method
for the unsupervised visualisations affects the output. To test this,
we consider the following dimensionality reduction methods:
t-SNE (van der Maaten and Hinton, 2008), UMAP (McInnes

FIGURE 6 | Ablation for different types of unsupervised lenses (identity, untrained DGI, trained DGI). The trained DGI model significantly improves the quality of the
visualisations.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053510

Bodnar et al. Deep Graph Mapper

72

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


et al., 2018), IsoMap (Tenenbaum et al., 2000) and PCA. We use
the same model as in Section 7.2 and Section 8. 2D cells for the
cover of all models. The overlap was set after fine-tuning to 0.2 for
t-SNE and UMAP, and to 0.1 for the other two models. Figure 5
displays the four visualisations. As expected, t-SNE and UMAP
produce more visually pleasing outputs, due to their superior
ability to capture variation in the GNN embedding space.
However, the features highlighted by all visualisations are
largely similar, generally indicating the same binary relations
between clusters. This demonstrates that the GNN embedding

space is robust to the choice of the dimensionality reduction
method.

7.5 Ablation for the Unsupervised Lens
To better understand the impact of GNNs on improving the
quality of the Mapper visualisations, we perform an ablation
study on the type of unsupervised lens functions used within
Mapper. The first model we consider is simply the identity
function taking as input only graph features. The second
model is a randomly initialized DGI model. Despite the

FIGURE 7 |Hierarchical visualisations of the Cora citation network using various number of cover cells and degrees of overlap. Rows (top–bottom) have a different
overlap (g) between intervals: g � 0.1, g � 0.25, g � 0.35; columns (left–right): n � 16, n � 64, n � 256.
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apparent simplicity of a randomly initialized model, it was shown
that such a method produces reasonably good embeddings, often
outperforming other more sophisticated baselines (Veličković
et al., 2018). Finally, we use our trained DGI model from
Section 7.2. For all models, we perform a t-SNE reduction of
their embedding space to obtain a 2D output space and use 81
overlapping cells that cover this space. An overlap of 0.2 is used
across all models.

The three resulting visualisations are depicted in Figure 6. The
identity model and the untrained DGI model do not manage to
exploit the dataset structure and neither does particularly well. In
contrast, the trained DGI model emphasizes all the classes in the
visualization, together with their main interactions.

7.6 Hierarchical Visualisations
One of the most powerful features of Mapper is the ability to
produce multi-resolution visualisations through the flexibility
offered by the cover hyperparameters. As described in Section
4, having a higher number of cells covering the output space
results in more granular visualisations containing more nodes,
while a higher overlap between these cells results in increased
connectivity. We highlight these trade-offs in Figure 7, where
we visualize the Cora citation network using nine
combinations of cells and overlaps. These kinds of
hierarchical visualisations can help one identify the
persistent features of the graph. For instance, when
inspecting the plots that use n � 64 cells, the connections
between the light blue class and the yellow class persist for
all 3 degrees of overlap, which indicates that this is a persistent
feature of the graph. In contrast, the connection between the
red and orange classes is relatively reduced (g � 0.25) or none
(g � 0.1) for low values of overlap, but it clearly appears at

g � 0.35 in the top-right corner, suggesting that the semantic
similarity between the two classes is very scale-sensitive (that
is, less persistent).

7.7 The Importance of Capturing Structural
Information
In this section, we revisit the synthetic spammer dataset to
illustrate the importance of capturing structural information
via the edge-refined pull back cover operator. To that end, we
compare SDGM with a version using the usual refined pull back
cover as in Hajij et al. (2018), while using the same lens function
for both (a GCN classifier). We refer to the latter as DGM. The
visualisations produced by the two models are included in
Figure 8. We note that while both models capture the large
cluster of spammers at the center of the network and the smaller
communities of non-spammers, DGM does not capture the
structural relationships between spammers and non spammers
since it encodes only semantic relations.

8 CONCLUSION

We have introduced Deep Graph Mapper, a topologically
grounded method for producing informative graph
visualisations with the help of GNNs. We have shown these
visualisations are not only useful for understanding various graph
properties, but can also aid in visually identifying classification
mistakes. Additionally, we have proved that Mapper is a
generalization of soft cluster assignment methods, effectively
providing a bridge between graph pooling and the TDA
literature. Based on this connection, we have proposed two

FIGURE 8 | DGM (A) vs SDGM (B) visualization of the sythetic spammer datasets. DGM does not capture important relational information between spammers and
non-spammers.
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Mapper-based pooling operators: a simple one that scores nodes
using PageRank and a differentiable one that uses RBF kernels to
simulate the cover. Our experiments show that both layers yield
architectures competitive with several state-of-the-art methods
on graph classification benchmarks.
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APPENDIX

A Model Architecture and
Hyperparameters.
We additionally performed a hyperparameter search for DiffPool
on hidden sizes 32, 64, 128 and for DGM, over the following sets
of possible values:

• all datasets: cover sizes {[40, 10], [20, 5]}, interval
overlap {10%, 25%};

• D&D: learning rate {5e−4, 1e−3};
• Proteins: learning rate {2e−4, 5e−4, 1e−3}, cover sizes
{[24, 6], [16, 4], [12, 3], [8, 2]}, hidden sizes {64, 128}.
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Topological Data Analysis of
C. elegans Locomotion and Behavior
Ashleigh Thomas1*, Kathleen Bates1, Alex Elchesen2†, Iryna Hartsock2†, Hang Lu1 and
Peter Bubenik2

1School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 2Department of
Mathematics, University of Florida, Gainesville, FL, United States

We apply topological data analysis to the behavior of C. elegans, a widely studied model
organism in biology. In particular, we use topology to produce a quantitative summary of
complex behavior which may be applied to high-throughput data. Our methods allow us to
distinguish and classify videos from various environmental conditions and we analyze the
trade-off between accuracy and interpretability. Furthermore, we present a novel
technique for visualizing the outputs of our analysis in terms of the input. Specifically,
we use representative cycles of persistent homology to produce synthetic videos of
stereotypical behaviors.

Keywords: persistent homology, topological data analysis, delay embedding, sliding window embedding,
C. elegans, behavior phenotyping

1 INTRODUCTION

Model organisms are indispensable in understanding basic principles of biology. Studies of model
organisms have played a major role in discoveries of disease mechanisms, disease treatment, and
neuroscience principles. The behavior of these model organisms can illuminate responses and
phenotypes important for understanding the effects of experimental conditions on subjects. Behavior
can be affected by neuron activity, external stimuli, and past experiences (learning), so being able to
adequately measure and compare behaviors is a useful evaluation tool for a wide range of
experiments.

We propose persistent homology as a new tool for assessing behavior of Caenorhabditis
elegans, worms that are a widely used model organism. Persistence has been successfully used
to study high-dimensional time series, especially those that exhibit some quasi-periodic
behavior like the undulation of C. elegans (Tralie, 2016; Tralie and Perea, 2018). But to
the authors’ knowledge, persistent homology has not been previously used to analyze C.
elegans behavior, though it and similar techniques have been used to study C. elegans neural
data (Petri et al., 2013; Backholm et al., 2015; Sizemore et al., 2019; Helm et al., 2020;
Lütgehetmann et al., 2020).

In this paper we use persistent homology to study the locomotion of C. elegans in two settings. In
our initial study (Section 3.1), we follow one worm as it moves on the surface of an agar plate. Under
these conditions there are no barriers to movement and the locomotion is both smooth and complex.
We show that persistent homology is able to detect and differentiate between various characteristic
behaviors such as forward crawling, backward crawling, and transitioning between the two. We also
show a unique contribution of persistence: the synthesis of skeleton data of C. elegans performing
stereotyped, periodic behaviors. This translates into videos of, for example, forward crawling that are
smooth when looped (see Supplementary Material for an example). Furthermore, this mapping
from persistence features to behavior gives a concrete and biologically relevant interpretation of
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results: features of interest—such as a feature that is detected in
one sample and not another—can be expressed as videos of
synthetic behavior.

We also analyze data from an experiment of the effect of
environment on C. elegans (Section 3.2). In this setting a more
controlled environment is required, so the organisms are
submerged in a solution and confined to wells in microfluidic
devices. Our main results study C. elegans’ locomotion in
solutions that have various levels of viscosity. We show that
we are able to use persistent homology—and average persistence
landscapes in particular—to summarize C. elegans locomotion in
a way that allows the classification of the viscosity of an animal’s
environment with a high level of accuracy, and in fact a much
higher level of accuracy than simpler methods based on speed and
variety of postures. Our results indicate that persistent homology
is a promising tool for quantifying the impact of changes to
genotype and environment on C. elegans locomotion.

1.1 Related Work
Caenorhabditis elegans is a free-living soil nematode that has been
a workhorse genetic model system. The nematode’s transparent
tissue, simple anatomy, and fast reproduction contribute to both
ease in culture and a literal window into the internal workings of a
living organism. Its completely sequenced genome contains many
genes that are homologous to human genes, and importantly the
ability to manipulate genes with relative ease makes it an
extremely attractive model system. For neuroscience in
particular, C. elegans presents a unique opportunity with its
simple nervous system (just 302 neurons) that is complex
enough to exhibit many sensory modalities, including
mechanosensation, chemosensation, and response to heat,
osmolarity, and smell.

Behavior characterization in C. elegans was historically
qualitative, mainly relying on experimentalists specifying
end-point assessment (e.g. whether the worm chemotaxes
to a particular source of odor within a certain amount of
time), or experimentalists using heuristics to assess behavior
(e.g. naming worms genes “unc” for uncoordinated). In the
last decade, machine vision tools first replaced human
identifications of worms from images and videos, which
allows much larger dynamic datasets to be annotated and
analyzed. In recent years, further development in
quantitative behavior characterization tools such as
tracking (Stirman et al., 2011; Swierczek et al., 2011;
Husson et al., 2012; Yemini et al., 2013; Porto et al., 2019),
eigenworms (Stephens et al., 2008), behavior “dictionaries”
(Brown et al., 2013), and t-SNE (Berman et al., 2016; Liu et al.,
2018) have moved the field away from merely describing the
outcome to understanding the types of behavior the brain of
this simple system can generate. While many of these
techniques do well in quantitatively describing behavior
and distinguishing differences in behavior, behavioral
dynamics are rich and opportunities abound in exploring
behavioral dynamics using other mathematical tools.

Persistent homology has been used to analyze time series data
in many different settings. Some earlier work was theoretical and
studied the interaction between persistence and sliding window

embeddings—which we used in this research—as well as
proposed possible applications (Firas and Elizabeth, 2015;
Perea and Harer, 2015; Perea, 2016). Research into gene
expression has used persistent homology to detect patterns or
classify whether a signal is periodic (Dequéant et al., 2008; Perea
et al., 2015). Frequently, persistence has been used to study neural
data (Petri et al., 2013; Backholm et al., 2015; Stolz et al., 2017;
Sizemore et al., 2019; Helm et al., 2020; Lütgehetmann et al.,
2020), and in many cases neural data from C. elegans, but the
analysis tends to rely on clique complexes as the topological space
of interest instead of sliding window embeddings.

2 MATERIALS AND METHODS

In this section we describe the collection and preprocessing of
experimental data (Section 2.1), mathematical background
(Sections 2.2 and 2.3), and pipeline for using topological data
analysis on C. elegans behavior data (Section 2.4).

2.1 Description of Data
C. elegans (N2 strain) were cultured at 20°C under standard
conditions on agar plates seeded with OP50 E. Coli. Animals
were age-synchronized via hatch-off and cultured on plate until
they reached day 1 of adulthood. For behavior experiments on agar,
animals were prepared, imaged, and tracked as previously
described (Porto et al., 2019). For behavior experiments in
methylcellulose media, synchronized populations were then
washed off of culture plates with M9 buffer. Unless otherwise
noted, video data was collected on a dissecting microscope (Leica
MZ16) using a CMOS camera (Thorlabs DCC3240M), with a
frame rate of 30 frames per second and a magnification of ×1.2.

Behavior data was collected with animals confined with
microfluidic devices. In these devices the cavities in which worms
are loaded have only slightly greater depth than the width of an adult
worm, which restricts worms to the focal plane of the microscope
and to almost entirely 2-dimensional behavior. Microfluidic devices
were fabricated as described previously (Chung et al., 2011).
Methylcellulose solutions were prepared at concentrations of
0.5%, 1%, 2%, and 3% weight in volume of M9 buffer. To
ensure that single animals could be isolated in single chambers of
the unbonded microchamber microfluidic device, we first picked
animals onto a room-temperature, unseeded plate. To ensure that
animals were fully immersed in methylcellulose mixture, we used a
glass pipet to aspirate a small amount of methylcellulose solution,
and then aspirated animals from the unseeded plate one at a time
into the methylcellulose solution. Then, single animals surrounded
by methylcellulose mixture were pipetted into individual chambers
of an unbonded PDMS chamber device. The device could then be
flipped over onto a sterile 10 cm Petri dish and gently pressed down
until the individual chamber walls came into contact with the Petri
dish, preventing animals from leaving their chambers. Animals were
then imaged in devices for about 5min at 30 frames per second,
resulting in time series data with 10,665 points.

To extract midline data from videos, we first found masks for
each frame to isolate the worm from the background using a
combination of Otsu thresholding (Otsu, 1979), image smoothing
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using a Gaussian kernel, and size filtration. Otsu thresholding is a
thresholding algorithm based on the gray-level histogram of an
image. The threshold is identified by the grayscale pixel value that
minimizes the intra-class variance of background and foreground
pixels.We then broadly followed themethod used in Stephens et al.
(Stephens et al., 2008) to represent the worm’s posture in “worm-
centric” coordinates. Briefly, we found the midline of the worm in
each frame by thinning the mask to a single line and interpolating
between pixels of this line such that the midline was represented by
101 evenly spaced points. We calculated the tangent angle between
each pair of adjacent points along the midline so that the animal’s
posture could be represented as a vector of angles, and then
transformed those vectors with PCA so users could balance
accuracy requirements and resource limitations via truncation
of the data. We replaced frames in which animals were self-
occluded with the data from the most recent non-self-occluded
frame. We used untruncated PCA data for most computations
because it has the same persistence output as the raw angle data.
We used truncated PCA data (the first five principal components)
for the computations in Section 3.1.

The videos for this study were selected from a much larger set
of data based on how well they could be segmented and
skeletonized. Some videos have subsequences that are difficult
to automatically skeletonize because the animals self-occlude, i.e.
bend in such a way as to cross over themselves. Thus, this dataset
is likely biased toward less complex behaviors like thrashing and
there are some cases where there are multiple videos of the same
animal. The resulting data set has 40 samples of 10,665 points
each with 10 samples for each viscosity condition.

2.2 Sliding Window Embeddings
Sliding window embeddings turn time series data into point
cloud data in a way that does not forget the temporal
information of the time series. There are some additional
benefits to sliding window embeddings, including that they
“separate” points that intersect each other in a time series,
such as in Examples 2.6 and 2.7.

Definition 2.1: A time series is a sequence of vectors (xt)t∈T �
(xt , xt+1, xt+2, . . .) where each xt is in the same finite-dimensional
vector space V and T is a totally ordered set.

Remark 2.2: The totally ordered set T, which indexes the time
series, can be Z, N, or a finite set like [N] � {1, 2, . . . ,N}. For
many applications including the ones in this paper, the indexing set
is finite and will be omitted in notation for brevity, as in (xt)t.Given
any time series we can construct a new time series called a sliding
window embedding, which is also known as a time delay
embedding with a lag or delay time of 1.

Definition 2.3: Given a time series τ � (xt)t with vectors
xt ∈ V , a sliding window embedding of window length l of τ
is a new time series, τ l � (x̃t)t, with

x̃t � [xt xt+1 . . . xt+l−1] ∈ Vl,

where [·] is concatenation of vectors.
That is, the tth vector in the new time series is the

concatenation of l consecutive vectors in the original time
series and has dimension equal to l · dim (V).

Remark 2.4: If the original time series has N points, then the
sliding window embedding of window length l has N − l + 1
points, as one can see in Example 2.5.

Example 2.5: Consider the time series τ �
([1, 2], [3, 4], [5, 6], [7, 8], [9, 10]) in R2. The sliding window
embedding of τ of window length l � 3 is

τ3 � ([1, 2, 3, 4, 5, 6], [3, 4, 5, 6, 7, 8], [5, 6, 7, 8, 9, 10])4R6,

which has 5 − 3 + 1 � 3 points.
We applied persistent homology (Section 2.3) to sliding

window embeddings of C. elegans video data in order to
quantify behavior. Degree one persistent homology detected
cycles in these sliding window embeddings which we show
correspond to particular behaviors.

The cycles that persistent homology detects may consist
of collections of points that trace out a closed curve. A cycle
is “large” or highly persistent if it encloses an area that
could fit a large ball; a cycle that is tall and skinny has small
persistence.

Below we see two examples where a time series exhibits a
single periodic behavior but persistent homology will detect
either two or zero non-trivial cycles. In contrast, the persistent
homology of a sliding window embedding detects exactly one
non-trivial cycle in both examples.

Example 2.6: Figure 1A displays one period of a periodic time
series inR2 with the property that if successive points are connected
by line segments then the path of the time series self-intersects. To
discover this figure-eight-shaped loop, one might try to use
persistent homology (Section 2.3). However, persistent homology
would detect two distinct loops, each comprising half of the period.
See Figure 2D for an illustration of these loops.

Figures 1B,C show two-dimensional PCA projections of
sliding window embeddings of the figure-eight for l � 10 and
l � 20, respectively, using the first and third principal components.
In these point clouds the time series draw out simple closed curves,
and in fact in each of these cases persistence detects a single loop.

Notice that as the window length increases, the “size” of the
loop increases. This increase in the loop’s persistence makes it
easier for persistent homology to robustly detect it.

Example 2.7: Figure 3A shows a 1-dimensional time series
that is a discretization of a sine wave. This periodic behavior
creates no loops— in fact, because the points take values inR, the
time series cannot produce degree 1 homology. However, a
sliding window embedding, in this case of window length 4,
creates a loop that is detected by persistent homology. That loop
in R4 is projected down to two dimensions in Figure 3B.

2.3 Persistent Homology
In this section we provide an overview of persistent homology
and how it may be used to produce quantitative summaries of the
shape of a collection of points such as the sliding window
embedding discussed above.

Definition 2.9: A simplicial complex on a set of vertices V is a
collection K of non-empty subsets of V such that if τ ∈ K and
τ′ ⊂ τ, then τ′ ∈ K . An element τ ∈ K is called a simplex. An
n-simplex or simplex of dimension n is a simplex τ ∈ K with size
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|τ| � n + 1. The 1-skeleton of a simplicial complex K is the set of
simplices with dimension at most one. A filtered simplicial
complex or filtration is a collection {Kr}r∈S of simplicial
complexes Kr where S4R such that Kr 4Ks for all r, s ∈ S
with r ≤ s.

Definition 2.10: Let X ⊂ Rd be a finite set and let r ≥ 0. The
Vietoris-Rips complex of X at scale r, denoted Rr(X), is the
simplicial complex with vertex set X and whose simplices are
given as follows. A subset {x0, . . . , xn} ⊂ X is an n-simplex in
Rr(X) if and only if

∣∣∣∣xi − xj
∣∣∣∣ ≤ r for all i, j ∈ {0, . . . , n}.

Definition 2.11: The Vietoris-Rips filtration of a finite set
X ⊂ Rd is the collection R(X) :� {Rr(X)}r ≥ 0.Note that while
the Vietoris-Rips complex of X is parameterized by the non-
negative reals, the finiteness of X guarantees thatR(X) consists of
only finitely many distinct simplicial complexes.

Example 2.12: Figure 2A shows the 1-skeleton of the Vietoris-
Rips complex of a pointcloud inR2 at four scales. Notice that each
simplicial complex includes into the next.

The persistent homology of a Vietoris-Rips filtration can be
represented by a multiset in R2 called a persistence diagram in

FIGURE 1 | (A) A time series in R2 determines a self-intersecting curve. (B) The sliding window embedding of window length 10 separates the previously
intersecting segments of the curve. (C) A sliding window embedding with a higher window length separates the intersecting segments even further. With too small of a
window length l, the resulting loop will be relatively flat and long and will therefore have small persistence and be difficult to differentiate from noise.

FIGURE 2 | (A) The 1-skeleton of the Vietoris-Rips filtered simplicial complex of a figure-eight-shaped point cloud at four scales. (B) The degree 1 persistence
diagram of the figure eight in 2-dimensions. Note that the point has multiplicity 2. (C) The corresponding degree 1 persistence landscape. The first and second
landscapes are nonzero and identical and all other landscapes are trivial. (D) The two loops that generate the homology of the Vietoris-Rips complex on the figure eight.
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which each point gives the scale of the appearance and
disappearance of a topological feature (such as a loop) in the
filtration.

Example 2.13: Figures 2B,C show the persistent homology in
degree 1 of Example 2.12. Notice that both Figure 2B—the
persistence diagram—and Figure 2C—the persistence landscape
(see Definition 2.14)—show two cycles, but because they are born
and die at exactly the same radius parameters they are plotted in
the same place. The two cycles are shown in Figure 2D.

It is difficult to apply standard tools of statistics and machine
learning directly to persistence diagrams, which, for example, need
not have unique averages (Mileyko et al., 2011). A solution is to
map persistence diagrams into a vector space or Hilbert space. One
such mapping is the persistence landscape. See (Bubenik, 2015) for
the following definitions and results.

Definition 2.14: For a < b let fa,b : R → R be the piecewise-
linear function given by

fa,b(t) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t − a, if a ≤ t ≤
a + b
2

b − t, if
a + b
2

≤ t ≤ b

0, otherwise.

Given a persistence diagram Dgmp(K), the corresponding kth
persistence landscape is the function λk : R → R given by
defining λk(t) to be the kth largest value of fa,b(t) over all
points (a, b) ∈ Dgmp(K). The persistence landscape is the
sequence (λk)k. The parameter k is called the depth of the
persistence landscape. For a point cloud X, we will denote by
PL (X) the persistence landscape obtained by applying degree 1
persistent homology to the Vietoris-Rips filtration of X.

Persistence landscapes have unique averages, satisfy the law of
large numbers and central limit theorems, and can be discretized
for computations. Because the sequence of functions that make
up a landscape are nested, they can all be graphed on the same
plot as in the right column of Figure 4.

While the persistence landscape is defined to be an object in a
space of continuous functions, it can be discretized and turned
into a finite-dimensional vector. Through discretization, each
depth of the landscape transforms from a continuous function on
R to a vector where the ith entry in the vector corresponds to the
function value at the ith discrete parameter value. The vectors for
each depth of the landscape are concatenated together to produce

a single high-dimensional vector. These discrete landscapes can
be computed directly, which we did for the computations
outlined in Section 2.4.

This vector space (in fact, Hilbert space) setting lets us use
linear algebra-based statistical and machine learning techniques
such as principal component analysis (PCA). The principal
components from PCA on discretized landscapes can be
converted into a format much like a persistence landscape—a
sequence of continuous functions on R—but the principal
components are not themselves persistence landscapes because
the functions fail to be nonnegative.

2.4 Pipeline
In this section we give details for our analysis of C. elegans data.
The input consist of piecewise linear midlines of C. elegans from
video recordings as described in Section 2.1. These midlines were
parameterized by the 100 angles between adjacent segments and
then were transformed using PCA, so each sample input to our
system was a time series τ of 100-dimensional vectors measured
in radians. See Figure 1 in (Stephens et al., 2008) and the
accompanied description for more details on this
parameterization of the C. elegans midlines or see our short
summary of the procedure in Section 2.1.

The time domain of this time series was divided into
overlapping patches of a given size called the patch length,
resulting in a collection {τi}i of smaller time series. For our
experiments, a patch length of 300 was chosen, with adjacent
patches overlapping by half of the patch length. The sliding
window embeddings of the τi were then computed with
window length parameter l � 20, resulting in a new collection
{(τi)l}i of time series of length 300 − l + 1 � 281. This analysis
is not particularly sensitive to the choices of the hyperparameters
patch length and window length; only extreme changes in either
parameter lead to significant changes in results. The
hyperparameter choices were motivated by the timescales at
which C. elegans complete meaningful behaviors: for patch
length, 150 frames of 30 fps video is 5 s of behavior; for
window lengths, 20 frames is 0.67 s and corresponds to
roughly one period of forward crawling in adult C. elegans
submerged in the 0.5% methylcellulose environment. Strategies
for choosing appropriate window lengths are described in (Perea
and Harer, 2015). Themethod for cross validation of the choice of
window length is described at the end of this section.

Persistence diagrams were computed for each of the patches
(τi)l . This step accounts for the vast majority of the
computational resources of the pipeline, and the
computational costs are made worse by the concatenation of
vectors in a sliding window embedding. This is where we greatly
benefit from the preprocessing that turns video data, which is
extremely high-dimensional (see (Tralie and Perea, 2018) Section
3.1), into a 100-dimensional time series. On a 2017 15-inch
MacBook Pro with a 2.8 GHz Intel Core i7 processor and
16 GB of RAM, this step took 22588.632 s, or about 6 h and
15 min.

For each (τi)l , a (discretized) persistence landscape PL ((τi)l)
was computed from the persistence diagram of the Vietoris-Rips
complex R((τi)l). The grid of parameter values on which the

FIGURE 3 | Sliding window embeddings encode periodic behavior in the
form of loops. (A) A periodic time series that has trivial first homology. (B) A
sliding window embedding with l � 4 of the original time series that has
nontrivial first homology.
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persistence landscape was evaluated to produce its discretization
was chosen to include all of the bars of the barcode and to be
sufficiently fine to produce nice visualizations. Since the
persistence landscapes are piecewise linear with slope bounded by
± 1, the step size of this discretization bounds the error and there is
eventually little to be gained from a finer discretization. The step size
of the discretization we used was 0.1. The maximum depth was
chosen to include all nonzero depths of the persistence landscapes.

The collection {PL ((τi)l)}i of persistence landscapes was then
assembled into a single summary for a given video by averaging
the persistence landscapes across patches to result in a single
average persistence landscape associated to each video. These
steps are summarized in Figure 5. For each environment

viscosity, the average persistence landscapes for each video
were averaged to give an average persistence landscape of
the class.

The persistence landscapes for each class were used for
analysis of the sliding window embedding as follows.
Distances between each class’ average persistence landscapes
were computed using the usual Euclidean distance. The
pairwise distances were visualized using multidimensional
scaling to give a 2-dimensional visualization of the similarities
between the classes; see Figure 6A.

Principal component analysis (PCA) was applied to the set of
average persistence landscapes for each video and the first two
principal components were plotted as sequences of functions. We

FIGURE 4 | (A) A time series τ, (B) its sliding window embedding of window length l � 20, (C) its smoothing by moving average filter of window length 20, and (D)
the null model, all projected onto 2-dimensional axes of principal components. The corresponding persistence diagrams and persistence landscapes are to the right.
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plotted the PCA projection of these video average persistence
landscapes together with the average of each class; see Figure 7.
These plots visualize some of the similarity between classes and
variation within classes.

Next, we further studied the variation within classes in two
ways. First, the standard deviations of each coordinate were
computed for the average persistence landscapes of the videos
in each class. These were visualized as sequences of functions in
Figure 8B to show the variation in different parts of the average
persistence landscapes. Second, we applied PCA to the average
persistence landscapes of the videos in each class and plotted the
cumulative variances explained by the first n principal
components for n � 1, . . . , 10 (10 is the number of samples in
each class). The first three principal components were also
computed. See Figure 9.

We conducted a permutation test on the pairwise Euclidean
distances between the average persistence landscapes of each
videos. We used 10, 000 permutations for each permutation
test. The approximate p-value equals the percentage of cases in
which the distance is at least as large as the observed distance.
Results can be found in Table 2A.

We applied multiclass support vector machines (SVM) to classify
samples according to viscosity of their environments. We use the
ksvm function from the kernlab package in R on the average
persistence landscapes of the videos. Accuracy was estimated
using 10-fold cross validation with cost set to 10. Cross validation
was repeated 20 times and the results were averaged. A confusion
matrix for one instance of SVMwith 10-fold cross validation was also
computed and is shown in Table 2B.

We used support vector regression (SVR) to approximate
viscosity of the worm environments given the worm’s behavior
data. The goal was to assess how predictive our techniques are.
Accuracy was estimated by averaging 10 repetitions of 10-fold
cross validation. Results are plotted in Figure 9.

As a final step we applied cross validation to the
hyperparameter window length. We cross-validated the
choice of window length by running the above pipeline for
window lengths of 1, 10, 20, and 30 on a subset of the data. To
reduce total computation time, we restricted to the first minute

of each video, which corresponds to 1800 frames. We then
compared the permutation test and multiclass SVM results to
see which hyperparameter choice gave the best results. The
results from cross validation of window length can be found in
Section 3.2.1.

2.5 Validation
To help validate our pipeline, we compared our results to those
obtained by applying the same computational procedure to a
null model given by randomly permuting the frames in
each video.

We also studied the effects of using a preprocessing step different
from sliding window embeddings: moving average filters. A moving
average filter of window length l of time series data creates a new time
series. This time series has the same length as the corresponding
sliding window embedding and each point in the time series is
constructed using the same window of the original time series. The
moving average filter, however, takes the average of the vectors in its
window, instead of concatenating them.

Furthermore, we compared our results to the ones obtained
from two simpler techniques. For the first technique we
attempted to characterize C. elegans behavior using the speed
of the worm. To do this, we computed 2-norms of the differences
between two consecutive frames of angle data and then averaged
all of those discrete derivatives, which resulted in a single value
per sample. For the second technique, which could be described
as measuring the variance of the worm’s pose over a video, we
computed standard deviations for the angle data coordinate-wize,
which resulted in a vector of length 100 per sample. In each case
we performed a permutation test and multiclass SVM on the
resulting feature vectors. The results of these experiments appear
in Section 3.2.2.

3 RESULTS

We present the results of a case study of a single sample of
behavior data and an experiment on the effects of viscosity of the
surrounding environment on C. elegans locomotion and

FIGURE 5 | Pipeline for a single worm.
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behavior. The case study assesses a significantly smaller data set
and directly links topological features to specific behaviors. The
experimental results in Section 3.2 are more difficult to directly
interpret in terms of specific behaviors but nonetheless we show
the effectiveness of persistent homology in distinguishing
variations in behaviors. We leave more explicit interpretation
of average persistence landscapes in terms of specific behaviors
for future work.

3.1 An Illustrative Case Study
The following results were obtained by carefully analyzing a sample
of C. elegans behavior data from a video of a worm crawling on
agar. The sample consists of 400 frames of a 30 frames per second
video, so roughly 13 s of behavior. Having a solid surface to provide
friction forces slower but more complicated behavior than we
would see in an aqueous environment, and we take advantage of
the resulting clarity of the data.

In the data we analyzed the subject exhibits the following
behaviors in chronological order:

1. crawl forward,
2. crawl backward,
3. pause, and
4. crawl backward again.

Below we analyze the time series τ from this data, the
corresponding sliding window embedding τ20, the corresponding
moving average filter, and the sliding window embedding of the
corresponding null model. These comparisons illustrate various
strengths of the sliding window embedding: it smooths the noise
from the original time series; it retainsmore geometric data than the
moving average filter; and it captures temporal data from the
original time series that is destroyed in the null model. Then,
using representative cycles we construct syntheticC. elegansmidline
data that produce a forward crawl and explain how this process
gives concrete interpretations of persistence features in terms of
synthetic behavior data. See Section 3.1.1.

To visualize the four point clouds on which we will compute
persistence, we apply PCA and project onto the first few principal
components. Some of these projections are shown in the two left-
most columns of Figure 4. In contrast to the three other time series,
the null model time series in Figure 4D has no discernible
geometric structure. It appears that the corruption of temporal
information has destroyed the interpretability of the visualizations
of sliding window embeddings. Meanwhile, the original time series
τ in Figure 4A has a similar shape to its sliding window embedding
τ20 in Figure 4B, with the caveat that the sliding window
embedding has the effect of smoothing the data and making it
more robust to noise. The moving average filter in Figure 4C also
has this smoothed property. Though the three time series in Figures
4A–C have similar shapes, persistence diagrams, and persistence
landscapes, they vary in one important feature: the pause.

In Figure 10A the points in the sliding window embedding
that correspond to frames where the worm is performing a
specific behaviors are highlighted. The points corresponding to
the pause behavior deviate from the path of points corresponding
to crawling backwards. This deviation is small compared to the
noisiness of the original time series, so the pause deviation does

FIGURE 6 | (A)Multidimensional scaling of average persistence landscape of each sample. (B)Multidimensional scaling of average persistence landscapes of the
classes and the origin.

FIGURE 7 | (A) Projection of average persistence landscapes onto two
principal components, with average persistence landscapes of videos given
by outlined symbols and average persistence landscapes of classes given by
solid symbols. (B) The first two principal components.
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not create a large topological feature in the graph of the original
time series. This is reflected in the persistence diagrams and
landscapes of Figure 4 as well; the original time series diagram
and landscape Figure 4A show only three significant topological
features, while the diagram and landscape of the sliding window
embedding Figure 4B and moving average filter Figure 4C
show four.

The sliding window embedding and moving average filter
both smooth the input data and detect the pause behavior, but
they are qualitatively different. One piece of geometric
information that the sliding window embedding retains that
the moving average filter does not is the direction of the time
series. Consider plotting a time series and the corresponding
reverse-chronological-order time series in the same ambient
space. The points of the original time series would align exactly
with its reverse, so the two corresponding point clouds are the
same. This is also true of a moving average filter on that time

series. The sliding window embedding, however, can have
distinct point clouds.

Retaining the direction of time in a time series is particularly
important for data that has certain types of symmetry. A natural
occurrence of such data is the sine wave data in Example 2.7.
Because the data in this time series follows a path and then
backtracks along that path, it never produces a loop with any
significant persistence. There is no loop in the moving average
filter of the data, either.

3.1.1 Interpretability: Mapping Persistence Features to
(Synthetic) Behaviors
We computed representative cycles for persistent homology
classes for each of the longest-persisting topological features in
the sliding window embedding using Dionysus (Morozov,
2017). These are shown in Figure 10B. The homology
classes that correspond to each of these representative

FIGURE 8 | (A) The average landscapes for each environmental viscosity, distinguished by percentage of methylcellulose present. The averages here are taken
over the average persistence landscape of videos (i.e. individuals) in a given viscosity class. (B) Standard deviations of each coordinate in the average persistence
landscapes for each class. (C) The first landscapes of each sample landscape, organized by class. These concurrently plotted first landscapes show the variation in the
samples for each class. (D,E) The second and third landscapes, respectively, for each sample according to its class. All plots share the same x-axis; the groups of
plots in (A), (B), and (C–E) each have their own y-axis scale.
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cycles are highlighted in Figure 10C. We remark that instead
of the representative cycles produced by Dionysus one may
want to use (approximate) shortest cycle representatives (Jeff
Erickson, 2012; Dey et al., 2018; Obayashi, 2018; Day et al.,
2019).

One of the benefits of using persistence for behavior analysis is
that these representative cycles give a direct translation from
persistence back into C. elegans behavior. Each point in the cycle
corresponds to l poses and these points have a defined sequence in
the cycle. The cycle lacks a direction (which way is forward in
time vs which way is backward) but in many cases a direction can
be inferred by subsets of the sequence that correspond to
contiguous sequences in the original time series. Given all this
data and a way to combine l poses into one “average” pose, we can

construct synthetic, periodic behavior data from representative
cycles. An example of frames from such a video is shown in
Figure 10D and the corresponding video is available in the
Supplementary Materials.

FIGURE 9 | PCA on the videos in each class. For each class: (A) video frames showing representative postures. (B) The cumulative variance of the first n principal
components. (C–E) The first three principal components, labeled with the percent of the variance described by that component. These results show increasing
complexity of shape and behavior as the environment becomes more viscous.

TABLE 1 |Normalized pairwise distances between average persistence landscapes
of each class, where distance is Euclidean distance between vectors in R255969

and the normalization is such that the average distance to the origin is 1.
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3.2 Experimental Results
We present our analysis of an experiment where C. elegans are
submerged in solutions with varying viscosities. The viscosity
of the solution is correlated with how much methylcellulose is
added and experimental conditions are labeled with their
methylcellulose content, usually in order from low to high
methylcellulose and viscosity.

Average persistence landscapes for each class are shown in
Figure 8A. The lower viscosity conditions allow for larger depth
one landscapes (λ1) but have relatively few non-zero higher-
depth landscapes, which means there are a smaller number of
larger loops detected in the sliding window embeddings. This
indicates that in lower-viscosity environments, C. elegans
exhibit behaviors of higher amplitude but either

FIGURE 10 | (A) Points in the sliding window embedding τ20 that correspond to each of the labeled behaviors are highlighted. (B) The representative cycles with
longest persistence from automated persistence software correspond to specific behaviors. (C) The persistence diagram with the homology class corresponding to the
above cycle representative highlighted. (D) Still frames from a looping video of forward crawling data. The full video is in Supplementary Materials. This synthetic data
was constructed from the forward representative cycle in (B).

TABLE 2 | Classification statistics. (A) Permutation test results. (B) Confusion matrix for one instance of SVM with 10-fold cross validation.
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demonstrate fewer distinct behaviors or have much less
variation between repetitions of behaviors. Conversely, the
high-viscosity classes show many more cycles in the sliding
window embeddings, with each cycle being small compared to
the cycles found in the low-viscosity environments. These
observations suggest that at high-viscosity, behaviors do not
involve large changes in posture and are more varied. From
observing the raw video data, it is apparent that in higher-
viscosity environments C. elegans can make smaller, tighter
body bends, which is consistent with these results.

We also observed that as viscosity increases, the support of the
persistence landscapes stretches further to the right and cycles are
born at higher radius values. The worms seemed to exhibit less
varied behaviors in lower-viscosity environments, so perhaps in
such environments they continued “retracing their steps”
through the sliding window embedding space which resulted
in more densely sampled curves and thus homology classes
formed at lower radii.

The pairwise distances between landscapes for each sample are
visualized in Figure 11. The normalized pairwise distances
between the average persistence landscapes for each class are
shown in Table 1. We include the origin—the zero persistence
landscape, i.e. the 0 vector—in these distance computations to
complete the normalization. Normalization is such that the
average distances between each class and the origin is 1.
Multidimensional scaling on these distances visualizes the
similarities between samples and classes, respectively, and are
shown in Figure 6. From the raw distances and the
multidimensional scaling of the distances, we can see that the
high-viscosity classes (2% and 3% methylcellulose) are closest
together and that this pair, the 0.5% class, and the 1% class are
roughly equidistant from one another.

Principal component analysis on the average persistence
landscapes for each sample gives the graphs in Figure 7. In
Figure 7A, the projections of the average persistence
landscapes of the samples onto the first two principal

components are given by hollow symbols and projections of
the average persistence landscapes of the classes are given by
solid symbols. Here we see results similar to those from the
multidimensional scaling in Figure 6: the low-viscosity class
landscapes are far from each other and the high-viscosity
classes, while the high-viscosity class landscapes are quite
close. We can also see some of the variance within classes.
The low-viscosity classes have much more variability than the
high-viscosity classes, with the highest-viscosity class, 3%
methylcellulose, having very little variation in these first
two principal components.

These conclusions about variation in each of the classes are
supported by the standard deviations of each coordinate in the
average (discrete) persistence landscapes of each class. In
Figure 8B the standard deviations of each coordinate are
graphed as sequences of functions so that the standard
deviations can be easily matched up with their corresponding
locations on the average persistence landscapes.We conclude that
there is little variation in the 3% class, slightly more in the 2%
class, and much more in the 0.5% and 1% classes. The 1% class
showed more variation in higher-depth landscapes than the 0.5%
class, suggesting that C. elegans can produce slightly more
complex behaviors in a slightly higher viscosity environments.
The variances of the 0.5% and 1% classes also exhibit a distinct
pattern; the 0.5% samples varied more toward the lower radius
parameters (the left side of the graph), whereas the 1% samples
varied more toward higher (more to the right) radius parameters.

In the following analysis we study the complexity of behavior
expressed in each class. Figure 9 shows results from using PCA
on the videos in each class. The viscosity of the environment is
negatively correlated with the percent of variance explained by
the first principal component, which suggests that behaviors in
low-viscosity environments are simpler than those in high-
viscosity environments. Viscosity appears to be correlated with
the number of nonzero landscapes, which also suggests that high-
viscosity environments allow for more varied behaviors.

We conducted permutation tests between pairs of classes to
determine how well average persistence landscapes can
distinguish between samples from different classes. The
p-values for these computations are shown in Table 2A. The
permutation test gives strong evidence of statistical significance,
i.e. that the topological summaries of samples from each class are
significantly different.

We then used multiclass support vector machines (SVM) to
build a classifier for the samples. The estimated accuracy of the
classifier, computed by averaging accuracies across 20
instantiations of the multiclass SVM classifier, was 95.125%.
This indicates that persistent homology is able to produce
meaningful, distinguishing features from the C. elegans videos.
A sample confusion matrix for one instance of SVM is shown in
Table 2B. Finally, we used support vector regression to estimate
the methylcellulose content in the environment for each sample.
The results are plotted in Figure 12. There are two outliers on this
graph which are estimated as having negative methylcellulose
content. The two animals in these samples moved much more
quickly than their peers, so we believe that the SVR is picking up on
the strong negative correlation between viscosity of the

FIGURE 11 | Heatmap of the distance matrix of average persistence
landscapes of samples.
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environment and speed, and based on these animals’ fast speed,
assigning a methylcellulose content that is so low that it is negative.

3.2.1 Cross Validation of Window Length
As was shown in Example 2.6, changes in the window length of the
sliding window embedding can affect the conclusions drawn from
our computational pipeline. In fact, sliding window embeddings
have been critiqued for their need of this seemingly arbitrary
parameter that can cause significant artifacts when dealing with
volatile data (Lindquist et al., 2014). Our data is not particularly
volatile since it is constrained by physical limitations of C. elegans,
but we have still justified our choice of window length by
conducting cross validation.

We assembled the results from running our computational
pipeline with window lengths of 1, 10, 20, and 30. We found that
different window lengths could be more useful for
different tasks.

The permutation test and multiclass SVM results show that
using a window length of 1 (i.e., not using a sliding window
embedding) is the most predictive and that the smaller the
window length, the better the accuracy. Window length 1 had
the largest multiclass SVM accuracy at 95.500% compared to
accuracies 91.750%, 83.375%, and 79.125% for window lengths
10, 20, and 30, respectively. The permutation test results were less
definitive, with window length 1 showing slightly more separation
between the 0.5% and 1% methylcellulose classes but all window
lengths giving strong results. The runtimes of each computation
differed significantly, with window length one data running for
just over 5 min while window length 30 data took 90 min. This
indicates that for predictive purposes and doing statistics on large
data sets, using persistence on as close to the raw data as possible
is best, but sliding window embeddings can still be useful if they
are desirable for other reasons.

These statistical results contrast with the ease of visualization
and interpretability of the analyses using the different window
lengths. PCA projections of the cross validation data show much
more differentiation between classes when the window length is
10, 20, or 30 compared to when it is 1. This is presumably because
the first two principal components do not explain as much of the
variation in the raw data, so separation between classes takes
more principal components to describe. Meanwhile, sliding
window embeddings consolidate variation in the samples into
fewer principal components, so there are fewer significant
principal components to visualize and interpret in terms of
the original application. Essentially, sliding window
embeddings give a slightly simplified but still predictive
representation of the raw data.

We can also see from Figure 4 that PCA projections of
behavior data are easier to interpret when we use a sliding
window embedding than when we look at just the raw time
series. Recall that one of the behavioral features from the
data—the pause—was not detectable over noise when looking
at the PCA projection of the original time series but could be
identified in both the PCA projection and the persistence
landscape of the sliding window embedding. Because we were
able to identify the topological feature we were also able to
compute a corresponding representative cycle, which in turn

allowed an estimate of the locomotion corresponding to the
pause behavior to be constructed. Identification and
construction of the corresponding locomotion of the pause
behavior would have been more difficult using the original
time series.

3.2.2 Validation Results
We conducted permutation tests and applied multiclass SVM for
data from two simple behavior quantification techniques which
are described in Section 2.5. Results of the permutation test are
listed in Table 3. For the method based on averages of 2-norms of
consecutive frames of vector angles the cross validation error was
12.5% and training error was 7.5%. For the method based on
standard deviations of vector angles the cross validation error was
70% and training error was 35%. Though more computationally
taxing, persistence and sliding window embeddings produced
much more accurate results than either of these simpler
techniques.

Computations for the null model involve permuting the
original time series of each sample and running our sliding
window embedding and persistence techniques on that
permuted data. Analysis of the null model showed that
temporal information is necessary for our techniques to give
good accuracy differentiating between samples taken in differing
viscosity environments.

For the null model, the average error across 20 iterations of 10-
fold cross validation on SVMs was 51.625%. The permutation
tests showed that we could distinguish the 0.5% methylcellulose
class without temporal information, but could not do as well
differentiating between the three higher viscosity classes. It seems
that the distribution of poses in the 0.5% methylcellulose class
was different enough from the other classes to produce noticeably
larger topological features that resulted in larger landscapes. This
is probably because the lowest viscosity class had more extreme
poses and thus the diameter of the space of poses for that class was
significantly larger.

FIGURE 12 | SVR estimates of methylcellulose content for each sample.
Horizontal lines are at 0.5%, 1%, 2%, and 3% methylcellulose.
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4 DISCUSSION

We have demonstrated that persistent homology is a viable
technique for studying C. elegans behavior and provides useful
interpretations and visualizations. Our method consists of
constructing sliding window embeddings of time series of
piecewise linear C. elegans skeletons and using degree one
persistent homology to create topological summaries for each
patch of each video. These topological summaries, called
persistence landscapes, are averaged over patches to produce a
single average persistence for each video. These average
persistence landscapes are our topological summary statistics
and they are the statistics to which we apply further statistical
analysis and machine learning techniques, such as principal
component analysis, multidimensional scaling, permutation
tests, and multiclass support vector machines. As far as we are
aware, this is the first application of persistent homology to C.
elegans behavior data.

Our analysis showed that persistence is able to detect
variability in C. elegans behavior data, but also that it can
provide interpretable conclusions and useful visualizations.
The potential of persistence for interpretability and
visualization results is demonstrated in the case study of
Section 3.1, where topological features were connected
directly to behavioral features and persistence was used to
create synthetic behavior data corresponding to stereotyped
behaviors such as forward crawling. Our analysis of
experimental data shows that persistent homology can detect
the variation of behavior induced by changes in the viscosity of
the environment. It also suggests that persistence can measure
complexity of behavior and that sliding window embeddings
with low window lengths can be more predictive while sliding
window embeddings with higher window lengths can be more
useful for producing clear and interpretable visualizations,
including video of synthetic data.

Persistent homology produces powerful summaries of the
“shape” of data. However, using persistent homology in a way
that is interpretable by experimentalists is a challenge and a topic
of current research. We take a step in this direction by using
representative cycles of the most persistent features of a sliding
window embedding to produce synthetic videos of characteristic
cyclic behaviors. At this time, there does not exist a
straightforward way to similarly interpret our composite
summaries, the average persistence landscapes. However, there
is work in progress toward this goal (Bubenik andWagner, 2018),
and our pipeline would be able to incorporate such advances.

Our analysis has implications for future experimental design.
We observed that low-viscosity environments allow for the
detection of variation between samples, while high-viscosity
environments may allow animals to perform more complex
and varying behaviors. Tuning the viscosity of the
environment for an experiment or performing experiments in
multiple fluid environments with varying viscosities could allow
for more easily assessing results regarding variations within
populations or variations in behavior.

An extension to this experiment that could provide more
validation for our techniques would be to include samples from
two new environmental conditions: buffer, which would
correspond to 0% methylcellulose and a lower viscosity than
appears in our current data; and agar, which provides a solid
surface for the worms to crawl on and surrounding air as
opposed to an aqueous environment to be submerged and
swim in. We would expect the new buffer class to allow for
only fast, simple behaviors in line with the experiments already
done, and the agar environment to allow more complex
behaviors in the subjects.

The method that we have developed for applying
topological data analysis to C. elegans locomotion data will
facilitate the future study of biological phonemena such as
aging. In particular, our rich quantitative summary of
locomotion suggests that we may be able to measure not
just lifespan, but “healthspan,” the length of time an
individual is healthy and physically capable. Many therapies
and medicines for humans and other organisms have a goal of
expanding healthspan, and therefore require a detailed
measure of the ability to locomote, such as those provided
by our methods.
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Supervised Learning Using Homology
Stable Rank Kernels
Jens Agerberg1*, Ryan Ramanujam1,2, Martina Scolamiero1† and Wojciech Chachólski 1†

1KTH Royal Institute of Technology, Mathematics Department, Stockholm, Sweden, 2Department of Clinical Neuroscience,
Karolinska Institutet, Stockholm, Sweden

Exciting recent developments in Topological Data Analysis have aimed at combining
homology-based invariants with Machine Learning. In this article, we use hierarchical
stabilization to bridge between persistence and kernel-based methods by introducing the
so-called stable rank kernels. A fundamental property of the stable rank kernels is that they
depend onmetrics to compare persistence modules. We illustrate their use on artificial and
real-world datasets and show that by varying the metric we can improve accuracy in
classification tasks.

Keywords: topological data analysis, kernel methods, metrics, hierarchical stabilisation, persistent homology

1 INTRODUCTION

Topological data analysis (TDA) is a framework for analyzing data which is mathematically well-
founded and with roots in algebraic topology. Through the use of persistent homology, TDA
proposes to analyze datasets, often being high-dimensional and unstructured, where each
observation is an object encoding some notion of a distance. An example of such an object is a
point cloud with Euclidean distance. A convenient way of encoding distance objects is via Vietoris-
Rips complexes [1]. Persistent homology transforms these complexes into so-called persistence
modules and diagrams [2, 3]. These modules and diagrams encode geometrical aspects of the
distance objects captured by homology. We thus regard the obtained persistence diagrams as
summaries encoding geometrical features of the considered distance objects. In recent applications,
and in such varied fields as bioinformatics [4] and finance [5], it has been shown that these
summaries encode valuable information which is often complementary to that derived from non-
topological methods.

The discriminative information contained in the persistent homology summaries makes them
interesting in the context of machine learning, for instance to serve as inputs in supervised learning
problems. The space of persistence diagrams lacks however the structure of a Euclidean, or more
generally Hilbert space, often required for the development of machine learning (ML) methods.
Furthermore, for inference purposes we also need to be able to consider probability distributions over
topological summaries. Since for persistence diagrams we only have Fréchet means at our disposal [6,
7] inference is difficult.

Our aim in this article is to present how persistent homology can be combined with machine
learning algorithms within a framework called hierarchical stabilization [8–10]. We will use
hierarchical stabilization to define new persistence-based kernels and illustrate them on artificial
and real-world datasets. This article is based in part on some of the results described in Jens
Agerberg’s thesis [11].

Comparing and interpreting summaries produced by persistent homology should not just depend
on their values but crucially also on the phenomena and the experiments that the considered datasets
describe. Different phenomena might require different comparison criteria. It may not be optimal to
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consider only Bottleneck or Wasserstein distances to compare
outcomes of persistent homology of diverse datasets obtained
from a variety of different experiments. The ability to choose
distances that fit particular experiments is required. We do not,
however, plan to use these distances to compare persistence
modules directly. Instead, quite essentially we use a chosen
distance to transform, via the hierarchical stabilization process,
the space of persistence modules into the space M of (Lebesgue)
measurable functions [0,∞)→ (−∞,∞) with the L2 distance.
Thus each distance d on persistence modules leads to a function
denoted by the symbol r̂ankd : Persistence modules→M called
the stable rank. With the L2 distance,M is a Hilbert space and its
scalar product provides an effective tool to study geometrical
aspects of the image of r̂ankd , particularly those captured by
measuring length, angles, and exploring orthogonality. Thus
kernel machine learning methods, which are based on scalar
products, are effective tools in exploring such geometrical
features. Illustrating the effectiveness of this strategy for
modeling with stable ranks is the aim of this paper.

Since the stable rank is stable with respect to d, the kernel
formed can be seen as a similarity measure associated to d, of
practical importance in several machine learning methods. In this
framework, supervised learning consists of identifying these
distances d for which structural properties of the training data
are reflected by the geometry of its image in M through the
function r̂ankd . The strategy of looking for appropriate distances
can only work if we are able to parametrize explicitly a rich
subspace of distances on persistence modules. The hierarchical
stabilization process builds on the discovery that such
parametrization is possible using positive (Lebesgue)
measurable functions [0,∞)→ (0,∞) called densities. An
organized search in the space of densities is beyond the scope
of this article. The intention of this paper is to illustrate that by
changing the density, the kernels can improve the accuracy in a
supervised learning task.

Our method fits within the family of persistence based kernels
[12], some of which also have parameters which can be optimized
to fit a particular learning task [13]. However, a characteristic of
our stable rank kernel is that it is defined on persistence modules
rather than on persistence diagrams. A bar decomposition of the
persistence modules is therefore useful but not essential for the
definition of our kernel, which is readily generalisable to multi-
parameter persistence.

2 MATERIALS AND METHODS

2.1 Homological Simplification: From Data
to Persistence Modules
Recall that a distance on a set X is a function d : X × X→ [0,∞)
which is symmetric d(x, y) � d(y, x) and reflexive d(x, x) � 0. It
is a pseudometric if in addition it satisfies the triangular inequality
d(x, y) + d(y, z)≥ d(x, z). For example, by restricting a distance
on the plane to a point cloud we obtain a finite distance space.

In this article we focus on data whose points are represented by
finite distance spaces. This type of data is often the result of
performing multiple measurements for each individual,

representing these measurements as vectors, choosing a
distance between the vectors, and representing each individual
by a distance space. Encoding data points in this way reflects
properties of the performed measurements accurately. That is an
advantage but also a disadvantage as a lot of the complexity of the
experiment is retained including possible noise, measurement
inaccuracies, effects of external factors that might be irrelevant for
the experiment but influence the measurements, etc. Because of
this overwhelming complexity, to extract relevant information we
need to simplify. Data analysis is a balancing act between
simplifying, which amounts to ignoring some or often most of
the information available, and retaining what might be
meaningful for the particular task. In this article we study
various simplifications based on homology.

The first step in extracting homology is to convert distance
information into spatial information. We do that using so-called
Vietoris-Rips complexes [1]. By definition the Vietoris-Rips
complex VRϵ(X, d), at scale ϵ in [0,∞), is a simplicial
complex whose simplices are given by the non-empty finite
subsets σ ⊂ X for which d(x, y)≤ ϵ for every x and y in σ.
Vietoris-Rips complexes form an increasing filtration as
VRϵ(X, d) ⊂ VRτ(X, d) when ϵ≤ τ. In the case X is finite,
there is a finite sequence of parameters 0≤ a0 ≤/≤ al such
that VRϵ(X, d) ⊂ VRτ(X, d) may fail to be the equality only if
ϵ< ai ≤ τ for some i, i.e., the jumps in the Vietoris-Rips filtration
can occur only when passing through some ai. Such filtrations are
called tame [8, 10].

The Vietoris-Rips filtration does not lose or add information
about the distance space. It retains all the complexity of d. Thus,
the purpose of this step is not to simplify, but rather to allow for
the extraction of homology (see for example [14]). In this article
we only consider reduced homology. The first step in extracting
homology is to choose a field; for example, F2 with two elements.
Homology in a given degree n, with coefficients in a chosen field
F, converts a simplicial complex X into an F vector space Hn(X).
Homology is a functor which means that it also converts maps of
simplicial complexes f : X→Y into linear functions Hn(f ) :
Hn(X)→Hn(Y) such that Hn(id) � id and Hn(gf ) �
Hn(g)Hn(f ) for any composable maps f and g. Homology
encodes certain geometric features of the simplicial complex,
for example the dimension of H0(X) is one less than the number
of connected components of X, as the considered homology is
reduced.

By applying homology to Vietoris-Rips complexes, we obtain a
vector space Hn(VRϵ(X, d)) for every ϵ in [0,∞). By applying
homology to the inclusions VRϵ(X, d) ⊂ VRτ(X, d), when ϵ≤ τ,
we obtain linear functions Hn(VRϵ(X, d))→Hn(VRτ(X, d))
(which may not be inclusions). These linear functions, for all
ϵ≤ τ, form what is also called a persistence module [15]. Tameness
of the Vietoris-Rips filtration implies tameness of the persistence
module: there is a finite sequence of parameters 0≤ a0 ≤/≤ al
such that Hn(VRϵ(X, d))→Hn(VRτ(X, d)) may fail to be an
isomorphism only if ϵ< ai ≤ τ for some i i.e., jumps occur only
when passing through some ai.

The described process of assigning a tame persistence module
to a distance space is a simplification. This is because of a
particularly simple structure theorem for tame persistence
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modules [15, 16], which states that every tame persistence module is
isomorphic to a direct sum of so-called bars. A bar, denoted by
b(s, e), is a tame persistencemodule determined by two real numbers
s< e in [0,∞), called the start and the end, such that: b(s, e)ϵ is one
dimensional in case s≤ ϵ< e and 0 dimensional otherwise, and the
linear function b(s, e)ϵ → b(s, e)τ is the identity for s≤ ϵ≤ τ < e.
Tame persistence modules can therefore be parametrized by finite
multisubsets [17] of Ω :� {(s, e) ∈ [0,∞)2 ∣∣∣∣ s< e}. Such
multisubsets are also called persistence diagrams. There exist
several software implementations that compute persistence
diagrams of distance spaces. Among them is Ripser [18] which
we use for the persistent homology calculations presented in
this paper.

In the rest of the article we explain and illustrate a framework
for analyzing outcomes of persistence called hierarchical
stabilization [8–10].

2.2 Hierarchical Stabilization: From
Persistence Modules to Measurable
Functions
The key ingredient in hierarchical stabilization is a choice of a
pseudometric on persistence modules. It turns out that a
pseudometric on persistence modules can be constructed for
every action of the additive monoid of non negative reals
[0,∞) on the poset of non negative reals [0,∞). Such an
action is a function C : [0,∞) × [0,∞)→ [0,∞) satisfying the
following conditions C(a, 0) � a, C(C(a, ϵ), τ) � C(a, ϵ + τ), and
C(a, ϵ)≤C(b, τ) if a≤ b and ϵ≤ τ. We refer to [8–10] for an
explanation of how an action leads to a pseudometric. Here we
recall how to construct a rich space of such actions.

We do that by associating actions to measurable functions
with positive values f : [0,∞)→ (0,∞) called densities.
According to [8], a density leads to the following actions. One
action Df : [0,∞) × [0,∞)→ [0,∞) is called of distance type
and assigns to (a, ϵ) the unique number Df (a, ϵ) for which
∫Df (a,ϵ)
a

f (x)dx � ϵ. Another action Sf : [0,∞) × [0,∞)→ [0,∞)
is called of shift type and is constructed as follows: choose y such
that a � ∫y

0
f (x)dx and define Sf (a, ϵ) :� ∫y+ϵ

0
f (x)dx. For

example, for the constant density with value 1, the two actions
D1 and S1 coincide with the standard action (a, ϵ)1a + ϵ. We use
the name the standard pseudometric to describe the
pseudometric on persistence modules associated to this
standard action. The standard pseudometric is equivalent to
the Bottleneck distance [19] (see [10]).

Since densities form a rich space, then so do the pseudometrics
on persistence modules they parametrize. By focusing on distance
type actions defined by densities, in this paper we take advantage of
the possibility of choosing a variety of pseudometrics on persistence
modules. As already mentioned in the introduction, we are not
going to use them to compare persistence modules directly. Instead
we are going to use them to transform persistence modules into
(Lebesgue) measurable functions [0,∞)→ (−∞,∞) called stable
ranks. By definition, the stable rank r̂ankd(X) of a persistence
module X, assigns to t in [0,∞) the following number:
r̂ankd(X)(t) :� min{rank(Y) | d(Y ,X)≤ t}, where rank(Y) is
the number of bars in a bar decomposition of Y. Thus

r̂ankd(X)(t) is the minimal rank of the persistence modules that
belong to the closed ball centered in X and of radius twith respect to
the chosen pseudometric d. We refer to the stable rank associated to
the standard pseudometric as standard stable rank. In the case the
pseudometric d on persistence modules is associated with an action
C : [0,∞) × [0,∞)→ [0,∞), the stable rank r̂ankd(X) can be
described directly in terms of C. Consider a bar decomposition
X ≃ ⊕n

i�0b(si, ei), then r̂ankd(X)(t) �
∣∣∣∣∣{i |C(si, t)< ei}

∣∣∣∣∣. Thus the
values of the stable rank r̂ankd(X) are certain bar counts
depending on C.

The key result states that the assignment X1r̂ankd(X) is a
continuous function (in fact satisfying a certain Lipschitz
condition [8]) with respect to the chosen pseudometric on
persistence modules and the Lp metric on the space M of
measurable functions [0,∞)→ (0,∞). In this way we obtain
a continuous function r̂ankd : Persistence modules→M into the
space M in which geometrical, probabilistic and statistical
methods are well developed. For example we can take averages
and expected values of stable ranks assigned to various collections
of persistence modules such as those given by homologies of
Vietoris-Rips complexes obtained from a collection of distance
spaces. In the case we choose the L2 metric onM, we can also use
the Hilbert space structure on M and use the stable rank to
construct a kernel on persistence modules. For persistence
modules X and Y the stable rank kernel with respect to a
pseudometric d is by definition given by
Kd (X,Y) :� ∫∞

0
̂rankd(X) ̂rankd(Y)dt. The stable rank of a

persistence module obtained as the reduced homology of
Vietoris-Rips complexes is square integrable. Thus, for such
persistence modules the stable rank kernel is finite.

