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Noise has been widely used to investigate the 
processing properties of various visual func-
tions (e.g. detection, discrimination, attention, 
perceptual learning, averaging, crowding, face 
recognition), in various populations (e.g. 
older adults, amblyopes, migrainers, dyslexic 
children), using noise along various dimen-
sions (e.g. pixel noise, orientation jitter, con-
trast jitter). The reason to use external noise is 
generally not to characterize visual processing 
in external noise per se, but rather to reveal 
how vision works in ordinary conditions 
when performance is limited by our intrinsic 
noise rather than externally added noise. For 
instance, reverse correlation aims at identifying 
the relevant information to perform a given 
task in noiseless conditions and measuring 
contrast thresholds in various noise levels can 
be used to understand the impact of intrinsic 
noise that limits sensitivity to noiseless stimuli.

Why use noise? Since Fechner named it, psy-
chophysics has always emphasized the sys-
tematic investigation of conditions that break 
vision. External noise raises threshold hugely 
and selectively. In hearing, Fletcher used noise 
in his famous critical-band experiments to 
reveal frequency-selective channels in hearing. 
Critical bands have been found in vision too. 

More generally, the big reliable effects of noise give important clues to how the system works. 
And simple models have been proposed to account for the effects of visual noise.

As noise has been more widely used, questions have been raised about the simplifying assump-
tions that link the processing properties in noiseless conditions to measurements in external 
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A signal grating on a white noise background. 
Vertically, signal contrast grows logarithmically. 
Horizontally, noise contrast grows 
logarithmically. Note that your threshold 
contrast (bottom edge of visibility) for the 
grating is flat, at the left, where the noise is 
invisible, and then rises with a slope of 1, to 
the right, indicating proportionality to noise 
contrast. Image by Rémy Allard.
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noise. For instance, it is usually assumed that the processing strategy (or mechanism) used to 
perform a task and its processing properties (e.g. filter tuning) are unaffected by the addition of 
external noise. Some have suggested that the processing properties could change with the addition 
of external noise (e.g. change in filter tuning or more lateral masking in noise), which would 
need to be considered before drawing conclusions about the processing properties in noiseless 
condition. Others have suggested that different processing properties (or mechanisms) could 
be solicited in low and high noise conditions, complicating the characterization of processing 
properties in noiseless condition based on processing properties identified in noise conditions.

The current Research Topic probes further into what the effects of visual noise tell us about 
vision in ordinary conditions. Our Editorial gives an overview of the articles in this special issue.

Citation: Allard, R., Faubert, J., Pelli, D. G., eds. (2016). Using Noise to Characterize Vision. 
Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-753-8
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Auditory noise is a sound, a random variation in air pressure. More generally, random “noise” can
be introduced into any stimulus, including a visual display. Noise added to the stimulus can probe
the computations underlying perception of the stimulus. With power and precision, the noise, by
restricting the information available, places fundamental constraints on attainable performance and
processing strategy. WWII research on radar led to mathematical theorems about detectability
of signals in noise, i.e., Signal Detection Theory (Peterson et al., 1954), which allow human
performance to be expressed on an absolute scale of efficiency, 0–100% (Tanner and Birdsall, 1958;
Pelli and Farell, 1999). Auditory noise revealed the channels of hearing in studies at Bell Labs
that characterized how telephone line noise limits perception of speech (Fletcher, 1953). Studies
of visual effects of photographic, x-ray, and video noise (reviewed in Pelli, 1981) led to pioneering
work with artificially injected noise by Rose (1957), Stromeyer and Julesz (1972), and Solomon and
Pelli (1994). Added visual noise has been widely used to characterize the computations underlying
various visual tasks (e.g., detection, discrimination, letter and face recognition, search, averaging,
selective attention, perceptual learning) in various populations (e.g., older adults, amblyopes,
migrainers, dyslexic children). Different kinds of noise probe different aspects of the computation.
For instance, spectrally filtered noise is used to determine the frequencies relevant to a given visual
task (e.g., letter identification, Solomon and Pelli, 1994). Noise masking of one attribute (e.g., in
luminance, color, or texture) can reveal whether another attribute is processed separately (e.g.,
Gegenfurtner and Kiper, 1992; Allard and Faubert, 2007, 2008). Noise image classification can
reveal the visual features the observer uses to perform a visual task (e.g., Eckstein and Ahumada,
2002). Noise is also often used to characterize what limits sensitivity, such as internal noise (Pelli,
1981; Pelli and Farell, 1999; Lu andDosher, 2008). This Research Topic issue explores effective ways
to use noise to probe visual function.

“Noise” in perception experiments generally means unpredictable variation in some aspect of
the stimulus. Typically, the stimulus consists of a luminance signal plus an unpredictable noise.
Less often, another parameter of the signal, e.g., orientation, varies unpredictably (e.g., Dakin,
1999; Solomon, 2010; Allard and Cavanagh, 2012). Added noise is often white: A random sample,
independent and identically distributed, is added to each pixel’s luminance. The extent of the
noise is restricted, or “localized,” by a window in space and time. The spatiotemporal spectrum
of the noise can be restricted by bandpass filtering to a range of orientation and frequency.
Added noise that varies across space is sometimes called “pixel noise.” Most of the studies in this
Research Topic issue added noise to the signal; two studies randomly jittered parameters of the
signal.

In this Research Topic issue, Jeon et al. (2014) added localized white noise to investigate
developmental changes in orientation discrimination through childhood. Interpreting their data
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using the Perceptual Template Model (Lu and Dosher, 2008), to
see how the model parameters change with age, they find that
increasing age reduces internal additive noise, reduces internal
multiplicative noise, and improves external noise exclusion.
Using a similar noise paradigm, Chou et al. (2014) find
that localized attention facilitated contrast detection due to
signal enhancement, whereas object-based attention facilitated
detection due to external noise exclusion. Letter identification is
mediated by an octave-wide spatial frequency channel (Solomon
and Pelli, 1994). Young and Smithson (2014) use spatially
bandpass noise to reveal the letter identification channel in the
presence of optical distortions, and find changes in the central
spatial frequency of the letter-identification channel. Hall et al.
(2014) find that adding white noise increased the center spatial
frequency of the letter-identification channel for large but not
small letters. Using pixel noises with different spectral profiles,
Abbey and Eckstein (2014) find that performance approaches
that of the mathematical ideal in a free-localization task (i.e.,
high spatial uncertainty), but is much lower in a fixed-location
task (i.e., low spatial uncertainty), indicating that the human
detection strategy is well-adapted to free-localization tasks. Gold
(2014) use pixel noise to investigate the visual information used
by the observer during a size-contrast illusion. By correlating
the observers’ classification decision with each pixel of the noise
stimuli, they find that the spatial region used to estimate the size
of the target is influenced by the size of surrounding irrelevant
elements. Taylor et al. (2014) use pixel noise both as a target and
a mask. The target noise is bandpass-filtered in orientation and
spatial frequency, whereas the mask is white noise. They find
that information used to detect the target is more optimal in the
orientation domain than in the frequency domain, suggesting
that observers can adjust the bandwidth of their channels in
orientation, but not in spatial frequency.

Several studies examine how visual processing is affected
by the extent and bandwidth of applied noise. Baker and
Vilidaite (2014) provide EEG evidence that white noise masks
have a suppressive gain control effect on neural responses
to grating stimuli. Happily, Allard and Faubert (2014b) note
that suppressive gain control would not affect threshold

measurements in white noise. Studying motion perception,
Allard and Faubert (2014a) find similar orientation and direction
thresholds with and without temporally extended noise, but
greater direction thresholds in temporally localized noise. This
shows that the processing strategy underlying motion perception
depends on the noise duration. Consistent with previous studies
on contrast sensitivity (Allard and Cavanagh, 2011; Allard et al.,
2013), they conclude that to measure equivalent input noise of
motion processing, noise should be temporally extended (e.g.,
displayed continually).

Two studies randomly jittered a signal parameter. In an
electrophysiological study, Németh et al. (2014) use phase
noise, produced by randomizing phases in the Fourier domain,
making the stimulus unrecognizable without affecting its spectral
energy. Thus, sensitivity to phase noise suggests involvement in
recognition. They find that phase-noise amplifies the P1 response
to cars in the right hemisphere, but not in the left hemisphere,
and that, conversely, phase-noise amplifies the P1 response to

faces in the left hemisphere, but not in the right hemisphere.
Lidestam et al. (2014) evaluate the effect of informational and
energetic auditory noise on visual speechreading. They found
that only informational auditory noise (i.e., four-talker babble)
interfered with speechreading, which suggests that phonological
processing is also involved in speechreading.

In sum, this Research Topic issue shows several ways to use
diverse kinds of noise to probe visual processing.
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Perception is often influenced by context. A well-known class of perceptual context effects
is perceptual contrast illusions, in which proximate stimulus regions interact to alter the
perception of various stimulus attributes, such as perceived brightness, color and size.
Although the phenomenal reality of contrast effects is well documented, in many cases
the connection between these illusions and how information is processed by perceptual
systems is not well understood. Here, we use noise as a tool to explore the information
processing correlates of one such contrast effect: the Ebbinghaus–Titchener size-contrast
illusion. In this illusion, the perceived size of a central dot is significantly altered by the
sizes of a set of surrounding dots, such that the presence of larger surrounding dots
tends to reduce the perceived size of the central dot (and vise versa). In our experiments,
we first replicated previous results that have demonstrated the subjective reality of the
Ebbinghaus–Titchener illusion. We then used visual noise in a detection task to probe
the manner in which observers processed information when experiencing the illusion. By
correlating the noise with observers’ classification decisions, we found that the sizes of the
surrounding contextual elements had a direct influence on the relative weight observers
assigned to regions within and surrounding the central element. Specifically, observers
assigned relatively more weight to the surrounding region and less weight to the central
region in the presence of smaller surrounding contextual elements.These results offer new
insights into the connection between the subjective experience of size-contrast illusions
and their associated information processing correlates.

Keywords: visual illusion, response classification, noise, efficiency, ideal observer

INTRODUCTION
Context can often exert a significant influence on percep-
tion. Famous examples of context effects include crowding
(Bouma, 1970), word superiority effects (Johnston and Mcclel-
land, 1974), configural superiority effects (Pomerantz et al.,
1977), the kinetic depth effect (Wallach and O’Connell, 1953),
point-light biological motion perception (Johansson, 1973),
Gestalt grouping and perceptual organization (Koffka, 1935),
and visual completion (Kanizsa, 1979). Another related cat-
egory of context effects involves the perceptual consequences
of introducing contrast between elements within a display.
Examples of contrast effects include lightness and brightness
contrast illusions (Cornsweet, 1970; Adelson, 1993; Gilchrist
et al., 1999), color contrast illusions (Jameson and Hurvich,
1964; Lotto and Purves, 2000), and size-contrast illusions
(Coren and Girgus, 1978).

In the cases of lightness, brightness, and color contrast illu-
sions, the underlying physiological and information processing
mechanisms that mediate these effects have been studied exten-
sively (e.g., Jameson and Hurvich, 1964; Cornsweet, 1970; Adelson,
1993; Lotto and Purves, 2000). In the case of size-contrast illu-
sions, most research has focused on exploring the conditions
that are most favorable for inducing the illusions (e.g., Girgus
et al., 1972; Coren and Girgus, 1978; Jaeger, 1978; Weintraub,
1979; Weintraub and Schneck, 1986; Rose and Bressan, 2002;
Roberts et al., 2005; Daneyko et al., 2011), demonstrating the
behavioral impact of the illusions in various tasks (e.g., Jaeger,

1978; Pavlova and Sokolov, 2000; Haffenden et al., 2001; Rose and
Bressan, 2002; Westwood and Goodale, 2003; Handlovsky et al.,
2004; Muller and Busch, 2006; Im and Chong, 2009; Speran-
dio et al., 2010, 2012), or using the illusions as research tools
to understand various aspects of perceptual processing, such as
whether apparent size is coded in pre-attentive vision (Busch and
Muller, 2004) and whether there are two separate visual process-
ing streams (e.g., Aglioti et al., 1995; Milner and Goodale, 1995;
Goodale and Humphrey, 1998).

One size-contrast illusion, the Ebbinghaus–Titchener illusion
(Titchener, 1901), has been used most extensively in this research.
Figure 1 shows the canonical form of the Ebbinghaus–Titchener
illusion. When most observers view these figures, the central dot
is judged to be significantly larger when encircled by smaller dots
(left side of Figure 1) than when surrounded by larger dots (right
side of Figure 1). The magnitude of this effect has been shown
to depend upon many additional factors, including the distance
between the central dot and the surrounding dots, the number
and density of surrounding dots, the similarity between the cen-
tral and surrounding dots, and even the age, sex, and culture of
the observer (Massaro and Anderson, 1971; Coren and Girgus,
1978; Weintraub, 1979; Weintraub and Schneck, 1986; Choplin
and Medin, 1999; Phillips et al., 2004; Roberts et al., 2005; de
Fockert et al., 2007; Daneyko et al., 2011). Nevertheless, the sub-
jective experience of the Ebbinghaus–Titchener illusion is quite
reliable and robust for most observers under a wide range of
conditions.
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Gold Information processing correlates of a size-contrast illusion

FIGURE 1 | Ebbinghaus–Titchener figures used as stimuli in the

experiments. The central dots of the figures are the same physical
diameter.

Despite the extensive amount of research that has involved this
size-contrast effect, the connection between the subjective experi-
ence of the illusion and the specific manner in which information
is processed by the visual system is not well understood. There
are may possible ways in which the experience of the illusion
might map on to how observers make use of information when
performing tasks that rely upon the part of the stimulus that is
perceptually altered by the presence of the inducing elements.
For example, observers might make use of a relatively larger
region of the central portion of the stimulus in the presence of
smaller inducing elements. Another possibility is that observers
might differentially rely upon the regions within and immedi-
ately surrounding the central dot, depending upon the size of the
inducing elements. Alternatively, there may be no little or con-
nection between observers’ subjective experience of the illusion
and how they make use of information in tasks involving these
stimuli.

Thus, the goal of the current study was to directly address
this question by exploring the underlying information processing
correlates associated with the perception of the Ebbinghaus–
Titchener size-contrast illusion in a perceptual task. We
approached this problem by first measuring and verifying the tra-
ditional subjective size-contrast effects associated with the illusion.
We then employed these same stimuli to be used within the con-
text of a performance-based rather than a subjective judgment
task. Specifically, we had observers perform a simple detection
task with the central dot of Ebbinghaus–Titchener figures under
conditions of varying context (i.e., in the presence of larger or
smaller surrounding dots). We chose a detection task as a starting
point because of its relative simplicity. Observers performed this
task with stimuli that were embedded in high contrast pixel noise,
which allowed us to measure the impact of context on two related
aspects of information processing: (a) the overall efficiency with
which observers make use of information (i.e., their performance
relative to a statistically optimal or ideal observer); and (b) the per-
ceptual strategy or “template” used by observers, determined by
correlating the noise shown across trials with observers’ decisions

(i.e., response classification). A similar approach has been used
successfully to explore the information processing correlates asso-
ciated with brightness–contrast context effects (Shimozaki et al.,
2005).

MATERIALS AND METHODS
PARTICIPANTS
Three observers (two males, mean age 20) participated in both
experiments. All were paid for their participation, gave written
consent and had normal or corrected-to-normal visual acuity
(self-reported). Two were naïve to the purposes of the experi-
ments and one was a paid laboratory research assistant (observer
PM). The study was approved by the Indiana University Human
Research Protection Program.

APPARATUS
All stimuli were displayed on a Sony Trinitron G520 CRT monitor
(resolution: 1024 pixels × 768 pixels; size: 38.25 cm × 28.5 cm;
refresh rate: 85 Hz). The display was calibrated using a Minolta
LS-100 photometer. The background was fixed at a luminance
of 85 cd/m2, and the CRT provided the only source of illumina-
tion during the experiment. Viewing distance was fixed at 130 cm
using a head/chin rest. All aspects of the experiment, including
stimulus generation, presentation, and data analysis, were car-
ried out within the MATLAB programming environment (version
7.1) using in-house software and the extensions provided by the
psychophysics toolbox (Brainard, 1997).

STIMULI
Stimuli consisted of a central dot (45 pixels in diameter, 0.74◦)
surrounded by a series of “inducing” dots (Figure 1). In the Small
Inducers condition, there were 12 surrounding dots of equal size
(15 pixels in diameter, 0.25◦), equidistant from the central dot
(45 pixels from the midpoint of each inducer to the midpoint of
the central dot, 0.74◦) and equally spaced around the perimeter
of a virtual circle centered upon the central dot. In the Large
Inducers condition, there were five dots of equal size (55 pixels in
diameter, 0.9◦), equidistant from the central dot (60 pixels from
the midpoint of each inducer to the midpoint of the central dot,
0.98◦) and equally spaced around the perimeter of a virtual circle
centered upon the central dot. In Experiment 1, a central dot of
variable size with no surrounding inducing elements was also used
to obtain estimates of perceived size.

All stimuli were defined in terms of contrast, with the contrast
at each pixel defined as the luminance value relative to the back-
ground luminance (i.e., Lpixel − Lbackground)/Lbackground). Stimuli
were negative in contrast (i.e., darker than the background). In
Experiment 1, each pixel of the entire stimulus was set to the
maximum displayable negative contrast value (−0.87). In Exper-
iment 2, only the pixels in the inducing dots were set to the
maximum displayable contrast value. For the remaining image
pixels, the contrast energy was manipulated across trials using a
2-down, 1-up adaptive staircase procedure in order to maintain
constant performance, as well as obtain contrast energy detection
thresholds. Contrast energy is defined as the sum of the squared
pixel contrast values multiplied by the area of an individual
pixel, i.e.:
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E =
n∑

i=1

C2
i a, (1)

where n is the number of image pixels, C is the contrast at each
pixel, and a is the area of an individual pixel, expressed in degrees
squared (Tjan et al., 1995).

In addition, Gaussian white contrast noise of a fixed variance
(σ2 = 0.16, NSD = 2.7e−4) was added to all pixels (except for
the inducing dots) within a 200 pixel × 200 pixel (3.27◦ × 3.27◦)
region centered at the central dot. Noise samples that exceeded
±2 standard deviations were discarded and replaced with fresh
samples. This insured that the noise distribution retained its nor-
mal shape while removing any values that exceeded the maximum
displayable positive and negative contrast values. The stimulus
duration was 43 frames (∼500 ms).

THRESHOLD ESTIMATION
Contrast energy detection thresholds in Experiment 2 were esti-
mated by fitting Weibull psychometric functions to the staircase
data in each condition and interpolating to find the contrast energy
value that corresponded to 71% correct performance. Bootstrap
simulations (Efron and Tibshirani, 1993) were carried out in order
to estimate the error associated with each threshold estimate (500
simulated experiments per threshold).

PROCEDURE
In Experiment 1, on each trial either the Small Inducers stimulus,
Large Inducers stimulus, or a single isolated central dot stimu-
lus with no surrounding inducers (No Inducers) was displayed in
the center of the CRT (all were noise-free and set to the maxi-
mum displayable negative contrast). A second isolated dot figure
(also set to the maximum displayable negative contrast) simulta-
neously appeared on the display and was offset 200 pixels (3.27◦)
to the right and 200 pixels down from the central stimulus. On
half of the trials, the size of the offset dot was initially set at 15
pixels (0.25◦); on the other half of the trials, the size of the offset
dot was initially set at 68 pixels (1.11◦; chosen randomly on each
trial with equal probability). Once the stimuli were displayed, the
observer was instructed to use two keys to manipulate the size of
the offset dot so that it appeared to match the size of the central
dot. Three observers completed 20 trials in each stimulus condi-
tion (i.e., Small Inducers, Large Inducers, and No Inducers). Trials
were blocked by condition, with one observer completing each of
the three conditions first.

In Experiment 2, either the Small Inducers or Large Inducers
stimulus was displayed in the center of the CRT (a No Inducers
condition was not included due to the complicating effects of spa-
tial uncertainty at low contrast in the absence of inducers). The
stimuli were shown in high contrast noise, and the contrast energy
of the central dot was varied across trials to keep performance
at roughly 71% correct throughout the experiment. On half of
the trials, the central dot was actually present; on the remain-
ing half of the trials, the dot was absent (randomly chosen). The
observer’s task was to indicate whether or not the central dot had
been present on a given trial. Accuracy feedback was given in the

FIGURE 2 | Mean adjusted size matches in each condition from

Experiment 1. Error bars correspond to ±2 standard errors of the mean.

form of a high or low beep. Each observer from Experiment 1 par-
ticipated in 10,000 trials in both stimulus conditions, measured
over the course of approximately 3 weeks. Trials were blocked by
condition, with two observers completing the Large Inducers con-
dition first and the other observer completing the Small Inducers
condition first.

RESULTS
EXPERIMENT 1: SUBJECTIVE RATINGS
The purpose of Experiment 1 was to verify the presence and
measure the magnitude of the subjective size-contrast illusion pro-
duced by the Ebbinghaus–Titchener patterns shown in Figure 1.
Three observers repeatedly adjusted an isolated circle to match
the perceived size of the central dot in each stimulus condition.
The mean adjusted matching sizes for each observer as well as
the mean values across observers are shown in Figure 2. These
data show there was a consistent effect of the presence of the
inducers, with Large Inducers producing smaller estimates than
Small Inducers and No Inducers falling in between. A one-way
repeated measures ANOVA revealed a significant effect of condi-
tion [F(2,2) = 7.74, p < 0.05]. Post hoc comparisons using the
Tukey HSD test indicated that the mean estimate in the Small
Inducers condition was significantly greater than the mean esti-
mate in the Large Inducers condition (p < 0.05). There were
no significant differences between the mean estimates in the
No Inducers condition and either the Small or Large Induc-
ers conditions. Thus, Experiment 1 established that our stimuli
produced significant size-contrast illusions for all three of our
observers.

EXPERIMENT 2: BEHAVIORAL PERFORMANCE, EFFICIENCY AND
CLASSIFICATION IMAGES
Experiment 2 was designed to explore what impact the
Ebbinghaus–Titchener size-contrast illusion has on behavioral
performance, the efficiency of information use and observers’ clas-
sification strategies when they are asked to perform a task that
directly relies on the features that are perceptually distorted by the
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illusion. We asked the same three observers that participated in
Experiment 1 to perform a detection task, in which the contrast
of the central dot of the Ebbinghaus–Titchener figure was varied
across trials in order to measure contrast detection thresholds in
each condition. The stimuli were shown in high contrast Gaus-
sian white noise (with the exception of the locations where the
inducers appeared, which were always noise-free and shown at the
maximum displayable negative contrast).

Detection thresholds for all three human observers as well as
the mean values across observers are shown in Figure 3A. The
performance of a statistically optimal or “ideal observer” was
also measured in each condition (Green and Swets, 1966; Braje
et al., 1995). Such an observer uses a decision rule that maximizes
the posterior probability of choosing whether or not the central
dot was present (see Braje et al., 1995 for a detailed description
the ideal decision rule in a detection task). The ideal observer’s
thresholds were estimated by carrying out Monte Carlo simu-
lations in each condition for the same number of trials as the
human observers (10,000). The ideal observer’s thresholds are
plotted in the leftmost side of the Figure 3A. Finally, the ratio
of ideal to human threshold (efficiency) was computed for each
human observer in each condition (Figure 3B). As expected,
the ideal observer’s thresholds were the same for the Large and
Small Inducers conditions. Although human thresholds differed
by about an order of magnitude from those of the ideal observer
(yielding efficiencies of ∼10%), there was no discernable effect
of inducer condition on human efficiency. A two-tailed paired-
samples t-test confirmed that the effect of condition for the
human observers was not statistically significant; t(2) = −0.68,
p = 0.57.

In addition to the thresholds and efficiencies, we used the noise
presented over the course of the experiment to generate classi-
fication images for each observer in each condition (Ahumada
and Lovell, 1971; Ahumada, 2002; Murray et al., 2002). Classifica-
tion images were computed by first sorting the noise for a given

observer in a given condition according to the Stimulus (present,
absent)–Response (present, absent) combination. Next, the noise
was averaged within each stimulus–response (S–R) pairing and
then combined to form a single classification image C:

C = (SabsentRpresent + SpresentRpresent) − (SabsentRabsent

+ SpresentRabsent) (2)

The resulting classification images show the relative weight
assigned to each pixel in the display by the observer over the
course of the experiment. The classification images in each condi-
tion for each human observer as well as the ideal observer are
shown in the left two columns of Figure 4. The bottom row
of these columns also shows the classification images generated
by combining all of the trials across the three human subjects
in each condition. The right two columns of Figure 4 show the
same classification images smoothed by a small (7 pixel × 7 pixel,
0.11◦ × 0.11◦) convolution kernel. Note that the regions where
the inducing elements appeared are not noise-free. These regions
were simply populated by random noise samples when computing
the classification images. This was done in order to avoid inducing
the illusion itself when visualizing the data. That is, presenting
the classification images with the inducing element regions set to
some constant value (e.g., 0), would potentially affect the per-
ceived size of the central regions, and thus make it difficult to
visually compare them across conditions. Adding random noise
samples to these regions when generating the classification images
allows them to blend naturally into their neighboring background
regions.

These data show that the human observers adopted a very spe-
cific strategy in both conditions. Namely, each human observer
evaluated the contrast of both the inner region (where the cen-
tral dot appeared) as well as a circular region that surrounded
the central dot. In addition, observers responded differentially
to contrast in these two regions. Specifically, if the contrast of

FIGURE 3 | Contrast energy thresholds (A) and efficiencies (B) in each condition of Experiment 2. Error bars for individual observers correspond to ±2
standard deviations, estimated by bootstrap simulations. Error bars on combined thresholds correspond to ±2 standard errors of the mean.
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FIGURE 4 | Raw (left two columns) and smoothed (right two columns)

classification images for the ideal observer, three human observers

and the combined data across all three human observers in each

condition of Experiment 2 (see text for details).

the noise was negative in the region of the central dot, observers
were more likely to respond “present” (or, if the contrast of the
noise in this region was positive, observers were more likely to
respond “absent”). However, the opposite was true in the annular
region that surrounded the central dot: if the contrast of the noise
was positive in this region, observers were more likely to respond
“present” (or, if the contrast of the noise in this region was neg-
ative, observers were more likely to respond “absent”). Note that
this strategy of using an annular region surrounding the central
dot is not ideal: the ideal observer uses only the central dot region
where the stimulus was actually present; the surrounding region
carries no physical information for performing the task. Simi-
lar center-surround effects have been reported for tasks requiring
observers to detect or discriminate a centralized target in noise
(e.g., Shimozaki et al., 2005).

The results of the classification image analysis are consistent
with the idea that, unlike the ideal observer, human observers
were comparing the contrast within the region of the central
dot to the contrast immediately surrounding the central dot
region in order to make their classification decisions. How-
ever, this center-surround effect appears to be independent of
the presence of the Large and Small Inducers. To explore the
effect of inducer size more closely, we took advantage of the

circular-symmetric shape of the central portion of our stimuli
and radially averaged the raw classification images (Abbey and
Eckstein, 2002, 2007). This produced a set of one-dimensional
classification images that revealed the weights observers assigned
to each distance from the midpoint of the central dot in each
condition.

The results of this radial classification image analysis are shown
in Figure 5. Figures 5A–D plots the results for an individ-
ual observer in each condition (including the ideal observer;
Figure 5A). Figure 5E plots the results when the data are com-
bined across all three human observers. Individual points in each
plot correspond to the raw classification image weights. The solid
lines correspond to the average classification image generated by
running 500 bootstrap simulations (generated by sampling the
data in each condition with replacement for each observer) and
then smoothing these images with a convolution kernel. The error
bars on each smoothed curve correspond to ±2 standard devi-
ations, calculated from the bootstrap simulations. Finally, the
dashed vertical line in each plot shows the location of the edge
of the central dot. These data reveal that, although the spatial
extent of the regions used by human observers was similar across
conditions, the relative weights assigned to the central and the sur-
rounding regions were markedly different. Specifically, all three
human observers tended to place relatively more weight upon the
central dot region in the presence of Small Inducers and relatively
more weight on the surrounding region in the presence of Large
Inducers.

We ran two sets of statistical analyses in order to verify these
effects. The first was a parametric test for the overall statistical
significance of (a) the difference between each raw radial classi-
fication image and the null hypothesis of zero correlation; and
(b) the difference between the raw radial classification images
obtained in the presence of Small vs. Large Inducers for each
observer and the data combined across observers. We used the
single-sample Hotelling T2 statistic to test against the null hypoth-
esis of zero correlation and the independent two-sample Hotelling
T2 statistic to test for significant differences between inducer con-
ditions (for details on computing Hotelling T2 statistics, see Abbey
and Eckstein, 2002; Eckstein et al., 2002; Shimozaki et al., 2005).
The results of these tests are shown in Table 1 (single-sample
tests) and Table 2 (two-sample tests). These data confirm that
the overall classification images for all observers in both condi-
tions significantly differed from a zero-correlation classification
image, and that the overall difference between the Small and
Large Inducer classification images was highly significant for all
observers.

We next gauged the likelihood that the weights at each loca-
tion deviated significantly from what would be expected purely
by chance by generating a series of classification images that were
created by randomly choosing noise images on each trial of the
experiment. Specifically, these classification images were created
by replacing the noise samples generated in our experiment with
newly generated noise samples and re-computing the classification
images. We generated 200 of these random classification images
for the individual subject data sets (10,000 trials) and another 200
for the collapsed data set (30,000 trials). We then computed the
mean and standard deviation across these replications in order to
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FIGURE 5 | Radially averaged classification images for the ideal

observer (A), three human observers (B–D) and the combined data

across all three human observers (E) in each condition of

Experiment 2. Error bars correspond to ±2 standard deviations,

estimated by bootstrap simulations. The gray band shows a region ±2
standard deviations around what would be expected from a purely
random classification image for the same number of trials (estimated by
bootstrap simulations; see text for details).
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generate the gray band shown in each panel of Figure 5. Thus,
this band represents ±2 standard deviations around the mean
randomly generated classification image. These simulations show
that the human classification image weights within and directly
surrounding the central dot fell well outside of this region (with
the exception of the locations corresponding to the border between
the two regions).

In addition to this spatial classification image analysis, we also
explored the effects of inducer size on observer’s use of infor-
mation across spatial frequencies. Specifically, we transformed
each of the classification images shown in the left two columns
of Figure 4 into the spatial frequency domain, and computed
the average squared amplitude at each spatial frequency in each
image (Figure 6). As in Figure 5, Figures 6A–D plots the results
for an individual observer in each condition (including the ideal
observer; Figure 6A). Figure 6E plots the results when the data are
combined across all three human observers. Individual points in
each plot correspond to the average squared amplitude in the clas-
sification image at a particular spatial frequency. The error bars
on each point correspond to ±2 standard deviations, computed
by running 500 bootstrap simulations (generated by sampling

Table 1 | Degrees of freedom, F values and p values obtained from the

single-sample HotellingT 2 statistic, testing the radial classification

images obtained for each human observer and the combined data

across observers in each condition against the null hypothesis of zero

correlation.

Observer df numerator df denominator F value p Value

Small Inducers vs. zero

AD 99 9901 149.48 <0.0001

JW 99 9901 159.84 <0.0001

PM 99 9901 207.19 <0.0001

COMBINED 99 29901 459.71 <0.0001

Large Inducers vs. zero

AD 99 9901 158.28 <0.0001

JW 99 9901 137.10 <0.0001

PM 99 9901 201.94 <0.0001

COMBINED 99 29901 455.02 <0.0001

Table 2 | Degrees of freedom, F values and p values obtained from the

independent two-sample HotellingT 2 statistic, testing for the

difference between the radial classification images obtained for each

human observer and the combined data across observers with Large

and Small Inducers.

Large Inducers vs. Small Inducers

Observer df numerator df denominator F value p Value

AD 99 19900 23.54 <0.0001

JW 99 19900 27.13 <0.0001

PM 99 19900 29.72 <0.0001

COMBINED 99 59900 33.21 <0.0001

the data in each condition with replacement for each observer).
These data reveal that observers adopted a strategy that involved
placing relatively more weight on slightly higher frequencies in
the presence of Large Inducers (peak at ∼∼6 c/deg in the pres-
ence of Small Inducers and ∼9 c/deg in the presence of Large
Inducers).

DISCUSSION
The goal of our experiments was to explore the information
processing correlates of the Ebbinghaus–Titchener size-contrast
illusion. In Experiment 1, we replicated the results of many pre-
vious experiments by demonstrating the subjective reality of this
illusion. In Experiment 2, we asked observers perform a detection
task with the same stimuli used in Experiment 1, albeit embedded
in high contrast visual noise. By comparing observers’ contrast
detection thresholds in this task to that of an ideal observer, we
found that the efficiency with which observers used information
did not depend upon the size of the inducing elements. By com-
puting the correlation between the noise contrast at each pixel
and the observers’ responses across trials, we found that observers
tended to place relatively more weight upon the region surround-
ing the inner dot in the presence of Large Inducers and relatively
more weight upon the region inside the inner dot in the presence
of Small Inducers. We also found that observers tended to place
relatively more weight upon slightly higher frequencies in the pres-
ence of Large Inducers (i.e., ∼9 c/deg) and relatively more weight
upon slightly lower frequencies in the presence of Small Inducers
(i.e., ∼6 c/deg).

So how do we interpret these findings? First, consider the
finding that efficiency was unaffected by the size of the induc-
ing elements. On the one hand, the subjective ratings given by
observers in Experiment 1 showed that observers’ judgments of
size are farther from veridical in the presence of Large than Small
Inducers. In addition, the tendency of human observers to assign
relatively greater weight to the center and relatively less weight to
the surround in the presence of Small Inducers is more similar
to the weights used by the ideal observer, which would predict
efficiency should be greater in the presence of Small than Large
Inducers (Murray et al., 2005). However, there are several reasons
why we might not expect to see such variations in efficiency across
conditions in Experiment 2. First, there is no necessary relation-
ship between an observer’s subjective experience of an illusion and
their ability to perform a task with the stimuli that produce the
illusion. That is, it is unclear how the misjudgments in perceived
size found in Experiment 1 should map on to an observer’s ability
to make use of information in Experiment 2. The most we can
ultimately hope for is that there may be some correlation between
the two (Teller, 1984). Second, the task we asked observers per-
form does not directly rely upon the precision of size judgments,
only the ability to detect the presence of the central dot. As such,
it is unclear that greater misjudgments in size would negatively
affect performance in such a task. And finally, the prediction
that greater similarity between the human and ideal classifica-
tion images should lead to greater efficiency assumes a number
of other factors know to effect efficiency are invariant across con-
ditions (e.g., internal noise, point-wise non-linearities; Murray
et al., 2005). More detailed measurements and analyses than those
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FIGURE 6 | Frequency domain representation of the raw classification images for the ideal observer (A), three human observers (B–D) and the

combined data across all three human observers (E) in each condition of Experiment 2. Error bars correspond to ±2 standard deviations (estimated by
bootstrap simulations; see text for details).

Frontiers in Psychology | Perception Science February 2014 | Volume 5 | Article 142 | 15

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Gold Information processing correlates of a size-contrast illusion

reported here would be required in order to properly test this
prediction.

Despite the equivocal nature of the efficiencies obtained in
Experiment 2, observers nevertheless exhibited the use of a
markedly different strategy in the presence of Large and Small
Inducers. So why observers might have adopted such different
strategies within different contexts? One potential source of this
effect could be the spatial frequency filtering that takes place during
the early stages of visual processing (Geisler, 1989). We explored
this possibility by building an ideal observer that was ideal in all
respects, with the exception that it was limited by the foveal con-
trast sensitivity function (CSF) of a normal adult human (inset
of Figure 7B). The CSF was generated from the fits reported in
Watson (2000). The CSF-limited ideal observer analysis was car-
ried out in a fashion similar to that described by Chung et al. (2002)
and Nandy and Tjan (2008). Specifically, the CSF was applied to
both the noise-free signals (with the inducing elements present)
as well as the noise-free templates (without the inducing elements
present) in the frequency domain in each condition. On each trial,
unfiltered white noise of the same variance as used in the original
experiments was added to the filtered signal, and the filtered tem-
plates were used to compute the likelihoods for each alternative
(i.e., present, absent). All other aspects of the CSF-limited ideal
observer analysis were the same as those used for the original ideal
observer analysis.

Figure 7 shows the classification images obtained from a simu-
lated experiment carried out with our CSF-limited ideal observer
performing the same detection task and for the same number of
trials as our human observers. Figure 7A plots the radially aver-
aged classification image, computed in the same fashion as the

plots in Figure 5; Figure 7B shows the Fourier representation
of the classification image, computed in the same fashion as the
plots in Figure 6. Interestingly, these data reveal that the center-
surround weighting in the human classification images is well
predicted by the filtering characteristics of the human visual sys-
tem. That is, unlike the true ideal observer, our human observers
and the CSF-limited ideal observer both give weight to the area
directly surrounding the central dot as well as the area within
the central dot. Despite these similarities, there appear to be no
discernable differences in the weighting of the center relative to
the surround in the presence of Large vs. Small Inducers for the
CSF-limited ideal observer. We also do not see the characteristic
shift toward weighting slightly higher spatial frequencies in the
presence of Large relative to Small Inducers that we found with
our human observers. Thus, although the human CSF accurately
predicts the gross center-surround characteristics of the human
observers’ classification images, the results of our simulation
suggest it is unlikely that the human observers’ tendency to differ-
entially weight the center and surround in the presence of different
sized inducers was due to the spatial frequency filtering that takes
place during the early stages of visual processing. The connection
between the variations in perceived size of the central element and
the differential weighting of the center and surround thus remains
unclear.

Of course, it is always possible that the magnitude of the
Ebbinghaus–Titchener size-contrast illusion is greatly reduced or
even non-existent when the central dot is presented at low contrast
in large amounts of pixel noise, as it was in our experiments. One
argument against this idea is that fact that our response classifica-
tion analyses showed that there were significant differences in how

FIGURE 7 | Classification images for a CSF-limited ideal observer in

Experiment 2. Panel (A) plots the radially averaged classification image, as
described in Figure 5; panel (B) plots the frequency domain representation of

the raw classification image, as described in Figure 6. Inset figure in (B) plots
the CSF used to limit the performance of the ideal observer (see text for
details).
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FIGURE 8 | Mean adjusted size matches for six new observers and the data combined across all observers under the same conditions as in

Experiment 1 (A) and Experiment 2 (B). Error bars correspond to ±2 standard errors of the mean.
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FIGURE 9 | Hypothetical stimuli that could be used in an experiment

that would involve having observers discriminate between the sizes of

the inner circles rather than detecting their presence (see text for

details).

observers made use of information within the context of large and
small inducers – an effect that is presumably related to the subjec-
tive experience of the illusion. However, the results of at least one
study suggest that there may in fact be some effect of the relative
contrast of the central and surrounding dots in the magnitude of
the illusion. Jaeger and Pollack (1977) asked participants to make
subjective judgments of the size of the central dot when (a) the
inducing dots and the central dot were both “black” and (b) the
inducing dots were “black” and the central dot was “gray” (i.e.,
relatively lower in contrast). Stimuli were shown against a uni-
form “white” background, and the inducing elements were either
larger or smaller than the central dot (the actual luminance or
contrast values used in the experiment were not specified). They
found that the magnitude of the illusion was reduced when the
central dot was gray relative to when it was black when the induc-
ing dots were large; however, they found the opposite effect when
the inducing elements were small: the magnitude of the illusion
increased when the central dot was gray relative to when it was
black.

Although the above study suggests that there may be some
relationship between the relative contrasts of the central and
surrounding elements and the magnitude of the Ebbinghaus–
Titchener illusion, the asymmetric effects of inducer size and
the lack of specification of the luminance and contrast levels
make the result somewhat difficult interpret. As such, we decided
to address this issue experimentally by having a new set of six
observers make subjective size ratings with low contrast stimuli
in the presence of high contrast noise, modeled closely after the

conditions experienced by our observers when participating in
Experiment 2. Specifically, we averaged the contrast energy thresh-
olds obtained for our original three observers and doubled this
value, in order to place it just over detection threshold. We then
used this value to set the contrast of the inner dot of the illusion
figure, in each of the conditions described in the Experiment 1
(i.e., Large Inducers, Small Inducers, and No Inducers). We also
added high contrast Gaussian noise to the figure, in the same man-
ner and at with the same variance as described in Experiment 2.
A new sample of noise was added to the figure for every trial of
the experiment (15 trials in each condition), and the offset com-
parison dot that observers were asked to adjust remained high in
contrast and noise-free. Each observer was tested in these three
conditions, as well as the same three high-contrast, no-noise con-
ditions originally tested in Experiment 1 (six conditions in all).
The order of the conditions was randomized for each observer.
All other aspects of the experiment were the same as described in
Experiment 1.

The results of this subjective rating experiment are shown in
Figure 8. Figure 8A shows the results for the conditions that
are the same as Experiment 1 (i.e., high contrast stimuli with
no added noise). All observers exhibited the characteristic effect
of judging the central dot to be relatively greater in size in the
context of small than large inducers, and four of the six observers
judged the size of the central dot to fall somewhere in between
in the absence of inducers. A one-way repeated measures ANOVA
revealed a significant effect of condition [F(2,5) = 12.53, p < 0.01].
Post hoc comparisons using the Tukey HSD test indicated that
the mean estimates were significantly greater in the Small Induc-
ers condition than the Large Inducers condition (p < 0.01) as
well as the No Inducers condition (p < 0.05), with no signif-
icant difference between the Large Inducers and No Inducers
conditions.

Figure 8B shows the results when the middle dot was low in
contrast and embedded in high contrast noise. All but one observer
(SB) exhibited the characteristic effect of judging the central dot
to be relatively greater in size in the context of small than large
inducers. Surprisingly, only one observer (AB) judged the size
of the central dot to fall somewhere in between these sizes in
the absence of inducers; the remaining five observers judged the
size of the central dot to be smallest in the absence of inducers.
This result is consistent with the asymmetric effects of bright-
ness reported by Jaeger and Pollack (1977). A one-way repeated
measures ANOVA again revealed a significant effect of condition
[F(2,5) = 5.51, p < 0.05]. Post hoc comparisons using the Tukey
HSD test indicated that the mean estimates were significantly
greater in the Small Inducers condition than the Large Induc-
ers and No Inducers conditions (p < 0.05), with no significant
difference between the Larger Inducers and No Inducers condi-
tions. Finally, A 2 (stimulus contrast condition) × 3 (inducer
condition) two-factor ANOVA with repeated measures on both
factors showed that there was a significant effect of inducer con-
dition [F(5,2) = 11.11, p < 0.01] with no significant effect of
stimulus contrast condition [F(5,1) = 3.53, p = 0.11] nor a
significant inducer condition × stimulus contrast condition inter-
action [F(5,2) = 1.09, p = 0.37]. Taken together, these results
demonstrate that the Ebbinghaus–Titchener size-contrast illusion
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is relatively unaffected by the presentation of the central dot at a
low level of contrast within high contrast pixel noise, and strongly
suggest that our original three observers were experiencing the size
illusion under the conditions used in Experiment 2.

CONCLUSION
The results of our experiments offer some interesting new insights
into the information processing correlates of the Ebbinghaus–
Titchener size-contrast illusion. Namely, the subjective size of
the central element in the illusion appears to be related to the
amount of weight observers assign to the areas within and directly
surrounding the central element as well as the range of spa-
tial frequencies that they rely upon when they are asked to
perform a simple detection task. We were unable to account
for this effect by a simple model that incorporates the overall
spatial frequency filtering characteristics of early visual process-
ing, as summarized by the foveal CSF of a normal human
adult. Given these results, it may be tempting to conclude
that the effects we have observed are due to the operation of
processes involved with making higher-level judgments about
the relative sizes of objects (e.g., Massaro and Anderson, 1971;
Coren and Girgus, 1978; Coren and Enns, 1993). However,
it is still possible that a more detailed front-end model (e.g.,
Chirimuuta et al., 2003) that incorporates additional aspects of
the early stages of visual processing, such as oriented V1 receptive
fields, parafoveal variations in contrast sensitivity, and cortical
magnification, might make predictions not captured by sim-
ply incorporating the overall CSF, and these predictions may
map more directly on to the results of our classification image
analyses.

