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Editorial on the Research Topic

Graph Embedding Methods for Multiple-Omics Data Analysis

With the advent of advanced high throughput biotechnologies such as next-generation sequencing
and single-cell sequencing, there has been an increasing growth of complex multiple-omics data
sets (such as genomics, epigenome, transcriptomics, proteomics, metabolomics, etc.). These data
are often heterogeneous, sparse, high dimension and high noise, which provide different levels
of insightful information for disease. Integrative analysis of multiple-omics data can help the
biomedical researchers to explore biological mechanisms and further assist in designing better
diagnostic tools and therapies for the treatment of diseases. However, the development of effective
methods for multiple-omics data analysis is very challenging as the complex characteristics of
different kinds of data. Recently, machine learning methods especially graph embedding have
shown powerful capability in analyzing multiple-omics data. Particularly, they are capable to
represent data as low dimensional vectors while the data features are preserved.

To provide a platform bridging graph embedding method and multiple-omics data analysis, we
organized we organized a Research Topic on “Graph Embedding Methods for Multiple-Omics Data
Analysis.” This Research Topic presents 19 articles. We expect that these articles promote more
advanced studies for multiple-omics data analysis.

Peng L. et al. identified potential antiviral drugs against SARS-CoV-2 by using regularized least
squared classifier and bipartite local model. Ninety six virus-drug associations between 11 types of
viruses similar to SARS-CoV-2 and 78 small molecular drugs were extracted in this study.

Hou et al. proposed a method to capture potential functions in a microbial co-occurrence
network. It integrated topological structures of microbial co-occurrence networks with k-mer
compositions of operational taxonomy unit sequences and embedded them into a lower-
dimensional continuous latent space.

Pan et al. presented an embedding-based method for predicting the subcellular localization of
proteins. The functional and network embeddings from GO terms and protein–protein network
were combined as novel representations of protein locations for the construction of the final
classification model.

Gu et al. proposed a method incorporating feature engineering and feature selection algorithms
to explore the common controlling genes and corresponding pathways among eight different
organs’ fibrosis. These results were helpful for understanding the molecular mechanisms of fibrosis
diseases and finding new therapeutic indications of existing drugs.

Zhang developed a feature selection algorithm for gene expression data classification by using
approximate conditional entropy based on fuzzy information granule. The experimental results on
large-scale gene datasets show that this algorithm not only greatly reduces the dimension of the
gene datasets, but also is superior to the state-of-the-art algorithms in classification accuracy.
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Yuan and Yang proposed a deep learning method to identify
circRNA-RBP interactions by using hybrid double embeddings
for representing RNA sequences and a cross-branch attention
neural network for classification. The experimental results on
benchmark datasets show that their method outperforms the
mainstream deep learning-based methods on not only prediction
accuracy but also computational efficiency.

He et al. adopted multiple kernel learning (MKL) to
integrate somatic mutation to currently molecular data
including gene expression, copy number variation (CNV),
methylation, and protein expression data for the prediction
of breast cancer survival. In addition, the maximum relevance
minimum redundancy (mRMR) feature selection method
was utilized to select features that present high relevance to
survival and low redundancy among themselves for each type
of data.

Su et al. designed a multi-level model to improve both the
quality and speed of large-scale PPIs prediction. The results
showed that their model is promising for large-scale PPI
prediction in both accuracy and efficiency, which is beneficial to
other large-scale biomedical molecules interactions detection.

Barbiero et al. tested the digital twin model on two simulated
clinical case studies combining information at organ, tissue, and
cellular level. The results show their approach is able to detect
inflammatory cytokines which are known to have effects on blood
pressure and have previously been associated with SARS-CoV-2
infection (e.g., CXCR6, XCL1, and others).

Zhang et al. developed a computational method based
on the Light Gradient Boosting Machine (LightGBM) to
predict potential metabolite–disease associations. It extracted the
features from statistical measures, graph theoretical measures.
Three case studies confirmed that this method has obvious
superiority in predicting metabolite–disease pairs and represents
a powerful bioinformatics tool.

Zhao et al. proposed a supervised gene selection method
based on permutation and random forest classification. The
experimental result on 10 datasets show that the gene selection
performance of their method is better than other gene
selection methods.

Wang J. et al. presented a computational drug repositioning
approach to discover potential drug-disease associations.
The experimental results demonstrate that their approach
outperforms recent state-of-the-art prediction models. In
addition, the case studies further confirm the predictive ability of
the proposed method.

Wang, Dai, et al. introduced a pan-cancer classification
method to identify a set of genes that can differentiate all
tumor types accurately. Extensive experimental results on
the public RNA-seq data sets with 33 different tumor types
show that this method outperforms the other state-of-the-art
classification methods.

Wang, Cao, et al. proposed a computational method to predict
and identify the m6A sites on mRNA by utilizing sequence-
derived and graph embedding features. The comparison results
show that the proposed method achieved the best performance
compared with other predictors on four public datasets across
three species.

Wang Z. et al. explored the gene expression changes and its
potential effects mediated by U11 snRNA in bladder cancer cell.
This study show that U11 may be involved in the regulation of
gene expression in bladder cancer cells, which may provide a
potentially new biomarker for clinical diagnosis and treatment
of bladder cancer.

Feng et al. integrated transcriptomic, lipidomic, and
metabolomic analyses to identify the differential lipids and
metabolites between basal and luminal muscle invasive
bladder cancer (MIBC) subtypes. The results suggest that
free fatty acids (FFA) and sulfatides (SL), which are closely
associated with immune and stromal cell types, have strong
capacities to distinguish basal and luminal subtypes of
MIBC tumors. Moreover, the results also show that the
ratios of glycerophosphocholine (GCP)/imidazoles and
nucleosides/imidazoles can accurately identify tumors of
basal and luminal MIBC subtypes.

Peng X. et al. presented a method to construct methylation
haplotypes for homologous chromosomes in CpG dense
regions. The proposed method not only can be applied
to methylation analysis, but also can provide a clear
explanation for the methylation difference at the resolution
of methylation haplotypes.

Liu and Zhang developed a computational model for the
detection of copy number variation detection (CNV) of different
lengths from whole genome sequencing data. It used a clustering
algorithm to divide the read depth segment profile, and assigned
an abnormal score to each read depth segment. The experimental
results show that the performance of proposed model is better
than those of several existing methods.

Zheng and Wu proposed a method for predicting
drug-target interactions based on heterogeneous network
integration and cascade deep forest. The results show that their
model outperforms the previously reported methods on the
benchmark datasets.
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Identifying Effective Antiviral Drugs
Against SARS-CoV-2 by Drug
Repositioning Through Virus-Drug
Association Prediction
Lihong Peng1*†, Xiongfei Tian1†, Ling Shen1, Ming Kuang1, Tianbao Li2, Geng Tian2,
Jialiang Yang2* and Liqian Zhou1*

1 School of Computer Science, Hunan University of Technology, Zhuzhou, China, 2 Geneis (Beijing) Co., Ltd., Beijing, China

A new coronavirus called SARS-CoV-2 is rapidly spreading around the world. Over
16,558,289 infected cases with 656,093 deaths have been reported by July 29th,
2020, and it is urgent to identify effective antiviral treatment. In this study, potential
antiviral drugs against SARS-CoV-2 were identified by drug repositioning through Virus-
Drug Association (VDA) prediction. 96 VDAs between 11 types of viruses similar
to SARS-CoV-2 and 78 small molecular drugs were extracted and a novel VDA
identification model (VDA-RLSBN) was developed to find potential VDAs related to
SARS-CoV-2. The model integrated the complete genome sequences of the viruses,
the chemical structures of drugs, a regularized least squared classifier (RLS), a bipartite
local model, and the neighbor association information. Compared with five state-of-
the-art association prediction methods, VDA-RLSBN obtained the best AUC of 0.9085
and AUPR of 0.6630. Ribavirin was predicted to be the best small molecular drug,
with a higher molecular binding energy of −6.39 kcal/mol with human angiotensin-
converting enzyme 2 (ACE2), followed by remdesivir (−7.4 kcal/mol), mycophenolic
acid (−5.35 kcal/mol), and chloroquine (−6.29 kcal/mol). Ribavirin, remdesivir, and
chloroquine have been under clinical trials or supported by recent works. In addition,
for the first time, our results suggested several antiviral drugs, such as FK506, with
molecular binding energies of −11.06 and −10.1 kcal/mol with ACE2 and the spike
protein, respectively, could be potentially used to prevent SARS-CoV-2 and remains
to further validation. Drug repositioning through virus–drug association prediction can
effectively find potential antiviral drugs against SARS-CoV-2.

Keywords: SARS-CoV-2, antiviral drugs, drug repositioning, virus-drug association, regularized least square,
bipartite local model, neighbor association information

INTRODUCTION

Last December 2019, a novel coronavirus called SARS-CoV-2 by the World Health
Organization (WHO), first found in Wuhan, China, was rapidly spreading around the
world (Kaiser et al., 2020; Sanche et al., 2020). The SARS-CoV-2 outbreak was declared
as a global public health emergency by WHO, and a total of 16,558,289 cases have
been confirmed with another 656,093 deaths throughout the world by July 29th, 2020
(World Health Organization [WHO], 2020). SARS-CoV-2 caused a severe acute respiratory
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syndrome named COVID-19, and no special vaccine or antiviral
drug against SARS-CoV-2 has been found at present (Lu, 2020;
Wang et al., 2020c). Therefore, finding a special antiviral drug as
soon as possible is urgent to stop the spread of SARS-CoV-2 (Lu,
2020; Zhang et al., 2020a).

However, designing a new drug to treat COVID-19 in a
short time is almost impossible (Zhang et al., 2020a). One of
the best strategies is drug repositioning (Chen et al., 2012,
2016; Peng et al., 2017a; Beck et al., 2020). By repositioning
already commercialized drugs, the undesired effects can be
inferred to find new uses for these drugs. This strategy can
thus greatly shorten the time required for an antiviral drug
against SARS-CoV-2.

Although little is known about SARS-CoV-2, its complete
genome sequence is strongly homologous to SARS-CoV (Huang
et al., 2020; Morse et al., 2020). Therefore, in this study, to
prioritize available FDA-approved antiviral drugs against SARS-
COV-2 for further clinical trials, 11 well-studied viruses similar
to SARS-CoV-2 were selected and 96 virus–drug associations
(VDAs) with these 11 viruses were integrated. Regularized
least squared classifier (RLS), bipartite local model (BLM),
and neighbor association information were applied in our new
algorithm named VDA-RLSBN to find novel VDAs for new virus
(especially for SARS-CoV-2) or new drug. The results showed
that ribavirin, remdesivir, and chloroquine may be antiviral drugs
against SARS-CoV-2.

Molecular docking techniques investigate the behavior of
small molecular drugs in the binding site of a target protein.
As more target protein structures are confirmed experimentally,
molecular docking approaches are widely applied to drug design
(Zhang et al., 2020b). AutoDock (Goodsell et al., 1996; Ruyck
et al., 2016) is an available software applied to identify the bound
conformations of a small molecular drug to a macromolecular
target. The AutoDock affinity scoring function is applied to rank
the candidate poses based on the sum of the van der Waals
and electrostatic energies. We conducted molecular docking
between the predicted top 10 antiviral drugs against SARS-CoV-2
and two target proteins including the spike protein of SARS-
CoV-2 and human angiotensin-converting enzyme 2 (ACE2)
molecule (Wang et al., 2020a). The molecular binding energies
between the above three drugs and ACE2 are ribavirin with
−6.39 kcal/mol, remdesivir with−7.4 kcal/mol, and chloroquine
with −6.29 kcal/mol. These three small molecules have been
under clinical trial or supported by recent publications. In
addition, we found that FK506 shows higher molecular binding
energies of −10.1 kcal/mol and −11.06 kcal/mol with these
two targets, which suggest that FK506 may be applied to stop
COVID-19 although there is no report about its association
with SARS-CoV-2.

MATERIALS AND METHODS

Dataset
Aiming at identifying potential VDAs related to SARS-CoV-2,
96 known VDAs between 11 viruses similar to SARS-CoV-2
and 78 small molecular drugs were selected from the DrugBank

(Wishart et al., 2018), NCBI (Sayers et al., 2020), and PubMed
(Canese and Sarah, 2013) databases. The element yoriij in the VDA
matrix Yori

∈ <
n×m was represented as

yoriij =

{
1 if the ith virus associates with the jth drug
0 otherwise

(1)

These similar viruses included SARS-CoV (Ding et al., 2004),
MERS-CoV (Groot et al., 2013), human immunodeficiency virus
type 1 (Wei et al., 1995) and type 2 (Guyader et al., 1987)
(HIV-1 and HIV-2), chronic hepatitis C virus (HCV) (Jacobson
et al., 2011), influenza A viruses [A-H1N1 (Kumar et al., 2009),
A-H5N1 (Subbarao et al., 1998), A-H7N9 (Gao et al., 2013)],
Hendra virus (Bonaparte et al., 2005), human cytomegalovirus
(Cobbs et al., 2002), and respiratory syncytial virus (Hall, 2001).
Complete genome sequences of these 11 viruses and SARS-CoV-
2 were downloaded from the NCBI database, and virus similarity
matrix Sv ∈ <n×n was computed based on MAFFT, a multiple-
sequence alignment software. Chemical structures of drugs were
downloaded from the DrugBank database, and drug similarity
matrix Sd ∈ <m×m was obtained by RDKit, an open-source
cheminformatics tool. The details are shown in Table 1.

Methods
Problem Formalization
Bleakley and Yamanishi (2009) represented a drug–target
interaction network as a bipartite graph and developed a BLM-
based method to predict possible drug–target interactions. The
proposed method first inferred targets of a given FDA-approved
drug and drugs targeting a known protein and then combined
these two independent predictions. The results demonstrated
the excellent performance of BLM. Similar to the drug–target
interaction network, the VDA network can also be taken as
a bipartite graph. Results in this study are thus presented to
evaluate the prediction performance in each of the following four
cases for a given putative virus–drug pair:

• The virus with at least one known drug and the drug with
at least one known virus.
• The virus with at least one known drug and the drug

without any known virus (new drug).
• The virus without any known drug (new virus) and the drug

with at least one known virus.
• New virus and new drug.

Based on these four cases, we represent a VDA network as a
bipartite graph and thus the predicted VDA matrix Ypre

n×m can be

TABLE 1 | Statistics of viruses and drugs.

Virus No. of drugs Virus No. of drugs

SARS-CoV 15 Hendra virus 1

MERS-CoV 9 HIV-1 35

A-H1N1 4 HIV-2 3

A-H5N9 2 HCV 15

A-H7N9 4 Respiratory syncytial virus 2

Human cytomegalovirus 6 SARS-CoV-2 0
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denoted as Eq. (2):

Ypre
n×m =

[
(Y1)ncv×mcv

(Y3)n̄×mcv

(Y2)ncv×m̄
(Y4)n̄×m̄

]
(2)

where n̄ = n− ncv is the number of new viruses (for example,
SARS-CoV-2), and m̄ = m−mcv is the number of new drugs. Y1
represents VDAs from ncv existing viruses and mcv existing drugs,
Y2 represents VDAs from ncv existing viruses and m̄ new drugs,
Y3 denotes VDAs from n̄ new viruses and mcv existing drugs, and
Y4 denotes VDAs from n̄ new viruses and m̄ new drugs. Our aims
are to identify potential VDAs in the subnetwork Y1 as well as in
Y2, Y3, and Y4. Figure 1 shows the flowchart of VDA-RLSBN.

Regularized Least Square
To infer possible VDA candidates, we develop an RLS-
based VDA identification model (VDA-RLS) to compute the
association profile ŷ for each virus–drug pair:

ŷ = K(K + σI)−1y (3)

where K represents the kernel matrix, y denotes the original
association profile, and σ is a regularization parameter.

To compute VDA matrix Y1 from ncv existing viruses and
mcv existing drugs, we consider the ensemble of independent
virus-based prediction and drug-based prediction with RLS. The
solution of Y1 can be thus divided down into the following four
steps:

Step 1 For a given virus vi with at least one known association,
its new association profile ŷvi can be computed from its original
association profile yvi and the kernel matrix Kv based on RLS
classifier:

ŷvi = Kv(Kv + σIv)−1yvi (4)

where Kv = (Sv + STv )/2, and yvi represents the ith row of Yori.
We can compute virus-based VDA matrix Yv by Eq. (4).

Step 2 For a given drug dj with at least one known association,
its new association profile ŷdj can be computed from its original
association profile ydj and the kernel matrix Kd based on RLS
classifier:

ŷdj = Kd(Kd + σId)−1ydj (5)

where Kd = (Sd + STd )/2, and ydj represents the jth column of
Yori. We can compute drug-based VDA matrix Yd by Eq. (5).

Step 3 Integrate Yv with the element yvij and Yd with the
element ydij to compute the predicted VDA matrix YRLS based on
RLS:

yRLS
ij = max

(
yvij, ydij

)
(6)

Step 4 Obtain Y1 by Eq. (7):

Y1 = Yori
+ YRLS (7)

Regularized Least Square With Neighbor Association
Information
We can identify novel VDAs between existing viruses and
existing drugs, or known/new viruses and new/existing drugs
based on RLS and BLM. However, VDA-RLS was not able to

predict associations between new viruses and new drugs. To
solve this problem, we developed a VDA prediction model
(VDA-RLSBN) by integrating neighbor association information
into the RLS model.

Based on the “guilt-by-association” method, similar
viruses/drugs tend to associate with similar drugs/viruses,
so the association profile of an unknown virus could be possibly
found by its neighbors’ association information. Viruses highly
similar to a new virus can be considered as its neighbors. Since
the new virus has no associated drugs (i.e., its current association
profile is a vector with all the elements of 0), complete genome
sequence similarity of viruses is applied to define its neighbors.

For a new virus vi, its association weight with a drug dj can be
computed by its neighbors’ associations with dj and its association
profile avi

(
j
)

is defined as Eq. (8):

avi
(
j
)
=

ncv∑
k=1

Sviky
ori
kj (8)

where Svik is the complete genome sequence similarity between
two viruses vi and vj. avi

(
j
)

> 0 when the jth associated drug
dj exists, i.e., yori

kj > 0 for at least one k and avi
(
j
)
= 0 when

the jth associated drug dj is new, i.e., yori
kj = 0 for all k. avi

(
j
)

is
normalized to make its value in the range of [0, 1] by Eq. (9):

avi
(
j
)
=

(
avi
(
j
)
−minkavi

(
k
))(

maxkavi
(
k
)
−minkavi

(
k
)) (9)

Also, an independent virus-based association profile yvi for a
virus–drug pair can be represented as Eq. (10):

ŷvi = Kv(Kv + σIv)−1avi (10)

Similarly, for a new drug dj, its association profile ydj for the same
virus–drug pair can be represented as Eq. (10):

ŷdj = Kd(Kd + σId)−1adj (11)

where adj denotes the neighbor association profile of dj .
The final VDA network can be represented as

YVDA−RLSBN =

[
YVDA−RLSBN

1
YVDA−RLSBN

3

YVDA−RLSBN
2

YVDA−RLSBN
4

]
(12)

where YVDA−RLSBN
1 can be computed by Eqs (4–7); YVDA−RLSBN

2
can be computed by Eqs (4), (11), and (6); YVDA−RLSBN

3 can
be obtained by Eqs (10), (5), and (6); and YVDA−RLSBN

4 can be
obtained by Eqs (10), (11), and (6). Specially, the VDA matrix
related to SARS-CoV-2 can be obtained from YVDA− RLSBN

3 .
Finally, we used AutoDock to analyze the druggability of the

predicted top 10 chemical agents and their binding activities
with two target proteins including the SARS-CoV-2 spike
protein and ACE2.
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FIGURE 1 | Flowchart of VDA-RLSBN.
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RESULTS

Evaluation Metrics and Experimental
Settings
In this section, we performed extensive experiments to evaluate
our proposed VDA-RLSBN method. We compared VDA-
RLSBN with five state-of-the-art machine learning-based models,
including LRLSHMDA (Wang et al., 2017), SMiR-NBI (Li
et al., 2016), CMF (Zheng et al., 2013), NetLapRLS (Xia et al.,
2010), and WNN-GIP (Laarhoven and Marchiori, 2013). The
experiments were performed on a MAC with 2.4 GHz Inter Core
i5, 8 GB 2133 MHz LPDDR3 of the RAM and OS Catalina 10.15.4
operating system.

Sensitivity, specificity, accuracy, AUC, and AUPR are widely
applied to evaluate various machine learning-based models.
In this study, we used these five metrics to measure the
performance of five state-of-the-art models and VDA-RLSBN.
Accuracy denotes the ratio of correctly predicted VDAs to all
VDAs. Sensitivity denotes the ratio of correctly predicted positive
VDAs to all positive VDAs. Specificity is the ratio of correctly
predicted negative VDAs to all negative VDAs. AUC is the area
under the ROC curve. The ROC curve can be plotted by a true
positive rate [TPR, i.e., Eq. (13)] and a false-positive rate [FPR,
i.e., Eq. (14)].

TPR = TP/ (TP + FN) (13)

FPR = FP/(FP + TN) (14)

where TPR represents the ratio of correctly predicted positive
VDAs to all positive VDAs and FPR represents the ratio of
mistakenly predicted positive VDAs to all negative VDAs.

AUPR is the area under the PR curve. The PR curve can be
plotted by precision and recall. Precision represents the ratio of
correctly predicted positive VDAs to all predicted positive VDAs,
and recall represents the ratio of correctly predicted positive
VDAs to all positive VDAs.

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

whereTP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative, respectively. Generally, larger
AUC/AUPR value denotes better performances.

We used five-fold cross validation to train our proposed VDA-
RLSBN method. In each round, 80% of VDAs in the known
VDA network was used as a training set and the remaining
20% of VDAs was the test set. The experiments were performed
100 times, and the final performance was on average over 100
times. In each round, a virus/drug is new if all of its associated
drugs/viruses are selected as a test set.

For the parameters in five comparative methods and VDA-
RLSBN, we conducted grid search to determine their optimal
values. In VDA-RLSBN, we set the parameter σ in the range
of [0, 0.1, 0.2, . . . , 1] and found that VDA-RLSBN obtained

the best performance when σ is set as 0.4. In LRLSHMDA, we
set the parameter lw in the range of [0, 0.1, 0.2, . . . , 1] and
found that LRLSHMDA obtained better accuracy when lw is
set as 0.1. In CMF, we set the parameters λl, λd, and λt in the
range of [2−2, . . . , 21

], [2−3, . . . , 25
], and [2−3, . . . , 25

],
respectively. We found that CMF obtained better performance
when λl = 1, λd = 0.25, and λt = 0.125. In NetLapRLS, we
set four parameters γd, γt , βd, and βt in the range of
[1e−6, . . . , 1e2

] and found that NetLapRLS performed better
when these four parameters were set as 1e− 6. In WNN-
GIP, we set five parameters T, αd, αt , σ, and γ in the range
of [0, 0.1, . . . , 1.0] and found that WNN-GIP obtained the
optimal performance when T = 0.7, αd = 0.6, αt = 0.6, σ = 1,
and γ = 0.5. All parameters in these six models were set as the
corresponding values where the corresponding method obtained
the optimal performance.

Comparison With Five State-of-the-Art
Methods
The performance of our proposed VDA-RLSBN and these
five machine learning-based models is shown in Table 2. The
best performance in each row is shown in bold in Table 2.
LRLSHMDA (Wang et al., 2017), NetLapRLS (Xia et al.,
2010), WNN-GIP (Laarhoven and Marchiori, 2013), and VDA-
RLSBN are RLS-based methods. LRLSHMDA (Wang et al.,
2017) used Laplacian RLS to tackle microbe–disease association
prediction, NetLapRLS (Xia et al., 2010) extended the standard
Laplacian RLS incorporating drug–target network, and WNN-
GIP (Laarhoven and Marchiori, 2013) integrated a simple
weighted nearest neighbor method and Gaussian kernels into
RLS. SMiR-NBI (Li et al., 2016) constructed a heterogeneous
network connecting genes, drugs, and miRNAs and then
combined a network-based inference algorithm to characterize
the responses of anticancer drugs. CMF (Zheng et al., 2013) was a
collaborative matrix factorization-based drug–target interaction
prediction method.

The results showed that VDA-RLSBN outperformed
LRLSHMDA, SMiR-NBI, CMF, and WNN-GIP in terms of
five evaluation metrics. Although the specificity value of VDA-
RLSBN is slightly lower compared to NetLapRLS, its AUC and
AUPR are significantly higher than NetLapRLS. Since AUC and
AUPR are more important evaluation metrics compared to other
three measurements, VDA-RLSBN, with the highest AUC and
AUPR, is considered to be better in finding potential VDAs
of novel viruses.

TABLE 2 | The performance of VDA-RLSBN with other five methods.

Methods Accuracy Sensitivity Specificity AUC AUPR

LRLSHMDA 0.5841 0.6702 0.5823 0.8303 0.1778

SMiR-NBI 0.2080 0.8437 0.1935 0.5721 0.4912

CMF 0.8980 0.8971 0.9916 0.7500 0.4210

NetLapRLS 0.8974 0.8974 0.9992 0.6758 0.1777

WNN-GIP 0.8786 0.8961 0.9072 0.8491 0.5356

VDA-RLSBN 0.9298 0.9279 0.9841 0.9085 0.6630
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Among six VDA prediction methods, LRLSHMDA,
NetLapRLS, WNN-GIP, and VDA-RLSBN are RLS-based
methods. VDA-RLSBN obtained better performance than the
other three methods. Although other RLS-based prediction
methods have good performance, they cannot predict the
relationship between new drug candidates and new candidate
targets. If a virus/drug has no known drug/virus, it is a new
virus/drug. Since there are many new viruses/drugs, our
proposed VDA-RLSBN approach learned labeled information
from neighbors and used the information to train the model and
make predictions. So VDA-RLSBN obtained better performance
compared to other RLS-based methods. The results suggest that
RLS combining neighbor association information can better
identify new VDAs.

Case Study
The prediction performance of the proposed VDA-RLSBN
method was confirmed in the last section. As a means to finding
potential antiviral drugs against SARS-CoV-2, small molecular
drugs were ranked based on the association scores with SARS-
CoV-2 and the top 10 drugs with the highest scores were listed
in Table 3. Among the predicted top 10 VDAs, 4 VDAs are
reported by related literature, that is, 40% small molecular drugs
are confirmed to be possible antiviral drugs against SARS-CoV-2.

Ribavirin is inferred to be the best small molecular drug
against SARS-CoV-2. It is a broad-spectrum antiviral drug
that can inhibit the replication of respiratory syncytial virus
(Laarhoven and Marchiori, 2013). For example, it has been
applied to prevent respiratory syncytial virus infection in lung
transplant recipients (Hayden and Whitley, 2020) and specially
used to treat SARS-CoV and MERS-CoV (Permpalung et al.,
2019). Similar to SARS-CoV and MERS-CoV, SARS-CoV-2 is
a respiratory syndrome betacoronavirus and may cause serious
respiratory diseases. A few studies (Li and De, 2020; Wang et al.,
2020b) have reported that ribavirin may take an inhibitory effect
on SARS-CoV-2. More importantly, remdesivir and chloroquine
are inferred to be other effective antiviral drugs. Wang et al.
(2020b) presented that remdesivir and chloroquine can effectively
inhibit SARS-CoV-2 and they have been used in the clinical stage.

TABLE 3 | The predicted top 10 drugs associated with SARS-CoV-2.

Rank Drug Confirmed

1 Ribavirin doi: 10.1038/d41573-020-00016-0
PMID:32034637

2 Remdesivir PMID:32036774, 32035533, 32035018,
31971553, 32022370, 31996494, 32020029

doi: 10.1101/2020.01.28.922922
doi: 10.26434/chemrxiv.11831101.v1

3 Mycophenolic acid Unconfirmed

4 Chloroquine PMID:32020029

5 Phenothiazine Unconfirmed

6 Mizoribine doi: 10.20944/preprints202002.0061.v1

7 FK506 Unconfirmed

8 Pentoxifylline Unconfirmed

9 6-Azauridine Unconfirmed

10 Protein phosphatase 1 Unconfirmed

These results suggest that ribavirin, remdesivir, and chloroquine
may be applied to the treatment of COVID-19.

Molecular Docking
We conducted molecular docking between the predicted top
10 small molecules and the SARS-CoV-2 spike protein/ACE2.
The chemical structures of these small molecular drugs were
downloaded from the DrugBank database. The structure of
the virus spike protein was obtained based on homologous
modeling from Zhang Lab (2020). The structure of ACE2 can
be downloaded from the RCSB Protein Data Bank (Helen et al.,
2000) (ID:6MJ0). AutoDock used the genetic algorithm as a
search algorithm and selected the entire protein as a grid box.

The molecular binding energies between the predicted top
10 small molecules and these two target proteins are described
in Table 4. The results show that the predicted top 10 drugs
have higher molecular binding activities with the spike protein
and/or ACE2. For example, ribavirin, which is predicted to be the
most possible drug against SARS-CoV-2, has a higher molecular
binding energy of −6.39 kcal/mol with ACE2. In addition,
remdesivir, mycophenolic acid, and chloroquine are predicted
to have higher association scores with SARS-CoV-2. These
three small molecular drugs showed higher binding energies of
−7.4, −5.35, and −6.29 kcal/mol with ACE2, respectively. More
importantly, ribavirin, remdesivir, and chloroquine have been
used for the treatment of SARS, which has about 79% sequence
identity with SARS-CoV-2. So the potential use of these three
small molecules as a treatment for COVID-19 may be under
investigation. Interestingly, FK506 is an immunesuppressive drug
and mainly used to decrease the activity of the immune system
after organ transplant. The molecular docking results show that

TABLE 4 | The molecular binding energies between the predicted top 10 antiviral
drugs and two target proteins.

Target protein Drug Binding energy

The spike protein Ribavirin −5.29

Remdesivir −5.22

Mycophenolic acid −3.6

Chloroquine −5.03

Phenothiazine −5.44

Mizoribine −6.07

FK506 −10.1

Pentoxifylline −8.59

6-Azauridine −7.72

Protein phosphatase 1 −8.46

ACE2 Ribavirin −6.39

Remdesivir −7.4

Mycophenolic acid −5.35

Chloroquine −6.29

Phenothiazine −8.12

Mizoribine −7.62

FK506 −11.06

Pentoxifylline −5.98

6-Azauridine −10.74

Protein phosphatase 1 −9.13
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FIGURE 2 | Molecular docking between (A) ribavirin, (B) remdesivir, (C) chloroquine, and (D) FK506 and the spike protein.

FK506 has a strong molecular binding energy of −11.06 and
−10.1 kcal/mol with ACE2 and the spike protein, respectively,
although it has a slightly lower rank in the predicted drugs against
SARS-CoV-2 by VDA-RLSBN.

Figures 2, 3 represent the docking results about four small
molecules including ribavirin, remdesivir, chloroquine, and
FK506 and two target proteins. The subfigure in each circle
denotes the residues at the binding site of the SARS-CoV-2
spike protein/ACE2 and their corresponding orientations. For
example, the amino acids L387, L368, P565, and V209 were
inferred to be the key residues for ribavirin binding to the SARS-
CoV-2 spike protein/ACE2 while L828, L849, W1212, N163, and
N194 were inferred as the key residues for FK506 binding to the
SARS-CoV-2 spike protein/ACE2.

DISCUSSION

With the spreading of SARS-CoV-2 around the world, the
incidence rate is rapidly increasing, and lack of effective treatment
options made it a public health threat. Therefore, various
strategies are being exploited. Drug repositioning, aiming to offer
a potentially valuable opportunity to find new clues of treatment

for existing FDA-approved drugs, provides a far more rapid
option to the clinic than novel drug design.

In the proposed VDA-RLSBN method, we predicted VDA
candidates based on RLS and BLM. However, SARS-CoV-2 is
a new coronavirus and has no associated drugs verified by
biomedical experiments. We cannot find potential VDAs related
to the virus by RLS and BLM. Therefore, we used association
information of other RNA viruses similar to SARS-CoV-2
and similarities between SARS-CoV-2 and these viruses. The
originality of our proposed method remains, predicting possible
antiviral drugs against SARS-CoV-2 by drug repositioning
through virus–drug association identification. More importantly,
we integrated neighbor association information to RLS to find
associated chemical agents for the new virus. The experimental
results showed the merits of the VDA-RLSBN model. Higher
AUC and AUPR indicated that the predicted antiviral drugs
against SARS-CoV-2 are likely to be effective for preventing the
rapid transmission of COVID-19.

VDA-RLSBN can obtain superior performance regardless of
AUC, AUPR, accuracy, or sensitivity. This observation may
be attributed to the following two features. First, VDA-RLSBN
divides new VDA prediction into four cases based on BLM, a
state-of-the-art method applied in various association prediction
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FIGURE 3 | Molecular docking between (A) ribavirin, (B) remdesivir, (C) chloroquine, and (D) FK506 and ACE2.

areas. More importantly, neighbor association information can
help to identify possible antiviral drugs against new viruses (for
example, SARS-CoV-2).

The proposed VDA-RLSBN approach is also helpful in
designing and interpreting pharmacological experiments. The
method can be further applied to select potential antiviral
drugs against other new viruses, for example, infectious
bronchitis virus.

CONCLUSION

In this study, we considered the clues of treatment from
SARS-CoV, MERS-CoV, and other diseases caused by single-
strand RNA viruses and developed a VDA prediction method
based on RLS, BLM, and neighbor association information.
VDA-RLSBN inferred commercially available small molecular
drugs that could be applied to experimental therapy options
against SARS-CoV-2. We conducted molecular docking between
the predicted four chemical compounds including ribavirin,
remdesivir, chloroquine, and FK506 and two target proteins
including the spike protein and ACE2. The results show that
ribavirin, remdesivir, and chloroquine have better molecular

binding activities with ACE2 and may be the best small molecular
drugs against SARS-CoV-2. In addition, we found that several
antiviral drugs, such as FK506, could be used to combat COVID-
19. Nevertheless, the 4 predicted drugs ranked 1, 2, 4, and
6 have been supported by recent works. We hope that our
predicted small molecules may be helpful in the prevention of the
transmission of SARS-CoV-2.

In the future, we will develop ensemble frameworks
(Hu et al., 2018; Peng et al., 2020) and positive-unlabeled
learning methods (Lan et al., 2016a; Peng et al., 2017b)
to further improve the prediction performance. More
importantly, we will enlarge the existing dataset. We
will also integrate various biological data including long
noncoding RNA (Lan et al., 2017; Zhao et al., 2018;
Liu et al., 2020) and disease symptom information
(Lan et al., 2016b).

CODE AVAILABILITY

Source code is freely downloadable at: https://
github.com/plhhnu/VDA-RLSBN/.
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Acute and chronic inflammation often leads to fibrosis, which is also the common and
final pathological outcome of chronic inflammatory diseases. To explore the common
genes and pathogenic pathways among different fibrotic diseases, we collected all
the reported genes of the eight fibrotic diseases: eye fibrosis, heart fibrosis, hepatic
fibrosis, intestinal fibrosis, lung fibrosis, pancreas fibrosis, renal fibrosis, and skin fibrosis.
We calculated the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment scores of all fibrotic disease genes. Each gene was encoded
using KEGG and GO enrichment scores, which reflected how much a gene can affect
this function. For each fibrotic disease, by comparing the KEGG and GO enrichment
scores between reported disease genes and other genes using the Monte Carlo feature
selection (MCFS) method, the key KEGG and GO features were identified. We compared
the gene overlaps among eight fibrotic diseases and connective tissue growth factor
(CTGF) was finally identified as the common key molecule. The key KEGG and GO
features of the eight fibrotic diseases were all screened by MCFS method. Moreover, we
interestingly found overlaps of pathways between renal fibrosis and skin fibrosis, such as
GO:1901890-positive regulation of cell junction assembly, as well as common regulatory
genes, such as CTGF, which is the key molecule regulating fibrogenesis. We hope to
offer a new insight into the cellular and molecular mechanisms underlying fibrosis and
therefore help leading to the development of new drugs, which specifically delay or even
improve the symptoms of fibrosis.

Keywords: fibrotic diseases, genes, pathways, Monte Carlo feature selection, CTGF

INTRODUCTION

Acute and chronic inflammation often leads to fibrosis, which is also the common and final
pathological outcome of chronic inflammatory diseases (Rockey et al., 2015). Fibrosis is defined
as overaccumulation of fibrous connective tissue in and around the tissues with inflammation
or damage, triggering irreversible scar formation. The clinical manifestations are renal disease,
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idiopathic pulmonary fibrosis (IPF), heart failure, end-stage liver
diseases, and so on (Bataller and Brenner, 2005). Besides, fibrosis
can also be observed in many chronic autoimmune diseases, such
as rheumatoid arthritis, scleroderma, myelofibrosis, and Crohn
disease. But the common characteristics of these fibrosis diseases
were still unknown.

Fibrosis can affect chronic graft rejection, tumor invasion
and metastasis, and the pathogenesis of many progressive
myopathies. With regard to chronic graft rejection, fibrosis is
one of the most common symptoms in chronic graft rejection.
For example, liver transplantation in children has a 20-year
survival of more than 80% at present, but the long-term
results of these grafts still remain uncertain. Biopsies after liver
transplantation show idiopathic post-transplant hepatitis and
graft fibrosis occur even in children with good graft function
(Kelly et al., 2016). As for tumor invasion and metastasis,
carcinoma-associated fibroblasts are able to enhance tumor cells
migration and invasion via activating the process of specific
pathways. For example, as lung cancer maintains the leading
cause of cancer-related deaths, IPF has been demonstrated that
it increases the risk of lung cancer development by 7–20%, and
there are multiple common molecular processes that associated
IPF with lung cancer, such as epithelial–mesenchymal transition
(EMT), endoplasmic reticulum stress, and abnormal expression
of growth factors (Gu et al., 2018, 2020a,b; Ballester et al.,
2019; Jiao and Yang, 2020). In the tissue of myopathies, there is
prominent endomysial fibrosis, but little or no inflammation.

The fact that fibrotic changes are commonly observed in
different diseases of diverse organ systems suggests common
pathogenic pathways (Rockey et al., 2015). The wound healing
in the fibrotic tissue is regulated by complex processes within
different cells, and therefore some specific molecular pathways
are activated. For example, in IPF, the fibrosis starts from the lung
periphery to the lung center, finally causing respiratory failure.
The underlying mechanisms of IPF were proven that elevated
mechanical tension activates a transforming growth factor β

(TGF-β) signaling loop in alveolar stem cells (AT2).
In this study, we proposed a new computational method

incorporating feature engineering and feature selection
algorithms to explore the common controlling genes and
corresponding pathways among eight different organs’ fibrosis.
The key genes and pathways were revealed, and the cross-talks
between diseases were investigated. These results were helpful
for understanding the molecular mechanisms of fibrosis diseases
and finding new therapeutic indications of existing drugs, i.e.,
drug repositioning.

MATERIALS AND METHODS

The Reported Genes of the Eight Fibrotic
Diseases
All the genes of the related eight fibrotic diseases (eye fibrosis,
heart fibrosis, hepatic fibrosis, intestinal fibrosis, lung fibrosis,
pancreas fibrosis, renal fibrosis, and skin fibrosis) extracted
from published researches are listed in Supplementary Table 1.
In Supplementary Table 1, “1” refers to the genes associated

with the specific fibrotic diseases, whereas “0” means the genes
have no relationship with the specific fibrotic diseases. We
compared the reported genes of the eight fibrotic diseases
using R package SuperExactTest,1 which has the function of
identification of sets of objects with shared features, which is a
common operation in all disciplines. Analysis of intersections
among multiple sets is fundamental for in-depth understanding
of their complex relationships. This package implements a
theoretical framework for efficient computation of statistical
distributions of multiset intersections based on combinatorial
theory and provides multiple scalable techniques for visualizing
the intersection statistics (Wang et al., 2015). There were 954
genes that were associated with at least one of the eight fibrotic
diseases. In each fibrotic disease, the numbers of reported genes
are listed in Table 1.

Encoding the Fibrotic Disease Genes
With KEGG and GO Features
We calculated the KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO (Gene Ontology) enrichment scores of all
fibrotic disease genes. For each specific fibrotic disease, the
reported genes of this disease were considered as positive
samples, and the other genes were considered as negative
samples. The KEGG and GO enrichment scores (Shi et al., 2018;
Gu et al., 2020c) were used as features to encode genes and
characterize their functions.

The KEGG and GO enrichment scores were the functional
profiles of a gene. To be more specific, we enriched the neighbors
of genes in STRING network (version 11.02) (Szklarczyk et al.,
2018) on to KEGG pathway and GO terms. Given a gene g,
let S(g) be a gene set consisting of genes that have functional
associations with gene g in STRING network (Szklarczyk et al.,
2018). Given a gene g and a GO term GOj, the GO enrichment
score was defined as the −log10 of the hypergeometric test
P-value (Chen et al., 2016) of the gene set S(g) and the GO term
GOj, which can be computed as follows:

SGO
(
l,GOj

)
= − log10(

n∑
k=m

(
M
m

) (
N −M
n−m

)
(
N
n

) ) (1)

where N was the total number of human genes in STRING
database, M and n were the number of genes annotated to GOj
and the number of genes in S(g), respectively, and m was the
number of genes in S(g) that were annotated to GOj .

Similarly, the KEGG enrichment scores can be calculated
by replacing the GO terms with KEGG pathways. The higher
enrichment score meant this gene can affect this biological
function. In total, there were 22,130 features (324 KEGG
enrichment scores and 21,806 GO enrichment scores). The
GO (2019-Apr24) annotations were downloaded from ftp://ftp.
geneontology.org/, and the KEGG (Release 91.0) annotations

1https://CRAN.R-project.org/package=SuperExactTest
2https://string-db.org/
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TABLE 1 | The number of reported genes in the eight fibrotic diseases.

Index Disease No. of reported genes

1 Eye fibrosis 39

2 Heart fibrosis 207

3 Hepatic fibrosis 173

4 Intestinal fibrosis 150

5 Lung fibrosis 185

6 Pancreas fibrosis 43

7 Renal fibrosis 160

8 Skin fibrosis 125

were extracted from https://www.kegg.jp/ using R/Bioconductor
package KEGGREST3 on July 1, 2019.

Identifying the Key KEGG and GO
Features for Each Fibrotic Disease
The Monte Carlo feature selection (MCFS) method (Draminski
et al., 2008) was applied to rank all the KEGG and GO features
based on their importance in classification. It has been widely
used and showed great power in identify robust key features
for complex biological problems (Pan et al., 2018, 2020; Chen
et al., 2020; Li et al., 2020a; Ren et al., 2020). As a supervised
feature selection method, the MCFS method was based on
tree classifiers. It constructed a series of tree classifiers on a
series of subsets randomly selected from the whole dataset.
By considering how much a feature contributed in these tree
classifiers, the importance of this feature was calculated. By
comparing with its importance calculated on permuted datasets,
its significance can be calculated. As it ensembled a series of trees,
the results were robust and trustworthy (Pan et al., 2019a,b,c,
2020; Li et al., 2020b).

For each fibrotic disease, the KEGG and GO enrichment
features of the positive samples (the reported genes of this
disease) and the negative samples (the other genes) were
compared, and the relative importance (RI) of each feature
was evaluated using MCFS algorithm. The significant KEGG
and GO features were selected and analyzed. Software dmlab
downloaded from http://www.ipipan.eu/staff/m.draminski/mcfs.
html was used to apply the MCFS algorithm, and the default
parameters were used.

RESULTS

The Overlapped Genes of the Eight
Fibrotic Diseases
We compared the reported genes of the eight fibrotic diseases
using R package SuperExactTest (see text footnote 1) (Wang
et al., 2015). The results are shown in Supplementary Table 2.
In Supplementary Table 2, degree 1 represents the original
gene lists of the eight fibrotic diseases, degree 2 means the
gene overlaps between any two groups, and degree 3 shows
the gene overlaps among any three groups. By that analogy,

3https://bioconductor.org/packages/KEGGREST/

degree 8 means the gene overlaps among all the eight groups.
The data visualization is illustrated in Figure 1. The numbers of
overlapped genes are listed over the histogram, and the darkness
of the color represents how significant the overlap was. The
connective tissue growth factor (CTGF) was finally identified as
the common key molecule in the process of fibrosis.

The Key KEGG and GO Features of the
Eight Fibrotic Diseases
The key KEGG and GO features of the eight fibrotic diseases were
screened by MCFS method. As shown in Supplementary Table 3,
it means that if a gene could influence a specific function, it may
cause a certain fibrotic disease.

As for eye fibrosis, the top three GO terms are GO:0033693
neurofilament bundle assembly, GO:1904530 negative regulation
of actin filament binding, and GO:0031113 regulation of
microtubule polymerization, respectively. GO:0033693 is
associated with neurofilament bundle assembly, which means
the assembly of neurofilaments into bundles, in which the
filaments are longitudinally oriented, with numerous cross-
bridges between them. GO:1904530 is related to negative
regulation of actin filament binding, which means reducing
physiological activities of actin filament binding. GO:0031113 is
connected with the normal physiological activities of microtubule
polymerization. Corneal fibrosis is the major type of eye fibrosis.
Vimentin, a major structural type III intermediate filament, is a
required component of keratocyte activation and differentiation
corneal fibrosis, which often accelerates the process of fibrosis
(Das et al., 2014).

As for heart fibrosis, the top three GO terms are GO:0032971
regulation of muscle filament sliding, GO:0070296 sarcoplasmic
reticulum calcium ion transport, and GO:1990584 troponin
complex, respectively. GO:0032971 is in connection with the
process that regulates the frequency, rate, or extent of muscle
filament sliding. GO:0070296 determines the movement of
calcium ions, and GO:1990584 is associated with the cardiac
troponin complex and influences muscle contraction. Therefore,
muscle filament sliding and calcium ions have been proven
to play important roles in the process of hypertrophic
cardiomyopathy and heart fibrosis (Huang et al., 2014).

As for hepatic fibrosis, the top three GO terms are GO:0047747
cholate-CoA ligase activity, GO:0008508 bile acid:sodium
symporter activity, and GO:0051264 mono-olein transacylation
activity, respectively. GO:0047747 affects the activity of cholate-
CoA ligase, which catalyzes some reactions in liver. GO:0008508
is related with bile acid and sodium ion transport. GO:0051264
is connected with mono-olein metabolism. Serum bile acids and
total cholesterol (TC) are closely related to liver cirrhosis; the
potential diagnostic value of total bile acid-to-cholesterol ratio
(TBA/TC) for liver fibrosis has been proven (Yan et al., 2020).

As for intestinal fibrosis, the top three GO terms are
GO:0032500 muramyl dipeptide binding, GO:0032498 detection
of muramyl dipeptide, and GO:0045076 regulation of interleukin
2 (IL-2) biosynthetic process, respectively. GO:0032500 is
related with muramyl dipeptide binding, whereas GO:0032498
is associated with detection of muramyl dipeptide. GO:0045076
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FIGURE 1 | The number of overlapped genes among the eight fibrotic diseases. A circular plot illustrating all possible intersections and the corresponding statistics.
The eight circles from inside to outside represent the eight fibrotic diseases (1, eye fibrosis; 2, heart fibrosis; 3, hepatic fibrosis; 4, intestinal fibrosis; 5, lung fibrosis; 6,
pancreas fibrosis; 7, renal fibrosis; and 8, skin fibrosis), respectively. The height of the bars in the outer layer is proportional to the intersection sizes, as indicated by
the numbers on the top of the bars. The color intensity of the bars represents the P-value significance of the intersections.

regulates the process of IL-2 in fibrosis, which has also
been proven in patients with cirrhosis and ascitic fluid
(Juanola et al., 2016).

As for lung fibrosis, the top three GO terms are GO:0070950
regulation of neutrophil mediated killing of bacterium,
GO:0070951 regulation of neutrophil mediated killing of
Gram-negative bacterium, and GO:0004957 prostaglandin
E receptor activity, respectively. GO:0070950 is related with
regulation of neutrophil mediated killing of bacterium.
GO:0070951 participates in regulation of neutrophil-mediated
killing of Gram-negative bacterium. GO:0004957 means
fibrogenesis via prostaglandin E receptor activity. It has been
reported that neutrophil-mediated Gram-negative bacterial
killing was connected with the cystic fibrosis (CF) lung
(Vega-Carrascal et al., 2014).

As for pancreas fibrosis, the top three GO terms are
GO:2000878-positive regulation of oligopeptide transport,
GO:2000880-positive regulation of dipeptide transport, and
GO:2001150-positive regulation of dipeptide transmembrane

transport, respectively. All of the three are related to peptide
transport. GO:2000878 is associated with positive regulation
of oligopeptide transport, whereas GO:2000880 with positive
regulation of dipeptide transport. GO:2001150 is related to
positive regulation of dipeptide transmembrane transport. CF
in the pancreas is characterized by an abnormality in cAMP-
regulated chloride transport, which supports the findings of the
predicted GO terms (Marino et al., 1991).

As for renal fibrosis, the top three GO terms are GO:0072015
glomerular visceral epithelial cell development, GO:0036057
slit diaphragm, and GO:0005362 low-affinity glucose:sodium
symporter activity, respectively. GO:0072015 affects glomerular
visceral epithelial cell development and therefore influences its
formation to the mature structure. GO:0036057 associated a
specialized cell–cell junction, which affects glomerular filtration.
GO:0005362 is related to the transfer function of a solute.
Renal fibrosis is often caused by renal glomerular sclerosis
and interstitial fibrosis. Therefore, glomerular visceral epithelial
cell development and formation, glomerular filtration, and
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transfer function act as the internal causes of renal fibrosis
(Qi et al., 2020).

As for skin fibrosis, the top three GO terms are GO:0005600
collagen type XIII trimer, GO:0030936 transmembrane
collagen trimer, and GO:0030316 osteoclast differentiation,
respectively. GO:0005600 plays a role by collagen type XIII
trimer, whereas GO:0030936 via transmembrane collagen
trimer. Collagen trimer contributes to derangements in
extracellular matrix (ECM) remodeling and leads to fibrosis
(Madahar et al., 2018).

The Cross-Talks Between Different
Fibrotic Diseases
From the key KEGG and GO features of all the eight fibrotic
diseases, we interestingly found overlaps of pathways within
some specific fibrotic diseases. For example, renal fibrosis and
skin fibrosis jointly influence GO:1901890-positive regulation
of cell junction assembly. Some researchers have demonstrated
that in renal fibrosis, MG132 successfully sustained cytoskeletal
assembly and tight junction, preventing EMT process via RhoA-
dependent TGF-β1 pathway, whereas in systemic sclerosis,
endothelial junction–associated protein plays vital importance to
the pathogenicity (Kanno et al., 2017).

To explore the cross-talk between renal fibrosis and skin
fibrosis, we mapped the genes of renal fibrosis, the genes of
skin fibrosis, and the genes of GO:1901890-positive regulation
of cell junction assembly, which was the common GO feature
between renal fibrosis and skin fibrosis, onto STRING network
(Figure 2). In Figure 2, genes in red refer to the overlaps between
renal fibrosis and skin fibrosis, whereas the specific genes in renal
fibrosis, skin fibrosis, and GO:1901890 are shown in light yellow,
light blue, and pink circles, respectively. As illustrated in Figure 2,
the overlapped genes between renal fibrosis and skin fibrosis
included CCL2, SIRT1, KLF5, PPARG, AKT1, SHH, NOTCH,
SMAD7, TGFB1, CTNNB1, MMP2, CTGF, FN1, ITGB1, PLAUR,
MMP14, NOX4, and COL1A1.

DISCUSSION

Fibrosis is a pathological characteristic of most chronic
inflammatory diseases, and many deep learning methods
have been developed to study human diseases (Wynn and
Ramalingam, 2012; Chen Q. et al., 2019; Cheng and Ghany, 2020;
Feng et al., 2020; Lan et al., 2020; Zhao et al., 2020). In recent
years, fibrosis is recognized as a main reason of the occurrence of
adverse events in many chronic inflammatory diseases. However,
the underlying mechanisms in different organs are various and
the generality among diverse fibrotic diseases still need to be
uncovered. In this study, we applied a new computational method
incorporating several machine learning algorithms to explore the
common controlling genes and their corresponding pathways
among eight different organs’ fibrosis.

Common Genes
In our study, CTGF was identified as the common regulatory
gene in the eight kinds of fibrotic diseases by MCFS method.

It has been around 30 years since the discovery of CTGF
from human umbilical vein endothelial cells. In previous
researches, CTGF plays an important role in diverse diseases,
including cancers, neurodegenerative diseases, systemic sclerosis,
kidney diseases, pancreatic diseases, and so on, which means
CTGF expresses generally. Mao et al. (2019) demonstrated that
megakaryocytic leukemia 1 (MKL1) mediates TGF-β–induced
CTGF transcription to promote renal fibrosis. CTGF knockdown
dampened TGF-β–induced profibrogenic response in renal
tubular epithelial cells. In cardiac fibrosis, Tan et al. (2019)
developed an the lamin gene (LMNA) dilated cardiomyopathy
(DCM) mouse model and found silencing of cardiac LMNA-
induced DCM with associated cardiac fibrosis and inflammation
and further uncovered that Yy1 suppresses DCM and cardiac
fibrosis through regulation of bmp7 and CTGF. Besides,
another study also proved that in patients with rheumatic heart
disease, high CTGF expression was related to enlarged left
atrial diameter, atrial fibrosis, and atrial anatomical remodeling
(Chen J.Q. et al., 2019). In lung fibrosis, disintegrin and
metalloproteinase 17, and CTGF were found to play critical
roles in fibrotic procedures and contribute to lung fibrosis
(Chen et al., 2018).

With regard to the gene overlaps of pathways within some
specific fibrotic diseases, we have identified some common
pathways and genes within renal fibrosis and skin fibrosis.
For example, in chronic renal allograft injury resulting in
progressive interstitial fibrosis, early urinary CCL2 is an
independent predictor for the subsequent development of
interstitial fibrosis and tubular atrophy at 24 months (Ho
et al., 2010). Similarly, in systemic sclerosis (skin fibrosis),
the levels of circulating CCL2, CCL3, and CCL5 chemokines
were significantly higher in patients with systemic sclerosis
than in controls.

Common Pathways
Fibrosis and resultant organ failure result in approximately one-
third of deaths worldwide (Zeisberg and Kalluri, 2013). Now that
fibrosis is common and has harmful effects in almost all organs,
it is a potential therapeutic target. As for predicted pathways,
we have demonstrated some new pathways associated with the
specific fibrotic diseases. In intestinal fibrosis, the GO term,
GO:0045076, regulates the process of IL-2 in fibrosis. In patients
with cirrhosis and ascitic fluid, Juanola et al. (2016) identified
how the role of regulatory T cells played for compensating the
inflammatory environment in cirrhosis when norfloxacin was
applied, and they found norfloxacin immunomodulatory effect
on IL-2 and interferon γ reduction. In lung fibrosis, GO:0070951
participates in regulation of neutrophil-mediated killing of
Gram-negative bacterium. It has been reported that neutrophil-
mediated Gram-negative bacterial killing was connected with the
CF lung. The underlying mechanism was that galectin-9 (Gal-
9) signaling through the T-cell Ig and mucin domain-containing
molecule (TIM) and neutrophil TIM-3/Gal-9 signaling is
perturbed in the CF airways due to proteolytic degradation of
the receptor (Vega-Carrascal et al., 2014). GO:0004957 means
fibrogenesis via prostaglandin E receptor activity. As Sieber
et al. (2018) demonstrated, pathological features of pulmonary
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FIGURE 2 | The cross-talk network between renal fibrosis and skin fibrosis. The genes in red refer to the overlaps between renal fibrosis and skin fibrosis, whereas
the specific genes in renal fibrosis, skin fibrosis, and GO:1901890 are shown in light yellow, light blue, and pink circles, respectively. The overlapped genes between
renal fibrosis and skin fibrosis included CCL2, SIRT1, KLF5, PPARG, AKT1, SHH, NOTCH, SMAD7, TGFB1, CTNNB1, MMP2, CTGF, FN1, ITGB1, PLAUR, MMP14,
NOX4, and COL1A1.

fibrosis include accumulation of myofibroblasts and increased
ECM deposition in lung tissue; they developed a new assay
with therapeutic potential in pulmonary fibrosis that acts via
EP2 and EP4 receptors. In heart and renal fibrosis, angiotensin-
converting enzyme inhibitors and angiotensin-receptor blockers
that ameliorate cardiac and renal damage and fibrosis through
many pathways such as TGF-β and SMAD pathways (Lambers

Heerspink et al., 2013). In liver fibrosis, as hepatocytes process
the ability of regeneration, intervention is needed for patients
with hepatic fibrosis. For example, colchicine has been proven
to prevent hepatic fibrosis via suppressing collagen secretion
(Rockey, 2013). As the common pathways and genes were
identified by our new computational method, old drugs for a
specific fibrosis may be effective for another organ fibrosis.
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CONCLUSION

In conclusion, we identified that CTGF is acted as the key
molecule regulating the processes of fibrogenesis and some
common pathways within different fibrotic diseases via a new
computational method. We hope to offer a new insight into
the cellular and molecular mechanisms underlying fibrosis and
therefore help lead to the development of new drugs that
specifically delay or even improve the symptoms of fibrosis.
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Breast cancer is the most common malignancy in women, and because it has a high
mortality rate, it is urgent to develop computational methods to increase the accuracy
of breast cancer survival predictive models. Although multi-omics data such as gene
expression have been extensively used in recent studies, the accurate prognosis of
breast cancer remains a challenge. Somatic mutations are another important and
promising data source for studying cancer development, and its effect on the prognosis
of breast cancer remains to be further explored. Meanwhile, these omics datasets
are high-dimensional and redundant. Therefore, we adopted multiple kernel learning
(MKL) to efficiently integrate somatic mutation to currently molecular data including
gene expression, copy number variation (CNV), methylation, and protein expression data
for the prediction of breast cancer survival. Before integration, the maximum relevance
minimum redundancy (mRMR) feature selection method was utilized to select features
that present high relevance to survival and low redundancy among themselves for
each type of data. The experimental results demonstrated that the proposed method
achieved the most optimal performance and there was a remarkable improvement
in the prediction performance when somatic mutations were included, indicating that
somatic mutations are critical for improving breast cancer survival predictions. Moreover,
mRMR was superior to other feature selection methods used in previous studies.
Furthermore, MKL outperformed the other traditional classifiers in multi-omics data
integration. Our analysis indicated that through employing promising omics data such as
somatic mutations and harnessing the power of proper feature selection methods and
effective integration frameworks, the breast cancer survival predictive accuracy can be
further increased, thereby providing a more optimal clinical diagnosis and more effective
treatment for breast cancer patients.

Keywords: breast cancer, multi-omics, survival prediction, somatic mutation, mRMR, MKL

INTRODUCTION

Breast cancer is the most common malignant tumor in women. Although there are millions of
breast cancer survivors in the United States, breast cancer is the main cause of cancer-related deaths
worldwide because of its high mortality rate (Ferlay et al., 2010). Thus, it is urgent to design highly
accurate methods to predict the survival of breast cancer patients. Accordingly, effective survival
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predictors could finally contribute to the reduction of the overall
mortality of breast cancer and could further improve the life
quality and increase the lifespan of breast cancer patients.

Recently, the Cox regression model (Yuan et al., 2014; Xu et al.,
2016) and traditional machine learning classification methods,
such as support vector machine (SVM) (Xu et al., 2013), Bayes
classifier (Gevaert et al., 2006), and random forest (RF) (Nguyen
et al., 2013), have been widely deployed to identify breast
cancer prognostic biomarkers. Multiple survival prediction
models have been mainly developed based on gene expression
data. The Cancer Genome Atlas (TCGA) (Cancer Genome
Atlas Research Network, 2013; Brennan et al., 2014) provides
multiple types of molecular data such as gene expression (Exp),
copy number variation (CNV), methylation (Methy), protein
expression (Protein), and somatic mutation (SM) data for various
cancers, including breast cancer. Moreover, the advancement of
machine learning technologies enables various data types to be
combined within a model (Chen et al., 2019; Lan et al., 2020),
which may increase the accuracy of predictive models.

One of the biggest challenges in breast cancer research
involves the effective combination of heterogeneous data sources
into survival prediction models, making the selection of a proper
integration method essential. In previous studies (Seoane et al.,
2014; Zhang et al., 2016; Sun et al., 2018; Zhang A. et al.,
2019; Zhang Y. et al., 2019), multiple kernel learning (MKL)
(Lanckriet et al., 2004; Rakotomamonjy et al., 2008; Kloft et al.,
2011) was successfully used to integrate different types of data
into a universal model to distinguish short-term and long-term
cancers survivors. MKL uses different kernels for different types
of data, and then trains the weight of each kernel to select the
best combination of kernel functions for classification. These
studies have demonstrated that models that were obtained using
integrated data improved the performance of survival prediction
compared to models that used only one single data type.

A previous study (Sun et al., 2018) showed that MKL
outperformed Cox-based regression models for breast cancer
survival prediction. However, omics data, such as Exp, CNV,
and methylation data, are usually extremely high-dimensional
and redundant (Dey et al., 1990). In the previous study (Sun
et al., 2018), information gain ratio (IGR) was utilized to
select survival relevant features from multi-omics data, but the
redundancy of dataset features was not considered. Despite the
promising performance of the above MKL-based studies for
breast cancer prognosis, somatic mutations are rarely considered
for breast cancer survival prediction due to their complexity and
heterogeneity in serious disease. Therefore, there is still much
room to increase the accuracy of breast cancer survival models
by incorporating somatic mutations into the MKL model.

Currently, somatic mutations are strongly correlated with
the clinical symptoms of breast cancer (Griffith et al., 2018),
and they have been successfully adopted for the classification
of primary cancer sites (Chen et al., 2015) and identification
of survival-related cancer subtypes (Hofree et al., 2013; He
et al., 2017; Ronen et al., 2018; Arslanturk et al., 2020). Somatic
mutations are sparse but common mutations of that offer less
accuracy in the prediction of cancer survival (Zhang et al.,
2018; Ye et al., 2019). Previous studies (Haricharan et al., 2014;

Griffith et al., 2018; Zhang et al., 2018; Ye et al., 2019) have
reported that mutations enriched in specific pathways have
shown potential for breast cancer survival prediction. The
authors of a previous study (Griffith et al., 2018) stated that
uncommon recurrent somatic mutations should be further
explored to explain breast cancer survival outcomes. In the
present study, the effect of somatic mutations on the integrated
prognosis of breast cancer is explored.

In the present study, we applied the state-of-the-art MKL
method in the integration of somatic mutation datasets with
previously used omics data, including Exp, CNV, Methy,
and Protein, to train and test an integrated breast cancer
survival prediction model. The maximum relevance minimum
redundancy (mRMR) algorithm (Ding and Peng, 2005; Radovic
et al., 2017) was used to alleviate the redundancy of the
data, by simultaneously selecting highly predictive but non-
redundant features from each type of molecular data. Then,
selected features from multiple data type were integrated into the
MKL classification.

In order to gauge the performance of our method,
first, the newly introduced method was compared with
different single data types and integrated datasets to verify
the effectiveness of somatic mutations, and the results
indicated that there was a remarkable improvement in
the prediction performance when somatic mutations were
included. Different feature selection algorithms were then
studied, and the experimental results demonstrated that
mRMR was the most optional among them. Furthermore,
the MKL classification method was compared with other
traditional classifiers, and the experimental results proved
the superiority of MKL in data integration. Finally, the
newly introduced model was validated in an independent
validation dataset and achieved a promising high accuracy in
survival prediction. According to the results, the most optimal
performance was achieved by our method, which demonstrated
the feasibility of integrating somatic mutations in the prognostic
models and the usefulness of mRMR and MKL in breast
cancer prognosis.

The reminder of this article is organized as follows.
A workflow of our proposed method and related methods are
described. Next, comparative studies were carried out to evaluate
the performance of the proposed methods and their comparison
methods, as well as to analyze the most informative features
discovered by our model. Then, we applied our model on the
validation dataset. Finally, the proposed method is discussed, and
it is expected to undergo the improvement in future studies.

MATERIALS AND METHODS

Workflow of the Proposed Method
The workflow chart of the proposed method is shown in Figure 1.
Preprocessing of the input dataset initially occurred, during
which entire datasets were randomly divided into a learning
dataset (80% of the entire dataset) and validation dataset (20%).
Then, three main steps were carried out to realize the prediction
of breast cancer prognosis.
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FIGURE 1 | Workflow of the hybrid combination of the MKL model with the mRMR feature selection method to integrate five types of molecular data for the
prognosis of breast cancer. (1) The most N-informative features were separately selected using the mRMR method for each type of data in the learning dataset; (2)
SimpleMKL with 10-fold cross-validation was deployed on the learning dataset for breast cancer prognosis to train an optimal model; and (3) the prediction model
on learning dataset and the validation dataset were evaluated.

The three main steps include: (1) The most N-informative
features were separately selected using the mRMR method for
each type of data in the learning dataset; (2) SimpleMKL with
10-fold cross-validation was deployed on the learning dataset
for breast cancer prognosis to train an optimal model; and (3)
the prediction model on learning dataset and the validation
dataset were evaluated for their ability to learn data. A detailed
description of each of the steps is listed below.

Data Input and Preprocessing
The Cancer Genome Atlas provides multiple types of
biomolecular data. High-level molecular data for breast
cancer were retrieved from TCGA, including gene expression,
gene CNV, gene methylation, protein expression, and somatic
mutation along with clinical features from the University of
California Santa Cruz (UCSC) cancer browser website1 (Mary
et al., 2014). The downloaded dataset consisted of five types of
data, including different numbers of samples, and the original
data matrixes were structured with rows denoting patient
samples and columns denoting features. A total of 139 true
normal, seven metastatic, and 13 male patients’ samples were
removed, and regarding somatic mutations, samples with
less than 10 mutations were removed (Hofree et al., 2013;
He et al., 2017). We finally obtained 488 primary breast tumors

1https://xenabrowser.net/datapages/

together with survival time, and all samples of them included all
of the five aforementioned genomic data types. The details of our
dataset are illustrated in Table 1. The median age at diagnosis was
57.37, and the median survival time was 42.43 months, which is
in agreement with the previous research (Sun et al., 2018).

We followed the protocol from our previously published
studies (He et al., 2017, 2019), and we first removed the genes
with missing values in more than 10% of samples for gene
expression, CNV, gene methylation, protein expression, and
somatic mutations. After that, flat variables that had the same
values in more than 80% of the samples (non-informative) were
discarded except in the case of somatic mutations (Yuan et al.,
2014; He et al., 2019). According to the previous study (He et al.,
2019), the RNA-Seq gene expression level 3 transcription was
log2 transformed and RSEM-normalized (Li and Dewey, 2011).
Regarding the CNV features, we directly utilized the gene-level

TABLE 1 | The detailed information in our breast cancer dataset.

Properties Number

Total population of primary cancer 488

Long-term survivors 119

Short-term survivors 369

Mean age at diagnosis (years old) 57.37

Median survival (months) 42.43

Frontiers in Genetics | www.frontiersin.org 3 January 2021 | Volume 11 | Article 63290128

https://xenabrowser.net/datapages/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-632901 January 12, 2021 Time: 16:26 # 4

He et al. Integrated Breast Cancer Prognosis

copy number values that were estimated using the GISTIC2
method (Mermel et al., 2011; Yuan et al., 2017; Yuan et al.,
2019, 2020a,b). For gene methylation and protein expression, we
directly used the original data with z-score normalization. For
somatic mutation, we also directly utilized the original binary
data, and in addition, genes that were mutated in more than one
sample were reserved for further analysis. The gene expression,
CNV, gene methylation, and somatic mutations contained 18,000,
25,000, 22,000, and 14,000 features, respectively, after data
filtering, and the properties of these datasets are shown in Table 2.

In the present study, the survival prediction for breast cancer
was defined as a binary classification problem with a threshold
of 5 years as conducted in previous studies (Seoane et al., 2014;
Zhang et al., 2016; Sun et al., 2018; Zhang A. et al., 2019). Of the
total, 369 out of the final 488 patients with survival shorter than
5 years were considered as short-term survivors, and 119 patients
with survival longer than 5 years were considered as long-term
survivors. Moreover, the long-term patients were labeled as 1,
while short-term patients were labeled as 0. After the initial data
preprocessing, the entire dataset was randomly divided into the
learning dataset (80%) and validation dataset (20%). For each
type of data, we initially conducted the following feature selection
on the learning dataset containing 390 breast cancer patients, and
trained and tested the integrated MKL model on it to obtain the
optimal parameters. Then, we applied the optimal model on the
validation dataset that included 98 patients.

mRMR Feature Selection
Five different types of genomic data were used in the present
study, as described above, and the number of variables for
most types of genomic data exceeded 10,000 after feature
preprocessing. However, this large number of features may cause
poor performance due to dimensionality and high redundancy
(Jain and Zongker, 1997; Jie et al., 2015). Therefore, according
to our previous study (He et al., 2019), mRMR was adopted
in the present study to select the most useful features for the
prognostic model.

The mRMR is a feature selection method that aims to select
a subset of features that are highly related to the output classes
and have low redundancy between them (Radovic et al., 2017).
In the present work, mRMR was deployed to select features from
five types of molecular data that are the most highly relevant with
respect to survival and the least correlated among themselves.
Then, the most relevant features for each molecular dataset
were combined to form a candidate feature set to be used for
classification. A feature of one type of genomic dataset for the ith

TABLE 2 | The properties of five types of genomic data for our breast cancer
prediction.

Data types Feature number

Gene expression 18624

CNV 24774

Gene methylation 21136

Protein expression 170

Somatic mutations 13602

variable with N individuals is denoted as vi ∈ RM, i = 1, ..., M,
and the survival prediction labels with N individuals as l ∈ R. For
label l, mRMR aims to search a feature subset S with k features{vi},
which collectively have the maximal relevance (Max-Relevance)
Rel(S, l)on the target label l and the minimal redundancy (Min-
Redundancy) Red(S).

The F-statistic (F) was used to calculate the relevance
between feature variables with binary survival terms and the
Pearson correlation coefficient (PCC) was used to measure the
redundancy for the continuous feature variables of the gene
expression, CNV, gene methylation, and protein datasets. Max-
Relevance is defined in Eq. 1, where relevance Rel(S, l) is
calculated using the mean value of all F-statistic values F of
the individual variables vi with the label l. In parallel, the Min-
RedundancyRed(S) constraint was adopted to select irrelevant
features, and is shown as Eq. 2.

max Rel(S, l), Rel =
1
|S|

∑
vi∈S

F(vi; l), (1)

min Red(S), Red =
1
|S|2

∑
vi,vj∈S

PCC(vi; vj) (2)

For binary discrete feature variables of somatic mutation data,
the mutual information (MI) was used to calculate both the
relevance between feature variables and survival terms, and the
redundancy between mutations. Max-Relevance is used to select
features satisfying Eq. 3, where relevance Rel(S, l) is obtained by
the mean value of all MI values of individual variable vi with
label l. The Min-Redundancy constraint Red(S) is used to select
irrelevant features, and is shown as Eq. 4.

max Rel(S, l), Rel =
1
|S|

∑
vi∈S

MI(vi; l), (3)

min Red(S), Red =
1
|S|2

∑
vi,vj∈S

MI(vi; vj) (4)

Finally, as shown in Eq. 5, the operator φ(Rel, Red) was
deployed to simultaneously optimize the two constraints “Max-
Relevance” and “Min-Redundancy” based on the MI quotient
(MIQ) criterion (Radovic et al., 2017; He et al., 2019) to obtain
the best feature subsets, as shown in Eq. 5:

max
vk

φ(Rel, Red), φ = Rel/Red (5)

The area under the curve (AUC) value is used as a metric to
evaluate the performance and the most optimal number of the
most relevant and non-redundant features k for each data type
was determined by comparing the AUC valued for the models.
After the mRMR features were selected for each type of genomic
data, the most informative features were combined and used as
the input feature set for the classification problems.

Multiple Kernel Learning
In our study, we aimed to integrate multiple types of genomics
data, with a focus on somatic mutations. Although the fusion
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of multiple types of data into one model is one of the most
widely used methods for classification, this is not feasible due to
the fact that different types of molecular data present different
feature representations (Khademi and Nedialkov, 2016). MKL
has become a natural method to enhance the interpretability of
models and to address the data integration problem. The optimal
function can be obtained by constructing a linear weighted
combination of predefined M kernels. The optimal combination
of kernels is given as Eqs 6 and 7:

K(xi, xj) =

M∑
m=1

dmKm(xi, xj), (6)

s.t. dm ≥ 0, and
M∑

m=1

dm = 1, (7)

where dm denotes the weight of the mth different kernel
Km (xi, xj).

Some methods based on MKL have been proposed and many
of them outperformed uni-MKL (Rakotomamonjy et al., 2008;
Gönen and Alpaydin, 2011; Kloft et al., 2011). However, most of
the weights dm of the kernels were 0 and thus non-contributory
to the MKL model (Ikonomov et al., 2013). In the present work,
SimpleMKL (Zhang et al., 2016), which is based on a weighted L2-
norm regularization and is more powerful than other methods
(Yan et al., 2009), was adopted as our classification model.
It employs dual kernels in the of classic kernel optimization
problem, which can be presented as Eq. 8:

f (x) =

l∑
i=1

α∗i K(xj, xi)+ b∗ (8)

The decision function is given as:

min
f ,b,ε

1
2 f 2

H + C
∑

i εi

s.t. yi(f (xi)+ b) ≥ 1− εi ∀i
εi ≥ 0 ∀i

, (9)

where
∣∣∣∣f∣∣∣∣H denotes a kernel in Hilbert space related to

a kernel Km. The overall kernel can be divided into different
kernels, and we replace

∣∣∣∣f∣∣∣∣H with
∑

m
∣∣∣∣ fm

∣∣∣∣HM to obtain:

min
fm,b,ε,d

1
2
∑
m

∣∣∣∣fm∣∣∣∣2HM + C
∑

i εi

s.t. yi
∑
m

fm(xi)+ yib ≥ 1− εi ∀i

εi ≥ 0 ∀i∑
m

dm = 1, dm ≥ 0 ∀m

, (10)

Optimization matter is performed using the convex optimization
mathematical algorithm (Rakotomamonjy et al., 2008). Using
multiple kernels increases the decision the power of the
decision function and also increases the prediction performance
compared to using one single kernel. In the present study,
SimpleMKL was deployed to integrate five different types
of molecular data including gene expression, CNV, gene
methylation, protein expression, and somatic mutation.

Considering the number of data types used in our study,
five different kernels were independently built and further
integrated into a generic model. Each kernel corresponds to each
individual data type (gene expression, CNV, gene methylation,
protein expression, and somatic mutation). The “Poly” (Eq. 11)
polynomial base kernel with a search range of degrees of freedom
d{1 2 3} (Seoane et al., 2014) and the “Gaussian” (Eq. 12) kernel
with a search range of the parameter δ {0.25 0.5 1 2 5 7 10 12 15
17 20} (Zhang et al., 2016; Sun et al., 2018) were used as kernel
types.

K(xi, xj) = (xT
i xj + 1)d, (11)

K(xi, xj) = exp(−

∣∣∣∣xi − xj
∣∣∣∣2

2δ2 ) (12)

In summary, the SimpleMKL directly addressed a multiple kernel
SVM optimization problem and greatly reduced computation
costs when compared to the use of learning kernel combinations
from individual kernels.

Evaluation
The dataset used in our study was randomly divided into learning
and validating sets in order to assess the performance of the
proposed method. For the learning set, we used mRMR to select
the most optimal features and to determine the model through
10-fold cross-validation experiments. Then, the pre-trained MKL
model and its optimal parameters were used to predict the
validation set. Because the validation dataset was not used in
the cross-validation process, the model derived from the learning
dataset was tested on an independent validation dataset.

To assess the performance of our model, AUC, the most
widespread evaluation metric for classification problems, was
used to assess the performance of the proposed model. AUC is
defined as the area under the receiver operating characteristic
(ROC) curve, and it is used to quantify the overall performance
of a classification model. Specifically, AUC = 1 denotes perfect
performance, and 0.5 denotes random guessing. Pre (precision,
Eq. 13), Sn (sensitivity, Eq. 14), Sp (Specificity, Eq. 15), and Acc
(Accuracy, Eq. 16) were also employed in addition to AUC as
classification performance metrics for breast cancer prognosis.
The definitions of those metrics are provided below:

Pre =
TP

TP + FP
, (13)

Sn =
TP

TP + FN
, (14)

Sp =
TN

TN + FP
, (15)

Acc =
TP + TN

TP + TN + FN + FP
(16)

where TP, FP, TN, and FN denote true positive, false positive, true
negative, and false negative, respectively.
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FIGURE 2 | Performance of classifying long-term and short-term survivors from a breast cancer dataset using different types of data based on the proposed hybrid
combination of mRMR feature selection and MKL classification methods.

RESULTS

Comparison Studies on Learning
Datasets
The proposed method was compared with other methods in
three different applications: (1) comparison of the results of
the models with different datasets based on the same method;
(2) comparison of the results of different feature selection
methods under the same datasets; and (3) comparison of the
integration results of classification methods, under the same
integrated datasets. AUC was used as an evaluation metric when
comparing different methods and 10-fold cross-validation was
applied for all methods.