In conjunction with various machine learning methods, the
stable rank kernels for various densities can be used for
classification purposes. Some of these possibilities are
illustrated in the second half of this article where we use the
stable rank kernels in conjunction with support vector
machines (SVM).

2.3 Modeling: Determining Appropriate
Distances on Persistence Modules
Supervised learning typically consists of fitting models to training
data, and validating them on an appropriate testing set. Here,
supervised persistence analysis takes the same form. We think
about the function r̂ankd : Persistence modules→M as a model
associated to a pseudometric d on persistence modules, for
example the pseudometric given by the distance type action
defined by a density. To fit such a model is to identify a
parameter given by a pseudometric d (or a density leading to
a pseudometric) for which structural properties of the data are
reflected by the geometry of its image inM through the function
r̂ankd . Some of the aspects of this geometry are effectively
encoded by the stable rank kernel.

There are two reasons why extracting information about
persistence modules by exploring their stable ranks r̂ankd over
varying pseudometrics d is effective. First, of practical importance
for using kernel methods, is the fact that the stable rank r̂ankd :
Persistence modules→M is not only a continuous function, it is

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 6680463

Agerberg et al. Homology Stable Rank Kernels

96

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


also continuous with respect to the changes of the pseudometric d
or the density for which d is represented via either the action of
distance type or the shift type [8]. Second, persistence modules
are determined by their stable ranks: two tame persistence
modules X and Y are isomorphic if and only if, for every
density f, the functions r̂ankdf(X) and r̂ankdf(Y) coincide,
where df is the pseudometric associated to the action Df of
distance type.

In the analysis presented in the next section we are going to use
the following procedure for choosing a density. First we restrict
ourselves to a simple family of densities: piecewise constant
functions that are allowed to have at most four discontinuities,
and the ratio of the maximum value divided by the minimum
value is controlled. We sample 100 such densities and select the
density corresponding to the optimal pseudometric by a
procedure of cross-validation: first we split the dataset into a
training set (60%), a validation set (20%) and a test set (20%).
Next, new SVMs with the stable rank kernel corresponding to
each of the 100 densities are fitted to the training set. The density
leading to the best accuracy on the validation set is then selected.
Last, the accuracy on the test set using the optimum density from
the previous stage is evaluated and reported.

In our scheme to select an optimal density, we randomly
sample piecewise constant functions. Both the family of densities
on which the search is conducted and the search scheme can be
varied. For example one can consider family of Gaussians as
parametrized by their mean and standard deviation and proceed
with a grid search for selecting optimal parameters. In our
experience, in order to avoid overfitting, it is useful to restrict
to functions that are constrained in their behavior.

3 RESULTS

In this section, two examples of analysis based on stable rank
kernels are presented. In these examples, the objective is to
correctly classify according to the categories, or labels, of each
dataset. The focus of the first example is on certain finite subsets of
the plane which are called plane figures. The plane figures
considered have clear intuitive geometric meaning such as being
a circle, rectangle, a triangle or an open path. Our aim is two-fold.
First, we intend to illustrate that the stable rank kernel is applicable
to the problem of differentiating between these geometrical shapes.
Second, we will demonstrate how to enhance the discriminatory
power by varying densities or by taking samplings of the data and
averaging the associated stable ranks. We study the robustness of
our method by altering the geometrical shapes with the addition of
two types of noise and evaluating the accuracy of the stable rank
kernels on these noisy figures.

The second example is concerned with activity monitoring
data which is not simulated but consists of collected
measurements. In PAMAP2 [20], seven subjects were asked to
perform a number of physical activities (walking, ascending/
descending stairs, etc.) while wearing the following sensors: a
heart rate monitor and three units (placed on the arm, chest and
ankle) containing an accelerometer, a magnetometer and a
gyroscope. This resulted in a dataset of 28-dimensional time

series labeled with subject and activity. In this example, we
concentrate on distinguishing between data from ascending
and descending stairs of different individuals.

3.1 Plane Figures: Dataset Generation
We consider four subsets of the plane: a circle, a rectangle, a
triangle and an “M”-formed path: see the first row in Figure 1 for
the illustration. We refer to these subsets as shapes. The plane
figures dataset is generated in the following way: 100 points are
sampled uniformly from each of these subsets. Each point in this
sampling is then perturbed by adding Gaussian noise (i.e., it is
replaced by a point sampled from an isotropic Gaussian centered at
the point). This is repeated 500 times for each shape. In this way we
obtain 2000 subsets of 100 elements in the plane (500 for each
shape). By considering the Euclidean distance to compare points
on the plane, we can regard these subsets as finite distance spaces
and call them plane figures. The collection of these 2000 plane
figures of four classes is our first dataset. The elements in this
dataset are labeled by the shapes. The objective of our analysis is to
illustrate how to recover this labeling using the stable rank kernels.

3.2 Plane Figures: Analysis Based on
Zero-th Homology
As a first exploratory step, for each plane figure we compute the
Vietoris-Rips filtration, the corresponding 0-th homology persistence
module and its stable rank with respect to the standard pseudometric.
Figure 2 shows four plane figureswith different labels fromour dataset
(first row) and the corresponding stable ranks (second row). By
plotting the average of all stable ranks for plane figures
corresponding to each shape (Figure 3) we get an indication that
indeed the 0-th homology analysis may not be very effective at
distinguishing between plane figures labeled by different shapes. To
confirm this, we formulate our problem in machine learning terms as
classifying a given plane figure to the shape from which it was
generated. The dataset is split into a training set (70%) and a test
set (30%). A support vectormachine (SVM) is fitted on the training set
using the standard stable rank kernel and evaluated on the test set.We
take advantage of the fact that we can generate the data and repeat the
whole procedure 20 times. This results in a rather weak average
classification accuracy of 35.0%.We suspect that the poor classification
is due to the fact that the plane figures do not exhibit distinct clustering
patterns. The stable rank, with respect to the standard pseudometric, is
a fully discriminatory invariant of persistence modules resulting from
the 0-th homology of Vietoris-Rips filtrations (this is a consequence of
the fact that the stable rank is a certain bar count, see Hierarchical
Stabilization: From Persistence Modules to Measurable Functions).
Since this invariant completely describes our 0-th homology
persistence modules, we do not expect that the classification
accuracy can be noticeably improved by considering stable rank
kernels associated with different pseudometrics.

3.3 Plane Figures: Analysis Based on First
Homology
We repeat the same procedure for the 1-st homology persistence
modules of the Vietoris-Rips filtrations. An indication that these
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stable ranks may be more effective at distinguishing between shapes
is given by observing their average per shape, plotted in (Figure 4A)
together with the standard deviation. This intuition is confirmed
when considering the corresponding classification problem, in

which we now achieve 88.5% accuracy. Note that in comparison
to the stable ranks of the shapes (Figure 1, second row), adding noise
and averaging has the effect that the stable ranks of plane figures
(Figure 4A) are smoother, and decrease more gradually. When

FIGURE 1 | First row: a dense point cloud sampling without noise from each of the shapes. Second row: the corresponding standard stable ranks of the
persistence modules given by the 1-st homology of the Vietoris-Rips complexes of the distances given by the restriction of the Euclidean metric to the point clouds.

FIGURE 2 | First row: examples of point clouds representing four plane figures in the dataset, one for each of the four shapes. Second row: the corresponding
standard stable ranks of the persistence modules given by the 0-th homology of the Vietoris-Rips complexes of the plane figures.
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considering persistencemodules resulting from the 1-st homology of
Vietoris-Rips filtrations, the stable rank associated to the standard
pseudometric is no longer a fully discriminatory invariant.
Therefore, to improve accuracy it might be a viable strategy to
consider alternatives to the standard pseudometric. To generate
additional pseudometrics, we will use actions of distance type, which
we recall can be defined by means of densities (see Hierarchical
Stabilization: From PersistenceModules toMeasurable Functions). In
Figure 5, we illustrate the effect of changing densities.

As explained in Modeling: Determining Appropriate Distances
on Persistence Modules, our strategy to produce densities is to
restrict to a simple class of piecewise constant functions. We
randomly sample 100 such densities and select the density
corresponding to the optimal pseudometric using a cross-
validation procedure. The density leading to the best accuracy
on the validation set is kept and finally the accuracy on the test set
is evaluated and reported.

Again because the dataset is artificially generated we can repeat
the procedure many times to get robust results. It appears that

although sampling densities introduces another source of
randomness, restricting the densities to a simple family allows
the improvement to be consistent and outperform the standard
action every time. On average, we obtain an accuracy of 94.75%.
In Figures 4B,C, a density considered optimal during one run of
the procedure is shown, together with the stable ranks with
respect to that density.

In this case, a simple interpretation for why this density leads
to better accuracy might be found by inspecting the average 1-st
homology Betti curve per shape. We recall that the 1-st homology
Betti curve measures, for t in the filtration scale, the number of
bars in a bar decomposition of the 1-st homology persistence
module which contain t. Further, averages and standard
deviations can be computed per shape. As shown in Figure 6
it appears that the rectangle and the triangle (which are the
sources of confusion in the classification problem) are most easily
distinguished by the 1-st homology Betti curve approximately in
the interval [3, 4.5] of the filtration scale. Intuitively, the optimal
density emphasizes this interval, leading to better accuracy. In

FIGURE 3 | Average 0-th homology standard stable ranks for each shape.

FIGURE 4 | (A): Average 1-st homology standard stable ranks for each shape (shaded area: standard deviation). (B): Example of a density considered optimal
during one run of the procedure. (C): Average 1-st homology stable ranks with respect to the optimal pseudometric for each shape (shaded area: standard deviation).
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particular the density with value one in the interval [3, 4.5] and
value 0.05 elsewhere leads to comparable results as obtained by
using an optimal density found through the cross-validation
scheme.

3.4 Plane Figures: Analysis Based on
Subsampling, Averaging, and First
Homology
We now modify our dataset. To add ambient noise to the point
clouds we generate: 30% of the 100 points that constitute each
point cloud are now sampled uniformly from the [−5, 5] × [ −
5, 5] square. The remaining 70% of the points are sampled as
described before (see Plane Figures: Dataset Generation). In this
way we obtain a new dataset of 2000 distance spaces labeled again

by four shapes. Figure 7 shows four point clouds representing
four plane figures with different labels in this new dataset. This
figure also shows the corresponding standard stable ranks of the
persistence modules given by the 1-st homology of the Vietoris-
Rips complexes of the distances given by the restriction of the
Euclidean metric to the point clouds. The addition of ambient
noise has a substantial negative effect: patterns detected by
persistent homology such as formation of clusters and voids
are very sensitive to the insertion of even a small number of
uniformly distributed points. This negative effect is well
illustrated in Figure 8A where the average of 1-st homology
standard stable ranks appear less distinctive for different shapes.
However, a simple procedure of subsampling allows us to denoise
the data, leading to an invariant which again can discriminate
between the different shapes. For each point cloud, we now

FIGURE 5 | (A): Examples of five densities randomly sampled during cross-validation. (B): For plane figures in the dataset corresponding to the rectangle, stable
ranks are computed under the five different densities from the left plot. Average stable ranks are plotted with the same color as the density under which they were
computed.

FIGURE 6 | Average 1-st homology Betti curve for each shape (shaded area: standard deviation).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 6680467

Agerberg et al. Homology Stable Rank Kernels

100

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


subsample 20% of its points and generate the corresponding 1-st
homology standard stable rank. We repeat this 50 times and
compute the average of these 50 stable ranks. Repeating this for all
distance spaces in the dataset we obtain 2000 functions whose
averages per shape are illustrated in Figure 8B. Using the same
classification procedure as described in Plane Figures: Analysis
Based on First Homology, we obtain a much higher shape
detection accuracy of 86.25%.

Finally, instead of fixing the level of noise at 30% we now vary
it by considering noise levels 0%, 10%, 20%, . . . , 90%, 100%. For
each noise level the same process is repeated: generation of
figures, subsampling, generation of stable ranks, averaging, and

classification, resulting in an accuracy for each level. This
procedure was performed both with and without subsampling,
as shown in Figure 9. As expected, the results are similar in
accuracy when there is 0% noise and also when there is 100%
noise. However, in between the subsampling clearly leads to an
improvement.

3.5 Activity Monitoring
As a real world dataset, we consider activity monitoring data from
the PAMAP2 [20] dataset which consists of time series labeled
per activity and per indivdual. On average, each time series has
13,872 time steps. The data was preprocessed as in [8]. We select

FIGURE 7 | First row: examples of point clouds representing four plane figures in the dataset, one for each of the four shapes, with 30% ambient noise. Second
row: the corresponding standard stable ranks of the persistence modules given by the 1-st homology of the Vietoris-Rips complexes of the plane figures.

FIGURE 8 | Point clouds generated with ambient noise. (A): 1-st homology average standard stable ranks (shaded area: standard deviation). (B): plane figures are
represented by average 1-st homology standard stable ranks of subsamplings. Averages of these representations per shape are illustrated (shaded area: standard
deviation).
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two activities (ascending and descending stairs) and seven
individuals. By taking the Cartesian product of activities and
individuals we thus obtain 14 classes. For each class, which thus
represents temporal measurements of one activity performed by
one individual we remove the time steps that had no reported
heart rate. We also remove a number of columns suspected to
contain invalid information. That resulted in 28-dimensional
time series with 1,268 time steps on average per individual and
per activity. We then sample uniformly without replacement
100 time steps from each of these time series independently.
Using the Euclidean distance we obtain a metric space (of size
100) per individual and per activity. Computing 0-th-and 1-st
persistent homologies of the Vietoris-Rips filtrations of these
metric spaces results in persistence modules. By repeating this
procedure 100 times we obtain a dataset consisting of 1,400
observations (100 for each class) where each observation is a
pair of persistence modules. Stable ranks can then be computed,
first with respect to the standard action. In Figure 10 average
standard stable ranks per class are plotted, both for 0-th and 1-st
homologies. One can see that stable ranks allow to distinguish
between individuals but even more so between activities.

The problem is formulated as classifying an out-of-sample pair
of persistence modules within one of the 14 classes. In contrast
with [8] but similarly to the previous experiment, we use an SVM
classifier with the stable rank kernel. We construct two kernels,
corresponding to 0-th and 1-st homologies respectively, using
stable rank with respect to the standard action. For this
experiment, however, both kernels appear to be informative
and we wish to combine them to achieve better classification
accuracy. Since a sum of kernels is also a kernel, we train our SVM
with the sum of the kernels for the 0-th and 1-st homologies.
There are also other ways to combine multiple kernels into a new
one such as taking linear combinations or products [21], which
might be useful for other experiments. We use random
subsampling validation repeated 20 times with a 60/40
training/test set split. This results in a 68.2% accuracy,
demonstrating an improvement over [8] where 60% accuracy
was obtained.

Next we apply the same procedure of cross-validation as in the
previous experiment to attempt to find a better density and
corresponding pseudometric and kernel. We search for
alternative densities for the 1-st homology stable rank kernel
while keeping the standard action for 0-th homology. This leads
to an accuracy of 71.7%, thus somewhat higher than with the
standard action. We note that the densities found through this
method are similar to the one used in [8] which also led to an
improvement. The confusion matrix corresponding to this kernel
is shown in Figure 11.

4 DISCUSSION

A common pipeline when working with persistent homology is to
start with a unique distance on persistence modules (Bottleneck
or Wasserstein), then analyze persistence diagrams and finally
consider feature maps from persistence diagrams, in case
machine learning algorithms are to be applied. Our aim in
this article has been to illustrate an alternative pipeline, where
we instead start with a vast choice of distances on persistence
modules and then consider the induced stable rank which is a
continuous mapping with respect to the chosen distance. Our
approach is very flexible, distances can be derived from

FIGURE 9 | For each level of ambient noise, classification is performed with
standard stable ranks resulting from point clouds without subsampling (solid line)
and with subsampling (dashed line) and classification accuracies are reported.

FIGURE 10 | (A): 0-th homology average standard stable ranks per class. (B): 1-st average standard stable ranks per class.
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parametrisations (densities) which often have an intuitive
interpretation and can be found from simple search
procedures, as we wanted to illustrate in the experiments. We
believe that this simpler pipeline makes it natural to go between
data analysis and machine learning, as stable ranks are amenable
to both. For instance, we have presented how intuitions guided by
the average of stable ranks then corresponded to classification
accuracies through the stable rank kernel. Finally the simplicity of
stable ranks makes them computationally efficient, something
that is particularly useful for kernel methods.

A schematic situation where alternative distances can be
useful, is when the bar decomposition of the classes is as
follows. In the first, noisy, part of the filtration scale, bars are
distributed randomly following the same distribution for both
classes. In the second part of the filtration scale instead, bars are
distributed according to two distinct distributions, one for each of
the classes. Bottleneck distance is too sensitive to the noise, to
utilize the signal, for instance in a classification problem. A
distance defined by a density which has small values on the
first part of the filtration scale and high values on the second part
of the filtration scale, would instead extract the difference between

the classes and result in a better classification when encoded in
the stable rank kernel. In this case we could directly design a
density which improves accuracy in a classification task. In other
occasions, as we have shown for example in the plane figures
dataset, Betti curves can give an indication of how to design
appropriate densities. More generally, when the noise pattern
becomes more complicated, we have proposed to randomly
generate densities and then evaluate them in a cross-validation
procedure. This method was particularly useful for the activity
monitoring dataset, where given the difficulty of this classification
problem, it was not possible to manually construct densities
which improved classification. For the plane figure dataset
instead we could still construct densities which perform as
well if not slightly better than the optimal density among the
randomly generated ones.

Learning algorithms for density optimization are an
appealing alternative to this strategy, although we believe
conceptual and algorithmic challenges are inherent to this
problem. If for example density optimization is framed in
terms of metric learning, the most difficult part is to identify a
meaningful and well behaved objective function to optimize.

FIGURE 11 | Confusion matrix for the classification with the kernel based on the 0-th homology standard stable rank and the 1-st homology stable rank with
respect to the optimal density.
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Preliminary work by O. Gävfert [22], highlights that the choice
of basic objective functions do not lead to convex optimization
problems. Here we circumvent the question of identifying an
appropriate objective function by evaluating the performance
of a density through the accuracy of the associated kernel
in SVM.

To enhance analysis using our methods one should keep in
mind that in most cases it is convenient to consider several
distances at the same time. For example different degree
homologies (e.g., 0-th and 1-st homologies) could, and
possibly should, be treated independently. In other words,
distances that are suitable for the 0-th homology might not be
informative for the 1-st homology. Even for analysis involving
only one degree homology one should not look for just one
density and one kernel since stable ranks with respect to
different densities might show different geometrical aspects
of the data. In principle it is possible to fully recover
persistence modules, by using stable ranks (see Modeling:
Determining Appropriate Distances on Persistence Modules
and [8]), however in practice the whole information of the
persistence modules might be redundant, while with an
appropriate number and choice of densities, we believe, one
could be able to extract more valuable information for a
classification task.

While the examples in this article concern classification
problems based on one-dimensional persistence, a more
general treatment of the kernel would be interesting, both in
terms of multi-persistence (the stable rank kernel is a multi-
persistence kernel but the barcode decomposition in the one-
dimensional case allows to compute it very efficiently), and in
terms of utilizing the kernel in other contexts, such as for
statistical inference.
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A Comparative Study of Machine
Learning Methods for Persistence
Diagrams
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Many and varied methods currently exist for featurization, which is the process of mapping
persistence diagrams to Euclidean space, with the goal of maximally preserving structure.
However, and to our knowledge, there are presently no methodical comparisons of
existing approaches, nor a standardized collection of test data sets. This paper provides a
comparative study of several such methods. In particular, we review, evaluate, and
compare the stable multi-scale kernel, persistence landscapes, persistence images,
the ring of algebraic functions, template functions, and adaptive template systems.
Using these approaches for feature extraction, we apply and compare popular
machine learning methods on five data sets: MNIST, Shape retrieval of non-rigid 3D
Human Models (SHREC14), extracts from the Protein Classification Benchmark Collection
(Protein), MPEG7 shape matching, and HAM10000 skin lesion data set. These data sets
are commonly used in the above methods for featurization, and we use them to evaluate
predictive utility in real-world applications.

Keywords: persistent homology, machine learning, topological data analysis, persistence diagrams, barcodes

1 INTRODUCTION

Persistence diagrams are an increasingly useful shape descriptor from Topological Data Analysis.
One of their more popular uses to date has been as features for machine learning tasks, with success
in several applications to science and engineering. Though many methods and heuristics exist for
performing learning with persistence diagrams, evaluating their relative merits is still largely
unexplored. Our goal here is to contribute to the comparative analysis of machine learning
methods with persistence diagrams.

Starting with topological descriptors of datasets, in the form of persistence diagrams, we provide
examples and methodology to create features from these diagrams to be used in machine learning
algorithms. We provide the necessary background and mathematical justification for six different
methods (in chronological order): the Multi-Scale Kernel, Persistence Landscapes, Persistence
Images, Adcock-Carlsson Coordinates, Template Systems, and Adaptive Template Systems. To
thoroughly evaluate these methods, we have researched five different data sets and the relevant
methods to compute persistence diagrams from them. The datasets, persistence diagrams and code to
compute the persistence diagrams is readily available for academic use.

As part of this review, we also provide a user guide for these methods, including comparisons and
evaluations across the different types of datasets. After computing the six types of features, we
compared the predictive accuracy of a ridge regression, random forest, and support vector machine
model to assess the type of featurization that is most useful in predictive models. The code developed
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for this analysis is available, with some functions developed
specifically for use in machine learning applications, and easy-
to-use jupyter notebooks showing examples of each function with
multiple dataset types.

Of these methods, Persistence Landscapes, Adcock-Carlsson
Coordinates, and Template Systems are quite accurate and create
features for large datasets quickly. Adaptive Template Systems
and Persistence Images took somewhat longer to run, however,
the Adaptive Template Systems featurization method did
improve accuracy over other methods. The Multi-Scale Kernel
was the most computationally intensive, and during our
evaluation we did not observe instances of it outperforming
other methods.

2 BACKGROUND

Algebraic topology is the branch of mathematics concerned with
the study of shape in abstract spaces. Its main goal is to quantify
the presence of features which are invariant under continuous
deformations; these include properties like the number of
connected components in the space, the existence of holes and
whether or not the space is orientable. As an example, Figure 1
shows two spaces: the 2-dimensional sphere on the left, which is
the set S2 � {x ∈ R3 : x � 1} of 3-dimensional vectors with unit
norm, and the Möbius band M � [−1, 1] ×
[−1, 1]/(−1, y) ∼ (1,−y) on the right. The latter can be
thought of as the result of gluing the right and left edges of
the square [−1, 1] × [−1, 1] with opposite orientations.

The aforementioned properties of shape for these spaces are as
follows. Both S2 and M are connected, while S2 is orientable but

M is not. Moreover, any closed curve drawn on the surface of S2

bounds a 2-dimensional spherical cap, and thus we say that the
sphere has no 1-dimensional holes. The equator {(x, 0) : |x|≤ 1}
of the Möbius band, on the other hand, is a closed curve in M
which is not the boundary of any 2-dimensional region, and
therefore we say thatM has one 1-dimensional hole. Finally, S2 is
itself a closed 2-dimensional surface bounding a 3-dimensional
void—thus the sphere is said to have a 2-dimensional hole—but
M has no such features.

The homology of a space is one way in which topologists
have formalized measuring the presence of n-dimensional
holes in a space (Hatcher, 2002). Indeed, for a space X (e.g.,
like the sphere or the Möbius band) an integer n≥ 0 and a field
F (like the integers modulo a prime p, denoted Zp), the n-th
homology of X with coefficients in F is a vector space over F
denoted Hn(X; F). The main point is that the dimension of
this vector space corresponds roughly to the number of
essentially distinct n-dimensional holes in X. Going back
to the examples from Figure 1:

H0(S2;Z2) � Z2, H0(M;Z2) � Z2

H1(S2;Z2) � 0 , H1(M;Z2) � Z2

H2(S2;Z2) � Z2, H2(M;Z2) � 0

where, again, the dimension of H0(X; F) corresponds to the
number of connected components in X, the dimension of
H1(X; F) represents the number of 1-dimensional holes, and
so on forHn(X; F) and n ≥ 1. It is entirely possible that different
choices of F result in different dimensions forHn(X; F); this is an
indication of intricate topological structure in X, but the
metaphor of holes is still useful.

FIGURE 1 | Left: The 2-dimensional sphere S2 ⊂ R3, right: the Möbius band M.

FIGURE 2 | The Rips complex on a point cloud (X ,dX ) sampled around the unit circle, for four different scale choices.
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2.1 Persistent Homology
There are several learning tasks where each point in a data set
has shape or geometric information relevant to the problem at
hand. Indeed, in shape retrieval, database elements are often 3D
meshes discretizing physical objects, and the ensuing learning
tasks are often related to pose-invariant classification (Pickup

et al., 2014). In computational chemistry and drug design,
databases of chemical compounds are mined in order to
discover new targets with desirable functional properties. In
this case, the shape of each molecule (i.e., of the collection of
comprising atoms) is closely related to molecular function, and
thus shape features can be useful in said data analysis tasks (Bai
et al., 2009).

If homology is what topologists use to measure the
shape of abstract spaces, then persistent homology is how
the shape of a geometric data set can be quantified (Perea,
2019). Persistent homology takes as input an increasing
sequence of spaces

X : X0 ⊂ X1 ⊂ / ⊂ XL.

Any such sequence is called a filtration. The definition of
persistent homology relies on two facts: first, that one can
compute homology for each space separately, i.e., Hn(Xℓ; F)
for each 0≤ ℓ ≤ L, and second, that each inclusion Xℓ ⊂ Xℓ+1
induces a linear transformation Hn(Xℓ; F)→Hn(Xℓ+1; F)
between the corresponding vector spaces. The n-th persistent
homology of the filtration X is the sequence

PHn(X ; F) : Hn(X0; F)→Hn(X1; F)→/→Hn(XL; F)
of vector spaces and induced linear transformations.

FIGURE 3 | The Rips persistence diagrams in dimensions 0 (blue) and 1
(orange), for a point cloud sampled around the unit circle.

FIGURE 4 | (A) An example apple fromMPEG7 data. (B) An example image contour used for MPEG7. (C) The distance to mean point calculation used for sublevel
set persistence (D) Persistence diagrams from lower star persistence (E) Persistence diagrams from the contour.
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The evolution of features in PHn(X ; F), which is the main
point of interest, can be encoded and visualized through a
persistence diagram. In a nutshell, if each Hn(Xj; F) is finite
dimensional and βj,ℓn (X ; F) denotes the rank of the linear
transformation Hn(Xj; F)→Hn(Xℓ; F) induced by the
inclusion Xj ⊂ Xℓ , j≤ ℓ, then the persistence diagram of
PHn(X ; F), denoted dgmn(X ; F), is the collection of pairs
(j, ℓ) with nonzero multiplicity (i.e., number of repeats).

μj,ℓn :� βj,ℓ−1n (X ; F) − βj−1,ℓ−1n (X ; F) − βj,ℓn (X ; F) + βj−1,ℓn (X ; F),
0≤ j< ℓ ≤ L.

See section VII.1 of Edelsbrunner and Harer (2010) for more
details. In other words, dgmn(X ; F) is a multiset (i.e., a set whose
elements appear with multiplicity) of pairs, where each
(j, ℓ) ∈ dgmn(X ; F) encodes μj,ℓn homological features of the
filtration X which appear at Xj (i.e., j is the birth time) and
disappear entering Xℓ (ℓ is the death time). The persistence ℓ − j
of (j, ℓ) is often used as a measure of prominence across the
filtration X , but short-lived features can be quite informative for
learning purposes as well [see for instance Bendich et al. (2016)].

2.1.1 Filtrations From Point Cloud Data
There are several ways of constructing filtrations from geometric
data. Indeed, let X be a set and dX a measure of distance between
its elements. The pair (X, dX) is often referred to as point cloud
data, and the running hypothesis is that it is the result of sampling
X from an unknown continuous space. The ensuing inference
problem in Topological Data Analysis is to use (X, dX) to
estimate shape/homological features of the unknown
underlying space. A popular strategy is to compute the
Vietoris-Rips complex

Rε(X) :� {{x0, . . . , xm} ⊂ X

∣∣∣∣∣∣∣∣max
0≤j,k≤m

dX(xj, xk)≤ ε,m ∈ N} (1)

where ϵ≥ 0, a singleton {x} is thought of as a vertex at x, a set
with two elements {x0, x1} represents an edge between x0 and x1,

a set {x0, x1, x2} spans a triangle, and so on. This construction
is motivated by the fact that Rϵ(X) is known to approximate
the topology of the underlying space from which X was
sampled under various conditions on X and ϵ (Latschev,
2001). In practice, however, an optimal choice of scale ϵ≥ 0
is unclear at best, so one instead considers the Vietoris-Rips
filtration

R(X) : Rε0(X) ⊂ Rε1(X) ⊂ / ⊂ RεL(X) (2)

for 0≤ ϵ0 < ϵ1 </< ϵL. The ϵℓ ’s can be chosen, for instance, to be
the different values of the distance function dX . Figure 2 shows an
example of this construction for X ⊂ C sampled around the unit
circle S1 � {z ∈ C : |z| � 1}, and four scales ϵ≥ 0.

The persistent homology of the Vietoris-Rips filtration,
i.e., PHn(R(X); F), can then be used to measure the shape of
the underlying shape of the point cloud. An important point is
that even though homology is invariant under continuous
deformations, the Vietoris-Rips complex is a metric-based
construction. Thus, the resulting Vietoris-Rips persistence
diagrams

dgmR
n (X) � {(ϵj, ϵℓ)withmultiplicity μj,ℓn > 0}

often encode features such as density and curvature, in addition
to the presence of holes and voids (Bubenik et al., 2020).
Figure 3 shows the Vietoris-Rips persistence diagrams in
dimensions n � 0, 1 for the data sampled around the unit
circle in Figure 2. The persistence of a point in a persistence
diagram can be visualized as its vertical distance to the diagonal.
This measures how likely it is for said feature to correspond to
one of the underlying space, instead of being a reflection of
sampling artifacts [see for instance Theorem 5.3 in Oudot
(2015)]. The fact that there is one highly persistent point for
n � 0 indicates that the data has one cluster (i.e., one connected
component), while the presence of one highly persistent point
for n � 1 indicates that there is a strong 1-dimensional hole in
the data. Both are consistent with, and suggest, that the circle is
the underlying space.

FIGURE 5 | (A) Example number 8 from the MNIST dataset. (B) The same number 8 after computing each of the four types of coordinate transforms to compute
the persistence diagrams.
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2.1.2 Filtrations From Scalar Functions and Image
Data
If X is a topological space and f : X→R is a function, then the
sublevel sets

Xa � f −1(−∞, a], a ∈ R

define the so called sublevel set filtration of X. IfX is a 3D mesh,
for example, then one can compute estimates of curvature at
every vertex, and then extend said function linearly (via

barycentric coordinates) to the triangular faces. The persistent
homology of the sublevel set filtration is often called sublevel set
persistence, and it is useful in quantifying shape properties of
geometric objects which are endowed with scalar functions. See
Figure 4 for an application of this idea. The corresponding
persistence diagrams are denoted dgmn(f ).

Images provide another data modality where sublevel set
persistence can be useful. Indeed, an image can be thought of
as a function on a grid of pixels; if the image is in grey scale,

FIGURE 6 | Persistence Landscapes from the MPEG7 dataset to show differences in features. Each color corresponds to a different landscape, i.e., λk for
k � 1, 2, 3.

FIGURE 7 | Persistence Images of a 5 from the MNIST set in dimension 0.
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then we have a single scalar valued function, and if the image is
multi-channel (like RGB color representations) then each
channel is analyzed independently. The grid yields a
triangulated space via a Freudenthal triangulation of the
plane, and the values of pixel intensity in each channel can
be extended via convex combinations to the faces [see Lemma
1 of Kuhn (1960)]. We will apply this methodology later on to
the MNIST hand written digit data base (Figure 5). This
approach to computing persistent homology from images is
not unique in the literature; other popular methods such as
cubical homology (Kaczynski et al., 2004) have been used for
this same purpose. This work, however, deals exclusively with
simplicial homology as it is the standard approach in many
applications.

2.2 The Space of Persistence Diagrams
Persistence diagrams have shown to be a powerful tool for
quantifying shape in geometric data (Carlsson, 2014).
Moreover, one of their key properties is their stability with
respect to perturbations in the input, which is crucial when
dealing with noisy measurements. Indeed, two persistence
diagrams D and D′ are said to be δ-matched, δ > 0, if there
exists a bijection m : A→A′ of multisets A ⊂ D and A′ ⊂ D′

with.

‖x −m(x)‖∞ < δ for every x ∈ A, where ‖ ·‖∞ is the maximum
metric in R2.
If (a, b) ∈ (D∖A)∪(D′∖A′), then b − a< 2δ.

The bottleneck distance dB(D,D′) is the infimum over all δ > 0
so thatD andD′ are δ-matched; this defines a metric on the setD0

of all finite persistence diagrams. The stability theorem of Cohen-
Steiner et al. (2007) for sublevel set persistence contends that ifX
is a finitely triangulated space and f , g : X→R are tame and
continuous, then

dB(dgmn(f ), dgmn(g))≤
����f − g

����∞
for every integer n≥ 0. We note that the theorem is still true if
continuous is replaced by piecewise linear. Similarly, if (X, dX)
and (Y , dY ) are finite metric spaces, then the stability of Rips
persistent homology (Chazal et al., 2014, Theorem 5.2) says that

dB(dgmR
n (X), dgmR

n (Y))≤ 2dGH(X,Y)
where dGH(·, ·) denotes the Gromov-Hausdorff distance
(Gromov, 2007).

In order to develop the mathematical foundations needed for
doing machine learning with persistence diagrams, it has been
informative to first study the structure of the space they form.
Indeed, if D0 denotes the space of finite persistence diagrams,
then we will letD denote its metric completion with respect to the
bottleneck distance dB. It readily follows that dB extends to a
metric onD. See Blumberg et al. (2014) for an explicit description
of what the elements of D are. In addition to the bottleneck
distance, the Wasserstein metric from optimal transport suggests
another way of measuring similarity between persistence
diagrams. Indeed, for each integer p≥ 1 and D,D′ ∈ D, their
p-th Wasserstein distance is

dWp(D,D′) :

� inf
m
⎛⎝∑

x∈A
||x −m(x)||p∞ + ∑

(a,b)∈(D∖A)∪(D’∖A’)
(b − a

2
)

p

⎞⎠
1/p

where the infimum runs over all multiset bijections m : A→A′, for
A ⊂ D andA′ ⊂ D′. One can show that dWp defines ametric on the set

Dp :� {D ∈ D
∣∣∣∣dWp(D,∅)<∞}

and that (Dp, dWp) is a complete separable metric space (Mileyko
et al., 2011) with dWp → dB as p→∞.

Doing statistics and machine learning directly on the space
of persistence diagrams turns out to be quite difficult. Indeed,
(D, dB) does not have unique geodesics, and thus the Fréchet
mean of general collections of persistence diagrams is not
unique (Turner et al., 2014). Since computing averages, and
in general, doing linear algebra on persistence diagrams is not
available, then several authors have proposed mapping
(D, dB) to topological vector spaces where further analysis
can be done. These methods are the main focus of this review.
The theory of vectorization of persistence diagrams is an
active area of research, with recent results showing the
impossibility of full embeddability. Indeed, even though
the space of persistence diagrams with exactly n points can
be coarsely embedded in a Hilbert space (Mitra and Virk,

FIGURE 8 | (A) Persistence Diagrams (B) Persistence Diagrams with boundaries of the support function for Tent Features (C) Persistence Diagrams with
boundaries of the support for Adaptive Templates.
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2021), this ceases to be true if the number of points is allowed
do vary (Wagner, 2019; Bubenik and Wagner, 2020). That
said, partial featurization is still useful as we will
demonstrate here.

3 FEATURIZATION METHODS

For each of the methods below, we start with a collection of
persistence diagrams. A persistence diagram can be represented
in either the birth-death plane or birth-lifetime plane—some
methods will require birth-death coordinates and others will
require birth-lifetime coordinates. The birth-death plane is the
representation pair (x, y) where x is the time of birth, and y is
the time of death of the feature in the persistence diagram. The
birth-lifetime plane can be defined as the collection of points

(x, y − x), where (x, y) is in birth-death coordinates. In this
manner, we define lifetime as the persistence y − x of a feature
(x, y). The persistence diagrams of a particular geometric object
can be calculated in a variety of ways, which will be made
explicit for each dataset at time of evaluation.

3.1 Multi-Scale Kernel
The Multi-Scale Kernel of Reininghaus et al. (2015) defines a
Kernel over the space of persistence diagrams, which can then be
used in various types of kernel learning methods. In general, a
kernel k is by definition a symmetric and positive definite function
of two variables. Mathematically, from Reininghaus et al. (2015),
given a set X, a function k : X × X→R is a kernel if there exists a
Hilbert space H, called the feature space, and a map Φ : X→H,
called the feature map, such that k(x, y) � 〈Φ(x),Φ(y)〉H for all
x, y ∈ X. The kernel induces a distance on X defined as

TABLE 1 | Results from the Shrec14 Dataset using the average model classification accuracy ± standard deviation over 100 trials.

Full results for SHREC14 dataset

Method Train Test Model

Multi-scale kernel (sigma � .5, sum of kernels) .8942 ± .0142 .8938 ± .0464 Kernel SVM
Persistence landscapes (n = 5, r = 200) .9968 ± .0037 .9312 ± .0336 Ridge regression

.9302 ± .0098 .9186 ± .0417 SVM (RBF, c � 10)

.9739 ± .0190 .9114 ± .0441 Random forest
Persistent images (p � 40, s � .5) .7243 ± .0387 .7048 ± .0588 Ridge regression

.9067 ± .0147 .8876 ± .0479 SVM (RBF, c � 1)

.9855 ± .0092 .865 ± .0764 Random forest
Adcock-carlsson coordinates .85 ± .0199 .7124 ± .0814 Ridge regression

.8671 ± .0183 .6928 ± .0599 SVM (RBF, c � 50)

.9147 ± .0299 .6976 ± .0899 Random forest
Template systems (d � 12, p � 1.1) .9442 ± .0087 .9100 ± .0405 Ridge regression

.9350 ± .0079 .9159 ± .0383 SVM (RBF, c � 1)

.9483 ± .0214 .8874 ± .0481 Random forest
Adaptive template systems (CDER) .9937 ± .0078 .9169 ± .0395 Ridge regression

.9929 ± .0083 .9064 ± .0397 SVM (RBF, c � 10)

.9729 ± .0200 .9164 ± .0422 Random forest

TABLE 2 |Results from the Protein Dataset using the averagemodel classification accuracy ± standard deviation over 54 trials corresponding to the predefined indices of the
dataset.

Full results for protein dataset

Method Train Test Model

Multi-scale kernel (sum of kernels) .8294 ± .1063 .8803 ± .0702 Kernel SVM
Persistence landscapes .9108 ± .0615 .9620 ± .0204 Ridge regression

.9012 ± .0682 .9782 ± .0151 SVM (RBF)

.9011 ± .0686 .9782 ± .0152 Random forest
Persistent images .9011 ± .0682 .9758 ± .0165 Ridge regression

.9007 ± .0684 .9782 ± .0151 SVM (RBF)

.9008 ± .0685 .9782 ± .0151 Random forest
Adcock-carlsson coordinates .9008 ± .0685 .9780 ± .0151 Ridge regression

.9009 ± .0685 .9782 ± .0151 SVM (RBF)

.9015 ± .0677 .9779 ± .0151 Random forest
Template systems .9008 ± .0684 .9780 ± .0151 Ridge regression

.9020 ± .0678 .9782 ± .0151 SVM (RBF)

.9016 ± .0678 .9775 ± .0152 Random forest
Adaptive template systems .9008 ± .0685 .9782 ± .0151 Ridge regression (CDER)

.9007 ± .0684 .9782 ± .0151 SVM (CDER) (HDB)

.9100 ± .0685 .9800 ± .0151 Random forest
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dk(x, y) � (k(x, x) + k(y, y) − 2k(x, y))12 � ∣∣∣∣∣∣∣∣Φ(x) −Φ(y)∣∣∣∣∣∣∣∣H .
Reininghaus et al. (2015) propose a multi-scale kernel onD as

follows. Given F,G ∈ D, the persistence scale space kernel kσ is

kσ(F,G) � 〈Φσ(F),Φσ(G)〉L2(Ω) (3)

whereΦσ : D→ L2(Ω) is the associated feature map, andΩ ⊂ R2

is the closed half-plane above the diagonal. Deriving the solution
of a distribution-analogue of the Heat equation with boundary
conditions in Definition 1 of Reininghaus et al. (2015), the closed
form expression of the multi-scale kernel is:

kσ(F,G) � 1
8πσ

∑
p∈F,q∈G

e−
||p−q||2

8σ − e−
p−q2
8σ

where if q � (a, b), then q � (b, a).
The multi-scale kernel is shown to be stable w.r.t the 1-

Wasserstein distance by Theorem 2 of Reininghaus et al.
(2015), which is a desirable property for classification
algorithms. However, by Theorem 3 of Reininghaus et al.
(2015), the multi-scale kernel is not stable in the Wasserstein
sense for 1< p≤∞.

3.2 Persistence Landscapes
Persistence landscapes are a mapping of persistence diagrams
into a function space that is either a Banach space or Hilbert space
(Bubenik, 2020). Advantages of persistence landscapes are that
they are invertible, stable, parameter-free, and nonlinear.
Persistence landscapes can be computed from a persistence
diagram as follows.

From Bubenik (2020), for a persistence diagramD � (ai, bi)i∈I,
and for a< b, let

f(a,b)(t) � max(0,min(a + t, b − t)) (4)

and

λk(t) � kmax{f(ai ,bi)(t)}i∈I (5)

with kmax as the kth largest element.
The persistence landscape is the sequence of piecewise linear

functions, λ1, λ2, . . . : R→R. Bubenik shows desirable properties
for working with persistence landscapes in statistical modeling, in
particular that even if unique means do not exist in the set of
persistence diagrams, persistence landscapes do have unique
means and the mean landscape converges to the expected
persistence landscape. Figure 6 shows an example of
persistence landscapes from the MPEG7 dataset, described in
the data section.

3.3 Persistence Images
From Adams et al. (2015), persistence images are a mapping
sending a persistence diagram to an integrable function,
called a persistence surface. Fixing a grid on R2, the
integral over this grid yields pixel values forming the
persistence image. Advantages of persistence images
include a representation in Rn, stability, and ease of
computation. When calculating the persistence image, a
resolution, a distribution, and a weighting function are
required as parameters. It is worth noting that the
resolution (i.e., number of pixels) determines the number
of features computed by the persistence image.

FIGURE 9 | (A) Example of skin lesion in HAM10000 (B) Skin lesion with mask (C) Mask only dataset.

TABLE 3 | Characteristics of each dataset. The column headings can be explained as such: Observations—number of observations in the dataset, Diagrams—the number
of homological types used to compute persistence diagrams, Average Pairs—the average number of birth/death pairs across the set of persistence diagrams for a single
observation in the original dataset, and Min/Max Pairs—the minimum and maximum number of birth/death pairs across the set of persistence diagrams for a single
observation in the original dataset.

Dataset characteristics

Dataset Observations Diagrams Average pairs Min/Max pairs

MNIST 70,000 8 1.15 0/7
SHREC14 300 2 14 1/29
Protein 1,357 2 346 3/500
MPEG7 1,400 2 205 1/500
HAM10000 10,000 18 5,783 13/32610
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More explicitly, letD be a persistence diagram in birth-lifetime
coordinates. We take ϕu : R

2 →R to be a differentiable
probability distribution. Using, for instance, the Gaussian
Distribution with mean u and variance σ2 we have

ϕu(x, y) � 1
2πσ2

e−[(x−ux)2+(y−uy)2]/2σ2

The persistence surface ρD : R2 →R is the function

ρD(z) � ∑
u�(x,y−x)∈D

f (u)ϕu(z)

with f : R2 →R, a nonnegative weighting function that is zero
along the horizontal axis, continuous, and piecewise
differentiable. The persistence image is then
I(ρD)p � ∫∫

p

ρDdydx, where integration is over the fixed grid

on R2. This creates an image depicting high and low density
areas in the defined grid, that are represented as a high-
dimensional vector for use in machine learning algorithms.
An example is shown in Figure 7 taken from the MNIST
dataset.

3.4 Adcock-Carlsson Coordinates: The Ring
of Algebraic Functions on Persistence
Diagrams
This method is explored by Adcock et al. (2016) where the
authors highlight the fact that any persistence diagram with
exactly n points can be described by a vector of the form
(x1, y1, x2, y2, . . . , xn, yn) where xi denotes the birth of the i-th
class and yi the corresponding death time. Since this specific
representation imposes an arbitrary ordering of the elements in
the persistence diagram, one can more precisely identify the set of
persistence diagrams with exactly n points with elements of the
n-symmetric product of R2, denoted Spn(R2).

The inclusions Spn(R2)ISpn+1(R2) thus produce an inverse
system of affine coordinate rings

/→A[Spn+1(R2)]→A[Spn(R2)]→/

which provide the basis for studying algebraic functions on the
space of persistence diagrams.

With this setting inmind, the main goal of Adcock et al. (2016)
is to determine free generating sets for the subalgebra of
A[Sp∞(R2)] comprised of elements which are invariant
under adjoining a point of zero persistence to a persistence
diagram. The following theorem is an answer to this question
(see Theorem 1 Adcock et al. (2016)).

Theorem 1 The subalgebra of 2-multisymmetric functions
invariant under adding points with zero persistence, is freely
generated over R by the set of elements of the form

pa,b � ∑
i

(xi + yi)a(yi − xi)b

for integers a≥ 0 and b≥ 1.
These are the features we call Adcock-Carlsson coordinates.
Using this method we chose the following features for both the 0-
dimensional and 1-dimensional persistence diagrams, as suggested
in Adcock et al. (2016) when analyzing the MNIST data set:
∑
i
xi(yi − xi), ∑

i
(ymax − yi)(yi − xi), ∑

i
x2i (yi − xi)4, ∑

i
(ymax − yi)2

(yi − xi)4.

3.5 Template Systems
The goal of this method is to find features for persistence
diagrams by finding dense subsets of C(D,R). To accomplish
this we will rely on the fact that given a persistence diagram
D ∈ D, and a continuous and compactly supported real-valued
function on W � {(x, y) ∈ R2 : 0≤ x < y}, i.e. for f ∈ Cc(W), we
can define a continuous [see Theorem 26 Perea et al. (2019)] map
](D) : Cc(W)→R given by

](D, f ) :� ∑
x∈D

f (x).

The function D1](D, ·) defines a continuous injection
DICc(W)′ into the topological dual of Cc(W). The specific
topology in the codomain is chosen so that ] is in fact continuous.

TABLE 4 | Results from the MNIST Dataset using the average model classification accuracy ± standard deviation over 10 trials.

Full results for MNIST dataset

Topological method Training accuracy Testing accuracy Model type

Multi-scale kernel (sum of kernels for 12,000 observations) .6895 ± .0035 .6932 ± .0117 SVM
Persistence landscapes .8844 ± .0004 .8786 ± .0019 Ridge regression

.9231 ± .0004 .9180 ± .0018 SVM (RBF)

.5814 ± .0098 .5828 ± .0098 Random forest
Persistent images .8997 ± .0005 .8934 ± .0021 Ridge regression

.9368 ± .0004 .9199 ± .0023 SVM (RBF)

.6889 ± .0036 .6953 ± .0123 Random forest
Adcock-carlsson coordinates .8590 ± .0010 .8547 ± .0030 Ridge regression

.9525 ± .0004 .9356 ± .0018 SVM (RBF)

.7214 ± .0092 .7170 ± .0097 Random forest
Template systems .896 ± .0005 .8959 ± .0017 Ridge regression

.9638 ± .0003 .9477 ± .0015 SVM (RBF)

.6967 ± .0035 .6973 ± .0031 Random forest
Adaptive template systems .8819 ± .0016 .8817 ± .0027 Ridge regression (GMM)

.9515 ± .0021 .9363 ± .0021 SVM (RBF) (GMM)

.6914 ± .0188 .6932 ± .0209 Random forest
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This injective featurization allows us to define a template
system forD as a collection T ∈ Cc(W) such thatFT :� {](·, f ) :
D→R

∣∣∣∣f ∈ T } separates points. That is, if D,D′ ∈ D are distinct,
then there exists f ∈ T for which ](D, f )≠ ](D′, f ).

The advantage of working with these template systems is that
they can be used to approximate real-valued functions on the
space of persistence diagrams as proven by the following theorem
[see Theorem 29 Perea et al. (2019)].

Theorem 2 Let T ⊂ Cc(W) Be a Template System for D, let
C ⊂ D Be Compact, and let F : C→R Be Continuous. Then for
Every ϵ> 0 There Exist N ∈ N, a Polynomial p ∈ R[x1, . . . , xN ]
and Template Functions f1, . . . , fN ∈ T so That∣∣∣∣p(](D, f1), . . . , ](D, fN)) − F(D)∣∣∣∣< ε
for every D ∈ C.

That is, the collection of functions of the form
D→ p(](D, f1), . . . , ](D, fN)), is dense in C(D,R) with respect
to the compact-open topology.

Even though this theorem provides the theoretical
underpinnings to guarantee the existence of solutions to
supervised machine learning problems, it does not provide
the specifics for doing so. In particular, one question to
answer is how to choose suitable families of template
functions. In our evaluations we will explore both prescribed
families for template systems, as well as data-driven or
adaptive ones.

In the prescribed front we have the tent functions described
below. See also Figure 8. In the birth-lifetime plane, and given a
point x � (a, b) ∈ W and a discretization scale 0< δ < b, the
associated tent function on W is given by

FIGURE 10 |Comparison of timing by method. The legend is the same for all plots. The x-axis represents the size of the dataset, and the y-axis represents the time
in seconds required for calculation of all of the persistence diagrams associated with the dataset of the given size. (A) Timings for the MPEG7 Dataset including the Multi-
Scale Kernel. (B) Timings for the MPEG7 Dataset excluding the Multi-Scale Kernel. (C) Timings for the Protein Dataset including all features. (D) Timings for the Protein
Dataset excluding Multi-Scale Kernel and Adaptive Templates (GMM).
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gx,δ(x, y) �
∣∣∣∣∣∣∣1 −

1
δ
max{|x − a|, ∣∣∣∣y − b

∣∣∣∣}
∣∣∣∣∣∣∣+

where |r|+ � max{0, r}. As δ < b, this function has support in the
compact box [a − δ, a + δ] × [b − δ, b + δ] ⊂ W. Given a
persistence diagram D ∈ D in birth-death coordinates, the
value of the tent function is

Gx,δ(D) � ∑
(x,y)∈D

gx,δ(x, y − x).

3.6 Adaptive Template Systems
The Adaptive Template Systems methodology of Polanco and
Perea (2019a) concerns itself with improving and furthering
some of the work presented in Perea et al. (2019). The goal is to
produce template systems that are attuned or adaptive to the
input data set and the supervised classification problem at hand.
One shortcoming of template systems, like tent functions, when
applied to Theorem 2 is that without prior knowledge about the
compact set C ⊂ D, the number of template functions that carry
no information relevant to the problem can be high. By reducing
this overhead, adaptive templates improve the computation
times and accuracy in some specific problems.

The relationship between template systems and adaptive
template systems is demonstrated in Figure 4, showing the
adaptive template systems depend on density of data. To do
so, given a compact set C ⊂ D we consider the set S � ∪

D∈C
D ⊂ W

along with different algorithms such as Gaussian mixture models
(GMM) (Reynolds, 2009), Hierarchical density-based spatial
clustering of applications with noise (HDBSCAN) (Campello
et al. ,2013) and Cover-Tree Entropy Reduction (CDER)
(Smith et al., 2017) to define a family of ellipsoidal domains
{z ∈ R2 : (z − x)pA(z − x)≤ 1} in W, fitting the density
distribution of S. Here A is a 2 × 2 symmetric matrix and
x ∈ R2.

Once this family of ellipsoidal domains is computed, we use
them to define the following adaptive template functions

fA(z) � { 1 − (z − x)pA(z − x) if (z − x)pA(z − x)< 1
0 if (z − x)pA(z − x)≥ 1

3.7 Other Approaches
The featurization methods presented in this section are by no
means an exhaustive list of what is available in the literature. Here
are some others that the interested reader may find useful:

• The Persistent homology rank functions of Robins and
Turner (2016) are similar in spirit to persistent
landscapes, in that they provide an injective inclusion
of D0 into a Hilbert space of functions where techniques
like functional Principal Component Analysis are
available. Indeed, for a filtration X , its n-th persistent
rank function is defined as

W → R

(a, b) 1 βa,bn (X) � rank(Hn(Xa)→Hn(Xb)).
This is equivalent, for a persistence diagram D ∈ D0, to

defining the function

W → R

(a, b) 1 #{(x, y) ∈ D : x ≤ a and y > b}
where # is multiset cardinality. The Hilbert space in question is
the weighted L2-space L2(W, ϕ). Here ϕ : [0,∞)→ [0,∞)
satisfies ∫∞

0
ϕ(t)dt <∞, and the inner product of rank

functions is

〈f , g〉ϕ � ∫
W

f (x, y)g(x, y)ϕ(y − x)dxdy.

This approach has shown to be effective in analyzing point
processes, and sphere packing patterns.

The Persistent curve (Chung et al., 2018; Giusti et al., 2015)
provides another functional summary closely related to
persistent rank functions. Specifically, for a persistence
diagram D ∈ D0, its persistence curve (Chung et al., 2018)
is the function

[0,∞) → [0,∞)
t 1 #{(x, y) ∈ D : x ≤ t < y}.

TABLE 5 | Results from the HAM10000 Dataset using the average model classification accuracy ± standard deviation over 10 trials.

Results for HAM10000 dataset

Topological method Training accuracy Testing accuracy Model type

Multi-scale kernel Did not run
Persistence landscapes .8347 ± .0022 .6881 ± .0074 Ridge regression

.6695 ± 0 .6692 ± 1.2e − 16 SVM (RBF, c � 1)

.6695 ± 0 .6692 ± 1.2e − 16 Random forest
Persistent images (pixels � 20, spread � 1) .7417 ± .0017 .6371 ± .0671 Ridge regression

.7122 ± .0012 .6895 ± .0031 SVM (RBF, c � 1)
.6695 ± 0 .6692 ± 1.2e − 16 Random forest

Adcock-carlsson coordinates .6719 ± .0007 .6696 ± .0025 Ridge regression
.6801 ± .0009 .6710 ± .0019 SVM (RBF)
.6695 ± 0 .6692 ± 1.12e − 16 Random forest

Template systems (d � 10, p � 1.5) .7193 ± .0015 .6987 ± .0041 Ridge regression
.7830 ± .0024 .7303 ± .0054 SVM (RBF, c � 5)
.6695 ± 0 .6692 ± 1.2e − 16 Random forest

Adaptive template systems Did not run
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Discretizations of these curves have been useful in computer
vision tasks (Chung and Lawson, 2020), as well as in neuroscience
applications (Giusti et al., 2015).

Other kernel methods, besides the Multi-Scale kernel of
Reininghaus et al. (2015), have appeared in the literature.
They correspond to the following choices of kernel function
k : D0 ×D0 →R. The PersistenceWeighted Gaussian Kernel of
Kusano et al. (2016) is defined as

kPWG(D,D′) � ∑
x�(x,y)∈D
x′�(x′ ,y′)∈D′

arctan(C∣∣∣∣y − x p) · arctan(C∣∣∣∣y′ − x′ p) · e−||x−x′||
2

2σ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

for parameters C, p, σ > 0, while the Sliced Wassertein Kernel of
Carriere et al. (2017) takes the form

kSW(D,D′) � exp
−dSW(D,D′)

2σ2

where dSW(·, ·) is the so-called sliced Wasserstein distance
between persistence diagrams [see Eq. 2 and Definition 3.1 of
Carriere et al. (2017)]. If instead one uses the Fisher Information
metric dFIM(·, ·) [see Eq. 3 of Le and Yamada (2018)], then the
result is the Persistence Fisher Kernel

kPF(D,D′) � e−tdFIM(D,D′), t > 0.

Persistence diagrams as features for deep neural networks
have also been studied recently. In particular, the PersLay
framework of Carrière et al. (2020) leverages the Deep Sets
architecture of Zaheer et al. (2017) to implement layers that
can process persistence diagrams. Specifically, layers of the
form:

D1op({ω(x)ϕ(x)}x∈D)
where op(·) is a permutation invariant operator (e.g., max, min,
sum, etc), ω : R2 →R is a weight function, and ϕ : R2 →Rq is a
representation function. By optimizing ω and ϕ in a parametric
family—i.e., ω � ωu and ϕ � ϕv—the training of the network can
lead to vectorizations attuned to specific learning tasks.

4 DATASETS

The five different datasets considered in this work were
chosen from a collection of experiments presented in the
literature of topological methods for machine learning. We
acknowledge that this selection is inherently bias towards
datasets with favorable performance with regards to specific
topological methods. Nevertheless, we counterbalance this by
applying all the evaluated featurization methods to all the
data sets here considered and compare the classification
results across all the presented methodologies. This
comparative work showcases how the variation between
methods results in the need for the user to find suitable
combination of featurization methods and parameter
tuning to obtain optimal results in a given dataset. As

such, readers should view this as a resource for their own
analysis, and not as a recommendation for specific
techniques.

For all datasets and methods, parameter tuning was done
using a grid search method on a subset of data that was not used
to report final results, and parameters were chosen based on
performance of a ridge regression model, random forest and
support-vector machine (SVM) model. It is worth noting a
weakness of the analysis in that the same parameters were
used in the feature set calculation for all reported models, and
run with a single split. This was due to time required for feature
calculation.

The ridge regression and random forest classifier were run
with default parameters, and the support-vector machine was run
using the radial basis function (RBF) with some tuning on the cost
parameter (C). The exception is for theMulti-Scale Kernel feature
set—we only fit a support-vector machine model. It is important
to highlight that results regarding ridge regression with
(polynomial and radial basis function) kernel methods are not
included in this work as they produce increased computational
times while the classification results do not improve significantly
compared to the one presented here. Each dataset was sampled
for a 10 or 100 trials depending on size, with the exception of the
Protein Classification Dataset, which included indices for
predefined problems.

Random forest classifiers as presented in Breiman (2001) are
used to solve the same classification problems presented for each
data set. Parameters such as number of trees in each forest and the
size of each tree are chosen based on performance and tuned on
the testing set.

4.1 MNIST
The MNIST dataset from LeCun and Cortes (1999) is a
database of 70,000 handwritten single digits of numbers zero
to nine. An example image from the MNIST database is shown
in Figure 7.

The calculation of persistence diagrams for the MNIST dataset
is as in Adcock et al. (2016). This method creates a base of 8
different persistence diagrams to use in the application of
methods. The persistence diagrams are calculated using a
“sweeping” motion in one of four directions: left to right, right
to left, top to bottom, or bottom to top, corresponding to the 0-
dimensional and 1-dimensional persistence diagrams. To
compute this filtration, pixels are converted to a binary
response with intensity calculated based on position. This has
the effect that depending on the direction of sweep, features will
have different birth and death times, providing distinct
information for each direction. The number of topological
features available for model fitting is dependent on the
method. For the Persistent Images, Persistence Landscapes,
and Template Systems there are eight features each. The
Multi-Scale Kernel produces eight different kernel matrices,
and for Adcock-Carlsson Coordinates, 32 different features
were computed from these persistence diagrams.

Figure 5 shows the various calculations of persistence diagrams
for an example number eight. Both 0-dimensional and 1-dimensional
persistence diagrams were used for the MNIST dataset, noting that
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some observations did not have 1-dimensional persistence diagrams,
so these observations were filled with a single diagram of birth-death
coordinate of [0,.01].

For the MNIST dataset, a random sample of 1,000 images was
used to tune parameters, with 80% used for the training portion,
and 20% used for the testing portion. We used the set of 60,000
images corresponding to the training set of MNIST to create our
own training and testing sets for model fitting and evaluation. For
this set of 60,000, 10 trials were run with an 80% training and 20%
testing split to determine model performance.

4.2 SHREC14
We evaluated the SHREC 2014 dataset (Pickup et al., 2014) in the
same manner as the authors of Polanco and Perea (2019a). To
compute the topological features, the authors of Reininghaus et al.
(2015) describe using a heat kernel signature to compute
persistence diagrams for both the 0-dimensional and 1-
dimensional persistence diagrams. The dataset consists of 15
different labels, corresponding to five different poses for the
three classes of male, female, and child figures.

As noted in Polanco and Perea (2019a), parameters in the
dataset define different problems due to a different calculation of
the heat kernel signature, and for this evaluation we focused on
the problem with the highest accuracy as reported in Polanco and
Perea (2019a).

For the SHREC14 dataset, a random sample of 90 images (30%
of the data) was used to tune the model and determine appropriate
model parameters. The remaining 210 observations were split into
80% training and 20% testing for 100 trials to report final model fit.
Persistence diagrams for 0-dimensional homology and 1-
dimensional homology were computed for this dataset.