Finally, although we chose to use a detection task in our exper-
iments for its relative simplicity, an interesting future direction
would be to carry out similar experiments using tasks that might
rely more directly upon an observer’s ability to make judgments
about relative size. Figure 9 illustrates a task and set of stim-
uli one might use in such a hypothetical experiment. In this
case, an observer would be asked to determine which of two
central dots that slightly differ in size had appeared on a given
trial, in the presence of either large or small inducing elements.
It is possible that such a task would tap more directly into the
same underlying processes that lead to the misperception of size
associated with the subjective experience of the Ebbinghaus–
Titchener illusion. We are currently exploring these and other
possibilities.
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Previous studies have found that the amplitude of the early event-related potential (ERP)
components evoked by faces, such as N170 and P2, changes systematically as a function
of noise added to the stimuli. This change has been linked to an increased perceptual
processing demand and to enhanced difficulty in perceptual decision making about faces.
However, to date it has not yet been tested whether noise manipulation affects the neural
correlates of decisions about face and non-face stimuli similarly. To this end, we measured
the ERPs for faces and cars at three different phase noise levels. Subjects performed the
same two-alternative age-discrimination task on stimuli chosen from young–old morphing
continua that were created from faces as well as cars and were calibrated to lead to similar
performances at each noise-level. Adding phase noise to the stimuli reduced performance
and enhanced response latency for the two categories to the same extent. Parallel to that,
phase noise reduced the amplitude and prolonged the latency of the face-specific N170
component. The amplitude of the P1 showed category-specific noise dependence: it was
enhanced over the right hemisphere for cars and over the left hemisphere for faces as a
result of adding phase noise to the stimuli, but remained stable across noise levels for cars
over the left and for faces over the right hemisphere. Moreover, noise modulation altered
the category-selectivity of the N170, while the P2 ERP component, typically associated
with task decision difficulty, was larger for the more noisy stimuli regardless of stimulus
category. Our results suggest that the category-specificity of noise-induced modulations
of ERP responses starts at around 100 ms post-stimulus.

Keywords: phase noise, category effect, P1, N170, P2

INTRODUCTION
There has been a long tradition of applying external noise to visual
stimuli in the last two decades of the 20th century in visual psy-
chophysics as well as in studies of face perception to study various
stages of visual processing (Costen et al., 1994; Gold et al., 1999;
Näsänen, 1999). Common methods included noise manipulation
combined with electrophysiological and brain imaging methods
to investigate and identify the underlying neuronal mechanisms
of the various functions of the perceptual system. In recent stud-
ies, different types of external noise were used, including uniform
white noise (Wild and Busey, 2004), Gaussian noise (Jemel et al.,
2003), bit noise (Smith et al., 2012), multiplicative noise com-
bined with brain imaging techniques (e.g., Schyns et al., 2003,
2007, 2009; Smith et al., 2004, 2006, 2007, 2008, 2009; Rutishauser
et al., 2011), Fourier phase-randomization techniques (Rousselet
et al., 2008a; Bankó et al., 2011) with the mean-phase random-
ization (Dakin et al., 2002), and pink noise (Tjan et al., 2006;
Rousselet et al., 2008a,b). These techniques provided valuable
insights into the spatial and temporal events at different corti-
cal regions in the human brain involved in different stages of face
processing.

Regarding human face perception, electrophysiological stud-
ies have described a large positive (P1) and negative (N170) wave

over the occipital and posterior occipito-temporal areas that might
be sensitive to face stimulation (Bentin et al., 1996; Eimer, 2000a;
Itier and Taylor, 2004). As of today, usually the N170 is consid-
ered as the first clearly face-sensitive event-related potential (ERP)
component, although category-specific processes have been sug-
gested by some studies to be present already at 100 ms (or even
50−80 ms) after stimulus onset (corresponding to the P1 com-
ponent; George et al., 1997; Seeck et al., 1997; Liu et al., 2002;
Herrmann et al., 2005a; Thierry et al., 2007). The N170 is higher
in amplitude and shorter in latency to pictures of faces than to
exemplars of other non-face object categories (Bentin et al., 1996;
for reviews see Rossion and Jacques, 2008, 2011; Eimer, 2011).
Recently, however, the specificity of N170 for faces has been ques-
tioned by studies that failed to demonstrate higher N170 ampli-
tude for faces when compared with cars (Rossion et al., 2000a;
Schweinberger et al., 2004; Thierry et al., 2007; Dering et al., 2011;
Kloth et al., 2013).

With regard to noisy stimulation, Jemel et al. (2003) used
a parametric design to characterize early ERPs to face stimuli
embedded in gradually decreasing levels of random Gaussian
noise. The authors found that while the P1 component was unaf-
fected by noise levels, there was a linear increase in the amplitude
and a decrease in the latency of the N170 with decreasing levels of
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noise. Jemel et al. (2003) concluded that while the early P1 com-
ponent is likely to reflect the stage at which the perceptual analysis
of faces is achieved, the N170 seems to reflect the successful cat-
egorization of faces (Liu et al., 2002; Jemel et al., 2003). In other
words, earlier ERP components might reflect the extraction of
task-relevant information from noisy stimuli. This modulation of
the N170 component is in line with findings showing attenuated
and delayed N170 to faces either without internal features or in the
absence of their contours (Eimer, 2000a). In addition, Rousselet
et al. (2008b) found that sensitivity to phase noise falls in the time
window of the N170 (130–170 ms).

The P2 ERP component is characterized by a positive-going
deflection over lateral occipito-temporal areas and a maximal peak
between 200 and 250 ms. Recently, it has been shown that the
amplitude of the P2 is sensitive to the inversion of either the
entire face or of its parts (Milivojevic et al., 2003; Boutsen et al.,
2006) and has been linked to the processing of spatial relations
between facial features in individual faces (Latinus and Taylor,
2006). Wiese et al. (2009) have shown that own race faces gen-
erate larger P2 components when compared with faces of other
races, although, this effect interacts with expertise (Stahl et al.,
2008). Larger P2 was also reported for younger when compared
to older face stimuli (Stahl et al., 2008). Furthermore, it has been
suggested that the P2 is involved in individual face recognition
mechanisms (Halit et al., 2000). Altogether, these results suggest
that the P2 is involved in the deeper and more advanced anal-
ysis of faces when compared to earlier components. Regarding
noisy stimulation, Rousselet et al. (2007, 2008a) showed that the
P2 is larger to noise patterns in comparison to faces. In a follow-
up study, they tested whether this difference was independent
from the changes of the N170 amplitude and therefore a peak-
to-peak analysis was carried out on the modeled data (Rousselet
et al., 2008b). The authors found that the P2 difference is a simple
carry-over effect that was present already on the N170. In addi-
tion, the P2 was identified as a clear neural correlate of decision
difficulty under noisy stimulation (Philiastides et al., 2006; Heek-
eren et al., 2008). However, a recent study using image warping
as well as phase noise to manipulate task difficulty found that
rather, the P2 reflects noise-sensitive increases of sensory pro-
cessing and not task difficulty per se (Bankó et al., 2011). In a
previous ERP study, we confirmed these results and distinguished
the nature of adding phase noise from that of another irrelevant,
overlapping car image (Nagy et al., 2009). We found that adding
phase noise reduces the N170 component, while the amplitude of
the P2 component increases with the amount of noise added. In
addition, the P2 was larger in the phase noise condition than if
another coherent, but irrelevant stimulus (a car) was added to the
face.

In general, adding noise to face images leads to smaller N170
amplitudes, reflecting impaired early structural face processing
(Bentin and Deouell, 2000; Eimer, 2000a,b for a review see Rossion
and Jacques, 2008), as well as to larger P2 amplitudes. However,
the effect of noise reflected in the early P1 component is equivocal
as of today. While Jemel et al. (2003) found that the effect of added
noise does not affect P1 amplitude, other studies have demon-
strated that the P1 and P2 components are significantly larger in
the noise-present when compared with noise-absent conditions

(e.g., Curran et al., 1993; Tucker et al., 1994; Mercure et al., 2008;
Bankó et al., 2011).

To the best of our knowledge, so far no study has explicitly
compared the noise-dependence of face and non-face stimulus
categories. The goal of the present study was to test whether adding
phase noise to stimuli affects the neural processing of different
high-level categories, such as faces and cars, in a similar way.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen naïve, healthy volunteers (two left-handed, eight females,
mean age: 22.1 years ± 2.1 years SD) participated in the study.
They received partial course credits for their participation and gave
signed, informed consent in accordance with the Ethical Com-
mittee of the Budapest University of Technology and Economics
prior to testing. All participants had normal or corrected-to-
normal visual acuity, no previous history of any neurological or
ophthalmologic diseases and were not under medication. Three
participants were excluded from the final electrophysiological
analyses due to insufficient numbers of ERP segments after arti-
fact rejection. Therefore, statistical analysis was conducted on the
data of thirteen subjects (seven females, one left-handed, mean
age: 21.5 years ± 1.8 years SD).

STIMULI
Front-view grayscale images of faces and cars were used with age
gradually changing, with or without phase noise. Face stimuli
were digital images of six Caucasian males from a larger face
database (Minear and Park, 2004). Three of them were younger
than 30 years old, while the others were older than 60 years old. Car
images were old and new variations of the same models of three
well-known commercial car types (VW, Mercedes, and Jaguar),
and were downloaded from freely available websites. Car images
were presented in full frontal views, similar to those of Kloth
et al. (2013). All images were first converted into grayscale (8 bit)
using Adobe Photoshop CS3 Extended 10.0 (Adobe Systems Inc.).
Stimuli of both categories were then revealed through a circular
aperture (radius = 153 pixels). Stimulus size was equated for each
category (mean height and width of the faces and cars were 248
and 154 pixels, and 153 and 251 pixels, respectively; see Figure 1).
Since previous studies have shown that early ERP components,
such as P1, are sensitive to luminance (Johannes et al., 1995) and
that neural processes are sensitive to luminance histogram skew-
ness (Olman et al., 2008), we have equated all stimuli in luminance
and matched their histograms using the lummatch and histmatch
functions of the SHINE toolbox (Willenbockel et al., 2010). On the
other hand, we did not equate the spectral content of the images, as
we would concurrently have manipulated artificially the difficulty
of the age-discrimination task for the face stimuli. It is well known
that facial aging is reflected in the dynamic, cumulative effects of
the skin, and is a complex synergy of skin textural changes and the
loss of facial volume (Coleman and Grover, 2006). The decreased
tissue elasticity and the redistribution of subcutaneous fullness
result in a larger amount of higher spatial frequency informa-
tion. This low-level difference between younger/newer and older
individuals does not appear when comparing new cars to old
ones.
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FIGURE 1 | Procedure and sample stimuli. Timeline depicts some examples of faces and car test stimuli at different levels of phase coherences (100, 30, or
24%) and with different ages (young, middle-aged, or old).

In order to increase task difficulty, two different types of
stimulus manipulations were applied. First, we decreased the
age difference between young and old stimuli using a warp-
ing algorithm (Winmorph 3.01; Kovács et al., 2005, 2006, 2007;
Bankó et al., 2011). That is, we paired a young and an old
image of the same category and created a morph continuum
with seven intermediate images of faces and cars. Second, the
coherence of the original images (100% phase coherence) and
the intermediate morphs was manipulated by decreasing their
phase coherence in two steps (30 and 24% phase coherences,
respectively) using the weighted mean phase technique (Dakin
et al., 2002). In fact it means that we have manipulated the
phase coherence of the RGB values (and not the luminance
values) of the stimuli. This phase-randomization resulted in
the gradual elimination of the cues important for accurate age
judgments.

To avoid behavioral ceiling or floor-effects and to have com-
parable performance for face and car stimuli, first we performed
a behavioral pilot experiment (n = 12). We tested the age dis-
crimination performance of participants for 10 exemplars of faces
and cars as well as for 10 incrementally graded noise levels from
0 to 100% phase coherence. For the final three stimulus-pairs,
morph levels of the young–old continuum and the exact per-
centage of phase noise were selected based on the results of
this pilot study, so that the average age-discrimination perfor-
mance would be similar across faces and cars for each phase noise
level.

Stimuli were presented centrally on a uniform gray background
on a 26 inch LCD monitor at a refresh rate of 60 Hz, while view-
ing distance (57 cm) was maintained using a chinrest. Stimulus

presentation was controlled by MATLAB 2008a (Mathworks, Nat-
ick, MA, USA) using Psychtoolbox 3.0.9 (Brainard, 1997; Pelli,
1997) and custom-made scripts.

PROCEDURE
As it is generally more difficult to determine the age of a car than
the age of a face, as suggested by the results of the pilot study,
first, participants were presented with a practice session for the car
stimuli prior to the experiment.

Practice experiment
In the first part of the practice, participants had to choose the
younger (newer) car from a pair of stimuli, depicting the end-
points of the morph continuum, or in other words the oldest and
youngest versions of a model. Each pair was presented eight times
(exposition time = until response; inter-trial interval = 500 ms).
The newer model was displayed randomly on either the left or the
right side. Participants received feedback after each trial as well
as at the end of the block. Participants performed at least four,
but not more than six blocks of 24 trials. The practice was inter-
rupted if 90% correct performance was reached in two consecutive
blocks. A subject was excluded from the study if their perfor-
mance did not reach this criterion even after 10 practice blocks
(0 participants).

Second, participants performed an age-discrimination task on
individually presented cars depicting the endpoints of morph
continuums. In this part of the practice a fixation screen was
presented in the beginning of each trial for a random time
between 800 and 1200 ms, followed by the presentation of the
test image (100% phase coherence) for 300 ms. Participants were
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instructed to respond within 2 s after stimulus onset (inter-trial
interval = 800 ms). Within a single block, car stimuli were pre-
sented in a random order. Subjects had to perform 4–6 blocks of
24 trials (each car presented four times in a random order). The
practice was interrupted if 90% correct performance was reached
in two consecutive blocks. A subject was excluded from the study
if her/his performance did not reach this criterion even after six
practice blocks (0 participants).

Finally, immediately prior to the ERP recording experiment,
participants were asked to passively fixate the center of each stim-
ulus (both faces and cars) at each noise level and at each morph
level for 5000 ms (inter-stimulus interval 1000 ms) for the subjects
once, to avoid strong familiarity effects of the practice phase with
cars.

ERP recording experiment
Subjects performed an old vs. young age discrimination task for
faces and cars. The trial structure was identical to that of the second
task of the practice experiment (Figure 1). Noise-levels, stimu-
lus categories, and morph levels were intermixed and presented
in random order within each block. Each participant completed
eight blocks of 378 trials [2(category; face vs. car) × 3(exemplars;
face morph-continuum vs. car morph-continuum) × 3(coher-
ence level, 100% vs. 30% vs. 24%) × 7(morph level) × 3(number
of repetitions)]. Subjects were allowed to take a short break
between blocks. An experimental session lasted approximately
100 min.

BEHAVIORAL DATA ANALYSIS
Accuracy and response times (RTs) were collected during the
experiment. Performance was assessed by computing just notice-
able differences (JND) as the smallest difference in morph level
required to perform the old versus young age discrimination task
reliably (Lee and Harris, 1996; Bankó et al., 2009) for each stimu-
lus type individually. First, psychophysical data were modeled by
the cumulative Gaussian psychometric function, using the Psignifit
toolbox (Version 2.5.6.) for MATLAB (Wichmann and Hill, 2001).
JNDs were calculated using the equation JND = (Perf75–Perf25)/2,
where Perf75 and Perf25 denote the morph levels leading to 75
and 25% accuracies, respectively. JNDs for different stimuli and
noise levels were calculated separately. RTs were calculated as the
average of the RTs for stimuli yielding 25 and 75% performance.
JNDs and RTs were analyzed with a 2 × 3 repeated measures
ANOVA with category (2; face vs. car) and phase coherence
(100% vs. 30% vs. 24%) as within-subject factors. Post hoc t-tests
were computed using Fisher’s Least Significant Difference (LSD)
tests.

ELECTROPHYSIOLOGICAL RECORDING AND ANALYSIS
EEG acquisition and processing
Electroencephalography (EEG) data was recorded using a Brain-
Amp (BrainProducts GmbH, Munich, Germany) amplifier from
60 Ag/AgCl scalp electrodes placed according to the international
10/10 electrode system (Chatrian et al., 1985) and mounted on an
ActiCap (Easycap, HerrschingBreitbrunn, Germany). Addition-
ally, four periocular electrodes were placed at the outer canthi
of the eyes and above and below the right eye for recording the

electrooculogram (EOG). All channels were referenced to FCz
online and digitally transformed to a common averaged reference
offline. The ground was placed at AFz and all input impedances
were kept below 10 k�. EEG was digitized at a 1000 Hz sampling
rate with an analog bandpass filter of 0.016–1000 Hz. Subse-
quently, a digital 0.1 Hz, 12 dB/octave Butterworth zero phase
high-pass filter was used to remove DC shifts, and a 50 Hz
notch filter was applied to minimize line-noise artifacts. Finally,
a 12 dB/octave low-pass filter with a cut-off frequency of 50 Hz
was applied. Trials that contained voltage fluctuations exceeding
±100 μV, or eye blinks exceeding ±50 μV were rejected.

ERP data analysis
After the eye blink artifacts were corrected (Gratton et al., 1983) the
EEG was segmented offline using Brain Vision Analyzer 1.05.0002
(Brain Products GmbH, Munich, Germany) into 1300 ms epochs
using a 500 ms pre stimulus interval. Segments were baseline cor-
rected over the 500 ms prestimulus window, artifact rejected, and
averaged to obtain the ERP waveforms for each subject and for
each condition. Individual ERPs were averaged to compute the
grand average ERP for visualization. Statistical analysis was per-
formed on the early visual components P1, N170, and P2 of
the individual average ERP waveform. The peak amplitude and
latency of the individually averaged ERPs was extracted using
a semiautomatic detection algorithm that identified the global
maxima separately for each selected channels in a specific time
window. P1 was defined as a main positive deflection in the
80–130 ms time window. N170 was defined as a negative com-
ponent at around 130–200 ms after stimulus onset, and P2 as
a second positive component in the 200–250 time window. P1
amplitude was measured over O1, PO7 (left hemisphere, LH), and
O2, PO8 (right hemisphere, RH) electrode positions. In the case
of the N170, the usual posterior-occipito-temporal sites, corre-
sponding to the PO7, PO9, P7, and P9 (LH) and PO8, PO10,
P8, and P10 (RH) were used, while P2 amplitude was measured
over PO3, PO7, O1 (LH), and PO4, PO8, and O2 (RH) chan-
nels. Both amplitude and latency values of the pooled values of
the relevant electrodes were entered into a four-way repeated-
measures ANOVA with hemisphere (2; left vs. right), category
(2; face vs. car), coherence (3; 100% vs. 30% vs. 24% phase
coherence), and age (3; young/new vs. middle-aged vs. old)
as within-subject factors separately for each component. The
Greenhouse–Geisser correction was applied to correct for pos-
sible violations of sphericity. Post hoc tests were computed using
Fisher’s LSD tests.

RESULTS
BEHAVIORAL RESULTS
The age-discrimination performance of the participants was sim-
ilar for faces and cars (main effect of category: F(1,15) = 0.198,
p = 0.661, η2 = 0.013; Figure 2A), suggesting that the difficulty of
the task was similar for the two stimulus categories. As expected,
additional phase noise reduced the performance incrementally
(main effect of coherence: F(1.11,16.58) = 13.002, p < 0.0001,
η2 = 0.464). This effect was similar for the two stimulus cate-
gories, as suggested by the lack of interaction between category
and coherence (F(2,30) = 0.0461, p = 0.955, η2 = 0.003).

Frontiers in Psychology | Perception Science April 2014 | Volume 5 | Article 367 | 24

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Németh et al. Category-specific noise effects

FIGURE 2 | Behavioral results. Effect of added noise on the accuracy
(A) and response times (B) in the age discrimination task for faces (black
columns) and for cars (gray columns). Just noticeable differences (JND;
±SD) were calculated (see Materials and Methods) to characterize the
performance of the subjects. The x -axis denotes different levels of phase
coherences (*p < 0.05).

Paralleling performance results, RTs were also prolonged
by reduced phase-coherence (main effect of coherence:
F(1.1,16.54) = 23.98, p < 0.0001, η2 = 0.62, Figure 2B). In addi-
tion, significantly longer RTs were found for car stimuli when
compared to faces [main effect of category: F(1,15) = 5.47,
p = 0.03, η2 = 0.27], at least for the 100% coherence condi-
tion (category × coherence level interaction: [F(2, 30) = 3.316,
p < 0.05, η2 = 0.181].

RESULTS OF THE ELECTROPHYSIOLOGICAL MEASUREMENT
The stimuli evoked ERPs with clearly identifiable P1, N170, and
P2 components, measured at occipital and posterior-occipito-
temporal sites. Figure 3 depicts the grand average ERPs of the
pooled recording sites over the LH and RH, displayed between
−100 and 500 ms.

P1
Significantly larger P1 amplitudes were observed for faces when
compared to car stimuli [main effect of category: F(1,12) = 10.16,
p = 0.008, η2 = 0.46]. Importantly, the noise-induced modulation
of the P1 component showed category-specificity in a hemisphere-
specific manner [hemisphere × category × coherence interaction:
F(2,24) = 8.8452, p < 0.01, η2 = 0.4243], as it was enhanced as a
result of adding noise to the images over the RH for cars (post hoc
test for 100% vs. 30 or 24%: p < 0.005 for both comparisons) and
over the left hemisphere for faces (post hoc tests for 100% vs. 30 or
24%: p < 0.01 for both comparisons) but remained stable across
phase coherence levels for cars over the left and for faces over the
right hemisphere (Figure 4A). Facial aging is mainly reflected
in changes of skin textures and in altered tissue elasticity. As
these changes can increase the amount of higher spatial frequency
information only in the case of older face stimuli such low-level
differences might explain the different phase-noise dependency of
P1 for faces and cars. However, since age decisions for faces are
mainly based on these factors (e.g., George and Hole, 2000), we
have not equated the spectral content of the images. However, to
test whether the significant hemisphere × category × coherence
interaction is due to any differences in the spatial frequency con-
tent in the 100% phase coherent stimuli, we tested the effect of
wrinkling/skin texture changes on the range of higher spatial fre-
quency information. We plotted the spectral content of the 100%
phase coherent stimuli by using the sfplot method of the SHINE
toolbox (Willenbockel et al., 2010) and compared these functions
for faces and cars at every morph level. Due to the small sam-
ple size, we used non-parametric ranked t-tests (point-by-point
two-tailed Mann–Whittney U tests with Bonferroni-corrected p
values). Although we found that the older the face stimuli, the
more pronounced the spectral difference in the range of higher
spatial frequency information when compared with car stimuli, it
is worth noting that the spectral content of the youngest stimuli
did not differ between the two categories. Next, we investigated the
hemisphere × category × coherence × age interaction. The results
suggest that the age information of the stimuli do not modulate
the strength of the hemisphere-specific category effect reflected in
the P1 component [hemisphere × category × coherence × age
interaction: F(4,48) = 0.33, p = 0.86, η2 = 0.03, n.s.], arguing
against the role of low-level spectral differences in explaining the
results. Moreover, the age of the stimuli as a categorical factor
neither had a main effect [F(2,24) = 2.78, p = 0.09, η2 = 0.19]
nor had any significant two-way (any ps > 0.13), three-way (any
ps > 0.25), or four-way interactions (any ps > 0.75) with other
factors. Taken together with the fact that no significant differences
in spectral content were observed between the youngest 100%
phase coherent face and car stimuli, our results suggest that the
observed hemisphere × category × coherence three-way interac-
tion is not due to the low-level spectral differences in the original
stimuli.

The latency of the P1 was significantly longer for cars when
compared to faces [main effect of category: F(1,12) = 22.65,
p = 0.0005, η2 = 0.65]. Adding phase noise to the stimuli
increased the latencies of P1 component [main effect of coher-
ence: F(1.27,15.27) = 9.7, p = 0.0008, η2 = 0.4468, post hoc
LSD: 100% vs. 30 and 24%: p < 0.002 for both comparison].
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FIGURE 3 | Grand average ERPs displayed between −100 and 500 ms

of the pooled posterior-occipito-temporal recording sites of the N170

for the left (LH) and for the right hemisphere (RH). 100% phase
coherence: thick line, 30% phase coherence: dashed line, 24% phase
coherence: dotted line; for faces (black) and cars (red), respectively. Insets

depict the category-specificity of noise-induced modulations on the P1
component. Topographical voltage maps of ERP differences between faces
and cars at different phase coherence levels (100%-upper, 30%-middle,
24%-lower) show hemispheric asymmetries in the P1 time window.
Positivity is red.

This difference in latency was, however, similar for both categories
[category × coherence interaction: F(1.71,20.5) = 1.77, p = 0.19,
η2 = 0.13; Figure 4D].

N170
We found a significant main effect of coherence for the ampli-
tude of the N170 component, [F(1.48,17.78) = 71.45, p < 0.0001,
η2 = 0.86] reflecting the reduction of the N170 amplitude as the
phase coherence decreases. It is worth noting that this effect was
larger for the right when compared with the left hemisphere as
suggested by the significant hemisphere × coherence interaction
[F(1.28,15.38) = 5.52, p = 0.01, η2 = 0.32, Figure 4B]. Inter-
estingly, N170 amplitudes did not show the typically observed
face-specificity (see Kloth et al., 2013 for similar results): the
N170 was almost identical for both faces and cars [main effect
of category: F(1,12) = 0.49, p = 0.5, η2 = 0.04]. However,
adding phase noise changed the category selectivity of the N170
as suggested by the significant category × coherence interaction
[F(1.57,18.88) = 3.94, p = 0.03, η2 = 0.25].

As for the N170 latency, a strong tendency of category depen-
dence was found, suggesting that face stimuli evoked an N170 com-
ponent earlier than cars [main effect of category: F(1,12) = 4.32,
p = 0.06, η2 = 0.26]. The N170 was delayed by adding noise
to the stimulus [main effect of coherence: F(1.06,12.77) = 7.82,
p = 0.0024, η2 = 0.39, post hoc LSD: 100 vs. 30 and 24%:
p = 0.005 for both comparisons]. In addition, a hemispheric
asymmetry was also found in the noise-induced modulation of
the N170 latencies [interaction between hemisphere and coher-
ence: F(1.38,16.59) = 4.8, p = 0.0018, η2 = 0.29], which was due
to shorter latencies for noise absent stimuli over the RH (LSD:
p < 0.01), but similar latencies of the RH and LH for the other
two noise conditions (LSD: ps > 0.34; Figure 4E).

P2
Supporting prior results (Philiastides et al., 2006; Nagy et al., 2009;
Bankó et al., 2011), phase noise enhanced the amplitude of the
P2 gradually [main effect of coherence: F(1.05,12.6) = 25.06,
p < 0.0001, η2 = 0.68]. Moreover, significantly larger P2 ampli-
tudes were observed for face stimuli when compared to cars
[main effect of category: F(1,12) = 40.17 p < 0.0001, η2 = 0.77,
Figure 4C]. This effect was more pronounced in the right
hemisphere, as suggested by the significant interaction between
hemisphere and category [F(1,12) = 6.17, p = 0.03, η2 = 0.34]. It
is worth noting, however, that the category selectivity of the com-
ponent was not altered by the amount of altered phase coherency
[interaction between category and coherence: F(1.25,15.02) = 1.6,
p = 0.22, η2 = 0.12]. Finally, the P2 component also showed a
strong tendency toward a RH dominance [main effect of hemi-
sphere: F(1,12) = 4.36, p = 0.059, η2 = 0.27]. No significant
effects and interactions were observed on the P2 latency values
(Figure 4F).

The effect of stimulus ambiguity
Recent results suggest that stimulus ambiguity plays a role in
determining the susceptibility of the N170 to stimulus adapta-
tion (Walther et al., 2013). In order to test the effect of stimulus
ambiguity and its noise dependence, we compared the early ERP
components for the endpoints of morph continua (oldest and
youngest stimuli) and for the most ambiguous (i.e., middle-
aged) stimulus groups (see Materials and Methods). The first
ERP component reflecting stimulus ambiguity was the N170:
its amplitude was larger for middle-aged stimuli, as suggested
by the main effect of age [F(1.9,12.75) = 10.13, p = 0.0006,
η2 = 0.46; post hoc LSD tests: old vs. middle-aged: p = 0.0004,
young vs. middle-aged: p = 0.001 but young vs. old p = 0.66,
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FIGURE 4 | Mean (±SD) of the amplitudes and latencies of the (A,D) P1, (B,E) N170, and (C,F) P2 components for faces (black columns) and cars (gray

columns) at different levels of phase coherences.
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respectively]. N170 also had a RH dominance for middle-aged
and young stimuli but not for old ones (significant hemi-
sphere × age interaction: F(1.5,18.1) = 12.53, p = 0.0002,
η2 = 0.51, Fisher’s LSD tests: p < 0.0001 for both young and
middle-aged stimuli and p = 0.31 for old stimuli, respectively).
Interestingly, larger N170 amplitudes were measured for old cars
when compared to faces, as suggested by the significant interac-
tion between category and age [F(1.84,22.14) = 16.98, p < 0.0001,
η2 = 0.59; Fisher’s LSD: p < 0.0001 for old stimuli but not for
middle-aged or young stimuli: ps > 0.13]. This effect was more
pronounced in the RH [three-way interaction among category,
hemisphere and age: F(1.65,19.78) = 8.13, p = 0.002, η2 = 0.4;
Figure 5]. Another interesting result is that for noisy stimuli,
the younger the faces were, the more pronounced the category
effect was, as suggested by the significant category × coher-
ence × age interaction [F(2.35,28.23) = 10.12, p < 0.0001,
η2 = 0.46].

We observed larger P2 components for face than for car stim-
uli at every level of stimulus ambiguity, but this effect was the
most pronounced for the old stimuli and weaker for the young
ones (significant category × age interaction: F(1.52,18.2) = 8.01,
p = 0.002, η2 = 0.4). No other effect of stimulus ambiguity was
found.

DISCUSSION
The goal of the present study was to test whether adding phase
noise to a stimulus affects the neural processing of complex object
stimuli in a category-specific manner by recording ERPs for faces
and cars at different levels of phase coherences. Several previous
ERP studies applied different types of noise to manipulate the dif-
ficulty of decisions about faces (Bentin et al., 1996; McKone et al.,
2001; Jemel et al., 2003; Wild and Busey, 2004; Rousselet et al.,
2008b; Bankó et al., 2011). They found that adding noise to faces
(or reducing their phase coherence) affects the P1 – N170 – P2

FIGURE 5 |The effect of stimulus ambiguity reflected on the N170

component. Mean (±SD) of the amplitudes of the N170 for faces (black
columns) and cars (gray columns) at different level of age (old vs.
middle-aged vs. young).

ERP complex. In the case of the face-specific N170, it was found
that phase noise reduces its amplitude dramatically (Jemel et al.,
2003; Nagy et al., 2009; Bankó et al., 2011) and also prolongs its
latency. In addition to the changes observed in the N170 ampli-
tude, different types of noise manipulations made the behavioral
task more difficult per se and this difficulty was linked to the P2
ERP component (Philiastides et al., 2006; Heekeren et al., 2008):
the amplitude of this component was enhanced parallel to the
difficulty of the task. Later, however, it was shown that the
noise-induced modulation of the P2 reflects increased visual cor-
tical processing demands instead of task difficulty per se (Bankó
et al., 2011). Although the effect of phase noise on the electro-
physiological correlates of face perception has been investigated
extensively, the question whether noise-induced modulation of
these components is specific to the category of faces has so far
remained unanswered. The present results suggest that the early
P1 component shows a category-dependent modulation of phase
coherence.

The results of the electrophysiological recordings suggest that
the first stage where category-dependent phase noise-induced
modulation can be observed is the level of the early P1 com-
ponent. In the noise-absent conditions, faces elicited larger P1
amplitudes when compared with cars in the RH, while no such
category-specific effects were found in the LH (for similar results
see Itier and Taylor, 2004). P1 is usually referred to as an early
indicator of the endogenous processing of visual stimuli, and it is
especially linked to spatial processing (Mangun, 1995). Recently,
however, it has been shown that P1 reflects more than simply the
low-level features such as contrast or luminance of the stimuli,
it also indexes an early stage of visual processing, being sensi-
tive to stimulus category such as faces (Taylor, 2002). As noted
by Itier and Taylor (2002), P1 could reflect the holistic pro-
cessing of a face as a face, whereas the later N170 component
would reflect facial configurations. Adding noise to a face causes
enhanced P1 in some studies (Schneider et al., 2007; Rousselet
et al., 2008b; Nagy et al., 2009; Bankó et al., 2011, 2013), while
others suggest that P1 is unaffected by such changes (Jemel et al.,
2003; Wild and Busey, 2004; Horovitz et al., 2004). Interestingly,
in both cases, it has been suggested that P1 is not involved in any
aspect of face-processing, but it is rather involved in the sensory
analyses of the images, irrespective of their content (Jemel et al.,
2003). In the present study, the noise-induced modulation of the
P1 showed category-sensitivity in a hemisphere-specific manner.
Adding noise enhanced P1 amplitudes for cars over the RH but
it had no effect over the LH, and vice versa; enhanced P1 values
were observed for faces in the LH but not in the RH. These results
suggest that the category-specificity of the noise-induced mod-
ulation of the ERP appear very early, that is, already at 100 ms
after stimulus onset. Although we have equated all stimuli in
luminance and matched their histograms, we did not equate the
spectral content of faces and cars since larger amount of higher
spatial frequency information is caused by wrinkling and reduced
skin elasticity in the case of face stimuli. Since facial age deci-
sion is mainly based on this information (e.g., George and Hole,
2000) we did not equate the spectral content of images. This,
however, raises the possibility that the category-specificity of the
noise-induced modulation of the early P1 component is merely
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the effect of the different spectral content of the original stim-
uli. Indeed, several studies indicate that there are differences in
sensitivity to the specific spatial frequencies both between dif-
ferent visual areas and between the two hemispheres (Ivry and
Robertson, 1998). Our results, however, show that the category-
specificity of the noise-induced modulation of the P1 is unaffected
by the perceived age of the stimuli. Therefore, the amount of wrin-
kling that leads higher spatial frequency content in case of older
faces does not modulate the results. In terms of hemispheric dif-
ferences in sensitivity to specific spectral content, Sergent (1982)
argued that the left hemisphere is more adept in processing high-
frequency information, whereas the right hemisphere is more
efficient in processing low-frequency information. This differen-
tial frequency processing account was supported by studies using
tasks such as spatial frequency discrimination (Proverbio et al.,
2002) and identification (Kitterle et al., 1990) or face recogni-
tion (Keenan et al., 1989). These results, however, would predict
that 100% phase coherent faces with a larger amount of higher
spatial frequency content would enhance the amplitude of the
P1 component over the left hemisphere and adding phase noise
would not affect P1 over the right hemisphere. Vice versa, 100%
phase coherent cars with relatively lower spatial frequency con-
tent would enhance the P1 amplitude on the right hemisphere
and adding phase noise would not affect this value when com-
pared with the left hemisphere. However, our results show the
complete opposite effect, suggesting that low-level features are
not able to explain the described category dependence of P1. It
is worth noting, however, that in a recent study, Motoyoshi et al.
(2007) drew attention to other image-statistics that are sensitive
to asymmetries in dark and light and can also affect the low-level
properties of an image. Although we cannot exclude the possibility
that these properties affect our results, it is unlikely that low-level
differences between cars and faces are responsible for the results
regarding the hemispheric asymmetries of the category-specific
phase-coherence dependence of the P1 in the current study. It is
also well known that there are hemispheric asymmetries in the
processing of local versus global information processing. A left
hemisphere advantage for responses to local features and a right
hemisphere dominance for responses to global features was found
in most studies (Weismann and Woldorff, 2005; Flevaris et al.,
2010; Hsiao et al., 2013). Several lines of evidence suggest (e.g.,
the face inversion effect, the Thatcher illusion, or the composite
face effect) that faces are not perceived as collections of isolated
parts, but rather as holistic configurations (Yin, 1969; Thomp-
son, 1980; Young et al., 1987). Most of the electrophysiological
research studying the N170 emphasizes the specificity of the com-
ponent to the structural encoding step of face processing (e.g.,
Bentin and Deouell, 2000; Eimer, 2000a,b). Other studies highlight
the right hemisphere advantage of the component for manipula-
tions of configural facial information, whereas the N170 in the
left hemisphere is sensitive to the manipulations of featural facial
information (Rossion et al., 1999; Scott and Nelson, 2006; Jacques
and Rossion, 2007). This finding of different hemispheric special-
izations is consistent with evidence from neuroimaging studies.
For example, in a PET study, Rossion et al. (2000b) have found
hemispheric asymmetries for whole-based and part-based pro-
cessing of faces in the fusiform gyrus in the sense that more

pronounced right fusiform activation was observed for whole faces
than face parts whereas this effect was reversed in the homologous
left hemisphere brain region. fMRI studies have identified a num-
ber of areas – such as the fusiform face area (FFA; Kanwisher et al.,
1997) and the occipital face area (OFA; Gauthier et al., 2000) in
the extrastriate visual cortex – that respond more to pictures of
faces than other objects, with a strong right hemisphere domi-
nance (McCarthy et al., 1997; Haxby et al., 1999; Rossion et al.,
2003). Presumably this right hemisphere dominance is reflected
in the early P1 ERP component as well. Taken together with our
findings on the P1 component, we can hypothesize that the acti-
vation of the right FFA is more robust to the amount of phase
noise in the case of face stimuli. In other words, it suggests that
while adding phase noise to faces alters rather featural but not
configural information, the right hemisphere will be unaffected
by this image manipulation. Although in a source localization
study investigating the early stages of face processing, Herrmann
et al. (2005b) have shown that the first step of cortical face pro-
cessing (∼100 ms after stimulus presentation) is localized in the
fusiform gyrus, further studies are need to clarify the sensitivity
of the FFA to image manipulations such as the effect of phase
noise.

The electrophysiological results of the current study con-
firmed the classical noise-induced effects reflected in the N170
and P2 components (Nagy et al., 2009; Bankó et al., 2011): the
N170 amplitude decreased for higher levels of phase noise in
a stepwise manner (Jemel et al., 2003). The gradual decrease of
the N170 as the faces and cars became more and more noisy
can be accounted for by the sensitivity of the component to
the visibility of the stimuli embedded in different amounts of
noise. It can also be due to increased attentional resources as
the amount of added phase noise reduced the coherence of the
stimuli. The fact that the observed significant three-way cate-
gory × coherence × hemisphere interaction measured on the
P1 lost its hemispheric asymmetry in the N170 time window is
suggestive of the involvement of additional neural mechanisms.
Schneider et al. (2007) have shown that noise affects the neural
correlates of upright and inverted faces differently. Many stud-
ies suggest that inversion results in faces being processed by a
piecemeal, feature-by-feature strategy (Rossion et al., 2000a; Bar-
ton et al., 2001), more similar to non-face objects (Haxby et al.,
1999; Rossion et al., 2000a; Rosburg et al., 2010; Kloth et al.,
2013). As complex, non-face object stimuli such as cars are also
processed in a feature-based manner, the category × coherence
interaction observed in the N170 component is rather due to the
effect of stimulus configuration on processing levels. The fact
that N170 was similar in amplitude for 100% phase coherent
car and face images suggests that individual exemplars of objects
that are visually similar to faces and have homogeneous feature
configurations can elicit comparable N170 responses (for simi-
lar stimulus comparisons and results see Kloth et al., 2013). It
is worth noting, however, that these results do not suggest that
similar encoding takes place for cars and faces, even when they
are characterized by a similar, face-like configuration (Kloth et al.,
2013). On the other hand, our results also confirm the classical
noise-induced effects on the later P2 component as well (Nagy
et al., 2009; Bankó et al., 2011). More positive peaks were observed
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for faces when compared to cars, especially in the RH, and grad-
ually increased P2 components were measured parallel to the
amount of added noise. In previous studies, the noise induced
effect reflected in the later P2 component could be explained by
two factors – adding noise to the stimulus increases the visual cor-
tical processing demands (Bankó et al., 2011, 2013), or it results in
enhanced responses of the neural populations representing stim-
ulus uncertainty (Bach and Dolan, 2012). Since no significant
category × coherence interaction was observed on the P2 com-
ponent the results of the current study could not exclude either
explanation.

In summary, in this electrophysiological study we explicitly
compared the noise-dependence of face and non-face stimuli and
we have found that the neural processing of different high-level
categories diverge at a very early stage of stimulus processing,
starting in the P1 time window.
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The efficiency of visual tasks involving localization has traditionally been evaluated using
forced choice experiments that capitalize on independence across locations to simplify
the performance of the ideal observer. However, developments in ideal observer analysis
have shown how an ideal observer can be defined for free-localization tasks, where a
target can appear anywhere in a defined search region and subjects respond by localizing
the target. Since these tasks are representative of many real-world search tasks, it
is of interest to evaluate the efficiency of observer performance in them. The central
question of this work is whether humans are able to effectively use the information in
a free-localization task relative to a similar task where target location is fixed. We use a
yes-no detection task at a cued location as the reference for this comparison. Each of the
tasks is evaluated using a Gaussian target profile embedded in four different Gaussian
noise backgrounds having power-law noise power spectra with exponents ranging from
0 to 3. The free localization task had a square 6.7◦ search region. We report on two
follow-up studies investigating efficiency in a detect-and-localize task, and the effect of
processing the white-noise backgrounds. In the fixed-location detection task, we find
average observer efficiency ranges from 35 to 59% for the different noise backgrounds.
Observer efficiency improves dramatically in the tasks involving localization, ranging from
63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize
tasks. Performance in white noise, the lowest efficiency condition, was improved by
filtering to give them a power-law exponent of 2. Classification images, used to examine
spatial frequency weights for the tasks, show better tuning to ideal weights in the
free-localization tasks. The high absolute levels of efficiency suggest that observers are
well-adapted to free-localization tasks.

Keywords: free-localization tasks, ideal observer theory, power-law noise, observer efficiency, image statistics

INTRODUCTION
The concept of calculation efficiency, which we refer to simply as
efficiency, in the presence of image noise has been used exten-
sively as a method for understanding visual processing since its
seminal introduction by Barlow (Barlow, 1977, 1978; Barlow and
Reeves, 1979). At the core of this measure is comparison with
an optimal decision maker, the ideal observer, for a given task.
The use of the ideal observer as yardstick for human performance
implicitly controls for the relevant information present in stimuli
used to perform a task. This topic has a long history in vision sci-
ence, as well as areas of applied vision such as medical imaging.
In the realm of vision science, there are many examples where
efficiency is used to reveal the presence (or absence) of limita-
tions and constraints in visual processing (Barlow, 1978; Barlow
and Reeves, 1979; Burgess et al., 1981; Pelli, 1985; Legge et al.,
1987; Geisler, 1989; Tjan et al., 1995). In imaging applications,
efficiency is used to identify opportunities for image processing
or other methodological changes that lead to improved perfor-
mance in visual tasks (Myers et al., 1985; Wagner and Brown,
1985; Insana and Hall, 1994; Siewerdsen and Jaffray, 2000; Abbey
et al., 2006).

Studies evaluating efficiency have often relied on experimen-
tal paradigms where the location of a target, if it is present,
is explicitly defined through the use of location cues. Forced-
choice paradigms, with two or more specified locations that serve
as possible target locations, are a common choice (Burgess and
Ghandeharian, 1984). These studies do involve spatial (or tempo-
ral) search, but it is a limited search that is confined to choosing
between distinct, cued locations. The use of independent noise
masking the target at each location makes the computation of
the ideal observer considerably easier. Studies that have analyzed
the ideal observer in tasks with location uncertainty on a quasi-
continuous scale (i.e., limited to the pixelation of the stimulus)
have generally utilized a detection or discrimination response that
did not involve localizing the target (Park et al., 2005; Tjan and
Nandy, 2006; Neri, 2010).

However, recent analysis by Khurd and Gindi (2005) have
demonstrated how an ideal observer may be evaluated when tar-
gets can be located anywhere within a search region, and the
task requires localizing targets to within a fixed distance, or
more general acceptance region. This general paradigm has been
used previously in medical imaging studies (Burgess et al., 2001;
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Bochud et al., 2004) due to the similarity with many clinical tasks
that require identifying a location in the body for further assess-
ment. However, these studies did not have the benefit of an ideal
observer. The Khurd and Gindi approach leads to the definition of
an optimal decision function, from which ideal observer perfor-
mance can be extracted via simulation studies, as we do below.
Extensions to the theory (Khurd et al., 2010) include methods
for evaluating the presence of multiple targets that are beyond
the scope of this work. There has been some use of this analy-
sis to evaluate the role of regularization in emission computed
tomography (Liu et al., 2009). However, we are not aware of any
use of the ideal observer for examining efficiency in more general
free-localization tasks.