Comparison of ECMPS and Other Data Types
Seven different MKL-based models were built using five single
types of molecular data [gene expression (Exp), CNV, gene
methylation (Methy), protein expression (Protein), and somatic
mutations (SM)] and two integrated datasets with and without
somatic mutation data in order to evaluate the role of somatic
mutations in breast cancer survival prediction. The dataset
integrating gene expression, CNV, gene methylation, and protein
expression is abbreviated as “ECMP,” and the dataset integrating
all five molecular datasets including somatic mutations is denoted
as “ECMPS.”

The corresponding mean of the AUC value of 10-fold cross-
validation (CVmean_AUC) for each of the seven models, using
the mRMR feature selection and the MKL classification method,
was calculated to compare the predictive performance of breast
cancer survival models. The results are displayed in Figure 2, with
the mean values of the boxplots corresponding to the red line in
Figure 3. As shown in Figure 3, the ECMPS model consistently
exhibited significantly more optimal performances than all the
other models for all three feature selection methods. The two

integrated models present obvious improvements compared to
the single data type model results, suggesting that integrated
models are more optimal than single data type ones, which is
consistent with previous studies (Zhang et al., 2016; Sun et al.,
2018).

In Figure 2, the mean value of the AUC for the multi-
data ECMP model without somatic data is 0.8854, and the
corresponding value for the ECMPS model increased to 0.9421
when incorporating somatic mutation. In addition, among the
single data type models, the AUC of the somatic mutation model
was higher than that of the model using the other four single data
types and ECMP. Thus, our experimental results indicated that
the somatic mutation data is able to increase the accuracy of the
survival prediction for breast cancer patients.

The Pre, Sn, Sp, and Acc values for each dataset model were
calculated in addition to the AUC based on the proposed method,
and the results are presented in Figure 4A. Figure 4A shows
that the integrative models combining different types of data,
including somatic mutations, overcome the models using single
data types for classification. The experimental results indicated
that the proposed integrated model can successfully predict the
survival time for breast cancer patients and somatic mutations
can improve predictive accuracy.

Comparison of mRMR With Different Feature
Selection Methods
We used mRMR to select the variables for each of the five types
of molecular data. Then, the features with the largest relevance
to the survival and lowest redundancy among themselves were
selected, and they were combined as integrated features using
the MKL classification model. The most optimal number of
selected non-redundant features k for each molecular data type
was determined by comparing the AUC values in the prediction
results. According to the number of features reported in the
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FIGURE 3 | Performance comparison of mRMR and the two k-best methods based on MKL under different data types. The numbers in different colors on the lines
indicate the number of optimal features selected by the corresponding method.

FIGURE 4 | Comparison of performances of the models using different evaluation metrics: Pre, Sn, Sp, and Acc. (A) Performance of the proposed method in seven
datasets. (B) Performance of various feature selection methods based on MKL under the same data type “ECMPS.”
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previous study (Sun et al., 2018), we set k = [10, 20,. . .,300] in our
work and chose the optimal parameter k as the final parameter
for each data type in our study based on the prediction result.

The classification outcomes of the five data types under
different parameters are presented in Supplementary File S1.
The optimal feature number was selected based on the position
of the maximum AUC value as the final parameter for a model of
further integration. Take gene expression for example, as shown
in Figure 5, the optimal number of features in the gene expression
model using the proposed method is 60, which achieves the
largest mean value of AUC with 10-fold cross-validation. Finally,
we chose k = [60, 50, 50, 20, 110] as the optimal parameters for
the five types of molecular data (Exp, CNV, Methy, Protein, and
SM), respectively, for further integration analysis, and the total
290 features were obtained for our integrated ECMPS model.

The F-statistic (F) and PCC were used for the mRMR feature
selection method to calculate the relevance and redundancy
(Radovic et al., 2017), respectively, for four continuous data
types, including Exp, CNV, Methy, and Protein, in order to
maintain the original information for different types of data.
MI was used to calculate both the relevance and redundancy
of somatic mutation features, and is short for “mRMR_F_MI.”
In all cases, the selected features were integrated using MKL
classification. To assess the performance of the mRMR feature
selection method in the selection of features for our breast cancer
survival prediction model, the proposed mRMR feature selection
was compared with two commonly used k-best methods, which
only consider relevance with the output, based on the same
datasets and classification method MKL: (1) F-MI. Compared to
the proposed method, it only uses the F-statistic and MI to select

the most optimal k-best features for four continuous molecular
datasets and discrete somatic mutation. (2) IGR-MI. It adopts
a recently used feature selection method, the IGR (Sun et al.,
2018), for four continuous molecular datasets and MI for discrete
somatic mutation.

The proposed mRMR method outperformed both k-best
feature selection methods F-statistics and IGR for four
continuous molecular data types and their integration ECMP
model according to the results shown in Figure 3. For instance,
260 features were selected by IGR based on the ECMP model
and the AUC value was 0.7791, which was consistent with
previous studies (Sun et al., 2018). Next, 180 features were
selected using mRMR and AUC was 0.8578 showing that mRMR
can achieve higher predictive accuracy using fewer features.
The mRMR method also outperformed MI for discrete somatic
mutation returning a smaller number of features. The most
optimal result was obtained by mRMR and the total integration
model ECMPS. The metrics Pre, Sn, Sp, and Acc were calculated
in addition to the AUC for each dataset model, with a more
optimal performance by mRMR as compared to the other the
two k-best methods (Figure 4B). Our findings indicated that
the use of proper feature selection methods is crucial to the
classification process.

As the red line shows in Figure 3, for the integrated
ECMPS model, 290 features were selected as more relevant
to survival and non-redundant features in the integrated
ECMPS mode consisting of 60 Exp, 50 CNV, 50 Methy, 20
Protein, and 110 SM using mRMR, and the most optimal
AUC (0.9421) in the present study was achieved. Next, mRMR
was applied again for the set of 290 features, which is

FIGURE 5 | The mean value of the AUC for 10-fold cross-validation (CVmean_AUC) under the feature numbers ranging from 10 to 300 for the model based on gene
expression.
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TABLE 3 | Comparison of mRMR and 2-mRMR on survival prediction power and
feature numbers.

AUC(ECMPS) Number of features

ECMPS Exp CNV Methy Protein SM

mRMR 0.9421 ± 0.0281 290 60 50 50 20 110

2-mRMR 0.9439 ± 0.0264 220 49 22 29 10 110

TABLE 4 | Comparative results of the proposed MKL method and existing
traditional classifiers using AUC values under two mRMR selected integrated data
models.

ECMP ECMPS

RF 0.7135 ± 0.054 0.7916 ± 0.027

SVM 0.8325 ± 0.037 0.9086 ± 0.058

MKL 0.8578 ± 0.049 0.9421 ± 0.028

termed as “2-mRMR,” to resolve the redundancy that exists
in the selected features of different data types. However,
as shown in Table 3, the number of SM remained at 110
among the new 220 features, and the AUC value was only
marginally improved. These results showed that there is a
large internal redundancy within one type of data, while
the redundancy between different types of data is small. It
further indicated that the importance of somatic mutations
to the prognosis is relatively stable. Finally, we retained the
integrated 290 features originally selected by mRMR and used
them for further classification, considering the stable high
performance and simpler simple computational complexity
of mRMR. We observed that mRMR outperformed k-best
methods, and integrating somatic mutations achieved the most
accurate prognosis.

Comparison of MKL With Traditional Classification
Methods
The proposed method achieves a stronger performance by
integrating somatic mutations compared with those methods
incorporating single data types and integrated datasets
without somatic mutations. The MKL classification method
was compared with two widely used classifiers, SVM and
RF, to further verify its ability to combine different types
of data. Experiments were conducted in two integrated
datasets: ECMP and ECMPS, which were selected by
mRMR. The AUC value (mean value and standard error)
was used to assess the performance of different methods
and the results are provided in Table 4. Table 4 shows
that a more optimal performance was obtained from MKL
for both integrated datasets compared to other classifiers,
and this finding indicated the superiority of MKL in
data integration.

In addition, the performances of all the classifiers were
improved when employing ECMPS compared with ECMP,
which further suggested that somatic mutations can provide
adequate supplementary information for survival prediction of
breast cancer. Finally, our method achieves the most optimal
performance due to its ability to integrate multiple molecular data
types, including somatic mutations, and MKL was quite efficient
in integrating the data from distinct sources in breast cancer
survival prediction.

Analysis of the Most Desirable Features
From Somatic Mutation and Gene
Expression Data
The top 10 features ranked by mRMR for each molecular
data type were further analyzed by conducting a
simple analysis on their association with breast cancer.

TABLE 5 | Genes previously associated with breast cancer.

Genes Reports References

HCN4 HCN4 was highly correlated with lower survival rates of breast cancer. Phan et al., 2017

RGPD3 30 most enriched new HOXB7 binding sites on breast cancer cell chromatin for which an
annotated nearest gene exists: RGPD3, PIK3R1, etc.

Heinonen et al., 2015

EFCAB13 Variants that induce premature stop codons were identified in the DENND2D, EFCAB13, and
TICRR genes.

Määttä et al., 2016

NFATC1 NFATC1 overexpression results in oncogenic BMI1transcriptional upregulation. Co-expression
of FUNDC1 and BMI1 in BC patients predicted worse prognosis.

Wu et al., 2019

VAC14 VAC14 selectively prevents rapid degradation of Sac3. Ikonomov et al., 2013

PRB2 A novel six-gene (TMEM252, PRB2, SMCO1, IVL, SMR3B, and COL9A3) signature was
significantly associated with prognosis as an independent prognostic signature.

Lv et al., 2019

HIPK1 The deletion of the miR-200c/141 cluster resulted in increased tumor metastasis and inhibited
tumor growth by directly upregulating the target gene HIPK1.

Liu et al., 2018

IRF2 Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. Connett et al., 2005

HMGB2 Promotion of breast cancer progression by HMGB2. Fu et al., 2018

FRMPD1 Rat Mcs5a is associated with breast cancer risk. Mcs5a1 is located within the ubiquitin ligase
Fbxo10, whereas Mcs5a2 includes the 5′ portion of FRMPD1.

Samuelson et al., 2007

RPS27 The best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, and
CLPSL2.

López-Cortés et al., 2020

PTPRR PTPRR and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical
MAPK and p38 MAPK pathways.

Motaghed et al., 2014
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Only features from somatic mutations and gene expression
datasets were explored to further assess the effectiveness of our
method. The results of this analysis showed that it was previously
reported that some of the genes are associated with breast cancer
survival. These genes and their references are listed in Table 5. It
has previously been reported in the literature that seven of the top
10 ranked gene names from the somatic mutation features play
critical roles in breast cancer prognosis. For example, the HCN4
gene is highly correlated with lower survival rates of breast cancer
(Phan et al., 2017), and the gene PRB2 is significantly related to
prognosis as an independent prognostic marker (Lv et al., 2019).
On the other hand, five of the top 10 genes selected from gene
expression datasets have also been found to be associated with
breast cancer. For instance, the expression of IRF2 has been found
to be related to breast cancer (Connett et al., 2005), and it has been
reported that HMGB2 directly and significantly promotes breast
cancer progression (Fu et al., 2018). Thus, the top ranked features
were shown to be important for breast cancer prognosis.

Validation
Optimization techniques have been previously applied (Zhang
et al., 2016; Zhang A. et al., 2019) to select the most
optimal feature subsets in a wrapper feature selection framework.
Therefore, experiments were performed on an independent
validation dataset to further evaluate our proposed method. Our
model was initially trained and tested on a learning dataset
containing 390 breast cancer patients, and then, to predict
patient survival, it was applied to a 98-patient validation dataset
that was not involved in training or testing. The survival of
most of the 98 breast cancer patients was correctly classified,
and the accuracy of the proposed method on the validation
dataset was 0.9808.

DISCUSSION

We integrated somatic mutations and previously used data types,
including Exp, CNV, Methy, and protein, using MKL to predict
breast cancer patient survival. Applying mRMR-selected features
and MKL classification, we found that the integration of somatic
mutations enriched the diversity of features and was conducive
to the improvement of the prediction model. In all, integrating
promising data sources such as somatic mutations and harnessing
the powerful feature selection method mRMR and the effective
data fusion method MKL can increase the prediction accuracy of
breast cancer patient survival.

Although our method is effective and can accurately predict
the survival of breast cancer patients, some limitations remain
in the prognosis of breast cancer. For instance, there may be
more effective methods that can be used to construct kernels
for an improved multi-kernel learning method in the future
that will further improve the performance in multi-omics data
fusing. In addition, our available sample size was limited by
the intersection of multiple types of molecular data samples.
Thus, the performance of our method could be promoted
when a larger population of samples becomes available in the
future. Furthermore, somatic mutations are highly heterogeneous
among patients, and therefore, further understanding of the
mechanism of somatic mutation in cancer may lead to a more
accurate prognostic model for breast cancer.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ZH and JZ participated in the design of algorithms and
experiments and participated in the design of the whole
framework of prediction of breast cancer survival. JZ directed the
whole work. YZ participated in the analysis of the performance
of the proposed method. JZ and XY conceived of the study and
helped edit the manuscript. All authors read the final manuscript
and approved the submission.

FUNDING

This research was funded by the Natural Science Foundation
of China under Grants 61571341 and 61902430 and the
Fundamental Research Funds for the Central Universities
under Grant JB190302.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.632901/full#supplementary-material

REFERENCES
Arslanturk, S., Draghici, S., and Nguyen, T. (2020). Integrated Cancer subtyping

using heterogeneous genome-scale molecular datasets. Pac. Symp. Biocomput.
25, 551–562.

Brennan, C. W., Verhaak, R. G. W., Mckenna, A., Campos, B., Noushmehr, H.,
Salama, S. R., et al. (2014). The somatic genomic landscape of glioblastoma. Cell
155, 462–477.

Cancer Genome Atlas Research Network (2013). Comprehensive
genomic characterization defines human glioblastoma genes

and core pathways. Nature 494, 506–506. doi: 10.1038/nature1
1903

Chen, Q., Lai, D., He, L., Yan, Y., Li, E., Liu, Y., et al. (2019). “ILDMSF:
inferring associations between long non-coding RNA and disease
based on multi-similarity fusion,” in Proceedings of the IEEE/ACM
Transactions on Computational Biology and Bioinformatics, Piscataway, NJ:
IEEE.

Chen, Y., Sun, J., Huang, L.-C., Xu, H., and Zhao, Z. (2015). Classification of cancer
primary sites using machine learning and somatic mutations. Biomed. Res. Int.
2015, 1–9. doi: 10.1155/2015/491502

Frontiers in Genetics | www.frontiersin.org 10 January 2021 | Volume 11 | Article 63290135

https://www.frontiersin.org/articles/10.3389/fgene.2020.632901/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.632901/full#supplementary-material
https://doi.org/10.1038/nature11903
https://doi.org/10.1038/nature11903
https://doi.org/10.1155/2015/491502
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-632901 January 12, 2021 Time: 16:26 # 11

He et al. Integrated Breast Cancer Prognosis

Connett, J. M., Badri, L., Giordano, T. J., Connett, W. C., and Doherty, G. M.
(2005). Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast
cancer tissue microarrays. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon
Cytokine Res. 25, 587–594. doi: 10.1089/jir.2005.25.587

Dey, S., Gupta, R., Steinbach, M., and Kumar, V. (1990). Integration of Clinical
and Genomic Data: A Methodological Survey. Minneapolis, MN: University of
Minnesota Digital Conservancy.

Ding, C., and Peng, H. (2005). Minimum redundancy feature selection from
microarray gene expression data. J. Bioinform. Comput. Biol. 3, 185–205. doi:
10.1142/s0219720005001004

Ferlay, J., Héry, C., Autier, P., and Sankaranarayanan, R. (2010). Global Burden of
Breast Cancer. New York, NY: Springer.

Fu, D., Li, J., Wei, J., Zhang, Z., Luo, Y., Tan, H., et al. (2018). HMGB2 is associated
with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in
breast cancer. Cell Commun. Signal. 16:8.

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y., and Moor, A. B. D.
(2006). Predicting the prognosis of breast cancer by integrating clinical
and microarray data with Bayesian networks. Bioinformatics 22,
e184–e190.

Gönen, M., and Alpaydin, E. (2011). Multiple kernel learning algorithms. J. Mach.
Learn. Res. 12, 2211–2268.

Griffith, O. L., Spies, N. C., Anurag, M., Griffith, M., Luo, J., Tu, D., et al. (2018).
The prognostic effects of somatic mutations in ER-positive breast cancer. Nat.
Commun. 9:3476.

Haricharan, S., Bainbridge, M. N., Scheet, P., and Brown, P. H. (2014). Somatic
mutation load of estrogen receptor-positive breast tumors predicts overall
survival: an analysis of genome sequence data. Breast Cancer Res. Treat. 146,
211–220. doi: 10.1007/s10549-014-2991-x

He, Z., Zhang, J., Yuan, X., Liu, Z., Liu, B., Tuo, S., et al. (2017). Network
based stratification of major cancers by integrating somatic mutation and gene
expression data. PLoS One 12:e0177662. doi: 10.1371/journal.pone.0177662

He, Z., Zhang, J., Yuan, X., Xi, J., Liu, Z., and Zhang, Y. (2019). Stratification
of breast cancer by integrating gene expression data and clinical variables.
Molecules 24:631. doi: 10.3390/molecules24030631

Heinonen, H., Lepikhova, T., Sahu, B., Pehkonen, H., Pihlajamaa, P. I., Louhimo,
R., et al. (2015). Identification of several potential chromatin binding sites of
HOXB7 and its downstream target genes in breast cancer. Int. J. Cancer J. Int.
Cancer 137, 2374–2383. doi: 10.1002/ijc.29616

Hofree, M., Shen, J. P., Carter, H., Gross, A., and Ideker, T. (2013). Network-
based stratification of tumor mutations. Nat. Methods 10, 1108–1115. doi:
10.1038/nmeth.2651

Ikonomov, O. C., Filios, C., Sbrissa, D., Chen, X., and Shisheva, A. (2013). The
PIKfyve-ArPIKfyve-Sac3 triad in human breast cancer: functional link between
elevated Sac3 phosphatase and enhanced proliferation of triple negative cell
lines. Other 440, 342–347. doi: 10.1016/j.bbrc.2013.09.080

Jain, A., and Zongker, D. (1997). Feature selection: evaluation, application, and
small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19, 153–158.
doi: 10.1109/34.574797

Jie, T., Hammond, J. H., Hogan, D. A., and Greene, C. S. (2015). ADAGE analysis
of publicly available gene expression data collections illuminates Pseudomonas
aeruginosa-host interactions. mSystems 1:e00025-15. doi: 10.1128/mSystems.
00025-15

Khademi, M., and Nedialkov, N. S. (2016). “Probabilistic graphical models and
deep belief networks for prognosis of breast cancer,” in Proceedings of the
2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), Miami, FL.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. (2011). lp-norm multiple kernel
learning. J. Mach. Learn. Res. 12, 953–997.

Lan, W., Lai, D., Chen, Q., Wu, X., Chen, B., Liu, J., et al. (2020).
“LDICDL: LncRNA-disease association identification based on collaborative
deep learning,” in Proceedings of the IEEE/ACM Trans Comput Biol Bioinform,
Piscataway, NJ: IEEE.

Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui, L., and Jordan, M. (2004).
Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res.
5, 27–72.

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.
doi: 10.1186/1471-2105-12-323

Liu, B., Du, R., Zhou, L., Xu, J., Chen, S., Chen, J., et al. (2018). miR-200c/141
regulates breast cancer stem cell heterogeneity via Targeting HIPK1/β-Catenin
Axis. Theranostics 8, 5801–5813. doi: 10.7150/thno.29380

López-Cortés, A. L., Cabrera-Andrade, A., ázquez-Naya, J. M. V., Pazos, A., and
Munteanu, C. R. (2020). Prediction of breast cancer proteins involved in
immunotherapy, metastasis, and RNA-binding using molecular descriptors and
artificial neural networks. Entific Rep. 10:8515.

Lv, X., He, M., Zhao, Y., Zhang, L., and Wei, M. (2019). Identification of potential
key genes and pathways predicting pathogenesis and prognosis for triple-
negative breast cancer. Cancer Cell Int. 19:172.

Määttä, K., Rantapero, T., Lindström, A., Nykter, M., Kankuri-Tammilehto, M.,
Laasanen, S. L., et al. (2016). Whole-exome sequencing of Finnish hereditary
breast cancer families. Eur. J. Hum. Genet. Ejhg 25, 85–93. doi: 10.1038/ejhg.
2016.141

Mary, G., Brian, C., Teresa, S., Melissa, C., Olena, M., Mark, D., et al. (2014).
The UCSC cancer genomics browser: update 2015. Nucleic Acids Res. 43,
D812–D817.

Mermel, C. H., Schumacher, S. E., Hill, B., and Meyerson, M. L. (2011). GISTIC2.0
facilitates sensitive and confident localization of the targets of focal somatic
copy-number alteration in human cancers. Genome Biol. 12, R41–R41.

Motaghed, M., Al-Hassan, F. M., and Hamid, S. S. (2014). Thymoquinone regulates
gene expression levels in the estrogen metabolic and interferon pathways in
MCF7 breast cancer cells. Int. J. Mol. Med. 33, 8–16. doi: 10.3892/ijmm.2013.
1563

Nguyen, C., Yong, W., and Nguyen, H. N. (2013). Random forest classifier
combined with feature selection for breast cancer diagnosis and prognostic.
J. Biomed. Ence Eng. 06, 551–560. doi: 10.4236/jbise.2013.65070

Phan, N. N., Huynh, T. T., and Lin, Y. C. (2017). Hyperpolarization-activated cyclic
nucleotide-gated gene signatures and poor clinical outcome of cancer patient.
Transl. Cancer Res. 6, 698–708. doi: 10.21037/tcr.2017.07.22

Radovic, M., Ghalwash, M., Filipovic, N., and Obradovic, Z. (2017). Minimum
redundancy maximum relevance feature selection approach for temporal gene
expression data. BMC Bioinformatics 18:9. doi: 10.1186/s12859-016-1423-9

Rakotomamonjy, A., Bach, F. R., Canu, S., and Grandvalet, Y. (2008). SimpleMKL.
J. Mach. Learn. Res. 9, 2491–2521.

Ronen, J., Hayat, S., and Akalin, A. (2018). Evaluation of colorectal cancer subtypes
and cell lines using deep learning. Life Sci. Alliance 2:e201900517. doi: 10.
26508/lsa.201900517

Samuelson, D. J., Hesselson, S. E., Aperavich, B. A., Zan, Y., Haag, J. D., Trentham-
Dietz, A., et al. (2007). Rat Mcs5a is a compound quantitative trait locus with
orthologous human loci that associate with breast cancer risk. Proc. Natl. Acad.
Sci. U.S.A. 104, 6299–6304. doi: 10.1073/pnas.0701687104

Seoane, J. A., Day, I. N. M., Gaunt, T. R., and Colin, C. (2014). A pathway-
based data integration framework for prediction of disease progression.
Bioinformatics 30, 838–845. doi: 10.1093/bioinformatics/btt610

Sun, D., Li, A., Tang, B., and Wang, M. (2018). Integrating genomic data
and pathological images to effectively predict breast cancer clinical outcome.
Comput. Methods Progr. Biomed. 161, 45–53. doi: 10.1016/j.cmpb.2018.04.008

Wu, L., Zhang, D., Zhou, L., Pei, Y., Zhuang, Y., Cui, W., et al. (2019). FUN14
domain-containing 1 promotes breast cancer proliferation and migration by
activating calcium-NFATC1-BMI1 axis. Ebiomedicine 41, 384–394. doi: 10.
1016/j.ebiom.2019.02.032

Xu, X., Huang, L., Chan, C. H., Yu, T., Miao, R., and Liu, C. (2016). Assessing the
clinical utility of genomic expression data across human cancers. Oncotarget 7,
45926–45936. doi: 10.18632/oncotarget.10002

Xu, X., Zhang, Y., Liang, Z., Wang, M., and Ao, L. (2013). “A gene signature for
breast cancer prognosis using support vector machine, biomedical engineering
and informatics (BMEI),” in Proceedings of the 2012 5th International
Conference on BioMedical Engineering and Informatics, Chongqing: IEEE.

Yan, F., Kittler, J., Mikolajczyk, K., and Tahir, M. A. (2009). “Non-sparse multiple
kernel learning for fisher discriminant analysis,” in Proceedings of the IEEE
International Conference on ICDM, Miami, FL.

Ye, Z. L., Guan, W. L., Tang, T., Wang, F., and He, C. Y. (2019). Gene
mutation profiling in chinese colorectal cancers patients and its association with
clinicopathological characteristics and prognosis. Ssrn Electron. J. 9, 745–756.
doi: 10.1002/cam4.2727

Yuan, X., Bai, J., Zhang, J., Yang, L., Duan, J., Li, Y., et al. (2020a). CONDEL:
detecting copy number variation and genotyping deletion zygosity from single

Frontiers in Genetics | www.frontiersin.org 11 January 2021 | Volume 11 | Article 63290136

https://doi.org/10.1089/jir.2005.25.587
https://doi.org/10.1142/s0219720005001004
https://doi.org/10.1142/s0219720005001004
https://doi.org/10.1007/s10549-014-2991-x
https://doi.org/10.1371/journal.pone.0177662
https://doi.org/10.3390/molecules24030631
https://doi.org/10.1002/ijc.29616
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1016/j.bbrc.2013.09.080
https://doi.org/10.1109/34.574797
https://doi.org/10.1128/mSystems.00025-15
https://doi.org/10.1128/mSystems.00025-15
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.7150/thno.29380
https://doi.org/10.1038/ejhg.2016.141
https://doi.org/10.1038/ejhg.2016.141
https://doi.org/10.3892/ijmm.2013.1563
https://doi.org/10.3892/ijmm.2013.1563
https://doi.org/10.4236/jbise.2013.65070
https://doi.org/10.21037/tcr.2017.07.22
https://doi.org/10.1186/s12859-016-1423-9
https://doi.org/10.26508/lsa.201900517
https://doi.org/10.26508/lsa.201900517
https://doi.org/10.1073/pnas.0701687104
https://doi.org/10.1093/bioinformatics/btt610
https://doi.org/10.1016/j.cmpb.2018.04.008
https://doi.org/10.1016/j.ebiom.2019.02.032
https://doi.org/10.1016/j.ebiom.2019.02.032
https://doi.org/10.18632/oncotarget.10002
https://doi.org/10.1002/cam4.2727
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-632901 January 12, 2021 Time: 16:26 # 12

He et al. Integrated Breast Cancer Prognosis

tumor samples using sequence data. IEEE/ACM Trans. Comput. Biol. Bioinform.
17, 1141–1153.

Yuan, X., Gao, M., Bai, J., and Duan, J. (2020b). SVSR: a program to simulate
structural variations and generate sequencing reads for multiple platforms.
IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 1082–1091. doi: 10.1109/tcbb.
2018.2876527

Yuan, X., Yu, J., Xi, J., Yang, L., Shang, J., Li, Z., et al. (2019). “CNV_IFTV:
an isolation forest and total variation-based detection of CNVs from short-
read sequencing data,” in Proceedings of the IEEE/ACM Trans Comput Biol
Bioinform, Piscataway, NJ: IEEE.

Yuan, X., Zhang, J., and Yang, L. (2017). IntSIM: an integrated simulator of next-
generation sequencing data. IEEE Trans. Biomed. Eng. 64, 441–451. doi: 10.
1109/tbme.2016.2560939

Yuan, Y., Van Allen, E. M., Omberg, L., Wagle, N., Amin-Mansour, A., Sokolov, A.,
et al. (2014). Assessing the clinical utility of cancer genomic and proteomic data
across tumor types. Nat. Biotechnol. 32, 644–652. doi: 10.1038/nbt.2940

Zhang, A., Li, A., He, J., and Wang, M. (2019). LSCDFS-MKL: a multiple
kernel based method for lung squamous cell carcinomas disease-free survival
prediction with pathological and genomic data. J. Biomed. Inform. 94:103194.
doi: 10.1016/j.jbi.2019.103194

Zhang, Y., Li, A., He, J., Wang, M., and Novel, A. (2019). MKL method for GBM
prognosis prediction by integrating histopathological image and multi-omics

data. IEEE J. Biomed. Health Inform. 24, 171–179. doi: 10.1109/jbhi.2019.
2898471

Zhang, Y., Li, A., Peng, C., and Wang, M. (2016). Improve glioblastoma multiforme
prognosis prediction by using feature selection and multiple kernel learning.
IEEE/ACM Trans. Comput. Biol. Bioinform. 13, 825–835. doi: 10.1109/tcbb.
2016.2551745

Zhang, Y., Yang, W., Dan, L., Yang, J. Y., Guan, R., and Yang, M. Q.
(2018). Toward the precision breast cancer survival prediction utilizing
combined whole genome-wide expression and somatic mutation
analysis. BMC Med. Genomics 11(Suppl. 5):104. doi: 10.1186/s12
920-018-0419-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 He, Zhang, Yuan and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 January 2021 | Volume 11 | Article 63290137

https://doi.org/10.1109/tcbb.2018.2876527
https://doi.org/10.1109/tcbb.2018.2876527
https://doi.org/10.1109/tbme.2016.2560939
https://doi.org/10.1109/tbme.2016.2560939
https://doi.org/10.1038/nbt.2940
https://doi.org/10.1016/j.jbi.2019.103194
https://doi.org/10.1109/jbhi.2019.2898471
https://doi.org/10.1109/jbhi.2019.2898471
https://doi.org/10.1109/tcbb.2016.2551745
https://doi.org/10.1109/tcbb.2016.2551745
https://doi.org/10.1186/s12920-018-0419-x
https://doi.org/10.1186/s12920-018-0419-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 18 January 2021

doi: 10.3389/fgene.2020.608512

Frontiers in Genetics | www.frontiersin.org 1 January 2021 | Volume 11 | Article 608512

Edited by:

Wei Lan,

Guangxi University, China

Reviewed by:

Lin Wan,

Academy of Mathematics and

Systems Science (CAS), China

Kai Song,

Qingdao University, China

*Correspondence:

Ying Wang

wangying@xmu.edu.cn

Wenxing Hong

hwx@xmu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 21 September 2020

Accepted: 20 November 2020

Published: 18 January 2021

Citation:

Hou Y, Zhang X, Zhou Q, Hong W and

Wang Y (2021) Hierarchical Microbial

Functions Prediction by Graph

Aggregated Embedding.

Front. Genet. 11:608512.

doi: 10.3389/fgene.2020.608512

Hierarchical Microbial Functions
Prediction by Graph Aggregated
Embedding

Yujie Hou 1,2†, Xiong Zhang 1,3†, Qinyan Zhou 1,4†, Wenxing Hong 1,5* and Ying Wang 1,5,6*

1Department of Automation, Xiamen University, Xiamen, China, 2Department of Automation, University of Science and

Technology of China, Hefei, China, 3 School of Automation Science and Engineering, South China University of Technology,

Guangzhou, China, 4 Institute of AI and Robotics, Fudan University, Shanghai, China, 5 Xiamen Key Laboratory of Big Data

Intelligent Analysis and Decision, Xiamen, China, 6 Fujian Key Laboratory of Genetics and Breeding of Marine Organisms,

Xiamen, China

Matching 16S rRNA gene sequencing data to a metabolic reference database

is a meaningful way to predict the metabolic function of bacteria and archaea,

bringing greater insight to the working of the microbial community. However, some

operational taxonomy units (OTUs) cannot be functionally profiled, especially for microbial

communities from non-human samples cultured in defective media. Therefore, we

herein report the development of Hierarchical micrObial functions Prediction by graph

aggregated Embedding (HOPE), which utilizes co-occurring patterns and nucleotide

sequences to predict microbial functions. HOPE integrates topological structures of

microbial co-occurrence networks with k-mer compositions of OTU sequences and

embeds them into a lower-dimensional continuous latent space, while maximally

preserving topological relationships among OTUs. The high imbalance among KEGG

Orthology (KO) functions of microbes is recognized in our framework that usually

yields poor performance. A hierarchical multitask learning module is used in HOPE

to alleviate the challenge brought by the long-tailed distribution among classes. To

test the performance of HOPE, we compare it with HOPE-one, HOPE-seq, and

GraphSAGE, respectively, in three microbial metagenomic 16s rRNA sequencing

datasets, including abalone gut, human gut, and gut of Penaeus monodon. Experiments

demonstrate that HOPE outperforms baselines on almost all indexes in all experiments.

Furthermore, HOPE reveals significant generalization ability. HOPE’s basic idea is

suitable for other related scenarios, such as the prediction of gene function based

on gene co-expression networks. The source code of HOPE is freely available

at https://github.com/adrift00/HOPE.

Keywords: microbial co-occurrence networks, functions prediction, graph embedding, hierarchical multi task

learning, deep learning

INTRODUCTION

The analysis of microbial communities is founded on the characterization of functional diversity,
which is increasingly recognized as the bridge linking biodiversity patterns and ecosystem
functioning, as a way of explaining the interactions between microbes and their responses to
changes in the environment (Bardgett and Der Putten, 2014; Escalas et al., 2019). However, a
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large proportion of microbes remain uncultivated and, therefore,
functionally unknown. However, because of the prevalence of
high-throughput sequencing technologies, large-scale 16S rRNA
marker gene sequencing of microbes is becoming available.
Related approaches, such as PICRUSt (Langille et al., 2013)
and Tax4Fun (Ashauer et al., 2015), are proposed to infer
functional profiles from genomes and phylogeny. PICRUSt and
Tax4Fun identify microbial functions by estimating 16s rRNA
marker gene families based on the similarity between 16s rRNA
sequencing data and known marker gene databases. They rely
on the reference databases on Greengenes (Desantis et al.,
2006) and SILVA (Quast et al., 2012). However, owing to the
incompleteness of the 16S rRNA marker gene database, large
amounts of OTUs cannot be functionally profiled, especially for
microbial communities from non-human samples from defective
culture media (Pachiadaki et al., 2019; Wang X. et al., 2020).

The protein–protein interaction (PPI) network in protein
function prediction gives theoretical insight to our study of
microbial functional diversity. More specifically, network
representation of the PPI network extracts functional context
from topological structure (Gligorijevic et al., 2018; Kulmanov
et al., 2018) and achieves better performance than the previous
algorithm that only uses sequence data (Wass et al., 2012;
Cozzetto et al., 2013). Several researchers found that proteins
with interactions in PPI networks have a high possibility of
sharing the same or similar functions (Lele et al., 2011; Liu
et al., 2017). Inspired by empirical success in using the PPI
network, we can build a microbial co-occurrence network
to provide new insights into the exploration of microbial
functions. Microorganisms do not live in isolation but,
rather, interact with the environment through, for example,
mutualism, competition, parasitism, and predation. “Co-
occurrence” means that microbes have statistically significant
associations of abundance in one microbial community. The
co-occurrence relationship is generally inferred by abundance
correlation over several microbial community samples. The
microbial co-occurrence network was designed to describe
these relationships among microbes, and those microbes with
closely correlated relationships become linked in the microbial
co-occurrence network.

A novel method, Hierarchical micrObial functions Prediction
by graph aggregated Embedding (HOPE), was proposed to
capture potential functions in a microbial co-occurrence
network. Our method is built based on the key hypothesis that
microbes with co-occurring patterns have a high possibility of
sharing the same or similar functions. So, our method tries to
use this property to infer unknown microbe functions from its
neighbors in the microbial co-occurrence network. HOPE has
two main modules: hierarchical multitask learning and graph
embedding. Here, the hierarchical multitask learning framework
solves the class imbalance problem, and the graph embedding
learns the co-occurrence patterns in microbial networks. Two
classic strategies have traditionally been performed: resampling
(Chawla et al., 2002) and cost-sensitive reweighting (Khan et al.,
2018) during our previous experiments. These methods change
the training dataset distribution by either undersampling the
majority class, oversampling the minority class, or giving a

higher cost to misclassification of the minority class. However,
neither of these classic methods could ameliorate the negative
impact of imbalanced classes during our experiments. Both the
majority class and the minority class can be well-classified if
they are trained independently; therefore, we were motivated to
design a hierarchical multitask training scheme to manage the
imbalance of functional datasets with the long-tailed distribution.
To accomplish this, we input two graphs with the majority class
and the minority class, respectively, into the HOPE algorithm
and train the model by multitask learning. A graph embedding
model is designed to map the microbial co-occurrence network
to a lower-dimensional continuous latent space while maximally
preserving the topological relationships among OTU features.
HOPE incorporates k-mer compositions of microbial sequences
and topology of microbial networks, as complementary data
sources, to learn an embedding representation of a microbial
network. The embedded low-dimensional numerical vector
of each OTU node reflects its sequencing features and co-
occurrence correlation with its neighbors. After that, the
multilayer perceptron (MLP) classifier takes embedding vectors
as inputs to predict the function for those OTUs without
functional information from the known database.

Cross-validation was designed to evaluate the performance of
HOPE on three microbial metagenomic 16s rRNA sequencing
datasets from abalone gut, human gut, and gut of Penaeus
monodon, respectively, and all experiments mentioned above
verified the superiority of HOPE in predicting microbial
functions. HOPE is compared with its two variants, HOPE-seq
and HOPE-one, as well as a well-known graph embedding
algorithm, GraphSAGE (Hamilton et al., 2017), in the
experiments. HOPE-seq uses only k-mer frequency vectors
as features with the hierarchical multitask learning framework
to train the classifier on majority classes and minority classes.
HOPE-one ignores the hierarchical multitask learning but
integrates the sequence representation with microbial network
topological structure as embedding features for function
prediction. In the testing set, we learned that HOPE outperforms
HOPE-seq and HOPE-one on almost every measurement. HOPE
outperforms HOPE-one by 9.5% in Micro-F1 on the Abalone
Gut Microbiota dataset and 15.6% in Macro-F1 on the P.
monodon intestine dataset. When compared with GraphSAGE,
using three different aggregator functions, including a mean
aggregator, an LSTM aggregator, and a pooling aggregator,
HOPE achieves the highest score in most measurements with a
significant margin. Compared with GraphSAGE, HOPE gains a
higher accuracy score by 4.4% averagely. Finally, our results show
that HOPE demonstrates significant generalization ability since
it can be used to predict microbial functions without learning
previous information in our experiments.

METHODS

Framework of Microbial Function
Prediction With HOPE
HOPE consists of four steps to predict microbial functions,
including data input, microbial co-occurrence network
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construction, graph embedding generation, and function
prediction. The input are 16s rRNA sequence reads containing
all microbial community information clustered to OTUs for
building the microbial co-occurrence network based on the
co-occurrence correlation relationships among OTUs. During
the graph embedding step, HOPE learns the embedding vectors
of the majority class and the minority class with multitask
learning to mitigate class imbalance. The HOPE algorithm could
distill the high-dimensional information about OTUs and their
“neighbor OTUs” and embed the resultant data on topological
structure into dense representative vectors. In this way, the
original microbial network is converted to a compact embedding
space, while a given node’s features and the topological structure
of its “neighborhood” are preserved. Finally, our approach uses
the low-dimensional embedding vectors to identify microbial
functions via an MLP classifier. The total pipeline of the
framework is shown in Figure 1.

Data Preprocessing
Construction of Microbial Co-occurrence Network
Before microbial function prediction can take place, the raw
data coming from 16s rRNA sequencing data will be input to
the framework, which may have millions of reads and cause
numerous computations. The 16s rRNA sequences are grouped
into OTU bins based on the sequence alignment similarity,
which is a step that can reduce the number of OTUs for faster
calculation. During the experiments, sequences are clustered to
OTUs satisfying the following criteria via the UPARSE-OTU
algorithm (Edgar, 2013). The sequences in the same cluster
(OTU) should have more than 97% pairwise sequence alignment
similarity, and the sequences in a different cluster (OTU) should
have more than 3% pairwise sequence alignment dissimilarity.
The OTU representative sequence is the most abundant contig
in the OTU cluster and is selected to represent the cluster for
the following processing. Then, the “co-occurrence” patterns,
which were revealed as the co-occurrence interaction of two
species or any taxonomically relevant units in habitats, are
calculated via the OTU table and the correlation algorithm.
The OTU table describes the abundances of OTUs in samples
by the USEARCH algorithm (Edgar, 2010), and the correlation
score is computed for each OTU pair by the SparCC algorithm
(Friedman and Alm, 2012). OTUs with a higher correlation score
than the threshold are considered proof of having a strong co-
occurrence correlation, and these OTUs will be connected with
an edge in the microbial network. The microbial co-occurrence
network is constructed to preserve the interaction patterns where
each node represents an OTU, and each edge represents a
pairwise association between them and the pipeline as shown in
Figure 1B.

The OTU representative sequences offer sequence signatures
and potential information about their functions. K-mer means
nucleotide sequences of length k. The k-mer frequency is the
number of occurrences of k-mer within the whole sequence(s)
normalized by the total number of occurrences in the vector
for each data. The k-mers frequency is adopted as OTU
features, whose statistical distribution of frequency reflects the

sequence signatures. The short sequence representation, k-
mers frequency, further reduces calculation and reflects the
compositional distribution of DNA sequence(s). Previous studies
have shown that k-tuple frequencies are similar across different
regions of the same genome but differ between genomes (Karlin
et al., 1997), which offers the theoretical basis to measure the
dissimilarity between contigs. The length of k has a significant
impact on the final results. When k ≥ 20 bp (long k-mer), k-
mer reflects more detail and local biological information in the
nucleotide sequences, but the high sparsity of the frequency
vector lead by too long k-mer would lose the statistical power
(Wang et al., 2014, 2018; Wang Y. et al., 2020). However, when k
≤ 10 bp (short k-mer), the frequency of k-mers reflects the global
compositional distribution of the whole sequences (Ren et al.,
2016). In our study, the representative sequence of each OTU is
∼103 bp; generally, k should be set from 4 to 10 (Wang et al.,
2014). After testing on the different length of k-mer, the k-mer
length of 7–10 has no much impact on performance. Therefore,
we select k= 7 to reduce the running time of k-mer counting.

Function Labeling in Co-occurrence Network
As supervised learning, the labels of OTUs in the training set
and the validation set need to be annotated. The multiclass
classification means that there are more than two classes
in the classification problem, and in our study, existence of
multiple KEGG Orthology (KO) functions means multiple
classes (Kanehisa and Goto, 2000). Multilabel means that a
sample might belong to multiple classes, and in our study,
there would be multiple KO functions for one OTU. Therefore,
the function prediction task is formulated as a multiclass,
multilabel classification problem. The label vectors containing
the ground truth of OTU’s functions utilize multihot encoding.
This encoding approach could convert the useful information
into a binary string with a single bit value of 1 or 0. If the
OTU is annotated on the K00001 and K00003 function, then we
will assign 1 to the first position and the third position in the
binary string as a positive sample for this function. Every unique
function category is represented as a binary value at a specific
position in the labeled vector.

Working Principle of HOPE
The HOPE algorithm includes two critical modules, a
hierarchical multitask learning scheme and a graph embedding
module (Figure 2). In the hierarchical multitask learning part,
the HOPEmodel is trained on themajority class and theminority
class, respectively, wherein the majority class means this class
exists in more than half of OTUs, and the minority class only
appears in less than half of OTUs. Then the graph embedding
module learns embedding vectors of OTUs by propagating
nodes’ neighbor feature to the nodes along the edges and
aggregating the topological structure of nodes’ neighborhood
with the k-mer representation of OTUs, along with the microbial
co-occurrence network.

Hierarchical Multitask Learning Scheme
During the learning of embedded representation of nodes, the
highly skewed distribution of the functional class is observed
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FIGURE 1 | Schematic illustration of the framework for predicting microbial functions using HOPE. (A) 16s rRNA sequencing reads from a microbial community are

adopted for network construction. (B) Pipeline for constructing microbial networks. OTUs are binned by clustering reads from the same source population. Then, the

abundance matrix that describes the relative abundance of OTUs in every microbiota sample is calculated. Pairwise scores between OTUs are then computed gaining

the correlation matrix, and OTU pairs with correlation score over the threshold are connected by an edge. Gray areas in the correlation matrix indicate similarity of

OTUs. Finally, the whole microbial community is visualized as a network wherein nodes represent OTUs, and edges represent the correlation between them. (C)

Embedding representations of each OTU via the HOPE algorithm. (D) Function prediction matrix of OTUs. Different colors indicate different KO functions.

(Figure 3), which will cause a class imbalanced problem. Long-
tailed and skewed distributions among different functions cause
the classifier to ignore the minority classes (Huang et al., 2016).

The majority class will influence the classifier to be biased
toward the majority class so that the minority class will be
overwhelming, wherein the majority class means this class exists
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FIGURE 2 | Schematic illustration of generating the embedding representations of microbial network with sequence k-mer counting. (A) We process the long-tailed

distribution class with hierarchical multitask learning, which learns the majority class and the minority class independently with two microbial networks. (B) The

embedding generation layer learns the embedding vector of OTUs via aggregating the sequence information from current nodes and their neighbors.

FIGURE 3 | The KO function number of appearance cure. The cure is highly

skewed because a few dominant function classes claim most of the samples,

while most of the other function classes are represented by relatively a

few samples.

in more than half of OTUs, and the minority class only appears
in less than half of OTUs. Traditional class rebalancing strategies,

such as resampling and reweighting solutions, perform poorly
on our tasks and slow down the training process. In fact, both
majority and minority classes can be classified when trained
independently. This motivated us to develop a hierarchical
multitask training scheme designed to account for the poor
prediction performance of minority classes (Figure 2A). The
hierarchal multitask learning trains on the majority class and the
minority class, respectively, so that the majority class in one task
will not interfere the other task to learn the minority class and
finally ameliorates the negative impact of the class imbalanced
problem. The threshold of identifying a class belonging to a
majority class or a minority class is a parameter that should be
determined before model training, and the best threshold lets
the model achieve the highest measurements on the validation
set. Assume that the dataset is represented by space V × Y ,
where V indicates an OTU set with n OTU, and Y indicates
the corresponding KO function set. The KO function set is then
divided into the majority class Yma and the minority class Ymi by
the number of samples. The OTU set and the KO function set can
be shown as

V = {v1, v2, . . . , vn−1, vn} (1)

Y = Yma + Ymi (2)
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The goal is to learn two functions, f1, f2, that classify every input
data point to the proper classes:

ymai ≈ f1(vi), i ∈ {1, . . . , n} (3)

ymii ≈ f2(vi), i ∈ {1, . . . , n} (4)

Two models are considered to learn the majority class and
the minority class from the long-tailed dataset separately and
simultaneously. The input data vi are the same for all tasks, but
the output values yi are different for each task so that the novel
method can mitigate the biased tendency of the classifier toward
either the majority or minority class. The HOPE approach uses
cross-entropy loss function as the feedback information to train
to learn the embedding vector. A drop in the loss valuemeans less
bias between predicted values and observed targets:

Lossma = −

n
∑

i=1

(ymailog(f1(vi))+ (1− ymai)log(1− f1(vi)))

(5)

Lossmi = −

n
∑

i=1

(ymiilog(f2(vi))+ (1− ymii)log(1− f2(vi)))

(6)

Embedding of Microbial Co-occurrence Network
Based on the hierarchical learning framework, HOPE also
computes the embedding vectors of microbial co-occurrence
networks (Figure 2B). Our learning model for graph embedding
builds upon the GraphSAGE (Hamilton et al., 2017) algorithm,
which performs learnable aggregation to replace full-graph
Laplacian and finds the embedding map for a large graph. Our
algorithm integrates topological information for neighbors of
each node with its own sequence information and conserves
the useful graph data as completely as possible. Embedding
vectors not only save node information but also save the graph’s
edge information. HOPE maps two nodes to close points in the
embedding space if and only if their features are highly similar
and their neighborhoods are topologically similar. These closed
OTUs in the embedding space have a high probability of similar
functions. Thus, the embedding vectors could be used intuitively
for classification.

Graph embedding involves two key steps. First, randomly
select the neighbor nodes of the target nodes and aggregate the
features of these nodes with those of the target nodes via a SUM
function. The microbial co-occurrence network has a feature set
h =

{

h1, h2, . . . , hn
}

, hi ∈ R
f , where n denotes the number of

nodes in the graph. We uniformly sampled N nodes to pick out a
fixed-size set of neighbor nodes VN :

VN = N(v) (7)

A sum aggregator function is used to combine these features of
neighboring nodes, and we gain the aggregated representation of
neighbor hN :

hN = Aggregator
({

hi,∀i ∈ VN

})

(8)

The node’s neighborhood embedding should be unique when
no isomorphic neighborhoods exist. To aim this target, the
aggregator function in the graph embedding algorithm has to
be injective to achieve the upper bound method, the Weisfeiler–
Lehman (WL) graph isomorphism test (Xu et al., 2019). Although
the WL test has powerful capability in discriminating different
graph structures, it does not know how to learn the intrinsic
properties of nodes in a graph and generates unsuitable node
features, which might be quite essential for function prediction
task in testing. Thus, the WL test has poor generalization and
would not be used in our study. The SUM aggregator that is
used in this work is injective so that our method could be
maximally powerful from a theoretical perspective and have
well generalization. After aggregating features of the neighboring
nodes, we then concatenate the target nodes feature, hT , with
the aggregated neighbor feature, hN , and the concatenated vector
is imported into the MLP layer with non-linear activation
function σ :

hE = σ

([

W1 · hT
]

CONCAT
[

W2 · hN
])

(9)

Wp, p ∈ {1, 2} are a set of weight matrices containing
trainable weights that can be learned by back-propagation. This
embedding generation process will be iterated in a loop as the
searching depth deepens, K. For each iteration, target nodes
will aggregate features from neighboring nodes to update the
representation of a node, and the target node will gradually
capture more and more information from further reaches of
the nodes of the graph after two iterations of aggregation.
After aggregating feature information from neighboring nodes
in depth K, the layer outputs new embedding node features,
as hEK =

{

he1, he2, . . . , hen
}

, hei ∈ R
d, d < F. Then in the

next iteration, the outputs feature hEK from the previous depth
would be considered as the neighboring features in depth K-1,
hN(K−1), and they will be aggregated with new target features,
hT(K−1), for updating. Thus, for the embedding representation
vector, we get a target node feature after iterations. Figure 4
shows an example of an aggregating target node with its
neighbors in two depths.

RESULTS

Experimental Design
The Experimental Datasets
In this study, three 16s rRNA sequencing datasets from abalone
gut, human gut from early pregnancy, and P. monodon gut
are tested in the experiments. The three datasets are available
in NCBI with accession IDs ERP017548, SRP266217, and
SRP261546. We constructed the microbial networks of the
datasets by co-occurrence correlation, and the detail of these
networks is shown in Table 1.

Experimental Strategies
Before making a comparison of specific methods, we first
take steps to confirm our key hypothesis, i.e., that the
co-occurrence relationship among microbes, together with
neighborhood topological structures in the microbe network,
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FIGURE 4 | Illustration of sampled two-hop neighborhood and aggregation of features for these nodes. (A) Example of aggregating one-hop sampled neighborhood.

(B) Example of aggregating two-hop sampled neighborhood.

TABLE 1 | Summary of the datasets used in our experiments.

Abalone gut Human gut Penaeus monodon gut

Nodes 15,796 3,254 42,84

Average edges 41.4 6.08 18.05

Classes 4,075 4,289 5,144

Training nodes 11,058 2,278 2,999

Validation nodes 3,159 649 855

Test Nodes 1,579 327 430

provides a fully functional context for function prediction. After
that, to further evaluate the performance of our method, we
design two experimental strategies: function prediction within
a microbial community and function prediction across the
microbial community. In the first strategy, both the training set
and the test set come from the same microbial community to
check the normal prediction ability of our method. The second
strategy trains the model on one type of microbial community
and then tests that model on a different, but related, microbial
community, aiming to test the generalization ability of HOPE.
Thus, HOPE must learn the universal knowledge on the training
set and the validation set to make sound prediction results on the
test set.

Function prediction for each OTU is modeled as a multiclass,
multilabel supervised classification problem. In our study, the
experimental dataset is divided into three distinct parts, including
the training set, the validation set, and the testing set. We
randomly split 20% of all OTUs into an independent testing set
and designed an eight-fold cross-validation on the remaining
80% of all OTUs. The cross-validation is applied to learn the
appropriate parameters in the weight matrices and select the
appropriate hyperparameters. The goal is to develop the best

model on both training and validation sets to achieve the
highest prediction performance on the testing set. All methods
mentioned above use rectified linear units (ReLUs) as the non-
linearity functions to evaluate all datasets.

Hyperparameters of the Training Process
In training, we use the cross-entropy loss function for multiclass,
multilabel classification together with the Adam optimizer
(Kingma and Ba, 2015). The cross-entropy loss function treats
each class independently andmeasures the difference between the
ground truth label and predicted labels. The ground truth label of
each class is 0 or 1, and the predicted result of each class is the
probability between 0 and 1. When the predicted probability is
far from the ground truth label, the loss value will be large.

We set K = 2 as the neighborhood region and sample sizes
S1 = 25 and S2 = 10 at each hop of a neighborhood leading to
the best performance during the graph embedding step. Adam
and L2 regularization are adopted for model optimization with
the size of mini batch at 128 and a learning rate of 0.01. To avoid
overfitting, dropout is set as = 0.4. All experiments use ReLUs
as activation functions. The experiments are run on a single
machine with 4 NVIDIA GeForce GTX1080 TI with CUDA
Version 10.2, Intel(R) Xeon(R) CPU (E5-2620 v4 @ 2.10 GHz),
and 128 Gb of RAM.

Hypothesis Verification
As noted above, this work is driven by the hypothesis that
microbes with strong correlations, or strong neighborhood
topology profiles, have similar, or highly correlated, functions.
Therefore, we designed the following experiments to confirm that
the topological structure of a neighbor node is predictive, or not,
by comparing the similarity of KOs between OTU nodes with
similar and different neighbors.
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FIGURE 5 | Sketch of extracting “Adjacent Group” and “Non-adjacent Group”.

FIGURE 6 | Box plot comparing KO similarities 1,000 times with each test

extracting 1,000 pairs of nodes for two groups and calculating the average

Jaccard distance.

Verify Whether Two Adjacent Neighbors Share Highly

Correlated Functions
By the adjacent matrix of the microbial network, 1000 pairs of
adjacent OTU nodes are randomly extracted as the “Adjacent
Group.” Meanwhile, a three-step reachability matrix of OTUs
is computed from the adjacency matrix. The two OTU nodes
that cannot reach each other within three steps are extracted as
the “Non-adjacent Group,” which ensures that the node pairs
are sufficiently far from each other. The extraction process
of the two groups is shown in Figure 5. OTU functions are
represented by a row of KO function vectors using 0/1 to indicate
whether the OTU possesses the KO function or not. The distance

between function vectors of twoOTUs is calculated by the Jaccard
distance. The function distances between the “Adjacent Group”
and the “Non-adjacent Group” are calculated and averaged,
respectively, and the tests are repeated 1,000 times. Figure 6
shows the average function distances from the “Adjacent Group”
and the “Non-adjacent Group” over the course of 1,000 respective
tests. The median of average Jaccard distances of the “Adjacent
Group” is 0.515, which is significantly lower than that of the
“Non-adjacent Group.” Even the maximum average distance
from the “Adjacent Group” is smaller than the minimum average
distance from the “Non-adjacent Group,” which suggests that the
adjacent relationships of OTU nodes contain the information
required to predict KO functions.

Verify Whether Two Nodes Sharing Similar Neighbors

Would Have Highly Correlated Functions
To further confirm that two nodes sharing similar neighbors
have highly correlated functions, we use the corresponding row
of the adjacent matrix to present the neighbor structure of each
OTU. Hamming distance between every two rows of the adjacent
matrix is adopted to evaluate neighborhood similarity between
two corresponding OTUs. The smaller the Hamming distance
between the two rows is, the more similar the neighborhood
of the two nodes is. As shown in Figure 7, we selected the
10,000 pairs of nodes with the smallest Hamming distance in
the neighborhoods as the “Similar Group” and the 10,000 pairs
with the largest Hamming distance in the neighborhoods as
the “Different Group.” Therefore, OTU pairs in the “Similar
Group” share similar neighbors, and the other pairs in the
“Different Group” do not. Function similarity is also measured
by the Jaccard distance between KO function vectors. Function
distances for the “Similar Group” and the “Different Group” are
calculated and plotted as boxplots, as shown in Figure 8. It is
clear that KO functions are closer to each other for OTUs sharing
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FIGURE 7 | The extraction of “Similar Group” and “Different Group”.

FIGURE 8 | Box plot comparing KO similarities by calculating Jaccard

distances with each group, including 10,000 pairs of OTUs with similar or

different neighbors.

common neighbors. For OTUs with highly different neighbors,
KO functions are farther apart. The mean of Jaccard distances of
the “Similar Group” is 0.1111, which is much smaller than that of
the “Different Group.” Based on the two verification experiments,
we infer that the OTUs that are adjacent to, or share, common
neighbors would have highly similar KO functions. Therefore,
learning the topological structure of the microbial co-occurrence
network would provide clear and beneficial information for
function predictions.

Evaluations and Comparisons of
Experimental Results
HOPE, its two variants, HOPE-seq and HOPE-one, and
GraphSAGE are applied to three datasets to evaluate by
comparison the performance of HOPE. Recall that HOPE
features hierarchical multitask learning to solve the highly
skewed class distribution problem, and it incorporates
information of both microbe sequences and microbe interactions
in a co-occurrence network. Therefore, the variant HOPE-
seq only uses the microorganism sequence representations
as input but utilizes hierarchical multitask learning to train

the classifier on majority and minority classes. HOPE-one
ignores class imbalance problems but integrates the vector
representation of sequences with microbial network information
as an input feature. Both of the variant methods use the same
hyperparameters and training strategies as parent HOPE.
GraphSAGE (Hamilton et al., 2017) is a well-known and widely
used graph embedding algorithm that provides an inductive
framework to generate embeddings by sampling and aggregating
features from a node’s local neighborhood. The aggregation
function can have various forms, and the authors suggest three
aggregator functions: a mean aggregator, an LSTM aggregator,
and a pooling aggregator (shown as GS-Mean, GS-LSTM, and
GS-Pooling, respectively). The mean aggregator simply takes the
elementwise mean of the node’s features. The LSTM aggregator
is built on a standard LSTM architecture (Hochreiter and
Schmidhuber, 1997) to aggregate the nodes’ neighbors, which are
listed to a random permutation, to embedding representations.
The detailed description of the LSTM aggregator can be found in
the study of GraphSAGE (Hamilton et al., 2017). In the pooling
aggregator, an elementwise max-pooling operation is applied to
aggregate information across the node’s neighbors.

In our experiments, we use four different measurements,
including micro-averaged F1 score, macro-averaged F1 score,
accuracy, and ROC-AUC score, to judge the comparison results.
Micro-averaged F1 score and macro-averaged F1 score are both
F1 scores, but they differ in the averaging method.

The micro-F1 score will aggregate the true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) of all
classes to compute the average F1-score. Assuming n classes, the
TP-value, FP-value, and TF value of the ith class are represented
as TPi, FPi, and FNi, respectively:

precisionmi =

∑n
i=1 TPi

∑n
i=1 TPi +

∑n
i=1 FPi

(10)

recallmi =

∑n
i=1 TPi

∑n
i=1 TPi +

∑n
i=1 FNi

(11)

micro− F1 = 2
recallmi × precisionmi

recallmi + precisionmi

(12)

On the other hand, the macro-F1 score will compute the F1-score
independently for each class and then take the average as
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precisioni =
TPi

TPi + FPi
(13)

precisionma =

∑n
i=1 precisioni

n
(14)

recalli =
TPi

TPi + FNi
(15)

recallma =

∑n
i=1 recalli

n
(16)

macro− F1 = 2
recallma × precisionma

recallma + precisionma

(17)

Accuracy is the ratio of correct predictions to total input samples.
The ROC-AUC score is defined as the area under the ROC
curve. It provides an aggregate measure of performance across
all possible classification thresholds. The ROC-AUC score varies
between 0 and 1, and the closer it is to 1, the better the
performance of the classifier.

Functional Prediction Within the Same Microbial

Community
In this part, we use the training, validation, and testing data
from the same microbial community and calculate various
measurements for every experiment (see Table 2). HOPE is
compared against its variants and GraphSAGE. According to
the results, HOPE nearly outperforms all baselines on various
measurements, especially the micro-F1 score and macro-F1
score. However, the performance of HOPE is comparable to its
two variants in terms of accuracy and ROC-AUC. For example,
HOPE outperforms HOPE-one by 9.5% in the micro-F1 score on
the Abalone Gut Microbiota dataset and 15.6% in the macro-F1
score on the P. monodon intestine dataset. In some parameters,

the performance of HOPE-one is better than that of HOPE-
seq, like accuracy and ROC-AUC, but HOPE-seq can improve
upon HOPE-one by a margin of 5.7% in the micro-F1 score on
the Abalone Gut Microbiota. Since HOPE integrates sequence
information with microbial network information via graph
embedding, thus combining the advantages of its two variants,
it nearly achieves the highest performance. Table 2 also shows
the performance results of HOPE compared to the variants of
GraphSAGE on the benchmark datasets. HOPE nearly achieves
the highest score in all measurements and outperforms two
baselines by a significant margin. According to Table 2, we find
that HOPE-one achieves better results on accuracy and ROC-
AUC thanHOPE on three datasets because HOPE sacrifices some
performance on themajority class to learn theminority class well.

Functional Prediction Across Different Microbial

Communities
We further consider generalizing across different microbial
communities, which requires our model to learn the context
of common functions from one microbe to infer the functions
of other organisms. Some researchers may want to know novel
microbial functions but have only information about related
microbial functions. In this case, the generalization ability of
the algorithm is very important. Therefore, in this part, we
design experiments with the different test sets to evaluate the
generalization ability of HOPE.

We first set the training and validation data from the abalone
gut microbiota and use human feces and shrimp intestine
microbiota to construct microbial networks as a test set. In these
scenarios, we evaluate the performance of our model when the
training data are different from the data used in the test set.

TABLE 2 | The performance of HOPE and its variants and GraphSAGE within the same microbial community for training and testing.

Method Abalone gut microbiota Human feces Penaeus monodon intestine

Mi- F1* Ma-F1* Accuracy ROC-AUC Mi-F1 Ma-F1 Accuracy ROC-AUC Mi-F1 Ma-F1 Accuracy ROC-AUC

HOPE-seq 0.786 0.500 0.887 0.840 0.742 0.236 0.861 0.807 0.907 0.701 0.941 0.923

HOPE-one 0.729 0.544 0.921 0.881 0.742 0.199 0.883 0.816 0.941 0.675 0.963 0.955

GS-mean 0.727 0.433 0.861 0.822 0.672 0.217 0.843 0.780 0.872 0.515 0.918 0.908

GS-LSTM 0.677 0.290 0.843 0.777 0.711 0.205 0.867 0.800 0.713 0.263 0.829 0.787

GS-pooling 0.735 0.387 0.879 0.806 0.747 0.183 0.888 0.816 0.738 0.263 0.845 0.804

HOPE 0.824 0.592 0.908 0.869 0.758 0.309 0.870 0.811 0.941 0.831 0.963 0.949

*Mi-F1 and Ma-F1 represent micro-F1 score and macro-F1, respectively. The bold values mean the best performance of each column of index.

TABLE 3 | Evaluation of generalization performance of HOPE across different microbial communities.

Training set organism Test set organism Mi-F1 Ma-F1 Accuracy ROC-AUC

Human feces Human feces 0.758 0.309 0.842 0.811

Abalone gut Human feces 0.728 0.217 0.867 0.819

Penaeus monodon intestine Penaeus monodon intestine 0.941 0.831 0.963 0.949

Abalone gut Penaeus monodon intestine 0.837 0.529 0.877 0.866

The first and second columns list the microbial communities used in the training set and the testing set, respectively. The first and third rows list the baseline of performance when

training and test sets are from the same microbial community.
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Table 3 summarizes the performance of HOPE with different
test sets. Compared to baselines, experiments utilizing a test set
different from the training set achieve lower scores but within
an acceptable range. We train the model on the abalone gut
microbiota dataset and test the model on datasets from human
feces and shrimp intestine microbiota. Although using training
sets from a different source, results show that HOPE achieves
nearly 90% performance of experiments when the training set
and test set data belong to the same species. HOPE achieves high
performance in generalization, which means that our approach
can learn the fundamental knowledge from known microbial
functions and infer the functions of unseen microorganisms.

Discussion for Class Imbalance Problem
We find that KO functions with a large number of annotation
samples generally outperform KO functions with a few
annotations. Further experiments explore the relationship
between the number of training samples and the variance in
predictive performance and plot the result in Figure 9. It can
be seen that the predictive performance is strongly correlated
with the number of instances in the training set. We build
linear regressions for the measurement scores and the number
of samples for every KO function, and the coefficients of the
explanatory variable in all regressions are significantly greater
than zero (P = 0.0000). The statistical results prove that KO
functions with rich training sample annotations perform better
than KO functions represented by only a few samples.

In all experiments mentioned above, we observe that some
specific KO functions are easily classified to wrong places, causing
low scores across the measurements evaluated. Even though
some specific KO functions have been learned by a large amount
of training samples, like K00096, K02080, and K10014, their F1
scores are nearly zero. Owing to the hierarchical nature of KOs,
these bad KOs are defined as low-level, or rare, existing functions.
In the future, additional weights based on the general level of KO
should be assigned to each class to achieve better performance.

CONCLUSION AND DISCUSSION

In this paper, a pipeline for the HOPE method is proposed
for the analysis of microbial functions. The method leverages
hierarchical multitask learning and graph embedding to extract
features from sequence compositional signatures and topological
patterns in non-linear microbial interaction networks. The
hierarchical multitask learning module is to cope with class
imbalanced datasets and achieve significant performance
gains on predicting functions that appear in a few training
samples. Using the graph embedding model, HOPE integrated
the sequence compositional signatures and co-occurrence
relationship among OTUs in microbial communities with the
k-mer frequency feature in each node and topological patterns
in microbial networks. Therefore, HOPE outperforms baselines
on almost all indexes in all experiments. In detail, the percentage
of macro-F1 scores reached from our classifier has an increased
score of at least seven percentage points compared to the
other methods. Experiment results also showed that HOPE has
satisfactory generalization ability when it predicts functions

FIGURE 9 | Performance of KOs with different annotated samples. The

graphs plot the predictive performance of each KO in our method as a

function of the number of training samples.

across different microbial communities. Because the graph
embedding of microbial co-occurrence networks conserves the
interactions and similarities among OTUs, which are useful for
inferring unknown functions, HOPE demonstrates significant
generalization ability. Several potential improvements are
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possible. In the future, during the construction of the microbial
network, the threshold of defining an edge between two OTUs
could change to a learnable value. The training of HOPE is more
time-consuming than the previous algorithms because the extra
MLP layer for function prediction requires the optimization of
much more parameters.

Although the primary purpose of HOPE is the prediction
of microbial functions on the microbial co-occurrence network,
the framework can be used on other related scenarios, such
as the prediction of gene function based on the gene co-
expression network.
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The functions of proteins are mainly determined by their subcellular localizations in cells.

Currently, many computational methods for predicting the subcellular localization of

proteins have been proposed. However, these methods require further improvement,

especially when used in protein representations. In this study, we present an

embedding-based method for predicting the subcellular localization of proteins. We

first learn the functional embeddings of KEGG/GO terms, which are further used in

representing proteins. Then, we characterize the network embeddings of proteins on

a protein–protein network. The functional and network embeddings are combined as

novel representations of protein locations for the construction of the final classification

model. In our collected benchmark dataset with 4,861 proteins from 16 locations, the

best model shows a Matthews correlation coefficient of 0.872 and is thus superior to

multiple conventional methods.

Keywords: protein subcellular localization, network embedding, functional embedding, gene ontology, KEGG

pathway

INTRODUCTION

The functions of proteins are closely related to their subcellular locations in cells. In studying
proteins, determining their locations in cells is usually the first step, and these locations are used
as guides for designing drugs. Thus, many experimental methods for identifying protein locations
have been developed, such as in situ hybridization. Through these methods, a large number of
proteins have been verified and recorded in biological databases, such as the Swiss-Prot database.
In addition, these data serve as benchmark datasets for developing machine learning methods and
useful in the computational identification and investigation of protein locations.

Many computational methods based on machine learning for predicting protein subcellular
locations have been proposed. For example, Chou and Cai (2002) proposed a support vector
machine-based method for predicting protein locations with the use of functional domain
data. LocTree2 (Goldberg et al., 2012) presents a hierarchical model for classifying 18
protein locations. To further improve prediction effectiveness, LocTree3 incorporates homology
information into the models (Goldberg et al., 2014). Hum-mPloc 3.0 trains an ensemble classifier
by integrating sequence and gene ontology information (Zhou et al., 2017). Recently, deep
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learning has achieved remarkable results in computational
biology, particularly in identifying protein subcellular locations.
In classification tasks, deep learning automatically learns high-
level features rather than hand-designing features. For example,
DeepLoc (Almagro Armenteros et al., 2017) presents a recurrent
neural network with attention mechanism for the identification
of protein locations, using sequences alone. rnnloc (Pan et al.,
2020a) combines network embeddings and one-hot encoded
functional data to predict protein locations with the use of
a recurrent neural network. In Hum-mPloc 3.0 and rnnloc,
functional data demonstrate strong discriminating power for
different subcellular locations. However, both methods encode
functional data into a high-dimensional one-hot encoded vector,
which may cause feature disaster, especially when the number of
training samples is smaller than the number of features.

For the above issues, embedding-based methods can be
applied to the transfer of high-dimensional one-hot encoding
into distributed vectors for sequential and network data. Given
that interacting proteins generally share similar locations,
node2vec (Grover and Leskovec, 2016) can be used in learning
network embeddings for individual proteins from a protein–
protein network, which help better represent the protein
interaction information into feature vectors.

In this study, we present an embedding-based method for
predicting protein locations. It learns network embeddings
from a protein–protein network and functional embeddings
of GO/KEGG terms. Then, these learned embeddings are
used to represent proteins and further selected using feature
selection methods. Finally, an optimal feature subset and
classifier are obtained for the classification of protein subcellular
localization, and the optimal classifier is superior to multiple
conventional methods.

MATERIALS AND METHODS

In this study, we first collect a benchmark dataset for protein
localization. Then we learn network embeddings from a protein–
protein network, using node2vec and functional embeddings
from KEGG/GO functional data and word2vec. Then, the
learned embeddings are used to represent each protein. To obtain
refined combined embeddings, we use two-step feature selection
methods in determining the optimal features and classifiers in
predicting protein locations. The whole process is illustrated in
Figure 1.

Datasets
The original 5,960 protein sequences are retrieved from a
previous study (Li et al., 2014), which are extracted from Swiss-
Prot (http://cn.expasy.org/, release 54.0). The protein sequences
do not include proteins with <50 amino acids or more than
5,000 amino acids and unknown amino acids. The included
proteins are processed through CD-HIT (Li and Godzik, 2006).
Sequence similarity between each pair of proteins is <0.7. Given
that we extract features from gene ontology (GO) terms and
KEGG pathways of proteins through natural language processing
methods, we exclude proteins without GO terms and KEGG

FIGURE 1 | Flowchart of the proposed method in this study.

TABLE 1 | Number of proteins in each category.

Category Number of proteins

Biological membrane 1,483

Cell periphery 33

Cytoplasm 488

Cytoplasmic vesicle 69

Endoplasmic reticulum 188

Endosome 25

Extracellular space or cell surface 636

Flagellum or cilium 3

Golgi apparatus 95

Microtubule cytoskeleton 48

Mitochondrion 326

Nuclear periphery 31

Nucleolus 108

Nucleus 1,229

Peroxisome 45

Vacuole 54

pathways, finally obtaining a total of 4,861 proteins. The proteins
are classified into 16 categories according to their subcellular
locations. The number of proteins from each location is listed in
Table 1.
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Protein Representation
One-Hot Encoded Representation Based on GO Term

and KEGG Pathway
The GO terms and KEGG pathways are the essential properties
of proteins. A representation containing this information is an
excellent scheme for encoding each protein.

A protein p can be encoded into a binary vector,VGO(p), based
on its GO terms, which is formulated by

VGO (P) = [g1, g2, · · · , gm]
T , (1)

where m represents the number of GO terms and gi is defined
as follows:

gi =

{

1 if p is annotated by the i− th GO term
0 Otherwise

(2)

In this study, 22,729 GO terms are included, which induced a
22,729-D vector for each protein.

Moreover, with its KEGG pathways, it can also be encoded
into a vector, VKEGG(p), with the formula

VGO (P) = [k1, k2, · · · , kn]
T , (3)

where n represents the number of KEGG pathways and ki is
defined as follows:

ki =

{

1 if p is annotated by the i− th KEGG pathway
0 Otherwise

(4)

Here, 328 KEGG pathways are used, inducing a 328-D vector for
each protein.

Two vectors based on GO terms and KEGG pathways are
concatenated to a final vector. Thus, each protein is represented
by a 23,057-D vector. We use Boruta feature selection (Kursa and
Rudnicki, 2010) to reduce the computational burden and retain
relevant features.

Functional Embeddings Based on GO Term and

KEGG Pathway
Given that the one-hot encoded representation of GO
(Ashburner et al., 2000) and KEGG (Ogata et al., 1999)
terms is highly dimensional, the method by which they
are mapped into low-dimensional embeddings is extremely
important. GO/KEGG terms co-occur in a protein frequently
and may thus be similar in distance, although distances among
GO/KEGG terms vary. Thus, we apply word2vec (Mikolov et al.,
2013) to learn an in-depth representation of GO/KEGG terms,
representing each GO/KEGG term with a vector containing
continuous values.

We first collect whole human proteins with GO/KEGG
terms. Each GO or KEGG term is a word, and each protein
is a sentence. The set of human proteins is a corpus. We
run Word2vec program in genism (https://github.com/RaRe-
Technologies/gensim) on this corpus to learn the embeddings of
each GO/KEGG term.

Each protein contains multiple GO and KEGG terms. After
obtaining the embeddings for each KEGG/GO term, we average
the embeddings of KEGG/GO terms within a protein as the
functional embeddings of this protein.

Network Embeddings From a Protein–Protein

Network
In a protein–protein network, each node is a protein, and the
edge is whether the two proteins interact or not. We first
download a human protein–protein network from STRING
(version 9.1) (Szklarczyk et al., 2017), and the network consists
of 2,425,314 interaction pairs and 20,770 proteins.

node2vec is designed to learn embeddings from a graph
through a flexible sampling approach and maximizes the log
probability of nodes, given the learned embeddings:

maxe
∑

v∈V log P (N (v|e (v))) (5)

where v is the node, N(v) is the neighborhood of the node v, and
e is the mapping function from nodes to embeddings.

In this study, we use node2vec implemented at https://
snap.stanford.edu/node2vec/, and the dimension of the learned
embeddings is set at 500. Finally, the network embeddings of each
protein are obtained.

Feature Selection
Instead of directly using combined features from network
embeddings and functional embeddings for each protein, we
further use minimum redundancy maximum relevance (mRMR)
(Peng et al., 2005) to analyze these embedding features, which
has wide applications in tackling different biological problems
(Wang et al., 2018; Li et al., 2019, 2020; Zhang et al., 2019,
2020; Chen et al., 2020). This method has two criteria to evaluate
the importance of features. One is the maximum relevance to
class labels and the other is the minimum redundancy to other
features. Based on these two criteria, mRMR method generates
a feature list, named mRMR feature list. Regardless of relevance
and redundancy, mutual information (MI) is adopted in this
method to make evaluation. For two variables x and y, their MI is
computed by

I(x, y) =

∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (6)

where p(x) and p(x, y) denote the marginal probabilistic density
and joint probabilistic density, respectively. A high MI indicates
the strong associations of two variables. The mRMR feature list
is produced by adding features one by one. Initially, it is empty.
In each round, for each of features not in the list, its relevance to
class labels, evaluated by MI value of the feature and class labels,
and redundancy to features in the list, assessed by the mean of
MI values of the feature and those in the list, are calculated. A
feature with maximum difference of relevance to class labels and
redundancy to features in the list is picked up and appended
to the list. When all features are in the list, the mRMR feature
list is complete. Here, we used the mRMR program provided
in http://penglab.janelia.org/proj/mRMR/. It is executed with its
default parameters.

The mRMR method can only output a feature list. Which
features are optimum is still a problem. In view of this, the
incremental feature selection (IFS) (Liu and Setiono, 1998)
method is employed. This method can extract an optimum
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feature combination for a given classification algorithm. In detail,
from the mRMR feature list yielded by mRMR, IFS generates a
series of feature subsets with a step 1, that is, the top feature in
the list comprises the first feature subset, the top two features
comprise the second feature subset, and so forth. For each feature
subset, a classifier is built with a given classification algorithm
and samples represented by features in the subset. All constructed
classifiers are evaluated by a cross-validation method (Kohavi,
1995). We select the classifier with the best performance and call
it as the optimum classifier. The corresponding feature subset is
termed as the optimum feature subset and features in this feature
subset are denoted as the optimal features.

