About this Research Topic
Graph embedding methods have shown powerful capability in analyzing multiple-omics data, alongside genetic, phenotypic, and environmental factors-based approaches. However, there remain challenges and gaps between computer theories and real-world application requirements, the integration of multi-omics data from different technical platforms for instance. Therefore, this gives rise to the increasing demand for applications of the graph embedding methods to multiple-omics data analyses.
This Research Topic intends to provide an international forum for researchers to showcase their up-to-date computational methods for multiple-omics data analysis. We invite submissions of high-quality papers on original research, which have not been published previously.
Topics of interest include, but not limited to, graph embedding methods for the analysis of:
• Genomics data
• Proteomics data
• Metabolomics data
• Transcriptomics data
• Lipidomics data
• Immunomics data
• Glycomics data
• Multi-omics data fusion
Keywords: Multi-Omics, Graph Embedding, Computational Methods, Data Integration
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.