The main focus of this work is a comparison of fixed-location
detection tasks—where a single target location is well cued—to
free-localization tasks, where the subject must indicate the loca-
tion of a target that can be anywhere in a defined search region.
Figure 1 gives examples of the stimulus displays for each task.
For the detection tasks, subjects render a decision on whether a
Gaussian “bump” target profile is present or not at the cued loca-
tion. In the localization tasks, the subject is required to indicate
the location of the target profile, which will always be present
somewhere in the search region. We are interested in compar-
ing the efficiency of human observers in these two tasks, and
understanding the mechanisms that can explain differences.

We are also interested in the role of the background image
statistics on this process. For this reason, we evaluate four dif-
ferent Gaussian image textures. These are defined by their power
spectra, which are constrained to be a power-law parameter-
ized by the power-law exponent β. We evaluated four different
background textures, based on β-values ranging from 0 (white
noise) to 3 (See Figure 2 below). Natural scenes are often mod-
eled as power-law processes with exponents that vary around
β = 2 (Burton and Moorhead, 1987; Field, 1987). Various forms
of x-ray images, for breast imaging in particular, have also been

A

C

B

FIGURE 1 | Detection and localization stimuli. Image displays for the
detection (A) and localization (B) tasks. The target to be detected is a
Gaussian (“bump”) profile(C) embedded in power-law noise with an
exponent of 2 here. For the detection task, the target is located at the
center of the cross when it is present. In the localization task, the target can
be located anywhere within the search area indicated by the marks (arrow).

modeled as power-law processes with exponents ranging from
less than 2 for computed tomography reconstructions (Metheany
et al., 2008; Chen et al., 2012, 2013) to 3 or more for tomosyn-
thesis (Engstrom et al., 2009) or projection images (Bochud et al.,
1999; Burgess et al., 2001).

In addition to the main comparison of detection and localiza-
tion tasks, two smaller follow-up studies were conducted to give
additional insight on issues that arose from the primary study.
One issue was the different nature of the two tasks, given that
a yes-no type detection task requires maintaining some sort of
detection criterion from trial to trial for choosing the response.
The free-localization tasks do not require this. To investigate the
effect of a detection criterion on free-localization tasks, we evalu-
ated a detect-and localize (D&L) task, in which the target profile
appeared at a random location in the search region in 50% of
the trials, and was not present in the other 50% if the trials. As
an alternative to indicating the target location, the subjects could
also respond “not present” in these experiments. In this way, the
requirement of maintaining a task criterion in the detection task
was matched in a task with substantial spatial uncertainty.

The second follow-up study concerned the white-noise
(β = 0) background condition, where lower efficiency than
other power-law backgrounds was observed in both detection and
localization tasks. In this case, we were interested in whether pro-
cessing the images to have more favorable background statistics
could improve performance. We evaluated task performance after
filtering these images to have a power-law power spectrum with
β = 2, which also modified the profile of the target.

METHODS
A total of 5 subjects participated in the primary comparison of
efficiency between detection and forced-localization tasks. On
subject (S1) was a coauthor of this work, and the other 4 were
naïve to the purposes of the research and compensated for their
participation. Of these, 3 subjects (S2, S4, and S5) participated
in the secondary detect-and-localize experiments, and 3 subjects
(S3, S4, and S5) participated in the secondary image-processing
experiments.

STIMULUS AND DISPLAY PROPERTIES
A monochrome CRT display (Imaging Systems, Minnetonka,
Minnesota) with a dedicated controller (DOME, NDS Inc., San
Jose, CA), was used for all experiments, which were conducted in
a darkened room. The monitor was photometer-calibrated to an
8-bit linear lookup table (LUT) that ranged from 0.02–40 Cd/m2.
Viewing distance of the subjects was not constrained. Subjects had
normal vision or wore corrective lenses. After becoming famil-
iar with the display procedure, and completing several sessions of
experiments, measurements of each subject’s comfortable view-
ing distance were made. The average viewing distance used was
64 cm, with a range of 51–70 cm. This average distance was used
for all subsequent calculations of visual angle. The stimuli were
generated as 256 by 256 pixel images, and these were magnified by
a factor of two for display, making the effective pixel size 0.052◦
(0.583 mm).

The experiments used a Gaussain “bump” as a target added to
stationary noise with a power-law power spectrum. The spatial

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 345 | 34

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Abbey and Eckstein Efficiency in free-localization tasks

FIGURE 2 | Sample power-law textures. Noisy backgrounds with different power-law exponents (β) are shown from the same underlying random number
seed.

standard deviation of the target was 3 pixels giving the displayed
target a FWHM of 0.37◦. A mean background level of 100 gray
levels (gl) was added as well and the noise was scaled to have a
pixel variance of 400 gl2, which is equivalent to a 20% RMS con-
trast on the linearized display that was used for the psychophysical
studies. Target contrast varied over the different experiments, as
described below.

Noise backgrounds were generated by filtering white noise
to achieve a power-law power spectrum in the spatial-frequency
domain, Sβ

(
f
) = Cβ/f β , which we will identify by the power-law

exponent, β. To avoid the singularity at f = 0, the DC compo-
nent is set to the value of the first harmonic. The normalization
constant, Cβ , is set so that the RMS contrast of the background
is fixed at 20%. The noise generation filter for each background
condition was set to be the square-root of Sβ

(
f
)
. Examples of the

different noise textures for the four values of β that we used are
seen in Figure 2.

For detection tasks using the different backgrounds, targets
had a 50% probability of being present in any given trial. Subjects
were informed that this was the target probability. When present,
the target was always located in the center of the image with
the location indicated by cross-hairs, as shown in Figure 1. The
observer response was obtained by capturing a mouse click out-
side the image area. Feedback (correct/incorrect) was given after
each trial. While separate performance measures were determined
for target present and target absent images (hit rate and false
alarm rate), for purposes of fitting psychometric functions the
proportion of correct responses was also used.

For localization tasks, the target was randomly located in
the central region of the image, with borders delineated by
hash marks. Subjects were informed that this was the search
region. The central region consisted of 128 by 128 pixels
(6.7 by 6.7◦), and thus constituted one quarter of the total
image area. The large border region was chosen to minimize
any edge effects as well as effects from “wrap-around” from
the filtering operation. Observers responded by clicking with
a mouse on their selected location. Mouse-clicks that were 5
pixels (0.26◦) or less from the center of the target were con-
sidered “correct,” and subject performance was measured as
the proportion of correct responses. Subjects received feed-
back (correct/incorrect and true target location) after each
trial.

Slight modifications to the experimental protocol above were
used in the two follow-up studies. For the D&L tasks, there was
a 50% probability that the target was present somewhere in the
search region. Subjects responded with a mouse-click on the tar-
get location to indicate target presence at that location, or by
a mouse-click outside the image to indicate target not present.
Subjects received feedback (correct/incorrect and target location
if applicable) after each trial.

In the image processing study, white noise images (i.e., β = 0)
were filtered after the target profile was added to have a β =
2 power-law spectrum. The frequency profile of the filter was√

S2
(
f
)
. As a result of this filtering operation, the target was no

longer a Gaussian profile, which reflects the practical reality that
image processing alters the properties and appearance of both tar-
get and background. Examples of the an image before and after
filtering, as well as a plot showing the effect on the target pro-
file, are seen in Figure 3. Detection and localization tasks on the
processed images were run as described above.

THE IDEAL OBSERVER
Task efficiency with respect to the ideal observer is the fundamen-
tal calculation used in this work. In this section we describe how
the ideal observer analysis is implemented, leading to an efficiency
estimate.

Detection tasks
For the yes-no detection task we identify target-present images
as one hypothesis (or class), H1, and the target-absent images
as the other possible hypothesis, H0. We will refer to the images
generically as g, a column vector of pixel values, with the assump-
tion that the mean background intensity of the stimuli (100 gl
in our case) has been subtracted off of the pixel intensities. The
Gaussian noise in the images is specified by a multivariate normal
distribution (MVN) with a covariance matrix that depends on
the power-law exponent of the noise texture, �β. The conditional
distributions of the resulting images are given by

p
(

g|H0
) = MVN

(
0, �β

)

p
(

g|H1
) = MVN

(
s, �β

)
.

(1)

Under these conditions, it is well known that the ideal observer
can be implemented as a weighted sum of the pixel intensities
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A B C

FIGURE 3 | Processing white noise images. Processing white noise images (A) with the appropriate filter gives them a β = 2 power-law background (B). This
transformation also changes the target profile, giving it much longer tails (C). Target contrast (arrows) is enhanced here for display.

(Green and Swets, 1966). Let the vector wIO,β represent these
weights, which are defined in terms of the statistical properties
of the images as

wIO,β = �−1
β s. (2)

The resulting Ideal observer strategy is implemented by com-
paring the weighted sum of the image, with mean background
subtracted, to a detection threshold,

H0 : if wT
IO,βg < tcrit

H1 : if wT
IO,βg > tcrit.

(3)

The value of the threshold, tcrit, determines the tradeoff between
hits and false alarms. In principle this term should be set on the
basis of outcome utilities. However, we leave it as a free parameter
to be fit to the human observer data.

With human observer data, we obtain the equivalent contrast
for the ideal observer by adjusting contrast and tcrit until the hit
rate and false-alarm rate equal the human observer’s. Let CD

Obs,β
be the target contrast used for the human observer study, and
let CD

IO,β be the equivalent ideal observer contrast. The efficiency
of the observer is defined in terms of a squared ratio of contrast
thresholds following Kersten (1987) as

ηD
obs,β =

(
CD

IO,β

CD
Obs,β

)2

. (4)

Standard errors are determined by calculating efficiency on a
session-by-session basis, and then computing the standard error
across sessions.

Localization tasks
As mentioned in the Introduction, the theory we use for ideal
observers in a free-localization task comes from the work of
Khurd and Gindi (2005). Here we present a somewhat simpli-
fied derivation that is adequate for our purposes. In this case, we
have a conditional probability of the data for every possible loca-
tion of the target. Let sl represent the profile of the target, when
it is centered on the pixel with index l, which can be anywhere in

the search region (i.e., 1282 possible locations). The conditional
likelihood of the data given a particular target location is

p
(

g|l) = MVN
(

sl, �β

)
. (5)

The basis for localization by the ideal observer is the posterior
distribution on possible locations, p

(
l|g). For a uniform prior

distribution on target locations, the posterior distribution is pro-
portional to the likelihood. Under the Gaussian assumptions of
our images, we have

p
(
l|g) = NgesT

l �−1
β g

, (6)

where Ng is a normalization constant that ensures that p
(
l|g)

sums to 1 over all possible locations.
The task specifies that any response within 5 pixels of the tar-

get center is considered a correct response. The ideal observer will
therefore choose the location that maximizes the probability of
a correct answer. For each point under consideration, the ideal
observer adds up the probabilities of all points within a 5-pixel
radius, to get a final score for the location. The point with the
largest score is then chosen as the ideal observer’s response. It is
worth noting that the ideal observer response at a given location
is very similar to an ideal detector with spatial uncertainty (Pelli,
1985), where uncertainty is confined to the acceptance region
around a given location.

The ideal observer decision function can be implemented
using convolutions to speed up the computationally intensive
steps. For example, the stationary nature of the noise covariance
matrix allows the computations of sT

l �−1
β g to be implemented

by convolving the ideal observer template, defined in Equation
2, with the mean-subtracted background. Similarly the com-
putation of the final score at each location in the image can
be computed by convolving a disk of radius 5 pixels with the
normalized posterior distribution in Equation 6. The recipe for
computing the ideal observer begins with pre-computing the ideal
observer filter by dividing the Fourier transform of the target by
the power-spectrum of the noise. Then for each image, (1) this fil-
ter is used in a convolution after the mean background has been
subtracted; (2) the result is exponentiated; (3) pixels outside the
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search region are set to zero; (4) pixels in the search region are
scaled so that they sum to 1; (5) the posterior is convolved with a
disk of radius 5 pixels; and (6) the maximum point is chosen.

With a case-by-case ideal observer algorithm, the performance
of the ideal observer is estimated to arbitrary accuracy using large
sets of sample images. We use this approach to build LUTs of ideal
observer performance as a function of target contrast. The LUTs
for each β are determined in contrast increments of 0.01 from 0
until PC rises above 94%. The functions are plotted for each β

in Figure 4. Each point is based on 2000 sample images, which
results in standard errors that are less than 1% near the 80%
correct level that is used in the experiments. Inverting these func-
tions allows for us to determine the contrast threshold required
by the ideal observer to achieve the specified level of PC. For an
observer that achieves a proportion correct of PCObs in a local-
ization task with a target contrast of CL

Obs,β , efficiency is again
defined (Kersten, 1987) as the squared contrast ratio

ηL
Obs,β =

(
CL

IO,β (PCObs)

CL
Obs,β

)2

. (7)

Standard errors are determined by calculating efficiency on a
session-by-session basis, and then computing the standard error
across sessions.

The D&L task uses a similar process as the localization task,
except that in the last step a threshold is applied. If the maximum
score is above the detection threshold, the location of the score is

FIGURE 4 | Ideal observer LUT. The plots show performance of the ideal
observer as a function of target contrast for each of the power-law
exponents. These data can be used as a look-up-table for determining the
threshold contrast needed by the IO to achieve a given level of
performance. For example, at β = 1, the threshold contrast needed to
achieve 80% correct is seen to be 0.4.

selected for detecting and localizing the target. If the maximum
score is below the detection threshold, the ideal observer selects
the “target-absent” response. For matching human observer data,
the threshold contrast and detection criterion are adjusted to
match the rate of correct detect-and-localize responses and the
false positive (FP) rate. Efficiency is then calculated as the squared
ratio of this contrast to the contrast used in the experiment, as in
Equations 4 and 7.

CLASSIFICATION IMAGES
In addition to efficiency, we will use classification images as a way
to investigate how visual processing affects task efficiency. This
approach is straightforward for the detection tasks, where the
classification image analysis has been well developed by Ahumada
(2002) and others (Gold et al., 2000; Chauvin et al., 2005; Victor,
2005; Tjan and Nandy, 2006; Murray, 2011). Let n represent the
noise field for a given trial, with no target profile or mean back-
ground. Let us define the quantity q as the product of the inverse
covariance and the noise field, q = �−1

β n. The classification
image is given by

wD
CI = q̄FP − q̄TN + q̄TP − q̄FN, (8)

where the q̄ are the average q over the FP, true-negative (TN),
true-positive (TP), and false-negative (FN) noise fields. Under
the (strong) assumption of a linear template as the mecha-
nism for detecting the target, the classification image will pro-
vide an unbiased estimate of the template. If the observer does
not follow the linear assumption, the resulting classification
image may be distorted, depending on the degree of violation
(Ahumada, 2002).

Tjan and Nandy (2006) have analyzed discrimination tasks
in the presence of target location uncertainty using classification
images. Their approach utilizes the concept of a “clamped signal,”
in which the noise field masking the target profile in an incor-
rect response is analyzed. This approach was found to work well
in various two-class detection and discrimination tasks with tar-
gets that could be subject to spatial uncertainty. Additionally, Neri
(2010) has used early static nonlinearities as a way to model per-
formance in such tasks. In principle, our free-localization task can
be considered a classification task with 1282 possible response
categories (and a somewhat ambiguous definition of a correct
response that includes neighboring locations). However, in this
work we have pursued a different approach for classification
images in which the noise at the location of an incorrect response
is used rather than the noise that masked the unchosen target.
In this regard, our approach is similar to a previous study by
Rajashekar et al. (2006) that used eye-tracking to estimate gaze-
contingent classification images, as well as studies that have used
the classification-image approach in multiple-alternative forced
choice studies (Caspi et al., 2004; Eckstein et al., 2007; Dai and
Micheyl, 2010).

Let nA represent a “response-aligned” noise field, in which the
image noise field is shifted so that the location selected by the
observer is translated to the center of the image. Let qA = �−1

β nA,
which is analogous to a response-aligned version of q defined
above. For classification images in the localization tasks, we use
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the average of the response-aligned q vectors when the subject
incorrectly localizes (IL) the target

wL
CI = q̄A

FL. (9)

In these cases, the response is entirely driven by the form
of the noise at the response location. We will see below that
this leads to a strong classification image relative to detec-
tion, even though the detection task uses all noise fields in the
image and this approach for the free-localization uses approx-
imately 20% of the trials in which a false-localization response
is given.

As a simple test of the classification image approach for local-
ization tasks, we have used it to evaluate the ideal observer.
Figure 5A shows the frequency weights of the ideal observer,
derived analytically from �−1

β s. In Figure 5B, we see the esti-
mated frequency weights for 2000 trials of the ideal observer using
Equation 9, when the target contrast is set so that PC = 80%.
While there are some areas of apparent bias, particularly at the
lowest spatial frequencies for β = 0, there is generally good agree-
ment between the actual frequency weights used to perform the
task and the estimated weights.

RESULTS AND DISCUSSION
PSYCHOMETRIC FUNCTIONS
Contrast thresholds were determined for each subject in each con-
dition from fitted psychometric functions. After an initial training
of 5 runs of increasing difficulty totaling 210 trials, psychome-
tric data was acquired in 20 runs of 50 trials at five different
contrast levels for a total of 200 trials at each contrast level. The
contrast levels used were determined from pilot data. Cumulative
Gaussian distribution functions were fit to the proportion of cor-
rect responses over the range of contrasts, and contrast thresholds
were determined from the contrast that produced 80% correct.
An example of the psychometric functions (Subject 4, β = 1) is

shown in Figure 6. There was generally good agreement between
the subject data and the cumulative Gaussian fitting function.

The average threshold contrast for each task and background
type is plotted in Figure 6B. Thresholds within each task peak for
b = 2. The thresholds are substantially higher for the localization
task, with roughly a factor of two increase for each background.

CHARACTERIZING TASK PERFORMANCE
After each contrast threshold was determined from the psycho-
metric data, subjects performed a total of 40 runs of 50 trials,
for a total of 2000 trials at the subject’s threshold contrast.
Efficiency with respect to the ideal observer was estimated from
this data. The efficiency results are described below in Detect-
And-Localize Efficiency. Here, we will describe other measure-
ments that provide additional information to characterize task
performance.

Performance in the efficiency data is reasonably close to the
nominal 80% correct levels derived from the psychometric func-
tions. Figure 7A plots average PC across subjects from the effi-
ciency data as a function of the power-law exponent of the
background. Overall, PC values averaged 81.9% in the detec-
tion experiments and 80.3% in the localization experiments. The
slight increases across subjects may be due to learning effects
that occurred over the 2000 trials. The largest observed deviation
from 80% correct for a single subject in a single condition was
7.3%. These results give us some confidence that efficiency was
measured at contrasts near the actual 80% correct threshold.

While reaction time is not an endpoint of our study, this data
is recorded as part of the experimental procedure. Reaction time
is defined as the time from stimulus onset to the acquisition of
a subject response. Median reaction times, given in Table 1, are
mostly larger for the free localization task. This is not surprising
since the subject need to search an area 6.7 × 6.7◦ in the local-
ization task. Given the size of this area, the 48% average increase
in reaction times seems rather modest. It is worth noting that the

A B

FIGURE 5 | Classification images in free-localization tasks. Ideal observer
filter weights (A) were used to generate responses for each power-law
exponent. The filter weights were then estimated from the incorrectly

localized noise fields (B). While there is some evidence of bias, particularly
for β = 0 at low spatial frequencies, the estimated weights generally give a
good sense of the actual filters used to perform the task.
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A B

FIGURE 6 | Psychometric functions and thresholds. An example of
detection and forced-localization psychometric data (A) and fitted
psychometric functions are shown for one subject in one condition. Error bars
= ±1 s.e. The fitting function is a cumulative Gaussian distribution that is
used to determine the contrast threshold for 80% correct performance in the

subsequent experiments. The average subject contrast thresholds (B) in each
power-law background is shown for both detection and localization tasks.
Standard errors across subjects (not shown) are less than 0.01. The
localization tasks requires approximately a factor of 2 greater contrast to
obtain equivalent (80% correct) performance.

A B

FIGURE 7 | Accuracy and reaction time. A check of performance
levels in the efficiency data (A) shows that performance levels
were reasonably close to the targeted 80% level. The midpoint

of reaction time in each quartile (B) is plotted against
performance for the quartile. Averages and standard errors across
subjects are shown.

Table 1 | Reaction times.

Subjects Detection RT Localization RT Rel. dif. (%)

S1 1.35 2.61 94
S2 1.11 1.80 62
S3 1.17 1.77 51
S4 3.97 2.85 −28
S5 1.01 1.65 64
Ave 1.72 2.13 48

Median reaction times (RTs) are given for each subject as well as the relative

difference between the detection and localization tasks.

increase in median response times is not uniform over the sub-
jects. One subject (S4) is markedly slower in the detection task.

It is also of interest to compare the effect of reaction time and
performance as shown in a representative example in Figure 7B.

We divided the data into quartiles of 500 trials according to
reaction time, and then computed proportion correct in each
quartile. The figure plots proportion correct as a function of
the median reaction time for the quartile. All subjects exhibited
a similar trend of decreased performance with greater reaction
times in both tasks. This finding is the opposite of what might
be expected from a speed-accuracy tradeoff, where slower speeds
allow for more effective task performance. However, decreased
performance for longer reaction times has been found previously
(Eckstein et al., 2001), and is thought to reflect the effects of a
noise limited task where longer reaction times are associated with
noise masks that make the task more difficult.

Unlike the detection task, the localization response requires
careful positioning of the cursor using the mouse. The accuracy
of this process has consequences both for overall accuracy in the
task, if mis-positioning the cursor causes the localization response
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Table 2 | Localization accuracy.

Abs. dev. β = 0 β = 1 β = 2 β = 3 Uniform

Pixels 1.96 ± 0.08 1.69 ± 0.11 1.52 ± 0.14 1.41 ± 0.15 3.40

Degrees 0.102 ± 0.004 0.088 ± 0.006 0.079 ± 0.007 0.074 ± 0.008 0.180

Average absolute deviation (±s.e. across subjects) of correct localization responses relative to the target center. Data is given both in pixel units as well as degrees

of visual angle. For reference, the absolute deviation assuming a uniform distribution within the acceptance region is also given.

to fall outside the acceptance region, and for aligning the noise
fields for the classification image analysis. To get some sense of
the accuracy of the localization responses, we have evaluated the
deviation of the responses, which is defined as the distance of the
subject mouse clicks from the target location for responses that
fall within the acceptance region of 5 pixels from the target center.
Table 2 gives the average deviation across subjects, in both pixels
and degrees of visual angle, and well as the deviation assuming
a uniform distribution of responses over the acceptance region.
The deviations are all substantially smaller than the uniform
distribution would predict, suggesting that there is considerable
additional accuracy in the localization response. In addition, there
is a consistent decrease in the deviation as β increases. The error
represented by the absolute deviation contains both the effects of
subject’s misperception of the target center, as well as motor noise
in the subject’s response. Of these two, motor noise will be detri-
mental to the classification image methodology, since it will lead
to misalignment of the selected noise fields. The observed devi-
ations in Table 2 act as an upper bound on motor noise in the
subject responses, and suggest that these effects may be modest.

TASK EFFICIENCY
The primary performance result we are interested in for these
studies is observer efficiency, as plotted in Figure 8. Efficiency
with respect to the ideal observer appears to be substantially
higher for localization tasks than detection tasks. A Two-Way
ANOVA with the five subjects considered as replications finds sig-
nificant effects for both the task [F(1,32) = 63.4, p < 0.0001] as
well as the background exponent [F(3, 32) = 11.7, p < 0.0001].
The interaction between task and exponent was not found to
be significant [F(3, 32) = 0.39, p > 0.76]. It should be noted that
average efficiency near 80% for β-values of 1–3, is considered
quite high. In the classic experiments by Burgess et al. (1981),
efficiency as high as 70% was observed with averages across
observers closer to 50%. These experiments used a spatial forced
choice methodology and white noise (β = 0). Experiments in
low-pass noise similar to the β = 3 condition used here (Abbey
and Eckstein, 2007), found efficiency in the 40 to 60% range.
These are consistent with our findings in the detection task, all
of which utilize aperiodic “bump” targets. Efficiency of oscilla-
tory targets are typically lower (Legge et al., 1987). The increased
efficiency we find in the localization tasks represents a substantial
gain from these fixed-location tasks, and suggests that subjects
have little room for sub-optimal computations in performing
these tasks.

Efficiency is somewhat lower for β = 0 in both the detection
and localization tasks. We consider this case further in Efficiency
of Image Processing for β = 0. below. We also note that these

FIGURE 8 | Task efficiency. Efficiency of detection and localization tasks is
plotted as a function of the power-law exponent, showing a substantial
increase for localization tasks. Error bars are ±1 s.e.

efficiency values appear to be relatively stable with the accep-
tance radius. We observed less than a 1% difference in observed
efficiency varying the acceptance region from 4 pixels to 7.

These efficiency results show that in spite of larger thresh-
olds for the free-localization relative to detection, as shown in
Figure 6B, overall efficiency is substantially higher. This means
that thresholds for the ideal observer increase proportionally even
more than the human subjects’ did. Our findings are consis-
tent with the uncertainty hypothesis (Tanner, 1961; Pelli, 1985),
which posits imperfect use of the location cues in detection
tasks, and leave the observer with some residual uncertainty
regarding the location of the target that can reduce performance.
The ideal observer is not subject to this phenomenon, which
results in a somewhat lower contrast threshold. In the free-
localization task, where uncertainty is intrinsic to the task, the
ideal observer does not have the advantage of precise knowl-
edge of location, and contrast thresholds rise relative to the
human observers as a result. However, other explanations for
the large difference in efficiency are possible. For example, detec-
tion tasks require that the subject use some sort of criterion that
dichotomizes responses. If this criterion drifts or is prone to jit-
ter, performance will be reduced. This possibility motivated the
detect-and-localize study.
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DETECT-AND-LOCALIZE EFFICIENCY
A subset of three subjects performed the detect-and-localize
experiments, which were all run after the detection and localiza-
tion data were acquired. Threshold target contrast from the local-
ization tasks were used as target contrasts for these experiments.
The proportion of correct responses dropped modestly from an
average of 80.3% in the localization tasks to 76% in the D&L
tasks. Figure 9 plots shows the efficiency data for the detection
task, localization task, and D&L tasks as a function of the power-
law exponent for the subset of subjects that participated in all
three studies. The average efficiency values for the D&L are all
well above both the detection and localization tasks. In fact several
observed values are near 90% efficiency, which is again quite high
for tasks masked by luminance noise. These findings are close to
the highest reported efficiency we are aware of for visual tasks
limited by noise (Manjeshwar and Wilson, 2001).

EFFICIENCY OF IMAGE PROCESSING FOR β = 0
Figure 8 shows reduced efficiency in the β = 0 condition of both
the detection and localization tasks. After finding this effect, we
were interested in whether it might be mitigated by processing
the images to have a background power-law of β = 2, where effi-
ciency was generally better. As described above in Stimulus and
Display Properties, this is accomplished by filtering the images
with a kernel that has a 1/f spectrum, which will modify both
the background statistics and the target profile, as shown in
Figure 3.

Figure 10 shows that the effect of processing is to bring effi-
ciency in the β = 0 condition up to 66% in the detection task

FIGURE 9 | Detect and localize efficiency. The plot shows
detect-and-localize efficiency compared to detection efficiency and
localization efficiency for each power-law background. Error bars are ±1 s.e.
Small differences with Figure 8 (detection efficiency and localization
efficiency) are due to limiting the averages to the three subjects that
participated in the D&L study.

and 80% in the localization task. These levels are consistent with
efficiency levels found for β in the range of 1–3.

CLASSIFICATION IMAGES
Figure 11 shows the classification images for each subject in each
background condition for both the detection and localization
tasks. The images are cropped to the central 2.1◦ of visual angle
(40 pixels). Outside of this area, there are no discernable features
beyond what appears to be estimation error in the classification
images. To mitigate the effects of noise, the classification images
have been low-pass filtered with a 4th-order Butterworth filter,
with the roll-off parameter set to 5.6 cyc/deg (0.29 cyc/pixel). This
was well beyond the point at which the spatial frequency plots
below appear to decay to zero.

The images in Figure 11 were windowed to have approxi-
mately the same mean background and error magnitude. Thus,
the intensity of the features in the observed classification images
gives some sense of their signal-to-noise ratio (SNR). The
generally brighter appearance of classification images in the
localization tasks relative to the corresponding detection tasks
suggests that search process may lead to methodological advan-
tages for estimating classification images, even though the local-
ization classification images are estimated from approximately
20% of the subjects responses in which an incorrect localiza-
tion response if given. There also appears to be some differences
in the intensity of the classification images going from β = 0
to β = 3, and there are clearly individual differences between
subjects.

In addition to the overall intensity of the classification images,
we are also interested in the profile of these decision weights.

FIGURE 10 | Effect of processing the β = 0 condition. Efficiency of
detection and localization tasks in β = 0 condition is plotted against
efficiency with (processed) and without (unprocessed) filtering the images
to have power-law spectrum with β = 2. Error bars represent ±1 s.e. Small
difference between the unprocessed data and Figures 8, 9 are due to
limiting the averages to the three subjects that participated in the
processing study.
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A B

FIGURE 11 | Classification images. Estimated classification images (cropped to 2.1◦ per side) are shown for each condition (columns) and subject (rows) in
the detection (A) and localization (B) tasks. The images are windowed to have approximately the same magnitude of estimation error.

Based on previous experience, we find that differences between
classification images in different conditions are most clearly
depicted for radial averages in the spatial-frequency domain.
Figure 12 plots the classification frequency weights averaged over
subjects and normalized so that the weight at the peak frequency
is 1. To reduce the effects of noise in the classification images,
a Butterworth spatial window with a cutoff of 1.05◦ (20 pixels)
was applied before the Fourier transform and radial averaging.
For reference, we have plotted the classification weights of the
ideal observer as well. In all conditions, the average frequency
weights assume a bandpass form, peaking at frequencies between
0.7 cyc/deg and 1.6 cyc/deg as β goes from 0 to 3. As has been
found previously (Abbey and Eckstein, 2007; Conrey and Gold,
2009), the classification weights here give evidence of visual pro-
cessing that is changing with the different power-law textures in
the background. But this process is not as extreme as the adap-
tation that occurs in the ideal observer, where peak frequencies
move from 0 to 1.7 cyc/deg.

In the β = 0 condition, we observe substantial underweighting
of low spatial frequencies relative to the ideal observer. Of inter-
est for the comparison of detection and localization tasks, there is
less low-frequency suppression in the localization task compared
to the detection task. As β increases, we see that the low-frequency
profiles come together, but now they do not suppress low fre-
quencies as much as the ideal observer. Also, as β increases, the
classification weight frequency profiles begin to diverge at higher
spatial frequencies above the peak values. Here the profiles from
the localization tasks have higher weights that are closer to the
ideal observer.

Figure 13 shows the frequency plots in the β = 0 condi-
tion using responses from the processed and unprocessed data
averaged over the three subjects that participated in these studies.

The plots show processing effectively modifies the weighting pro-
file that subjects use. In both tasks, the effect of processing is to
increase the low-frequency weighting so that the average subject
classification weights more closely match the ideal observer. Thus,
the classification image profiles give a visual mechanism for the
improved efficiency found in Figure 10.

SUMMARY AND CONCLUSIONS
We find human observers substantially improve in performance
relative to the ideal observer in free-localization tasks compared
to fixed-location detection tasks, in spite of increased contrast
thresholds. This occurs in all four power-law textures that were
investigated. In a follow-up study investigating a detect-and-
localize task, we find the highest measured efficiency in our
experiments, suggesting that our efficiency results are not simply
a consequence of a general inability to maintain detection criteria.
Our findings are consistent with spatial uncertainty as a limiting
effect in the presence of location cues.

While it is clear from the classification images that observers
are able to tune their visual templates to the statistics of the noise
in the images, there is also evidence that this process is lim-
ited in both fixed and free-localization tasks. Despite a common
target profile, the different power-law textures require different
frequency tuning to achieve optimal performance. We do find
some evidence of such tuning in the classification images esti-
mated from the subject responses. Peak spatial frequency weights
change by roughly a factor of two going from a power-law expo-
nent of β = 0 to β = 3 (0.72–1.59 cyc/deg). However, on average
the subject frequency weights exhibited some clear departures
from optimal tuning as defined by the ideal observer. At β =
0, we find human observer frequency weights shifted to higher
spatial frequencies relative to the ideal observer. For β > 0,
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A

C

B

D

FIGURE 12 | Frequency weights derived from Classification images.

Radial frequency profiles are shown for each of the four power-law
textures (A–D) with normalization so that the maximum weight is one.

The ideal observer profile is derived from theory. The detection and
localization plots are averaged across the five subjects. Error bars are ±1
s.e. averaged across subjects. The legend (A) applies to all plots.

A B

FIGURE 13 | Frequency weights for processed and unprocessed images.

These plots are similar to Figure 12 and show estimated weights from the
β = 0 images using the responses to processed and unprocessed images. In

both the detection (A) and localization (B) tasks, the effect of image processing
is to increase the estimated weights at low spatial frequency, bringing them
closer to the ideal observer weights. The legend (A) applies to both plots.
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human-observer classification weights peak at lower spatial fre-
quencies than the ideal observer.

Frequency tuning of subjects in the white-noise condition was
most different from the ideal observer. This condition also led to
the lowest efficiency in performance. Since β = 0 was the power-
law exponent furthest from that found in natural scenes (β = 2),
this finding is consistent with the idea that the human visual
system is somewhat adapted to the statistics of natural images.
The follow-up study investigating processed images supports this
connection by finding uniformly improved performance when
the white-noise images were filtered to have β = 2. Filtering the
images was also seen to effectively improve frequency tuning of
the subjects in the white-noise condition.

While we do not attempt to explicitly model the visual sys-
tem to explain our findings, we do believe that our findings
may be relevant in such attempts, for the same reasons given
originally by Burgess (Burgess et al., 1981). The finding of high
efficiency in free-localization and detect-and-localize tasks sug-
gest that models of vision in these tasks cannot be very different,
at a computational level, from the ideal observer, and thus may
provide a valuable constraint to such efforts in future studies.
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Contrast thresholds for discriminating orientation and direction of a drifting, oriented grating
are usually similar to contrast detection thresholds, which suggest that the most sensitive
detectors are labeled for both orientation and direction (Watson and Robson, 1981). This
was found to be true in noiseless condition, but Arena et al. (2013) recently found that
this was not true in localized noise (i.e., noise having the same spatiotemporal window as
the target) as thresholds for discriminating direction were higher than for discriminating
orientation. They suggested that this could be explained by the fact that there are more
neurons selective to orientation than direction. Another possible interpretation is that,
unlike contrast thresholds in absence of noise, the most sensitive detectors in localized
noise were labeled for orientation, but not for direction. This hypothesis is supported by
recent findings showing different processes operating in localized and extended noise
(i.e., full-screen, continuously displayed noise, Allard and Cavanagh, 2011). In the current
study, we evaluated contrast thresholds for orientation and direction discrimination tasks
in noiseless conditions, and in noise that was either spatially localized or extended, and
temporally localized or extended. We found similar orientation and direction thresholds in
absence of noise and in temporally extended noise, but greater direction thresholds in
temporally localized noise. This suggests that in noiseless and temporally extended noise
the most sensitive detectors were labeled for both orientation and direction (e.g., direction-
selective complex cells), whereas in temporally localized noise the most sensitive detectors
were labeled for orientation but not direction (e.g., simple cells). We conclude that to avoid
violating the noise-invariant processing assumption, external noise paradigms investigating
motion processing should use noise that is temporally extended, not localized.

Keywords: local noise, extended noise, motion, detection, discrimination

INTRODUCTION
Arena et al. (2013) used an external noise paradigm to investigate
age-related sensitivity losses to motion processing by measuring
contrast thresholds for discriminating either the orientation or the
direction of drifting gratings. When the dominating noise source
was internal because external noise had a negligible impact (i.e.,
in low noise), they observed an age-related sensitivity loss for both
tasks, which could be due, according to the linear amplifier model
(Pelli, 1981; Pelli and Farell, 1999), to an increase in internal equiv-
alent noise (e.g., more internal noise with aging) or a decrease in
calculation efficiency (i.e., greater signal-to-noise ratios required
to perform the tasks with aging). Conversely, when internal noise
had a negligible impact because the dominating noise source was
external (i.e., in high noise), the two age groups had similar con-
trast thresholds and thereby necessitated similar signal-to-noise
ratios to perform the tasks (i.e., they had similar calculation effi-
ciencies). By implicitly assuming that the calculation efficiency in
low noise was the same as the measured calculation efficiency in
high noise (i.e., the noise-invariant processing assumption under-
lying external noise paradigms, Allard and Cavanagh, 2011), they

concluded that the age-related sensitivity losses in low noise were
due to an increase in internal equivalent noise, not a decrease in
calculation efficiency.

However, their data actually suggest that different processes
operated in low and high noise, which would invalidate the
assumption that the calculation efficiencies in low noise were
the same as the measured calculation efficiencies in high noise.
In low noise, similar contrast thresholds were observed for dis-
criminating orientation and direction, which suggests that both
measured the sensitivity of the same processing system having its
most sensitive detectors labeled for both orientation and direc-
tion (Watson and Robson, 1981). In high noise, however, contrast
thresholds for orientation discrimination were lower than for
direction discrimination suggesting that the most sensitive detec-
tors were labeled for orientation, but not direction. Consequently,
in low noise the most sensitive detectors would be labeled for
both orientation and direction (e.g., direction-selective complex
cells), but in high noise they would only be labeled for orienta-
tion, not for direction (e.g., simple cells). If contrast thresholds
depended on the sensitivity of different detectors in low and
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high noise, then the assumption that the calculation efficiency
in low noise was the same as the measured calculation efficiency
in high noise would be compromised and without knowing the
calculation efficiency in low noise it is not possible to deter-
mine if the age-related sensitivity loss in low noise was due to an
increase in internal equivalent noise or a decrease in calculation
efficiency.

As in many studies, Arena et al. (2013) used spatiotempo-
rally localized noise appearing only at the spatiotemporal target
location (personal communication), which could explain that
the most sensitive detectors were not the same in low and high
noise. Indeed, given that internal noise (which dominates in
low noise) is spatiotemporally extended (e.g., it does not turn
on and off with the stimulus and it is not located only at the
stimulus location), the dominating noise source in low and high
localized noise have different spatiotemporal windows: extended
in low noise and localized in high noise. If the most sensi-
tive detectors differ depending on whether the dominating noise
source is localized or extended, this would cause the most sen-
sitive detectors to differ in low and high localized noise, which
would compromise the assumption that the calculation efficiency
in low noise (i.e., in extended internal noise) is the same as
the measured calculation efficiency in high localized noise. For
instance, noise that is temporally localized to the target (i.e., turn
on and off with the target) introduces strong onset and offset
transients, which could result in a greater masking effect on direc-
tion selective detectors making detectors labeled for orientation
more sensitive than detectors labeled for both orientation and
direction.

The objective of the present study was to determine if the pro-
cesses (e.g., most sensitive detectors) involved in discriminating
the orientation and the direction of drifting gratings in localized
and extended noise differ from the processes operating in absence
of noise. More specifically, the goal of the current study was to
determine whether the calculation efficiencies in absence of noise
(i.e., in extended internal noise) differ for orientation and direc-
tion discrimination (as observed by Arena et al. in high localized
noise) or not (as suggested by the similar contrast thresholds in low
noise). To investigate this, we conducted an experiment similar to
Arena et al.’s (2013) in which contrast thresholds were measured
for discriminating orientation and direction in absence of noise
(i.e., in extended internal noise) and in high noise having differ-
ent spatiotemporal windows: spatially localized or extended and
temporally localized or extended. Given that contrast threshold
depends on both the dominating noise source and the calcu-
lation efficiency (i.e., signal-to-noise ratio required to perform
the task) and that the level of the dominating noise source is
known in high noise, calculation efficiency in high noise can
be directly measured by measuring contrast threshold in high
noise. If the calculation efficiencies in absence of noise (which
cannot be directly measured because the internal noise level is
unknown) are the same for orientation and direction discrimi-
nation, but differ in high localized noise (as measured by Arena
et al., 2013) due to the noise being localized, then we would expect
the calculation efficiencies in high extended noise to be similar for
orientation and direction discrimination. This would show a vio-
lation of the noise-invariant processing assumption when using

localized noise as the calculation efficiencies measured in local-
ized noise would not reflect the calculation efficiencies in absence
of noise. Conversely, if the calculation efficiency in absence of
noise is greater for orientation discrimination (as measured in
high localized noise by Arena et al., 2013), then the calculation
efficiency for orientation discrimination should also be greater in
high extended noise. For instance, Arena et al. (2013) hypothesized
that the calculation efficiency difference between the two tasks in
high localized noise could be due to more neurons responding
to orientation than to direction or to the fact that discriminating
direction requires more spatiotemporal integration than discrim-
inating orientation. In either case, a similar calculation efficiency
(i.e., contrast threshold) difference would also be expected in
extended noise.

The current study is not the first to question the use of local-
ized noise within external noise paradigms. Allard and Cavanagh
(2011) found that crowding impaired contrast detection in the
near periphery in localized noise, but not in absence of noise
or in extended noise. We found that aging can impair contrast
thresholds in localized noise, but not in extended noise (Allard
et al., 2013). Furthermore, we recently argued that using spa-
tiotemporally localized noise that is also localized as a function
of orientation and frequency (i.e., contains only the orienta-
tion and frequency of the stimulus) makes a contrast detection
task switch to a contrast discrimination task (Allard and Faubert,
2013). All these studies focused on the contrast detection of a
static target. However, because localized noise introduces strong
transients, using localized noise could be even more critical
for motion processing. The current study addresses this ques-
tion using a different paradigm that more directly identifies the
underlying process (compared to crowding or aging) by deter-
mining if the most sensitive detectors are direction selective
or not.

MATERIALS AND METHODS
OBSERVERS
Three naïve observers, who were financially compensated and pro-
vided informed consent, and one of the authors, participated in
this study. They had normal or corrected-to-normal vision.

APPARATUS
The stimuli were presented on a 19-inch CRT monitor with a
refresh rate of 120 Hz. The Noisy-Bit method (Allard and Faubert,
2008) implemented independently to each gun made the 8-bit
display perceptually equivalent to an analog display having a con-
tinuous luminance resolution. The monitor was the only source
of light in the room. A Minolta CS100 photometer interfaced with
a homemade program calibrated the output intensity of each gun.
At the viewing distance of 114 cm, the width and height of each
pixel were 1/64◦ of visual angle.

STIMULI AND PROCEDURE
The signal was a 0.5 cpd sine wave grating drifting at a frequency
of 1.875 Hz. Observers were asked to report either the orientation
(tilted either −45 or 45◦ from vertical) or the drifting direction.
When the task was to report the orientation, both the orientation
(−45 or 45◦) and direction were randomized. When the task was
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to report the drifting direction, the orientation was fixed for a
given block of trials and the drifting direction was randomized.
The initial phase of the grating was randomized on each trial. The
signal was presented for 267 ms. The spatial window was a circular
aperture of 4◦ plus a half-cosine edge of 0.5◦. The contrast was
controlled by a 3-down-1-up staircase procedure (Levitt, 1971)
with step size of 0.1 log, which was interrupted after 100 trials.
The contrast threshold for a given staircase was estimated as the
geometric mean of the inversions.

There were five different noise conditions: no noise and four
noise conditions resulting from the combinations of two spatial
and two temporal windows. The spatial window was either local-
ized or extended, i.e., the same as the signal window or full-screen,
respectively. The temporal window was also either localized or
extended, i.e., turn on and off with the signal or continuously
present (including between trials), respectively. The noise was
binary with element size of 4 × 4 pixels (i.e., 0.0625 × 0.0625◦)
and resampled every other frame (i.e., dynamic at 60 Hz). Thus,
the fact that the noise was not correlated over space (across noise
elements) and time (across frames) implies that it was both tem-
porally and spatially white, that is, it had the same spectral energy
at all frequencies (within the limit of the spatial and temporal
resolution of the noise). The noise was superimposed to the sig-
nal (both summed) and to avoid luminance motion drifting cues
within noise elements, there was no spatial or temporal luminance
variation within each noise element.

For each noise condition, contrast thresholds were estimated
for direction and orientation discrimination. To perform the same
number of measurements for orientation and direction discrim-
ination, a given noise block contained four staircases: direction
discrimination for the two orientations (−45 and 45◦) and two
identical orientation discriminations. The four staircases were
blocked and tested in a random order. Each of the five noise
blocks was tested twice in a pseudo-random order resulting in
10 noise blocks (two blocks per noise condition) each composed
of four staircases (two for direction discrimination and two for
orientation discrimination) performed in a random order (not
interlaced). As a result, for each noise condition, the two contrast
threshold estimations were based on the geometric mean of the
contrast thresholds estimations based on four staircases.