Synthetic Minority Oversampling
Technique
The number of proteins from different locations varies, resulting
in a data imbalance problem. To reduce the impact of
data imbalance on classification model construction, we apply
synthetic minority oversampling technique (SMOTE) (Chawla
et al., 2002) to generate some synthesized samples for minority
classes. For each location, except the location with the largest
number of proteins, we synthesize new proteins and add them
to this location until each location has almost the same number
of proteins.

Classification Algorithm
In this study, we test four classification algorithms to select
the best one for our task: decision tree (DT) (Safavian and
Landgrebe, 1991), K-nearest neighbors (KNN) (Cover and Hart,
1967), random forest (RF) (Breiman, 2001), and support vector
machine (SVM) (Cortes and Vapnik, 1995).

K-Nearest Neighbors
KNN is a simple intuitive method for classifying samples. Given
a query sample, it calculates the distance between a query sample
and training samples. Then. it selects k training samples with the
least distance, and the label of the query sample is determined
by major voting, which assign a label with the most votes to the
query sample.

Decision Tree
The DT is an interpretable classifier method, which can
automatically learn classification rules from data. It uses a greedy
strategy to build a flow-like structure; each internal node is
determined by a feature to go to the left or right child node. The
leaf node represents the outcome labels. The DT in Scikit-learn
implements the CART algorithm with Gini index. It is used in
this study.

Random Forest
RF (Breiman, 2001; Jia et al., 2020; Liang et al., 2020; Pan et al.,
2020b) is a meta predictor with multiple DTs, which are grown
from the bootstrap samples consisting of randomly selected
features. Given a new sample, RT first uses its multiple trees for
the prediction of sample labels, and then majority voting is used
in determine the label of the new sample.

Support Vector Machine
SVM (Cortes and Vapnik, 1995; Chen et al., 2018a,b; Liu et al.,
2020; Zhou et al., 2020) is a supervised classifier based on
statistical theory, and it builds a hyperplane with a maximum
margin between two classes. It first transforms nonlinear data
from a low-dimensional space to a linear high-dimensional space
with a kernel trick, then the margin between two classes in the
high-dimensional space is maximized for acquisition of SVM
parameters. Given a test sample, SVM determines the label
according to the side of the hyperplane where it is located.

In this study, we use the Scikit-learn package to implement
above four classification algorithms.

Baseline Methods
BLAST
To indicate the utility of the proposedmethod, we further employ
basic local alignment search tool (BLAST) (Altschul et al., 1990)
to construct a baseline method and make comparisons. In a
given protein sequence, BLAST search the most similar protein
sequences, measured with an alignment score, in the training
dataset. The method based on BALST directly assigns the class of
the most similar protein sequence to a given protein sequence as
its predicted class. Such method is evaluated with a Jackknife test.

DeepLoc
DeepLoc (Almagro Armenteros et al., 2017) is another deep
learning based method for predicting protein locations from
sequences. We use DeepLoc downloaded from https://github.
com/ThanhTunggggg/DeepLoc with default parameters.

RESULTS AND DISCUSSION

In this section, we first visualize the learned embeddings, using
T-SNE, then we evaluate the effectiveness of different classifiers
with different input embedding features. Finally, we compare our
proposed method with baseline methods.

Visualization of the Learned Functional and
Network Embeddings
To demonstrate the power of the learned embeddings, we
visualize these embeddings, one-hot encoded features, and the
combined network and functional embeddings, respectively. As
shown in Figure 2, the embeddings can distinguish proteins
from different locations to some extent. The learned functional
embeddings (Figure 2B) shows higher discriminate power on
some locations (e.g., for discriminating biological membrane)
than the one-hot encoded representation based on functional
data (Figure 2A). As shown in Figure 2C, the network
embeddings have some discriminate power for some locations,
for example, endosomes, which cannot be easily separated
by functional embeddings. Also, the combined embeddings
(Figure 2D) of functional and network embeddings have strong
discriminating power. Intuitively, the four types of embeddings
have similar discriminating power on the whole.
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FIGURE 2 | Visualization of one-hot encoded functional features and the learned embeddings. (A) One-hot encode representation of functional data KEGG/GO

terms; (B) the learned network embeddings from a protein-protein network; (C) the learned embeddings of functional data using word2vec; (D) the combined

network and functional embeddings.

Effectiveness of Different Classifiers With
Different Input Embedding Features
We evaluate the effectiveness of different classifiers with different
input features, including one-hot encoded representations of
GO/KEGG terms, functional embeddings, network embeddings,
and the combination of network and functional embeddings.
All the input features are first reordered using mRMR, resulting
in the mRMR feature list. Then, a series of feature subsets
are generated based on such list. On the series of feature
subsets, several classifiers are built with a given classification
algorithm. Each constructed classifier is assessed by 10-fold
cross-validation. The measurements for each classifier, including
accuracies on 16 categories, overall accuracy (ACC) andMatthew
correlation coefficient (MCC) (Matthews, 1975; Gorodkin, 2004),
are provided in Supplementary Tables 1–4. For each feature type
and each classification algorithm, a curve is plotted with MCC
as Y-axis and number of used features as X-axis, as shown in
Figure 3. The MCC values change with the number of features
for each classification algorithm. Clearly, for each feature type,
RF outperforms other three classification algorithms.

For one-hot encoded representations of GO/KEGG terms,
the corresponding curves are illustrated in Figure 3A. The
optimum RF classifier yielded the MCC of 0.858, which uses
the top 511 features. The corresponding ACC is 0.885 (Table 2).
The MCCs of the optimum DT and SVM classifiers are 0.763
and 0.832, respectively, and the corresponding ACCs are 0.805
and 0.864. They are all lower than those of the optimum RF

classifier. The MCC of the optimum KNN classifier is also 0.858,
however, the ACC is only 0.882, lower than that of the optimum
RF classifier. The accuracies of 16 categories yielded by four
optimum classifiers are shown in Figure 4A, further confirming
the superiority of RF.

Of the functional embeddings, Figure 3B shows the curve for
each classification algorithm. It can be observed that the four
optimum classifiers yield the MCCs of 0.697, 0.837, 0.762, and
0.876, respectively. The corresponding ACCs are 0.743, 0.860,
0.799, and 0.897 (Table 2), respectively. Likewise, RF still yields
the best performance. The detailed performance (accuracies on
16 categories) of four optimum classifiers is listed in Figure 4B.
Again, the optimum RF classifier produces the most high
accuracies, indicating the advantage of RF.

For the third feature type (network embeddings), we also plot
four curves, one curve corresponds one classification algorithm,
as shown in Figure 3C. The highest MCCs for four classification
algorithms are 0.612, 0.755, 0.618, and 0.803, respectively.
Corresponding ACCs are 0.669, 0.786, 0.669, and 0.835 (Table 2),
respectively. Also, the optimum RF classifier yields the best
performance. We further list the accuracies on all categories
produced by four optimum classifiers in Figure 4C. Clearly, the
optimum RF classifier is superior to other optimum classifiers.

As for the last feature type (the combination of network and
functional embeddings), four curves are plotted in Figure 3D.
The optimum RF classifier generates the MCC of 0.872 and
ACC of 0.893 (Table 2). The optimum KNN classifier yields a
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FIGURE 3 | MCC changes with the number of features for IFS with different classification algorithms. (A) one-hot encoded representation derived from KEGG/GO

terms; (B) functional embeddings from KEGG/GO terms; (C) network embeddings from a protein-protein network; (D) the combined functional and network

embeddings.

TABLE 2 | Comparisons of different classifiers with or without feature selection.

Feature type Classification algorithm ACC MCC

With feature

selection

Without

feature

selection

With feature

selection

Without

feature

selection

One-hot

encoded

representations

Decision tree 0.805 0.776 0.763 0.726

K-nearest neighbors 0.882 0.854 0.858 0.826

Random forest 0.885 0.878 0.858 0.849

Support vector machine 0.864 0.859 0.832 0.825

Functional

embeddings

Decision tree 0.743 0.717 0.697 0.666

K-nearest neighbors 0.860 0.852 0.837 0.828

Random forest 0.897 0.889 0.876 0.867

Support vector machine 0.799 0.798 0.762 0.760

Network

embeddings

Decision tree 0.669 0.648 0.612 0.588

K-nearest neighbors 0.786 0.785 0.755 0.754

Random forest 0.835 0.827 0.803 0.795

Support vector machine 0.669 0.661 0.618 0.609

Functional

and network

embeddings

Decision tree 0.746 0.720 0.699 0.670

K-nearest neighbors 0.858 0.832 0.835 0.805

Random forest 0.893 0.884 0.872 0.861

Support vector machine 0.825 0.823 0.793 0.791
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FIGURE 4 | Performance of the optimum classifiers on 16 categories with different feature types. (A) one-hot encoded representation derived from KEGG/GO terms;

(B) functional embeddings from KEGG/GO terms; (C) network embeddings from a protein-protein network; (D) the combined functional and network embeddings.

KNN, K-nearest neighbors; RF, random forest; SVM, support vector machine; DT, decision tree.

FIGURE 5 | Performance of the optimum RF classifiers on majority and

minority categories using the combined functional and network embeddings.

The majority categories contain more than 100 proteins, whereas the minority

categories consist of <100 proteins. The performance on minority categories

is not lower than that on the majority categories.

high MCC of 0.835. However, the other two optimum classifiers
produce much lower MCC (lower than 0.800). The ACCs shows
the same results (see Table 2). Accuracies on all categories
are shown in Figure 4D. Similarly, the optimum RF classifier
provides the best performance.

As mentioned above, the optimum RF classifier is all best
for four different feature types. The optimum RF classifier on
functional embeddings derived from KEGG/GO terms yields
the best MCC value (0.876). This classifier is based on the top
239 features. The optimum RF classifier with the combined
embeddings only yields an MCC value of 0.872 and is a little
worse than the RF with only functional embeddings. However, it
uses only the top 129 features, which is nearly half of the number
of features of the optimum RF classifier with only functional
embeddings (239). Thus, in this study, we use the combined
network and functional embeddings as the final input features.

We select the optimum RF classifier with the combined
embeddings as the proposed method. As the sizes of 16
categories are of great difference, it is necessary to investigate
the performance of such classifier on majority and minority
categories. We set 100 as the threshold, that is, categories
containing more than 100 proteins are deemed as majority
categories, whereas other categories are termed as minority
categories. In this case, we obtain seven majority categories

Frontiers in Genetics | www.frontiersin.org 7 January 2021 | Volume 11 | Article 62650057

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Pan et al. Identification of Protein Subcellular Localization

TABLE 3 | Performance of BLAST, DeepLoc, and our proposed method.

Class BLAST DeepLoc Ours

Biological membrane 0.843 – 0.829

Cell periphery 0.424 – 1.000

Cytoplasm 0.455 – 0.852

Cytoplasmic vesicle 0.232 – 1.000

Endoplasmic reticulum 0.532 – 0.989

Endosome 0.280 – 1.000

Extracellular space or cell surface 0.739 – 0.936

Flagellum or cilium 0.000 – 1.000

Golgi apparatus 0.379 – 1.000

Microtubule cytoskeleton 0.333 – 1.000

Mitochondrion 0.356 – 0.982

Nuclear periphery 0.097 – 1.000

Nucleolus 0.241 – 1.000

Nucleus 0.733 – 0.884

Peroxisome 0.289 – 0.978

Vacuole 0.333 – 1.000

Overall accuracy 0.660 0.659 0.893

MCC 0.576 0.568 0.872

and nine minority categories. The performance on majority and
minority category of the proposed classifier is shown in Figure 5.
It is surprising that the performance onminority categories is not
lower than that on the majority categories. This result indicates
that the performance of such classifier is not influenced by the
imbalanced problem after SMOTE is applied.

Comparison of Classifiers With or Without
Feature Selection
In this study, we employed a feature selection procedure to
improve the performance of different classification algorithms.
Table 2 lists the performance of different classification algorithms
on four feature types with or without feature selection. It can
be observed that the performance of DT is enhanced most by
the feature selection. MCC is improved about 3% and ACC is
enhanced about 2.5%. The improvement on the performance
of KNN yielded by feature selection is quite different for
different feature types. For one-hot encoded representations and
combined functional and network embeddings, the performance
is evidently enhanced, while the performance is improved limited
for other two feature types. As for other two classification
algorithms (RF and SVM), the improvement is not very evident
(almost all <1% for both ACC and MCC). Anyway, it can be
confirmed that the employment of feature selection can improve
the performance of all classification algorithms.

Proposed Method Is Superior to
State-of-the-Art Methods
To demonstrate the power of our proposed method, we compare
our method with published methods, including BLAST and
Deeploc. The results are listed in Table 3. BLAST and DeepLoc
nearly have the same level of performance and are inferior to
our proposed method. Of the 16 locations, our method can

achieve 100% accuracy on nine locations. Here, DeepLoc has the
worst performance, and a potential reason is that our benchmark
dataset is heavily imbalanced and results in biased preference for
majority classes. To resolve the data imbalance issue, our method
applies SMOTE in the construction of a balanced training set.

CONCLUSION

In this study, we present an embedding-based method to
predict protein subcellular locations by integrating protein
interactions and functional information. The proposed
method first learns network embeddings from a protein–
protein network and functional embeddings from associations
between proteins and GO/KEGG terms. We demonstrate
that our proposed method is superior to state-of-the-
art methods, and the learned embeddings offer valuable
biological insights.
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Circular RNAs (circRNAs), as a rising star in the RNA world, play important roles in

various biological processes. Understanding the interactions between circRNAs and

RNA binding proteins (RBPs) can help reveal the functions of circRNAs. For the past

decade, the emergence of high-throughput experimental data, like CLIP-Seq, has made

the computational identification of RNA-protein interactions (RPIs) possible based on

machine learning methods. However, as the underlying mechanisms of RPIs have not

been fully understood yet and the information sources of circRNAs are limited, the

computational tools for predicting circRNA-RBP interactions have been very few. In

this study, we propose a deep learning method to identify circRNA-RBP interactions,

called DeCban, which is featured by hybrid double embeddings for representing RNA

sequences and a cross-branch attention neural network for classification. To capture

more information from RNA sequences, the double embeddings include pre-trained

embedding vectors for both RNA segments and their converted amino acids. Meanwhile,

the cross-branch attention network aims to address the learning of very long sequences

by integrating features of different scales and focusing on important information. The

experimental results on 37 benchmark datasets show that both double embeddings

and the cross-branch attention model contribute to the improvement of performance.

DeCban outperforms the mainstream deep learning-based methods on not only

prediction accuracy but also computational efficiency. The data sets and source code

of this study are freely available at: https://github.com/AaronYll/DECban.

Keywords: circular RNAs, RNA binding proteins, deep learning, double embeddings, attention network

1. INTRODUCTION

Circular RNAs (circRNAs) are a special kind of non-coding RNA molecules. Different from linear
RNAs, circRNAmolecules have closed-ring structures, which are not affected by RNA exonuclease,
and their expression is more stable (Pamudurti et al., 2017; Li et al., 2018). Although natural
circRNAs were discovered more than two decades ago, their important roles in gene regulation and
disease development have just been revealed in recent years (Hansen et al., 2013; Li et al., 2015).

Emerging studies have shown that circRNAs can bind to various types of proteins to affect
protein localization, regulate protein expression, or influence protein-protein-interactions. The
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circRNA-binding-proteins (circRBPs) include transcription
factors, RNA processing proteins, proteases, and common
RNA-binding-proteins (RBPs) that can be bound with linear
RNAs. Understanding the interactions between circRNAs and
proteins is helpful for revealing the biological functions of
circRNAs (Du et al., 2017; Zang et al., 2020). For the past decade,
high-throughput experimental technologies have been widely
used to detect the interactions between RNAs and proteins,
like cross-linking and immunoprecipitation followed by RNA
sequencing (CLIP-Seq) (Yang et al., 2015). The large-scale
experimental data makes it possible to predict RNA-protein
interactions (RPIs) based on machine learning methods (Li
et al., 2013). Compared with expensive and time-consuming
wet experiments, the computational methods have considerably
sped up the identification of interactions, thus the automatic
prediction of RPI has been a hot topic in the bioinformatics field
(Pan et al., 2019).

The existing prediction tools include both RNA-oriented
or protein-oriented, i.e., identifying the binding sites in the
RNA chain and protein chain, respectively (Yan et al., 2016).
Benefitting from the abundant domain knowledge from protein
databases, many studies perform prediction based on protein
information. By contrast, much fewer studies focus on the
binding sites on circRNAs (Ju et al., 2019; Zhang et al., 2019;
Jia et al., 2020; Wang and Lei, 2020). The reasons are two-
folds. For one thing, compared with other non-coding RNAs, like
microRNAs and long non-coding RNAs, research on circRNAs
has been largely lagged and their data is scarce. For another
thing, the prediction for circRNAs is a very difficult task, due to
the long sequences, sparsely distributed binding sites and limited
information that could be extracted.

As circRNAs have attracted more and more attention,
experimental data of circRNAs has increased rapidly. Till now,
a lot of circRNA-protein interactions have been revealed and
released in public databases, e.g., CircInterome that houses
the RBP/miRNA-binding sites on human circRNAs (Dudekula
et al., 2016). Thanks to the fast-growing circRNA data and
the rise of deep learning, methods for predicting circRNA-RBP
binding sites are emerging. For instance, Zhang et al. (2019)
proposed a method called CRIP to predict circRNA-RBP binding
sites, which is a hybrid architecture of convolutional neural
networks (CNNs) and recurrent neural networks (RNNs); Jia
et al. (2020) proposed an ensemble classifier, PASSION, which
combines various statistical sequence features and performs
feature selection to enhance the prediction accuracy.

Note that learning long sequences has still been an
open problem for neural networks. Biological sequences are
much longer than natural language sentences, conventional
learning models, including long short-term memory networks
(LSTMs) which were designed to handle long-term dependencies
(Hochreiter and Schmidhuber, 1997), do not work well for
extremely long sequences. Therefore, most of the existing
predictors take short segments instead of full-length non-coding
RNAs as input to identify the binding sites (Pan and Shen,
2017, 2018; Pan et al., 2018; Zhang et al., 2019), i.e., they divid
the RNA sequences into short fragments and predict whether a
fragment is a binding site or not. Obviously, such simplification

does not accord with the real scenario. For one thing, RPIs are
usually determined by the full-length RNA information rather
than short fragments; and for the other thing, the binding regions
only make up a tiny proportion in the whole RNA sequences,
while the fragment-based prediction often constructs relatively
balanced datasets, leading to a high false-positive-rate. Therefore,
to address the sparse distribution of binding sites and reduce false
positive predictions, this study aims to develop a model which
allows full-length circRNA sequences as input and provides
reliable predictions.

Generally, the performance of machine learning methods
depends on two factors, namely feature extraction and learning
model. In traditional learning methods, RNA sequences are
represented by statistical features, like the frequency of k-mers
and secondary structure elements (Zhang et al., 2011; Chen
et al., 2014). With the rise of deep learning, hand-crafted feature
extraction has been largely replaced by automatic feature learning
and pre-training via large-scale unlabeled datasets (Clauwaert
and Waegeman, 2019; Meher et al., 2019). Word embedding
is an emerging technique for representing biological sequence
features. Unlike traditional features or one-hot encoding,
word embedding is a kind of continuous distributed features.
Commonly used word embedding methods include Word2vec
(Mikolov et al., 2013), Glove (Pennington et al., 2014), ELMo
(Peters et al., 2018), GPT (Radford et al., 2018), and Bert (Devlin
et al., 2018). The first two models yield static embedding, i.e.,
the embedding vector for each word is context-independent and
fixed after training (Peters et al., 2018), while the latter three
methods yield context-dependent embedding vectors.

At present, static embeddings learned by shallow models
have been widely used in biological sequence analysis, while
only a few studies applied dynamic embedding, like Elmo and
Bert. One reason is that the models based on deep learning
models such as Elmo and Bert are very computation-intensive.
Especially, non-coding RNA sequences are much longer than
protein sequences, thus learning dynamic embedding for RNA
sequences may require more complex model. In this study, we
also adopt static word embedding method to represent circRNA
sequences. To better mine the sequence information, we propose
a double-embedding method to expand the feature space, which
is further learned by deep neural networks to extract abstract
features for classification.

As circRNAs are usually thousands of nucleotides, to handle
the extremely long sequences, specialized model design is also
required. Previous studies mainly used CNN (Alipanahi et al.,
2015), RNN, or CNN-RNN hybrid models (Pan and Shen,
2017; Zhang et al., 2019). As aforementioned, these models
take short fragments as input and construct balanced datasets,
while true binding sites are very rare. In this study, we design
a new model called DeCban (Double embedding and Cross-
branch attention network) to predict the presence of RBP-
binding sites on full-length circRNAs. This predictor is featured
by not only a new sequence encoding scheme, i.e., double
embedding, but also a cross-branch attention neural network.
The network extracts sequence features of different abstract levels
and different granularities, and the attention module allows
the network to focus on important features for discrimination.
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TABLE 1 | Experimental datasets.

RBP Train# Test# RBP Train# Test#

AGO1 33547 14377 IGF2BP2 59467 25485

AGO2 57697 24724 IGF2BP3 83120 35622

AGO3 8570 3672 LIN28A 50769 21757

ALKBH5 4497 1927 LIN28B 21601 9257

AUF1 3045 1305 METTL3 9033 3871

C17ORF85 6225 2667 MOV10 6309 2703

C22ORF28 15680 6720 PTB 67963 29127

CAPRIN1 15503 6643 PUM2 4903 2101

DGCR8 57651 24707 QKI 3036 1300

EIF4A3 25017 10721 SFRS1 36563 15669

EWSR1 13253 5679 TAF15 3580 1534

FMRP 79392 34024 TDP43 2610 1118

FOX2 2756 1180 TIA1 5127 2197

FUS 60699 26013 TIAL1 9613 4119

FXR1 2908 1246 TNRC6 3876 1660

FXR2 15400 6600 U2AF65 16236 6958

HNRNPC 2588 1108 WTAP 1517 649

HUR 73352 31436 ZC3H7B 30175 12931

IGF2BP1 66355 28437

Compared with the existing RPI prediction tools andmainstream
deep learning models, DeCban has great advantages on both
prediction accuracy and computational efficiency.

2. METHODOLOGY

2.1. Datasets
To evaluate the prediction performance of DeCban, we collect
circRNAs and their interacting proteins from Circular RNA
Interactome (https://circinteractome.nia.nih.gov/) (Dudekula
et al., 2016). The sequence redundancy is removed by CD-Hit
(Fu et al., 2012) with threshold 0.8, resulting into 32,216 circRNA
sequences, which are bound to a total of 37 RBPs. We train a
binary prediction model for each RBP and construct 37 datasets.
The positive-to-negative ratio of each data set is 1:1, where
the positive samples are the circRNAs binding to the RBP and
negative samples are the remaining ones. The circRNAs in this
set range from 100 to 30,000 nt in length, 90% of which are
500~7,000 nt. Therefore, to avoid the potential bias brought by
too short and too long sequences, we only include the sequences
falling in the range of 500~7,000 nt in the final data set. The data
statistics are shown in Table 1.

2.2. Model Architecture
Figure 1 shows the model architecture. The feature vectors
generated by double embeddings are fed into a CNN-based
neural network with multiple branches of different granularities.
We introduce the self-attention mechanism to automatically
integrate the semantic information extracted from different
branches at each abstract level (an abstract level corresponds to
a convolutional layer), and combine multiple levels of semantic

information to determine whether binding sites exist in the
RNA equences.

2.2.1. Double Embeddings
To work with deep neural networks (DNNs), input sequences are
usually converted into numerical vectors by encoding schemes,
such as one-hot, which encodes each nucleotide by a four-
dimensional binary vector with only one element equal to 1.
One-hot is unable to express the association between different
nucleotides or context information, and the low dimensionality
of its feature space limits the performance of further learning
by DNN. By contrast, word embeddings, that are continuous
dense vectors capturing semantic association of words, have
been a mainstream method to represent words and sentences in
natural language processing. The training of word embeddings is
based on the language modeling task, like next-word prediction,
which does not require sequence labels. Thus, the training of
embeddings can be performed on large-scale unlabeled corpus.

In recent years, word embeddings for k-mers have emerged
in various bioinformatics applications. Here we also adopt word
embeddings to represent circRNA sequence features. Besides, we
notice that the word embedding technology has been applied
more and achieved better performance in protein classification
tasks, perhaps due to the bigger alphabet size and much shorter
length of amino acid sequences compared with DNA/RNA
sequences. To expand the alphabet, Zhang et al. (2019) developed
a codon-based encoding scheme for circRNA sequences. A major
advantage of this scheme lies in the enlarged feature space,
as the classic one-hot has only 4 symbols while the codon-
based encoding has 21 symbols, which are a combination of 3
nucleotides. The genetic codes define not only the alphabet of
the new symbol system, but also the rules of correspondence
between combinations of nucleotides and new symbols. Zhang
et al. (2019) also showed that the three-nucleotide combinations
defined by codons, are superior to random combinations defined
in other encoding systems. Inspired by this idea, we convert RNA
segments into pseudo-peptides and obtain word embeddings
for them (we call them “pseudo-” because them are not real
peptides). Then, we combine the two kinds of embeddings to
generate the input features of our model. We call the new feature
extraction method as double embeddings.

For a circRNA fragment of length k, there are (k − 2)
consecutive codons, where the codons are translated in an
overlapping manner to retain more local context information.
Then we perform pre-training of the word embeddings for k-
mer RNA segments and (k − 2)-mer peptides, respectively.
Since circRNA sequences are very long, to reduce the length
of sentences, we need to set a large k, and long fragments also
containmore local sequence information. However, training long
words will require intensive computation resource. As a tradeoff,
we set k to 7. We treat the segmented k-mers as words and
adopt the GloVe algorithm to train their embeddings. Like NLP
applications, to produce good embedding vector for words, a
large corpus of text is required. Here we adopt the whole human
genome as the corpus for RNA sequences (we replace “T” with
“U” to convert DNAs to RNAs) and UniRef50 (https://www.
uniprot.org/help/uniref) as the corpus for amino acid sequences.
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FIGURE 1 | Model architecture of DeCban. The network consists of three convolutional layers and three branches (shown in green, orange, and red, respectively). An

attention layer (shown in light blue) is used to integrate the outputs of the three branches. Then, the feature embeddings learned by the three layers are concatenated

and fed to a fully connected layer to yield the final output.

FIGURE 2 | An example of double embeddings. An RNA sequence is

segmented into 7-mers, and each 7-mer is converted into an embedding

vector; meanwhile, the 7-mer is mapped to a pseudo-peptide, which is also

converted into an embedding vector. The two embedding vectors are

concatenated as a whole input.

Finally, we construct the input matrix by using pre-trained
word embeddings. Specifically, for each 7-mer fragment of a
circRNA sequence, we concatenate the RNA embedding and
the corresponding pseudo-peptide embedding. For example, as
shown in Figure 2, the first 7-mer “CACUAUA” contains the
codons CAC, ACU, CUA, UAU, and AUA, which encode the
amino acids H, T, L, Y, and I, respectively. Then, the embedding
vectors of “CACUAUA” and “HTLYI” are concatenated to
represent the feature vector of “CACUAUA.”

Formally, for a given circRNA, let its length be L, which is
divided intom segments (m =

⌊

L/k
⌋

}). Let the RNA and peptide
embedding vectors for wi are Ri and Pi, whose dimensions are
p and q, respectively. Then the double embedding for wi is
defined as,

Di = Ri +©Pi, i ∈ {1, 2, · · · ,m}, (1)

where +© denotes the concatenation operation. Then the
circRNA is represented by a matrix of size (p + q) × m, i.e.,
[D1,D2, · · · ,Dm].

2.2.2. Cross-Branch Attention Network
As shown in Figure 1, the network has multiple branches, which
have the same number of convolutional layers but vary in
convolution kernel size. Thus, the branches can extract features
at different granularities.

Besides, at the same layer of all branches, we introduce the
self-attention mechanism. As the length of the input sequences
varies greatly, the best features extracted from different sequences
may come from different branches. The self-attention module
enables the network to assign weights to the branches and obtain
weighted average features. We introduce such modules in each
layer to extract features of different abstract levels. Therefore, we
name the model cross-branch attention network.

Formally, let the input of the network be X, and the first layer
outputs of the three branches be X1

1 ,X
1
2 , and X1

3 , respectively,
which can be expressed as,

X1
j = f (W1

j ∗ X + b1j ), j ∈ {1, 2, 3}. (2)

Similarly, for each subsequent layer i, the outputs Xi
j are

computed as,

Xi
j = f (Wi−1

j ∗ Xi−1
j + bij), i ∈ {2, 3}, j ∈ {1, 2, 3}. (3)

The Xi
js are further processed via a maximum pooling

operation, i.e.,

Y i
j = h(Xi

j), (4)
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where h(·) is the max-pooling function. Then, the self-attention
module works on each layer to integrate the outputs of
three branches,

Y i
attn(Wa,Y

i
1 : 3) = SoftMax(g(Wa ∗ (Y

i
1 : 3)

T)) ∗ Y i
1 : 3, (5)

where g(·) denotes the activation function, and Y i
attn is the output

yielded by the attention module for the i-th layer. The outputs of
the three layers are combined as yout ,

Yout = concat(Y1
attn,Y

2
attn,Y

3
attn). (6)

Finally, the output O of the network is obtained through a
FC layer,

O = SoftMax(g(Wfc ∗ Yout + bfc)). (7)

3. EXPERIMENTAL RESULTS

3.1. Experimental Settings
The DeCban model has three branches, and the sizes of their
convolution kernels are 3, 5, 7, respectively. Each branch
has three convolutional layers and each layer has 100 filters.
The initial parameters of each attention module are randomly
generated with normal distribution. We use Adam optimizer
with learning rate of 0.001 to optimize the model. The number
of early stopping rounds is set to 10, and the training-to-test ratio
is 7:3.

3.2. Baseline Methods
To assess the performance of DeCban, we compare it with not
only the existing predictor for RNA-protein interactions but also
mainstream deep neural networks, including a recent method
called CRIP (Zhang et al., 2019), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs). Note that
CRIP performs prediction on short fragments (i.e., 101-nt), thus
for a full-length RNA sequence, we first divide it into fragments
and use CRIP to predict for each fragment, and then merge the
results to get the prediction for the whole sequence. The other
baseline models fall into five groups. Each group contains three
methods with the same backbone model but different feature
representations, namely RNA embeddings, peptide embeddings,
and double embeddings. In addition, the performance of DeCban
working with RNAor peptide embeddings alone is evaluated. The
specification of baseline models is as follows.

• Group 1—LSTM: a vanilla long short-term memory network
(Hochreiter and Schmidhuber, 1997).

• Group 2—BiLSTM with attention: a bidirectional LSTM with
attention mechanism (Zhou et al., 2016)1.

• Group 3—TextCNN: a TextCNN (Kim, 2014) model.
• Group 4—ResNet18 base: a basic ResNet18 model

(He et al., 2016).
• Group 5—ResNet18 small: a simplified ResNet18 model,

which has the same architecture as ResNet18 but fewer
convolutional kernels on each layer.

1An advanced model structure based on LSTM, which has achieved state of art

results on multiple NLP tasks.

FIGURE 3 | The ROC curves obtained by DeCban for 37 circRNA data sets.

• CRIP: a CNN-RNN hybrid model for the prediction of RBP-
bindings sites on RNAs (Zhang et al., 2019).

3.3. Experimental Results and Analysis
For a comprehensive comparison, we consider not only the
prediction accuracy but also computational efficiency. The
accuracy is evaluated by the common metrics of machine
learning models, F1 and AUC score (Area under the ROC
Curve). The efficiency is assessed by the number of parameters
and speedup.

First, we compare the AUC scores of DeCban and CRIP on
all 37 data sets. The ROC curves are shown in Figures 3, 4,
respectively. The AUC scores range from 0.819 to 0.970, and the
average AUC is 0.905. The lowest, highest, and average AUCs
of these two methods are 0.819 vs. 0.734, 0.970 vs. 0.917, and
0.905 vs. 0.821, respectively. DeCban has an obvious advantage
over CRIP.

Second, we compare the F1 scores for all baseline models.
Table 2 shows the average F1, number of parameters and
speedup. As can be seen, DeCban achieves the highest average F1
of 0.841, and the second best model is BiLSTM with attention,
whose average F1 is 0.827. The detailed scores for all 37 data
sets are listed in Supplementary Table 1. DeCban obtains the
highest F1 scores on all of the datasets. Meanwhile, DeCban
has a lightweight architecture. Compared with the second best
model BiLSTM, DeCban has a significant reduction on model
parameters. The detailed comparison results are discussed in
sections 3.3.1–3.3.5.

3.3.1. Comparison of the Sequence Encoding

Methods
From Table 2, it can be observed that double embeddings can
improve the performance of both baseline models and DeCban.
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FIGURE 4 | The ROC curves obtained by CRIP for 37 circRNA data sets.

Compared to original RNA embeddings, double embeddings
increase F1 by around 1%. In the meantime, using double
embeddings do not significantly increase the complexity of the
model. The total number of parameters of DeCban using double
embeddings has the same order of magnitude as that of the
model with RNA embeddings or amino acid embeddings. Taking
ResNet-18-base as an example, the number of parameters is
increased by <1.5%, while the average F1 on 37 data sets is
increased by nearly 1 percentage.

The results suggest that the combination of RNA information
and pseudo-peptide information can improve the data
representation ability, although the “peptides” are not biological
meaningful. A major reason for the performance improvement is
the enlarged feature space. Moreover, the new encoding method
traverses the RNA k-mers sequentially in an overlapping manner,
thus retaining some local context information, which may be
helpful for capturing the dependency relationship of nucleotides.

In addition, we replace the double embedding encoding with
the traditional one-hot encoding for comparison. The average F1
on 37 data sets is 0.822, and the training speed is significantly
slower than double embedding. This result shows the advantages
of double embedding over traditional one-hot encoding.

3.3.2. Comparison of Model Architectures
As DeCban is a convolutional neural network, we compare it
with the state-of-the-art CNN model, ResNet-18. The number
of layers and parameters of ResNet is much larger than that
of DeCban. Specifically, the parameter amount of ResNet-
18-base is 28 times of DeCban, while the F1 score is 2.5%
lower than DeCban. Considering that ResNet might overfit the
data due to the large model size, we implement a lightweight
version of ResNet-18, namely the ResNet-18-small, by reducing
the number of convolutional kernels for each layer, then the

TABLE 2 | Experimental results of different modelsa.

Model Paramb Avg Fa Speedupc

LSTM-base

RNA 118 K 0.685 1.8x

Peptide 132 K 0.685 2.0x

Double 183 K 0.692 3.3x

BiLSTM-attention

RNA 647 K 0.817 6.4x

Peptide 676 K 0.810 6.4x

Double 778 K 0.827 8.2x

CNN-base

RNA 26 K 0.796 1.0x

Peptide 30 K 0.793 1.2x

Double 46 K 0.806 2.3x

ResNet-18-base

RNA 3,914 K 0.811 2.7x

Peptide 3,927 K 0.803 2.6x

Double 3,972 K 0.814 3.7x

ResNet-18-small

RNA 254 K 0.770 1.7x

Peptide 255 K 0.761 1.8x

Double 261 K 0.773 2.7x

CRIP – 900 K 0.766 5.7x

DeCban

One-hot 33 K 0.822 9.6x

RNA 79 K 0.833 1.8x

Peptide 93 K 0.826 2.0x

Double 141 K 0.841 3.2x

aRNA, Peptide, Double denote the RNA embedding, Peptide embedding, and double

embedding, respectively.
bParam denotes the number of parameters in the model.
cSpeedup measures the relative performance of two methods processing the same

problem in terms of speed. We use CNN-base with RNA embedding as the basic

reference, i.e., its speedup is 1.0x.

amount of parameters is at the same order of magnitude
as DeCban. However, after the simplification, the prediction
accuracy drops significantly. Comparing with ResNet-18-base,
the F1 scores of three embeddingmethods are decreased by 0.038,
0.043, and 0.044, respectively. By contrast, benefitting from the
multi-branch and self-attention mechanism, DeCban can extract
features of different scales, and achieve better accuracy with
much higher efficiency. Even using only RNA word embeddings,
DeCban outperforms all baseline models, demonstrating the
superiority of the new model architecture.

Besides CNN models, we also consider the widely-used RNN
model, LSTM. Although LSTM was designed to address the
gradient vanishing issue and long-term dependencies, it is still
difficult for LSTM to handle very long sequences. It can be seen
from the experimental results that the performance of vanilla
LSTM is poor. When using the double embeddings, the average
F1 on 37 datasets is 0.692, which is much lower than that of
basic CNN (0.806). The gap of performance between these two
kinds of models may be attributed to the large difference in the
sequence length.

As the input sequences vary greatly in length, a large number
of meaningless zeros are filled at the end of short sequences.

Frontiers in Genetics | www.frontiersin.org 6 January 2021 | Volume 11 | Article 63286165

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yuan and Yang DeCban

The padding operation affects the training of LSTM, while CNN
has more flexibility in extracting features from sequences with
varying length. In this case, attention mechanism becomes a
necessary part to enable the model focus on informative regions,
thus the BiLSTMmodel with attention improves the performance
of LSTM significantly, even better than basic CNNs and ResNets.

As for the training speed, RNN models generally need longer
training time compared with CNN-based models. BiLSTM-
attention becomes the most time-consuming model. By contrast,
although ResNet-18 has the most parameters, it takes only
less than half of the training time of BiLSTM-attention. Thus,
the CNN-based DeCban model also achieves high efficiency.
Taking the DeCban using double embedding as an example, the
parameters are only one fifth of those of BiLSTM-attention, but
the average F1 value is increased by 1.4%, which shows that
the proposed network can achieve better performance with less
computing resources.

3.4. Comparison With the Latest Models
In addition to the baseline models with common model
architectures, we compare DeCban with the existing predictors
for RBP-RNA interactions. Currently, the predictors for
circRNAs are very few. CRIP (Zhang et al., 2019) and PASSION
(Jia et al., 2020) are two recently developed models. We compare
them with DeCban in terms of feature extraction, model
architecture, and input, as described in the following.

CRIP also uses the 3-nucleotide codons to convert RNAs
into pseudo-amino acids, i.e., the stacked-codon encoding
scheme. However, CRIP presents the pseudo-amino acids as
one-hot vectors, while DeCban uses word embeddings for both
original RNAs and the converted pseudo-amino acids. PASSION
incorporates some traditional statistical features in addition to
CRIP’s features. Therefore, a major difference between DeCban
and the previous studies is using continuous dense feature
encoding instead of sparse discrete features. Besides, the double
embeddings contain the information of both RNA segments
and pseudo-peptides, so as to strengthen the representation of
raw sequences.

As for the model architecture, CRIP adopts a CNN-LSTM
hybrid network, and PASSION proposes an ensemble classifier,
which combines the hybrid network with an artificial neural
network (consisting of fully-connected layers). DeCban is a
CNN-based multi-branch attention network. As shown in
Table 2, the parameter quantity of CRIP is 900 K, and PASSION
has more parameters due to the ensemble nature; while DeCban
with double embedding uses only one seventh of the parameters
of CRIP.

Finally, both CRIP and PASSION perform prediction on short
fragments, i.e., 101-nt segments. The incomplete sequences may
lose some characteristics of original RNA molecules and lead
to more false positive predictions, as mentioned in Zhang et al.
(2019), while DeCban handles full-length sequences. Figure 4
shows the ROC curve of CRIP. The average AUC value of the
CRIP model on 37 data sets is 0.821, while DeCban is 0.905.
DeCban gets significantly higher AUC value than that of CRIP
on nearly all datasets. And, according to the results reported in
Jia et al. (2020), PASSION’s AUC is about 0.01 higher than that
of CRIP. As both these two methods’ inputs are short fragments

with balanced positive-to-negative ratio, they may have close
performance when handling full-length circRNAs.

4. DISCUSSION

Circular RNAs are a special kind of non-coding RNAs, which play
an important role in gene regulation and disease development.
Studying the interactions between circRNAs and RBPs can reveal
the functions of circRNAs. However, the prediction of binding
sites on circRNAs faces many challenges.

First, the length range of circRNA sequences is very large,
from tens to over 100,000 nt, which adds great difficulty to the
learning models. Thus, it is important to design a network to
adapt to the large variance of input sequences. The multi-branch
design of DeCban aims to extract features from different ranges
of sequence regions, as the branches differ in kernel sizes, leading
to different receptive fields. For instance, assume that step length
is 3, with 0 padding and 0 dilation. When the convolution kernel
size is 3, the receptive field sizes of the features output by the first
and second layers are 3 and 5, respectively.When the convolution
kernel size is 5, the receptive field sizes of the features output by
the first and second layers are 5 and 9. Thus, different convolution
kernel sizes can extract features of different scales.

The second challenge is that RBP-binding sites are extremely
sparsely located in the whole RNA sequences, i.e., the number
of binding sites are few and the binding regions are very short
compared to full-length sequences. Thus, this is a severely
imbalanced learning task, as most of the regions have no binding
affinity. The attention mechanism in DeCban can alleviate this
problem to a certain extent, which enables the model focus on
key regions in long sequences.

The third challenge arises from the data side. Compared
with linear RNAs, domain knowledge or information sources
other than sequences are lacked. By utilizing the codon-based
mapping between RNA and peptides, and performing large-scale
pre-training of word embeddings for both RNA segments and
peptides, we propose a new feature representation method for
circRNAs, called double embeddings. Experiments show that
this method effectively improves the representation ability for
raw sequences.

Compared with the existing circRNA-RBP prediction
methods, DeCban has the following advantages:

(1) The prediction can be performed on full-length circRNA
sequences instead of short segments.

(2) The model is highly efficient, whose training has a low cost
on computation resources.

(3) The high prediction accuracy makes it a useful tool for
studying circRNA-RBP interactions.

5. CONCLUSION

In this study, we propose a method called DeCban to predict
the binding relationship between RNA-binding-proteins and
circRNAs. Different from the existing tools which can only
handle short segments of circRNAs, DeCban is able to predict
whether a binding site is present on full-length circRNAs. In
order to solve the problem of large length span and sparse
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distribution of binding sites, we design a multi-branch and
multi-layer convolutional neural network with an attention
module. Moreover, to enhance the input data representation,
we propose the double embedding encoding scheme, which
is superior to the traditional single RNA embedding due to
the introduction of amino-acid-level sequence information. We
perform experiments on 37 data sets, corresponding to 37
RBPs. The experimental results show that our method achieves
the best results compared with a variety of advanced deep
learning structures. DeCban will be a useful tool for studying the
interactions between RBP and circRNA.
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Protein–protein interaction (PPI) is the basis of the whole molecular mechanisms of living 
cells. Although traditional experiments are able to detect PPIs accurately, they often encounter 
high cost and require more time. As a result, computational methods have been used to 
predict PPIs to avoid these problems. Graph structure, as the important and pervasive data 
carriers, is considered as the most suitable structure to present biomedical entities and 
relationships. Although graph embedding is the most popular approach for graph representation 
learning, it usually suffers from high computational and space cost, especially in large-scale 
graphs. Therefore, developing a framework, which can accelerate graph embedding and 
improve the accuracy of embedding results, is important to large-scale PPIs prediction. In 
this paper, we propose a multi-level model LPPI to improve both the quality and speed of 
large-scale PPIs prediction. Firstly, protein basic information is collected as its attribute, 
including positional gene sets, motif gene sets, and immunological signatures. Secondly, 
we construct a weighted graph by using protein attributes to calculate node similarity. Then 
GraphZoom is used to accelerate the embedding process by reducing the size of the weighted 
graph. Next, graph embedding methods are used to learn graph topology features from the 
reconstructed graph. Finally, the linear Logistic Regression (LR) model is used to predict the 
probability of interactions of two proteins. LPPI achieved a high accuracy of 0.99997 and 
0.9979 on the PPI network dataset and GraphSAGE-PPI dataset, respectively. Our further 
results show that the LPPI is promising for large-scale PPI prediction in both accuracy and 
efficiency, which is beneficial to other large-scale biomedical molecules interactions detection.

Keywords: large-scale, protein-protein interaction, GraphZoom, weighted graph, graph embedding

INTRODUCTION

Over the past years, with the rapid development of biomedical researches as well as computer 
technologies, an increasing number of biomedical data, such as biomedical entities and their 
relationships, have been extracted from unconstructed data (Su et  al., 2018). As an important 
and pervasive data carrier, a graph is considered the most suitable structure to present biomedical 

69

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.635451&domain=pdf&date_stamp=2021--26
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.635451
https://creativecommons.org/licenses/by/4.0/
mailto:zhuhongyou@ms.xjb.ac.cn
https://doi.org/10.3389/fgene.2021.635451
https://www.frontiersin.org/articles/10.3389/fgene.2021.635451/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.635451/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.635451/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.635451/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.635451/full


Su et al. Efficient Model for PPI Predicting

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 12 | Article 635451

entities and their relationships. Both the availability of biomedical 
data and the researches of graphs have greatly facilitated 
biomedical graph studies, such as graph embedding, node 
properties prediction, and link prediction.

As the material basis of life, proteins are involved in every 
cell and almost every primary cellular process (Gavin et  al., 
2002). Analyzing protein–protein interactions (PPIs) can provide 
valuable insights into the molecular mechanisms underlying 
a living cell (Ma et  al., 2011). Due to the rapid research in 
high-throughput technologies and biomedical studies, millions 
of PPI data have been collected from various experiments. 
Many databases have been constructed accordingly. However, 
too much data brings a few problems, such as high false-
positive rates, low coverage, and high cost. Therefore, it is 
very meaningful to propose a high-efficiency computing method 
to identify PPIs.

Much work has been done in predicting PPIs. According 
to the method, it generally can be  categorized into two 
groups based on either (1) feature extraction or (2) based 
on machine learning and deep learning. For the first group, 
they concentrate on the feature design. Features are extracted 
from kinds of sources, including protein sequence, functional 
domain information, physicochemical properties, and the 
fusion of feature sources. For example, Shen et  al. (2007) 
predicted PPIs using conjoint-triad feature extracted from 
protein amino acids to represent protein. His work achieved 
a promising accuracy of 83.90% when applied to a 16,000 
diverse PPI pairs dataset. On the basis of a protein sequence, 
functional domain information was necessary for the 
understanding of biological processes. Hence, Mudita and 
Resat (2007) proposed a method based on quantitative score 
measuring domain-domain interactions derived from available 
PPI database, then used the obtained score to predict 
interaction probability between two proteins. Chen et  al. 
(2019) designed three types of protein-pair features based 
on physicochemical properties of amino acids, gene ontology 
annotations, and interaction network topologies. Then they 
introduced an ensemble learning approach for PPI prediction 
integrating three kinds of features. As for the second group, 
they concentrate on the design of classifier or neural network. 
Both machine learning methods and deep learning methods 
are based on statistics theories. Machine learning methods 
utilize classifiers to predict PPIs, such as naïve Bayes (NB), 
logistic regression (LR), random forest (RF), and support 
vector machine (SVM). Methods based on deep learning 
tend to apply neural networks to address PPI prediction, 
such as convolution neural network (CNN), recurrent neural 
network (RNN), and long short-term memory (LSTM). For 
instance, Romero-Molina et al. (2019) predicted the protein-
protein interactions using SVM based on the sequence of 
proteins. Wang et  al. (2017a,b,c) explored the protein 
evolutionary features from the angle of the image processing 
techniques in order to open a new way of researching 
protein sequences. Sequence-based approaches typically 
represent protein sequence as a vector using feature 
representation method, then the vector as an input of 
classification algorithm. All of these methods have achieved 

a promising result. However,  they tend to concentrate on 
protein feature extraction and the design of neural networks 
and not the complex relationships that the proteins have, 
such as graph topology. More specifically, proteins collaborate 
and interact with each other to perform biological functions, 
leading to many protein interactions, which can be integrated 
and modeled as a graph/network structure. Therefore, it is 
important to detecting PPIs from the perspective of 
graph structure.

Analyzing and modeling the biomedical data with graph 
structure rely on a thorough understanding of graph topology. 
Numerous network-based learning methods have been developed 
to explore the interactions between proteins. They are classified 
into three categories, based on (1) network diffusion, (2) 
handcrafted graph features, and (3) graph representation 
learning. For the first group, the diffusion methods employ 
random walk techniques for influence propagation in different 
networks, such as integrating PPI networks into disease gene 
prediction (Luo et  al., 2019). For the second group, various 
features for proteins are extracted and then fed into traditional 
machine learning methods. Other tasks also benefit from 
various features, especially when processing graph structure 
data. For example, graph clustering task (He et  al., 2019a,b) 
utilize these multiview features to detect biological module. 
Graph clustering is also conducive to graph representation 
learning tasks because such methods are able to decrease the 
graph scale, and they can then improve the efficiency of the 
representation learning model. As for the third group, instead 
of a handcrafted feature, graph representation learning methods 
learn features automatically. This kind of method aims to 
learn a low-dimension representation for each node. 
Representative methods include Matrix Factorization-based 
model, Random Walk-based model, and Neural Network-based 
model. MF-based model (Belkin and Niyogi, 2003) learns 
graph representation by factorizing the matrix of input data 
into lower dimensional matrices. RW-based model (Perozzi 
et  al., 2014; Grover and Leskovec, 2016) learns representation 
by generating a sequence of nodes randomly. The NN-based 
model integrates neural networks into representation learning. 
For example, (Kipf and Welling, 2016) proposed that graph 
convolutional networks (GCN) are perhaps the most 
representative graph neural network models, having a strong 
ability in the task of semi-supervised classification. The key 
issue in GCN is about the filter design in fact since it has 
a huge influence on the efficiency of model. Additionally, 
with the widely used of attention mechanism, attention-based 
graph neural network born, namely graph attention networks 
(GATs; Velikovi et  al., 2017). Compared with GCN, GATs 
are more flexible and efficient since less parameters are used 
and can be  parallelized. Although graph embedding is the 
most popular among these three methods, it usually suffers 
from high computational and space cost, owing to high 
dimensionality, sparsity of the network, and rapid expansion 
of the network. Therefore, developing an efficient framework, 
which can accelerate graph embedding and improve the 
embedding results accuracy, is important to both PPI and 
other molecular interactions.
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In this paper, we  proposed a multi-level model LPPI to 
improve both the quality and speed of large-scale PPIs prediction. 
LPPI consists four parts: (i) data collecting, (ii) graph embedding, 
(iii) embedding enhancement, and (iv) results prediction. Data 
collecting contains attribute feature extracting. We  adopt the 
fundamental information as the attribute feature, such as 
positional gene sets, motif gene sets, and immunological 
signatures. In addition, the protein attribute is used to reconstruct 
a weighted graph by calculating node similarity. Then, graph 
embedding is used to learn the topology feature for each node. 
During this process, GraphZoom (Deng et al., 2019) is applied 
to accelerate the embedding process by reducing the size of 
the graph. After enhancing embedding, the classifier is used 
to predict interactions between protein pairs.

Our contributions are 2-fold. Firstly, LPPI integrates protein 
attribute into graph embedding task. More than that, LPPI adds 
weight to the link by calculating node similarity adopting the 
protein attribute. In this way, multi-view information is used 
when learning node representation, which is conducive to the 
improvement of accuracy. Secondly, we  reconstruct the graph 
by using the GraphZoom algorithm in order to reduce the size 
of the graph. In this way, we  can accelerate the efficiency of 
any network embedding algorithms. By combining the above 
two aspects, LPPI can save execution time without losing accuracy. 
Experiments on PPI network dataset and GraphSAGE-PPI dataset 
demonstrate that LPPI compares favorably both in classification 
accuracy and efficiency (measured in CPU time) against baseline 
models for large-scale PPI prediction.

MATERIALS AND METHODS

Benchmark Dataset
In order to validate the efficiency of our model, we  collected two 
datasets with different sizes, which are the PPI network dataset and 
the GraphSAGE-PPI dataset. The statistics of the datasets are in Table 1 
in which the Density is defined as

 
           

2

2

*#
#

Links
Nodes

The positive PPI network dataset was downloaded from 
Stanford Large Network Dataset Collection (PPI Network, May 
2017 version). This version of the PPI Network contains 818,716 
protein-protein pairs of experimentally verified PPIs from 23,997 
different human proteins. After eliminating self-interactions 
and duplicate interactions, we  finally obtain 663,954 unique 
positive protein-protein pairs. The dataset is available at http://
snap.stanford.edu/graphsage/ppi.zip .

The positive GraphSAGE-PPI (Sep  2018 version) dataset 
was collected following (Hamilton et  al., 2017), which was 

also constructed by Stanford University. This version data set 
was used as the benchmark to train GraphSAGE. The data 
resource was the same as the PPI network. However, differently 
from PPI network, GraphSAGE-PPI contains fewer nodes and 
links, which are numbered at 6,370 and 186,421, respectively. 
The dataset is available at http://github.com/williamleif/
GraphSAGE/example_data.

One of the common ways to construct the negative data 
set is to consider two proteins with different cellular 
compartments nor interacting. In this study, we  adopted the 
same strategy to construct a negative dataset for two benchmark 
datasets. We followed this idea and constructed each benchmark 
dataset according to the following criteria: (1) the number of 
negative samples was equal to that in the positive dataset; (2) 
we  constructed a complementary graph; (3) we  removed the 
interactions from the same cellular compartments; and (4) 
we  randomly selected noninteracting protein pairs from the 
complementary graph. After that, a negative dataset had been 
constructed, which was trained with a positive dataset together. 
Five-fold cross-validation was adopted when training the model, 
and, therefore, a negative dataset was constructed at each fold.

Protein Attribute Extraction
In order to represent protein nodes, we  extracted the protein 
attribute features following (Hamilton et  al., 2017). Using 
positional gene sets, motif gene sets, and immunological 
signatures as features, collected from the Molecular Signatures 
Database (Subramanian et  al., 2005). Positional gene sets 
corresponding to each human chromosome and each cytogenetic 
band that has at least one gene. There are 326 positional gene 
sets in total. As for the motif gene sets, they represent potential 
targets of regulation by transcription factors or microRNAs. 
The sets consist of genes grouped by short sequence motifs 
they share in their non-protein coding regions. Immunological 
signatures represent cell states and perturbations within the 
immune system. The signatures are generated by manual curation 
of published studies in human and mouse immunology. Finally, 
the protein attribute feature is obtained.

Graph Embedding
Graph embedding methods aim to automatically learn a 
low-dimensional feature representation for each node in the 
graph (Wang et  al., 2016). Traditionally, a low-dimensional 
feature is considered as the structural information of the graph. 
Therefore, it can be  used in various downstream tasks. Since 
the concept of graph embedding proposed, graph embedding 
methods can be  categorized into three groups: MF-based, 
RW-based, and NN-based (Su et  al., 2018; Yue et  al., 2019).

For the sake of efficiency improvement, we  adapted the 
RW-based method, which was inspired by the word2vec model 
(Mikolov et  al., 2013). The RW-based method tries to learn 
node representation by generating node sequence through 
random walk in graphs. In this way, topological information 
can be  preserved into a low-dimensional vector. As the two 
representative methods based on random walk, DeepWalk (DW; 
Perozzi et al., 2014) and Node2vec (Grover and Leskovec, 2016) 

TABLE 1 | Statistics of the datasets.

Dataset #Nodes #Links Density

PPI network 23,997 663,954 0.23%
GraphSAGE-PPI 6,370 186,421 0.92%

71

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://snap.stanford.edu/graphsage/ppi.zip
http://snap.stanford.edu/graphsage/ppi.zip
http://github.com/williamleif/GraphSAGE/example_data
http://github.com/williamleif/GraphSAGE/example_data


Su et al. Efficient Model for PPI Predicting

Frontiers in Genetics | www.frontiersin.org 4 February 2021 | Volume 12 | Article 635451

were applied to learn latent features. DW considers the paths 
as sentences and implements Skip-Gram to learn the embedding 
of each node. Specifically, the DeepWalk algorithm first generates 
a random walk path P P P Pv v v v

n
i i i i

1 2 3
, , , ,¼  by taking vi as the root 

node, the symbol n represents the length of random walk path. 
Therefore, the aim is to predict the next node according 
previous sequence:

 Pr , , , , )= ¼ -
( |P P P P Pv
m

v v v v
m

i i i i i

1 2 3 1

However, it is difficult to calculate an order sequence in 
the experiment. In order to solve this problem, Skip-Gram is 
used to learn the random walk path. This algorithm does not 
take the sequence order into consideration but sets a sliding 
window of length n, using target words to predict context. 
Therefore, the objective function of optimization is as follows:

 min logPr
p v

m
v
m n

v
m

v
m n

v
m

vi
m i i i i i

p p p p p- ¼ ¼{ }( )- - + +1 1
, , , , , |

Compared to DeepWalk, Node2vec introduces the probability 
of controlling the walk direction. Therefore, the objective 
function of optimization is as follows:

 max logPr
f u V

sN U f u
Î
å ( ) ( )( )|

In this formulation, u  represents the current node and 
N Us ( ) represents the nodes selected by strategy s. In Node2vec, 
it adapts the breadth-first search (BFS) and the depth-first 
search (DFS) into the generation process of the random walk 
sequence by introducing return hyperparameter p and ahead 
hyperparameter q to control the probability of a walk. The 

probability a qm,( ) from current node m to next node q  is 
defined as follows:

 a q
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Breadth-first search focuses on neighboring nodes and 
characterizes a relatively local network representation. DFS 
reflects the homogeneity between nodes at a higher level. 
Specifically, BFS explores the structural properties of the graph, 
while DFS explores the similarity in content or similarity 
between adjacent nodes.

GraphZoom
Owing to the scalable of PPIs data, it is essential to accelerate 
the graph embedding process. In this section, GraphZoom 
(Deng et  al., 2019) is applied to improve the accuracy and 
efficiency of graph embedding. GraphZoom is a multi-level 
framework for improving both the accuracy and scalability of 
unsupervised graph embedding algorithms. There are four 
components in it: (1) graph fusion, (2) spectral graph coarsening, 
(3) graph embedding, and (4) embedding refinement.

For the first step, original graph topology and attribute 
information are combined to construct a weighted graph, which 
has the same number of nodes as the original graph. 
Graph  topology can be  represented by the adjacency 
matrix A Rtopo

N NÎ ´ , and cosine similarity on attribute feature 
is used to calculate edge weight Afeat. Then, the fused graph 
can be  represented by a weighted sum:

 A A Afusion topo feat= + b

The second step is spectral coarsening, which is the core 
part of GraphZoom. In order to improve the embedding speed, 
a fused graph constructed before is coarsened into a much 
smaller graph by merging nodes with high spectral similarities. 
Inspired by signal processing, simple smoothing (low-pass graph 
filtering) function is applied to k random vectors to obtain 
smoothed vectors for k-dimensional graph embedding instead 
of calculating the eigenvectors of the original graph Laplacian. 
Gauss-Seidel iteration method is used to solve k linear equations 
to obtain initial random k-dimensional feature representation. 
x represents a random vector calculated by Gauss-Seidel, which 
is expressed with a linear combination of eigenvectors u  of 
the graph Laplacian. Smoothed vector u  is obtained by applying 
the smoothing function. Then the nodes with a higher spectral 
affinity ap q,  are locally clustered, and a graph with fewer nodes 
(adjacency matrix) is obtained so repeatedly. This method can 
be achieved in linear time. The whole process can be formulated:
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As for the third step, any unsupervised embedding methods 
can be  applied to embed the coarsest graph. The last step 
is embedding refinement. Using Laplace smoothing to map 
the node representation to each node of the original graph, 
then embedding representation of the original graph node 
is obtained. The embedding results can be  calculated 
as follows:
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where A is the adjacency matrix, D is the degree matrix, 

Hii+1 is the graph mapping operator between two coarsening 
levels i and i+1, and s  is a small value to ensure every node 
has its own self-loop.
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RESULTS

Evaluation Criteria
To verifies the proposed method in the experiments, we followed 
the 5-fold cross-validation specification. To evaluate the proposed 
method more fairly, a range of performance evaluation measures 
were computed including accuracy (Acc.), sensitivity (Sen.), 
precision (Pre.), and the Matthews correlation coefficient (MCC), 
which can be  defined respectively:

 Accuracy =
+

+ + +
TN TP

TN TP FN FP

 Sensitivity =
+
TP

TP FN

 Precision =
+
TP

TP FP

 MCC =
´ - ´

+( ) +( ) +( ) +( )
TP TN FP FN

TP FP TP FN TN FP TN FN

where the TN, TP, FN, and FP denotes the number of 
correctly predicted positive and negative samples, wrongly 
predicted positive and negative samples, respectively. 
Furthermore, the Receiver Operating Characteristic (ROC) 
curve, which represents the results of multiple confusion matrices, 
using a false positive rate as its x-axis and true positive rate 
as its y-axis. The area under curve (AUC) of ROC, which 
follows a philosophy of the bigger the better, is also adopted 
to measure the performance of the proposed model.

Model Construction
We implemented our model on two data sets of different sizes. 
In order to maintain unity, we  also integrated DeepWalk and 
Node2vec as the basic embedding methods into the proposed 
model, respectively. As for the hyperparameters in DeepWalk 
and Node2vec, we  used 10 walks with a walk length of 80 

and set the embedding dimension to 128. In addition, Node2vec 
has two parameters, return parameter p and in-out parameter 
q, which control the direction of the next step. We  set them 
to 1.0 and 0.5, respectively. The effectiveness of these parameters 
is verified by other experiments. GraphZoom is used to enhance 
the graph and accelerate the graph embedding process. The 
hyperparameters used in GraphZoom are fusion parameter b  
and coarsening level l . b  controls the proportion of attribute 
feature. Parameter l  is used in the graph reduction process, 
which controls the size of the reconstructed graph. Coarsening 
level l represents the iteration that the original graph is to 
be  reconstructed. With the increase of the coarsening level, 
the scale of the graph is smaller. We  adapted 0.1 and 1  in 
the baseline model, respectively. After obtaining graph embedding 
representation, several classifiers were applied to predict protein 
pairs. It should note that all parameters used in classifiers 
were the default. The model overview is shown in Figure  1.

Performance on Two Large-Scale Datasets
We test the performance of our model on two benchmark 
datasets. To contextualize the empirical results on benchmarks, 
we  construct a baseline model, which integrates DeepWalk 
(Perozzi et  al., 2014) as the graph embedding method and 
LR (Hosmer et al., 2013) as a classifier. Five-fold cross-validation 
is used to test the baseline model. The results are shown in 
Table  2. In addition, we  also compare the CPU time of two 
datasets, which is shown in Figure  2.

Our model achieves a highly predictive performance on 
both two datasets, which average accuracy is 0.99997 and 
0.9979, respectively. Compared with GraphSAGE-PPI data et, 
our model achieves better results on the PPI network dataset, 
which demonstrates that our model has the ability to process 
large-scale dataset precisely. More specifically, the number of 
nodes and links of the PPI network dataset is three times 
that in the GraphSAGE-PPI dataset in fact; however, the time 
cost of two datasets is similar, which further demonstrates 

FIGURE 1 | The overview of the proposed model.
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that our model can process the large-scale dataset efficiently. 
In conclusion, the proposed model has the ability to process 
high-density network both accurately and efficiently.

Comparing LPPI With Baseline Embedding 
Methods
In order to validate that the proposed model accelerates the 
embedding process without losing accuracy, we  compared the 
proposed model with two baseline embedding methods, which 
are also integrated into the proposed model as part of the 
embedding. The results are shown in Table  3 and Figure  3.

According to the results, firstly, the proposed model used 
less CPU time since LPPI had the graph reduction module, 
which can decrease the graph scale. In addition, it can 
be observed that the proposed model achieved higher accuracy 
than the other two baseline models on both the PPI network 

dataset and the GraphSAGE-PPI dataset. This is because LPPI 
contains more detailed information such as node attribute and 
concentrates more on the key part of the graph and eliminates 
noisy information. In conclusion, the proposed model performs 
better than baseline models mainly because (i) LPPI integrates 
node attribute information and node similarity as topology 
information into the model, which increase the accuracy of 
the proposed model, and (ii) LPPI reconstructs graph to reduce 
the graph scale, which is conducive to efficiency on embedding 
and noisy information eliminated.

Analysis on LPPI Kernels
There are two hyperparameters in LPPI model, which are fusion 
parameter b  and coarsening level parameter l . In order to 
study the efficiency and accuracy of LPPI, we  focused on two 
parameters. The results are shown in Table  4 and Figure  4.

FIGURE 2 | Timing experiments of four parts on PPI network dataset and GraphSAGE-PPI dataset.

TABLE 2 | Prediction results for two datasets. DW means Deepwalk, and LR represents Logistic Regression.

Baseline 
model

Fold PPI network GraphSAGE-PPI

Acc. Pre. Sen. MCC AUC Acc. Pre. Sen. MCC AUC

LPPI (GZ-
DW-LR)

0 0.99996 1.0 0.99992 0.99992 0.99996 0.9978 1.0 0.9956 0.9957 0.9978
1 0.99997 1.0 0.99993 0.99993 0.99997 0.9979 1.0 0.9958 0.9958 0.9979
2 0.99995 1.0 0.99991 0.99991 0.99996 0.9981 1.0 0.9961 0.9961 0.9981
3 0.99997 1.0 0.99993 0.99993 0.99997 0.9980 1.0 0.9960 0.9959 0.9980
4 0.99998 1.0 0.99996 0.99996 0.99998 0.9978 1.0 0.9957 0.9956 0.9978

Average 0.99997 1.0 0.99993 0.99993 0.99996 0.9979 1.0 0.9958 0.9958 0.9979

The bold values mean the best results achieved.
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Firstly, we discuss the influence of coarsening level. Coarsening 
level controls the size of the reconstructed graph. Figure  5 
shows that the bigger the coarsening level is, the smaller the 
reconstructed graph is. In our experiment, five different values 
are used. From the results, we  can know that with the increase 
of the coarsening level, the accuracy of the two datasets is 
gradually decreased from 0.99997 to 0.99957 and from 0.9979 
to 0.9858, respectively. Correspondingly, the CPU time is 
dramatically decreased from 8131.417 to 350.093  s and from 
2309.847 to 69.745  s, respectively. When the coarsening level 
is 1, the model achieves the highest accuracy on the PPI network 
dataset, which is 0.99997, but it costs the most CPU time. The 
model with coarsening level 5 is the most efficient model as 
it costs the least CPU time, which is 350.093 s. More importantly, 
though the model using level 5 has the lowest accuracy, its 
accuracy is not much different from the model with level 1. 
As for the GraphSAGE-PPI dataset, LPPI achieves the best 
performance when the level is 2 with an accuracy of 0.9986 

and AUC value of 0.9985. Overall, when the number of coarsening 
level is less than 5, the accuracy of LPPI is always higher than 
that of DeepWalk and LPPI improves the efficiency of DeepWalk 
by 17.8 times and 26.2 times on two datasets, respectively. 
Hence, experiment results prove that our model can accelerate 
the embedding process without losing accuracy.

Next, we  discuss the fusion parameter b , which decides 
the proportion of attribute feature. In this part, we  also try 
five different values for parameter b . According to our experiment 
results (Figures  4C,D), this parameter has a positive influence 
on the final result. With the increase of b , the accuracy is 
increase gradually. For the PPI network, the highest accuracy 
is 0.99997, which is achieved by 0.1, 0.8, and 1. As for the 
GraphSAGE-PPI, the highest accuracy is obtained when b  is 
0.8 and 1. This result indicates that combing the attribute feature 
with network embedding can improve the predictive performance. 
In addition, CPU time has not been affected by parameter b  
as this parameter has no influence on the scale of the reconstructed 

TABLE 3 | Summary of results in terms of mean classification accuracy (Acc.), AUC, and CPU time for different combinations in LPPI on the PPI network dataset and 
GraphSAGE-PPI dataset.

Method PPI network GraphSAGE-PPI

Acc. AUC Time(s) Acc. AUC Time(s)

LPPI (GZ-DW-LR) 0.99997 0.99996 8131.417 0.9979 0.9979 2309.847
LPPI (GZ-NV-LR) 0.99993 0.99997 5001.137 0.9984 0.9983 1232.644
DeepWalk 0.99975 0.99990 12405.259 0.9544 0.9995 3633.228
Node2vec 0.99992 0.99995 7947.544 0.9879 0.9999 1580.749

The bold values mean the best results achieved.

FIGURE 3 | Timing experiments of different embedding methods on PPI network dataset and GraphSAGE-PPI dataset.
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graph. Even though, CPU time cost by LPPI with various fusion 
parameter is still less than that of DeepWalk.

In this part, we  discuss two parameters used in our 
model. Parameter coarsening level l  can accelerate the 

embedding process, parameter b  can improve the accuracy 
value. These two parameters further demonstrate that our 
model has the ability to balance the performance of accuracy 
and efficiency.

A B

C D

FIGURE 4 | Accuracy and timing experiments on two benchmark datasets. (A) Model performance with respect to the coarsening level on PPI network dataset. 
(B) Model performance with respect to the coarsening level on the GraphSAGE-PPI dataset. (C) Model performance about fusion parameter on PPI network 
dataset. (D) Model performance about fusion parameter on the GraphSAGE-PPI dataset.

TABLE 4 | Comparisons of different kernel parameters in GraphZoom in classification on the PPI network dataset and GraphSAGE-PPI dataset.

Method PPI network GraphSAGE-PPI

Acc. AUC Time(s) Acc. AUC Time(s)

DeepWalk 0.99975 0.99990 12405.259 0.9544 0.9995 3633.228
LPPI(DW-LR,l = 1) 0.99997 0.99996 8131.417 (×1.5) 0.9979 0.9979 2309.847 (×1.6)
LPPI(DW-LR,l = 2) 0.99996 0.99996 4236.696 (×2.8) 0.9986 0.9985 1062.251 (×3.4)
LPPI(DW-LR,l = 3) 0.99996 0.99996 1810.727 (×6.9) 0.9971 0.9971 418.485 (×8.7)
LPPI(DW-LR,l = 4) 0.99987 0.99985 696.115 (×17.8) 0.9931 0.9931 138.625 (×26.2)
LPPI(DW-LR,l = 5) 0.99957 0.99957 350.093 (×35.4) 0.9858 0.9856 69.745 (×52.1)
LPPI(DW-LR,β = 0.1) 0.99997 0.99996 8131.417 (×1.5) 0.9979 0.9979 2309.847 (×1.6)
LPPI(DW-LR,β = 0.2) 0.99996 0.99980 8667.839 (×1.4) 0.9979 0.9979 2396.033 (×1.5)
LPPI(DW-LR,β = 0.4) 0.99997 0.99996 8606.011 (×1.4) 0.9980 0.9978 2318.294 (×1.6)
LPPI(DW-LR,β = 0.8) 0.99997 0.99997 8669.954 (×1.4) 0.9982 0.9982 2342.992 (×1.6)
LPPI(DW-LR,β = 1.0) 0.99997 0.99995 8836.558 (×1.4) 0.9982 0.9981 2384.745 (×1.5)

The bold values mean the best results achieved.

76

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Su et al. Efficient Model for PPI Predicting

Frontiers in Genetics | www.frontiersin.org 9 February 2021 | Volume 12 | Article 635451

Comparison of Different Classification 
Algorithms
After obtaining embedding features, classifiers are used to 
classify the protein pairs. In this section, we  compare the 
results of different classifiers. Base on the baseline model, 
we  compare three types of classifiers, including LR, RF, and 
NB (Rish, 2001; Liaw and Wiener, 2002; Hosmer et  al., 2013) 
and the predictive performance is shown in Table  5. It should 
note that default parameters are used in different classifiers.

In our experiment, we  test classifiers based on LPPI (GZ-DW). 
Among these three classifiers, LR is a linear model, RF belongs to 
an ensemble-based model, and NB is a generation model. From 
the results, it can be  found that though RF achieves the best 
performances on both accuracy and AUC value for each dataset, 
it costs the longest time, which is not suitable for the sake of 
efficiency. On the other hand, LR has not only a promising performance 
with high accuracy and the AUC, but the least CPU time. As a 
result, LR is selected as the final classifier integrated into LPPI.

DISCUSSION

The proposed model has promising predictive performances on 
two large-scale datasets, the PPI network dataset and 
GraphSAGE-PPI dataset, which have 663,954 links and 186,421 
links in total, respectively. Our model aims to address large-scale 

protein pairs prediction, efficiently and accurately. However,  it 
is introductive to point out that there are still several limitations 
in our model. The current study constructs a multi-level framework 
for PPI prediction, containing four parts. In fact, classifiers as 
well as parameters affect results significantly, especially in 
classification tasks. Therefore, the performance of our model 
could still have a bias. Simultaneously, a multi-level framework 
is not convenient for a training model. In order to solve this 
problem, an end-to-end model is expected to be  adapted. More 
specifically, we  can replace classify layer with a forward neural 
network, which contributes to model training and CPU time. In 
addition, from the perspective of code implement, it is not efficient 
enough to link prediction tasks since the code is not parallelized, 
such as in the part of split data and 5-fold cross-validation.

Future efforts to improve the prediction of PPI based on 
the current study include (i) reducing the bias caused by 
classifiers, replacing the classify layer with a forward neural 
network, and (ii) improving efficiency through parallel computing, 
especially in the part of graph embedding.

CONCLUSION

In this study, we introduce a model LPPI, a multi-level framework 
to improve the accuracy and efficiency of large-scale protein-protein 
interactions prediction. The attribute feature is collected in LPPI 

A B

FIGURE 5 | (A) The change of link number and node number with the coarsening level increasing on the PPI network dataset. (B) The change of link number and 
node number with the coarsening level increasing on the GraphSAGE-PPI dataset.

TABLE 5 | Comparisons of different classifiers on the PPI network dataset and GraphSAGE-PPI dataset.

Method PPI network GraphSAGE-PPI

Acc. AUC Time (s) Acc. AUC Time(s)

LPPI(GZ-DW-LR) 0.99997 0.99996 8131.417 0.9979 0.9979 2309.847
LPPI(GZ-DW-RF) 0.99999 0.99998 17783.854 0.9999 0.9999 2874.321
LPPI(GZ-DW-NB) 0.98799 0.99996 17673.404 0.9899 0.9956 2821.121

The bold values mean the best results achieved.

77

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Su et al. Efficient Model for PPI Predicting

Frontiers in Genetics | www.frontiersin.org 10 February 2021 | Volume 12 | Article 635451

firstly, which further is used to calculate the similarity between 
protein nodes to reconstruct a weighted graph. Then, a graph 
embedding method, such as DeepWalk and Node2vec, is applied to 
a new graph and generates topology features. Afterward, the classifier 
is used to test if protein pairs interact with each other. Experiments 
show that LPPI improves both classification accuracy and embedding 
speed on two benchmark datasets. Our work provides a new framework 
for large-scale protein-protein interactions prediction, which is 
beneficial to the detection of other biomedical molecule interactions.
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Classification is widely used in gene expression data analysis. Feature selection is
usually performed before classification because of the large number of genes and the
small sample size in gene expression data. In this article, a novel feature selection
algorithm using approximate conditional entropy based on fuzzy information granule
is proposed, and the correctness of the method is proved by the monotonicity of
entropy. Firstly, the fuzzy relation matrix is established by Laplacian kernel. Secondly,
the approximately equal relation on fuzzy sets is defined. And then, the approximate
conditional entropy based on fuzzy information granule and the importance of internal
attributes are defined. Approximate conditional entropy can measure the uncertainty of
knowledge from two different perspectives of information and algebra theory. Finally, the
greedy algorithm based on the approximate conditional entropy is designed for feature
selection. Experimental results for six large-scale gene datasets show that our algorithm
not only greatly reduces the dimension of the gene datasets, but also is superior to five
state-of-the-art algorithms in terms of classification accuracy.

Keywords: feature selection, Laplacian kernel, fuzzy information granule, fuzzy relation matrix, approximate
conditional entropy

INTRODUCTION

The development of DNA microarray technology has brought about a large number of gene
expression data. It is a hot topic in bioinformatics to analyze and mine the knowledge behind these
data (Sun et al., 2019b). As the most basic data mining method, classification is widely used in the
analysis of gene expression data. Due to the small sample size and high dimensionality of gene
expression data, the traditional classification methods are often ineffective when applied to gene
expression data directly (Fu and Wang, 2003; Mitra et al., 2011; Phan et al., 2012; Konstantina
et al., 2015). It has become a consensus in the academic community to reduce the dimensionality
before classification. Feature selection is the most widely used dimensionality reduction method
in gene expression data because it can maintain the biological significance of each feature. Feature
selection can not only reduce the time and space complexity of classification learning algorithm,
avoid dimensionality disaster, and improve the prediction accuracy of classification, but also help
to explain biological phenomena.