Table 1 shows complete results for the SHREC 2014 dataset.

4.3 Protein Classification
We use the Protein Classification Benchmark dataset
PCB00019 Sonego et al. (2007) as another type of data to
evaluate the topological methods above. This specific set
contains information for 1,357 proteins corresponding to 55
classification problems, and we reported on 54 of the
problems using one to tune parameters. The training and
testing index were provided, and the mean accuracy was
reported for both training and testing sets using these indices.
Table 2 shows results from our experiments using the training
and testing indices provided in the original dataset.

Persistence diagrams for this dataset were computed for each
protein by considering the 3-D structure [provided in wwPDB
consortium (2018)] as a point cloud in R3. This point cloud was
built using the x, y and z position of each atom in the molecule at
hand. With this information the persistent 0-dimensional and 1-
dimensional homology is computed using Ripser from Tralie
et al. (2018).

4.4 MPEG7
The mpeg-7 dataset from Bai et al. (2009) is a database of object
shapes in black and white, with 1,400 shapes in 70 classes. An
example from the original dataset is shown in Figure 4 along with
the contour as described below.

To compute persistence diagrams, first the image contour is
computed by placing observations from the point cloud into a
sequence. The distance curve is computed as the distance from
the center of the sequence. Sublevel set persistence is taken using
the computed distance curves as point cloud data. Persistence
diagrams for both 0-dimensional and 1-dimensional homology
were computed for this dataset.

We used this dataset for a timing comparison of featurization
methods from persistence diagrams. We do not report on the
results of this dataset. An example notebook of MPEG7 is
provided using only four shapes—apple, children, dog, and
bone. This approach is due to the initial difficulty in getting
accurate models for the full dataset. Due to the small number of
samples (80 total) and lack of repeated sampling, the estimates
provided for this dataset are not stable and are not reported.

4.5 HAM10000
The HAM10000 dataset provided by Philipp Tschandl et al. (2018) is
a collection of 10,000 images of skin lesions with one 7 potential
classifications: Actinic Keratoses and Intraepithelial Carcionma, Basal
cell carcinoma, Benign keratosis, Dermatofibroma, Melanocytic nevi,
Melanoma, Vascular skin lesions. A total of 18 persistence diagrams
for this set were calculated using themethods outlined in Chung et al.
(2018), 9 corresponding to the 0-dimensional homology and 9
corresponding to the 1-dimensional homology.

To obtain such diagrams, first a mask is computed by
implementing the methodology proposed in Chung et al.
(2018). In general terms, this method creates a filtration of
binary images obtained from different thresholds to convert the
gray scale image into a binary one. Once this binary filtration is
obtained, the center most region of the image is computed using
the “persistence” of each point in the binary filtration. An example
image and this process is shown in Figure 9.

Once the mask is computed it is applied to the original image and
then it is converted into three different colormodels: RGB,HSV , and
XYZ. Each color model is split into their corresponding channels,
and for each channel we use sublevel set filtration to obtain 0-
dimensional and 1-dimensional persistence diagrams. In total, for
each image on the data set we obtain 18 persistence diagrams, 9 in
homological dimension 0 and 9 for homological dimension 1.

To tune the models, a random sample of 250 images were
taken a ridge regression, random forest, and support vector
machine model were fit to determine parameters. The
remaining 9,750 images were split into an 80% training and
20% testing set to report final results.

To evaluate the HAM10000 dataset, due to the large number of
birth and death pairs in each persistence diagram, subsampling of
persistent features was required. Each observation in a data set, for
example an image, will yield 18 persistence diagrams corresponding
to homological features in that observation. In the HAM10000
dataset, there was an average of 5,783 birth-death pairs in each
persistence diagram. This was an issue to complete computation for
the vectorization methods, even for adaptive templates, so each
persistence diagram was subsampled as follows.

The method of subsampling is two steps: Highly persistent
features were always included, and a uniform random sampling
method (without replacement) was used to sample the remaining

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 68117413

Barnes et al. Machine Learning Methods for Persistence Diagrams

118

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


points. The threshold for feature lifetime and number of points to
sample was determined by using parameters that preserve the
distribution of points in each persistence diagram. As a result,
features in each persistence diagram with a lifetime of five or
more were automatically included, and 5% of the rest of the
points were also included. This resulted in sampled persistence
diagrams with an average of 290 points each (Table 3).

5 USER GUIDE

5.1 Available Functions
As part of the available code, a function for each method is
included. Each function requires two sets of persistence diagrams,
a training set and a testing set, and parameters specific to the
function. The function returns two feature sets for that method,
corresponding to the training and test set respectively. Each
function also prints the time in seconds taken at the end of
each run. In this section of the user guide each function is
described, along with the required parameters for the function.

The Multi-Scale Kernel feature matrix can be computed using
the function kernel_features or fast_kernel_features. It
is recommended to use fast_kernel_features due to computation
time. Both functions require a parameter sigma, denoted as s in the
function with a default value of 4. In Reininghaus et al. (2015) this
parameter is referred to as the scale parameter. From the closed
form distribution of the Multi-Scale Kernel

kσ(F,G) � 1
8πσ

∑
p∈Fq∈G

e
−||p−q| 2

8σ−e−||p−q| 2
8σ,

∣∣∣∣
∣∣∣∣∣∣∣∣∣ (6)

we note that as sigma, σ, increases the function decreases. Increasing
sigma results in a less diffuse kernel matrix, while decreasing sigma
results in a more diffuse kernel matrix.

Due to time required for the Multi-Scale Kernel, there are two
additional sets of functions that use Numba (Siu Kwan Lam and
Seibert, 2015) for significantly faster computation. In the current
implementation, these are not able to be combined withmulti-core
processing (MPI for example), and have a different format than the
other functions included. These functions are provided in the
github repository for this project, and were used to compute results
for the Multi-Scale Kernel for the MNIST dataset.

The Persistence Landscapes features can be computed using
the function landscape_features. The Multi-Scale Kernel function,
landscape_features requires two parameters: the number of
landscapes, n and resolution, r. The number of landscapes
parameter, n, controls the number of landscapes used, and the
resolution, r, controls the number of samples used to compute the
landscapes. The default parameters for n is 5 and r is 100.

The Persistence Images can be computed using the function
persistence_image_features. The persistence_image_features
function requires two parameters, pixels and spread. The pixels,
p is a pair that defines the number of pixels along each axis. The
spread, s, is the standard deviation of the gaussian kernel used to
generate the persistence image. It is worth noting that the
implementation here uses the gaussian kernel, however, other

distributions could be chosen so that s would correspond to
parameters specific to the chosen distribution. Additionally, the
weighting function is constant for this implementation. Increasing
spread increases the variance for each distribution, resulting in
larger “hot spots”. Increasing pixels provides a smoother
distribution, whereas decreasing pixels yields a less smooth
distribution. Note that increasing pixels increases computation
time. This is demonstrated in Figure 7 in the methods section.

The Adcock-Carlsson Coordinates features can be computed
using the function carlsson_coordinates, does not require any
parameters. This function returns four different features for every
type of persistence diagram provided. So for datasets that have
persistence diagrams corresponding to 0-dimensional and 1-
dimensional homology, 8 features are returned for machine
learning. The features returned correspond to the four
coordinates calculated in Adcock et al. (2016), and are:

∑
i

xi(yi − xi),

∑
i

(ymax − yi)(yi − xi)

∑
i

x2i (yi − xi)4,

∑
i

(ymax − yi)2(yi − xi)4

The Template Systems features can be computed using the
function tent_features, and has a choice of two parameters: d,
which defines the number of bins in each axis and padding, which
controls the padding around the collection of persistence
diagrams. This function returns a training and testing set. This
function computes the tent features from Perea et al. (2019).

The Adaptive Template Systems features can be called with
the function adaptive_features, and requires the labels for the
training set. Users can choose three different types of Adaptive
Templates: Gaussian Mixture Modeling (GMM), Cover-Tree
Entropy Reduction (CDER), and Hierarchical density-based
clustering of applications with noise (HDBSCAN). The
parameter d refers to the number of components when using
the GMM model type. This would be minimally the number of
classes in your data, and ideally represents closer to the number of
distributions in the data that correspond to each observation.
Details on these methods can be found in Polanco and Perea
(2019a), as well as the original references linked in the methods
section. During this evaluation, we evaluated adaptive templates
using both GMM and CDER methods, but did not formally
evaluate HDBSCAN. HDBSCAN was difficult to formally assess
as we had difficulty with completion of the algorithm for some
datasets. For those datasets we were able to complete, we did not
notice an improvement over other adaptive methods.

6 RESULTS

One considerationwemustmake before analysing the results comes
from the computation ofMulti-Scale Kernel features. As explained
for each dataset in Section 4, more often than not we will compute
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multiple persistent diagrams per data point in a given data set. Such
persistent diagram correspond to 0-dimensional, 1-dimensional,
and in some cases 2-dimensional persistent homology (see details in
Section 2). To compute Multi-Scale Kernel as given by Eq. 6 we
require pairs of persistent diagrams. Since this multi-scale kernel
provides a notion of similarity between persistent diagrams
(Reininghaus et al., 2015) we require it to be computed between
diagrams corresponding to the same dimension homology and
method type. For example, the kernel matrix that corresponds to
the 0-dimensional homology of a data set is computed using the
persistence scale space kernel between two sets of persistence
diagrams that represent the 0-dimensional homology. This
means that for a dataset that has sets of 0-dimensional
homology persistence diagrams and 1-dimensional homology
persistence diagrams, two kernel matrices were returned (one
per each dimension).

The kernel matrix used in our models is the sum of available
kernels, and differs based on the persistence diagrams available for
each dataset. While this does improve accuracy significantly over
individual kernel matrices, other methods of combining kernel
features were not explored in this paper, but is available in Gönen
and Alpaydin (2011) for the interested reader. The available
parameter, sigma, is consistent across all types of diagrams for
our evaluation.

For each of the other methods, Persistence Landscapes,
Persistence Images, Adcock-Carlsson Coordinates, Template
Systems, and Adaptive Template Systems, each feature matrix
was constructed for the relevant set of diagrams, and all
topological types were used in fitting the same model.

The datasets used in this analysis were of varying size, both in
terms of observations and the size of sets of persistence diagrams.
As noted in the descriptions of data, the types of persistence
diagrams calculated also differs. A summary of characteristics for
each dataset is included in Table 3.

6.1 MNIST
The Multi-Scale Kernel features calculated yielded eight
different kernel matrices, and the final kernel matrix was
calculated using the unweighted summation of these kernels
as in Gönen and Alpaydin (2011). Due to the time needed for
computation of the Multi-Scale Kernel, a smaller set of 12,000
observations was used to report final results and a version of
the kernel computation using Numba with a gpu target was
necessary.

Table 4 shows complete results for the MNIST analysis. Four
different methods (highlighted on the table) provided similar
results for the MNIST dataset, and we note the SVM model had
higher accuracy in each case. This table, and all subsequent results
tables, include the method used to construct topological features,
training and test accuracy, and model and parameters used for
evaluation.

6.2 SHREC14
Results are reported in Table 1. Adaptive Template Systems and
Persistence Landscapes were the two methods with highest
classification accuracy on the test dataset, with Template Systems
and the Multi-Scale Kernel performing nearly as well.

6.3 Protein Classification
Nearly all of the topological methods in this paper
provided similar classification accuracy for this dataset. We
observe the testing accuracy as higher than the training
accuracy for this dataset, and the results are similar to those
in Polanco and Perea (2019b). TheMulti-Scale Kernel though did
not perform as well and as shown in Figure 10 is the most
computationally intensive. Results are reported in Table 2.

6.4 HAM10000
Due to run time for the large number of points in each persistence
diagram, even after subsampling, results were not reported for the
Multi-Scale Kernel or Adaptive Template Systems.

Results are listed in Table 5. The HAM10000 dataset
presented the largest computational challenge during this
review, and is a continued area of research.

7 COMPUTATION TIME OF FEATURES

Formal timings were captured for all features for the 0-dimensional
persistence diagrams for the MPEG7 and Protein Datasets. A
comparison of timings is in Figure 10. The timing reported is
for the generation of features from one type of persistence diagram
for a dataset of that size. This means when computing a training
feature set and testing feature set for multiple types of persistence
diagrams, the expected time to generate features can be
significantly longer. For example, in the MNIST dataset we
compute four different types of persistence diagrams with both
0-dimensional and 1-dimensional homology, giving eight sets of
features that can be generated for the sets of persistence diagrams
for that dataset. Specific to the multi-scale kernel method, the
timing reported is for a symmetric featurematrix that is nxn, where
n is the number of observations in the dataset. This means the
training feature set requires less computation time than a testing
feature set of comparable size.

Additionally, during the review of these methods, we did not
encounter significant issues withmodel fitting, hence formal timings
were not recorded for this portion of the analysis. Conclusions from
these timings are addressed in the discussion section.

7.1 Data Availability
The datasets, persistence diagrams (or code to compute the diagrams),
and all other associated code for this study can be found in the
machine learning methods for persistence diagrams github repository
https://github.com/barnesd8/machine_learning_for_persistence.

For each of the five datasets, the following code is available:

• A jupyter notebook that loads and formats the persistence
diagrams including images and does a preliminary model
fitting on a subset of the data

• A python script that calculates the persistence diagrams
from the original dataset - some of these are written using
MPI depending on the size of the dataset

• A python script that fits models for random samples of the
data to get mean estimates of accuracy for both the training
and test dataset
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These scripts reference modules included in the github
repository, including a persistence methods script that calculates
features from persistence diagrams for a training and test dataset.
This uses a combination of other available functions and functions
written specifically for this paper.

The Template Systems and Adaptive Template Systems
methods use functions from https://github.com/lucho8908/
adaptive_template_systems, which is the corresponding code
repository for Polanco and Perea (2019a). The available
methods in our extension include Tent Functions and
Adaptive Template Functions (GMM, CDER, and HDBScan
methods).

The Adcock-Carlsson Coordinates method is a function
developed specifically for this paper, and includes the
calculation of the 4 different features used in our analysis. The
Persistence Landscape method uses the persistence landscape
calculation from the Gudhi Package Dlotko (2021). The Multi-
Scale Kernel Method has two included implementations, one is
from Nathaniel Saul (2019) and is slower to compute, while the
other is a faster implementation that can be used on larger
datasets. All of the results in this paper were reported using
the implementation written specifically for this paper. The
Persistence Images features are also from Nathaniel Saul
(2019). Additionally, many functions from Pedregosa et al.
(2011) are used throughout.

8 DISCUSSION

Adcock-Carlsson Coordinates, Tent Functions, and Persistence
Landscapes scale well, and perform well even for large datasets. It
is of note though that parameter choice will affect computation
time. This was especially notable in the Template Features (Tent
Functions) computation time. As the number of tent functions is
increased, the time to compute features also increases. We
observed a superlinear increase, however, even with this
increase computation time was not a barrier for analysis.

Persistence Images and Adaptive Template Functions do not
scale or perform as well, however, do provide good featurizations
for accurate models and should be considered depending on
the dataset. Specifically, the Adaptive Template Functions was
not completed for the full HAM10000 dataset due to
computation time.

When using these methods, it should be of note that theMulti-
Scale Kernel method is computationally intensive, and does not
scale well. Additionally, the accuracy achieved is not better than
other methods for the datasets in this paper.

9 CONCLUSION

This paper reviews six methods for topological feature extraction
for use in machine-learning algorithms. Persistence Landscapes,
Adcock-Carlsson Coordinates, Template Systems, and Adaptive
Template Systems perform consistently with minimal differences
between datasets and types of persistence diagrams. These
methods are also less expensive in terms of execution time. A
main contribution of this paper is the availability of datasets,
persistence diagrams, and code for others to use and contribute to
the research community.
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Background: There is growing interest in the connection between the gut microbiome
and human health and disease. Conventional approaches to analyse microbiome data
typically entail dimensionality reduction and assume linearity of the observed relationships,
however, the microbiome is a highly complex ecosystem marked by non-linear
relationships. In this study, we use topological data analysis (TDA) to explore
differences and similarities between the gut microbiome across several countries.

Methods: We used curated adult microbiome data at the genus level from the GMrepo
database. The dataset contains OTU and demographical data of over 4,400 samples from
19 studies, spanning 12 countries. We analysed the data with tmap, an integrative
framework for TDA specifically designed for stratification and enrichment analysis of
population-based gut microbiome datasets.

Results:We find associations between specific microbial genera and groups of countries.
Specifically, both the USA and UK were significantly co-enriched with the proinflammatory
genera Lachnoclostridium and Ruminiclostridium, while France and New Zealand were co-
enriched with other, butyrate-producing, taxa of the order Clostridiales.

Conclusion: The TDA approach demonstrates the overlap and distinctions of microbiome
composition between and within countries. This yields unique insights into complex
associations in the dataset, a finding not possible with conventional approaches. It
highlights the potential utility of TDA as a complementary tool in microbiome research,
particularly for large population-scale datasets, and suggests further analysis on the effects
of diet and other regionally varying factors.

Keywords: gut microbiome, human microbiome, population health, global variation, topological data analysis (TDA)

INTRODUCTION

In recent years, there has been a rapidly growing interest in the connection between the gut
microbiome and disease. This area spans detailed exploration of the gut microbiome in small specific
clinical disease phenotypes to larger population-level studies. In parallel, there have been advances in
the analytics approaches the microbiome field has adopted to test the different hypotheses.
Conventional approaches employ dimensionality reduction and typically assume linearity. Here
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we use topological data analysis (TDA) exploring the difference
and similarities between the gut microbiome across several
countries. We highlight unique insights that are made possible
with the use of TDA.

The Human Gut Microbiome
The gut microbiome is a diverse community of an estimated 100
billion to trillion microorganisms - bacteria, viruses, and fungi -
inhabiting the intestine and gut (Sender et al., 2016). So far, 1,952
species have been classified - however, the majority of the
microbiome remains unreferenced (Almeida et al., 2019).
Unsurprisingly, the relationships between the different
microbiome species are highly complex, dynamic, and
nonlinear (Shoaie et al., 2013). Depletion of one species below
a specific threshold can lead to the so-called blooming of others.
Some species also exist only in either very low or very high
abundance with specific tipping points (Lahti et al., 2014). Species
can even change their phenotype based on the concentration in
the gut, environmental, or genetic context; in other words,
harmless bacteria can become pathogenic under specific
circumstances (Casadevall, 2017). These species have so-called
high pathogenic potential, are also known as pathobionts, and are
usually kept under control by a healthy microbial community
(Kamada et al., 2013). If this ecosystem is disrupted, pathobionts
and external pathogens can bloom, affecting host health. It is
important to note that a healthy composition of the microbiome
is highly individual but based around a proposed universal “core
microbiome” (Rinninella et al., 2019).

The microbiome coevolved with humans in a commensal,
perhaps even symbiotic, way (Bäckhed et al., 2005; Shapira,
2016). The microbiome appears to play a central role in host
immunity, metabolism, behaviour, and cognition through yet
unclear pathways. Specifically, it is thought that a disturbed
microbiome, also called gut dysbiosis, can set off inflammatory
cascades. Disease, lifestyle changes, or environmental influences
can disturb the delicate balance of the microbiome, leading to
loss of seemingly beneficial microbes and a simultaneous
blooming of bacterial taxa detrimental to the host (Petersen
and Round, 2014). This can lead to the breakdown of the
epithelial cells lining the gut, increasing gut permeability
which can cause pro-inflammatory bacterial metabolites or
products to leak out, triggering further inflammatory
cascades in the host (Rooks and Garrett, 2016; Thevaranjan
et al., 2017). Changes in the gut microbiome have increasingly
been linked to a range of diseases, such as colitis, diabetes,
neurodegenerative diseases, and autism (for a review seeGhaisas
et al., 2016)). Additionally, the gut microbiome influences the
efficacy and bioavailability of oral medication (see e.g. Enright
et al., 2016;Wilson and Nicholson, 2017; Clarke et al., 2019). For
instance, the interaction between drugs and microbiome
appears important in Parkinson’s disease (Rekdal et al.,
2019), arthritis (Scher et al., 2020), schizophrenia (Seeman,
2021), and bipolar disorder (Flowers et al., 2020). Analysing
the gut microbiome and illuminating the subtle relationships
driving it has significant translational value for population
health, particularly as it is an easily accessible and scalable
potential therapeutic target.

Variation in the Gut Microbiome
Several factors affect the gut microbiome, which can be broadly
distinguished into lifestyle, medical, and environmental factors.
Perhaps the most prominent lifestyle factor is diet. A high-fat diet
can induce dysbiosis in the gut microbiome (Vaughn et al., 2017),
while a diet high in resistant starches and complex carbohydrates
(such as the Mediterranean diet) increases beneficial species
(Garcia-Mantrana et al., 2018). This includes Firmicutes that
produce short-chain fatty acids (SCFA), which have anti-
inflammatory properties and maintain the integrity of the
epithelial layer in the intestine (Morrison and Preston, 2016;
Levy et al., 2017). Similarly, moderate alcohol consumption seems
to increase anti-inflammatory species (Quesada-Molina et al.,
2019), and exercise is also associated with a beneficial effect
(Monda et al., 2017). Travel has also been shown to negatively
alter the microbiome by decreasing diversity (Riddle and Connor,
2016; Langelier et al., 2019). Crucially, hygiene is a non-negligible
factor - while inadequate sanitation can increase the likelihood of
bacterial infection, excessive hygiene as practised in some
countries - even as a response to the COVID-19 pandemic -
may lead to a reduction in the microbiome diversity (Schmidt
et al., 2011; Burchill et al., 2021).

The use of oral medications, particularly antibiotics, is another
important influence on the gut microbiome. It takes some
microbial species up to 6 months to recover from a complete
cycle of antibiotics (Dethlefsen et al., 2008). Non-antibiotic
medication such as dopaminergic drugs (Hill-Burns et al.,
2017), proton pump inhibitors, antipsychotic drugs, and
opioids interact with the microbiome and can affect its
composition (Le Bastard et al., 2018). As the microbiome is
interlinked with metabolic pathways, chronic diseases such as
diabetes are also associated with a disrupted gut microbiome,
though the causal direction of this effect is unclear - the same
holds true for obesity (Singer-Englar et al., 2019). Environmental
factors are a crucial and sometimes overlooked part of the host-
microbiome relationship. External pathogens such as viruses can
induce changes to the gut microbiome, as can pesticides and other
toxins (Li N. et al., 2019; Tu et al., 2020). Pollution has also been
associated with changes to the microbiome, particularly air
pollution (Vallès and Francino, 2018; Bailey et al., 2020).
Crucially, there is evidence that the soil and drinking water
microbiomes interact with the gut microbiome (Blum et al.,
2019).

Geographical Variation of the Gut
Microbiome
The factors influencing the microbiome vary regionally, leading
to differences in the population microbiome across countries as
has been observed in many past studies (e.g., Karlsson et al.,
2014). One large review reports distinct geographical differences
in the gut, oral, and skinmicrobiomes between non-industrialised
and industrialised populations in addition to a conserved core
microbiome (Gupta et al., 2017). More specifically, the review
reported that while the non-industrialised gut microbiota include
more species of the phyla Proteobacteria, Spirochaetes, order
Clostridiales, and genera Prevotella or Ruminobacter, the
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industrialised communities were more enriched with the
Firmicutes phylum, and Bacteroides and Bifidobacterium genera.

Diet is one of the most intuitive drivers of these differences;
while some countries consume large amounts of meat, others
have a diet heavier in carbohydrates, or in fibre (Ritchie and
Roser, 2019), which has been connected to observed differences in
microbiome composition between countries (Riaz Rajoka et al.,
2017). For example, one study compared gut microbiome
signatures between children in urban Italy and rural Burkina
Faso and found unique microbial genera in the African children
that might be linked to differences in diet: the genera Prevotella,
Xylanibacter, Butyvibrio, and Treponema are involved in cellulose
and xylan hydrolysis which are fitting for the polysaccharide-rich
diet of the African children which includes many whole grains,
producing the beneficial SCFAs (De Filippo et al., 2010). These
results are echoed in a later study comparing Egyptian and US-
American teenagers, which found differences in the metabolic
profiles consistent with the dominant diet of the respective region
(Shankar et al., 2017).

Similarly, prescription patterns and access to antibiotics vary
from country to country: while low- and low-middle-income
countries count around 12 daily antibiotic doses per 1,000
citizens, high-income countries count around 25 per 1,000
(Klein et al., 2018). Pesticide use is another factor that varies
starkly between countries, due to environmental regulations
being less or more restrictive, as well as the importance of
farming or industry for a country’s economy and society
(Handford et al., 2015). Accordingly, soil and water
microbiome signatures vary between countries and regions, as
demonstrated by the EarthMicrobiome Project (Thompson et al.,
2017). This is partly naturally caused, and partly due to external
factors such as pesticide and fertiliser use (Gourmelon et al., 2016;
Lupatini et al., 2017). In addition to these environmental factors,
host genetics and the innate and adaptive immune systems can
account for some of the human microbiome variation between
populations, although the exact contributions of environmental
and genetic factors, respectively, are unclear (Gupta et al., 2017).

Together, these factors could point to differences in the
population microbiome which are important to health and
disease. As some of the differences between populations
described above include increased anti-inflammatory microbial
products, this can affect inflammatory and disease processes in
these regions. One example of this has been research into obesity:
while obesity varies between countries and has been connected to
the industrialisation level of a population, it has also been
associated with a differential microbiome profile (Dugas et al.,
2016). Mouse studies have even suggested causality: transplanting
the gut microbiome of genetically modified obese mice into germ
free mice led to weight gain (Turnbaugh et al., 2006). However,
human data on whether shifts in the microbiome associated with
geographical variations relate to geographical differences in
obesity are rare. One recent study found that the gut
microbiome of obese subjects in industrialised countries is
more similar to that of other industrialised countries, even if
these were geographically far apart, than to that of non-
industrialised communities (Angelakis et al., 2019). Similar
geographical insights could be relevant for non-communicable

diseases that have been associated with deviations in the
microbiome and that have differential prevalence in some
countries over others, as has been observed for many
gastrointestinal, neurodegenerative, psychiatric, or
inflammatory diseases (GBD 2017 Disease and Injury
Incidence and Prevalence Collaborators et al., 2018).
Knowledge about what drives these differences could in turn
inform improvements to existing medications or inspire novel
treatment options through the gut microbiome.

Limitations of Standard Analysis
Traditional approaches to microbiome analysis comparing
groups, even ones employing complex machine learning
models, have many shared limitations, preventing reliability.
Firstly, they rely on reduction in dimensionality to simplify
the modelling of the ecosystem, which leads to loss of key
information around the complex interplay of the microbiome.
The binary output of these studies, namely which taxa are deemed
to be beneficial or detrimental, is an oversimplification of the
original problem. Attempting to address the highly complex and
non-linear ecosystem of the gut microbiome with a simplistic
linear approach introduces a range of errors to the results, such as
precluding the real effect and leading to frequent false positives if
not adequately addressed. Additionally, many human
microbiome studies, including the ones on geographical
variation, have very small sample sizes, particularly those
comparing patients to healthy controls. Many also poorly
control for potential confounders. There have been efforts to
curate larger datasets to tackle some of these issues, leading to
sample sizes of up to 12,000 in the American Gut Project
(McDonald et al., 2018). However, the issues cannot be
countered with an increase in sample size on its own - in fact,
it can be argued that adding more data while maintaining the
oversimplified, linear modelling approaches will add further noise
to the results and lead to multiple comparison errors.

TDA and the Microbiome
Topological data analysis (TDA) can address many of these
concerns. TDA is an analysis method coined by Gunnar
Carlsson (2009) and was developed to analyse high-
dimensional datasets. It uses principles from topology and
differential geometry, specifically persistent homology. By
doing so, TDA can represent the underlying geometric
structure, or shape, of the data while accounting for its
complexity. Additionally, TDA deals well with high-
throughput biological data, such as the microarrays used to
sequence the microbiome. It is therefore designed to detect
subtle and non-linear relationships in the data and can deal
with noisy or incomplete datasets. These factors support the use
of TDA in microbiome research.

One previous study by another group has demonstrated the
value of TDA for microbiome analysis by combining the well-
known Mapper (Singh et al., 2007) with the Spatial Analysis of
Functional Enrichment (SAFE) algorithm (Baryshnikova, 2016)
to detect co-variance between metadata and microbiome taxa in
the dataset (Liao et al., 2019). The authors report that tmap
outperformed standard tools such as envfit, adonis, and ANOSIM
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in a synthetic dataset, specifically in detecting non-linear, as well
as mixed non-linear and linear associations within the data. They
applied tmap to two population-based microbiome datasets, the
Flemish Gut Flora Project (Falony et al., 2016) and the American
Gut Project which further illustrates the potential to detect non-
linear relationships, specifically associations with host-metadata.
They report co-enrichment between two of the so-called
enterotypes (Arumugam et al., 2011) and countries, specifically
the USA with the Bacteroidetes enterotype and the UK with the
Ruminococcaceae enterotype. Further analyses revealed co-
enrichment of diet and medication, as well as other lifestyle
factors, which were thus associated with both the countries
and the enterotypes. TDA appears to be a promising tool to
investigate the microbiome through large population-based
datasets, specifically as it highlights the increased signal
detection in noisy data. While an important and powerful
proof of concept, a key scientific limitation of this study was
the comparison of only two countries, limiting conclusions on
geographical variation of the microbiome that can be drawn from
this. Additionally, the authors did not investigate specific
underlying microbiome taxa but focused instead on
enterotypes, potentially missing more subtle relationships.

This Study
This present study aims to explore the relationship between a
range of countries and specific microbiome signatures using
TDA. To this end, we use a large repository of gut
microbiome data spanning 12 countries with over 4,400
samples and apply the TDA pipeline tmap to investigate the
co-enrichment of countries and specific microbiome taxa. To our
knowledge, this is the first study using this analysis pipeline for
this purpose on this data.We hypothesise that with this approach,
we can find evidence for differences but also similarities in the gut
microbiome signatures that have previously been overlooked by
conventional microbiome approaches. This is important in
developing our understanding of the microbiome not as a
combination of singular taxa but as a rich, diverse, and
interrelated ecosystem.

METHODS

Dataset
Microbiome data is obtained from stool samples that are
metagenomically sequenced, and then taxonomically
classified. The data is thus stored as operational taxonomic
units (OTUs).

For this study, we used data from GMrepo, a database of
curated gut microbiome metagenomes (Wu et al., 2020). Using
the provided RESTful API, we obtained all run IDs associated
with the “healthy” and adult phenotype (Mesh-ID D006262) and
filtered for only those samples that passed quality control. We
then used the run IDs to download the full metagenomic
sequence at the genus level. Countries with less than 20
samples were excluded. Metadata of interest that were
collected for the whole sample are age, sex, and BMI. BMI was
coded into underweight (BMI below 18.5), normal (18.5–24.9),

overweight (25–29.9), and obese (over 30) according to the
criteria adopted by the WHO, NIH, and NHS.

Analysis Pipeline
Data analysis was conducted in Python 3.6, in a Jupyter notebook
6.0.2 environment. The scripts are available from thesharmalab.
com GitHub repository.

A key aspect of TDA approaches is the production of the
underlying shape and persistence of the structures. To explore
this, we first produced a persistence diagram on the microbiome
data as a point cloud with the giotto-tda package (Tauzin et al.,
2021). This could then inform parameter tuning during
subsequent steps. Then, TDA was conducted with the tmap
analysis pipeline (Liao et al., 2019). The pipeline is an
“integrative framework” based on TDA and is specifically
designed for stratification and association analysis of
population gut microbiome datasets. It utilises two established
algorithms for TDA and stratification analysis, the Mapper and
SAFE algorithms, respectively.

TDA With Mapper
The input to the Mapper algorithm is a point cloud of data
points, in this case, each data point represents one stool sample.
First, pairwise distances are calculated with the Bray-Curtis
distance and these are then transformed to a square-form
distance matrix. This matrix is filtered from the original
high-dimensional space into a low-dimensional space using
multidimensional scaling (MDS), a non-linear method of
dimensionality reduction which translates pairwise distances
among data points into the low-dimensional space (Mead,
1992). This filter was used as in the origination of the
Mapper algorithm (Singh et al., 2007), and the components
were set to two, as recommended by the developers of the tmap
pipeline, with the “pre-computed” metric. Next, the low-
dimensional space is partitioned into bins using overlapping
covers with each cover including a subset of data points that
overlap in some way. Within each cover, data points are then
clustered based on the distances from each other in the original,
high-dimensional space. These clusters are represented as a
node in the TDA network. The shape of the network is a
combination of distances in the low- and high-dimensional
spaces. In other words, each node in the network is a group
of samples with overlapping microbiome profiles and each link
between the nodes indicates a shared sample between nodes.
The clusterer used was the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) from scikit-learn, as is
recommended in tmap documentation. To set an appropriate
maximum distance between two data points (eps), we used the
Mapper algorithm automated optimisation function
(optimize_dbscan_eps) with a threshold of 95%, which
specifies the percentage of samples for which to cover or
cluster the surrounding neighbourhood, based on the
distribution of nearest-neighbour distances. The minimum
number of neighbours was set to 5.

To optimise the cover ratio, a measure of how many samples
are retained during the clustering process, the resolution and
overlap parameters were adjusted. Resolution is a measure of how
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many bins the data is being split into, while overlap decides how
big the overlap between adjacent bins needs in order to be
considered overlapping. Resolution determines how sparse
versus coarse the network will be and thereby how many
nodes the network will have. Overlap, on the other hand,
determines how densely connected the network will be and
thereby how many edges the network will have. Both
parameters were adjusted by hand and are shown in Figure 1B.

Enrichment With SAFE
The SAFE algorithm maps values of a variable onto the network,
denoting enrichment of this variable. The algorithm uses the
TDA network as input and then maps the values of a given
variable onto the network as node attributes. For example, if the
variable is age, then the SAFE algorithm maps the average age of
each node (i.e., group of samples). This is called network
enrichment.

FIGURE 1 | (A) Persistence Diagram. (B) Adjusting the resolution and overlap parameters of the TDA network to achieve optimal cover ratio. Bv shows the final
network, including the three clusters.
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Subsequently, each node is examined in subnetwork analyses
while permutating a given number of times over the entire network
which determines how significant the observed enrichment is. For
this study, the number of network permutations during this step
was set to 5,000 to maximise sensitivity. A subnetwork is identified
as a local neighbourhood around each node, where constituent
nodes are selected according to the maximum distance threshold.
We kept this threshold at the 0.5th percentile of all pairwise node
distances in the network. For each neighbourhood, the enrichment
of observed values at the neighbour nodes is summed and then
ranked to compare the observed with the permutated scores. The
score is then log-transformed and normalised to yield a so-called
SAFE score for each node of the network. To reiterate, the SAFE
scores quantify the enrichment level of a variable in the nodes
around a given node. These local scores can be filtered and
summed to yield the SAFE enriched score, which represents the
network-level association of a target variable. It can be used as
analogous to an effect size, allowing comparison between variables
in the form of ranking, as well as investigation of their co-
enrichment of variables.

Stratification, meaning subgrouping of a population, can be
conducted by analysing the enrichment of a host metadata
variable across the network. For this, metadata and taxa were
entered as covariates for the network enrichment analysis
described above. Continuous data, such as age and the
microbial taxa, yield stratification heat maps. These show the
distribution of absolute values across the network (with the mean
of each group of samples represented as one node value), as well
as the distribution of enrichment across the network as
represented with the SAFE score for each node. Note that
dark blue corresponds to the number 0 in both cases. All
countries, as well as the metadata variables sex and BMI, were
dummy coded. The different levels, or groups, of each variable
can be plotted against each other by comparing the SAFE scores
of each level at a given node. This means that for each node, the
visualisation shows which group was more enriched. If none of
the groups show enrichment at a given node, it is grey.
Additionally, the most enriched taxa can be found by
identifying the most enriched taxon of each node and
colouring that node accordingly. It is important to note that
to assess significance of an enrichment, the SAFE algorithm
depends on both sample size and distribution across the TDA
network, affecting the SAFE score, number of significantly
enriched nodes, and the SAFE enriched score. This means that
for a metadata variable with few samples that are highly
distributed across the network, the probability of permutation
is very small, making assessment of the enrichment difficult. This
affects interpretation of the results, especially for countries with
low sample size. If these countries have low SAFE scores, this does
not signify the absence of an effect; instead, it demonstrates an
inability to detect the presence of an effect. This should be kept in
mind when interpreting the results of the SAFE algorithm.

Finally, co-enrichment between variables can be determined,
which describes relationships between host metadata and
microbiome variations (Liao et al., 2019). While two variables
can be considered co-enriched if they enrich in the same area of
the network – suggesting that they account for the shape of the

network in this area –, it is also possible to quantify this
association. For this, we calculated the pairwise co-enrichment
for all taxa and metadata, yielding the significance level of each
pair. We then applied a threshold to the significance at the 0.5th
percentile and binarized the data accordingly. This strict
threshold was used to account for the large number of pair-
wise tests and reduce the type I error rate. The binarization
allowed us to easily find significant co-enrichment between
variables. Specifically, we used this quantitative indicator to
supplement visual indications of co-enrichment, such as
enrichment in the same areas of the network, between the
variables most highly enriched across the network.

RESULTS

Dataset
Based on our criteria, the final dataset includes 4,437 stool
samples, 1,341 taxonomic units, as well as relevant study and
host metadata. The data spans 12 countries from 19 studies,
including both Amplicon and metagenomic data. Mean and
standard deviations for age, as well as the distribution of sex
and BMI for each country, are shown in Table 1.

Persistence Diagram
The persistence diagram (Figure 1A) shows four highly persistent
structures in dimension 0 - representing clusters - and no high
persistence in dimension 1 - representing loops. We thus expect
to see two to four clusters and a relatively noisy network in the
next step of our analysis.

Parameter Adjustment
During the construction of the TDA graph, the resolution and
overlap parameters were adjusted by hand to obtain the optimal
cover ratio that is representative of the persistence diagram,meaning
two to four clusters and no loops. The panels in Figure 1B show the
result of this adjustment. The final network was constructed with the
resolution set to 85 and overlap to 0.85 (Figure 1Bv).

TDA Network
The TDA network produced by tmap contains 1,435 nodes and
8,870 edges, based on 2,910 samples. 1,527 (65.58%) samples had
to be dropped during the construction of the network, likely due
to missing data as the individual studies did not measure the same
taxa, leading to many OTUs being marked as 0 in each sample. As
can be seen in Figure 1Bv, the network has two central clusters, a
smaller one on the left (1) and a larger one in the middle (2).
There is also a small third cluster on the right (3). This pattern is
broadly consistent with the persistence diagram (Figure 1A).

Geographical Enrichment
Enrichment of the countries across the TDA network is shown in
Figure 2A, in which each node is coloured according to which
country has the most enrichment at that local node. Additionally,
larger nodes correspond to a larger number of samples in that node.

Most countries are either predominantly enriched in cluster 1
(e.g., Canada) or cluster 2 (e.g., the USA, the UK, Italy,
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New Zealand). Interestingly, the USA and the UK are also
significantly co-enriched. China is enriched at the junction of
cluster 1 and 2, as well as in cluster 3, in which they are together
with theUSA andCanada. Brazil is enriched both in cluster 2, as well
as the junction of the two big clusters. Samples from France are
enriched in the same area of the graph, namely the top left, which
appears sparse and disconnected from the rest of the network. As can
be seen in Figure 1B, this holds true for all the observed parameter
adjustments. Finally, Tanzania is not significantly enriched in the
network at all. As mentioned above, this finding needs to be
interpreted cautiously due to the low sample size of Tanzania.

Figure 3A shows all host metadata ranked according to their
SAFE enriched scores. The USA and Canada stand out with
scores of over 400 each, making them the two most enriched host
metadata. The next most enriched country is the UK with a SAFE
score of 190, and China with a score of 84. Together with France,
these countries also have the most samples (see Table 1).

Other Metadata
Age, sex, and BMI were also investigated. Host age has a SAFE
enriched score of 205 and is enriched mostly in cluster 2 (see
Figure 4A). Host age is significantly co-enriched with the UK and
France, which both have higher than average age compared to the
other countries (see Table 1). Host sex was relatively highly
enriched (SAFE enriched scores Male: 223, Female: 210), and
the enrichment network shows that female sex is mostly enriched
in cluster 1, while the enrichment of male sex is more distributed
across the network (Figure 4B). Interestingly, both female and
male sex are significantly co-enriched with Canada. Finally, BMI
seems to be a relevant host variable, as normal BMI is the third
most enriched metadata with a SAFE enriched score of 302. Most
of the enrichment of the normal BMI appears in cluster 1, while
cluster 2 is more enriched with non-normal BMI phenotypes
(Figure 4C). This is reflected in a significant co-enrichment of
normal BMI with Canada. Further, normal BMI is significantly
co-enriched with male sex.

Taxa
We also explored the enrichment patterns of different taxa with
host metadata. Figure 2B shows the taxa with the most enriched
nodes in one figure, while Figures 5, 6 show network heat maps of

the most relevant taxa. The top enriched taxa belong to the
Bacteroidetes and Firmicutes phyla. Figure 6B shows a heatmap
on the matrix of all co-enrichment pairs between host metadata
and taxa of interest. Note that the significance threshold for co-
enrichment was set to the 0.5th percentile of all scores, so that
some of the seemingly lowest significances don’t pass the
threshold.

Of the Bacteroidetes, Bacteroides is the genus with the second
most enriched nodes, has a SAFE enriched score of 256, and is
enriched in cluster one (Figure 2B). Looking at its heat map, it
also becomes apparent that it is enriched in the junction of the
two large clusters (Figure 5A). Despite the co-enrichment
observable in these figures, no co-enrichment passes the
significance threshold. Figures 2B,5B show that the genus
Prevotella, which has one of the highest numbers of enriched
nodes despite a relatively low SAFE enriched score of 99, is highly
enriched exclusively in cluster 3, while it is abundant across the
network. Although the heat map indicates co-enrichment of this
genus with many variables such as China, Canada, or the US, they
don’t pass the significance threshold. The genus with the most
enriched nodes, Paludibacater, is the third most enriched taxon in
the dataset, with a SAFE enriched score of 273. It is mainly
enriched in the lower half of cluster 2 (Figures 2B,5C). Further, it
is significantly co-enriched with the countries USA and Italy, as
well as obese BMI, and Lachnoclostridium. Alistipes is exclusively
enriched in the top left part of cluster 1 (Figure 6A). It is
significantly co-enriched with Canada and normal BMI, which
notably also co-enriched with each other.

The two genera with the most enriched nodes -
Lachnoclostridium (SAFE enriched score 295) and
Ruminiclostridium (284) - are both members of the
Clostridiales order in the Firmicutes phylum and enriched
predominantly in cluster 2 (Figures 6B,C), Ruminiclostridium
particularly in the top half. Both are significantly co-enriched
with the United States, United Kingdom, and Italy,
Ruminiclostridium is further significantly co-enriched with
host age. They are also both significantly co-enriched with
Faecalibacterium prausnitzii and each other. Finally, the sparse
and disconnected nodes in the top left of the network are most
enriched by Blautia (SAFE enriched score 153) and
Faecalibacterium prausnitzii (SAFE enriched score 223).

TABLE 1 | Demographic Data.

Brazil Canada China Denmark France Germany Italy New Zealand Spain Tanzania UK USA Total

Age
Mean 30.1 25.9 43.3 55.4 62.0 38.1 39.3 36.9 40.9 36.1 51.3 41.7 40.0
SD 5.0 5.1 12.4 8.1 10.5 8.3 13.6 12.6 14.5 13.3 13.2 16.7 16.9

Sex
Female 18 659 81 73 249 0 26 82 31 8 122 847 2196
Male 2 610 90 34 216 70 14 49 16 14 149 965 2229
Missing 0 0 0 0 0 0 0 0 0 0 2 10 12

BMI
Underweight 0 0 8 0 4 0 1 0 0 0 8 38 59
Normal 15 973 33 1 228 29 26 101 2 0 180 1059 2647
Overweight 4 296 32 0 182 29 2 30 0 0 69 495 1139
Obese 1 0 0 0 38 12 0 0 0 0 16 95 162
Missing 0 0 98 106 13 0 11 0 45 22 0 135 430

Total 20 1269 171 107 465 70 40 131 47 22 273 1822 4437
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Blautia is significantly co-enriched with New Zealand and
Ruminococcus, while F. prausnitzii is significantly enriched
with the UK and host age. Additionally, France, enriched
across this sparse area, is significantly co-enriched with
Eubacterium, Ruminococcus, as well as Dorea – a genus also
significantly co-enriched with New Zealand.

DISCUSSION

Using TDA, we highlight novel differences and similarities of the
gut microbiome across 12 countries. The TDA approach
demonstrates the overlap between countries, a finding not
possible with conventional approaches. We found distinct
distributions of the countries across the TDA network that,
through co-enrichment analysis, corresponded to the
distribution of specific driver microbial genera, namely
Paludibacter, Bacteroides, Prevotella, and Alistipes of the
phylum Bacteroidetes, as well as Lachnoclostridium and
Ruminiclostridium, as well as Blautia, Faecalibacterium
prausnitzii, Dorea, Eubacterium, and Ruminococcus of the
Firmicutes phylum. This highlights the potential utility of
TDA as a complementary tool in microbiome research, and
particularly of the library tmap as a helpful tool for
implementing TDA in the microbiome space.

Geographical Co-enrichment of Taxa
Broadly, TDA shows the similarities between the countries within
each cluster. For example, the first cluster (Cluster 1) shows the
shared features of the gut microbiome of Canada, China, Denmark,
and Spain. Likewise, several countries have shared features in cluster
2 (USA, UK, Italy, New Zealand, Germany, Brazil), and Cluster 3
(USA, China, Canada). Importantly, the distinct clusters are
associated with differences in the gut microbiome composition
between these regions. It is also notable that membership of the

cluster is not exclusive. For instance, the gut microbiome from
Canadian samples shares features with cluster 1 and cluster 3. In
contrast, the UK appears only in cluster 2. It is noteworthy that
countries in close geographical proximity such as the USA and
Canada, or France andGermany, seem to have important differences
in their microbiome composition, whereas countries that are
separated by thousands of miles, such as the UK and USA, share
many features, as evidence by their co-enrichment. Below, we
explore these differences in more detail with a focus on the
specific co-enriched taxa and potential underlying explanations
and confounds.

Bacteroidetes
One of the most enriched genera this study identified is
Bacteroides of the Bacteroidetes phylum. It was most enriched
at the junction of clusters 1 and 2 and visually co-enriched with
China, the USA, Denmark, and Brazil, although on individual
testing these did not reach significance. The genus contains many
pathogens and pathobionts and generally has a high virulence
potential, as well as the highest antibiotic resistance of microbial
genera (Wexler, 2007). It is further associated with diseases such
as Irritable Bowel Disease (IBD; Walters et al., 2014) or the gut
microbiome changes seen in ulcerative colitis carcinogenesis, as
shown in a recent mouse study (Wang et al., 2019). Additionally,
the genus Bacteroides is associated with obesity (Ppatil et al.,
2012), which corresponds to the co-enrichment of an obese BMI
score in cluster 1, which however was not statistically significant.
Increased Bacteroides is associated with a long-term high-fat diet,
specifically an omnivorous diet high in protein and animal fat
(Wu et al., 2011; Zimmer et al., 2012; Ferrocino et al., 2015;
Franco-De-Moraes et al., 2017). This diet is prevalent in high-
income countries such as the USA and Canada (Ritchie and
Roser, 2019), and becoming more common in middle-income
countries, such as China and Brazil, as average income rises (Fu
et al., 2012). Our results mirror the results of the tmap study by

FIGURE 2 | (A) Network stratification of the countries in the dataset, showing the enriched nodes. Note that Tanzania is not included here, as it did not have any
significantly enriched nodes. However, this does not necessarily imply the absence of an effect. (B) Network stratification of the taxa with the most enriched nodes.
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Liao et al. observed (2019), as they also associated the USA with a
Bacteroides enterotype. While this overlapping result may be
explained by the inclusion of data from the American Gut
Project (McDonald et al., 2018) in this study, the data here
shows more complex associations, owing to the increased
number of included countries in our study. Bacteroides has
also been specifically associated with an “industrialised” diet: a
study comparing children from the USA and Egypt associated the
American children with a Bacteroides enterotype, meaning a
microbiome profile dominated by Bacteroides (Shankar et al.,
2017). The Egyptian children on the other hand, who ate a
Mediterranean diet rich in plant-based foods and fibres, were
associated with the Prevotella enterotype.

Other studies find similar results for Prevotella: it has been
associated with a long-term diet high in carbohydrates (Wu et al.,
2011), and is particularly abundant in vegans (Franco-De-Moraes
et al., 2017). In this study, Prevotella is enriched in cluster 3 as the
main driver taxon. The cluster is disconnected from the other
clusters and highly enriched with samples from China, Canada,
and the USA, although the visually observed co-enrichment with
Prevotella does not reach significance. The influence of diet,
particularly vegan versus omnivorous, needs to be addressed

in future studies of population-level microbiome studies and
may have specific impacts on disease phenotypes.

Paludibacter is a fermentative genus that includes species
producing the SCFA propionate (Qiu et al., 2017). While there
is a lack of literature exploring this genus in humans, one study
has associated it with a high fibre diet as it consumes mostly
polysaccharides and was found to be abundant in children from
rural Burkina Faso (De Filippo et al., 2010). Its statistically
significant co-enrichment with the USA and Italy, as well as
with obese BMI, is thus surprising. However, it should be noted
that the abundance of Paludibacter is zero for the entirety of
cluster 1, implying that its high abundance and enrichment in
cluster 2 could be an artefact of the genera sampled in the
different studies.

Alistipes is another genus of the Bacteroidetes phylum, of the
Parabacteroides family, that was among the most highly enriched
taxa. Specifically, it was enriched in the top half of cluster 1, and
significantly co-enriched with Canada and normal BMI, which
also co-enrich with each other. This association is in line with
previous research finding an association between Alistipes and a
lower BMI (Aguirre et al., 2016; Lv et al., 2019). The association
with Canada on the other hand could be a sampling artefact, as

FIGURE 3 | (A) Heatmap of age: distribution of absolute value across the network on the left, enrichment on the right. (B) Network stratification of sex across the
network. (C) Network stratification of BMI across the network.
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Canada has a particularly high number of normal BMI samples
compared to other countries in this study. Further, 77% of the
Canadian sample used here are of normal BMI, while the Canadian
adult population has an obesity rate of 64% (Government of
Canada, 2017). Additionally, studies have found Alistipes to
have both beneficial, as well as detrimental effects on the host:
on the one hand, it has been found to attenuate colitis in mice
(Dziarski et al., 2016), but on the other hand, it has consistently
increased abundance in Parkinson’s Disease (PD) patients

(Barichella et al., 2016; Bedarf et al., 2017; Li C. et al., 2019).
This could be further explored by applying our approach to the gut
microbiome of populations with a differing prevalence of PD.

Firmicutes
Two of the top enriched taxa were Firmicutes of the order
Clostridiales: Lachnoclostridium and Ruminiclostridium. While
the phylum Firmicutes, and specifically the order Clostridiales, is
often associated with beneficial effects for the host, as it contains

FIGURE 4 | Enrichment heatmaps of three Bacteroidetes genera, absolute abundance across the network on the left, enrichment on the right. (A) Bacteroides.
(B) Prevotella. (C) Paludibacter.
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many SCFA producers (Morrison and Preston, 2016; Levy et al.,
2017), these two genera seem to fall out of this pattern.

Similar to the above Bacteroides, Lachnoclostridium has been
associated with the changes in gut microbiome found in the
carcinogenesis of ulcerative colitis in mice (Wang et al., 2019) -

but recovered to a normal abundance after probiotic treatment.
Additionally, a new Lachnoclostridium species has recently been
found to contain a specific genetic marker that is enriched in
people with colorectal adenoma, leading to it being suggested as a
non-invasive diagnostic marker of the disease (Liang et al., 2020).

FIGURE 5 | Enrichment heatmaps of one Bacteroidetes genus and two Firmicute genera, absolute abundance across the network on the left, enrichment on the
right. (A) Alistipes, of Bacteroidetes phylum. (B) Lachnoclostridium. (C) Ruminiclostridium.
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Ruminiclostridium is a medium-chain fatty acid (MCFA)
producer. MCFAs, such as Caproic acid (CA), are metabolites
that are less studied than SCFAs. There is evidence that MCFAs
antagonise the anti-inflammatory effects of SCFAs by enhancing
TH1 and TH17 cell differentiation in a CNS autoimmune model
(Haghikia et al., 2015). Additionally, CA was found to be
augmented in Multiple Sclerosis patients while SCFAs were
reduced, correlating with an immunological profile of an
increase in TH1 and TH17 and a decrease in Treg lymphocytes
(Saresella et al., 2020). Ruminiclostridia were also elevated in a
mouse model of dysbiosis – and intriguingly also increased in aged
mice (Liu et al., 2020). This is relevant as in this study,
Ruminiclostridium was significantly co-enriched with host age.

It thus seems that these two Firmicutes are both associated
with pro-inflammatory properties. These genera were highly
enriched in cluster 2 and specifically co-enriched significantly
with the USA and UK, suggesting an important role in those
countries’ microbiome profile that is distinct to that of other
countries. This is further supported by the significant co-
enrichment between the USA and UK, as well as between
Lachnoclostridium and Ruminiclostridium. This finding is
opposite to that of Liao and colleagues (2019) who found the
two countries to have distinct microbiome signatures,
specifically that only the UK but not the USA were co-
enriched with the family Ruminococcaceae, which contains
Ruminiclostridium.

FIGURE 6 | (A) Ranking of host metadata by their SAFE enriched score. (B) Co-enrichment significance values of host metadata and the most enriched taxa,
presented as a heatmap. The significance threshold was set at the 0.5th percentile threshold of all values.
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Finally, the sparse and disconnected collection of nodes in the
top left of the TDA network is highly enriched with France and
five different genera of the order Clostridiales: Blautia,
Faecalibacterium prausnitzii, Dorea, Eubacterium, and
Ruminococcus, the last three of which were statistically
significantly co-enriched with France. Some were also
associated with the geographically separated New Zealand. The
Clostridiales order has been identified as one of the main SCFA
producers in the human gut and indeed all of these genera have
been previously identified as butyrate producers (Venegas et al.,
2019). However, the fact that the nodes of this network area do
not cluster together complicates adequate interpretation of this
finding, warranting further investigation by future studies.

Limitations
This study has several limitations. Firstly, the microbiome data is
assumed to be representative of the country population, which may
not be the case if sampling bias is present. The importance of this is
highlighted in the unexpected co-enrichment between normal BMI
and Canada, which is likely an artefact of sampling. Similarly, other
countries such as Denmark, Spain, or Tanzania, are missing many
data points on BMI, limiting the conclusions that can be drawn
from BMI enrichment. Secondly, diet could not specifically be
controlled for, given the dataset is a composite of many studies
and diet was not collected for all samples. Similarly, the clear
separation of enrichment between cluster 1 and 2 for the most
highly enriched taxa might be an artefact of the way the data was
curated as not all countries sequenced exactly the same taxa.
However, this is unlikely to be a significant confounder, apart
from the Paludibacter enrichment, as the heatmaps show taxa can
be highly abundant but not highly enriched across the network.
Another potential limitation is using microbiome data at the genus
level. Each genus is composed of many species which in turn can be
made up of various strains, all having potentially different effects.
While not all strains constituting a genus are fully sequenced yet,
analysis at species-level could still aid inmaking interpretationmore
precise. As species-level data is also available from the GMrepo
database, this could be a future extension of the current study.

CONCLUSION

In summary, we find that TDA highlights novel insights into the
differences and similarities between the gut microbiome at a
population level, both between geographically separated

countries and within single countries. This underscores the
importance of accounting for factors such as geography or
regionally varying factors such as diet when conducting
microbiome studies. Further, the dimensionality preserving
TDA approach may yield more depth and a richer
understanding of the changes in the gut microbiome seen
across several diseases and clinical phenotypes that would not
be possible using conventional approaches. The python library
tmap seems to serve as a valuable vehicle for such analyses,
particularly due to the inclusion of co-enrichment analysis and
network visualisation. TDA may be particularly beneficial for
patient data, as current studies cannot account for non-linearity
which is often present in such data. This would, however, require
larger datasets on clinical phenotypes than are currently available
in curated datasets such as GMrepo (Wu et al., 2020) or MGnify
(Mitchell et al., 2020). Finally, there is the potential for TDA to be
integrated with machine learning approaches, a novel avenue of
research (Hensel et al., 2021). This may identify specific taxa for
interventional therapeutics, though there are significant barriers
to overcome before this may be feasible.
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On Topological Analysis of fs-LIMS
Data. Implications for in Situ Planetary
Mass Spectrometry
Rustam A. Lukmanov1*, Andreas Riedo1, David Wacey2, Niels F. W. Ligterink1,
Valentine Grimaudo1, Marek Tulej 1, Coenraad de Koning1, Anna Neubeck3 and Peter Wurz1

1Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland, 2Centre for Microscopy, Characterisation
and Analysis, The University of Western Australia, Perth, WA, Australia, 3Department of Earth Sciences, Uppsala University,
Uppsala, Sweden

In this contribution, we present results of non-linear dimensionality reduction and
classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging
dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-
of-flight mass spectrometer developed for in situ space applications. We discuss the data
generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS
mass spectra. Further, we define topological biosignatures identified for Precambrian
Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low
dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic
contamination and inorganic quartz matrix were identified using the fs-LIMS data. The
topological analysis applied to the fs-LIMS data allows to gain additional knowledge from
large datasets, formulate hypotheses and quickly generate insights from spectral data. Our
contribution illustrates the utility of applying spatially resolved mass spectrometry in
combination with topology-based analytics in detecting signatures of early (primitive)
life. Our results indicate that fs-LIMS, in combination with topological methods,
provides a powerful analytical framework and could be applied to the study of other
complex mineralogical samples.

Keywords: fs-LIMS, mass-spectrometry, UMAP (uniform manifold approximation and projection), mapper,
microfossils, mars, Gunflint

INTRODUCTION

The current state of space exploration is on the verge of new frontiers, holding promise for discoveries
on other planetary bodies through in-situ robotic exploration (Vago et al., 2015). For example, Mars
and the icy moons of Jupiter and Saturn, once thought to be lifeless, have gained more attention from
the scientific community in recent decades due to new data informing upon the potential habitability of
these bodies (Priscu andHand 2012; Garcia-Lopez and Cid 2017; McMahon et al., 2018). Thus, there is
an ongoing need for sensitive and high-throughput space instrumentation providing precise analytical
data on a microscale (Navarro-González et al., 2006; Goesmann et al., 2017). However, space-type
instruments are usually small and provide only a fraction of the sensitivity and overall capability of their
full-scale laboratory counterparts. Reduction in performance occurs due to the strict constraints on size,
power consumption, andweight of the scientific payload. Therefore, the development of newminiature
instruments and analytical methods with improved capabilities is a continuously pressing issue (Li
et al., 2017; Arevalo et al., 2018; Stevens et al., 2019; Wurz et al., 2020).
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Laser-basedmass spectrometry (Laser Ablation Ionization and
Desorption Mass Spectrometry–LIMS and LDMS) is a modern
and compact analytical method that promises to greatly enhance
the quality of chemical analysis on planetary bodies (Riedo et al.,
2013b; Arevalo et al., 2018). The first LIMS instrument selected
and built for a planetary lander was LASMA, developed for the
Phobos-Grunt mission (Managadze et al., 2010). Recently, the
second LIMS instrument was chosen for the upcoming ExoMars
mission/Rosalind Franklin Rover (Goesmann et al., 2017), further
facilitating developments in this field. Laser-based mass
spectrometry, developed for in-situ planetary exploration, as a
versatile method, can provide a description of molecular
composition and element, isotope characterization of solids
(Moreno-García et al., 2016; Arevalo et al., 2020; Tulej et al.,
2020). The time-of-flight version of LDMS has been shown to be
capable of measuring extremely low concentrations (fmole) of
amino acids in the desorption mode (Ligterink et al., 2020). LIMS
modification of this instrument has been reported to measure
ppbw level trace elements and routinely measure fine chemistry
from a variety of samples (Riedo et al., 2013a; Neuland et al., 2016;
Wiesendanger et al., 2017). Moreover, a number of reports have
indicated that LIMS, particularly fs-LIMS, might be applicable to
the detection of faint signatures of life from microscopic
inclusions (Tulej et al., 2015; Wiesendanger et al., 2018) and
low-biomass Martian analogs (Stevens et al., 2019; Riedo et al.,
2020). However, the field of study of early and primitive life
remains profoundly complex (Brasier and Wacey 2012; Westall
et al., 2015; Wacey et al., 2016) with no single chemical criterion
that can be assigned as definitive proof of biogenicity. A number
of authors have proposed a multi-criteria approach, where a
multitude of methods needs to be applied before any conclusions
can be drawn (Hofmann 2008; Brasier and Wacey 2012; Hand
et al., 2017; Vago et al., 2017; Neveu et al., 2018; Chan et al., 2019).
The multi-method approach enhances the size of parametric
space and reduces the probability of false-positive detection.
Therefore, any advancement within each of the applied
methods can increase the overall confidence of the correct
identification of signatures of life.