RESULTS
Figure 1 shows contrast thresholds for orientation (open symbols)
and direction (filled symbols) discrimination. Contrast thresholds
in the four conditions with noise were substantially higher (by a
factor of about 4) than the condition without noise. This confirms
that these four conditions were performed in high noise, that is,
the impact of internal noise was negligible (i.e., the dominating
noise source was external) so that contrast thresholds therefore
depended solely on calculation efficiency, not on internal equiv-
alent noise. Contrast thresholds were roughly unaffected by the
noise spatial window as similar contrast thresholds were observed
in spatially localized and extended noise both when the temporal
window was localized (SL-TL and SE-TL) and extended (SL-TE
and SE-TE). This was statistically validated by a 2 × 2 × 2 ANOVA
(task × spatial window × temporal window), which revealed no
significant effect of spatial window [F(1,3) = 1.83, p = 0.27] and

FIGURE 1 | Contrast thresholds obtained for four subjects (different

symbols) in five different noise conditions for orientation (open

symbols) and direction (closed symbols) discrimination. In the four
noise conditions, the noise was either spatially localized (SL) or extended
(SE) and temporally localized (TL) or extended (TE). Each data point
corresponds to the average of four staircases. For clarity, the standard error
are not shown, but were all smaller than 0.06 log units (i.e., less than a
factor of 1.15).

no task × spatial window interaction [F(1,3) = 0.019, p = 0.90].
On the other hand, contrast thresholds varied with the noise tem-
poral window [F(1,3) = 57.9, p < 0.01] and varied differently for
the two tasks (task × temporal window interaction, F(1,3) = 10.4,
p < 0.05). Specifically, contrast thresholds were lower (i.e., higher
calculation efficiency) in temporally localized noise (SL-TL and
SE-TL) relative to temporally extended noise (SL-TE and SE-TE,
respectively) by a factor of about 2 for orientation discrimination
and 1.4 for direction discrimination.

Figure 2 illustrates the contrast threshold ratios for direction
relative to orientation discrimination represented in Figure 1.
Similar contrast thresholds were observed for orientation and
direction discrimination (i.e., ratios close to 1) in absence of noise
and in temporally extended noise (SL-TE and SE-TE), but con-
trast thresholds were substantially better (by a factor of about 1.4
on average) for orientation than for direction discrimination in
temporally localized noise (SL-TL and SE-TL, respectively).

DISCUSSION
Calculation efficiency ratios (which can be directly inferred from
contrast threshold ratios in high noise) of direction discrimination
relative to orientation discrimination varied with the noise tem-
poral window: a substantial difference was observed in temporally
localized noise (threshold ratio of ∼1.4), but not in temporally
extended noise (ratio close to 1). The purpose of external noise
paradigms is generally to estimate the calculation efficiency in
absence of noise by assuming that it is the same as the measured
calculation efficiency in high noise. However, the fact that the cal-
culation efficiency ratios varied with the noise temporal window
implies that in at least one condition the measured calculation
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FIGURE 2 | Contrast threshold ratios for direction discrimination

relative to orientation discrimination derived from Figure 1 for four

subjects (different symbols). A value of 1 represents the same threshold
for both tasks. A value greater than 1 means that contrast thresholds were
higher (or calculation efficiencies were lower) for discriminating direction
compared to orientation.

efficiency in high noise did not correspond to the calculation effi-
ciency in absence of noise. Indeed, the calculation efficiency in
absence of noise cannot both differ substantially for orientation
and direction discrimination as measured in localized noise and be
similar for orientation and direction discrimination as measured
in extended noise. Thus, in at least one condition, the calcula-
tion efficiency measured in high noise did not correspond to the
calculation efficiency in absence of noise, which violates the noise-
invariant processing assumption and compromises the application
of the external noise paradigm.

In absence of noise (i.e., in internal noise), no substantial con-
trast threshold difference was observed (ratios close to 1) as in
temporally extended noise. Given that internal noise is expected
to be temporally extended (it does not turn on and off with the
stimulus) and that contrast thresholds were similar for orientation
and direction discrimination as in extended noise, this suggests
that the calculation efficiencies in absence of noise did not differ
between tasks. As a result, there was no evidence of a violation
of the noise-invariant processing assumption when using tem-
porally extended noise so the calculation efficiency measured in
temporally extended noise likely reflects the calculation efficiency
in absence of noise. Contrariwise, the facts that internal noise is
not temporally localized and that a different pattern of results was
observed in temporally localized noise suggest that the calculation
efficiencies measured in temporally localized noise were not both
the same as the calculation efficiencies in absence of noise. This
shows a violation of the noise-invariant processing assumption, as
the measured calculation efficiency in localized noise cannot be
assumed to be the same as the calculation efficiency in absence of
noise.

The results of the current study suggest that when temporally
localized noise dominated the most sensitive detectors were labeled

for orientation only (e.g., simple cells), whereas when tempo-
rally extended noise dominated (which includes internal noise)
the most sensitive detectors were labeled for both direction and
orientation (e.g., direction-selective complex cells). Thus, which
detectors were the most sensitive depended on the temporal win-
dow of the dominating noise source. This suggests that temporally
localized noise impaired more the sensitivity of detectors labeled
for orientation and direction (e.g., direction-selective complex
cells, which would be the most sensitive in absence of noise)
than the ones labeled for orientation only (e.g., simple cells). This
greater masking for direction selective detectors can be explained
by the sharp contrast transient onset and/or offset of the noise.
Note that technically, there is more luminance transient between
two different noise frames than between a mean gray frame and a
noise frame. However, the temporal envelope of the localized noise
contains a strong transient (turns on and off, i.e., noise contrast
varies from 0 to high to 0) whereas the extended noise does not
(it is continuously present, i.e., constant mean contrast). This
corresponds to the subjective impression: temporally localized
noise suddenly appears causing a sharp transition from a blank
to a noisy display whereas temporally extended noise appears to
be constantly displayed even if it is dynamic. Thus, the current
results suggest that the sharp transients of the noise envelope (i.e.,
noise onset and offset) impair more the detectors labeled for both
orientation and direction than the ones labeled for orientation
only.

Given that transients caused by localized noise cause additional
masking, one could expect thresholds to be lower (i.e., better) in
extended noise than in localized noise, which is opposite to the
current findings (Figure 1). Even though adaptation is known to
reduce responsiveness of stimulated cells (Giaschi et al., 1993), it
is unlikely that it affects contrast threshold in high noise because
adaptation would affect the responses related to both the signal
and noise leaving the signal-to-noise ratio intact. This would have
no impact on contrast threshold given that contrast threshold in
high noise is proportional to the noise contrast (Pelli, 1981). Con-
versely, there are at least two reasons why extended noise could
have a greater masking effect than localized noise. First, the visual
system has a limited temporal resolution and therefore integrates
some noise outside the signal temporal window (i.e., just before the
target onset and after the target offset). Second, localized noise has
the advantage of reducing temporal uncertainty, which is obvi-
ously not the case for temporally extended noise. Thus, adding
noise outside the temporal window of the signal (i.e., passing
from localized to extended noise) can facilitate contrast threshold
by removing noise onset and offset transient, but impair con-
trast threshold by introducing more noise and increasing temporal
uncertainty. It is therefore not surprising that contrast thresholds
in temporally extended noise are higher than in temporally local-
ized noise even though there is no noise onset and offset transient
in extended noise.

By compromising the estimation of the calculation efficiency
in absence of noise, a violation of the noise-invariant processing
assumption also compromises the estimate of the internal equiv-
alent noise. Based on the linear amplifier model (Pelli, 1981; Pelli
and Farell, 1999), contrast threshold in absence of noise depends
on both internal equivalent noise and calculation efficiency. By

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 426 | 49

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Allard and Faubert Motion processing and noise

knowing the contrast threshold in absence of noise and by assum-
ing that the calculation efficiency in absence of noise is the same
as the measured calculation efficiency in high noise, the internal
equivalent noise can be calculated. If the calculation efficiency
in absence of noise cannot be assumed to be the same as the
measured calculation efficiency in high noise, then the internal
equivalent noise cannot be calculated. For instance, Arena et al.
(2013) observed that aging affected contrast thresholds in low,
but not in high, localized noise. Given that contrast thresholds
in high noise depend only on the calculation efficiency and not
on the internal equivalent noise, they concluded that the cal-
culation efficiency in low noise was not affected with aging and
therefore attributed the age-related sensitivity losses in low noise
to an increase in internal equivalent noise. However, given that the
measured calculation efficiency in absence of noise does not cor-
respond to the measured calculation efficiency in high localized
noise (as suggested by the current findings), both the calculation
efficiency in absence of noise and the internal equivalent noise
remains unknown and it is not possible to determine whether
the age-related sensitivity loss in low noise was due to a lower
calculation efficiency or higher internal equivalent noise.

The current study found that the most sensitive detectors
underlying motion processing varied with the noise temporal win-
dow. In temporally extended noise (which includes internal noise),
the most sensitive detectors were labeled for both orientation and
direction, whereas in temporally localized noise, they were labeled
for orientation, but not direction. In absence of noise (i.e., in
internal noise), the most sensitive detectors would be labeled for
both orientation and direction, which suggests, as expected, that
internal noise limiting motion processing is temporally extended.
Thus, to characterize motion processing in absence of noise, such
as measuring internal equivalent noise and calculation efficiency,
external noise should be temporally extended to avoid violating
the noise-invariant processing assumption.
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Visual attention can be allocated to either a location or an object, named location- or
object-based attention, respectively. Despite the burgeoning evidence in support of the
existence of two kinds of attention, little is known about their underlying mechanisms in
terms of whether they are achieved by enhancing signal strength or excluding external
noises. We adopted the noise-masking paradigm in conjunction with the double-rectangle
method to probe the mechanisms of location-based attention and object-based attention.
Two rectangles were shown, and one end of one rectangle was cued, followed by the
target appearing at (a) the cued location; (b) the uncued end of the cued rectangle; and
(c) the equal-distant end of the uncued rectangle. Observers were required to detect
the target that was superimposed at different levels of noise contrast. We explored how
attention affects performance by assessing the threshold versus external noise contrast
(TvC) functions and fitted them with a divisive inhibition model. Results show that location-
based attention – lower threshold at cued location than at uncued location – was observed
at all noise levels, a signature of signal enhancement. However, object-based attention –
lower threshold at the uncued end of the cued than at the uncued rectangle – was found
only in high-noise conditions, a signature of noise exclusion. Findings here shed a new
insight into the current theories of object-based attention.

Keywords: attention mechanisms, location-based attention, object-based attention, threshold versus external

noise contrast (TvC) function, noise-masking paradigm, divisive inhibition model

Our visual world is full of information; however, not all can be
selected for further processing due to limited capacity. Mecha-
nisms of attention are thus employed to prioritize the processing
of particular information. Past studies have shown that visual
attention can be allocated either to a spatial location or to an
object, called location-based attention or object-based attention,
respectively (Posner, 1980; Duncan, 1984; Tipper et al., 1991;
Egly et al., 1994; Gibson and Egeth, 1994; Brawn and Snowden,
2000).

In a seminal work, Egly et al. (1994) used a double-rectangle
display to demonstrate both location-based attention and object-
based attention. They presented two outlined rectangles, with one
end of one rectangle brightened as a cue to indicate the pos-
sible location of a target. The target was a small solid square,
shown subsequently within one end of a rectangle. Location-
based attention was indicated by the spatial-cueing effect: reac-
tion times (RTs) were shorter when the target appeared at the
cued location than the uncued location. Object-based atten-
tion was indicated by the same-object advantage: RTs were
shorter when the target appeared at the uncued end of the
cued rectangle than at the uncued rectangle, with an equal
cue-to-target distance between the two. Concurring with Egly
et al. (1994), a series of studies using various stimuli and
tasks have demonstrated the spatial-cueing effect and the same-
object advantage (Moore et al., 1998; Abrams and Law, 2000;
Lamy and Tsal, 2000; Moore and Fulton, 2005; Brown et al.,

2006; Matsukura and Vecera, 2006; Shomstein and Behrmann,
2008).

The spatial-cueing effect has been explained by the movement
of attention from one location to another in visual space. On
valid trials, a shift of attention can be initiated to the expected
target location before the target appears, thereby producing an RT
or accuracy benefit (Posner, 1980). On the two kinds of invalid
trials, however, a shift of attention would be initiated to a location
on the wrong site of the display from the actual target location.
This would produce an RT or accuracy cost because attention
would need to be realigned with the correct target location after
the target’s appearance.

The same-object advantage has been explained mainly by two
competing theories. The spreading hypothesis states that when
attention is cued to a location within an object, attention will
spread automatically from the cued location to the whole object
(e.g., Davis and Driver, 1997; Kasai and Kondo, 1997; Richard
et al., 2008). Such spread of attention explains the participants’
better visual performance when the target was shown on the cued
object than on the uncued object. Since the attentional modulation
is triggered by a location cue and spreads to the whole object, the
same-object advantage should be an instance of location-based
attention. That is, the underlying mechanism of object-based
attention is the same as that of location-based attention. In addi-
tion, it is shown that improvement of visual performance in a
location-based attention task can be due to (a) the participant
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being more sensitive to a target at the cued location than that at
the uncued one; and/or (b) the participant being less influenced
by irrelevant visual information (Lu and Dosher, 1998). Hence,
these two factors should be able to account for object-based atten-
tion as well, if it shares the same mechanism as location-based
attention.

On the other hand, the prioritization hypothesis (Shomstein and
Yantis, 2002) suggests that object-based attention reflects a spe-
cific attentional prioritization strategy rather than the modulation
of an early sensory enhancement extending from the location-
based attention. That is, the prioritization hypothesis does not take
any position regarding the similarity of the mechanisms between
location- and object-based attention. At best, it would predict dif-
ferent mechanisms for the exogenous spatial-cueing effect and the
strategically object-based scanning strategy. Therefore, the same-
object advantage cannot be explained by a change in early sensory
mechanisms.

Here, we are interested in the mechanisms that subserve
location- and object-based attention, especially whether the mech-
anisms underlying these two types of attention are the same.
Notice that previous investigations adopting the double-rectangle
method generally used RT measurement with a single level of
task difficulty (Egly et al., 1994; Moore et al., 1998; Abrams and
Law, 2000; Lamy and Tsal, 2000; Moore and Fulton, 2005; Brown
et al., 2006; Shomstein and Behrmann, 2008). RT measurement
may reflect processing speed, response bias, or a combina-
tion of the two (Ratcliff, 1978), making it hard to infer the
underlying mechanisms. In addition, while an estimation of
response variability is important to evaluate certain theories of
location-based attention (Lu and Dosher, 1998), it is difficult
to separate measurement error from the experimental proce-
dure and the variability of the internal responses in the RT
measurement.

We used a noise-masking paradigm (Nagaraja, 1964; Legge
et al., 1987; Pelli, 1991; Lu and Dosher, 1998) that can evaluate
the variability in the response of the visual system in the double-
rectangle display to probe the mechanism(s) of location-based
attention and object-based attention. In a typical noise-masking
paradigm, the task of the observer is to detect a pre-designated
target that is superimposed on a patch of white noise. In the con-
text of our experiment, the target was a periodic pattern defined
by a Gabor function, which is a product of a sine wave and a
Gaussian envelope, while the noise was a random modulation
of luminance. The intensity of the noise mask was defined by
contrast, or the theoretical half range of the luminance mod-
ulation defined by a uniform distribution divided by the mean
luminance. By systematically measuring the target threshold at
different external noise levels, we can measure the threshold ver-
sus external noise contrast (TvC) functions. With an appropriate
model, this information allows an estimation of the response prop-
erties and variability of the target detection mechanisms, thus
providing a more comprehensive estimation of various percep-
tual mechanisms (Nagaraja, 1964; Legge et al., 1987; Pelli, 1991;
Lu and Dosher, 1998; Chen and Tyler, 2001; Wu and Chen,
2010).

By taking advantage of the double-rectangle method, we evalu-
ated the TvC functions of attended and unattended location/object

within a single paradigm. In a two-alternative intervals choice task
(Figure 1), participants were asked to detect a Gabor target that
was superimposed on a noise pattern. The displays, if not stated
otherwise, consisted of two vertical rectangles that were presented
on each side of fixation. The four ends of the rectangles were where
the cue (or target) was likely to occur. The target could occur
at one of the three possible locations: the cued location (valid),
the uncued location but on the cued object (same-object), or an
equidistant location on the uncued object (different-object). Then,
we measured the TvC functions for all the different conditions
so that we can compare location-based attention and object-based
attention and infer their mechanisms directly. If their mechanisms
are identical, they should show the same kind of shift in the TvC
functions.

MATERIALS AND METHODS
ETHICS STATEMENT
The use of human participants was approved by the IRB of
National Taiwan University Hospital and followed the guideline of
Helsinki Declaration. The written informed consent was obtained
from each participant.

APPARATUS
Two ViewSonic (15′′) CRT monitors, each driven by a Radeon
7200 graphic board, were used to present the stimuli. The graphic
board provided 10-bit digital-to-analog converter depth and was
controlled by a Macintosh computer. A beam splitter was used
to combine lights from the two CRT monitors. The target was
presented on one monitor and the cue and the external noise patch
(mask) on the other. This two-monitor setup had the advantage
that the contrast of the target could be controlled independently
while keeping the context (the cue and the mask) identical in two
intervals of a trial. At a viewing distance of 128 cm, the resolution
on a 640 × 480 pixels monitor was 60 pixels per degree. The refresh
rate of the monitors was 66 Hz. The viewing field was 10.7◦ × 8◦
(horizontal × vertical), and the mean luminance of the displays
was 74.9 cd/m2. The LightMouse photometer (Tyler and McBride,
1997) was used to measure the full-detailed input-output intensity
function of the monitors, and this information was then used to
compute linear lookup table settings so as to linearize the output
within 0.2%.

STIMULI AND DISPLAY
Figure 1 illustrates the stimuli and sequence of events for a trial.
The displays are comprised of a pair of adjacent vertical rectangles.
The fixation was a small dot. Each rectangle (1.63◦ × 4.88◦, with
a stroke width 0.13◦) was centered 3◦ from fixation. The cue and
the target were vertical Gabor patches defined by the following
equation:

G(x, y, c, ux , uy) =

L + L ∗ c ∗ cos(2πfx) ∗ exp(− (x − ux)
2

2σ2
) ∗ exp(− (y − uy)

2

2σ2
),

where L was the mean luminance, c was the contrast ranging from
0 to 1, f was the spatial frequency, σ was the scale parameter of
the Gaussian envelope, ux was the horizontal displacement, and
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FIGURE 1 | Schematic overview of a typical valid trial with the target

showing in interval 1. The task was to detect the target (a Gabor patch)
superimposed on different levels of noise (mask) contrast in a
two-alternative forced-choice paradigm. In each interval, a cue was flashed

first for 16 ms, followed by a 64 ms blank, and then a stimulus
presentation (either target-plus-noise mask or noise mask alone). Two
intervals were separated by a 600 ms blank. The rectangles and the fixation
point were always on-screen.

uy was the vertical displacement. Both Gabor patches had a spatial
frequency (f) of 1.3 cycles/deg and a scale parameter (σ) of 0.3536◦.
The contrast of the cue (c) was −6 dB or 50%. For each external
noise frame the pixel gray-levels were sampled from a Gaussian
distribution.

PROCEDURE
A two-alternative forced-choice paradigm was used to measure the
threshold of the target (Figure 1). The cue was presented at one
of four possible locations in each interval. After that, the target
was presented at one of the three possible locations: (1) the cued
location (valid trials), (2) the uncued end within the cued object
(same-object trials), or (3) the uncued end within the uncued
object (different-object trials) in one of the intervals.

A fixation display (a central fixation point and two outline
rectangles) was presented first, followed by a 16-ms cue display,
then a 64-ms fixation display, and finally a 96-ms target display
(a target and four mask patches). The stimulus onset asynchrony
between the cue and the target was 80 ms, the inter-stimulus-
interval within a trial was 600 ms, and the inter-trial-interval was
800 ms. At the beginning of each trial an audio tone was presented
as a signal to start. Correct and incorrect responses were followed
by auditory feedbacks.

Each block of seven external noise levels (−∞,−26, −22, −18,
−14, −10, −6 dB) were presented in random order, and each
block contained the three attention conditions (valid, same-object,
and different-object). The threshold was defined at 75% correct
response level, measured by the PSI threshold-seeking algorithm
(Kontsevich and Tyler, 1999). For each threshold measurement,
two practice trials preceded 40 formal trials. Within a single block,
four thresholds were measured in an interleaved way – two for the
valid condition, one for the same-object and one for the different-
object conditions, making the total number of valid trials (84

trials) twice as many as that of the same-object or different-object
trials (42 trials). That is, the cue validity for predicting the target
location was 50%. The sequence of trials was pseudo-randomized.
The TvC function of the valid condition is the average of two
threshold measurements. Each data point reported was an aver-
age of four to eight repeated measures. The task was to indicate
which interval contained the target by pressing a corresponding
key. Participants were told that the two outline rectangles were
task-irrelevant, and they were well informed about the cue-target
relationship.

PARTICIPANTS
Three participants with normal or corrected-to-normal visual acu-
ity were tested. RY and TH were naïve as to the purposes of this
study and WL was one of the authors.

RESULTS
Figure 2 shows the result averaged across three participants.
The blue circles and solid curve denote the TvC function for
the valid condition; red squares and dash curve, the same-
object condition; and green triangles and dash-dot curve, the
different-object condition. To account for the individual differ-
ence in overall sensitivity to the target, we scaled each threshold
by that measured at zero noise contrast of the valid condition
of the corresponding participant before averaging. When there
was no noise mask, the threshold for the valid condition was
lower than that for both invalid conditions. The difference was
2 dB [t(2) = 3.46, p = 0.037 < 0.05] between the valid cue
and both the invalid conditions. Such difference between the
valid and invalid conditions remained as the mask increased.
Thus, the TvC functions of the invalid conditions look like a
vertically shifted copy of the valid condition on log–log coor-
dinates. Such general facilitation on target detection suggests
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FIGURE 2 |Target threshold versus noise contrast functions. Each data
point represents the average of the normalized threshold from three
observers. The blue circles and the solid curve denote the TvC function for
the valid condition; the red squares and the dashed curve, the same-object
condition; the green triangles and the dash-dot curve, the different-object
condition. The smooth curves are fits of the model discussed in the text.
The error bars are the estimated one standard error of normalized individual
difference.

that the effect of the valid cue was to increase the sensitivity
to the target (Cohn and Lasley, 1974; Lu and Dosher, 1998;
Zenger et al., 2000; Pestilli and Carrasco, 2005; Chen and Tyler,
2010).

The target detection thresholds were not influenced by the low
contrast noise mask for all attention conditions. As a result, all
TvC functions were flat at low noise contrasts. When the noise
contrast reached a critical value, the threshold began to increase
with noise contrast. Here, whether or not the cue and the tar-
get were within the boundary of an object had an effect. The
threshold increment for the different-object condition started at a
lower noise contrast than that for the same-object condition. As a
result, the TvC function for the different-object condition showed
a leftward shift from the TvC function for the same-object condi-
tion. This suggests that the noise effect on target detection in the
same-object condition is different from that in the different-object
condition.

Our result cannot be explained by an inter-hemispherical effect.
In a control condition, we used horizontal rectangles as the objects.
We measured the target threshold at noise level −∞ and −6 dB.
There was no statistical significant difference [t(11) = −1.1,
p = 0.30] in target threshold between the vertical and the hor-
izontal object configurations, averaged across all conditions and
observers.

MODEL
We fitted the TvC functions by a version of the divisive inhibi-
tion model (Ross and Speed, 1991; Wilson and Humanski, 1993;
Foley, 1994; Teo and Heeger, 1994; Watson and Solomon, 1997;
Snowden and Hammett, 1998; Chen and Foley, 2004) modified
to account for the noise-masking experiment (Lu and Dosher,
1998; Goris et al., 2008; Chen and Tyler, 2010). This model inte-
grates features from the divisive inhibition models for pattern

detection and discrimination (Foley, 1994; Chen and Foley, 2004)
and conventional models for noise masking (e.g., Lu and Dosher,
1998). Chen and Tyler (2010) used a similar model to account for
the cueing effect in a noise-masking paradigm. Figure 3 shows a
diagram of this model. There are several stages in this model. The
first stage is a band of linear filters operating on the input images.
The excitation of a linear filter is then half-wave rectified, raised
to a power and scaled by a divisive inhibition input to form the
response of the target detector. The decision variable is the ratio
of the response of the target detector and the noise from different
sources.

Each mechanism j contains a linear operator within a spatial
sensitivity profile fj(x,y). The excitation of this linear operator to
the i-th image component gi(x,y) is specified as:

Eij
′ = �x�y fj(x, y)gi(x, y) (1)

where the linear filter fj(x,y) is defined by a Gabor function (see
“Materials and Methods”). Suppose that the image component
gi(x,y) has a contrast Ci. Summing over x and y, Eq. (1) can be
simplified to

Eji
′ = SejiCi (1’)

where Seji is a constant defining the excitatory sensitivity of the
mechanism to the stimulus (j = t for the target and j = m for
the mask). Detailed derivation of Eq. (1)’ from Eq. (1) has been
discussed elsewhere (Chen and Tyler, 1999; Chen et al., 2000).

The excitation of the linear operator is half-wave rectified
(Foley, 1994; Teo and Heeger, 1994; Foley and Chen, 1999) to
produce the rectified excitation Eji

Eji= max(Eji
′, 0) (2)

where max denotes the operation of choosing the greater of the
two numbers.

The total excitation of the j-th mechanism Ej is the sum of
excitations produced by all image components. The response of
the j-th detector is then Ej , raised by a power p and divided by a
divisive inhibition term I j plus an additive constant z. That is,

Rj= E
p
j /(I j+z) (3)

where Ij is the summation of a non-linear combination of the
excitations of all relevant mechanisms. This divisive inhibition
term Ij can be represented as

Ij = �i(Sij,iCi)
q (4)

where Sij ,i is the weight of the contribution from each component
to the inhibition term.

The contribution of a detector to the visual performance is
limited by the noise. We consider two sources of noise in this
model: the internal noise inherent in the system, and the external
noise provided by the noise patterns. The variability produced by
the internal noise, σ2

a, is a constant for all detectors in the model.
The variability produced by the external noise, σ2

e , is proportional
to the square of the contrast noise mask; that is,

σ2
e = wmC2

m (5)

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 456 | 54

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Chou et al. Visual attention mechanisms

FIGURE 3 | Diagram of the model used to fit the data. See text for details.

where wm is a scalar constant that determines the amount of con-
tribution of the noise mask to the variance of the response. Pooling
the effects of these two noise sources, the variance of the response
distribution in each detector is

σ2
r = (σ2

a+σ2
e ) (6)

In the context of our experiment, the observer compared the
response to the stimuli in both intervals at the three possible tar-
get locations. The observer can detect the target if the difference
between the response to the target + mask, Rj , t +m, and that to
the mask alone, Rj ,m, is greater in at least one channel than is the
limitation imposed by the noise. In practice, we need to consider
only the mechanism that produces the greatest response difference
between the target + mask and the mask alone conditions. Thus,
we can drop the subscript j for this study. That is, the decision
variable d′ is,

d
′= (Rm+t−Rm)/(2σ2

r )
1/2 (7)

The threshold is defined when d′ reaches unity.
Table 1 shows the parameter of the model. To reduce the math-

ematical redundancy in the model, we fixed the sensitivity to the
target, Set , for the valid cue condition to be 100 and the size of
the internal noise, σ2

a to be 1. As shown in the Results section,
the TvC functions for the invalid conditions are vertically shifted

Table 1 |The estimated parameters of the model.

Conditions

Valid Same-object Different-object

Sem 2.47 2.47 2.47

Set 100∗ 93.99 93.99

Sit 308.75 308.75 308.75

z 1.62 1.62 1.62

w m 5.71 5.71 11.48

σa
2 1∗ 1∗ 1∗

p 3.11 3.11 3.11

q 2∗ 2∗ 2∗

∗Fixed value, not a free parameter.

copies of the valid condition on log–log coordinates. As shown in
Figure 4A, such vertical shift of TvC functions can be achieved by
changing the sensitivity to the target, Set . Hence, our data suggest
that the sensitivity to the target to be different for the valid and
invalid cue conditions. This result is consistent with the models
proposed by Reynolds and Heeger (2009), which suggested that
spatial attention can operate in the early visual areas by affecting
the attention field, and by Lu and Dosher (1998), which suggested
that spatial cue enhances the target signal.

The TvC function for the different-object condition shifted to
the left from that of the same-object condition. Such horizontal
shift can be implemented a change in the relative contribution of
the external noise wm (Figure 4B). Thus, our result suggests that
the contribution of the external noise to the response variance, wm,
is different in the same-object and the different-object conditions.
Notice that in the valid condition, the target and the cue were
also presented within the boundary of the same object. Therefore,
we constrained all parameters to be the same across conditions
except for sensitivity to the target, Set , and the contribution of the
external noise, wm. This model fits the data well; the root of mean
squared error (RMSE) was 0.27. This model explains 98.61% of
all variance in the averaged data.

To further validate our interpretation of the data, we tried var-
ious constraints to the model. If we constrained the sensitivity to
the target, Set , to be the same for all conditions, the sum of squared
error (SSE) of the model increased significantly [F(1,12) = 73.82,
p < 0.0001] even when we took the number of free param-
eters into account. Similarly, constraining the contribution of
the external noise, wm, to be the same for both invalid condi-
tions significantly increased the SSE [F(1,12) = 16.63, p < 0.05].
Therefore, the change of sensitivity to the target is necessary to
explain the spatial-cueing effect while the change of the contribu-
tion of the external noise is necessary to explain the same-object
advantage.

Lu and Dosher (1998) suggested a mechanism of internal noise
reduction for attention. That is, the effect of the cue is to reduce
the effect of the additive noise in the system. In our model, this
can be implemented by changing the value of the internal noise
parameter σa. As shown in Figure 4C, such change in parameter
value will cause TvC function to shift vertically in the low noise
contrasts. However, the TvC function would merge together at
high contrasts. We did not find such a trend in our data. Hence,
our result cannot be explained by a reduction of additive internal
noise. We also found that more free parameters in the model never
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FIGURE 4 | Performance signatures in threshold contrast versus external

noise contrast (TvC) functions. (A) If the TvC functions are a vertically
shifted copy of each other, that is, the same target would have different
thresholds in the attended and unattended conditions, this suggests that the
participant has a different sensitivity to the target in the two conditions.
Hence, the effect of attention is to enhance the sensitivity [Se in Eq. (1)’] to
the target in our model. (B) Suppose that the TvC functions for the attended
condition is a rightward-shifted copy of the unattended condition. It means

that the same external noise level can have different effects on target
detection in the attended and unattended conditions. This suggests that
attention allows the participants to exclude noise in the stimuli more easily.
This corresponds to a reduction of the contribution from the external noise
[wm in Eq. (5)] in our model. (C) If the TvC functions showed a vertical shift at
low noise contrast, but merged at high contrasts, the effect of attention is to
reduce the internal noise. This corresponds to a reduction of the internal noise
parameter [σ2

a in Eq. (6)] in our model.

produced a significant improvement of goodness-of-fit. Thus, no
extra factors are necessary to explain our results.

DISCUSSION
The current study systematically probed the target threshold
improvement by location- and object-based attention with differ-
ent noise levels using the double-rectangle method, and the results
suggest that location- and object-based attention involve different
mechanisms. Location-based attention operates by enhancing sig-
nal strength, whereas object-based attention operates by excluding
external noise. This study is the first to demonstrate the discrep-
ancy in the TvC functions of location- and object-based attention
within a single task.

In previous studies, location- and object-based attention were
examined separately by the noise-masking paradigm. Location-
based attention was observed in both no-noise and high-noise
conditions (Dosher and Lu, 2000; Lu and Dosher, 2000), con-
sistent with our results. However, Han et al. (2003) found that
object-based attention was also observed in both no-noise and
high-noise conditions, inconsistent with our findings here. Notice
that Han et al. (2003) compared the performances of tasks that
required participants to attend to only one object versus two spa-
tially separated objects. Object-based attention was indexed by
higher accuracy of reporting two attributes belonging to a sin-
gle object than different objects, and it was shown in both no-
and high-contrast noise conditions in Han et al.’s (2003) study. It
is reasonable to argue that their participants may have changed
their attentional window – like a zoom lens (Eriksen and Yeh,
1985) – from “wide” in the two-object condition to “small” in the
single-object condition. Accordingly, the differences between the
two-object and single-object conditions not only are the number
of attended objects but also the size of spatial attention (Davis
et al., 2000).

This argument is supported by Liu et al. (2009) with a design
identical to Han et al.’s (2003). The magnitude of the same-object
advantage was modulated by the required precision of judgments:

the higher the task precision, the larger the difference in perfor-
mance between the two-object and the single-object conditions
(Liu et al., 2009). Assuming that attentional window is wide in the
two-object condition, the density of attentional resource should be
low due to the reciprocal relationship between size and density of
attentional distribution (Eriksen and St. James, 1986; LaBerge and
Brown, 1989). The low-precision task that requires less resources
can be performed equally well with less attentional resource in the
two-object condition as opposed to the one-object condition –
leading to reduced or no same-object advantage. The critical com-
parison in their study – two-object and single-object conditions –
may not reflect object-based attention but rather a change in the
window size of spatial attention. Indeed, the modulation pattern
of “object-based” attention in Han et al.’s (2003) study is similar
to the modulation pattern of location-based attention (Dosher
and Lu, 2000; Lu and Dosher, 2000): both can be observed in no-
noise and high-noise conditions. However, the double-rectangle
method compares the same-object and different-object condi-
tions based on an equal cue-to-target distance between the two
conditions. Using the double-rectangle method, we rule out the
confounding of location-based attention in the current study and
find that object-based attention is observed only in high-noise
conditions, indicating that external noise exclusion plays a critical
role in object-based attention.

The qualitative difference between the intrinsic mechanisms of
location-based and object-based attention suggests that object-
based attention is not an outcome of the spreading from the
location-based attention, which is a finding arguing against the
well-accepted spreading hypothesis (e.g., Davis and Driver, 1997;
Kasai and Kondo, 1997; Richard et al., 2008). Instead, we sug-
gest that object-based attention reflects a qualitatively different
kind of attentional orienting that is independent of location-based
attention, rather than the modulation of an early sensory enhance-
ment extending from location-based attention. This argument
is also against the prioritization hypothesis proposed by Shom-
stein and Yantis (2002), who claimed that object-based attention
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reflected strategic prioritization regardless of location-based effect
and that neither was it due to object-based perceptual enhance-
ment. However, using the noise-masking paradigm, we provide
evidence for the underlying mechanism of object-based atten-
tion. The current finding of the leftward-shifted copies of the
TvC functions in the same-object and different-object conditions
suggests that the underlying mechanism of object-based attention
is to exclude external noise, an evidence of object-based perceptual
enhancement.

In our experiment, the target may appear in one of the three
possible locations. As a result, the participant would experience a
greater uncertainty in the invalid conditions, in which the par-
ticipant needed to monitor three locations, than in the valid
condition, in which the participant needed to monitor just one
location. Hence, one may argue that perhaps our result can be
explained by uncertainty reduction (Pelli, 1985; Tyler and Chen,
2000; Chen and Tyler, 2010). Our result did show a lower threshold
in the valid condition than in the invalid conditions, and in turn a
vertical shift of TvC functions that is consistent with uncertainty
reduction. The three-fold increase in uncertainty from the valid to
the invalid cued conditions, according to Tyler and Chen (2000),
translated to a 2.5 dB threshold increment. This is slightly larger
than the threshold difference between the valid and the invalid cue
conditions in our data (2.2 dB). Furthermore, in our experiment,
there were only two location-based cueing conditions (valid and
invalid). The uncertainty effect, mathematically, as discussed in
the Section “Model,” can be absorbed by a change of the sensi-
tivity parameter, Se. Thus, for practical reasons, we can consider
the reduction of uncertainty as a cause of sensitivity change that
accounts for the spatial cueing effect. However, uncertainty cannot
explain the same-object advantage in our result. For instance, the
TvC functions for the same-object and the different-object con-
ditions were different even though the uncertainty in these two
conditions was identical.

CONCLUSION
The current study measured the thresholds in different levels
of task difficulty and revealed the underlying mechanisms of
location-based and object-based attention – which are difficult
to evaluate from conventional RT measurements – and sheds a
new light to current theories of object-based attention. Here, we
overturn two widely accepted theories that object-based attention
is due to the “spread” or “prioritization” of attention. In addi-
tion to revealing the underlying mechanisms of location- and
object-based attention, the current finding fills the gap between
previous physiological (Fink et al., 1997; He et al., 2004; Wager
et al., 2004; He et al., 2008) and behavioral evidence (Shomstein
and Yantis, 2004; List and Robertson, 2007; Chou and Yeh, 2008,
2011; Matsukura and Vecera, 2009) that have demonstrated the
discrepancy in location-based and object-based attention by pro-
viding important convergent evidence from a novel aspect using
the noise masking paradigm to the double-rectangle method.
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The standard model of early vision claims that orientation and spatial frequency are
encoded with multiple, quasi-independent channels that have fixed spatial frequency
and orientation bandwidths. The standard model was developed using detection and
discrimination data collected from experiments that used deterministic patterns such as
Gabor patches and gratings used as stimuli. However, detection data from experiments
using noise as a stimulus suggests that the visual system may use adjustable-bandwidth,
rather than fixed-bandwidth, channels. In our previous work, we used classification images
as a key piece of evidence against the hypothesis that pattern detection is based on
the responses of channels with an adjustable spatial frequency bandwidth. Here we
tested the hypothesis that channels with adjustable orientation bandwidths are used
to detect two-dimensional, filtered noise targets that varied in orientation bandwidth
and were presented in white noise. Consistent with our previous work that examined
spatial frequency bandwidth, we found that detection thresholds were consistent with
the hypothesis that observers sum information across a broad range of orientations nearly
optimally: absolute efficiency for stimulus detection was 20–30% and approximately
constant across a wide range of orientation bandwidths. Unlike what we found with spatial
frequency bandwidth, the results of our classification image experiment were consistent
with the hypothesis that the orientation bandwidth of internal filters were adjustable. Thus,
for orientation summation, both detection thresholds and classification images support the
adjustable channels hypothesis. Classification images also revealed hallmarks of inhibition
or suppression from uninformative spatial frequencies and/or orientations. This work
highlights the limitations of the standard model of summation for orientation. The standard
model of orientation summation and tuning was chiefly developed with narrow-band
stimuli that were not presented in noise, stimuli that are arguably less naturalistic than
the variable bandwidth stimuli presented in noise used in our experiments. Finally, the
disagreement between the results from our experiments on spatial frequency summation
with the data presented in this paper suggests that orientation may be encoded more
flexibly than spatial frequency channels.

Keywords: pattern vision, orientation, channels, ideal observer, classification images, summation, psychophysics

1. INTRODUCTION
Visual noise has been used to investigate visual processing in a
variety of tasks (Pelli and Farell, 1999). Researchers have used
two-dimensional luminance noise most frequently, but studies
have also used one-dimensional luminance noise (i.e., noise that
is constrained to vary along a single dimension) as well as visual
noise that varies in other ways such as color (Gegenfurtner and
Kiper, 1992), motion (Dakin et al., 2005), orientation (Girshick
et al., 2011), Gaussian spatial windowing or bubbles (Gosselin
and Schyns, 2001), and zero-dimensional noise pedestal incre-
ments (Baker and Meese, 2012). In virtually all of these studies,
the noise was used as a mask and the observer’s task was to ignore
the noise to detect a non-noise target. Comparatively few stud-
ies have used noise as the target stimulus itself. David Green and
colleagues used noise in this way to study the mechanisms under-
lying the detection of auditory signals (Green, 1960a,b; Green and

Swets, 1966), and subsequent studies adopted Green’s approach
to study vision (for examples, see Kersten, 1987; Taylor et al.,
2003, 2004, 2005, 2006, 2009; Levi et al., 2005, 2008). In the cur-
rent study, we use noise targets and noise masks to investigate
orientation selectivity of visual mechanisms.

Data from detection, discrimination, and adaptation exper-
iments using both psychophysical and physiological methods
support the idea that the early stages of visual processing encode
patterns with channels that are tuned to a fixed range of spa-
tial frequency and orientation (Campbell and Kulikowski, 1966;
Campbell et al., 1966; Graham, 1989; Wandell, 1995). This stan-
dard, or back-pocket, model of early visual coding accounts for
a wide range of detection and discrimination data (Klein, 1992;
Watson, 2000). However, despite its many successes, the stan-
dard multiple channels model apparently fails to account for
some experimental results (see Nachmias et al., 1973; Kersten,
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1987; Derrington and Henning, 1989; Perkins and Landy, 1991;
Wandell, 1995; Taylor et al., 2009). One particularly puzzling
result was reported by Kersten (1987), who measured detection
thresholds for a visual noise target embedded in a visual noise
mask. Detection thresholds were measured with noise targets
with different spatial frequency bandwidths. For frequency band-
widths between 1 and 4 octaves, Kersten found that detection
thresholds were proportional to the quarter-root of bandwidth,

crms ∝ BW
1
4 (1)

Interestingly, Kersten showed that detection thresholds for an
ideal observer also were proportional to the quarter-root of band-
width, which implies that absolute efficiency (η), defined as

η =
(

crms (ideal)

crms (observer)

)2

(2)

ought to be constant. Indeed, Kersten found that absolute effi-
ciency was high (≈50%) and approximately constant as the
spatial frequency bandwidth of the noise stimulus was increased
from 0.5 to 4 octaves. Kersten pointed out that this result is sur-
prising because ideal observers integrate information across the
entire spatial frequency bandwidth, whereas human observers are
thought to detect patterns using mechanisms that have band-
widths that are much narrower than four octaves. Hence, the
data suggest that spatial frequency summation is approximately
optimal across a wide bandwidth, and appear to be inconsistent
with a standard model that assumes that patterns are detected
using channels that have a fixed and relatively narrow frequency
bandwidth. Instead, Kersten suggested that the data were consis-
tent with the adjustable channels hypothesis, first proposed by
Green (1960a,b) to explain similar results obtained in an auditory
detection task, which states that human observers detect band-
limited noise using a channel, or combination of channels, with a
frequency bandwidth that is adjusted to match that of the stim-
ulus, and which sums information efficiently across the entire
bandwidth.

Taylor et al. (2009) evaluated the adjustable channels hypoth-
esis by using the classification image technique (Murray, 2011) to
measure the frequencies observers use to detect visual noise that
varied in bandwidth from 0.5 to 6 octaves. Like Kersten (1987),
Taylor et al. found that detection thresholds were proportional to
the quarter-root of bandwidth (Equation 1). However, contrary
to the predictions of the adjustable channels hypothesis, estimates
of the spatial frequency bandwidth of the channel used to detect
visual noise, which was derived from the classification image data,
did not vary with stimulus bandwidth. Furthermore, Taylor et al.
used Monte Carlo simulations to demonstrate that the optimal
spatial frequency summation found in noise detection tasks was,
surprisingly, consistent with the predictions of at least one version
of the standard model (Wilson et al., 1983). In short, Taylor et al.
showed that the apparently anomalous results reported by Kersten
(1987) were consistent with standard models of spatial frequency
summation (Graham, 1989).

In this paper, we follow up on our previous work on spatial fre-
quency summation and investigate orientation summation in two

experiments. The first experiment measures detection thresholds
and absolute efficiency of noise patterns that vary in orientation
bandwidth. The second experiment uses the classification image
technique to estimate the tuning characteristics of the internal fil-
ters used in this noise detection task. To anticipate our results,
we find that orientation summation is, like spatial frequency
summation, nearly optimal across a wide range of bandwidths.
However, unlike what was found with frequency summation, the
classification image results are consistent with the hypothesis that
the orientation bandwidth of the internal filter that mediates
detection is adjusted to match the stimulus.

2. EXPERIMENT 1
2.1. MATERIALS AND METHODS
2.1.1. Observers
The three observers (all female; 23–27 years of age) in this experi-
ment were members of the McMaster University community and
were paid for their participation. Informed consent was obtained
from all participants and the research approved by the McMaster
University research ethics board. All observers were naïve about
the experimental hypotheses, had normal or corrected-to-normal
Snellen acuity and Pelli–Robson contrast sensitivity, and had
extensive practice with this and other visual psychophysical tasks.