Feature selection methods are generally divided into three categories: filter, wrapper, and
embedded method (Hu et al., 2018). The filter method obtains the optimal subset of features
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by judging the similarity between the features and the objective
function based on the statistical characteristics of data. The
wrapper method uses a specific model to carry out multiple
rounds of training. After each round of training, several features
are removed according to the score of the objective function, and
then the next round of training is carried out based on the new
feature set. In this way, recursion is repeated until the number of
remaining features reaches the required number. The embedded
method uses machine learning algorithm to get the weight
coefficient of each feature in the first place, and then selects the
feature according to the weight coefficient from large to small.
Wrapper and embedded methods have heavy computational
burden and are not suitable for large-scale gene data sets. Our
feature selection method belongs to the filter method, in which
a heuristic search algorithm is used to find an optimal subset of
features using approximate conditional entropy based on fuzzy
information granule for gene expression data classification.

Attribute reduction is a fundamental research topic and
an important application of granular computing (Dong et al.,
2018; Wang et al., 2019). Attribute reduction can be used for
feature selection. Granular computing is a new concept and
new computing paradigm of information processing, which
is mainly used to deal with fuzzy and uncertain information
(Qian et al., 2011).

Pawlak (1982) proposed the rough set theory. Rough set
theory is a new mathematical tool to deal with fuzziness
and uncertainty. Granular computing is one of the important
research contents of rough set theory. On the basis of
equivalence relation, rough set theory is only suitable for
dealing with discrete data widely existing in real life. When
dealing with attribute reduction problem of continuous data
in classical rough set theory, discretization method is often
used to convert continuous data into discrete data, but the
discretization will inevitably lead to information loss (Dai and
Xu, 2012). To overcome this drawback, Hu et al. proposed a
neighborhood rough set model (Hu et al., 2008, 2011). Using
neighborhood rough set model to select attribute of decision
table containing continuous data can keep classification ability
well and need not discretize it. The existing neighborhood
rough set attribute reduction methods are based on the
perspective of algebra or information theory. The definition of
attribute significance based on algebra theory only describes
the influence of attributes on the definite classification subset
contained in the universe. The definition of attribute significance
based on information theory only describes the influence
of attributes on uncertain classification subsets contained
in the universe. A single perspective is not comprehensive
(Jiang et al., 2015).

Zadeh (1979) proposed the concept of information
granulation based on fuzzy sets theory. Objects in the universe
are granulated into a set of fuzzy information granules by a
fuzzy-binary relation (Tsang et al., 2008; Jensen and Shen, 2009).

In this article, a heuristic feature selection algorithm based
on fuzzy information granules and approximate conditional
entropy is designed to improve the classification performance of
gene expression data sets. The experimental results for several
gene expression data sets show that the proposed algorithm

can find optimal reduction sets with few genes and high
classification accuracy.

The remainder of this article is organized as follows. Section
“Materials and Methods” gives the gene expression datasets for
the experiment and our feature selection algorithm. Section
“Experimental Results and Analysis” shows and analyzes the
experimental results. Section “Conclusion and Discussion”
summarizes this study and discusses future research focus.

MATERIALS AND METHODS

Gene Expression Data Sets
The following six gene expression datasets are used in this article.

(1) Leukemia1 dataset consists of 7129 genes and 72
samples with two subtypes: patients and healthy people
(Sun et al., 2019a).

(2) Leukemia2 dataset consists of 5327 genes and 72 samples
with three subtypes: ALL-T (acute lymphoblastic leukemia,
T-cell), ALL-B (acute lymphoblastic leukemia, B-cell), and
AML (acute myeloid leukemia) (Dong et al., 2018).

(3) Brain Tumor dataset consists of 10,367 genes and 50
samples with four subtypes (Huang et al., 2017).

(4) 9_Tumors dataset consists of 5726 genes and 60 samples
with nine subtypes: non-small cell lung cancer, colon
cancer, breast cancer, ovarian cancer, leukemia, kidney
cancer, melanoma, prostate cancer, and central nervous
system cancer (Ye et al., 2019).

(5) Robert dataset consists of 23,416 genes and 194 samples
with two subtypes: Musculus CD8+T-cells and L1210 cells
(Kimmerling et al., 2016).

(6) Ting dataset consists of 21,583 genes and 187 samples
with seven subtypes: GMP cells, MEF cells, MP cells,
nb508 cells, TuGMP cells, TuMP cells, and WBC cells
(Ting et al., 2014).

The six gene expression datasets are summarized in Table 1.

Fuzzy Sets and Fuzzy-Binary Relation
Let U = {x1, x2, . . . , xn} be a nonempty finite set and denote a
universe, I = [0, 1], IU denotes all fuzzy sets on U.

Fuzzy sets are regarded as the extensions of classical sets
(Zadeh, 1965).

F is a fuzzy set on U, i.e., F : U → I, then F(xi) is the
membership degree of xi to F.

The cardinality of F ∈ IU is |F| =
∑n

i=1 F(xi) .

TABLE 1 | Description of six experimental datasets.

No. Datasets Genes Samples Classes

1 Leukemia1 7129 72 2 (47/25)

2 Leukemia2 5327 72 3 (9/38/25)

3 Brain_Tumor 10,367 50 4 (14/7/14/15)

4 9_Tumors 5726 60 9 (9/7/8/6/6/8/8/2/6)

5 Robert 23,416 194 2 (88/106)

6 Ting 21,583 187 7 (18/12/75/16/20/34/12)
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Fuzzy-binary relation are fuzzy sets on two universes. IU×U
denotes all fuzzy-binary relations on U × U.

Fuzzy-binary relation R can be represented by

MR =


r11 r12 · · · r1n
r21 r22 · · · r2n
· · · · · · · · · · · ·

rn1 rn2 · · · rnn

 (1)

where rij = R(xi, xj) ∈ I is the similarity of xi and xj .

Information Systems and Rough Sets
Definition 2.1 (Li et al., 2017). Let Ube a set of objects and A a set
of attributes. Suppose that U and A are finite sets. If each attribute
a ∈ A determines an information function a : U → Va, whereVa
is the set of function values of attribute a, then the pair (U,A) is
called an information system.

Moreover, if A = C
⋃

D, C is a condition attribute set and D
is a decision attribute set, then the pair (U,A) is called a decision
information system.

If (U,A) is an information system and P ⊆ A, then an
equivalence relation (or indiscernibility relation) ind(P) can be
defined by (x, y) ∈ ind(P)⇔ ∀a ∈ P, a(x) = a(y).

Obviously, ind(P) =
⋂
a∈P

ind({a}).

For P ⊆ A and x ∈ U, denote [x]ind(P) = {y
∣∣(x, y) ∈ ind(P)}

and U/ind(P) = {[x]ind(P) |x ∈ U } .
Usually, [x]ind(P) and U/ind(P) are briefly denoted by [x]P and

U/P, respectively.
According to the rough set theory, for P ⊆ A, X ⊆ U is

characterized by P̄(X) and P(X), where P(X) =
⋃
{Y | Y ∈

U/P,Y ⊆ X} and P(X) =
⋃
{Y | Y ∈ U/P,Y

⋂
X 6= φ } .

P(X) and P̄(X) are referred to as the lower and upper
approximations of X, respectively.

X is crisp if P̄(X) = P(X) and X is rough if P̄(X) 6= P(X).

The Approximately Equal Relation on
Fuzzy Sets
Given F,G ∈ IU . For x ∈ U, F(x) and G(x) are the membership
degrees of x belonging to fuzzy sets F and G, respectively. F(x)
and G(x) ∈ [0, 1]. Actually, it is very difficult to ensure that the
equation F(x) = G(x) holds. For this reason, we propose the
following approximately equal relation of fuzzy sets.

Definition 2.2 Given A,B ∈ IU . If there exists k ∈ N (k ≥ 2)
such that for any x ∈ U, A(x),B(x) ∈ [0, 1/k) or A(x),B(x) ∈
[1/k, 2/k). . . or A(x),B(x) ∈ [(k− 1)/k, 1], then we say that A

is approximately equal to B, and denote it by A
k
≈B, where k is

regarded as a threshold value.
Definition 2.3 For each a ∈ U, define xR : U →

[0, 1], xR(a) = R(x, a) (x ∈ U), xR is referred to as a fuzzy
set that means the membership degree of a to x.

Definition 2.4 [x]R = {y
∣∣∣∣xR(a) k

≈ yR(a) , y ∈ U}, [x]Ris

referred to as the fuzzy equal class of x induced by the fuzzy
relation R on U.

Definition 2.5 [xi]R(i = 1, 2, ..., |U|) is named as the fuzzy
information granule induced by the fuzzy relation R on U.

Definition 2.6G(R) = {[x1]R, [x2]R, ..., [xn]R} is referred
to as the fuzzy-binary granular structure of the universe
U induced by R.

It is easy to prove: P(X) = {x | [x]R ⊆ X, [x]R ∈ G(R)},
P(X) = {x | [x]R

⋂
X 6= φ, [x]R ∈ G(R)} .

Fuzzy-Binary Relation Based on
Laplacian Kernel
Hu et al. (2010) found that there are some relationships between
rough sets and Gaussian kernel method, so Gaussian kernel is
used to obtain fuzzy relations. Compared with Gaussian kernel,
Laplacian kernel has higher peak, faster reduction and smoother
tail. Therefore, Laplacian kernel is better than Gaussian kernel
in describing the similarity between objects. In this article, we
use Laplacian kernel k(xi, xj) = exp(−

||xi−xj||
σ

) to extract the
similarity between two objects from decision information system,
where ||xi − xj|| is the Euclidean distance between two objects xi
and xj. In general, σ is a given positive value.

Obviously, k(xi, xj) satisfies:

(1) k(xi, xj) ∈ (0, 1].
(2) k(xi, xj) = k(xj, xi).
(3) k(xi, xi) = 1.

Let R = (k(xi, xj))n×n, then R is called the fuzzy relation
matrix induced by Laplacian kernel.

Feature Selection Using Approximate
Conditional Entropy Based on Fuzzy
Information Granule
Approximate Accuracy and Approximate Conditional
Entropy
Definition 2.7 Given a decision information system (U,C

⋃
D),

∀X ⊆ U, X 6= φ (φ is an empty set), then the approximate
accuracy of X is defined as

a(X) =

∣∣P(X)
∣∣∣∣P̄(X)
∣∣ (2)

where |.| denotes the cardinality of set. Obviously, 0 ≤ a(X) ≤ 1.
Definition 2.8 Given a decision information system

(U,C
⋃

D), ∀B ⊆ C, the fuzzy information granule of object
x under B is [x]RB , the partition of U derived from D is
{X1,X2, ...,Xk}, then the conditional entropy of D relative to B is
defined as

H(D/B) = −

k∑
j=1

|U|∑
i=1

∣∣[xi]RB ⋂Xj
∣∣

|U|
log

∣∣[xi]RB ⋂Xj
∣∣∣∣[xi]RB ∣∣ (3)

where RB denotes the fuzzy relation based on attribute set B and
log is a base-2 logarithm.

The approximate accuracy can effectively measure the
imprecision of the set caused by the boundary region, while
the conditional entropy can effectively measure the knowledge
uncertainty caused by the information granularity. We combine
the two to propose approximate conditional entropy.
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Definition 2.9 Let (U,C
⋃

D) be a decision information
system, ∀B ⊆ C, the fuzzy information granule of object x under
B is [x]RB , the partition of U derived from D is {X1,X2, ...,Xk},
aB(Xi) is the approximate accuracy of Xi under RB, then the
approximate conditional entropy of D relative to B is defined as

Hace(D/B) = −

k∑
j=1

|U|∑
i=1

log(2− aB(Xj))

∣∣[xi]RB ⋂Xj
∣∣

|U|

log

∣∣[xi]RB ⋂Xj
∣∣∣∣[xi]RB ∣∣ (4)

Theorem 2.1 Let (U,C
⋃

D) be a decision information system,
∀B ⊆ C, the fuzzy information granule of object x under B is
[x]RB , the partition of U derived from D is {X1,X2, ...,Xk } .

(1) Hace(D/B) gets the maximum value |U| log |U| if and only
if [xi]RB = U(i = 1, 2, ..., n) and

∣∣Xj
∣∣ = 1(j = 1, 2, ..., k =

n).
(2) Hace(D/B)gets the minimum value 0 if and only if [xi]RB ⊆
[xi]RD(i = 1, 2, ..., n).

Proof. (1) Due to [xi]RB = U(i = 1, 2, ..., n) and
∣∣Xj
∣∣ =

1(j = 1, 2, ..., k), we have aB(Xj) = 0(j = 1, 2, ..., k) according to
Definition 2.7.

Thus, log(2− aB(Xj)) = 1(j = 1, 2, ..., k).

Clearly, |[xi]RB
⋂

Xj|
|U| log |[xi]RB

⋂
Xj|

|[xi]RB |
=

1
|U| log 1

|U| .
By Definition 2.9, we have Hace(D/B) = |U| log |U|.
The converse is also true.
(2) Due to [xi]RB ⊆ [xi]RD(i = 1, 2, ..., n), we have aB(Xj) =

1(j = 1, 2, ..., k) according to Definition 2.7. Thus log(2−
aB(Xj)) = 0(j = 1, 2, .., k). Obviously, Hace(D/B) = 0 according
to Definition 2.9.

The converse is also true.
Theorem 2.2 Let (U,C

⋃
D) be a decision information

system, ∀L,M ⊆ C, if M ⊆ L, then Hace(D/M) ≥ Hace (D/L).
Proof. Due to M ⊆ L ⊆ C, we have PM(X) ⊆ PL(X) and

PM(X) ⊇ PL (X).
Then aM(X) ≤ aL(X) according to Definition 2.7.
By M ⊆ L and U/D = {X1,X2, ...,Xk}, we have

−

∣∣[xi]RM ⋂Xj
∣∣

|U|
log

∣∣[xi]RM ⋂Xj
∣∣∣∣[xi]RM ∣∣

≥ −

∣∣[xi]RL ⋂Xj
∣∣

|U|
log

∣∣[xi]RL ⋂Xj
∣∣∣∣[xi]RL ∣∣ ≥ 0 (5)

Consequently, Hace(D/M) ≥ Hace(D/L) according
to Definition 2.9.

Theorem 2.2 shows that Hace(D/B) decreases monotonically
with the increase of the number of attributes in B, which is
very important for constructing forward greedy algorithm of
attributes reduction.

Definition 2.10 Let (U,C
⋃

D) be a decision information
system and B ⊆ C, if Hace(D/B) = Hace(D/C) and Hace(D/(B−
{b})) > Hace(D/C)(∀b ∈ B), then B is called a reduction of C
relative to D.

The first condition guarantees that the selected attribute subset
has the same amount of information as the whole attribute set.
The second condition guarantees that there is no redundancy in
the attribute reduction set.

Definition 2.11 Assume that (U,C
⋃

D) be a decision
information system, ∀c ∈ C, define the following indicator,

IIA(c,C,D) = Hace(D/(C − {c}))−Hace(D/C) (6)

then IIA(c,C,D) is called the importance of internal attribute of
c in C relative to D.

Definition 2.12 Assume that (U,C
⋃

D) be a decision
information system, ∀c ∈ C, if IIA(c,C,D) > 0, then attribute c
is called a core attribute of C relative to D.

Definition 2.13 Assume that (U,C
⋃

D) be a decision
information system, B ⊆ C, ∀d ∈ C−B, define the following
indicator,

IEA(d,B,C,D) = Hace(D/B)−Hace(D/(B
⋃
{d})) (7)

then IEA(d,B,C,D) is called the importance of external attribute
of d to B relative to D.

IEA(d,B,C,D) shows the change of approximate conditional
entropy after adding attribute d. The larger IEA(d,B,C,D) is, the
more important d is to B relative to D.

Feature Selection Algorithm Using Approximate
Conditional Entropy
In this article, a novel feature selection algorithm using
approximate conditional entropy (FSACE) is proposed and
described as follows.

Input: A decision information system (U, C
⋃

D) and σ.

Output:A selected gene subset B.

Step 1. Initialize B = φ.

Step 2. Compute Hace(D/C).

Step 3.∀c ∈ C, compute IIA(c, C, D), if IIA(c, C, D) > 0, then B = B
⋃
{c}.

Step 4. If B = φ, then turn to step 5. If B 6= φ, compute Hace(D/B). If
Hace(D/B) = Hace(D/C), then turn to step 6; otherwise, turn to step 5.

Step 5. Let M = C− B, select a attribute m ∈ M so that it satisfies
IEA(m, B, C, D) = max

x∈M
IEA(x, B, C, D). Let B = B

⋃
{m}, compute Hace(D/B). If

Hace(D/B) = Hace(D/C), then turn to step 6; otherwise, turn to step 5.

Step 6. The feature selection subset B is obtained, and the algorithm ends.

EXPERIMENTAL RESULTS AND
ANALYSIS

All experiments are performed on a personal computer running
Windows 10 with an Intel(R) Core(TM) i7-4790 CPU operating
at 3.60 GHz with 8 GB memory using MATLAB R2019a. The
classifiers (KNN, CART, and SVM) are selected to verify the
classification accuracy, where the parameter k = 3 in KNN and
Gaussian kernel function is selected in SVM. Other parameters
of the three algorithms are the default values of the software.
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Influence of Different Values of σ on
Classification Performance
In this part, the classification accuracy of different Laplacian
kernel parameters values of σ is tested. For gene expression
data, feature selection aims to improve classification accuracy by
eliminating redundant genes. The different values of σ influence
the size of granulated gene data, which affects the classification
accuracy of selected genes. Therefore, the different values of
σ should be set in the process of feature selection of gene
expression data sets. Moreover, the different values of σ also
affect the composition of the selected gene subset. To obtain a
suitable σ and a good gene subset, the classification accuracy
of the selected gene subset for different values of σ should be
discussed in detail.

The corresponding experiments are performed to graphically
illustrate the classification accuracy of FSACE under different
values of σ. The results are shown in Figure 1, where the
horizontal axis denotes σ ∈ [0.05, 1] at intervals of 0.05, and the
vertical axis represents the classification accuracy.

Figure 1 shows that σ greatly influences the classification
performance of FSACE. σ is usually set to make the classification
accuracy highest. Thus, the appropriate parameter values of σ can
be obtained for each data set from Figure 1. In Figure 1A, for
Leukemia1 data set, when σ is 0.95, the classification accuracy
is the highest. In Figure 1B, for Leukemia2 data set, when σ is
0.55, the classification accuracy is the highest. In Figure 1C, for
Brain tumor data set, when σ is 0.80, the classification accuracy is
the highest. In Figure 1D, for 9-tumors data set, when σ is 0.75,
the classification accuracy is the highest. In Figure 1E, for Robert
data set, when σ is 0.60, the classification accuracy is the highest.
In Figure 1F, for Ting data set, when σ is 0.75, the classification

accuracy is the highest. Therefore, the appropriate values of σ for
different data sets are determined.

The Feature Selection Results and
Classification Performance of FSACE
The classification results obtained from the three classifiers
(KNN, CART, and SVM) with 10-fold cross-validation are shown
in Table 2 on the test data by FSACE.

Table 2 shows that FSACE not only greatly reduces the
dimensionality of all six gene expression data sets, but also
improves the classification accuracy.

The results of feature genes selection from six gene expression
data sets are shown in Table 3 using FSACE.

Comparison of the Classification
Performance of Several Entropy-Based
Feature Selection Algorithms
To evaluate the performance of FSACE in terms of classification
accuracy, FSACE algorithm is compared with several
state-of-the-art feature selection algorithms, including EGGS
(Chen et al., 2017), EGGS-FS (Yang et al., 2016), MEAR (Xu
et al., 2009), Fisher (Saqlain et al., 2019), and Lasso (Tibshirani,
1996). According to the change trend of Fisher scores of six gene
datasets, we select the top-200 genes as the reduction set for
Fisher algorithm.

Tables 4–9 show the experimental results of six gene
expression data sets using six different feature selection methods.

As shown in Tables 4, 5, FSACE has the highest average
classification accuracy for Leukemia1 and Leukemia2, and

FIGURE 1 | Classification accuracy for six gene expression data sets with different values of σ.
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TABLE 2 | Classification results of six gene expression data sets.

Data sets Original data Feature selection
data using FSACE

Genes CART KNN SVM Genes CART KNN SVM

Leukemia1 7129 0.822 0.839 0.917 9 0.911 0.947 0.931

Leukemia2 5327 0.849 0.820 0.834 9 0.891 0.894 0.878

Brain tumor 10,367 0.571 0.604 0.737 5 0.743 0.631 0.614

9-tumors 5726 0.273 0.349 0.334 2 0.318 0.359 0.355

Robert 23,416 0.947 0.928 0.933 14 0.985 0.974 0.990

Ting 21,583 0.864 0.826 0.841 17 0.873 0.847 0.882

Average 12,258 0.721 0.728 0.766 9.333 0.787 0.775 0.775

TABLE 3 | The selected feature genes on six gene expression data
sets using FSACE.

Data sets The selected feature gene subsets

Leukemia1 (758,1144,1630,2659,3897,4196,5552,6471,6584)

Leukemia2 (568,848,861,1610,2197,3256,3358,4688,5032)

Brain tumor (642,7169,7844,9413,9794)

9-tumors (1677,2590)

Robert (12883,1600,9892,16398,8720,4510,18137,2320,14931,
14679,10352,12481,18034,406)

Ting (4754,5676,2503,5379,3304,4752,6015,2193,15687,641,
7938,2629,6837,4653,19016,8621,4267)

TABLE 4 | Classification accuracy of Leukemia1 using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 8 0.744 0.619 0.813 0.725

EGGS-FS (Hu et al., 2010) 5 0.821 0.794 0.701 0.772

MEAR (Chen et al., 2017) 3 0.939 0.919 0.925 0.928

Fisher (Saqlain et al., 2019) 200 0.639 0.857 0.778 0.758

Lasso (Tibshirani, 1996) 52 0.857 0.960 0.972 0.929

FSACE 9 0.911 0.947 0.931 0.930

TABLE 5 | Classification accuracy of Leukemia2 using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 3 0.571 0.509 0.557 0.546

EGGS-FS (Hu et al., 2010) 2 0.907 0.871 0.874 0.884

MEAR (Chen et al., 2017) 5 0.903 0.829 0.872 0.868

Fisher (Saqlain et al., 2019) 200 0.726 0.803 0.846 0.792

Lasso (Tibshirani, 1996) 37 0.817 0.914 0.909 0.880

FSACE 9 0.891 0.894 0.878 0.888

exhibits better classification performance than the other
five algorithms.

As shown in Tables 6, 7, MEAR cannot work on Brain Tumor
data set and 9-tumors data set, its results are denoted by the
sign –. FSACE obtains the highest average classification accuracy
among the five feature selection algorithms for Brain Tumor data
set and 9-tumors data set.

TABLE 6 | Classification accuracy of Brain tumor using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 9 0.515 0.491 0.544 0.517

EGGS-FS (Hu et al., 2010) 5 0.388 0.490 0.531 0.470

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.630 0.704 0.617 0.650

Lasso (Tibshirani, 1996) – – – – –

FSACE 5 0.743 0.631 0.614 0.663

TABLE 7 | Classification accuracy of 9-tumors using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 1 0.177 0.102 0.672 0.317

EGGS-FS (Hu et al., 2010) 1 0.224 0.203 0.393 0.273

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.249 0.335 0.414 0.333

Lasso (Tibshirani, 1996) 27 0.199 0.361 0.322 0.294

FSACE 2 0.318 0.359 0.355 0.344

TABLE 8 | Classification accuracy of Robert using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 11 0.948 0.937 0.964 0.950

EGGS-FS (Hu et al., 2010) 6 0.957 0.954 0.975 0.962

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.976 0.990 0.989 0.985

Lasso (Tibshirani, 1996) 21 0.984 0.991 0.989 0.988

FSACE 14 0.993 0.991 0.985 0.990

TABLE 9 | Classification accuracy of Ting using six different feature
selection algorithms.

Feature selection method Genes CART KNN SVM Average

ECGS (Li et al., 2017) 12 0.793 0.781 0.651 0.742

EGGS-FS (Hu et al., 2010) 9 0.745 0.717 0.626 0.696

MEAR (Chen et al., 2017) – – – – –

Fisher (Saqlain et al., 2019) 200 0.833 0.779 0.770 0.794

Lasso (Tibshirani, 1996) 56 0.833 0.833 0.845 0.837

FSACE 17 0.833 0.833 0.872 0.846

Tables 8, 9 shows that MEAR still can not work on Robert data
set and Ting data set, which indicates that the algorithm is not
stable. Our algorithm still has the highest classification accuracy
among all the algorithms. Although the classification accuracy
of our algorithm is only a little higher than lasso algorithm, the
number of attributes reduced by our algorithm is much less than
lasso algorithm.

Tables 4–9 show that the average number of attributes reduced
by our algorithm is slightly more than that of MEAR, ECGS, and
EGGS-FS, but the average classification accuracy is much higher
than that of these three algorithms.
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Therefore, FSACE can not only effectively remove noise and
redundant data from the original data, but also improve the
classification accuracy of gene expression data sets.

CONCLUSION AND DISCUSSION

Firstly, the concept of approximate conditional entropy is given
and its monotonicity is proved in this article. Approximate
conditional entropy can describe the uncertainty of knowledge
from two aspects of boundary and information granule. And
then, a novel feature selection algorithm FSACE is proposed
based on the approximate conditional entropy. Finally, the
effectiveness of the proposed algorithm is verified on several gene
expression data sets. Experimental results show that compared
with several state-of-the-art feature selection algorithms, the
proposed feature selection algorithm not only can obtain
compact features, but also improve classification performance.
The time complexity of FSACE is O(|U|2 |C|2). Because the
gene expression data sets usually contain a large number of

genes, the time complexity of FSACE is high. In addition,
FSACE does not consider the interaction between attributes.
Therefore, reducing the time complexity of FSACE and
seeking more efficient feature selection algorithm considering
interaction between attributes are two issues that we will
study in the future.
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Metabolites have been shown to be closely related to the occurrence and development
of many complex human diseases by a large number of biological experiments;
investigating their correlation mechanisms is thus an important topic, which attracts
many researchers. In this work, we propose a computational method named
LGBMMDA, which is based on the Light Gradient Boosting Machine (LightGBM) to
predict potential metabolite–disease associations. This method extracts the features
from statistical measures, graph theoretical measures, and matrix factorization results,
utilizing the principal component analysis (PCA) process to remove noise or redundancy.
We evaluated our method compared with other used methods and demonstrated the
better areas under the curve (AUCs) of LGBMMDA. Additionally, three case studies
deeply confirmed that LGBMMDA has obvious superiority in predicting metabolite–
disease pairs and represents a powerful bioinformatics tool.

Keywords: metabolite-disease associations, light gradient boosting machine, features, computational method,
performance evaluation

INTRODUCTION

Metabolism is a series of ordered chemical reactions, which has a significant influence on biological
life maintenance, such as the organism’s growth, reproduction, and reaction to the external
environment (Dunn and Ellis, 2005). Metabolic processes are usually divided into two types.
The first type is decomposing large molecules to acquire energy, such as cell respiration, while
the other type is utilizing energy for the synthesis of each part inside the cells, such as nucleic
acids and proteins (Cheng et al., 2017). In unhealthy conditions, relevant products in metabolism
(metabolites) will be abnormal, which indicates that finding more disease-related metabolites is
beneficial to disease prevention and treatment (Boja et al., 2014). Consequently, it is of high
importance to identify the relationship among metabolites and diseases.

Although some traditional techniques of metabolomics has prompted their analysis
and development, such as nuclear magnetic resonance (NMR) spectroscopy or liquid/gas
chromatography-mass spectrometry (LC/GC-MS) (Xianlin et al., 2011; Tang et al., 2014), the
proportion of undiscovered associations between metabolites and diseases is still high. Moreover,
some limitations exist, such as the time and funds required to mine disease-related metabolites
in biological experiments. Therefore, effective computational methods for predicting disease-
related metabolites are attracting more and more attention, which is beneficial to promoting the

Abbreviations: AUC, area under the curve; GIP, gaussian interaction profile; LOOCV, leave-one-out cross-validation; ROC,
receiver operating characteristic.
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development to discover potential metabolite–disease
associations. The idea of Random Walk with Restart for
MiRNA-Disease Association (RWRMDA) (Hu et al., 2018) is to
construct a metabolite–metabolite functional similarity network
and implement RWR from known disease-related metabolite
seed nodes to prioritize potential disease-related ones. However,
this method uses less information for diseases or metabolites
when calculating similarities, and its predictive performance
needs to be improved.

In this article, we present a computational method,
LGBMMDA, based on Light Gradient Boosting Machine
(LightGBM) (Ke et al., 2017), to identify metabolite–disease
associations (Figure 1). Firstly, we extract the data of metabolite-
related pathways as part of the integrated similarity network.
Secondly, features are selected from the relevant similarity
network and known metabolite–disease associations using the
statistical measures, graph theoretical measures, and matrix
factorization measures. Furthermore, the principal component
analysis (PCA) (Deutsch, 2004) algorithm, which is a technique
for analyzing and simplifying datasets, is utilized to extract deep
features. Thirdly, the LightGBM classifier is utilized to obtain
the potential association scores. In addition, the LOOCV and
fivefold cross-validation are adopted to evaluate the performance
of LGBMMDA, which achieves 0.9738 and 0.9715, respectively.
Besides, three types of case studies for common diseases are
carried out to evaluate the ability of the method to predict
metabolites. These aforementioned experiments show that
LGBMMDA is a reliable and excellent model to infer unknown
metabolites–diseases associations.

MATERIALS AND METHODS

Human Metabolite–Disease Associations
We extracted the experimentally confirmed human metabolite–
disease associations from the last updated database (HMDB)
(Wishart et al., 2017). Then, we performed the following steps
on these associations: Firstly, the disease-related symptoms from
the human symptom–disease network (HSDN) (Zhou et al.,
2014; Ma et al., 2016) are used to calculate disease similarity
after repeated associations; thus, the diseases that do not exist
in the HSDN are removed. Secondly, the metabolite-related
pathways from HMDB become part of the metabolite similarities,
such that we keep the metabolites that are relevant to the
diseases we selected. Finally, we obtain 127 diseases and 794
metabolites, which have 1,908 experimentally human metabolite–
disease associations (see Figure 2). The parameters nm and nd
represent the number of metabolites and diseases, respectively.
Matrix M represents the adjacency matrix of metabolite–disease
associations, such that the entity M(i,j) in row i and column j is 1
if disease i is associated with metabolite j and 0 otherwise.

Metabolite Functional Similarity
According to the hypothesis that metabolites with similar
functions have a higher probability of possessing similar
pathways, we utilize the Hamming similarity (Charikar, 2002)
to measure the functional similarity of two metabolites by

considering their related pathways. The metabolite functional
similarity matrix is defined as MHS(nm × nm), such that the
element value is calculated as follows (Zhang et al., 2020)

MHS
(
mi, mj

)
= 1−

∑np
k = 1 MpV(MP

(
k, i
)
, MP

(
k, j
)
)

ns
(1)

MpV(MP
(
k, i
)
, MP

(
k, j
)
)

=

{
1, if the values of MP

(
k, i
)

and MP
(
k, j
)

are different
0, if the values of MP

(
k, i
)

and MP
(
k, j
)

are same

(2)

where MHS
(
mi, mj

)
represents the Hamming similarity between

metabolite node mi and mj; np denotes the number of pathways.
If there are existing associations between the metabolite i and
pathway k, MP

(
k, i
)

is set to 1 in metabolite-pathway association
network (MP).

Disease Functional Similarity
Considering the assumption that two diseases with similar
functions usually have similar symptoms, the values of two
disease-related symptom sets are used to obtain their functional
similarities. Let the sets Sd

a
= {Sd

a (1) , Sd
a (2) , Sd

a (as)} and
sets Sd

b
=

{
Sd

b (1) , Sd
b (2) , Sd

b (bs
)}

describe the symptom
sets of diseases a and b, where as and bs denote the number of
symptoms associated with diseases a and b, respectively. Firstly,
we calculate the information entropy of Sd

a as follows (Gu et al.,
2017)

H
(
Sd

a)
= −

ns∑
i = 1

p
(
Sd

a(i)
)
{log2p

(
Sd

a(i)
)
} (3)

p
(
Sd

a(i)
)
=

n(Sd
a(i))

Tn
(4)

where Tn denotes the number of disease-symptom associations,
n(Sd

a(i)) is the number of the ith symptom related with disease a
in the disease-symptom set, p (Sd

a(i)) represents the frequency
about the ith symptom associated with disease a, and H (Sd

a)
is the information entropy of Sd

a. The normalized mutual
information (NMI) of Sd

a and Sd
b is used to measure the

functional similarity between disease a and b as follows:

DNF
(
da, db

)
=

2H
(

Sd
a ⋂ Sd

b
)

H (Sd
a)+H

(
Sd

b) (5)

where matrix DNF represents the functional similarity matrix;
Sd

a, Sd
b, and H

(
Sd

a ⋂ Sd
b
)

denote the information entropy of

Sd
a, Sd

b and the intersection set of Sd
a and Sd

b, respectively.
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FIGURE 1 | The flowchart of LGBMMDA.

Gaussian Interaction Profile Kernel
Similarity
Following literature (Gu et al., 2017) the GIP kernel for the
similarities about diseases and metabolites captures the key
features of the metabolite–disease association data. Calculating
such kind of similarities is based on the assumption that
similar diseases are more likely to contain functionally similar
metabolites, and vice versa. Let the binary vector V(di), which
is the row vector of the matrix M where the disease di is located,
represent the interaction profiles of disease di. Then, the relevant
similarities for diseases DGS(di, dj) between the diseases di and dj
can be shown as follows:

DGS(di, dj) = exp
(
−ωd||V(di)− V(di)||

2
)

(6)

ωd = ω′d/(
1

nd

nd∑
i = 1

||V(di)||
2) (7)

where ωd is a parameter that controls the kernel bandwidth,
acquired by normalizing the new bandwidth parameter ω

′

d.
Similarly, the GIP kernel of the similaritiesMGS

(
mi, mj

)
between

metabolites mi and mj is defined as follows:

MGS(mi, mj) = exp(−ωd||V(mi)− V(mj)||
2) (8)

ωm = ω′m/(
1

nm

nm∑
i = 1

||V(mi)||
2) (9)

where ωm is a parameter that controls the kernel bandwidth,
acquired by normalizing the new bandwidth parameter ω ′m.

Integrated Similarity for Metabolites and
Diseases
In order to ensure that similarity information exists for every pair
in metabolites or diseases, we integrated the disease functional
similarities with GIP kernel similarities, which is shown as
follows:

IDS(di, dj) =

{
DNS

(
di, dj

)
if DNS

(
di, dj

)
6= 0

DGS(di, dj) otherwise
(10)

where IDS(di, dj) represents the integrated disease similarities.
Similarly, the integrated metabolite similarity matrix (IMS) is
given as follows:
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FIGURE 2 | A part of known metabolite–disease association network.

IMS(mi, mj) =

{
FHS

(
mi, mj

)
if FHS

(
mi, mj

)
6= 0

MGS(mi, mj) otherwise
(11)

Feature Extraction
Firstly, type 1 features (F1), which consist of the values of the
sum, mean, and histogram distributions of metabolite/disease
similarities, are calculated using the statistical measures for each
disease/metabolite. We start by calculating the number of known
associations in the relevant ith row/jth column of M. Then, the
average of all similarity scores is computed according to the
ith/jth row of IDS/IMS. Simultaneously, the similarity scores that
ranges at [0, 1] are split into n parts (n = 5 in this work), and the
proportion of similarity scores for d(j)/m(i) that fell into each part
are counted as the histogram feature.

Secondly, type 2 features (F2) are calculated, which
include the information about graph theory-related

statistics. Before obtaining this type of features, we
construct the unweighted graph, in which two nodes
have an edge if their similarity score is beyond the mean
value of all entities in IDS/IMS. Then, we extract the
relevant neighbors’ information, betweenness, closeness,
eigenvector centrality, and PageRank (Franceschet, 2010)
scores of the disease/metabolite similarity network in an
unweighted graph.

Thirdly, type 3 features (F3) are calculated. These features
consist of the information about metabolite–disease pairs
based on matrix factorization of M. The nonnegative matrix
factorization (NMF) (Lee and Seung, 1999; Akbar et al., 2020),
which was proposed by Lee and Seung, 1999, can help to
solve the matrix sparsity problem. Thus, the metabolite–disease
association matrix M can be factorized into two low-rank
feature matrices A ∈ Rnm∗k and B ∈ Rk∗nd, where k denotes the
dimension of the metabolite and disease features in the low-rank
spaces (k = 20).
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ALGORITHM 1 | Greedy bundling.

Input: Ft: features, Max_c:: max conflict count

Construct graph G

searchOrder← G.sortByDegree()

bundles←{}, bundlesConflict←{}

for ι in searchOrder do

needNew← True

for j=1 to len(bundles) do

cnt← ConflictCnt(bundles[j],Ft[i])

if cnt + bundlesConflict[i] ≤Max_c then

bundles[j].add(Ft[i]), needNew← False

break

if needNew then

Add Ft[i] as a new bundle to βυνδλεσ

Output: bundles

Finally, the feature sets F(i,j) = [F1, F2, F3] for disease i and
metabolite j is obtained. Meanwhile, PCA is applied to extract the
more useful features.

LIGHT GRADIENT BOOSTING MACHINE

Some boosting algorithms, such as the Gradient Boosting
Decision Tree (GBDT) and eXtreme Gradient Boosting
(XGBoost), have a common weakness that all the sample
points for every feature are scanned when obtaining the
best segmentation point; this is very time-consuming
and computationally expensive to meet current needs.
In order to reduce the cost of the experiment, we

ALGORITHM 2 | Merge exclusive features.

Input: nD: number of data

Input: F: One bundle of exclusive features

binRanges← {0}, totalBin← 0

for f in F do

totalBin +=f.numBin

binRanges.append(totalBin)

newBin← new Bin(numData)

for ι=1 to nD do

newBin[i]← 0

for i=1 to len(F) do

if 8[j].bin[i] 0 then

newBin[i]← F [j].bin[i] + binRanges[j]

Output: newBin, binRanges

use LightGBM as the classifier (Friedman, 2001; Ke
et al., 2017). LightGBM includes two main algorithms:
Gradient-Based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB).

In the GOSS algorithm, the training instances are firstly
ranked according to the absolute values of their gradients in
descending order. Then, the top-a × 100% instances with the
larger gradients are kept and combined into an instance subset A.
Besides, the (1− a) × 100% instances with the smaller gradients
are integrated in the remaining set Ac, and a further subset B with
the size b ×

∣∣AC
∣∣ is randomly sampled. Finally, the instances

are split according to the estimated variance gain Vj
′(d) over the

subset A
⋃

B. The variance gain of splitting feature j at point d is
shown as follows (Ke et al., 2017)

FIGURE 3 | The ROC about LOOCV.
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FIGURE 4 | The ROC about fivefold cross validation.

FIGURE 5 | Comparison of the top k ranks with different methods.

V ′j (d) =
1
n
(
(
∑

xi∈Al
gi +

1−a
b
∑

xi∈Al
gi)

2

nl
j(d)

+
(
∑

xi∈Ar
gi +

1−a
b
∑

xi∈Br
gi)

2

nrj(d)
) (12)

whereAl =
{

xi ∈ A :xij ≤ d
}
, Ar =

{
xi ∈ A :xij > d

}
,

Bl =
{

xi ∈ B :xij ≤ d
}
, Br =

{
xi ∈ B:xij > d

}
, and 1−a

b is

used to normalize the sum of the gradients over B back to the
size of Ac. Each xi is a vector with the dimension s in space XS.
In every gradient boosting iteration, the negative gradients of the
loss function with respect to the output of the model are defined
as {g1, . . ., gn}, where n is the number of vectors in space XS.

In the EFB algorithm, unnecessary computation for zero
feature values is avoided by binding mutually exclusive features
together in a histogram to form a feature. There are two
main ideas for EFB. In algorithm 1, the function is to
consider which features should be bundled together, while
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FIGURE 6 | Comparison of the precision, recall, and F1_measure with different methods.

FIGURE 7 | The AUC value of different n_estimators.

algorithm 2 determines how to construct the bundle as follows
(Ke et al., 2017):

RESULTS

In this section, we utilize LOOCV and fivefold cross-validation
to evaluate the performance of LGBMMDA. In LOOCV, each

confirmed metabolite–disease pair is treated as the test set in
turn, while the other confirmed pairs are regarded as training
sets. Besides, the unconfirmed associations are regarded as
potential candidates for true associations. We plot the ROCs
curves and use the area under the ROC curve (AUC) as the
evaluating indicator. Furthermore, we also use fivefold cross-
validation as an evaluation tool to verify the performance of
our method. In this method, the known information about
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FIGURE 9 | The AUC values of different max_bin and min_data_in_leaf.

metabolites and diseases is randomly divided into five equal
parts. Then, each part is used as the test set in turn, while the
other four parts represent the training set. This helps to avoid
having the test and training data overlapping with each other and
ensures unbiased comparisons. In this study, we compare our
method with some state-of-the-art methods, including the label
propagation algorithm (LP), which is a semi-supervised learning
method based on graph (and its basic idea is to predict the label
information of unlabeled nodes by using the label information of
labeled nodes); random walk (RWR), which is close to Brownian
motion and is the ideal mathematical state of Brownian motion;
logistic regression (LR), which is a machine learning method
solving binary (0 or 1) problems and estimating the possibility
of something; and decision tree (DT), which is the process
of classifying data through a series of rules. The results show
that LGBMMDA achieved AUC values of 0.9738 and 0.9715 in

LOOCV and fivefold cross-validation, respectively (see Figures 3,
4). In addition, we analyze the scores of known associations about
LOOCV and count the number of known associations correctly
identified by each algorithm (see Figure 5). It can be seen from
Figure 6 that our proposed method is superior to other methods
in terms of precision, recall, and F1-measure (0.898596, 0.90566,
and 0.9021, respectively). Although the precision of LR is higher
than our method, the recall of LR is significantly lower. Our
method is steadier than LR.

PARAMETER ANALYSIS

In this section, we select some significant parameters to be
adjusted in LightGBM. Firstly, we set the parameter n_estimators,
which is related to the number of residual trees, from 100 to 500,
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FIGURE 10 | The associations between anemia and some metabolites. The blue ellipses represent the known metabolites about anemia in this study. The yellow
triangles represent the top 10 predicted metabolites relevant to anemia. The blue diamonds represent the top 10 neighbors about predicted or known metabolites.

while other important parameters are set to default. Figure 1
shows that we get better results when n_estimators is set to 300
(see Figure 7). In order to improve the accuracy, the values of the
parameter max_depth, which limits the maximum depth of the
tree model, is set from 3 to 8, and num_leaves, which controls
the number of leaf nodes, is set from 5 to 100. As a result,
max_depth = 7 and num_leaves = 15 achieve better performance
(see Figure 8). Finally, the range of max_bin, which has an effect
on overfitting, is set from 5 to 256, and min_data_in_leaf, which
is the minimum number of samples contained on a leaf node,
is set from 1 to 100. The results show that max_bin = 45 and
min_data_in_leaf = 51 are better than other values (see Figure 9).

CASE STUDY

In this section, we analyze three kinds of diseases, anemia,
uremia, and asthma, in case studies to discover their pathogenic
mechanisms from the perspective of metabolites. There are 10, 9,
and 7 metabolites of these diseases that could be verified out of
the top 10 predicted metabolites, respectively. Figure 10 shows
anemia and its relevant metabolites.

Anemia is caused by the inability of the body to produce
enough hemoglobin, which is a protein that carries oxygen to

blood cells and tissues. This disease has common symptoms, such
as fatigue and dizziness. We conduct our method on a case study
of anemia (see Table 1) to select the top 10 most likely associated
metabolites, and all of them are associated with anemia according
to literature in NCBI. For instance, L-histidine (Peterson et al.,
1998) acts as a semi-essential amino acid, which is medically used
in the treatment of anemia (Wang et al., 2020).

Table 1 | Candidate metabolites of anemia.

Anemia

Rank Metabolite name Evidences

1 L-Histidine PMID: 32498848

2 L-Proline PMID: 26821380

3 Glycine PMID: 30853991

4 L-Arginine PMID: 31355573

5 L-Valine PMID: 30860750

6 L-Tryptophan PMID: 32153576

7 L-Glutamine PMID: 32350885

8 L-Tyrosine PMID: 32764239

9 L-Glutamic acid PMID: 30628549

10 L-Phenylalanine PMID: 26956768
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Table 2 | Candidate metabolites of asthma.

Asthma

Rank Metabolite name Evidences

1 L-Histidine PMID: 31206804

2 L-Proline PMID: 29059088

3 L-Tryptophan PMID: 31951781

4 L-Glutamic acid –

5 3-Hydroxybutyric acid PMID: 32213896

6 Succinic acid PMID: 14846625

7 L-Methionine PMID: 32778730

8 1-Methylhistidine PMID: 24783928

9 L-Threonine –

10 PC(18:1(11Z)/22:1(13Z)) –

Table 3 | Candidate metabolites of uremia.

Uremia

Rank Metabolite name Evidences

1 L-Histidine PMID: 8676800

2 L-Proline PMID: 20355181

3 3-Hydroxybutyric acid

4 Biotin PMID: 6322032

5 Xanthine PMID: 19379356

6 L-Tryptophan PMID: 935125

7 Inosine PMID: 9607216

8 Succinic acid PMID: 13837895

9 L-Glutamic acid PMID: 6508956

10 gamma-Aminobutyric acid PMID: 16797388

Asthma is a common and frequent disease, which has the
main symptoms of paroxysmal wheezing, chest tightness, and
cough. The field of metabolomics has been used to explore the
metabolic signatures of asthma, both for biomarker identification
and pathophysiologic mechanisms research. We perform our
method on a case study of asthma, and 7 of the top 10 predicted
metabolites that are interrelated with asthma are verified to be
correlative (see Table 2). For example, L-proline (Nadler et al.,
1988) is one of metabolic characteristics of asthma, which is
supported by experimental asthma models and clinical studies
in children and adults (Pite et al., 2018). Another example
is L-tryptophan (Hartzema et al., 1991), which has long been
suggested to be relevant to the pathophysiology of asthma
(Hu et al., 2020).

Uremia is a serious kidney disease that is caused by a
disorder in the internal biochemical process after renal function
loss. We conduct our calculation method on a case study of
uremia. As illustrated in Table 3, 9 of the top 10 predicted
metabolites that are interrelated with uremia are verified to be
correlative. For example, L-histidine is found to be significantly
enhanced in the brain in uremia patients (Schmid et al.,
1996). The L-proline in body fluids is a biological parameter
for patients with renal insufficiency and chronic uremia
(Hanwen, Sun et al., 2009).

DISCUSSION

Uncovering complex disease-related metabolites is a vital
research topic in metabolomics. To this end, we proposed a
computational model called LGBMMDA under the framework
of LightGBM. The experimental results by cross-validation have
proven that our method outperforms previously used methods.
Furthermore, three case studies indicate that the metabolite–
disease correlations predicted in our method can be effectively
demonstrated by relevant experiments. The LGBMMDA method
is expected to be a useful biomedical research tool for predicting
potential metabolite–disease associations.

There are three factors that contribute to the ideal predictive
performance of LGBMMDA. Our method makes the following
contributions for uncovering metabolite–disease associations:
Firstly, the data of the metabolite–pathway associations are
selected as metabolite functional similarities, which is a novel
way to calculate similarities between metabolites. Secondly, three
features are extracted by different angles, which keeps the
diversity of features and contributes to a reliable performance.
Thirdly, our method utilizes the reliable classifier of LightGBM,
which ensures an effectively predictive accuracy.

However, there are several limitations in our prediction
model. On the one hand, many parameters of GBM need to be
adjusted. In this work, parameter adjustment is only carried out
by some experiments. In future work, some algorithms might be
used to adjust those parameters. On the other hand, more useful
methods for calculating relevant similarities could be beneficial
to enhancing the performance of our model. In the future, more
biologically relevant information is expected to be available,
which can be used to refine the similarities.
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Drug repositioning is used to find new uses for existing drugs, effectively shortening

the drug research and development cycle and reducing costs and risks. A new model

of drug repositioning based on ensemble learning is proposed. This work develops

a novel computational drug repositioning approach called CMAF to discover potential

drug-disease associations. First, for new drugs and diseases or unknown drug-disease

pairs, based on their known neighbor information, an association probability can be

obtained by implementing the weighted K nearest known neighbors (WKNKN) method

and improving the drug-disease association information. Then, a new drug similarity

network and new disease similarity network can be constructed. Three prediction

models are applied and ensembled to enable the final association of drug-disease

pairs based on improved drug-disease association information and the constructed

similarity network. The experimental results demonstrate that the developed approach

outperforms recent state-of-the-art prediction models. Case studies further confirm the

predictive ability of the proposed method. Our proposed method can effectively improve

the prediction results.

Keywords: drug repositioning, ensemble strategy, similarity measure, matrix completion, drug-disease

association

1. INTRODUCTION

Traditional drug discovery is a high-risk, high-investment, and long-term process (Li et al., 2015).
It is well-known that it usually takes more than 10 years and more than $800 million to bring a new
drug to market (Adams and Brantner, 2006). Additionally, the probability of drug approval success
is below 10% (Ashburn and Thor, 2004). Considering the challenges of traditional drug discovery,
the drug repositioningmethod is rising in popularity (Cano et al., 2017) and has attracted increasing
interest from the research community and pharmaceutical industry (Shameer et al., 2015). Some
successful repositioning drugs, such as duloxetine, sildenafil, and thalidomide, have generated high
revenues in the history of their patent holders or companies (Ashburn and Thor, 2004).

The purpose of drug repositioning is to discover new indications for old drugs. Recently, many
computational drug repositioning techniques, such as machine learning-based models, have been
used to identify potential drug-disease interactions (Li et al., 2015). For example, Napolitano et al.
(2013) melded drug-related features into a single information layer, which was used to train a
multi-class support vector machine classifier whose output was a therapeutic class for a given drug.
Chen and Li (2017) proposed the flexible and robust multiple-source learning (FRMSL) method to
integrate multiple heterogeneous data sources to obtain drug-drug similarity and disease-disease
similarity, and used the Kronecker regularized least squares (KronRLS) approach to solve the
prediction problem. Liang et al. (2017) used Laplacian regularized sparse subspace learning to find
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novel drug indications, integrating multiple pieces of
information. Most machine learning-based models using
negative samples are generated randomly from unknown
associations, among which some false negatives may be included,
resulting in a biased decision boundary (Liu et al., 2016a).

In recent years, with the rapid advance of high-throughput
biology, huge amounts of multi-omic data have been yielded
and several databases have been developed to store these
valuable data (Chen et al., 2019; Luo et al., 2020). With the
development of publicly available drug-related or disease-related
databases, the network-based method is widely used in drug
repositioning. The network-based method discovered potential
drug–disease associations by propagating information in a
heterogeneous biological network containing some information
about diseases, drugs, or targets (Luo et al., 2018). For
example, Yu et al. (2015) used drugs, protein complexes,
and diseases to construct a tripartite network, which inferred
the association probabilities of drug-disease pairs. Martìnez
et al. (2015) developed DrugNet, a model for drug-disease
and disease-drug prioritization; a network of interconnected
drugs, proteins, and diseases was built, and DrugNet was used
for drug repositioning. Luo et al. (2016) utilized drug- and
disease-related properties to compute comprehensive similarity
measures and the utility bi-random walk (BiRW) algorithm
to find new uses for existing drugs. In recent years, the
matrix factorization-based method has been successfully applied
to biological association prediction, such as lncRNA-disease
(Fu et al., 2017; Lan et al., 2020), drug-target (Liu et al.,
2016b; Shi et al., 2018), and drug-disease (Zhang et al.,
2018). The method can integrate prior information flexibly
and integrate much information and many features into the
framework to improve the accuracy of prediction. Zhang et al.
(2018) developed a similarity-constrained matrix factorization
approach (SCMFDD), which utilizes known drug-disease
interactions, drug features, and disease features to predict
potential drug-disease associations. Gönen and Kaski (2014)
developed a new probabilistic method KBMF2MKL, which
extended kernelized matrix factorization by incorporating
multiple kernel learning. However, association prediction with
matrix factorization has some limitations on the accuracy
and prediction performance, especially for new diseases or
drugs, which are called cold start problems. So, given different
prediction approaches, an ensemble method is a promising way
to combine their capacity in predicting the associations between
drugs and diseases.

In this work, we develop a new drug repositioning model,
CMAF, which integrates three methods (matrix factorization-
based, label propagation-based, and network consistency
projection-based methods) to obtain the final prediction result.
To assess the performance of the developed approach, 10-fold
cross-validation was implemented, and from the experimental
results, we can see that ensemble models can combine different
information to achieve high-accuracy performance. The
experimental results demonstrate that CMAF obtained better
results than the other four recent models in predicting potential
drug-disease associations.

2. MATERIALS AND METHODS

In this section, we first introduce the gold standard dataset
used in this study. Then, a proposed drug repositioning
method named CMAF is presented to discover new uses for
existing drugs. The overall flowchart of CMAF is shown in
Figure 1, which contains the following three steps. First, the
WKNKN algorithm is used as a preconditioning step to compute
the temporary association score for new drugs and diseases
or unknown drug-disease pairs. Second, a new drug-drug
similarity network and a new disease-disease similarity network
can be established. Third, three classical models are used to
predict potential drug-disease associations separately, and their
prediction results are ensembled to obtain the final association
possibility of drug-disease pairs.

2.1. Dataset
The dataset used in this paper is curated manually from multiple
biological datasets (Gottlieb et al., 2011). The dataset has 593
drugs and 313 diseases involving 1,933 validated drug-disease
pairs. The drugs are collected from DrugBank (Wishart et al.,
2006), and the diseases are extracted from Online Mendelian
Inheritance in Man (OMIM) (Hamosh et al., 2002).

The drug similarity is computed by the Chemical
Development Kit (CDK) (Steinbeck et al., 2006) in terms
of SMILES (Weininger, 1988) chemical structures, and the
similarity between drug pairs is denoted as the Tanimoto score
(Tanimoto, 1958) of their 2D chemical fingerprints. The disease
similarity is computed using MimMiner (van Driel et al., 2006),
which measures the similarity of two diseases by calculating the
similarity between the MeSH terms (Lipscomb, 2000) present in
the medical description information from the OMIM database.

2.2. Improved Drug-disease Association
A known drug-disease association Y can be modeled as a two-
dimensional matrix, which has m drug rows and n disease
columns, where each entry is denoted by Yij. The i-th row vector
of the adjacency matrix Y , Y(ri) = (Yi1,Yi2, . . . ,Yin), is the
interaction profile for drug ri. Similarly, the j-th column vector
of the adjacency matrix Y , Y(dj) = (Y1j,Y2j, . . . ,Ymj), is the
interaction profile for disease dj.

It should be noted that the interaction profiles of new drugs
or new diseases are all zero values. Additionally, many of the
non-associations in Y are unobserved situations that could have
potential interactions (i.e., false negatives). Therefore, we used
WKNKN (Ezzat et al., 2017) to obtain the interaction likelihood
value for non-associated drug-disease pairs in terms of their K
nearest known neighbors [the K nearest known neighbors can be
obtained by the K nearest neighbors (KNN) function according
to their drug or disease similarity]. Here, we set K = 5. For
every drug ri, the similarity of its chemical structure with the
K known drugs nearest to it and their corresponding values
in the interaction profiles are utilized to obtain the interaction
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FIGURE 1 | Flowchart of CMAF.

likelihood profile of the drug ri as follows:

Yr(p) =

(

K
∑

i=1

wiY (ri)

)

/Qr (1)

where ri to rk represent the K known nearest neighbors of drug
rp; the weight coefficient is wi = Ti−1Sr(ri, rp) where T ≤ 1 is
the decay term, and here, we set T to 0.5; and Sr(ri, rp) is the

similarity between ri and rp. Moreover, Qr =
∑K

i=1 S
r
(

ri, rp
)

is the normalization term. For the same reason, the interaction
likelihood profile of disease dj is as follows:

Yd(q) =





K
∑

j=1

wjY
(

dj
)



 /Qd (2)

where d1 to dk represent the K known nearest neighbors of
disease dq, the weight coefficient is wj = Tj−1Sd(dj, dq), the decay

term T is 0.5, Sd(dj, dq) is the similarity between dj and dq, and

the normalization term is Qd =
∑K

j=1 S
d
(

dj, dq
)

.

Then, we fuse Yr and Yd to replace Yij = 0 by taking the
average of the two values mentioned above and denote it as Yrd;
we can then obtain a new adjacency matrix Y .

Y = max(Y ,Yrd) (3)

where, Yrd = (Yr + Yd)/2.

2.3. Improved Similarity of Drugs and
Diseases
Similarity-based methods are widely used to find similar drugs
(Vilar and Hripcsak, 2017). Some studies have shown that
the use of similarity measures in drug repositioning often
shows high predictive power (Azad et al., 2020). Therefore,
similarity measurement is always regarded as an important step
in drug repositioning research. The improvement of similarity
can improve the prediction performance (Wang and Kurgan,
2019), reduce the computation cost, and make the similarity-
based method more attractive and promising (Ding et al., 2014).

Relevant studies found that each data point can be linearly
reconstructed from its neighborhood (Wang and Zhang, 2008),

Frontiers in Genetics | www.frontiersin.org 3 May 2021 | Volume 12 | Article 666575100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Ensemble Strategy Predicting Association

we can calculate the pairwise drug similarity and pairwise disease
similarity, which is the samemethod as in previous works (Zhang
et al., 2017).

Here, we use drug data points as an example. Let xi represent
the feature vector of the i-th drug. The optimization problem is
expressed as:

where N(xi) denotes the set of K(0 < K < n) nearest
neighbors. Here, we set K to 100.

minωi εi =

∥

∥

∥
xi −

∑

ij : xi∈N(xi)
ωi,ijxij

∥

∥

∥

2

=
∑

ij ,ik : xij ,xik
∈N(xi)

ωi,ijG
i
ij ,ik

ωi,ik = ω
T
i G

i
ωi

s.t.
∑

ij : xij∈N(xi)
ωi,ij = 1,ωi,ij ≥ 0, j = 1, 2, . . . ,K

(4)

Gi
ij ,il
=

(

xi − xij
)T (

xi − xil
)

. ωi,ij are the weights xij for

rebuilding xi and can be seen as the similarity of xi and xij .
To avoid over-fitting, we add the regularization term for

the rebuilt weight wi and the objective function can be
transformed as follows:

minωi εi = ω
T
i G

i
ωi + λ ‖ωi‖

2 = ω
T
i

(

Gi + λI
)

ωi

s.t.
∑

ij : xij∈N(xi)
ωi,ij = 1,ωi,ij ≥ 0, j = 1, 2, . . . ,K (5)

where λ denotes the regularization parameter. Here, we set λ = 1.
We adopt standard quadratic programming to solve Equation

(5), and its solution is called the linear neighborhood similarity.
Here, a weight matrixW can be obtained, which we regard as the
drug linear neighborhood similarity Sr

∗
.

Likewise, we can obtain the disease linear neighborhood
similarity Sd

∗
.

2.4. Prediction Method
In this section, we use the drug linear neighborhood similarity
and disease linear neighborhood similarity Sd

∗
to carry out

three classical approaches to predict unobserved drug-disease
interactions separately and ensemble their prediction results to
obtain the final association possibility of drug-disease pairs.

2.4.1. Label Propagation
Label propagation (LP) methods perform the following task:
given a weighted network, in which a small part of the nodes are
labeled (with labels, such as positive), calculate the labels of the
remaining unlabeled nodes (Zhang et al., 2015).

We formulate Sd
∗
as a directed graph, where drugs are nodes

and the edge between drug ri and drug rj is weighted by the linear
neighborhood similarity between the two drugs.

After constructing the graph, we utilize a label propagation
approach to predict the unknown drug-disease pair association
score (LPRIA). The known drug-disease associations are
considered the initial node label information, and then the label
information is updated. In each step, each drug node absorbs its
neighbor’s label information with probability α andmaintains the
initial state with probability 1 − α. Here, we set α as 0.5. The
updated process can be written as:

Y t+1
j = αSr

∗

Y t
j + (1− α)Y0

j (6)

where, Y0
j denotes the j-th column of the initial drug-disease

interaction matrix Y (i.e., the initial states of all drugs for disease
dj). Furthermore, taking all diseases into account, the update
process can be formulated in matrix form as:

Y t+1 = αSr
∗

Y t + (1− α)Y0 (7)

Equation (7) will be used to update the label matrix until it
converges, and Equation (7) will converge to:

Yr∗ = (1− α)
(

I − αSr
∗
)−1

Y0 (8)

where I represents the identity matrix and Yr∗ represents the
predicted drug-disease pair probability from the drug side. For
the convergence analysis of this update process, please refer
to Wang and Zhang (2008).

Likewise, we constructed the label propagation approach from
the disease side to obtain the predicted drug-disease interaction
score matrix Yd∗ . The final association score Y∗ is obtained
according to the average of Yr∗ and Yd∗ .

2.4.2. Non-negative Matrix Factorization
Non-negative matrix factorization (NMF) is an unsupervised
model (Fujita et al., 2018). Its goal is to obtain two non-negative
matrices and take their product as the optimal approximation to
the original matrix. From the perspective of drug repositioning,
the drug-disease association matrix Y ∈ Rm×n is factorized
into two non-negative matrices, W ∈ Rm×k and H ∈ Rn×k

(k≪min(m, n)), here, we set k to 100, and Y ≈WHT .
To avoid over-fitting and increase the learning performance,

Tikhonov and graph regularization terms are added to the
standard NMF model to predict novel drug-disease pairs
(NMFRIA). NMFRIA’s objective function is as follows:

minW,H

∥

∥Y −WHT
∥

∥

2

F
+ λl

(

‖W‖2F + ‖H‖
2
F

)

+ λr Tr
(

WTLrW
)

+λd Tr
(

HTLdH
)

s.t. W ≥ 0,H ≥ 0

(9)

where λl, λr , and λd represent the regularization coefficients;
Tr(·) denotes the trace of a matrix, Lr = Dr − Sr

∗
is the

graph Laplacian matrix for the drug similarity matrices, Sr
∗
and

Ld = Dd − Sd
∗
are the graph Laplacian matrices for the disease

similarity matrices Sd
∗
(Liu et al., 2014); and Dr and Dd represent

the diagonal matrices whose entries are the row sums of Sr
∗
and

Sd
∗
, respectively.
The method proposed by Xiao et al. (2018) is adopted to solve

the minimization problem, and W and H are updated with an
iterative equation. Here, the updating rules can be defined as:

wik← wik

(

YH + λrS
r∗W

)

ik
(

WHTH + λlW + λrDrW
)

ik

(10)

hjk ← hjk

(

YTW + λdS
d∗H

)

jk
(

HWTW + λlH + λdDdH
)

jk

(11)
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where wik represents the i-th row and the k-th column of non-
negative matrix W, and hjk represents the j-th row and the k-th
column of non-negative matrix H.

According to Equations (10) and (11) the two non-negative
matrices W and H are updated until convergence, and then
we can obtain the predicted drug-disease interaction matrix as
Y∗∗ =WHT . Here, we set λl to 2, and λr = λd = 0.0001.

2.4.3. Network Consistency Projection
Network consistency projection (NCP) considers drugs ri that
have a higher similarity to other drugs in the drug similarity
matrix; the more drugs are associated with disease dj, the higher
the spatial similarity of drug ri with disease dj (and vice versa).
Here, we use the NCP approach (Gu et al., 2016) for drug-disease
association (NCPRIA) to obtain the predicted association scores
between unknown drug-disease pairs.

NCPRIA computes the association probability between
drug ri and disease dj by fusing two network consistency
projection scores (the drug and disease space projection scores).
Considering that unknown drug-disease pairs are not confirmed
by experiment, which cannot prove that they are unrelated, and
to prevent 0 from being the denominator, we replace 0 in the
matrix Y with 10–30.

The drug space projection is the projection of the drug
similarity network Sr

∗
on the drug-disease interaction network

Y , which can be described as follows:

NCP−R(i, j) =
Sr
∗
(i, :)∗Y(:, j)

|Y(:, j)|
(12)

where Sr
∗
(i, :) denotes the similarities between drug ri and all

other drugs in the i-th row of matrix Sr
∗
and Y(:, j) denotes the

associations between disease dj and all drugs. |Y(:, j)| represents
the length of the vectorY(:, j).NCP_R(i, j) represents the network
consistency projection score of Sr

∗
(i, :) on Y(:, j). It is worth

noting that the smaller the angle is between Sr
∗
(i, :) and Y(:, j),

the more drugs are related to disease j and the more similar drugs
there are to drug i, the larger the network consistency projection
score NCP_R(i, j).

Similarly, we can obtain the disease space projection score
as follows:

NCP−D(i, j) =
Y(i, :)∗Sd

∗
(:, j)

|Y(i, :)|
(13)

where Sd
∗
(:, j) denotes the j-th column of matrix Sd

∗
and

Y(i, :) denotes the i-th row of drug-disease association Y .
NCP_D(i, j) represents the network consistency projection score
of Sd

∗
(:, j) on Y(i, :).

Finally, the projection score for the drug space and disease
space are fused and normalized as follows:

Y∗∗∗(i, j) =
NCP−R(i, j)+ NCP−D(i, j)
∣

∣Sr
∗
(i, :)

∣

∣+
∣

∣Sd
∗
(:, j)

∣

∣

(14)

where Y∗∗∗ represents the predicted drug-disease association
matrix and Y∗∗∗(i, j) is the final predicted score of drug ri and
disease dj.

2.4.4. Integrating the Prediction Results
According to the three aforementioned computational drug
repositioning methods, to obtain better performance, a fusion
model is adopted to integrate their predicted results, and the
final prediction score between drugs and diseases is computed
as follows:

Rt = 1−
(

1− Y∗
) (

1− Y∗∗
) (

1− Y∗∗∗
)

(15)

In particular, Y∗ is the predicted drug-disease association
probability of the LPRIAmethod, Y∗∗ is the predicted association
probability of the NMFRIA method, Y∗∗∗ is the predicted
association probability of the NCPRIAmethod, and Rt stands for
the final predicted drug-disease association probability.

3. EXPERIMENTS AND RESULTS

In this section, the performance of our approach, CMAF,
is systematically evaluated. First, we describe the evaluation
metrics. Based on a gold standard dataset, we compare our
approach with several recent prediction algorithms and present
the results in this section. In addition, the effectiveness of the
developed method is further confirmed by case studies.

3.1. Evaluation Metrics
To evaluate the prediction performance of the proposed CMAF
method, 10-fold cross-validation was conducted on the gold
standard dataset. In each round of 10-fold cross-validation, all
the recorded drug-disease pairs were randomly divided into 10
equal-sized parts. Each part was taken as a test set in turn,
while the remaining nine parts of the data were merged as
the training set, thus generating 10 pairs of training sets and
test sets. To obtain convincing results, 10-fold cross-validation
was repeated 10 times, and the average value of 10-folds was
taken as the final result. After performing association prediction
based on the training set, we can obtain the prediction values
for each association. Then, for each drug, the test drug-
disease associations are ranked together with all unconfirmed
drug-disease pairs (candidate associations) in descending order
according to the predicted values. For each specific ranking
threshold, four metrics: true positive (TP), false negative (FN),
false positive (FP), and true negative (TN), can be obtained based
on the ranking results. If a test association has a higher rank value
than the given threshold, it is considered as a correctly identified
positive sample. Likewise, a candidate association is considered a
correctly identified negative sample if it has a lower rank than the
given threshold.

To provide an intuitive explanation of the evaluation metrics,
a confusion matrix is first defined, which is built by comparing
actual values with predicted outcomes. The two classes are
constructed with positives and negatives, as shown in Table 1.

Next, the evaluation metrics of the true positive rate (TPR)
and false positive rate (FPR) can be defined as follows:

TPR =
TP

TP + FN
(16)
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FPR =
FP

FP + TN
(17)

Where TP and FP represent the numbers of correctly and
wrongly identified positive samples and TN and FN represent the
numbers of correctly and wrongly identified negative samples;
TPR and FPR are calculated based on these four metrics.
Furthermore, TPR is the ratio of known drug-disease pairs
that are correctly predicted, and FPR is the proportion of
unconfirmed drug-disease pairs that are predicted.

After that, the receiver operating characteristic (ROC) curve
can be drawn based on TPR and FPR at different thresholds.
Meanwhile, the area under ROC (AUC) can be calculated to
evaluate the prediction performance. The larger the value of the
AUC, the better the prediction performance. For instance, if the
value of the AUC is equal to 1, it means the best performance.

3.2. Comparison With Other Methods
In this section, to evaluate the ability of the proposed
approach, we compare CMAF with four other recently proposed
computational drug repositioning approaches: NBI (Cheng et al.,

TABLE 1 | Confusion matrix.

Actual value

Positive Negative

Predicted value
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

2012), BNNR (Yang et al., 2019), HGBI (Wang et al., 2013), and
NGRHMDA (Huang et al., 2017). NBI is based on a bipartite
network and constructs a two-step diffusion model for drug
repositioning (Cheng et al., 2012). BNNRwas developed to utilize
a bounded nuclear norm regularization approach to construct the
drug-disease matrix under the low-rank assumption (Yang et al.,
2019). HGBI was proposed according to the guilt-by-association
principle and an intuitive interpretation of information flow on
a heterogeneous graph (Wang et al., 2013). NGRHMDA uses
neighbor-based collaborative filtering and a graph-based scoring
method to obtain the association score (Huang et al., 2017).
AlthoughHGBI andNBI were originally used to predict potential
drug-target associations and NGRHMDA was originally used to
predict new microbe-disease associations, they can also be used
to predict new drug-disease associations. The parameter values
used in NBI, BNNR, HGBI, and NGRHMDA are set based on
their corresponding literature.

The predictive ability of all drug repositioning approaches
is evaluated in terms of the AUC specified in section 3.1. As
shown in Figure 2, the results demonstrate that our developed
approach, CMAF, is superior to the other four drug repositioning
approaches. In detail, CMAF obtains an AUC value of 0.941,
while BNNR, HGBI, NBI, and NGRHMDA achieve inferior
results of 0.931, 0.832, 0.583, and 0.503, respectively.

3.3. Comparison of the Three Methods
With Their Combined Model
The effectiveness of the fusion method is evaluated in this
section. We performed drug-disease association prediction on

FIGURE 2 | Prediction results of various methods according to ROC curve analysis.
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the gold standard dataset by using three methods (i.e., the
LPRIA, NMFRIA, and NCPRIA methods) and their combined
method. As shown in Figure 3, the AUC values of the three

methods LPRIA, NMFRIA, and NCPRIA were 0.927, 0.923,
and 0.920, respectively; however, the fusion method CMAF
obtained an AUC value of 0.941. The experimental results

FIGURE 3 | Prediction performance of CMAF and the three individual methods according to the ROC curve.

FIGURE 4 | Prediction performance of CMAF and the other four methods in predicting drug-disease associations for new drugs according to the ROC curves.
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TABLE 2 | Case studies of four chosen drugs: levodopa, flecainide, zoledronic

acid, and amantadine.

Drug (DrugBank IDs) Top 5 candidate

diseases (OMIM

IDs)

Evidence

DB01235 168600 KEGG/DB/CTD

Levodopa 125320 DB/CTD

165199

254770

190400

DB01195 608583 CTD

Flecainide 194200 KEGG/CTD

115000 DB/CTD

157300

608622 CTD

DB00399 166710 KEGG/CTD

Zoledronic acid 102400

144700 CTD

166300

114480 CTD

DB00915 168600 KEGG/DB/CTD

Amantadine 125320 DB/CTD

605055

104300 CTD

607225

For each drug, the top five ranked predicted drugs are listed below.

illustrated the effectiveness of our fusion approach. Specifically,
the CMAF method obtained the best performance among these
four methods.

3.4. Prediction for New Drugs
To test the predictive performance of CMAF for new drugs, a de
novo prediction test was executed. In de novo drug validation,
for each of the drugs, we deleted all of its known associations,
and they were used for testing samples in turn; the other known
drug-disease association was used as the training sample. The
rankings of the removed drug-disease associations relative to the
drug candidate associations were obtained by de novo testing,
which was used to assess the predictive performance. To compare
the predictive ability of different methods in de novo testing of
new drugs, the other four prediction methods also underwent
de novo prediction tests. The experimental results are shown in
Figure 4, and the graph demonstrates that our CMAF is superior
to the other approaches. In detail, CMAF obtains an AUC value
of 0.941, while the results of BNNR,HGBI, NBI, andNGRHMDA
are 0.813, 0.789, 0.575, and 0.519, respectively.

4. CASE STUDIES

After verifying the predicted performance of CMAF in terms
of 10-fold cross-validation, the ability of our proposed model
to identify new indications for a given drug is further validated

here. To predict new drug-disease interactions, all known drug-
disease pairs are considered as the training set, and the remaining
unknown drug-disease pairs form the candidate set. By applying
our CMAF method, we can obtain all the candidates’ set
prediction scores. According to the prediction scores, for every
drug, all the candidate diseases are ranked.

As an example, we selected some drugs and the corresponding
top five candidate diseases as verified information, and then we
found that some of them were confirmed in the KEGG (Kanehisa
et al., 2013), DrugBank and CTD (Davis et al., 2014) databases,
as shown in Table 2. For example, the effectiveness of levodopa
in treating Parkinson’s disease (PD) due to its ability to cross the
blood-brain barrier can be retrieved from the KEGG, DrugBank,
and CTD databases. In addition, relevant literature has shown
that levodopa-treated patients have gained improvement in most
Parkinsonian features in the past half-century (Lewitt, 2015).
Flecainide is helpful for treating atrial fibrillation, as can be
retrieved from CTD, and there is literature to prove that in
clinical trials and real-world use, flecainide is more effective than
other antiarrhythmic drugs (AADs) for the acute termination
of recent-onset atrial fibrillation (Echt and Ruskin, 2020). From
KEGG and CTD, zoledronic acid can be found to treat and
prevent multiple forms of osteoporosis. There is also literature
to prove that zoledronic acid administered once yearly for up to
3 years improved bone mineral density (BMD) at several skeletal
sites, reduced fracture risk and bone turnover, and/or preserved
bone structure and mass relative to placebo in clinical studies in
patients with primary or secondary osteoporosis (Dhillon, 2016).
Amantadine is an antiviral that can be used to cure PD and
can be retrieved from KEGG, DB, and CTD. Relevant literature
suggests that amantadine is an old antiviral compound that
moderately ameliorates impaired motor behavior in Parkinson’s
disease (Müller et al., 2019).

5. CONCLUSION

This work proposed a new computational drug repositioning
model named CMAF to find new uses for existing drugs. First,
the number of known drug-disease interactions is far less than
that of unknown drug-disease interactions in practice, which
leads to the problem of data sparseness for drug repositioning.
Therefore, we used theWKNKNmethod as a pre-processing step
to compute the temporary association scores for these unknown
drug-disease interactions in terms of their known neighbors, and
then we computed the linear neighborhood similarity for drugs
and diseases. After that, the LPRIA, NMFRIA, and NCPRIA
methods were adopted to obtain three predictive association
possibilities. Finally, we adopted an ensemble strategy to fuse
these three prediction models to obtain the hopefully final
prediction result. Compared with several recent computational
drug repositioning models, our proposed CMAF approach
achieves better predictive performance.

Even though our proposed method obtains promising results,
it still has some limitations. First, we plan to consider integrating
more predictive methods into the ensemble strategy. Second,
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CMAF utilizes only single drug-drug similarity and disease-
disease similarity to construct prediction methods. In the future,
we will compute multiple drug-drug similarities and disease-
disease similarities and combine diverse similarities to further
improve the predictive performance.
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N6-methyladenosine (m6A) is one of the most prevalent RNA post-transcriptional
modifications and is involved in various vital biological processes such as mRNA splicing,
exporting, stability, and so on. Identifying m6A sites contributes to understanding
the functional mechanism and biological significance of m6A. The existing biological
experimental methods for identifying m6A sites are time-consuming and costly. Thus,
developing a high confidence computational method is significant to explore m6A
intrinsic characters. In this study, we propose a predictor called m6AGE which utilizes
sequence-derived and graph embedding features. To the best of our knowledge, our
predictor is the first to combine sequence-derived features and graph embeddings for
m6A site prediction. Comparison results show that our proposed predictor achieved
the best performance compared with other predictors on four public datasets across
three species. On the A101 dataset, our predictor outperformed 1.34% (accuracy),
0.0227 (Matthew’s correlation coefficient), 5.63% (specificity), and 0.0081 (AUC) than
comparing predictors, which indicates that m6AGE is a useful tool for m6A site
prediction. The source code of m6AGE is available at https://github.com/bokunoBike/
m6AGE.

Keywords: m6A, machine learning, graph embedding, feature fusion, CatBoost

INTRODUCTION

N6-methyladenosine (m6A) is one of the most prevalent RNA post-transcriptional modifications.
It was first found in mammalian RNA in 1974 (Desrosiers et al., 1974). Subsequently, m6A
modification was observed in various species, such as Saccharomyces cerevisiae (Schwartz et al.,
2013), Arabidopsis (Luo et al., 2014), humans and mouse (Dominissini et al., 2012). Research
shows that m6A sites are enriched in long internal exons and 3′UTRs around stop codons rather
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than randomly distributed in the genome (Dominissini et al.,
2012; Meyer et al., 2012; Wan et al., 2015). It has been reported
that m6A modification is associated with many biological
processes, including but not limited to protein translation and
localization (Meyer and Jaffrey, 2014), mRNA splicing and
stability (Nilsen, 2014), RNA localization and degradation (Meyer
and Jaffrey, 2014). Therefore, precisely identifying m6A sites
contributes to understanding the regulatory mechanism and
biological significance of m6A modification.