In this contribution, we hypothesize that on the basis of the full
feature scale (mass range) present in the fs-LIMS spectral
datasets, it is possible to identify minerals and compounds of
specific chemistry using an unsupervised data-driven approach.
We describe a topology-based analysis pipeline to define the
complexity of the fs-LIMS imaging data in low dimensions and
identify groups of spectra that share a significant degree of
similarity. We apply the aforementioned method to 18,000
composite spectra acquired from the Gunflint chert (1.88 Ga),
which contains populations of well-preserved Precambrian
microfossils of proven biological origin (Wacey et al., 2013).
The analysis of the data reveals four distinct populations of fs-
LIMS spectra, which correspond to two groups of microfossils,
the quartz matrix in which microfossils are entombed and
organic surface contamination spectra. Moreover, we describe
a fine transitional structure between classes and argue that low
dimensional representations are of high utility in in-situ mass-
spectrometry and space research. Further, we speculate that our
approach is scalable to non-space instruments and may,

therefore, prove useful in the field of Precambrian
micropaleontology and high-dimensional analytical chemistry
in general.

METHODS

In this study, we use laser ablation ionization mass spectrometry
for the characterization of the chemical composition of the
Gunflint sample and optical microscopy to identify
morphological features. A thorough review of LIMS operation
principles, current state-of-the-art, and application case studies
can be found in a number of previous reports (Tulej et al., 2014;
Wiesendanger et al., 2017; Grimaudo et al., 2020; Ligterink et al.,
2020) and reviews (Grimaudo et al., 2019; Azov et al., 2020), and
therefore, only a short description will be given here. In the
simplest case, LIMS instruments include two main parts–a pulsed
laser system to ablate and ionize materials and a mass analyzer to
separate and register ions produced during the ablation and
ionization process. The fs-LIMS is a successor of ns-LIMS,
with the only difference that the mass analyzer is coupled to
the fs laser system. Current commercial fs lasers can provide peak
power fluences up to terawatt/cm2, compressed to very short
pulses of femto-second duration. Such high powers can ionize
any material, thus, providing means for an isotope and element
characterization of any solid with very small detection limits and
reduced matrix effects (Riedo et al., 2013c). As an ion source, we
have installed a Ti:Sapphire laser with chirped pulse
amplification, which provides a stable IR-775 nm, ∼190 fs
laser radiation. Conversion of the fundamental wavelength
from IR-775 nm to UV-258 nm was made using a
commercially available third-harmonic generation module.

The fs-LIMS system used in this study consists of a miniature
time-of-flight (TOF) mass analyzer (⌀ 60 × 160 mm) (see
Figure 1) with an axially symmetric design and single unit
mass resolution. The instrument was developed for in-situ
space applications, and due to its miniature design it could be
placed on a rover, lander, or even used as a handheld instrument
(Wurz et al., 2020). In normal operation mode, fs-LIMS could
identify major chemical composition along with ppmw-level
concentrations of trace elements. As shown in Figure 1, the
TOFmass analyzer consists of entrance ion optics (where ions are
confined and accelerated), a drift tube (where ions experience
mass/charge separation), a reflectron (ion mirror which uses an
electric field), and a microchannel plate (MCP) detector system
(Riedo et al., 2017) to register ion flux. The schematic illustration
of the fs-LIMS sample analysis is shown in Figure 1B. The
focused blue light indicates the fs-UV-258 nm laser radiation
that passes through the instrument and ablates the small area of
the sample with a diameter of the ablation spot of about 5 µm.
The positioning of the ablation spots is determined by the internal
microscopy system. The objective of the microscope is located at a
fixed offset from the instrument. After ablation and ionization,
positively charged ions are guided by an electric field of the
instrument into a defined parabolic trajectory so that every ion
that enters the instrument will land on the surface of the detector.
Incoming time-separated ion flux launches an electron avalanche
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within the microchannels of the detector system and creates a
measurable current on the output anodes. Thus, time-of-flight
LIMS measures an output current per unit of time, which is

correlated with the element and isotope abundances of an
investigated spot. Note that the image of the fs-laser beam
passing through the instrument (Figure 1A) is exaggerated - in

FIGURE 1 | (A) 3D render of our miniature time-of-flight mass analyzer. Location of the reflectron, drift tube, entrance ion optics, MCP detector, and dimensions of
the instrument are denoted. The focusing fs-UV laser light shown on the top and the bottom and illustrates an axial design of the mass analyzer. Sample positioning is not
shown. However, in the laboratory setting, the investigated sample is positioned in close vicinity to the entrance plate of the ion optical system of the mass analyzer, right
in the position of the laser focus, to achieve ablation and subsequent ionization of target material. (B) Schematic illustration of the fs-LIMS. An fs-laser radiation (blue
line) ablates and ionizes material from the sample. The positively charged ions are separated and detected using the time-of-flight mass spectrometer. The ablation
position can be precisely located using an integrated microscopy system.

FIGURE 2 | Microscope images of the Gunflint chert before and after the fs-LIMS imaging campaign are shown. (A) Microscope image of the area (0.9*2 mm2)
chosen for the chemical imaging with our fs-LIMS system. The dark brown patches distributed through the sample and forming a diffuse layer in the middle of the picture
represent a bio-lamination surface. (B) Close-up microscope picture of individual microfossils from the bio-lamination surface. Filamentous (Gunflintia), star-shaped
(Eoastrion), and spherular microfossils (Huroniospora) can be seen. (C) Microscope picture of laser ablation craters (0.9*2 mm2 area covered with 90*200
pixels–18,000 ablation positions) formed after the fs-LIMS imaging campaign. Red lines denote the accuracy of sample positioning (the gap between ablation craters is
consistently 10 µm) and identify the ablation crater diameters. Individual craters range in diameter from 4 to 5 µm. Note, on the upper part of the image, the yellow arrow
indicates an individual microfossil body. The size of the microfossil can be compared with the diameter of the analytical spot.
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the laboratory setting, the laser focal point is located in close
proximity to the entrance electrode of the mass analyzer (see
Figure 1B).

The investigation of a 30 µm thick thin-section of Gunflint
chert has been conducted with our miniature fs-LIMS system.
The sample acquired from the Gunflint Formation (Schreiber
beach locality, Ontario, Canada; Wacey et al., 2012, 2013)
represents a finely polished thin slice of the original rock,
glued to the glass substrate and mounted on a steel holder.
Preliminary optical microscopy was performed on the sample
to identify specific areas of microfossil aggregation (see
Figure 2A). Matrix material in which microfossils are
preserved was identified to be microcrystalline quartz.
Chemical imaging of the rectangular area, containing a bio-
lamination surface (aggregation of microfossils within a
stromatolite) and a clear host area (quartz filled matrix) was
done with the LIMS system using the fs UV-258 nm laser, which
provides a flux of 4.8 eV UV photons, which is well suited for
ionization of glasses and other non-conductive materials with low
absorption coefficients.

Figure 1A. 3D rendering of our miniature time-of-flight mass
analyzer. Location of the reflectron, drift tube, entrance ion
optics, MCP detector, and dimensions of the instrument are
denoted. The focusing fs-UV laser light shown on the top and the
bottom and illustrates an axial design of the mass analyzer.
Sample positioning is not shown. However, in the laboratory
setting, the investigated sample is positioned in close vicinity to
the entrance plate of the ion optical system of the mass analyzer,
right in the position of the laser focus, to achieve ablation and
subsequent ionization of target material. Figure 1B. Schematic
illustration of the fs-LIMS. The fs-laser radiation (blue line)
ablates and ionizes material from the sample. The positively
charged ions are separated and detected using the time-of-
flight mass spectrometer. The ablation position can be
precisely located using the integrated microscopy system.

Data Acquisition
A rectangular area of 0.9 × 2 mm2 was investigated using the fs-
LIMS system (see Figure 2A). A relatively low number of laser
pulses were applied to each surface position – 200 laser shots, to
avoid material displacement and crater-to-crater cross-
contamination. The spatially resolved measurements
conducted on the Gunflint chert resulted in the collection of
18,000 composite spectra (collected from the grid - 90 by 200
position or ablation sites). A composite spectrum collected from
the given position (or ablation site) resulted in the accumulation
of 200 single-shot spectra, with 64,000 data points digitized per
spectrum. Thus, the total number of registered shots resulted in
3.6 ×·106 single-shot spectra. The laser energies applied to each
position amounted to ∼360 nJ/pulse (measured at the sample
surface) using UV-258 nm laser. This energy was appropriate to
produce the optimal quality for the mass-spectrometric signal,
both from the microfossils and the quartz-filled host area.
Analytical conditions were held constant during the data
collection. The diameter of the average ablation crater was
measured to be ∼5 μm, and gaps between ablation craters were
set to 10 µm (see Figure 2C). A custom-built software package

was used to control the translation stage and the laser firing
intervals. A fast data acquisition system from Keysight was used
for digitizing current from the anodes, providing a 3.2 GSa/s
sampling rate. An example of a single composite spectrum
(representing a histogram of 200 individual single-shot
spectra) registered from the Gunflint sample is shown in
Figure 3. A single mass spectrum consists of 64,000 individual
datapoints sampled with a digitizer, where each digitized data
point corresponds to ∼0.33 ns of a flight time. Thus, every
recorded spectrum contains information about ∼20 µs of a
flight time, which provides a mass/charge (m/z) coverage of
up to 800 m/z, providing a complete record of all stable
isotopes and simple molecular compounds. Overall, 18,000
composite spectra were collected from the Gunflint sample,
with a 10 µm gap between ablation craters. Additionally to the
mass spectra collection, noise measurements were recorded,
which allowed the enhancement of the recorded signal.

Figure 2. Microscope images of the Gunflint chert before and
after the fs-LIMS imaging campaign are shown. A) Microscope
image of the area (0.9*2 mm2) chosen for the chemical imaging
with our fs-LIMS system. A. The dark brown patches distributed
through the sample and forming a diffuse layer in the middle of
the picture represent a bio-lamination surface. B) Close-up
microscope picture of individual microfossils from the bio-
lamination surface. Filamentous (Gunflintia), star-shaped
(Eoastrion), and spherular microfossils (Huroniospora) can be
seen. C) Microscope picture of laser ablation craters (0.9*2 mm2

area covered with 90*200 positions – 18,000 ablation sites)
formed after the fs-LIMS imaging campaign. Red lines denote
the accuracy of sample positioning (the gap between ablation
craters is consistently 10 µm) and identify the ablation crater
diameters. Individual craters range in diameter from 4 to 5 µm.
Note, on the upper part of the image, the yellow arrow indicates
an individual microfossil body. The size of the microfossil can be
compared with the diameter of the analytical spot.

Data Preprocessing
The entire imaging dataset, which consists of ∼50 GB of recorded
composite mass spectra, was preprocessed before any analysis was
applied to the data. A mass spectrometry preprocessing routine
applied to the dataset consists of several typical steps that largely
follow methods described in (Gil and Marco 2007) and (Meyer
et al., 2017). The fs-LIMS preprocessing routine applied to the
imaging data consisted of:

1) Noise removal for an improvement of the signal-to-noise ratio
(SNR) of the signal. The noise signal (empty composite mass
spectra) was recorded after the imaging campaign was
completed. The recorded noise waveform was subtracted
from the imaging observations.

2) Baseline subtraction. A filter function was applied to the
noise-removed mass spectra to estimate varying baseline
within multiple windows and regressed using spline
approximation.

3) Jitter correction. Since materials within the analyzed sample
might be of better or worse ionization efficiency (mainly due
to topography), temporal variation of ion yields is expected to
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occur so that times-of-flight of given ion packets might slightly
vary. Typically, this effect is small and affects the peak shapes in
a minor way. However, since we collected a relatively large
dataset, a correction procedure has been applied. To correct for
mismatch of times-of-flight, we have used an autocorrelation
function described in (Gil and Marco 2007).

4) Low pass filtering. The low pass filter with normalized cutoff
frequency at 0.13 πrad/sample and stopband attenuation of
60 dB was applied to each composite mass spectrum. This step
removes the remaining high-frequency component from the
recorded signal. Typically, it improves the SNR by two to five
and does not alter the peak shapes.

5) Parametric peak preserving smoothing. The Savitzky–Golay
filter function (Press and Teukolsky 1990) was applied to
flatten the baseline further and increase the SNR.

6) Mass scale assignment. An average time-of-flight spectrum of
all 18,000 spectra was recalculated for mass calibration
purposes. A simple quadratic equation was used to
calibrate the mass scale with the time-of-flight spectrum
(Riedo et al., 2013a).

7) Single mass unit decomposition. An integration of
consecutive 260 single unit masses, starting from 1H, was
achieved by recalculating the time-of-flight windows from the
mass calibration equation and utilizing direct Simpson’s
integration (Meyer et al., 2017).

Figure 3 shows a typical raw spectrum (top panel) acquired
from the Gunflint sample before any data preprocessing has been

applied. The bottom panel shows a spectrum after preprocessing
and reveals significantly improved SNR (104) and a flat baseline.
After step number seven, multiple isotope maps were calculated
using Kriging interpolation (further information in the text and
see Figure 4) for an investigation of the distribution of major
abundant elements. The imaging dataset was z-score normalized
to remove the imbalanced scales. An assessment of the pairwise
correlation factors was made, showing that approximately half of
the dimensions (single unit masses) are empty or very weakly
expressed.

The principal component analysis (PCA) reduction down to
the first 60 principal components was applied to remove empty
dimensions dominated by noise from the original dataset. The
Uniform Manifold Approximation and Projection (UMAP)
algorithm (McInnes et al., 2018) was used to further
characterize non-linear dependencies present in the PCA
reduced data matrix. The overall classification of the UMAP
scores was made using a hierarchical density-based clustering
algorithm (HDBSCAN) (Campello et al., 2013; McInnes et al.,
2017). The specific spectra identified from the microfossils were
further visualized using theMapper algorithm (Singh et al., 2007).
The identification of the modules present in the Mapper network
was conducted using a greedy modularity optimization algorithm
(Louvain) (Blondel et al., 2008).

Figure 3. Comparison of fs-LIMS spectra (composite
spectrum - 200 laser shots, recorded from single pixel), before
and after data preprocessing, acquired from the Gunflint chert
sample. Each line in the spectrum represents a single unit mass.

FIGURE 3 |Comparison of fs-LIMS spectra (composite spectrum of 200 laser shots, recorded from single position), before and after data preprocessing, acquired
from the Gunflint chert sample. Each line in the spectrum represents a single unit mass. The increase of SNR to 104 and correction of the baseline can be noted. See the
text for the full description of preprocessing procedures. Exemplary atomic lines are denoted on top of the spectrum.
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The increase of SNR to 104 and correction of the baseline can be
noted. See the text for the full description of preprocessing
procedures. Exemplary atomic lines are denoted on top of the
spectrum.

RESULTS

We calculated the intensity maps of major (abundant) isotopes to
understand a basic representation of the data. In Figure 4, the
spatial distributions of 12C, 1H, and 39K are illustrated and the
chemical maps reveal specific areas where isotopes show elevated
intensities. In comparison with the optical image of the same area
(see Figure 2A), one can see that most of the dark brown patches
identified from optical microscopy as microfossils preserved in
the bio-lamination surface are spatially correlated with increased
values of 12C and 1H. This observation is consistent with the fact
that major elements within microfossil bodies are C and H.
However, the intensity map of 39K reveals different
distribution. A top-right corner of the sample, which was
previously identified as a clean matrix (milky quartz), reveals
elevated concentrations of 39K and relatively intense ion yields of
12C. In fact, after a closer investigation of the mass spectra
recorded from that region, we identified a full range of
biorelevant elements (CHNOPS).

Additionally, a full range of Si isotopes, various silicon oxides,
and small chains of hydrocarbon clusters were observed from that
region. Considering that a particular location from optical
microscopy does not show any distinct mineralogical
association with described elements, we concluded that the
identified area could belong to the organic contamination.
From our previous studies of the Gunflint sample
(Wiesendanger et al., 2018), particularly the chemical depth

profiling of the neighboring region, it was identified that
organic contamination is present as a thin surface layer and
organic spectral features quickly decay with increasing depth. The
organic contamination potentially comes from the sample
handling and preparation procedures and likely represents a
small layer of lipids finely distributed on the surface.

In general, the manually inspected mass spectra from various
regions appeared to be somewhat similar. They contain the same
elements with varying concentrations–Si, CHNOPS, and
polyatomic molecules of similar composition. This observation
makes it difficult to manually define compounds observed from
the Gunflint sample since they seem to represent continually
mixing variants. The borders between chemical classes are fused
into each other. Thus, the deterministic classification solely based
on isotope intensity maps cannot be made. However, we can
further explore the chemical variations within different parts of
the sample. For example, the spectral features from the top-right
corner also show very close proximity to the chemical
composition of the host mineral - Si, O, and various Si oxide
chains indicate that ablation craters were deep enough to pass
through the layer of organic contamination and probe the
chemical composition of the original underlying mineral.
Lower parts of the isotope maps, shown with black regions
(Figure 4-left) after a closer investigation of the mass spectra,
were proposed to be from quartz, showing previously described
simple chemistry–Si, O, and minor amounts of Na, K, Al. The
latter elements (Na, K, Al) could be found as impurities within the
chert since they are relatively common in the seawater and could
have precipitated together with Si during the time of the rock
formation, or they could be from phyllosilicates (clay minerals)
that can occasionally occur in the matrix of Gunflint Formation
stromatolites, e.g., (Lepot et al., 2017). Since the 12C and 1H maps
outline the structure of the bio-lamination surface, previously

FIGURE 4 | Left panel–Exemplary isotope intensity maps (warmer colors indicate high concentrations) retrieved from the fs-LIMSmass spectra. The bio-lamination
surface (aggregation of microfossils) could be identified from 12C and 1H maps (bright yellow to red areas), distribution of 39K indicates the presence of the surface
contamination (upper left corner, bright yellow to the red area). Dark areas on the isotope maps indicate low-intensity regions and correspond to the quartz matrix. To
compare with an optical image, see Figure 2A. Right panel–Low dimensional structure of the imaging data cube revealed by UMAP. Triangulated mesh represents
volumetric isodensity surface of UMAP scores calculated from the 18,000 fs-LIMS mass spectra. Three separate entities could be observed from the spectral
neighborhood, namely quartz, contamination, and microfossils. The point cloud data plotted along with the density surface.
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identified from the optical microscopy, we can investigate the
spectra from the lamination site. The spectra from that area can
be characterized by the presence of the bio-relevant
elements–with increased concentrations of CHNOPS and an
additional minor contribution from Fe, Mn, and Cr. Another
notable observation is that spectra from the lamination surface
reveal relatively strong polyatomic molecules formation patterns.
Various hydrocarbon molecules accompanied by Si oxide chains
populate the mass spectra up to 200 m/z.

A dimensionality reduction algorithm was applied over the full
mass range of the fs-LIMS imaging data (1–260 amu) to find similar
spectra in the dataset.We used theUMAP algorithm (McInnes et al.,
2018) to analyze our observations. The first six UMAP components
were retrieved from the dataset precompressed with PCA. The
UMAP scores were calculated using the Euclidean distance as a
metric; every 15 nearest neighbors were used in the construction of
the k-nearest neighborhood graph, with a small minimal distance
(0.1), and iterated over 400 epochs. This particular set of
hyperparameters were found to be appropriate for an
approximation of the global structure of the manifold. In the
right panel of Figure 4, a distribution of the first three UMAP
components is shown. The spectral neighborhood appears to be
relatively busy (see point cloud data). However, three main
protrusions can be observed from the equal density surface of the
UMAP scores. The composition of protruding clusters matches our
previous interpretation of the data. The lower part of the plot
represents a relatively large cluster of mass spectra acquired from
the Quartz-filled matrix. A smaller cluster observed in the vicinity of
the main body corresponds to the spectra measured from the area
with signatures of organic contamination. It is noteworthy that the
contamination cluster is more connected to the main quartz cluster
and that the structure of the density surface indicates a smooth
transition from pure quartz to the spectra from the surface
contamination. The transition structure forms a narrow neck
where the similarity of spectra gradually changes from one class
to another. From the point cloud data, we could see that the
contamination cluster is relatively fuzzy, and the fine structure of
the transition could be observed on the isodensity surface.

Through the same transition pathway, a cluster of spectra that
corresponds to the microfossils preserved within the bio-
lamination layer could be observed. In comparison to the
cluster of spectra with organic contamination, the density
surface of the microfossils cluster forms a separate transition
line. The cluster of microfossils forms a smooth identifiable
shape, which gradually rises further apart from the quartz and
contamination clusters. As one can see, the relative proximity of
the spectra located closer to the transition “neck” indicates the
ablation of small parts of microfossils. From the investigation of
the individual spectra (see Figure 3), we have noted that almost all
spectra frommicrofossils contain spectral features from the filling
quartz mineral. This observation could be explained by the fact
that bodies of microfossils represent partially collapsed and
degraded cell walls. The thicknesses of the partially decayed
cell walls vary from the first tens of nm to the first hundreds
of nm, and these walls are all entombed in the silica matrix. By
ablation of small portions of the microfossils and larger portions
of the silica matrix, we can explain the smooth transition

structure, where similarity of spectra transitions from the
clean silica matrix. Thus, the end members of the microfossil
cluster represent the best volumetric sampling of microfossils, as
well as the best chemical composition of the fossils.

Overall, the volumetric density estimate of the UMAP scores
provides a good overview of the spectral types and their transition
structures. Also, it is possible to identify outliers (e.g., microscopic
inclusions of other minerals) from this graph, for example, by
recalculating the isolation forest scores (or any other outlier
detection algorithm) – the data points that are weakly
connected to the main clusters will have high values, thus,
easily identifiable. In the fs-LIMS analysis, where fine
chemistry is often of great interest, such information might be
valuable because it allows the identification of detached spectra
from the bulk of very similar ones.

Figure 4. Left panel–Exemplary isotope intensity maps
(warmer colors indicate high concentrations) retrieved from
the fs-LIMS mass spectra. The bio-lamination surface
(aggregation of microfossils) could be identified from 12C and
1Hmaps (bright yellow to red areas), distribution of 39K indicates
the presence of the surface contamination (upper left corner,
bright yellow to the red area). Dark areas on the isotope maps
indicate low-intensity regions and correspond to the quartz
matrix. To compare with an optical image, see Figure 2A.
Right panel–Low dimensional structure of the imaging data
cube revealed by UMAP. Triangulated mesh represents
volumetric isodensity surface of UMAP scores calculated from
the 18,000 fs-LIMS mass spectra. Three separate entities could be
observed from the spectral neighborhood, namely quartz,
contamination, and microfossils. The point cloud data plotted
along with the density surface.

The UMAP isodensity estimate reveals the continuous
structure of spectral similarities, and therefore it is not clear
where to define a boundary between different classes. A density-
based clustering approach was used to define discreet classes from
the low dimensional UMAP scores. The six UMAP components
were used to discretize distributions using a Hierarchical Density-
Based Spatial Clustering (HDBSCAN) algorithm (Campello et al.,
2013; McInnes et al., 2017). An HDBSCAN provides relatively
conservative class assignments compared to other clustering
algorithms and potentially more accurate in its predictions. An
advantageous side of HDBSCAN over DBSCAN, for example, is
that it can find clusters with varying densities, which is precisely
the case with our data, where we have an oversampled data from
the silicified matrix and a relatively small number of spectra from
the microfossils. Moreover, it is possible to calculate the
confidence probabilities of the assignment of each spectrum to
the cluster, which makes troubleshooting of clustering results
more intuitive and less bothersome. However, the downside of
the conservative clustering is that some portions of the data might
be classified as noise if they do not tightly belong to the densely
packed cluster. In contrast to the previous interpretation of
UMAP scores, the clustering algorithm found two microfossil
populations, a cluster of surface contamination, and quartz from
the matrix. The additional cluster of microfossils was hidden on
the backside of the quartz-related spectra (see Figure 4). The
Mapper networks were applied to the spectra registered from the
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microfossils to visualize the proximity structure between these
two classes.

Figure 5A shows a spectral similarity network constructed
from the fs-LIMS spectra registered from the microfossils, using
the first three UMAP components as a lens. A python
implementation - Kepler Mapper (Van Veen et al., 2019) of
the Mapper algorithm (Singh et al., 2007) was used to calculate
the similarity network of LIMS spectra. However, other open-
source implementations exist - e.g., recently published Giotto-
TDA (Tauzin et al., 2020). The density-based clustering was
applied to identify clusters within overlapping filter function
windows. In total, twenty windows were applied to construct
the network with 40% overlap over three UMAP components,
forming 8,000 sampling windows and resulting in a complex
network with 417 nodes and 2,967 edges (from 1,964 composite
spectra registered from the microfossils). Note that the number of
filter dimensions is user-defined, and in principle, they might be
defined as an n-dimensional hypercube, though two-dimensional
filters provide the best interpretability. The nodes present in the
network indicate groups of fs-LIMS spectra with a high degree of
similarity. The nodes might contain one or hundreds of spectra,
depending on the size of the filter function window. The edge
between nodes is drawn if nodes share the same observations (it

might be one or many more spectra). The coloring of the network
is conducted according to the eigenvector centralities of the
nodes. Blue parts of the network indicate the central nodes,
and red parts indicate less connected network components.

The structure of the network identifies the presence of two
connected communities. Figure 5B shows the same spectral
similarity network as in Figure 5A but colored according to the
Louvain modularity, calculated from the network topology. The red
part of the network (nodes are not shown) categorizes the spectra
identified from the type-2 microfossils, and the blue network
indicates the type-1 microfossils. The type-2 microfossils can be
characterized by increased proximity to the cluster of spectra
registered from the quartz. In contrast to the spectra from type-2,
type-1 microfossils are almost completely detached from other
groups and form a community of highly connected nodes and
correspond to the spectra in a linear protrusion in Figure 4 (right
panel). Note that the HDBSCAN and Louvain clustering provides
mutually supportive clustering results, although the Mapper
networks provide better tolerance to noise, thus allowing for
improved clustering performance. In order to check that cluster
assignments are not artifactual, we performed a clustering robustness
analysis. The Rand Index (RI) metric was used to assess the
clustering similarity between 10 random subsamples of the data
registered from microfossils. In total, 75% of the data was used to
generate random subsamples. The output UMAP subsamples were
clustered using the Louvain community detection algorithm. The RI
similarity matrix for Louvain clustering of random samples could be
found in the supplementary information (see Supplementary Table
S1 and Supplementary Figure S3). Overall, 45 different clustering
pairs revealed an average RI score of 92.5%with a standard deviation
of 2%, which indicates that communities shown in Figure 5 are not
artefactual and that the cluster assignments are robust. Most of the
clustering uncertainty can be attributed to the transition zone
between two types of microfossils. The type-2 microfossils reveal
more inhomogeneity (see Supplementary Figures S1, S2) in
comparison to the type-1 microfossils and represent more
intermixed with the host mineral material.

The spectral similarity network calculated from the first three
UMAP components reveals a better visualization of internal
structure and detects outliers and irregularities. Moreover, the
force-directed layout (ForceAtlas2 (Jacomy et al., 2014)), applied
to the network, exaggerates the positioning of weakly connected
nodes, which makes them easier to detect. Moreover,
interpretation of the low-dimensional embedding of fs-LIMS
data can be easily achieved by coloring the network with
original isotope intensities and synthetic features such as
isotope ratios. Any other functions might be applied to the
data (e.g., Kernel Density Estimate (KDE), Singular Value
Decomposition (SVD), and Principal Component Analysis
(PCA)), which makes Mapper networks a versatile and
powerful tool for insight extraction and hypothesis generation.
Furthermore, by reducing the large fs-LIMS intensity space down
to a network, we can additionally define a multitude of secondary
statistics that could be calculated from the graph topology.
Metrics such as centrality, modularity (e.g., see Figures 5A,B),
average degree, path length (e.g., between the host mineral and
microfossils), and many more, can be applied to the specific

FIGURE 5 | (A) Spectral similarity network constructed from 1964 LIMS
imaging spectra registered from the microfossils. Each node represents a
single or a group of spectra with a significant similarity of intensity profiles. The
edges connected with nodes indicate that nodes have one or more
shared spectra. The network is colored according to the eigenvector centrality
of nodes. A density-based clustering and first three UMAP components were
used as a lens to project the data using theMapper algorithm. The proximity of
nodes in the network identifies groups of microfossils and transition structure
between two classes. (B) The Louvain clustering of the spectral similarity
network. The blue part of the network identifies type-1 microfossils, and the
red part of the network illustrates spectra registered from the type-2
microfossils. See the text for more details.
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minerals and microfossils to define the multiparametric space
further and enhance the potential for definitive identification.

Figure 5A. Spectral similarity network constructed from 1,964
LIMS imaging spectra registered from the microfossils. Each node
represents a single or a group of spectra with a significant similarity
of intensity profiles. The edges connected with nodes indicate that
nodes have one or more shared spectra. The network is colored
according to the eigenvector centrality of nodes. A density-based
clustering and first three UMAP components were used as a lens to
project the data using the Mapper algorithm. The proximity of
nodes in the network identifies groups of microfossils and
transition structure between two classes. Figure 5B. The
Louvain clustering of the spectral similarity network. The blue
part of the network identifies type-1 microfossils, and the red part
of the network illustrates spectra registered from the type-2
microfossils. See the text for more details.

The overall results of the density-based clustering can be seen in
Figure 6. Clustering results reveal a very closematch with results of
optical microscopy (see Figure 6, right panel) and conclusions
from previous single isotope maps investigations. Moreover, we
have identified two types of microfossils and a contamination zone,
which were not acknowledged from the microscope image. The
type–1 microfossils represent spectra obtained from the
microfossils with the best microfossil over host (matrix mineral)
sampling ratio. Thus, spectra from type-1 can be counted as the
most representative of microfossils. On the other hand, type-2
represents the microfossils with an increased contribution from the
host mineral, which is also shown in Figure 6. The chemical
composition of type-1 microfossils can be characterized with
increased content of carbon and oxygen (12C, 12C2+, and 16O2+

peaks in the mass spectra), whereas type-2microfossils contain less
12C and more hydrocarbons, which indicates lower volumetric
ablation and colder plasma temperatures, thus, more prevalent
recombination processes. Higher plasma temperatures observed in
the type-1 microfossils can be attributed to the higher volumetric
contribution from absorptive kerogen. This observation also finds
confirmation from the spatial distribution of microfossils. In

Figure 6, the first type is mainly distributed in the densely
populated area (see Figure 6, right panel), in contrast to type-2,
which is largely distributed outside of the dense zone, and more
likely to be sampled with larger portions of the host mineral. The
identification of microfossils from the host mineral using fs-LIMS
and low dimensional analysis provides topological biosignatures.
As it was shown in Figures 4, 5, the structure of spectral similarities
identifies the positionings of spectra from different classes and
provides means for identification, classification of large datasets,
and has a potential for the prediction of spectral classes from
previously unseen spectra, given that a sufficiently rich spectral
library is provided.

Figure 6. Hierarchical density-based spatial clustering
(HDBSCAN) of six UMAP components of the imaging dataset
(left panel). The orange pixels represent spectra registered from the
type-1microfossils. The green pixels represent spectra registered from
the type-2 microfossils. The blue pixels represent spectra registered
from the surface contamination. Black and grey pixels–spectra
registered from the quartz matrix of the Gunflint chert. Right
panel–the optical microscopy image of the analyzed area. Note the
aligned distribution of classified spectra with the bio-lamination
surface crossing the image.

DISCUSSION

The identification and chemical characterization of minerals and
prospective biosignatures from large spectral databases generated
using fs-LIMS as well as other in-situ spectroscopic techniques is a
longstanding problem that can be generalized to other analytical
methods as well. For example, other importantmethods proposed for
in-situ space exploration, such as Laser-Induced Breakdown
Spectroscopy (LIBS) (e.g., ChemCam, currently operates on Mars
as part of the Mars Science Laboratory), Raman spectroscopy
(i.e., Raman Laser Spectrometer (RLS), one of the Pasteur Payload
instruments from ExoMars), and a large variety of other
techniques rely on harvesting large spectral information

FIGURE 6 | Hierarchical density-based spatial clustering (HDBSCAN) of six UMAP components of the imaging dataset (left panel). The orange pixels represent
spectra registered from the type-1 microfossils. The green pixels represent spectra registered from the type-2 microfossils. The blue pixels represent spectra registered
from the surface contamination. Black and grey pixels–spectra registered from the quartz matrix of the Gunflint chert. Right panel–the optical microscopy image of the
analyzed area. Note the aligned distribution of classified spectra with the bio-lamination surface crossing the image.
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from the analyte material. This spectral information is often
hard to interpret due to the large dimensionality, complexity,
and size of generated datasets. Outside of the context of space
exploration, in the field of analytical chemistry, similar data
analytical challenges are often encountered in the laboratory.
For example, Secondary Ions Mass Spectrometry (SIMS) or
Liquid Chromatography Mass Spectrometry (LC-MS), as
high-throughput techniques, provide hundreds of mass
lines per spectrum, and the output spectral dataset is not
always easy to interpret. As was shown in this contribution,
analysis of fs-LIMS data using topological methods reveals a
fast and accurate description of spectral classes and provides
a good understanding of transitional structures. In the low
dimensional domain, it might be easier to generate insights
and formulate a hypothesis, thus accelerating the extraction
of knowledge from the given sample.

The analysis of data generated by using our fs-LIMS system
might also be of use for future investigations of Precambrian rocks
containing signatures of putative microfossils. The Gunflint sample
is rare amongst Precambrian rocks as it exhibits an exceptional level
of morphological and chemical preservation, so there is little
argument over the biogenicity of the encased organic material
(Barghoorn and Tyler 1965; Lepot et al., 2017; Wacey et al.,
2012). However, traces of early life can be destroyed or heavily
altered by heat, pressure, and time (diagenetic alteration and later
metamorphism). As was briefly discussed before, the full mass range
spectral proximity analysis provides a means for the classification of
chemically similar entities. For example, organic contamination and
microfossils - similar compounds (both contain CHNOPS and Si
mass peaks), can be distinguished using topological methods (see
Figures 4–6). A big challenge in the field of Precambrian
micropaleontology surrounds the fact that altered and reduced
carbon found in ancient rocks could potentially be of biological
origin but could also have been created by abiotic processes. For
example, Fischer-Tropsch type synthesis might be responsible for
the presence of some abiotic hydrocarbons in Precambrian
formations (Brasier et al., 2002). However, we speculate that
synthetic products of Fischer-Tropsch-like reactions will have a
distinct spectral profile (e.g., polyatomic plasma chemistry
products might be different), and therefore corresponding
topological positioning is expected to be distinguishable from
bona fide microfossils. Thus, there is a hope that signs of life in
controversial samples might be successfully identified using sensitive
methods and full-feature-based topological representations.

The current state of space exploration also faces similar
challenges in the field of in-situ chemical analysis of solids on
planetary bodies. For example, the ns-LIMS instrument proposed
for Europa (Ligterink et al., 2020) reported the identification of
extremely low quantities of biological and abiotic amino acids
from well-defined extracts at the fmole level. However, more
complex molecules (e.g., proteins, polysaccharides, etc.)
combined with various undefined matrices will likely form
complex fragmentation patterns with hundreds of significant
mass lines, thus, making the identification challenging. The
topological representation, in this case, might provide a
number of compounds present in the measured mixture and
their similarity to the predefined classes.

The unsupervised identification of minerals from fs-LIMS
chemical imaging datasets might also be of use in the
determination of relative sensitivity coefficients (RSC’s). The
fs-LIMS is a quantitative method; however, it requires the
establishment of RSC’s, which are matrix dependent. With
an introduction of fs-LIMS, some matrices have been reduced
to unity (RSC � 1, no correction needed). However, non-
absorptive samples such as glasses typically still require the
determination of RSC’s for quantitative measurements. In the
case of exploratory analysis, where we do not know the
sample (i.e., field exploration of Martian samples), if one
would know the stoichiometry of the investigated mineral, it
is possible to recalculate correction factors for major
elements, and then through RSC’s dependence on atomic
orbital ionization energy recalculate concentrations of minor
and trace elements (Tulej et al., 2021). The key component
here is the identification of the mineral, and as we described
above, topological methods provide a means to do that.

Here we also need to point out several caveats regarding the
analysis of fs-LIMS data. First, at multiple stages, the data analysis
procedures require a set of hyperparameters to be chosen. For
example, in UMAP embedding andMapper network construction,
we used Euclidean and cosine distances, respectively, and defined
the number of neighbors, number of clusters, and filter functions.
However, a more rigorous study of the effect of hyperparameters
needs to be assessed in future studies regarding the analysis of fs-
LIMS data or data generated by other spectroscopic techniques.
Nevertheless, a recent contribution by (Belchı et al., 2020) provides
an insight into the numerical stability of Mapper-type algorithms.
It was shown that reliable Mapper output could be identified as a
local minimum of instability, regarded as a function of Mapper
input parameters. Other statistical solutions were proposed to
circumvent testing large parametric spaces and keep the most
representativeMapper settings (Carriere et al., 2018). Furthermore,
we have used UMAP scores as a lens in the construction of the
similarity network; however, a large variety of other functions
might be used, and their impact on visualizations needs to be
assessed. It would also be valuable to implement into the analysis
pipeline some domain-specific lenses for technical usage (i.e., mass
resolution, mass accuracy, etc.), which will improve the extraction
of quality metrics.

Overall, in addition to the account of topological descriptors of
early life, we hope that our analysis will facilitate, in time, a
predictive approach in the field of study of early life. The
approach described here might be expanded to more powerful,
state-of-the-art standalone laboratory instrumentation (e.g.,
high-resolution LIMS, SIMS, LA-ICP-MS), where data quality
might provide a whole new quantification perspective.

CONCLUSION

Our contribution offers several important conclusions for in-situ
space research. First, the miniature fs-LIMS system combined
with topology-based data analysis demonstrates the utility and
sensitivity to distinguish organically preserved microfossils from
organic contamination and inorganic host mineralogy. Second,
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the proposed approach might be extended to other complex
samples with multimineral compositions and used with other
high-resolution spectrometric or spectroscopic methods. Third,
our approach - full spectral mass range convolution down to a
similarity network for life detection stands out frommultielement
methods. It offers great flexibility and could be further expanded
to study the chemical discrepancies between individual
populations of microfossils. Furthermore, our analysis reveals
fine transition structures between classes and the detection of
outliers. Last, the fs-LIMS system, in combination with
topological methods, enables faster data analysis, accelerates
the formulation of hypotheses, and the generation of insights
for mineralogical compositions of investigated samples.
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An Introduction to Topological Data
Analysis: Fundamental and Practical
Aspects for Data Scientists
Frédéric Chazal1 and Bertrand Michel2*

1Inria Saclay - Île-de-France Research Centre, Palaiseau, France, 2Ecole Centrale de Nantes, Nantes, France

With the recent explosion in the amount, the variety, and the dimensionality of available
data, identifying, extracting, and exploiting their underlying structure has become a
problem of fundamental importance for data analysis and statistical learning.
Topological data analysis (TDA) is a recent and fast-growing field providing a set of new
topological and geometric tools to infer relevant features for possibly complex data. It
proposes new well-founded mathematical theories and computational tools that can be
used independently or in combination with other data analysis and statistical learning
techniques. This article is a brief introduction, through a few selected topics, to basic
fundamental and practical aspects of TDA for nonexperts.

Keywords: topological data analysis, machine learning, geometric inference, topological inference, statistic

1 INTRODUCTION AND MOTIVATION

Topological data analysis (TDA) is a recent field that emerged from various works in applied
(algebraic) topology and computational geometry during the first decade of the century. Although
one can trace back geometric approaches to data analysis quite far into the past, TDA really started as a
field with the pioneering works of Edelsbrunner et al. (2002) and Zomorodian and Carlsson (2005) in
persistent homology and was popularized in a landmark article in 2009 Carlsson (2009). TDA is
mainly motivated by the idea that topology and geometry provide a powerful approach to infer
robust qualitative, and sometimes quantitative, information about the structure of data [e.g., Chazal
(2017)].

TDA aims at providing well-founded mathematical, statistical, and algorithmic methods to infer,
analyze, and exploit the complex topological and geometric structures underlying data that are often
represented as point clouds in Euclidean or more general metric spaces. During the last few years, a
considerable effort has been made to provide robust and efficient data structures and algorithms for
TDA that are now implemented and available and easy to use through standard libraries such as the
GUDHI library1 (C++ and Python)Maria et al. (2014) and its R software interface Fasy et al. (2014a),
Dionysus2, PHAT3, DIPHA4, or Giotto5. Although it is still rapidly evolving, TDA now provides a set
of mature and efficient tools that can be used in combination with or complementarily to other data
science tools.
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The Topological Data Analysis Pipeline
TDA has recently known developments in various directions and
application fields. There now exist a large variety ofmethods inspired
by topological and geometric approaches. Providing a complete
overview of all these existing approaches is beyond the scope of
this introductory survey. However, many standard ones rely on the
following basic pipeline that will serve as the backbone of this article:

1. The input is assumed to be a finite set of points coming with a
notion of distance—or similarity—between them. This
distance can be induced by the metric in the ambient space
(e.g., the Euclidean metric when the data are embedded in Rd)
or comes as an intrinsic metric defined by a pairwise distance
matrix. The definition of the metric on the data is usually given
as an input or guided by the application. It is, however,
important to notice that the choice of the metric may be
critical to revealing interesting topological and geometric
features of the data.

2. A “continuous” shape is built on the top of the data in order to
highlight the underlying topology or geometry. This is often a
simplicial complex or a nested family of simplicial complexes,
called a filtration, which reflects the structure of the data on
different scales. Simplicial complexes can be seen as higher-
dimensional generalizations of neighboring graphs that are
classically built on the top of data in many standard data
analysis or learning algorithms. The challenge here is to define
such structures as are proven to reflect relevant information
about the structure of data and that can be effectively
constructed and manipulated in practice.

3. Topological or geometric information is extracted from the
structures built on the top of the data. This may either result in
a full reconstruction, typically a triangulation, of the shape
underlying the data fromwhich topological/geometric features
can be easily extracted or in crude summaries or
approximations from which the extraction of relevant
information requires specific methods, such as persistent
homology. Beyond the identification of interesting
topological/geometric information and its visualization and
interpretation, the challenge at this step is to show its
relevance, in particular its stability with respect to
perturbations or the presence of noise in the input data.
For that purpose, understanding the statistical behavior of
the inferred features is also an important question.

4. The extracted topological and geometric information provides new
families of features and descriptors of the data. They can be used to
better understand the data—in particular, through
visualization—or they can be combined with other kinds of
features for further analysis and machine learning tasks. This
information can also be used to design well-suited data analysis
and machine learning models. Showing the added value and the
complementarity (with respect to other features) of the
information provided using TDA tools is an important question
at this step.

Topological Data Analysis and Statistics
Until quite recently, the theoretical aspects of TDA and topological
inference mostly relied on deterministic approaches. These

deterministic approaches do not take into account the random
nature of data and the intrinsic variability of the topological
quantity they infer. Consequently, most of the corresponding
methods remain exploratory, without being able to efficiently
distinguish between information and what is sometimes called
the “topological noise” (see Section 6.2 further in the article).

A statistical approach to TDA means that we consider data as
generated from an unknown distribution but also that the
topological features inferred using TDA methods are seen as
estimators of topological quantities describing an underlying
object. Under this approach, the unknown object usually
corresponds to the support of the data distribution (or part of
it). The main goals of a statistical approach to topological data
analysis can be summarized as the following list of problems:

Topic 1: proving consistency and studying the convergence
rates of TDA methods.
Topic 2: providing confidence regions for topological features
and discussing the significance of the estimated topological
quantities.
Topic 3: selecting relevant scales on which the topological
phenomenon should be considered, as a function of
observed data.
Topic 4: dealing with outliers and providing robust methods
for TDA.

Applications of Topological Data Analysis in
Data Science
On the application side, many recent promising and successful results
have demonstrated the interest in topological and geometric
approaches in an increasing number of fields such as material
science (Kramar et al., 2013; Nakamura et al., 2015; Pike et al.,
2020), 3D shape analysis (Skraba et al., 2010; Turner et al., 2014b),
image analysis (Qaiser et al., 2019; Rieck et al., 2020),multivariate time
series analysis (Khasawneh and Munch, 2016; Seversky et al., 2016;
Umeda, 2017), medicine (Dindin et al., 2020), biology (Yao et al.,
2009), genomics (Carrière and Rabadán, 2020), chemistry (Lee et al.,
2017; Smith et al., 2021), sensor networks De Silva and Ghrist (2007),
or transportation (Li et al., 2019), to name a few. It is beyond our scope
to give an exhaustive list of applications of TDA. On the other hand,
most of the successes of TDA result from its combination with other
analysis or learning techniques (see Section 6.5 for a discussion and
references). So, clarifying the position and complementarity of TDA

with respect to other approaches and tools in data science is also an
important question and an active research domain.

The overall objective of this survey article is two-fold. First, it
intends to provide data scientists with a brief and comprehensive
introduction to the mathematical and statistical foundations of
TDA. For that purpose, the focus is put on a few selected, but
fundamental, tools and topics, which are simplicial complexes
(Section 2) and their use for exploratory topological data analysis
(Section 3), geometric inference (Section 4), and persistent
homology theory (Section 5), which play a central role in TDA.
Second, this article also aims at demonstrating how, thanks to the
recent progress of software, TDA tools can be easily applied in data
science. In particular, we show how the Python version of the
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GUDHI library allows us to easily implement and use the TDA

tools presented in this article (Section 7). Our goal is to quickly
provide the data scientist with a few basic keys—and relevant
references—so that he can get a clear understanding of the basics
of TDA and will be able to start to use TDA methods and software
for his own problems and data.

Other reviews on TDA can be found in the literature, which are
complementary to our work. Wasserman (2018) presented a
statistical view on TDA, and it focused, in particular, on the
connections between TDA and density clustering. Sizemore
et al. (2019) proposed a survey about the application of TDA to
neurosciences. Finally, Hensel et al. (2021) proposed a recent
overview of applications of TDA to machine learning.

2 METRIC SPACES, COVERS, AND
SIMPLICIAL COMPLEXES

As topological and geometric features are usually associated with
continuous spaces, data represented as finite sets of observations
do not directly reveal any topological information per se. A
natural way to highlight some topological structure out of data
is to “connect” data points that are close to each other in order to
exhibit a global continuous shape underlying the data.
Quantifying the notion of closeness between data points is
usually done using a distance (or a dissimilarity measure), and
it often turns out to be convenient in TDA to consider data sets as
discrete metric spaces or as samples of metric spaces. This section
introduces general concepts for geometric and topological
inference; a more complete presentation of the topic is given
in the study by Boissonnat et al. (2018).

Metric Spaces
Recall that a metric space (M, ρ) is a set M with a function
ρ: M ×M→R+, called a distance, such that for any x, y, z ∈ M,
the following is the case:

i) ρ(x, y) ≥ 0 and ρ(x, y) � 0 if and only if x � y,
ii) ρ(x, y) � ρ(y, x), and
iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Given a metric space (M, ρ), the set K(M) of its compact
subsets can be endowed with the so-called Hausdorff distance;
given two compact subsets A, B 4 M, the Hausdorff distance
dH(A, B) between A and B is defined as the smallest nonnegative
number δ such that for any a ∈ A, there exists b ∈ B such that ρ(a,
b) ≤ δ, and for any b ∈ B, there exists a ∈ A such that ρ(a, b) ≤ δ
(see Figure 1). In other words, if for any compact subset C4M,
we denote by d(.,C): M→R+ the distance function to C defined
by d(x, C)d inf c∈Cρ(x, c) for any x ∈M, then one can prove that
the Hausdorff distance between A and B is defined by any of the
two following equalities:

dH(A,B) � max sup
b∈B

d(b,A), sup
a∈A

d(a,B){ }
� sup

x∈M
|d(x,A) − d(x,B)| � ‖d(.,A) − d(.,B)‖∞

It is a basic and classical result that the Hausdorff distance is
indeed a distance on the set of compact subsets of a metric space.
From a TDA perspective, it provides a convenient way to quantify the
proximity between different data sets issued from the same ambient
metric space. However, it sometimes occurs that one has to compare
data sets that are not sampled from the same ambient space.
Fortunately, the notion of the Hausdorff distance can be
generalized to the comparison of any pair of compact metric
spaces, giving rise to the notion of the Gromov–Hausdorff distance.

Two compact metric spaces, (M1, ρ1) and (M2, ρ2), are
isometric if there exists a bijection ϕ: M1 → M2 that preserves
distances, that is, ρ2(ϕ(x), ϕ(y)) � ρ1(x, y) for any x, y ∈ M1. The
Gromov–Hausdorff distance measures how far two metric spaces
are from being isometric.

Definition 1. The Gromov–Hausdorff distance dGH(M1, M2)
between two compact metric spaces is the infimum of the real
numbers r ≥ 0 such that there exists a metric space (M, ρ) and two
compact subspaces C1 and C2 ⊂M that are isometric to M1 andM2

and such that dH(C1, C2) ≤ r.
The Gromov–Hausdorff distance will be used later, in Section

5, for the study of stability properties and persistence diagrams.
Connecting pairs of nearby data points by edges leads to the

standard notion of the neighboring graph from which the
connectivity of the data can be analyzed, for example, using
some clustering algorithms. To go beyond connectivity, a
central idea in TDA is to build higher-dimensional
equivalents of neighboring graphs using not only connecting
pairs but also (k + 1)-uple of nearby data points. The resulting
objects, called simplicial complexes, allow us to identify new
topological features such as cycles, voids, and their higher-
dimensional counterpart.

Geometric and Abstract Simplicial
Complexes
Simplicial complexes can be seen as higher-dimensional
generalization of graphs. They are mathematical objects that
are both topological and combinatorial, a property making
them particularly useful for TDA.

Given a setX � {x0, . . . , xk} ⊂ Rd of k + 1 affinely independent
points, the k-dimensional simplex σ � [x0, . . . , xk] spanned by X
is the convex hull ofX. The points ofX are called the vertices of σ,
and the simplices spanned by the subsets of X are called the faces
of σ. A geometric simplicial complex K in Rd is a collection of
simplices such that the following are the case:

i) any face of a simplex of K is a simplex of K and
ii) the intersection of any two simplices of K is either empty or
a common face of both.

The union of the simplices of K is a subset of Rd called the
underlying space of K that inherits from the topology ofRd . So, K
can also be seen as a topological space through its underlying
space. Notice that once its vertices are known, K is fully
characterized by the combinatorial description of a collection
of simplices satisfying some incidence rules.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6679633

Chazal and Michel An Introduction to TDA

153

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Given a set V, an abstract simplicial complex with the vertex
set V is a set ~K of finite subsets of V such that the elements of V
belong to ~K and for any σ ∈ ~K , any subset of σ belongs to ~K . The
elements of ~K are called the faces or the simplices of ~K . The
dimension of an abstract simplex is just its cardinality minus 1
and the dimension of ~K is the largest dimension of its simplices.
Notice that simplicial complexes of dimension 1 are graphs.

The combinatorial description of any geometric simplicial K
obviously gives rise to an abstract simplicial complex ~K .
The converse is also true; one can always associate with an
abstract simplicial complex ~K a topological space | ~K| such
that if K is a geometric complex whose combinatorial
description is the same as ~K , the underlying space of K is
homeomorphic to | ~K|. Such a K is called a geometric
realization of ~K . As a consequence, abstract simplicial
complexes can be seen as topological spaces and geometric
complexes can be seen as geometric realizations of their
underlying combinatorial structure. So, one can consider
simplicial complexes at the same time as combinatorial objects
that are well suited for effective computations and as topological
spaces from which topological properties can be inferred.

Building Simplicial Complexes From Data
Given a data set, or more generally, a topological or metric
space, there exist many ways to build simplicial complexes. We
present here a few classical examples that are widely used in
practice.

A first example is an immediate extension of the notion of the
α-neighboring graph. Assume that we are given a set of points X
in a metric space (M, ρ) and a real number α ≥ 0. The
Vietoris–Rips complex Ripsα(X) is the set of simplices [x0, . . . ,
xk] such that dX(xi, xj)≤ α for all (i, j), see Figure 2. It follows
immediately from the definition that this is an abstract simplicial
complex. However, in general, even whenX is a finite subset ofRd ,

Ripsα(X) does not admit a geometric realization in Rd ; in
particular, it can be of a dimension higher than d.

Closely related to the Vietoris–Rips complex is the Čech
complex Cechα(X) that is defined as the set of simplices [x0,
. . . , xk] such that the k + 1 closed balls B(xi, α) have a non-empty
intersection, see Figure 2. Notice that these two complexes are
related by

Ripsα(X)4Cechα(X)4Rips2α(X)
and that if X ⊂ Rd , then Cechα(X) and Rips2α(X) have the same
one-dimensional skeleton, that is, the same set of vertices
and edges.

The Nerve Theorem
The Čech complex is a particular case of a family of complexes
associated with covers. Given a cover U � (Ui)i∈I of M, that is, a
family of sets Ui such that M � ∪i∈IUi, the nerve of U is the
abstract simplicial complex C(U) whose vertices are the Ui’s and
such that

σ � Ui0, . . . ,Uik[ ] ∈ C U( ) if and only if ∩k
j�0Uij ≠∅.

Given a cover of a data set, where each set of the cover can
be, for example, a local cluster or a grouping of data points
sharing some common properties, its nerve provides a
compact and global combinatorial description of the
relationship between these sets through their intersection
patterns (see Figure 3).

A fundamental theorem in algebraic topology relates, under
some assumptions, the topology of the nerve of a cover to the
topology of the union of the sets of the cover. To be formally
stated, this result, known as the Nerve theorem, requires the
introduction of a few notions.

Two topological spaces, X and Y, are usually considered as
being the same from a topological point of view if they are

FIGURE 1 | Left: the Hausdorff distance between two subsets A and B of the plane. In this example, dH(A, B) is the distance between the point a in A which is the
farthest from B and its nearest neighbor b on B. Right: the Gromov–Hausdorff distance between A and B. A can be rotated—this is an isometric embedding of A in the
plane—to reduce its Hausdorff distance to B. As a consequence, dGH(A, B) ≤ dH(A, B).
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homeomorphic, that is, if there exist two continuous bijective
maps f: X → Y and g: Y → X such that f°g and g°f are the identity
map of Y and X, respectively. In many cases, asking X and Y to be
homeomorphic turns out to be too strong a requirement to ensure
that X and Y share the same topological features of interest for
TDA. Two continuous maps f0, f1: X→ Y are said to be homotopic
if there exists a continuous map H: X × [0, 1] → Y such that for
any x ∈ X, H(x, 0) � f0(x) and H(x, 1) � g(x). The spaces X and Y
are then said to be homotopy equivalent if there exist two maps, f:
X → Y and g: Y → X, such that f°g and g°f are homotopic to the
identity map of Y and X, respectively. The maps f and g are then
called homotopy equivalent. The notion of homotopy
equivalence is weaker than the notion of homeomorphism; if
X and Y are homeomorphic, then they are obviously homotopy
equivalent, but the converse is not true. However, spaces that are
homotopy equivalent still share many topological invariants; in
particular, they have the same homology (see Section 4).

A space is said to be contractible if it is homotopy equivalent to
a point. Basic examples of contractible spaces are the balls and,
more generally, the convex sets in Rd . Open covers for whom all
elements and their intersections are contractible have the
remarkable following property.

Theorem 1 (Nerve theorem). Let U � (Ui)i∈I be a cover of a
topological space X by open sets such that the intersection of any
subcollection of the Ui’s is either empty or contractible. Then, X and
the nerve C(U) are homotopy equivalent.

It is easy to verify that convex subsets of Euclidean spaces are
contractible. As a consequence, if U � (Ui)i∈I is a collection of
convex subsets of Rd , then C(U) and ∪i∈IUi are homotopy
equivalent. In particular, if X is a set of points in Rd , then the
Čech complex Cechα(X) is homotopy equivalent to the union of
balls ∪x∈XB(x, α).

The Nerve theorem plays a fundamental role in TDA; it
provides a way to encode the topology of continuous spaces
into abstract combinatorial structures that are well suited for the
design of effective data structures and algorithms.

3 USING COVERS AND NERVES FOR
EXPLORATORY DATA ANALYSIS AND
VISUALIZATION: THE MAPPER
ALGORITHM

Using the nerve of covers as a way to summarize, visualize, and
explore data is a natural idea that was first proposed for TDA in the
study by Singh et al. (2007), giving rise to the so-called Mapper
algorithm.

Definition 2. Let f : X→Rd, d ≥ 1, be a continuous real valued
function and let U � (Ui)i∈I be a cover ofR

d. The pull-back cover of
X induced by (f ,U) is the collection of open sets (f −1(Ui))i∈I. The
refined pull-back is the collection of connected components of the
open sets f−1(Ui), i ∈ I.

The idea of the Mapper algorithm is, given a data set X and
a well-chosen real-valued function f : X→Rd , to summarize
X through the nerve of the refined pull-back of a cover U of
f (X) (see Figure 4A). For well-chosen covers U (see below),
this nerve is a graph providing an easy and convenient way to
visualize the summary of the data. It is described in
Algorithm 1 and illustrated on a simple example in
Figure 4B.

The Mapper algorithm is very simple (see Algorithm 1); but it
raises several questions about the various choices that are left to
the user and that we briefly discuss in the following.

FIGURE 2 | Čech complex Cechα(X) (left) and the Vietoris–Rips Rips2α(X) (right) of a finite point cloud in the plane R2. The bottom part of Cechα (X) is the union of
two adjacent triangles, while the bottom part of Rips2α(X) is the tetrahedron spanned by the four vertices and all its faces. The dimension of the Čech complex is 2. The
dimension of the Vietoris–Rips complex is 3. Notice that this latter is thus not embedded in R2.
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The Choice of f
The choice of the function f, sometimes called the filter or lens
function, strongly depends on the features of the data that one
expects to highlight. The following ones are among the ones more
or less classically encountered in the literature:

-Density estimates: the Mapper complex may help to
understand the structure and connectivity of high-density
areas (clusters).
-PCA coordinates or coordinate functions obtained from a nonlinear
dimensionality reduction (NLDR) technique, eigenfunctions of graph
laplacians may help to reveal and understand some ambiguity in the
use of nonlinear dimensionality reductions.
-The centrality function f (x) � ∑y∈Xd(x, y) and the
eccentricity function f (x) � maxy∈Xd(x, y) sometimes appear
to be good choices that do not require any specific knowledge
about the data.
-For data that are sampled around one-dimensional
filamentary structures, the distance function to a given
point allows us to recover the underlying topology of the
filamentary structures Chazal et al. (2015d).

The Choice of the Cover U
When f is a real-valued function, a standard choice is to take U to
be a set of regularly spaced intervals of equal length, r > 0, covering
the set f (X). The real r is sometimes called the resolution of the cover,
and the percentage g of overlap between two consecutive intervals is

called the gain of the cover. Note that if the gain g is chosen below 50%,
then every point of the real line is covered by, atmost, 2 open sets ofU ,
and the output nerve is a graph. It is important to notice that the
output of Mapper is very sensitive to the choice of U , and small
changes in the resolution and gain parameters may result in very large
changes in the output, making the method very unstable. A classical
strategy consists in exploring some range of parameters and selecting
the ones that turn out to provide themost informative output from the
user perspective.

The Choice of the Clusters
The Mapper algorithm requires the clustering of the preimage of
the open sets U ∈ U . There are two strategies to compute the
clusters. A first strategy consists in applying, for each U ∈ U , a
cluster algorithm, chosen by the user, to the preimage f−1(U). A
second, more global, strategy consists in building a neighboring
graph on the top of the data setX, for example, a k-NN graph or a
ε-graph, and, for each U ∈ U , taking the connected components
of the subgraph with the vertex set f−1(U).

Theoretical and Statistical Aspects of
Mapper
Based on the results on stability and the structure of Mapper
proposed in the study by Carrière and Oudot (2017), advances
toward a statistically well-founded version of Mapper have been
made recently in the study by Carriere et al. (2018).
Unsurprisingly, the convergence of Mapper depends on both
the sampling of the data and the regularity of the filter function.
Moreover, subsampling strategies can be proposed to select a
complex in a Rips filtration on a convenient scale, as well as the
resolution and the gain for defining the Mapper graph. The case
of stochastic and multivariate filters has also been studied by
Carrière and Michel (2019). An alternative description of the
probabilistic convergence of Mapper, in terms of categorification,
has also been proposed in the study by Brown et al. (2020). Other
approaches have been proposed to study and deal with the

FIGURE 3 | Point cloud sampled in the plane and a cover of open sets for this point cloud (left). The nerve of this cover is a triangle (right). Edges correspond to a set
of the cover whereas a vertex corresponds to a non-empty intersection between two sets of the cover.

Algorithm 1 | The Mapper algorithm

Input: a data set X with a metric or a dissimilarity measure between data
points, a function f : X→R (or Rd ), and a cover U of f (X)
for each U ∈ U decompose f−1(U) into clusters CU,1 , . . . ,CU,kU .
Compute the nerve of the cover of X defined by the CU,1 , . . . ,CU,kU , U ∈ U.
Output: a simplicial complex; the nerve (often a graph for well-chosen covers →
easy to visualize) includes the following:
- a vertex vU,i for each cluster CU,i and
- an edge between vU,i and vU′,j if CU,i ∩ CU′,j ≠ ∅.
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instabilities of the Mapper algorithm in the works of Dey et al.
(2016), Dey et al. (2017).