2.1.2. Apparatus
Stimuli were generated and displayed using an Apple Macintosh
G4 computer with an ATI Radeon video card running MATLAB
and the Psychophysics and Video toolboxes (Brainard, 1997; Pelli,
1997). The stimulus display was a Sony GDM-F520 monitor set
to a resolution of 1024 × 768 pixels and subtended a visual
angle of 10.8◦ × 8.3◦ at the viewing distance of 2 m. The frame
rate of the display was 75 Hz and the mean luminance 45 cd/m2.
Display luminance was calibrated using a PhotoResearch PR-650
photometer before each session. The results of the calibration
were used to linearize the display for that session, but in general
there was little variability in the display from session to ses-
sion. A Cambridge Research System Bits++ device was used to
achieve fine grained (i.e., 14-bit) control of contrast. A custom
designed button box with an ActiveWire card was used to record
the observer’s responses.

2.1.3. Stimuli
The stimuli were two-dimensional Gaussian white noise patterns
that were spatially filtered digitally with ideal (hard-edged) spa-
tial frequency and orientation filters. The filter had a fixed center
spatial frequency of 5 cy/deg, but depending on the experimen-
tal condition the spatial frequency bandwidth was either one
or two octaves. The center orientation of the filter was hori-
zontal. The two-sided orientation bandwidths were 2◦, 8◦, 16◦,
32◦, 64◦, 128◦, and 180◦. For example, a two-sided orientation
bandwidth filter of 16◦ passed orientations from −8◦ to +8◦.
To prevent edge artifacts, stimulus contrast was modulated on
the screen with a circularly-symmetric Gaussian envelope with a
standard deviation of 1.08◦ of visual angle. A white noise mask
with a contrast variance of 0.32 was used in all conditions to
mask the signal noise. On each trial, a new sample of signal
noise and background noise were generated on each interval on
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every trial. The monitor provided the only illumination in the
testing room.

2.1.4. Procedure
Observers viewed the stimuli binocularly through natural pupils.
A two-interval forced-choice (2-IFC) procedure was used. The
observer was instructed to fixate a high-contrast dot located in the
center of the display. The observer initiated each trial by pressing
the space-bar on the keyboard. After a delay of 50 ms, the fixation
point was removed, then after another 50 ms delay the first stim-
ulus interval appeared. The first stimulus interval was 200 ms in
duration and was followed by a 300 ms blank inter-stimulus inter-
val and then a second 200 ms stimulus interval. The two stimulus
intervals were marked by clearly audible tones, and a high/low
pitched tone indicated whether a response was correct/incorrect.
The observer’s task was to determine which of the two stimulus
intervals contained the target.

Stimulus contrast variance was varied across trials using four
interleaved staircases, two converging on the 71% correct point
of the psychometric function and two on the 84% correct point
(Wetherill and Levitt, 1965). The staircases were stopped when
the observer had completed 75 trials in each staircase. The total
number of trials in each session was 2100 (300 trials per stimulus
bandwidth, and seven stimulus bandwidths/session). Thresholds,
defined as the RMS contrast required to produce 75% correct,
were estimated by fitting a cumulative normal to all the data
collected.

A 3◦ × 3◦ square, drawn with a high-contrast, 2-pixel wide
line, was centered on the fixation point surrounded the stimulus
to reduce spatial uncertainty. The frame remained on the screen
for the entire duration of each trial: it was centered on the fix-
ation point at the start of a trial, and remained visible until the
observer made a response. To reduce adaptation, the square had a
50% probability of being black or white on each trial.

Thresholds were measured with stimuli that had spatial fre-
quency bandwidths of 1 or 2 octaves. Two spatial frequency
bandwidth conditions were run in separate sessions, alternat-
ing with each session, and each observer began with a spatial
frequency bandwidth chosen randomly. In each test session, ori-
entation bandwidths were presented in separate blocks of trials
and the order of bandwidths was randomized. All orientation
bandwidth conditions were completed during a single session.

In addition to the conditions described above, we measured
contrast detection thresholds for a white noise stimulus as con-
trol in a separate session for the same observers. The three
observers completed four white noise detection sessions, each
containing 300 trials. The thresholds from this control condition
were collected after all other conditions in Experiment 1 were
completed.

2.2. RESULTS
Figure 1 shows threshold versus bandwidth (TvB) functions for
three observers in the one and two octave spatial frequency band-
width conditions. We checked for interval effects to determine if
there was a difference in threshold for stimuli presented in the
first and second interval (Yeshurun et al., 2008), but there were
no significant threshold differences between the two intervals.
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FIGURE 1 | Noise detection thresholds versus stimulus bandwidth

expressed in number of spatial frequency components in the stimulus

for three observers in Experiment 1 in the one octave (A) and two

octave (B) spatial frequency conditions. The blue lines are weighted
maximum likelihood fits to the data and the shaded region the 95%
confidence interval for the fit. The fits did not include the data from the
narrowest bandwidth condition.

Each facet of the figure shows the thresholds for an observer (AP,
MB, and NS) versus orientation bandwidth. Two-sided orienta-
tion bandwidth, which varied from 2◦ to 180◦, is expressed as
the number of Fourier components in the stimulus because the
ideal observer’s threshold depends on the number of components,
rather than the orientation bandwidth per se. Figure 1 shows
that detection threshold, when expressed as the logarithm of
RMS contrast, increases with increasing orientation bandwidth.
Each point on the graph corresponds to one of the orientation
bandwidth conditions, the left-most to 2◦ and the right-most to
180◦. There are no statistical differences between the thresholds
in the one and two octave spatial frequency bandwidth con-
ditions. The narrowest bandwidth condition was not included
in the fitting procedure. If stimuli are sufficiently narrow-band
then the TvB function will flatten out, producing what has been
referred to in the literature as the critical-band (Quick et al.,
1976). Characterizing the critical band was not the focus of this
work and thus, we excluded the narrowest bandwidth, but if this

www.frontiersin.org June 2014 | Volume 5 | Article 578 | 61

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Taylor et al. Adjustable channels

point was included in the analysis, the TvB function would flat-
ten out and have a shallower slope. Thresholds in all observers
and conditions were well fitted by a power function. Bootstrap
confidence intervals were calculated by simulating 999 fits to the
observer data—the 95% confidence intervals always included 0.25
and ranged from 0.23 to 0.26. Finding a slope 0.25 in is line
with the prediction of the quarter-root law and indicates optimal
summation.

Figures 2A,B show absolute efficiency (Equation 2) as a func-
tion of orientation bandwidth for the two spatial frequency con-
ditions. For spatial frequency summation, absolute efficiency as
high as 50% have been found (Taylor et al., 2009); in this exper-
iment, absolute efficiency was also relatively high, ranging from
20% to 40%. Thresholds for the ideal observer were computed
via simulations that were approximations to a two-dimensional
version of that found in previous work (Kersten, 1987; Taylor
et al., 2009).
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FIGURE 2 | Absolute efficiency for three observers in the one octave

(A) and two octave (B) spatial frequency bandwidth conditions. Unlike
Figure 1, the fits in this plot do include the narrowest bandwidth condition.
Including this point has a large effect on the efficiency versus bandwidth
function for the two-octave spatial frequency condition. Observers are the
most efficient at the detecting this stimulus, perhaps because it is a good
match to a single component channel (Wilson et al., 1983).

Figure 3 is a summary figure of the data in Figure 1 and
shows average detection thresholds in each spatial frequency and
bandwidth condition plotted against the number of frequency
components in the stimulus. The red line in the figure depicts the
prediction of optimal summation for the quarter-root law. The
blue square represents the mean white noise threshold, expressed
in RMS contrast, for the three observers. The white noise thresh-
old data point was not used when the combined data were fit.
Including this data point provides an instructive test as it demon-
strates that the quarter-root law breaks down when the stimulus
includes all frequencies and orientations. Although the quarter-
root law breaks down for white noise, the number of components
required to observe a breakdown of the quarter-root law has yet
to be determined. White noise thresholds suggest that if there
is channel adjustment, there are limits to the adjustment that
remain to be characterized.

The results of Experiment 1 are similar to the results for spa-
tial frequency summation (Kersten, 1987; Taylor et al., 2009)
and auditory noise detection (Green, 1960a,b) in that the TvB
functions have a quarter-root slope, the same slope produced
by an ideal observer. Quarter-root TvB slopes, along with the
high absolute efficiencies we observed, are consistent with the
idea that orientation information is summed optimally. Both
of these findings are necessary but not sufficient to conclude
that noise is detected by adjustable channels. As shown by our
previous work on spatial-frequency summation (Taylor et al.,
2009), it is important to pair estimates of threshold with the
classification image method to characterize the channel used
by observers. Classification images can change the interpreta-
tion of the TvB function substantially; for spatial frequency
classification images lead us to interpret our data as support-
ing a fixed-channel model rather than an adjustable-channel
model.

3. EXPERIMENT 2
In Experiment 2, we measured classification images with orienta-
tion filtered noise in a sub-set of conditions used in Experiment 1.

FIGURE 3 | Threshold vs. bandwidth data re-plotted from Figure 1. Each
symbol represents the average threshold from three observers and the blue
square represents the average threshold for detecting unfiltered white
noise. The red line is the best fitting power function with a quarter- root slope;
the fit was done excluding the threshold measured with white noise.
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3.1. MATERIALS AND METHODS
3.1.1. Observers
The two observers were 28-year old students at McMaster
University who were paid for their participation. Both observers
were unaware of the experimental hypotheses, had normal
Snellen acuity, had extensive practice in psychophysical tasks, and
participated in Experiment 1.

3.1.2. Apparatus
The apparatus was identical to that used in Experiment 1.

3.1.3. Stimuli
The stimuli and noise had the same parameters as those used
in the one octave spatial frequency bandwidth condition in
Experiment 1.

3.1.4. Procedures
The procedure of Experiment 2 was the same as Experiment 1
except that the contrast of the stimulus was held constant at the
75% threshold measured in Experiment 1. There were 2500 trials
per condition or classification image, for a total of 7500 trials per
observer.

3.2. RESULTS
We measured our classification images using a two-interval forced
choice method rather than a yes/no procedure as described by
Abbey et al. (1999) and calculated our classifcation images using
the power spectra of the noise masks, rather than the noise masks
themselves. This produces classifcation images in the power spec-
trum which has been used previously by Solomon (2002). Because
the method is described in detail elsewhere, only a brief descrip-
tion is provided here. On each trial, the power spectrum of the
noise mask in each interval was computed, the difference between
the pair of power spectra calculated, and finally the difference
spectrum was placed into one of four bins based on which interval
contained the signal (1 or 2) and the observer’s response (correct
or incorrect). The difference power spectra were then averaged by
the number of trials in that bin and then the two average spec-
tra computed from correct responses were averaged, as were the
two average spectra computed from incorrect trials. Finally, the
difference between the correct and incorrect averaged spectra was
computed and the resulting classification image was normalized
to have a peak value of one. Classification images calculated using
this procedure are proportional to the linear template applied
to the power spectra (Abbey et al., 1999; Abbey and Eckstein,
2002).

Figure 4 shows the raw classification images for the ideal
observer and two human observers. Each classification image was
computed using the same number of trials. The images represent
spatial frequency as the distance from the center of the image.
Orientation information is represented by sets of pixels in a line
that begins in the center of the image and extends to its edge.
The power spectra have been rotated so that the horizontal and
vertical orientations in the stimulus correspond to the central
horizontal row and vertical column of pixels in the image. The
gray level of each pixel in the classification image represents how
the power of an individual Fourier component is weighted by the

observer when performing the noise detection task. If the pixel
is lighter than median gray, then noise power at that frequency
and orientation is positively correlated with the probability of
a correct response; the lighter the pixel, the higher the correla-
tion. Conversely, for pixels darker than median gray, power at
that frequency and orientation is negatively correlated with the
probability of a correct response.

The classification images shown in Figure 4 are 64 × 64
subsets of the full 512 × 512 power spectra which correspond
to spatial frequencies from DC to approximately 20 cy/deg and
include the spatial frequencies presented in the stimulus. Figure 5
shows classification images that have been smoothed with a 5 ×
5 triangular convolution kernel (equivalent to linear interpola-
tion) to reduce spurious noise in the template that results from a
limited number of trials.

Figures 4, 5 show several important results. First, the human
observers’ classification images resemble those of the ideal
observer, in that they have a narrow bandwidth (as measured by
half-width at half-height) with the smallest stimulus bandwidth
and get larger with increasing stimulus. Bandwidths of the clas-
sification images in the 48◦ and 90◦ conditions were larger than
the bandwidths measured in the 2◦ condition. Also, the classifica-
tion images from human observers have pronounced dark regions
at off-stimulus orientations and frequencies that are not present
in the classification images for the ideal observer. Noise power
at these Fourier components was negatively correlated with the
probability of correctly detecting the signal, an important finding
that will be returned to in the discussion.

3.3. ANALYSIS
To relate the classification images to orientation channels found
in orientation masking experiments (e.g., Govenlock et al., 2009),
the two-dimensional classification images collected in this exper-
iment were collapsed into one-dimensional classification images
as a function of orientation. Values in each classification image
were summed in 1◦ steps across a band spatial frequencies (fil-
ter center-frequency 5 cy/deg and bandwidth of approximately
20 cy/deg) over a 180◦ range of orientations. The resulting val-
ues are plotted in Figure 6. Two features of the data are readily
apparent. First, orientations around 0◦ (i.e., horizontal) had the
strongest influence on observers’ decisions. Second, vertical ori-
entations or other orientations far away from zero had a weaker
influence on decisions that was opposite to that of horizontal
frequencies.

We fit a Difference of Gaussians (DoG) function to our cir-
cularly summed normalized classifcation images. Classification
images were normalized to the peak response. We chose DoG
functions because preliminary analyses indicated that they fitted
the data better than a single Gaussian and because DoG func-
tions have been used previously to model orientation channels
(De Valois et al., 1982; DeValois and DeValois, 1988; Carandini
and Ringach, 1997; Ringach, 1998). We fixed the relative ampli-
tude of the excitatory Gaussian to be twice that of the inhibitory
Gaussian which is consistent with previous physiology (Sceniak
et al., 2001). A DoG function has four free shape parameters—
one for the center/mean and another for the bandwidth/standard
deviation for each of the positive and negative Gaussians that
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FIGURE 4 | Classification images for the ideal observer and two

human observers. Low spatial frequencies are represented by the
pixels in the center of the image and frequency increases with
increasing distance from the center of the image. Horizontal
orientations are represented in the center row of the image and

vertical orientations by the center column. All images were collected
with the same number of trials. The ideal observer’s classification
image also serves as a depiction of filters used to generate the
stimuli because the ideal observer only has access to the information
in the filtered noise stimulus.

comprise the function—but we applied two constraints that were
consistent with previous models of orientation channels (Burr
et al., 1981; Ringach, 1998; Shirazi, 2004). The constraints were
(1) both Gaussian functions were fixed to a common center; and
(2) the bandwidth of the positive Gaussian was set to be narrower
than the bandwidth of the negative Gaussian. Figure 7 shows
the best-fitting (least-squares) parameters and 95% confidence
intervals computed via a percentile bootstrap procedure (Efron
and Tibshirani, 1994). The center orientation of the best-fitting
function did not change as the bandwidth of the stimulus was
increased and was not different from zero, or horizontal (i.e., the
orientation of the signal). The linear increase in the bandwidth for
the negative Gaussian component (60–90◦) was larger than the
linear increase for the positive Gaussian (20–30◦), although the
proportional increase was about the same (i.e., 50%). Inhibitory
mechanisms may be more flexible/adjustable in their responses
than excitatory mechanisms. This hypotheses is supported by the
data in Figure 7, specifically that slope of the red line is larger than
that of the blue line.

4. DISCUSSION
Our classification images support the adjustable channels hypoth-
esis, unlike what was found in spatial frequency summation
experiments (Taylor et al., 2009) using similar methods. This
result implies that, contrary to the assumptions of the standard
model, the mechanisms that produce optimal spatial frequency
and orientation summation differ.

In the data, this point is illustrated by the negative weights in
the classification images for orientation summation that occur at
low spatial frequencies at all orientations but positive weights at
higher spatial frequencies at a range of orientations dependent
upon the signal (see Figure 5). The 1D templates derived from
the 2D classification images also exhibit regions of suppression
at orientations far removed from the center stimulus orientation
(Figure 6), which correspond to the black/dark regions in the
2D classification images. Ideal templates do not show regions of
suppression, thus the negative weights must be the result of psy-
chological process. Furthermore, these negative weights were not
found in spatial frequency summation experiments (Taylor et al.,
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FIGURE 5 | Smoothed classification images for the same conditions

and observers presented in Figure 4. White regions represented
where power in the stimulus is correlated with a correct detection
response, whereas the dark or black regions indicate regions where

incorrect responses are correlated with the stimulus. An important
comparison to note is the difference between human and ideal
observers at off-frequency and off-orientations in the stimulus. See the
text for more detail.

2009), and therefore appear to be specific for orientation summa-
tion. One interpretation of these dark bands is that they reflect the
contribution of inhibitory orientation processing found both psy-
chophysically and physiologically (Ringach, 1998; Ringach et al.,
2002).

The orientation bandwidths of 1D templates measured by the
classification image technique become broader with increasing
stimulus bandwidth (see Figure 5), but the increase in bandwidth
is smaller than the channel adjustment predicted by the ideal
observer. The adjustability of human observers detection mech-
anisms is constrained by some, as yet unknown, process. Perhaps
more complex, non-linear, biologically inspired modeling (Goris
et al., 2013) can capture our results, but this remains to be tested.

A possible explanation for the differences between human
and ideal templates is that human observers perform the detec-
tion task by differencing the power of different spatial frequency
and/or orientation components. The ideal observer knows the
center spatial frequency and orientation exactly; it also knows
the spatial frequency and orientation bandwidth exactly. Human
observers, may not have precise access to these four signal

parameters, even after many thousands of detection trials. Thus,
human observers turn to an alternative strategy, one which we’ll
call a differencing strategy.

In Figure 5 one can see that observers use non-informative
regions of the signal—anywhere the human classification image
differs from the ideal classification image, this is the hallmark
of the use of non-informative information (i.e., noise). Despite
using non-informative information, human efficiency is still rel-
atively high in the current task compared to efficiency in many
other visual tasks (Gold et al., 1999). Why do observers use non-
informative information? One hypothesis is that observers need
to anchor their detection judgements and then compute a dif-
ference based on this perceptual anchor. According to this idea,
observers can only make a detection decision based on the rel-
ative power within two (or perhaps more) regions of the power
spectrum. In our task, the light and dark regions may represent
the portions of the power spectrum that are being compared:
observers may be basing their decisions on the difference between
power at low spatial frequencies (at all orientations) and power
at spatial frequencies and orientations within the signal band. In
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FIGURE 6 | The black dotted lines show the one-dimensional circularly summed classification images for two observers in three conditions. The red
lines show the best difference of Gaussian fits to the empirical data. The x-axis in each sub-figure is orientation, the y -axis the weight of the classification image.

a given interval, if the power in the signal band is high and the
power within the inhibitory region is low, observers will select
that interval as the one that contains the signal. If however, the
power in the inhibitory region is high and the in the signal band
low, the observers will actively choose to not select that stimulus
interval as containing the signal.

What is the functional role of the measured inhibitory mech-
anisms? One possibility, backed up by a great deal of evidence
is that they play a role in contrast gain control (e.g., Watson
and Solomon, 1997; Schwartz and Simoncelli, 2001). An alter-
native idea is that the visual system contains mechanisms that
signal whether a stimulus ought to be considered an edge or
a part of a texture. This hypothesis is inspired by the work on
“end-stopping” found in the motion (Pack et al., 2003) and con-
tour (Heitger et al., 1992) literature. The inhibitory mechanisms
revealed by our classification images might provide a sort of
end-stopping in Fourier space that limits the information that
is combined into an edge or a texture. To be specific, if the ori-
entation bandwidth within a region of visual space, as signalled

by suppressive mechanisms is narrow, then it may be coded as
an edge, but if the orientation content is broadly distributed then
inhibitory mechanisms could provide a signal to sum orientations
(and perhaps frequencies) to extract texture properties.

Work using natural images (Neri, 2014) and textures (Baker
and Meese, 2014) has produced data that are broadly con-
sistent with our results. Neri (2014) found evidence inhibi-
tion/suppression mechanisms when observers detected Gabors in
noise that were either congruent/incongruent with the underlying
orientation of natural scenes. He measured orientation tuning via
the classification image technique and found orientation tuning
and signatures of inhibitory mechanisms similar to those pre-
sented in our results (see Figure 1G). Baker and Meese (2014)
used a contrast increment detection task and reverse correlation
to measure the extent over which information is summed in visual
space. Their reverse correlation results (see their Figures 3G,H)
show the hallmarks of suppression beyond 5◦ of visual angle
from fixation. Taken together the results above and our data
provide converging lines of evidence for the use of inhibitory
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FIGURE 7 | Fitted difference of Gaussian bandwidth parameters for

two observers, AP in circles and MB in triangles. The error bars are 95%
confidence intervals on the fitted parameter obtained via the bootstrap.
Blue symbols are for the positive, or central Gaussian, and the red symbols
the negative or surround Gaussian. R was used to obtain a weighted least
squares fit to the parameters as a function of bandwidth. Both increased by
roughly 50% for both observers as bandwidth was increased from the
narrowest stimulus bandwidth to the widest.

mechanisms that adjust tuning in orientation and visual
space.

5. CONCLUSION
The goal of this paper was to determine if the results we found in
our previous work on spatial frequency summation (Taylor et al.,
2009) extended to orientation summation using visual noise as a
stimulus. We found that detection thresholds in human and ideal
observers were proportional to the quarter-root of the number
of spatial Fourier components in the stimulus. Hence, orienta-
tion summation, like spatial frequency summation, was nearly
optimal across a wide range of bandwidths. However, unlike
what we found with spatial frequency summation, our classifica-
tion image results were inconsistent with a fixed channel model.
Instead, our results suggest that the orientation bandwidth of the
internal filter used to detect our stimuli was adjusted to match
(albeit imperfectly) the orientation bandwidth of the stimulus.
The classification images also show hallmarks of inhibition at
uninformative spatial frequencies and orientations and lead to
the hypotheses that human observers may detect noise stim-
uli by comparing the power in different portions of the power
spectrum.
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The effects of two types of auditory distracters (steady-state noise vs. four-talker babble)
on visual-only speechreading accuracy were tested against a baseline (silence) in 23
participants with above-average speechreading ability. Their task was to speechread high
frequency Swedish words. They were asked to rate their own performance and effort,
and report how distracting each type of auditory distracter was. Only four-talker babble
impeded speechreading accuracy. This suggests competition for phonological processing,
since the four-talker babble demands phonological processing, which is also required for
the speechreading task. Better accuracy was associated with lower self-rated effort in
silence; no other correlations were found.
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INTRODUCTION
In everyday speech perception, we hear speech clearly and without
effort. Speech perception is usually pre-dominantly auditory. We
might see the person talking, and this may help us perceive the
speech more distinctly, especially if the speech signal is degraded
or masked by noise (e.g., Hygge et al., 1992; Calvert et al., 1997;
Moradi et al., 2013), but often the acoustic speech signal is enough
for us to hear what is spoken. For most people, hearing speech is
usually effortless and efficient. We are able to perceive a sufficient
proportion of the speech sounds for comprehension of the speech
signal.

Occasionally a speech signal will be masked by noise (i.e.,
sounds other than the voice of the person we are trying to hear).
There are two main ways that noise can interfere with the speech
signal. First, the noise can physically interfere with the speech sig-
nal (i.e., outside of the perceiver, in the acoustic environment).
This is often referred to as energetic masking (Pollack, 1975).
Second, the noise can perceptually interfere with the speech signal
(i.e., inside the perceiver, in the perceptual process). This is often
referred to as informational masking (Pollack, 1975; Watson et al.,
1976).

Disentangling informational masking from energetic masking
in auditory perception is difficult, as can be seen in the literature
(e.g., Watson, 2005; Yost, 2006; Kidd et al., 2007). How can the
detrimental effect of noise on speech perception be attributed
to either informational masking, or to energetic masking (or
to attentional allocation as a result of stimulus degradation)?
Obviously, if an acoustic speech signal is presented together with
an acoustic noise signal, there will necessarily be some degree of
energetic masking. Elaborate study designs (such as that in Mattys
et al., 2009) are required to dissociate the two types of masking.

The present study solved this problem by not presenting an
acoustic speech signal, and by instead testing the effect of two
closely matched types of noise (henceforth referred to as auditory

distracters) on visual-only speechreading. That is, there was no
possibility of energetic masking, as there was no acoustic signal
to mask, interfere with, or compete with. Any effects of the audi-
tory distracter could therefore be attributed to either attentional
or phonological processing, or to a combination of both.

In order to test whether there was a general effect on atten-
tion, a broadband steady-state noise (SSN) was used. As the SSN
does not contain phonological information, its potential effect on
speechreading performance (i.e., linguistic processing) is likely
to be indirect. Specifically, more attentional resources might be
needed for stream segregation, leaving less for the search of crit-
ical visual speech features when trying to make a lexical match,
thereby lowering speechreading performance. Alternatively, SSN
could improve speechreading performance via stochastic reso-
nance, whereby a signal (such as auditory noise) in one modality
can facilitate perception in another modality (see e.g., Harper,
1979; Manjarrez et al., 2007; Söderlund et al., 2007; Lugo et al.,
2008; Ward et al., 2010; Tjan et al., 2013; Gleiss and Kayser, 2014).

In order to test whether there was an effect on phonologi-
cal processing, segmented four-talker babble (4TB) was used. The
4TB was matched to the broadband SSN in terms of average
sound intensity and frequency. The 4TB is speech, and so contains
phonological information. Any effect of the 4TB on speechread-
ing performance will therefore be more complex. There could be
a general effect on attention and stream segregation, or facilita-
tion from stochastic resonance, similar to effects of the SSN. There
could also be an effect of competition for phonological processing
capacity (i.e., identifying the babble sounds as speech and making
lexical matches), while simultaneously having to decode the visual
speech movements as phonemes in order to make a lexical match.

Lower speechreading performance from the 4TB condition
compared to the SSN condition would indicate an effect on
phonological processing. Both auditory distracter types con-
tained equivalent levels of acoustic energy across the frequency
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spectrum and should therefore affect general attention or induce
stochastic resonance to a similar extent. However, the 4TB also
requires phonological processing, whereas the SSN does not.
Brungart and Simpson (2005) found that visual-only identifi-
cation of a word was impeded only by simultaneous auditory
presentation of another word (spoken by one talker). They
therefore suggested that only speech as auditory distracters can
impair visual-only speechreading (since other distracters yielded
no effects). Furthermore, auditory distracters must according to
Brungart and Simpson (2005) be presented simultaneously with
the visual speech (as synchronicity reduced the impairment).

In the present study, we wanted our visual speech identifica-
tion task to be as free from contextual cues as possible, as has
been the case in most studies on auditory speech perception in
noise. In studies on auditory speech perception, the standard case
is to allow the participants to perceive relatively clearly what is
being said; the acoustical speech signal is rich in information
and can be effortlessly identified without contextual cues. This
is usually not the case for visual-only speechreading, since the
optical speech signal is poorly defined (as compared to standard
acoustical speech signals). We wanted our speechreading task to
be primarily processed bottom up. That is, we wanted it to be
a context-free (or non-primed) visual speech identification task,
and for two reasons. First, we wanted to have high external and
ecological validity, that is, to make the speechreading task as sim-
ilar to everyday speech perception as possible (e.g., like watching
someone talk behind a window pane or seeing someone talk on
TV with the sound turned off; in real life we usually do not
get closed sets of response alternatives). Second, we wanted the
speechreading task to demand high sensitivity to phonological
features to allow phonemic–lexical matches, with little influence
from top-down support, in order to maximize chances for the
auditory distracters to disturb speech identification.

However, it is not possible to use such a bottom-up task with
a normal population without obtaining floor effects, since optical
speech signals are poorly defined. Most individuals do not per-
form above chance levels on visual speech decoding tasks unless
there is strong contextual support for top-down inferences, such
as from script (e.g., Samuelsson and Rönnberg, 1993), topic (e.g.,
Hanin, 1988), emotional cues (e.g., Lidestam et al., 1999), or a
closed set of response alternatives (e.g., coordinate response mea-
sure, Brungart and Simpson, 2005). Including strong contextual
cues or having a closed set of response alternatives can improve
speechreading performance to relatively high levels for a cross-
section of normal-hearing participants. However, such improved
accuracy is not necessarily the result of more efficient lexical
processing. If sufficient contextual cues are available, it is pos-
sible that responses are based on post-lexical inferences rather
than on actual lexical matches. Hence, a substantial proportion
of the responses (made following the presentation of strong con-
textual cues) may reflect educated guesses (“off-line” responses)
rather than improved perceptual accuracy (“on-line” responses).
In order to maximize the chances for linguistic (phonemic–
lexical matching) processing in visual speechreading, we screened
a relatively large number of individuals, and used only the best-
performing speechreaders in the actual experiment, asking them
to speechread everyday words without contextual cues.

This study aimed to shed more light on informational masking
(i.e., disturbed speech perception) by contrasting two different
auditory distracters: speech (i.e., the 4TB) compared to SSN.
The 4TB was a continuous stream of speech, and was there-
fore not presented synchronously with the target words, as was
the case in Brungart and Simpson (2005). As a baseline condi-
tion, speechreading in silence (i.e., without auditory distracter)
was used. Effects of SSN could only be attributed to general
attentional processes, as SSN does not contain phonological infor-
mation. On the other hand, 4TB, with speech as an auditory
distracter, contains phonological information. Any difference
between SSN and 4TB can therefore be attributed to impeded
visual phonemic–lexical matching elicited by the 4TB distracter
signal. A negative effect of either type of auditory distracter would
suggest that synchronicity is not required to impair speechreading
accuracy. A positive effect on speechreading performance would
suggest facilitation from stochastic resonance.

A secondary purpose of the study was to examine how the
auditory distracter conditions were subjectively experienced in
terms of level of distraction, effect on performance, and effort,
to validate the effects on speechreading accuracy.

Finally, this study aimed to test whether there were correlations
between self-rated variables and speechreading performance, in
order to aid interpretations of how attention and phonological
processing were affected by the auditory distracter conditions.

SCREENING TEST
METHODS
Participants
A total of 147 students at Linköping University (90 women, 53
men, and 4 who did not divulge sex and age), aged 18–37 years
(M = 21.6 years, SD = 2.8 years), volunteered to take part in the
study.

Materials
The stimulus materials were video recordings of the best identi-
fied 30 words as used in the study by Lidestam and Beskow (2006).
Half of the words were from a “visit to a doctor” script, and half
were from a “visit to a restaurant” script. The recordings showed a
man speaking one word at a time, with a neutral facial expression.
The words consisted of three to seven letters (and phonemes),
with one or two syllables. All words were rated as highly typical for
their respective script. The presentation showed the talker’s face
and shoulders, and no shadows obscured the mouth or speech
movements. For a detailed description, see Lidestam and Beskow
(2006).

Procedure
The screening test was conducted in lecture halls. The stimuli
were presented with video projectors onto either one or two
(if available) large screens. After written informed consent was
obtained, the participants positioned themselves within the lec-
ture hall in such a manner that the screen was easily visible. They
were encouraged to sit so they would not be able to see other par-
ticipants’ response sheets. After seating, they were provided with
response sheets and pencils, and informed about the general pur-
pose of the study. Specifically, the participants were informed that
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the study was about speechreading and that this first part was
a screening test for an experiment that would be more exhaus-
tive and rewarded with a cinema ticket. It was made known that
only the best speechreaders would be invited to take part in the
main study, if they agreed to do so (participants indicated their
willingness by checking a box on the response sheet).

The participants were instructed that their task was to
speechread (without sound) the words spoken in two scripts: “a
visit to a doctor” and “a visit to a restaurant.” It was stated clearly
that there was no hidden agenda, and that it was important to try
their best to guess and to respond to all stimuli. They were also
informed that the responses did not need to be whole words, and
that parts of words were preferred as responses over no response
at all, but that if only a part of a word was rendered (e.g., a
consonant), its position in the word should be indicated.

Stimuli were presented in two script blocks. Before presenta-
tion of each block, the respective scenario was presented with text
on the screen. The words were then presented at a reasonable pace
that allowed all participants to respond without undue stress. The
screen was black in between presentation of the words. At the
end of the screening sessions, the participants indicated whether
they could be contacted for the experiment that would follow. In
total, the screening session took 20 min. After the session, the par-
ticipants were given the opportunity to ask questions and were
offered refreshments.

The responses for phonetic correctness were scored on a whole
word basis; that is, each word was scored dichotomously as either
correct or incorrect. Omissions or inclusions of word endings
with /t/ were disregarded (e.g., “normal” vs. “normalt” [normal
vs. normally]; “dåligt” vs. “dålig” [bad vs. badly]).

RESULTS AND DISCUSSION
Mean speechreading performance in the screening test was M =
2.2 words (SD = 2.55 words, range 0–12 words). Fifty-two per-
cent of participants responded with zero or only one word correct.
Out of the 147 participants in the screening test, 130 agreed to
be contacted for the experiment. Their mean score was M = 2.2
words (SD = 2.48 words, range 0–12 words).

These results show that visual-only speechreading is a diffi-
cult task for most individuals. Just over half of the participants
correctly identified 0 or 1 word out of 30. However, the top per-
formers (the best 5%) could identify as many as one-third of
the words (but this came as a surprise to them when told about
their results). This shows that there is considerable variability in
the population of normal-hearing young students with regard to
speechreading ability.

MAIN EXPERIMENT
METHODS
Participants
All participants who achieved a total score of three or more on
the screening test and who had indicated on the scoring sheets
that they could be contacted for participation in the main exper-
iment (n = 43) were asked to participate. Potential participants
were informed that normal hearing was a requirement, and that
their participation would be rewarded with a cinema ticket. A
total of 23 students (21 women and 2 men), with a mean age of

21.9 years (SD = 2.7 years, range 19–31 years), participated in the
experiment.

Materials
The stimuli were video recordings of a woman speaking a selec-
tion of the 5000 most common Swedish words in everyday use
(according to the Swedish Parole corpus; Språkbanken, n.d.). The
talker’s face and shoulders were shown, and indirect lighting was
used so that no shadows obscured the speech movements.

We wanted to use common, everyday Swedish words that were
relatively easy to speechread, even without contextual cues. The
words were therefore chosen according to the following criteria.
First, each word had to be ranked among the 5000 highest fre-
quency Swedish words according to the Parole corpus. Second,
variation with regard to the number of syllables was considered;
hence, words with one to five syllables were used. Third, the
majority of the stimulus words contained consonants that are rel-
atively easy to identify visually, and preferably in initial position.
Before deciding which words to use, all candidate words were
scored for visual distinctiveness according to whether any of the
visually distinct consonants /f v b m p/ were part of the word,
and a bonus score was given if the visually distinct consonant was
in initial position (i.e., the first or second phoneme). The score
was then normalized by dividing the sum of the scores for visu-
ally distinct consonants and bonus scores for initial position by
the total number of phonemes in the word. A total of 180 words
were chosen using this procedure. The words were divided into
three different lists with 60 words in each. The lists were balanced
in terms of: visual distinctiveness, word frequency (according to
the Parole corpus), initial phoneme, and number of phonemes
per word (Supplementary Material).

A Sony DCR-TRV950 video camera was used to record the
stimuli to mini-DV tape in PAL standard at 25 frames per second.
Each stimulus word was recorded twice and the best recording
of each word was chosen. The recording was edited into separate
QuickTime files, one per stimulus word, in H.264 video format
at 640 × 480 pixels. Only the video track was exported, in order
to eliminate the risk of speech sound being presented. Each video
file was edited so that the first frame was repeated for 25 frames
(i.e., 1 s) before the actual playback of the video. (This was done
in order to cue the participant to the presentation, and to mini-
mize the risk of failure to play back at the correct frame rate due
to processing demands, as video playback tends to lag within the
first second when using standard software such as QuickTime for
playback).

Each stimulus file was then edited into one new file per con-
dition. The files for the baseline condition in silence were kept
without sound, whereas each file for presentation in the SSN con-
dition included a unique part of the SSN, and each file for the 4TB
condition included a unique part of the 4TB.

The SSN was the stationary, speech-shaped broadband noise
used in the Swedish Hearing in Noise Test (HINT; Hällgren et al.,
2006), and has the same long-term average spectrum as the HINT
sentences. The original file with the 4TB was 2 min in duration,
and comprised recordings of two male and two female native
Swedish talkers reading different paragraphs of a newspaper text.
It was post-filtered to resemble the long-term average spectrum
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of the HINT sentences (Ng et al., 2013). In order to prevent par-
ticipants from directing their attention to the content of the 4TB
sentence (which was a finding suggested by the pilot study), the
file was cut up into approximately 0.5 s sections, and scrambled
so that the order of sections 1, 2, 3, 4, 5, 6 became 1, 3, 2, 4, 6,
5, and so on. Pilot testing verified that this was well tolerated by
participants. It also indicated that the stimuli no longer roused
attention regarding content. There were no apparent clicks result-
ing from the editing. For a comparison of the long-term average
spectrum of the two auditory distracter types, see Figure 1. For
a comparison of the spectral-temporal contents of the two audi-
tory distracter types over a segment of 1 s, see Figure 2 (SSN) and
Figure 3 (4TB).

The apparatus for presentation included an Apple iMac 8.1
computer with a 2.4 GHz Intel Core Duo processor, 2 GB RAM,
and an ATI Radeon HD 2400 XT with 128 MB VRAM. A 20-
inch monitor (set at 800 × 600 pixels), Primax Soundstorm
57450 loudspeakers (capable of 80–18,000 Hz), and Tcl/Tk and
QuickTimeTcl software were used to present the stimuli.

A Brüel and Kjær sound level meter type 2205 with a Brüel and
Kjær 1 inch free-field microphone type 4117 were used to monitor

FIGURE 1 | The long-term average spectrum for the two auditory

distracters.

FIGURE 2 | Spectrogram of 1 s of steady-state broadband noise.

sound pressure levels of the auditory distracters. These were
placed at the approximate position of the participants’ ears. Both
auditory distracter types had equivalent continuous A-weighted
sound pressure levels (LAeq) of 61 dB (SSN range = 59.7–62 dB;
4TB range = 52.4–70 dB) for the 2 min measurement during
which the entire auditory distracter files were presented.

In order to examine how the auditory distracter condi-
tions were subjectively experienced in terms of level of distrac-
tion, effect on performance, and effort, two questionnaires with
100 mm visual analogue scales were used. Scoring was calculated
according to how many millimeters from the minimum (0 mm)
the scale was ticked by the participants; hence maximum score
was 100 mm.

Procedure
Each participant was seated in front of the monitor at a distance
of approximately 60 cm. They were briefed about the general
purpose of the study (i.e., they were informed that their task
involved speechreading under three different sound conditions),
and written informed consent was obtained. A response sheet
with numbered lines for each presented stimulus was introduced,
and the participant was instructed to respond to all presented
words and encouraged to guess. Then a recording of a word
that was not included in the actual experiment was presented,
with the same auditory distracter condition as the participant
started the experiment with, to familiarize the participant with
the procedure.

The stimuli were presented one at a time; the speed of pre-
sentation was dictated by the pace of participant responding, but
there was a maximum limit of 1 min (which never needed to be
used). The screen turned white in the pause between stimuli. For
all three conditions (i.e., silence, SSN, and 4TB), the sound con-
tinued during the pause (i.e., in the silent condition, the pause
was silent too; in the SSN condition, the SSN continued during
the pause; and in the 4TB condition, the 4TB continued during
the pause).

Scoring followed the procedure used in the screening test,
such that the responses were dichotomously scored for phonetic
correctness on a whole word basis.

FIGURE 3 | Spectrogram of 1 s of four-talker babble.

Frontiers in Psychology | Perception Science June 2014 | Volume 5 | Article 639 | 72

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Lidestam et al. Informational masking in speechreading

After performing in each auditory distracter condition, the
participant filled out the subjective experience questionnaire
(which concerned experiences of each sound condition, self-
ratings of performance, and which included some open-ended
questions; see Supplementary Material). At the end of the exper-
iment, the participants were awarded with a cinema ticket as
reward for participation, and were given the opportunity find
out more about the experiment. The experimental session took
approximately 50 min to complete.

Design
This study employed a within-groups design, with auditory dis-
tracter as the independent variable (three levels: silent, SSN, and
4TB), and speechreading accuracy as the dependent variable.
A Latin-square design was used to determine the presentation
orders of conditions (silence, SSN, and 4TB) and lists (1–3), so
all experimental conditions and lists were combined and pre-
sented in all serial positions. Participants were randomized to
presentation orders.

RESULTS
Effect of auditory distracter on speechreading accuracy
Auditory distracter significantly affected speechreading accu-
racy, F(2, 44) = 11.19, MSE = 6.21, p < 0.001, partial η2 = 0.34.
Three post-hoc t-tests with Bonferroni corrected alpha (p < 0.17)
showed a significant difference between the 4TB and silence con-
ditions, t(22) = 2.98, p = 0.007, d = 0.62, and between the 4TB
and SSN conditions, t(22) = 4.65, p < 0.001, d = 0.97. There was
no significant difference between the SSN and silence condi-
tions, t(22) = 1.71, p = 0.101. In sum, only 4TB had an effect on
speechreading accuracy, and this effect was negative (see Table 1).

Most error responses were words that included one or several
correct phonemes, and one or several incorrect phonemes (about
75% of all responses belonged to this category). The second
most common errors were words without any correct phoneme
(and the majority of these errors were words with one or more
phonemes which were easily visually confused with phonemes in
the target word, such as /f/ instead of /v/ or /b/ instead of /p/). The
third most common error was failure to respond with a proper
word, such as only responding with a few letters as a part of a

Table 1 | Descriptive statistics (means and standard deviations) for

accuracy, and self-ratings of effort, performance, distraction, and

effect of auditory distracter on performance.

Auditory distracter condition

Silence SSN 4TB

M SD M SD M SD

Accuracy (% correct) 14.8 6.6 16.9 6.2 11.2 5.9

Self-rated effort (0–100) 46.6 24.3 38.0 19.7 32.8 17.8

Self-rated performance (0–100) 42.5 15.1 44.1 18.3 37.9 16.1

Rated distraction of auditory
distracter (0–100)

n.a. n.a. 40.7 23.0 45.3 22.6

Rated effect of auditory distracter
on performance (0–100)

n.a. n.a. 40.2 16.7 32.7 18.0

word. Omissions (i.e., no response at all to a target word) con-
stituted the least common cause of errors, with 8% of the total
number of responses.

Effects of auditory distracter on ratings of effort, distraction, and
performance
Auditory distracter had a significant effect on participants’ self-
ratings of effort, F(2, 44) = 3.40, MSE = 3.30, p = 0.042, partial
η2 = 0.13. Three post-hoc t-tests with Bonferroni correction (p <

0.17) revealed only a tendency toward a significant difference
between the silence and 4TB conditions, t(22) = 2.32, p = 0.03.
The means (see Table 1) indicate that the speechreading task was
generally perceived as effortful, and that speechreading in the
4TB condition was considered to be very effortful. Comparisons
between the two auditory distracter conditions indicated no effect
of auditory distracter type on rated distraction or self-rated
performance. The mean ratings suggested that participants con-
sidered both types of auditory distracter to have impeded their
performance to a considerable extent; both types of auditory dis-
tracter were rated as more toward “almost unbearable” than “not
distracting at all.”

Correlations between speechreading accuracy, and ratings of
effort, distraction, and performance
Table 2 presents the correlation results. The only significant cor-
relation was between accuracy and self-rated effort in the silence
condition, r(23) = 0.44, p < 0.05. Specifically, better performance
was associated with lower effort ratings in the silent condition
(high scores on the self-rating indicated low effort). However,
there was no difference between the correlation coefficients for
silence vs. 4TB.

DISCUSSION
The present study showed that visual-only speechreading was
only impeded by an auditory speech-based distracter, but not by
noise itself. This implies that in order for the distracter to have an
impact, it has to compete for phonological processing, which is
required for identification of the visual speech signal. More “gen-
eral” auditory distraction, such as the SSN stimuli used in this
study, did not impede speechreading accuracy, in spite of that
it was rated as very distracting by the participants. Competition
for phonological processing (and following semantic processing)
demands processing related to working memory, such that indi-
viduals with superior working-memory related capacities are less

Table 2 | Pearson correlations between accuracy and ratings.