High-throughput techniques have enabled locating the m6A
sites in genomes. MeRIP-Seq (or m6A-Seq), a combination
of immunoprecipitation and next-generation sequencing
technology, has successfully mapped m6A in several species
genomes (Dominissini et al., 2012; Schwartz et al., 2013; Wan
et al., 2015). In 2015, Chenet al. developed photo-crosslinking-
assisted m6A-sequencing (PA-m6A-seq) which provided a
high-resolution (about 23nt) mammalian map (Chen et al.,
2015a). MeRIP-Seq and PA-m6A-seq can only locate the high
methylation regions of m6A rather than the exact positions. In
the same year, Linder produced a single-nucleotide resolution
map of m6A sites using a new technology termed miCLIP
(Linder et al., 2015). However, the current experimental methods
face a lot of limitations and expensive costs. With the rapid
development of computational methods, it is possible to use
machine learning algorithms to predict m6A. Hence, building
advanced models to predict m6A sites is significant for the
following research of m6A.

Chen et al. (2015b) proposed the first predictor named
iRNA-Methyl for m6A sites in Saccharomyces cerevisiae, using
three physical-chemical properties of dinucleotide and SVM
classifier. WHISTLE (Chen et al., 2019) integrates genomic
features besides the sequence features to train a predictor with
SVM classifier. Liu and Chen (2020) developed a computational
method called iMRM for detecting different RNA modifications
simultaneously with XGBoost classifier. Recently, deep learning
methods show better performance trend in bioinformatics
problems. DeepM6ASeq (Zhang and Hamada, 2018), BERMP
(Huang et al., 2018), Gene2vec (Zou et al., 2019), DeepPromise
(Chen et al., 2020), and im6A-TS-CNN (Liu et al., 2020) establish
deep learning frameworks by using convolutional neural network
(CNN) layers and gated recurrent unit (GRU) to seek the m6A
sites on DNA/RNA sequence level on the same dataset as SRAMP
(Zhou et al., 2016). In this study, seven kinds of sequence-derived
features are employed to encode RNA sequences, including
CTD (Tong and Liu, 2019), Pseudo k-tuple Composition
(PseKNC) (Guo et al., 2014), nucleotide pair spectrum (NPS)
(Zhou et al., 2016), nucleotide pair position specificity (NPPS)
(Xing et al., 2017), nucleotide chemical properties and density
(NCP-ND) (Golam Bari et al., 2013), electron-ion interaction
pseudopotentials (EIIP) (Nair and Sreenadhan, 2006), and bi-
profile Bayes (BPB) (Shao et al., 2009). Besides, graph embedding
methods are innovatively introduced to distill the potential
structure information. Firstly, a network is constructed by
mapping each sample of the dataset to a node. Secondly, the
three graph embedding methods SocDim (Tang and Liu, 2009),
Node2Vec (Grover and Leskovec, 2016), and GraRep (Cao et al.,
2015) are used to learn the distributed representation of the

sample in an unsupervised manner. At last, all the feature vectors
are merged as the input of model. The predictive results show that
m6AGE improves the performance of identifying m6A sites.

MATERIALS AND METHODS

Datasets
The m6A sites of different species share different consensus
motifs. The adenosines lying within the consensus motif
are considered to be the potential methylation sites. The
samples in the dataset are RNA sequence segments with
the potential methylation sites at their center. The samples
with the m6A sites experimentally annotated are put into the
positive dataset, whereas the other samples are put into the
negative dataset.

There have been many datasets across multiple species for
training m6A site predictors. We have collected four datasets
that involve three species: Saccharomyces cerevisiae, Arabidopsis
thaliana, and human. The following are details of these datasets.

A101. Wang extracted A.thaliana m6A sites from the m6A
peak data of Luo et al. (2014) and Wan et al. (2015). The
dataset (Wang and Yan, 2018) Wang built contains 2,518 positive
samples and 2,518 negative samples. Every sample in the dataset
is a 101nt RNA sequence segment.

A25. Luo obtained 4,317 m6A peaks detected both in Can-
0 and Hen-16 strains. After removing the sequences with more
than 60% sequence similarity, Chen et al. (2016) obtained 394
positive samples. The same number of negative samples were
selected randomly from sequences without the m6A site. The
length of every sample is 25nt.

S21. Chen further constructed this dataset (Chen et al., 2015c)
based on the previous work (Chen et al., 2015b). They selected
832 RNA sequence segments as the positive samples in the
training set whose distances to the m6A-seq peaks are less than
10nt. Then, 832 of 33,280 RNA sequence segments with non-
methylated adenines were selected randomly as negative samples
in the training set. The rest 475 RNA sequences with methylated
adenine and 4750 of 33,280 RNA sequences with non-methylated
adenine constitute the independent testing dataset. The length of
every sample is 21nt.

H41. Chen obtained the m6A-containing sequences in Homo
sapiens from RMBase (Chen et al., 2017). All the m6A sites
in these sequences conform to the RRACH motif. The dataset
contains 1,130 positive samples and 1,130 negative samples. The
length of every sample is 41nt.

Construction of Input Feature
Conventional machine learning models require numerical
vectors as input features. The feature extraction methods selected
have an important impact on the performance of the model.
To fully characterize the context of m6A sites, seven sequence-
derived features were used. In addition, we build a network based
on the whole dataset, by mapping each sample to node and the
similarity between samples to edges in the network, and then
use graph embedding (neighborhood-based node embedding)
methods to extract features in an unsupervised manner. The
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FIGURE 1 | The computational framework of our predictor m6AGE. There are two main stages in the construction of m6AGE. Stage 1. Sequence-derived features
are extracted, and graph embeddings are learned. Sequence-derived feature encoding methods directly encode RNA sequences into numerical vectors, including
CTD, NPS, PseKNC, NPPS, NCP-ND, EIIP, and BPB feature encoding method. All the sequences are mapped to nodes of a network, and then their graph
embeddings (SocDim, Node2Vec, and GraRep) are learned in an unsupervised manner. At last, the sequence features and graph embeddings are merged as input
features. Stage 2. We divide the data into training data and test data with a ratio of 4:1. The training data is used to train a CatBoost model. The test data is used to
evaluate the performance of our predictor.

computational framework of our predictor is illustrated in Figure
1. In the following, we will introduce the sequence-derived
features and the graph embeddings, respectively.

Sequence-Derived Features
CTD Feature
CTD (Tong and Liu, 2019) is one of the global sequence
descriptors. The first descriptor C (nucleotide composition)
describes the percentage composition of each nucleotide in
the sequence. The second descriptor T (nucleotide transition)
describes the frequency of four different nucleotides present
in adjacent positions. The third descriptor D (nucleotide
distribution) describes five relative positions of each nucleotide
along the RNA sequence which are the first one, 25%, 50%, 75%,
and the last one.

PseKNC Feature
With the successful application of the pseudo component method
in peptide sequence processing, its idea has been further extended
to the study of DNA and RNA sequences feature representation.
The Pseudo k-tuple Composition (PseKNC) combines the local
and global sequence information of RNA (Guo et al., 2014) and
transforms an RNA sequence into the following vector:

DPseKNC=
[
d1, d2, . . . ,d4k , d4k+1, . . . ,d4k+λ

]T (1)

where,

du =


fu∑4k

i=1 fi+w
∑λ

j=1 θj

(
1 ≤ u ≤ 4k

)
wθu−4k∑4k

i=1 fi+w
∑λ

j=1 θj

(
4k < u ≤ 4k + λ

) (2)

where du
(
u = 1, 2, ..., 4k

)
is the occurrence frequency of the

u-th k-nucleotide in this RNA sequence; the parameter w is the
weight factor; the parameter λ is the number of totals counted
tiers of the correlations along an RNA sequence. The j-tier
correlation factor θj is defined as follows:

θj =
1

L− j− 1

L−j−1∑
i=1

2
(
RiRi+1,Ri+jRi+j+1

)
,

(
j = 1, 2, . . . ,λ;λ < L

)
(3)

The correlation function 2 (, ) is calculated by the following
formula:

2
(
RiRi+1,Ri+jRi+j+1

)
=

1
µ

µ∑
ν=1

[
Pν (RiRi+1)− Pν

(
Ri+jRi+j+1

)]2

(4)
where µ is the number of RNA physicochemical properties
used. RiRi+1 is the dinucleotide at position i of this RNA.
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Pν (RiRi+1) is the standardized numerical value of the ν-th RNA
physicochemical properties for dinucleotide RiRi +1.

Six RNA physicochemical properties are considered: “Rise”,
“Roll”, “Shift”, “Slide”, “Tilt”, “Twist”.

NPS Feature
The nucleotide pair spectrum (NPS) (Zhou et al., 2016) encoding
method describes the RNA sequence context of the site by
calculating the occurrence frequency of all k-spaced nucleotide
pairs in the sequence. The k-spaced nucleotide pair n1{k}n2
means that there are k arbitrary nucleotides between n1 and n2,
and its occurrence frequency is calculated as follows:

dn1{k}n2=
C
(
n1{k}n2

)
L−k−1

(5)

where C
(
n1{k}n2

)
is the count of n1{k}n2 in this RNA sequence,

and L is the sequence length. The parameter k ranges from
1 to dmax. The parameter dmax is set to 3, so this encoding
method transforms an RNA sequence into a vector DNPS with a
dimension of 4 × 4 × 3 = 48.

NPPS Feature
The nucleotide pair position specificity (NPPS) (Xing et al., 2017)
encoding method extracts statistical information by calculating
the frequency of single nucleotide and k-spaced nucleotide pairs
at specific locations. Based on the positive training dataset, we can
get the frequency matrix

F+s =


f+s(A,1) · · · f

+

s(A,L)
...

. . .
...

f+s(G,1) · · · f
+

s(G,L)

 (6)

F+d =


f+d(AA,1)

· · · f+d(AA,L−k−1)
...

. . .
...

f+d(GG,1)
· · · f+d(GG,L−k−1)

 (7)

where the element of F+s is the frequency of single nucleotide
appearing at each location in the positive training dataset; the
element of F+d is the frequency of k-spaced nucleotide pair
appearing at each location in the positive training dataset; and
L is the sequence length. The frequency matrix F−s and F−d are
calculated similarly on the negative training dataset.

Assuming that the i-th nucleotide is “A” and the
(
i+ k

)
-

th nucleotide is “C”, p+i is calculated through conditional
probability formula and frequency matrix:

p+i =
f+d(AC,i)

f+s(C,i+k)

(8)

NPPS encoding method transforms a sequence into a vector
DNPPS =

[
pk+2, ..., pL

]
with a dimension of L− k− 1, where

pi = p+i − p−i .

NCP-ND Feature
Different nucleotides have different chemical properties.
According to the difference of ring structure (purine or

pyrimidine), hydrogen bond (strong or weak), and functional
group (amino or keto), nucleotide A, U, C, and G can be
represented by (1, 1, 1), (0, 1, 0), (0, 0, 1), and (1, 0, 0),
respectively (Golam Bari et al., 2013).

The nucleotide density (ND) is used to measure the relevance
between the frequency and position of the i-th nucleotide ni in
the sequence:

dni =
1
i

L∑
j=1

t
(
nj
)
, t

(
q
)
=

{
1, if nj = q
0, othercase

(9)

where L is the sequence length. Combined with the chemical
properties of nucleotides, each sequence is transformed into a
vector DNCP−ND with a dimension of L × 4.

EIIP Feature
This encoding method uses the electron-ion interaction
pseudopotentials (EIIP) values (Nair and Sreenadhan, 2006) to
represent the nucleotide in the sequence. The EIIP values of
nucleotides A, T (we replace T with U), C, G are 0.1260, 0.1340,
0.0806, and 0.1335, respectively. Thus the dimension of the
vector DEIIP is equal to the sequence length.

BPB Feature
The Bi-profile Bayes (BPB) encoding method was first proposed
by (Shao et al., 2009), and then has been successfully applied in
other fields of bioinformatics. This method uses the occurrence
frequency fi,n of the i-th nucleotide n to estimate the posterior
probability pi,n, and transforms a sequence into the following
vector:

DBPB=
[
f+1,n, f

−

1,n, f
+

2,n, f
−

2,n, . . . ,f
+

L,n, f
−

L,n
]

(10)

where n is the i-th nucleotide of the sequence; f+i,n denotes
the frequency of nucleotide n appearing at the i-th position of
the sequence in the positive training dataset, while f−i,n denotes
the frequency of nucleotide n appearing at the i-th position of
sequence in the negative training dataset. L is the sequence length.
The dimension of the vector DBPB is 2 × L.

Graph Embeddings
Network Construction
To extract the graph embedding feature of each sample, we
construct a network based on the whole dataset. Each sample
in the dataset is taken as a node, and the relationships between
samples are taken as edges. Generally, edges exist two similar
sample nodes. The fast linear neighbor similarity approach
(FLNSA) (Zhang et al., 2017, 2019) is a method to extract
“sample-sample” similarity, which has been successfully applied
to many bioinformatics classification tasks. In this study, FLNSA
is utilized to calculate the similarity between samples.

First, we extract sequence-derived features and use the feature
fusion strategy to transform all the samples in the dataset into
n-dimensional vector {x1, x2, ..., xm}, where xi (0 < i ≤ m) is
the vector of the i-th sample. Then these vectors are concentrated
into a matrix X∈ Rm × n, each row of which represents a sample
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vector. FLNSA tries to minimize the objective function:

min
w

1
2

∣∣∣∣∣∣X− (C⊙W
)
X
∣∣∣∣∣∣2
F
+

µ

2

m∑
i=1

∣∣∣∣∣∣(C⊙W
)

e
∣∣∣∣∣∣2
F

(11)

s.t.
(
C
⊙

W
)

e = e,W ≥ 0

where
⊙

is the Hadamard product operator; ||·||F represents the
Frobenius norm and µ is the regularization coefficient. e is an
m-dimensional column vector with all elements equal to 1. The
element wi,j of matrix W ∈ Rm × m represents the reconstruction
contribution weight of the sample xj to the sample xi, and is used
to quantify the similarity between two samples. The element of
indicator C ∈ Rm × m is

ci,j =
{

1 xj ∈ N (xi)
0 xj /∈ N (xi)

(12)

where N (xi) denotes the set of all neighbors of xi. The Euclidean
distances between xi and other samples are calculated and the
nearest c (0 < c < m) samples are selected to form N (xi).
FLNSA uses the Lagrange method to get matrix W. After
mathematical derivation, the Equation (13) is obtained.

Wij=


Wij

(
XXT
+µeeT

)
ij

((C
⊙

W)XXT+µ(C
⊙

W)eeT)ij
xj ∈ N (xi)

0 xj /∈ N (xi)
(13)

Randomly generated matrix W was updated according to
Equation (13) until convergence. Taking W as the adjacency
matrix, an undirected weighted graph G is obtained. The graph
embedding methods require a connected graph as input. Note
that if G is not connected, we can increase c (the number of
neighborhoods of a sample). Under the condition of ensuring the
connectivity of the graph, the edges whose weights are lower than
the threshold t are removed and the weights of the remaining
edges are set to 1. Finally, an undirected unweighted graph is
constructed based on the dataset.

SocDim
The social-dimension-based (SocDim) (Tang and Liu, 2009)
method is proposed by Lei Tang and Huan Liu to solve the
relational learning between nodes in social networks. This
method extracts latent dimensions from networks and uses
them as distributed representations, which involves community
detection tasks.

SocDim uses Modularity (Newman, 2006) which measures
community structure through degree distribution to extract
potential dimensions. Modularity considers dividing the network
into non-overlapping communities, measures the deviation
between the network and uniform random graphs with the same
degree distribution, and then obtains the modularity matrix B
defined as follows:

B=A−
ddT

2m
(14)

where A is the interaction matrix of the network; d is a column
vector composed of the degrees of each node; m is the number of
nodes. Subsequently, SocioDim extracts the dimensions from the
top eigenvectors of the modularity matrix B.

Node2Vec
Node2Vec (Grover and Leskovec, 2016) attempts to design a
graph embedding model that can train efficiently and retain the
neighborhood information of nodes to the maximum extent.
The embedding vectors of nodes are learned through the skip-
gram model. Different from DeepWalk, Node2Vec proposes
biased random walk instead of truncated random walk to
control the search space. Node2vec considers the homophily
(nodes from the same community have similar embeddings)
and structural equivalence (nodes that share similar roles have
similar embeddings), thus there are two classic search strategies:
Breadth-first Sampling (BFS) and Depth-first Sampling (DFS).

GraRep
GraRep (Cao et al., 2015) proposes a graph embedding model
that can be learned from weighted graphs and integrate global
structure information of the graph. GraRep forms k different
vectors by separating k kinds of relationships. For a specific k,
GraRep samples a set of k-step paths from the graph. The k-
step path which starts with node vw and ends with node vc is
denoted as (vw, vc). For all pairs, it increases the probability of
the pairs come from the graph and decreases the probability of
the pairs do not come from the graph. Based on the normalized
adjacency matrix, GraRep obtains Wk for different values of
k, and each column vector of Wk represents an embedding
of the node. Finally, this method concatenates all the k-step
representations W1,W2, ...,Wk.

CatBoost Classifier
CatBoost (Dorogush et al., 2018; Prokhorenkova et al., 2018) is
an improved implementation of gradient enhanced decision trees
(GDBT) algorithm developed by Yandex. It has demonstrated
excellent performance on many classification and regression
tasks. Compared with other advanced gradient boosting
algorithms such as XGBoost (Chen and Guestrin, 2016)
and lightBGM (Ke et al., 2017), CatBoost has the following
advantages: (1) It can better process categorical features. (2) To
solve the problem of gradient bias and prediction shift, ordered
boosting is proposed instead of the classic GDBT gradient
estimation algorithm. (3) The requirement of super parameter
tuning is reduced.

CatBoost uses oblivious decision trees (Langley and Sage,
1994) as base predictors. As oblivious decision trees are
balanced, they can prevent overfitting. Moreover, it optimizes
the traditional boosting algorithm which transforms the category
features into numerical features, and the algorithm of calculating
the leaf value to improve the generalization ability of the model.
Since the CatBoost algorithm is running on GPU, the model is
trained efficiently and parallelly.

Evaluation Metrics
Our predictor predicts whether the adenosine at the center of an
RNA sequence segment is an m6A site. We used the following
metrics to evaluate the performance of binary classification
predictors: accuracy (ACC), Matthew’s correlation coefficient
(MCC), sensitivity (SEN), specificity (SPE), and F1. These metrics
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are calculated as follows:

ACC =
TP+TN

TP+FN+TN+FP
× 100% (15)

MCC=
TP×TN−FP×FN

√
(TP+FN) (TN+FP) (TP+FP) (TN+FN)

(16)

SEN =
TP

TP+FN
× 100% (17)

SPE =
TN

TN+FP
× 100% (18)

F1 =
2TP

2TP + FP + FN
(19)

where TP is the number of true positive samples; TN is the
number of true negative samples; FP is the number of false
positive samples; FN is the number of false negative samples.

Additionally, the receiver operating characteristic (ROC)
curve is also an important measurement to evaluate the
performance of classifiers, and the area under receiver operating
characteristic curve (AUC) is the quantitative indicator. High
values of AUC indicate better performance of predictors.

RESULTS

We redivided the four datasets introduced in section “Datasets”
into the training sets and test sets with the ratio of 4:1,
respectively. The training datasets were used to train models and
the test datasets were utilized to evaluate model performance.

TABLE 1 | The performance of m6AGE against other existing predictors.

Datasets Predictors Metrics

ACC (%) MCC SEN (%) SPE (%) AUC

A101 m6AGE 89.11 0.7822 90.49 87.68 0.9500

M6A-HPCS 86.43 0.7286 86.64 86.22 0.9284

Targetm6A 87.36 0.7471 87.65 87.06 0.9358

RAM-NPPS 83.86 0.6777 86.44 81.21 0.9077

M6APred-EL 86.02 0.7205 85.63 86.43 0.9055

DeepM6ASeq 87.77 0.7595 93.32 82.05 0.9419

A25 m6AGE 87.97 0.7708 74.65 98.85 0.8867

M6A-HPCS 68.35 0.3577 61.97 73.56 0.7238

Targetm6A 82.91 0.6542 76.06 88.51 0.8370

RAM-NPPS 82.91 0.6538 77.46 87.36 0.8621

M6APred-EL 87.34 0.7642 71.83 100.00 0.8464

DeepM6ASeq 77.85 0.5515 67.61 86.21 0.8054

H41 m6AGE 90.93 0.8325 81.94 100.00 0.9181

M6A-HPCS 71.46 0.4336 64.76 78.22 0.7765

Targetm6A 90.49 0.8249 81.06 100.00 0.9205

RAM-NPPS 90.49 0.8249 81.06 100.00 0.9051

M6APred-EL 89.82 0.8136 79.74 100.00 0.9132

DeepM6ASeq 86.50 0.7566 73.57 99.56 0.9051

The optimal value of each evaluation metric is marked in bold.

FIGURE 2 | The ROC curves of m6AGE and comparing predictors on three datasets. (A) The ROC curves on the A101 dataset. (B) The ROC curves on the A25
dataset. (C) The ROC curves on the H41 dataset.
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Due to the difference between datasets, we selected suitable
sequence-derived features for each dataset. For A101, the
PseKNC, CTD, and NPS features were selected; For A25, the
EIIP, NPPS, NPS, PseKNC, and NCP-ND were selected; For S21,
the NPPS and NCP-ND features were selected; For H41, the
NCP-ND, PseKNC, and NPPS features were selected.

Comparison With Existing Predictors
In this section, we compared the performance of our predictor
m6AGE with several other state-of-the-art predictors, including
M6A-HPCS (Zhang et al., 2016), Targetm6A(Li et al., 2016),
RAM-NPPS (Xing et al., 2017), M6APred-EL (Wei et al.,
2018), and DeepM6ASeq (Zhang and Hamada, 2018). M6A-
HPCS uses PseDNC and DACC features and a support vector
machine (SVM) classifier to identify m6A sites. Targetm6A
utilizes position-specific kmer propensities (PSKP) feature and
SVM classifier. RAM-NPPS uses the NPPS feature and SVM
classifier to identify m6A sites. M6APred-EL creates an ensemble
model with PseKNC, PSKP, and NCP-ND features. DeepM6ASeq
develops a deep learning framework and uses one-hot encoding
for the identification of m6A sites. The predictor M6A-HPCS,
M6APred-EL, Targetm6A, and RAM-NPPS were reproduced
faithfully, and their parameters were optimized by grid search
with five-fold cross-validation. All predictors were trained and
evaluated on the same dataset for fairness of comparison.

The evaluation results were summarized in Table 1. We
employed ACC, MCC, SEN, SPE, and AUC as evaluation metrics,
and compared the evaluation metrics of m6AGE with five other
predictors on three datasets: A101, A25, and H41. As shown in
Table 1, our predictor m6AGE achieved all optimal values on
three datasets, except for SEN and SPE on the A25 dataset, and
AUC on the H41 dataset.

TABLE 2 | The performance of different predictors on S21 dataset.

Predictors Metrics

SEN (%) SPE (%) F1 MCC AUC

m6AGE 68.68 83.02 0.5723 0.4593 0.8103

HPCS 71.70 46.63 0.3622 0.1459 0.6330

Targetm6A 70.57 76.73 0.5260 0.3984 0.7818

RAM-NPPS 66.42 81.49 0.5440 0.4218 0.7778

M6APred-EL 78.59 75.20 0.5554 0.4433 0.7899

DeepM6ASeq 63.77 83.38 0.5460 0.4253 0.8056

The optimal value of each evaluation metric is marked in bold.

On the A101 dataset, m6AGE obtained the optimal ACC,
MCC, SPE, and AUC with 89.11%, 0.7822, 87.68%, and 0.9500,
which is 1.34%, 0.0227, 5.63%, and 0.0081 higher than the
suboptimal predictor DeepM6ASeq, respectively.

On the A25 dataset, m6AGE obtained the optimal ACC, MCC,
and AUC with 87.97%, 0.7708, and 0.8867. Its Acc and MCC is
0.63% and 0.0066 higher than the suboptimal value of predictor
M6APred-EL. Its AUC is 0.0246 higher than the suboptimal value
of predictor RAM-NPPS.

FIGURE 3 | The ROC curves of m6AGE and comparing predictors on the S21
datasets.

On theH41 dataset, m6AGE obtained the optimal ACC, MCC,
SEN, and SPE with 90.93%, 0.8325, 81.94%, and 100%, which is
0.44%, 0.0076, 0.88%, and 0 higher than the predictor Targetm6A
and RAM-NPPS, respectively.

The ROC curves of these predictors on three datasets were
plotted in Figure 2. As shown in Figure 2, our predictor
outperformed other predictors on the A101 and A25 datasets.
Although the AUC of m6AGE on dataset H41 is lower than
other predictors, m6AGE achieved the optimal value of ACC,
MCC, SEN, and SPE. These evaluation results demonstrate that
our predictor m6AGE is superior to other predictors in terms of
these three datasets.

Performance on Imbalanced Dataset
The non-m6a sites on mRNA are much more than m6A sites, so
testing the performance of our predictor on imbalanced datasets
is of great importance. The imbalance ratio of the S21 dataset is
about 1:4. We redivided the S21 dataset, and randomly selected
80% samples as the training set, and the remaining 20% samples
as the test set.

CatBoost solves the imbalance data issues by setting weights
for each class or sample. The weight of each class is generally
inversely proportional to the number of its samples. The metrics
F1 and MCC are usually used as the evaluation criteria for
imbalanced datasets (Zhao et al., 2018; Wang et al., 2019; Dou
et al., 2020). We compared m6AGE with five other predictors on
the S21 dataset.

The evaluation results were summarized in Table 2. The
optimal value of each evaluation metric is marked in bold. As
shown in Table 2, our predictor m6AGE got the optimal values
of F1, MCC, and AUC with 0.5723, 0.4593, and 0.8103.

The ROC curves of these predictors on the S21 dataset
were plotted in Figure 3. As shown in Figure 3, our predictor
outperformed other predictors on the S21 dataset.
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TABLE 3 | The performance of different classifiers.

Datasets Classifiers Metrics

ACC (%) MCC SEN (%) SPE (%) AUC

A101 CatBoost 89.11 0.7822 90.49 87.68 0.9500

Random forest 87.67 0.7534 87.04 88.31 0.9377

Logistic regression 89.00 0.7800 89.07 88.94 0.9489

Decision tree 80.99 0.6197 82.39 79.54 0.8096

A25 CatBoost 87.97 0.7708 74.65 98.85 0.8867

Random forest 87.34 0.7642 71.83 100.00 0.8729

Logistic regression 79.11 0.5767 74.65 82.76 0.8562

Decision tree 81.65 0.6349 84.51 79.31 0.8191

H41 CatBoost 90.93 0.8325 81.94 100.00 0.9181

random forest 89.38 0.8031 79.74 99.11 0.9098

Logistic regression 86.95 0.7422 82.38 91.56 0.9125

Decision tree 86.28 0.7258 85.46 87.11 0.8629

The optimal value of each evaluation metric is marked in bold.

FIGURE 4 | The feature importance scores on the four datasets. (A) The feature importance scores on the A101 datasets. (B) The feature importance scores on the
A25 datasets. (C) The feature importance scores on the H41 datasets. (D) The feature importance scores on the S21 datasets.

Comparison With Different Classifiers
To further demonstrate the effectiveness of CatBoost, we
compared it with other popular classifiers, including Random
Forest, Logistic Regression, and Decision Tree, which are
commonly and widely used in bioinformatics classification

tasks. All classifiers were trained and assessed under the same
conditions for a fair comparison.

The prediction results were summarized in Table 3. We
compared the prediction results with three other classifiers on
the A101, A25, and H41 dataset. The evaluation metrics used are
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ACC, MCC, SEN, SPE, and AUC. As shown in Table 3, CatBoost
achieved all optimal metrics on three datasets, except for SPE on
the A101 dataset and SEN on the A25 and H41 dataset.

Feature Importance Analysis
CatBoost can output the scores of feature importance, which
reflect the contributions of the features in specific feature space
for identifying m6A sites. The first 20 important features and their
scores on the four datasets were plotted in Figure 4.

On the A101 dataset, the first three important sequence-
derived features are “PseKNC_44”, “PseKNC_59”, and
“PseKNC_40”, which correspond to the occurrence frequency
of “GUA”, “UGU”, and PseKNC_40 respectively, On the A25
dataset, the first three important sequence-derived features are
“NCP_ND_58”, “NPPS_xi2_14”, and “NPPS_xi1_14,” which
correspond to the position +1 (Assuming that the position of
m6A site is 0), +2 and +4, +2 and +3, respectively; On the H41
dataset, the first three important sequence-derived features
are “NPPS_xi1_20”, “NPPS_xi1_22”, and “NCP_ND_72”,
which correspond to the position 0 and +1, +2 and +3, −3,
respectively; On the S21 dataset, the first three important
sequence-derived features are “NPPS_xi1_17”, “NPPS_xi2_17”,
and “NPPS_xi1_18,” which correspond to the position +6 and
+7, +6 and +8, +7 and +9, respectively.

In addition, graph embeddings account for 20%, 25%, 35%,
and 50% of the top 20 important features in the four datasets,
respectively, which indicates that graph embeddings could
supplement the information of the sequence-derived features.

DISCUSSION

The methods for extracting sequence features are indispensable
for building a reliable predictor. Contributing sequence features,
such as the physical and chemical properties of nucleotides,
the frequency of k-nucleotides, and the frequency of specific
positions, can fully reflect the information related to the m6A
site recognition. In this study, we integrated and selected
suitable sequence-derived features for each dataset. However,
most of the feature encoding methods are based on the primary
sequence, and only a few of them calculate the frequency of
nucleotides in the training dataset, so it is difficult to obtain
more helpful information from the whole dataset. This paper
innovatively introduces a feature extraction method based on the
graph embedding methods as a supplement to sequence-derived
features. First of all, a network is constructed based on the whole
dataset and sequence-derived features. Samples are abstracted as
nodes of the network, and the similarity relationships between
samples are abstracted as edges. This network reflects global
information of the whole dataset. Then, graph embedding
(neighborhood-based node embedding) methods are used to
learn the feature representation of each node in an unsupervised
manner. The graph embedding features of samples contain the
related information with other samples. Finally, we integrate
sequence-derived features and graph embeddings based with the
feature fusion strategy. Therefore, the final input features can
reflect the information of samples more comprehensively.

It is also significant to choose an appropriate classifier.
CatBoost is a GBDT algorithm, which shows excellent
performance in many classification tasks. Because of its
good effect of restraining overfitting and fast running, the
CatBoost algorithm is selected to train our predictor m6AGE.

To further prove the effectiveness of our predictor, we
compare the evaluation results with that of other existing m6A
site predictors. The results show that our predictor m6AGE
outperforms other existing methods. In the future, we will apply
m6AGE to more m6A site datasets and seek more suitable
graph embedding methods. It is worth mentioning that the
computational framework proposed in this study is possible to
extend to other bioinformatics site identification tasks.

The source code of m6AGE is available at https://github.com/
bokunoBike/m6AGE. Users can download and run it on the local
machines. The data is imported through the file paths of the
positive training set, negative training set, and test set. Then
m6AGE is trained and generates prediction results. Note that
the corresponding python packages need to be installed first (see
GitHub page for details). For a new dataset, our predictor will
automatically select the appropriate sequence-derived features
(or specified by the users in the corresponding configuration file)
according to the feature importance scores.

CONCLUSION

The identification of N6-methyladenosine (m6A) modification
sites on RNA is of biological significance. In this study, a
novel computational framework called “m6AGE” is proposed
to predict and identify the m6A sites on mRNA. Our predictor
combines sequence-derived features with the features extracted
by graph embedding methods. The context information of sites
is directly extracted from primary sequences by the sequence-
derived features, and the global information is extracted by
the graph embeddings. Experiments showed that the proposed
m6AGE achieved successful prediction performance on four
datasets across three species. It could be expected that m6AGE
would be a powerful computational tool for predicting and
identifying the m6A modification sites on mRNA.
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The Pan-Cancer Atlas consists of original sequencing data from various sources,

provides the opportunity to perform systematic studies on the commonalities and

differences between diverse cancers. The analysis for the pan-cancer dataset could help

researchers to identify the key factors that could trigger cancer. In this paper, we present

a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set

of genes that can differentiate all tumor types accurately. First, the Mutual Information

(MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then,

the gene data was further converted to 2D images. Next, the DenseNet model was

adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify

the key genes. Extensive experimental results on the public RNA-seq data sets with

33 different tumor types show that our method outperforms the other state-of-the-art

classification methods. Moreover, gene analysis further demonstrated that the genes

selected by our method were related to the corresponding tumor types.

Keywords: pan-cancer, cancer classification, DenseNet, guided grad-CAM algorithm, RNA-seq data

1. INTRODUCTION

Cancer, known as the “the king of the diseases,” is a serious threat to human health. In 2020,
1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States
(Siegel et al., 2020). Cancer accurate prediction in the early stage is a challenging subject that has
drawn worldwide concern due to the high morbidity and mortality of cancer (Kourou et al., 2015).
However, the existing medical equipment and clinical symptoms are not sensitive to the changes at
the molecular level, and it is difficult to make early diagnosis for potential patients. Some potential
patients cancer may be advanced when they are first diagnosed (Sakri et al., 2018), resulting in
increased mortality from cancer. If cancer can be detected early and treated appropriately, the
survival time of patients will be greatly increased. Therefore, identifying a set of genes that can
characterize the type and stage of cancer is the key to effective treatment. These genes may serve
as biomarkers to efficiently diagnose diseases and accurately classify cancer types. Furthermore,
since The Cancer Genome Atlas (TCGA) project was launched, TCGA project has so far generated
a pan-cancer atlas of 33 types of cancer. Therefore, extensive studies about pan-cancer have been
researched, among which pan-cancer classification is an important perspective.
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In recent years, advances in sequencing technology have led to
a significant decrease in the cost of accumulating biological data.
A large amount of biological data laid an important foundation
for researchers to identify some key cancer biomarkers and
enable accurate cancer classification prediction in the early stage.
However, the tough challenges also come from the characteristics
of these data (i.e., high dimensionality, severely limited samples
and containing a large portion of irrelevant genes), which hinders
the rapid and accurate cancer classification and prediction (Saeys
et al., 2007). In order to solve this problem, feature selection
techniques can be applied to analyze the possible cancer-causing
genes from massive cancer gene data. The feature selection aims
to represent high-dimensional data with fewer features while
improves the prediction accuracy of classification models. In
general, feature selection can be categorized into two types: filter
methods, wrapper methods (Huang et al., 2007). Usually, filter
methods have much less computational complexity compared
with othermethods. Some filtermethods, such asMI, IG (Martín-
Valdivia et al., 2008), Relief (Urbanowicz et al., 2018), have been
applied to data analysis for gene expression data well.

However, most traditional tumor classification studies only
focus on the same tumor type, the heterogeneity among different
tumor types is usually neglected (Lawrence et al., 2013; Lyu and
Haque, 2018). Tumor heterogeneity is reflected in the obvious
differences between different tumor cells at the molecular level
of genomic, transcriptomic, proteome and so on. Therefore,
in order to understand and capture the commonalities and
differences between diverse cancers, TCGA later launched the
Pan-Cancer analysis project (Weinstein et al., 2013). Pan-cancer
analysis is a study that integrates multiple tumor types. In
recent years, the research and analysis of pan-cancer have been
increasing gradually, and people hope to find the genes related
to tumors so as to accurately predict the type of cancer. It
has been suggested that specifications of therapies according
to tumor types differentiated may maximize the efficacy of the
patients (Golub et al., 1999; Alizadeh et al., 2000; Van’t Veer
et al., 2002). At present, there have been many studies (Kourou
et al., 2015; Li et al., 2017) using machine learning (ML)
algorithms to analyze pan-cancer data sets and demonstrate its
effectiveness in cancer classification and prediction. For example,
Li et al. proposed a GA/KNN method to classify 9,096 samples
from 31 different tumor types and obtained a set of genes
that could correctly classify 90% of the samples. Deep learning
has made unprecedented breakthroughs in various classification
tasks recently and has been widely applied due to its excellent
classification performance. A strength of deep learning is its
ability to learn end to end, automatically discovering multiple
levels of representation to achieve a prediction task (Wainberg
et al., 2018).

In the study, a deep learning approach, MI_DenseNetCAM
was proposed to classify 33 different types of tumors based
on high-dimensional RNA-Seq gene expression data. Then,
the Guided grad-CAM algorithm was used to identify the
key genes that played an important role in the classification
process. We evaluated the method with performance metrics
such as recall, precision and F1 score, and the results
demonstrate that the proposed method takes full advantage

of the information in the pan-cancer data sets and achieved
an overall test accuracy of 96.81%. Compared with the
existing methods, our proposed method provides superior
performance in the classification accuracy of 33 tumor types.
The main contributions of this paper can be summarized
as follows:

• For the noise and redundancy of the pan-cancer data
sets, the Min-Max normalization and MI was adopted to
preprocess the data, which can screen out the highly correlated
genes to improve the performance of the classification
model. Moreover, we evaluated the impact of different data
preprocessing strategies on the classification performance.

• For the pan-cancer data set, the DenseNet model was
utilized as a classifier to classify and predict tumor types.
Compared with other classifiers, the DenseNet model achieved
better performance whilst requiring fewer parameters and
computation cost.

• Extensive experiments and analyses have been carried out
on the pan-cancer data set in terms of evaluation indicators,
and the experimental results demonstrate that our proposed
method is very promising. Some of the genes identified by our
method have already been verified.

The remainder of this paper is organized as follows: In
section 2, we review related works. In section 3, the detailed
implementation of the proposed pan-cancer classification
method is elaborated. We described the experimental results and
analysis in section 4. Finally, we summarize the paper and discuss
the future works in section 5.

2. RELATED WORK

The goal of the pan-cancer analysis was to assemble data from
the separate disease projects to build a data set spanning multiple
tumor types (Weinstein et al., 2013). Through the analysis
and interpretation of these data to find the commonalities and
differences across various tumor types. At present, manymachine
learning and deep learning methods have been applied to the
analysis of pan-cancer data. Next, we conduct a review of the
latest studies in the field of pan-cancer analysis.

Hsu and Si (2018) focused on using machine learning (ML)
to build a reliable classification model which can recognize
33 types of cancer patients. They applied five ML algorithms,
namely decision tree (DT), k nearest neighbor (kNN), linear
support vector machine (linear SVM), polynomial support vector
machine (ploy SVM), and artificial neural network (ANN) to
analyze the data set of pan-cancer. The results show that linear
SVM with a 95.8% accuracy rate is the best classifier among the
five classification algorithms.

Kang et al. (2019) proposed a newmethod for the classification
of multiple tumor types by using relaxed Lasso selection feature
subsets and an improved support vector machine (GenSVM)
as the classifier. GenSVM is a general multiclass support
vector machine, which compared with the other three classifiers
(KNN, L1logreg, L2logreg) on the four multi-class datasets, the
experimental results showed that GenSVM has better generality,
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flexibility and achieve higher classification accuracy with fewer
features in multi-classification problems.

Li et al. (2017) undertook the development of a pan-cancer
atlas to recognize 9,096 TCGA tumor samples representing 31
tumor types. They applied k-nearest neighbors (KNN) to classify
31 different types of tumor, and embedded genetic algorithm
to improve the accuracy of the KNN classifier. This method
achieved an accuracy of 90% across 31 tumor types.

In recent years, the deep learning (DL) method was also used
to classify and identify cancer types. In paper (Danaee et al.,
2017) the author used a stacked auto-encoder first to extract high-
level features from the expression values and then input these
features into a single layer ANN network to decide whether the
sample is a tumor or not. The accuracy of using such a method
reached 94%. However, as to the multi-classification problem,
because this method has more complicated network structure
and parameter setting, in order to save time cost, the author only
conducted the experiments on breast cancer.

Khalifa et al. (2020) introduced a novel optimized deep
learning approach based on binary particle swarm optimization
with decision tree (BPSO-DT) and CNN to classify different types
of tumor. The results showed that the proposed method achieved
an overall testing accuracy of 96.6%. However, they classified
only five different tumor types (KIRC, BRCA, LUSC, LUAD, and
UCEC), and did not analyze all the pan-cancer data sets.

Lyu and Haque (2018) designed a newmethod that embedded
the high dimensional RNA-Seq data into 2-D images and used a
CNN to make classification of the 33 tumor types. This method
achieved 95.59% accuracy for all 33 tumor types. However,
the method proposed by Lyu et al. failed to achieve good
classification performance on tumor datasets with small samples,
which increases the risk of overfitting.

3. MATERIALS AND METHODS

In this section, a novel framework for the classification of pan-
cancer, referred to MI DenseNetCAM has been proposed. First,
we preprocess the original data set, and then embed the data
into a 2-D image. Then, we train a DenseNet model with
the generated images. Next, the trained model and Guided
Grad-Cam algorithm are applied to generate the heat map.
Furthermore, some important genes can be obtained. The
workflow of the proposed method is shown in Figure 1A.

3.1. Datasets
We conducted experiments to evaluate the proposed method
on the RNA-seq data sets of 33 types of cancers. RNA-seq, also
known as transcriptomic sequencing, can accurately analyze gene
expression differences and gene structure variations, and reveal
specific biological processes and molecular mechanisms in the
process of disease occurrence. Therefore, we use the normalized-
level3 RNA-seq gene expression data to construct our experiment
dataset. The datasets are available for download from http://gdac.
broadinstitute.org/. These data sets, which contain 33 different
tumor types. The data for each type of tumor is high-dimensional,
with 20,531 columns. Table 3 gives a detailed description of the
number of samples and genes in these datasets.

3.2. Data Preprocessing
Firstly, data from 33 different tumor types are collected and
integrated, and then the genes in the data set are compared with
the annotation files (downloaded from NCBI), so as to screen
out the genes that did not exist in the annotation files. About
1,000 genes were not found in the annotation file, therefore,
these 1,000 genes and corresponding expression levels need to be
removed from the data set. Secondly, genes are ordered based on
the chromosome number because adjacent genes are more likely
to interact with each other. Thirdly, the data set is normalized
by Min-Max normalization, which scales the data to a small
interval, thus leads to get the solution quickly. The Min-Max
normalization is defined by Equation (1).

y =
X − Xmin

Xmax − Xmin
(1)

Where X represents a column of data in the pan-cancer data set,
Xmin and Xmax represent the minimum and maximum values in
a column of data.

After normalization of gene data, we further adopted Mutual
Information (MI) to calculate the correlation between the gene
and the label to decide whether to select the gene. MI is a
feature ranking approach based on information entropy (Kraskov
et al., 2004; Martín-Valdivia et al., 2008). In the domain of
feature selection, Sharmin et al. (2019) used MI as a metric to
measure the degree of correlation between features and category
labels. The more mutual information between the two, the more
important this feature is. The mutual information between two
random variables X and Y is as follows:

I(X,Y) =
∑

x,y

P(x, y)log
P(x, y)

P(x)P(y)
(2)

Where, P(x,y) represents the joint probabilistic mass function,
P(x) and P(y) represent edge probability density functions. The
closer the relationship between X and Y is, the greater the value
of I(X, Y) will be. If the two variables are independent, the value
of I(X, Y) is 0.

When mutual information is applied to feature selection, then
random variable X represents the feature and random variable Y
represents the label, the value of I(X, Y) represents the correlation
between the ith feature and the label. The greater the value, the
greater the correlation between the feature and the label, and vice
versa. Therefore, we can sort features in terms of the information
entropy by MI method and select important features.

After mutual information, the number of genes was further
reduced to N. Through the subsequent experiment of different N
values, N is set to 3,600. Then, convert the data corresponding
to the selected important features into an image format. The
data from each sample are successively put into each pixel of the
image in order to reconstruct the data from a 1-D array into a
2-D image. In other words, the array with the shape of 3600*1 is
turned into a two-dimensional image with the shape of 60*60,
and the data needs to be normalized to [0,255]. The result of
this step is to generate images that correspond to the samples in
the dataset. The resulting 2-D images will be used to train the
DenseNet model.
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FIGURE 1 | The workflow of MI_DenseNetCAM. (A) Cancer classification and prediction through MI and deep learning combined analysis from pan-cancer datasets.

(B) Principle diagram of the Guided Grad-Cam algorithm.

FIGURE 2 | The structure of the DenseNet.
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3.3. Model Training
Deep neural models based on Convolutional Neural Network
(CNN) have enabled unprecedented breakthroughs in a
variety of image classification tasks, some famous architectures
such as Resnet (He et al., 2016a) and inception (Szegedy
et al., 2015) have excellent performance. In the Imagenet
(Deng et al., 2009) challenge, CNN achieved a significant
classification accuracy margin over classical machine learning
methods. However, with the increase of layers, the traditional
neural network will encounter a series of problems, such as
gradient vanishing, feature reuse decreasing, parameter number
increasing significantly, longer training time and classification
accuracy decreasing (He et al., 2016b). In order to solve these
problems, Huang et al. proposed a new method, DenseNet
(Huang et al., 2017), which is a convolutional neural network
with dense connections. Dense Net connects all layers directly
to each other to ensure the maximum information flow between
each layer in the network, in other words, the input of any next
layer in the network is the superposition of the output of all
previous layers. In this way, each layer can access the gradient
directly from the loss function and the original input signal,
yielding models that are easy to train and highly parameter
efficient. Further, the dense connections have a regularizing
effect, which reduces the risk of overfitting for small sample
training tasks (Huang et al., 2017). The structure of the DenseNet
is as shown in Figure 2.

The DenseNet model consists of four Dense Blocks, and each
Dense Block is composed of batch normalization layer (BN) +
ReLU + 1 × 1 convolutional layer (Conv 1×1) + BN + ReLU +
Conv 3 × 3. The layers between two adjacent blocks are referred
to as transition layers, which are composed of BN + ReLU + Conv
1× 1 +Average Pooling 2× 2. Pooling denotes the global average
pool and Linear denotes the fully connected layer.

The optimizer plays an extremely significant role in deep
learning training. It is used to update the weight parameters in
the training process, which is related to whether the training can
converge quickly and achieve high accuracy. In this paper, we use
the Adamoptimization algorithm. Comparedwith the traditional
stochastic gradient descent algorithm, the advantage of the Adam
algorithm is that it can design independent adaptive learning
rates for different parameters, so as to obtain a higher training
effect. For the classification task, cross entropy is generally used
as the loss function. Moreover, In order to get a better training
effect and ensure the robustness of the classification, make full
use of the generated 2-D images and obtain reliable and stable
models, we use 10-fold cross validation to evaluate the quality of
the model during the training of DenseNet.

3.4. Screen Out Important Genes
After the DenseNet model is trained, the important genes can
be obtained through two stages. First, the Guided Grad-Cam
algorithm can be applied to generate heat maps, it can locate
the regions related to categories in the image, indicating why
the convolutional neural network is classified in this way. Then,
match the high-intensity pixels in the heat map with the gene
names in the original data set to obtain the important genes that
contribute more to the classification.

The Guided Grad-Cam algorithm provides a technique for
visual interpretation of how the convolutional neural network
model makes decisions. The detailed procedure for generating
heat map through the Guided Grad-Cam algorithm is as follows.

• Step1 Obtain Gradient maps
First, the Guided backpropagation algorithm is used to
calculate the gradient of the convolutional layer’s feature value
relative to the input layer, so as to obtain the feature gradient
maps.

• Step2 Obtain Activation maps
After feature extraction of the original image through the
convolutional layer and the pooling layer, the convolutional
neural network output a set of feature maps. A pixel in the
feature map corresponds to a region in the original image.
If the product of pixel value and weight in the feature map
is >0, CNN believes that this region in the original image
has features related to categories. The Guided Grad-Cam
algorithm calculates the average gradient of each feature map
relative to the classification probability to obtain a set of
weights. After calculating the weights of all the feature maps,
the weighted sum with the feature maps can be used to obtain
the activation maps. Finally, the activation maps are processed
using the ReLU activation function, retaining only the features
of the activation maps that are useful for the category. If
you do not add the ReLU activation function, you will bring
in pixels belonging to other categories, which will affect the
interpretation.

• Step3 Obtain Heat maps
Superposition the gradientmaps and activationmaps to obtain
the heat map for visualization of the convolutional neural
network. The heat map shows the extent to which the pixel
at the corresponding position in the original image affects
the classification result. The overall structure of the Guided
Grad-Cam algorithm is shown in Figure 1B.

Based on the DenseNet model and the Guided Grad-Cam
algorithm, we can obtain heat maps with high resolution and
category discriminability for displaying the importance of genes.
Since the Guided Grad-Cam algorithm generates a heat map for
each input image, in order to avoid the influence of noise on the
experimental results, we averaged all the heat maps. In addition,
the intensity of the pixel value in the heat map represents the
influence of the pixel at the corresponding position in the original
image on the classification result, so the gene corresponding to
the position with the largest pixel value in the heat map is an
important feature. In other words, the higher the pixel value
and the higher the intensity in the heat map, the greater the
contribution of these pixels to the final classification, that is their
existence affects the classification most. So, important genes can
be realized by looking for points with high pixel intensity in the
heat map. The specific methods to achieve the following.

When the gene expression data is converted into 2D images,
the corresponding expression values of each gene are sequentially
mapped to the pixels in the images, as shown in Figure 1A. In
order to screen out the important genes, firstly, we can convert
the pixel value in the heat map into a 1D array based on their
original order. Then, find out the index corresponding to the
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maximum pixel value, the corresponding gene name can be
found from the original data according to the index value.

4. EXPERIMENTS AND RESULTS

In order to verify the performance of our method, we
compared it with the other four state-of-the-art methods, namely
MI KNN, Relaxed Lasso and generalized multi-class support
vector machine (rL-GenSVM) (Kang et al., 2019), Variance CNN
(Var CNN) (Lyu and Haque, 2018) and ExtraTrees-SVM (ET-
SVM) (Hsu and Si, 2018). These methods can realize multiple
classification and feature selection of tumors, and have achieved
a good classification effect in biomedical data. Our experiment
consists of two parts. Firstly, we conducted an experiment on the
classification performance of the model to verify that our method
could achieve better classification effect in 33 different tumor
types. Then, we evaluated the corresponding classification errors
of 5 methods when selecting different gene numbers, indicating
that our method can obtain a better subset of features. All
experiments were executed on a computer server with Windows
7 operating system, Intel Core(TM) i7-10700 CPU (2.9 GHz),
32 GB RAM, 8 GB Nvidia GeForce RTX 2080 SUPER, using
Python language.

4.1. Evaluation Metrics
Since pan-cancer classification is a multi-classification problem,
we use accuracy to measure the performance. At the same
time, to evaluate the performance of the proposed architecture,
more performance measures need to be investigated in this
research. There are also precision, recall and F1Score (Goutte
and Gaussier, 2005) to measure performance in a classification
problem. The evaluation indicator is defined as follows.

Accuracy: the ratio of the number of samples correctly
classified by the classifier to the total number of samples for a
given test data set. The calculation formula is shown below.

Acc =
TP + TN

TP + FP + FN + TN
(3)

Precision: It represents how many of the samples predicted to be
positive are correct. The calculation formula is shown below.

P =
TP

TP + FP
(4)

Recall rate: This is howmuch of the positive sample was predicted
correctly. The calculation formula is shown below.

R =
TP

TP + FN
(5)

F1-Score: The harmonic mean of the precision rate and recall
rate. It is a combination of precision rate and recall rate. The
calculation formula is shown below.

F1Score =
2PR

P + R
(6)

This research uses the 10-fold cross-validation to calculate
accuracy, precision, recall and F1Score.

TABLE 1 | Parameter settings.

Algorithm Parameter

MI DenseNetCAM learning_rate = 0.0001, num_epochs=200,

batch_size = 32, growth_rate = 16,

compression_factor = 0.5, image_dimension = 60

MI KNN n_neighbors = 5

Var CNN learning_rate = 0.0001, num_epochs = 200,

batch_size = 500

rL-GenSVM phi = 1/3, p = 1, kernel = “rbf,” epsilon = 1e-3,

lambda = 1e-9, gama = 1e-8, kappa = 2

ET-SVM C = 0.004, kernel = “linear,”

decision_function_shape = “ovo,” gama = 1

TABLE 2 | The experimental results of five methods.

Method Accuracy Precision Recall F1-Score

MI DenseNetCAM 96.81% 96.89% 96.81% 96.85%

MI KNN 92.61% 92.46% 92.61% 92.40%

Var CNN 95.59% 95.54% 95.59% 95.43%

rL-GenSVM 87.29% 87.73% 87.29% 86.91%

ET-SVM 90.73% 90.22% 90.73% 89.99%

4.2. Parameters Settings
In this section, the parameter values of all methods are given
in Table 1. For Var CNN, rL-GenSVM and ET-SVM, we chose
parameter values according to relevant literature (Hsu and Si,
2018; Lyu and Haque, 2018; Kang et al., 2019). For the proposed
method, the values of growth rate and compression factor are set
to 16, 0.5, respectively, which has been analyzed and evaluated in
previous studies (Huang et al., 2017). Based on our experimental
analysis, the value of image dimension is set to 60. Similar
to Var CNN, we take the same value for learning rate and
num epochs.

4.3. Comparison With Other Methods
In this section, we compare the average accuracy, precision, recall
and F1-score of MI KNN, Var CNN, rL-GenSVM and ET-SVM
algorithm. The overall classification results of these methods on
33 tumor types are shown in Table 2.

It can be seen from Table 2, in terms of accuracy, precision,
recall and f1-score, the proposed method MI DenseNetCAM
performs best on the pan-cancer datasets. At the same time, a
comparison of accuracy as to each class is shown inTable 3. From
the previous two experiments, we can see that DenseNet has
higher accuracy when using the same preprocessing algorithm.
Then, we compared the method with that in the literature (Lyu
and Haque, 2018), which makes a similar contribution to our
study. Although the overall classification result is only 1.22%
higher than Var CNN algorithm, in terms of the specific accuracy
of each class, our method performs better. Especially in ACC,
CESC, CHOL, ESCA, MESO and PAAD datasets. Meanwhile,
compared with Var CNN algorithm, our method also has better
performance in small sample datasets. The accuracy of our
method is 100, 75, and 99% respectively for dataset ACC, CHOL
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TABLE 3 | Benchmark datasets.

Tumor type Cohort Instances MI Dense NetCAM MI KNN Var CNN rL-GenSVM ET-SVM

Adrenocortical carcinoma ACC 79 1 0.95 0.95 0.63 0.92

Bladder urothelial carcinoma BLCA 408 0.98 0.87 0.97 0.53 0.78

Breast invasive carcinoma BRCA 1093 0.99 0.99 0.99 0.92 0.99

Cervical and endocervical cancers CESC 304 0.95 0.88 0.93 0.65 0.86

Cholangiocarcinoma CHOL 36 0.75 0.58 0.56 0.40 0

Colon adenocarcinoma COAD 457 0.95 0.99 0.95 0.82 0.98

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC 48 1 1 1 1 1

Esophageal carcinoma ESCA 184 0.85 0.69 0.77 0.50 0.45

Glioblastoma multiforme GBM 160 0.95 0.92 0.94 0.83 0.81

Head and Neck squamous cell carcinoma HNSC 520 0.99 0.95 0.98 0.96 0.94

Kidney Chromophobe KICH 66 0.89 0.75 0.87 0.80 0.64

Kidney renal clear cell carcinoma KIRC 533 0.94 0.93 0.95 0.89 0.95

Kidney renal papillary cell carcinoma KIRP 290 0.94 0.86 0.93 0.82 0.83

Acute Myeloid Leukemia LAML 179 1 1 1 1 1

Brain Lower Grade Glioma LGG 516 1 0.95 0.98 0.96 0.98

Liver hepatocellular carcinoma LIHC 371 0.97 0.96 0.97 0.91 0.96

Lung adenocarcinoma LUAD 515 0.95 0.91 0.95 0.91 0.96

Lung squamous cell carcinoma LUSC 501 0.93 0.85 0.91 0.84 0.82

Mesothelioma MESO 87 0.99 0.95 0.94 0.89 0.62

Ovarian serous cystadenocarcinoma OV 304 1 0.98 0.99 1 1

Pancreatic adenocarcinoma PAAD 178 1 0.97 0.97 0.95 0.64

Pheochromocytoma and Paraganglioma PCPG 179 1 0.99 1 0.95 0.96

Prostate adenocarcinoma PRAD 497 0.99 1 1 0.96 0.99

Rectum adenocarcinoma READ 166 0 0 0.35 0 0

Sarcoma SARC 259 0.98 0.95 0.97 0.74 0.98

Skin Cutaneous Melanoma SKCM 469 0.98 0.97 0.98 1 0.96

Stomach adenocarcinoma STAD 415 0.96 0.90 0.96 0.93 0.98

Testicular Germ Cell Tumors TGCT 150 1 0.99 0.99 1 0.83

Thyroid carcinoma THCA 501 1 1 1 1 0.99

Thymoma THYM 120 1 0.98 0.99 1 0.91

Uterine Corpus Endometrial Carcinoma UCEC 545 0.95 0.92 0.96 0.95 0.78

Uterine Carcinosarcoma UCS 57 0.83 0.72 0.81 0.83 0

Uveal Melanoma UVM 80 1 1 0.99 1 1

and MESO, and the results are higher than the accuracy obtained
by Var CNN. whose accuracy is 95, 56, and 94% respectively.
Since the Guided Grad-CAM algorithm generates heat maps
based on the prediction results of each class, the higher the
precision in each class, the more likely it is to use heat maps
to obtain the optimal subset of features. Moreover, our method
requires fewer parameters and uses parameters more efficiently,
which can be reflected in the size of the model. our model
only uses 13.9 M parameters to achieve an accuracy of 96.81%,
while the model of Var CNN uses 295 M parameters to achieve
an accuracy of 95.59%. To achieve a similar level of accuracy,
our method only requires around 1/21 of the parameters of
Var CNN. Finally, we compared some of themethods introduced
in the related work, and the results show that our method also
shows superior performance.

Next, we further evaluated the performance of our proposed
method. First, we conducted experiments on theDenseNetmodel

without any preprocessing. In terms of Accuracy, Precision,
Recall and F1-Score, the DenseNet model without preprocessing
can achieve 93.90, 94.03, 93.90, and 93.89% respectively. Then, we
evaluated the effects of different preprocess strategies (Variance,
Chi2, F-Test, MI) on the classification performance. The
experimental results are shown in Table 4. It can be seen from
Table 4 that preprocessing based on ML can further improve
the accuracy of the classifier. Meanwhile, compared with other
methods, MI has better performance on all indicators.

4.4. The Impact of Classifiers on
Performance
To further evaluate the impact of different classifiers on the
performance of our method, four classifiers, namely KNN, CNN,
SVM and DenseNet, are selected to conduct experiments on
the pan-cancer data set. The experimental results are shown
in Table 5. Compared with the other three classifiers, the
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TABLE 4 | The performance evaluation results of different preprocess strategies.

Method Accuracy Precision Recall F1-Score

Var DenseNet 94.46% 94.62% 94.46% 94.37%

Chi2 DenseNet 95.42% 95.54% 95.42% 95.40%

FTest DenseNet 95.03% 95.20% 95.03% 95.01%

MI DenseNetCAM 96.81% 96.89% 96.81% 96.85%

TABLE 5 | The performance evaluation results of four different classifiers.

Classifiers Accuracy Precision Recall F1-Score

MI KNN 92.61% 92.46% 92.61% 92.40%

MI CNN 94.30% 94.37% 94.30% 94.28%

MI SVM 91.53% 91.67% 91.53% 90.97%

MI DenseNetCAM 96.81% 96.89% 96.81% 96.85%

TABLE 6 | The performance evaluation results of different image dimensions.

Dimensions Accuracy Precision Recall F1-Score

30 * 30 93.60% 93.54% 93.60% 93.46%

50 * 50 95.03% 94.82% 95.03% 94.85%

60 * 60 96.81% 96.89% 96.81% 96.85%

70 * 70 95.22% 95.41% 95.22% 95.23%

90 * 90 94.17% 94.18% 94.17% 94.07%

110 * 110 92.93% 93.18% 92.93% 92.81%

130 * 130 93.41% 93.88% 93.41% 93.34%

DenseNet model shows better performance in terms of different
evaluation indicators.

4.5. The Impact of Image Dimensions on
Performance
To further evaluate the impact of image dimension on the
performance of the proposed method, in this section, various
image dimensions are adopted to conduct experiments. The
experimental results are shown in Table 6. As can be seen from
Table 6, MI DenseNetCAM achieves the best performance when
the image dimension is set to 60.

4.6. Evaluate Important Genes
However, discovering some key genes quickly will reduce the
workload of following biological experiments, and help the rapid
disease diagnosis. As a result, it is meaningful to obtain small gene
sets with high classification accuracy. For the issue, we further
evaluated the classification performance for all methods based
on small scale genes ranges from 20 to 200. The experimental
results are shown in Figure 3. The results show that the proposed
MI DenseNetCAM is superior to other methods. It can achieve
83.24% accuracy only using 20 genes.

As can be seen from Figure 3, in terms of classification
accuracy, MI_DenseNetCAM has the best effect, which is
obviously superior to the other four methods, while the rL-
GenSVMmethod has the worst effect, with the accuracy can only

be up to 86%. For the other three methods of MI KNN, ET-SVM
and Var CNN, although their performance is unsatisfactory in
the case of a small number of genes, their accuracy is improved
with the increase of the number of genes. Compared with the
other four methods, MI DenseNetCAM usually requires fewer
genes under the condition of the same precision. For example,
with the highest accuracy of 86% of rL-GenSVM as the baseline,
we compared the number of genes needed to achieve this
accuracy with other methods. MI DenseNetCAM only requires
25 genes to achieve this accuracy, while ET-SVM requires 70
genes, Var CNN requires 85 genes, and MI KNN requires the
most. It requires 130 genes. In addition, from Figure 3, it is
obvious that MI DenseNetCAM can obtain higher prediction
accuracy than the other fourmethods when dealing with the same
number of genes. Therefore, both in terms of the number of genes
and accuracy, our method can achieve better performance.

4.7. Gene Analysis
In this section, we conduct further analysis and verify the selected
genes by the proposed method. These genes selected by our
proposed method are lists in Table 7.

We selected 40 genes for further analysis, because it can be
seen from Figure 3 that the accuracy of 40 genes was already
very high, and the accuracy did not improve significantly with
the increase of the number of genes. Next, the KEGG pathway
analysis results for 40 genes are obtained using the David website
(https://david.ncifcrf.gov/), trying to find out if significantly
enriched pathways are related to the tumor. Pathway analyses
showed those genes were significantly enriched in 31 KEGG
pathways [Log10(P) <−2 or P <0.01], which mainly involved
in complement activation, cell projection, cellular response,
cellular activities such as adhesion, migration, differentiation,
proliferation, and apoptosis (Table 8). Some of these pathways
are already involved in cancer development. For example,
hsa04610 might contribute to the progression of bladder cancer
(Liu et al., 2020). The hsa05133 pathway is related to the hsa04610
pathway, so it also promotes bladder cancer formation. In the
hsa04611 pathway, cancer cells migrate to the vasculature and
interact with platelets, causing inflammation and promoting
mesothelioma growth (Jurasz et al., 2004; Sekido, 2013). The
hsa04512 pathway interaction is involved in six critical cancer
hallmarks (Pickup et al., 2014). So, the related genes in these
pathways can then be viewed as tumor specific biomarkers.

For other genes that are not significantly enriched in the
pathway, we can retrieve these genes from theGeneCard database
(www.genecards.org/). GeneCard is a searchable, comprehensive
and public database containing genetic analysis data that
provides concise information on all known and predicted human
genes in the genome, proteome, transcription, genetics and
function. GeneCard is a comprehensive database of human genes.
So the easiest way to see a summary of a gene is to use GeneCard.

As to COAD(Colon adenocarcinoma), LGALS4 is associated
with the colon. LGALS4 is a Protein Coding gene, the expression
of this gene is restricted to the small intestine, colon, and
rectum, and it is under-expressed in colorectal cancer. In the
paper (Kim et al., 2013), the authors have demonstrated that
LGALS4 is predominantly expressed in the luminal epithelia of
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FIGURE 3 | The Classification accuracy of different gene numbers.

the gastrointestinal tract, and its loss of expression plays a key
role in colorectal tumorigenesis.

As to GBM(Glioblastoma multiforme), It is a primary brain
tumor that develops from astroglial cells. The gene GFAP selected
by our method is a protein-coding gene. This gene encodes one
of the major intermediate filament proteins of mature astrocytes.
It is used as a marker to distinguish astrocytes from other glial
cells during development. In the paper (Heiland et al., 2019),
the authors demonstrated that tumor associated glial cells are
widespread in GBM. In the paper (Tichy et al., 2016), the authors
demonstrated that the GFAP gene was over-expression in GBM
and that GFAP could be considered as a biomarker of astrocytic
pathology in neurological diseases.

As to LUSC(Lung squamous cell carcinoma), The gene
SFTPA2 selected by our method is a protein-coding gene. This
gene is one of several genes encoding pulmonary-surfactant
associated proteins (SFTPA) located on chromosome 10.
Mutations in this gene and a highly similar gene located nearby,
which affect the highly conserved carbohydrate recognition
domain, are associated with idiopathic pulmonary fibrosis. In the
paper (Peng et al., 2015), the authors demonstrated that SFTPA2
encodes surfactant protein A that plays a vital role in maintaining
normal lung function and has been implicated in various lung
diseases, which can accurately distinguished lung cancer from
other cancer samples.

As to OV(Ovarian serous cystadenocarcinoma), A product of
the MUC1 gene of the genes selected by our method has been
used as a marker for different cancers. MUC1 is a Protein Coding
gene. In the paper (Hu et al., 2006), the authors demonstrated
that MUC1 overexpresses in the majority of ovarian carcinomas
and contributes to the metastasis process, promotes tumor
formation and metastasis. It plays a role in contributing to
ovarian tumor growth.

TABLE 7 | Selected genes.

Number of genes The name of the gene

40 GSTA1, C4A, COL3A1, PABPC1,

COL1A1, KRT13, S100A6, SERPINA1,

FGA, MUC2, COL1A2, APOE, KRT5,

MALAT1, GFAP, TUBA1A, KRT14, KLK1,

ATP1A1, RGS5, SPP1, CLU, S100A9, TF,

APOC1, MUC1, ADAM6, SFTPA2, BCAM,

TTR, CHGA, SCG2, FASN, PDLIM5,

LGALS4, CA2, MYH11, SILV, PGC, TG

As to STAD(Stomach adenocarcinoma), The gene PGC
selected by our method is a protein-coding gene. The protein
encoded by this gene is a digestive enzyme produced in
the stomach, Polymorphisms in this gene are associated with
susceptibility to gastric cancers. In the paper (Shen et al., 2017),
the authors demonstrated that PGC is a comparatively ideal
negative marker of gastric cancer.

As to TCHA(Thyroid carcinoma), The S100A6 gene selected
by our method is a protein-coding gene. In the paper (Sofiadis
et al., 2010), the authors demonstrated that the expression
patterns of S100A6 in thyroid carcinoma are unique compared
with those of other carcinomas, and over-expression in thyroid
carcinoma. S100A6 gene can be used as a biomarker of
Thyroid carcinoma.

In order to more visually show the expression of genes in
different tumor samples, we can use heat maps to understand
the distribution of data or the differential expression of genes.
In the heat map, the gradient color is used to represent the
change of values. The data value size can be visually represented
by the defined color depth. In addition, each column represents
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TABLE 8 | The KEGG pathway analysis.

KEGG Pathways Description P-Value Genes

hsa04610 Complement and coagulation cascades 9.50E-09 C3,CLU,C4A,FGA,SERPINA1

hsa05133 Pertussis 6.40E-07 C3,CALML3,SFTPA2,C4A

hsa04974 Protein digestion and absorption 1.22E-06 COL3A1,COL1A2,ATP1A1,COL1A1

hsa05146 Amoebiasis 1.50E-06 COL3A1,MUC2,COL1A2,COL1A1

hsa04611 Platelet activation 4.19E-06 COL3A1,COL1A2,FGA,COL1A1

hsa04918 Thyroid hormone synthesis 3.80E-05 TG,ATP1A1,TTR

hsa04971 Gastric acid secretion 3.95E-05 CALML3,CA2,ATP1A1

hsa04933 AGE-RAGE signaling pathway in diabetic complications 9.05E-05 COL3A1,COL1A2,COL1A1

hsa04926 Relaxin signaling pathway 1.93E-04 COL3A1,COL1A2,COL1A1

hsa04964 Proximal tubule bicarbonate reclamation 2.02E-04 CA2,ATP1A1

hsa04915 Estrogen signaling pathway 2.29E-04 CALML3,KRT14,KRT13

hsa04145 Phagosome 3.02E-04 C3,TUBA1A,SFTPA2

hsa04979 Cholesterol metabolism 8.78E-04 APOE,APOC1

hsa04961 Endocrine and other factor-regulated calcium reabsorption 8.78E-04 KLK1,ATP1A1

hsa04978 Mineral absorption 9.82E-04 TF,ATP1A1

hsa05150 Staphylococcus aureus infection 1.58E-03 C3,C4A

hsa04976 Bile secretion 1.77E-03 CA2,ATP1A1

hsa04512 ECM-receptor interaction 2.49E-03 COL1A2,COL1A1

hsa04970 Salivary secretion 2.71E-03 CALML3,ATP1A1

hsa04972 Pancreatic secretion 3.20E-03 CA2,ATP1A1

hsa04925 Aldosterone synthesis and secretion 3.20E-03 CALML3,ATP1A1

hsa04916 Melanogenesis 3.39E-03 CALML3,TYRP1

hsa04270 Vascular smooth muscle contraction 5.65E-03 CALML3,MYH11

hsa05322 Systemic lupus erythematosus 5.73E-03 C3,C4A

hsa04910 Insulin signaling pathway 6.07E-03 CALML3,FASN

hsa05418 Fluid shear stress and atherosclerosis 6.24E-03 CALML3,GSTA1

hsa01100 Metabolic pathways 6.77E-03 TYRP1,BCAM,FASN,GSTA1,CA2

hsa04261 Adrenergic signaling in cardiomyocytes 7.12E-03 CALML3,ATP1A1

hsa04022 cGMP-PKG signaling pathway 8.84E-03 CALML3,ATP1A1

hsa04530 Tight junction 9.14E-03 MYH11,TUBA1A

hsa05010 Alzheimer disease 9.24E-03 CALML3,APOE

the expression of each gene in different samples, and each row
represents the expression of all genes in each sample. A heat map
representation of the relative expression levels of the top 40 genes
across all tumor samples is shown in Figure 4.

From Figure 4, we were able to look at the level of expression
of each gene in all tumor types. The use of heat maps is
more indicative of the relationship between genes and samples.
For example, the gene of GFAP was highly expressed in LGG
and GBM and low in all other tumors. The gene of LGALS4
was moderately expressed in COAD and READ and low in all
other tumors. The heat map visually shows that these genes are
differential expression in different tumor samples, which also
demonstrates the effectiveness of our proposed method. It is
feasible to identify biomarkers with our proposed method.

These results indicate that the genes selected by our
method are closely related to the corresponding tumor
types, and therefore we can use these selected genes as
biomarkers to distinguish different tumors. For the rest of
the genes (PABPC1, KRT5, MALAT1, RGS5, SPP1, S100A9,

ADAM6, CHGA, SCG2, PDLIM5, SILV), they were neither
significantly enriched in the pathway nor found to be
tumor-related in GeneCard. The role of these genes in
tumor development is unclear, so, pending further study by
biological researchers.

5. CONCLUSIONS AND FUTURE WORKS

In recent years, with the rapid development of the new generation
of gene sequencing technology, the generated bioinformatics
data such as gene, protein and metabolism are generally high-
dimensional and complex. There are a lot of important data
closely related to life and health in these data. However, due
to the high data dimension, it is impossible to analyze all the
data. Feature selection technology can effectively screen high-
dimensional data, reduce the workload of data analysis by
reducing dimensions, find disease-related markers to achieve
early and accurate diagnosis.
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FIGURE 4 | The heat map of the top 40 genes across all tumor samples.

In this paper, we have designed a novel approach to
classify different types of cancer, whilst it can be used to find
biomarkers associated with tumors. We identified biomarkers
that were significantly associated with the pan-cancer studies
by innovatively combining the traditional machine learning
model and deep learning. The presented results and the
performance metrics performed in this research showed that
the proposed approach achieved an overall testing accuracy
of 96.81%. Moreover, the results of our experiment also
demonstrated that the genes selected by our method were
related to the corresponding tumor types by means of KEGG
pathway analysis and gene query, some of these genes have
been used as clinical markers. These biomarkers can be used
to quickly identify the type of tumor, so as to detect and
treat the tumor in advance and improve the cure rate of
the tumor.

The methods presented in this paper are not limited to RNA-
Seq data, but also applicable to other types of data. However, the

method in this paper still needs improvement. For example, the
preprocessing strategy of our method includes not only the filter
approach, but also the wrapper approach. So, one of the potential
future works is applying a new preprocessing strategy to verify
and extend this approach. In conclusion, a novel approach for
the classification of pan-cancer has been proposed in this paper,
which can accurately predict the type of tumor and find tumor-
related biomarkers from high-dimensional biological datasets,
have broad application prospects and great scientific research
prospects, and is of great significance to human development.
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The next-generation sequencing technology offers a wealth of data resources for the
detection of copy number variations (CNVs) at a high resolution. However, it is still
challenging to correctly detect CNVs of different lengths. It is necessary to develop
new CNV detection tools to meet this demand. In this work, we propose a new CNV
detection method, called CBCNV, for the detection of CNVs of different lengths from
whole genome sequencing data. CBCNV uses a clustering algorithm to divide the read
depth segment profile, and assigns an abnormal score to each read depth segment.
Based on the abnormal score profile, Tukey’s fences method is adopted in CBCNV to
forecast CNVs. The performance of the proposed method is evaluated on simulated
data sets, and is compared with those of several existing methods. The experimental
results prove that the performance of CBCNV is better than those of several existing
methods. The proposed method is further tested and verified on real data sets, and the
experimental results are found to be consistent with the simulation results. Therefore,
the proposed method can be expected to become a routine tool in the analysis of CNVs
from tumor-normal matched samples.

Keywords: next-generation sequencing, copy number variation, clustering algorithm, abnormal score, Tukey’s
fences

INTRODUCTION

The copy number variation (CNV) of DNA fragments has been widely recognized as a major
type of structural variations, and can cause the amplification or deletion of DNA fragments, the
lengths of which are greater than 1 kbp in the human genome (Freeman et al., 2006). Some
CNVs, called germline CNVs, are also present in normal tissues of the human body; these
generally originate from family inheritance, and can cause cancers and diseases (Kuiper et al.,
2010; Krepischi et al., 2012). The CNVs in tumor tissue are generally called somatic CNVs,
which are acquired CNVs, and cause tumor formation by oncogene and tumor suppressor gene
mutations (Stratton et al., 2009; Beroukhim et al., 2010; Pei et al., 2020). Many experimental
studies have proven that CNVs can change the doses of genes and lead to the reorganization
of chromosome structure (Sharp et al., 2005; Magi et al., 2017; Pei et al., 2021b), and makes
an important contribution to the occurrence and formation of tumors and various disorders
(Pei et al., 2021a). For example, it can cause schizophrenia and autism disorders in humans
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(Sebat et al., 2007; Cook and Scherer, 2008; Stone et al., 2008).
Some studies have shown that CNVs are related to cancer,
such as breast and ovarian cancer (Tchatchou and Burwinkel,
2008; Adam and David, 2009; Malek et al., 2011). In practical
applications, there is a strong requirement to capture CNVs of
various range lengths, which requires the developed tools to
have higher resolution and better robustness than previously
developed tools to reduce the false positive rate of test results.
Therefore, it is still a difficult task to effectively detect CNVs of
different lengths.

Compared with traditional (array-based) detection methods
(Carter, 2007; Buysse et al., 2009), the detection cost has been
greatly reduced and resolution has reached the base-pair level
with the emergence of next-generation sequencing technology.
In recent years, most related tools for CNV detection using
next-generation sequencing data have been developed based on
paired-end mapping (PEM) (Korbel et al., 2007) and depth of
coverage (DOC) (Yoon et al., 2009) strategies. The basic concept
of PEM-based methods is that the insertion size of aligned
paired-end reads is significantly different from the insertion
size preset by the laboratory (Medvedev et al., 2009). While
PEM-based methods can detect amplification, deletion, insertion,
translocation, etc., they can only identify those insertion variants
whose lengths are less than the preset insertion length. The basic
concept of DOC-based methods is that the number of reads
aligned to each position of the reference genome is proportional
to the number of copies corresponding to that position (Yoon
et al., 2009). In principle, DOC-based methods can detect CNVs
of various lengths. However, in practical applications, they are
more suitable for the detection of long CNVs, and cannot
accurately detect the boundaries of the CNVs.