Data Analysis With Mapper
As an exploratory data analysis tool, Mapper has been
successfully used for clustering and feature selection. The idea
is to identify specific structures in the Mapper graph (or
complex), in particular, loops and flares. These structures are
then used to identify interesting clusters or to select features or
variables that best discriminate the data in these structures.
Applications on real data, illustrating these techniques, may be
found, for example, in the studies by Carrière and Rabadán
(2020), Lum et al. (2013), Yao et al. (2009).

4 GEOMETRIC RECONSTRUCTION AND
HOMOLOGY INFERENCE

Another way to build covers and use their nerves to exhibit the
topological structure of data is to consider the union of balls
centered on the data points. In this section, we assume that Xn �
{x0, . . . , xn} is a subset of Rd , sampled i. i. d. according to a
probability measure μ with compact support M ⊂ Rd . The
general strategy to infer topological information about M from
μ proceeds in two steps that are discussed in the following part of
this section:

1. Xn is covered by a union of balls of a fixed radius centered on
the xi’s. Under some regularity assumptions on M, one can
relate the topology of this union of balls to the one of M and

2. from a practical and algorithmic perspective, topological
features of M are inferred from the nerve of the union of
balls, using the Nerve theorem.

In this framework, it is indeed possible to compare spaces
through isotopy equivalence, a stronger notion than
homeomorphism; X4Rd and Y4Rd are said to be (ambient)
isotopic if there exists a continuous family of homeomorphisms
H: [0, 1] × Rd →Rd , H continuous, such that for any t ∈ [0, 1],
Ht � H(t, .): Rd →Rd is a homeomorphism, H0 is the identity
map inRd , andH1(X) � Y. Obviously, ifX and Y are isotopic, then
they are homeomorphic. The converse is not true; a knotted circle
and an unknotted circle inR3 are not homeomorphic (notice that
although this claim seems rather intuitive, its formal proof
requires the use of some nonobvious algebraic topology tools).

4.1 Distance-Like Functions and
Reconstruction
Given a compact subset K ofRd and a nonnegative real number r,
the union of balls of radius r centered on K, Kr � ∪x∈KB(x, r),
called the r-offset of K, is the r-sublevel set of the distance
function dK : Rd →R defined by dK(x) � inf y∈K‖x − y‖; in

FIGURE 4 | (A) Refined pull-back cover of the height function on a surface in R3 and its nerve. (B)Mapper algorithm on a point cloud sampled around a circle and
the height function. First, the pull-back cover of the height function defined on the point cloud is computed and refined (left). Second, the nerve of the refined pull-back is
visualized as a graph (right).

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6679637

Chazal and Michel An Introduction to TDA

157

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


other words, Kr � d−1k ([0, r]). This remark allows us to use
differential properties of distance functions and to compare
the topology of the offsets of compact sets that are close to
each other with respect to the Hausdorff distance.

Definition 3 (Hausdorff distance in Rd). The Hausdorff
distance between two compact subsets K, K′ of Rd is defined by

dH K ,K ′( ) � ‖dK − dK′‖∞ � sup
x∈Rd

|dK(x) − dK ′(x)|.

In our setting, the considered compact sets are the data set Xn

and of the support M of the measure μ. When M is a
smooth compact submanifold, under mild conditions on
dH(Xn,M), for some well-chosen r, the offsets of Xn are
homotopy equivalent to M Chazal and Lieutier (2008), Niyogi
et al. (2008) (see Figure 5 for an illustration). These results extend
to larger classes of compact sets and lead to stronger results on the
inference of the isotopy type of the offsets of M Chazal et al.
(2009c), Chazal et al. (2009d). They also lead to results on the
estimation of other geometric and differential quantities such as
normals Chazal et al. (2009c), curvatures Chazal et al. (2009e), or
boundary measures Chazal et al. (2010) under assumptions on
the Hausdorff distance between the underlying shape and the
data sample.

These results rely on the one-semiconcavity of the squared
distance function d2K , that is, the convexity of the function
x→ ‖x‖2 − d2K (x), and can be naturally stated in the following
general framework.

Definition 4. A function ϕ: Rd →R+ is distance-like if it is
proper (the preimage of any compact set in R is a compact set in
Rd) and x → ‖x‖2 − ϕ2(x) is convex.

Thanks to its semiconcavity, a distance-like function ϕ has a
well-defined, but not continuous, gradient ∇ϕ: Rd →Rd that can
be integrated into a continuous flow (Petrunin, 2007) that allows
us to track the evolution of the topology of its sublevel sets and to
compare it to one of the sublevel sets of close distance-like
functions.

Definition 5. Let ϕ be a distance-like function and let ϕr �
ϕ−1([0, r]) be the r-sublevel set of ϕ.

• A point x ∈ Rd is called α-critical if ‖∇xϕ‖ ≤ α. The
corresponding value r � ϕ(x) is also said to be α-critical.

• The weak feature size of ϕ at r is the minimum r′ > 0 such
that ϕ does not have any critical value between r and r + r′.
We denote it by wfsϕ(r). For any 0 < α < 1, the α-reach of ϕ is
the maximum r such that ϕ−1((0, r]) does not contain any
α-critical point.

The weak feature size wfsϕ(r) (resp. α-reach) measures the
regularity of ϕ around its r-level sets (resp. O-level set). When ϕ �
dK is the distance function to a compact set K ⊂ Rd , the one-reach
coincides with the classical reach from geometric measure theory
Federer (1959). Its estimation from random samples has been
studied by Aamari et al. (2019). An important property of a
distance-like function ϕ is that the topology of their sublevel sets
ϕr can only change when r crosses a 0-critical value.

Lemma 1 (isotopy lemma grove (1993)). Let ϕ be a distance-
like function and r1 < r2 be two positive numbers such that ϕ has no
0-critical point, that is, points x such that ∇ϕ(x) � 0, in the subset
ϕ−1([r1, r2]). Then all the sublevel sets ϕ

−1([0, r]) are isotopic for r ∈
[r1, r2].

FIGURE 5 | Example of a point cloudXn sampled on the surface of a torus inR3 (top left) and its offsets for different values of radii r1 < r2 < r3. For well-chosen values
of the radius (e.g., r1 and r2), the offsets are clearly homotopy equivalent to a torus.
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As an immediate consequence of the isotopy lemma, all the
sublevel sets of ϕ between r and r + wfsϕ(r) have the same
topology. Now the following reconstruction theorem from
Chazal et al. (2011b) provides a connection between the
topology of the sublevel sets of close distance-like functions.

Theorem 2 (Reconstruction theorem). Let ϕ, ψ be two
distance-like functions such that ‖ϕ − ψ‖∞ < ε, with reachα(ϕ)
≥ R for some positive ε and α. Then, for every r ∈ [4ε/α2, R − 3ε]
and every η ∈ (0, R), the sublevel sets ψr and ϕη are homotopy
equivalent when

ε≤
R

5 + 4/α2
.

Under similar but slightly more technical conditions, the
Reconstruction theorem can be extended to prove that the
sublevel sets are indeed homeomorphic and even isotopic
(Chazal et al., 2009c; Chazal et al., 2008).

Coming back to our setting and taking for ϕ � dM and ψ � dXn

the distance functions to the support M of the measure μ and to
the data set Xn, the condition reachα(dM) ≥ R can be interpreted
as the regularity condition on M6. The Reconstruction theorem
combined with the Nerve theorem tells that for well-chosen
values of r, η and the η-offsets of M are homotopy equivalent
to the nerve of the union of balls of radius r centered on Xn, that
is, the Cech complex Cechr(Xn).

From a statistical perspective, the main advantage of these
results involving the Hausdorff distance is that the estimation of
the considered topological quantities boils down to support

estimation questions that have been widely studied (see
Section 4.3).

4.2 Homology Inference
The above results provide a mathematically well-founded
framework to infer the topology of shapes from a simplicial
complex built on the top of an approximating finite sample.
However, from a more practical perspective, it raises two issues.
First, the Reconstruction theorem requires a regularity
assumption through the α-reach condition that may not
always be satisfied and the choice of a radius r for the ball
used to build the Čech complex Cechr(Xn). Second, Cechr(Xn)
provides a topologically faithful summary of the data through a
simplicial complex that is usually not well suited for further data
processing. One often needs topological descriptors that are easier
to handle, in particular numerical ones, which can be easily
computed from the complex. This second issue is addressed
by considering the homology of the considered simplicial
complexes in the next paragraph, while the first issue will be
addressed in the next section with the introduction of persistent
homology.

Homology in a Nutshell
Homology is a classical concept in algebraic topology, providing a
powerful tool to formalize and handle the notion of the
topological features of a topological space or of a simplicial
complex in an algebraic way. For any dimension k, the
k-dimensional “holes” are represented by a vector space Hk,
whose dimension is intuitively the number of such
independent features. For example, the zero-dimensional
homology group H0 represents the connected components of
the complex, the one-dimensional homology groupH1 represents

FIGURE 6 | Some examples of chains, cycles, and boundaries on a two-dimensional complex K: c1, c2, and c4 are one-cycles; c3 is a one-chain but not a one-
cycle; c4 is the one-boundary, namely, the boundary of the two-chain obtained as the sum of the two triangles surrounded by c4. The cycles c1 and c2 span the same
element in H1(K) as their difference is the two-chain represented by the union of the triangles surrounded by the union of c1 and c2.

6As an example, if M is a smooth compact submanifold, then reach0(ϕ) is always
positive and known as the reach of M Federer (1959).
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the one-dimensional loops, the two-dimensional homology
group H2 represents the two-dimensional cavities, and so on.

To avoid technical subtleties and difficulties, we restrict the
introduction of homology to the minimum that is necessary to
understand its usage in the following of the article. In particular,
we restrict our information to homology with coefficients in Z2,
that is, the field with two elements, 0 and 1, such that 1 + 1 � 0,
which turns out to be geometrically a little bit more intuitive.
However, all the notions and results presented in the sequel
naturally extend to homology with coefficients in any field. We
refer the reader to the study by Hatcher (2001) for a complete and
comprehensible introduction to homology and to the study by
Ghrist (2017) for a recent, concise, and very good introduction to
applied algebraic topology and its connections to data analysis.

Let K be a (finite) simplicial complex and let k be a
nonnegative integer. The space of k-chains on K, Ck(K) is the
set whose elements are the formal (finite) sums of k-simplices of
K. More precisely, if {σ1, . . . , σp} is the set of k-simplices ofK, then
any k-chain can be written as

c � ∑
p

i�1
εiσ i with εi ∈ Z2.

If c′ � ∑p
i�1εi′σ i is another k-chain and λ ∈ Z2, the sum c + c′ is

defined as c + c′ � ∑p
i�1(εi + εi′ )σ i and the product λ.c is defined as

λ.c � ∑p
i�1(λ.εi)σ i, making Ck(K) a vector space with coefficients

in Z2. Since we are considering coefficients in Z2, geometrically, a
k-chain can be seen as a finite collection of k-simplices and the
sum of two k-chains as the symmetric difference of the two
corresponding collections7.

The boundary of a k-simplex σ � [v0, . . . , vk] is the (k − 1)-
chain

zk(σ) � ∑
k

i�0
(−1)i v0, . . . , v̂i, . . . , vk][

where [v0, . . . , v̂i, . . . , vk] is the (k − 1)-simplex spanned by all the
vertices except vi

8. As the k-simplices form a basis of Ck(K), zk
extends as a linear map from Ck(K) to Ck−1(K) called the
boundary operator. The kernel Zk(K) � {c ∈ Ck(K): zk � 0} of
zk is called the space of k-cycles of K, and the image Bk(K) � {c ∈
Ck(K): ∃c′ ∈ Ck+1(K), zk+1(c′) � c} of zk+1 is called the space of
k-boundaries of K. The boundary operators satisfy the following
fundamental property:

zk−1°zk ≡ 0 for any k ≥ 1.

In other words, any k-boundary is a k-cycle, that is, Bk(K) 4
Zk(K) 4 Ck(K). These notions are illustrated in Figure 6.

Definition 6 (simplicial homology group and Betti numbers).
The kth (simplicial) homology group of K is the quotient vector
space

Hk(K) � Zk(K)/Bk(K).
The kth Betti number of K is the dimension βk(K) � dimHk(K)

of the vector space Hk(K).
Figure 7 gives the Betti numbers of several simple spaces. Two

cycles, c, c′ ∈ Zk(K), are said to be homologous if they differ by a
boundary, that is, if there exists a (k + 1)-chain d such that c′ � c +
zk+1(d). Two such cycles give rise to the same element of Hk. In
other words, the elements of Hk(K) are the equivalence classes of
homologous cycles.

FIGURE 7 | Betti numbers of the circle (top left), the two-dimensional sphere (top right), and the two-dimensional torus (bottom). The blue curves on the torus
represent two independent cycles whose homology class is a basis of its one-dimensional homology group.

7Recall that the symmetric difference of two sets A and B is the set AΔB � (A \ B) ∪
(B \ A).

8Notice that as we are considering coefficients in Z2, here −1 � 1 and thus (−1)i � 1
for any i.
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Simplicial homology groups and Betti numbers are topological
invariants; if K, K′ are two simplicial complexes whose geometric
realizations are homotopy equivalent, then their homology
groups are isomorphic and their Betti numbers are the same.

Singular homology is another notion of homology that allows
us to consider larger classes of topological spaces. It is defined for
any topological space X similarly to simplicial homology, except
that the notion of the simplex is replaced by the notion of the
singular simplex, which is just any continuous map σ: Δk → X
where Δk is the standard k-dimensional simplex. The space of
k-chains is the vector space spanned by the k-dimensional
singular simplices, and the boundary of a simplex σ is defined
as the (alternated) sum of the restriction of σ to the (k − 1)-
dimensional faces of Δk. A remarkable fact about singular
homology is that it coincides with simplicial homology
whenever X is homeomorphic to the geometric realization of a
simplicial complex. This allows us, in the sequel of this article, to
indifferently talk about simplicial or singular homology for
topological spaces and simplicial complexes.

Observing that if f: X → Y is a continuous map, then for any
singular simplex σ: Δk→ X in X, f °σ: Δk→ Y is a singular simplex
in Y, one easily deduces that continuous maps between
topological spaces canonically induce homomorphisms
between their homology groups. In particular, if f is a
homeomorphism or a homotopy equivalence, then it induces
an isomorphism between Hk(X) and Hk(Y) for any nonnegative
integer k. As an example, it follows from the Nerve theorem that
for any set of points X ⊂ Rd and any r > 0, the r-offset Xr and the
Čech complex Cechr(X) have isomorphic homology groups and
the same Betti numbers.

As a consequence, the Reconstruction theorem 2 leads to the
following result on the estimation of Betti numbers.

Theorem 3. Let M ⊂ Rd be a compact set such that reachα(dM)
≥ R > 0 for some α ∈ (0, 1) and let X be a finite set of points such
that dH(M,X) � ε< R

5+4/α2. Then, for every r ∈ [4ε/α2, R − 3ε] and
every η ∈ (0, R), the Betti numbers of Cechr(X) are the same as the
ones of Mη.

In particular, if M is a smooth m-dimensional submanifold of
Rd, then βk(Cechr(X)) � βk(M) for any k � 0, . . . , m.

From a practical perspective, this result raises three difficulties:
first, the regularity assumption involving the α-reach ofMmay be
too restrictive; second, the computation of the nerve of a union of

balls requires the use of a tricky predicate testing the emptiness of
a finite union of balls; third, the estimation of the Betti numbers
relies on the scale parameter r, whose choice may be a problem.

To overcome these issues, Chazal and Oudot (2008)
established the following result, which offers a solution to the
first two problems.

Theorem 4. Let M ⊂ Rd be a compact set such that wfs(M) �
wfsdM(0)≥R> 0 and let X be a finite set of points such that
dH(M,X) � ε< 1

9 wfs(M). Then for any r ∈ [2ε, 14 (wfs(M) − ε)]
and any η ∈ (0, R),

βk Xη( ) � rk Hk Ripsr(X)( )→Hk Rips4r(X)( )( )
where rk(Hk(Ripsr(X))→Hk(Rips4r(X))) denotes the rank of the
homomorphism induced by the (continuous) canonical
inclusion Ripsr(X)-Rips4r(X).

Although this result leaves the question of the choice of the
scale parameter r open, it is proven in the study by Chazal and
Oudot (2008) that a multiscale strategy whose description is
beyond the scope of this article provides some help in identifying
the relevant scales on which Theorem 4 can be applied.

4.3 Statistical Aspects of Homology
Inference
According to the stability results presented in the previous
section, a statistical approach to topological inference is
strongly related to the problem of distribution support
estimation and level sets estimation under the Hausdorff
metric. A large number of methods and results are available
for estimating the support of a distribution in statistics. For
instance, the Devroye and Wise estimator (Devroye and Wise,
1980) defined on a sampleXn is also a particular offset ofXn. The
convergence rates of both Xn and the Devroye and Wise
estimator to the support of the distribution for the Hausdorff
distance were studied by Cuevas and Rodríguez-Casal (2004) in
Rd . More recently, the minimax rates of convergence of manifold
estimation for the Hausdorff metric, which is particularly relevant
for topological inference, has been studied by Genovese et al.
(2012). There is also a large body of literature about level sets
estimation in various metrics (see, for instance, Cadre, 2006;
Polonik, 1995; Tsybakov, 1997) and, more particularly, for the
Hausdorff metric Chen et al. (2017). All these works about

FIGURE 8 | Effect of outliers on the sublevel sets of distance functions. Adding just a few outliers to a point cloud may dramatically change its distance function and
the topology of its offsets.
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support and level sets estimation shed light on the statistical
analysis of topological inference procedures.

In the study by Niyogi et al. (2008), it was shown that the
homotopy type of Riemannian manifolds with a reach larger
than a given constant can be recovered with high probability
from offsets of a sample on (or close to) the manifold. This
article was probably the first attempt to consider the
topological inference problem in terms of probability. The
result of the study by Niyogi et al. (2008) was derived from a
retract contraction argument and was on tight bounds over
the packing number of the manifold in order to control the
Hausdorff distance between the manifold and the observed
point cloud. The homology inference in the noisy case, in the
sense that the distribution of the observation is concentrated
around the manifold, was also studied by Niyogi et al. (2008),
Niyogi et al. (2011). The assumption that the geometric
object is a smooth Riemannian manifold is only used in
the article to control in probability the Hausdorff distance
between the sample and the manifold and is not actually
necessary for the “topological part” of the result. Regarding
the topological results, these are similar to those of the
studies by Chazal et al. (2009d), Chazal and Lieutier
(2008) in the particular framework of Riemannian
manifolds. Starting from the result of the study by Niyogi
et al. (2008), the minimax rates of convergence of the
homology type have been studied by Balakrishna et al.
(2012) under various models for Riemannian manifolds
with a reach larger than a constant. In contrast, a
statistical version of the work of Chazal et al. (2009d) has
not yet been proposed.

More recently, following the ideas of Niyogi et al. (2008),
Bobrowski et al. (2014) have proposed a robust homology
estimator for the level sets of both density and regression
functions, by considering the inclusion map between nested
pairs of estimated level sets (in the spirit of Theorem 4
above) obtained using a plug-in approach from a kernel
estimator.

4.4 Going Beyond Hausdorff Distance:
Distance to Measure
It is well known that distance-based methods in TDA may fail
completely in the presence of outliers. Indeed, adding even a
single outlier to the point cloud can change the distance function
dramatically (see Figure 8 for an illustration). To answer this
drawback, Chazal et al. (2011b) have introduced an alternative
distance function which is robust to noise, the distance-to-
measure.

Given a probability distribution P in Rd and a real parameter
0 ≤ u ≤ 1, the notion of distance to the support of P may be
generalized as the function

δP,u: x ∈ Rd1inf t > 0 ; P(B(x, t))≥ u{ },
where B(x, t) is the closed Euclidean ball of center x and radius t.
To avoid issues due to discontinuities of the map P → δP,u, the
distance-to-measure (DTM) function with parameter m ∈ [0, 1]
and power r ≥ 1 is defined by

dP,m,r(x): x ∈ Rd1
1
m
∫

m

0
δrP,u(x) du( )

1/r

. (1)

A nice property of the DTM proved by Chazal et al. (2011b) is
its stability with respect to perturbations of P in the Wasserstein
metric. More precisely, the map P → dP,m,r is m−1

r-Lipschitz, that
is, if P and ~P are two probability distributions on Rd , then

‖dP,m,r − d~P,m,r‖∞ ≤m−1rWr(P, ~P) (2)

whereWr is the Wasserstein distance for the Euclidean metric on
Rd , with exponent r9. This property implies that the DTM
associated with close distributions in the Wasserstein metric
have close sublevel sets. Moreover, when r � 2, the function
d2P,m,2 is semiconcave, ensuring strong regularity properties on the
geometry of its sublevel sets. Using these properties, Chazal et al.
(2011b) showed that under general assumptions, if ~P is a
probability distribution approximating P, then the sublevel sets
of d~P,m,2 provide a topologically correct approximation of the
support of P.

In practice, the measure P is usually only known through a
finite set of observations Xn � {X1, . . . ,Xn} sampled from P,
raising the question of the approximation of the DTM. A
natural idea to estimate the DTM from Xn is to plug the
empirical measure Pn instead of P into the definition of the
DTM. This “plug-in strategy” corresponds to computing the
distance to the empirical measure (DTEM). For m � k

n, the
DTEM satisfies

dr
Pn ,k/n,r

(x)d1
k
∑
k

j�1
‖x − Xn‖r(j),

where ‖x − Xn‖(j) denotes the distance between x and its jth
neighbor in {X1, . . . , Xn}. This quantity can be easily computed in
practice since it only requires the distances between x and the
sample points. The convergence of the DTEM to the DTM has
been studied by Chazal et al. (2017) and Chazal et al. (2016b).

The introduction of the DTMhasmotivated further works and
applications in various directions such as topological data
analysis (Buchet et al., 2015a), GPS trace analysis (Chazal
et al., 2011a), density estimation (Biau et al., 2011), hypothesis
testing Brécheteau (2019), and clustering (Chazal et al., 2013), just
to name a few. Approximations, generalizations, and variants of
the DTM have also been considered (Guibas et al., 2013; Phillips
et al., 2014; Buchet et al., 2015b; Brécheteau and Levrard, 2020).

5 PERSISTENT HOMOLOGY

Persistent homology is a powerful tool used to efficiently
compute, study, and encode multiscale topological features of
nested families of simplicial complexes and topological spaces.
It does not only provide efficient algorithms to compute the
Betti numbers of each complex in the considered families, as

9See Villani (2003) for a definition of the Wasserstein distance
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required for homology inference in the previous section, but
also encodes the evolution of the homology groups of the
nested complexes across the scales. Ideas and preliminary
results underlying persistent homology theory can be traced
back to the 20th century, in particular in the works of
Barannikov (1994), Frosini (1992), Robins (1999). It started
to know an important development in its modern form after
the seminal works of Edelsbrunner et al. (2002) and
Zomorodian and Carlsson (2005).

5.1 Filtrations
A filtration of a simplicial complex K is a nested family of
subcomplexes (Kr)r∈T, where T4R, such that for any r, r′ ∈
T, if r ≤ r′ then Kr 4 Kr’ and K � ∪r∈TKr. The subset T may be
either finite or infinite. More generally, a filtration of a topological
space M is a nested family of subspaces (Mr)r∈T, where T4R,
such that for any r, r′ ∈ T, if r ≤ r′ thenMr4Mr’ andM � ∪r∈TMr.
For example, if f : M→R is a function, then the family Mr �
f−1((−∞, r]), r ∈ R defines a filtration called the sublevel set
filtration of f.

In practical situations, the parameter r ∈ T can often be
interpreted as a scale parameter, and filtrations classically used
in TDA often belong to one of the two following families.

Filtrations Built on Top of Data
Given a subsetX of a compact metric space (M, ρ), the families of
Rips–Vietoris complexes (Ripsr(X))r∈R and Čech complexes
(Cechr(X))r∈R are filtrations10. Here, the parameter r can be
interpreted as a resolution at which one considers the data set
X. For example, if X is a point cloud in Rd , thanks to the
Nerve theorem, the filtration (Cechr(X))r∈R encodes the
topology of the whole family of unions of balls Xr �
∪x∈XB(x, r), as r goes from 0 to + ∞. As the notion of
filtration is quite flexible, many other filtrations have been
considered in the literature and can be constructed on the top
of data, such as the so-called witness complex popularized in
TDA by De Silva and Carlsson (2004), the weighted Rips
filtrations Buchet et al. (2015b), or the so-called DTM
filtrations Anai et al. (2019) that allow us to handle data
corrupted by noise and outliers.

Sublevel Sets Filtrations
Functions defined on the vertices of a simplicial complex give rise to
another important example of filtration: letK be a simplicial complex

FIGURE 9 | (A) Example 1: the persistence barcode and the persistence diagram of a function f : [0, 1]→R. (B) Example 2: the persistence barcode and the
persistence diagram of the height function (projection on the z-axis) defined on a surface in R3.

10We take here the convention that for r < 0, Ripsr(X) � Cechr(X) � ∅
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with vertex set V and f : V→R. Then f can be extended to all
simplices of K by f([v0, . . . , vk]) � max{f(vi): i � 1, . . . , k} for any
simplex σ � [v0, . . . , vk] ∈ K and the family of subcomplexes,Kr � {σ
∈ K: f(σ) ≤ r}, defines a filtration called the sublevel set filtration of f.
Similarly, one can define the upper-level set filtration of f.

In practice, even if the index set is infinite, all the considered
filtrations are built on finite sets and are indeed finite. For
example, when X is finite, the Vietoris–Rips complex Ripsr(X)
changes only at a finite number of indices, r. This allows us to
easily handle them from an algorithmic perspective.

5.2 Starting With a Few Examples
Given a filtration Filt � (Fr)r∈T of a simplicial complex or a
topological space, the homology of Fr changes as r increases;
new connected components can appear, existing components can
merge, loops and cavities can appear or be filled, etc. Persistent

homology tracks these changes, identifies the appearing features,
and associates a lifetime with them. The resulting information is
encoded as a set of intervals called a barcode or, equivalently, as a
multiset of points in R2 where the coordinate of each point is the
starting and end point of the corresponding interval.

Before giving formal definitions, we introduce and illustrate
persistent homology on a few simple examples.

Example 1
Let f : [0, 1]→R be the function of Figure 9A and let Fr �
f −1((−∞, r))r∈R be the sublevel set filtration of f. All the sublevel
sets of f are either empty or a union of intervals, so the only nontrivial
topological information they carry is their zero-dimensional
homology, that is, their number of connected components. For
r < a1, Fr is empty, but at r � a1, a first connected component appears
in Fa1. Persistent homology thus registers a1 as the birth time of a

FIGURE 10 | The sublevel set filtration of the distance function to a point cloud and the construction of its persistence barcode as the radius of balls increases. The blue curves in
the unions of balls represent one-cycles associatedwith the blue bars in the barcodes. The persistence diagram is finally defined from the persistence barcodes. (A) For the radius r � 0,
theunionof balls is reduced to the initial finite set of points, eachof themcorresponding toa zero-dimensional feature, that is, a connectedcomponent; an interval is created for thebirth for
each of these features at r � 0. (B) Some of the balls started to overlap, resulting in the death of some connected components that get merged together; the persistence diagram
keeps trackof thesedeaths, putting anendpoint to the corresponding intervals as they disappear. (C)Newcomponents havemerged, giving rise to a single connectedcomponent and,
so, all the intervals associated with a zero-dimensional feature have been ended, except the one corresponding to the remaining components; two new one-dimensional features have
appeared, resulting in twonew intervals (inblue) startingon their birth scale. (D)Oneof the twoone-dimensional cycleshasbeen filled, resulting in itsdeath in the filtrationand theendof the
corresponding blue interval. (E)All the one-dimensional features have died; only the long (and never dying) red interval remains. As in the previous examples, the final barcode can also be
equivalently represented as a persistence diagram where every interval (a, b) is represented by the point of coordinates (a, b) in R2. Intuitively, the longer an interval in the barcode or,
equivalently, the farther from the diagonal the corresponding point in the diagram, the more persistent, and thus relevant, the corresponding homological feature across the
filtration. Notice also that for a given radius r, the kth Betti number of the corresponding union of balls is equal to the number of persistence intervals
corresponding to k-dimensional homological features and containing r. So, the persistence diagram can be seen as a multiscale topological signature encoding
the homology of the union of balls for all radii as well as its evolution across the values of r.
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connected component and starts to keep track of it by creating an
interval starting at a1. Then, Fr remains connected until r reaches the
value a2, where a second connected component appears. Persistent
homology starts to keep track of this new connected component by
creating a second interval starting at a2. Similarly, when r reaches a3,
a new connected component appears and persistent homology
creates a new interval starting at a3. When r reaches a4, the two
connected components created at a1 and a3 merge together to give a
single larger component. At this step, persistent homology follows
the rule that it is the most recently appeared component in the
filtration that dies; the interval started at a3 is thus ended at a4, and a
first persistence interval encoding the life span of the component
born at a3 is created. When r reaches a5, as in the previous case, the
component born at a2 dies, and the persistent interval (a2, a5) is
created. The interval created at a1 remains until the end of the
filtration, giving rise to the persistent interval (a1, a6), if the filtration
is stopped at a6, or (a1, + ∞), if r goes to + ∞ (notice that in this
latter case, the filtration remains constant for r > a6). The obtained
set of intervals encoding the life span of the different homological
features encountered along the filtration is called the persistence
barcode of f. Each interval (a, a′) can be represented by the point of
coordinates (a, a′) in the R2 plane. The resulting set of points is
called the persistence diagram of f. Notice that a function may have
several copies of the same interval in its persistence barcode. As a
consequence, the persistence diagram of f is indeed amulti-set where
each point has an integer-valued multiplicity. Last, for technical
reasons that will become clear in the next section, one adds to the
persistence all the points of the diagonal Δ � {(b, d): b � d} with an
infinite multiplicity.

Example 2
Let f : M→R now be the function of Figure 9B, whereM is a two-
dimensional surface homeomorphic to a torus, and let Fr �
f −1((−∞, r))r∈R be the sublevel set filtration of f. The zero-
dimensional persistent homology is computed as in the previous
example, giving rise to the red bars in the barcode. Now, the
sublevel sets also carry one-dimensional homological features.
When r goes through the height a1, the sublevel sets Fr that
were homeomorphic to two discs become homeomorphic to the
disjoint union of a disc and an annulus, creating a first cycle
homologous to σ1 in Figure 9B. An interval (in blue) representing
the birth of this new one-cycle is thus started at a1. Similarly, when r
goes through the height a2, a second cycle, homologous to σ2, is
created, giving rise to the start of a new persistent interval. These
two created cycles are never filled (indeed, they span H1(M)) and
the corresponding intervals remain until the end of the filtration.
When r reaches a3, a new cycle is created that is filled and thus dies
at a4, giving rise to the persistence interval (a3, a4). So now, the
sublevel set filtration of f gives rise to two barcodes, one for zero-
dimensional homology (in red) and one for one-dimensional
homology (in blue). As previously stated, these two barcodes
can equivalently be represented as diagrams in the plane.

Example 3
In this last example, we consider the filtration given by a union of
growing balls centered on the finite set of points C in Figure 10.
Notice that this is the sublevel set filtration of the distance

function to C, and thanks to the Nerve theorem, this filtration
is homotopy equivalent to theČech filtration built on the top ofC.
Figure 10 shows several level sets of the filtration as follows:

a) For the radius r � 0, the union of balls is reduced to the initial
finite set of points, each of them corresponding to a zero-
dimensional feature, that is, a connected component; an
interval is created for the birth for each of these features at r � 0.

b) Some of the balls started to overlap, resulting in the death of
some connected components that get merged together; the
persistence diagram keeps track of these deaths, putting an
end point to the corresponding intervals as they disappear.

c) New components have merged, giving rise to a single
connected component and, so, all the intervals associated
with a zero-dimensional feature have been ended, except the
one corresponding to the remaining components; two new
one-dimensional features have appeared, resulting in two new
intervals (in blue) starting on their birth scale.

d) One of the two one-dimensional cycles has been filled,
resulting in its death in the filtration and the end of the
corresponding blue interval.

e) All the one-dimensional features have died; only the long (and
never dying) red interval remains. As in the previous examples,
the final barcode can also be equivalently represented as a
persistence diagram where every interval (a, b) is represented
by the point of coordinates (a, b) in R2. Intuitively, the longer an
interval in the barcode or, equivalently, the farther from the
diagonal the corresponding point in the diagram, the more
persistent, and thus relevant, the corresponding homological
feature across the filtration. Notice also that for a given radius
r, the kth Betti number of the corresponding union of balls is equal
to the number of persistence intervals corresponding to
k-dimensional homological features and containing r. So, the
persistence diagram can be seen as a multiscale topological
signature encoding the homology of the union of balls for all
radii as well as its evolution across the values of r.

5.3 Persistent Modules and Persistence
Diagrams
Persistent diagrams can be formally and rigorously defined in a
purely algebraic way. This requires some care, and we only give
the basic necessary notions here, leaving aside technical subtleties
and difficulties. We refer the readers interested in a detailed
exposition to Chazal et al. (2016a).

Let Filt � (Fr)r∈T be a filtration of a simplicial complex or a
topological space. Given a nonnegative integer k and considering
the homology groups Hk(Fr), we obtain a sequence of vector
spaces where the inclusions Fr ⊂ Fr’, r ≤ r′ induce linear maps
between Hk(Fr) and Hk(Fr’). Such a sequence of vector spaces
together with the linear maps connecting them is called a
persistence module.

Definition 7. A persistence module V over a subset T of the real
numbers R is an indexed family of vector spaces (Vr|r ∈ T) and a
doubly indexed family of linear maps (vrs : Vr →Vs | r ≤ s) which
satisfy the composition law vst◦vrs � vrt whenever r ≤ s ≤ t, and
where vrr is the identity map on Vr.
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In many cases, a persistence module can be decomposed into a
direct sum of interval modules I(b,d) of the form

. . . , → 0→ . . . , → 0→Z2 → . . . , →Z2 → 0→ . . .

where the maps Z2 →Z2 are identity maps while all the other maps
are 0. Denoting b (resp. d), the infimum (resp. supremum) of the
interval of indices corresponds to nonzero vector spaces; such a
module can be interpreted as a feature that appears in the filtration at
index b and disappears at index d. When a persistencemoduleV can
be decomposed as a direct sum of interval modules, one can show
that this decomposition is unique up to reordering the intervals (see
(Chazal et al., 2016a, Theorem 2.7)). As a consequence, the set of
resulting intervals is independent of the decomposition of V and is
called the persistence barcode of V. As in the examples of the
previous section, each interval (b, d) in the barcode can be
represented as the point of coordinates (b, d) in the plane R2.
The disjoint union of these points, together with the diagonal Δ �
{x � y}, is a multi-set called the persistence diagram of V.

The following result, from (Chazal et al., 2016a, Theorem 2.8),
gives some necessary conditions for a persistence module to be
decomposable as a direct sum of interval modules.

Theorem 5. LetV be a persistence module indexed by T ⊂ R. If
T is a finite set or if all the vector spaces Vr are finite-dimensional,
then V is decomposable as a direct sum of interval modules.
Moreover, for any s, t ∈ T, s ≤ t, the number βst of intervals
starting before s and ending after t is equal to the rank of the linear
map vst and is called the (s, t)-persistent Betti number of the
filtration.

As both conditions above are satisfied for the persistent
homology of filtrations of finite simplicial complexes, an
immediate consequence of this result is that the persistence
diagrams of such filtrations are always well defined.

Indeed, it is possible to show that persistence diagrams can be
defined as soon as the following simple condition is satisfied.

Definition 8. A persistence module V indexed by T ⊂ R is
q-tame if for any r < s in T, the rank of the linear map vrs : Vr →Vs

is finite.
Theorem 6 Chazal et al. (2009a), Chazal et al. (2016a). IfV is a

q-tame persistence module, then it has a well-defined persistence
diagram. Such a persistence diagram dgm(V) is the union of the
points of the diagonal Δ of R2, counted with infinite multiplicity,
and a multi-set above the diagonal inR2 that is locally finite. Here,
by locally finite, we mean that for any rectangle R with sides

parallel to the coordinate axes that does not intersect Δ, the
number of points of dgm(V), counted with multiplicity,
contained in R is finite. Also, the part of the diagram made of
the points with the infinite second coordinate is called the essential
part of the diagram.

The construction of persistence diagrams of q-tame modules is
beyond the scope of this article, but it gives rise to the same notion as
in the case of decomposable modules. It can be done either by
following the algebraic approach based upon the decomposability
properties of modules or by adopting a measure theoretic approach
that allows us to define diagrams as integer-valued measures on a
space of rectangles in the plane. We refer the reader to Chazal et al.
(2016a) for more information.

Although persistence modules encountered in practice are
decomposable, the general framework of the q-tame persistence
module plays a fundamental role in the mathematical and
statistical analysis of persistent homology. In particular, it is
needed to ensure the existence of limit diagrams when
convergence properties are studied (see Section 6).

A filtration Filt � (Fr)r∈T of a simplicial complex or of a
topological space is said to be tame if for any integer k, the
persistence module (Hk(Fr)|r ∈ T) is q-tame. Notice that the
filtrations of finite simplicial complexes are always tame. As
a consequence, for any integer k, a persistence diagram
denoted dgmk(Filt) is associated with the filtration Filt.
When k is not explicitly specified and when there is no
ambiguity, it is usual to drop the index k in the notation
and to talk about “the” persistence diagram dgm(Filt) of the
filtration Filt. This notation has to be understood as
“dgmk(Filt) for some k.”

5.4 Persistence Landscapes
The persistence landscape introduced in the study by Bubenik
(2015) is an alternative representation of persistence diagrams.
This approach aims at representing the topological information
encoded in persistence diagrams as elements of a Hilbert space,
for which statistical learning methods can be directly applied. The
persistence landscape is a collection of continuous, piecewise
linear functions λ: N × R→R that summarizes a persistence
diagram dgm.

A birth–death pair p � (b, d) ∈ dgm is transformed into the
point (b+d2 , d−b2 ) (see Figure 11). Remember that the points with

FIGURE 11 | Example of a persistence landscape (right) associated with a persistence diagram (left). The first landscape is in blue, the second one in red, and the
last one in orange. All the other landscapes are zero.
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infinite persistence have been simply discarded in this definition.
The landscape is then defined by considering the set of functions
created by tenting the features of the rotated persistence diagram
as follows:

Λp(t) �

t − b t ∈ b,
b + d
2

[ ]

d − t t ∈
b + d
2

, d( ]
0 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

The persistence landscape λdgm of dgm is a summary of the
arrangement of piecewise linear curves obtained by overlaying the
graphs of the functions {Λp}p∈dgm. Formally, the persistence
landscape of dgm is the collection of functions

λdgm(k, t) � kmax
r∈dgm

Λr(t), t ∈ [0,T], k ∈ N, (4)

where kmax is the kth largest value in the set; in particular, 1max
is the usual maximum function. Given k ∈ N, the function
λdgm(k, .): R→R is called the kth landscape of dgm. It is not
difficult to see that the map that associates to each persistence
diagram its corresponding landscape is injective. In other words,
formally, no information is lost when a persistence diagram is
represented through its persistence landscape.

The advantage of the persistence landscape representation
is two-fold. First, persistence diagrams are mapped as elements
of a functional space, opening the door to the use of a broad
variety of statistical and data analysis tools for further
processing of topological features see Bubenik (2015),
Chazal et al. (2015c) and Section 6.3.1. Second, and

fundamental from a theoretical perspective, the persistence
landscapes share the same stability properties as those of
persistence diagrams (see Section 5.7).

5.5 Linear Representations of Persistence
Homology
A persistence diagram without its essential part can be
represented as a discrete measure on Δ+ � {p � (b, d), b < d <
∞}. With a slight abuse of notation, we can write the following:

dgm � ∑
p∈dgm

δp,

where the features are counted with multiplicity and where δ(b,d)
denotes the Dirac measure in p � (b, d). Most of the persistence-
based descriptors that have been proposed to analyze persistence
can be expressed as linear transformations of the persistence
diagram, seen as a point process

Ψ(dgm) � ∑
p∈dgm

f (p),

for some function f defined on Δ and taking values in a
Banach space.

In most cases, we want these transformations to apply
independently at each homological dimension. For k ∈ N a
given homological dimension, we then consider some linear
transformation of the persistence diagram, restricted to the
topological features of dimension k as follows:

Ψk dgmk( ) � ∑
p∈dgmk

fk(p), (5)

where dgmk is the persistence diagram of the topological features
of dimension k and where fk is defined on Δ and takes values in a
Banach space.

Betti Curve
The simplest way to represent persistence homology is the Betti
function or the Betti curve. The Betti curve of homological
dimension k is defined as

βk(t) � ∑
(b,d)∈dgm

w(b, d)1t∈[b,d]

where w is a weight function defined on Δ. In other words, the Betti
curve is the number of barcodes at timem. This descriptor is a linear
representation of persistence homology by taking f in (5) such that
f(b, d) (t) � w(b, d)1t∈[b,d]. A typical choice for the weigh function is
an increasing function of the persistencew(b, d) � ~w(d − b) where ~w
is an increasing function defined onR+. One of the first applications
of Betti curves can be found in the study by Umeda (2017).

Persistence Surface
The persistence surface (also called persistence images) is
obtained by making the convolution of a diagram with a
kernel. It has been introduced in the study by Adams et al.
(2017). For K: R2 →R, a kernel, andH, a 2 × 2 bandwidth matrix
(e.g., a symmetric positive definite matrix), let for u ∈ R2

FIGURE 12 | Perfect matching and the bottleneck distance between a
blue and a red diagram. Notice that some points of both diagrams are
matched to points of the diagonal.
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KH(u) � det(H)−1/2K H−1/2u( ).
Let w: R2 →R+ a weight function defined on Δ. One defines

the persistence surface of homological dimension k associated
with a diagram dgm, with kernel K and bandwidth matrix H by
the following:

∀u ∈ R2, ρk(dgm)(u) � ∑
p∈dgmk

w(r)KH(u − p).

The persistence surface is obviously a linear representation of
persistence homology. Typical weigh functions are increasing
functions of the persistence.

Other Linear Representations of
Persistence
Many other linear representations of persistence have been proposed
in the literature, such as the persistence silhouette (Chazal et al.,
2015b), the accumulated persistence function (Biscio and Møller,
2019), and variants of the persistence surface (Reininghaus et al.,
2015; Kusano et al., 2016; Chen et al., 2017).

Considering persistence diagrams as discrete measures and
their vectorizations as linear representation is an approach that
has also proven fruitful to studying distributions of diagrams
Divol and Chazal (2020) and the metric structure of the space of
persistence diagrams Divol and Lacombe (2020) (see Sections 5.6
and Section 6.3).

5.6 Metrics on the Space of Persistence
Diagrams
To exploit the topological information and topological features
inferred from persistent homology, one needs to be able to
compare persistence diagrams, that is, to endow the space of
persistence diagrams with a metric structure. Although several
metrics can be considered, the most fundamental one is known as
the bottleneck distance.

Recall that a persistence diagram is the union of a discrete
multi-set in the half-plane above the diagonal Δ and, for technical
reasons that will become clear below, of Δ where the point of Δ is
counted with infinite multiplicity. A matching (see Figure 12)
between two diagrams, dgm1 and dgm2, is a subset m 4 dgm1 ×
dgm2 such that every point in dgm1 \Δ and dgm2 \Δ appears
exactly once inm. In other words, for any p ∈ dgm1 \Δ and for any
q ∈ dgm2 \Δ, ({p}× dgm2) ∩m and (dgm1 ×{q}) ∩m each contains
a single pair. The bottleneck distance between dgm1 and dgm2 is
then defined by

db dgm1, dgm2( ) � inf
matching m

max
(p,q)∈m

‖p − q‖∞.

The practical computation of the bottleneck distance boils
down to the computation of a perfect matching in a bipartite
graph for which classical algorithms can be used.

The bottleneck metric is an L∞-like metric. It turns out to be
the natural one to express stability properties of persistence
diagrams presented in Section 5.7, but it suffers from the
same drawbacks as the usual L∞ norms, that is, it is

completely determined by the largest distance among the pairs
and does not take into account the closeness of the remaining
pairs of points. A variant to overcome this issue, the so-called
Wasserstein distance between diagrams, is sometimes considered.
Given p ≥ 1, it is defined by

Wp dgm1, dgm2( )p � inf
matching m

∑
(p,q)∈m

‖p − q‖p∞.

Useful stability results for persistence in the Wp metric exist
among the literature, in particular the study by Cohen-Steiner
et al. (2010), but they rely on assumptions that make them
consequences of the stability results in the bottleneck metric.
A general study of the space of persistence diagrams endowed
with Wp metrics has been considered in the study by Divol and
Lacombe (2020), where they proposed a general framework,
based upon optimal partial transport, in which many
important properties of persistence diagrams can be proven in
a natural way.

5.7 Stability Properties of Persistence
Diagrams
A fundamental property of persistence homology is that
persistence diagrams of filtrations built on the top of data sets
turn out to be very stable with respect to some perturbations of
the data. To formalize and quantify such stability properties, we
first need to be precise with regard to the notion of perturbation
that is allowed.

Rather than working directly with filtrations built on the top of
data sets, it turns out to be more convenient to define a notion of
proximity between persistence modules, from which we will derive a
general stability result for persistent homology. Then, most of the
stability results for specific filtrations will appear as a consequence of
this general theorem. To avoid technical discussions, from now on,
we assume, without loss of generality, that the considered persistence
modules are indexed by R.

Definition 9. Let V,W be two persistence modules indexed by
R. Given δ ∈ R, a homomorphism of degree δ betweenV andW is
a collectionΦ of linear maps ϕr: Vr→Wr+δ, for all r ∈ R such that
for any r ≤ s, ϕs◦v

r
s � wr+δ

s+δ◦ϕr .
An important example of a homomorphism of degree δ is the

shift endomorphism 1δV which consists of the families of linear
maps (vrr+δ). Notice also that homomorphisms of modules can
naturally be composed; the composition of a homomorphism Ψ
of degree δ between U and V and a homomorphism Φ of degree
δ′ betweenV andW naturally gives rise to a homomorphismΦΨ
of degree δ + δ′ between U and W.

Definition 10. Let δ ≥ 0. Two persistence modules V,W are
δ-interleaved if there exist two homomorphisms of degree δ, Φ,
from V to W and Ψ, from W to V such that ΨΦ � 12δV
and ΦΨ � 12δW.

Although it does not define a metric on the space of
persistence modules, the notion of closeness between two
persistence modules may be defined as the smallest
nonnegative δ such that they are δ-interleaved. Moreover, it
allows us to formalize the following fundamental theorem
(Chazal et al., 2009a; Chazal et al., 2016a).
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Theorem 7 (Stability of persistence). Let V and W be two
q-tame persistence modules. IfV andW are δ-interleaved for some
δ ≥ 0, then

db(dgm(V), dgm(W))≤ δ.

Although purely algebraic and rather abstract, this result is
an efficient tool to easily establish concrete stability results in
TDA. For example, we can easily recover the first persistence
stability result that appeared in the literature (Cohen-Steiner
et al., 2005).

Theorem 8. Let f , g: M→R be two real-valued functions
defined on a topological space M that are q-tame, that is, such
that the sublevel set filtrations of f and g induce q-tame modules at
the homology level. Then for any integer k,

db dgmk( f ), dgmk( g)( )≤ ‖f − g‖∞ � sup
x∈M

| f (x) − g(x)|

where dgmk(f) (resp. dgmk(g)) is the persistence diagram of
the persistence module (Hk( f −1(−∞, r))|r ∈ R) (resp.
(Hk(g−1(−∞, r))|r ∈ R)) where the linear maps are the one
induced by the canonical inclusion maps between sublevel sets.

Proof. Denoting δ � ‖f − g‖∞, we have that for any r ∈ R,
f −1(−∞, r)4g−1(−∞, r + δ) and g−1(−∞, r)4f −1(−∞, r + δ).
This interleaving between the sublevel sets of f induces a
δ-interleaving between the persistence modules at the homology
level, and the result follows from the direct application of Theorem 7.

Theorem 7 also implies a stability result for the persistence
diagrams of filtrations built on the top of data.

Theorem 9. Let X and Y be two compact metric spaces and let
Filt(X) and Filt(Y) be the Vietoris–Rips of Čech filtrations built on
the top of X and Y. Then

db(dgm(Filt(X)), dgm(Filt(Y)))≤ 2dGH(X,Y)
where dgm(Filt(X)) and dgm(Filt(Y)) denote the persistence
diagram of the filtrations Filt(X) and Filt(X).

As we already noticed in Example 3 of Section 5.2, the
persistence diagrams can be interpreted as multiscale topological
features of X and Y. In addition, Theorem 9 tells us that these
features are robust with respect to perturbations of the data in the
Gromov–Hausdorff metric. They can be used as discriminative features
for classification or other tasks (see, for example, Chazal et al. (2009b) for
an application to nonrigid 3D shape classification).

We now give similar results for the alternative persistence
homology representations introduced before. From the definition
of the persistence landscape, we immediately observe that λ(k, ·) is
one-Lipschitz, and thus, stability properties similar to those for
persistence diagrams are satisfied for the landscapes.

Proposition 1 (stability of persistence landscapes; Bubenik
(2015)). Let dgm and dgm’ be two persistence diagrams (without
their essential parts). For any t ∈ R and any k ∈ N, we have the
following:

(i) λ(k, t) ≥ λ(k + 1, t) ≥ 0.
(ii) |λ(k, t) − λ′(k, t)| ≤ db(dgm, dgm′)).

A large class of linear representations is continuous with
respect to the Wasserstein metric Ws in the space of

persistence diagrams and with respect to the Banach norm of
the linear representation of persistence. Generally speaking, it is
not always possible to upper bound the modulus of continuity of
the linear representation operator. However, in the case where s �
1, it is even possible to show a stability result if the weight function
takes small values for points close to the diagonal (see Divol and
Lacombe (2020), Hofer et al. (2019b)).

Stability Versus Discriminative Capacity of
Persistence Representations
The results of the study by Divol and Lacombe (2020) showed
that continuity and stability are only possible with weigh
functions taking small values for points close to the diagonal.
However, in general, there is no specific reason to consider that
points close to the diagonal are less important than others, given a
learning task. In a machine learning perspective, it is also relevant
to design linear representation with general weigh functions,
although it would be more difficult to prove the consistency of
the corresponding methods without at least the continuity of the
representation. Stability is thus important but maybe too strong a
requirement for many problems in data sciences. Designing linear
representation that is sensitive to specific parts of persistence
diagrams rather than globally stable may reveal a good strategy in
practice.

6 STATISTICAL ASPECTS OF PERSISTENT
HOMOLOGY

Persistence homology by itself does not take into account the
random nature of data and the intrinsic variability of the
topological quantity they infer. We now present a statistical
approach to persistent homology, in the sense that data are
considered to be generated from an unknown distribution. We
start with several consistency results for persistent homology
inference.

6.1 Consistency Results for Persistent
Homology
Assume that we observe n points (X1, . . . , Xn) in a metric space
(M, ρ) drawn i. i. d. from an unknown probability measure μ
whose support is a compact set denoted Xμ. The
Gromov–Hausdorff distance allows us to compare Xμ with
compact metric spaces not necessarily embedded in M. In the
following, an estimator X̂ of Xμ is a function of X1 . . . , Xn that
takes values in the set of compact metric spaces.

Let Filt(Xμ) and Filt(X̂) be two filtrations defined onXμ and X̂.
Starting from Theorem 9; a natural strategy for estimating the
persistent homology of Filt(Xμ) consists in estimating the support
Xμ. Note that in some cases, the space M can be unknown and the
observations X1 . . . , Xn are then only known through their
pairwise distances ρ(Xi, Xj), i, j � 1, . . . , n. The use of the
Gromov–Hausdorff distance allows us to consider this set of
observations as an abstract metric space of cardinality n,
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independently of the way it is embedded in M. This general
framework includes the more standard approach consisting
in estimating the support with respect to the Hausdorff
distance by restraining the values of X̂ to the compact sets
included in M.

The finite set Xnd{X1, . . . ,Xn} is a natural estimator of the
support Xμ. In several contexts discussed in the following, Xn

shows optimal rates of convergence to Xμ with respect to
the Hausdorff distance. For some constants a, b > 0, we say
that μ satisfies the (a, b)-standard assumption if for any x ∈ Xμ

and any r > 0,

μ(B(x, r))≥min arb, 1( ). (6)

This assumption has been widely used in the literature of set
estimation under the Hausdorff distance (Cuevas and Rodríguez-
Casal, 2004; Singh et al., 2009). Under this assumption, it can be
easily derived that the rate of convergence of dgm(Filt(Xn)) to
dgm(Filt(Xμ)) for the bottleneck metric is upper bounded by
O(log nn )1/b. More precisely, this rate upper bounds the minimax
rate of convergence over the set of probability measures on the
metric space (M, ρ) satisfying the (a, b)-standard assumption on M.

Theorem 10. Chazal et al. (2014) For some positive constants a
and b, let

Pd μ on M | Xμ is compact and ∀x ∈ Xμ,∀r > 0,{
μ(B(x, r))≥min 1, arb( )}.

Then, it holds

sup
μ∈P

E db dgm Filt Xμ( )( ), dgm Filt Xn( )( )( )[ ]≤C log n
n

( )
1/b

where the constant C only depends on a and b.
Under additional technical assumptions, the corresponding

lower bound can be shown (up to a logarithmic term) (see Chazal
et al. (2014)). By applying stability results, similar consistency
results can be easily derived under alternative generative models
as soon as a consistent estimator of the support under the
Hausdorff metric is known. For instance, from the results of
the study by Genovese et al. (2012) about Hausdorff support
estimation under additive noise, it can be deduced that the
minimax convergence rates for the persistence diagram
estimation are faster than (log n)−1/2. Moreover, as soon as a
stability result is available for some given representation of
persistence, similar consistency results can be directly derived
from the consistency for persistence diagrams.

Estimation of the Persistent Homology of Functions
Theorem 7 opens the door to the estimation of the persistent
homology of functions defined on Rd , on a submanifold of Rd or,
more generally, on a metric space. The persistent homology
of regression functions has also been studied by Bubenik
et al. (2010). The alternative approach of Bobrowski et al.
(2014), which was based on the inclusion map between nested
pairs of estimated level sets, can be applied with kernel
density and regression kernel estimators to estimate
persistence homology of density functions and regression

FIGURE 13 | (A,B) Two persistence diagrams for two configurations of MBP. (C)MDS configuration for thematrix of bottleneck distances. (D) Persistence diagram
and confidence region for the persistence diagram of an MBP.
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functions. Another direction of research on this topic
concerns various versions of robust TDA. One solution is
to study the persistent homology of the upper-level sets of
density estimators (Fasy et al., 2014b). A different approach,
more closely related to the distance function, but robust to
noise, consists in studying the persistent homology of the
sublevel sets of the distance to measure defined in Section 4.4
(Chazal et al., 2017).

6.2 Statistic of Persistent Homology
Computed on a Point Cloud
For many applications, in particular when the support of the
point cloud is not drawn on or close to a geometric shape,
persistence diagrams can be quite complex to analyze. In
particular, many topological features are closed to the
diagonal. Since they correspond to topological structures that
die very soon after they appear in the filtration, these points are
generally considered as noise (see Figure 13 for an illustration).
Confidence regions of persistence diagrams are rigorous answers
to the problem of distinguishing between the signal and the noise
in these representations.

The stability results given in Section 5.7 motivate the use of
the bottleneck distance to define confidence regions. However,
alternative distances in the spirit of Wasserstein distances can be
proposed too. When estimating a persistence diagram dgm with
an estimator d̂gm, we typically look for some value ηα such that

P db d̂gm, dgm)≥ ηα)≤ α,((
for α ∈ (0, 1). Let Bα be the closed ball of radius α for
the bottleneck distance, centered at d̂gm in the space of
persistence diagrams. Following Fasy et al. (2014b), we can
visualize the signatures of the points belonging to this ball in
various ways. One first option is to center a box of a side length of
2α at each point of the persistence diagram d̂gm. An alternative
solution is to visualize the confidence set by adding a band at
(vertical) distance ηα/2 from the diagonal (the bottleneck distance
being defined for the ℓ∞ norm) (see Figure 13 for an illustration).

The points outside the band are then considered as significant
topological features (see Fasy et al. (2014b) for more details).

Several methods have been proposed in the study by Fasy et al.
(2014b) to estimate ηα in different frameworks. These methods
mainly rely on stability results for persistence diagrams;
confidence sets for diagrams can be derived from confidence
sets in the sample space.

Subsampling Approach
This method is based on a confidence region for the support K of
the distribution of the sample in the Hausdorff distance. Let ~Xb be
a subsample of size b drawn from the sample ~Xn, where b � o(n/
logn). Let qb(1 − α) be the quantile of the distribution of
Haus( ~Xb,Xn). Take η̂αd2q̂b(1 − α), where q̂b is an estimation
qb(1 − α) using a standard Monte Carlo procedure. Under a (a, b)
standard assumption and for an n large enough, Fasy et al.
(2014b) showed that

P db dgm(Filt(K)), dgm Filt Xn( )( )( )> η̂α)(

≤ P(Haus K ,Xn( )> η̂α)≤ α + O
b
n

( )
1/4

.

Bottleneck Bootstrap
The stability results often lead to conservative confidence sets. An
alternative strategy is the bottleneck bootstrap introduced in the study
by Chazal et al. (2016b). We consider the general setting where a
persistence diagram d̂gm is defined from the observation (X1, . . . , Xn)
in a metric space. This persistence diagram corresponds to the
estimation of an underlying persistence diagram dgm, which can be
related, for instance, to the support of themeasure, or to the sublevel sets
of a function related to this distribution (for instance, a density function
when the Xi’s are in Rd). Let (X*

1, . . . ,X
*
n) be a sample from the

empirical measure defined from the observations (X1, . . . , Xn). Let also
d̂gm

*
be the persistence diagramderived from this sample.We can then

take for ηα the quantity η̂α defined by

FIGURE 14 | (A) First three landscapes for zero-homology of the alpha shape filtration defined for a time series of acceleration ofWalker A. (B) Variable importances
of the landscape coefficients for the classification of walkers. The first 3,000 coefficients correspond to the three landscapes of dimension 0 and the last 3,000
coefficients to the three landscapes of dimension 1. There are 1,000 coefficients per landscape. Note that the first landscape of dimension 0 is always the same using the
Rips complex (a trivial landscape), and consequently, the corresponding coefficients have a zero-importance value.
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P db d̂gm
p
, d̂gm)> η̂α |X1, . . . ,Xn) � α.(( (7)

Note that η̂α can be easily estimated using Monte Carlo
procedures. It has been shown in the study by Chazal et al.
(2016b) that the bottleneck bootstrap is valid when computing
the sublevel sets of a density estimator.

Bootstrapping Persistent Betti Numbers
As already mentioned, confidence regions based on stability
properties of persistence may lead to very conservative
confidence regions. Based on the concepts of stabilizing
statistics Penrose and Yukich (2001), asymptotic normality for
persistent Betti numbers has been shown recently by Krebs and
Polonik (2019) and Roycraft et al. (2020) under very mild
conditions on the filtration and the distribution of the sample
cloud. In addition, bootstrap procedures are also shown to be
valid in this framework. More precisely, a smoothed bootstrap
procedure together with a convenient rescaling of the point cloud
seems to be a promising approach for boostrapping TDA features
from point cloud data.

6.3 Statistic for a Family of Persistent
Diagrams or Other Representations
Up to now in this section, we were only considering statistics
based on one single observed persistence diagram. We now
consider a new framework where several persistence
diagrams (or other representations) are available, and we
are interested in providing the central tendency, confidence
regions, and hypothesis tests for topological descriptors built
on this family.

6.3.1 Central Tendency for Persistent Homology
Mean and Expectations of Distributions of Diagrams
The space of persistence diagrams being a general metric space
but not a Hilbert space, the definition of a mean persistence
diagram is not obvious and unique. One first natural approach to
defining a central tendency in this context is to consider Fréchet
means of distributions of diagrams. Their existence has been
proven in the study by Mileyko et al. (2011), and they have also
been characterized in the study by Turner et al. (2014a). However,
they may not be unique, and they turn out to be difficult to
compute in practice. To partly overcome these problems,
different approaches have been recently proposed based on
numerical optimal transport Lacombe et al. (2018) or linear
representations and kernel-based methods Divol and Chazal
(2020).

Topological Signatures From Subsamples
Central tendency properties of persistent homology can also be
used to compute topological signatures for very large data sets, as
an alternative approach to overcome the prohibitive cost of
persistence computations. Given a large point cloud, the idea
is to extract many subsamples, to compute the persistence
landscape for each subsample, and then to combine the
information.

For any positive integer m, let X � {x1, . . . , xm} be a sample of
m points drawn from a measure μ in a metric space M and which
support is denoted by Xμ. We assume that the diameter of Xμ is
finite and upper bounded by T

2, where T is the same constant as in
the definition of persistence landscapes in Section 5.4. For ease of
exposition, we focus on the case k � 1 and the set λ(t) � λ(1, t).
However, the results we present in this section hold for k > 1. The
corresponding persistence landscape (associated with the
persistence diagram of the Čech or Rips–Vietoris filtration) is
λX and we denote byΨm

μ the measure induced by μ⊗m on the space
of persistence landscapes. Note that the persistence landscape λX
can be seen as a single draw from the measureΨm

μ . The point-wise
expectations of the (random) persistence landscape under this
measure is defined by EΨm

μ
[λX(t)], t ∈ [0,T]. The average

landscape EΨm
μ
[λX] has a natural empirical counterpart, which

can be used as its unbiased estimator. Let Sm1 , . . . , S
m
ℓ

be ℓ
independent samples of size m from μ⊗m. We define the
empirical average landscape as

λm
ℓ
(t) � 1

b
∑
b

i�1
λSmi (t), for all t ∈ [0,T], (8)

and propose to use λm
ℓ
to estimate λXμ. Note that computing the

persistent homology of Xn is O(exp(n)), whereas computing the
average landscape is O(b exp(m)).