Auditory distracter condition

Silence SSN 4TB

Self-rated effort 0.44* 0.00 0.17

Self-rated performance 0.11 0.22 −0.04

Rated distraction of auditory distracter n.a. −0.01 −0.15

Rated effect of auditory distracter on
performance

n.a. −0.01 0.09

*p < 0.05.
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impeded by speech and speech-like distracters (e.g., Rönnberg
et al., 2010; Zekveld et al., 2013). Markides (1989) showed an
effect of classroom noise (including some speech sounds) on
visual-only speechreading performance, but it is likely that the
frequent and intermittent peaks of the noise (up to 97.5 dBA)
interfered with attention as a result of their unpredictability and
sheer sound pressure level—it is difficult not to be distracted by
such loud sounds.

The participants in the present study were above-average
speechreaders recruited among normally hearing students.
Speechreading performance is positively correlated with aspects
of working memory in this population (Lidestam et al., 1999).
Therefore, the impediment effect on speechreading by a speech-
based auditive distracter should be potentially even stronger on
the majority of normally hearing individuals, since they generally
have lower working-memory related capacities (Lidestam et al.,
1999) and are more impeded by speech and speech-like distracters
(e.g., Rönnberg et al., 2010; Zekveld et al., 2013). Individuals who
are less proficient speechreaders also perceive the visual speech as
very indistinct, making them even more disadvantaged (i.e., the
weaker the percept, the easier to disrupt it).

The present study also showed that the auditory distracter sig-
nal does not need to be simultaneous in terms of onset relative to
the visual speech signal, as suggested by Brungart and Simpson
(2005). The auditory speech signal in the present study was
four-speaker babble and was therefore more or less continuous.

Energetic masking can be ruled out as an explanation of
impeded speech identification in this study, as there was no acous-
tic speech signal and hence no sound energy for the distracter
signal to interfere with. Thus, the effect of the distracters on
speechreading accuracy appears to have been purely “informa-
tional.”

No facilitation from either auditory distracter was found, but
this should be further investigated in studies with more statisti-
cal power and higher sound pressure levels for SSN (in order for
facilitation from stochastic resonance 70–80 dB is recommended;
see e.g., Harper, 1979; Usher and Feingold, 2000; Manjarrez et al.,
2007; Söderlund et al., 2007). The results from the present study
suggest strongly that auditory speech distracters, such as 4TB,
cannot facilitate speechreading, and it is unlikely that facilitation
would occur under any sound pressure level. Many studies on
auditory speech perception have found that speech and speech-
like distracters, such as speech-shaped modulated noise, impede
identification of speech targets (e.g., Festen and Plomp, 1990;
Hygge et al., 1992; Hagerman, 2002; George et al., 2006; Zekveld
et al., 2013).

As visual-only speech signals are generally poorly defined,
almost any auditory distraction could potentially have a negative
effect on the detection and identification of the subtle features of
the speech movements involved. However, some previous studies
failed to find effects, even of speech as distracter, on visual-only
speechreading performance, except when the distracter signal was
similar to the targets and presented synchronously (Brungart
and Simpson, 2005; see also Lyxell and Rönnberg, 1993). In the
Brungart and Simpson (2005) study, a coordinate response mea-
sure task was used in the condition where an effect of auditory
distracters was found; this task has limited response alternatives.

Further, the distracter signal was a simultaneous auditory presen-
tation of one talker speaking one of the few response alternatives
to the visual target. Therefore, the task in that study can be
assumed to have been more demanding in terms of attentional
allocation and stream segregation (as there was only one talker,
and the onset of the auditory distracter word was synchronized
to the onset of the speech movements). For that reason, Brungart
and Simpsons’ effect of phonological interference is more difficult
to interpret than the findings of the present study. The gener-
alizability to everyday speech perception of the results from the
present study can also be claimed to be higher compared to the
results in Brungart and Simpsons’ study, since everyday com-
munication does not often provide such closed sets of response
alternatives or situations resembling coordinate response measure
tasks.

The hypothesis that average and below-average speechreaders
should be more disturbed by auditory speech distracters, com-
pared to above-average speechreaders, would require a highly
structured task, such as a coordinate response measure task or
stimuli that are extremely visually well defined, however. Floor
effects would be difficult to avoid otherwise: if performance is at
the floor at baseline it cannot decrease.

The only significant correlation found was between
speechreading accuracy and self-rated effort in the silent
condition (i.e., without auditory distracter). This finding may
indicate that segregating the speech (the speech movements, the
phonological information that the speech movements elicit, or
both) from the distracter signal (i.e., the SSN or 4TB) increased
the cognitive load, which made the ratings less accurate. That is,
it is possible that there was not enough cognitive spare capacity
to accurately rate own effort after segregating speech from noise,
which would mean that the task was more cognitively demanding
than realized by the participants. This explanation is in line
with the conclusions from studies suggesting that segregating
input from different signal sources requires cognitive effort (e.g.,
Mishra et al., 2013; Zekveld et al., 2013).
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Purpose: To determine if the same object frequency information mediates letter contrast
threshold in the presence and absence of additive luminance noise (i.e., “noise-invariant
processing”) for letters of different size.

Methods: Contrast thresholds for Sloan letters ranging in size from 0.9 to 1.8 log MAR
were obtained from three visually normal observers under three paradigms: (1) high- and
low-pass Gaussian filtered letters were presented against a uniform adapting field; (2) high-
and low-pass Gaussian filtered letters were presented in additive white luminance noise;
and (3) unfiltered letters were presented in high- and low-pass Gaussian filtered luminance
noise. A range of high- and low-pass filter cutoffs were used to limit selectively the object
frequency content of the letters (paradigms 1 and 2) or noise (paradigm 3). The object
frequencies mediating letter identification under each paradigm were derived from plots of
log contrast threshold vs. log filter cutoff frequency.

Results:The object frequency band mediating letter identification systematically shifted to
higher frequencies with increasing log MAR letter size under all three paradigms. However,
the relationship between object frequency and letter size depended on the paradigm
under which the measurements were obtained. The largest difference in object frequency
among the paradigms was observed at 1.8 log MAR, where the addition of white noise
nearly doubled the center frequency of the band of object frequencies mediating letter
identification, compared to measurements made in the absence of noise.

Conclusion: Noise can affect the object frequency band mediating letter contrast threshold,
particularly for large letters, an effect that is likely due to strong masking of the low
frequency letter components by low frequency noise checks. This finding indicates that
noise-invariant processing cannot necessarily be assumed for large letters presented in
white noise.

Keywords: visual noise, letter identification, contrast sensitivity, optotype, object spatial frequency, retinal spatial

frequency

INTRODUCTION
Letter optotypes are commonly used as test targets in basic studies
of visual performance as well as in the clinical evaluation of visual
function. An important consideration in the use of letter targets is
that their Fourier spectra contain a broad range of object spatial
frequencies, designated in cycles per letter (cpl; Parish and Sper-
ling, 1991; Poder, 2003). Although visual sensitivity for spatially
broad-band letter optotypes could potentially be based on any of
the object frequencies contained in the letter, studies have shown
that only a narrow band of object frequencies mediates contrast
sensitivity (Alexander et al., 1994; Solomon and Pelli, 1994; Chung
et al., 2002; Majaj et al., 2002; McAnany and Alexander, 2008; Oruc
and Landy, 2009) and visual acuity (Anderson and Thibos, 1999).
Furthermore, the narrow band of object frequencies that medi-
ates performance depends on letter size, such that higher object
frequencies (i.e., the edges of the letter) are used for larger letter

sizes, whereas lower object frequencies are used for smaller letter
sizes (Chung et al., 2002; Majaj et al., 2002; McAnany and Alexan-
der, 2008; Oruc and Landy, 2009; Alexander and McAnany, 2010;
McAnany et al., 2011).

The standard approach for studying the object frequency infor-
mation mediating visual acuity and contrast sensitivity for letters
has been to remove or mask selected object frequencies con-
tained in the letter, and then measure the effect on performance.
That is, if removing a range of object frequencies does not affect
performance, then those frequencies must not be necessary for
the task. Conversely, if removing a range of object frequen-
cies impairs performance, then those frequencies must be useful
for performing the task. Two distinct approaches based on this
logic have been used to identify the object frequencies mediating
letter contrast sensitivity: a letter filtering approach (Alexander
et al., 1994; Chung et al., 2002; McAnany and Alexander, 2008;
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Alexander and McAnany, 2010) and a noise masking approach
(i.e., “critical-band noise masking”; Solomon and Pelli, 1994;
Majaj et al., 2002; Oruc and Landy, 2009). The former approach
involves selectively removing object frequencies from the letter
by spatial filtering, whereas critical-band noise masking atten-
uates the usefulness of selected object frequencies by masking
them with spatially filtered luminance noise. Despite differences
in approach, previous studies that have examined the effect of
letter size on the object frequencies mediating contrast sensitiv-
ity are in good agreement. For example, the data of Chung et al.
(2002), who used band-pass filtered letters, indicate that a linear
function with a slope of approximately 1/3 describes the relation-
ship between log object frequency and log letter size, for letters
sizes of approximately 0.1–1.4 log MAR. Similarly, the data of
Majaj et al. (2002), who used critical-band noise masking, indicate
that a linear relationship with a slope of approximately 1/3 can
describe the relationship between log object frequency and log let-
ter stroke frequency, for letter sizes of approximately 0.3–2.8 log
MAR.

Studies that employ visual noise as a tool to assess the object
frequency information mediating contrast sensitivity or as a tool
to assess visual function in patient populations (Nordmann et al.,
1992; Yates et al., 1998; Levi and Klein, 2003; Pelli et al., 2004;
Xu et al., 2006; Huang et al., 2007; McAnany et al., 2013) typi-
cally assume noise-invariant processing: i.e., the same mechanism
and processing strategy are used in the absence and presence
of noise. However, the addition of white luminance noise can
alter the visual pathway mediating sensitivity under certain con-
ditions, biasing processing from the magnocellular visual pathway
towards the parvocellular visual pathway (McAnany and Alexan-
der, 2009, 2010). Additionally, previous work has shown that
higher object frequencies mediate contrast sensitivity under con-
ditions biased toward the parvocellular pathway (McAnany and
Alexander, 2008). Consequently, the addition of luminance noise
might affect the object frequency band mediating letter identi-
fication. If noise affects the object frequencies mediating letter
identification, then the interpretation of clinical tests that assess
performance in noise (Pelli and Hoepner, 1989; Pelli et al., 2004)
and basic studies of the information mediating letter identification
could be complicated.

Given that the validity of noise-invariant processing in letter
contrast sensitivity tasks has not been tested, the present study
determined the effects of luminance noise on the object frequen-
cies mediating contrast sensitivity for letters across a range of sizes.
Estimates of object frequency were determined by low- and high-
pass spatial filtering letters from the Sloan set. Letters were either
presented against a uniform adapting field or in the presence of
white additive luminance noise. The effects of luminance noise
on object frequency were also assessed by measuring the object
frequencies mediating letter identification using high- or low-pass
filtered noise with the critical-band noise masking paradigm.

MATERIALS AND METHODS
OBSERVERS
Three of the authors (ages 22, 24, and 34 years) served as sub-
jects. All had normal best-corrected visual acuity assessed with
the ETDRS distance visual acuity chart and normal and contrast

sensitivity assessed with the Pelli-Robson contrast sensitivity chart.
The experiments were approved by an institutional review board
at the University of Illinois at Chicago and the study adhered to
the tenets of the Declaration of Helsinki.

APPARATUS AND STIMULI
All stimuli were generated using a PC-controlled Cambridge
Research Systems ViSaGe stimulus generator and were displayed
on a Mitsubishi Diamond Pro (2070) CRT monitor with a screen
resolution of 1024 × 768 and a 100-Hz refresh rate. The moni-
tor, which was the only source of illumination in the room, was
viewed monocularly through a phoropter with the observer’s best
refractive correction. The luminance values used to generate the
stimuli were determined by the ViSaGe linearized look-up table,
which were verified by measurements made with a Minolta LS-110
photometer.

The test stimuli consisted of a set of ten Sloan letters (C, D,
H, K, N, O, R, S, V, Z) that was constructed according to pub-
lished guidelines (NAS-NRC, 1980). The Sloan letters were either
unfiltered or spatially high- or low-pass filtered with a set of two-
dimensional Gaussian filters. The object frequency cutoffs of the
filters ranged from 0.9 to 21.0 cpl in 10 steps spaced approximately
0.15 log units apart. Figure 1 presents examples of an unfiltered
letter (Figure 1A), a low-pass-filtered letter (Figure 1B), and a
high-pass-filtered letter (Figure 1C). The letters were of positive
contrast (letter luminance higher than the adapting field lumi-
nance) and were presented at four different sizes, equivalent to
0.9, 1.2, 1.5, and 1.8 log MAR (minimum angle of resolution,
where smaller values of log MAR correspond to smaller letters).
This range was used in previous studies (McAnany and Alexander,
2008; Alexander and McAnany, 2010) and includes the letter size
used for the Pelli-Robson contrast sensitivity chart for the stan-
dard 1 m test distance (1.5 log MAR). The letters were presented
for an unlimited duration at the center of a 50 cd/m2 adapting
field that subtended 10.7◦ horizontally and 8.0◦ vertically.

Letters were presented either in the absence of noise
(Figures 1A–C) or in the presence of luminance noise
(Figures 1D–I). The same letter targets shown in the absence of
noise (first row) are shown in the presence of white additive lumi-
nance noise in the second row (Figures 1D–F). The bottom row
of Figure 1 provides examples of the stimuli used in the critical-
band noise masking experiments. Examples of an unfiltered letter
are shown in white noise (Figure 1G), in low-pass filtered noise
(Figure 1H), and in high-pass filtered noise (Figure 1I). The noise
field covered an area that was approximately 1.5 times larger than
the letter and consisted of independently generated square checks
with luminances drawn randomly from a uniform distribution
with a root-mean-square (rms) contrast of 0.18. The mean lumi-
nance of the noise field was equal to that of the adapting field
(50 cd/m2). The size of the noise checks was scaled with letter size
such that there were always 15 noise checks per letter (six checks
per letter cycle, as each letter contains 2.5 cycles), which maintains
a constant signal-to-noise ratio (SNR) across different letter sizes.
Previous work has shown that a minimum of four checks per cycle
are needed to ensure that the noise is effectively white at all letter
sizes (Kukkonen et al., 1995). The value of six checks per letter cycle
used in the preset study is consistent with that used by others (Pelli
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FIGURE 1 | Illustrations of the letter H presented under the three

paradigms. The top row shows examples of the H presented in the
absence of noise [unfiltered H (A), low-pass filtered H (B), high-pass
filtered H (C)]. The middle row shows examples of the H presented in
white luminance noise [unfiltered H (D), low-pass filtered H (E), high-pass
filtered H (F)]. The bottom row shows examples of the unfiltered H
presented in luminance noise that was unfiltered (G), low-pass filtered (H),
and high-pass filtered H (I). The filter cutoffs were set to 7.5 cpl and the
contrast of the letter was 0.66.

et al., 2004). The noise spectral density ranged from 6 × 10−6 deg2

at the smallest check size to 4 × 10−4 deg2 for the largest check
size. The static noise field was presented synchronously with the
target for an unlimited duration, such that the onset and offset of
the target and noise was simultaneous.

The contrast (C) of the letters was defined as Weber contrast:

C = (LL − LB)/LB (1)

where LL is the luminance of the letter and LB is the background
luminance. Because the contrast of complex images is difficult
to define (Peli, 1990), a relative definition of contrast was used
to characterize the filtered letters, as in previous studies (Chung
et al., 2002; McAnany and Alexander, 2008, 2010). That is, when
the contrast of the original unfiltered letter was 1.0, the filtered
image was assigned a relative contrast of 1.0 without rescaling.

PROCEDURE
A brief warning tone signaled the start of each stimulus presen-
tation. On each trial, a single letter was selected at random from
the Sloan set and presented. The observer’s task was to identify
the letter verbally, which was entered by the experimenter. No
feedback was given. All three observers were familiar with the

Sloan set and only letters from the Sloan set were accepted as
valid responses. Contrast threshold for letter identification was
obtained using a 10-alternative forced-choice staircase procedure.
An initial estimate of threshold was obtained by presenting a letter
at a suprathreshold contrast level and then decreasing the contrast
by 0.3 log units until an incorrect response was recorded. After
this initial search, log contrast threshold was determined using a
two-down, one-up decision rule, which provides an estimate of
the 76% correct point on a psychometric function (Garcia-Perez,
1998). Each staircase continued until 16 reversals had occurred,
and the mean of the last 6 reversals was taken as contrast threshold.
Excluding the initial search, the staircase length was typically 35–40
trials, which produced stable measurements. In one testing session,
a letter size and a paradigm (filtered letter in the absence of noise,
filtered letter in the presence of noise, unfiltered letter in filtered
noise) were selected pseudorandomly for testing. All cutoff object
frequencies for both high-pass and low-pass filtered letters (or fil-
tered noise) were tested in a pseudorandom order within a session.

RESULTS
CONTRAST THRESHOLD FOR LOW- AND HIGH-PASS FILTERED LETTERS
Figures 2A,B show log contrast threshold for letters that were
either high-pass Gaussian filtered (filled symbols) or low-pass
Gaussian filtered (open symbols). These measurements were made
for a letter size equivalent to 1.2 log MAR that was either presented
in the absence of noise (Figure 2A) or in white luminance noise
(Figure 2B). Each data point represents the mean contrast thresh-
old value for the three subjects and the error bars are ± 1 standard
error of the mean (SEM). In Figures 2A,B, the leftmost data points
(filled circle and filled triangle, respectively) and rightmost data
points (open circle and open triangle, respectively) represent con-
trast threshold for letters that were minimally filtered. The other
data points represent the effect of successively changing the cutoff
frequency of the filter to remove either the low object frequencies
or the high object frequencies.

For the filtered letter data in Figures 2A,B, there was a region
over which threshold was independent of filter cutoff and a second
region over which log contrast threshold increased or decreased
linearly with log filter cutoff. In order to derive the object fre-
quency range that is used for letter identification, the data were fit
piecewise with two linear functions using a least-squares criterion:
one region was constrained to have a slope of 0, and the slope
of the second region was unconstrained. The high-pass and low-
pass functions in each plot were fit separately and are represented
by the solid lines in Figures 2A,B. The cutoff object frequency at
which the functions crossed (indicated by the vertical dashed lines)
was taken as an index of the center of the object frequency region
mediating letter identification. This point, which was also used in
previous reports (McAnany and Alexander, 2008; Alexander and
McAnany, 2010), represents approximately equal elevations of log
contrast threshold, compared to the threshold values obtained
with minimally filtered letters.

Log contrast thresholds for filtered letters measured in the
absence of noise (Figure 2A) and in the presence of white noise
(Figure 2B) differed substantially. That is, the functions mea-
sured in the presence of white noise were shifted vertically by
approximately 1 log unit. This finding is expected, as high external
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FIGURE 2 | Log contrast threshold versus log filter cutoff frequency for

1.2 log MAR letters presented in the absence of noise (A), in the

presence of additive white luminance noise (B), and for unfiltered letters

presented in Gaussian filtered luminance noise (C). Low-pass data are
represented by the open symbols and high-pass data are represented by the
filled symbols. Data points represent the means of three observers and error

bars represent ± 1 (SEM), which are omitted when smaller than the data
points. The solid lines in the left and middle panels represent piecewise linear
fits to the data, whereas the solid lines in the right panel represent the
function described by Majaj et al. (2002). The dashed vertical lines indicate the
point at which the two functions crossed, which was used as the index of the
center object frequency in the following figures.

noise levels are known to elevate contrast threshold substantially.
The center object frequency was similar under both conditions
(approximately 2.6 cpl in the absence of noise and 2.2 cpl in the
presence of noise). Thus, the functions obtained in the absence
and presence of white noise were primarily shifted vertically, with
minimal horizontal shift.

The range of useful frequencies mediating contrast threshold
(i.e., bandwidth) can also be derived from the plots shown in
Figures 2A,B. The bandwidth was calculated as the full width
at half-height, where half-height was obtained by averaging the
minimum and crossing point thresholds. The mean bandwidth
was 0.67 octaves for the letters presented in the absence of
noise (Figure 2A) and 1.1 octaves for letters presented in white
noise (Figure 2B). The width of the band of object frequen-
cies has been reported to be between 1 and 3 octaves (Chung
et al., 2002; Majaj et al., 2002), with minimal dependence on let-
ter size. Thus, the bandwidth measured in white noise is within
the previously reported range, whereas the bandwidth measured
in the absence of noise is somewhat narrower than previous
reports.

CONTRAST THRESHOLD FOR LETTERS PRESENTED IN LOW- AND
HIGH-PASS FILTERED NOISE
Figure 2C shows log contrast threshold for unfiltered letters pre-
sented in either high-pass Gaussian filtered (filled symbols) or
low-pass Gaussian filtered (open symbols) white noise. The letter
size was equivalent to 1.2 log MAR and each data point represents
the mean contrast threshold value for the three subjects, with error
bars representing ± 1 SEM. The leftmost point for the high-pass
function (filled square) and rightmost data point for the low-pass
function (open square) represent thresholds measured in noise
that was minimally filtered (i.e., nearly white). The other data

points represent the effect of successively changing the filter cutoff
to remove object frequencies from the noise.

The data in Figure 2C were well fit by sigmoidal functions
described previously and fit to similar data (Majaj et al., 2002; Oruc
and Landy, 2009). The high-pass and low-pass functions were fit
separately and are represented by the solid lines in Figure 2C.
The crossing point of the fitted functions was taken as an index
of the center of the range of frequencies mediating letter iden-
tification, to maintain consistency with the approach used in
Figures 2A,B. Based on this definition, the center object fre-
quency for the letters measured in filtered noise (3.2 cpl) was
somewhat higher than the center frequencies in the absence of
noise (2.6 cpl) or for letters in white noise (2.2 cpl). The center
object frequency was also determined by calculating the derivatives
of the sigmoidal curves, an approach described elsewhere (Majaj
et al., 2002; Oruc and Landy, 2009). Estimates of the center object
frequency based on the mean of the low- and high-pass derivatives
was 3.5 cpl.

The bandwidth for letters presented in filtered noise
(Figure 2C) was calculated using the same procedure described
for the bandwidth calculations for Figures 2A,B. The full width at
half-height of the data shown in Figure 2C was 2.1 octaves. This
value is larger than that for filtered letters presented in the presence
and absence of white noise.

CENTER OBJECT FREQUENCY AS A FUNCTION OF LETTER SIZE
The analysis illustrated in Figure 2 was performed on the data
obtained at each of the other three letter sizes, with the results
shown in Figure 3. Figure 3 shows log center object frequency for
the three subjects as a function of log MAR letter size. The center
object frequencies were based on the crossing points of the fits to
the data, as described in Figure 2. Measurements are shown for
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FIGURE 3 | Log center frequency (cpl) as a function of letter size (log MAR). Data are shown for each subject separately. Exponential curves were fit to the
filtered letter in noise (triangles) and filtered letter in no noise (circles) data and a linear function was fit to the unfiltered letter in filtered noise data (squares).

filtered letters in the absence of noise (circles), filtered letters in
the presence of white noise (triangles), and for unfiltered letters
in filtered noise (squares). Data for filtered letters in the absence
and presence of white noise were fit with exponential functions
that transitioned from a slope of 0 for small letters to a positive
slope for large letters. Data for the unfiltered letters presented in
filtered noise were fit with a linear regression line, in accordance
with previous reports (Majaj et al., 2002; Oruc and Landy, 2009).
As can be seen from comparing the three panels, the results were
highly consistent for the three subjects.

The relationship between object frequency and letter size was
not identical for letters in the absence and presence of white noise.
Specifically, center object frequency increased as size increased
for both paradigms, but the exponential increase in center fre-
quency for letters in white noise was greater than that for letters
in the absence of noise. The largest difference between the func-
tions measured in the presence and absence of white noise was
at the largest size, where the object frequencies mediating let-
ter identification in the presence of white noise were a factor
of 1.75 higher, on average, than those measured in the absence
of noise. For both paradigms, the slope of the function began
to approach zero for small letter sizes, indicating that a similar
constant band of frequencies mediated contrast threshold in the
absence and presence of white noise for small letters. In compari-
son, log object frequency increased linearly with log letter size for
the measurements made in filtered noise. The object frequencies
mediating letter identification in filtered noise tended to be slightly,
but systematically, higher than those measured in the absence of
noise.

A two-way repeated measures analysis of variance (ANOVA)
was performed to compare the object frequencies measured under
the three paradigms at the four letter sizes. The ANOVA indicated
significant main effects of paradigm [F(2,12) = 9.7, p < 0.05] and
letter size [F(3,12) = 125.4, p < 0.05]. Additionally, there was a
significant interaction between paradigm and size [F(6,12) = 32.8,
p < 0.05]. Bonferrioni corrected post hoc comparisons indicated
that for the 1.8 log MAR letter size, object frequency was sig-
nificantly greater (p < 0.05) for measurements in white noise

(triangles) compared to those measured in both filtered noise
(squares) and in the absence of noise (circles). The post hoc com-
parisons also indicated a significant difference (p < 0.05) between
the object frequency measured in filtered noise (squares) and that
measured in white noise (triangles) at the 1.2 log MAR letter
size.

The bandwidth of useful object frequencies mediating letter
contrast threshold was also assessed for each paradigm at each let-
ter size, with the results for each subject shown in Figure 4. As
in Figure 3, measurements are shown for letters in the absence of
noise (circles), letters in the presence of white noise (triangles),
and for letters in filtered noise (squares). The bandwidths for each
paradigm were defined as the full width at half-max, as described
above. The data were fit with linear regression lines of zero slope,
since there was no effect of letter size on bandwidth, as discussed
below. A two-way repeated measures ANOVA was performed to
compare the bandwidths measured under the three paradigms
at the four letter sizes. The ANOVA indicated significant main
effects of paradigm [F(2,12) = 106.2, p < 0.05], but not letter size
[F(3,12) = 1.3, p > 0.05]. Of note, the finding that bandwidth is
approximately independent of letter size has been reported previ-
ously (Chung et al., 2002). Additionally, there was no significant
interaction between paradigm and size [F(6,12) = 1.5, p > 0.05).
The estimates of mean center frequency and bandwidth (±SEM)
are listed in Table 1 for each paradigm and letter size. Additionally,
Table 1 lists the mean (±SEM) contrast threshold for unfiltered
letters in the absence and presence of noise and for unfiltered
letters in white noise.

The relationship between the retinal spatial frequencies (cycles
per degree; cpd) mediating letter identification and log MAR letter
size is shown in Figure 5, which replots the data and best-fit curves
of each subject shown in Figure 3 in terms of cpd. This conversion
is based on the following relationship (Alexander and McAnany,
2010):

Fr = 12∗F0

MAR
(2)

where Fr is retinal frequency in cpd, Fo is object frequency in cpl,
and MAR is 1/5 of the letter size in arcmin.
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FIGURE 4 | Bandwidth (octaves) as a function of log MAR letter size. Data are shown for each subject individually. Linear regression lines with slopes of
zero are fit to the data, as described in the text.

The top x-axis in Figure 5 indicates the nominal retinal
frequencies corresponding to the log MAR values. This correspon-
dence is based on the convention that 0 log MAR (20/20 Snellen
equivalent) is equivalent to a retinal frequency of 30 cpd (Regan
et al., 1981). This relationship assumes that an object frequency of
2.5 cpl (equivalent to the letter stroke width) governs performance
at all sizes. The diagonal dashed line in Figure 5 represents a one-
to-one relationship between the derived center retinal frequency
and the nominal retinal frequency, based on this assumption. If
letter identification is governed by an object frequency range cen-
tered at 2.5 cpl for all sizes, then the nominal retinal frequency
would be proportional to log MAR and the data would fall along
the dashed line. It is apparent that none of the curves in Figure 5
follow the dashed line. Rather, the data points for the two smallest

letter sizes tested (highest frequencies) fall near the dashed line,
whereas the data points for the two largest letter sizes tested fall
above the line. There is a divergence for the filtered letter in white
noise function for the largest letter size (equivalent to 0.5 cpd),
where the retinal frequency is slightly higher than the values at 1.0
and 2.0 cpd.

DISCUSSION
The purpose of the present study was to determine the effects
of additive luminance noise on the object frequencies mediating
letter contrast threshold across a range of letter sizes. The object
frequency information mediating letter contrast threshold was
assessed under three paradigms: (1) letters presented against a
uniform adapting field; (2) letters presented in white luminance

Table 1 | Center frequency, bandwidth, and contrast threshold for each letter size and paradigm.

Paradigm Size

(log MAR)

Mean center

frequency ± SEM (cpl)

Mean bandwidth

± SEM (octaves)

Log contrast threshold

± SEM (unfiltered letter/noise)

Filtered letter

no noise

0.9 2.04 ± 0.05 0.70 ± 0.08 −1.64 ± 0.03

1.2 2.61 ± 0.15 0.67 ± 0.06 −1.66 ± 0.07

1.5 3.72 ± 0.20 0.63 ± 0.02 −1.89 ± 0.08

1.8 5.95 ± 0.47 0.73 ± 0.15 −1.73 ± 0.02

Filtered letter

in noise

0.9 1.89 ± 0.07 0.95 ± 0.13 −0.82 ± 0.07

1.2 2.21 ± 0.08 1.12 ± 0.05 −0.71 ± 0.06

1.5 4.35 ± 0.33 1.08 ± 0.05 −0.88 ± 0.03

1.8 10.46 ± 0.92 1.13 ± 0.24 −0.95 ± 0.01

Filtered noise 0.9 2.31 ± 0.07 1.70 ± 0.19 −0.86 ± 0.01

1.2 3.20 ± 0.06 2.10 ± 0.23 −0.81 ± 0.02

1.5 4.60 ± 0.26 2.23 ± 0.10 −0.88 ± 0.08

1.8 6.22 ± 0.29 1.86 ± 0.10 −1.08 ± 0.05
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FIGURE 5 | Log retinal frequency (cycles per degree) as a function of log MAR letter size. Data are shown for each subject individually. The data and fits
are replotted from Figure 3 in terms of retinal frequency, as described in the text. The dashed line represents the standard assumption that 30 cpd is equivalent
to 0 log MAR.

noise; (3) letters presented in filtered luminance noise (critical-
band noise masking). There were similarities among the three
paradigms in that the band of object frequencies mediating con-
trast threshold systematically increased with increasing letter size,
consistent with previous reports (Alexander et al., 1994; Solomon
and Pelli, 1994; Chung et al., 2002; Majaj et al., 2002; McAnany
and Alexander, 2008; Oruc and Landy, 2009). However, the func-
tions relating log object frequency to log MAR obtained under the
three paradigms had three different shapes: For letters presented
in white noise, the increase in log object frequency with increas-
ing log MAR was strongly non-linear (exponential increase); For
letters presented against a uniform field, the increase in log object
frequency as log MAR increased was weakly non-linear; For letters
presented in filtered noise, the increase in log object frequency
with increasing log MAR was linear.

Despite the differences in the shapes of the functions relating
object frequency and letter size, the absolute values of object fre-
quency were approximately similar for letter sizes ranging from 0.9
to 1.5 log MAR. If the visual pathway mediating contrast threshold
had changed from the magnocellular (MC) pathway to the parvo-
cellular (PC) pathway due to the addition of noise, as proposed as
a possibility in the Introduction, an increase in object frequency
would be expected for letters presented in white noise. This was
not observed. The explanation for why the object frequencies did
not increase for small to medium sized letters due to the addition
of noise is that the PC pathway likely mediated contrast thresh-
old under all conditions. This explanation is based on the values
of object frequency obtained previously under conditions biased
toward the PC pathway (Alexander and McAnany, 2010), which
closely match the values obtained in the presence and absence of
noise in the present study. Additional work is needed to determine
how the object frequency results of the present study would differ
if measured under conditions that targeted the MC pathway.

A substantial increase in object frequency was observed for the
largest letter size tested (equivalent to 1.8 log MAR) in white noise,

compared to the object frequencies used in the absence of noise or
for letters in filtered noise. An increase in center object frequency
due to the addition of white noise is also apparent in the data of
Oruc and Landy (2009), but the consistency and significance of
the change in their data is difficult to evaluate, as their focus was
on determining whether object frequency depends on letter size in
the presence of white noise. Oruc and Landy (2009) used critical-
band noise masking to derive the object frequencies mediating
letter identification for letters in the presence and absence of a
white noise field. Despite differences in methodology, our results
support their finding that the object frequencies mediating letter
contrast threshold depend on letter size regardless of whether the
letters are presented against a uniform field or in the presence of
white noise.

A model has been proposed by Chung et al. (2002) to account
for the shift in object frequency with letter size. This model sug-
gests that the center frequency of the band of object frequencies
mediating letter contrast threshold is jointly dependent on the let-
ter sensitivity function (LSF; the object frequencies available in the
letter) and the contrast sensitivity function (CSF; the relationship
between contrast sensitivity and retinal frequency). This model
accounts well for the change in object frequency with changes in
letter size for letters of relatively small angular subtense (Chung
et al., 2002). However, this model cannot account for the observed
changes in center frequency for the large letter sizes used in the
present study because the LSF and contrast sensitivity are both
independent of letter size for letters greater than approximately
1.2 log MAR (McAnany and Alexander, 2006). Consequently,
the model of Chung et al. (2002) would predict that center fre-
quency is constant for large letters. Oruc and Landy (2009), who
used white noise to flatten the CSF rather than using large let-
ters, also reported that the center frequency changed with letter
size.

At least two possible explanations could account for the large
shift in object frequency due to the addition of white noise for
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the 1.8 log MAR letter size. First, the noise fields in the present
study were designed according to previous guidelines to be effec-
tively white (Kukkonen et al., 1995), but the substantial power
in the low frequency range for large check sizes may provide
enhanced masking of the low object frequencies contained in the
letters. Attenuation of the low object frequencies would force the
observer to use higher object frequencies (i.e., the edges of the
letters), accounting for the differences observed in the presence
and absence of noise. Additional work with noise fields that have
a constant check size for letters of different size is needed to eval-
uate this explanation. As an alternative explanation, the subjects
may have employed a different strategy to perform the task in the
presence of noise. Previous work has indicated that the addition
of noise can affect the processing strategy used to perform the
task (Allard and Cavanagh, 2011). Given that the differences in
object frequency among the paradigms were not the same at all
letter sizes, the effects of white noise are more likely attributable to
strong masking of low object frequencies contained in the large let-
ters, rather than a shift in processing strategy. However, additional
work is needed to confirm this explanation.

In addition to the differences in center object frequency among
the paradigms, there were also significant differences in band-
width among the three paradigms. Bandwidth, averaged across
subjects and letter size, was slightly greater in the presence of
white noise (1.1 octaves) compare to measurements made in the
absence of noise (0.7 octaves). The increase in bandwidth for let-
ters in white noise tended to be similar for all letter sizes. Thus,
for the largest letter tested, the center frequency of the band of
object frequencies mediating letter contrast sensitivity shifted to
higher frequencies but did not become broader. The bandwidth
measured for letters in filtered noise (2.0 octaves, on average),
is similar to that reported previously (Solomon and Pelli, 1994;
Chung et al., 2002; Majaj et al., 2002). Channel switching or “off-
frequency looking” would be expected to broaden the estimated
bandwidth and may provide an explanation for the larger range
of frequencies used in filtered noise. For example, in the pres-
ence of low-pass filtered noise, the subject could potentially use a
channel with a higher peak frequency to avoid the low-pass noise
(the opposite could occur in high-pass filtered noise). Previous
results indicate that under some conditions, subjects do switch
channels to improve the signal to noise ratio (Oruc and Landy,
2009).

In summary, we show that the addition of noise can affect
the object frequency information mediating letter identification,
particularly for large letters. For letters equivalent to 1.8 log MAR,
the addition of noise had marked effects on the object frequency
information mediating letter identification. This finding suggests
that moderate to small letter sizes may be most appropriate for
comparing letter contrast threshold in the presence and absence of
noise because the assumption of noise-invariant processing largely
holds.
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Adding noise to a stimulus is useful to characterize visual processing. To avoid triggering
a processing strategy shift between the processing in low and high noise, Allard and
Cavanagh (2011) recommended using noise that is extended as a function of all dimensions
such as space, time, frequency and orientation. Contrariwise, to avoid cross-channel
suppression affecting contrast detection, Baker and Meese (2012) suggested using noise
that is localized as a function of all dimensions, namely “0D noise,” which basically consists
in randomly jittering the target contrast (and, for blank intervals or catch trials, jittering the
contrast of an identical zero-contrast signal). Here we argue that contrast thresholds in
extended noise are not contaminated by noise-induced cross-channel suppression because
contrast gains affect signal and noise by the same proportion leaving the signal-to-noise
ratio intact. We also review empirical findings showing that detecting a target in 0D noise
involves a different processing strategy than detecting in absence of noise or in extended
noise. Given that internal noise is extended as a function of all dimensions, we therefore
recommend using external noise that is also extended as a function of all dimensions when
assuming that the same processing strategy operates in low and high noise.

Keywords: external noise paradigm, extended noise, 0D noise, contrast detection, contrast discrimination

Noise can be used to characterize visual processing in noiseless
conditions. For instance, contrast detection threshold in absence
of noise is limited by both internal noise and the ability of detect-
ing the signal embedded in noise, namely, calculation efficiency,
which is inversely proportional to the smallest signal-to-(internal)
noise ratio required to detect the signal. These two factors can be
estimated by measuring contrast thresholds in low and high noise
levels (Pelli, 1981; Pelli and Farell, 1999). In high noise, internal
noise has negligible impact and the smallest signal-to-(external)
noise ratio required to detect the signal (i.e., calculation efficiency
in high noise) can be calculated given the contrast threshold in
a given high external noise level. By assuming that the small-
est signal-to-(internal) noise ratio required to detect the signal
is the same as the measured smallest signal-to-(external) noise
ratio required to detect the signal in high noise (i.e., assuming
that the calculation efficiency in low noise is the same as the mea-
sured calculation efficiency in high noise), the relative impact of
internal noise can be estimated, which is referred to as the internal
equivalent noise. Thus, measuring contrast thresholds in low and
high noise while assuming that the smallest signal-to-noise ratio
required to detect the signal (i.e., calculation efficiency) is the same
in low and high noise enables the measurement of factors limiting
contrast thresholds in absence of noise, that is, internal equivalent
noise and calculation efficiency.

Different types of noise can be used (Figure 1). Typically,
noise turns on and off with the target (i.e., temporally local-
ized) and appears at the target location (i.e., spatially localized)

or over slightly larger area. As a function of orientation and fre-
quency, noise is often extended (e.g., white noise), that is, it has a
wide spectral energy spectrum across orientations and frequencies.
Nonetheless, it is not unusual to filter the noise to keep only a range
of frequencies and orientations (or even only one orientation as
in Figure 1).

Typically, experimenters arbitrarily select one type of noise that
is localized relative to some dimensions and extended relative to
others, and usually implicitly assume that the smallest signal-to-
(internal) noise ratio required to detect the signal is the same
as the measured signal-to-(external) noise ratio. This assump-
tion enables the use of external noise to characterize processing
in noise free displays. However, some recent studies suggest that
this assumption can be violated when using some types of noise.
Allard and Cavanagh (2011) argued that the detection strategy is
not always noise-invariant, as the most sensitive processes in one
noise type may not be the most sensitive processes in another noise
type. For instance, in noise that is spatially localized (appears only
at the target location) and temporally extended (i.e., continuously
present), the best detection strategy could consist in detecting a
temporal variation of response within a given channel, but in
noise that is spatially extended and temporally localized, the best
strategy could rather consist in detecting a spatial variation. Two
distinct strategies will likely have distinct calculation efficiencies.
Thus, to assume that calculation efficiency in absence of noise is
the same as in high noise, the same processing strategy must oper-
ate in absence and presence of noise. To avoid different processing
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FIGURE 1 | Different types of noise that are localized relative to the

frequency (e.g., contains only frequency around the frequency of the

target), orientation (e.g., contains only the orientation of the target),

space (e.g., occurs only at the target location) or time (e.g., turn on

and off with the target). The target is not illustrated.

strategies operating in absence of noise and in high noise, exter-
nal noise should match, as much as possible, the characteristics
of internal noise (except for contrast). Internal noise is extended
as a function of all dimensions as it occurs at all orientations and
frequencies, it is not present only at the target location and it does
not turn on and off with the target. Allard and Cavanagh (2011)
therefore recommended using noise that is extended as a function
of all dimensions, such as space, time, frequency and orientation
(Figure 2 right).

Contrariwise, Baker and Meese (2012) criticized the use of
extended noise due to cross-channel suppression as the response
within one channel tends to suppress the responses of other nearby
channels. For instance, noise extended as a function of orientation
will introduce noise not only in the channels tuned to the signal
orientation, but also to channels tuned to all other orientations,
which may suppress the response within the relevant channels.
To avoid cross-channel suppression affecting contrast detection
threshold in high noise, Baker and Meese (2012) suggested to use
noise that is localized as a function of all dimensions, which they
refer to as “0D noise” (Figure 2 center), which basically consists
in randomly jittering the target contrast (and, for blank intervals

FIGURE 2 |Two different intervals (target absent, top, and present,

bottom) in absence of noise (left), in noise that is localized as a

function of all dimensions (i.e., 0D noise, center) and in noise that is

extended as a function of all dimensions (right). Note that 0D noise
basically consists in randomly jittering the target contrast (and, when the
target is absent, jittering the contrast of an identical zero-contrast signal).
Negative contrasts correspond to a polarity reversal (not illustrated).

or catch trials, jittering the contrast of an identical zero-contrast
signal).

In sum, many experimenters use noise that is localized as a func-
tion of some dimensions and extended as a function of others, and
implicitly assume that the calculation efficiency in low noise is the
same as the measured calculation efficiency in high noise. How-
ever, given that internal noise is extended, this assumption may be
violated in localized noise if different processing strategies operate
in localized and extended noise, which would result in different
processing strategies in low localized noise (i.e., when internal
extended noise dominates) and high localized noise. It may also be
violated in extended noise if noise-induced cross-channel suppres-
sion affects the measurement of the calculation efficiency in high
noise. The objective of the present study was to determine which
noise type (localized or extended) should be used to avoid vio-
lating the assumption that the calculation efficiency in low noise
is the same as the measured calculation efficiency in high noise,
which is necessary to characterize detection processing in noiseless
conditions (e.g., measure internal equivalent noise and calculation
efficiency). Note that because we see no reasons a priori why the
noise should be localized as a function of some dimensions and
extended as a function of others, the current article focused on
the two extreme cases: noise extended or localized as a function of
all dimensions. On the one hand, if noise-induced cross-channel
suppression affects the measured calculation efficiency, this will
likely be the case for any dimension. On the other hand, if noise
should be analogous to internal noise to avoid triggering a pro-
cessing strategy shift, then it should be extended as a function of
all dimensions. The present article first investigated if adding 0D
noise (i.e., noise localized as a function of all dimensions) triggers a
shift in processing strategy and then investigated if noise-induced
cross-channel suppression affects contrast thresholds in extended
noise.

NOISE-INVARIANT PROCESSING ASSUMPTION
0D noise has the advantage that it cannot induce cross-channel
suppression because it contains energy only within the relevant
channels. Thus, the usefulness of 0D noise to characterize the
detection process depends on whether the same processing strat-
egy operates in 0D noise as in absence of noise. In a two-interval
forced-choice paradigm (2IFC), a contrast detection task consists
in one interval containing the signal at a given contrast level and
the other interval is blank (or contains an identical zero-contrast
signal). For such a detection task, adding 0D noise consists in
adding an independent contrast jitter to both intervals. As a result,
a signal is presented in both intervals (e.g., Figure 2 center) and the
task consists in discriminating the interval containing the highest
contrast (while considering a contrast opposite to the signal as a
negative contrast). In other words, a contrast detection task in
0D noise is processed as a contrast discrimination task (Allard and
Faubert, 2013). Thus, if the processing strategies underlying con-
trast detection and discrimination tasks differ, then 0D noise could
not be used to investigate the contrast detection process. Neverthe-
less, Baker and Meese (2013) argued that 0D noise can be used to
characterize the detection process because, they claimed, a detec-
tion task is always processed as a discrimination task. In other
words, they suggest that the processing strategy is the same for

Frontiers in Psychology | Perception Science July 2014 | Volume 5 | Article 749 | 86

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Allard and Faubert Extended vs localized noise

contrast detection and discrimination tasks. If the same process-
ing strategy operates for contrast detection and discrimination
tasks, then 0D noise could indeed be used to characterize the
detection process. On the other hand, if contrast detection, and
discrimination tasks involves distinct processing strategies, this
would disqualify the use of 0D noise to characterize the detection
process and would provide further evidence that different pro-
cessing strategies can operate in the absence of noise and presence
of localized noise. Here, we review empirical findings suggesting
that the detection strategy in noiseless conditions is not based on
a discrimination strategy, as is the case for a detection task in 0D
noise.