Generally, DOC-based methods require the input of tumor-
normal matched samples to detect the tumor genome and
effectively capture CNVs. The workflow of this type of method
is: (1) input tumor-normal matched samples; (2) obtain read
count profiles with SAMtools (Li et al., 2009); (3) bin read
count profiles (Chiang et al., 2009) and generate read depth
profiles; (4) use the joint read depth information of the tumor-
normal matched samples to build a statistical model; (5) choose a
suitable threshold to predict CNVs. It is generally believed that
the deviation caused by sequencing is consistent in the same
areas of the two samples. Therefore, DOC-based methods use
the read depth ratio information to eliminate these deviations
(GC content and mappability biases) (Bentley et al., 2008;
Chiang et al., 2009). Some well-known methods have been
developed to detect CNVs from tumor-normal matched samples,
including BIC-seq2 (Xi et al., 2016), SeqCNV (Chen et al., 2017),
and CNVkit (Talevich et al., 2016). BIC-seq2 preprocesses the
sequenced reads, including by calibrating the GC content bias,
removing mappability bias, and normalizing reads at the nucleic
acid level. Based on the preprocessed data, the segmentation
procedure is executed using the bayesian information criterion,
by which CNVs are forecasted. It is not sensitive to the detection
of short CNVs. SeqCNV extracts the read depth information
of the tumor-normal matched samples to build a maximum
penalized likelihood estimation model to predict CNVs. It detects
a small number of CNVs, most of which are the gain areas and

true positives, and its detection is more conservative than that
of BIC-seq2. It has a long running time and is not suitable for
testing samples with long CNVs. CNVkit is a software toolkit that
extracts the information of on- and off-target sequenced reads.
It adopts a rolling median method to normalize the GC content
bias, mappability bias, and target density bias, and to reduce
the impact on the true copy number status. CNVkit detects the
CNVs, many of which are deletion regions. However, it is not
sensitive to the detection of short CNVs.

In consideration of the limitations of the existing methods,
in this study, a new tumor-normal matched sample-based CNV
detection method, called CBCNV (cluster-based approach for
CNV detection), is proposed for the prediction of CNVs using
whole-genome sequencing data. CBCNV extracts the read count
profiles of tumor-normal matched samples with SAMtools (Li
et al., 2009). The preprocessing program is executed on the
read count profiles, which can yield the read depth segment
profiles, the dimensions of which are transformed into two-
dimensional space. CBCNV adopts the k-means algorithm to
cluster the preprocessed read depth segment profiles (Hartigan
and Wong, 1979), which can yield clusters of different sizes.
The clusters are sorted from largest to smallest according to
the number of elements in each cluster. Then, by setting a
boundary threshold, these clusters are divided into large and
small clusters. Based on the above definition, CBCNV assigns
a cluster-based abnormal score for each read depth segment.
Using the cluster-based abnormal score profiles, Tukey’s fences
method is employed to announce candidate CNVs (Zijlstra et al.,
2007). The performance of the proposed method is verified using
simulated and real data sets, and is compared with several existing
CNV detection methods. The experimental results show that the
performance of CBCNV is better than several other comparison
methods, especially for low-purity samples. In addition, CBCNV
is also found to detect some biologically meaningful CNVs, which
can provide some valuable reference information for assistance
with clinical diagnosis and targeted drug research.

The remainder of this article is organized as follows. Section
“Materials and Methods” includes the workflow of CBCNV, data
preprocessing, the calculation of cluster-based abnormal score,
and the prediction of CNVs. In section “Results,” simulation and
real experiments are designed, and the experimental results are
analyzed and discussed. Section “Discussion and Conclusion”
summarizes this research and puts forward ideas for future work.

MATERIALS AND METHODS

Overview of CBCNV
CBCNV is a DOC-based approach that is suitable for the
detection of tumor-normal matched samples, and can identify
somatic CNVs and germline CNVs from whole-genome
sequencing data. The pipeline of CBCNV is described in detail
in Figure 1. The sequenced tumor-normal matched samples
that are composed of a large number of sequenced reads are
compared to the reference genome using the BWA tool (Li and
Durbin, 2010). Then, the read count profiles of the tumor-normal
matched samples are generated with SAMtools (Li et al., 2009).
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FIGURE 1 | Overview of the workflow of CBCNV. It is mainly composed of four steps, which includes preparing input files, preprocessing read count profiles,
calculating cluster-based abnormal scores, and recording CNVs.

Based on the read count profiles, the following four steps are
conducted for CBCNV to complete CNV detection. The first
step involves defining the bin, dividing the reference genome
into continuous and non-overlapping regions according to the
bin size, and generating the read depth profiles. In the second
step, the abnormal bins are removed, and the GC content bias is
corrected. The read depth profiles are denoised and segmented
to generate the read depth segment profiles. The dimensions
of the read depth segment profiles are converted from one-
dimensional to two-dimensional space. In the third step, the
preprocessed read depth segment profiles are clustered via the
k-means method to form clusters of different sizes. A boundary
value is set to divide large and small clusters. The cluster-based
abnormal score is defined based on the following two situations
(He et al., 2003): (1) if a read depth segment belongs to a
small cluster, the cluster-based abnormal score is defined as the
distance between the read depth segment and the center of the
large cluster that is the closest to it; (2) if a read depth segment
belongs to a large cluster, the cluster-based abnormal score is
defined as the distance between the read depth segment and the
center of the large cluster. Finally, in the fourth step, Tukey’s
fences method is employed to predict CNVs (Zijlstra et al., 2007).
The CBCNV software is developed based on the R and Python
languages (Zhao et al., 2019). Its source code is public, and can be
downloaded from https://github.com/gj-123/CBCNV/releases,

where users can easily install and use the software according to
the instructions.

Data Preprocessing
The sequenced reads are aligned to the reference genome with
BWA (Li and Durbin, 2010), and the read count profiles are
generated by SAMtools (Li et al., 2009). The reference genome is
composed of five types of positions (“A”, “T”, “G”, “C”, and “N”).
Here, “N” indicates the base positions that cannot be determined
during the sequencing process. The sequenced reads cannot be
matched to the “N” positions, which are often mistaken for CNV
deletion regions. To obtain reasonable read count profiles, a
binning strategy is adopted to deal with the “N” positions (Yuan
et al., 2018). The read count profiles are divided into continuous
and non-overlapping areas according to the bin size. The bins
that contain the “N” positions are treated as abnormal bins and
filtered out. The mean read count value of each bin is calculated
to obtain the read depth profiles. Based on the above processing,
Eq. (1) is used to deal with GC content bias (Yoon et al., 2009):

RD
′

i = RDi ·
RDm

RDgc
, (1)

where RDi and RD
′

i represent the original and revised read depth
values of the i-th bin, respectively, RDm represents the mean
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value of the read depth of all bins, and RDgc represents the
mean read depth value of the bins, the GC content of which
is equal to that of the i-th bin. Sequencing errors and various
deviations will lead to a substantial amount of noise in the
read depth data, and ultimately false test results. Thus, noise
reduction is a necessary step in CNV detection. The fused lasso
regression method is adopted to smooth the read depth profile
(Tibshirani and Wang, 2008). This method effectively considers
the copy number relationship between adjacent read depth
signals, which allows a reasonable read depth segment profile to
be obtained. Based on the denoised read depth segment profile,
Eqs. (2–5) (Li Y. et al., 2019; Liu et al., 2020) are used to transform
its dimensions.

CN = CNnorm ·
RDSi
RDSm

1 ≤ i ≤ |RDS| (2)

RDSR =
RDSi
RDSm

1 ≤ i ≤ |RDS| (3)

RDSD =

∑i+L
j=i+1 |RDSRi−RDSRj|

L i = 1, 5 ≤ L ≤ 20∑i+L
j=1 |RDSRi−RDSRj|

i−1+L 1 <i ≤ L, 5 ≤ L ≤ 20∑i+L
j=i−L |RDSRi−RDSRj|

2L L<i ≤ |RDS| − L, 5 ≤ L ≤ 20∑|RDS|−1
j=i−L |RDSRi−RDSRj|

L+|RDS|−i−1 |RDS| − L<i ≤ |RDS| − 1, 5 ≤ L ≤ 20∑i−1
j=i−L |RDSRi−RDSRj|

L i = |RDS| , 5 ≤ L ≤ 20
(4)

RDS
′

= {CN,RDSD} (5)

In Eq. (2), CNnorm represents the normal copy number, and its
value is equal to 2. Additionally, RDSi represents the value of
the i-th read depth segment, RDSm represents the mean across
all the read depth segments, and CN represents the set of copy
number, which is composed of the copy number of all read
depth segments. |RDS| represents the number of elements in the
read depth segment set. In Eq. (3), RDSR represents a set that
is composed of the ratio between RDSi and RDSm. In Eq. (4),
L represents the number of left and right neighbors of the i-th
element of RDSR, and is set to 10 by default. |RDSRi − RDSRj|
represents the absolute value of the difference between RDSRi
and RDSRj, and RDSD represents the set of differences of each
element in RDSR. In Eq. (5), RDS

′

represents a two-dimensional
data set, which is composed of CN and RDSD. This processing
step provides two perspectives to observe read depth segments.
The first dimension can approximately reflect the copy number
status for each read depth segment, which provides a longitudinal
and global perspective to observe the trend of copy number
changes. The second dimension indirectly reflects the difference
between a read depth segment and its surrounding read depth
segments, which provides a horizontal and partial perspective to
illustrate the relevance of the copy number status of each read
depth segment. Moreover, this processing step provides a valid
data set for the calculation of cluster-based abnormal scores,
which is elaborated in the next subsection.

Calculation of Cluster-Based Abnormal
Scores
Based on the RDS

′

profile, a cluster-based abnormal score is
calculated for each read depth segment. Here, each element of
RDS

′

is regarded as an objectO. The cluster-based abnormal score
is designed based on the concept of CBLOF (He et al., 2003),
and is different from the traditional tumor-normal matched
samples based CNV detection methods, which utilize read depth
information to fit a statistical model and set a threshold to predict
CNVs. The cluster-based abnormal score reflects the isolation
degree of the local small cluster relative to the large cluster
around it, as well as the deviation degree of each object in
the large cluster relative to its cluster center, which indirectly
reflects the abnormal degree of the copy number of each object.
If the cluster-based abnormal score of an object is higher than
those of most objects, it is likely a CNV. To further calculate
the cluster-based abnormal scores, the definition is subsequently
introduced in detail. First, the k-means algorithm is executed
on the data set RDS

′

, and can divide the data set to form
clusters of different sizes. Equation (6) is used to describe the
clustering result:

RDSC = {RDSC1,RDSC2, · · ·,RDSCk−1,RDSCk}, (6)

RDSCi ∩ RDSCj=∅, 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j,

where RDSC represents a set of k clusters. Second, based on the
first step, RDSC is divided into large and small clusters (He et al.,
2003), as given by Eqs. (7–11).

RDSC
′

= {RDSC
′

1,RDSC
′

2, · · ·,RDSC
′

k−1,RDSC
′

k} (7)

|RDSC
′

1| + |RDSC
′

2| + · · · + |RDSC
′

θ| ≥ |RDSC
′

| · x (8)

|RDSC
′

θ|

|RDSC′θ+1|
≥ y (9)

LRDSC
′

= {RDSC
′

i|1 ≤ i ≤ θ} (10)

SRDSC
′

= {RDSC
′

j|θ < j ≤ k} (11)

RDSC
′

1| ≥ |RDSC
′

2| ≥ · · · ≥ |RDSC
′

k−1| ≥ |RDSC
′

k|,

1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j

In Eq. (7), RDSC
′

represents the sorted cluster set RDSC,
which is sorted in descending order. In Eq. (8), | ∗| represents
the number of elements in a cluster, θ represents the boundary
threshold of large and small clusters, and x represents a ratio
between the total number of objects in the large cluster and
the total number of objects in all clusters. The definition of
the Eq. (8) is based on the consideration that most objects in
RDSC

′

are not CNVs. Thus, the clusters that contain most of
the objects are considered large clusters. Eq. (9) signifies that
the size of a large cluster is at least y times the size of a small
cluster, and describes the difference in size between the smallest
large cluster and the largest small cluster. In Eq. (10), LRDSC

′
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represents the set of large clusters. In Eq. (11), SRDSC
′

represents
the set of small clusters. Finally, based on the preceding
definitions, Eq. (12) is constructed to describe the cluster-based
abnormal score.

CBAS(O) =
min(dist(O,RDSC

′

i))O ∈ RDSC
′

j,RDSC
′

i ∈ LRDSC
′

,RDSC
′

j ∈

SRDSC
′

, 1 ≤ i ≤ θ, θ < j ≤ k
dist(O,RDSC

′

i) O ∈ RDSC
′

i,RDSC
′

i ∈ LRDSC
′

, 1 ≤ i ≤ θ

(12)

In Eq. (12), CBAS (O) represents the cluster-based abnormal
score of object O, which is defined in two cases: (1) if the object
O originates from a small cluster, the distance between O and the
center of the closest large cluster is considered as the cluster-based
abnormal score of O; (2) if the object O originates from a large
cluster, the distance between O and the center of the large cluster
is considered as the cluster-based abnormal score of O.

Predicting CNVs
Based on the cluster-based abnormal score profiles, the abnormal
objects must be identified. For this step, the traditional methods
analyze the abnormality of each object, and the users directly
select an appropriate threshold to cut off the abnormal objects
according to the application scenario. In the proposed method,
Tukey’s fences method is adopted to determine the abnormal
objects. The prediction of abnormal objects consists of the
following five steps. (1) the cluster-based abnormal scores of all
objects are sorted from smallest to largest. (2) Eq. (13) is defined
to evaluate an extreme outer limit:

T = CBASQ3 + w · (CBASQ3 − CBASQ1), (13)

where T represents the upper limit of fences, w represents an
abnormal weight, CBASQ1 represents the cluster-based abnormal
score of the lower quartile, and CBASQ3 represents the cluster-
based abnormal score of the upper quartile. (3) the basic notion
of judging abnormal objects is that the higher the cluster-based
abnormal score of an object, the more likely it is to be a CNV.
Here, T is used as the baseline to identify abnormal objects. If
the cluster-based abnormal score of an object is greater than
T, it is considered to be a CNV. If the cluster-based abnormal
score of an object is less than or equal to T, it is considered to
be a normal area. (4) after the candidate CNVs are determined,
their mutation modes (gain or loss) are determined. If the read
depth value of a CNV area is greater than or equal to the mean
read depth value of all normal areas, it is considered to be a
gain area. If the read depth value of a CNV area is less than
the mean read depth value of all normal areas, it is considered
to be a loss area. (5) finally, somatic CNVs and germline CNVs
are further identified. A germline CNV is a genetic variation that
may originate from an individual’s parents or family. If a CNV
exists in both the tumor-normal matched samples, it is regarded
as a germline CNV.

Parameter Setting of CBCNV
To effectively use CBCNV, it is necessary to further explain the
settings of related parameters, which include the bin size, the
number of neighbors (L), the number of clusters (k), and the
ratios of large clusters (x), multiples (y), and abnormal weight
(w). In this study, the bin size and L are set to 2,000 bp and
10 by default, respectively. Additionally, the values of k, x, and
y are set to 5, 0.9, and 5, respectively, which are adopted by
referencing published article (He et al., 2003). In Tukey’s fences
method, w is generally set to 1.5 (Zijlstra et al., 2007). In the
proposed method, w is set to 1.5 as the default value. The settings
of these default parameter values in the proposed method were
determined according to experience and related methods. Users
can also adjust these parameters according to their actual needs
and application scenarios.

RESULTS

It is necessary to design a reasonable experimental plan to
verify the effectiveness and reliability of the proposed method.
Aiming at this point, simulation and real experiments were
conducted. A simulation experiment is an effective and objective
evaluation strategy, which can provide a comparison criterion
to quantify the performance of the proposed method. In the
simulation experiment, three popular published algorithms (BIC-
seq2 (Xi et al., 2016), SeqCNV (Chen et al., 2017), and CNVkit
(Talevich et al., 2016)) that can be used to effectively detect
tumor-normal matched samples were selected for comparison
with CBCNV. The performances of these methods are evaluated
from three perspectives. First, the sensitivity and false discovery
rate (FDR) of the four methods are evaluated at six CNV
length levels. Then, the sensitivity and FDR of each method
in the CNV gain and loss regions are analyzed and discussed.
Finally, three indicators (recall, precision, and F1-score) are used
to comprehensively evaluate the performance of each method.
In real data applications, the proposed algorithm was used
to detect two pairs of matched breast cancer whole-genome
sequencing samples. Because the ground truths of the real data
sets are unknown, the number of overlapping events and number
of predicted events are adopted to evaluate the performance
of each method. To further verify the performance of the
proposed method, we use overlapping density score method to
quantify performance of each method. The experimental results
demonstrate that CBCNV is powerful CNV detection tools.

Application of Simulation Data
Many CNV simulation softwares have been developed and
applied to generate next-generation sequencing data. In this
study, IntSIM software was selected to generate simulation data
sets (Yuan et al., 2017). Before its use, some settings were
conducted: (1) the reference genome was prepared; (2) the tumor
purity (TP) and sequencing coverage (SC) were set; (3) the
number of repetitions of the sample under the configuration of
each group was selected. Chromosome 21 of hg19 was entered
into the software as a reference genome. The tumor purity was
set to 0.2 and 0.3, and sequencing coverage was set to 10× to
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generate simulated data sets of different configurations, in which
50 samples were generated. Each sample was embedded with 22
regions of variation, which were composed of 12 gains and 10
losses (four heterogeneous losses and six homogeneous losses).
The length of the CNV regions ranged from 2 to 100 kb. To fairly
evaluate the performance of each method, the default parameters
were used for all methods to detect each set of data.

Figure 2 describes the sensitivity of the four methods for
the respective detection of CNVs with lengths of 2, 6, 10, 30,
50, and 100 kb under two different configurations, respectively.
Two performance indicators (sensitivity and FDR) are adopted
to evaluate the resolution of each method. Sensitivity is defined
as the value of the number of CNVs correctly detected by a tool
divided by the total number of CNVs recorded by the ground
truth file. FDR is defined as the value of the number of false
positives detected by a tool divided by the total number of CNVs
detected by the tool. If a detected event overlaps with the ground
truth file by more than 50%, it is considered as a candidate
CNV (Hormozdiari et al., 2009). From the figure, it is evident
that the sensitivity of each method increased with the increase
in tumor purity from 0.2 to 0.3. This demonstrates that tumor
purity is one of the key factors that affect CNV detection. In
contrast, long CNVs were more easily detected by each method
than short CNVs. CBCNV achieved the best sensitivity for all
CNV length levels, and BIC-seq2 achieved better sensitivity than
the other two methods (SeqCNV and CNVkit) at most CNV
length levels. SeqCNV achieved the lowest sensitivity in the cases
of CNVs with lengths of 50 and 100 kb, which indicates that it
is not sensitive enough to detect long CNVs. CNVkit achieved
the lowest sensitivity in the cases of CNVs with lengths of 2 and
6 kb, which indicates that it is not sensitive enough to detect short
CNVs. Figure 3 presents the FDR of each method at the six CNV
length levels under two different configurations. In the case of
tumor purity = 0.2, CNVkit performed the best in terms of FDR,
followed by CBCNV, BIC-seq2 and SeqCNV. Although CNVkit
achieved the best FDR, it had the lowest sensitivity. In the case
of tumor purity = 0.3, CBCNV performed excellently in terms of
FDR, followed by BIC-seq2, CNVkit, and SeqCNV. Considering
the two indicators together, CBCNV achieved the best tradeoff
between sensitivity and FDR, followed by BIC-seq2, SeqCNV,
and CNVkit. Via the preceding analysis and discussion, it can be
concluded that CBCNV can detect more CNVs with fewer false
positives than the other three methods.

Based on the simulated data sets, sensitivity and FDR were
considered to analyze and evaluate the performances of the
compared methods (CBCNV, BIC-seq2, SeqCNV, and CNVkit)
in the gain and loss areas, and the averages of the two indicators
were calculated across the 50 samples under different setting
conditions. In general, the sensitivity of each method was found
to increase with the increase in tumor purity, which demonstrates
that the performance of each method was very sensitive to
tumor purity. Most methods detected the CNV gain areas more
sensitively than the CNV loss areas. Figure 4 describes the
sensitivity of each method to the detection of the gain and
loss areas under two different sets of conditions. In each set of
conditions, CBCNV achieved the highest sensitivity in the gain
and loss areas. BIC-seq2 achieved better sensitivity in the gain

FIGURE 2 | The sensitivity of four methods at the six CNV length levels under
two sets of simulation configurations.

FIGURE 3 | The FDR of each method at the six CNV length levels under two
sets of simulation samples.

areas than the other two methods (SeqCNV and CNVkit), and
its sensitivity in the loss areas ranked third. The sensitivity of
SeqCNV to the detection of the gain areas was between those
of BIC-seq2 and CNVkit, and it was insensitive to the detection
of the loss areas as compared to the other three methods.
CNVkit achieved the lowest sensitivity in the gain areas, but
its sensitivity ranked second in the loss areas, which indicates
that it is suitable for detecting loss areas. Figure 5 describes the
FDR of each method in the detection of gain and loss areas
under two different sets of conditions. When tumor purity was
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FIGURE 4 | Comparison of the sensitivity of the four methods for detecting gain and loss areas under two sets of simulation settings.

FIGURE 5 | Comparison of the FDR of each method for detecting gain and
loss areas under two sets of simulation samples.

equal to 0.2 and 0.3, the FDR of CBCNV ranked second and
first in the gain areas, and ranked first in the loss areas. The
FDR of BIC-seq2 ranked third and second in the gain and loss
areas, respectively. SeqCNV exhibited the largest FDRs in the
gain and loss areas, which demonstrates that there were many
false positives of the detected CNVs. CNVkit had a medium
FDR between those of BIC-seq2 and SeqCNV in the loss areas.
In the gain areas, the FDR of CNVkit ranked first when tumor
purity = 0.2, and second when tumor purity = 0.3. CNVkit
detected the gain areas more accurately than the loss areas. This
demonstrates that the DOC-based method detected the gain
areas more sensitively than the loss areas. In summary, CBCNV
achieved the best tradeoff between sensitivity and FDR in the
detection of gain and loss areas.

Three indicators (recall, precision, and F1-score) were
adopted to comprehensively evaluate the performance of each

method. Recall is defined as the number of correctly detected
CNVs divided by the total number of simulated CNVs (Magi
et al., 2013). Precision is defined as the number of correctly
detected CNVs divided by the total number of detected CNVs
(Magi et al., 2013). The F1-score represents the harmonic mean
of precision and recall. The three performance indicators are
reported as the averages of 50 samples under each set of
conditions. Figure 6 detail the F1-score level of each method,
from which it is evident that CBCNV achieved the highest
recall, followed by BIC-seq2, SeqCNV, and CNVkit. When tumor
purity = 0.3, CBCNV got the best precision rate among all
methods. When tumor purity = 0.2, CNVkit performed the
best in terms of precision, followed by CBCNV, BIC-seq2, and
SeqCNV. Moreover, CBCNV achieved the best tradeoff between
precision and recall, followed by BIC-seq2, SeqCNV, and CNVkit,
which is consistent with the above experimental results.

Detection of Copy Number Variants From
Breast Cancer Samples
To analyze and verify the performance of the proposed method,
it was applied to detect four paired whole-genome breast
cancer samples (PD4088a, PD4088b, PD4192a, and PD4192b),
the details of which were sourced from https://www.ebi.ac.uk/
ega/studies under accession EGAS00001000170 (Li Y. Y. et al.,
2019). CBCNV was used to detect 22 autosomes in each set of
samples, and two well-known methods (BIC-seq2 and CNVkit)
were selected for comparison. For a fair comparison, the default
parameters were used for these methods to detect the samples.
The number of overlapping events and predicted events were
used for performance measurement to effectively analyze the
advantages and disadvantages of each method. The ground truth
file could not be provided in the real data experiment. The
number of overlapping events represent the average number
of overlapping events for one method and other methods, and
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FIGURE 6 | The performance comparison of the four methods in terms of
recall, precision and F1-score under two sets of simulation settings. Black
curves indicate F1-score levels, which ranges from 0.1 to 0.9. The equations
on the left and right sides of the comma represent the tumor purity (TP) and
sequencing coverage (SC), respectively.

number of predicted events represents the total number of
events predicted by a method. Table 1 presents the number of
overlapping events and predicted events of each method in the
22 autosomes of samples PD4088a and PD4192a, respectively.
In the sample PD4088a, it is evident that CBCNV achieved the
greatest number of overlapping events and predicted events. BIC-
seq2 detects the least number of overlapping events and predicted
events, which shows that it is more conservative than the other
two methods. CNVkit achieved number of overlapping events
and predicted events between CBCNV and BIC-seq2. In the
sample PD4192a, CNVkit called a large number of CNV events,
but obtained number of overlapping events as many as CBCNV,
which means it has detected a large number of non-overlapping
events. It indirectly shows that the CNVs detected by CNVkit

are likely to contain a large number of false positive events.
A small number of overlapping events and predicted events were
found by BIC-seq2, performance of which is consistent with the
above sample. The number of events detected by CBCNV is
between the other two comparison methods, but it obtains the
most overlapping events, which fully shows that most of the CNV
events detected by CBCNV are true positive events.

In order to further verify the performance of each method, we
adopt the evaluation method of overlapping density score (ODS)
(Yuan et al., 2018), which is defined by the following equation.

ODS = Om · Or, (14)

Where Om represents the mean number of overlapping events
between one method and other comparison methods, Or
represents Om divided by the total number of CNV events
detected by the method. Here, we use Eq. (14) to calculate ODS
for each method, and the comparison results are recorded in
Table 2. From the experimental results, CBCNV achieve the best
ODS in the all samples. ODS of BIC-seq2 are the lowest among all
methods. Compared with the above two methods, CNVkit obtain
the medium ODS in each group of samples. Overall, CBCNV
achieved the best balance between Om and Or as compared to the
other two methods.

On the basis of the above experiments, we used the catalog
of somatic mutations in cancer (COSMIC) database to analyze
the biological significance of the detected CNVs. From two pairs
of matched breast cancer samples, we found that some of the
detected CNVs contained some genes that were related to breast
cancer, such as PDZK1 (Kim et al., 2013), XRCC4 (Allen-Brady
et al., 2006), Fbxl17 (Mason et al., 2020), ITGBL1 (Li et al., 2015),
RORA (Taheri et al., 2017), BAGE (Fujie et al., 1997), AMOTL1
(Couderc et al., 2016), RAP80 (Osorio et al., 2009), PIWIL4
(Wang et al., 2016), CSE1L (Behrens et al., 2001), and USP18
(Tan et al., 2018).

Evaluation of Running Time
Running time is a critical evaluation indicator to evaluate the
performance of the methods. For this, CBCNV and the other
three methods (BIC-seq2, SeqCNV, and CNVkit) are tested on 50
simulation samples, which are run on a personal computer with

TABLE 1 | Comparison of number of overlapping events (NOE) and predicted
events (NPE) for each method on two sets of real samples.

Sample Indicator CBCNV BIC-seq2 CNVkit

PD4088a NOE 80 19 49

NPE 510 85 194

PD4192a NOE 126 20 126

NPE 482 83 2,156

TABLE 2 | Comparison of ODS for each method on two sets of real samples.

Sample CBCNV BIC-seq2 CNVkit

PD4088a 19 6 18

PD4192a 43 7 32
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TABLE 3 | Comparison of running time for each method.

Indicator CBCNV BIC-seq2 SeqCNV CNVkit

Running time (s) 39 8 500 182

Intel(R) Core (TM) i7-4710MQ CPU @ 2.50 GHz and 16.0 GB
memory. The running time of each method is counted as the
averages of 50 simulation samples. As shown in Table 3, BIC-
seq2 performed the best in terms of running time, followed by
CBCNV, CNVkit, and SeqCNV, which shows that CBCNV is a
relatively efficient CNV detection tool.

DISCUSSION AND CONCLUSION

In this work, the proposed CBCNV method was developed
based on DOC profiles to detect CNVs using next-generation
sequencing data, and is suitable for the detection of tumor-
normal matched samples. CBCNV uses a local perspective to
capture abnormal read depth signals, which are considered to be
only a small portion of the overall signals. Its detection concept
is different from those of traditional CNV detection methods,
which generally construct a statistical model by fitting the read
depth signals, then select a reasonable baseline to identify CNVs.
Instead, in CBCNV, a clustering algorithm is performed on the
read depth segment profile to form clusters of different scales.
According to the scales of the clusters, large and small clusters
are defined. If a read depth segment originates from a large
cluster, its abnormal score is defined as the distance between
the read depth segment and the cluster center. If a read depth
segment belongs to a small cluster, its abnormal score is defined
as the distance between the read depth segment and the center
of the closest large cluster. In this way, an abnormal score is
assigned to each read depth segment. Based on the abnormal
score profile, Tukey’s fences method is adopted to predict CNVs
(Zijlstra et al., 2007).

Via the analysis of the concepts of the proposed method, the
following characteristics are summarized. (1) CBCNV extracts
two features of read depth signals, which fully considers the
copy number of each read depth segment and the difference in
the ratios of adjacent read depth segments. (2) The traditional
outlier detection algorithm was effectively converted to detect
CNVs. CBCNV uses a local perspective to identify CNVs, which
can objectively reflect the actual state of abnormal read depth
signals. It does not require the fitting of the distribution of read
depth signals, and cluster-based abnormal scores are constructed
for each read depth segment signal to effectively identify the
copy number status of adjacent read depth signals. (3) Based on
the abnormal score of each read depth segment, Tukey’s fences
method is applied to identify CNVs, which does not require the
evaluation of the distribution of abnormal scores.

Simulated data sets were used to evaluate the performance
of CBCNV, and three popular algorithms were selected for
comparison. First, the sensitivity and FDR of each method for
the detection of CNVs of different lengths and in gain and
loss regions were analyzed and discussed. Via the analysis of

the experimental results, it was found that CBCNV achieved
the best tradeoff between sensitivity and FDR. Second, three
performance indicators (recall, precision, and F1-score) were
adopted to comprehensively evaluate the performance of each
method. The experimental results proved that CBCNV achieved
the best performance in terms of all three indicators. In real data
applications, two sets of whole-genome data were used to evaluate
the effectiveness of the proposed method. The experimental
results demonstrated that CBCNV achieved the best number of
overlapping events and overlapping density scores compared to
the other two methods in each group of samples. In summary,
CBCNV is an effective and reliable CNV detection tool for using
on tumor-normal matched samples.

Some shortcomings of the proposed method were also
discovered. For example, the selection of the number of clusters
(k) is a very important step that may affect the accuracy of
the results. In most application scenarios, the performance of
the proposed method was superior under this set of parameter
settings, which meets the needs of users in most cases. However,
in some unique cases, the performance of this set of parameters
may not be suitable. In future research, the data size and
characteristics will be fully considered to automatically set the
parameter k. In addition, in the present study, only two features
of read depth were extracted as the input. In future research,
multiple factors of read depth signals will be considered to
improve the accuracy of the proposed method. Ultimately,
CBCNV will be further expanded (Mao et al., 2021) and proved
to effectively detect other types of structural variation in multiple
application scenarios.
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Different DNA methylation patterns presented on different tissues or cell types are

considered as one of the main reasons accounting for the tissue-specific gene

expressions. In recent years, many methods have been proposed to identify differentially

methylated regions (DMRs) based on themixture of methylation signals from homologous

chromosomes. To investigate the possible influence of homologous chromosomes on

methylation analysis, this paper proposed a method (MHap) to construct methylation

haplotypes for homologous chromosomes in CpG dense regions. Through comparing

the methylation consistency between homologous chromosomes in different cell types,

it can be found that majority of paired methylation haplotypes derived from homologous

chromosomes are consistent, while a lower methylation consistency was observed in

the breast cancer sample. It also can be observed that the hypomethylation consistency

of differentiated cells is higher than that of the corresponding undifferentiated stem

cells. Furthermore, based on the methylation haplotypes constructed on homologous

chromosomes, a method (MHap_DMR) is developed to identify DMRs between

differentiated cells and the corresponding undifferentiated stem cells, or between the

breast cancer sample and the normal breast sample. Through comparing the methylation

haplotype modes of DMRs in two cell types, the DNA methylation changing directions of

homologous chromosomes in cell differentiation and cancerization can be revealed. The

code is available at: https://github.com/xqpeng/MHap_DMR.

Keywords:methylation haplotype, differentiallymethylated region, cell differentiation, homologous chromosomes,

methylation consistency, hypomethylation consistency

1. INTRODUCTION

In recent years, the revealing of the mechanisms behind the diseases has been performed from
different angles, such as mutated genes, altered DNA methylation (Eden et al., 2003; Baylin, 2005),
non-coding RNAs (Yan et al., 2017, 2018; Chen et al., 2019; Lan et al., 2020), microbes (Yan et al.,
2019, 2021), etc. Differentially methylated regions (DMRs) are the main explanation accounting
for the diversity of gene expression in different cell types in a body. Differentiation-associated
differential methylation profiles were observed on cell types under different stages of development
and differentiation (Laurent et al., 2010). Recent studies show that altered DNA methylation has a
very close relationship with diseases. In cancer genomes, the promoter regions of tumor suppressor
genes are altered to be hypermethylated (Baylin, 2005), while the promoter regions of tumor genes
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are altered to be hypomethylated (Eden et al., 2003). Identifying
DMRs can promote revealing the mechanisms in tissue-
specific/diseases-specific gene expression (Scott et al., 2020)
and tissue-specific DMRs can be used as feature markers
in identifying the tissues-of-origin of cfDNAs in noninvasive
diagnosis (Hu et al., 2019; Xiaoqing et al., 2020).

Infinium HumanMethylation450 BeadChip and Infinium
MethylationEPIC BeadChip provide a convenient way to
measure the methylation levels of CpG sites in CpG islands and
gene regions. In BreadChips, the methylation level of a certain
CpG site is estimated by using the ratio of intensities between
methylated and unmethylated alleles. In recent years, due to the
development of sequencing technology, bisulfite sequencing (BS-
Seq) makes to reveal the methylation status of each cytosine site
on a read become possible. The numbers of methylated cytosines
and unmethylated ones of each cytosine site can be measured,
respectively. Recently, by using deep-learning, DNAmethylation
status of each cytosine site can be deduced from Nanopore
sequencing reads (Ni et al., 2019). In both BeadChip and BS-Seq,
molecules derived from two homologous chromosomes are not
discriminated and are always processed together.

Based on the methylation profiles extracted from BeadChips
or BS-Seq data, many methods have been proposed to identify
DMRs in different tissues or cell types. These methods can be
roughly divided into two categories: differentially methylated
cytosine site (DMC)-based methods and candidate region-based
methods. In DMC based methods, methylation levels of CpG
sites can be calculated based the raw methylation information
of CpG sites (Catoni et al., 2018; Condon et al., 2018; Xu et al.,
2020), estimated by beta-binomial distribution considering the
biological variances and sample variances (Feng et al., 2014; Park
et al., 2014; Lea et al., 2015; Wu et al., 2015; Park and Wu,
2016; Wen et al., 2016) or estimated by considering the spatial
correlation (Hansen et al., 2012; Hebestreit et al., 2013; Wu et al.,
2015; Sun and Yu, 2016). Then, DMCs are identified and DMRs
are formed by merging the neighboring DMCs satisfying some
defined criteria, such as DMCs with p-values less than a certain
threshold, the distance between theDMCs less than a cutoff value,
and the minimum number of DMCs required in a region.

In candidate region-based methods, there are two types
of candidate regions, including sample-dependent candidate
regions and sample-independent ones. The sample-independent
candidate regions are predefined on the genome with a fixed-
size or sliding window (Stockwell et al., 2014; Wang et al., 2015;
Catoni et al., 2018). The sample-dependent candidate regions
are generated according to the coverage, the depth of CpG
sites, the methylation levels of CpG sites in samples, and the
methylation changes of CpG sites among multi-samples. Then
DMRs are identified by comparing the methylation of regions
among different samples (Su et al., 2012; Lokk et al., 2014; Liu
et al., 2015; Jühling et al., 2016; Gomez et al., 2019).

As we known, the allele-specific methylation is a special
phenomenon of DNAmethylation, which is that the methylation
of an allele on two homologous chromosomes is not consistent.
With the development of high-throughput sequencing
technology, the region capture based sequencing and the
genome-wide sequencing have been widely used for detecting

allele-specific methylation sites. Some strategies and algorithms
also contribute to improve the identification of allele-specific
methylation (Cheung et al., 2017; Abante et al., 2020). However,
the research on identifying allele-specific methylation is limited
to the alleles, and the influence of homologous chromosomes on
methylation analysis should be investigated genome wide.

In the methods of identifying DMRs, the reads from
homologous chromosomes are processed together, and the
methylation levels of CpG sites are calculated based on the
mixture of reads from homologous chromosomes. The influence
of homologous chromosomes on methylation analysis was not
considered and investigated. To investigate the possible influence
of homologous chromosomes on methylation analysis, we
construct methylation haplotypes for homologous chromosomes
on the sample-independent candidate regions. Then the
methylation consistency of paired methylation haplotypes from
homologous chromosomes in different cell types is compared.
Further, DMRs are identified at the resolution of methylation
haplotypes. The proposed method in this paper not only can
be applied to methylation analysis, but also can provide a clear
explanation for the methylation difference at the resolution of
methylation haplotypes.

2. MATERIALS AND METHODS

In this paper, two methods, MHap and MHap_DMR, are
proposed to construct methylation haplotypes and identify
DMRs based on methylation haplotypes, respectively. MHap is a
method for constructing methylation haplotypes, which consists
of four steps. Firstly, it generates sample-independent candidate
regions based on genomic information, such as CpG islands and
CpG dense regions. Then, for the BS-seq data of each sample,
it classifies CpG sites into homozygous and heterozygous ones,
and then constructs methylation haplotypes for each candidate
region. Finally, the pairedmethylation haplotypes of homologous
chromosomes are represented by methylation haplotype modes
(MHMs). MHap_DMR is the method designed to identify
DMRs based on methylation haplotypes. The framework of
MHap and MHap_DMR is shown in Figure 1 and the detail
of each step in the proposed methods will be described in the
following subsections.

2.1. Materials
To investigate the influence of homologous chromosomes
on methylation analysis, 12 WGBS datasets of 10 different
tissues/cell types are involved in this study, including two lower
leg skin samples and two tibial nerver samples downloaded
from the ENCODE project (The ENCODE Project Consortium,
2012) (access sample id: ENCSR930WUY, ENCSR128RMY,
ENCSR752OCM, and ENCSR658MZU), breast cancer sample
and normal breast sample in the GEO database under the
accession number GSE29069 (Hon et al., 2012), adipose-derived
stem (ADS) cells and mature fat cells (adipocytes derived from
the ADS cells) in the NCBI SRA database under the accession
number SRA023829.2 (Lister et al., 2011), embryonic stem cells
(hESCs) and foreskin fibroblasts (hESC-Fibro cells) in the GEO
database under the accession number GSE19418 (Laurent et al.,
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FIGURE 1 | The framework of MHap and MHap_DMR.

2010), mature B cells and hematopoietic stem cells in the GEO
database under the accession number GSE31971 (Hodges et al.,
2011). The WGBS datasets were aligned to the human reference
genome (hg38) and themethylation statuses of cytosines on reads
were called by using Bismark (Krueger and Andrews, 2011).

2.2. MHap: Methylation Haplotype
Construction
Due to the limited read lengths and the uneven distribution
of CpG sites, it is challenging to construct two complete
methylation haplotypes for two homologous chromosomes.
Thus, sample-independent candidate regions are predefined on
CpG dense regions, and methylation haplotypes are constructed
for homologous chromosomes in these regions. MHap is
proposed to construct methylation haplotypes for homologous
chromosomes based on the overlapping methylation statuses

of heterozygous methylated CpG sites on reads. The details of
MHap is described as following.

2.2.1. Generate Sample-Independent Candidate

Regions
MHap generates sample-independent candidate regions based
on the CpG island information and the distance between
neighboring CpG sites. In order not to hide local methylation
signals, CpG islands are usually divided into a number of
candidate regions, each of which contains at least 7 CpG sites. For
other regions with densely located CpG sites, a distance-based
clustering algorithm is applied to generating candidate regions,
which contains at least 7 CpG sites also and the distances between
neighboring CpG sites are not >20 bp. As shown in Table 1,
for each chromosome, the number of candidate regions and the
corresponding averages of CpG numbers and region lengths are
listed. Then, MHap will construct methylation haplotypes for
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TABLE 1 | The number, the average number of CpGs, and the length of candidate

regions in each chromosome.

Chromosome Num. of Ave. Num. of Ave. length of

candidate regions CpGs candidate regions

chr1 26,643 10.48 92.11

chr2 20,446 10.46 91.71

chr3 14,013 10.46 93.08

chr4 13,316 10.49 95.06

chr5 14,411 10.46 93.70

chr6 14,378 10.49 93.86

chr7 16,809 10.42 92.33

chr8 12,429 10.43 92.64

chr9 13,798 10.44 91.80

chr10 13,482 10.46 91.90

chr11 14,194 10.43 91.38

chr12 13,107 10.42 93.56

chr13 7,503 10.41 93.78

chr14 9,217 10.44 91.07

chr15 9,173 10.49 89.84

chr16 14,837 10.36 91.21

chr17 17,285 10.45 92.24

chr18 6,419 10.55 92.72

chr19 20,663 10.51 95.05

chr20 8,844 10.40 90.39

chr21 5,597 10.70 92.66

chr22 8,153 10.38 87.39

chrX 10,687 10.42 97.36

chrY 1,982 10.31 103.24

homologous chromosomes on these candidate regions. of the
candidate regions.

2.2.2. Classify CpG Sites Into Homozygous and

Heterozygous Ones
The flow char of classifying CpG sites into homozygous and
heterozygous ones is illustrated as in Figure 2. For each sample,
the reads falling in candidate regions are collected. In these
candidate regions, firstly, CpG sites with depth less than a
threshold Thdp are filtered out. Then the remaining CpG sites
are classified into homozygous sites and candidate heterozygous
sites(CHSs) based on the types of methylation statuses and the
corresponding depths. If a CpG site has only one methylation
status with depth not less than Thdp, it is considered as a
homozygous site. If it has two methylation statuses and the depth
of each status is not less than half of Thdp, it is considered as
a CHS.

Due to the sequencing errors and the bisulfite conversion
rates, the identified CHSs inevitably contain false-positives. The
joint methylation statuses of neighboring CHSs on the same
reads can help to distinguish true-positives from false-positives.
Thus, the joint methylation statuses of two neighboring CHSs
on the covering reads are extracted and can be represented as
00/11/01/10 patterns. In MHap, the frequency of each pattern

on two neighboring CHSs is calculated, and patterns with
frequency<2 are filtered. Then, one or two true-positive patterns
are identified according to the ratios of the corresponding
frequencies to the total frequency of all patterns or to the
maximum frequency. If there is a pattern with the maximum
frequency among other patterns and the ratio of its frequency
to the total frequency of all patterns is above a threshold
(recommended as 0.6), it is considered as the only one true-
positive pattern on the two neighboring CHSs. Otherwise, if there
are two patterns with higher frequencies than other patterns
and the ratio of the second maximum frequency to the first
maximum frequency is not less than a threshold (recommended
as 0.4), it is considered that there are two true-positive patterns
on the two neighboring CHSs. Then two neighboring CHSs are
reclassified into homozygous or heterozygous ones based on the
true-positive patterns.

Pairs of neighboring CHSs are processed sequentially. Assume
there are three successive CHSs (u, v,w). During the processing of
two successive pairs (u, v) and (v,w), the unbalance join depths
may result in a conflict on the classification of the overlapped
CHS v. To handle with this conflict, a confidence score is
calculated for each pair of neighboring CHSs, computed as the
ratio of the total frequency of true-positive patterns on two sites
to the maximum depth among three CpG sites, as defined in
Equation (1). If conf (u, v)> = conf (v,w), the class of v will be
not changed, and the class of w will be determined based on the
joint methylation statuses of (v,w) with the given class of v. If
conf (u, v) < conf (v,w), the class of v will be revised based on the
true-positive patterns of (v,w).

conf (u, v) =

p∈TP
∑

p
f (p)

max(d(u), d(v), d(w))
(1)

where TP denotes the set of true-positive patterns of (u, v), f (p)
denotes the frequency of pattern p, and d(u), d(v), and d(w)
denote the depths of u, v, and w, respectively.

2.2.3. Construct Methylation Haplotypes for Each

Candidate Region
After classifying CpG sites into homozygous and heterozygous
ones, the skeletons of twomethylation haplotypes are constructed
by linking the patterns of neighboring heterozygous sites
sequentially. Then, a pair of methylation haplotypes are
constructed by padding the homozygous CpG sites into
the skeletons.

2.2.4. Definition of Methylation Haplotype Mode
Each methylation haplotype can be represented by a 0–1 string.
To simplify the comparison between methylation haplotypes,
each methylation haplotype is converted into a label based on
its 0–1 string, defined in Equation (2). Then, two labels of the
paired methylation haplotypes on a candidate region, denoted as
LL,HL, LN, LM, NN,MM,MN,HN,HM orHH, are termed as a
methylation haplotype mode (MHM).
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FIGURE 2 | The flowchart of classifying CpG sites into homozygous and

heterozygous ones.

TABLE 2 | Statistics of candidate regions with methylation haplotypes in different

samples.

Num. of Ave. Num. of Ave. Num. of

Sample candidate regions CpG sites covered CpG

with VMHs in candidate regions sites in VMHs

Mature fat cells 249,253 10.51 5.91

Adipose-derived

stem cells

256,671 10.51 6.08

Breast cancer

sample

233,973 10.49 6.69

Normal breast

sample

223,692 10.49 6.22

Hematopoietic stem

cells

172,536 10.44 6.38

Mature B cells 138,053 10.44 5.20

Embryonic stem

cells

220,970 10.63 6.05

Foreskin fibroblasts 213,317 10.66 6.10

Lower_leg_skin_1 228,263 10.30 8.67

Lower_leg_skin_2 244,369 10.36 8.96

Tibial_nerve_1 239,034 10.36 8.81

Tibial_nerve_2 225,728 10.31 8.67

Label(s) =















L, ifMH(s) ≤ 0.25
N, elseifMH(s) ≤ 0.5
M, elseifMH(s) ≤ 0.75
H, else

(2)

where MH(s) =

len(s)
∑

i=1
(si−0)

len(s)
, s represents the 0–1 string of a

methylation haplotype, len(s) represents the length of s, and si is
the i-th character in s.

2.3. Map_DMR: DMR Identification Based
on Methylation Haplotypes
Based on the MHMs of each candidate region among different
samples, MHap_DMR identifies DMRs by comparing theMHMs
directly. If the MHMs are identical, the candidate region is
considered as a non-DMR. Otherwise, a methylation haplotype
difference (MHD) between a pair of samples or groups is
calculated, defined as in Equation (3). Then, the methylation
difference among multi groups on the region can be defined as
the maximumMHD among pairs of groups.

MHD(gi, gj) = max(abs(MH(gi1)−MH(gj1)), abs(MH(gi2)

−MH(gj2))) (3)

where gi and gj denote group i and j, gi1 and gj1 denote the
0–1 strings of methylation haplotypes with higher MH values
in gi and gj, respectively, and gi2 and gj2 denote the 0–1
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FIGURE 3 | The comparison of methylation consistency of homologous chromosomes in different tissues/cell types.

strings of methylation haplotypes with lower MH values in gi
and gj, respectively.

To investigate the influence of homologous chromosomes on
methylation analysis, we applied MHap to construct methylation
haplotypes for 12 WGBS datasets of 10 different tissues/cell
types. MHap constructs methylation haplotypes for each sample
based on the alignment file and candidate regions. Methylation
haplotypes covering more than 3 CpG sites are defined as valid
methylation haplotypes (VMHs). Table 2 lists the number of
candidate regions with VMHs contained by each sample. It can
be observed that the average number of CpG sites in these
candidate regions is >10, and the average number of covered
CpG sites in VMHs is ranging from 5.9 to 8.9.

3. RESULT

3.1. Majority of Methylation Haplotypes Are
Consistent Between Homologous
Chromosomes
MHMs HH and LL denote that the paired methylation
haplotypes of two homologous chromosomes are simultaneously
hypermethylated (HH) or hypomethylated (LL). Both the
HH and LL are considered as consistent MHMs. Then, the
methylation consistency between two homologous chromosomes
in a sample can be defined as the ratio of the number

of CpGs in VMHs with consistent MHMs to that in
all VMHs.

The methylation consistency of homologous autosomes in
different tissues/cell types is compared, as shown in Figure 3. For
normal tissues or cell types, the methylation consistency is above
90% on average, especially in hematopoietic stem cells. A lower
methylation consistency can be observed in the breast cancer
sample, which is about 86% on all the homologous chromosomes.

The methylation consistency of chromosome X indicates the
gender of a sample. In Figure 4, it can be observed that three
samples with methylation consistency above 94% are derived
from male, while samples with methylation consistency ranging
from 54 to 72% are derived from female which is much lower
than that of other homologous autosomes. It coincides with the
previous studies that the methylation between two homologous
chromosome X in female are different, one of which is inactive
and highly methylated (Mohandas et al., 1981; Goto and Monk,
1998).

Further, we compared the hypomethylation consistency in
different samples. The hypomethylation consistency between two
homologous chromosomes in a sample can be defined as the
ratio of the number of CpGs in VMHs with consistent MHM
LL to that in all VMHs. From Figure 5, we can observe that
the hypomethylation consistency of derived cells is higher than
that of the corresponding undifferentiated stem cells, which is
consistent with the former studies that methylation decrease with
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FIGURE 4 | The comparison of methylation consistency of chromosome X in different samples.

the degree of differentiation increased (Laurent et al., 2010).
In Figure 5, we can find that the mature fat cells are more
hypomethylated than adipose-derived stem cells, mature B cells
are more hypomethylated than hematopoietic stem cells, and
foreskin fibroblasts are more hypomethylated than embryonic
stem cells. It is also noted that the hypomethylation consistency
of breast cancer sample is much lower than that of normal breast
sample on homologous chromosome.

In addition, it is interesting to observe that the tissues/cell
types can be roughly clustered into three groups according to the
hypomethylation consistency, as shown in Figure 5. Lower leg
skin and tibial nerve have similar hypomethylation consistency

and they belong to the ectoderm. The hypomethylation
consistency ofmature fat cells, adipose-derived stem cells, mature
B cells, hematopoietic stem cells and the normal breast sample
are similar, and these tissues/cell types belong to the mesoderm.
The hESCs and hESC-Fibro cell types have high hypomethylation
consistency in chromosomes, which are higher than that of other
tissues/cell types.

3.2. Identifying DMRs Between Two
Samples
MHap_DMR was applied to identify DMRs in four pairs of
samples, including breast cancer vs. normal breast, mature fat
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FIGURE 5 | The comparison of hypomethylation consistency of homologous chromosomes in different tissues/cell types.

TABLE 3 | Four types of DMRs identified by MHap_DMR for each pair of samples.

Type 1 DMR Type 2 DMR Type 3 DMR Type 4 DMR

Pairs of samples (hypo- (consistent hypo- (consistent hyper-

vs. vs. vs. with

non-hypo) semi-hypo) semi-hyper) other modes

Mature fat cells 1,156 1,032 583 309

vs. (LL vs. HH: 1) (LL vs. HL: 574)

Adipose-derived stem cells (HL vs. HH: 459)

Breast cancer 20,138 1,351 0 0

vs. (LL vs. HH: 15,175) (LL vs. HL: 1,351)

Normal breast (HL vs. HH: 650)

Hematopoietic stem cells 1,468 625 182 257

vs. (LL vs. HH: 391) (LL vs. HL: 286)

Mature B cells (HL vs. HH: 223)

Embryonic stem cells 6,856 2,812 914 340

vs. (LL vs. HH: 2,698) (LL vs. HL: 1,490)

Foreskin fibroblasts (HL vs. HH: 1,465)

cells vs. adipose-derived stem cells, embryonic stem cells (hESCs)
vs. foreskin fibroblasts (hESC-Fibro cells), and mature B cells vs.
hematopoietic stem cells. In this study, MHap_DMR reports the
DMRs with p < 0.05 andMHD >0.5.

Based on the MHMs of samples on DMRs, the
identified DMRs can be further classified into four groups:

1. hypomethylation mode (a MHM containing L) vs.
non-hypomethylation mode (a MHM not containing
L); 2. hypomethylation consistent mode LL vs. semi-
hypomethylation mode (an unconsistent MHM containing
L); 3. hypermethylation consistent mode HH vs. semi-
hypermethylation mode (an unconsistent MHM containing
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TABLE 4 | The number of DMRs identified by different methods.

Pairs of samples MHap_DMR CpG_MPs DMRCaller SMART Metilene

Mature fat cells

vs. 3,080 932 4,081 2,152 44,359

Adipose-derived stem

cells

Breast cancer

vs. 21,489 233,298 861,108 353,565 357,980

Normal breast

Hematopoietic stem

cells

vs. 2,532 26,526 172,475 50,453 75,180

Mature B cells

Embryonic stem cells

vs. 10,922 130,376 385,877 282,617 338,631

Foreskin fibroblasts

H); 4. DMR with other modes. The number of these
types of DMRs between each pair of samples is listed in
Table 3.

To investigate the methylation changing directions at the
methylation haplotype level, the number of some subtypes of
DMRs in Type 1 and Type 2 DMRs is specified. For example,
in Type 1 DMRs, the number of DMRs with hypomethylation
consistent mode LL vs. hypermethylation consistent mode HH

and the number of DMRs with hypomethylation unconsistent
mode HL vs. hypermethylation consistent mode HH are listed.

In Type 1 DMRs, it can be observed that there is only 1 DMR
with hypomethylation consistent mode LL vs. hypermethylation
mode consistent HH in mature fat cells and adipose-derived
stem cells. It may indicate that the methylation statuses of two
homologous chromosomes are seldom changed simultaneously
during the differentiation from adipose-derived stem cells to
mature fat cells.

In Type 1 DMRs between breast cancer and normal
breast, it can be observed that there are 13,173 DMRs with
hypermethylation consistent mode HH in breast cancer
and hypomethylation consistent mode LL in normal breast,
while there are only 2,002 DMRs with hypomethylation
consistent mode LL in breast cancer and hypermethylation
consistent mode HH in normal breast. It suggests that
many regions with hypomethylation consistent mode LL
in normal breast become hypermethylated in breast cancer,
while a small quantity of regions with hypermethylation
consistent mode HH in normal breast become hypomethylated
in breast cancer. Further, comparing the number of four
types of DMRs between breast cancer and normal breast,
it may indicate that, in breast cancer, the methylation
statuses of homologous chromosomes changes in the
same direction (hypomethylated or hypermethylated)
simultaneously in many cases. The MHMs of DMRs among
different samples can indicate the methylation changing

directions of homologous chromosomes in cell differentiation
and cancerization.

3.3. Compared With Comparative Methods
To further demonstrate the performance of MHap_DMR, four
comparative tools were also applied to these four pairs of samples,
including CpG_MPs (Su et al., 2012), DMRCaller (Catoni
et al., 2018), SMART (Liu et al., 2015), and Metilene (Jühling
et al., 2016). The default parameter settings were adopted when
running these methods.

The numbers of DMRs identified by different methods are
compared, as shown in Table 4. Metilene always predicts
a larger number of DMRs with low methylation level
differences than other methods. MHap_DMR predicts a
smaller number of DMRs than other methods, because it
works on candidate regions predefined on the CpG dense
regions. All the methods report a largest number of DMRs
between breast cancer sample and normal breast sample,
and a second largest number of DMRs between embryonic
stem cells and foreskin fibroblasts. This consistency indicates
that DNA methylation is altered a lot in cancerization,
and the methylation difference between embryonic stem
cells and foreskin fibroblasts is larger than that between
other types of stem cells and the cells derived from these
stem cells.

4. CONCLUSION

In this paper, MHap is developed to construct methylation
haplotypes for homologous chromosomes in CpG dense
regions. Through the analysis based on methylation
haplotypes of homologous chromosomes, we found
that majority of methylation haplotypes are consistent
between homologous autosomes, while a lower methylation
consistency was observed in the breast cancer sample.
Further, the hypomethylation consistency of derived cells
is higher than that of the corresponding undifferentiated
stem cells. The hypomethylation consistency can be
used as a feature for cell clustering. DMRs identified
by MHap_DMR based on methylation haplotypes can
help to investigate the methylation changing directions
of homologous chromosomes in cell differentiation
and cancerization.
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Small nuclear RNA is a class of non-coding RNA that widely exist in the nucleus
of eukaryotes. Accumulated evidences have shown that small nuclear RNAs are
associated with the regulation of gene expression in various tumor types. To explore the
gene expression changes and its potential effects mediated by U11 snRNA in bladder
cancer cells, U11 snRNA knockout and overexpressed cell lines were constructed
and further used to analyze the gene expression changes by RNA sequencing. The
differentially expressed genes were found to be mainly enriched in tumor-related
pathways both in the U11 knockout and overexpression cell lines, such as NF-kappa
B signaling pathway, bladder cancer and PI3K-Akt signaling pathway. Furthermore,
alternative splicing events were proposed to participate in the potential regulatory
mechanism induced by the U11 knockout or overexpression. In conclusion, U11 may be
involved in the regulation of gene expression in bladder cancer cells, which may provide
a potentially new biomarker for clinical diagnosis and treatment of bladder cancer.

Keywords: U11 small nuclear RNA, bladder cancer, T24, transcriptomic analysis, gene networks

INTRODUCTION

Bladder cancer is one of the most common urological cancers, ranking ninth among all malignant
tumors worldwide and sixth among men (Ploeg et al., 2009; Bray et al., 2018). In the United States,
bladder cancer ranks fourth among all malignant tumors, with 74,000 new cases of bladder cancer
in 2015, including 56,320 males and 17,680 females, and the estimated fatal cases were 16,000,
including 11,510 males and 4,490 females. In South Asia and Western Asia, the incidence and
mortality of bladder cancer also rank top among all malignant tumors (Salim et al., 2010). Although
the incidence and mortality of bladder cancer in China are lower than the world average level,
there is a trend of increasing incidence in some cities (Feng et al., 2019), which seriously threatens
the survival health and life quality of patients. Therefore, it is of great significance to study the
mechanism of the occurrence and development of bladder cancer, and further to improve the
diagnosis and treatment rate of bladder cancer.
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Cajal bodies, also known as coiled bodies, were first discovered
in the nucleus of nerve cells by Ramony Cajal in 1903 (Hebert,
2010). Cajal bodies are widely found in the nucleus of higher
eukaryotes, and their number and size can vary with species.
Cajal bodies are more abundant in somatic cells of differentiated
tissues and some cells with higher metabolic activity, such as
muscle, neurons, and tumor cells (Hearst et al., 2009; Machyna
et al., 2013). At the same time, the numbers and sizes of
Cajal bodies are related to the cell cycle, and their numbers
often reach the maximum in the G1/S phase. In general, Cajal
bodies depolymerize in the M phase, and the reassembly process
depends on the level of gene transcription and the rate of
proliferation of the cell. Relevant studies have shown that there
are a large number of factors involved in the splicing of mRNA
precursors, rRNA precursor processing, histone pre-mRNA 3′
end processing and telomere maintenance in the components
of Cajal bodies, suggesting that Cajal bodies may be a site for
the assembly and function of ribonucleoprotein (RNP) (Hebert,
2013). Cajal bodies can also serve as a platform for effective
modification responses in transcriptionally active cells requiring
high levels of RNP, such as neuronal cells and tumor cells.
Studies have found that zebrafish embryos are unable to complete
embryonic development due to the lack of coilin and Cajal
bodies. The depletion of coilin and Cajal bodies was mainly
characterized by deficits in snRNP biogenesis and expression
of spliced mRNA, while mature snRNPs can partially rescue
embryonic lethal phenotypes (Strzelecka et al., 2010).

At present, more than dozens of proteins have been found
to localize or interact with Cajal bodies (Machyna et al., 2013).
Coilin is recognized as a marker protein and a major component
of Cajal bodies (Andrade et al., 1991). One of the most significant
structural features of Cajal bodies is the accumulation of a
large number of non-coding small RNAs, which include U1,
U2, U3, U4, U5, U6, U7, U8, U11, U12, U13, U14, U64,
U6atac, and U87 scaRNA, etc. These small non-coding RNAs
were once thought to be mainly involved in post-transcriptional
modification of RNA. However, with the development of high-
depth sequencing technology and bioinformatics technology, the
functions of these small non-coding RNAs have been further
recognized and understood. Studies have found that they may
be involved in gene expression, genome structure organization,
and other functions (Lui and Lowe, 2013). In recent years, non-
coding RNAs have attracted much attention as a special way of
gene expression regulation.

Our previous studies innovatively proposed the notion that
Cajal bodies can be simultaneously linked with multiple small
molecule RNA gene loci to form gene clusters, using Hela cell
models and six-color microscopes detection systems (Wang et al.,
2016). Moreover, we found that this gene cluster is not formed
randomly but is a specific spatial structure of long-distance
interactions. U1, U2, U3, U4, U5, and U11 are small non-coding
RNA genes enriched in Cajal bodies, U87 scaRNA is small Cajal
body-specific RNA gene, Histone cluster 2 and Histone H3F3 are
histone small RNA genes. Among them, U1, U2, U3, U4, U5, and
U11 are small non-coding RNA genes enriched in Cajal bodies.
Using chromatin spatial conformation capture technology, it
was found that small nuclear RNA mediates the formation of

long-distance chromatin interactions (Wang et al., 2016). U11
(RNU11) is probably the most significant small nuclear RNA
because its expression is extremely high expressed in rapidly
growing tumor cells and very low expressed in slow-growing
primary cells. Thus, the above studies provided the evidence that
U11 small nuclear RNA plays a role in regulating the spatial
structure of chromatin and may be of great significance in the
development of tumors.

Interestingly, we found Cajal bodies were aberrantly activated
in T24 bladder cancer cell lines and the increased numbers and
sizes of Cajal bodies were displayed in two highly invasive and
metastatic T24-SLT and T24-FL cell lines. Given that U11 is one
of the most crucial snRNAs located in Cajal bodies, we speculated
that U11 might play an important role in the gene expression
of bladder cancer cells. In this study, the in vitro cell models
with U11 knockout and overexpression were firstly constructed
in T24 bladder cancer cell lines and further used to analyze the
gene expression changes using RNA-sequencing technology. The
differentially expressed genes were found to be mainly enriched
in tumor-related pathways both in the U11 knockout and
overexpression groups. Notably, alternative splicing events were
innovatively proposed to participate in the potential regulatory
mechanism induced by U11 knockout or overexpression. Taken
together, our study innovatively elucidated that U11 may play the
critical role in the regulation of gene expression in bladder cancer
cells, which may provide a potentially new biomarker for clinical
diagnosis and treatment of bladder cancer.

RESULTS

Cajal Body-Related snRNA U11 Affects
the Occurrence and Development of
Bladder Cancer by Regulating Differently
Expressed Genes
By using immunofluorescence (IF) staining, we unexpectedly
found Cajal bodies were aberrantly activated in T24 bladder
cancer cell lines. More interestingly, the increased numbers and
sizes of Cajal bodies were displayed in two highly invasive and
metastatic T24-SLT and T24-FL cell lines (Nicholson et al.,
2004; Jeppesen et al., 2014) (Figure 1A). Given that U11 is
one of the most crucial snRNAs located in Cajal bodies, the
in vitro cell models with U11 knockout and overexpression
were successfully established in T24 cell lines. The knockout
and overexpression efficiency of U11 in T24 cell lines were
confirmed by real-time quantitative PCR, the expression level of
U11 in U11-KO cell line was significantly decreased, and that
of U11-KI cell line was significantly overexpressed compared to
T24 WT cell line (Figure 1B). Moreover, MTT assay revealed
that the cell proliferation ability of T24 WT cell line was
significantly higher than that of the U11-KO cell line (P < 0.001,
Figure 1C). The U11 knockout and U11 overexpression groups
were used as experimental groups, and gene differences were
analyzed by comparing with the control group. A total of 2,756
differentially expressed genes in the U11 knockout group were
obtained, including 1,464 up-regulated and 1,292 down-regulated
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FIGURE 1 | Construction of T24U11−KO and T24U11−KI cell lines and DEGs analysis of T24-related cell lines. (A) Immunofluorescence of Coilin in T24, T24-FT,
T24-SLT cell lines. (B) The expression levels of U11 in T24U11−KO and T24WT cell lines. (C) Cell viability of T24U11−KO and T24WT cell lines. (D) Volcano plot for
differentially expressed genes between T24U11−KO and T24WT cell lines. (E) Heatmap for differentially expressed genes between T24U11−KO and T24WT cell lines.
(F) Volcano plot for differentially expressed genes of between T24U11−KI and T24WT cell lines. (G) Heatmap for differentially expressed genes of between T24U11−KI

and T24WT cell lines. Differential expressed genes (DEGs): P-value < 0.05 and | Fold change| ≥ 1.5. ***P < 0.001.
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(Figures 1D,E); In addition, there were 566 differentially
expressed genes in the U11 overexpression group, including 339
up-regulated and 227 down-regulated (Figures 1F,G). Pathway
enrichment analysis by clusterProfiler R package showed that the
up-regulated genes obtained by overexpressing U11 were mainly
enriched in regulation of mast cell degranulation, chemokine
activity, NF-kappa B signaling pathway, TNF signaling pathway,
and Bladder cancer, etc. (Figures 2A,B). The down-regulated
genes obtained by overexpressing U11 were mainly enriched in
integral component of lumenal side of endoplasmic reticulum
membrane, cellular response to type I interferon, defense
response to virus, Allograft rejection and Antigen processing
and presentation, etc. (Figures 2C,D). Interestingly, we found
that the enrichment pathways of down-regulated genes in the
U11 knockout group were similar to those of up-regulated
genes in the U11 overexpression group. The pathways of down-
regulated genes in U11 knockout group were mainly enriched
in T cell apoptotic process, cytokine receptor binding, TNF
signaling pathway, and NF-kappa B signaling pathway, etc.
(Figures 2G,H). The pathways of up-regulated genes in U11
knockout group were mainly enriched in laminin binding,
fibronectin binding, cell-substrate adhesion, Proteoglycans in
cancer, and PI3K-Akt signaling pathway (Figures 2E,F). Among
them, Figure 3 showed the PI3K-Akt signaling pathway and the
genes involved in this pathway.

Subsequently, we used the up-regulated genes in the U11
overexpression group and the down-regulated genes in the U11
knockout group for intersection analysis, as well as the down-
regulated genes in the U11 overexpression group and the up-
regulated genes in the U11 knockout group for intersection
analysis. We found that there were 93 intersecting genes in
the two intersecting groups (Figures 4A,B). Using these genes
for protein interaction network analysis, we found that the
hub genes were mainly CXCL2, CXCL3, CXCL6, CXCL8, and
other CXCL gene families (Figure 4C). Interestingly, we found
that the expression of CXCL2, CXCL3, CXCL6, CXCL8, and
other CXCL gene families was significantly up-regulated in
the U11 overexpression group, while the expression of these
genes was significantly down-regulated in the U11 knockout
group (Figures 4D,E). The intersecting genes of up-regulated
genes in U11 knockout group and down-regulated genes in
U11 overexpression group were mainly enriched in regulation
of cell adhesion mediated by integrin, fibroblast migration
and regulation of lipolysis in adipocytes (Figure 4F), and the
intersecting genes of down-regulated genes in U11 knockout
group and up-regulated genes in U11 overexpression group
were mainly enriched in chemokine activity, response to
lipopolysaccharide, neutrophil migration, NF-kappa B signaling
pathway, TNF signaling pathway, and transcriptional mis-
regulation in cancer (Figure 4G).

U11 Alters Gene-Splicing Events and
Gene Expression
We further performed alternative splicing analysis and found
that a total of 4,023 genes in the U11 overexpression group
had significant differential alternative splicing events. Among

them, exon skipping (SE) was the most frequent event, while
intron retention (RI) was the least frequent event, and 316 genes
were simultaneously exposed to five alternative splicing events
(Figure 5A). Similarly, 4,774 genes were found to have significant
differential alternative splicing events in the U11 knockout group,
with exon skipping events occurring most frequently (Figure 5B).

Next, we intersected genes with differentially alternative
splicing events and differentially expressed genes (Figure 6A).
Seventy-one intersecting genes were obtained in the U11
overexpression group. Among them, murine double minute 2
(MDM2) gene had one exon skip and one mutually exclusive
exon event, and the gene expression increased about 3.5-fold,
and TGFB2 gene had one exon skip, and the gene expression
decreased 2.1-fold (Figures 6B,E). Notably, 648 intersecting
genes in the U11 knockout group, which were mainly enriched
in pathways such as NF-kappa B signaling pathway and TNF
signaling pathway (Figure 6C). The results of protein interaction
network analysis of these intersecting genes also showed that
the hub genes mainly included genes such as TIMP1, FN1,
and RPL22L1 (Figure 6D). Intriguingly, FN1 gene had multiple
alternative 3′ splice site (A3SS) events, one mutually exclusive
exon event, four exon skipping events, and the level of mRNA
expression increased 2.9-fold. TIMP1 gene had only one exon
skipping event, and the level of mRNA expression increased 3.5-
fold. RPL22L1 gene had one exon skipping events, and the level
of expression decreased 1.7-fold (Figures 6B,E).

Given that the alternative splicing events of TIMP1, FN1,
and RPL22L1 have been widely reported to participate in several
biological processes (Usher et al., 2007; Lopez-Mejia et al., 2013;
Liang et al., 2019), we therefore validated the AS events of the
genes described above, using PCR and gel electrophoresis. We
initially examined three typical exons skipping of FN1 (EDA,
EDB, and IIICS) as previously reported (Lopez-Mejia et al., 2013),
but no remarkably alternative splice events were detected in FN1
gene. The full-length TIMP1 transcript was then detected by the
forward primer located in exon 1 combined with the reverse
primer located in exon 6. Intriguingly, the band of full-length
TIMP1 in T24U11−KO cell line was observed to shift down a
weak distance less than an exon, compared with T24WT cell
line. What’ more, as the gel picture shown and the gray arrow
indicated in Figure 6F, one indistinctly visible band appeared
below the major band in T24U11−KO cell line, but not in T24WT

cell line, suggesting a potential AS event of TIMP1 after U11
knockout. Three exons of TIMP1 gene were further examined the
alternative splicing events, respectively. However, no significant
alteration of splicing patterns was observed in the TIMP1-1,
TIMP1-2, and TIMP1-3 segments because of the rare frequency
and low abundance of the exon skipping (Figure 6F). All these
results indicated that a link between alternative splicing regulated
by U11 and bladder carcinogenesis.

FN1 and RPL22L1 May Be a Prognostic
Marker for Bladder Cancer
To further investigate whether hub genes have an impact on
the prognosis of bladder cancer, we performed survival analysis
of CXCL8, MDM2, TGFB2, FN1, TIMP1, and RPL22L1, and
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FIGURE 2 | Enrichment Analysis for DEGs upon knocking out and overexpressing U11 in T24 cell lines. (A,C) GO pathways of upregulated and downregulated
genes in T24U11−KI cell line, respectively. (B,D) KEGG pathways of upregulated and downregulated genes in T24U11−KI cell line, respectively. Panels (E,G) are GO
pathways of upregulated and downregulated genes in T24U11−KO cell line, respectively. Panels (F,H) are KEGG pathways of upregulated and downregulated genes
in T24U11−KO cell line, respectively. GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 3 | PI3K-Akt signaling pathway for DEGs from knocking out U11. (A) PI3K-Akt signaling pathway diagram. (B) Heatmap from DEGs in this pathway.

their impact on tumor stage using TCGA database. Interestingly,
overall survival (OS) of patients with bladder cancer with high
FN1 expression was significantly lower than that with low
expression (P = 0.012), while the OS of bladder cancer patients
with low RPL22L1 expression was significantly lower than that
of patients with high expression (P = 0.034) (Figure 7A). The
other four genes had no significant effect on the prognosis of
bladder cancer patients. The six hub genes also have an impact
on bladder cancer stage. The expression of FN1, TIMP1, TGFB2,
and RPL22L1 in Stage II was significantly lower than that in Stage
III (P < 0.05), while the other two genes were not statistically
different in stage (Figure 7B).

DISCUSSION

SnRNAs are a class of non-coding RNAs whose length ranges
from 100 to 215 nucleotides in mammals, mainly including U1,
U2, U3, U4, U5, U6, and U11 genes. SnRNAs have been present
in the nucleus of mammalian cells, and together with more
than 40 intranuclear proteins form RNA spliceosomes (Dvinge
et al., 2019; Suzuki et al., 2019), which catalyze the maturation of
precursor mRNAs in mammals, thereby affecting gene expression
and leading to proliferation or apoptosis of cancer cells. We found
that small nuclear RNAs mediate the formation of long-range
chromatin interactions, of which U11 (RNU11) may be the most
significant small nuclear RNA. To explore the gene expression
changes and its potential effects mediated by U11 snRNA in
bladder cancer cells, U11 snRNA knockout and overexpressed
cell lines were constructed and further used to analyze the

gene expression changes by RNA sequencing. Interestingly, we
found that both up-regulated genes in the U11 overexpression
group and down-regulated genes in the U11 knockout group
were mainly enriched in cancer-related pathways, such as NF-
kappa B signaling pathway, TNF signaling pathway and Bladder
cancer. Protein interaction network analysis predicted that CXC
chemokine family (CXCL2, CXCL3, CXCL6, and CXCL8) were
hub genes. Further alternative splicing analysis also found that
both the U11 knockout group and the U11 overexpression
group caused alternative splicing events in genes with different
expression, including some genes in the PI3K-Akt signaling
pathway, such as FN1 and FGF1 genes, and other oncogenes, such
as TGFB2, TIMP1, and MDM2. Our results suggest that U11 may
affect the expression of cancer-related genes and be implicated in
bladder carcinogenesis by affecting alternative splicing.

NF-kappa B is a heterodimer composed mainly of p65 and P50
proteins, and its function is to induce the transcription factors
of inflammatory cytokines and anti-apoptotic proteins. In most
cells, NF-kappa B mediates cell survival signals and protects
cells from apoptosis (Jung and Dritschilo, 2001). Increasing
evidence suggests that activation of NF-kappa B is associated with
apoptosis, expression of angiogenic proteins, and carcinogenesis
due to its fundamental effects on the dedifferentiation and
proliferation of malignant tumor cells (Dorai and Aggarwal,
2004; Umezawa, 2006). Related studies have found that NF-kappa
B activation is associated with urogenital cancers, such as prostate
cancer and renal cell carcinoma (Oya et al., 2003; Ross et al.,
2004; Domingo-Domenech et al., 2005). Similarly, in bladder
tumors, the effect of NF-kappa B activation on tumorigenesis has
also been reported (Levidou et al., 2008) and in our study, both
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FIGURE 4 | Comprehensive analysis of DEGs upon knocking out and overexpressing U11 in T24 cell lines. (A,B) Venn diagrams of the intersection of differentially
expressed genes between U11 overexpression group and knockout group. (C) Protein–protein interactions (PPI) of intersection gene. (D) The heatmap of CXCL
family genes in T24U11−KO and T24WT cell lines. (E) The heatmap of CXCL family genes in T24U11−KI and T24WT cell lines. (F) Pathways from intersecting genes of
up-regulated genes in T24U11−KO cell line and down-regulated genes in T24U11−KI cell line. (G) Pathways from intersecting genes of down-regulated genes in
T24WT cell line and up-regulated genes in T24U11−KI cell line.
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FIGURE 5 | The identification of alternative splicing events. (A,B) Up-set plots of significant alternative splicing events upon knockout and overexpressed U11 in T24
cells. Skipped exon (SE), alternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS), mutually exclusive exons (MXE), and retained intron (RI).

up-regulated genes in the U11 overexpression group and down-
regulated genes in the U11 knockout group were mainly enriched
in the NF-kappa B signaling pathway.

PI3K-Akt pathway is a downstream signal transduction
pathway of various cytokines and growth factors, which is
involved in regulating cell proliferation and apoptosis (Lim
and Counter, 2005; Bleau et al., 2009). PI3K belongs to the
phospholipid kinase family and can be activated by many
extracellular factors to participate in the cellular response.
Activated PI3K phosphorylates PIP2–PIP3, thereby activating its
downstream target kinase Akt. Activated Akt is ectopic from
the cell membrane to the nucleus and cytoplasm. It activates
or inhibits downstream target proteins, further promotes cell
proliferation, apoptosis and energy metabolism, and is closely
related to tumorigenesis and development (Franke et al.,
2003). It was found that PI3K-Akt signaling pathway plays an
important role in the occurrence, development and progression
of malignant tumors, and the activation of Akt is closely
related to the proliferation, migration and invasion of tumor
cells (Roncolato et al., 2019; Ma et al., 2020). In this study,
after knocking out U11, intersecting genes with significant
differential alternative splicing and abnormal expression were
mainly enriched in the PI3K-Akt signaling pathway.