Another motivation for this subsampling approach is that it
can also be applied when μ is a discrete measure with the support
XN � {x1, . . . , xN } lying in a metric space M. This framework can
be very common in practice, when a continuous (but unknown)
measure is approximated by a discrete uniform measure μN
on XN .

The average landscape EΨm
μ
[λX] is an interesting quantity on

its own, since it carries some stable topological information about
the underlying measure μ, from which the data are generated.

Theorem 11. [Chazal et al. (2015a)] Let X ∼ μ⊗m and Y ∼ ]⊗m,
where μ and ] are two probability measures on M. For any p ≥ 1,
we have

EΨm
μ
λX[ ] − EΨm

]
λY[ ]

�����
�����∞≤ 2m

1
pWp(μ, ]),

where Wp is the pth Wasserstein distance on M.
The result of Theorem 11 is useful for two reasons. First, it tells

us that for a fixed m, the expected “topological behavior” of a set
of m points carries some stable information about the underlying
measure from which the data are generated. Second, it provides a
lower bound for the Wasserstein distance between two measures,
based on the topological signature of samples of m points.

6.3.2 Asymptotic Normality
As in the previous section, we consider several persistence
diagrams (or other representations). The next step after giving
central tendency descriptors of persistence homology is to
provide asymptotic normality results for these quantities
together with bootstrap procedures to derive confidence
regions. It is of course easier to show such results for
functional representations of persistence. In the studies by
Chazal et al. (2015b), Chazal et al. (2015c), following this
strategy, confidence bands for landscapes are proposed from
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the observation of landscapes λ1, . . . , λN drawn i. i. d. from a
random distribution in the space of landscapes. The asymptotic
validity and the uniform convergence of the multiplier bootstrap is
shown in this framework. Note that similar results can also be
proposed for many representations of persistence, in particular by
showing that the corresponding functional spaces are Donsker spaces.

6.4 Other Statistical Approaches to
Topological Data Analysis
Statistical approaches for TDA are seeing an increasing interest
and many others have been proposed in recent years or are still
subject to active research activities, as illustrated in the following
non-exhaustive list of examples.

Hypothesis Testing
Several methods have been proposed for hypothesis testing
procedures for persistent homology, mostly based on
permutation strategies and for two-sample testing. Robinson
and Turner (2017) focused on pairwise distances of persistence
diagrams, whereas Berry et al. (2020) studied more general
functional summaries. Hypothesis tests based on kernel
approaches have been proposed in the study by Kusano (2019).
A two-stage hypothesis test of filtering and testing for persistent
images was also presented in the study by Moon and Lazar (2020).

Persistence Homology Transform
The representations introduced before are all
transformations derived from the persistence diagram
computed from a fixed filtration built over a data set. The
persistence homology transform introduced in the studies by
Curry et al. (2018), Turner et al. (2014b) to study shapes in Rd

takes a different path by looking at the persistence homology
of the sublevel set filtration induced by the projection of the
considered shape in each direction in Rd . It comes with
several interesting properties; in particular, the persistence
homology transform is a sufficient statistic for distributions
defined on the set of geometric and finite simplicial
complexes embedded in Rd .

Bayesian Statistics for Topological Data Analysis
A Bayesian approach to persistence diagram inference has been
proposed in the study by Maroulas et al. (2020) by viewing a
persistence diagram as a sample from a point process. This
Bayesian method computes the point process posterior
intensity based on a Gaussian mixture intensity for the prior.

6.5 Persistent Homology and Machine
Learning
Using TDA and, more specifically, persistent homology for
machine learning is a subject that attracts a lot of information
and generated an intense research activity. Although the
recent progress in this area goes far beyond the scope of
this article, we briefly introduce the main research directions
with a few references to help the newcomer to the field to get
started.

Topological Data Analysis for Exploratory Data
Analysis and Descriptive Statistics
In some domains, TDA can be fruitfully used as a tool for
exploratory analysis and visualization. For example, the
Mapper algorithm provides a powerful approach to exploring
and visualizing the global topological structure of complex data
sets. In some cases, persistence diagrams obtained from data can
be directly interpreted and exploited for better understanding of
the phenomena from which the data have been generated. This is,
for example, the case in the study of force fields in granular media
(Kramar et al., 2013) or of atomic structures in glass (Nakamura
et al., 2015) in material science, in the study of the evolution of
convection patterns in fluid dynamics (Kramár et al., 2016), and
in machining monitoring (Khasawneh and Munch, 2016) or in
the analysis of nanoporous structures in chemistry (Lee et al.,
2017) where topological features can be rather clearly related to
specific geometric structures and patterns in the considered data.

Persistent Homology for Feature Engineering
There are many other cases where persistence features cannot be
easily or directly interpreted but present valuable information for
further processing. However, the highly nonlinear nature of
diagrams prevents them from being immediately used as
standard features in machine learning algorithms.

Persistence landscapes and linear representations of persistence
diagrams offer a first option to convert persistence diagrams into
elements of a vector space that can be directly used as features in
classical machine learning pipelines. This approach has been used,
for example, for protein binding (Kovacev-Nikolic et al., 2016),
object recognition (Li et al., 2014), or time series analysis. In the
same vein, the construction of kernels for persistence diagrams that
preserve their stability properties has recently attracted some
attention. Most of them have been obtained by considering
diagrams as discrete measures in R2. Convolving a symmetrized
(with respect to the diagonal) version of persistence diagrams with
a 2D Gaussian distribution, Reininghaus et al. (2015) introduced a
multiscale kernel and applied it to shape classification and texture
recognition problems. Considering the Wasserstein distance
between projections of persistence diagrams on lines, Carriere et
al. (2017) built another kernel and tested its performance on several
benchmarks. Other kernels, still obtained by considering
persistence diagrams as measures, have also been proposed in
the study by Kusano et al. (2017).

Various other vector summaries of persistence diagrams
have been proposed and then used as features for different
problems. For example, basic summaries were considered in
the study by Bonis et al. (2016) and combined with
quantization and pooling methods to address nonrigid
shape analysis problems; Betti curves extracted from
persistence diagrams were used with one-dimensional
convolutional neural networks (CNNs) to analyze time-
dependent data and recognize human activities from inertial
sensors in the studies by Dindin et al. (2020), Umeda (2017);
persistence images were introduced in the study by Adams
et al. (2017) and were considered to address some inverse
problems using linear machine learning models in the study by
Obayashi et al. (2018).
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The kernels and vector summaries of persistence diagrams
mentioned above are built independently of the considered data
analysis or learning task. Moreover, it appears that in many cases,
the relevant topological information is not carried by the whole
persistence diagram but is concentrated in some localized regions
that may not be obvious to identify. This usually makes the choice
of a relevant kernel or vector summary very difficult for the user.
To overcome this issue, various authors have proposed learning
approaches that allow us to learn the relevant topological features
for a given task. In this direction, Hofer et al. (2017) proposed a
deep learning approach to learn the parameters of persistence
image representations of persistence diagrams, while Kim et al.
(2020) introduced a neural network layer for persistence
landscapes. In the study by Carrière et al. (2020a), the authors
introduced a general neural network layer for persistence
diagrams that can be either used to learn an appropriate
vectorization or directly integrated in a deep neural network
architecture. Other methods, inspired from k-means, propose
unsupervised methods to vectorize persistence diagrams (Royer
et al., 2021; Zieliński et al., 2010), some of them coming with
theoretical guarantees (Chazal et al., 2020).

Persistent Homology for Machine Learning
Architecture Optimization and Model Selection
More recently, TDA has seen new developments in machine learning
where persistent homology is no longer used for feature engineering
but as a tool to design, improve, or select models (see Carlsson and
Gabrielsson (2020), Chen et al. (2019), Gabrielsson and Carlsson
(2019), Hofer et al. (2019a), Moor et al. (2020), Ramamurthy et al.
(2019), Rieck et al. (2019)). Many of these tools rely on the
introduction of loss or regularization functions depending on
persistent homology features, raising the problem of their
optimization. Building on the powerful tools provided by
software libraries such as PyTorch or TensorFlow, practical
methods allowing us to encode and optimize a large family of
persistence-based functions have been proposed and experimented
on (Poulenard et al., 2018; Gabrielsson et al., 2020). A general
framework for persistence-based function optimization based on
stochastic subgradient descent algorithms with convergence
guarantees has been recently proposed and implemented in an
easy-to-use software tool (Carriere et al., 2020b). With a different
perspective, another theoretical framework to study the
differentiable structure of functions of persistence diagrams has
been proposed in the study by Leygonie et al. (2021).

7 TOPOLOGICAL DATA ANALYSIS FOR
DATA SCIENCES WITH THE GUDHI
LIBRARY
In this section, we illustrate TDA methods using the Python
library GUDHI11 (Maria et al., 2014) together with popular
libraries such as NumPy (Walt et al., 2011), scikit-learn
(Pedregosa et al., 2011), and pandas (McKinney, 2010). This

section aims at demonstrating that the topological signatures of
TDA can be easily computed and exploited using GUDHI. More
illustrations with Python notebooks can be found in the tutorial
GitHub12 of GUDHI.

7.1 Bootstrap and Comparison of Protein
Binding Configurations
This example is borrowed from Kovacev-Nikolic et al. (2016). In
this article, persistent homology is used to analyze protein
binding, and more precisely, it compares closed and open
forms of the maltose-binding protein (MBP), a large
biomolecule consisting of 370 amino acid residues. The
analysis is not based on geometric distances in R3 but on a
metric of dynamical distances defined by

Dij � 1 − |Cij|,

where C is the correlation matrices between residues. The data
can be downloaded at this link13.

import numpy as np
import gudhi as gd
import pandas as pd
import seaborn as sns

corr_protein� pd.read_csv(“mypath/1anf.corr_1.
txt”, header�None, delim_whitespace�True)
dist_protein_1 � 1− np.abs(corr_protein_1.values)
rips_complex_1 � gd.RipsComplex(distance_
matrix�dist_protein_1, max_edge_length�1.1)
simplex_tree_1 � rips_complex_1.create_simplex_
tree(max_dimension�2)
diag_1 � simplex_tree_1.persistence()
gd.plot_persistence_diagram(diag_1)

For comparing persistence diagrams, we use the bottleneck
distance. The block of statements given below computes
persistence intervals and computes the bottleneck distance for
zero-homology and one-homology as follows:

interv0_1 � simplex_tree_1.persistence_
intervals_in_dimension(0)
interv0_2 � simplex_tree_2.persistence_
intervals_in_dimension(0)
bot0 � gd.bottleneck_distance(interv0_
1,interv0_2)

interv1_1 � simplex_tree_1.persistence_
intervals_in_dimension(1)
interv1_2 � simplex_tree_2.persistence_
intervals_in_dimension(1)
bot1 � gd.bottleneck_distance(interv1_1,
interv1_2)

11http://gudhi.gforge.inria.fr/python/latest/

12https://github.com/GUDHI/TDA-tutorial
13https://www.researchgate.net/publication/301543862_corr
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In this way, we can compute the matrix of bottleneck distances
between the fourteenMBPs. Finally, we apply a multidimensional
scaling method to find a configuration in R2 which almost
matches with the bottleneck distances (see Figure 13C). We
use the scikit-learn library for the MDS as follows:

import matplotlib.pyplot as plt
from sklearn import manifold

mds � manifold.MDS(n_components�2,
dissimilarity�“precomputed”)
config � mds.fit(M).embedding_

plt.scatter(config [0:7,0], config [0:7, 1],
color�‘red’, label�“closed”)
plt.scatter(config [7:l,0], config [7:l, 1],
color�‘blue’, label�“red”)
plt.legend(loc�1)

We now define a confidence band for a diagram using the
bottleneck bootstrap approach. We resample over the lines (and
columns) of the matrix of distances, and we compute the
bottleneck distance between the original persistence diagram
and the bootstrapped persistence diagram. We repeat the
procedure many times, and finally, we estimate the quantile
95% of this collection of bottleneck distances. We take the value
of the quantile to define a confidence band on the original diagram
(see Figure 13D). However, such a procedure should be considered
with caution because as far as we know, the validity of the
bottleneck bootstrap has not been proven in this framework.

7.2 Classification for Sensor Data
In this experiment, the 3D acceleration of 3 walkers (A, B, and C)
has been recorded using the sensor of a smartphone14. Persistence
homology is not sensitive to the choice of axes, and so no
preprocessing is necessary to align the 3 time series according
to the same axis. From these three time series, we have picked, at
random, sequences of 8 s in the complete time series, that is, 200
consecutive points of acceleration in R3. For each walker, we
extract 100 time series in this way. The next block of statements
computes the persistence for the alpha complex filtration for
data_A_sample, one of the 100 time series of acceleration of
Walker A.

alpha_complex_sample � gd.AlphaComplex
(points � data_A_sample)
simplex_tree_sample � alpha_complex_sample.
create_simplex_tree(max_alpha_square�0.3)
diag_Alpha � simplex_tree_sample.persistence()

From diag_Alpha, we can then easily compute and plot the
persistence landscapes (see Figure 14A). For all 300 time series,
we compute the persistence landscapes for dimensions 0 and 1,
and we compute the first three landscapes for the 2 dimensions.
Moreover, each persistence landscape is discretized on 1,000
points. Each time series is thus described by 6,000 topological

variables. To predict the walker from these features, we use a
random forest (Breiman, 2001), which is known to be efficient in
such a high-dimensional setting. We split the data into train and
test samples at random several times. We finally obtain an
averaged classification error of around 0.95. We can also
visualize the most important variables in the random forest
(see Figure 14B).

8 DISCUSSION

In this introductory article, we propose an overview of the most
standard methods in the field of topological data analysis. We also
provide a presentation of the mathematical foundations of TDA,
on the topological, algebraic, geometric, and statistical aspects.
The robustness of TDA methods (coordinate invariance and
deformation invariance) and the compressed representation of
data they offer make their use very interesting for data analysis,
machine learning, and explainable AI. Many applications have
been proposed in this direction during the last few years. Finally,
TDA constitutes an additional possible approach in the data
scientist toolbox.

Of course, TDA is suited to address all kinds of problems.
Practitioners may face several potential issues when applying
TDA methods. On the algorithmic aspects, computing
persistence homology can be time and resource consuming.
Even if there is still room for improvement, recent
computational advances have enabled TDA to be an effective
method for data science, thanks to libraries like GUDHI, for
example. Moreover, combing TDA using quantization methods,
graph simplification, or dimension reduction methods may
reduce the computational cost of the TDA algorithms.
Another potential problem we can face with TDA is that
returning to the data point to interpret the topological
signatures can be tricky because these signatures correspond
to classes of equivalence of cycles. This can be a problem when
there is a need to identify which part of the point cloud “has
created” a given topological signature. TDA is in fact more
suited to solving data science problems dealing with a family of
point clouds, each data point being described by its persistent
homology. Finally, the topological and geometric information
that can be extracted from the data is not always efficient for
solving a given problem in the data sciences alone. Combining
topological signatures with other types of descriptors is
generally a relevant approach.

Today, TDA is an active field of research, at the crossroads of
many scientific fields. In particular, there is currently an intense
effort to effectively combine machine learning, statistics, and
TDA. In this perspective, we believe that there is still a need for
statistical results which demonstrate and quantify the interest of
these data science approaches based on TDA.
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Cycle representatives of persistent homology classes can be used to provide descriptions
of topological features in data. However, the non-uniqueness of these representatives
creates ambiguity and can lead to many different interpretations of the same set of classes.
One approach to solving this problem is to optimize the choice of representative against
somemeasure that is meaningful in the context of the data. In this work, we provide a study
of the effectiveness and computational cost of several ℓ1 minimization optimization
procedures for constructing homological cycle bases for persistent homology with
rational coefficients in dimension one, including uniform-weighted and length-weighted
edge-loss algorithms as well as uniform-weighted and area-weighted triangle-loss
algorithms. We conduct these optimizations via standard linear programming methods,
applying general-purpose solvers to optimize over column bases of simplicial boundary
matrices. Our key findings are: 1) optimization is effective in reducing the size of cycle
representatives, though the extent of the reduction varies according to the dimension and
distribution of the underlying data, 2) the computational cost of optimizing a basis of cycle
representatives exceeds the cost of computing such a basis, in most data sets we
consider, 3) the choice of linear solvers matters a lot to the computation time of optimizing
cycles, 4) the computation time of solving an integer program is not significantly longer than
the computation time of solving a linear program for most of the cycle representatives,
using the Gurobi linear solver, 5) strikingly, whether requiring integer solutions or not, we
almost always obtain a solution with the same cost and almost all solutions found have
entries in {-1, 0,1} and therefore, are also solutions to a restricted ℓ0 optimization problem,
and 6) we obtain qualitatively different results for generators in Erd}os-Rényi random clique
complexes than in real-world and synthetic point cloud data.
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1 INTRODUCTION

Topological data analysis (TDA) uncovers mesoscale structure in
data by quantifying its shape using methods from algebraic
topology. Topological features have proven effective when
characterizing complex data, as they are qualitative,
independent of choice of coordinates, and robust to some
choices of metrics and moderate quantities of noise (Carlsson,
2009; Ghrist, 2014). As such, topological features extracted from
data have recently drawn attention from researchers in various
fields including, for example, neuroscience (Bendich et al., 2016;
Giusti et al., 2016; Sizemore et al., 2019), computer graphics
(Singh et al., 2007; Brüel-Gabrielsson et al., 2020), robotics
(Vasudevan et al., 2011; Bhattacharya et al., 2015), and
computational biology (Bhaskar et al., 2019; Ulmer et al.,
2019; McGuirl et al., 2020) [including the study of protein
structure (Xia and Wei, 2014; Kovacev-Nikolic et al., 2016; Xia
et al., 2018)].

The primary tool in TDA is persistent homology (PH) (Ghrist,
2008), which describes how topological features of data,
colloquially referred to as “holes,” evolve as one varies a real-
valued parameter. Each hole comes with a geometric notion of
dimension which describes the shape that encloses the hole:
connected components in dimension zero, loops in dimension
one, shells in dimension two, and so on. From a parameterized
topological space X � (Xt)t∈S⊂R≥0, for each dimension n, PH
produces a collection Barcoden(X) of lifetime intervals L
which encode for each topological feature the parameter
values of its birth, when it first appears, and death, when it no
longer remains.

A basic problem in the practical application of PH is
interpretability: given an interval L ∈ Barcoden(X), how do
we understand it in terms of the underlying data? A
reasonable approach would be to find an element of the
homology class, also known as a cycle representative, that
witnesses structure in the data that has meaning to the
investigator. In the context of geometric data, this takes the
form of an “inverse problem,” constructing geometric structures
corresponding to each persistent interval in the original input data.
For example, a representative for an interval L ∈ Barcode1(X)
consists of a closed curve or linear combination of closed curves
which enclose a set of holes across the family of spaces (Xt)t∈L⊂S.
Cycle representatives are used in Emmett et al. (2015) to annotate
particular loops as chromatin interactions, and Wu et al. (2017)
uses cycle representatives to study and locate and reconstruct fine
muscle columns in cardiac trabeculae restoration.

An important challenge, however, is that cycle representatives
are not uniquely defined. For example, in the left-hand image in
Figure 1 adapted from Carlsson (2009), two curves enclose the
same topological feature and thus, represent the same persistent
homology class. We often want to find a cycle that captures not
only the existence but also information about the location and
shape of the hole that the homology class has detected. This often
means optimizing an application-dependent property using the
underlying data, e.g. finding a minimal length or bounding area/
volume using an appropriate metric. The algorithmic problem of
selecting such optimal representatives is currently an active area

of research (Chen and Freedman, 2010a; Dey et al., 2011; Wu
et al., 2017; Obayashi, 2018; Dey et al., 2019).

There are diverse notions of optimality we may wish to
consider in a given context, and which may have significant
impact on the effectiveness or suitability of optimization,
including.

• weight assignment to chains (uniform vs. length or area
weighted),

• choice of loss function (ℓ0 vs. ℓ1),
• formulation of the optimization problem (cycle size vs.
bounded area or volume), and

• restrictions on allowable coefficients (rational, integral,
or {0, 1, -1}).

Each has a unique set of advantages and disadvantages. For
example, optimization using the ℓ0 norm with {0, 1, -1}
coefficients is thought to yield the most interpretable results,
but ℓ0 optimization is NP-hard, in general (Chen and Freedman,
2010b). The problem of finding ℓ1 optimal cycles with rational
coefficients, can be formulated as a more tractable linear
programming problem. While some literature exists to inform
this choice (Dey et al., 2011; Escolar and Hiraoka, 2016; Obayashi,
2018), questions of basic importance remain, including:

Q1 How do the computational costs of the various optimization
techniques compare? Howmuch do these costs depend on the
choice of a particular linear solver?

Q2 What are the statistical properties of optimal cycle
representatives? For example, how often does the support
of a representative form a single loop in the underlying graph?
And, how much do optimized cycles coming out of an
optimization pipeline differ from the representative that
went in?

Q3 To what extent does choice of technique matter? For example,
how often does the length of a length-weighted optimal cycle
match the length of a uniform-weighted optimal cycle? And,
how often are ℓ1 optimal representatives ℓ0 optimal?

Given the conceptual and computational complexity of these
problems [see Chen and Freedman (2010b)], the authors expect
that formal answers are unlikely to be available in the near future.
However, even where theoretical results are available, strong
empirical trends may suggest different or even contrary
principles to the practitioner. For example, while the
persistence calculation is known to have matrix multiplication
time complexity (Milosavljević et al., 2011), in practice the
computation runs almost always in linear time. Therefore, the
authors believe that a careful empirical exploration of questions
one to three will be of substantial value.

In this paper, we undertake such an exploration in the context
of one-dimensional persistent homology over the field of
rationals, Q. We focus on linear programming (LP) and
mixed-integer programming (MIP) approaches due to their
ease of use, flexibility, and adaptability. In doing so, we
present a new treatment of parameter-dependence (vis-a-vis
selection of simplex-wise refinements) relevant to common

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6811172

Li et al. Minimal Persistent Homology Cycle Representatives

180

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


cases of rational cycle representative optimization (Escolar and
Hiraoka, 2016; Obayashi, 2018), such as finding optimal cycle
bases for the persistent homology of the Vietoris-Rips complex of
a point cloud. We restrict our attention to one-dimensional
homology to limit the number of reported statistics and data
visualizations presented, although the methods discussed could
be applied to any homological dimension.

The paper is organized as follows. Section 2 provides an
overview of some key concepts in TDA to inform a reader new
to algebraic topology and establish notation. Then, we
provide a survey of previous work on finding optimal
persistent cycle representatives in Section 3, and formulate
the methods used in this paper to find different notions of
minimal cycle representatives via LP and MIP in Section 4.
Section 5 describes our experiments, including overviews of
the data and the hardware and software we use for our
analysis. In Section 6, we discuss the results of our
experiments. We conclude and describe possible future
work in Section 7.

2 BACKGROUND: TOPOLOGICAL DATA
ANALYSIS AND PERSISTENT HOMOLOGY

In this section, we introduce key terms in algebraic and
computational topology to provide minimal background and
establish notation. For a more thorough introduction see, for
example, Hatcher et al. (2002), Ghrist (2008), Edelsbrunner and
Harer (2008), Carlsson (2009), Edelsbrunner and Harer (2010),
and Topaz et al. (2015).

Given a discrete set of sample data, we approximate the
topological space underlying the data by constructing a
simplicial complex. This construction expresses the structure as
a union of vertices, edges, triangles, tetrahedrons, and higher
dimensional analogues (Carlsson, 2009).

2.1 Simplicial Complexes
A simplicial complex is a collection K of non-empty subsets of a
finite set V. The elements of V are called vertices of K, and the
elements of K are called simplices. A simplicial complex has the
following properties: 1) {υ} in K for all υ ∈ V , and 2) τ ⊂ σ and
σ ∈ K guarantees that τ ∈ K .

Additionally, we say that a simplex has dimension n or is an
n-simplex if it has cardinality n + 1. We use Sn(K) to denote the
collection of n-simplices contained in K.

While there are a variety of approaches to create a simplicial
complex from data, our examples use a standard construction for
approximation of point clouds. Given a metric space X with
metric d and real number ε ≥ 0, the Vietoris-Rips complex for X,
denoted by VRε(X), is defined as

VRε(X) � {σ ∈ Sn(K)
∣∣∣∣d(x, y) ≤ ε for all x, y ∈ σ}.

That is, given a set of discrete points X and a metric d, we
build a VR complex at scale ε by forming an n-simplex if and
only if n + 1 points in X are pairwise within ε distance of
each other.

2.2 Chains and Chain Complexes
Given a simplicial complex K and an abelian group G, the group
of n-chains in K with coefficients in G is defined as

Cn(K;G) :� GSn(K).

Formally, we regardGSn(K) as a group of functions Sn(K) → G
under element-wise addition. Alternatively, we may view
Cn(K;G) as a group of formal G-linear combinations of
n-simplices, i.e., {∑σxσσ|xσ ∈ G and σ ∈ Sn(K)}.
Remark 2.1.We will focus on the cases where G is Q (the field of
rationals), Z (the group of integers), or F2 (the 2-element field).
Since we are most interested in the case G � Q, we adopt the
shorthand Cn(K) � Cn(K;Q).

FIGURE 1 | Two disks (gray) — which we regard as 2-dimensional simplicial complexes, though the explicit decomposition into simplices is not shown—with
different numbers of holes (white) and cycle representatives (black solid or dotted) adapted from (Carlsson, 2009). The disk on the left has a single 2-dimensional “hole”
(β1 � 1), and the two loops around it are cycle representatives for the same homology class. Similarly, the disk on the right has three “holes” (β1 � 3) and the two loops
shown are cycle representatives for different homology classes.
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An element x � (xσ)σ ∈Sn(K) ∈ GSn(K) is called an n-chain
of K. As in this example, see we will generally use a bold-face
symbol for the tuple x and corresponding light-face symbols for
entries xσ . The support of an n-chain is the set of simplices on
which xσ is nonzero:

supp(x) :� {σ ∈ Sn(K) | xσ ≠ 0}.
The ℓ0 norm1 and ℓ1 norm2 of x are defined as

‖x‖0 :� ∣∣∣∣supp(x)∣∣∣∣ ‖x‖1 :� ∑
σ∈Sn(K) |xσ |.

Remark 2.2 (Indexing conventions for chains and simplices).
As chains play a central role in our discussion, it will be
useful to establish some special conventions to describe
them. These conventions depend on the availability of
certain linear orders, either on the set of vertices or the
set of simplices.
Case 1: Vertex set V has a linear order ≤. Every vertex
set V discussed in this text will be assigned a (possibly
arbitrary) linear order. Without risk of ambiguity, we may
therefore write

(υ0, . . . , υn)
for the n-chain that places a coefficient of 1 on σ � {υ0 ≤ . . . ≤ υn}
and 0 on all other simplices.
Case 2: Simplex set Sn(K) has a linear order ≤. We will
sometimes define a linear order on Sn(K). This determines a
unique bijection σ(n) : {1, . . . , |Sn(K)|}→ Sn(K) such that
σ(n)i ≤ σ(n)j iff i ≤ j. This bijection determines an isomorphism.

ϕ : Cn(K;G) � GSn(K) → G|Sn(K)|.

such that ϕ(x)i � xσ i for all i. Provided a linear order ≤, we will
use x to denote both x and ϕ(x) and rely on context to clarify the
intended meaning.
For each n ≥ 1, the boundary map zn : Cn(K) → Cn-1(K) is

the linear transformation defined on a basis vector
(υ0, υ1 , . . . , υn) by

zn (υ0, υ1, . . . , υn) � ∑n

i�0 (-1)i (υ0, . . . , υ̂i, . . . , υn),
where υ̂i omits υi from the vector. This map extends linearly from
the basis of n-simplices to any n-chain in Cn(K). By an abuse of
notation, we also denote the matrix representation of this
boundary map, known as the boundary matrix, as zn. The
boundary matrix is parametrized by the n-simplices Sn(K)
along the columns and n - 1 simplices Sn-1(K) along the rows.

The collection (Cn(K))n≥ 0 along with the boundary maps
(zn)n≥ 0 form a chain complex

. . .Cn+1(K) →zn+1 Cn(K) →zn Cn-1(K) →zn−1 . . . →z3 C2(K) →z2 C1(K) →z1 C0(K) →z0 0.

Remark 2.3 (Indexing conventions for boundary matrices). In
general, boundary matrix zn is regarded as an element of
GSn-1(K) × Sn(K), that is, as an array with columns labeled by
n-simplices and rows labeled by n - 1 simplices. However,
given linear orders on Sn-1(K) and Sn(K), we may naturally
regard zn as an element of G|Sn-1(K)| × |Sn(K)|, see Remark 2.2.

2.3 Cycles, Boundaries
The boundary of an n-chain x is zn(x). Ann-cycle is an n-chainwith
zero boundary. The set of all n-cycles forms a subspace Zn(K) :�
ker(zn) ofCn(K).An n-boundary is an n-chain that is the boundary
of (n + 1) chains. The set of all n-boundaries forms a subspace
Bn(K) :� im (zn+1) of Cn(K).We refer to Zn and Bn as the space
of cycles and space of boundaries, respectively.

It can be shown that zn+zn+1(x) � 0 for all x ∈ Cn+1(K);
colloquially, “a boundary has no boundary.” Equivalently,
zn + zn+1 is the zero map. Since the boundary map takes a
boundary to 0, an n-boundary must also be an n-cycle.
Therefore, Bn(K)4Zn(K).

2.4 Homology, Cycle Representatives
The nth homology group of K is defined as the quotient.

Hn(K) :� Zn(K)/Bn(K).
Concretely, elements of Hn(K) are cosets of the form

[z] � {z′ ∈ Zn(K)| z′ - z ∈ Bn(K)}.3 An element h ∈ Hn(K) is
called an n-dimensional homology class. We say that a cycle
z ∈ Zn(K) represents h, or that z is a cycle representative of h if
h � [z]. We say that z and z′ are homologous if [z] � [z′].
Example: Consider the example in Figure 2A, which illustrates
two homologous 1-cycles and the example in Figure 2B, which
illustrates two non-homologous cycles.
Remark 2.4. The term homological generator has been used
differently by various authors: to refer to an arbitrary nontrivial
homology class, an element in a (finite) representation ofHn(K), as
a set of cycles which generate the homology group, or (particularly
in literature surrounding optimal cycle representatives) interchangeably
with cycle representative. We favor the term cycle representative,
to avoid ambiguity.

2.5 Betti Numbers, Cycle Bases
A (dimension-n) homological cycle basis for Hn(K) is a set of
cycles B � {z1, . . . , zm} such that [zi] ≠ [zj] when i ≠ j, and
{[z1], . . . , [zm]} is a basis for Hn(K). Modulo boundaries, every
n-cycle can be expressed as a unique linear combination in B.

Homological cycle bases have several useful interpretations. It
is common, for example, to think of a 1-cycle as a type of “loop,”
generalizing the intuitive notion of a loop as a simple closed curve
to include more intricate structures, and to regard the operation
of adding boundaries as a generalized form of “loop-
deformation.” Framed in this light, a homological cycle
basis B for H1(K) can be regarded as a basis for the space of

1The ℓ0 “norm” is not a real norm as it does not satisfy the homogeneous
requirement of a norm. For example, scaling a vector x by a constant factor
does not change its ℓ0 “norm.”
2See Remark 2.1 These choices of groups have a natural notion of absolute value.

3More generally, we denote the groups of cycles and boundaries with coefficients in
G as Zn(K;G) and Bn(K;G). The (dimension-n) homology of K with coefficients in
G is Hn(K;G) � Zn(K;G)/Bn(K;G).
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loops-up-to-deformation in K. Higher dimensional analogs of
loops involve closed “shells” made up of n-simplices.

Another interpretation construes each nontrivial homology
class [z] ≠ 0 as a hole in K. Such holes are “witnessed” by loops
or shells that are not homologous to the zero cycle. Viewed in
this light, Hn(K) can naturally be regarded as the space of
(n + 1) dimensional holes in K. The rank of the nth homology
group

βn(K) :� dim(Hn(K)) � dim(Zn(K)) - dim(Bn(K)),
therefore quantifies the “number of gray independent holes” in K.
We call βn the nth Betti number of K.
Example: Consider the gray disks in Figure 1 [similar to Carlsson
(2009)] with different numbers of holes and cycle representatives.

2.6 Filtrations of Simplicial Complexes
A filtration on a simplicial complex K is a nested sequence of
simplicial complexes K•�(Kεi)i∈ {1,...,T} such that

Kε1 4Kε2 4. . .4KεT � K ,

where ε1 </< εT are real numbers. A filtered simplicial
complex is a simplicial complex equipped with a filtration K•.

Example Let X be a metric space with metric d, and let
ε1 </< εT be an increasing sequence of non-negative real
numbers. Then the sequence K• � (Kεi)i∈{1,...,T} defined by Kεi �
VRεi(X) is a filtration on K.

The data of a filtered complex is naturally captured by the birth
function on simplices, defined

Birth : K → R, σ1min {εi : σ ∈ Kεi}.
We regard the pair (K,Birth) as a simpilicial complex whose

simplices are weighted by the birth function. For convenience, we
will implicitly identify the sequence K• with this weighted
complex. Thus, for example, when we say that σ ∈ K has
birth parameter t, we mean that σ ∈ K and Birth(σ) � t.

Definition 2.5. A filtration K• is simplex-wise if one can
arrange the simplices of K into a sequence (σ1, . . . , σ |K|)
such that Kεi � {σ1, . . . , σ i} for all i. A simplex-wise refinement
of K• is a simplex-wise filtration K ′

• such that each space in K• can
be expressed in form {σ1, . . . , σ j} for some j.

As an immediate corollary, given a simplex-wise refinement of
K•, we may naturally interpret each boundary matrix zn as an
element of G|Sn−1(K)| × |Sn(K)|, see Remark 2.3 Under this
interpretation, columns (respectively, rows) with larger indices
correspond to simplices with later birth times; that is, birth time
increases as one moves left-to-right and top-to-bottom.

2.7 Filtrations of Chain Complexes
If we regard Cn(Kεi;G) as a family of formal linear
combinations in Sn(Kεi), then it is natural to consider
Cn(Kεi;G) as a subgroup of Cn(Kεj;G) for all i < j. In
particular, we have an inclusion map

ι : Cn(Kεi;G)→Cn(Kεj;G),
∑

σ∈Sn(Kεi)xσσ1∑
σ∈Sn(Kεi)xσσ + ∑

τ∉Sn(Kεi)0 · τ.

Given a simplex-wise refinement K ′
•, one can naturally regard

c as an element (c1, c2, . . .) of G|Sn(Kεi)|. From this perspective, ι
has a particularly simple interpretation, namely “padding” by
zeros:

ι(c) � (c1, c2, . . .︸���︷︷���︸
c

, 0, . . . , 0).

Similar observations hold when one replacesCn with either Zn,
the space of cycles, or Bn, the space of boundaries.

2.8 Persistent Homology, Birth, Death
The notion of birth for simplices has a natural extension to
chains, as well as a variant called death. Formally, the birth and
death parameters of c ∈ Cn(K) are

FIGURE 2 | We show an example of homologous cycles in (A), adapted from (Topaz et al., 2015). The 1-cycle (0, 1) + (1, 2) + (2,3) + (3, 4) − (0, 4) and the 1-
cycle (1, 2) + (2,3) + (3, 4) − (4, 1) are homologous because their difference is the boundary of (0, 1, 4). Subfigure (B) shows an example of non-homologous cycles.
The 1-cycle (∑4

i�0(i, i + 1)) − (5, 2) + (2, 6) − (0,6) and the 1-cycle (2, 3) + (3,4) + (4, 5) − (2, 5) are not homologous because their difference is a cycle (0, 1) +
(1, 2) + (2, 6) − (0,6) which is not a linear combination of boundaries of 2-simplices.
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Birth(c) � min{εi : c ∈ Cn(Kεi)}
Death(c) � {min{εi : c ∈ B(Kεi)} c ∈ B(K)

∞ else.

In the special case where c is a cycle, Birth(c) is the
first parameter value where [c] represents a homology
class, and Death(c) is the first parameter value where [c]
represents the zero homology class. Thus, the half-open
lifespan interval

L(c) � [Birth(c),Death(c)),
is the range of parameters over which c represents a well-defined,
nonzero homology class.

A (dimension-n) persistent homology cycle basis is a subset
B4Zn(K) with the following two properties:

1. Each z ∈ B has a nonempty lifespan interval.
2. For each i ∈ {1, . . . ,T}, the set

Bεi :� {z ∈ B : εi ∈ L(z)},
is a homological cycle basis for Hn(Kϵi).

Every filtration of simplicial complexes (Kεi)i∈{1,...,T} admits a
persistent homological cycle basis B (Zomorodian and Carlsson,
2005). Moreover, it can be shown that the multiset of lifespan
intervals (one for each basis vector), called the dimension-n
barcode of K•,

Barcoden � {L(z) : z ∈ B},
is invariant over all possible choices of persistent homological
cycle bases B (Zomorodian and Carlsson, 2005).
Example: Consider the sequence of simplicial complexes
(K1,K2,K3) shown in Figure 3E. The set B � {x4, x5, x6} is a

(dimension-1) persistent homological cycle basis of the
filtration. The associated dimension-1 barcode is Barcode1 �
{[1, 2), [2,∞), [3,∞)} where [2,∞) and [3,∞) are the
lifespans of x5 and x6, respectively.

Barcodes are among the foremost tools in topological data
analysis (Ghrist, 2008; Edelsbrunner and Harer, 2008), and they
contain a great deal of information about a filtration. For
example, it follows immediately from the definition of
persistent homological cycle bases that βn(Kεi) � ∣∣∣∣Bεi

∣∣∣∣ for all n
and i. Consequently,

βn(Kεi) � |{J ∈ Barcoden : εi ∈ J}|.

2.9 Computing PH Cycle Representatives
Barcodes and persistent homology bases may be computed via the
so-called R � DV decomposition (Cohen-Steiner et al., 2006)
of the boundary matrices zn. Details are discussed in the
Supplementary Material.

3 RELATED WORK ON MINIMIZING CYCLE
REPRESENTATIVES

One important problem in TDA is interpreting homological
features. In general, a lifetime interval L corresponding to a
feature may be represented by many different cycle
representatives. As discussed in Chen et al. (2008), localizing
homology classes can be characterized as finding a representative
cycle with the most concise geometric measure. As an illustrative
example from Escolar and Hiraoka (2016), Figure 3A shows a
simplicial complex K with H1(K) isomorphic to Q or
equivalently, β1 � 1; it contains one hole. Figures 3B–D
display three cycle representatives, xOrig , x′, and x″, each of

FIGURE 3 | Examples of optimizing a cycle representative (using the notion of minimizing edges) within the same homology class (A-D) and using a basis of cycle
representatives (E), modified examples adapted from (Escolar and Hiraoka, 2016; Obayashi, 2018). The dotted lines represent a cycle representative for the enclosed
“hole.” Intuitively, we consider x′′ in (D) as the optimal cycle representative since it consists of the smallest number of edges. Subfigure (E) shows a case where we
optimize a cycle representative using a basis of cycle representatives. In (E), {x4 , x5 , x6} is the original basis of cycle representatives. We can substitute x6 with x̂6,
which we can obtain by adding x5 to x6, and thus obtain {x4 , x5 , x̂6} as the new basis of cycle representatives.
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which represents the same homology class (heuristically, they
encircle the same hole). We intuitively prefer x″ as a
representative, since it involves the fewest edges and “hugs”
the hole most tightly. Given a simplicial complex K and a
nontrivial cycle xOrig on it, we are interested in finding a cycle
representative that is optimal with respect to some geometric
criterion. In this section, we discuss previous studies on optimal
cycle representatives.

Minimal cycle representatives have proven useful in many
applications. Hiraoka et al. (2016) use TDA to geometrically
analyze amorphous solids. Their analysis using minimal cycle
representatives explicitly captures hierarchical structures of the
shapes of cavities and rings. Wu et al. (2017) discuss an
application of optimal cycles in Cardiac Trabeculae
Restoration, which aims to reconstruct trabeculae, very
complex muscle structures that are hard to detect by
traditional image segmentation methods. They propose to use
topological priors and cycle representatives to help segment the
trabeculae. However, the original cycle representative can be
complicated and noisy, causing the reconstructed surface to be
messy. Optimizing the cycle representatives makes the cycle more
smooth and thus, leads to more accurate segmentation results.
Emmett et al. (2015) use PH to analyze chromatin interaction
data to study chromatin conformation. They use loops to
represent different types of chromatin interactions. To
annotate particular loops as interactions, they need to first
localize a cycle. Thus, they propose an algorithm to locate a
minimal cycle representative for a given PH class using a breadth-
first search, which finds the shortest path that contains the edge
that enters the filtration at the birth time of the cycle and is
homologically independent from the minimal cycles of all PH
classes born before the current cycle.

There are several approaches used to define an optimal cycle
representative. Dey et al. (2011) propose an algorithm to find an
optimal homologous 1-cycle for a given homology class via linear
programming. That is, they consider a single homology class [x]
and search for a homologous cycle representative that minimizes
some geometric measure within that class, for instance, the
number of 1-simplices within the representative. Escolar and
Hiraoka (2016) extend this approach to find an optimal cycle by
using cycles outside of a single homology class to “factor out”
redundant information. In this approach, an optimal cycle
representative is no longer guaranteed to be homologous to
the original representative, but the collection of cycle
representatives have each been independently optimized and
the collection still forms a homology basis. Further, Escolar
and Hiraoka (2016) extends this approach to achieve a filtered
cycle basis, although we note that it is not guaranteed to be a
persistent homology basis. The two approaches in Dey et al.
(2011) and Escolar and Hiraoka (2016) aim to minimize the
number of 1-simplices in a cycle representative. Obayashi (2018)
proposes an alternative algorithm for finding volume-optimal
cycles in persistent homology, which minimize the number of
2-simplices which the cycle representative bounds, also using
linear programming. These methods serve as the foundation for
our present paper and are discussed in more detail in the rest of
this section.

In addition to linear programming, many researchers have
contributed to the problem of computing optimal cycles:Wu et al.
(2017) propose an algorithm for finding shortest persistent 1-
cycles. They first construct a graph based on the given simplicial
complex and then compute annotation for the given complex.
The annotation assigns all edges different vectors and can be used
to verify if a cycle belongs to the desired group of cycles. They
then find the shortest path between two vertices of the edge born
at the birth time of the original cycle representative using a new
Ap heuristic search strategy. Their algorithm is a polynomial time
algorithm but in the worst case, the time complexity is
exponential to the number of topological features. Dey et al.
(2010) propose a polynomial-time algorithm that computes a set
of loops from a VR complex of the given data whose lengths
approximate those of a shortest basis of the one dimensional
homology group H1. In Dey et al. (2019), show that finding
optimal (minimal) persistent 1-cycles is NP-hard and then
propose a polynomial time algorithm to find an alternative set
of meaningful cycle representatives. This alternative set of
representatives is not always optimal but still meaningful
because each persistent 1-cycle is a sum of shortest cycles
born at different indices. They find shortest cycles using
Dijkstra’s algorithm by considering the 1-skeleton as a graph.
This list is by no means exhaustive, and does not touch on the
wide variety of related approaches, e.g. Chen and Freedman
(2010b), which attempts to fit cycle representatives within a
ball of minimum radius.

In the next subsection, we briefly introduce some basic notions
of linear programming, and then in the subsequent three
subsections, we survey the optimization problems on which
the present work is based.

3.1 Background: Linear Programming
Linear programming seeks to find a set of decision variables x �
(x1, . . . , xη)T which optimize a linear cost (or objective) function
cTx subject to a set of linear (in)equality constraints
aT1 x � b1, . . . , aTμ x � bμ. Any linear optimization problem can
be written as a Linear Program (LP) in standard form

minimize cTx
subject to Ax � b

x ≥ 0,
(1)

where A is the μ × ηmatrix with coefficients of the constraints as
rows and b � (b1, . . . , bμ)T . Linear programming is well-studied
and discussed in many texts (Bertsimas and Tsitsiklis, 1997;
Vanderbei, 2014; Boyd and Vandenberghe, 2004).

The optimal solution x* satisfies the constraints while
optimizing the objective function, yielding the optimal cost
cTx*. The feasible set of solutions in a linear optimization
problem is a polyhedron defined by the linear constraints. In
general, the optimal solution of a (non-degenerate) LP will occur
at a vertex of the polyhedron and can be solved with the standard
simplex algorithm, which traverses through the edges of the
polytope to vertices in a cost reducing manner, or interior
point methods, which traverse along the inside of the polytope
to reach an optimal vertex. In the worst-case, the complexity of
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the simplex method is exponential, yet it often runs remarkably
fast, while interior point methods are polynomial time
algorithms.

Standard LPs search for real-valued optimal solutions, but in
some instances, a restriction of the decision variables, such as
requiring integral solutions, may be necessitated. The mixed
integer programming (MIP) problem is written

minimize cTx + dTy
subject to Ax + By � b

x, y ≥ 0
x integer,

(2)

for matrices A, B and vectors b, c, d. A standard LP has fewer
constraints, and thus, will have optimal cost less than or equal to
that of the analogous MIP. MIPs are much more challenging to solve
than LPs, as they are discrete as opposed to convex optimization
problems, and no efficient general algorithm is known (Bertsimas and
Tsitsiklis, 1997). However, LP relaxations, (exponential-time) exact,
(polynomial-time) approximation, and heuristic algorithms can be
used to obtain solutions to MIPs.

In this paper, we determine optimal cycle representatives with
both LP and MIP formulations.

3.2 Minimal Cycle Representatives of a
Homology Class
Given a homology class h � [xOrig] ∈ Hn(K;G) and a function
loss : Zn(K;G) → R, how does one find a cycle representative of
h on which loss attains minimum? This problem is equivalent to
solving the following program defined in Dey et al. (2011):

minimize loss(x)
subject to x � xOrig + zn+1w

w ∈ Cn+1(K;G).
(3)

This formulation considers all cycle representatives homologous
to xOrig, i.e. that differ by a boundary, and selects the optimal
representative x which minimizes loss. The program in Eq. 3 is
correct because the coset h can be expressed in the form

h � xOrig + Bn(K;G) � {xOrig + zn+1w
∣∣∣∣w ∈ Cn+1(K;G)}.

In practice, a cycle representative xOrig is almost always
provided together with the initial problem data (which
consists of K, G, loss, and h), so the central challenge lies with
solving the program in Eq. 3.

Several variants of the program in Eq. 3 have been studied,
especially where loss(x) � ‖x‖0 or loss(x) � ‖x‖1. For a survey
of results when G � F2, see Chen and Freedman (2010b). For a
discussion of results when G � Z, see Dey et al. (2011). Broadly
speaking, minimizing against ℓ0 tends to be hard, even when K
has attractive properties such as embeddability in a low-
dimensional Euclidean space (Borradaile et al., 2020).
Minimizing against ℓ1 is hard when G � F2 (since, in this
case, ℓ1 � ℓ0), but tractable via linear programming when
G ∈ {Q,R}.

An interesting variant of the minimal cycle representative
problem is the minimal persistent cycle representative problem.

This problem was described in Chen et al. (2008) and may be
formulated as follows: given an interval [a, b) ∈ Barcoden(K•), solve

minimize loss(x)
subject to Birth(x) � a

Death(x) � b
x ∈ Zn(Ka;G),

(4)

for x. An advanced treatment of this problem can be found in
(Chen et al., 2008) for special case where 1) G � F2, 2) loss is a
weighted sum of incident edges, and 3) the birth function
assigns distinct values to any two simplices of the same
dimension, and 4) n � 1.

3.3 Minimal Homological Cycle Bases
The program in Eq. 3 has a natural extension when G is a field.
This extension focuses not on the smallest representative of a
single homology class, but the smallest homological cycle basis. It
may be formally expressed as follows:

minimize ∑x∈Bloss(x)
subject to B ∈ HCBn(K;G), (5)

where HCBn(K ,G) is the family of dimension-n homological cycle
bases of Hn(K;G). Thus, the program is finding a complete
generating set B for all of the homological cycles of dimension n
where each element has been minimized in some sense.

It is natural to wonder whether a solution to the program in
Eq. 5 could be obtained by first calculating an arbitrary (possibly
non-minimal) homological cycle basis B � {x1, . . . , xm} and then
selecting an optimal cycle representative zi from each homology
class [xi]. Unfortunately, the resulting basis need not be optimal.
To see why, consider the simplicial complex K3 shown in
Figure 3E, taking G to be Q and loss to be the ℓ0 norm.
Complex K• has several different homological cycle bases in
degree 1, including B0 :� {x̂6, x6}, B1 :� {x5, x6}, and
B2 :� {x5, x̂6 + x4}. However, only B0 is ℓ0 minimal. Moreover,
each of the cycle representatives x5, x6, x̂6 is already minimal
within its homology class, so element-wise minimization will not
transform B1 or B2 into optimal bases, as might have been hoped.

As with the minimal cycle representative problem, the
minimal homological cycle basis problem has been well-studied
in the special case where loss is the ℓ0 norm and G � F2. In this
case, the program in Eq. 5 is NP-hard to approximate for n > 1,
but O(n3) when n � 1 (Dey et al., 2018). Several interesting
variants and special cases have been developed in the n � 1
case, as well Erickson and Whittlesey (2009), Dey et al. (2010),
and Chen and Freedman (2010). We are not currently aware of a
systematic treatment for the case G ∈ {Q,R}.

A natural variant of the minimal homological cycle basis
program in Eq. 5 is the minimal persistent homological cycle
basis problem

minimize ∑x∈Bloss(x)
subject to B ∈ PrsHCBn(K•;G), (6)

where PrsHCBn(K•;G) is the set of persistent homological cycle
bases. This is a stricter condition than the program in Eq. 5 in that
not only does it require that the elements of B form a generating
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set of all cycles of dimension n, but the barcode associated to B
must match Barcoden(K•). That is, the multisets of birth/death
pairs must be identical.

The program in Eq. 6 is much more recent than the program
in Eq. 5, and consequently appears less in the literature. In the
special case where every bar in the multiset Barcoden(K•) has
multiplicity 1 (i.e. there are no duplicate bars), the program in Eq.
6 can be solved by making one call to the minimal persistent cycle
representative program in Eq. 4 for each bar. In particular, the
method of Chen et al. (2008) may be applied to obtain a minimal
persistent basis when the correct hypotheses are satisfied: G � F2,
loss is a weighted sum of incident simplices, there are distinct birth
times for all simplices of the same dimension, and n � 1. In general,
however, bars of multiplicity two are possible, and in this case
repeated application of the program in Eq. 4 will be insufficient.

3.4 Minimal Filtered Cycle Space Bases
A close cousin of the minimal homological cycle basis the
program in Eq. 5 is the minimal filtered cycle basis problem,
which may be formulated as follows

minimize ∑x∈Closs(x)
subject to C ∈ FCB(K•;G), (7)

where FCB(K•) is the family of all bases C of Zn(KεT) such that C
contains a basis for each subspace Zn(Kεi), for i ∈ {1, . . . ,T}.

Escolar and Hiraoka (2016) provide a polynomial time
solution via linear programming when.

1. loss is the ℓ1 norm,
2. G � Q, and
3. K• is a simplex-wise filtration [without loss of

generality, K• � (K1, . . . ,KT)].

Their key observation is thatC is an optimal solution to the program
in Eq. 6 if and only if C can be expressed as a collection
{zj : j ∈ J} where

1. the set J � {j : Zn(Kj-1)=Zn(Kj)} that indexes the cycles is the
list of filtrations at which a novel n-cycle appears, and.

2. for each j ∈ J , the cycle zj first appears in Kj and is a
minimizer for the loss function among all such cycles, i.e.
zj ∈ argminz∈Z n(Kj)\Zn(Kj-1)loss (z).

The authors formulate this problem as

minimize ‖x‖1
subject to x � xOrig + ∑

r∈R
wrgr + ∑

s∈S
υsf s

w ∈ Q
R

v ∈ Q
S,

(8)

where xOrig ∈ ZN(Kj)\ZN(Kj-1) is a novel cycle representative at
filtration j; {gr : r ∈ R} is a basis for Bn(Kj-1)4; and
{gr : r ∈ R}∪ {f s : s ∈ S} is an extension of the given basis for

Bn(Kj-1) to a basis for Zn(Kj-1). That is, xOrig is a cycle that has
just appeared in the filtration. To optimize it, we are allowed to
consider linear combinations of both boundaries, {gr}, and cycles,
{f s}, born before xOrig . The cycle x obtained in this way cannot
have a birth time before that of xOrig , but may have a different
death time if [∑s∈Sυsf

s] dies later than [xOrig].
The algorithm developed in Escolar and Hiraoka (2016) is

cleverly constructed to extract xOrig , {gr : r ∈ R}, and {f s : s ∈ S}
from matrices which are generated in the normal course of a
barcode calculation.
Remark 3.1. It is important to distinguish between PrsHCB and
FCB, hence between the optimization the programs in Eqs 6, 7. As
Escolar and Hiraoka (2016) point out, given B ∈ PrsHCB and
C ∈ FCB, one can always find an injective function ϕ : B→ C
such that Birth(z) � Birth(ϕ(z)) for all z. However, this does
not imply that ϕ(B) ∈ PrsHCB, as the deaths of each cycle may
not coincide. Indeed, the question of whether a persistent
homological cycle basis can be extracted from C by any means is
an open question, so far as we are aware. We provide an example in
Figure 4 where the cycle basis obtained by optimizing each cycle
using the program in Eq. 7 is not a persistent homology cycle basisB.

Though Remark 3.1 is a bit disappointing for those
interested in persistent homology, the machinery developed to
study the program in Eq. 7 is nevertheless interesting, and we will
discuss an adaptation.

3.5 Volume-Optimal Cycles: Minimizing
Over Bounding Chains
Schweinhart (2015) andObayashi (2018) consider a different notion
of minimization: volume5 optimality. This approach focuses on the
“size” of a bounding chain; it is specifically designed for cycle
representatives in a persistent homological cycle basis.

Obayashi (2018) formalizes the approach as follows. First, assume
a simplex-wise filtration K•; without loss of generality,
K• � (K1, . . . ,KT), and we may enumerate the simplices of KT

such that Ki � {σ1, . . . , σ i} for all i. Since each simplex has a unique
birth time, each interval in Barcoden(K•) � {[b1, d1), . . . , [bN , dN)}
has a unique left endpoint. Fix [bi, di) ∈ Barcoden(K•) such that
di <∞ (in the case di � ∞, volume is undefined). It can be shown
that σbi is an n-simplex and σdi is an (n + 1) simplex.We use τk � σk
below when the dimension of σk is equal to n + 1.

A persistent volume v for [bi, di) is an (n + 1) chain
v ∈ Cn+1(Kdi) such that6

v � τdi + ∑
τk∈Fn+1

αkτk (9)

(zn+1v)σ � 0 ∀σ ∈ F n (10)

(zn+1v)σbi ≠ 0, (11)

4Because of the assumption that K• is a simplex-wise filtration, if there is a new
n-cycle in Kj then there cannot also be a new (n + 1) simplex, so this is also a basis
for Bn(Kj).

5This notion of volume differs from that of Chen and Freedman (2010b). The latter
refers to volume as the ℓ0 norm of a chain, while the former (which we discuss in
this section) refers to the ℓ0 norm of a bounding chain.
6If we regard zn+1v as a function Sn(Kdi)→Q, then (zn+1v)σ is the value taken by
zn+1v on simplex σ. Alternatively, if we regard zn+1v as a linear combination of
n-simplices, then (zn+1v)σ is the coefficient placed by zn+1v on σ.
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where F n � {σk ∈ Sn(K) : bi < k< di} denotes the n-simplices
alive in the window between the birth and death time of the
interval under consideration.

We interpret these equations as follows: Given a persistence
interval [bi, di), condition Eq. 9 implies that v only contains n + 1
simplices born between bi and di and must contain the n + 1
simplex born at di. Condition (Eq. 10) ensures that the boundary
of v contains no n-simplex born after bi, and condition (Eq. 11)
ensures that the boundary of v contains the n-simplex born at bi.
This guarantees that zn+1v exists at step bi, does not exist before
step bi, and dies at step di.
Theorem 3.2. (Obayashi, 2018). Suppose that
[bi, di) ∈ Barcoden(K•) and di <∞.

1. Interval [bi, di) has a persistent volume.
2. If v is a persistent volume for [bi, di) thenL(zn+1v) � [bi, di).
3. Suppose that B is an n-dimensional persistent homological
cycle basis for K•, that xOrig ∈ B is the basis vector
corresponding to [bi, di), and that v is a persistent
volume for [bi, di). Then, (B\{xOrig})∪ {zn+1v} is also a
persistent homological cycle basis.

By Theorem 3.2, for any barcode composed of finite intervals, one
can construct a persistent homological cycle basis from nothing but
(boundaries of) persistent volumes! Were we to build such a basis, it
would be natural to ask for volumes that are optimal with respect to
some loss function; that is, we might like to solve

minimize loss(v)
subject to (9), (10), (11)

v ∈ Cn+1(Kdi),
(12)

for each barcode interval [bi, di). A solution v to the program
in Eq. 12 is called an optimal volume; its boundary, x � zn+1v
is called a volume-optimal cycle.

It is interesting to contrast ℓ0 minimal cycle
representatives for an interval7 [bi, di) with ℓ0 volume-
optimal cycle for the same interval. Consider, for example,
Figure 5. For the persistence interval [bi, di), the cycle with
minimal number of edges is (a, b) + (b, c) + (c, d) + (d, a).
However, the volume-optimal cycle would be found as
follows: considering Kdi, we must find the fewest 2-
simplices whose boundary captures the persistence
interval. In this case, we would have an optimal volume
(a, b, e) + (b, c, e) + (a, d, e) and volume-optimal cycle (a, b) +
(b, c) + (c, e) + (e, d) + (d, a).

3.6 ℓ0 vs. ℓ1 Optimization
As mentioned above, it is common to choose loss(x) � ‖x‖0 or
loss(x) � ‖x‖1.8 A linear program (LP) with ℓ1 objective
function is polynomial time solvable. However, an objective
function with the ℓ0 norm restricted to {0, 1, -1} coefficients is
often preferred as the output of such a problem is highly
interpretable: a cycle representative with minimal number of
edges or enclosing the minimal number of triangles. Yet, ℓ0

FIGURE 4 | An example where the optimal cycles obtained from Eq. 8 do not form a persistent homological cycle basis. The thickened colored cycles in Subfigure (A)
represent a cycle representative for the hole it encloses, and the bar with the corresponding color in Subfigure (B) records the lifespan of the cycle. In Subfigure (A), we see
L(x1) � [0,∞),L(x2) � [1, 2) Then, {x1 , x2} forms a basis for the persistent homological cycles. The cycle representative x̂2 is an optimal cycle representative obtained by solving
Eq. 7 for the filtered simplicial complex K2. However, L(x̂2) � [1,∞), and thus {x1 , x̂2} is no longer a persistent homological cycle basis.

7Technically, this notion is not well-defined; to be formal, we should fix a persistent
homology cycle basis B, fix a cycle representative z ∈ B with lifespan interval [bi , di),
and ask for an ℓ0 cycle representative in the same homology class, [z] ∈ Hn(Kbi), as
per the program in Eq. (3). However, in simple cases the intended meaning is clear.
8Other choices of loss function, e.g., the ℓp norm, are common throughout
mathematical optimization. While we focus on ℓ0 and ℓ1 due to their tendency
to produce sparse solutions, other choices may be better or worse suited, depending
on the intended application. For example, since ℓ2 loss imposes lighter penalties on
small errors and heavier penalties on large ones (as compared to ℓ1), it is especially
sensitive to outliers; this makes it useful for tasks such as function estimation. On
the other hand, by imposing relatively heavy penalties on small errors, ℓ1 loss
encourages sparsity (Tahbaz-Salehi and Jadbabaie, 2008; Tahbaz-Salehi and
Jadbabaie, 2010).
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optimization is known to be NP-hard (Tahbaz-Salehi and
Jadbabaie, 2010).

The ℓ1 norm promotes sparsity and often gives a good
approximation of ℓ0 optimization (Tahbaz-Salehi and
Jadbabaie, 2008; Tahbaz-Salehi and Jadbabaie, 2010), but
the solution may not be exact. Yet, if all of the coefficients
of the solution x are restricted to 0 or ±1 in the optimization
problem, then the ℓ0 and ℓ1 norms are identical. A looser
restriction, as proposed in Escolar and Hiraoka (2016), would
be to solve an optimization with ℓ1 objective function with
integer constraints on the solution.