The contrast discrimination processing strategy is straightfor-
ward: compare two responses from the two intervals and report
the one with the highest. Although such a strategy could also
be used for contrast detection, it is not necessarily the case. As
we suggested elsewhere (Allard and Cavanagh, 2011; Allard et al.,
2013), an alternative detection strategy consists in determining
if a pattern can be distinguished from the noisy background
(Figure 3). According to this processing strategy, detection thresh-
olds do not depend on the ability to discriminate two responses
(as soon as the target is detected in one interval, the task is triv-
ial), but simply on the ability to distinguish a pattern from the
noisy background. Conversely, discrimination thresholds do not
depend on the ability to distinguish a pattern from the noisy
background (this is usually trivial because both stimuli are gener-
ally suprathreshold), but on the ability to estimate and compare
two contrasts. According to Figure 3, the discrimination strat-
egy would consist in comparing the energy levels in the central
portion of the two curves (which could operate in any noise
condition), whereas the detection strategy could also consist in

FIGURE 3 | Energy level when a target is present (black) or absent

(gray) as a function of a given dimension (e.g., space or time) for three

conditions: no noise (left column), 0D noise (or contrast

discrimination, middle column) and extended noise (right column). The
top row represents the energy level of the external stimulus, the middle
row represents internal noise added by the visual system and the bottom
row represents the effective stimulus (i.e., the external stimulus summed
with internal noise). The effective stimulus of the no and extended noise
conditions have similar profiles, which is different from the one with the 0D
noise that shows an important energy variation even in the absence of a
signal. The dotted line represents the zero energy level. This figure was
adapted from Allard et al. (2013).

distinguishing a variation of energy relative to the background
(which could not operate in 0D noise as the noise alone induces
such a variation).

Allard and Cavanagh (2011) found empirical evidence that the
detection strategy consists in distinguishing a pattern from the
noisy background. They found that spatiotemporally localized
noise (i.e., noise appearing only at the potential target spatiotem-
poral locations), which introduces energy easily distinguishable
from the background (similar to the middle column in Figure 3),
impaired the detection process and triggered a change in pro-
cessing strategy: the processing strategy shifted from a detection
strategy immune to crowding to a discrimination or recognition
strategy that is sensitive to crowding. This processing strategy shift
must be due to the spatiotemporal window of the noise and not to
the noise per se because extended noise (i.e., background dynamic,
white noise that is full screen and continuously displayed, Figure 3
right column) was not found to affect the detection strategy. If the
detection strategy in absence of noise consists in discriminating
two activity levels, then there is no reason why this strategy would
change in localized, but not extended noise. Allard and Cavanagh
(2011) therefore suggested that the detection strategy in noiseless
displays consists in distinguishing a pattern from the background
internal noise, not comparing activity levels (which would be the
same in localized and extended noise).

A particularity of the detection process is that it can be facil-
itated by the superposition of a low-contrast pedestal. Indeed,
contrast discrimination functions (i.e., contrast discrimination
thresholds as a function of the pedestal contrast), which show
a gradual shift from a detection task (zero contrast pedestal)
to a contrast discrimination task (high contrast pedestal), typ-
ically show a dip when plotted in contrast units: low contrast
pedestals facilitate contrast detection thresholds and high con-
trast pedestals impair contrast discrimination thresholds (for a
review, see Solomon, 2009). Such a dipper function was observed
in absence of noise and in extended noise (Pelli, 1981) and led
Pelli to state that “The dip is of great theoretical interest because it
indicates that the process of detection is similar with and without
the noise mask.” (p. 123). Indeed, similar patterns of results with
and without noise suggest common underlying processes. If the
detection strategy in 0D noise were the same as in absence of noise,
then we would also expect a similar dip with 0D noise. However,
this is obviously not the case because the detection thresholds in
0D noise are close to the ideal performance (Allard and Faubert,
2013; Baker and Meese, 2013) so substantial facilitation is impos-
sible. This absence of facilitation in 0D noise, and the facilitation
in noiseless and extended noise suggest that the detection strategy
in 0D noise (i.e., contrast discrimination strategy) differs with the
detection strategy in noiseless or extended noise conditions.

To add further evidence that the detection strategy does not
consist in discriminating contrasts, but rather consists in distin-
guishing a pattern from the noisy background, we conducted an
additional experiment. We compared contrast thresholds obtained
using two 2IFC procedures. In the detection condition, one
interval contained the target and the other was blank. In the
phase-discrimination condition, one interval contained the tar-
get and the other contained the same target but with a reversed
contrast polarity (i.e., negative contrast). Thus, for a given target
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contrast, the signed contrast difference between the two inter-
vals in the phase-discrimination condition would be twice the one
in the detection condition. If the processing strategy consists in
comparing the signed contrast difference between the two inter-
vals, then the contrast thresholds should be two times lower in the
phase-discrimination condition. Indeed, the contrast difference
between the two intervals would be the same in the two con-
ditions when the contrast in the phase-discrimination condition
would be half the contrast in the detection condition. Thus, we
would expect the threshold in the detection condition to be twice
the one in the phase-discrimination condition. Note that nonlin-
earities within the visual system could make this factor differ from
2. For instance, if the threshold depends on the energy difference
(which is proportional to the squared contrast) between the two
intervals (Raab et al., 1963) rather than the contrast difference,
then we would expect the threshold in the detection condition to
be

√
2 times higher than in the phase-discrimination condition

(energy doubles when increasing contrast by a factor of
√

2). In
any case, contrast thresholds would be non-negligibly lower in the
phase-discrimination condition because, for a given target con-
trast, contrast difference (or energy difference) between the two
intervals in the phase-discrimination condition would be twice
the one in the detection condition. On the other hand, if the pro-
cessing strategy consists in distinguishing a pattern from the noisy
background, then the advantage in the phase-discrimination con-
dition would only be due to the fact that two targets are presented
compared to only one in the detection condition. The observer
would have two chances instead of one to detect a target, so the
observer would require a lower contrast level to obtain the same
performance level. However, given that human observers have a
sharp psychometric functions, performance drops rapidly when
decreasing the target contrast so this advantage would only be
of a factor of about 1.2 (Legge, 1984). Furthermore, this fac-
tor could be even less if the phase was not always discriminable
when the target is detected because this would be a disadvantage
in the phase-discrimination condition, but not in the detection
condition.

METHOD
The target to detect was a vertically oriented Gabor with a spa-
tial frequency of 0.7 cycles/degree and a standard deviation of
the Gaussian window of 0.5◦. The 0D noise contrast was 0.06
(standard deviation of the Gaussian distribution). The extended
noise was binary with elements of 2 × 2 pixels, resampled
at 60 Hz and had a contrast of 0.32. The presentation time
of each interval was 200 ms and the ISI was 500 ms. The
contrast of the target was controlled by a 3-down-1-up stair-
case procedure (Levitt, 1971), which was interrupted after 12
inversions. To improve the luminance intensity resolution the
Noisy-Bit method (Allard and Faubert, 2008) was implemented
with the error of the green color gun inversely correlated with
the error of the two other color guns, which made the 8-bit
display perceptually equivalent to an analog display having a
continuous luminance resolution. There were six block condi-
tions (two tasks and three noise conditions, i.e., no noise, 0D
noise and extended noise) that were performed three times each
in a pseudorandom order. Contrast thresholds were estimated

as the geometric mean of the last eight inversions of the three
blocks. Two naïve and one of the authors participated to the
experiment.

RESULTS AND DISCUSSION
In 0D noise (noise independently added in the two intervals),
presenting a negative target instead of a blank interval improved
threshold performance by a factor of about 2 (Figure 4). This
was expected given that the detection strategy in 0D noise is a
contrast discrimination strategy so contrast threshold depends on
the contrast difference between the two intervals. In absence of
noise and in extended noise, however, doubling the contrast dif-
ference between the two intervals (by switching from a detection
to a phase-discrimination condition) did not result in a substan-
tial threshold increase as the threshold ratio between these two
conditions was close to 1. This suggests that the detection strategy
in these conditions does not consist in discriminating contrasts
between the two intervals while considering contrasts opposite
to the target as negative contrasts, but rather in distinguishing a
pattern from the noisy background.

In sum, the patterns of results observed for a contrast detec-
tion task in absence of noise were similar to the ones in extended
noise and drastically different in 0D noise. Adding a low contrast
pedestal substantially improves contrast thresholds in absence of
noise and in extended noise, but not in 0D noise. Conversely,
replacing the blank interval with a negative target substantially
improved contrast thresholds in 0D noise, but not in absence
of noise or in extended noise. This double dissociation between
detection tasks in extended noise (whether internal or external)
and in 0D noise suggests that they involve different processing
strategies. Contrast detection thresholds in absence of noise or
in extended noise reflect the ability to distinguish a pattern from

FIGURE 4 | Contrast thresholds for a 2IFC detection task relative to

contrast thresholds for a 2IFC phase-discrimination task for three

observers in three noise conditions: no noise, extended noise, and 0D

noise.
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the noisy background, not to discriminate contrasts in different
intervals as in 0D noise.

MODERATE 0D NOISE LEVEL
The section above suggests that measuring contrast detection
thresholds in high 0D noise (i.e., when the impact of internal
noise is negligible) cannot be used to characterize the detection
process because such a stimulus is processed by a discrimination
strategy that is distinct from the detection strategy operating in
absence of noise. On the other hand, low 0D noise is also not
useful to characterize the detection process has it has a negligible
impact. Nonetheless, this does not rule out the possibility that
moderate levels of 0D noise could be used to characterize the
detection process. The present section will investigate if moder-
ate levels of 0D noise can be used to characterize the detection
process.

To empirically demonstrate the usefulness of 0D noise to char-
acterize the detection process, Baker and Meese (2013) conducted
an experiment in which they measured contrast detection thresh-
olds as a function of noise contrast. Such a function usually shows,
on a log–log plot, a smooth transition from a flat asymptote to
a rising asymptote with a slope of 1 (e.g., Figure 5 left). The
flat asymptote can be evaluated by measuring detection thresh-
old in absence of noise (or low noise). The rising asymptote
in 0D noise can be evaluated by measuring contrast threshold
in high 0D noise, but is known a priori as the task is triv-
ial and the performance corresponds to the performance of an
ideal observer (Allard and Faubert, 2013; Baker and Meese, 2013).
Even though both asymptotes can be known without measur-
ing any threshold in 0D noise, Baker and Meese (2013) showed
that measuring contrast detection threshold as a function of 0D
noise can be useful because different models predict different
transitions between these two asymptotes. For instance, the gain
control model would predict a smoother transition between the
two asymptotes than the noise induce model (Figure 5 left, see
Baker and Meese, 2013, for model details). Given that a detec-
tion task is based on a detection strategy in low noise and a
discrimination strategy in high 0D noise, the question is then to
determine whether characterizing the transition between the two

FIGURE 5 | Model predictions for contrast detection in 0D noise (left)

and contrast discrimination (right) in absence of cross-channel

masking (solid line), cross-channel masking due to gain control

(dashed line) and cross-channel masking due to induced noise (dotted

line). For additional details on the simulations, see Baker and Meese (2013).

asymptotes reveals properties of the detection or discrimination
process.

Since 0D noise in a 2IFC procedure consists in contrast jit-
tering both intervals independently, many trials in 0D noise are
useless (even near threshold) because they can easily be discrimi-
nated, especially at high 0D noise contrasts. This leaves few trials
in which the two stimuli have similar contrasts and the response is
not trivial and will thereby depend on human factors, such as the
ability to discriminate contrasts. Thus, if the 0D noise contrast is
high enough to affect detection threshold, but not too high so that
there is a non negligible proportion of trials in which both con-
trasts cannot be discriminated (i.e., around the transition between
the two asymptotes), then contrast detection threshold in 0D noise
would depend on contrast discrimination threshold. So if differ-
ent models predict different contrast discrimination thresholds,
they would also predict different contrast detection thresholds in
moderate 0D noise. In other words, contrast detection thresh-
old in moderate 0D noise would be an indirect, noisy measure
of the contrast discrimination threshold. To illustrate this, we
have replicated Baker and Meese’s (2013) simulations for contrast
detection threshold as function of 0D noise (Figure 5 left) and
ran the exact same simulations for a contrast discrimination task
(i.e., the 0D noise was replaced by a pedestal, Figure 5 right).
Specifically, contrast thresholds as a function of external noise
contrast (Figure 5 left) and pedestal contrast (Figure 5 right)
were estimated by simulating trials using a standard detection
model in which there was no masking (solid lines), the standard
gain control model in which cross-channel masking is induced
by suppression (dashed lines) and the noise-induced model in
which cross-channel masking is induced by increasing internal
noise (dotted lines). As illustrated in Figure 5, the two masking
models, which affect contrast detection thresholds in absence of
noise by the same proportion, predicted different contrast dis-
crimination thresholds. This substantial contrast discrimination
threshold difference directly explains the small contrast detection
threshold difference in 0D noise. This shows that contrast detec-
tion threshold in moderate 0D noise is an indirect measure of the
contrast discrimination process and that this experiment addresses
the properties of the discrimination process, not the detection
process.

Baker and Meese (2013) also showed that the two models
predict different double pass consistencies. However, this prop-
erty also directly depends on contrast discrimination thresholds.
Indeed, the model predicting the higher contrast discrimination
threshold will have the higher double pass consistency, as there
will be more trials in which the two contrasts are discriminated.
Given that the shape of the transition between the two asymp-
totes is directly related to contrast discrimination thresholds, we
conclude that 0D noise could be used to investigate processing
properties of the discrimination process, not detection process.
In most cases, however, it would probably be more efficient to
directly measure contrast discrimination thresholds. Nonetheless,
even if there were some conditions in which measuring“detection”
thresholds in 0D noise could be particularly useful to characterize
the discrimination process, this would still not imply that mea-
suring contrast detection thresholds in 0D noise can be useful to
characterize the detection process.
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NOISE-INDUCED CROSS-CHANNEL SUPPRESSION
Baker and Meese (2012, 2013) argued that the use of white noise,
which is extended as a function of frequency and orientation, is
not suitable to measure internal equivalent noise because it induces
cross-channel suppression affecting the measurement of contrast
detection threshold in high noise thereby contaminating the mea-
surement of the calculation efficiency. If the measurement of
calculation efficiency in high noise were affected by noise-induced
cross-channel suppression, then the assumption that the calcula-
tion efficiency in low noise is the same as the measured calculation
efficiency in high noise would be compromised. Since contrast
detection threshold in low noise depends on the internal equiva-
lent noise and the calculation efficiency in low noise, not knowing
the calculation efficiency in low noise would also compromise
the estimation of the internal equivalent noise. The objective
of the present section was to investigate if the assumption that
the calculation efficiency in low noise is the same as the calcu-
lation efficiency in high noise is invalidated in extended noise
due to noise-induced cross-channel suppression. Fortunately, we
find that noise-induced cross-channel suppression does not affect
contrast detection thresholds in high, extended noise for several
reasons.

First, cross-channel suppression due to white noise seems weak.
The strength of cross-channel suppression can be measured by ask-
ing the observer to match the contrast of a noise-free stimulus with
the contrast of the same stimulus embedded in noise. Baker and
Meese (2012) conducted such an experiment with 2D localized
noise and their results were noisy: in some conditions, the noise
had almost no impact on the perceived contrast and in others it
affected threshold by a factor of about 2. This noise-induced sup-
pression was not sufficient to explain the entire noise-induced
threshold elevation of a factor of about 4. These results are
inconsistent with previous findings showing that spatiotemporally
extended white noise had no effect on perceived contrast (Pelli,
1981). To clarify this, we conducted our own contrast match-
ing experiment and found that extended noise had no effect on
perceived contrast (data not shown), which is consistent with
Pelli’s findings. Thus, determining if white noise affects perceived
contrast (which would suggest some cross-channel suppression)
remains an open question, but if it does, the effect would remain
modest suggesting that noise-induced cross-channel suppression
is weak at best.

Anyhow, determining if there is no or a weak noise-induced
cross-channel suppression is irrelevant when measuring contrast
thresholds in high noise. Any contrast gain affecting both the sig-
nal and the dominating noise source would have no impact on the
signal-to-noise ratio and thereby would not affect contrast thresh-
old. This is nicely illustrated by Baker and Meese’s (2013) gain
control model in which cross-channel suppression would affect
contrast thresholds in low noise, but not in high noise (Figure 5,
left). Indeed, when internal noise dominates (i.e., in low noise),
a contrast gain occurring before the internal noise would affect
the signal but not the dominating noise source and would there-
fore affect the signal-to-noise ratio. In high noise, however, the
contrast gain would affect both the signal and the dominating
noise source leaving the signal-to-noise ratio intact. Thus, even
if noise reduced the effective contrast within the relevant channel

due to cross-channel suppression, this contrast reduction would
not affect contrast thresholds.

Further evidence that noise-induced cross-channel suppression
does not affect contrast thresholds in high noise comes from the
fact that contrast thresholds in high noise are proportional to
noise contrast (slope of 1 in log–log units as in Figure 5, left).
This was first observed by Pelli (1981) and has been consistently
replicated across many studies. To our knowledge, this fact has
never been contradicted. This proportional relation between con-
trast threshold and noise contrast implies that contrast thresholds
at distinct high noise contrasts result in the same signal-to-noise
ratio and thereby the same measured calculation efficiency. The
fact that the measured calculation efficiency in high noise is inde-
pendent of the noise contrast even though extended noise induces
more cross-channel suppression as its contrast is increased sug-
gests that the measurement of the calculation efficiency is not
affected by noise-induced cross-channel suppression. More gen-
erally, given that the signal-to-noise ratio required to detect the
signal is independent of the noise contrast, there is no reason why
this ratio would differ when the limiting noise source is internal
only because the noise contrast is lower. We therefore conclude
that noise-induced cross-channel suppression does not affect con-
trast thresholds in high noise and thereby does not compromise
the assumption that the measured calculation efficiency in high
noise is the same as the calculation efficiency in low noise and
does not contaminate the measurement of calculation efficiency
and internal equivalent noise limiting detection threshold in the
absence of noise.

CONCLUSION
Empirical findings suggest that different processing strategies
operate for contrast detection in 0D noise compared to contrast
detection in absence of noise and in extended noise. In 0D noise,
the processing strategy consists in discriminating two contrasts,
whereas in absence of noise (i.e., extended internal noise) and
extended noise, the processing strategy consists in distinguishing
a pattern from the noisy background. This suggests that different
processing strategies operate in absence of noise and in 0D noise,
which compromises the use of 0D noise to characterize the detec-
tion process operating in absence of noise (e.g., measure internal
equivalent noise). Conversely, we found no evidence that the pro-
cessing strategy differed in absence of noise and in extended noise,
which suggests that extended noise could be used to characterize
the detection process.

Baker and Meese (2012) suggested that high extended noise
induces cross-channel suppression affecting contrast thresholds
and thereby the measured calculation efficiency, which therefore
could not be assumed to be the same as the calculation efficiency
in absence of noise. However, this contrast reduction (if any)
would not affect the contrast threshold as it would also affect
the noise contrast thereby leaving intact the signal-to-noise ratio.
This suggests that extended noise can be successfully used to char-
acterize the detection process and measure internal equivalent
noise.

In sum, the current study concludes that noise extended as a
function of all dimensions can be used to characterize the con-
trast detection process, but noise localized as a function of all
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dimensions cannot. Nevertheless, many experimenters use noise
that is localized as a function of some dimensions and extended
as a function of others. In principal, any property difference
between internal and external noise could result in different detec-
tion strategies in low and high noise. On the other hand, a property
difference between internal and external noise does not necessar-
ily imply different detection strategies. For instance, a processing
strategy could rely only on the central portion of a large stimulus
and would therefore be independent of whether there is noise out-
side the stimulus region or not (i.e., spatially extended or localized
noise, respectively; e.g., Allard and Faubert, 2014). Similarly, the
processing strategy of a stimulus presented for a long duration
would likely be independent of whether there is noise before and
after the stimulus presentation or not (i.e., temporally extended or
localized noise, respectively). Nonetheless, the detection strategy
of a briefly presented, large stimulus could depend on whether
the noise is temporally localized or extended (e.g., Allard and
Faubert, 2014) and the detection strategy of a small stimulus pre-
sented for a long duration would likely depend on whether the
noise is spatially localized or extended. Thus, using noise that
is localized as a function of some dimensions raises doubts that
the same detection strategy operates in low and high noise and
thereby questions the assumption that the calculation efficiency in
absence of noise is the same as the measured calculation efficiency
in high noise. Given that internal noise is extended as a function
of all dimensions, we therefore recommend using external noise
that is also extended as a function of all dimensions when assum-
ing that the same processing strategy operates in low and high
noise.
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White pixel noise is widely used to estimate the level of internal noise in a system by
injecting external variance into the detecting mechanism. Recent work (Baker and Meese,
2012) has provided psychophysical evidence that such noise masks might also cause
suppression that could invalidate estimates of internal noise. Here we measure neural
population responses directly, using steady-state visual evoked potentials, elicited by target
stimuli embedded in different mask types. Sinusoidal target gratings of 1 c/deg flickered
at 5 Hz, and were shown in isolation, or with superimposed orthogonal grating masks or
2D white noise masks, flickering at 7 Hz. Compared with responses to a blank screen,
the Fourier amplitude at the target frequency increased monotonically as a function of
target contrast when no mask was present. Both orthogonal and white noise masks
caused rightward shifts of the contrast response function, providing evidence of contrast
gain control suppression. We also calculated within-observer amplitude variance across
trials. This increased in proportion to the target response, implying signal-dependent (i.e.,
multiplicative) noise at the system level, the implications of which we discuss for behavioral
tasks. This measure of variance was reduced by both mask types, consistent with the
changes in mean target response. An alternative variety of noise, which we term zero-
dimensional noise, involves trial-by-trial jittering of the target contrast. This type of noise
produced no gain control suppression, and increased the amplitude variance across trials.

Keywords: noise masking, steady-state EEG, suppression, gain control, internal variability

INTRODUCTION
Physical implementations of signal transduction systems suffer
from degraded information transmission owing to internal noise.
This is true both for electronic systems, such as amplifiers, and for
biological sensory systems like the human visual system. It is of
substantial interest to the study of basic perceptual processes (Ker-
sten, 1984; Pelli, 1985; Legge et al., 1987; Gold et al., 1999; Allard
and Faubert, 2006; Goris et al., 2008; Hess et al., 2008; Lu and
Dosher, 2008; Baker and Meese, 2012), as well as clinical disorders
(Pardhan et al., 1996; Levi and Klein, 2003; Pelli et al., 2004; Sper-
ling et al., 2005; Xu et al., 2006; Huang et al., 2007; Milne, 2011), to
be able to estimate the magnitude of this internal variability.

The standard method for estimating internal noise is to assess
how task performance degrades in varying levels of external noise
(Pelli, 1981; Lu and Dosher, 2008). The external noise will intro-
duce variance into the detecting channel and raise thresholds for
(e.g., reduce sensitivity to) target stimuli by decreasing the signal-
to-noise ratio (see Appendix 1). The external noise level at which
performance starts to become poorer is referred to as the “equiva-
lent internal noise,” as it is the point at which the external noise is
equal in magnitude to the internal noise. Various techniques exist
for estimating this value, including fitting computational mod-
els (Lu and Dosher, 2008) and using Bayesian adaptive methods
(Lesmes et al., 2006).

However, it has long been appreciated (Watson et al., 1997)
that broadband white noise masks might have other effects on
signal detection besides increasing within-mechanism variance.

There are several pieces of evidence that support a more complex
account. Firstly, the slope of the psychometric function for con-
trast detection does not always become linear in noise (Klein and
Levi, 2009; Baker and Meese, 2012), as would be predicted by Bird-
sall’s theorem (Lasley and Cohn, 1981) for an individual nonlinear
channel being swamped by external variance. Furthermore, the
consistency of observer responses in noise across multiple passes
through an identical trial sequence is lower for broadband noise
than would be expected based on its masking potency (Burgess
and Colborne, 1988; Lu and Dosher, 2008; Baker and Meese,
2012). Lastly, strong masking effects are observed even when the
same sample of noise is used in both trial intervals (Watson et al.,
1997; Beard and Ahumada, 1999; Baker and Meese, 2012); a result
that would not occur for a noisy ideal observer limited only by
variance.

What might be responsible for these deviations from the per-
formance expected due to increased variance in the detecting
channel? A plausible candidate is contrast gain control suppression
(Heeger, 1992; Carandini and Heeger, 1994; Foley, 1994; Tolhurst
and Heeger, 1997; Freeman et al., 2002; Sit et al., 2009; Carandini
and Heeger, 2012) of the detecting mechanism by nearby mech-
anisms sensitive to other orientations and spatial frequencies also
present in the noise mask. Several recent studies (Baker and Meese,
2012, 2013; Hansen and Hess, 2012) have provided behavioral
evidence that supports this hypothesis. However, the possibility
still remains that other processes, such as induced uncertainty or
induced internal noise (Lu and Dosher, 2008), might be involved.
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The present study used the steady-state visual evoked potential
(SSVEP) technique (e.g., Tsai et al., 2012) to measure the neural
response to contrast directly at the scalp. We show that broadband
white noise masks have a powerful suppressive effect (see also
Skoczenski and Norcia, 1998), very similar to that of narrowband
orthogonal grating masks.

MATERIALS AND METHODS
Stimuli were displayed on a gamma corrected Iiyama VisionMaster
Pro 510 monitor using a Bits# stimulus generator (Cambridge
Research Systems, Kent, UK). The monitor had a refresh rate of
75 Hz and a resolution of 1024 × 768 pixels. When viewed from
57 cm, each degree of visual angle subtended 26 pixels on the
display.

Target stimuli were patches of sine wave grating at 1 c/deg dis-
played at one of five Michelson contrasts (4, 8, 16, 32, or 64%),
defined as C% = 100(Lmax−Lmin)/(Lmax+Lmin), where L is lumi-
nance. Contrast is also expressed throughout in logarithmic (dB)
units, where CdB = 20log10(C%). Stimuli increased and decreased
in contrast (in linear units) according to a raised sine wave with a
frequency of 5 Hz (on/off flicker), but did not reverse in phase. In
the orthogonal mask condition, a second grating with a Michelson
contrast of 32% was superimposed upon the target at right angles
to it, flickering at 7 Hz. In the 2D noise condition, the mask was
broadband white noise, low pass filtered at 5 c/deg, with an RMS
contrast of 22%, and also flickering at 7 Hz. Note that the effect
of the low pass filtering was to ensure that the majority of the
noise power was not lost to very high spatial frequencies, where
attenuation from the contrast sensitivity function is substantial.
The noise remained white for more than two octaves above the
target frequency. A new sample of noise was generated for each
trial.

In the “0D” (zero dimensional) noise condition (Baker and
Meese, 2012) the stimulus contrast was adjusted on a trial-by-
trial basis. Contrasts were sampled from a normal distribution (in
linear contrast units) with a standard deviation of 5.6% (15 dB)
and added to the target contrast. When the total contrast was
negative, the stimulus phase inverted. This meant that in practice
the mean absolute contrasts of the lowest two target contrast levels
increased to 5.6 and 8.4% in the 0D condition. The higher target
contrasts were not materially affected by this phase inversion.

All stimuli were windowed by a circular raised cosine envelope
with a blur width of 4 pixels (0.15◦). They were tiled across the
monitor in an 8 × 8 grid (see Figure 1), and were displayed for trial
durations of 11 s. To minimize adaptation, the orientation of the
stimulus patches was randomized on every trial. There were five
target contrast levels, and five stimulus configurations (no stimu-
lus, target only, orthogonal mask, 2D noise mask, and 0D noise),
which combined factorially to give 25 conditions. Observers com-
pleted five blocks, in which each condition was repeated twice
(10 repetitions in total), taking around 1 h. Six adult observers
completed the experiment; all had normal or optically corrected
vision.

We recorded EEG signals at 64 electrode locations, distributed
across the scalp according to the 10/20 system in a WaveGuard
cap (ANT Neuro, Netherlands). We also recorded the vertical
electrooculogram using self-adhesive electrodes placed above the

FIGURE 1 | Example stimuli for three conditions: (A) target only, (B)

target plus orthogonal mask, (C) target plus 2D noise mask. During the
experiments, the target stimuli flickered on and off at 5 Hz, and the mask
stimuli at 7 Hz.
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eyebrow and at the top of the cheek on the left side of the face.
Signals were amplified and then digitized using a PC running the
ASA software (ANT Neuro, Netherlands).

The data were imported into Matlab (Mathworks, MA, USA)
and analyzed offline. We used average referencing to normalize all
waveforms to the mean of all 64 electrodes (at each temporal sam-
ple). Each trial was split into eleven one second segments. The first
1s was discarded to eliminate onset transients, and the remaining
ten 1 s segments were Fourier transformed, with the phase and
amplitudes recorded at both the target and mask frequencies (5
and 7 Hz). These ten observations were combined using coher-
ent averaging to give a single measure of phase and amplitude
for each trial at each electrode. We averaged across trials within
each observer, and then calculated grand averages and standard
errors across observers. The same procedure was used to average
the signal variances.

RESULTS
We first assessed activity at the stimulus frequencies across the
electrode montage. We compared responses at 5 Hz between tar-
get absent trials, and trials on which the highest contrast target was
shown in isolation. From Figure 2A it is clear that the strongest
responses (largest colored circles) were observed at occipital elec-
trodes. A similar pattern occurred for activity at 7 Hz when
comparing target absent trials with the conditions in which either
the orthogonal (Figure 2B) or 2D noise (Figure 2C) masks were
shown along with the lowest contrast target. We therefore averaged
waveforms across the two most active electrodes (Oz and POz) for
the remaining analyses.

All observers produced responses that were monotonically
increasing functions of target contrast. The average contrast
response function to the target alone is shown by the red squares
in Figure 3A. When a high contrast (30 dB) orthogonal mask
was added at a higher temporal frequency (7 Hz), this shifted
the contrast response function to the right (green triangles in
Figure 3A). This is a classic contrast gain control effect, consis-
tent with those reported in previous SSVEP (Brown et al., 1999;
Busse et al., 2009; Tsai et al., 2012), fMRI (Brouwer and Heeger,

2011), and neuronal recordings (Morrone et al., 1982; Carandini
and Heeger, 1994; Freeman et al., 2002; Busse et al., 2009; Sit et al.,
2009).

The broadband white noise mask had a similar suppressive
effect on the target response (orange crosses in Figure 3A),
reducing the amplitude by a slightly greater amount than the
orthogonal mask. This rightward shift of the contrast response
function (also reported by Skoczenski and Norcia, 1998) is not
predicted by standard noisy linear amplifier models of the noise
masking process (Pelli, 1981; Lu and Dosher, 2008). There was
also a strong response at the mask frequency to both of these
masks (Figure 3B) which reduced as a function of target con-
trast. This illustrates the suppressive effects of the target onto
the mask (Freeman et al., 2002; Busse et al., 2009; Brouwer and
Heeger, 2011; Tsai et al., 2012) and confirms that inhibition occurs
in both directions between the neural representations of the
stimuli.

By way of comparison, we also measured responses in a 0D
masking condition (blue symbols in Figure 3A). This involved jit-
tering the stimulus contrast on a trial-by-trial basis. Although this
manipulation might appear to make little sense for the single-trial
observations of the SSVEP paradigm, it provides a useful compar-
ison with psychophysical data. In 2AFC detection experiments, 0D
noise is a very potent mask, raising thresholds by far more than
2D noise (Baker and Meese, 2012). However, it does this without
reducing the mean neural response to the stimulus, as shown by the
substantial overlap between red and blue functions in Figure 3A.
The slightly greater response at the two lowest contrasts is eas-
ily understood when one considers that for weak target contrasts,
large negative jitter values reverse the phase of the stimulus (see
Materials and Methods). Since the SSVEP response is invariant
with spatial phase it is the absolute contrast that determines the
response, and this will be slightly higher than the nominal target
contrast.

A second expectation of noise masks is that they increase the
variance of neural responses across trials, because each unique
noise sample will either increase or decrease activity in the detect-
ing channel by a different amount (see Appendix 1). Note that

FIGURE 2 | Electrical activity across the scalp relative to the target

absent conditions. The target only comparison (A) was between responses
to the highest contrast target (36 dB) and the target absent condition at the
target frequency (5 Hz). The orthogonal (B) and 2D noise (C) mask comparisons

were made at the mask frequency (7 Hz) for the lowest contrast target
(12 dB). In each panel, the diameter of the circles is proportional the amplitude
difference between the conditions tested. Circles are shown in color if this
difference was significant (paired t -test across observers, N = 6) at p < 0.05.
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FIGURE 3 | Steady-state visual evoked potential (SSVEP) amplitudes at

the target (A) and mask (B) frequencies. Amplitude values (with the phase
component removed) were averaged across six observers, with error bars
giving ±1SE of the mean. The target frequency was 5 Hz and the mask

frequency was 7 Hz. Note that for the “no stimulus” condition (black circles),
the contrast is irrelevant (all contrasts were 0%), and the five points
correspond to five separate repetitions of this baseline condition to illustrate
the level of variability in our results.

the error bars in Figure 3 are not a meaningful index of response
variance, as they are calculated across (and not within) observers.
To assess response variance, we calculated the trial-by-trial vari-
ance within observers for each condition, and then averaged these
values across observers (Figure 4A). The variances clearly increase
as a function of target contrast in all conditions. This is surprising,
as it provides direct evidence of signal-dependent (i.e., multiplica-
tive) noise within the visual system (Klein, 2006). The implications
of this are discussed below.

One consequence of this signal-dependent noise is that the sup-
pressive effect of the orthogonal mask also reduces the amplitude
variance (green functions in Figure 4A). A similar reduction in
variance is also produced by the 2D noise mask. This is rather
worrying, as the aim of using external noise masks is typically to
increase internal variance, not reduce it! Of course, a consequence
of the frequency tagging used in the SSVEP procedure means that
a variance increase at the signal frequency is unlikely, but a reduc-
tion is truly unexpected. The 0D noise produced an increase in
variance at lower target contrasts, but no clear difference at higher
target contrasts. This is presumably because the variance of the
external noise mask was lower than the signal-dependent internal
noise at these target contrast levels.

We also calculated the phase variance at the target frequency
using circular statistics. The angular variance in radians was com-
puted across epochs within each observer, and then averaged across
observers to produce the plot in Figure 4B. High contrast stimuli
produced responses that were strongly phase-locked, and so had
low trial-by-trial variability. Low contrast stimuli lead to weaker
phase locking, so the trial-by-trial variability was higher. The
phase variance data in Figure 4B reveal a similar arrangement

of functions to the other figures, but inverted. This indicates a
strong correspondence between signal amplitude and coherence
(e.g., the inverse of variance).

Note that as response amplitude increases, the amplitude vari-
ance increases but the phase variance decreases. It is therefore
unlikely that the greater amplitude variance is a consequence of
the phase locking of the SSVEP, as this would predict the opposite
direction of effect to the one we report (e.g., amplitude vari-
ance would reduce for more coherent responses). However, we
also calculated the variance of the complex Fourier components,
which includes both phase and amplitude information. These are
plotted in Figure 4C, and show a similar pattern to the data in
Figure 4A, suggesting that the two individual variance measures
are not confounded.

DISCUSSION
We measured SSVEPs for patches of sine wave grating in the
presence of different types of mask. The contrast response func-
tion was shifted rightward by orthogonal grating masks and by
broadband noise masks. In addition, these mask types reduced
the response variance, which we found to be proportional to the
mean response. This pattern of responses suggests that broad-
band noise has a suppressive gain control effect on the neural
response to the target. In comparison, a 0D noise manipulation
where the signal strength was varied directly from trial to trial, did
not reduce the mean response but did increase the response vari-
ance. This is the behavior expected of added external noise (see
Appendix 1).

How might the steady-state responses correspond to an
observer’s perception, and the decisions they make in perceptual
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FIGURE 4 | Mean within-observer variance at 5 Hz as a function of

target contrast for the amplitude (A) and phase (B) components, or

calculated using the combined (complex) terms (C). All variances were
calculated on a per observer basis and then averaged across observers. The
phase data (B) were calculated in radians using circular statistics. The
phase variance with no stimulus (black) is near the level expected for a set
of uniformly distributed random angles. Error bars give ±1SEM.

tasks? We make the simplifying assumption that the VEP ampli-
tude at the stimulus temporal frequency is proportional to the
total neural population response to that stimulus, and that psy-
chophysical decisions are based on the overall response, rather
than the response of a subset of neurons. For contrast detection
and discrimination experiments, this seems a reasonable assump-
tion (e.g., Campbell and Maffei, 1970), though we note that it
may not hold for more complex tasks (but see Ales et al., 2012). In
addition, we made measurements at the occipital pole, which likely
reflect activity in early visual areas. Later sources of internal noise
could also influence an observer’s decision in perceptual tasks. We
note, however, that external noise is likely to have had its primary
influence on neural responses by this stage.

Our results support previous misgivings about the ability of
broadband noise to appropriately influence an observer’s internal
noise (Baker and Meese, 2012). Indeed, the observation that sup-
pression reduces the multiplicative component of internal noise
suggests that the problems may be more severe than previously
suspected. Future noise masking studies would do well to limit
the dimensionality and bandwidth of external noise stimuli as far
as possible to mitigate the confounding effect of suppression. The
0D noise stimulus proposed by Baker and Meese (2012) might
one way to achieve this aim in some experiments (e.g., Baker and
Meese, 2014).

Interestingly, Skoczenski and Norcia (1998) have previously
shown that broadband noise masks can shift the contrast response
function to the right in both infants and adults. Although they
acknowledge that contrast gain control may be responsible for
their findings, they analyse their data based on the assumption
that the external noise mask increases internal noise multiplica-
tively (e.g., see Lu and Dosher, 2008). The variance data shown
in Figures 4A,C is inconsistent with this interpretation, as there
is a clear reduction in variance when 2D noise masks are added
(at least at the early stages of visual processing that contribute to
occipital EEG signals). This speaks against the induced internal
noise account of masking (see also Baker and Meese, 2013).

Steady-state VEP techniques are very well established, and have
been used in countless studies. Given this ubiquity, we were sur-
prised that previous reports of response-dependent noise were not
forthcoming. This may be because the technique has often been
used to address developmental (e.g., Skoczenski and Norcia, 1998;
Brown et al., 1999) or clinical (e.g., Tsai et al., 2011) issues, rather
than as a tool for basic research. We think that the combination of
SSVEPs and computational modeling (see particularly Tsai et al.,
2012) provides a valuable opportunity to investigate low-level sen-
sory processes such as signal combination and suppression. In the
following section, we use a modeling approach to show how the
SSVEP data might be linked to psychophysical results.

RESPONSE-DEPENDENT NOISE: IMPLICATIONS FOR CONTRAST
DISCRIMINATION
An unexpected finding was that response variance increases as a
function of the mean response. Although this is well established at
the level of individual neurons (Tolhurst et al., 1981, 1983), there
is evidence that the dominant source of noise at a population level
is effectively additive (Chen et al., 2006). In the psychophysics lit-
erature, there has been substantial debate over whether noise is
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additive or multiplicative for behavioral tasks such as contrast dis-
crimination (Kontsevich et al., 2002; Georgeson and Meese, 2006;
Klein, 2006; Katkov et al., 2007). Pedestal masking effects (the
Weber-like “handle” region of the dipper function) can either be
obtained from a nonlinear transducer with additive noise (Legge
and Foley, 1980), or a linear transducer with multiplicative noise
(Pelli, 1985). Our results suggest that both may be present, since
amplitude variance is response dependent (Figures 4A,C) and the
contrast response function is nonlinear (Figure 3A). But which of
these two features determines contrast discrimination behavior?

We fitted a transducer model to the amplitude and variance
data from the average contrast response function (see Appendix 2
for details, and Figure 5A for the model fit). We then explored the
predictions that three variants of this model made for psychophys-
ical contrast discrimination experiments, as shown in Figure 5B.
In the first variant, we set the multiplicative noise term (Equation
A3 in Appendix 2) to zero. The green dipper function therefore
shows the prediction based only on the transducer nonlinearity
with additive noise. The second variant assumed a linear trans-
ducer (resp ∝ C) but with multiplicative noise proportional to
the transduced contrast. This model variant, shown by the blue
curve in Figure 5B, did not feature a dip. Typically facilitation is
provided in such models by assuming that intrinsic uncertainty is
reduced by the pedestal (Pelli, 1985). However we had no way to
constrain such a model using our data set, and our exposition here
focusses largely on the rising portion of the dipper. The slopes of
the contrast discrimination functions were very different for these

two model variants, being 0.83 for the nonlinear transducer and
0.22 for the multiplicative noise model. Finally, we simulated a
model that included both a transducer and multiplicative noise.
The resulting dipper function (purple curve in Figure 5B) had a
steeper handle, with a slope of 1.14.

The predicted dipper functions based on our steady state data
appear plausible for the nonlinear transducer with additive noise,
with a handle gradient somewhat steeper than the slope of ∼0.6
typically reported (Legge and Foley, 1980). When multiplicative
noise is added, the handle becomes steeper still, yet even this value
of >1 is not inconsistent with previous reports using flickering
stimuli similar to ours (Boynton and Foley, 1999). It therefore
seems possible that previous attempts to estimate the underly-
ing contrast response function based on psychophysical contrast
discrimination data may be inaccurate if they neglect to include
a multiplicative noise term. Historically, discrimination perfor-
mance has been attributed to either a nonlinearity or multiplicative
noise (Kontsevich et al., 2002; Georgeson and Meese, 2006; Klein,
2006; Katkov et al., 2007). To our knowledge, this is the first
demonstration of how these two factors might combine.

CONCLUSION
We have presented evidence that broadband noise masks have a
suppressive gain control effect on neural responses to narrowband
grating stimuli. This effect is similar to that obtained from orthog-
onal grating masks. Both mask types also reduce the amplitude
variance, which is response dependent. We fitted a computational

FIGURE 5 |Transducer model fit to the contrast response function (A),

and model predictions for contrast discrimination (B). The data points
in (A) are replotted from Figure 3A, but with error bars representing the
average standard deviation calculated across observers (e.g., the square
root of the variances given in Figure 4A). The red curve is the best fit of
Equation A2 (Appendix 2) with three free parameters, and the orange
shaded region indicates the noise standard deviation inferred by fitting
Equation A3 (Appendix 2) to the averaged standard deviations (the error

bars). The black line is the average response at 5 Hz when no stimulus
was shown (the mean of the black symbols in Figure 3A), with the gray
shaded region giving the standard deviation. The curves in panel (B) are
simulated contrast discrimination functions based on the fitted
parameters. Dashed curves are extrapolated straight line fits to the upper
limb of each dipper (pedestal contrasts above 24 dB) using the equation
y = mx + c on the dB values. The gradients (m) are reported adjacent
to each curve.
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model to the average contrast response function, and used this
to infer the relative contribution of a nonlinear transducer and
response-dependent noise for contrast discrimination. The mod-
eling indicates that both features may be relevant to psychophysical
contrast discrimination performance.
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APPENDIX 1 – ASSUMPTIONS ABOUT NOISE MASKING
A primary tenet of signal detection theory (Green and Swets, 1966)
is that performance on a task is determined by the magnitude of
a scalar internal response variable. This response is determined
by the amplitude of an external signal, and internal variability
(noise) within the system. Within the framework of psychophys-
ical “channels” sensitive to a limited range of orientations and
spatial frequencies (Blakemore and Campbell, 1969), the inter-
nal response in a detection task will be determined by the energy
falling within the pass-band of a linear filter, plus internal noise.

When external noise is added to a stimulus, some of the noise
power will also fall within the pass-band of the detecting channel.
On some presentations, this will increase the mechanism response,
whereas on other presentations it will decrease it. Thus, the exter-
nal noise will introduce variance into the internal response that
governs decisions. A formal expression of this process is given by,

resp = (Ctest+ σ ext R1)
γ + σ int R2, (A1)

where Ctest is the target contrast, σext is the standard deviation
of external noise falling within the pass-band of the detecting
channel, γ typically has a value of around 2, and σint is the standard
deviation of internal noise (notation from Klein and Levi, 2009).
The terms R1 and R2 denote samples from a Gaussian random
number generator that are drawn independently on each trial of
an experiment. In this model, the observer bases their decision
only on the scalar response value; any noise power outside of the
detecting channel is ignored.