Among them, fibronectin (FN) on the PI3K-Akt signaling
pathway is a high molecular weight extracellular matrix
glycoprotein with a molecular weight of 440 kDa. Its molecular
structure contains a variety of domains, which can selectively
bind to a variety of macromolecules in the extracellular matrix,
such as collagen, heparin, fibrin and cell surface receptors,
and play a crucial role in cell adhesion, migration, growth,
differentiation and other cell overgrowth (Oya et al., 2003; Li
et al., 2019). FN1 is a member of the FN family and plays
a variety of biological functions in tumors, atherosclerosis,
arthritis, and other diseases (Castelletti et al., 2008). Recent
studies have found that FN1 is an important regulator promoting
the formation and development of a variety of cancer cells,
such as glioblastoma, laryngeal cancer and cutaneous squamous
cell carcinoma (Jerhammar et al., 2010; Liao et al., 2018). In
breast cancer, FN1 activates specific matrix metalloproteinases to
promote breast cancer cell invasion and metastasis (Qian et al.,
2011). It has been reported that the combination of miR-200c

and FN1 can effectively inhibit the development of endometrial
cancer in terms of FN1 expression in endometrial cancer cells
(Howe et al., 2011). MiR-200c inhibits the expression of FNI,
significantly reduces cell proliferation, and inhibits migration
and invasion, suggesting that the expression of FN1 is a good
indicator of the state of cancer cells. FN1 affects proliferation,
senescence and apoptosis of human glioma cells through PI3K-
AKT signaling pathway (Liao et al., 2018). Down-regulation of
FN1 can inhibit proliferation, migration and invasion, thereby
inhibiting the occurrence of colorectal cancer (Cai et al., 2018).
Interestingly, we found that the expression of FN1 increased
significantly after the knockout of U11, and FN1 underwent
several meaningful alternative splicing events, including three
alternative 3′ splicing site (A3SS) events, one mutually exclusive
exon event, and four exon skipping events. Although we
examined three typical exons skipping of FN1 (EDA, EDB, and
IIICS) as previously reported (Lopez-Mejia et al., 2013), no
remarkably alternative splice events were detected in FN1 gene.
Due to the numerous exons of FN1 and thus generating multiple
alternative splicing events, prominent bands of these AS events
were extremely challenged to detect using conventional PCR.
More advanced testing technologies and further versus nested
PCR experiments should be conducted to detect the multiple
alternative splicing events.

Chemokines essentially belong to a class of small molecule
proteins, whose initial role is mainly to participate in the
directional chemotaxis of leukocytes to inflammatory sites.
The role of chemokines and their receptors in the process of
tumorigenesis and development cannot be ignored increasingly.
A large number of studies have shown that the regularity of
malignant tumor cell metastasis is similar to that of chemokine
migration during inflammatory cell metastasis (Ha et al., 2017).
CXCL8 is an important member of the chemokine family. It was
first discovered by Yoshimura in 1987 in the culture supernatant
of human peripheral blood mononuclear cells stimulated with
lipopolysaccharide (Yoshimura et al., 1987) and formally named
IL-8/NAP (IL-8 NAP neutrophil active peptide) in 1988. At
present, studies have confirmed that CXCL8 is highly expressed
in thyroid tumors, ovarian cancer, liver cancer, prostate cancer
and many other tumors, and its role is mainly reflected in:
accelerating the growth of tumor cells, enhancing the motility
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FIGURE 6 | Comprehensive analysis of alternative splicing events and differential genes upon knocking out and overexpressing U11 in T24 cell lines. (A) Venn
diagrams of DEGs and genes with significant alternative splicing events. (B) Diagrams of alternative splicing events in MDM2, TGFB2, RPL22L1, FN1, and TIMP1.
Mutually exclusive exons (MXE) and skipped exon (SE) in MDM2; SE in TGFB2; SE in RPL22L1; MXE and SE in TIMP1; MXE, SE and alternative 3′ splice site (A3SS)
in FN1. (C) Pathways from intersecting genes between T24U11−KO and T24WT cell lines. (D) Venn diagram of Protein–protein interactions (PPI) of intersecting genes.
(E) The relative expression levels of MDM2 and TGFB2 between T24U11−KI and T24WT cell lines and the relative expression levels of FN1, RPL22L1, and TIMP1
between T24U11−KO and T24WT cell lines. (F) Alternative splice identification of TIMP1-full length, TIMP1-1, TIMP1-2, and TIMP1-3 in T24U11−KO and T24WT cell
lines.
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FIGURE 7 | (A) Overall survival of the six hub genes in bladder cancer based on TCGA database, including FN1, MDM2, TGFB2, CXCL8, TIMP1, and RPL22L1. OS:
overall survival. (B) The effect of six hub genes on bladder cancer stage.
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of tumor cells, changing the local environment of tumors and
inhibiting the immune system to play a role, and ultimately
making tumor cells invade and metastasize in distant areas
(Liu J. et al., 2016). In this study, we found that CXCL8
expression increased significantly after overexpression of U11,
while decreased significantly after knockout of U11. Taking
the intersection of the differential genes in the knockout and
overexpression groups and predicting by protein interaction
network analysis, we found that the chemokine family was the
hub gene group, especially CXCL8. It can be seen that the
expression of U11 affects the expression of the chemokine family,
especially CXCL8. These results showed that the overexpression
of U11 could promote the expression of chemokines, thereby
promoting cell proliferation and tumor metastasis (Liu Q. et al.,
2016). However, in alternative splicing analysis after knockout or
overexpression of U11, we did not find significant splicing events
in CXCL8, suggesting that the change in expression of U11 to
CXCL8 may not be through the regulation of gene splicing. In
summary, our results predict that U11 plays an important role in
the regulation of chemokine expression in bladder cancer cells,
but the specific mechanism is unknown.

Murine double minute 2 is a tumor protein that is highly
expressed in tumors. In cancer cells, MDM2 proteins help
to modify biological programs, enhance growth-promoting
signals, and reduce apoptotic signals. P53 protein is a
very important tumor suppressor and plays an important
role in regulating cell cycle, apoptosis, DNA damage repair,
angiogenesis, cell metabolism and aging (Prives, 1998; Gupta
et al., 2019). In more than half of human tumors, the
p53 gene is mutated or deleted, while in the remaining
human tumors, there is wild-type p53, whose function is
also effectively inhibited by MDM2. E3 ubiquitin ligase
MDM2 is an important inhibitor of p53, which can block
the transcriptional function of p53, promote the transfer of
p53 from the nucleus to the cytoplasm, and ubiquitinate
and degrade p53 (Brooks and Gu, 2006). In this study, we
found that after overexpression of U11, MDM2 expression
increased significantly, and MDM2 had a meaningful mutually
exclusive exon and an exon skipping event. MDM2 was
well-known as the most critical negative regulator of p53
pathway, whether the alternative splicing events of MDM2
directly or indirectly regulated by U11 deserved to be
further investigated.

In summary, we found that U11 may alter gene expression
by affecting the PI3K-Akt signaling pathway and NF-kappa B
signaling pathway. U11 may be involved in the regulation of gene
expression in bladder cancer cells, which may provide a novel
biomarker for clinical diagnosis and treatment of bladder cancer.

MATERIALS AND METHODS

Cell Lines and Cell Culture
T24 bladder cancer cell line was purchased from Cell Bank of
Shanghai Institute of Cell Biology (Shanghai, China). T24-FL
and T24-SLT cell lines were gifts from Dr. Gordon Hager (NIH,
United States). All cells were cultured in F12 Medium (Gibco,

China) supplemented with penicillin, streptomycin and 10% FBS
(Gibco, Australia). All cell lines were maintained at 37◦C in a
humidified atmosphere containing 5% CO2.

Design of sgRNA and Construction of Its
Expression Vector
Using an online CRISPR design tool, two sgRNAs targeting the
U11 region were designed by selecting the sgRNA sequences with
high scores. The sequence is as follows:

SG1-F: 5′-CACC GCTGTCGTGAGTGGCACACGT-3′
SG1-R: 5′-AAAC ACGTGTGCCACTCACGACAGC-3′
SG2-F: 5′-CACC GCAGCTGGTGATCGTTGGTCC-3′
SG2-F: 5′-AAAC GGACCAACGATCACCAGCTGC-3′
Sequencing primers were designed with the location of sgRNA

as the center. The sgRNA expression vector was cloned into
pX330 all in one vector by the BbsI digestion site so that the vector
could express CAS9 protein and corresponding sgRNA.

Cell Transfection
1.5 × 105 T24 cells/well were plated on 24-well plates and
transfected after 12–16 h (500 ng for each of the two sgRNA
vectors; sgRNA vector was used as the control group). After 6–
8 h, the liquid was changed. 48 h after transfection, 2 ug/ml Puro
was added into the fresh medium for screening for 48 h. Cells
were then grown in a fresh medium at 37◦C in a humidified
incubator containing 5c/o CO2 and collected 24 h later. The cells
were subjected to genome extraction, and the other part of the
cells were cloned in 96-well plates.

Knockout of Small Nuclear RNA U11 in
T24 Bladder Cancer Cells Using
CRISPR/Cas9 Gene-Editing Technology
Genomic DNA was extracted with Tiangen Genome Extraction
Kit and PCR was performed with sequencing primers. Three
monoclonal cell lines were selected, and total RNA was extracted
by the Tiangen RNA extraction kit for reverse transcription.
Subsequently, the expression of U11 in wild-type and U11-
knockout cells was detected by fluorescence quantitative PCR,
and the knockout efficiency of U11 was identified. The
monoclonal cell lines with the highest knockout efficiency were
selected to construct the U11 knockout model.

Construction of Stable Overexpressing
U11 Bladder Cancer T24 Cells by
pcDNA-U11 Recombinant Plasmid
Transfection
RNA from T24 cells was extracted and reverse transcribed
into cDNA. Using this cDNA as a template, the U11 gene
sequence was amplified with specific PCR primers. The U11
fragment and pcDNA3 were digested by HindIII and KpnI
restriction endonucleases. The product was ligated by T4
DNA ligase and transformed into E. coli DH5α cells. The
plasmid identified by sequencing was named pcDNA-U11.
After transfection, identification, and monoclonal selection, the
culture was expanded.
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Cell Proliferation Assay
T24WT and T24U11−KO cells in logarithmic growth phase were
digested and seeded into 96-well plates at the concentration of
3,500 cells per well. For the MTT assay, cells were cultured
for 0, 24, 48, 72, and 96 h, respectively and then 10 ul MTT
(5 mg/mL) was added into each well for another 4 h at 37◦C.
MTT solution was then removed, and MTT formazan dissolved
in 100 µL dimethyl sulfoxide (DMSO) for detection of the
absorbance at 490 nm.

Immunofluorescence
To detect expression of CBs at cellular levels, IF localization
was conducted according to standard procedures. First, cells
were fixed with 4% paraformaldehyde for 20 min at room
temperature and permeabilized with 0.2% Triton X-100 for
10 min on ice. Then, cells were washed three times with
PBS. Subsequently, cells were incubated with anti-coilin
antibody (Cat# 10967-1-AP, Proteintech, United States)
for 1 h, and followed by incubation with secondary
antibody (Goat Anti-Mouse IgG, DyLight 488). Cells
were then counterstained with DAPI after washing three
times with PBS. Multicolor imaging was performed and
captured utilizing an IX70 microscope at 20× magnification
(Olympus, Japan).

mRNA Library Construction and
Sequencing
A total of 12 samples were taken for RNA sequencing,
including 6 overexpressed U11 samples (sample64-smaple69), 2
knockout U11 samples (sample118, sample120), and 4 control
samples (sample63, sample70, sample117, and sample119).
Total RNA was extracted from the control group, U11
knockout bladder cancer cells, and U11 overexpressing bladder
cancer cells cultured in vitro. The ribosome RNA was
removed by ribosome RNA depletion kit and then reverse
transcribed into cDNA for second-strand synthesis. dsDNA
is interrupted by ultrasound to grow uniform fragments.
The fragments were flattened, 3′A bases were generated,
and the adaptor was ligated to complete the construction
of the RNA-seq high-throughput sequencing library. High-
throughput sequencing via Illumina HiSeq2000 platform. All
operations were performed by Shanghai WUXI NEXTCODE.
Sequencing was performed using the Illumina system, following
the protocol provided by Illumina, with 2 × 150 paired-
end sequencing.

The Analysis of Alternative Splicing
After comparing the data, the file is converted to bam
format using Samtools. Then alternative splice analysis was
performed using rMATS 4.0.2. rMATS is a software for
differential alternative splice analysis of RNA-seq data. The
rMATS statistical model was used to quantify the expression
of alternative splice events in different samples, and then
the P-value was calculated by the Likelihood Ratio Test
to represent the differences in LncLevel (Inclusion Level)
between the two groups of samples. There are five kinds of

alternative splice events recognized by rMATS, respectively
skipped exon (SE), alternative 5 splice site (A5SS), A3SS,
mutually exclusive exons (MXE), retained intron (RI) (Shen
et al., 2014). The detailed results of alternative splicing in
T24 U11-KI and T24 U11-KO cell lines are presented in
Supplementary Materials.

RNA Extraction, PCR, and DNA Agarose
GEL Electrophoresis
Total RNA was extracted from the control group, U11 knockout
bladder cancer cells, and U11 overexpressing bladder cancer
cells cultured in vitro using Trizol Reagent (Invitrogen), and
reverse-transcribed to cDNA using PrimeSciptTM RT reagent Kit
with Gdna Eraser (Takara, China) following the manufacturer’s
instructions. Primer sequence were displayed in Table 1.

PCR was performed in 20 ul reactions containing 10 ul 2×
ES Taq MasterMix (CW BIO, China), 3.4 ul H2O, 0.8 ul of each
gene-specific primer and 5 ul cDNA. Reaction conditions were
30 cycles of 94◦C for 2 min, 60◦C for 30s and 72◦C for 30s. PCR
products were separated by 3c/o gel electrophoresis. Then Image
Quant LAS 500 was used for exposure.

Data Processing and Bioinformatics
Analysis
Sequencing data is Illumina raw data of RNA-seq. Fastqc is
used to evaluate the quality of raw data. Fastp is used for
data pre-processing, including removing adapter components
and effectively correcting lower quality bases. After fastp
treatment, Fastqc detects data quality again and obtains qualified
clean data. Clean data were aligned to the reference genome
hg38 using Hisat2, gene expression was obtained by Stringtie,
and differential genes were finally obtained by the Deseq2
R package (|Fold change| ≥ 1.5 and P < 0.05). Gene
ontology (GO) and The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were used
for DEGs using the clusterProfiler R package, and significant
enrichment was defined as P < 0.05. Cytoscape was used
to construct the U11 regulatory network. The prognostic
analysis of core genes was performed using GEPIA based on
the TCGA database.

TABLE 1 | Primers used for PCR.

Gene Forward primer 5′∼3′ Reverse primer 5′∼3′

TIMP1
Full-length

CCCTAGCGTGGACATTTATC AAGGTGACGGGACTGGAAG

TIMP1-1 CCCTAGCGTGGACATTTATC GGTATAAGGTGGTCTGGTTG

TIMP1-2 ACTTCCACAGGTCCCACAAC AAGGTGACGGGACTGGAAG

TIMP1-3 CTTCTGGCATCCTGTTGTTG GGTATAAGGTGGTCTGGTTG

GAPDH GTGAACCATGAGAAGTAT
GACAAC

CATGAGTCCTTCCACGATACC

snRNA U11 AGATAGGTAATACGACTCAC
TATAG

TTAACCCTCACTAAAGG
GAAGAA

GGAAAAAGGGCTTCTGTC
GTGAGTG

AGGGCGCCGGGACC
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In recent years, the application of single cell RNA-seq (scRNA-seq) has become more
and more popular in fields such as biology and medical research. Analyzing scRNA-
seq data can discover complex cell populations and infer single-cell trajectories in cell
development. Clustering is one of the most important methods to analyze scRNA-
seq data. In this paper, we focus on improving scRNA-seq clustering through gene
selection, which also reduces the dimensionality of scRNA-seq data. Studies have
shown that gene selection for scRNA-seq data can improve clustering accuracy.
Therefore, it is important to select genes with cell type specificity. Gene selection not
only helps to reduce the dimensionality of scRNA-seq data, but also can improve cell
type identification in combination with clustering methods. Here, we proposed RFCell,
a supervised gene selection method, which is based on permutation and random forest
classification. We first use RFCell and three existing gene selection methods to select
gene sets on 10 scRNA-seq data sets. Then, three classical clustering algorithms are
used to cluster the cells obtained by these gene selection methods. We found that the
gene selection performance of RFCell was better than other gene selection methods.

Keywords: single-cell RNA sequencing, gene selection, permutation, random forest, clustering

INTRODUCTION

Single cell RNA-Seq (scRNA-Seq) provides unprecedented insight into biological concerns at the
level of individual cells (Hwang et al., 2018). Bulk RNA sequencing analysis, based on the average
expression of large populations of cells, is difficult to reveal the expression heterogeneity between
different cells. However, scRNA-Seq only studies the expression of single-cell level, so scRNA-
Seq improves cell resolution across global transcriptome profile (Pouyan and Kostka, 2018). In
recent years, scRNA-seq has been widely used in many aspects of biological and medical research
(Hedlund and Deng, 2018), for example, discovering the new cell states and tracing the origin
of its development (Trapnell, 2015), cell type identification (Xu and Su, 2015), heterogeneity of
cell responses (Pollen et al., 2014), understanding of cell-specific biological characteristics (Poirion
et al., 2016), building gene regulatory networks across the entire gene expression profiles (Zheng
et al., 2019), tracking of different cell lineage trajectories (Shao and Hofer, 2017), and cell fate
decisions (Goolam et al., 2016). In addition, scRNA-seq data is useful to study cellular immunity,
drug and antibiotic resistance (Patel et al., 2014).
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Genome-wide transcriptome analysis is usually used to study
the expression of tissue, disease and cell type-specific genes,
but generating expression profiles at single-cell resolution is
technically challenging. Therefore, researchers have proposed
many sequencing technologies, such as: a robust mRNA-Seq
protocol that is applicable to a single cell level; and a scalable
method to characterize many cell types and states under various
conditions and disturbances Drop-seq protocol for complex
organizations (Ramskold et al., 2012; Macosko et al., 2015)).
From the perspective of scRNA-Seq technology, the scRNA-seq
capture efficiency and dropout rate have limitations due to the
small amount of starting materials. At the same time, due to
the uncertainty of cell separation protocol, library preparation
methods, sequencing methods, reagent usage methods, and
various types of samples, batch effects may be introduced, which
leads to the high noise characteristics of scRNA-seq data (Chen
et al., 2019). From the perspective of gene expression, gene
expression in scRNA-Seq data is specific (Aevermann et al., 2018),
only a small part of the genes are biologically meaningful. So,
scRNA-Seq research is challenging due to its high noise, high
dimensionality and sparsity (Schnable et al., 2009). Considering
that scRNA-seq data play an important role in the effectiveness
and accuracy of downstream analysis, the most important goal
of scRNA-seq is to select highly variable genes in the single cell
transcriptome profiling.

scRNA-seq data usually has the problems of high noise,
high dimensionality and sparseness. Therefore, before
downstream analysis, researchers usually use certain feature
selection methods to extract scRNA-seq data. A common
gene selection strategy for high-dimensional gene expression
analysis is by projecting data points from a high-dimensional
gene expression space into a low-dimensional space. Single
cell expression data in low-dimensional space is expected
to be an important feature in high-dimensional space. In
recent years, there have been many methods to analyze and
study scRNA-seq data from the angles of reduce dimension.
Principal component analysis (PCA) (Lever et al., 2017) is a
method of converting scRNA-seq data into fewer features to
achieve data dimensionality reduction. By generating two-
dimensional embedding of high-dimensional data, t-distributed
stochastic neighborhood embedding (t-SNE) (Linderman and
Steinerberger, 2019) is an effective non-linear dimensionality
reduction technology that has attracted more and more scientific
attention. Recently, it has been widely popular in the field of
scRNA-seq data research.

Andrews and Hemberg (2019) proposed a gene selection
method called M3Drop. Wang et al. (2019) proposed a new
marker selection strategy SCMarker to accurately delineate cell
types in scRNA-seq data by identifying genes that have bi/multi-
modally distributed expression levels and are co-or mutually-
exclusively expressed with some other genes. In addition, Expr
is also a gene selection method based on scRNA-Seq sequencing
data. This method only retains the genes with the highest average
expression (logarithmic normalized count) value in all cells.

We propose RFCell, a gene selection strategy based on
permutation and random forest, which uses supervised
classification in pattern recognition to determine the best subset

of genes for cell type recognition without referring to any known
transcriptome profile or cell related information. The central idea
of our method is that random forests based on ensemble method
can not only process scRNA-seq data with high-dimensional
features, but also evaluate the importance of each gene in gene
expression data through information gain. Our main goal is to
identify marker genes from scRNA-seq data that can not only
judge cell types but also have biological significance. After using
RFCell for gene selection on 10 scRNA-seq data sets, we found
that the accuracy of the average results is higher than that of
using conventional gene selection strategies.

MATERIALS AND METHODS

The pipeline of our proposed RFCell is depicted in Figure 1. In
the following section, we describe this pipeline in detail.

Method
Pouyan and Kostka (2018) proposed RAFSIL, a random forest-
based method that can learn the similarity between cells
from scRNA-seq data. RAFSIL consists of two steps: feature
construction based on scRNA-seq data and similarity learning.
RAFSIL has strong adaptability and scalability, and the similarity
can be used for typical exploratory scRNA-seq data research,
such as dimensionality reduction, visualization and clustering.
Considering that RAFSIL uses permutation to generate similarity,
we propose to use permutation to generate negative samples. We
develop RFCell, a supervised gene selection strategy based on
permutation and random forest. RFCell evaluates the importance
of each gene through random forest classification. RFCell works
in two steps: generation of negative samples and evaluation of
gene importance using Random Forest.

Generation of Negative Samples
It is well known that scRNA-seq data is complex and diverse, so it
is particularly important for scRNA-seq data gene selection. First,
to generate a random negative sample matrix of gene expression
data, we input the gene expression matrix X (X consists of m rows
and n columns) obtained after data preprocessing as a positive
sample. After that, the gene in each column of the positive
sample matrix X is randomly permutated to form a new gene
expression matrix Z (Z consists of m rows and n columns). We
define each row of cells in the new gene expression matrix Z as a
negative sample.

Next, we create the vector y. First, we define the label of the
positive sample matrix X as a vector p, and p are all 1, where the
number of 1 is the number of rows (m) of the positive sample
matrix X. Second, the label of the negative sample matrix Z is
defined as a vector q, and q is all 0, where the number of 0 is
the number of rows (m) of the negative sample matrix Z. Here,
we convert the p vector and q vector into data frame format
respectively. Third, the vector y (y consists of 2 × m rows and
one column) is generated by vertically merging the vector p and
the vector q.

Finally, the positive sample matrix X and the negative sample
matrix Z obtained from the above are merged vertically to obtain
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FIGURE 1 | The mechanism of RFCell (scRNA-seq gene selection based on permutation and Random Forest) algorithm. The input is a gene expression matrix. The
RFCell algorithm includes two steps: (A) Generation of negative samples; (B) Evaluation of gene importance using Random Forest.

a new gene expression matrix N (N contains 2 × m rows and
n columns).

Evaluation of Gene Importance Using Random Forest
We use the randomforest (Xin-Hai, 2013) package in R language
to evaluate gene importance. First, in order to generate the
random forest training data set, we horizontally merge the matrix
N and the vector y. Through merging, we get the random
forest training data set matrix M (M contains 2 × m rows and
n+1 columns). Then, we call the random forest R language
package. According to the usage of the randomforest package in
R language, we use the vector y obtained above as the formula
setting of the randomforest package, and use the matrix M as data
setting of randomforest package. The importance parameter is set
to True, and the remaining parameters are default values.

After calling the randomforest package, we use the importance
function to calculate the importance of each gene, and obtain
the importance of each gene through the mean decrease accuracy
(MDA). MDA represents the degree of reduction in the accuracy
of random forest prediction after one gene is permutated. The
larger the value, the greater the importance of the gene. In our
study, genes with MDA>0 are selected as genes that can identify
cell types.

ScRNA-Seq Datasets
We tested 10 published scRNA-seq datasets and obtained results
using gene selection methods. All these data sets have been used
for performance research by several latest algorithms. For each
data set, we use the expression unit provided by the author.

Darmanis dataset (Darmanis et al., 2015): In order to
capture the cellular complexity of adult and fetal human brains
at the entire transcriptome level, the authors performed
single-cell RNA sequencing on 466 cells. This data set
consists of oligodendrocytes, astrocytes, microglia, neuronal
cells, endothelial cells, neural progenitor cells, quiescent
newborn neurons, and two types of cells containing more
than one different cell type Cells with characteristic genes are
composed together.

Deng dataset (Deng et al., 2014): The authors used the Smart-
seq or Smart-seq2 platform to perform RNA-Seq sequencing
on Mus musculus cells from zygotic to late blastocysts of a
single cell from the adult liver. The cells in this data set
are separated from mouse embryonic oocytes to blastocyst
stage, including four 1- cells (zygotes), eight early 2- cells, 12
metaphase 2- cells, 10 late 2- cells, and 14 4- cells, 28 8- cells,
50 16- cells, 43 early blast cells, 60 mid blast cells, and 30
late blast cells.

Engel dataset (Engel et al., 2016): The authors analyzed
purified populations of thymic natural killer T cells (NKT cells) at
the transcriptome level and epigenome level, as well as by single-
cell RNA sequencing. The data consists of NKT1 cells, NKT2
cells, and NKT17 cells.

Grover dataset (Grover et al., 2016): Using single-cell RNA-
seq technology, the authors systematically compared single
hematopoietic stem cells (HSC) from young mice and old
mice that were transgenic from Vwf-EGFP bacterial artificial
chromosomes (BAC). By analyzing HSC transcriptome and HSC
function at the single cell level, the authors found that molecular
platelet priming and increased functional platelet bias are the
main age-dependent changes in HSCs.

Pollen dataset (Pollen et al., 2014): Using microfluidic
technology, the authors captured 301 single cells from 11
populations and analyzed the single-cell transcriptome within
the down-sampling sequencing depth range. They proved that
for unbiased cell type classification and biomarker identification,
shallow scRNA-seq is indeed sufficient.

Sasagawa dataset (Sasagawa et al., 2013): The authors
proposed a novel scRNA-seq method named Quartz-Seq. They
applied this method to ES cells in different three cell-cycle phases
(G1, S, and G2/M).

Ting dataset (Ting et al., 2014): The authors applied a
microfluidic device to isolate Circulating tumor cells (CTCs)
based on the model from a pancreatic cancer mouse to
determine the heterogeneity of pancreatic CTCs. Then these
CTCs were sequenced and compared to matched primary
tumors, cell line controls.
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Trapnell dataset (Trapnell et al., 2010): The author sequenced
and analyzed more than 430 million paired 75 bp RNA-Seq reads
from mouse myoblast cell lines on differentiation time series.

Treutlein dataset (Treutlein et al., 2014): The authors analyzed
198 single-cell transcriptomes from mouse lung epithelium in
total. For time point E18.5, three individual experiments were
performed using three different pregnant mices (3 biological
replicates): 20 single cell transcriptomes yielded from pooled
sibling lungs, 34 single cell transcriptomes yielded from one
single embryonic lung, 26 single cell transcriptomes yielded from
pooled sibling lungs. The authors used an unbiased genome-wide
approach and classified these 80 cells into five populations: Clara
(Scgblal), ciliate (Foxjl), AT1 (Pdpn, Ager), AT2 (Sftpc, Sftpb),
and alveolar bipotential progenitor (BP) cells.

Zhou dataset (Zhou et al., 2016): The author used effective
surface markers to capture the newborn pre-HSC with high
purity, and then applied single-cell RNA sequencing to analyze
endothelial cells, CD45- and CD45+ pre-HSC in the aorta-
gonad-mesonephrine region, and fetus HSC of the liver.

The summary description of the scRNA-seq datasets we used
is shown in Table 1.

Performance Evaluation
In order to compare the clustering results of RFCell and other
gene selection methods, we used two commonly used clustering
algorithm evaluation indicators: normalized mutual information
(NMI) (Kiselev et al., 2017) and adjusted rand index (ARI)
(Rand, 1971).

Mutual information (MI) measures the correlation between
two sets of events. In information theory, a useful measure
of information can be seen as the amount of information
contained in a random variable about another random variable,
or the uncertainty reduced by knowing another random variable.
Formally, the MI of two discrete random variables X and Y can
be defined as:

I(X : Y) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (1)

where p(x, y) is the joint probability distribution function of X
and Y , and p(x) and p(y) are the marginal probability distribution
functions of X and Y . NMI is to place MI between [0, 1] through

TABLE 1 | Summary description of the ten scRNA-seq datasets.

Datasets #Samples #Genes #Classes Unit

Darmanis (Darmanis et al., 2015) 466 22,088 9 CPM

Deng (Deng et al., 2014) 259 22,958 10 RPKM

Engel (Engel et al., 2016) 203 23,342 4 RPKM

Grover (Grover et al., 2016) 135 15,181 2 CPM

Pollen (Pollen et al., 2014) 249 14,805 11 TPM

Sasagawa (Sasagawa et al., 2013) 23 36,807 3 FPKM

Ting (Ting et al., 2014) 149 29,018 7 CPM

Trapnell (Trapnell et al., 2010) 372 47,192 4 FPKM

Treutlein (Treutlein et al., 2014) 80 23,271 5 FPKM

Zhou (Zhou et al., 2016) 181 23,624 8 FPKM

information entropy, and its purpose is to evaluate the quality of
the algorithm. For a random variable X, its information entropy
can be calculated as:

H(X) =

n∑
i=1

p(xi)I(xi) =

n∑
i=1

p(xi) log
1

p(xi)
(2)

The value of the random variable X = {x1 , x2, ... xn} and
p(xi) represent the probability of event occurring, on the other
hand, the value of random variable Y =

{
y1, y2 , ... yn

}
and p(yi)

represents the probability of event occurring. NMI can be defined
as:

U(X, Y) = 2
I(X;Y)

H(X)+H(Y)
(3)

NMI is used to evaluate the consistency between the clustering
results obtained and the true cell markers.

Rand Index (RI) is a measure of the similarity between
clustering results and real categories. Mathematically, the RI is
associated with accuracy. Given a set of S with n elements, then
compare the two partitions M, N of S. The RI is calculated as
follows:

RI =
a+ b

a+ b+ c+ d
=

a+ b
C2

n
=

a+ b
n(n− 1)/2

(4)

where a is the number of pairs of elements in S that are in the
same subset in M and in the same subset in N; b is the number
of pairs of elements in S that are in different subsets in M and in
different subsets in N; c is the number of pairs of elements in S
that are in the same subset in M and in different subsets in N; d is
the number of pairs of elements in S that are in different subsets
in M and in the same subset in N.

The RI is between [0, 1]. The greater the RI value, the more
consistent the clustering result of the algorithm is with the known
label, the higher the accuracy of the clustering effect, and the
higher the purity in each category. The problem with the RI is
that, when comparing multiple clustering results, RI values are
usually high, resulting in a poor evaluation of the superiority

TABLE 2 | Comparison of SIMLR performance of gene sets obtained by four gene
selection methods in terms of NMI.

DataSet NMI

Expr M3Drop SCMarker RFCell

Darmanis 0.720 0.687 0.727 0.724

Deng 0.676 0.682 0.650 0.682

Engel 0.528 0.609 0.768 0.670

Grover 0.004 0.043 0.002 0.084

Pollen 0.868 0.944 0.908 0.938

Sasagawa 0.592 0.621 NA 0.595

Ting 0.781 0.706 0.767 0.829

Trapnell 0.102 0.127 0.066 0.222

Treutlein 0.425 0.411 0.433 0.531

Zhou 0.631 0.619 0.590 0.663

NA:The number of genes selected by SCMarker is 0, so no results are obtained.
The bold values mean the highest or equally-highest value among different
methods.
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TABLE 3 | Comparison of SIMLR performance of gene sets obtained by four gene
selection methods in terms of ARI.

DataSet ARI

Expr M3Drop SCMarker RFCell

armanis 0.549 0.537 0.530 0.537

Deng 0.343 0.412 0.367 0.412

Engel 0.390 0.509 0.710 0.622

Grover 0.007 0.044 0.001 0.109

Pollen 0.798 0.937 0.832 0.917

Sasagawa 0.561 0.516 NA 0.555

Ting 0.540 0.532 0.491 0.668

Trapnell 0.010 0.062 0.010 0.168

Treutlein 0.237 0.239 0.285 0.349

Zhou 0.415 0.410 0.363 0.483

NA:The number of genes selected by SCMarker is 0, so no results are obtained.
The bold values mean the highest or equally-highest value among different
methods.

of the clustering algorithm. Therefore, ARI presented has better
differentiation degree than RI. The range of ARI is (−1, 1). ARI
can be defined as:

ARI =
RI − E(RI)

max(RI)− E(RI)
(5)

where E(RI) and max(RI) can be defined as:

E(RI) = E(
∑

i,j

(
ni,j
2 )) = [

∑
i

(
ni
2 )
∑

j

(
nj
2 )]/(n

2) (6)

max(RI) =
1
2
[

∑
i

(
ni
2 )+

∑
j

(
nj
2 )] (7)

where ni,j are values from the contingency table, ni is the sum
of the i-th row of the contingency table, nj is the sum of the j-th
column of the contingency table.

Adjusted rand index is commonly used to assess the
consistency between predicted clusters and true categories.

RESULTS

Comparison of RFCell With Benchmark
Gene Selection Methods
To show the performance of RFCell over other gene selection
methods, we used three classical clustering algorithms: Clustering
method for single-cell interpretation through multikernel
learning (SIMLR) (Wang et al., 2017), Single-cell consensus
clustering (Wilkerson and Hayes, 2010) merges clustering results
of multiple cells by consensus method (SC3) (Kiselev et al., 2017)
and k-means (Kim et al., 2019). SIMLR is a software that learns
the similarity measure between cells from the input single cell
data, for SIMLR, we use the SIMLR package and igraph package
in R language and apply their default parameters to get a good
clustering effect. SC3 is a user-friendly tool for unsupervised
clustering, which methods include gene filtering, similarity
calculation, Transformations, k-means, consensus clustering, and
finally hierarchical clustering of the results obtained by consensus
clustering. We usually use SC3, SingleCellExperiment and scater
package in R language to perform SC3 clustering. For hierarchical
clustering, we use the hclust (Xu et al., 2019) function with default
parameters in R to perform hierarchical clustering analysis on
the similarity matrix of gene expression data to obtain the final
clustering results. The parameter k of three methods was set to
the true number of clusters. In addition to these three algorithms,
gene selection based on scRNA-seq data can apply the RFCell

FIGURE 2 | SC3 clustering results based on RFCell and three gene selection methods including Expr, M3Drop, and SCMarker in terms of NMI (A) and ARI (B).
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FIGURE 3 | k-means clustering results based on RFCell and three gene selection methods including Expr, M3Drop, and SCMarker in terms of NMI (A) and ARI (B).

FIGURE 4 | On the published pollen data of the scRNA-seq data set, the gene sets obtained by the three gene selection methods (Expr, M3Drop, and SCMarker)
and the gene sets obtained by the RFCell gene selection method were compared. The visualization diagrams respectively show the gene sets obtained by the four
gene selection methods: (A) Visualization of the results of Expr gene selection; (B) Visualization of the results of M3Drop gene selection; (C) Visualization of the
results of SCMarker gene selection; (D) Visualization of the results of RFCell gene selection.
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feature selection results to any clustering method. In fact, the final
gene selected by RFCell can be used not only for any clustering
algorithms, but also for similarity calculation and building a
cell network. The three feature selection methods specifically for
scRNA-seq data are: Andrews and Hemberg (2019) proposed
M3Drop, Wang et al. (2019) proposed SCMarker. The last
method of selecting genes is to select the gene with the highest
average expression value (Expr). For each scRNA-seq data, we
first run RFCell 10 times, and then calculate the average of the
NMI and ARI as the final result.

Based on SIMLR, Table 2 clearly shows that, compared
with other gene selection methods, RFCell can achieve better
gene selection performance in more data in terms of NMI.
For example, the average NMI of the data set clustering after
RFCell gene selection is 0.593, the average NMI of the data
set clustering after the Expr gene selection is 0.532, the average
NMI of the data set clustering after the M3Drop gene selection
is 0.544, and the average NMI of the data set clustering after
SCMarker gene selection is 0.545. In more than half of all data
sets, RFCell gene selection results are the best. Table 3 also

shows that, compared to other feature selection methods, in
terms of ARI, RFCell achieve better gene selection performance
in more datasets. For example, the average ARI of the data set
clustering after RFCell gene selection is 0.482, the average ARI
of the data set clustering after the Expr gene selection is 0.385,
the average ARI of the data set clustering after the M3Drop
gene selection is 0.419, and the average ARI of the data set
clustering after SCMarker gene selection is 0.398. Considering
both NMI and ARI, our method does perform better than
other methods on a few datasets such as the Darmanis and
Engel datasets, possibly because the characteristics of the genes
that can distinguish cell types for these datasets could not be
captured by RFCell.

As shown in Figure 2, we found that RFCell basically showed
good results in SC3 clustering. The picture shows that compared
with other gene selection methods, the scRNA-seq data set
obtained by our proposed RFCell recognizes cell types more
clearly. For Darmanis dataset, Deng dataset, pollen dataset,
Trapnell dataset, Treutlein dataset and Zhou dataset, compared
with other gene selection methods, the gene set obtained by

FIGURE 5 | The heat map of the result is derived from the spearman similarity measure of the gene set obtained after the gene selection of pollen data by four gene
selection methods. The cells in the matrix are sorted by their true labels so that cells of the same type are adjacent. Cell clusters are clearly indicated by colored bars.
(A) Heat map of the gene set obtained by the Expr gene selection; (B) Heat map of the gene set obtained by the M3Drop gene selection; (C) Heat map of the gene
set obtained by the SCMarker gene selection; (D) Heat map of the gene set obtained by the RFCell gene selection.
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RFCell has obvious advantages in distinguishing cell types. Both
NMI and ARI have achieved the best gene selection performance,
which shows that the gene set obtained with RFCell has biological
significance. For Engle dataset, Grover dataset, Sasagawa dataset
and Ting dataset, we found that through different gene selection
methods to obtain different gene sets have their own advantages
and disadvantages in distinguishing cell types. These results
indicate that scRNA-Seq data is complex and diverse, and the
gene set related to cell type recognition may have some unknown
factors, which require further research.

As shown in Figure 3, we found that RFCell basically showed
good results in k-means. The picture shows that compared
with other gene selection methods, the scRNA-seq data set
obtained by our proposed RFCell can significantly improve the
clustering accuracy. For Deng dataset, pollen dataset, Sasagawa
dataset and Treutlein dataset, compared with other gene selection
methods, our proposed RFCell achieves satisfactory clustering
performance, and more importantly, it can also provide potential
biological explanations for clustering. This also shows that RFCell
can identify the gene sets that contribute the most to the clusters.

Application of RFCell to Single Cell
RNA-seq Data
We use the single-cell transcriptome data of 249 cells captured
in 11 populations obtained using microfluidic technology as our
original data, and visualize the different gene sets corresponding
to the original data. Data visualization results show that RFCell
separates cells more clearly. It is better than the results obtained
by Expr, M3Drop and SCMarker (Figures 4, 5).

As shown in Figure 4, the visualization results of the gene set
selected by the Expr method show that only five cell types can
be clearly distinguished, and the other cell types are scattered
in confusion. The visualization results of the gene set selected
by the M3Drop method also show that although there are eight
cell types that can be effectively identified, the other three cell
types (cell type 4, cell type 5, and cell type 6) are scattered
and difficult to identify. The visualization results of the gene set
selected by the SCMarker method are also difficult to effectively
distinguish cell types. On the one hand, cell type 4 and cell type
5 are too widely dispersed; on the other hand, there is multiple
cell types (cell type 3, cell type 4, cell type 5, and cell type
6) has a crossover, which makes the identification of cell type
confused. The result of the visualization of the gene set obtained
after gene selection by our proposed RFCell shows that all cell
types can be clearly identified, and there is no crossover between
cell types. This also shows that RFCell has superiority in cell
type recognition. The heat map in Figure 5 is derived from the
spearman similarity measure of the gene set obtained after gene
selection of pollen data by four gene selection methods. RFCell
also showed better performance.

DISCUSSION AND CONCLUSION

In recent years, scRNA-seq technology has become a powerful
tool for studying cell heterogeneity in tissues, advances in

sequencing technology have enabled scientists to perform large-
scale transcriptome profiling at single cell resolution in a
high-throughput manner, clustering algorithms have passed
unsupervised learning has become the main way to identify
and characterize new cell types and gene expression patterns,
however, on the one hand, differences in scRNA-seq technology
can cause noise in scRNA-seq data, especially because it is
impossible to repeat measurements on the same cell (Severson
et al., 2018; Zhang et al., 2020). On the other hand, scRNA-
seq data is noisier and more complex than traditional RNA-
Seq data, and the high variability of the data also brings
challenges to scRNA-seq data analysis (Chen et al., 2019). In
order to analyze scRNA-seq data, feature selection methods
can greatly reduce the dimensionality of the data and improve
the results of cell type recognition. For analyzing specific
data, especially gene expression data, many studies have shown
that certain gene sets with correlation and functional synergy
play an important role in analyzing scRNA-seq data and
identifying specific cell types (Eisen, 1998; Young et al., 2010;
Buettner et al., 2017).

In this study, we proposed a new feature selection method,
RFCell, for gene selection of scRNA-seq data. Through feature
selection based on permutation and random forest for each gene
expression data. RFCell uses classic machine learning methods
to perform supervised classification of scRNA-seq data to show
its superiority compared with other feature selection methods.
RFCell is characterized by a series of noteworthy functions.
First, the negative samples are obtained by using scRNA-seq
data permutation. Secondly, RFCell obtains the training data
of the random forest by combining the original scRNA-seq
and negative samples. Third, considering that the information
contained in each genome and the ability to recognize cell
types is different, we estimate the importance of each genome
by calculating the importance function. Finally, RFCell selects
genes with MDA>0 as the gene set that can identify cell
types. This is done to make the results of RFCell robust to
gene set mutations.

RFCell does have some limitations. First of all, the negative
samples obtained from the original gene expression data
using permutation are uncertain, so this means that for each
data set, there may be some genes that can identify cell
types are disrupted to the wrong cells. Therefore, in this
process, some genes that are essential for classification are
likely to be discarded, resulting in failure to obtain the best
classification results. With this in mind, we have conducted
many experiments to make RFCell stable to the results of
gene selection. Experiments include visual analysis of gene sets
obtained through different gene selection methods. The details
are as follows. We use the single-cell transcriptome data of 249
cells captured in 11 populations obtained using microfluidic
technology as our original data, use four gene selection methods
to select the gene sets of the original data to obtain different
gene sets, and visualize these sets of genes. In addition,
we also do heat map analysis on gene sets. Corresponding
experimental results show that RFCell shows superiority in the
visualization map, but RFCell needs to be improved in the
heat map analysis.
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It is expected that biological information (such as labeled gene
sets) will be used in the future to select genes related to cell
types in scRNA-seq for further study. Incorporating information
from different views may be helpful in improving gene selection
(Liu et al., 2020a; Liu et al., 2020b; Lan et al., 2020). There are
some differences among the results for scRNA-seq data based
on different gene selection methods. Analyzing the preference
performance of different gene selection methods for scRNA-
seq data could improve the accuracy of cell type identification.
Therefore, we believe that integrating different gene selection
methods may benefit gene selection.
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First Affiliated Hospital of Guangxi Medical University, Nanning, China, 4 Guangxi Key Laboratory for Genomic and
Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,
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Muscle invasive bladder cancer (MIBC) is a heterogeneous disease with a high
recurrence rate and poor clinical outcomes. Molecular subtype provides a new
framework for the study of MIBC heterogeneity. Clinically, MIBC can be classified
as basal and luminal subtypes; they display different clinical and pathological
characteristics, but the molecular mechanism is still unclear. Lipidomic and metabolomic
molecules have recently been considered to play an important role in the genesis and
development of tumors, especially as potential biomarkers. Their different expression
profiles in basal and luminal subtypes provide clues for the molecular mechanism of
basal and luminal subtypes and the discovery of new biomarkers. Herein, we stratified
MIBC patients into basal and luminal subtypes using a MIBC classifier based on
transcriptome expression profiles. We qualitatively and quantitatively analyzed the lipids
and metabolites of basal and luminal MIBC subtypes and identified their differential
lipid and metabolite profiles. Our results suggest that free fatty acids (FFAs) and
sulfatides (SLs), which are closely associated with immune and stromal cell types,
can contribute to the diagnosis of basal and luminal subtypes of MIBC. Moreover,
we showed that glycerophosphocholine (GCP)/imidazoles and nucleosides/imidazoles
ratios can accurately distinguish the basal and luminal tumors. Overall, by integrating
transcriptomic, lipidomic, and metabolomic data, our study reveals specific biomarkers
to differentially diagnose basal and luminal MIBC subtypes and may provide a basis for
precision therapy of MIBC.
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INTRODUCTION

Bladder cancer (BC) is the 10th most common malignancy
worldwide (Bray et al., 2018). BC can be classified into non-
muscle-invasive bladder cancer (NMIBC) and muscle-invasive
bladder cancer (MIBC) based on the depth of tumor cells
invasion (Kamat et al., 2016). Approximately 25% of BC patients
are diagnosed with MIBC, which has a higher rate of relapse
and worse prognosis than NMBIC. Neoadjuvant cisplatin-based
chemotherapy (NAC) before radical cystectomy is the standard
treatment option for MIBC patients (Grossman et al., 2003;
International Collaboration of Trialists et al., 2011). However,
approximately 40% of MIBC patients benefit from NAC, and only
a minority of patients with MIBC respond to immunotherapy
(Zargar et al., 2015). Therefore, new MIBC diagnostic biomarkers
and therapeutic strategies are urgently needed.

Accumulating evidence indicates that MIBC is a
heterogeneous disease that can be divided into different
molecular subtypes based on transcriptome profiles or specific
genomic alterations (Sjodahl et al., 2012; Cancer Genome Atlas
Research Network, 2014; Robertson et al., 2017; McConkey
and Choi, 2018). MIBC can be grouped into basal and luminal
subtypes with distinct classifiers or models, which are similar
to the molecular subtypes used to stratify types of breast
cancer (Damrauer et al., 2014; Sjodahl et al., 2017). Among
these classifiers, a clinically significant panel of 47 genes
(BASE47) is used as a classifier of high-grade MIBC. BASE47
accurately discriminates intrinsic MIBC subtypes and promotes
an understanding of MIBC pathobiology (Damrauer et al.,
2014). Typical urothelial basal cells markers, such as KRT6B,
KRT14, and KRT5, are highly expressed in basal tumors, while
luminal tumors express high levels of genes that mark terminal
urothelial differentiation, such as those seen in umbrella cells
(KRT20, UPK1B, UPK3A, and UPK2). MIBC subtypes not
only demonstrate distinctive biological characteristics but also
have prognostic and therapeutic value. Basal MIBC has a worse
prognosis and a higher rate of metastasis than the luminal
subtype (Choi et al., 2014a; Robertson et al., 2017). Moreover,
basal MIBC subtype is more sensitive to anti-epidermal
growth factor receptor (anti-EGFR) agents and cisplatin-based
combination chemotherapy than the luminal subtype (Choi
et al., 2014a,b). Given the complex heterogeneity of MIBC,
there is an urgent need for the definition of subtype-specific
biomarkers that can be applied for more precise management
and therapeutic interventions for MIBC.

The reprogramming of metabolic patterns in tumor tissue
facilitates the rapid proliferation of tumor cells in the absence
of oxygen and nutrients and drives tumor progression (Putluri
et al., 2011; Nuhn et al., 2012). The tumor metabolome originates
from the interaction of genome, transcriptome, proteome, and
a series of external influences. Metabolomic signatures mirror
the dynamic biochemical activity of the tumor’s pathobiology
(Loras et al., 2018). Therefore, over the last decade, research had
increasingly focused on the identification of novel biomarkers
associated with metabolomics for the early detection of cancer
(Alberice et al., 2013; Frantzi et al., 2016; Yumba Mpanga et al.,
2018). Although previous research had concentrated on BC

metabolism for screening and detection (Sahu et al., 2017), it
has become evident that lipid metabolism is also an important
component to be considered. Lipids are employed to store energy;
they are also involved in cell membrane synthesis and act as
messengers for molecular recognition and signal transduction
(Larrouy-Maumus, 2019). Lipid metabolism is closely related to
cancer progression (Munir et al., 2019). Thus, both lipidomics
and metabolomics play vital roles in the occurrence and
development of cancer. However, to date, differential lipid and
metabolite profiles between basal and luminal MIBC subtypes
have not been examined.

Herein, we integrated transcriptomic, lipidomic, and
metabolomic analyses to identify the differential lipids and
metabolites between basal and luminal MIBC subtypes, which
will provide potential biomarkers for precision therapy of MIBC.

MATERIALS AND METHODS

Clinical Samples
The 12 MIBC tissues used in this study were obtained from
The First Affiliated Hospital of Guangxi Medical University
in China from June 2019 to June 2020. Patients undergoing
chemotherapy or radiotherapy before surgical resection were
excluded, and the diagnosis of MIBC was confirmed by two
experienced pathologists.

RNA Sequencing
Total RNA was extracted from tissues using TRIzol R© reagent
(Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s protocol. Ribosomal RNA (rRNA) was removed
from the total RNA using Ribo-Zero rRNA removal kits
(Illumina, San Diego, CA, United States). Complementary DNA
(cDNA) libraries were constructed by reverse transcription of
the purified messenger RNAs (mRNAs). The libraries were
amplified by PCR, followed by sequencing for 150 cycles on an
Illumina HiSeq 4000 sequencer (Illumina). The quality of the raw
sequencing data was assessed using FastQC software. Fastp was
used to preprocess the raw data (Chen et al., 2018). The clean
data were mapped to the human genome (hg19) using HISAT2
(Kim et al., 2019) and StringTie (Pertea et al., 2015, 2016), and
Cufflinks was used to merge the data (Ghosh and Chan, 2016).
The 47-gene panel was used to accurately separate MIBC samples
into luminal and basal subtypes (Damrauer et al., 2014). Gene
set enrichment analysis (GSEA) was conducted based on the
default parameters, using mRNA expression profiles of samples.
The xCell algorithm was used to specifically infer 64 immune and
stromal cell types in each sample, based on mRNA expression
profiles (Aran et al., 2017). The expression profiles of samples
were prepared and uploaded to the xCell web1. Analysis was
performed by xCell signature (N = 64) with 1,000 permutations,
based on the parameter settings.

1http://xcell.ucsf.edu/
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Tissue Metabolome Extraction
Extraction methods were performed as previously reported
(Yuan et al., 2012). Tissues were ground using the Precellys
evolution system (Bertin Technologies, Saint Quentin en
Yvelines, French) under 1,600 × g, for 10 s, two cycles, and a 5-s
pause. Samples were then incubated at 500× g for 30 min at 4◦C.
The sample was centrifuged at 4,000× g for 10 min at 4◦C; then,
the supernatant was isolated and dried by Genevac miVac (Tegent
Scientific Ltd., Ipswich, United Kingdom). Precipitates were
resuspended in 100 µl of 1% acetonitrile, and the supernatant was
isolated for further analysis.

Metabonomics Data Acquisition
Ultrahigh performance liquid chromatography (UPLC, Agilent
1290 II, Agilent Technologies, Waldbronn, Germany) combined
with tandem quadrupole time-of-flight (5600 Triple TOF Plus,
AB Sciex, Singapore), and ACQUITY UPLC HSS T3 (1.8 µm,
2.1 mm × 100 mm, Waters, Dublin, Ireland) chromatographic
column were used for the analysis. All analyses were performed
in electrospray ionization mode. Instrument conditions were as
previously reported (Song et al., 2020), including the following:

curtain gas = 35; positive ion spray voltage = 5,500 V;
negative ion spray voltage = -4,500 V; temperature = 450◦C;
ion source gas 1 = 50; and ion source gas 2 = 50. Data
acquisition mode included a full scan of the primary mass
spectrum and information-dependent acquisition of secondary
mass spectrum data. MarkerView 1.3 (AB Sciex, Concord, ON,
Canada) was used to extract the peak area, mass-to-charge
ratio, and retention time of the primary mass spectrum data
to generate a two-dimensional data array. Secondary mass
spectrum data were extracted by PeakView 2.2 (AB Sciex),
and metabolite IDs were identified after interrogation of a
metabolite database, HMDB, and METLIN standards. Metabolite
IDs were assigned to the corresponding ion of the two-
dimensional data array.

Tissue Lipid Extraction
Lipid extraction was conducted according to a modified
Bligh/Dyer extraction method (Song et al., 2020). Samples were
redissolved in isotopic mixed standards and then analyzed via
Exion UPLC-QTRAP 6500 Plus (Sciex) with the electrospray
ionization mode under the following conditions: curtain gas = 20;

FIGURE 1 | Transcriptome analysis reveals changes in lipid and metabolic pathways. (A) Expression heatmap of specific MIBC basal and luminal markers. (B) GSEA
analysis showed the activation pathways in basal and luminal MIBC subtypes.

FIGURE 2 | Distinct lipid profiles in basal and luminal MIBC subtypes. (A) The lipid types and amounts tested. (B) The relative frequencies of lipids in basal and
luminal MIBC subtypes. BMP, bis (monoglycerol) phosphate ester; CE, cholesteryl esters; Cer, ceramides; Cho, free cholesterols; CL, cardiolipins; DAG,
diacylglycerols; FFA, free fatty acids; Gb3, Ceramide trihexoside; GM3, monosialogangliosides; LacCer, lactosylceramides; LPA, lyso-PA; LPC, lyso-PC; LPE,
lyso-PE; LPI, lyso-PI; LPS, lyso-PS; PA, phosphatidic acids; PC, phosphatidylcholines; PE, phosphatidylethanolamines; PG, phosphatidylglycerols; PI,
phosphatidylinositols; PS, phosphatidylserines; SL, sulfatides; SM, sphingomyelins; Sph, sphingosine; TAG, triacylglycerols.
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ion spray voltage = 5,500 V; temperature = 400◦C; ion source gas
1 = 35; and ion source gas 2 = 35.

Lipidomics Data Acquisition
Phenomenex Luna silica (3 µm, 1.5 mm× 200 mm) was selected
as the chromatographic column. Lipids were extracted under
A phase (chloroform/methanol/ammonia = 89.5:10:0.5) and B
phase (chloroform/methanol/ammonia/water = 55:39:0.5:5.5).
Extraction began with a 95% gradient of A phase from 0 to 5 min,
then a linear decrease to 60% (in 7 min) for 4 min, a further
decline to 30% for 15 min, and return to 95% for the last 5 min.
Mass spectrometry multiple reaction monitoring was established
for lipid identification and quantitative analysis (Lam et al., 2017,
2018).

Metabonomics and Lipidomics Data
Analysis
Metabonomics and lipidomics data were prepared and uploaded
to the MetaboAnalyst software 4.02 (Chong et al., 2019).
Multivariate statistical analysis, cluster analysis, dimensionality
reduction, and heatmaps were performed, based on the
default parameters.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
software (version 8.0, GraphPad, San Diego, CA, United States).
Statistically significant differences between the two groups were
evaluated by two-tailed Student’s t-test. The relationships
between lipid elements and cell types in the tumor
microenvironment were analyzed by Pearson correlation
analysis. A p < 0.05 was considered statistically significant. The
area under the receiver operating characteristic (ROC) curve
(AUC) was calculated to evaluate the accuracy of prediction.

RESULTS

Transcriptome Analysis Reveals
Changes in Lipid and Metabolic
Pathways
The establishment of tumor molecular subtypes has deepened
our understanding of mutation gene profiles, tumor progression,
and therapy responses (Robertson et al., 2018; Kamoun et al.,
2020). Herein, we accurately classified 12 MIBC patients
into basal and luminal subtypes using the BASE47 classifier
based on transcriptome expression profiles (Damrauer et al.,
2014). RNA-seq analysis revealed that basal and luminal
MIBC subtype tumors displayed distinct gene expression
patterns. Basal subtype had high levels of basal marker
expression but low levels of luminal marker expression,
while the luminal subtype displayed an opposite pattern
(Figure 1A). GSEA analysis showed that activated long-chain
fatty acyl-coA metabolic processes, positive regulation of steroid
metabolic processes, and regulation of the lipopolysaccharide-
mediated signaling pathway were associated with basal

2www.metaboanalyst.ca

MIBC subtype, and glycosyl-phosphatidyl inositol (GPI)
anchor metabolic process, coenzyme A metabolic process,
and estrogen metabolic process were related to luminal

TABLE 1 | Differential lipids of basal and luminal subtype (basal vs. luminal).

Elevated lipids Log2FC p-value Declined
lipids

Log2FC p-value

SL d18:1/24:1h 3.9567 0.014* CL68:6(16:1) −2.3181 0.018*

SL d18:1/22:0 3.9406 0.012* CL68:5(16:1) −2.1704 0.045*

SL d18:1/24:0h 3.107 0.011* SM
d(18:1/26:0)

−1.9878 0.020*

SL d18:1/22:1 2.8944 0.012* PC34:2
(16:1/18:1)

−1.8854 0.011*

SL d18:1/22:0h 2.8846 0.003* PC34:1
(16:1/18:0)

−1.5558 0.009*

LacCer d18:1/14:0 2.2354 0.042* BMP36:2 −1.5464 0.012*

GM3 d18:1/22:1 1.8766 0.002* PI 34:1 −1.4499 0.034*

SM d18:1/20:1 1.6788 0.033* BMP36:1 −1.4439 0.004*

SM d18:1/18:1 1.537 0.018* CL70:7(16:1) −1.3534 0.004*

SM d18:1/22:1 1.5258 0.045* BMP36:4 −1.3515 0.040*

SM d18:1/18:0 1.4422 0.002* CL70:6(16:1) −1.3464 0.007*

SL 1.3674 0.013* BMP −1.2687 0.008*

SM d18:1/20:0 1.1882 0.000* BMP36:3 −1.2364 0.042*

DAG38:4(18:0/20:4) 1.1665 0.004* PC34:3
(16:1/18:2)

−1.2302 0.012*

FFA16:0 0.99879 0.000* PA32:1 −1.0937 0.032*

FFA18:0 0.98576 0.000* CL70:6(18:2) −1.0884 0.033*

FFA 0.91768 0.000* PC34:3 −1.0569 0.010*

LPI20:4 0.86724 0.004* PG38:6 −0.98387 0.043*

SM d18:1/22:0 0.82901 0.005* PC36:2 −0.82249 0.045*

PI 38:4 0.77328 0.025* BMP38:4 −0.80758 0.022*

FFA18:1 0.75857 0.047* PE38:6 −0.76824 0.043*

TAG52:5(16:0) 3.0945 0.0527 PE40:6 −0.74456 0.033*

Cer d(18:1/20:0) 2.8726 0.065368 CL66:4(16:1) −2.2132 0.081798

LacCer d18:1/18:0 2.6487 0.082395 PC32:2
(16:1/16:1)

−1.8787 0.088617

GM3 d18:1/1:80 1.9886 0.070227 GM3
d18:0/26:0

−1.8627 0.070982

Cer d(18:1/14:0) 1.6358 0.066787 BMP34:1 −1.7599 0.057363

Gb3 d18:1/18:0 1.4349 0.098536 PE32:1 −1.6519 0.086111

GM3 d18:1/22:0 1.3553 0.053135 BMP34:2 −1.5235 0.051358

LysoPC18:0 1.0642 0.055778 CL70:5(16:1) −1.3076 0.070479

FFA22:4 1.0201 0.092333 PC32:2 −1.2708 0.079861

FFA22:5 0.92609 0.087524 SM d18:1/25:0 −1.2471 0.052022

PA(36:1) 0.78922 0.066101 PC32:1 −1.2189 0.091632

SM d18:1/24:1 0.78035 0.056402 GM3
d18:0/25:0

−1.1178 0.058641

FFA20:4 0.75017 0.090839 PC36:2
(18:1/18:1)

−1.0772 0.050403

PC36:3
(18:1/18:2)

−0.86314 0.090513

LysoPC16:1 −0.84867 0.094135

PC32:1
(16:0/16:1)

−0.84791 0.069625

PC36:3 −0.78299 0.050465

PC40:7
(22:6/18:1)

−0.69562 0.062649

* indicates p < 0.05.
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FIGURE 3 | Potential lipid biomarkers of basal and luminal MIBC subtypes. (A) VIP score of altered lipid elements. (B) Heatmap of the top 25 altered lipid elements
in basal and luminal MIBC subtypes. (C) The levels of the top 10 significantly differential lipid constituents in basal and luminal MIBC subtypes. (D,E) FFA and SL
levels and AUC values. * indicates p < 0.05; ** indicates p < 0.01; and *** indicates p < 0.001.

MIBC subtype (Figure 1B). These results indicated that the
lipid and metabolic pathways of basal and luminal MIBC
subtypes were different.

Distinct Lipid Profiles in Basal and
Luminal MIBC Subtypes
To further explore the differential lipids between basal and
luminal MIBC subtypes. A total of 417 lipid elements could
be qualitatively and quantitatively detected (Figure 2A). The
content of lipid elements was significantly different in basal

and luminal MIBC subtypes (Figure 2B). The differential lipid
elements are shown in Table 1.

Potential Lipid Biomarkers of Basal and
Luminal MIBC Subtypes
Partial least squares discrimination analysis (PLS-DA) was
performed to detect significant differential lipid elements
between basal and luminal MIBC subtypes. By the variable
import in project (VIP) score of each group, the top 15
lipid elements were identified (Figure 3A). The top 25
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FIGURE 4 | Potential lipid biomarkers are associated with tumor microenvironment. (A) Heatmap of the relative frequency of immune cell and stromal cell types in
basal and luminal MIBC samples as identified by the “xCell” algorithm. Red line represents the maximum expression level and blue line represents the minimum
expression level. (B) Pearson correlation analysis revealed the relationship among FFA, SL, immune, and stromal cell types. Red line represents the maximum
expression level and blue line represents the minimum expression level.

FIGURE 5 | Distinct metabolite profiles in basal and luminal MIBC subtypes. (A) The types and amounts of metabolites examined in this study. (B) Relative
frequencies of metabolites in basal and luminal MIBC subtypes.

differential lipid elements between the basal and luminal
MIBC subtypes are shown in Figure 3B. To explore the
potential lipid biomarkers of basal and luminal MIBC
subtypes, the following top 10 significantly differential lipid
elements were analyzed: SL d18:1/24:1h, SM d18:1/20:0, SL
d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, LacCer d18:1/14:0,
GM3 d18:1/22:1, SM d18:1/20:1, SM d18:1/18:1, and SM
d18:1/22:1 (Figure 3C). Of these, SL d18:1/24:1h, SM d18:1/20:0,
SL d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, GM3 d18:1/22:1,
SM d18:1/18:1, and SM d18:1/22:1 produced the highest
AUC values (Supplementary Figure 1), indicating that these
lipid elements could accurately separate basal and luminal
MIBC subtypes, and these elements potentially to be targets
of precision therapy in the future. In addition, the levels of
total FFA and SL in the basal subtype were significantly higher
than the luminal subtype, which displayed high AUC values
(Figures 3D,E). These data indicated that SL d18:1/24:1h, SM
d18:1/20:0, SL d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, GM3
d18:1/22:1, SM d18:1/18:1, SM d18:1/22:1, FFA, and SL had
potencies to be biomarkers for precisely distinguishing basal and
luminal MIBC subtypes.

Potential Lipid Biomarkers Are
Associated With Tumor
Microenvironment
Tumor microenvironment is composed of numerous
cell types and greatly influences tumor progression and
therapy response (Pfannstiel et al., 2019). We measured
the relative frequencies of immune and stromal cell types
using a new algorithm based on transcriptome profiles
called “xCell” (Aran et al., 2017). The analysis showed that
the relative frequencies of cell types in basal and luminal
MIBC subtypes greatly differed (Figure 4A). Pearson
correlation analysis showed that SL levels of samples were
strongly related to B cells, CD8 + T cell, macrophages
M2, natural killer T (NKT) cells, mast cells, endothelial
cells, and fibroblasts values, while FFA levels of samples
were closely related to mesenchymal stem cell (MSC) and
regulatory T cell (Treg) values (Figure 4B). These data
suggested that SL and FFA were both strongly associated
with tumor microenvironment and may play key roles in
MIBC progression.
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Distinct Metabolite Profiles in Basal and
Luminal MIBC Subtypes
To map the differential metabolite profile between basal
and luminal MIBC subtypes, 133 metabolites were measured
(Figure 5A). The metabolite profiles of basal differed from
luminal MIBC subtypes (Figure 5B), and the differential
metabolites are shown in Table 2.

Potential Metabolite Biomarkers of Basal
and Luminal MIBC Subtypes
To further reveal the potential metabolite biomarkers in basal
and luminal MIBC subtypes, we employed PLS-DA analysis to
evaluate metabolite VIP scores. Based on the VIP score rank, the
top 10 metabolites were identified: tyrosyl-alanine, pyroglutamic
acid, 5-methoxy-L-tryptophan, citric acid, uridine, and uric acid
were increased in the basal subtype, while glutathione, pyruvic
acid, oxidized glutathione, glycerophosphocholine, creatine,
L-lactic acid, S-glutathionyl-L-cysteine, L-malic acid, and 3′-
adenosine monophosphate (3′-AMP) were increased in the
luminal subtype (Figure 6A). The top 25 differential metabolites
are shown in Figure 6B. The peak intensities of the top 10
significantly different metabolites in basal and luminal MIBC
subtypes are shown in Figure 6C. To further identify potential
metabolite biomarkers in basal and luminal MIBC subtypes,
we analyzed the levels of the main types of metabolites. It
was found that the levels of glycerophosphocholine (GCP),
hydroxy acids, and nucleosides increased in the luminal subtype,
while the levels of imidazoles and pyrimidine nucleoside
were higher in the basal than in the luminal subtype. These
metabolites presented different AUC values (Figure 6D).
Remarkably, the ratios of GCP/imidazoles (AUC = 1) and
nucleosides/imidazoles (AUC = 0.9714) had higher AUC values
than GCP (AUC = 0.8857), nucleosides (AUC = 0.8571), or
imidazoles (AUC = 0.9143) levels alone (Figure 6E). The
above results indicated that the ratios of GCP/imidazoles and
nucleosides/imidazoles had a greater capacity to differentiate
basal and luminal MIBC subtypes than the single metabolites;
these ratios could be used as potential biomarkers to distinguish
basal and luminal MIBC subtypes.

DISCUSSION

Muscle invasive bladder cancer is a molecularly heterogeneous
disease with high recurrence rates and poor prognosis (Prasad
et al., 2011; Meeks et al., 2020). The BASE47 classifier divides
MIBC into basal and luminal subtypes based on transcriptome
expression profiles. The differentiation pattern, histological
characteristic, overall survival, and therapy response of basal
and luminal MIBC subtypes are significantly different (Kamoun
et al., 2020). This classifier provides a new framework for
studying MIBC heterogeneity and has potential values for
clinical application (Ochoa et al., 2016; Fong et al., 2020).
Metabolic reprogramming of tumors drives tumor progression
by many aspects (Pavlova and Thompson, 2016). Although
previous studies have explored the metabolic profile and

TABLE 2 | Differential metabolites of basal and luminal subtype (basal vs. luminal).

Elevated
metabolites

Log2FC p-value Declined
metabolites

Log2FC p-value

Arabinonic acid 2.2107 0.000* Glutathione −1.964 0.025*

Allantoin 1.8753 0.032* Oxidized
glutathione

−1.6275 0.020*

Gamma-
Glutamyl
Glutamine

1.7797 0.000* Glycerophos-
phocholine

−1.6203 0.014*

Pyroglutamic
acid

1.3859 0.002* Butyrylcarnitine −1.5932 0.001*

Glyceric acid 1.0352 0.033* L-Malic acid −1.1582 0.006*

Uridine 0.96311 0.031* R-3-
Hydroxybutyric
acid

−1.145 0.025*

Uric acid 0.86495 0.022* Propionylcarnitine −1.01 0.023*

Glutaric acid 0.7218 0.016* 3′-AMP −1.2204 0.052

tert-Butyl 3-
amino-1,4,6,7-
tetrahydro-5H-
pyrazolo4,3-
cpyridine-5-
carboxylate

0.58832 0.014* Pivaloylcarnitine −2.2577 0.086

5-methoxy-L-
tryptophan

2.2235 0.097 Xanthine −1.3516 0.054

Methionine
sulfoxide

1.3653 0.061 S-Glutathionyl-
L-cysteine

−0.96333 0.096

N-Acetylleucine 1.3234 0.075 Leucyl-Serine −0.79759 0.080

Taurodeoxycholic
acid

0.97946 0.062 N-Acetyl-L-
alanine

−0.74714 0.064

8-Hydroxy-
deoxyguanosine

0.85958 0.065 Succinyla-
denosine

−0.62835 0.062

Guanine 0.68097 0.074

* indicates p < 0.05.

identified metabolites associated with recurrence and poor
prognosis of BC (Armitage and Ciborowski, 2017; Loras
et al., 2018; Zhang et al., 2018), the differential lipids and
metabolites between basal and luminal MIBC subtypes remain
unclear. Knowledge of these profiles may provide potential
biomarkers and therapy targets for clinical application. In
this study, we integrated transcriptomics, lipidomics, and
metabolomics analysis to reveal the differential lipid and
metabolite profiles between basal and luminal MIBC subtypes,
providing potential lipid and metabolite biomarkers for precision
therapy of MIBC.

According to the BASE47 classifier, we divided MIBC patients
into basal and luminal subtypes based on transcriptomic
expression profiles. RNA-sequencing analysis revealed that
the lipid and metabolic pathways of basal and luminal
MIBC subtypes differed significantly, which suggested that
basal and luminal MIBC subtype potentially underwent
lipid and metabolic reprogramming (Lee et al., 2018). To
further explore the lipid profiles of basal and luminal MIBC
subtypes, we evaluated 417 tissue lipid elements in basal
and luminal MIBC subtypes. Results showed that there
were significant differences in the lipid profiles of basal
and luminal MIBC subtypes. The top 10 differential lipid
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FIGURE 6 | Potential metabolite biomarkers of basal and luminal MIBC subtypes. (A) VIP score of altered metabolites. (B) Heatmap of the top 25 altered
metabolites in basal and luminal MIBC subtypes. (C) The peak intensity of the top 10 significantly differential metabolites in basal and luminal MIBC subtypes.
(D) The peak intensity and AUC values of GCP, hydroxy acids, nucleosides, imidazoles, and pyrimidine nucleosides. (E) The AUC values of GCP/imidazoles and
nucleosides/imidazoles ratios. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001.

elements were enriched in the basal subtype, eight of which
exhibited maximum AUC values and could be considered
as potential biomarkers: SL d18:1/24:1h, SM d18:1/20:0, SL
d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, GM3 d18:1/22:1,
SM d18:1/18:1, and SM d18:1/22:1. Due to the small sample
size, the differential lipids identified between basal and luminal
MIBC subtypes may be limited. Thus, in our cohort, the
top 10 differential lipids between basal and luminal MIBC
subtypes were all enriched in basal MIBC subtype. Furthermore,
examination of the main types of lipids revealed that the
total FFA and SL levels of the basal samples were higher
than that of the luminal samples. These lipids display strong
potencies to be biomarkers. Additionally, according to a new

algorithm, we inferred the relative frequencies of immune
and stromal cells in samples based on their mRNA profiles.
Pearson correlation analysis showed that FFA and SL were
significantly related to specific immune and stromal cell
types in the tumor microenvironment. Indeed, FFA drives
tumor progression by stimulating cancer cell proliferation
and promotes CD8 + TRM cells to persist in tumor tissue
to mediate protective immunity (Iwamoto et al., 2018;
Zhang et al., 2020). Meanwhile, SL is involved in cancer
progression and improves sensitivity of tumor cells to
microenvironmental stress factors including hypoxia and
anticancer drugs (Suchanski and Ugorski, 2016; Suchanski et al.,
2018). Therefore, FFA and SL may play important roles in MIBC
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progression and potentially used to be biomarkers of basal and
luminal MIBC subtypes.

During tumor reprogramming, metabolic patterns of cancer
cells are changed to adapt to the new microenvironments,
which makes it important to deeply understand cancer metabolic
profiles (Kim and DeBerardinis, 2019; La Vecchia and Sebastian,
2020). To reveal the differential metabolite profiles between
basal and luminal MIBC subtypes, we evaluated a total of
133 metabolites. Our results suggested that GCP, hydroxy
acids, nucleosides, imidazoles, and pyrimidine nucleosides could
accurately distinguish the basal subtype from the luminal
subtype. Furthermore, the AUCs of the GCP/imidazoles and
nucleosides/imidazoles ratios were higher than those of GCP,
nucleosides, and imidazoles alone, suggesting that these ratios
were more sensitive for distinguishing basal from luminal MIBC
subtypes. According to previous reports, GCP, nucleosides,
and imidazoles drive cancer progression; they are associated
with poor prognosis of several types of cancer (Moestue
et al., 2012; Dolinar et al., 2018; Long and Wang, 2019).
Therefore, the GCP/imidazoles and nucleosides/imidazoles ratios
have potential clinical applications as biomarkers, while GCP,
nucleosides, and imidazoles may be the targets of MIBC
precision therapy.

The occurrence and development of tumor is a complex
process, which is coregulated by genomics, epigenomics,
transcriptomics, proteomics, metabolomics, microbiome, and
other factors (Menyhart and Gyorffy, 2021). Single omics
studies cannot fully reveal the characteristics of tumors and
provide reliable biomarkers. In this study, the integration of
transcriptomics, lipidomics, and metabonomics can be used to
develop subtype-specific biomarkers and therapeutic targets and
may provide more precise predictions for disease progression
and prognosis. However, it should be noted that this study has
some limitations. First, the sample size was small. Additional
larger and independent cohorts should be analyzed to reveal more
valuable lipidomic and metabonomic biomarkers. Second, this
study only explored the differential lipid and metabolite profiles
between basal and luminal MIBC subtypes. The accuracy and
sensitivity of the potential biomarkers identified here needed
to be confirmed in larger cohorts. Third, there is no strict
exclusion to some potential conditions that influence lipid
and metabolite profiles from our analysis, such as diabetes
and hyperlipemia.

In conclusion, our study integrated transcriptomic,
lipidomic, and metabolomic analysis to reveal the differential
lipid and metabolite profiles between basal and luminal
MIBC subtypes. It was also found that FFA, SL, the
GCP/imidazoles, and nucleosides/imidazoles ratios have strong
potencies to be biomarkers for distinguishing basal from
luminal MIBC subtypes.
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Drug repositioning is a method of systematically identifying potential molecular targets
that known drugs may act on. Compared with traditional methods, drug repositioning
has been extensively studied due to the development of multi-omics technology
and system biology methods. Because of its biological network properties, it is
possible to apply machine learning related algorithms for prediction. Based on various
heterogeneous network model, this paper proposes a method named THNCDF for
predicting drug–target interactions. Various heterogeneous networks are integrated to
build a tripartite network, and similarity calculation methods are used to obtain similarity
matrix. Then, the cascade deep forest method is used to make prediction. Results
indicate that THNCDF outperforms the previously reported methods based on the
10-fold cross-validation on the benchmark data sets proposed by Y. Yamanishi. The
area under Precision Recall curve (AUPR) value on the Enzyme, GPCR, Ion Channel,
and Nuclear Receptor data sets is 0.988, 0.980, 0.938, and 0.906 separately. The
experimental results well illustrate the feasibility of this method.

Keywords: drug repositioning, drug discovery, drug–target interaction, heterogeneous similarity measures,
cascade deep forest

INTRODUCTION

In the past few decades, investment in drug research and development has grown rapidly, but most
drugs have failed in the first phase of clinical trials. Moreover, it normally costs billions of dollars
and consumes 10 years for any drug to be put on the market completely (Roessler et al., 2021). At
present, drug repositioning has a wide prospect and provides evidence for further drug discovery,
whose purpose is to determine potential therapeutic targets for existing drugs, thereby saving time
and minimizing risks of conventional drug development (Stein et al., 2021).

The key of drug repositioning hinges on identifying drug–target interaction (DTI), which
exerts a vital role in drug research and development (Badkas et al., 2020). Currently, traditional
experimental approaches are either time consuming or high costly. Despite that potential drug
indications can be directly detected by target or cell screening of thousands of drugs in synthetic
databases, there are still hurdles to massively relocate drugs owing to the needs of collecting existing
drugs, specialized equipment, and screening tests (Turanli et al., 2018).
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In general, the traditional methods for calculating drug target
interactions mainly consist of ligand method and structure
method (Huang et al., 2020; Yang et al., 2020; Zhang et al., 2020).
The ligand-based methods predict potential DTI via contrasting
candidate ligands with known ligands capable of binding to
them, but it does not perform well in the absence of ligand
information for potential targets (Juárez-Saldivar et al., 2020).
The structure-based method mainly uses the docking simulation
technology to predict the potential DTI on the basis of known
three-dimensional structure. In the same way, this method that
relies on simulated docking’s reliability often consumes a plenty
of time and requires all drugs and targets to provide accurate and
reliable three-dimensional structure (Vivarelli et al., 2020).