Requiring the solution to be integral also allows us to
understand the optimal solution more intuitively than having
fractional coefficients. Such an optimization problem is
called a mixed integer program (MIP), which is known to
be slower than linear programming and is NP-hard
(Obayashi, 2018). Many variants of integer programming
special to optimal homologous cycles, in particular, have
been shown to be hard as well (Borradaile et al., 2020). In
Section 4, we discuss the optimization problems we
implement, where each is solved both as an LP with an ℓ1

norm in the objective function and an MIP by adding the
constraint that x is integral.

Dey et al. (2011) gives the totally unimodularity sufficient
condition which guarantees that an LP and MIP give the same
optimal solution. Amatrix is totally unimodular if the determinant
of each square submatrix is -1, 0, or 1. Dey et al. (2011) give
conditions for when the zn+1 matrix is totally unimodular. If the
totally unimodularity condition is not satisfied, then an LPmay not
give the desired result. As totally unimodularity is not guaranteed
for all boundary matrices (Henselman and Dłotko, 2014), we
cannot rely on this condition.

3.7 Software Implementations
Edge-minimal cycles: Software implementing the edge-loss
method introduced in Escolar and Hiraoka (2016) can be
found at Escolar and Hiraoka (2021). This is a C++ library
specialized for 3-dimensional point clouds.

Triangle-loss optimal cycles: The volume optimization
technique introduced in Obayashi (2018) is available through the
software platform HomCloud, available at Obayashi et al. (2021).
The code can be accessed by unarchiving the HomCloud package
(for example, https://homcloud.dev/download/homcloud-3.1.0.tar.
gz) and picking the file homcloud-x.y.z/homcloud/optvol.py.

4 PROGRAMS AND SOLUTION METHODS

The present work focuses on linear programming (LP) and mixed
integer programming (MIP) optimization of 1-dimensional persistent
homology cycle representatives with Q − coefficients. While the
methods discussed below can be applied to any homological
dimension, we limit the scope of the present work to dimension
one. As described in Section 3, we follow two general approaches:
those that measure loss as a function of n-simplices, and those that
measure loss as a function of n + 1 simplices. Motivated by the n � 1
case, we refer to the former as edge-loss methods and the latter as
triangle-loss methods. For our empirical analysis, four variations
(corresponding to two binary parameters) are chosen from each
approach, yielding a total of eight distinct optimization problems.

Concerning implementation, we find that triangle-loss
methods [namely, Obayashi (2018)] can be applied essentially
as discussed in that paper. The greatest challenge to
implementing this approach is the assumption of an
underlying simplex-wise filtration. This necessitates parameter
choices and preprocessing steps not included in the optimization
itself; we discuss how to execute these steps below.

Implementation of edge-loss methods is slightly more complex.
For binary coefficients (G � F2) a variety of combinatorial techniques
have been implemented in dimension 1 (Chen et al., 2008; Zhang and
Wu, 2019). Escolar and Hiraoka (2016) provide an approach for
Q − coefficients, but in general this may not yield a persistent
homology cycle basis, see Remark 3.1. In addition to the triangle-
loss method mentioned in Section 3.5, Obayashi (2018) introduces a
modified form of this edge-loss method which does guarantee a
persistent homology basis, but assumes a simplex-wise filtration.
We show that this approach can be modified to remove the
simplex-wise filtered constraint.

Neither of the approaches presented here is guaranteed to
solve the minimal persistent homology cycle basis problem, the
program in Eq. 6. In the case of triangle-loss methods, this is due
to the (arbitrary) choice of a total order on simplices. In the case
of edge-loss methods, it is due to the choice of an initial persistent
homology cycle basis.

In the remainder of this section, we present the eight programs
studied, including any modifications from existing work.

4.1 Structural Parameters
Each program addressed in our empirical study may be expressed
in the following form

FIGURE 5 | A situation in which a volume-optimal cycle is different from the uniform minimal cycle. Consider the filtered simplicial complex pictured. For the
persistence interval [bi ,di), the cycle with minimal 0-norm (fewest number of edges) is (a,b) + (b, c) + (c,d) + (d, a). However, the volume-optimal cycle would be found
as follows: considering Kdi , we must find the fewest 2-simplices whose boundary captures the persistence interval. In this case, we would have an optimal volume
(a,b, e) + (b, c, e) + (a,d, e) and volume-optimal cycle (a,b) + (b, c) + (c, e) + (e,d) + (d, a).
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minimize ‖Wx‖1 � ∑
σ
W[σ, σ](x+σ + x-σ)

subject to x � x+-x-

x+, x- ≥ 0
x ∈ X ,

(13)

whereX is a space of feasible solutions andW is a diagonal matrix
with nonnegative entries. These programs vary along 3 parameters:

1. Chain dimension of x. IfX is a family of 1-chains, then we
say that the program in Eq. 13 is an edge-loss program. If
X is a family of 2-chains, we say that the program in Eq.
13 is a triangle-loss program.

2. Integrality. The program is integral if each x ∈ X has
integer coefficients; otherwise we call the problem non-
integral.

3. Weighting. For each loss type (edge vs. triangle) we
consider two possible values for W: identity and non-
identity. In the identity case, all edges (or triangles) are
weighted equally; we call this a uniform-weighted
problem. In the non-identity case we weigh each
entry according to some measurement of “size” of
the underlying simplex (length, in the case of edges,
and area, in the case of triangles).9 There is precedent
for such weighting schemes in existing literature (Chen
et al., 2008; Dey et al., 2011).

Edge-loss and triangle-loss programs will be denoted Edge and
Tri, respectively. Integrality will be indicated by a superscript I
(integer) or NI (non-integer). Uniform weighting will be denoted
by a subscript Unif (uniform); non-uniform weighting will be
indicated by subscript Len (for edge-loss programs) or Area (for
triangle-loss programs). Thus, for example, EdgeILen denotes a
length-weighted edge-loss program with integer constraints.

4.2 Edge-Loss Methods
Our approach to edge-lossminimization, based on work by Escolar
and Hiraoka (2016), is summarized in Algorithm 1. As in Escolar
and Hiraoka (2016), we obtain x by taking a linear combination of
xOrig with not only boundaries but cycles as well; consequently x
need not be homologous to xOrig .

Our pipeline differs from Escolar and Hiraoka (2016) in
three respects. First, we perform all optimizations after the
persistence calculation has run. On the one hand, this
means that our persistence calculations fail to benefit from
the memory advantages offered by optimized cycles; on the
other hand, separating the calculations allows one to “mix and
match” one’s favorite persistence solver with one’s favorite
linear solver, and we anticipate that this will be increasingly
important as new, more efficient solvers of each kind are
developed. Second, we introduce additional constraints
which guarantee that B* ∈ PrsHCB [and, moreover, L(x) �
L(xOrig) for each xOrig ∈ B]. Third, we remove the hypothesis

of a simplex-wise filtration; this requires some technical
modifications, whose motivation is explained in the
Supplementary Material. The crux of this modification lies
with the for loop, which replaces cycles that have been
optimized in the cycle basis for later cycle optimization.

The program in Eq. 14 optimizes the jth element of an ordered
sequence of cycle representatives Z � (z1, . . . , zm). In particular,
it seeks to minimize xOrig :� zj. To define this program, we first
construct a matrix A such that A[:, i] � zi for i � 1, . . . ,m. We
then define three index sets, P, Q, R such that

P � {i : Birth(zi)≤Birth(xOrig), Death(zi)≤Death(xOrig), i≠ j}
Q � {τ ∈ Sn+1(K) : Birth(τ)≤Birth(xOrig)}
R � {σ ∈ Sn(K) : Birth(σ)≤Birth(xOrig)},
That is, P indexes the set of cycles zi such that zi is born
(respectively, dies) by the time that zj is born (respectively,
dies), excluding the original cycle zj itself. Set Q is the family of
triangles born by Birth(xOrig), and setR is the family of edges born
by Birth(xOrig).

With these definitions in place, we now formalize the general
edge-loss problem as the program in Eq. 14, where zn+1[R,Q]
denotes the submatrix of zn+1 indexed by triangles born by
Birth(xOrig) (along columns) and edges indexed by edges born
by Birth(xOrig). Likewise A[R ,P] is the column submatrix of A
corresponding to cycles that are born before the birth time of
xOrig (and which die before the death time of xOrig), excluding
xOrig itself.

minimize ‖Wx‖1 � ∑
σ ∈ R

W[σ, σ](x+σ + x-σ)
subject to (x+-x-) � xOrig[R] + zn+1[R,Q]q + A[R,P]p

p ∈ Q
P

q ∈ Q
Q

x ∈ GR

x+, x- ≥ 0.

(14)

Recall from Section 4.1 that this program varies along two
parameters (integrality and weighting). In integral programs
G � Z, whereas in nonintegral programs G � Q. The weight
matrix W is always diagonal, but in uniform-weighted
programs W[σ, σ] � 1 for all σ � R, whereas in length-
weighted programs W[σ, σ] is the length of edge σ. The
program in Eq. 14 thus results in four variants:

EdgeNIUnif : Nonintegral edge-loss with uniform weights.

EdgeIUnif : Integral edge-loss with uniform weights.

Algorithm 1 | Edge-loss persistent cycle minimization

1: Compute a persistent homology basis B for homology in dimension 1, with
coefficients in Q, using the standard matrix decomposition procedure
described in the Supplementary Material. Arrange the elements of B into
an ordered sequence Z0 � (z0,1 , . . . , z0,m).

2: for j � 0, . . . ,m − 1 do
3: Solve the program in Eq. 14 to optimize the j + 1th element of Zj . Let x denote the

solution to this problem, and define Zj+1 by replacing the j + 1th element of Zj with
x. Concretely, z j+1, j+1 � x, and z j+1, k � z j, k for k ≠ j.

4: end for
5: Return B* :� {zm,1 , . . . , zm,m}, the set of elements in Zm.

9These notions make sense due to our use of coefficient field Q. The distance used
to form a simplicial complex can be used to define length. We restrict our attention
of area to points in Euclidean space.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68111712

Li et al. Minimal Persistent Homology Cycle Representatives

190

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


EdgeNILen: Nonintegral edge-loss with edges weighted by length.

EdgeILen: Integral edge-loss with edges weighted by length.

The program in Eq. 14 may have many more variables than
needed, because zn+1 is often highly singular. Indeed, in
applications, zn+1 can have hundreds or thousands of times as
many columns as rows!

A simple means to reduce the size of the program in Eq. 14,
therefore, is to replace Q with a subset Q̂4Q such that
zn+1[R, Q̂] is a column basis for zn+1[R,Q]. Replacing Q
with Q̂ will not change the space of feasible values for x in
the program in Eq. 14, but it can cut the number of decision
variables significantly. In particular, one may take Q̂ :� {σ :
R[:, σ]≠ 0} in the R � zn+1V decomposition of zn+1 described in
the Supplementary Material. We also show correctness of this
choice of Q̂ there.

4.3 Triangle-Loss Methods
Our approach to triangle-loss optimization is essentially that of
Obayashi (2018), plus a preprocessing step that converts more
general problem data into the simplex-wise filtration format
assumed in Obayashi (2018). There are several noteworthy
methods for time and memory performance enhancement
developed in Obayashi (2018), which we do not implement
(e.g., using restricted neighborhoodsF (r)

q to reduce problem
size), but which may substantially improve runtime and
memory performance.

The original method makes the critical assumption that
K• is a simplex-wise filtration, more precisely, that there
exists a linear order σ1 ≤/≤ σ |K| such that Ki � {σ1, . . . , σ i}.
This hypothesis allows one to map each finite-length interval
[i, j) ∈ Barcoden(K•) to a unique pair of simplices (σ i, σ j), called a
birth/death pair, where σ i ∈ Sn(K) and σ j ∈ Sn+1(K). This
mapping makes it possible to formulate the program in Eq. 12.
Unlike the general edge-loss the program in Eq. 13, one can
formulate the program in Eq. 12 without ever needing to
choose an initial (non-optimal) cycle. Thus, for simplex-wise
filtrations, the method of Obayashi (2018) has the substantial
advantage of being “parameter free.”

However, in many applied settings the filtration K• is not
simplex-wise. Indeed, even accessing information about the
filtration can be difficult in modern workflows. Such is the
case, for example, for the filtered Vietroris-Rips (VR)
construction. In many VR applications, the user presents raw
data in the form of a point cloud or distance matrix to a “black
box” solver; the solver returns the barcode without ever exposing
information about the filtered complex to the user. Thus, the
problem of mapping intervals back to pairs of simplices has
practical challenges in common applied settings.

To accommodate this more general form of problem data, we
employ Algorithm 2. This procedure works by (implicitly)
defining a simplex-wise refinement K ′• of K•, applying the
method of Obayashi (2018) to this refinement, then extracting
a persistent homology cycle basis for the subspace of finite
intervals from the resulting data. More details, including
recovery of a complete persistent homology cycle basis with

infinite intervals,10 and a proof of correctness can be found in
the Supplementary Material.

A key component of Algorithm 2 is the program in Eq. 15,
which we refer to as the triangle-loss program.

minimize ‖Wv‖1 � ∑n
i�1

W[c, c](v+c + v-c)
subject to zn+1[σ, F̂ n+1]v ≠ 0

zn+1[F n, F̂ n+1]v � 0 (15)
vτ � 1
v+, v- ≥ 0
v+, v- ∈ GF̂n+1 .

This terminology is motivated by the special case n � 1, which
is our focus for empirical studies. As with the general edge-loss
program in Eq. 15 varies along two parameters (integrality
and weighting). In integral programs G � Z, whereas in
nonintegral programs G � Q. The weight matrix W is always
diagonal, but in uniform-weighted programs W[c, c] � 1 for all
γ, whereas in area-weighted programs W[c, c] is the area of
triangle γ.11 The program in Eq. 15 thus results in four variants:

TriNIUnif : Nonintegral triangle-loss with uniform weights.

TriIUnif : Integral triangle-loss with uniform weights.

TriNIArea: Nonintegral triangle-loss with edges weighted by area.

TriIArea: Integral triangle-loss with edges weighted by area.

Remark 4.1. Algorithm 2 offers an effective means to apply
the methods of Obayashi (2018) to some of the most
common data sets in TDA. However, this is done at the cost
of parameter-dependence; in particular, outputs depend on
the choice of linear orders ≤(l). A brief discussion on how the
choice of a total order ≤ in Algorithm 2 may impact
the difficulty of the linear programs one must solve is

Algorithm 2 | Triangle-loss persistent cycle minimization.

1: Place a filtration-preserving linear order ≤(l) on Sl(K) for each l.
2: Compute an R � zn+1V decomposition as described in (Cohen-Steiner et al.,

2006) and the Supplementary Material. We then obtain a set Γ of birth/death
pairs (σ, τ).

3: For each (σ, τ) ∈ Γ such that Birth(σ) < Birth(τ), put

F n :� {σ ′ ∈ Sn(K) : Birth(σ ′)≤Birth(τ), σ ≤ (n)σ ′}
F n+1 :� {τ′ ∈ Sn+1(K) : Birth(σ)≤Birth(τ′), τ ′ ≤ (n+1)τ},

and F̂ n+1 :� F n+1 ∪ {τ}. Compute a solution to the corresponding program in

Eq. 15, and denote this solution by vσ,τ

4: Put D̂ :� {zn+1(vσ,τ ) : (σ, τ) ∈ Γ and Birth(σ)<Birth(τ)} and let
D̂′ :� {z ∈ M : Death(z) � ∞}, where M is a persistent homology cycle basis
calculated by the standard R � DV method.

5: Return D :� D̂∪ D̂ ′ .

10Recall volume is undefined for infinite intervals.
11We compute the area of a 2-simplex using Heron’s Formula. We calculate area
only for VR complexes whose vertices are points in Euclidean space, though more
general metrics could also be considered.
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discussed in the Supplementary Material. In particular, we
explain why the total order implicitly chosen in Algorithm 2
is reasonable, from a computational/performance standpoint.

4.4 Acceleration Techniques
We consider acceleration techniques to reduce the computational
costs of the programs in Eqs 14, 15.

4.4.1 Edge-Loss Methods
The technique used for edge-loss problems aims to reduce the
number of decision variables in the program in Eq. 14. It does so
by replacing a (large) set of decision variables indexed byQwith a
much smaller set, Q̂. See Section 4.2 for details.

4.4.2 Triangle-Loss Methods
When zn is large, the memory and computation time needed to
construct the constraint matrix zn+1[F n, F̂ n+1] can be nontrivial.
In applications that require an optimal representative for every
interval in the barcode, these costs can be incurred for hundreds or
even thousands of programs.We consider twoways to generate the
constraint matrices zn+1[F n, F̂ n+1] for each of the intervals in a
barcode: build zn+1[F n, F̂ n+1] from scratch for each program, or
build the complete boundary matrix zn+1 in advance; rather than
recompute block submatrices for each program, we pass a slice of
the complete matrix stored in memory.

The difference between these two techniques can be seen as a
speed/memory tradeoff. As we will see in Section 6.2, the first
approach is generally faster to optimize the entire basis of
homology cycle representatives, but when the data set is large,
the full boundary matrix zn+1 may be too large to store in memory.

5 EXPERIMENTS

In order to address the questions raised in Section 1, we conduct an
empirical study of minimal homological cycle representatives in
dimension one—as defined by the optimization problems detailed
in Section 4— on a collection of point clouds, which includes both
real world data sets and point samples drawn from four common
probability distributions of varying dimension.

5.1 Real-World Data Sets
We consider 11 real world data sets from Otter et al. (2017), a
widely used reference for benchmark statistics concerning
persistent homology computations. There are 13 data sets
considered by Otter et al. (2017), however, one of them (gray-
scale image) is not available, and one of them is a randomly
generated data set similar to our own synthetic data. We
summarize information about the dimension, number of points,
persistence computation time of each point cloud inTable 1. Below
we provide brief descriptions of each data set, but we refer the
interested reader to Otter et al. (2017) for further details.12

1. Vicsek biological aggregation model. The Vicsek model is a
dynamical system describing the motion of particles. It was
first introduced in Vicsek et al. (1995) and was analyzed using
PH in Topaz et al. (2015).We consider a snapshot in time of a
single realization of the model with each point specified by its
(x, y) position and heading. To compute distances, the
positions and headings are scaled to be between 0 and 1,
and then distance is calculated on the unit cube with periodic
boundary conditions. The distance between a and b is
computed as min{d(a, q) : q-b ∈ {0, 1, -1}3}. We denote
this data by Vicsek.

2. Fractal networks. These networks are self-similar and are used to
explore the connection patterns of the cerebral cortex (Sporns,
2006). The distances between nodes in this data set are defined
uniformly at random by Otter et al. (2017). In another data set,
the authors of Otter et al. (2017) define distances between
nodes by using linear weight-degree correlations. We
consider both data sets and found the results to be similar.
Therefore, we opt to use the one with distances defined
uniformly at random. We denote this data set by Fract R.

3. C.elegans neuronal network. This is an undirected network
in which each node is a neuron, and edges represent synapses.
It was studied using PH in Petri et al. (2013). Each nonzero
edge weight is converted to a distance equal to its inverse by
Otter et al. (2017). We denote this data by C.elegans.

4. Genomic sequences of the HIV virus. This data set is
constructed by taking 1, 088 different genomic sequences of
dimension 673. The aligned sequences were studied using PH in
Chan et al. (2013) with sequences retrieved from (Los Alamos
National Laboratory, 2021). Distances are defined using the
Hamming distance, which is equal to the number of entries that
are different between two genomic sequences. We denote this
data by HIV.

5. Genomic sequences of H3N2. This data set contains 1, 173
genomic sequences of H3N2 influenza in dimension 2, 722.
Distances are defined using the Hamming distance. We
denote this data set as H3N2.

6. Human genome. This is a network representing a sample of
the human genome studied using PH in Petri et al. (2013),
which was created using data retrieved from Davis and Hu
(2011). Distances are measured using Euclidean distance. We
denote this data set by Genome.

7. U.S. Congress roll-call voting networks. In the two networks
below, each node represents a legislator, and the edge weight
is a number in [0, 1] representing the similarity of the two
legislators’ past voting decisions. Distance between two nodes
i, j are defined to be 1-wi,j.
1. House. This is a weighted network of the House of

Representatives from the 104th United States Congress.
2. Senate. This is a weighted network of the Senate from the

104th United States Congress.
8. Network of network scientists. This data set represents the

largest connected component of a collaboration network of
network scientists (Newman, 2006). The edge weights
indicate the number of joint papers between two authors.
Distances are defined as the inverse of edge weight. We
denote this data set by Network.

12We use the distance matrices found on the associated github page (Otter et al.,
2017b), except in two cases. For the Vicsek data, we use a distance to account for
the intended periodic boundary conditions of the model, and for the genome data,
we use Euclidean distance as the distance matrix in Otter et al. (2017b) resulted in
an integer overflow error.
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9. Klein. The Klein bottle is a non-orientable surface with one
side. This data set was created in Otter et al. (2017a) by
linearly sampling 400 points from the Klein bottle using its
“figure 8” immersion in R3. This data set originally contains
(Borradaile et al., 2020) duplicate points, which we remove.
Distances are measured using the Euclidean distance. We
denote this data set by Klein.

10. Stanford Dragon graphic. This data set contains 1,000 points
sampled uniformly at random by Otter et al. (2017) from 3-
dimensional scans of the dragon (StanfordUniversity Computer
Graphics Laboratory, 1999). Distances are measured using the
Euclidean distance. We denote this data set Drag.

5.2 Randomly Generated Point Clouds
We also generate a large corpus of synthetic point clouds, each
containing 100 points in Rq with q � 2, . . . , 10, drawn from
normal, exponential, gamma, and logistic distributions. We
produce 10 realizations for each distribution and dimension
combination, for a total of 360 randomly generated point
clouds. We use Euclidean distance to measure similarity
between points and the Vietoris- Rips filtered simplicial
complex to compute persistent homology.

5.3 Erd}os-Rényi Random Complexes
To investigate which properties of homological cycle
representatives could arise as the result of the underlying
geometry of the point clouds, we also consider a common
non-geometric model for random complexes: Erd}os-Rényi
random clique complexes. Here, we construct 100 symmetric
dissimilarity matrices of size 100 × 100 by drawing entries i. i.d.
from the uniform distribution on [0, 1] for each pair of distinct
points. As these dissimilarities are fully independent, they are in
particular not subject to geometric constraints like the triangle
inequality. A natural filtration is placed on these dissimilarity
matrices by forming filtered simplicial complex K• � (Kεi)i∈{1,...,T}
where 0 � ε1 </< εT � 1 to compute persistent homology.

5.4 Computations
For each of the data sets, we perform Algorithms 1, 2 (using
Vietoris-Rips complexes with Q − coefficients) to find optimal
bases B*,D ∈ PrsHCB. For comparison to the edge-loss problem
in Algorithm 1, we also apply the program in Eq. 8 to each
representative in the persistent homology cycle basis to find a
basis C ∈ FCB.

5.5 Hardware and Software
We test our programs on an iMac (Retina 5K, 27-inch, 2019) with a
3.6 GHz Intel Core i9 processor and 40GB2667MHzDDR4memory.

Software for our experiments is implemented in the
programming language Julia; source code is available at Li and
Thompson (2021). This code specifically implementsAlgorithms
1, 2 and the program in Eq. 8.13

Since our interest lies not only with the outputs of these algorithms
but with the structure of the linear programs themselves Li and

Thompson (2021), implements a standalone workflow that exposes
the objects built internally within each pipeline. This library is simple
by design, and does not implement the performance-enhancing
techniques developed in Escolar and Hiraoka (2016) and Obayashi
(2018). Users wishing to work with optimal cycle representatives for
applications may consider these approaches discussed in Section 3.7.

To implement Algorithms 1, 2 in homological dimension one, the
test library (Li and Thompson, 2021) provides three key functions: A
novel solver for persistence with Q − coefficients. To compute cycle
representatives for persistent homology with Q − coefficients, we
implement a new persistent homology solver adapted from Eirene
(Henselman-Petrusek, 2016). The adapted version uses native Eirene
code as a subroutine to reduce the number of columns in the top
dimensional boundarymatrix in away that is guaranteednot to alter the
outcome of the persistence computation (Henselman andGhrist, 2016).

Formatting of Inputs to Linear Programs. Having computed
barcodes and persistent homology cycle representatives, library
(Li and Thompson, 2021) provides built-in functionality to
format the linear the program in Eqs 14, 15 for input to a
linear solver. This “connecting” step is executed in pure Julia.

Wrappers for Linear Solvers. We use the Gurobi linear solver
(Gurobi Optimization, 2020) and the GLPK solver (GNU Project,
2012). Both solvers can optimize both LPs and MIPs. Experiments
indicate that Gurobi executes much faster than GLPK on this class
of problems, and thus, we use it in the bulk of our computations.
Both solvers are free for academic users.

6 RESULTS AND DISCUSSION

In this section, we investigate each of the questions raised in
Section 1 with the following analyses.

6.1 Computation Time Comparisons
We summarize results for Programs EdgeNIUnif, Edge

I
Unif, Edge

NI
Len,

EdgeILen, Tri
NI
Unif, and Tri

I
Unif in Table 1 for data described in Section

5.1 and Table 2 for data described in Section 5.2 and Section
5.3. Further, we summarize results for Programs TriNIArea and
TriIArea in Table 2 for data described in Section 5.2.14 We
use Tpersistence to denote the time taken to compute all original
cycle representatives and their lifespans L. We use Tp

• to denote
the computation time for optimizing all generators found by the
persistence algorithm, where the subscript denotes the cost
function e.g. E-Unif or T-Unif, and the superscript denotes
the nonintegral NI or integral I constraint. The Tp

•
computations include the time required to construct the
inputs to the solver for the edge-loss methods, and exclude
the time required to construct the inputs to the triangle-loss
methods, whose computation time is separately recorded in

13The program in Eq. 8 is implemented analogously.

14We compute the area of a 2-simplex using Heron’s Formula for data whose
distances are measured using the Euclidean distance. For data with non-Euclidean
distances, we find that there are triangles that do not obey the triangle inequality,
thus, we only compute area-weighted triangle-loss cycles for data described in
Section 5.2. As such, TriNIArea, Tri

NI
Area do not appear in Table 1 and the Er}os-Rényi

column of Table 2.
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order to compare two ways of constructing the input matrix, as
discussed in Section 4.4. In each table, rows 1–3 provide
information about the data by specifying ambient dimension,
number of points, and number of cycle representatives. Row 4,
labeled as Tpersistence, gives the total time to compute persistent
homology for the data, measured in seconds. Rows 5–12
(Table 1) and rows 5–14 (Table 2) give the total time to
optimize all cycle representatives that are feasible to compute
using each optimization technique. In the last two rows of each
table, we provide the time of constructing the input to the
triangle-loss methods using two different approaches described
in Section 4.4. The penultimate row records the time of building
the entire z2 matrix once and then extracting z2[F 1, F̂ 2] for
each representative. The last row records the total time to
iteratively build the part of the boundary matrix z2[F 1, F̂ 2]
for each cycle representative. In Table 2, the computation times
displayed average all random samples from each dimension for
each distribution.

The two numbers in parenthesis in the third row of Table 1
indicate the actual number of representatives we were able to
optimize using the triangle-loss methods (all edge-loss
representatives were optimized). For the Genome and H3N2
data sets, we are not able to compute all triangle-loss cycle
representatives due to the large number of 2-simplices born
between the birth and death interval of some cycles. For
instance, for a particular cycle representative in the Genome data
set, there were 10,522,991 2-simplices born in this cycle’s lifespan.

Also, given the large number of 2-simplices in the simplicial
complex, we are not able to build the full z2 matrix due to
memory constraints, denoted by - in the penultimate row ofTable 1.

Below we describe some insights on computation time drawn
from the two tables.

6.1.1 Persistence and Optimization Tpersistence vs.Tp
•

We observe that Tp
•

15 > Tpersistence e.g. for 5 out of the 11 real-
world data sets described in Section 5.1 when using the four edge-
loss methods. The same inequality holds in seven out of the 11
data sets when using the two uniform-weighted triangle-loss
methods. For all of the synthetic data described in Sections 5.2
and 5.3, we have Tp

• >Tpersistense when using all eight optimization
programs. Therefore, the computational cost of optimizing a basis
of cycle representatives generally exceeds the cost of computing
such a basis.

This somewhat surprising result highlights the
computational complexity of the algorithms used both to
compute persistence and to optimize generators. A common
feature of both the persistence computation and linear
optimization is that empirical performance typically outstrips
asymptotic complexity by a wide margin; the persistence
computation, for example, has cubic complexity in the size of
the complex, but usually runs in linear time. Thus, worst-case

TABLE 1 | Summary of the experimental results of the data sets from Otter et al. (2017) as described in Section 5.1. The rows include the ambient dimension, number of
points, the number of cycle representatives in H1, and the time (measured in seconds) it took to compute persistent homology for each data set. We also include the
computation time taken to optimize the set of cycle representatives under six different optimization problems, and computation time of two different implementation choices
for the triangle-loss optimal cycles: building the full z2 boundary matrix once and extracting the part needed, or constructing part of the z2 boundary matrix for each cycle
representative. In this table, T stands for computation time measured in seconds with subscripts indicating the type of the optimal cycle and superscripts indicating
whether the programwas solved using linear programming (NI) or integer programming (I). The time taken to construct the input to the optimization problem is included in
the optimization time for edge-loss minimal cycle representatives, but is excluded and separately listed in the last two rows for the triangle-loss minimal cycle
representatives. For triangle-loss cycles, we were able to compute 115 out of the 117 cycle representatives for the Genome data set and 52 out of 57 cycle
representatives for the H3N2 data set due to memory constraints. The numbers in the parenthesis represent the other optimization statistics corresponding to the
triangle-loss optimal cycles wewere actually able to compute. The last two rows compare two ways of building the input z2[:, F̂ 2]matrix to the triangle-loss optimal cycle
program. The penultimate row records the time of building the entire z2 matrix once and then extracting columns born in the interval [bi ,di] for each representative. The
last row records the total time to iteratively build the part of the boundary matrix z2[:, F̂ 2] for each cycle representative.

Klein Vicsek C.elegans HIV Genome Fractal R Network House Senate Drag H3N2

Ambient dimension 3 3 202 673 688 259 300 261 60 3 1,173
# Points 400 300 297 1,088 1,397 512 379 445 103 1,000 2,722
# Representatives 257 149 107 174 117 (115) 438 7 126 12 311 28 (26)
Tpersistence 100.97 129.39 5.14 728.51 967.61 143.07 12.18 9.62 0.10 1,053.53 71,081.77

Edge-loss persistent homological cycle representatives (Eq. 14)
TI
E-Len 16.01 8.20 19.64 466.85 656.05 150.46 0.17 63.93 0.31 45.14 4,732.59

TNI
E-Len 11.28 6.61 16.07 403.63 491.69 86.95 0.13 48.65 0.22 34.73 4,540.55

TI
E-Unif 14.59 9.09 19.22 473.82 689.51 119.94 0.23 63.34 0.33 45.51 4,714.90

TNI
E-Unif 11.38 5.55 15.63 404.95 492.66 83.40 0.12 48.88 0.22 33.88 4,547.37

Edge-loss filtered homological cycle represnetatives (Eq. 8)
TI
E-Len 16.93 8.64 20.41 468.22 1,144.17 155.08 0.17 62.20 0.30 67.77 2,999.24

TNI
E-Len 10.29 5.51 16.15 403.74 973.15 88.66 0.13 48.24 0.22 50.25 2,829.12

TI
E-Unif 15.14 8.32 19.76 476.84 1,191.44 142.4 0.24 61.82 0.31 68.63 2,937.16

TNI
E-Unif 11.07 5.63 16.23 406.97 981.72 87.59 0.12 48.11 0.22 54.05 2,833.06

Triangle-loss persistent homological cycle representatives (Eq. 15)
TI
T-Unif 316.33 24.52 657.53 25,402.56 16,379.86 20,440.33 2.91 234.05 0.29 384.91 39,140.67

TNI
T-Unif 154.36 19.18 540.06 23,260.12 14,535.42 18,279.82 2.47 206.63 0.18 277.93 36,401.50

T Build all 2.16 0.32 4.88 268.57 — 138.46 0.06 6.23 0.03 5.94 —

Total T build part 9.18 3.51 28.47 1688.10 415.79 917.42 0.28 45.02 0.05 106.64 1,236.80

15Including the time of constructing the input to the optimization programs.
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complexity paints an incomplete picture. Moreover, naive “back
of the envelope” calculations are often hindered by lack of
information. For example, the persistence computation
(which essentially reduces to Gaussian elimination) typically
processes each of the m columns of a boundary matrix zn in
sequence. The polytope of feasible solutions for an associated
linear program (edge-loss or triangle-loss) may have many
fewer or many more vertices than m, depending on the
program; moreover, even if the number of vertices is very
high, the number of visited vertices (e.g., by the simplex
algorithm) can be much lower. Without knowing these
numbers a priori, run times can be quite challenging to
estimate. Empirical studies, such as the present one, give a
picture of how these algorithms perform in practice.

6.1.2 Integral and Nonintegral Programs (TI vs.TNI)
In Tables 1 and 2, we observe that (TI > TNI), i.e., the total
computation time of optimizing a basis of cycle representatives
using an integer program exceeds the computation time using a
non-integer constrained program. Yet, TI and TNI are on the
same order of magnitude, for both edge-loss methods and
triangle-loss method.

Let rE-Unif � tIE-Unif
tNIE-Unif

, where tp• represents the computation time

for optimizing a single cycle representative. We define rE-Len and
rT-Unif similarly. We compute each for every cycle representative
for data described in Tables 1, 2. Let r• denote the average of r•
and σr• denote the standard deviation of r•. We have
rE-Unif � 1.49, σrE-Unif � 1.34, rE-Len � 1.55, σrE-Len � 1.38,
rT-Unif � 1.28, σrT-Unif � 1.14. Figures 6A,C,E plots r• using
scatter plots and Figures 6B,D,F displays the same data using
box plots. The vertical axis represents the ratio between the MIP
time and LP time of optimizing a cycle representative. The

horizontal axis in the scatter plots represents the computation
time to solve the LP. The red line in each subfigure represents the
horizontal line y � 1. As we can see from the box plots, the ratio
between the computation time of MIP and LP for most of the
cycle representatives (>50%) is around 1 and less than 2.
Although there are cases where the computation time of
solving an MIP is 108.70 times the computation time of
solving an LP, such cases happen only for cycle representatives
with a very short LP computation time.

6.1.3 Triangle-Loss Vs. Edge-Loss Programs TT-• vs.TE-•
We observe that the edge-loss optimal cycles are more efficient
to compute than the triangle-loss cycles for more than 60.11% of
the cycle representatives16. This aligns with our intuition
because for representatives with a longer persistence, the
number of columns in the boundary matrix z2[F 1, F̂ 2] grows
faster than that of z1[:,Q]. Consequently, the edge-loss
programs are feasible for all cycle representatives we
experiment with, whereas the triangle-loss technique fails for
six representatives due to the large problem size (with greater
than twenty million triangles born between the life span of those
cycle representatives).

6.1.4 Different Linear Solvers
The choice of linear solver can significantly impact the
computational cost of the optimization problems. We perform
experiments on length/uniform-minimal cycle representatives
using the GLPK (GNU Project, 2012; Gurobi Optimization,

TABLE 2 | Summary of the experimental results for the synthetic, randomly generated data sets described in Section 5.2 and Section 5.3. For each distribution, we sample
10 data sets each containing 100 points in ambient dimensions from 2–10. The computation time in this table averages the 10 random samples for each dimension and
distribution combination. The number of cycle representatives is totaled over the 90 samples for each distribution. The rows of this table are analogous to those of Table 1,
excluding the penultimate row of that table, as the time comparison is only done for the large real-world data sets.

Normal Gamma Logistic Exponential Erd}os-Rényi

Ambient dimension 2–10 2–10 2–10 2–10 NA
# Points 100 100 100 100 100
Total # representatives 4,815 3,706 4,456 3,788 34,214
Average Tpersistence (seconds) 2.80 2.12 2.01 2.63 2.20

Edge-loss persistent homological cycle representatives (Eq. 14)
Average total TI

E-Len 5.52 6.01 5.65 5.91 5.99
Average total TNI

E-Len 4.37 4.55 4.32 4.47 4.99
Average total TI

E-Unif 5.31 5.97 5.45 5.90 6.16
Average total TNI

E-Unif 4.08 4.58 4.23 4.51 4.87
Edge-loss filtered homological cycle representatives (Eq. 8)
Average total TI

E-Len 5.32 6.46 6.27 6.88 7.44
Average total TNI

E-Len 4.07 5.05 4.78 5.11 4.69
Average total TI

E-Unif 5.23 6.46 6.25 6.66 6.25
Average total TNI

E-Unif 4.17 4.94 4.61 5.29 4.64
Triangle-loss persistent homological cycle representatives (Eq. 15)
Average total TI

T-Unif 6.56 9.91 7.06 9.68 4.64
Average total TNI

T-Unif 5.24 7.99 5.79 7.75 4.49
Average total TI

T - Area 6.59 10.20 7.30 9.99 —

Average total TI
T-Area 5.19 7.89 5.80 7.57 —

Average total T build all 1.40 1.71 1.56 1.07 1.24
Average total T build part 3.51 1.54 1.61 1.56 0.85

16Obayashi (2018) proposes a few techniques for accelerating the triangle-loss
methods which we did not implement.
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2020) linear solvers on 90 data sets drawn from the normal
distribution with dimensions from 2 to 10 with a total of 4, 815
cycle representatives. The median of the computation time ratio
between using the GLPK solver and Gurobi solver is 2.22 for
Program EdgeNIUnif , 1.68 for Program EdgeIUnif , 2.28 for Program

EdgeNILen, and 1.73 for Program EdgeILen, and the computation time
using the GLPK solver can be 30 times larger than the
computation time using the Gurobi solver for some cycles, see
figure in the Supplementary Material. Therefore, we use the
Gurobi solver in all other analyses in this paper.

FIGURE 6 | Ratio between the computation time of solving an integer programming problem (Programs Tri IUnif, Edge
I
Len, Edge

NI
Unif) and the computation time of solving a

linear programming problem (Programs TriNIUnif, Edge
NI
Len, Edge

NI
Unif) for all of the cycle representatives fromdata sets described inSections 5.1, 5.2 and 5.3. Subfigures (A) (C)

(E) plot the data using scatter plots and subfigures (B) (D) (F) show the samedata using box plots. The vertical axis represents the ratio between the integer programming time
and linear programming time of optimizing a cycle representative and the horizontal axis represents the computation time to solve the linear program. The red line in each
subfigure represents the horizontal line y � 1, where the time for each optimization is equivalent. As we can see from the box plots, the ratio between the computation time of
integer programming and linear programming for most of the cycle representatives (>50%) center around 1.
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6.2 Performance of Acceleration
Techniques
6.2.1 Edge-Loss Optimal Cycles
As discussed in Section 4.4, we accelerate edge-loss problems by
replacing z2[:,Q] with the column basis submatrix of z2[:, Q̂].
We further reduce the size of z2[:, Q̂] by only including the rows
corresponding to 1-simplices born before the birth time of the
cycle, denoted as z2[R, Q̂]. We perform experiments on a small-
sized data set (Senate) that consists of 103 points in dimension 60
and a medium-sized data set (House) that contains 445 points in
dimension 261. In Table 3, we report the computation time of
solving the optimization problems in Programs EdgeNIUnif ,
EdgeIUnif , Edge

NI
Len, and EdgeILen using these three techniques of

varying the size of the input boundary matrix. The results align
with intuition that the optimizations are faster with fewer input
variables, and thus, the third implementation is the most efficient
among the three.

6.2.2 Triangle-Loss Optimal Cycles
As discussed in Section 4.4, there are also multiple approaches to
creating the input to the triangle-loss problems. To recap, we
restrict the boundary matrix z2 to z2[F 1, F̂ 2] for a particular
cycle representative xi. We can do so in various ways: 1)

zeroing out the columns of z2 not in F̂ 2 but maintaining
the original size of the boundary matrix, 2a) building the entire
boundary matrix z2 once and then deleting the columns not in
F̂ 2 for each representative, 2b) building the columns in F̂ 2

iteratively for each representative, and 3a/b) in conjunction
with 2a) or 2b) respectively, reducing the rows of the boundary
matrix of z2 to only include the rows born before the death
time of the cycle F 1.

In Table 3, we summarize the computation time of solving
Programs TriNIUnif and Tri IUnif to find triangle-loss optimal
cycles with three different sized boundary matrices as input:
1) zeroing out, 2b) deleting partial columns, and 3b) deleting
partial rows and columns. Note that 2a) and 2b) both result
in the same boundary matrix z2[:, F̂ 2]. We again use the
Senate and House data sets for analysis. We see that
deleting partial rows and columns is the most efficient
among the three implementations, which again matches
intuition that reducing the number of variables accelerates
the optimization problem.

We also ran experiments on the real-world data sets to compare
the timing of building z2[F 1, F̂ 2] via methods 3a) and 3b) and
summarize the results in the last two rows of Table 1. We find that
approach 3a), where we build the entire matrix z2 and then delete
columns for each cycle representative, is in general faster than
approach 3b), where the boundary matrix z2[F 1, F̂ 2] is iteratively
built for each representative. However, this latter approach can be
more useful for large data sets, whose full boundary matrix z2
might be too large to construct. For example, building the full
boundarymatrix for theGenome data set caused Julia to crash due
to the large number of 2-simplices (453, 424, 290 triangles for the
Genome data set and 3, 357, 641, 440 triangles for the H3N2 data
set). Whereas, by implenting 3b) where we rebuild a part of the
boundary matrix for each representative, we were able to optimize
115 out of the 117 cycle representatives for the Genome data set
and 52 of 57 cycle representatives for the H3N2 data set.

6.3 Coefficients of Optimal Cycle
Representatives in Data Sets From
Section 5.1 and Section 5.2
As discussed in Section 3.6, the problem of solving an ℓ0

optimization is desirable for its interpretability but doing so is
NP-hard (Tahbaz-Salehi and Jadbabaie, 2010). Often, ℓ0

optimization is approximated by an ℓ1 optimization problem,
which is solvable in polynomial time. If the coefficients of a
solution of the ℓ1 problem are in {-1, 0, 1}, then it is in fact an ℓ0

solution to the restricted optimization problem where we require
solutions to have entries in {-1, 0, 1} (Escolar and Hiraoka, 2016;
Obayashi, 2018).

We find that 99.50% of the original, unoptimized cycle
representatives obtained from data sets described in Section
5.1 and 99.91% of the unoptimized cycle representatives
obtained from data sets described in Section 5.2 have
coefficients in {-1, 0, 1}. All unoptimized cycle representatives
turned out to have integral entries.

We then systematically check each solution of the eight
programs EdgeNIUnif , Edge

I
Unif , Edge

NI
Len, Edge

I
Len, Tri

NI
Unif , Tri

I
Unif ,

TABLE 3 | Computation time of three differently sized input boundary matrices to
edge-loss and triangle-loss methods. The superscripts denote whether the
program requires an integral solution or not, and the subscripts indicate the type of
optimal cycle. All time is measured in seconds. We perform experiments on a
small-sized data set (Senate) that consists of 103 points in dimension 60 and
a medium-sized data set (House) that contains 445 points in dimension 261.
For edge-loss methods, we consider three implementations to solve these
optimization problems: using the full boundary matrix z2, using the basis
columns and all rows z2[:, Q̂], and using the basis columns and deleting rows
corresponding to edges born after the birth time of the cycle z2[R, Q̂]. For
triangle-loss methods, we consider three approaches to solve these
optimization problems: zeroing out the columns in the boundary matrix
outside of [bi ,di] denoted as z2zero , deleting columns outside of this range
z2[:, F̂ 2], and deleting both columns outside of [bi ,di] and rows born after di

denoted z2[F 1 , F̂ 2]. The House data set was too large to implement the first
method.

Edge-loss Optimal Cycles
(Eq. 14)

T ›2 ›2[:, Q̂] ›2[R, Q̂]

Small Data Set (Senate) TNI
E-Unif 1.06 1.03 0.41

TI
E-Unif 1.25 1.23 0.60
TNI
E-Len 1.05 1.05 0.41

TI
E-Len 1.23 1.19 0.65

Medium Data Set (House) TNI
E-Unif 184.70 122.72 47.10

TI
E-Unif 188.88 147.27 64.64
TNI
E-Len 184.41 121.80 46.02

TI
E-Len 193.01 146.46 63.87

Triangle-loss Optimal Cycles
(Eq. 15)

T z2zero z2[:, F̂ 2] z2[F 1 , F̂ 2]

Small Data Set (Senate) TNI
T-Unif 21.37 0.64 0.18

TI
T-Unif 24.51 0.86 0.29

Medium Data Set (House) TNI
T-Unif — 297.34 203.63

TI
T-Unif — 321.31 234.05
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and TriNIArea, Tri
I
Area across all data sets and all optimal cycle

representatives from data discussed in Sections 5.1 and 5.2,17 found
byAlgorithms 1, 2 and the program in Eq. 8 to see if the coefficients
are integral or in {-1, 0, 1}. We analyze the 18, 163 optimal cycle
representatives and find the following consistent results.

All optimal solutions to the program in Eq. 8 (edge-loss
minimization of filtered cycle bases) and all but one of the
solutions returned by Algorithm 1 (edge-loss minimization of
persistent cycle bases) had coefficients in {-1, 0, 1}; see the table
in the Supplementary Material for details. The exceptional
representative xNIE-Unif occurred in the C.elegans data set, with
coefficients in {-0.5, 0, 0.5}. It corresponds to one of only a few
cases where two intervals with equal birth and death time occurwithin
the same data set; see Section 6.6. An interesting consequence of these
fractional coefficients is that here, unlike all other cycle representatives
from data discussed in Section 5.1 and Section 5.2, the ℓ0 norm and
ℓ1 norm differ. This accounts for the sole point that lies below the
y � 1 line in the first column of row (B) in Figure 8.

On the one hand, this exceptional behavior could bear
some connection to Algorithm 1. Recall that Algorithm 1
operates by removing a sequence of cycles from a cycle basis,
replacing each cycle with a new, optimized cycle on each
iteration (that is, we swap the j + 1th element of Zj with an
optimized cycle x in order to produce Zj+1). Replacing optimized
cycles in the basis is key, since without replacement it would be
possible in theory to get a set of optimized cycles that no longer form
a basis. We verified that if we modify Algorithm 1 to skip the
replacement step, we achieve {-1, 0, 1} solutions for the exceptional
C.elegans cycle representative (for the other repeated intervals we
obtain the same optimal cycle with and without the replacement).
On the other hand, we find that even with replacement the GLPK
solver obtains a solution with coefficients in {-1, 0, 1}. Thus, every
one of the cases considered produced {-1, 0, 1} coefficients for at
least one of the two solvers, and the appearance of fractional
coefficients may be naturally tied to the specific implementation
of the solver used.

When solving the integral triangle-loss problem by Algorithm
2, we obtain two solutions whose boundaries x � z2v have coefficients
in {-1,0,1,2} for two different cycle representatives from the logistic
distribution data set. However, the corresponding solutions v of these
cycle representatives do have coefficients in {-1,0,1}.

The surprising predominance of solutions in {-1, 0, 1}
suggests that in most cases, the modeler can reap both the
computational advantage of ℓ1 solutions and the theoretical
and interpretability advantages of ℓ0 solutions

18 by solving an
ℓ1 optimization problem. Further, we find that the optimum
cost is the same whether we require an integer solution or
not for more than 99.97% of solutions to Program EdgeLen,
100% of solutions to EdgeUnif , and 100% of solutions to TriUnif .
Thus, the modeler can drop the integral constraint to save

computation time while still being able to achieve an integral
solution in most cases.

6.4 Comparing Optimal Cycle
Representatives Against Different Loss
Functions
We compare the optimal cycle representatives against different
loss functions to study the extent to which the solutions produced
by each technique vary. We consider two loss functions on an H1

cycle representative x ∈ Z1(K):
LE-Len(x) � ∑

σ ∈supp(x)
Length(σ),

where Length(σ) is the distance—as designated by the metric d
used to define the VR complex—between the two vertices of a 1-
simplex σ, and

LE-Unif (x) � ‖x‖0 �
∣∣∣∣supp(x)∣∣∣∣,

the number of 1-simplices (edges) in a representative.
We also consider two loss functions on 2-chains v ∈ C2(K),

namely area-weighted loss:

LT-Area(v) � ∑
τ ∈ supp(v)

Area(τ),

where Area(τ) is the area of a 2-simplex as computed by Heron’s
Formula, and uniform-weighted loss

LT-Unif (v) � ‖v‖0 �
∣∣∣∣supp(v)∣∣∣∣.

Remark 6.1. These weighted ℓ0 loss functions differ from the
objective functions used in the optimization problems presented
in Section 4, which measure weighted ℓ1 norm. However,
weighted ℓ0 norm and weighted ℓ1 norm agree on solutions
with {-1, 0, 1} coefficients, and (as reported in Section 6.3) nearly
all cycle representatives for Sections 5.1 and 5.2 data satisfy this
condition, both pre- and post-optimization.In the special case
where supp(x) determines a simple closed polygonal curve c with
vertices (p1, q1), . . . , (pn, qn) ∈ R2, we also use the Surveyor’s
Area Formula (Braden, 1986) to quantify area of X as

LSur-Area(c) �
1
2

∣∣∣∣∣∣∣∣∣∑
n

i�1
piqi+1-pi+1qi

∣∣∣∣∣∣∣∣∣,

where, by convention, pi+1 � p1 and qi+1 � q1. We evaluate this
function only when (i) the ambient point cloud of the VR
complex is a subset of R2, b) supp(x) forms a graph-theoretic
cycle when regarded as a subset of edges in the combinatorial
graph formed by 1-skeleton of K, and 3) no pair of distinct closed
line segments intersect one another.
In the case when we compute the loss function of a

corresponding optimal solution, we use the notation for the
cost Cp

• :� L•(xp•) to an edge-loss problem that finds optimal
solution xp• , and C

p
• :� L•(vp•) to a triangle-loss problem that finds

optimal solution vp• . For instance, C
NI
E-Unif � LE-Unif (xNIE-Unif ). We

will also compute the loss functions of optimal solutions from
differing optimizations. For instance, LE-Len(xNIE-Unif ), and in that
case, we do not use the Cp

• notation.

17We discuss the coefficients of the Erd}os-Rényi complexes of Section 5.3 in
Section 6.7.
18Recall that, in the current discussion, ℓ0 optimality refers to the restricted integer
problem where coefficients are constrained to lie in {-1, 0, 1}. The unrestricted
problem (about which we have nothing to say) may have quite different properties.
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Figure 7 shows an example of various optimal cycle representatives
obtained from Programs EdgeNIUnif, Edge

NI
Len, Tri

NI
Unif, and TriNIArea on an

example point cloud drawn from the normal distribution inR2. In this
example, solutions obtained fromAlgorithm1 and the program inEq.
8 are the same. Each subfigure is labeled by program in the upper left
corner. The values of different loss functions evaluated on each optimal
representative appear in the upper right corner. We do not compute
LT-Unif or LT-Area of the optimal edge-loss minimal cycle
representatives, as no bounding 2-chain for this 1-cycle is specified
in the optimization.19 We observe that various notions of optimality
lead to differing cycle representatives, yet each solution to an
optimization problem minimizes the loss function it is intended to
optimize. This will not always be the case, as we will see momentarily.
Figure 8 reports ratios on the losses LE-Unif , LE-Len, and

LSur-Area20 for the eight PrsHCB optimization problems detailed
in Section 4 as well as the four edge-loss FCB problems from the
program in Eq. 8, evaluated on the data from Sections 5.1 and 5.2.
These ratios suggest that the uniform-weighted and length-
weighted edge-loss cycles do minimize what they set out
to minimize, namely, the number of edges and the total length,
respectively. We also observe that intuitively the less-constrained
solutions to the FCB program in Eq. 8 can have a lower cost than
the more-constrained solutions to the PrsHCB program in Eq. 14.

We also see that the edge-loss-minimal cycles have similar loss in
terms of length and number of edges (LE-Len and LE-Unif ) whereas the
triangle-loss-minimal cycles can have larger losses (LE-Len(xT-Unif )
and LE-Unif (xT-Unif )). We find that 63.28% of the LE-Unif minimal
cycle representatives are also LE-Len minimal while 99.66% of the
LE-Len minimal cycle representatives are also LE-Unif minimal across
all cycle representatives from all data sets for PrsHCB cycles.
Similarly, we find that 61.31% of the LE-Unif minimal cycle
representatives are also LE-Len minimal while 99.32% of the LE-Len
minimal cycle representatives are also LE-Unif minimal across all cycle
representatives from all data sets for FCB cycles. This suggests that
modelers can often use the length-weighted minimal cycle to
substitute the uniform-weighted minimal cycle. However, the
triangle-loss cycles can potentially provide very different results.
Counterintuitively, the LT-Area optimal cycle representativemight

not be the representative that encloses the smallest surveyor’s area.
As shown in Figure 8, we observe that 15.55% of xNIE-Unif , 13.14% of
xIE-Unif , 23.59% of xNIE-Len, and 23.59% of xIE-Len for the cycles from
PrsHCB using the program in Eq. 14 have an area smaller than that
of the triangle-loss area-weighted optimal cycle xNIT-Area. Similarly,
15.55% of xNIE-Unif , 12.87% of xIE-Unif , 24.53% of xNIE-Len, and 24.53%
of xIE-Len for the cycles from FCB using the program inEq. 8 have an
area smaller than that of the triangle-loss area-weighted optimal
cycle xNIT-Area. Lastly, 3.22% of xIT-Unif , 2.81% of xNIT-Unif , and 2.95%
of xIT-Area for the cycles found using the program in Eq. 15 have an
area smaller than that of the triangle-loss area-weighted optimal
cycle xNIT-Area.

In Figure 9, we provide an example illustrating why the triangle-
loss area-weighted optimal cycle, solving Programs TriNIArea, or

TriIArea, might not be the cycle that encloses the smallest surveyor’s
area. Another reason why the area-weighted triangle-loss cycles could
have a larger enclosed area is that in the optimization problems, the
loss function is the sum of the triangles the cycle bounds, not the real
enclosed area. Therefore, the area-weighted triangle-loss cycle will
have the optimal area-weighted optimal cost, but not necessarily the
smallest enclosed area.

6.5 Comparative Performance and
Precision of LP Solvers
Our experiments demonstrate that the choice of linear solver may
impact speed, frequency of obtaining integer solutions, and frequency
of obtaining ℓ0 optimal solutions. While these particular results are
subject to change due to regular updates to each platform, they
illustrate the degree to which these factors can vary.

As discussed in Section 6.1, the GLPK solver performs much
slower than the Gurobi solver in an initial set of experiments. The
GLPK solver also finds non-integral solutions when solving a linear
programming problem in Programs EdgeNIUnif , and EdgeNILen more
often than the Gurobi solver. On the same set of experiments as in
Section 6.1, when finding the FCB using the program in Eq. 8,
9.74% of the edge-loss length-weighted minimal cycle
representatives have non-integral entries, and 8.32% of the
edge-loss uniform-weighted minimal cycle representatives have
non-integral entries when using the GLPK solver, whereas when
using the Gurobi solver, 0.12% of the length-weighted minimal
cycle representatives have non-integral entries, and 0.04% of the
uniform-weightedminimal cycle representatives have non-integral
entries. For the length-weighted minimal cycle representatives, the
non-integral solutions differ from an ℓ0 optimal solution by a
margin of machine error with both solvers. However, for the
uniform-weighted minimal cycle representatives, the GLPK
solver has 1.83% of its non-integral solutions differing from an
ℓ0 optimal solution by a margin not of machine epsilon, and the
Gurobi solver has 0.02% of its non-integral solutions differing from
an ℓ0 optimal solution by a margin greater than machine epsilon.
For the GLPK solver, when solving Program EdgeNIUnif, instead of
finding an integral solution, it occasionally finds a solution with
fractional entries that sum to 1. For example, instead of assigning
an edge a coefficient of 1, it sometimes assigns two edges each with
a coefficient of 0.5. In that way, the solution is still ℓ1 optimal, but
no longer ℓ0 optimal. Thus, the choice of linear solver may affect
the optimization results.

6.6 Statistical Properties of Optimal Cycle
Representatives With Regard to Various
Other Quantities of Interest
6.6.1 Support of a Representative Forming a Single
Loop in the Underlying Graph
The support of the original cycle, supp(xOrig)4S1(K), need not be
a cycle in the graph-theoretic sense. Concretely, this means that the
nullity, p, of column submatrix z1[:, xOrig] may be strictly greater
than 1. We refer to p informally as the “number of loops” in xOrig.

We are interested in exploring how often the support of
an original cycle representative forms a single loop in

19We formulated anObayashi-style linear programsimilar toProgram inEq. 15 to compute
the volume of edge-loss optimal cycles but in many cases it had no feasible solution.
20Recall, we only compute LArea on the 2-dimensional distribution data.
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the underlying graph. We analyze each of the 360 synthetic data
sets of various dimensions and distributions discussed in Section
5.2 as well as the 100 Erd}os-Rényi random complexes discussed
in Section 5.3 and display the results in Figure 10. We find that
the majority of the original cycle representatives have one loop.
After optimizing these cycle representatives with the edge-loss
methods, we verify that all FCB and PrsHCB optimal cycles only
have one loop, whereas 0.13% of the triangle-loss cycles have two
loops. However, we observe that 91.93% of the optimal cycle
representatives for Erd}os-Rényi complexes have 1 loop, 5.81%
have two loops, and 2.14% have more than two loops, with 15 as
the maximum number of loops.

As shown in Figure 11 the reduction in size of

the original cycle, formalized as C*
•

L•(xOrig ), correlates closely with

the reduction in the number of loops by the optimization.

6.6.2 Overall Effectiveness of Optimization
(L•(x*•) vs. L•(xOrig))
We compare the optimal representatives against the original cycle
representatives21 with respect to edge-loss functions LE-Unif and
LE-Len. As shown in Figure 12, we find that the optimizations

are in general effective in reducing the size of the cycle
representative, especially for representatives with larger size.
On each of the subfigures, the horizontal axis is the size of the
original cycle representative and the vertical axis is the ratio
between the loss of each optimal representative and the loss of the
original representative:

Cp
•

L•(xOrig).

The average ratio
CNI
E-Unif

LE-Unif (xOrig ) is 83.17%, aggregated over cycle
representatives obtained from data described in Section 5.1 and
90.35% aggregated over cycle representatives obtained from data
described in Section 5.2 for cycles obtained from the program in

Eq. 14. The average ratio
CNI
E-Len

LE-Len(xOrig ) is 87.02% over

cycle representatives obtained from data described in
Section 5.1 and 90.41% over cycle representatives obtained
from data describedra Section 5.2 for cycles obtained

from the program in Eq. 14. The average ratio
CNI
T-Unif

LT-Unif (xOrig ) is

88.34% over cycle representatives obtained from data described in
Section 5.1 and 95.54% over cycle representatives obtained from
data described in Section 5.2 for cycles obtained from the program
in Eq. 15.

FIGURE 7 | Examples of different optimal cycles and cost against different loss functions using a point cloud of 100 pointswith ambient dimension two randomly drawn
from a normal distribution. The upper left corner of each subfigure labels the optimization algorithm used to optimize the original cycle representative. The upper right corner of
each subfigure records the different measures of the size of the optimal representative. Blue text represents the measure an algorithm sets out to optimize.

21The remainder of this subsection excludes the Erd}os-Rényi cycles.
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6.6.3 Comparing Solutions to Integral Programs and
Non-Integral Programs (xNI• vs. xI•)
Among all cycle representatives found by solving the program in
Eq. 14, 66.38% of them have xNIE-Unif � xIE-Unif , and 92.52% of
them have xNIE-Len � xIE-Len. We find xNIT-Unif � xIT-Unif for 80.44%
of the cycle representatives and xNIT-Area � xIT-Area for 100% of the
cycle representatives when using the triangle-loss program in Eq.
15. Thus, the presence or absence of integer constraints rarely
impacts the result of an area- or length-weighted program, but
often impacts solutions of a uniform-weighted program. We saw
in Section 6.3 that essentially all solutions had coefficients in

{-1, 0, 1} regardless of integer or non-integer constraints. As such,
we conjecture that the higher rate of different solutions in the
uniform-weighted problems could result from a larger number of
distinct optimal solutions and be a feature of particular choice of
solution selected by the linear solvers, rather than the non-
existence of a particular integer solution.

6.6.4 Cycle Representative Size for Different
Distributions and Dimensions
Figure 13 provides a summary of the size and number of cycle
representatives found for each distribution data set described in

FIGURE 8 | Box plots of the ratios between (A) LE-Len(xp•) and CNI
E-Len (B) LE-Unif(xp•) and CNI

E-Unif , and (C) LSur-Area(xp•) and LSur-Area(xNIT-Area). Within each row, the
denominator is fixed across all three columns, and corresponds to the PrsHCB cycles which are solutions to Programs EdgeNIUnif row (A), EdgeNILen row (B), or TriNIArea row
(C). The horizontal axis of each subplot is the type of optimal representative. The cost of the optimal solutions to the programs inEqs 8, 14, and Program TriNIArea was equal
regardless of the presence of an integer constraint in nearly all examples (as discussed inSection 6.3), resulting in two columns in each row having ratio 1. The data
used in (A) and (B) aggregate over all cycle representatives from data described in Sections 5.1 and 5.2. The data used in (C) aggregate the 746 cycle representatives
from 40 point clouds with ambient dimension of two from data described in Section 5.2. We observe that some edge-loss and uniform-weighted-triangle-loss optimal
cycles have a surveyor’s area strictly smaller than the denominator in row (C); refer to Figure 8 and Section 6.4 to see why this may happen. It is possible for LE-Unif (xp•)
to be strictly smaller thanCNI

E-Unif because the cycle x
NI
E-Unif is calculated to be optimal relative to ℓ1 loss, not LE-Unif , which is ameasure of ℓ0 loss.We observe this behavior

in the first plot on the second row, discussed in detail in Section 6.3.
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Section 5.2. We observe that there tend to be more and larger
(with respect to ℓ0 norm) representatives in higher dimensions.

6.6.5 Duplicate Intervals in the Barcode
Of all data sets analyzed, only Klein and C.elegans have barcodes
in which two or more intervals had equal birth and death times
(that is, bars with multiplicity ≥ 2). Among the 107 total intervals
of the C.elegans data set, there are 75 unique intervals, 10 intervals
with multiplicity two, and one interval each with multiplicity three,
four, and five. The duplicate bars in the C.elegans data set are
noteworthy for having produced the sole example of an optimized
cycle representative xNIE-Unif with coefficients outside {-1, 0, 1} (in
particular, it had coefficients in {-0.5, 0.5}).

Among the 257 total intervals of the Klein data set, there are 179
unique intervals, 1 interval that is repeated twice, and two intervals

that are repeated 38 times. For the Klein data set, if we replace the
distance matrix provided by Otter et al. (2017) with the Euclidean
distance matrix calculated using Julia (the maximum difference
between the two matrices is on the scale of 10-5), we obtain only
one interval that is repeated twice. This indicates that duplicate
intervals are rare in practice, at least in dimension 1.

6.6.6 Edge-LossCycle Representatives FCBvs.PrsHCB
We find that for 84.52% of EdgeNIUnif , 90.84% of EdgeIUnif , 93.49% of
EdgeNILen, and 93.49% ofEdgeILen, the FCB edge-loss cycle representatives
found by the program in Eq. 8 and the PrsHCB edge-loss cycles
from the program in Eq. 14 are the same, i.e. the ℓ1 norm of their
difference is 0. As mentioned in Remark 3.1, the FCB cycles may
not have the same death time as xOrig . For the real-world data sets,
6.72% of the (EdgeNILen) and (EdgeILen), 7.65% of the (EdgeNIUnif) and

FIGURE 9 | An example illustrating when the area enclosed by the triangle-loss area-weighted optimal cycle, solution to Program TriNIArea, can be larger than the area
enclosed by the edge-loss length-weighted minimal cycle, solution to Program EdgeNILen (A) is the original cycle of a representative point cloud in R2 drawn from the
normal distribution (B) is the length-weighted edge-loss optimal cycle (C) is the area-weighted triangle-loss optimal cycle, in this example, it is the same cycle as the
original cycle (D) is the area-weighted minimal cycle where the blue shaded area marks the triangle born at the death time of the cycle. Constraint Eq. 9 specifies
that the area-weighted optimal cycle must contain the 2-simplex born at the death time of the cycle. Therefore, this cycle must contain (a,d, f) because it was born at the
death time. The length-weighted minimal cycle does not have this constraint, and as such, can result in a smaller area.
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4.48% of (EdgeIUnif) have lifetimes different than xOrig . For the
randomly generated distribution data sets, 7.11% of the (EdgeNILen)
and (EdgeNILen), 8.06% of the (EdgeNIUnif) and 4.25% of (EdgeILen) have
lifetimes different than xOrig . All cycle representatives with lifetimes
different than xOrig have death time beyond that of xOrig .

6.7 Optimal Cycle Representatives for
Erd}os-Rényi Random Clique Complexes
We observe qualitatively different behavior in cycle representatives
from the Erd}os-Rényi random clique complexes. Among the 34, 214
cycle representatives from the 100 dissimilarity matrices found by
solving the programs in Eqs 14, 15, we find that 91.04% of the original
cycle representatives have entries in {-1, 0, 1} and 99.75% of the
original cycle representatives have integral entries. We have
3.89% of the length-weighted edge-loss representatives, 4.49%
of the uniform-weighted edge-loss representatives, and 3.52%

of the uniform-weighted triangle-loss representatives with entries
not in {-1, 0, 1}. We find 2.66% of the length-weighted edge-loss
representatives, 3.57% of the uniform-weighted edge-
loss representatives, and 1.58% of the uniform-weighted
triangle-loss representatives with non-integral entries when not
requiring integral solutions.

We find
LE-Unif (xNIE-Unif )
LE-Unif (xIE-Unif )

> 1 for 1.07% of the cycle representatives

and
LE-Len(xNIE-Len)
LE-Len(xIE-Len)

> 1 for 1.09% of the representatives. All such

representatives have entries outside of {-1, 0, 1} and involve some
fractional entries. An average of 96.75% of the nonzero entries in the
reduced boundary matrices are in {-1, 1}, 2.15% in {-2, 2}, and 0.27%
with an absolute value greater than or equal to 3.

Because of the non-integrality of some original cycle
representatives found by the persistence algorithm, we fail to
find an integral solution for 0.27% of the edge-loss
representatives and 0.11% of the triangle-loss representatives.

FIGURE 10 | (Rows 1–3) Number of loops in the original cycle representative aggregated by dimension (labeled by subfigure title) in the 360 randomly generated
distribution data sets discussed in Section 5.2 and (Row 4) same for the Erd}os-Rényi random complexes discussed in Section 5.3, where we bin cycle representatives
that have two to five loops, 6–10, loops, or more than 10 loops. The horizontal axis is the number of cycle representatives and the vertical axis is the number of loops in the
original representative. We observe that for the distribution data, an original cycle representative can have up to 5 loops in higher dimensions, and in general, it is
uncommon to find an original representative with multiple loops. However, we observe that 17.47% of the cycle representatives for Erd}os-Rényi complexes have more
than 1 loop, with a maximum number of 17 loops in a cycle representative.
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A partial explanation for this behavior can be found in the work of
(Costa et al., 2015). Here, the authors show that a connected two-
dimensional simplicial complex for which every subcomplex has fewer
than three times as many edges as vertices must have the homotopy
type of a wedge of circles, 2-spheres, and real projective planes. With
high probability, certain ranges of thresholds for the i.i.d. dissimilarity
matrices on which the Erd}os-Rényi random complexes are built
produces random complexes with approximately such density
patterns at each vertex. Thus, some of the persistent cycles are
highly likely to correspond to projective planes. Because of their
non-orientability, the corresponding minimal generators could be
expected to have entries outside of the range {-1, 0, 1}.

7 CONCLUSION

In this work, we provide a theoretical, computational, and empirical
user’s guide to optimizing cycle representatives against four criteria
of optimality: total length, number of edges, internal volume, and
area-weighted internal volume. Utilizing this framework, we
undertook a study on statistical properties of minimal cycle
representatives for H1 homology found via linear programming.
In doing so, we made the following four main contributions.

1. We developed a publicly available code library (Li and
Thompson, 2021) to compute persistent homology with
rational coefficients, building on the software package Eirene
(Henselman and Ghrist, 2016) and implemented and extended
algorithms from (Escolar and Hiraoka, 2016; Obayashi, 2018)
for computing minimal cycle representatives. The library
employs standard linear solvers (GLPK and Gurobi) and
implements various acceleration techniques described in
Section 4.4 to make the computations more efficient.

2. We formulated specific recommendations concerning procedural
factors that lie beyond the scope of the optimization problems
per se (for example, the process used to generate inputs to a
solver) but which bear directly on the overall cost of computation,
and of which practitioners should be aware.

3. We used this library to compute optimal cycle representatives for
a variety of real-world data sets and randomly generated point
clouds. Somewhat surprisingly, these experiments demonstrate
that computationally advantageous properties are typical for
persistent cycle representatives in data. Indeed, we find that we
are able to compute uniform/length-weighted optimal cycles for
all data sets we considered, and that we are able to compute
triangle-loss optimal cycles for all but six cycle representatives,
which fail due to the large number of triangles (more than 20
million) used in the optimization problem. Computation time
information is summarized in Table 1 and Table 2.
Consequently, heuristic techniques may provide efficient means to
extract solutions to cycle representative optimization problems across
a broad range of contexts. For example, we find that edge-loss
optimal cycles are faster to compute than triangle-loss optimal cycles
for cycle representatives with a longer persistence interval, whereas
for cycles with shorter persistence intervals, the triangle-loss cycle can
be less computationally expensive to compute.

4. We provided statistics on various minimal cycle representatives
found in these data, such as their effectiveness in reducing the
size of the original cycle representative found by the persistence
algorithm and their effectiveness evaluated against different loss
functions. In doing so, we identified consistent trends across
samples that address the questions raised in Section 1.
a. Optimal cycle representatives are often significant improvements
in terms of a given loss function over the initial cycle
representatives provided by persistent homology computations
(typically, by a factor of 0.3–1.0). Interestingly, we find that area-
weighted triangle-loss optimal cycle representatives can enclose a
greater area than length- or uniform-weighted optimal cycle
representatives.

b. We find that length-weighted edge-loss optimal cycles are also
optimal with respect to a uniform-weighted edge-loss function
upwards of 99% of the time in the data we studied. This
suggests that one can often find a solution that is both length-
weighted minimal and uniform-weighted minimal by solving
only the length-weighted minimal optimization problem.
However, the triangle-loss optimal cycles can have a
relatively higher length-weighted edge-loss or uniform-
weighted edge-loss than the length/uniform-weighted
minimal cycles. Thus, computing triangle-loss optimal cycles
might provide distinct information and insights.

c. Strikingly, all but one ℓ1 optimal representatives were also
ℓ0 optimal (that is, ℓ0 optimal among cycles taking
{0, 1, -1} coefficients; ℓ0 optimality among cycles taking
Z coefficients was not tested) in the real-world and
synthetic point cloud data. Thus, it appears that
solutions to the NP-hard problem of finding ℓ0 optimal
cycle representatives can often be solved using linear
programming in real data. In the Erd}os-Rényi random
complexes, qualitatively different behavior was found;
this may relate to the fact that spaces in this random

FIGURE 11 | Violin plot of the effectiveness of the optimization as a
function of the number of loops in the original cycle representative. Results are
aggregated over the data sets from Section 5.1 and Section 5.2. The x-axis
shows the size reduction in terms of number of loops, and the y-axis
shows the size reduction in terms of the length of the cycle. We see that in
general, the reduction in size of the original cycle mostly comes from the
reduction in the number of loops by the optimization.
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FIGURE 12 | The effectiveness of length-weighted and uniform-weighted optimization for the data sets inSections 5.1 and 5.2 in reducing the size of the original cycle
representative foundby the persistence algorithm. In each subfigure, the horizontal axis is the size of the original representative and the vertical axis is the ratio between the size
of the optimal representative and the size of the original representative. The uniform-weighted graphs appear more sparse because reductions in the cost LT-Unif(xOrig) can
only come in multiples of the reciprocal of the original length. The node size in the uniform-weighted graphs corresponds to the number of overlapping points.
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family contain non-orientable subcomplexes with high
probability.

Several questions lie beyond the scope of this text and merit
future investigation. For example, while the methods discussed in
Section 4 apply equally to homology in any dimension, we have
focused our empirical investigation exclusively in dimension one;
it would be useful and interesting to compare these results with
homology in higher dimensions. It would likewise be interesting
to compare with different weighting strategies on simplices, and
loss functions other than ℓ0 and ℓ1, e.g. ℓ2. Future work may also
consider whether the modified approach to the edge-loss
minimization program in Eq. 14 could be incorporated into
persistence solvers themselves, as pioneered in (Escolar and
Hiraoka, 2016). Unlike the programs formulated in this earlier
work, the program in Eq. 14 requires information about the death
times of cycles in addition to their births; typically this information is
not available until after the persistence computation has already
finished, so new innovations would probably be needed to make
progress in this direction.
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Contagion maps exploit activation times in threshold contagions to assign vectors in

high-dimensional Euclidean space to the nodes of a network. A point cloud that is the

image of a contagion map reflects both the structure underlying the network and the

spreading behavior of the contagion on it. Intuitively, such a point cloud exhibits features

of the network’s underlying structure if the contagion spreads along that structure, an

observation which suggests contagion maps as a viable manifold-learning technique.

We test contagion maps and variants thereof as a manifold-learning tool on a number

of different synthetic and real-world data sets, and we compare their performance

to that of Isomap, one of the most well-known manifold-learning algorithms. We find

that, under certain conditions, contagion maps are able to reliably detect underlying

manifold structure in noisy data, while Isomap fails due to noise-induced error. This

consolidates contagion maps as a technique for manifold learning. We also demonstrate

that processing distance estimates between data points before performing methods to

determine geometry, topology and dimensionality of a data set leads to clearer results

for both Isomap and contagion maps.

Keywords: dimensionality reduction, manifold learning, topological data analysis, persistent homology, contagion

1. INTRODUCTION

Manifold-learning techniques aim to identify low-dimensional manifold structure in high-
dimensional data (Lee and Verleysen, 2007). High-dimensional point-cloud data may represent
a large number of features on a collection of objects. Some of these features may be redundant
or irrelevant, thus giving the data lower-dimensional intrinsic structure. Alternatively, high-
dimensional point-cloud data with low-dimensional intrinsic structure may arise as a sample of
points from a low-dimensional manifold that is embedded in a high-dimensional space.

Consider, for instance, data points that lie on a plane in three-dimensional space. Principal
component analysis (PCA), a classical dimensionality-reduction technique (Sorzano et al., 2014),
can find the directions along which the data has maximum variance as well as the relative
importance of these directions. In the case of the plane embedded in three-dimensional space,
PCA returns three vectors: two of positive weight spanning the plane and one vector of zero
weight that is orthogonal to the plane. PCA can thus identify the plane underlying the ostensibly
three-dimensional data. More generally, consider data points that are concentrated around a
low-dimensional manifold (reflecting the underlying information) that is embedded in a high-
dimensional space. PCA is a linear dimensionality-reduction method: If the manifold is non-
linear, PCA is unable to detect the low-dimensional space underlying the data set. This is where
manifold-learning techniques (as a type of non-linear dimensionality reduction) can be effective.
The purpose of manifold learning is to uncover low-dimensional manifold structure of a data set in
a high-dimensional feature space, even if the structure of the data is curved.
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A common procedure for non-linear dimensionality
reduction is the following:

1. Create a network on the data points, such as by defining
an edge between any two nodes within some distance ǫ

(producing the ǫ-neighborhood graph) or by connecting each
point to its k closest neighbors (producing the k-nearest-
neighbor graph).

2. Define some notion of distance between data points based
on this network [e.g., shortest-path length for Isomap
(Tenenbaum et al., 2000)]. The aim is to approximate the
actual geodesic distance on the underlying manifold.

3. Map points to some space based on the pairwise distances.
Possible ways of doing this include the following: (a)
use a multidimensional scaling algorithm, which finds an
embedding that preserves pairwise distances as well as
possible; or (b) take distances to be coordinates in a space of
dimension equal to the number of data points [the approach
that contagion maps take as a manifold-learning technique
(Taylor et al., 2015)].

Many well-established manifold-learning techniques perform
poorly when faced with noisy data. Isomap, for instance, can
be very sensitive to noise. Consider, for example, a noisy point
sample on the Swiss roll (see e.g., Figure 2A). Noise can lead
to two points on adjacent sheets lying close together. The k-
nearest-neighbor graph might then have an edge that connects
the corresponding nodes (i.e., a “short-circuit error”), although
the points lie far apart in the intrinsic geometry. Consequently,
Isomap falsely considers the two points to be close, and it thus
fails as a manifold-learning technique in this case.

Contagion maps (Taylor et al., 2015) can circumvent
Isomap’s “short-circuit error” issue by exploiting the “social
reinforcement” phenomenon that characterizes threshold
contagions. When the threshold of a contagion is small enough
to allow spreading via a single edge, the associated contagionmap
can be viewed as a variant of Isomap and is similarly sensitive
to the type of noise described above. For larger thresholds,
however, a single errant edge in the k-nearest-neighbor graph
cannot carry a contagion, and, as a result, the contagion map
does not view the two points as close and performs well as a
manifold-learning technique. When a contagion on a network
spreads as a wavefront exclusively via edges between nodes that
are close together in the intrinsic geometry of the underlying
domain, we call this wavefront propagation (WFP). When it
spreads via edges that connect nodes that are far apart from
each other in the underlying domain, thereby creating new
contagion clusters in regions of the network that are far from
the previously infected regions, we call this appearance of
new clusters (ANC). If a contagion spreads predominantly
via WFP, then, intuitively, the point cloud that is the image
of the corresponding contagion map exhibits features of the
network’s underlying structure, and this has been confirmed
for particular classes of networks in Taylor et al. (2015) and
Mahler (2021). This recovery of underlying structure under
certain spreading dynamics suggests contagion maps as a
manifold-learning technique.

We use persistent homology, a method from topological
data analysis (Edelsbrunner and Harer, 2008), as well as more
established statistical techniques to perform manifold learning
based on contagion dynamics, and we compare this approach to
Isomap-type algorithms. One of the most common applications
of persistent homology is the task of recovering a manifold from
a random, potentially noisy sample of points (Carlsson, 2009).
This application illuminates the natural overlap of topological
data analysis with manifold learning. Both are designed to
find shape regardless of exact geometry (including measures
of curvature and length), and both aim to be robust to noise.
Traditionally, they differ in their respective approaches and, as
a result, in their ability to identify different types of structural
features. Persistent homology can, for example, identify a sphere
(by its topological features in dimensions 1 and 2), but not
a Swiss roll (as it has no non-trivial topological features). A
manifold-learning algorithm like Isomap, on the other hand, can
“unroll” the Swiss roll (under favorable conditions), but cannot
see that a sphere is a two-dimensional manifold: Isomap detects
a sphere’s lowest embedding dimension 3, but cannot see its
intrinsic 2-dimensional structure. In this article, we combine
the two approaches by processing our data via a manifold-
learning-type procedure first and then computing persistent
homology (along with some other measures) based on this
processed data.

The manifold-learning-type procedure that we use is based
either on activation times in a threshold contagion or on
shortest-path distances between nodes in a network built on
the given data. In both cases, we compare two different
approaches: We either pass the distance estimates directly
into a pipeline for analyzing dimensionality, topology, and
geometry, or we first process them to create points in high-
dimensional space, whose pairwise distances we then pass
into the same pipeline. We not only compare the contagion-
based approach to the Isomap-type one, but also examine
the effect of this pre-processing step on our results. We
find that the contagion-based approach proves successful in
many cases where the Isomap-type approach breaks down
and that the pre-processing step leads to clearer results
in general.

2. MATERIALS AND METHODS

The fundamental hypothesis that our algorithms are built
on is that our data come as samples from some underlying
submanifold of Rn, which we want to infer. To this end, we
perform variants of a procedure whose basic steps are as follows.

First, if a data set is given in the form of a point cloud, we
start by constructing a neighborhood graph (V ,E) based on this
point cloud. We do so by associating a set V of nodes to the
data points (denoting by i the node associated to point pi) and
defining the edge set E to build either (1) a k-nearest-neighbor
graph by connecting each point to its k closest neighbors, or (2)
an ǫ-neighborhood graph by connecting any two points that are
within ǫ from one another:
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1. Given some k ∈ N, we have (i, j) ∈ E if and only if pi is in the
set of the k nearest neighbors of pj or vice versa.

2. Given some ǫ ∈ R>0, we have (i, j) ∈ E if and only if
d2(pi, pj) ≤ ǫ.

In both types of neighborhood graph, one can either weight the
edges by the corresponding pairwise distances or treat the edges
as unweighted1.

If we are given data in the form of a network, we use this given
(weighted or unweighted) network instead.

Second, we calculate a notion of distance between points that
is aimed to be an estimate for the actual geodesic distance on the
underlying manifold. The idea is that only the pairwise Euclidean
distances between neighboring pairs of points approximate the
geodesic distances sufficiently, and that estimates for geodesic
distances between non-neighboring pairs of points can be
inferred from the distances between neighboring points by
“tracing” through the neighborhood graph.

The precise pairwise distances between adjacent points in
a neighborhood graph provide information that is relevant
to estimating the geodesic distances between non-neighboring
points. Unweighted neighborhood graphs forget this information
and thus tend to lead to less accurate approximations to the
geodesic distances. The loss of information from taking an
unweighted graph can be greater for k-nearest-neighbor graphs
than for ǫ-neighborhood graphs, because, in the latter case, the
pairwise distances are within a range that is capped by ǫ.

We examine dimensionality, topology, and geometry as
follows. We perform classical multidimensional scaling (MDS)
(Torgerson, 1958) based either on the dissimilarity measure
(i.e., activation times in the case of contagion-based algorithms,
and shortest-path lengths in the case of Isomap-type algorithms)
directly or on the Euclidean distances between points in high-
dimensional space whose coordinates are the distance estimates.
MDS aims to embed a point cloud in a given low-dimensional
vector space in a way that preserves given distances between
pairs of points as well as possible. It does so by minimizing a
cost function called “strain”: Given a matrix D =

(
dij

)
i,j∈I

of

pairwise distances, or “dissimilarities” (not necessarily satisfying
the defining properties of a metric), and some Euclidean target
space Y , MDS finds coordinate vectors

{
yi ∈ Y

}
i∈I

that minimize
the cost function

E = ‖τ (D)− τ (DY )‖L2 ,

where DY =
(
‖yi − yj‖2

)
i,j∈I

, ‖M‖L2 =
√∑

i,jM
2
ij, and

τ (M) = −HSH/2 with Sij = M2
ij and Hij = δij − 1/|I| (Mardia

et al., 1979).
MDS is a linear dimensionality-reduction technique when

applied to Euclidean distances. By applying it to sensible
approximations to the geodesic distances between data points, we
hope to recover potentially curved structure. In other words, we
hope to useMDS to achieve non-linear dimensionality reduction.

1Note that, as the “weights” in this graph are really distances, a small weight of an

edge indicates a strong connection between its incident nodes.

Given an embedding via MDS to Euclidean space
of dimension p, we calculate its residual variance
(Cox and Cox, 2010),

Rp = 1−
(
ρ(p)

)2
,

where ρ(p) is the Pearson correlation coefficient (Pearson,
1895) between the given pairwise distances

{
dij

}
i,j∈I

and the

corresponding pairwise Euclidean distances
{
‖yi − yj‖2

}
i,j∈I

between points in the embedding.
We determine the approximate embedding dimension P of

the data (according to the given pairwise distances) by finding
the smallest dimension such that the residual variance of the
embedding viaMDS to that dimension is less than 5%, that is,

P = min{p | Rp < 0.05}.2

In addition to these dimensionality considerations via MDS,
we analyze our data topologically by computing the persistent
homology of the Vietoris–Rips filtration (Ghrist, 2008) based
either on the dissimilarity measure directly or on the Euclidean
distances between points in the associated high-dimensional
point cloud. When a base-geometry is given, we also examine
our data geometrically through a Pearson correlation coefficient
between that base-geometry and the given dissimilarity measure.
Note that such a known base-geometry to compare our processed
data to is not usually given in manifold-learning applications.
The measure is, however, useful when testing the algorithm on
benchmark data.

When analyze the point cloud given by the columns of D, we
are essentially applying our methods to a dissimilarity matrix that
encodes the pairwise distances between the column vectors of D.
We denote the operator that maps D to that matrix as

pdist : Mm,n (R) −→ Mn,n (R) ,

with
(
pdist(D)

)
ij
= d2(D∗i,D∗j).

The methods for analyzing dimensionality, topology, and
geometry described above were first used in tandem in Taylor
et al. (2015) on contagion maps. That is, they were used after
applying pdist to a matrix holding the activation times in multiple
realizations of a threshold contagion.

2.1. Contagion Maps
First, given point-cloud data, we obtain a neighborhood graph
as described above. If the given data is a network, we work with
this network directly instead. We denote the graph by (V ,E), the
number of nodes (i.e., the number of points in the case of point-
cloud data) by |V| = N, and the graph’s binary adjacency matrix
byA. In order to get an estimate for the intrinsic distance between
pairs of points, we then consider a threshold contagion on this
network. We denote the state of node i ∈ V at time t by ηi(t),
which takes the value 1 if it is active and the value 0 if it is inactive.

2In practice, we put a cap of 100 on P, so if the approximate embedding dimension

is 100 or larger, we record it as 100.
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Given a set of seed nodes consisting of a node j ∈ V together with
its immediate neighbors

S(j) = {j} ∪ {k | Ajk 6= 0}

that are active at time t = 0, and a threshold T, we update
node states synchronously in discrete time steps according to the
following rule. If ηi(t) = 1, then ηi(t + 1) = 1. If ηi(t) = 0, then

ηi(t + 1) = 1 if and only if fi > T ,

where fi =
1

d

∑

k∈V

Aikηk(t), and d is the node degree.

Given a network (V ,E) and a threshold T, a contagion seed
yields a deterministic process, which we call a realization of the
contagion model with T on (V ,E). The activation time of node i
in the realization seeded around node j is the smallest t such that

ηi(t) = 1, and we denote it by x
(i)
j . If node i is never activated in

the realization that is seeded around node j ∈ V , we set x
(i)
j = 2N

(i.e., larger than any actual activation time).
One can now work directly with this set of activation times,

that is, treat the activation times as estimates for the geodesic
distance between points on the underlying manifold, and use
them to examine geometry, topology, and dimensionality of the
data. Alternatively, one can first apply pdist. That is, one can work
with points whose coordinate vectors are given by the columns

of the dissimilarity matrix Dcont =
(
x
(j)
i

)

i,j∈V
that holds the

activation times (or of a symmetrization of this dissimilarity
matrix given byDcont+(Dcont)

T). Using terminology from Taylor
et al. (2015), producing such a point cloud is equivalent to
mapping the nodes via a contagion map. The regular contagion

map associated to (V ,E) and T is the function from the set V of
nodes to RN that is defined by

i 7→ x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
N ]T .

Similarly, the symmetric contagion map associated to (V ,E) and
T is the function from the set V of nodes to RN that is defined by

i 7→ [x
(i)
1 + x

(1)
i , . . . , x

(i)
N + x

(N)
i ]T .

In this article, we work with symmetric contagion maps
exclusively.

We examine dimensionality, topology, and geometry based on
the activation times directly, that is, based on the entries of the
matrix Dcont + (Dcont)

T, as well as after applying pdist (i.e., we
analyze the symmetric contagion map).

2.2. Isomap
The Isomap algorithm (Tenenbaum et al., 2000) is
essentially a combination of a shortest-path algorithm
with MDS. In a sense, Isomap works as a “non-linear
version” of MDS which accommodates for potential
curvature of data by incorporating a shortest-paths

algorithm to estimate geodesic distances between
data points.

The original Isomap algorithm proceeds as follows.
First, given point-cloud data, Isomap starts by building a
neighborhood graph (V ,E) on the point cloud, as described
at the beginning of section 2. Next, Isomap calculates
the shortest-path lengths between pairs of nodes in this
network using some shortest-path algorithm. We use the
Floyd–Warshall algorithm (Floyd, 1962; Warshall, 1962) in
this work. The set of shortest-path lengths can be recorded
in a dissimilarity matrix Diso =

(
dG(i, j)

)
i,j∈V

3, to which

Isomap finally applies MDS to map the data points to a
low-dimensional space.

As in the case of contagion maps, if data is given in the
form of a network, we will work with this given network
instead of a neighborhood graph. Moreover, in addition to
the original Isomap algorithm, which simply projects points
via MDS based on the set of shortest-path lengths (i.e., the
entries in Diso), we calculate the residual variances of these
projections, and we also examine this set topologically (via the
persistent homology of the Vietoris–Rips filtration based on
these shortest-path lengths) and geometrically [via a Pearson
correlation (Pearson, 1895) with some given base-geometry],
when possible. Furthermore, we analyze the point cloud given by
the columns (or, equivalently, rows) of Diso, that is, we analyze
the entries in pdist(Diso).

Note that a contagion map with threshold T= 0 is
approximately equivalent to a version of Isomap that uses an
unweighted neighborhood graph.

2.3. Workflow
Our workflow is composed of multiple stages, at each of
which one can choose from a number of different options.
This leads to exponentially many possible procedures that one
can use to analyze a given data set. First, given point-cloud
data, one needs to choose the type of neighborhood graph
to build on this data set as well as the defining parameter k
or ǫ. Next, one needs to pick a way of estimating geodesic
distances based on this graph. We choose either shortest-
path distances or activation times in a threshold contagion,
that is, we follow either the Isomap algorithm or that of
contagion maps. In the case of contagion maps, one also
needs to choose a threshold parameter T. Given the set of
estimates for the geodesic distances, i.e., the dissimilarity matrix
that encodes the shortest-path (Diso) distances or activation
times (Dcont), one can apply further methods either to these
estimates directly or to the pairwise distances between the
points whose coordinate vectors are the columns (or rows,
by symmetry) of this dissimilarity matrix. For either of
these choices one can finally apply methods to determine
dimensionality, topology, and geometry. Figure 1 shows a
schematic representation of our workflow. We apply different

3The length of a shortest path between nodes i and j is denoted by dG(i, j). Note that

the function dG : V×V → [0,∞) is a metric on the set of nodes or (equivalently)

on the set of data points.
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FIGURE 1 | Schematic representation of the workflow.

subsets of the full analysis to the different data sets that
we study.

3. RESULTS

We apply Isomap, as well as contagion maps with several
different thresholds, to three different data sets. First, we consider
point samples from a Swiss roll, a classical benchmark data
set for dimensionality reduction and one of the first data sets
to which Isomap was applied (Tenenbaum et al., 2000). We
then analyze a couple of representatives of the class of torus-
based networks that was studied in Mahler (2021). The toroidal
structure underlying these networks allows us to examine the
topological aspect of our methods by looking to recover the
torus’ non-trivial topological features. Finally, we consider a data
set that represents the conformation space of the cyclo-octane
molecule (Martin et al., 2010). This data set is known to have
non-trivial topological features and is an example of a naturally
occurring data set.

3.1. Noisy Samples From a Swiss Roll
We first examine point samples from a Swiss roll that are
obtained by taking regularly spaced points on the Swiss roll
surface and then adding various levels of noise to these points.
This way of generating data makes it possible to have direct
control over the data, so one can explore how different algorithms
react to slight variations of the data (in terms of e.g., density,
noise level, or uniformity). We use this data set primarily to
explore the effects of the parameter k or ǫ when building a
neighborhood graph.

We start by taking points on a Swiss roll at a density of
approximately 50 per unit area, regularly spaced with respect to
the intrinsic geodesic distance on the Swiss roll (see Figure 2A).
We then add Gaussian noise with a specified signal-to-noise ratio
(S/N) to these regularly spaced points (see Figure 2B). That is,
for each point p = [p1, p2, p3] in this regularly spaced point
sample, we add independent, identically distributed noise drawn
from a zero-mean normal distribution to each of its coordinates
to obtain a perturbation pnoisy of the point:

pnoisy = [p1 + n1, p2 + n2, p3 + n3],

where ni ∼ N
(
0, σ 2

)
with σ 2 = 10

−S/N
10 .

We test Isomap and contagion maps on this noisy point cloud
to see how well each of them sees the underlying 2-dimensional

space. Each algorithm starts by building a neighborhood graph
on the points (see Figures 2C,D).

We have already touched on Isomap’s sensitivity to “short-
circuit errors” in the introduction. However, a careful choice of
ǫ (or k) when constructing the neighborhood graph can mitigate
such errors to some extent (Balasubramanian et al., 2002). The
goal is to find an ǫ (or k) that is small enough to avoid short-
circuit edges but not so small that the resulting graph “corrupts”
the underlying space. One may choose to simply vary ǫ over
a range and implement Isomap on all of the neighborhood
graphs that thus arise. This approach is in the same vein as
considering the full range of thresholds for the contagion map
algorithm, and it works whenever there exists a range of ǫ

(or k) for which the resulting neighborhood graphs correctly
represent the underlying topology. However, for some data sets—
particularly those that are sparse and incorporate a high level of
noise—it is impossible to find a value for ǫ (or k) that strikes
a balance between covering the underlying topology and not
making “short-circuit errors”. In other words, the range of ǫ (or
k) that “corrupt” the underlying topology and the range of ǫ (or
k) that make “short-circuit errors” overlap, leaving no values of ǫ
(or k) that yield neighborhood graphs that correctly represent the
underlying topology. For such data sets, Isomap is inadequate as
a manifold-learning tool, but contagion maps may be effective.

See Figures 3, 4 for examples on the Swiss roll that illustrate
the concepts in the above paragraph. In particular, Figure 3
shows an example of a data set for which a careful choice
of ǫ generates a neighborhood graph that both captures the
underlying manifold and does not include “short-circuit” edges.
By contrast, Figure 4 shows an example of a data set for which
no choice of ǫ produces a neighborhood graph that accurately
represents the underlying manifold. Figure 5 shows the residual
variances of projecting this data set via MDS to dimensions 1 to
10 when based on Isomap and when based on the contagion map
with T = 0.2 (both starting with a 0.18-neighborhood graph). For
the contagion map, the residual variance plunges at dimension
2, thereby correctly identifying the intrinsic dimension of the
data. The residual variances for Isomap, on the other hand, only
decrease slighty and continuously across the increasing target
dimensions. That is, Isomap fails to see the correct intrinsic
structure of the data when starting with an ǫ-neighborhood graph
with ǫ = 0.18 (or any other value of ǫ), while contagion map
— with a suitable choice of ǫ and T — correctly identifies the
underlying structure. For contagion maps to work in this case,
the value of ǫ had to be chosen large enough for the neighborhood
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FIGURE 2 | (A) Regularly spaced points on a Swiss roll at density 50 per unit area. (B) Gaussian noise is added at a signal-to-noise ratio of 30. (C) The

5-nearest-neighbor graph on the noisy point cloud. (D) The 0.18-neighborhood graph on the noisy point cloud. We show two views of each plot.

graph to cover the underlying manifold, and the value of T had to
be picked small enough to carry the contagion and large enough
to be resistant to the unavoidable noisy inter-sheet edges in the
ǫ-neighborhood graph.

We now consider 2,000 points of the Swiss roll data set4 from
Tenenbaum et al. (2000). This data set consists of 20,000 points
in total.

Both Isomap and contagion maps perform adequately for the
high signal-to-noise ration of S/N = 20 (i.e., low noise level)
with all four examined versions of neighborhood graphs (see
Figure 6).

For the lowest signal-to-noise ratio (i.e., greatest noise level)
that we consider (namely S/N= 5) the 8-nearest-neighbor graph
includes noisy inter-sheet edges. As a result, Isomap does not
detect the intrinsic dimension 2 of the Swiss roll when using the
8-nearest neighbor graph, and neither does the contagion map
with T = 0 or T = 0.1, thresholds for which the activation
times in our threshold contagion are close to the shortest paths
in the unweighted neighborhood graph (see Figure 7). With
T = 0.2, however, the contagion map does correctly recover the
intrinsic dimension 2, as this threshold is just large enough to be
robust to the occurring noisy edges. For thresholds larger than
T = 0.2, many of the realizations of our threshold contagion
leave nodes in the neighborhood graph inactive (recorded as
“infinite” activation times), and, as a result, the residual variances
of the embeddings based on these activation times are large
for all considered dimensions (1 to 10). This illustrates that,
while contagion maps can be a powerful tool when dealing
with such noisy edges, a suitable choice of threshold can be a
delicate matter.

Similarly, for signal-to-noise ratio S/N= 5, Isomap fails when
based on the 4.5-neighborhood graph or the 5-neighborhood
graph, but the contagion map for a threshold of T =

0.2 successfully identifies the intrinsic dimension 2 for both
examined values of the neighborhood parameter ǫ. Furthermore,
when based on a 5-neighborhood graph, Isomap fails even for the

4https://web.mit.edu/cocosci/isomap/datasets.html

higher S/N = 10, as the 5-neighborhood graph includes noisy
inter-sheet edges even for this lower noise level (see Figure 8).

Note that our measures for topology and geometry are
not useful for this data set, as the underlying manifold
has no non-trivial topological features, and there is no
base-geometry provided.

Our experiments on this classical manifold-learning data
showcase examples where contagion maps have the power
to detect low-dimensional structure, even when Isomap is
unsuccessful. Crucial to contagion maps’ success is the
careful choice of suitable neighborhood graph parameter and
contagion threshold.

3.2. Torus-Based Networks
We consider the torus-based model described in Mahler (2021)
with N= 2,500 nodes and a degree of geometric edges of
dG= 8. Networks in this model are similar to Kleinberg’s
small-world like network (Kleinberg, 2000). They consist of a
periodic grid of nodes that are connected via geometric edges
(i.e., edges between neighboring nodes) in a regular manner,
and to which non-geometric edges are added according to
a probability distribution. We add first 2 and then 4 non-
geometric edges per node uniformly at random and apply
versions of both Isomap and contagion maps (with thresholds
T = 0, 0.1, . . . , 1) to the resulting networks. Namely, we
calculate the shortest-path lengths between pairs of nodes in
these two unweighted networks, as well as the activation times
in all realizations of our threshold contagion that are seeded
at the direct neighborhoods of individual nodes. We thus
obtain two dissimilarity matrices: one holding the shortest-
path lengths (Diso) and one holding the symmetrized activation
times (Dcont). We analyze the information held in these two
dissimilarity matrices geometrically, topologically, and in terms
of dimensionality in two ways each. We first analyze the
estimated pairwise geodesic distances held in each dissimilarity
matrix directly, and we then consider the point clouds that
results from taking columns (or, equivalently, rows) of each
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FIGURE 3 | The ǫ-neighborhood graphs on a noisy point sample from a Swiss roll with S/N = 35 for (A) ǫ = 0.14, (B) ǫ = 0.15, (C) ǫ = 0.16, (D) ǫ = 0.17, and (E)

ǫ = 0.18 (We show three views of each plot.). If ǫ is too small (e.g., ǫ = 0.14), the ǫ-neighborhood graph does not adequately “cover” the underlying Swiss roll. If ǫ is

too large (e.g., ǫ = 0.18), the ǫ-neighborhood graph includes inter-sheet edges, and thus does not represent the underlying Swiss roll. However, there exists a range

of ǫ for which the ǫ-neighborhood graph covers the underlying surface and does not include inter-sheet edges, thus providing an authentic representation of the

underlying Swiss roll. In other words, the pairwise distances between points whose corresponding nodes are adjacent in the ǫ-neighborhood graph for such ǫ

approximate the actual geodesic sufficiently, and approximate pairwise geodesic distances between other point pairs can be inferred through the Isomap algorithm.

This is an example of a data set for which Isomap is suitable as a manifold-learning technique with a careful choice of ǫ.
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FIGURE 4 | The ǫ-neighborhood graphs on a noisy point sample from a Swiss roll with S/N = 30 for (A) ǫ = 0.11, (B) ǫ = 0.12, (C) ǫ = 0.14, (D) ǫ = 0.16, (E)

ǫ = 0.18, and (F) ǫ = 0.19 (We show three views of each plot.). For small ǫ, the ǫ-neighborhood graph does not adequately “cover” the underlying Swiss roll. As ǫ

increases, noisy inter-sheet edges appear (for e.g., ǫ = 0.12) before ǫ is large enough for the neighborhood graph to adequately “cover” the underlying Swiss roll. This

is an example of a data set for which Isomap cannot be used successfully as a manifold-learning technique with any choice of ǫ.
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FIGURE 5 | (A) Isomap and (B) contagion map with T = 0.2 (both starting with a 0.18-neighborhood graph) on a noisy sample from a Swiss roll with S/N = 30.

FIGURE 6 | (Top row) Neighborhood graphs on 2,000 points of the Swiss roll data set from Tenenbaum et al. (2000) with white Gaussian noise added with S/N = 20.

(Bottom row) The residual variances of MDS projections to dimensions 1–10 resulting from the approximate pairwise geodesic distances between nodes based on

shortest paths on the weighted graph (i.e., Isomap) and the activation times in a threshold contagion on the unweighted graph (i.e., contagion maps). The

neighborhood graphs are (A) the 5-nearest-neighbor graph, (B) the 8-nearest-neighbor graph, (C) the 4.5-neighborhood graph, and (D) the 5-neighborhood graph.

dissimilarity matrix as the coordinate vectors of points in
R
2500.
In detail, we perform the following analyzes:

• In terms of dimensionality: We perform MDS based on the
entries in each dissimilarity matrix to dimensions 1–10 and
record the residual variance for each dimension. We also
perform MDS on the point cloud that results from taking
columns (or, equivalently, rows) of each dissimilarity matrix
as the coordinate vectors of points in R

2500. In both cases, we
identify the approximate embedding dimension as the lowest

dimension such that the residual variance when projecting
down to that dimension viaMDS is below 5%.

• Topologically: We build Vietoris–Rips filtrations based on the

approximations to the pairwise geodesic distances (i.e., the

entries in each dissimilarity matrix) and compute their

persistent homologies. We also build Vietoris–Rips filtrations

on the points cloud that results from taking columns
(or, equivalently, rows) of each dissimilarity matrix as the
coordinate vectors of points in R

2500 and compute their
persistent homologies.
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FIGURE 7 | (Top row) Neighborhood graphs on 2,000 points of the Swiss roll data set from Tenenbaum et al. (2000) with white Gaussian noise added with S/N = 5.

(Bottom row) The residual variances of MDS projections to dimensions 1 to 10 resulting from the approximate pairwise geodesic distances between nodes based on

shortest paths on the weighted graph (i.e., Isomap) and the activation times in a threshold contagion on the unweighted graph (i.e., contagion maps). The

neighborhood graphs are (A) the 5-nearest neighbor graph, (B) the 8-nearest neighbor graph, (C) the 4.5-neighborhood graph, and (D) the 5-neighborhood graph.

FIGURE 8 | (Top row) Neighborhood graphs on 2,000 points of the Swiss roll data set from Tenenbaum et al. (2000) with white Gaussian noise added with S/N = 10.

(Bottom row) The residual variances of MDS projections to dimensions 1 to 10 resulting from the approximate pairwise geodesic distances between nodes based on

shortest paths on the weighted graph (i.e., Isomap) and the activation times in a threshold contagion on the unweighted graph (i.e., contagion maps). The

neighborhood graphs are (A) the 5-nearest neighbor graph, (B) the 8-nearest neighbor graph, (C) the 4.5-neighborhood graph, and (D) the 5-neighborhood graph.

• Geometrically: We calculate the Pearson correlation
coefficient between the entries in each dissimilarity matrix
and the corresponding pairwise distances between regularly
spaced points on a torus:
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We also calculate the Pearson correlation coefficient between

the pairwise distances between points in the point cloud

that results from taking columns (or, equivalently, rows)

of each dissimilarity matrix as the coordinate vectors
of points in R

2500 and the corresponding pairwise
distances between the regularly spaced points on a
torus specified in (1).

We find that Isomap is unable to infer the underlying torus
structure from these networks. Contagion maps, however, detect
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FIGURE 9 | Dimensionality results on our torus-based network with dNG = 2. (A) Residual variances of MDS based on the estimated geodesic distances (i.e., the

entries in Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2, and T = 0.3. (B) Residual variances of

MDS based on the point cloud (i.e., the rows of the Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2,

and T = 0.3.

FIGURE 10 | Dimensionality results on our torus-based network with dNG = 4. (A) Residual variances of MDS based on the estimated geodesic distances (i.e., the

entries in Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2, and T = 0.3. (B) Residual variances of

MDS based on the point cloud (i.e., the rows of the Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2,

and T = 0.3.

the characteristics of the torus when using a threshold of T ≈ 0.2.
The results in this section illustrate the utility of contagion maps
for spatial network data that incorporates noisy edges and its
potential to outperform Isomap in such scenarios, but they also
highlight that a careful choice of T is critical.

Dimensionality
MDS based on Isomap does not identify the embedding
dimension 4 of a torus for either dNG= 2 or dNG= 4 (see
the purple data points in Figures 9, 10). The residual variance
based on contagion maps does have a dip at dimension 4 for
the threshold T= 0.2 (see the red data points in Figures 9,
10) but does not when the threshold is T= 0.1 or T= 0.3.
Note that for Isomap, as well as contagion maps with all

considered thresholds, the residual variances are smaller for
all considered dimensions when the analysis is done on the
point cloud, making the results for contagion map with T= 0.2
look sharper.

We identify the approximate embedding dimensions for
Isomap and contagion maps with thresholds T= 0,0.1, . . . ,1
and show the results in Figure 11. Both versions of Isomap
(the one performing MDS based on the entries in Diso and
the one performing MDS based on the distances between the
rows of Diso) vastly overestimate the embedding dimension
for the torus-based network with dNG= 2 and the one with
dNG= 4. When performing MDS based on the entries in Diso,
the approximate embedding dimension is at least 100 (which
is the dimension at which we cap our computations). When
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FIGURE 11 | Dimensionality results on our torus-based network with dNG = 2

(colored in green and yellow) and dNG = 4 (colored in red and blue).

Approximate embedding dimension according to contagion maps with

different values of threshold T and critical value 5% using the dissimilarity

matrix Dcont (colored in green and red), and the point cloud whose coordinate

vectors are the rows in Dcont (colored in yellow and blue). For dNG = 2, the

results for Isomap are practically identical to those for the contagion map with

T = 0: The approximate embedding dimension is at least 100 (which is the

dimension at which we cap our computations) when based on the entries in

Diso, and it is 61 when based on the point cloud whose coordinate vectors are

given by the rows of Diso. The approximate embedding dimension according

to contagion maps reaches a minimum value for T = 0.2 both when working

with Dcont and when working with pdist(Dcont). This minimal value is 7 in the

former case (see the data points colored in green), and is 4 in the latter case

(see the data points colored in yellow). Similarly, for dNG = 4, the results for

Isomap are practically identical to those for the contagion map with T = 0: The

approximate embedding dimension is at least 100 (which is the dimension at

which we cap out computations) when based on the entries in Diso; and it is

95 when based on the point cloud whose coordinate vectors are given by the

rows of Diso. The approximate embedding dimension according to contagion

maps reaches a minimum value of 8 for T = 0.2 when working with pdist(Dcont)

(see the data points colored in blue).

performing MDS based on the distances between the rows
of Diso, the embedding dimensions are still very large: The
embedding dimension is 61 for the network with dNG= 2, and
it is 95 for the network with dNG = 4. Note that these results
are practically identical to those the for the contagion map
with T = 0, as we are working with the same unweighted
graphs in both Isomap and contagion maps. For contagion
maps with varying thresholds T, the approximate embedding
dimension has a dip around T= 0.2, except when performing
MDS based on the entries in Dcont for the network with
dNG = 4, in which case contagion maps return an embedding
dimension of at least 100 for all thresholds (see the red data
points in Figure 12). This suggests that, for thresholds close to
0.2, the contagion spreads predominantly via WFP along the
underlying torus, making it possible to identify the underlying
low-dimensional structure.

Topology
Figures 12, 13 show the barcodes corresponding to the persistent
homology in dimension 1 of the Vietoris–Rips filtrations built

according to the different versions of Isomap and contagion
maps. The barcodes in dimension 1 of the Vietoris–Rips
filtrations based on the estimated geodesic distances (i.e., the
entries in Diso and Dcont) do not seem to reveal any
significant features for either Isomap or contagion maps (see
Figures 12A–E, 13A–E). The barcode in dimension 1 of the
Vietoris–Rips filtration on the point cloud based on Isomap
(i.e., given by the rows ofDiso) on the network with d

NG = 2 does
feature two dominant bars (see Figure 12F), as do the barcodes
corresponding to point clouds based on contagion maps for T
= 0, T= 0.1, and T= 0.2 (i.e., given by the rows of Dcont) (see
Figures 12G–I). Note, however, that in panels F–H, due to the
order of the bars, the dominance appears slightly stronger than
it actually is. For the network with dNG = 4, the barcode in
dimension 1 of the Vietoris–Rips filtration on the point cloud
based on Isomap does not have any dominant bars, whereas
the one based on the contagion map for T = 0.2 does (see
Figure 13I).

Geometry
We examine the geometry of our Isomap and contagion map
results by comparing the entries of Diso and Dcont, as well as the
point clouds given by the rows of these dissimilarity matrices,
to the regularly spaced points on a torus specified in (1) via the
Pearson correlation coefficient (see Figure 14). Isomap returns a
low Pearson correlation in all cases, suggesting that the shortest-
path distances are (as expected, given the large number of non-
geometric edges) not good estimates for the distances along the
torus that underlies these networks. Note that these results are
practically identical to those for contagion map with T = 0, as
we are working with the same unweighted graphs in both Isomap
and contagionmaps. For contagionmaps with varying thresholds
T, the Pearson correlation coefficient peaks around T = 0.2,
suggesting that, for thresholds close to T = 0.2, the contagion
spreads predominantly via WFP, making the activation times
good estimates for the distance along the torus that underlies
these networks.

These synthetic torus-based network data sets allowed us to
explore all three structural measures (dimensionality, topology,
and geometry), as the data’s underlying structure is not only low-
dimensional but has non-trivial topological features to recover,
and we have a base-geometry to compare our contagion and
shortest-path based distance estimates against.

Again, we emphasized the importance of finding a suitable
value for the contagion threshold. In the case of these torus-
based network data sets, a range of thresholds around T= 0.2
produce contagion maps that reveal the underlying toroidal
structure. This optimal range for T could be predicted from
the bifuracation analysis in Mahler (2021). In a true manifold-
learning application, however, where we have no a priori
knowledge about the data’s underlying structure and how
it is sampled from that underlying space, it is generally
difficult to guess an appropriate value of T. A practical
approach is to simply sweep over a range of incremental
values of T and look for dips and peaks in the measures
for topology, geometry, and dimensionality. Such dips and
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FIGURE 12 | Topology results on our torus-based network with dNG = 2. (Left column) Dimension 1 barcodes of the Vietoris–Rips filtrations based on the estimated

geodesic distances (i.e., the entries in Diso and Dcont ) according to (A) Isomap, and according to contagion maps with (B) T = 0, (C) T = 0.1, (D) T = 0.2, and (E)

T = 0.3. (Right column) Barcodes of the Vietoris–Rips filtrations on the point clouds according to (F) Isomap, and according to contagion maps with (G) T = 0, (H)

T = 0.1, (I) T = 0.2, and (J) T = 0.3.
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FIGURE 13 | Topology results on our torus-based network with dNG = 4. (Left column) Dimension 1 barcodes of the Vietoris–Rips filtrations based on the estimated

geodesic distances (i.e., the entries in Diso and Dcont ) according to (A) Isomap, and according to contagion maps with (B) T = 0, (C) T = 0.1, (D) T = 0.2, and (E)

T = 0.3. (Right column) Barcodes of the Vietoris–Rips filtrations on the point clouds according to (F) Isomap, and according to contagion maps with (G) T = 0, (H)

T = 0.1, (I) T = 0.2, and (J) T = 0.3.
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FIGURE 14 | Geometry results on our torus-based network with dNG = 2 and

dNG = 4. Pearson correlation coefficient between the pairwise distances

between the regularly spaced points on a torus specified in (1) and the

following sets: the estimated geodesic distances (i.e., the entries in Dcont)

according to contagion maps with thresholds T = 0, 0.1, . . . , 1 on a

torus-based network with dNG = 2 (colored in green); the pairwise distances

between points in R
2500 whose coordinate vectors are the rows of Dcont

according to contagion maps with thresholds T = 0, 0.1, . . . , 1 on a

torus-based network with dNG = 2 (colored in yellow); the estimated geodesic

distances (i.e., the entries in Dcont) according to contagion maps with

thresholds T = 0, 0.1, . . . , 1 on a torus-based network with dNG = 4 (colored

in red); the pairwise distances between points in R
2500 whose coordinate

vectors are the rows of Dcont according to contagion maps with thresholds

T = 0, 0.1, . . . , 1 on a torus-based network with dNG = 4 (colored in blue). The

results for Isomap are practically identical to those for the contagion map with

T = 0: The Pearson correlation coefficient is 0.1458 (0.1311) when based on

the entries in Diso for a torus-based network with dNG = 2 (dNG = 4), and it is

0.2175 (0.2013) when based on the point cloud whose coordinate vectors are

given by the rows of Diso for a torus-based network with dNG = 2 (dNG = 4).

peaks correspond to values of T for which the contagion
spreads predominantly as a wavefront, and therefore yields
activation times that give good estimates for the actual intrinsic
distances between data points and allow recovery of the
underlying structure.

We also demonstrated that processing our distance
estimates through pdist before performing our analyzes to
determine dimensionality, topology, and geometry improves
these measures, giving clearer results. In some cases we
saw that pdist appears, in fact, to be a crucial step in the
manifold-learning pipeline.

3.3. Conformation Space of the
Cyclo-Octane Molecule
The cyclo-octane molecule (CH2)8 consists of a ring of eight
carbon atoms, each bonded with two hydrogen atoms. A
conformation of a molecule is a possible spatial arrangement of
its atoms (modulo rotation and translation) (Moss, 1996). The
conformation of a molecule can be specified by the coordinates
of each of its atoms in three-dimensional space, giving a point
in R

3a, where a is the number of atoms in the molecule. (In

this case, each coordinate of each atom in three-dimensional
space is a feature and R

3a is the feature space). The set of
such points for all conformations of a molecule is called its
conformation space. Each conformation is accompanied by a
state of potential energy of the molecule, and a conformation
is more likely to occur the lower its associated potential
energy. The cyclo-octane molecule has many conformations of
comparable potential energy, and its conformation space has
been studied in computational chemistry for over 50 years
(Hendrickson, 1967; Pakes et al., 1981). Given the locations
of the eight carbon atoms in a conformation of the cyclo-
octane molecule, the locations of the hydrogen atoms are
determined to minimize energy: The two covalent hydrogen
atoms of each carbon atom are positioned to form a tetrahedral
arrangement with the two neighboring carbon atoms that
minimizes the potential energy of that subunit of the molecule.
The conformation space of cyclo-octane thus lies in R

3×8 =

R
24. It is generally assumed that conformation spaces form

low-dimensional manifolds, so identifying the structure of the
conformation space of a molecule is essentially a manifold-
learning problem. The conformation space of cyclo-octane
has been shown to be the union of a sphere with a Klein
bottle intersecting in two circles of singularities (Brown et al.,
2008; Martin et al., 2010), forming a two-dimensional manifold
with singularities.

Martin et al. (2010) analyzed a data set of 6, 040 points in the
conformation space of cyclo-octane, subsampled from a larger
data set consisting of 1031644 cyclo-octane conformations. This
data set is publicly available as part of the JAVAPLEX software
package5 (Tausz et al., 2014). To visualize this set of points,
Martin et al. mapped the points from R

24 to R
3 via Isomap. We

explore different versions of both Isomap and contagion maps
on it.

Figure 15 shows the residual variances for projections via
MDS onto dimensions 1 to 10 based on shortest-path distances,
i.e., based on the entries in Diso, (panel A) as well as for
those based on activation times in contagions with thresholds
T = 0.1, 0.2, and 0.4, i.e., based on the entries in Dcont,
(panel B–D), and it shows the visualizations of the projection
to 3D (panels E–H). We see that Isomap and contagion
maps with low thresholds (T = 0.1 and 0.2) detect the
embedding dimension of the underlying space, suggesting
the absence of noisy edges in the 8-nearest-neighbor graph
on this data set. Contagion maps with higher thresholds
(e.g., 0.4) do not seem to reveal any meaningful structure.
This is likely due to the contagion stabilizing before much
of the graph has been activated, leading to many “infinite”
activation times.

In Figure 16, we show barcodes corresponding to the
persistent homology in dimension 1 of various Vietoris–
Rips filtrations based on the cyclo-octane data set of 6040
points in R

24. The barcode in Figure 16A corresponds to
the Vietoris–Rips filtration built directly on the data points
in their ambient space R

24. This barcode has one dominant
bar, suggesting that the Klein bottle and the sphere whose

5http://appliedtopology.github.io/javaplex/
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FIGURE 15 | Results for (A,E) Isomap and for (B,C,D,F,G,H) contagion maps for different values of T on the data set of 6040 points in the conformation space of

cyclo-octane (using an 8-nearest neighbor neighborhood graph). (A) Residual variances for projections via MDS onto dimensions 1 to 10 in the original Isomap

algorithm. (E) Visualization of Isomap in 3D (B–D). Residual variances for projections onto dimensions 1 to 10 in the contagion-map algorithm for (B) T = 0.1, (C)

T = 0.2, and (D) T = 0.4 (F–H). Visualizations of projections to 3D for (F) T = 0.1, (G) T = 0.2, and (H) T = 0.4.
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FIGURE 16 | Barcodes for the persistent homology in dimension 1 of various Vietoris–Rips filtrations based on the cyclo-octane data set. (A) Vietoris–Rips filtration

directly on the data points in R
24. (B) Vietoris–Rips filtration based on the shortest-path distances in the 8-nearest-neighbor graph (i.e., based on the entries in Diso).

(C) Vietoris–Rips filtration based on the points whose coordinate vectors are the rows of Diso (corresponding to the 8-nearest-neighbor graph). (D) Vietoris–Rips

filtration based on the activation times of the contagion with threshold T = 0.2 on the 8-nearest-neighbor graph (i.e., based on the entries in Dcont ). (E) Vietoris–Rips

filtration based on the points whose coordinate vectors are the rows of Dcont (corresponding to the contagion with threshold T = 0.2 on the 8-nearest-neighbor graph).
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union is the conformation space of cyclo-octane intersect in
a way that makes the 1-dimensional loop that is present in
the homology of the Klein bottle over Z/2Z, but not over Z,
nullhomotopic. The other panels show barcodes corresponding
to various Vietoris–Rips filtrations that, in a sense, mimic the
Vietoris–Rips filtration built according to the intrinsic metric
on the underlying manifold. Namely, they are Vietoris–Rips
filtrations based on different versions of Isomap and contagion
map, that is, based on estimates for the geodesic distance
on the underlying manifold. Figure 16B shows the barcode
corresponding to the shortest-path distances in the 8-nearest-
neighbor graph (i.e., based on the entries in Diso). Figure 16C
shows the Vietoris–Rips filtration based on the points whose
coordinate vectors are the columns of Diso. Figure 16D shows
the Vietoris–Rips filtration based on the activation times of the
contagion with threshold T = 0.2 on the 8-nearest-neighbor
graph (i.e., based on the entries in Dcont). Figure 16E shows the
Vietoris–Rips filtration based on the points whose coordinate
vectors are the columns of Dcont. All of these barcodes have
one dominant bar, which is consistent with the homology of
the underlying manifold. The barcode in Figure 16D has many
bars with identical birth and death. This stems from the fact
that activation times (in our contagion model) have integer
values between 0 and 2N (where N is the number of node or,
equivalently, data points), and so a Vietoris–Rips filtration based
on these values has only few filtration steps at which simplices
are added.

This sample of the conformation space of cyclo-octane is
an example of a data set for which Isomap is successful,
as are contagion maps with a sufficiently small contagion
threshold T. Sweeping over a range of values of the threshold
T includes the value zero, which corresponds to a contagion
map that can be seen as equivalent to Isomap. We can therefore
view contagion maps as an extension that includes a form
of Isomap.

4. CONCLUSION

Isomap is a well-established manifold-learning tool and is useful
for many data sets. It can successfully handle curvature of data
in many cases, and the freedom of choosing the parameter k
or ǫ when creating a neighborhood graph allows it to handle
noise to some extent. However, when faced with particularly
sparse and noisy data, Isomap is prone to so-called “short-
circuit errors”, which in some cases cannot be avoided regardless
of the choice of k or ǫ. For such data, contagion maps
can yield better reconstructions. For a suitable choice of the
threshold parameter T, single noisy edges that occur in a
neighborhood graph do not carry a contagion and thus do
not distort the estimate of the geodesic distances via activation
times significantly. In other words, with the right choice of
T, contagion maps are able to “exploit social reinforcement to
silence noise”.

We have demonstrated this on a number of synthetic and
real-world data sets, including samples from the Swiss roll, a
classical benchmark data set for manifold learning. Some of
the data sets we examined were point clouds, on which we
built different neighborhood graphs in the first step of our
algorithm. Others were already in the form of a network, on
which we could directly consider threshold contagions and
shortest paths.

We analyzed the activation times in multiple realizations
of a threshold contagion directly in terms of dimensionality,
topology, and geometry, and we also did the same analysis
after performing the pdist-operation, that is, after mapping
data points to points in high-dimensional space based on
these activation times. In doing so, we have added to what
had been done with the original contagion map algorithm in
Taylor et al. (2015) and Mahler (2021), which only examined
point clouds in high-dimensional space. We studied these
variants of the original contagion-map algorithm, and we
did the analogous for Isomap, which, in its original form,
only considered embedding dimension based on the shortest-
path lengths directly. By comparing the variants of contagion
maps and Isomap, we found not only that contagion maps
perform better in many cases where Isomap breaks down due
to noise-induced short circuit errors, but also that processing
the distance estimates via the pdist-operation before analyzing
them leads to clearer results. Indeed, we saw in some
instances that this operation seems to accentuate our results
(see e.g., the red data points in Figure 10A vs. Figure 10B,
or Figure 11). Even more remarkably, in our method for
determining topological features of a data set, the pdist operation
does not only emphasize results but seems, in some cases,
to be a necessary methodological step, bringing out features
that are not detectable without this pre-processing step (see
Figures 12, 13). How exactly pdist transforms a dissimilarity
matrix andwhat effect this operation has on our variousmeasures
of geometry, topology, and dimensionality will be studied in
future work.
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