Along with sustainable innovative developments of
biological data, and high-speed improvements of machine
learning technology in recent years, a variety of methods
for computational drug repositioning have been put forward
correspondingly and achieved some achievements in practical
applications (Lan et al., 2016, 2020; Chen et al., 2021; Li et al.,
2019; Liu et al., 2019; Zeng et al., 2019; Fahimian et al., 2020;
Rauschenbach et al., 2020; Zhou et al., 2020; Jarada et al.,
2021; Meng et al., 2021). Machine learning is a beneficial
complement to ligand-based and structure-based methods. It
has been widely developed and applied as an effective method
for pinpointing drug–targets as well as predicting drug-diseases.
Machine learning is able to systematically integrate biological
databases, with the purpose of predicting potential DTI and
drug–disease interactions.

The method of similarity constrained probabilistic matrix
factorization (SCPMF) is used for drug repositioning through
recognizing novel drug–virus coactions (Meng et al., 2021).
Moreover, SCPMF innovatively reconstructs the drug–virus
interaction matrix, by dexterously projecting the drug–virus
interaction matrix into two potential feature matrices for
viruses and drugs. A new framework named Similarity Network
Fusion and Neural Networks (SNF-NN) on the basis of
deep learning was proposed and elaborated, which predicts
new drug–disease interactions though using similarity selection
relevant to drugs and diseases, similarity network fusion, and
a novel neural network model with superior tuning (Jarada
et al., 2021). By comparison of the performance of SNF-
NN with that of nine benchmark machine learning methods,
the robustness of SNF-NN is calculated. The values of AUC
and AUPR are 0.867 and 0.876, respectively. Besides, a
previous study has shown that a method based on network
called RepCOOL is utilized for drug repositioning (Fahimian
et al., 2020). The eventual model of drug repositioning is
constructed on account of a random forest classifier. RepCOOL
recommends four novel drugs for the treatment of breast
cancer at stage II, namely, paclitaxel, doxorubicin, tamoxifen,
and trastuzumab. In addition, a network embedding based
method for predicting drug–disease interactions (NEDD) is
raised (Zhou et al., 2020). Initially, through constructing a
heterogeneous network and utilizing meta-paths of various
lengths, NEDD accurately obtains the indirect associations
between drugs and diseases or their strong proximity, thereby
acquiring representation vectors of drugs and diseases with

low dimensions. NEDD estimates novel relationships between
diseases and drugs by utilizing a random forest classifier.
A recent study has reported that a network-based method
about deep learning for drug repositioning (deepDR) recognizes
advanced characteristics of drugs from heterogeneous networks
through a multi-mode autoencoder. Then, through a variational
autoencoder, the obtained low-dimensional representation of
the drug as well as clinically reported drug–disease pairs
are uniformly encoded and decoded to infer candidates for
approved drugs that were actually without initial approval
(Zeng et al., 2019).

The main contributions of this paper are summarized as
follows:

We study various calculation methods based on the tripartite
heterogeneous network, and finally adopt the Gaussian kernel
between each layer, and the Tanimoto’s coefficient is used in the
drug layer to calculate the chemical structure similarity matrix.
Besides, the similarity matrix is fitted by all matrices;

We improve and adjust the parameters according to the
gcForest (Zhou and Feng, 2019) method. We use 10-fold cross-
validation to check the final prediction (termed THNCDF,
Tripartite Heterogeneous Network Cascade Deep Forest).

We compare the results of THNCDF with four types of
methods (Cao et al., 2014; Hao et al., 2016; Rayhan et al., 2017;
Thafar et al., 2020). The experimental results show that the
THNCDF method has good performance, and the area under
Precision Recall curve (AUPR) values on the four benchmark
data sets reach 0.988, 0.980, 0.938, and 0.906.

The rest of this paper is organized as follows. In Section
2, we introduce the data sets used for similarity measurement,
and then we present the general framework and cascade deep
forest methods with details in Section 3. In Section 4, the
performance of our proposed THNCDF method is evaluated
through extensive experiments. At the end, some discussions are
provided in Section 5.

RELATED WORK

Data Sets
In our experiments, we use the data sets listed in Table 1
to build a tripartite heterogeneous network model. Table 1

TABLE 1 | Sources and verification of databases.

Resource Description Url

DrugBank Free accessible drug database www.drugbank.ca/

DisGeNET Free accessible human disease
database

www.disgenet.org/

ChEMBL Free accessible drug and target
database

www.ebi.ac.uk/chembl/

Kegg Free accessible database for
molecular-level information

www.kegg.jp/

Uniprot Free accessible protein sequence and
annotation database

www.uniprot.org

OMIM Free accessible compendium for
Mendelian disorder

www.omim.org/
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shows the exactly biologic data sets we used during the
experiments (Yamanishi et al., 2008; Zheng and Wu, 2021).
Especially, the main resource of the data set for the disease
layer is from DisGeNET. This paper also uses a data set called
DisGeNET approved, which contains FDA-approved drugs and
their corresponding protein targets in the DisGeNET.

We will evaluate the performance of THNCDF on benchmark
data sets. The benchmark data sets used in many DTI predictions
were originally proposed by Y. Yamanishi, which have been
considered as the golden data sets for comparing various DTI
prediction methods. The benchmark data sets are listed in
Table 2, which are downloaded from http://web.kuicr.kyotou.
ac.jp/supp/yoshi/drugtarget/. The data sets include four subsets
grouped by target classification: Enzyme, ion channel, GPCR
(G protein-coupled receptor), and nuclear receptor. The largest
subset, Enzyme, includes 445 drugs and 664 targets with 2,926
known DTI between them. Another NR, the smallest subset
includes only 54 drugs and 26 targets with 90 known interactions.
The other two subsets, IC and GPCR, consist of 210 and
223 drugs, 204 and 95 targets, and 1,476 and 635 known
interactions, respectively.

Tripartite Heterogeneous Network
Based on the related ideas of pharmacology, the therapeutic effect
of a single drug is relatively limited for diseases that are complex
multiple pathological (Zamami et al., 2017; Zhu et al., 2020).
Recently, the development of high-throughput biotechnology has
produced a large amount of data. However, one of the main
difficulties is how to collect and analyze the required biomedical
data because they are heterogeneous and the data generated from
different experiments include different types of information,
such as nucleotide sequences and protein–protein interactions
(Luo et al., 2020).

In this paper, we integrate the composition of many different
heterogeneous networks and construct our novel tripartite
heterogeneous network model according to different types of
data. Figure 1A is the part of visualization of the Enzyme in
benchmark data sets, in which the red nodes are drugs and the
green nodes are targets. Figure 1B is the bipartite graph model of
a part of Figure 1A; the red nodes are drugs, and the green nodes
are targets in the same.

We construct a tripartite network that includes three
layers: drugs, targets, and diseases. Correspondingly, two types
of interactions, drug–target interactions and target–disease
interactions, are interpreted as edges to connect nodes in these
layers. We mainly focus on constructing the similarity matrix and
feature information of the tripartite heterogeneous network.

TABLE 2 | Benchmark data sets.

Data sets Drugs Targets nd/nt Interactions

Enzyme 445 664 0.667 2,926

Ion channel 210 204 1.03 1,476

GPCR 223 95 2.35 635

Nuclear receptor 54 26 2.08 90

MATERIALS AND METHODS

In this study, we propose THNCDF, a new computational
approach for molecular target identification from known drug–
target centered DTI prediction. It utilizes low-dimensional but
informative matrix representations of features for both drugs and
targets through a cascade deep forest classifier in prediction of
DTI (Zheng and Wu, 2021).

As shown in Figure 2, THNCDF mainly includes three
steps: (1) Data integration and complete heterogeneous network
is obtained, which contains diverse cheminformatics and
bioinformatics profiles; (2) Similarity matrix calculation and
parameter setting; (3) Application of cascade deep forest classifier
and verification of the results.

Similarity of Medicinal Chemical
Structures
To ensure that the features in the network model are
distinguishable, the similarity of the medicinal chemical structure
is a relatively objective feature (Zheng and Wu, 2021). In
particular, the chemical structure of various drugs under the same
standard can be obtained through the simplified molecular-input
line-entry system (SIMILES), and then converted into 166-bits
string of a certain length fingerprint. Thus, each fingerprint
represents a unique drug. Through the calculation of Tanimoto’s
coefficient, the similarity matrix of medicinal chemical structure
among all drugs is obtained. The formula for calculating
Tanimoto’s coefficient is shown in Equation (1).

SIMchem =
|f (dx)×f (dy)|

|f (dx)+ f (dy)| − |f (dx)×f (dy)|
(1)

where f(dx) is the binary chemical fingerprint of drug x.
According to Equation (1), a matrix of chemical structure
similarity is constructed.

Gaussian Kernel Similarity
The Gaussian kernel is defined as the unimodal of the Euclidean
distance between any two points in the network (Zheng and Wu,
2021). In THNCDF method, the Gaussian kernel is mainly used
to calculate the feature of the connection between two layers,
like the edge between the drug layer and the target layer or
between the target layer and the disease layer. Also, for drug–
drug interactions and target–target interactions, the Gaussian
Kernel can calculate the edges in the same layer. Therefore,
the calculation formula is commonly used to construct various
types of matrices, such as the drug–drug interactions similarity
matrix, target–target interactions similarity matrix, and target–
disease interactions similarity matrix. The calculation formula is
as follows:

KGIP,d(Di,Dj) = exp(−γ d||ydi − ydj||
2) (2)

γd = γ
′

d/(
1
m

m∑
i = 1

||ydi||
2) (3)
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FIGURE 1 | An example of bipartite graph for drug–target interactions. (A) Is the part of visualization of the Enzyme in benchmark data sets, in which the red nodes
are drugs and the green nodes are targets. (B) Is the bipartite graph model of a part of Figure 1A.

where Di is defined as the i-th drug in the drug set, Ti represents
the i-th target in the target set, while tsi represents the i-th target
in the target–disease interactions set. m is the size of drug set,
while n and k represent the size of target set and the size of
target–disease interactions set, respectively. The adjacency matrix
Y ∈ m n represents the known drug–target interactions. If the
drug and the target have an existing interaction, the value is 1;
otherwise, the value is 0. ydi {yi1, yi2, ..., yin} is defined as the
correlation vector between the drug di and all targets; meanwhile,
ytsi {yi1, yi2, ..., yin} is defined as the correlation vector between
the target tsi and all diseases. γd, γt , and γts are adjustment
parameters that control the width of the kernel, whereγ

′

d, γ
′

t , and
γ
′

ts are set to 1 by using Gaussian kernels.

Similarity Matrix Fusion
According to the above multiple similarity matrices, we construct
a kernel containing the spatial information of drugs and targets
(Ding et al., 2018, 2020a,b; Zheng and Wu, 2021). Since the
similarity matrix is not a positive definite matrix, predictions are
ultimately required. We linearly fit the similarity matrix of drug
chemical structure, the drug Gaussian kernel, the target Gaussian
kernel, and the disease Gaussian kernel. We also set the weighted
factors in the following equations empirically.

SIMdrug(dx, dy) = (1−α)×KGIP,d(dx, dy)+ α × SIMchem(dx, dy)
(4)

SIMtar(tx, ty) = (1−α) × KGIP,t(tx, ty)+ α × KGIP,S(tsx, tsy)
(5)

The result of similarity matrices is used as the original input of
the next step. In the latter experiments, in order to balance the
constructed similarity matrix, the ratio of 0.5:0.5 is used with
parameter setting.

Cascade Deep Forest
Random forest, developed by Bermain and Culter (Breiman,
2001), is widely used due to its excellent stability and resistance
to overfitting. Nowadays, random forest has been successfully
applied to the analysis of multiple biological and pharmacological
contexts, such as Diabetic Retinopathy screening procedure
(Alabdulwahhab et al., 2021) and detection of copy number
variations for uncovering genetic factors (Zhuang et al.,
2020). But in novel review by Zhou et al., deep learning
based on non-differentiable modules exhibits the possibility of
constructing deep models without using backpropagation. They
have proposed the gcForest approach, which has generated
three characteristics: layer-by-layer processing, in-model feature
transformation, and sufficient model complexity. It provides an
alternative methods to deep neural networks (DNNs) to learn
hyper-level representations at a low computational cost. gcForest
is a novel decision tree ensemble, with a cascade structure. It has
much fewer hyper-parameters than DNNs, which the training
process does not rely on backpropagation. In fact, the most
important value of gcForest approach is it may open a door
for non-NN style deep learning, or deep models based on non-
differentiable modules. An extended depiction and the study of
the theory on random forest or gcForest can be referred to the
Web site of Bremain or the paper of Zhou et al.

Based on the advantage of random forest and characteristics
of gcForest, we construct the THNCDF method, which includes
the similarity matrices described above and utilizes improved
gcForest approach for prediction. First, the fusion similarity
matrix is the origin input for cascade structure of deep forest.
Each level of cascade receives the feature information processed
by its previous level and outputs its processing result to the
next level. All level is an ensemble of decision tree forest. For
example, each forest will count the percentages of different classes
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FIGURE 2 | The overview of the proposed work THNCDF.

of training examples at the leaf node, and then average all trees in
the same forest to obtain an estimate of the class distribution.

Secondly, we use three random forests: (a) two completely
random tree forests, (b) two gradient boosting tree forests, and
(c) two extra randomized tree forests. Each forest contains 1,000
trees, and there are 6,000 trees in total. Each node selects a feature

randomly as the judgment condition and generates leaf nodes
according to the condition. Stop until each leaf node contains
only instances of the same class.

To compare with other results, we use 10-fold cross validation
(Liu et al., 2016). It means that class vectors produced by each
forest are generated by 10-fold cross validation to reduce the risk
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of overfitting. Finally, if there is no significant performance gain,
the training process will terminate. The number of cascade levels
is automatically determined.

EXPERIMENTAL RESULTS AND
ANALYSIS

Baseline Methods
In order to evaluate the performance of our method, we
mainly introduce DTI prediction results compared with baseline
methods on the benchmark data sets that are proposed by Y.
Yamanishi. The following are the state-of-the-art methods made
in comparison with the same standard criteria:

RLS-KF (Hao et al., 2016): A regularized least squares
combining with nonlinear kernel fusion method is developed.

RF (Cao et al., 2014): A computational method integrated the
information from network, chemical, and biological properties.
This method is developed based on the random forest combining
with integrated features.

DTiGEMS (Thafar et al., 2020): A computational method
using graph embedding, graph mining, and similarity properties
techniques. DTiGEMS firstly applies a similarity selection
procedure and a similarity fusion algorithm. Then, it integrates
multiple drug–drug similarities and target–target similarities into
the final heterogeneous graph structure after.

iDTI-ESBoost (Rayhan et al., 2017): A prediction model uses
evolutionary and structural features. The method uses a new data
balancing and boosting technique to make prediction.

Evaluation Criteria
Two quality measures are commonly used to evaluate the
performance of these methods: AUC and AUPR. Specifically, we
calculate the receiver operating characteristic curve (ROC) of true
positive as a function of false positive, and use the area under
the ROC curve (AUC) value as a quality measure. In addition,
we also calculate the precision–recall curve (P–R), which is the
chart of true positive rate between all positive predictions of each
given recall rate. The area under the P–R curve (AUPR) provides
a quantitative assessment. These two kinds of quality measures
have become the standard criteria for evaluating methods.

Prediction Ability
To provide a fair comparison of DTI prediction performances, we
apply these methods on the same benchmark data sets. We also
use 10-fold cross-validation random setting, the same evaluation
criteria, and optimal parameters of each method.

From the results reported in Table 3 and Figure 3, THNCDF
algorithm still maintains a high performance, especially for the
AUPR values. For example, in the enzyme data set (Figure 3A),
the ion channel data set (Figure 3B), and the GPCR data
set (Figure 3C), THNCDF outperforms all other methods
by achieving the best performance for AUPR values. On the
other hand, for the AUC values, THNCDF still maintains
the high performance. It is well known that the training
of DNN usually requires a large amount of training data;
hence, its implementation on tasks with small-scale data is
not suitable. This is the inherently unavoidable characteristic
of the method we use. Thus, it is reflected in the correlation
between the size of the benchmark data sets and the AUC
values obtained.

In addition, the number of positive samples and negative
samples in each data set is highly imbalanced. The fact that few
positive samples make THNCDF cannot exert its advantages,
which is based on a large amount of training data. For benchmark
data set, the feature dimension used in this method is low, and
cascade deep forest has great advantages in the representation
learning of ultra-high-dimensional data.

As shown in Figure 3, it is found that the prediction accuracy
is approximately equal to each other. It also shows that the
THNCDF preserves the best performance on all data sets so
that it can be migrated to other predictions. The experiment
procedure shows that THNCDF is not very sensitive to parameter
settings. Therefore, it does not need large-scale parameter
adjustment, especially the selection of the optimal combination
of base classifiers. Comparing with DNN, THNCDF is more
stable and easier.

It is worth mentioning that for the two commonly used
evaluation metrics, more and more authors think that AUPR
provides more informative assessment than AUC for highly
imbalanced data sets. They argue in favor of AUPR values as a
key standard of evaluating the performance for skewed data sets,
especially the data sets with more negative samples than positive
samples. In fact, all of the four subsets in the benchmark data

TABLE 3 | The results of the baseline methods and the THNCDF method.

Data sets Methods RLS-KF RF DTiGEMS iDTI-ESBoost THNCDF

Enzyme AUC 0.990* 0.978 0.990 0.960 0.987

AUPR 0.915 0.935 0.970 0.680 0.988*

Ion channel AUC 0.987 0.924 0.990* 0.905 0.982

AUPR 0.901 0.948 0.960 0.480 0.980*

GPCR AUC 0.981 0.951 0.990* 0.932 0.937

AUPR 0.806 0.896 0.860 0.480 0.938*

Nuclear receptor AUC 0.987 0.987 0.990* 0.928 0.963

AUPR 0.911* 0.847 0.880 0.790 0.906

For each methods, ∗ indicates the highest value.
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FIGURE 3 | Comparison results for THNCDF and other methods in terms of AUC and AUPR values on the benchmark data sets. The best AUC values are indicated
in red, and the best AUPR values are in purple.

sets possess the imbalanced characteristic, which means that the
number of known drug–target interactions is far less than the
number of pairs with no interaction evidence. So a more sensitive
AUPR metric is generally preferred for assessing the prediction
results for those imbalanced datasets. From this perspective, the
result clearly shows that THNCDF outperforms the prediction in
terms of AUPR as well.

DISCUSSION

In this paper, we present a new multi-kernel computational
approach combined with an improved cascade deep forest,
which leads to good predictive performance on the task of
predicting DTI. The values of AUPR on four benchmark data
sets are improved to 0.988, 0.980, 0.938, and 0.906, respectively.

Theoretically, THNCDF can process various high dimensional
features by utilizing heterogeneous networks. However, we still
have some problems to be solved in the future. First, even
though studies have discussed multiple similarity calculation
methods, they have not escaped the research scope on the
network interactions. We are more looking forward to the
introduction of new biochemical similarity calculation methods
or data sets. Secondly, we suggest applying different embedding
techniques, integrating more similarity measures from more
sources, and generating more graph-based features. It can also
be found that various data sets, such as chemical structure,
side effect, therapeutic effect, gene expression, drug binding
site, and semantic data, have been utilized in former studies.
However, the disadvantages of these biomedical data sets are
also obvious, which include high data noise, incompleteness,
and inaccuracy. Thirdly, some potential extensions of our work
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include applying THNCDF to different networks formulated
as an interaction prediction problem. Popular examples of
interaction prediction in the bioinformatics field include but are
not limited to drug–drug interactions prediction, drug–disease
interactions prediction, and gene–disease association prediction.
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Objective: Modern medicine needs to shift from a wait and react, curative discipline

to a preventative, interdisciplinary science aiming at providing personalized, systemic,

and precise treatment plans to patients. To this purpose, we propose a “digital twin”

of patients modeling the human body as a whole and providing a panoramic view over

individuals’ conditions.

Methods: We propose a general framework that composes advanced artificial

intelligence (AI) approaches and integrates mathematical modeling in order to provide

a panoramic view over current and future pathophysiological conditions. Our modular

architecture is based on a graph neural network (GNN) forecasting clinically relevant

endpoints (such as blood pressure) and a generative adversarial network (GAN) providing

a proof of concept of transcriptomic integrability.

Results: We tested our digital twin model on two simulated clinical case studies

combining information at organ, tissue, and cellular level. We provided a panoramic

overview over current and future patient’s conditions by monitoring and forecasting

clinically relevant endpoints representing the evolution of patient’s vital parameters using

the GNN model. We showed how to use the GAN to generate multi-tissue expression

data for blood and lung to find associations between cytokines conditioned on the

expression of genes in the renin–angiotensin pathway. Our approach was to detect

inflammatory cytokines, which are known to have effects on blood pressure and have

previously been associated with SARS-CoV-2 infection (e.g., CXCR6, XCL1, and others).

Significance: The graph representation of a computational patient has potential to solve

important technological challenges in integrating multiscale computational modeling with

AI. We believe that this work represents a step forward toward next-generation devices

for precision and predictive medicine.

Keywords: digital twin, generative adversarial networks, monitoring, graph representation learning, precision

medicine

1. INTRODUCTION

Modern medicine is shifting from a wait and react, curative discipline to a preventative,
interdisciplinary science aiming at providing personalized, systemic, and precise treatment plans
to patients. Systems and network medicine are rapidly emerging in medical research providing
new paradigms to address.
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In the next decades, precision and predictive medicine will
have a pivotal role in revolutionizing the healthcare system
making it more flexible and efficient. Precision and predictive
medicine are challenging research fields as they need to deal
with the complexity of the human body (Ginsburg and Willard,
2009; Naylor and Chen, 2010). Precision requires integrating
large amount of observations at individual and population levels
simultaneously. These measures need to be taken at different
scales, from genome to clinical and family history and at systemic
levels, i.e., considering multiple tissues and organs. In the last
years, systems and network medicine have introduced a variety
of novel approaches with the aim of integrating and gaining
knowledge on the human body. We have no capacity to integrate
such disparate information into equation-based models but we
can use machine learning and, in particular, deep learning
methods to achieve this integration goal.

The primary objective of this work is exploring challenges
and opportunities in modeling the human body as a whole,
providing a panoramic view over individuals’ conditions. To
this aim, we propose a proof of concept of a “digital twin,”
i.e., a virtual prototype of patients mirroring the underlying
biological system (Gelernter, 1993; Laubenbacher et al., 2021)
combining information at organ, tissue, and cellular level.
Existing prominent examples of digital twins in healthcare
include “the artificial pancreas” (Brown et al., 2019; Kovatchev,
2019), pediatric cardiac digital twins (Gutierrez et al., 2019; Shang
et al., 2019), and diabetes models (Eddy and Schlessinger, 2003).
However, all these examples focus on just one single aspect of
the human body due to its extreme complexity. As a result,
they are not suitable to provide a holistic overview over the
whole human body. We believe that recent graph representation
approaches could overcome digital twin’s limitations scaling
across all the variety of body signals at different levels, making
possible a revolution in healthcare. This work provides a first
proof of concept providing the first elements for a novel class
of machine-learning-assisted tools that scale to medical device
deployment and run time monitoring and verification. By fusing
ideas from systems medicine with scientific computing and
machine learning, our software integrates and automates the
analysis of vital parameters models under large uncertainty. A
high degree of automation could transform how we use models
in the scientific and medical discovery cycle and open up for
a next-generation of powerful medical devices for probing the
inner workings of full body in well-being and disease conditions.

The proposed architecture combines the qualities of
generative and (Goodfellow et al., 2014) graph-based models
(Scarselli et al., 2008) (see Figure 1). On the one hand, the
generative model can be used to produce synthetic data under
different biological states that might not be observed in reality.
By augmenting the set of explorable states of the underlying
biological system, the generative model may be employed for
the simulation of extremely rare clinical scenarios representing
precarious conditions, which might be difficult to analyze
otherwise (Yi et al., 2019). In clinical contexts, this means that
physicians will be able to set up personalized experiments in
a virtual environment representing their patients in a very
detailed and realistic way. On the other hand, the graph model

represents the actual digital twin, providing a general and flexible
framework to run probabilistic simulations. A panoramic view
of individuals’ conditions is provided by the final network
configuration that combines information at organ, tissue, and
cellular level. Cross-modal signals are also supported by the
most recent graph learning frameworks, thus allowing the
combination of different data sources, both structured and
unstructured, real or simulated by generative methods. Finally,
by relying upon flexible and modular architectures, our “digital
twin” model can be conveniently deployed in dedicated hardware
modules paving the way for a next-generation of medical devices.

2. DESIGN OF A BIOMEDICAL DIGITAL
TWIN

The birth of the term “digital twin” could be the NASA’s
Apollo program where one spacecraft was launched into the
outer space, while a “twin” spacecraft remained on earth to
mirror flight conditions. Digital twin has been defined as “an
integrated multiphysics, multiscale, probabilistic simulation of a
vehicle or system that uses the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its
flying twin” (Shafto et al., 2010; Grieves, 2015). The digita l
twin is a virtual prototype; the analysis of its digital life cycle
provides information to understand a product’s functionality,
manufacturing, behavior, and usage prior to building it. Here,
the meaning of digital twin is slightly different: there is no
product to be built, instead experimenting therapies on a digital
twin will be cost-effective and will provide us with a rigorous
testbed to conductmedical interventions.Within this framework,
the artificial intelligence model could enable the prediction of
disease trajectories before the insurgence of symptoms. The
personal medical digital twin could also represent a pragmatic
way for the cyber-physical fusion, as a new approach to support
biomedical engineering design. In our vision, a composable AI
architecture could enable the development of automatic analysis
and verification techniques that are key to translational medicine.

Our digital twin consists of a modular AI-aided system
that can be used to model the human body as a whole and
to forecast the evolution of pathophysiological conditions (see
Figure 2). The first module is based on a graph neural network
(GNN) forecasting clinically relevant endpoints (such as blood
pressure), while the second one is represented by a generative
adversarial network (GAN) providing a proof of concept of
multi-omic integrability.

2.1. The Effectiveness of GNNs and GANs
in Biomedical Signal Analysis
The lack of interpretability of deep learning models has been one
of the most significant barriers preventing their application in
healthcare. Such models exhibit great capacity (Hornik, 1991)
but understanding their behavior and following their decision-
making process is not trivial (Castelvecchi, 2016). There is a
growing body of literature focusing on interpretable artificial
intelligence and interpretable deep learning aiming at developing
white box models or at explaining black box ones (Das and Rad,
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FIGURE 1 | Architecture of the digital twin model. The generator receives a noise vector z, and categorical (e.g. tissue type; q) and numerical (e.g. age; r) covariates,

and outputs a vector of synthetic data (x̂). The critic receives data from two input streams (real, blue; and synthetic, red), a mask m indicating which components of

the input vector are missing, and the numerical r and categorical q covariates. The critic produces an unbounded scalar y that quantifies the degree of realism of the

input samples from the two input streams. The handcrafted ODE system proposed in Barbiero and Lió (2020) is used to determine a graph representation of patient’s

physiology. The message passing neural network updates latent node features to estimate global attributes describing the evolution of the underlying physiological

system.
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FIGURE 2 | The digital twin model. Ordinary differential equations, graph neural networks, and generative adversarial networks are used synergically to model

patient’s conditions.

2020). Among such techniques, GNNs have started drawing the
attention of both research and industry communities (Bronstein
et al., 2017; Zhou et al., 2018). Such models are much more
interpretable with respect to other neural approaches thanks to
their graph structure, which is quite easy to understand from
a human standpoint, and a few studies have already shown
how graph networks can be effectively employed in biology and
healthcare (Zitnik et al., 2018; Gysi et al., 2020).

Several properties of graph and generative adversarial neural
networks make them suitable for medical data analysis. (1) Non-
linearity: Both GNNs and GANs are able to detect non-linear
patterns, which is of key interest as most systems are inherently
non-linear in nature. Examples in medicine include heart rate
dynamics, pulmonary functions, vascular structure, and gait
dynamics. There is often a loss of non-linearity and multiscale
fractal in aging and disease conditions (Goldberger et al., 2002).
(2) Interpretability: Graph-based models are much easier to
interpret with respect to other neural approaches thanks to their
structure. The possibility of interpreting the behavior of models
and the reason for their predictions is pivotal if not critical
in many fields including clinical practice. (3) Non-Euclidean
geometry: As a unique non-Euclidean data structure for machine
learning, graphs can be used to model a variety of biological
systems at different scales. Tissue and organ distributions
could be modeled as graph models where each node or the
graph contain time-dependent signals, similarly for pressure
and electric sensors positioned at various parts of the body.

Lymphatic vessels can also be modeled as a network where lymph
nodes are vertices. At lower scale, cell arrangements in tissues
form particular manifolds; proteins and genes are organized
in regulatory networks; other examples are cytoskeleton and
organelles (mitochondria networks). Additionally, diseases could
be seen as nodes in a graph where edges represent comorbidity
or underlying polygenic causes. (4) Modularity: A key property
of GNNs is modularity, which allows to learn independent
mechanisms that can be reused in several parts of the graph.
Modularity facilitates scalability and allows to model dynamic
properties of graphs. (5) Cross-modality: Both GNNs and GANs
can learn how to combine structured and unstructured data
sources, spanning different levels of biological complexity. This
is particularly relevant when integrating signals at different levels
of biological scale such as DNA methylation and functional
magnetic resonance imaging (fMRI) data. (6) Generative: Both
GNNs and GANs can learn how to generate new data preserving
the statistical properties of the training set. This could be used to
compare statistics at individual level with those at specific groups
identified with stratification analysis or at general population
levels. (7) Multiscale: The graph representation has the capability
of integrating granular information organized as networks at
different layers of biological complexity. This allows to recognize
patterns in higher-order structures such as motifs, pathways,
tissues (as compositions of cells), organs (as composition of
tissues), processes and apparatus (as composition of organs),
and stratification (as composition of individuals). (8) Spectral
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density: Together with spatial properties, GNN are amenable to
frequency domain analysis. This allows to investigate network
motifs, substructures, and periodical patterns at network levels.

2.2. Graph Neural Model
Graphs aremathematical structures that are used tomodel a set of
objects (nodes) and their mutual relationships (edges) (Bollobás,
2013). Graphs are employed in a variety of research areas as
they provide a general and flexible data structure for modeling
real-world systems (Lieberman et al., 2005; Zhou et al., 2018;
Rakocevic et al., 2019; Bica et al., 2020). GNNs are deep learning-
based models working on the graph domain (Scarselli et al., 2008;
Battaglia et al., 2018; Wu et al., 2020). Their properties have
been recently drawn the attention of the artificial intelligence
research community given their high interpretability (Lecue,
2019; Huang et al., 2020). The combination of graph theory
and neural network elements have made GNNs one of the
most promising tools to analyze complex systems in the graph
domain. From neural networks, GNNs inherit a data-driven
approach associated with a multi-layer architecture, which is the
key to extract hierarchical patterns from data. However, unlike
other deep-learning models, GNNs exploit additional features
from graph theory and other mathematical disciplines. The
main advantage with respect to other machine learning models
relies in their extremely flexible and interpretable architecture.
Once defined, the main endpoints of a system together with
their mutual relationships directly induce a corresponding
graph representation, which can be easily interpreted from a
human standpoint. The abstract graph representation can be
handcrafted, when the complexity of the underlying system
allows it, or even automatically induced from data using
generative approaches (Li et al., 2018). Hybrid techniques may
also be explored taking advantage of generative algorithms for
handling system complexity and human modeling to customize
the most relevant endpoints. The design of GNNs is based on two
basic principles, flexibility, and composability. GNNs support
different graph structures as well as flexible representations of
global, node, and edge attributes, customizable according to
specific demands of tasks.

2.2.1. Stratification of Human Body Layers in a GNN
GNNs natively allow the design of complex systems using a
modular approach. First, the complexity of the human body is
broken up by developing independent subsystems representing
genomic alterations, biological pathways, and organ physiology.
Each subsystem can be represented as a different node or a
network of nodes in a GNN, while inter-process signals can be
reframed as message passing operations supporting multiscale
ripple effects. Homogeneous subsystems can be aggregated into
layers according to their characteristics. Our digital patientmodel
is composed of four biological layers: the transcriptomic layer,
the cellular layer, the organ layer, and the exposomic layer. Other
layers can be easily implemented.

2.2.1.1. Transcriptomic Layer
The transcriptomic layer operates on the set of RNA transcripts
produced by the genome at a particular time. Currently, RNA

sequencing (RNA-seq) can measure RNA abundance across
the entire genome with high resolution. The resulting high-
throughput gene expression data can be used to uncover
disease mechanisms (Emilsson et al., 2008; Cookson et al., 2009;
Gamazon et al., 2018), propose novel drug targets (Evans and
Relling, 2004; Sirota et al., 2011), provide a basis for comparative
genomics (Colbran et al., 2019), and address a wide range of
fundamental biological problems.

In this work, we study the crosstalk between tissues in
the organ layer (see Figure 1) through the communicome,
e.g., communication factors in blood (Ray et al., 2007).
Specifically, we analyze to what extent the expression of
genes involved in the renin–angiotensin system (RAS) can
be explained by genes from signaling and receptor pathways,
including the chemokine, TNF, and TGF-β pathways. We
further develop a transcriptomics generative model based
on a generative adversarial network (Goodfellow et al.,
2014) and simulate the effects of SARS-CoV-2 infection by
conditioning on high expression of ACE2 in the lung, kidney,
and pancreas.

2.2.1.2. Cellular Layer
The cellular layer involves biological processes affecting
individual cells from metabolism and protein synthesis to
replication and motility. In this study, we focus on modeling
the RAS, one of the main biological pathways regulating blood
pressure and closely related to SARS-CoV-2 infectivity. Hence,
it represents a suitable case study to demonstrate the flexibility
and expressiveness of our GNN-based approach. The RAS is a
hormone system regulating vasoconstriction and inflammatory
response (Fountain and Lappin, 2019). The key hormone of the
system is the peptide angiotensin II (ANG-II) generated from the
decapeptide angiotensin I by the angiotensin-converting enzyme
(ACE). ANG II promotes vasoconstriction, hypertension,
inflammation, and fibrosis by activating the ANG-II type 1
receptor (AT1R) (Kuba et al., 2010; Gironacci et al., 2011).
Glucose concentration, ACE inhibitor treatments, and viral
infections binding to ACE2, such as SARS-CoV-2, can all have
a significant impact on the RAS. A high glucose concentration
may determine chronic hypertensive conditions. Reducing ANG
II production with ACE inhibitors increases vasodilation and
vasoprotection effects stimulated by the overproduction of AT2R
and ANG-(1-7) (Zaman et al., 2002). Viral infections such as
SARS-CoV-2 may also have an impact on RAS, as the virus binds
to ACE2 in order to gain entry into the host cell. This results in
an altered ACE2 activity and concentration, possibly leading to
hypertension and inflammatory response (South et al., 2020).

2.2.1.3. Organ Layer
The organ layer comprises group of tissues with similar
functions (organs) and complex networks of cooperating organs.
Given the nature of the multi-factorial disease under study,
we limited the organ layer to the circulatory system and a
physiological representation of a few organs (Barbiero and Lió,
2020): heart, lungs, and kidneys. The heart model includes four
compartments known as chambers (Neal and Bassingthwaighte,
2007). Deoxygenated blood collected from the superior and
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inferior venae cavae flows into the right atrium. When the right
atrium contracts, the blood is pumped through the tricuspid
valve into the right ventricle. From the right ventricle, the blood is
pumped into the pulmonary trunk through the pulmonary valve
flowing toward the lungs where carbon dioxide is exchanged for
oxygen. The pulmonary circulation is composed of five vascular
segments: proximal and distal pulmonary artery, small arteries,
capillaries, and veins. Oxygenated blood collects into the left
atrium via the pulmonary veins. From there, it flows into the
left ventricle through the mitral valve and it is pumped into the
aorta through the aortic valve for systemic circulation, providing
oxygen and nutrients to body cells for metabolism in exchange
for carbon dioxide and waste products. The mean arterial
blood pressure is controlled by baroreceptors, special sensory
neurons excited by a stretch in the carotid sinus and aortic arch
vessels. They relay sensory information regarding blood pressure
changes to the central nervous system where it is processed and
utilized primarily in autonomic reflexes, regulating short-term
blood pressure.

2.2.1.4. Exposomic Layer
The exposome refers to the totality of exposure individuals
experience from conception until death and its impact on chronic
and acute diseases (Wild, 2005). Toxicants, dietary regimens,
treatments, physical exercise, posture, and lifestyle habits are
possible exposures taking part to individual’s well-being or
disease condition. All such environmental factors are deeply
coupled among themselves but also with individuals influencing
the effects of new or present exposures. The exposome is
intrinsically co-dependent on a person’s genetics, epigenetics,
health status, and physiology. For instance, regular exposure
to pollution may lead to the outbreak of a lung carcinoma,
which in turn may call for clinical intervention. In this work, we
consider four types of exposures: dietary habits, physical activity,
therapeutic treatments, and viral infections.

2.2.2. Inter-process Signals and Clinical Endpoints
One of the main advantages of using GNN-based models
relies in that inter-process and multiscale communications
can be natively implemented using message passing. In a
GNN, each biological entity can be represented as a node,
while the relationship between two entities can be modeled
using directional edges. Signals exchanged between nodes are
implemented using message functions φ

h (see Equation 1),
which are used to update the hidden states of nodes. Such
state transition will then have an impact on messages exchanged
at the following time steps. Another strength of GNN models
consists of the possibility of supervising the evolution of the
underlying system by using the readout functions φ

u. Hence, the
endpoints of multi-factorial diseases can be directly controlled by
checking the output of readout functions in critical nodes. The
resulting GNNmodel will combine a simple and modular design
with a versatile structure accommodating for complex multiscale
systems where clinical endpoints can be easily monitored and
forecast in real time.

2.3. Generative Adversarial Model
One way of studying probability distributions is by means of
generative models, which describe the random phenomenon
in terms of the joint probability distribution of observed and
target variables (Jebara, 2012). Generative adversarial networks
(GANs) are a framework for estimating generative models
via an adversarial process (Goodfellow et al., 2014). They are
often described as a two-player game in which both players
are encouraged to improve. One player, the generator, creates
samples that are intended to be indistinguishable from the
ones coming from a given data distribution. The other player,
the discriminator, learns to determine whether samples come
from the fake distribution (fake samples) or the real data
distribution (real samples). Figure 3 shows the basic idea of
generative adversarial networks. With respect to other generative
models, they provide a general and flexible framework for the
analysis of joint probability distributions. The architecture itself
allows a fine control of the data generation process and a high
level of customization, making them suitable for a variety of
experimental scenarios.

2.3.1. Crosstalk Between Tissue Types
The activity of biological systems is determined by internal
factors, determined by intrinsic and functional properties, and by
external factors shaping the interconnections between different
systems. Chemical and molecular events, like oxygenation or
protein phosphorylation, are often the vehicles of biological
signals’ transduction. A chain of biochemical events forms
a signaling pathway whose activation may give rise to a
biochemical cascade of events affecting the organism at different
levels. In complex organisms, several signal transduction
pathways communicate and react reciprocally generating
biological crosstalks. Crosstalks have been widely characterized
and observed in a variety of biological processes from micro- to
macroscale from genomics (Poyton andMcEwen, 1996; Du et al.,
2015), to internal and external cell activity (Geiger et al., 2001; Li
et al., 2016), and even between tissues (Lengyel et al., 2018). In
particular, receptors and signaling factors from the chemokine,
TNF, and TGF−β pathways are known to take an active role
in tissue communication as well as inflammatory-associated
diseases (e.g., cardiovascular diseases affecting that the heart
and the stiffness of blood vessels). Here, we develop a generative
model based on a generative adversarial network to produce
synthetic transcriptomics data describing the ripple effects of
a viral infection on crosstalks between different tissues. The
aim is to demonstrate how generative approaches can be used
both to reproduce and enhance the set of observable states
of a patient allowing for a deeper understanding of complex
biological processes.

3. RESULTS

3.1. Clinical Case Studies
In Barbiero and Lió (2020), the authors proposed a
computational tool for running simulations integrating a
variety of mechanistic and phenomenological models describing
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FIGURE 3 | Generative Adversarial Network framework. The generator G(z)

receives a vector z sampled from a noise prior distribution pz, and generates a

synthetic sample xfake. The discriminator D(x) tries to distinguish real samples

from fake samples, producing the probability of x coming from the real data

distribution. The competition between the two players drives the game and

makes both players increasingly better.

the human body with ordinary differential equations (ODEs).
This computational framework is hereby used to generate
two clinical case studies. The main difference of the proposed
approach with respect to the computational tool proposed
in Barbiero and Lió (2020) consists of a different modeling
approach based on state-of-the-art AI models instead of ODEs.

The first scenario consists of an elderly patient experiencing
hypertension and type 2 diabetes with diabetic nephropathy. Her
lifestyle is mainly sedentary and her diet is rich in carbohydrates.
The patient needs a therapeutic plan for the treatment of her
hypertension. The task for the clinician is to personalize the
therapy assigning a proper daily dosage of benazepril. This
case study is used to show how the digital patient model can
be employed to simulate the evolution over time of clinical
endpoints under a set of possible therapeutic plans and to choose
the best option.

In the second scenario, the same patient is seeking medical
help for a mild flu caused by a SARS-CoV infection. For this
case study, the model can be used to constantly monitor and
forecast clinical endpoints to prevent complications threatening
patient’s life. The decreased oxygenation caused by flu may have
detrimental effects on both heart and brain activities indeed.
Studies have reported that SARS-CoV infections can activate
the blood clotting pathway by impairing left heart pumping
performance, which results in a blood back up in the lungs
and in a increased blood pressure. High blood pressure can
reduce blood vessel’s compliance decreasing blood and oxygen
flows and leading to a higher risk of developing systemic
conditions. For this reason, heparin-based therapies have been
recommended to prevent clot formation or tissue plasminogen
activator (tPA) (Sardu et al., 2020; Tang et al., 2020). Although
some variation in blood pressure throughout the day is normal,

a high blood pressure variability is associated with a higher risk
of cardiovascular disease (O’Rourke and Nichols, 2005; Mitchell
et al., 2010; Wen et al., 2015; Clark et al., 2019; Bangalore
et al., 2020) and all-cause mortality (Tao et al., 2017; Kim et al.,
2018). Clogged arteries, fibrosis, and strokes caused by blood
pressure spikes are among the main complications threatening
patient’s life and calling for the foremost necessity for treatment.
Hence, blood pressure is one of the most relevant clinical
endpoints that need to be constantly monitored in real time and
accurately forecast.

3.2. Forecasting Clinical Scenarios
3.2.1. Dataset
Our digital twin model is hereby used to actively monitor and
forecast the endpoints highlighted in the two clinical case studies.
First, the computational system described in Barbiero and Lió
(2020) based on ordinary differential equations (ODEs) is used
to generate a time series of clinical endpoints for each differential
equation with a window size of τ = 500 time steps (Barbiero
and Lio, 2020). Time series are collected, randomly shuffled, and
stacked in a dataset. Each item of the collection is randomly
assigned either to a training (ntrain = 3, 200), validation (nval =
800), or test set (ntest = 1, 000).

3.2.2. Training
The graph model is derived from the structure of the ODE
system, thus leveraging human knowledge (an example is shown
in Figure 4). Nodes correspond to variables represented by
the differential equations in Barbiero and Lió (2020) while
edges follow the underlying relationships. In a GNN-based
model, each node learns a latent representation of the state
using the messages received from its neighborhood. Hence,
the rigid mathematical structure of the ODE system is relaxed
in our model as such structure can be learned directly from
data. The learning process lasts for η = 50 epochs with a
learning rate of ǫ = 0.01. Once trained and validated, the
model is used to generate a bundle of possible trajectories for
the elements of the test set. As a result, the model estimates
a 95% confidence interval of the evolution of each variable
over time.

3.2.3. Results
Providing a complete overview of the clinical state of a patient is
not trivial. Focusing just on one endpoint might be misleading.
On the contrary, a global vision comprising pathophysiological
conditions is required in order to provide a clear and effective
overview where organs and physiological systems can be
monitored as a whole. One of the most effective approaches
consists of applying a dimensionality reduction technique (Van
Der Maaten et al., 2009) condensing the information of each
organ and projecting forecasts in a lower-dimensional space.

Figure 5 shows an overview of the clinical state of the
heart in a two-dimensional projected phase space. For each
clinical case study, a GNN-based model is used to simulate
a therapeutic intervention and its impact on blood pressure
in heart chambers (right and left atrium and ventricle).
In order to provide an overview of heart conditions, we
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FIGURE 4 | Example of how a biological system can be modeled in a graph neural network through differential equations. First, an ordinary differential equation (ODE)

system is derived from a biochemical reaction network. Then, the ODE system is solved for different initial conditions generating a set of trajectories for each variable.

Finally, a graph neural network aggregates the information coming from neighbor nodes to update the current state of the variable.

projected the predicted trajectories using principle component
analysis (PCA) (Pearson, 1901). The interpretation of both
pictures is straightforward. The first one shows the effect
of a therapeutic intervention comprising an increased
physical exercise, a reduced amount of calorie intake, and
the subscription of a daily dosage of benazepril (5 mg).
The predicted result of the prescription (green density
reporting the 95% CI of the trajectories) reveals an overall
reduction of blood pressure mean and variability in heart
chambers. This results in a reduced risk of developing severe
cardiovascular conditions with detrimental ripple effects for the
whole system.

The second figure reports the simulation corresponding to the
second case study. The same patient is seeking medical help to
treat the first symptoms of a SARS-CoV-2 infection. The first
simulation (red density) shows the long-term impact on heart
blood pressure of an untreated viral infection. In this case, blood
pressure spikes may cause irreparable damages to blood vessel
walls, reducing their compliance, and impairing their capacity
for adaptation to different environmental conditions. A synergic
therapy including both benazepril (5 mg/day) and intravenous
injection of heparin (5,000 U/ml) may have a beneficial effect on
blood pressure mean and variability (orange density). On the one
hand, benazapril lowers blood pressure by inhibiting ACE activity
in cleaving ANG-I and producing ANG-II, which is the key RAS
regulator of blood pressure. On the other hand, heparin is used
to prevent and dissolve blood clots (Sardu et al., 2020; Tang et al.,
2020). The treatment has an indirect impact on blood pressure
by making blood less dense, reducing clotting formation, and
lowering inflammation.

A lower-dimensional representation of an organ or system as
a whole could be interesting to get a rapid and clear overview of
the long-term impact of a disease or a therapeutic intervention.
Nonetheless, bundle of predicted trajectories can be visualized

and monitored individually in real time when needed in order
to investigate patterns in the time domain. Figure 5 shows an
example where blood pressure trajectories in heart chambers are
predicted in real time starting from a healthy state condition
(green density). In some cases, this representation in the time
domain might be closer to common clinical approaches, thus
providing a more conventional visualization tool for monitoring
clinical endpoints in real time.

3.3. Transcriptomics Analysis of the
Crosstalk Between Tissue Types
We hypothesize that the communication factors in blood might
be playing an important role in the development of the SARS-
CoV-2 infection by facilitating the spread of the virus in the
human body. Here, we study whether the expression of genes
involved in the RAS can be explained by genes that take part of
the communicome in blood. This analysis might shed light on
whether it is sensible to model the crosstalk between tissue types
with a GNN where tissue nodes communicate with each other
through whole blood.

3.3.1. Dataset
We leverage data from the Genotype-Tissue Expression (GTEx)
project (v8), a resource that has generated a comprehensive
collection of human transcriptome data in a diverse set of
tissues (Aguet et al., 2019). The dataset contains 15,201 RNA-
Seq samples collected from 49 tissues of 838 unique donors. We
select genes based on expression thresholds of ≥ 0.1 TPM in
≥ 20% of samples and ≥ 6 reads in ≥ 20% of samples. We
normalize the read counts between samples using the trimmed
mean of M-values (TMM) normalization method (Robinson and
Oshlack, 2010) and we inverse normal transform the expression
values for each gene. From all the donors, we select those that
have gene expression measurements for whole blood, yielding

Frontiers in Genetics | www.frontiersin.org 8 September 2021 | Volume 12 | Article 652907205

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Barbiero et al. Toward a Digital Twin

FIGURE 5 | Two clinical case studies represented in a projected heart phase-space. The first case study (left) shows the effect of a therapeutic intervention comprising

an increased physical exercise, a reduced amount of calorie intake, and the subscription of a daily dosage of Benazepril (5 mg). The second simulation (right) shows

the long-term impact on blood pressure of an untreated SARS-CoV-2 infection (red density) and the effects of a therapy including both Benazepril (5 mg/day) and intra

venous injection of heparin (5000 µ/ml) (orange density). (Top) Bundle of predicted trajectories can be visualized and monitored in real time in order to investigate

patterns in the time domain. The simulation shows blood pressure in heart chambers starting from healthy state conditions. Error bands represent 95% CI (Bottom).

670 unique individuals. We then match the patients’ whole blood
samples with the corresponding measurements in lung (418),
cortex of kidney (62), pancreas (257), and left ventricle of heart
(324). Finally, we use the KEGG pathway database (Kanehisa
et al., 2010) to select genes from the RAS (hsa04614), chemokine
(hsa04062), TNF (hsa04668), and TGF-β (hsa04350) pathways.

3.3.2. Results
Figure 6 shows the bootstrapped R2 scores for each gene in
the RAS pathway in different tissue types. To compute the
bootstrapped scores, we sampled donors with replacement
(sample size: 75% of the total observations), trained the ridge
regression model (Equation 5.3) on the sampled data, and
evaluated the performance on the remaining out of bag (OOB)
observations. Appendix 3 in Supplementary Material shows the
held-out performances for different regularization strengths. We

repeated this process 1,000 times to obtain a distribution of R2

scores for each gene. Our results show that the expression of
some genes in the ACE2 pathway can be partially explained
by signaling genes from whole blood. Notably, the associations
for the kidney (cortex) are weaker or non-existent, potentially
because the data are limited for this tissue (62 samples) or
because the biological associations are indeed small. Overall,
these results suggest that signaling pathways such as TNF, TGF-
β , and chemokine might be playing an important role in the
development of the SARS-CoV-2 infection.

We next model the expression of cytokines and receptors
from whole blood (TNF, TGF-β , and chemokine pathways) as
a function of cytokines from other tissue types (lung, kidney,
heart, and pancreas) (Lijnen et al., 2003; Elmarakby et al., 2007;
Rudemiller and Crowley, 2017). Figure 7 shows the bootstrapped
R2 scores for the top 20 cytokines (chemokine pathway) for each
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FIGURE 6 | Bootstrapped R2 scores for genes involved in the renin-angiotensin system for lung, heart (left ventricle), kidney (cortex), and pancreas. The input

variables are the expressions of genes in whole blood belonging to the chemokine, TNF, and TGF-β pathways.

target tissue type. These results illustrate the associations between
cytokines in blood and other tissue types, which facilitate tissue
communication and crosstalks.

3.4. Generative Model for Transcriptomics
Data
The generative model is here used to produce synthetic
transcriptomics data. By conditioning on high expression of
ACE2 in the lung, kidney, and pancreas, we aim to simulate
the effects of SARS-CoV-2 infection in the expression of
genes involved in communicome and signaling pathways
such as TNF, TGF-β , and chemokines. These pathways
are implicated in many physiological and pathological
processes including the regulation of blood pressure and
inflammatory processes, and have been hypothesized to
play a central role in SARS-CoV-2 infection (Garvin
et al., 2020). For this analysis, we use data from the
GTEx project previously described. In Appendix 2 in
Supplementary Material, we analyze the held-out performance
for different architectures of the generator and critic and describe
all the training details.

Real datasets often lack transcriptomic measurements that
account for multiple tissue types jointly. For example, out of
838 GTEx donors, only 257 of them present joint observations

for pancreas and whole blood (Figure 8 shows the distribution
of missing tissues per patient). Importantly, our model allows
to sample gene expression data for synthetic patients in every
modeled tissue type and without any missing values, facilitating
the cross-tissue analysis of gene expression.

3.4.1. Results
Figure 9 shows that the pairwise correlations between genes in
the ACE2 pathway (lung) are well-preserved in the synthetic
data. We observe that some genes in the RAS pathway (CTSA,
AGTR2, NLN, and PREP) that can be relatively well-explained
as a function of blood signaling factors (see Figure 6) are
simultaneously correlated with ACE2. This suggests that these
genes could be playing an important role in the spread of
SARS-CoV-2 in our body through blood. Next, we use the
GAN to generate multi-tissue expression data for blood and
lung, and fit a linear model to predict the expression of 170
chemokines in blood as a function of the expression of 21
genes in the renin–angiotensin pathway from lung. Figure 10
shows the R2 scores for the top 20 chemokines. We find that
some of the top predicted chemokines (e.g., CXCR6 and XCL1)
have previously been associated with SARS-CoV-2 infection
(Kusnadi et al., 2020; Liao et al., 2020). Additionally, our GAN
captures associations between inflammatory cytokines, which are
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FIGURE 7 | Bootstrapped R2 scores for several cytokines and receptors for lung, heart (left ventricle), kidney (cortex), and pancreas. For each tissue type, we show

the top 20 predicted cytokines. The input variables are the expressions of genes in whole blood belonging to the chemokine, TNF, and TGF-β pathways.

FIGURE 8 | Distribution of missing tissues per GTEx patient. This plot only considers 4 tissue types (whole blood, lung, kidney (cortex), and pancreas).
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FIGURE 9 | Pairwise Pearson correlations between genes in the renin-angiotensin system pathway in lung for real (left) and synthetic (right) data. The correlations in

the lower and upper matrices are computed from samples with low (61 samples) and high (60 samples) ACE2 expression, respectively. We use dots to label

statistically significant correlations (two-sided p-value < 0.05).

FIGURE 10 | Bootstrapped R2 scores for chemokines in blood. The input variables are the expressions of 21 genes belonging to the renin-angiotensin system

pathway in lung. This plot shows the top 20 predicted chemokines (out of 170). The transcriptomics data was generated by our GAN. Importantly, some of the top

predicted chemokines (e.g., CXCR6) have been previously associated with SARS-CoV-2 (Liao et al., 2020).
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FIGURE 11 | Pairwise correlations between inflammatory cytokines in the 4 modeled tissue types. We use dots to label statistically significant correlations (two-sided

p-value < 0.05).

known to have effects on blood pressure (Groth et al., 2014).
Figure 11 illustrates the real and synthetic pairwise correlations
for 6 inflammatory cytokines in the 4 modeled tissue types.
Finally, Figure 12 shows that it is also possible to sample data
for synthetic patients conditioned on different levels of ACE2
expression in lung.

4. DISCUSSION

In this work, we presented an interpretable digital twin
model providing an holistic view over patients’ conditions.
We tested our proof of concept on two clinical case studies
combining information at organ, tissue, and cellular level
showing the potential of our framework in clinical practice.
We demonstrate the feasibility of representing and integrating
physiological models and molecular information using GNNs
and generative adversarial networks. This composite approach
provides modularity and scalability across layers of biomedical
data, it is amenable of a battery of modeling approaches,
and generates integrated predictions that translate into patients
trajectories. We have assimilated our product to a digital twin of
the patient.

4.1. Technological Perspectives
4.1.1. Digital Twin Deployment
Mechanistic computational modeling and machine learning
should be considered together when building innovative
healthcare solutions. Building a puzzle is often an example
of participatory activity. Clinicians, mechanistic computational
modeling and machine learning researchers, data policy makers,
and public and private sectors could build a puzzle (i.e., the
healthcare) together and they should first develop a shared
vision about what is the puzzle. Our vision is to consider
a co-simulation (say doctor checkup visits vs. computational
experiments) of the two twins to allow co-verification. From a
theoretical computer science perspective, this could open the
direction of an interplay between AI and verification/synthesis
and the use of reachability analysis to identify constraints over
the well-being and disease system state space. Although different
architectures seem suitable (e.g., only GNNs, only GANs, VAEs,
etc.), our design has important advantages: the GNN could
provide a physical mapping of the human body (in the same
way a tube map or bus route is a map of a city); GANs
could be specialized on processing molecular information or
they could operate cross-modal operations such as omic–omic,
omic–clinical, and clinical–clinical.
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FIGURE 12 | Principal component analysis of the multi-tissue expression of 100 synthetic patients for different levels of ACE2 expression. Each line corresponds to a

unique patient. For each patient, we fix all the latent covariates and modify the levels of ACE2 in lung. Overexpressing ACE2 leads to changes in the expression of

other genes and these changes follow a well-defined trajectory.

4.1.2. A Modular Approach
The models presented in this work (GAN and GNN) are
independent of each other. On the one hand, the main goal
of the GNN model is to forecast various patient’s conditions
based on real or synthetic data, integrating information that
spans multiple layers of the human body. On the other hand,
the GAN model is able to generate data under different
states, effectively enriching the space of pathophysiological
conditions and endowing the digital twin with the ability to
simulate the effects of counterfactual events. The independence
of these two models enables a modular framework wherein
each module can be trained separately on a distinct data
modality. Importantly, these modules can be composed and
reused through transfer learning. In this work, we have shown
how computational models can be used to generate synthetic
training data representing physiological conditions. Following
the same principles, each module of a complex architecture
could be pre-trained on synthetic simulations, refined using
data obtained from horizontal population studies, and finally
personalized according to clinical health records.

4.1.3. Next-Generation Datasets
The GAN and the GNN models can be interconnected in a
synergistic way. In order to train the GNN effectively, it is

necessary to have access to heterogeneous, paired data modalities
(from different layers: genomic, transcriptomic, cellular, organ,
exposomic, etc.) collected from a comprehensive collection
of patients and encompassing a wide variety of conditions.
However, to the best of our knowledge, to this date no such
dataset exists. This is mainly because collecting paired, multilayer
data from patients is expensive and entails important ethical
and privacy concerns (Jobin et al., 2019; Mittelstadt, 2019). To
address this issue, our GAN framework can synthesize data
at multiple layers conditioned on the patient’s conditions (e.g.,
diabetic, hypertension, etc.) and clinical information (e.g., heart
rate, blood pressure, age, sex, ethnicity, exercise, nutrition, etc.).
This synthetic data can be used to train the GNN and impute
missing data modalities of real patients. Yet, the lack of real data
from patients remains the key limitation for the introduction of
our framework in clinical practice.

4.1.4. Explainable AI
The lack of interpretability of deep learning models has been one
of the most significant barriers preventing their application in
healthcare. Such models exhibit great capacity (Hornik, 1991)
but understanding their behavior and following their decision-
making process is not trivial (Castelvecchi, 2016). There is a
growing body of literature focusing on interpretable artificial
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intelligence and interpretable deep learning aiming at developing
white box models or at explaining black box ones (Das and Rad,
2020). Among such techniques, GNNs have started drawing the
attention of both research and industry communities (Bronstein
et al., 2017; Zhou et al., 2018). Such models are much more
interpretable with respect to other neural approaches thanks to
their graph structure, which is quite easy to understand from
a human standpoint and a few studies have already shown
how graph networks can be effectively employed in biology and
healthcare (Zitnik et al., 2018; Gysi et al., 2020).

4.2. Advantages, Limitations, and Visions
4.2.1. Toward Precision and Predictive Medicine
The future of medicine is already bound to AI (Topol, 2019).
Technological innovations are completely changing medicine
perspectives expanding its horizons and moving toward an
holistic view of human beings. The destiny of the whole
healthcare system depends on this radical paradigm shift.
Embracing AI innovations is just a technological prerequisite,
and the first step toward a total transformation of how medicine
currently works is delivered and perceived by patients. Thinking
that AI will just and mainly improve clinical decision making
is wrong. AI may actually open the doors to completely
new ways of investigating the human body as a whole.
The core and ultimate purpose of health will be developing
preventative and personalized pathways to well-being rather
than delivering treatments. The future foreseen is that AI
will assist medicine in improving diagnosis and devising
novel therapeutic strategies to deliver more effective solutions.
The current healthcare revolution will not take back all the
past technological advances, but it will show them under a
new light.

4.2.2. Patient’s Benefit
A meaningful quote about twins is the following: being a twin is
like being born with a best friend. The data integration will make
a better portrait of patient’s condition trajectories but will require
data inter-operability and data security. Technology is often not
neutral, but transformed to be biased in one way or another
(Ellul et al., 1954). Individuals can have different unforeseen
readings and usage of new technologies. It may increase both
user vulnerability and user empowerment. The vulnerability is
the combination of exposure to the variety of personal medical
data and the coping capabilities of users that could be different
between young and mature people, as young are usually quicker
in incorporating a new technology into everyday life. The user is
empowered if he/she acquires awareness and control of his/her
condition and context. A common example are online (website
and blogs) initiatives such as patientslikeme that allow the user to
search and make up his/her mind about a disease (Wicks et al.,
2010). Instead, the user disempowerment depends on the lack
of technical knowledge of how mechanisms work; this is even
enhanced in black box techniques such as deep learning.

4.2.3. Training Clinicians
We believe that improving both data integration and
predictability will provide physicians with improved medical

decisions support systems and a decrease in both costs, through
the evaluation of best therapies, and errors. A limitations is
the poor interpretability and explainability in deep learning
architectures. This limitation will also greatly affect the training
of the new clinicians on AI technologies. There are growing
efforts to make neural networks more interpretable in order
to keep the human (doctors and patients) in the loop. The
interpretability could be improved by using parallel mechanistic
computational modeling and simulations (Milanesi et al.,
2009; Bartocci and Lió, 2016), model extraction libraries (see,
for instance, Kazhdan et al., 2020), and visual inference tools
(Bodnar et al., 2020). This tool could also be complemented by
clinical decision support systems such as Müller and Lio (2020).
The complexly structured and multilevel comorbidity and frailty
patterns of most diseases describe a highly dynamical system and
are, therefore, challenging current medical therapies.

4.2.4. AI for Evidence-Based Medicine
From a clinical standpoint, AI will support a plethora of different
tasks from medical check up to personalized intervention
strategies to contrast ripple effects or to promote healthy
habits. In non-acute states, predictive inference will propose
prevention plans for comorbidity management, particularly in
presence of multiple therapies (Rivera, 2020). Increasingly large
amount of personal data will be collected to feed modular
machine learning (ML) models organized to address specific and
personalized medical issues. Clinical endpoints will be constantly
monitored, shared, and compared in order to answer relevant
research questions and to deliver the best possible service. A
deeper understanding and practice of modeling in medicine will
produce better investigation of complex biological processes, and
even new ideas and better feedback into medicine. Modeling-
based approaches combined with data-driven ML techniques
will progressively provide models with higher degree of
interpretability and generalization ability (Barbiero et al., 2020a),
which will make evidence-based medicine even more accessible
intensifying the involvement of patients in the decision-making
process. AI simulations forecasting the evolution of clinical
endpoints over time will also reshape clinical guidelines (Rivera,
2020), which will no longer be based just on horizontal
population studies. Cross-modality data will be collected for each
patient and machine learning models will be used to predict
a bundle of possible trajectories representing the future states
of the patient allowing for personalized prescriptions, surgical
planning, and medical interventions.

4.2.5. Social Impact
Ethical repercussions will also be huge (Jobin et al., 2019;
Mittelstadt, 2019). The transition will call for deeper trans-
disciplinary research and a substantial technological innovation
in a variety of research and social areas. Here, education will
play a key role in changing lifestyle habits and the way health
is perceived, communicated, and delivered (Yu et al., 2017). For
each individual, both healthcare systems and private companies
will collect, save, and eventually exploit an enormous amount of
personal data. Providing an effective, stable, and unified juridical
overview is critical on this matter (Panch et al., 2019).
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4.2.6. Next-Generation Medical Devices
AI will change the leading vehicle of medicine. The demand for
AI-powered and internet of things (IoT) devices is increasing
worldwide. The future equipment for precision medicine will
likely required to be cheap and extremely modular, but more
importantly it needs to be deployable in dedicated hardware to
be distributed in larger markets. Our digital twin model aims at
providing the first example of a novel class of AI-assisted tools for
precision and predictive medicine. Our framework is designed
to scale to medical device deployment and run time monitoring
and verification combining ideas from systems medicine with
scientific computing and machine learning. The integration of
interpretable AI models in clinical devices may lead to a deep
transformation in healthcare paving the way for a next generation
of tools for precision medicine probing the inner workings of full
body in well-being and disease conditions.

5. METHODS

5.1. Graph Neural Network
5.1.1. Graph Network Blocks
The GNN framework proposed by Battaglia et al. (2018) is
based on modules called graph network blocks (GN blocks)
representing the core computation units of a GNN. Multiple
GN blocks can be composed of or even combined with other
neural networks to generate complex architectures. A GNN can
be defined as a 3-tuple G = (u,H,E). H = {hi}i=1 :Nv is the
node set where the feature of each node is denoted by hi. E =

{(ek, rk, sk)} is the edge set where each node is represented by its
features ek, the receiver node rk, and the sender node sk. u denotes
a set of global attributes representing the state of the underlying
system. Each GN block consists of three update functions, φ, and
three aggregation functions, ρ:

e′
k
= φ

e(ek, hrk , hsk , u) ē′i = ρ
e→h(E′i)

h′i = φ
h(ēk, hi, u) ē′ = ρ

e→u(E′) (1)

u′ = φ
u(e′, h′, u) h̄

′
= ρ

h→u(H′)

where E′i = {(e′
k
, rk, sk)}, H′ = {(h′i)}i=1 :Nv , and E′ =

⋃

i E
′
i = {(e′

k
, rk, sk)}k=1 :Ne . In order to train a GN block in full,

six computation steps are required, alternating the update and
aggregation functions. For each edge, E′i is computed through
the update function φ

e. The result is then aggregated by means
of the function ρ

e→v. The output ē′i corresponds to an edge
update and it is employed to update node representations h′i
by means of φ

h. ρ
e→u and ρ

h→u perform aggregation steps

generating ē′ and h̄
′
from edge and node updates, respectively.

Global attributes represented by u′ are computed leveraging the

information from ē′, h̄
′
, and u via the function φ

u. The learning
process of each GN block may be independent or co-dependent
with other blocks. Constraints may apply on edges, information
flows, or global attributes, depending on the application. In this
work, we are just interested in the evaluation of global attributes
to monitor clinical endpoints and we did not apply any learning
constraint, even if in clinical practice may still be of great interest.
Given a set of labels for global attributes t = {ti}i=1 :Nv and

the corresponding predictions provided by the GN block û′ =

{̂u′i}i=1 :Nv representing the evolution of the underlying biological
system, we aim at minimizing the following objective function:

min
θ

1

Nv

Nv
∑

i=1

(

ti − û′i
)2

(2)

where θ is the set of model’s parameters.

5.1.2. Assessing Prediction Uncertainty
The aim of developing a digital patient model is to provide an
accurate estimation of the trajectory of a patient by forecasting
clinically relevant endpoints. In such a context, quantifying
model uncertainty is critical. One of the most established
techniques relies upon the use of dropout (Srivastava et al., 2014)
at test time, as a Bayesian approximation, without sacrificing
either computational complexity or test performance (Gal and
Ghahramani, 2016b). In this framework, the first two moments
of the predictive distribution q performing T stochastic forward
passes for a sample x∗ with label y∗ can be estimated as (Gal and
Ghahramani, 2016a):

Eq(y∗ ,x∗)(y
∗) ≈

1

T

T
∑

i=1

ŷ∗(x∗,Wt
1, . . . ,W

t
L) (3)

Varq(y∗ ,x∗)(y
∗) ≈ τ

−1ID

+
1

T

T
∑

i=1

ŷ∗(x∗,Wt
1, . . . ,W

t
L)

T ŷ∗(x∗,Wt
1, . . . ,W

t
L)

− Eq(y∗ ,x∗)(y
∗)TEq(y∗ ,x∗)(y

∗) (4)

where ŷ∗ is the predicted label, {Wi}
L
i=1 is a set of random

variables representing the weights of a neural network with L
layers, ID is an identity matrix, D is the number of output units
of the neural network, and τ is a precision hyper-parameter.
The method has also been generalized to convolutional (Gal
and Ghahramani, 2015) and recurrent networks (Gal and
Ghahramani, 2016c).

Here, we show how such technique can be used to quantify
the uncertainty of a GNN by generating a predictive distribution
of the trajectories representing the future states of the patient.
Let x∗1 , . . . , x

∗
k
be a sequence of real values representing a clinical

endpoint measured at 1, . . . , k time steps. Let f t be a stochastic
model that takes a sequence x∗1 , . . . , x

∗
k
as input and it outputs a

prediction ŷ∗ ∈ R. We are interested in estimating a predictive
distribution of the trajectories of the variable x over the next
k + 1, . . . , k + h time steps. To this aim, we can use an iterative
algorithm by generating one trajectory at a time. The first
prediction ŷ∗

k+1
can be generated as:

ŷ∗,t
k+1

= f t(x∗1 , . . . , x
∗
k) (5)

By using the obtained prediction and sliding the time window
one time step further, we can generate the first prediction for the
second time step k+ 2:
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ŷ∗,t
k+2

= f t(x∗2 , . . . , x
∗
k , ŷ

∗,t
k+1

) (6)

The procedure can be repeated for k + h time steps to generate
a single trajectory. Model uncertainty can be assessed building
multiple trajectories by performing T stochastic forward passes.
The resulting algorithm is equivalent to a Monte Carlo sampling
as proven by Gal and Ghahramani (2016b). In our GNN model,
the approach we just described can be easily applied for each node
in order to assess the uncertainty of clinical endpoints.

5.2. Generative Adversarial Network
Consider a dataset D = {(x,m, r, q)} of samples from an
unknown distribution Px,m,r,q, where x ∈ R

t×n represents a
matrix of n gene expression values in t tissues; m ∈ {0, 1}t is
a mask vector indicating whether the expression of each tissue
has been measured for the given patient; and r ∈ R

k and
q ∈ N

c are vectors of k quantitative covariates (e.g., age) and
c categorical (e.g., gender), respectively. Our goal is to produce
realistic gene expression samples by modeling the conditional
probability distribution P(X = x|M = m,R = r,Q = q), where
r includes the expression of ACE2 in different tissues (e.g., lung,
kidney, and pancreas). By modeling this distribution, we can
sample data for different conditions and quantify the uncertainty
of the generated expression values.

To address this problem, we extend the model proposed in
Viñas et al. (2021) to simultaneously account for t tissue types
from the same donor. In particular, our method builds on a
Wasserstein GAN with gradient penalty (WGAN-GP) (Arjovsky
et al., 2017; Gulrajani et al., 2017). Similar to Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014), WGAN-
GPs estimate a generative model via an adversarial process
driven by the competition between two players, the generator
and the critic.

The generator aims at producing samples from the conditional
P(X|M,R,Q). Formally, we define the generator as a function
Gθ

:R
u × R

k × N
c → R

t×n parameterized by θ that generates
gene expression values x̂ as follows:

x̂ = m⊙ Gθ (z, r, q) (7)

where z ∈ R
u is a vector sampled from a fixed noise distribution

Pz and u is a user-definable hyperparameter. We apply the mask
m element-wise to match the distribution of missing tissues of
the training dataset.

The critic takes gene expression samples x from two input
streams (the generator and the data distribution) and attempts to
distinguish the true input source. Formally, the critic is a function
Dω

:R
t×n × {0, 1}t × R

k × N
c → R parameterized by ω that we

define as follows:

ȳ = Dω(x̄,m, r, q)

where the output ȳ is an unbounded scalar that quantifies the
degree of realism of an input sample x̄ given the covariates r and
q (e.g., high values correspond to real samples and low values
correspond to fake samples). When the expression of a certain
tissue t is unavailable for a given patient, we set the unobserved

values of tissue t in x̄ to 0 and the t-th component of the maskm
to 0.

We optimize the generator and the critic adversarially.
Following (Arjovsky et al., 2017), we train the generator Gθ and
the critic Dω to solve the following minimax game based on the
Wasserstein distance:

min
θ

max
ω

E
x,m,r,q∼Px,m,r,q

[

Dω(x,m, r, q)− E
z∼Pz

[Dω(x̂,m, r, q)]
]

subject to ||Dω(xi,m, r, q)− Dω(xj,m, r, q)|| ≤ ||xi − xj||

∀xi, xj ∈ R
t×n,m ∈ {0, 1}t , r ∈ R

k, q ∈ N
c

(8)

where x̂ is defined as in Equation (7) and the constraint enforces
a soft version of the 1-Lipschitz constraint (e.g., the norm of the
critic’s gradient with respect to xmust be at most 1 everywhere).

Let {(xi,mi, ri, qi)}
b
i=1 be a mini-batch of b independent

samples from the training dataset D. Let {z1, z2, ..., zk} be a set
of k vectors sampled independently from the noise distribution
Pz and let us define the synthetic samples corresponding to the
mini-batch as x̂i = mi ⊙ Gθ (zi, ri, qi) for each i in [1, 2, ..., k].
We solve the minimax problem described in Equation (8) by
interleaving mini-batch gradient updates for the generator and
the critic, optimizing the following problems:

Generator: min
θ

−
1

k

k
∑

i=1

Dω

(

x̂i,mi, ri, qi
)

Critic: min
ω

1

k

k
∑

i=1

Dω

(

x̂i,mi, ri, qi
)

− Dω(xi,mi, ri, qi)

+
λ

k

k
∑

i=1

(

||∇x̃iDω(x̃i,mi, ri, qi)||2 − 1
)2

(9)

where λ is a user-definable hyperparameter and each x̃i is a
random point along the straight line that connects xi and x̂i, that
is, x̃i = αixi + (1 − αi)x̂i with αi ∼ U(0, 1). Intuitively, since
enforcing the 1-Lipschitz constraint everywhere is intractable
(see Equation 8), the second term of the critic problem is a relaxed
version of the constraint that penalizes the gradient norm along
points in the straight lines that connect real and synthetic samples
(Gulrajani et al., 2017).

5.2.1. Architecture
Figure 1 shows the architecture of both players. The generator G
receives a noise vector z as input (green box) as well as sample
covariates r and q (orange boxes) and produces a vector x̂ of
synthetic expression values (red box). The critic D takes either a
real gene expression sample x (blue box) or a synthetic sample x̂
(red box), in addition to sample covariates r and q, and attempts
to distinguish whether the input sample is real or fake. For both
players, we use word embeddings (Mikolov et al., 2013) to model
the sample covariates (light green boxes), a distinctive feature
that allows to learn distributed, dense representations for the
different tissue types and, more generally, for all the categorical
covariates q ∈ N

c.
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Formally, let qj be a categorical covariate (e.g., tissue type) with
vocabulary size vj, that is, qj ∈ {1, 2, ..., vj}, where each value in
the vocabulary {1, 2, ..., vj} represents a different category (e.g.,
whole blood or kidney). Let q̄j ∈ {0, 1}vj be a one-hot vector
such that q̄jk = 1 if qj = k and q̄jk = 0 otherwise. Let dj be
the dimensionality of the embeddings for covariate j. We obtain
a vector of embeddings ej ∈ R

dj as follows:

ej = Wjq̄j

where each Wj ∈ R
dj×vj is a matrix of learnable weights.

Essentially, this operation describes a lookup search in a
dictionary with vj entries, where each entry contains a learnable
dj-dimensional vector of embeddings that characterizes each of
the possible values that qj can take. To obtain a global collection
of embeddings e, we concatenate all the vectors ej for each
categorical covariate j:

e =
∥

∥

∥

c

j=1
ej

where c is the number of categorical covariates and ‖

represents the concatenation operator. We then use the learnable
embeddings e in downstream tasks.

In terms of the player’s architecture, we model both the
generator Gθ and critic Dω as neural networks that leverage
independent instances eG and eD of the categorical embeddings
for their corresponding downstream tasks. Specifically, we model
the two players as follows:

Gθ (z, r, q) = MLP(z‖r‖eG) Dω(x̄,m, r, q) = MLP(x̄‖m‖r‖eD)

where MLP denotes a multilayer perceptron.

5.3. Ridge Regression
We model the expression of genes from the renin-angiotensin
system in lung, kidney, pancreas, and heart as a function of
genes in the chemokine, TNF, and TGF-β pathways in blood. Let
Y = (Y1, ...,Yn)

⊤ and X = (X1, ...,Xm)
⊤ be multivariate random

variables representing the expression of the n genes in the renin-
angiotensin system and the m genes in the signaling pathways,
respectively. Our model is based on ridge regression (Hoerl and
Kennard, 1970):

Y = XW+ ǫ

whereW ∈ R
m×n is a matrix of learnable weights and ǫ ∈ R

n are
the residuals. We optimize the following objective:

min
W

||Y− XW||22 + α||W||22

where α is a hyperparameter that controls the regularization
strength. Alternative non-linear models such as support vector
machines, Gaussian processes, and random forests did not
improve our cross-validation scores.
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