A number of clear predictions follow from this model that
can be tested empirically (e.g., Klein and Levi, 2009; Baker and
Meese, 2012). In addition, several elaborations have been pro-
posed that include features such as induced internal noise (Burgess
and Colborne, 1988; Lu and Dosher, 2008), gain control suppres-
sion (Watson et al., 1997; Baker and Meese, 2012, 2013; Hansen
and Hess, 2012) and uncertainty when selecting from multiple
channels (Pelli, 1985).

Some studies have designed noise stimuli intended to target
a particular stage of processing (Allard and Faubert, 2006; Baker
and Meese, 2014), with the aim of increasing the proportion of
the noise power that falls within the pass-band of the appropriate
detecting mechanism. However, we note that any such manip-
ulations can only influence decision behavior by changing the
magnitude of the internal response variable, and so are equivalent
to increasing the effective level of the external noise.

APPENDIX 2 – DETAILS OF CONTRAST TRANSDUCTION
MODELS
We fitted a standard transducer nonlinearity (Legge and Foley,
1980) to the target-only contrast response function. The nonlin-
earity is given by,

resp = Rmax
Cp

Z + Cq
, (A2)

where C is contrast, p and q are exponents, Z determines the
gain, and Rmax is a scaling parameter. To reduce the number of free
parameters, we fixed q at the standard value of 2 (Legge and Foley,
1980). We minimized the root-mean-square (RMS) error between
the mean amplitude and the model response, and obtained param-
eter estimates of p = 2.24, Z = 12.13 and Rmax = 4.22. The fit is
shown by the red curve in Figure 5A.

We then estimated a scaling parameter for multiplicative noise.
Since the noise is clearly response-dependent rather than signal
dependent (e.g., in Figures 4A–C the variances are reduced by
the masks), we made the noise proportional to the transducer
response,

noise = GN×resp , (A3)

where G represents samples of zero-mean Gaussian noise, with
standard deviation determined by the output of Equation A2 (resp)
and a scaling factor, N. We estimated that N = 0.35 by finding the
value that best described the standard deviations of the responses,
shown by the error bars in Figure 5A (note that these error bars are
the square root of the mean within-observer amplitude variance
values given by the red function in Figure 4A, and are not the same
as the between-observer standard errors in Figure 3A). The model
noise standard deviation is given by the orange shaded region in
Figure 5A.

The fitted model parameters were then used to simulate thresh-
olds for contrast discrimination (dipper) functions. To derive
predictions at low contrasts, we also required an estimate of fixed
(additive) noise. This was obtained from the variance in the target
absent condition of the experiment (black symbols in Figure 4A).
The horizontal black line and gray shaded rectangle in Figure 5A
show the mean and standard deviation of the 5 Hz amplitude
in this condition. We simulated a method of constant stimuli
contrast discrimination experiment using the above equations
and parameters, with 100,000 stochastic trials per target contrast
level. Thresholds were obtained by fitting cumulative Gaussian
functions to the simulated data.

The above simulations make several assumptions that may
or may not be valid. Least plausible is perhaps our decision to
use the variance at 5 Hz in the signal absent condition as an
estimate of fixed (additive) internal noise. We think it highly
unlikely that the 5 Hz variance when no stimulus is present
represents the activity of neurons that subsequently respond to
the stimulus, at least in any straightforward way. Many unre-
lated sources of variance will contribute to this figure, including
equipment noise, electromagnetic interference, and spontaneous
neural oscillations, so the noise baseline is likely to be an over-
estimate of the true variance. However, the additive noise term
only influences detection and low-contrast discrimination perfor-
mance (the leftmost parts of the dipper) and has little effect on
the slope of the dipper handle. We repeated our simulations for
several alternative additive noise levels, and found that the dip-
per handle gradients remained remarkably constant over a wide
range.
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We combined an external noise paradigm with an efficient procedure for obtaining contrast
thresholds (Lesmes et al., 2006) in order to model developmental changes in the effect of
noise on contrast discrimination during childhood. Specifically, we measured the contrast
thresholds of 5-, 7-, 9-year-olds and adults (n = 20/age) in a two alternative forced-choice
orientation discrimination task over a wide range of external noise levels and at three levels
of accuracy. Overall, as age increased, contrast thresholds decreased over the entire range
of external noise levels tested. The decrease was greatest between 5 and 7 years of age.
The reduction in threshold after age 5 was greater in the high than the low external noise
region, a pattern implying greater tolerance of the irrelevant background noise as children
became older. To model the mechanisms underlying these developmental changes in
terms of internal noise components, we adapted the original perceptual template model
(Lu and Dosher, 1998) and normalized the magnitude of performance changes against the
performance of 5-year-olds. The resulting model provided an excellent fit (r2 = 0.985) to
the contrast thresholds at multiple levels of accuracy (60, 75, and 90%) across a wide
range of external noise levels. The improvements in contrast thresholds with age were
best modeled by a combination of reductions in internal additive noise, reductions in
internal multiplicative noise, and improvements in excluding external noise by template
retuning. In line with the data, the improvement was greatest between 5 and 7 years of
age, accompanied by a 39% reduction in additive noise, 71% reduction in multiplicative
noise, and 45% improvement in external noise exclusion. The modeled improvements
likely reflect developmental changes at the cortical level, rather than changes in front-end
structural properties (Kiorpes et al., 2003).

Keywords: vision, contrast thresholds, internal noise, development, psychophysics

INTRODUCTION
Many aspects of basic vision improve rapidly over the first
few years of life. For example, visual acuity, whether measured
using visually-evoked potentials or preferential looking, improves
rapidly between birth and 6 months of age and then contin-
ues to improve gradually until about 6 years of age (Norcia and
Tyler, 1985; Chandna, 1991; Neu and Sireteanu, 1997). Front-end
changes make a substantial contribution to the early improve-
ments in basic visual abilities (e.g., Yuodelis and Hendrickson,
1986; Banks and Bennett, 1988). However, the development of
cortical pathways appears to also contribute to the changes both
during and after infancy (Banks and Bennett, 1988; Toga et al.,
2006; Braddick and Atkinson, 2011).

The human brain is a complex system that consists of hun-
dreds of anatomical structures and billions of neurons exchang-
ing, at any given time, thousands of electrical and chemical signals
through synapses connecting neurons in both nearby and remote
parts of the brain. Like any other machinery, be it artificial or
biological, neurons are not ideal transmitters of information.

For example, identical signals from neighboring neurons do not
elicit identical responses in the receiving neurons each time they
are produced. This variability is observed even when external
conditions, such as the sensory input or task goal, are kept
as constant as possible (Cohn and Lasley, 1986; Faisal et al.,
2008).

How is this fluctuation manifested at the level of visual behav-
ior? As an illustration, a visual object may cause activation of
neurons responsible for signaling its particular visual properties
embedded in background activation of some neurons irrelevant
to those properties. The spontaneous activation of these other
neurons interferes with perceiving the visual signal clearly. The
characteristic amount of this background variability added to the
signal during processing is dubbed collectively as internal noise,
which is known to provide an irreducible limit on detection. For
example, the existence of an absolute contrast threshold that is
higher than that of an ideal observer is evidence of such a limi-
tation (Hecht et al., 1942; Rose, 1948; Barlow, 1956; Jones, 1959;
Geisler, 2003).
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Over the last several decades, visual psychophysicists have
modeled the limitations inherent to the visual system in the
contrast domain by measuring contrast thresholds for signals
embedded in external noise (Burgess and Colborne, 1988; Pelli,
1990; Eckstein et al., 1997; Lu and Dosher, 1998; Solomon, 2002;
Jeon et al., 2009; Klein and Levi, 2009). This method has been
used to assay how the performance of visually normal adults is
altered by changes in attention (Dosher and Lu, 2000; Lu et al.,
2004) and by perceptual learning (Dosher and Lu, 1999; Gold
et al., 1999; Dosher et al., 2004; Li et al., 2004). In addition, inves-
tigators have modeled changes occurring with development, both
during childhood (Brown, 1994; Kiorpes and Movshon, 1998;
Skoczenski and Norcia, 1998; Bogfjellmo et al., 2013; Falkenberg
et al., 2014) and during aging (Pardhan et al., 1996; Betts et al.,
2007), and the changes that occur after a history of early abnor-
mal visual experience (Levi et al., 2007, 2008; Jeon et al., 2012;
Falkenberg and Bex, 2014).

Typically, these approaches involve the manipulation of sig-
nals and experimentally controlled external noise in order to infer
properties of the underlying perceptual process, which is pre-
sumably limited by the presence of various internal noise sources
affecting perceptual sensitivity. By titrating the signal with the
external noise, one can make inferences about how these inter-
nal noise sources affect sensory perception. When the relationship
between the level of external noise and perceptual thresholds is
measured and plotted in log-log coordinates, the resulting curve
shows distinctive features, where the thresholds remain constant
over the low external noise levels and then increase linearly as a
function of external noise after a certain level of external noise.
This curve is called the Threshold vs. Contrast or TvC curve.
Systematic examination of the relative locations and shifts of
TvC curves collected under different psychological manipula-
tions or at different ages may reveal the underlying mechanisms
responsible for changes in perceptual performance.

A few studies have used this approach to examine develop-
mental changes in the levels of internal noise in the visual system
of typically developing humans. Brown (1994) measured contrast
detection and discrimination thresholds from infants whose age
ranged from 49 to 51 days and adults using a minimum motion
technique in which two gratings drifted in opposite directions.
An observer used the participant’s eye movements to determine
the direction of the single grating (detection) or of the grating
of higher contrast (discrimination). Threshold was defined as the
minimum contrast difference for which the observer could make
this determination accurately. The infants’ thresholds were much
more elevated for detection (factor of 50) than were their thresh-
olds for discrimination (factor of 3). According to the modeling,
the huge performance difference for detection between the infants
and adults reflects higher intrinsic noise independent of stimu-
lus contrast. Bogfjellmo et al. (2013) reached a similar conclusion
when they measured sensitivity to the global direction of signal
dots moving in a unitary direction against the noise dots moving
in random directions.

Skoczenski and Norcia (1998) used visually evoked potentials
(VEP) to record the electrophysiological responses of infants,
aged 6–30 weeks, to sinusoidal gratings of varying contrast
masked by varying amounts of temporally modulated noise. For

each external noise level chosen for testing, the contrast of the
grating was diminished into the background gradually until no
VEP response was elicited. This contrast level was considered to
be the contrast threshold for that noise level and was plotted,
along with the contrast thresholds measured at other noise lev-
els, to create a TvC curve from which the authors estimated the
infants’ internal noise. They found that the amount of internal
noise in newborns was approximately nine times that of adults
tested in the same way. They observed a rapid decrease in internal
noise between 6 and 10 weeks of age, after which time the infants’
internal noise was only 1.8 times greater than that of adults even
though the contrast thresholds of infants were still higher by a
much greater factor. Since overall contrast thresholds improved
over the same time period during which internal noise decreased,
the authors suggest that internal noise is a major limitation on
infants’ contrast sensitivity.

The one developmental study using macaque monkeys also
reported decreases in internal noise with age. Kiorpes and
Movshon (1998) trained young monkeys aged 1–18 months and
adult monkeys to pull a bar or look in the direction of a grating
presented on the left or right side of a monitor. The grating was
presented either with or without noise frames temporally alter-
nating with the stimulus frames. The authors used the method of
constant stimuli to determine a signal contrast threshold for each
noise contrast, and each individual’s amount of internal noise was
estimated from the resulting TvC curve. In accordance with the
findings of Skoczenski and Norcia (1998), Kiorpes and Movshon
(1998) observed a decrease in both internal noise and contrast
thresholds with age. However, the decrease in contrast thresh-
old could not be explained completely by the changes in intrinsic
noise.

Until recently (Falkenberg et al., 2014), the findings on
the development of human contrast detection/discrimination in
noise have been restricted to early infancy: the ages tested have
ranged only from 6 to 30 weeks of age (Brown, 1994; Skoczenski
and Norcia, 1998). Falkenberg and colleagues used an equivalent
noise paradigm to investigate and model the development and
maturation of motion perception (detection, summation, and
discrimination) in school-aged children (5–14 years) and adults.
Measuring contrast thresholds at only two levels of external noise
(no noise and high noise), they found a long developmental tra-
jectory for only the discrimination of the motion direction, for
which the contrast thresholds decreased continually into the ado-
lescence. The authors modeled the decrease as arising from an
improvement in sampling efficiency with no change in internal
noise.

The previous studies with humans compared changes in per-
formance across age groups by measuring a single TvC curve
for each age group obtained at only one performance criterion
(e.g., 75% correct). Although comparing single TvC curves pro-
vides valuable information about internal noise, measuring only
one TvC curve cannot capture fully the mechanisms underlying
performance change. In their detailed explanations of this point,
Lu and Dosher (1998, 1999, 2008) and Lu et al. (2004) argued
and demonstrated in a series of papers that more than one TvC
curve must be measured at different performance criteria in order
to characterize satisfactorily the mechanisms underlying various
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perceptual tasks. Measurement at multiple performance levels
allows separate calculations of threshold ratios at each level of
external noise. The additional data allow one to calculate separate
estimates of internal additive noise, internal multiplicative noise,
and template retuning (which is also called excluding external
noise).

Measuring extra data points increases the power of the study,
but also increases the time needed for testing, which can be espe-
cially problematic when testing children. To decrease the time
required for data collection without sacrificing the quality of
data, we used quick TvC (qTvC: Lesmes et al., 2006) to esti-
mate contrast thresholds of four age groups (5-, 7-, 9-years-olds,
and adults) at multiple performance levels across a wide range
of embedded external noise levels. Specifically, we used qTvC to
calculate contrast thresholds corresponding to 60, 75, and 90%
correct performance levels for each of nine different external noise
levels to obtain three TvC curves for each participant. With the aid
of the qTvC method, we could collect data for each participant in
less than 20 min. To model the mechanisms underlying develop-
mental changes with age, we calculated an average TvC curve for
each age group at each performance level. The current study is the
first to evaluate the source of the known improvement in contrast
thresholds with age in school-aged children (e.g., Ellemberg et al.,
1999). To do so, we used the model of Lu and Dosher described
above that has been successful in establishing the source of the
limitations in adults tested at multiple levels of performance (Lu
and Dosher, 1998, 1999, 2008; Lu et al., 2004).

MATERIALS AND METHODS
PARTICIPANTS
We tested four groups of participants: twenty 5.5-years-olds ±
3 months (mean age = 5.5 years, SD = 0.13, 5 female), twenty
7.5-year-olds ± 3 months (mean age = 7.5 years, SD = 0.11, 10
female), twenty 9.5-year-olds ± 3 months (mean age = 9.5 years,
SD = 0.14, 11 female), and twenty adults ranging in age from
18.1 to 24.5 years (mean age = 19.6 years, SD = 1.45, 12 female).
All participants in the final sample had passed a visual screening
exam. Two additional 5.5-year-olds, one additional 7.5-year-old,
and two additional adult participants were excluded because they
did not pass the visual screening exam (see Section Procedure).
The children were recruited from a database of children whose
parents had volunteered to participate at the time of the child’s
birth. Children received a Junior Scientist certificate and a toy or
a book voucher for their participation. Adults were volunteers or
McMaster undergraduate psychology students who participated
for course credit or $10 compensation.

APPARATUS AND STIMULI
The stimuli were presented on a 20 inch Sony Trinitron VGA color
monitor with a pixel resolution of 640 × 480 and a 100 Hz refresh
rate. The test stimuli were created in MATLAB (Mathworks,
2008). A stimulus sequence in a trial lasted 90 ms and consisted of
nine alternating 10 ms patches of signal and noise in the following
sequence: noise1-signal1-noise2-. . . -noise4-signal4-noise5. The
signal was a Gaussian-windowed sinusoidal Gabor with a spatial
frequency of 1 c/deg oriented ±45◦ from vertical. The alterna-
tion of the noise patches and the Gabor was fast enough that

the noise appeared to be superimposed spatially on the Gabor.
The luminance profile of the Gabor stimulus is described by the
following equation:

L(x, y) = L0(1.0 + csin[2πf (xcosθ + ysinθ)]
exp[−(x2 + y2)/2σ 2] (1)

where c is signal contrast, σ is the standard deviation of the
Gaussian window (1.86◦), f is spatial frequency, and L0 is the
background luminance which was set to the middle of the
dynamic range of the display. The Gabor stimulus and noise
patches were presented in a 7.8◦ × 7.8◦ frame when viewed from
57 cm. An external noise patch was composed of 0.1◦ × 0.1◦ pixel
granules, the contrasts of which were sampled independently for
each frame from a Gaussian distribution with a mean of 0 and one
of the nine standard deviations (ranging from 2 to 33%, sampled
in 3dB steps) as prescribed by the qTvC.

Before each trial, a white fixation cross (0.6◦ × 0.6◦, line width
= 0.062◦) was presented in the center of the monitor for 500 ms,
followed by 250 ms of blank screen prior to the onset of the test
stimulus. Immediately after the test stimulus, there appeared a
response screen which consisted of an image of a cartoon lion in
the upper left corner of the screen (bottom edge 3◦ above center
and inner edge 8◦ to the left of center) and an image of a cartoon
rabbit in the upper right corner of the screen (bottom edge 3◦
above center and inner edge 8◦ to the right of center). The size of
each image was 12◦ × 12◦ and a white question mark was cen-
tered between them. This screen remained indefinitely until the
participant made a response. Participants indicated whether the
top of the Gabor was tilted to the right (rabbit) or to the left
(lion) by pressing a key (the F key on the left side of the key-
board to indicate that the stimulus was angled to the left and the
J key on the right side of the keyboard to indicate the stimulus
was angled to the right). If participants preferred, they responded
verbally by saying “left” or “lion” for a leftward choice and “right”
or “rabbit” for a rightward choice to a blind experimenter who
entered the response on a keyboard. If participants chose the cor-
rect answer, they received positive feedback in the form of four
outlined, circular smiley faces (each 8◦ in diameter), one in each
of the four corners of the monitor (closest edges 7◦ above and
below center and inner edges 12◦ to the left and right of cen-
ter) and an encouraging cheering sound. However, if participants
responded incorrectly, they received four outlined frowning faces
of the same size and location and heard a “D’oh!” sound indi-
cating that their choice was incorrect. A typical trial sequence is
depicted in Figure 1.

PROCEDURE
Prior to any procedures, we obtained informed consent from
participants or their parents. We also obtained assent from the
children 8 years and older. Adult participants and parents of chil-
dren were provided with a debriefing form upon completion of
the experiment. Our experimental procedures were cleared by the
McMaster Research Ethics Board.

Visual screening procedure
All participants in the final sample had normal or corrected-to-
normal vision, for their age. The visual screening exam included
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FIGURE 1 | Depiction of a sample trial sequence.

tests of linear letter acuity, binocular fusion, and stereo acuity.
Adults, 9- and 7-year-olds were required to have a linear let-
ter acuity enabling them to read correctly all but two letters on
the 20/20 line in each eye when tested monocularly with the
Lighthouse Distance Visual Acuity Test chart. The 5-year-olds
had a linear letter acuity of at least 20/25 when tested with the
Goodlite Crowding cards. If necessary, participants were given
spectacle corrections of up to −1.5 dioptres to ensure that any
myopic error was too small to interfere with vision at the test-
ing distance of 57 cm. Participants were required to have worse
acuity with an added +3.00 dioptre lens to rule out hyperme-
tropia (farsightedness) of more than 3 dioptres. Binocular fusion
was assessed using the Worth 4-Dot Test, and stereoacuity was
assessed with the Titmus Fly Stereotest. Participants were required
to show evidence of binocular fusion and stereoacuity of at
least 100 arcsec for the 5-year-olds and 40 arcsec for the older
participants.

Experimental procedure
Participants sat in a darkened room and viewed the stimuli binoc-
ularly. The experimental procedure consisted of a demonstration,
a criterion, a practice run, and a test run.

Demonstration. Participants were told that the pattern they were
going to see “looks similar to a Ruffles® potato chip.” The experi-
menter showed participants a vertical Gabor with no noise and
told them “the lines on the chip make it look like it is stand-
ing straight up and down.” This screen was presented until
participants agreed verbally that the Gabor was oriented verti-
cally. The experimenter then told participants that “the Ruffles®
potato chip in the computer game will be tilted and the goal
was to decide whether the top of the Ruffles® potato chip was
tilted toward the right (toward the rabbit) or toward the left
(toward the lion).” The experimenter then showed participants
a static right-tilted Gabor in the center of a screen containing
the previously described cartoon rabbit and lion and explained,
“This is what the chip will look like when it is tilted toward the
right (toward the rabbit).” They were shown this screen until they

agreed verbally that the Gabor was now tilted toward the rab-
bit. They were then shown the vertical Gabor again, followed
by a static left-tilted Gabor on a screen containing the cartoon
animals and were told that “This is what the chip will look
like when it is tilted toward the left (toward the lion).” This
screen was presented until participants agreed verbally that the
Gabor was now tilted toward the lion. The participants were then
asked to indicate verbally which way two practice Gabors were
tilted. As in the first two trials, the two practice Gabors were
presented without noise but were shown for only 1 s each. All
participants responded correctly to these two 1-s practice trials
and were given feedback by the computer program and by the
experimenter.

Criterion. Next, we ensured that participants understood the task
by testing them with a criterion session in which they were shown
static Gabors at 50% contrast in no noise for 90 ms and were
required to give four consecutive correct answers. The partici-
pants received feedback from the computer program for each of
their responses. The experimenter then explained that sometimes
the “Ruffles® potato chip will be sprinkled with salt and pep-
per and will look fuzzy.” On the computer screen, we presented
one right-tilted Gabor alternated with a 50% contrast noise patch
and then a similar left-tilted Gabor with 50% noise and told
participants which way they were tilted. Both Gabors were pre-
sented until the participant indicated that they saw which way
the “Ruffles® potato chip” was tilted beneath the salt and pepper.
They were then tested with a second criterion session in which the
Gabors were presented for 90 ms with 50% noise. Again, they were
required to give four consecutive correct answers. Participants
were required to pass each of the criterion sessions in no more
than three blocks of four trials, and all did so in the first or second
block.

Practice. After participants passed both criterion sessions suc-
cessfully, the experimenter presented a 24-trial practice run.
The stimuli used in the 24-trial practice run were generated
by the qTvC program and were identical to the first 24 tri-
als used in the test run. The computer program generated
the three parameters of the resulting TvC curve based on the
24 practice trials: the critical noise (Nc), the optimal con-
trast threshold (C0), and the common slope of the psychome-
tric function (η) and these parameters were recorded by the
experimenter.

Test run. The test run was identical to the practice run except that
it consisted of 240 trials differing in stimulus contrast and noise
levels, as generated by the qTvC paradigm. The stimulus space for
the qTvC procedure included nine possible external noise con-
trasts ranging from 2 to 33% (in 3dB steps), and signal contrast
levels sampled from a pool of 40 possible contrast levels ranging
from 0 to 90% (in 1dB steps). Participants who requested a break
were given a 5-min quiet break in the testing room. At the end
of the test run, the program reported thresholds corresponding
to three levels of accuracy: 60, 75, and 90%. Each experimental
session lasted approximately 40 min plus approximately 5 min for
visual screening.
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MODELING
To quantify and model the improvement with age, we adopted
the original Perceptual Template Model (PTM; Lu and Dosher,
1998), developed previously to characterize changes in percep-
tual performance with attention (Lu and Dosher, 1998; Dosher
and Lu, 2000) and perceptual learning (Dosher and Lu, 1999;
Lu et al., 2004). A detailed description of the PTM can be
found in one of the cited papers. Briefly, overall performance
of an observer, expressed in d′, is limited by the following three
noise sources in the PTM: (1) external noise (Next), the strength
of which is known to the experimenter, (2) internal additive
noise (Nadd), an irreducible amount of variability inside a sys-
tem determining the lower bound on performance (Barlow, 1956;
Pelli, 1990), and (3) multiplicative noise (Nmul), an indepen-
dent noise source, the strength of which is proportional to the
stimulus strength (Green and Swets, 1974; Legge and Foley,
1980). The initial signal and noise composite may be subject to a
non-linearity (γ ) in the system (Nachmias and Sansbury, 1974;
Kontsevich et al., 2002). Combined, the overall performance
of a system is fundamentally determined by the signal-to-noise
ratio:

d′ = S

Ntotal noise sources

= (βc)γ√
N2γ

ext + N2
mul[(βc)2γ + N2γ

ext ] + N2
add

(2)

where c is the contrast of the signal and β represents the gain
or amplification factor on the signal after a perceptual template
which is tuned to the relevant dimension of stimulation (e.g.,
contrast in the current case). Rearranging the equation for the
contrast threshold yields,

cτ = 1

β

⎡

⎣
(
1 + N2

mul

)
N2γ

ext + N2
add(

1
d ′2 − N2

mul

)

⎤

⎦

1
2γ

(3)

According to the PTM, improvement in performance through
development can be modeled by changes in one or more of the
noise sources. Each panel in Figure 2 shows a hypothetical pattern
of performance change when only one of the three mechanisms
mentioned above is in operation: (1) stimulus enhancement (left
panel)—represents improvement caused by a reduction in inter-
nal additive noise. In this case, the improvement will be shown in
the low external noise region. (2) External noise exclusion (middle
panel)—represents the ability to suppress or filter out irrelevant
information (i.e., external noise). As opposed to case (1), this pat-
tern of improvement will be shown when external noise is high.
(3) Internal multiplicative noise reduction (right panel)—a reduc-
tion of internal multiplicative noise will improve performance
over the entire range of external noise levels.

Assuming all three mechanisms are at work, we can rewrite
the above equation to accommodate the developmental changes
in our current data as following:

cτ = 1

β

⎡

⎣

(
1 + (A(i)

m Nmul)2
)

(A(i)
x Next)2γ + (A(i)

a Nadd)2

(
1

d′2 − (A(i)
m Nmul)2

)

⎤

⎦

1
2γ

(4)

where the index (i) denotes the age group. To quantify the rela-
tive contributions from each or combinations of the noise sources
to the improvements with age, three extra coefficients As with
subscripts corresponding to each noise source are used. In this
form, the relative improvements with age are quantified against

the performance of 5-year-olds, where we set A
5yro
a = A

5yro
x =

A
5yro
m = 1.

Figure 2 also illustrates the important property of the PTM
for contrast thresholds predicted at two different performance
criteria for each mechanism. In each panel, there are two pairs
of darker and lighter lines representing hypothetical TvC curves
for younger and older observers, respectively. Each pair of curves
was drawn at two different performance criteria (e.g., solid lines
represent 90% correct performance level and broken lines repre-
sent 75% correct performance level). The direction of the arrows

FIGURE 2 | Possible mechanisms of development predicted by PTM.

Each panel shows how TvC curves at two performance criteria would change
during development for changes in one of three PTM parameters where Aa

represents internal additive noise (left panel), Ax represents distractors
exclusion (middle panel), and Am represents multiplicative noise (right panel).

In all three panels, darker lines represent younger age groups whereas lighter
lines represent older groups. Solid lines represent more stringent
performance criteria; dotted lines represent less stringent performance
criteria. Arrows represent the hypothetical size and direction of change in
performance during development.
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represents the direction of improvement and the size of the
arrows approximately matches the magnitude of improvement.
Inspection of the figure highlights how the magnitude of change
can be contingent upon performance criteria. In the cases of sig-
nal enhancement (left panel) and distractor exclusion (middle
panel), for example, the size of improvement is constant regard-
less of the criteria. On the other hand, the size of improvement
increases as the performance criterion becomes more stringent in
the case of multiplicative noise reduction (right panel). Therefore,
measuring multiple TvC provides strong constraints and is use-
ful in distinguishing between mixtures of mechanism in the
hierarchical model testing in the PTM.

RESULTS
Figure 3 shows the TvC curves at 75% correct performance for
each age group (5-, 7-, 9-year-olds, and adults in red, green, blue,
and black respectively). The left panel shows the individual out-
puts (n = 20/group) after running 240 trials of qTvC. The right
panel shows the mean for each age group with the shaded regions
representing ±1 s.e.m. at each noise level. As age increases, the
average performance improves (shown as decreases in contrast
thresholds) over the entire noise range tested. The improvement
seems greatest, especially in the high noise region, between 5 and
7 years of age, after which the improvement with age becomes
more gradual. This pattern is evident, even when one takes into
account the greater variability in performance at age 5.

Figure 4 shows the developmental data over three differ-
ent performance levels. As mentioned in the Introduction and
the Section Modeling above, multiple TvCs at different crite-
ria provides stronger constraints in distinguishing the mixtures
of mechanisms (Dosher and Lu, 1999; Klein and Levi, 2009).
Qualitatively, there is an increase in the threshold ratios among
different age groups across the entire external noise range as
a more stringent performance criterion is implemented, imply-
ing the impact of multiplicative noise on the change in contrast
thresholds. From the disproportionate changes in threshold ratios

between the low and high external noise region across different
performance criteria, we can also infer that signal enhancement
and external noise exclusion may be at work at the same time.

Figure 5 shows the mean data for each age group and the result
of nested model fitting of these mean data using the equation
(4). In this figure, age group is arranged column-wise while dif-
ferent models used for fitting are arranged in rows. Each panel
contains data (shown as dots) at three performance levels (60,
75, and 90% correct) with error bars and the resulting model fits
shown as lines. The age-related improvements can be seen across
the columns as a gradual decrease in thresholds regardless of the
performance levels. Note that the distance between the contrast
thresholds at different performance levels is distinctively wider in
5-year-olds’ data than the data from the remaining age groups.

The total number of data points used in this fitting procedure
was 108 (9 noise levels × 3 performance criteria × 4 age groups).
There are four layers of models with each layer of the same model
containing the same number of parameters. For example, the
most saturated layer has a model with 13 parameters (denoted
as “full” in Figure 5) whereas the most parsimonious layer has
a model with only four parameters (“no change” in Figure 5).
There are a total of eight possible models across layers. With
each model, we calculated goodness-of-fit (r2) (Equation 5) and
compared them statistically (Equation 6) between layers.

r2 = 1 −
∑[

log
(
cPTM
τ

)− log (cdata
τ )

]2

∑[
log

(
cdata
τ

)− mean( log
(
cdata
τ

)
)
]2

(5)

Of all 22 comparisons, no models in the sub-layers produced
statistically equivalent goodness-of-fit compared to the goodness-
of-fit for the most saturated model in the top layer with 13
parameters (top row in Figure 5, highlighted with boldface).

F
(
df1, df2

) = (r2
upper − r2

lower)/df 1

(1 − r2
upper)/df 2

(6)

FIGURE 3 | Individual (left panel) and mean (right panel) TvC curves at

75% correct performance. In both panels, abscissa represents external
noise strength and ordinate represents contrast thresholds obtained after
240 trials of qTvC. Age groups are color-coded as red, green, blue, and black

for 5-, 7-, 9-year-olds, and adults, respectively. The left panel represents
individual TvC curves (n = 20/age group) at the 75% correct performance
level for 240 trials of qTvC. The right panel represents averaged TvC curves
for each age group. The shaded areas represent ±1 SE.
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FIGURE 4 | Mean TvC curves at three performance criteria. This
figure illustrates how the magnitude of the change in performance
with age, depicted by relative shifts among TvC curves, can be
dependent upon performance criteria. Illustrations are for performance

criteria of 60% (left panel), 75% (middle panel), and 90% (right

panel). In all panels darker lines represent younger age groups
whereas lighter lines represent older groups. See text for more
details.

where df1 = kupper − klower, and df2 = N − kupper . The ks are the
number of parameters in each model to fit the data, and N is the
number of data points to fit. We calculated bootstrapped con-
fidence intervals for the best fitting PTM parameters by fitting
the model 1000 times to the synthetic TvC thresholds resam-
pled from each of three qTvC parameter distributions obtained
from our observers. The pair of number in parentheses repre-
sents the confidence interval for each parameter. The full list of
model parameters can be found in Appendix A in Supplementary
material and the complete results of nested model comparisons
are provided in Appendix B in Supplementary material.

The best model (top row in Figure 5) provided an excellent
fit (r2 = 0.985) to the contrast thresholds at multiple levels of
performance (60, 75, and 90%) across a wide range of external
noise levels. The model suggests that a mixture of mechanisms
underlies the developmental changes: the improvements in con-
trast thresholds over ages were best modeled by a combination
of reductions in internal additive and multiplicative noise and
improvements in excluding external noise (see Table 1). In line
with the data, the improvement was greatest between 5 and 7
years of age, accompanied by a 38.6% reduction in additive noise,
70.7% reduction in multiplicative noise, and 45.1% improvement
in external noise exclusion.

Figure 6 shows relative changes in each noise source with age.
While both internal additive noise (Aa) and the ability to exclude
distractors (Ax) seem to reach adult levels at the age of 9, multi-
plicative noise continues (Am) to decrease after age 9 (the oldest
age of child tested here).

DISCUSSION
The purpose of the current study was to measure contrast thresh-
olds embedded in a wide range of external noise in four age
groups and to model the developmental improvements in con-
trast thresholds in terms of changes in limiting factors affecting
visual performance. With a qTvC procedure (Lesmes et al., 2006),
contrast thresholds at multiple performance criteria across nine
external noise levels were estimated quickly in children and adults.
We modeled our data with PTM to investigate whether the devel-
opmental improvement in contrast threshold with age can be

modeled by a combination of reduction in internal additive and
multiplicative noise components as well as the improvement in
filtering out irrelevant information.

In a previous study (Jeon et al., 2012), we included a task sim-
ilar to the current experiment as one of the outcome measures to
gauge the effect of video game training on the vision of adult con-
genital cataract patients and normal adult controls. In doing so,
we applied the qTvC for the first time to collect 240 trials of data
before and after the video game training. In the current study, we
were able to collect data on 80 observers from a broad age range,
highlighting the efficiency of qTvC in measuring and specifying
the performance space defined across a wide range of noise and
signal intensity.

Previous developmental studies consistently reported that
infants and children are worse than adults at detecting or discrim-
inating signals embedded in noise (Brown, 1994; Skoczenski and
Norcia, 1998; Falkenberg et al., 2014). Those studies with infants
found that the immaturity could be explained by higher inter-
nal additive noise. On the other hand, Falkenberg et al. (2014)
found that poor sampling efficiency is responsible for the imma-
turity in motion discrimination of children and adolescents while
the internal noise played no role in the development of motion
discrimination after age 5, the youngest age tested. Bogfjellmo
et al. (2013) reached a similar conclusion about sensitivity to
the global direction of signal dots moving in a unitary direc-
tion against noise dots moving in random directions. Our work
contrasts with these previous studies because we used a method
that allowed us to distinguish between additive and multiplicative
internal noise. At least for our task (contrast thresholds for orien-
tation discrimination), internal additive noise was higher than in
adults as late as age 7 and internal multiplicative noise was higher
even at age 9, the oldest group of children tested. Specifically, the
model identified three limits on 5-year-olds’ contrast thresholds:
(1) internal additive noise, (2) internal multiplicative noise, and
(3) insufficient filtering of external noise.

First, our model showed that internal additive noise decreases
with age for measurements of orientation discrimination in the
contrast domain. Compared to 5-year-olds, there is a 39% reduc-
tion in 7-year-olds, a 60% reduction in 9-year-olds, and a 70%
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FIGURE 5 | Results of nested modeling. This figure matrix shows the
results of nested PTM modeling arranged by age (columns) and model
layers (rows). In each panel, dots represent mean contrast thresholds at
each noise level tested using qTvC, and smooth curves represent
model fit to the data. The performance criteria become less stringent

as the colors become darker. Next to the figure matrix, goodness-of-fit
statistics for a given model layer are provided. Statistical comparisons
among model layers reveal that the “full” model in the top row is the
best model, highlighted by an asterisk and thick black outlines around
the top panels.

reduction in adults. These reductions account for the improve-
ments in performance in the low external noise region.

Second, our data showed that the age-related change in con-
trast thresholds is dependent upon performance criteria, which
is indicative of change in the level of internal multiplicative
noise. As illustrated in Figure 4, the performance difference
among age groups increased when higher accuracy was required.
According to our modeling results, internal multiplicative noise
also decreases with age. Compared to 5-year-olds, there is a 48–
71% reduction by age 7–9 of internal multiplicative noise, and a
complete elimination of it in adults, corresponding to a reduc-
tion of nearly 100%. There are competing points of view on

what is responsible for the rising thresholds with increasing noise,
masking, or pedestal values: multiplicative noise vs. contrast gain
control. Empirically the influence of multiplicative noise is indis-
tinguishable from that of a contrast-gain control mechanism
(Dao et al., 2006; Klein and Levi, 2009; Chen et al., 2014). In a
developmental study of contrast gain control using VEP (Garcia-
Quispe et al., 2009), human infants from 15 to 28 weeks showed
little contrast gain control compared to the older observers.
This is the first study to make measurements of this factor in
older children. The continuous reduction of multiplicative noise
throughout childhood shown in our study might suggest a long
developmental trajectory in the contrast gain control mechanism.
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Table 1 | PTM parameter outputs from the best model.

Parameter

Age
5 7 9 Adult

β 2.1892 (1.8276, 2.5507)*

γ 1.6778 (1.5144, 1.8412)

Nadd 0.0315 (0.0215, 0.0416)

Nmul 0.3763 (0.3459, 0.4067)

Aa 1 0.6139 0.3966 0.3001

(0.33, 0.8979) (0.1418, 0.6511) (0.1224, 0.4778)

Ax 1 0.5492 0.4229 0.3998

(0.4295, 0.6690) (0.3308, 0.5150) (0.3250, 0.4745)

Am 1 0.2939 0.5161 0.0004

(−0.2066, 0.7934) (0.0163, 1.0163) (0.0004, 0.0005)

β, gain from template matching.

γ , non-linearity exponent.

Nadd , standard deviation of additive noise.

Nmul , standard deviation of multiplicative noise.

Aa, a developmental parameter associated with signal enhancement.

Ax , a developmental parameter associated with external noise exclusion.

Am, a developmental parameter associated with internal multiplicative noise

reduction.
*The numbers in parentheses represent bootstrapped confidence intervals for

the best PTM parameters by fitting the synthetic thresholds resampled 1000

times from the three qTvC parameter distributions obtained from our observers.

FIGURE 6 | Change in noise components as a function of age.

Parameters from the best model are plotted to show how the level of each
noise component changes as a function of age when normalized against
5-year-olds. Filled squares represent internal additive noise, open circles
represent the ability to exclude distractors, and filled triangles represent
multiplicative noise.

Alternatively, or in addition, it might reflect a long developmental
trajectory for the reduction in multiplicative noise.

A third factor responsible for the age-related improvements we
observed in contrast threshold was an improvement in the ability
to filter out external noise, which is reflected as improvements
in contrast thresholds at high external noise levels. Compared to
5-year-olds, the impact of the external noise on discrimination
was reduced by 45% in 7-year-olds, 58% in 9-year-olds, and 60%
in adults. Studies of perceptual learning (Lu and Dosher, 1999;
Chung et al., 2005), and aging (Betts et al., 2007) confirm that
performance can be improved by increased exclusion of external
noise, achieved by retuning an internal template to the stimulus

property relevant to a given task so that it filters out incoming
noise.

During development, channel reweighting (e.g., Lu and
Dosher, 1999) of the sensory inputs likely becomes increasingly
selective and tuned to the most relevant channel for forming per-
ceptual decisions for a given task. Thus, given the shallow slope
of the psychometric function in 5-year-olds, their response might
be more similar than that at older ages across a wider range of
input signals, the strength of which varies with external noise.
This, in turn, would lower the differential signal-to-noise ratios
around the relevant channels. For the visual system of 5-year-
olds, this insensitivity to contrast might make it difficult to choose
selectively the optimal channel for discrimination. In fact, sub-
stantial evidence indicates that young children are not optimal in
selecting and processing the visual information that is most rele-
vant to a given task. For example, the literature on visual selective
attention indicates that children are not as good as adults at fil-
tering out irrelevant background stimuli (Enns and Girgus, 1985;
Ridderinkhof and Van Der Molen, 1995; Goldberg et al., 2001),
with children as old as 10 years being affected more by distractors
than adults (Goldberg et al., 2001). As reported by our best model
output (Figure 6), it seems that the ability to cull external noise
improves continually until 9 years of age.

Even though physiological changes such as pruning of exces-
sive synaptic connections within the primary visual cortex, still
occur until early adolescence (Huttenlocher et al., 1982; Garey
and De Courten, 1983), it is unclear how much front-end changes
in the structure or morphology of the early visual pathway can
account for the developmental changes observed in our current
age groups. In their study evaluating the developmental changes
in contrast threshold and intrinsic noise using infant monkeys,
Kiorpes and Movshon (1998) argued that changes in both addi-
tive and non-additive sources of noise contribute to the fall of the
contrast thresholds during development. To arrive at this con-
clusion, they considered additive noise to represent the limiting
factors in the early visual pathways and non-additive noise to rep-
resent “central” limiting factors, which might be tantamount to
our internal multiplicative noise reduction and distractor exclu-
sion. The documented changes in the striate visual pathway
that continue well into adolescence may be responsible for such
changes (Shaw et al., 2008; Pinto et al., 2010).

Even though the length of our procedure was reduced with
the aid of qTvC, it might still be possible that children are sim-
ply less motivated or have a poorer understanding of the task.
However, it is unlikely that worse performance in younger age
groups was caused by a lack of motivation or understanding. First,
we made sure that children understood the task by showing them
demonstration trials, documenting their understanding with cri-
terion trials, and familiarizing them with the test by having them
complete a full session of qTvC before the data to be used were
collected. Second, we kept the children motivated throughout
the task by adding humorous auditory feedback when the child
answered correctly. Although they were told that they could stop
at any time, no child decided to discontinue the study, and all
children seemed to enjoy the experimental procedure. Third, the
qTvC algorithm kept performance much higher than chance level
on most trials. Therefore, our observed effects were most likely a
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consequence of factors related to visual sensitivity and minimally
affected by cognitive immaturity or lack of motivation.

In summary, the results from the current study suggest that
the contrast sensitivity of 5-year-olds is limited by higher levels
of internal additive and multiplicative noise and higher suscep-
tibility to irrelevant background information. There are rapid
decreases in these limitations until age 7 and gradual reductions
thereafter, with the reduction in multiplicative noise continuing
past age 9, the oldest age tested here. It can be hypothesized that
these limitations at age 5 can explain previous observations of
poorer thresholds and decreased psychometric slopes compared
to older ages. Our model using a mixture of reductions in internal
additive noise, reductions in internal multiplicative noise, and an
improvement in the ability to filter out external noise can account
well for the age-related improvements in contrast threshold.
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There is evidence that letter identification is mediated by only a narrow band of spatial
frequencies and that the center frequency of the neural channel thought to underlie this
selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed
size) the channel tuning characteristics change according to the properties of the spatial
filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image
formed on the retina—their effect is generally to attenuate high frequencies more than
low frequencies but often in a non-monotonic way. We might expect the change in the
spatial frequency spectrum caused by the aberration to predict the shift in channel tuning
observed for aberrated letters. We show that this is not the case. We used critical-band
masking to estimate channel-tuning in the presence of three types of aberration—defocus,
coma and secondary astigmatism. We found that the maximum masking was shifted to
lower frequencies in the presence of an aberration and that this result was not simply
predicted by the spatial-frequency-dependent degradation in image quality, assessed via
metrics that have previously been shown to correlate well with performance loss in the
presence of an aberration. We show that if image quality effects are taken into account
(using visual Strehl metrics), the neural channel required to model the data is shifted to
lower frequencies compared to the control (no-aberration) condition. Additionally, we show
that when spurious resolution (caused by π phase shifts in the optical transfer function)
in the image is masked, the channel tuning properties for aberrated letters are affected,
suggesting that there may be interference between visual channels. Even in the presence
of simulated aberrations, whose properties change from trial-to-trial, observers exhibit
flexibility in selecting the spatial frequencies that support letter identification.

Keywords: optical distortions, critical band masking, ocular aberrations, letter identification, spatial frequency

channels, visual Strehl ratio

1. INTRODUCTION
In 1994 Solomon and Pelli used critical band masking to show
that, despite letters being broadband stimuli, their identifica-
tion is mediated by a single narrow band of spatial frequencies.
Since their ideal observer model (based on the requirement to
discriminate differences between letters) exhibited low-pass filter-
ing characteristics, rather than bandpass characteristics as derived
from the performance of human observers, it was suggested that
the low-frequency fall-off of the human-derived filter represents
a visual constraint upon letter identification. This account is in
accordance with human observers’ inability to identify severely
low-pass filtered letters, such as those with optical blur. Similar
results have also been found by other authors (Ginsburg, 1980;
Parish and Sperling, 1991; Alexander et al., 1994; Chung et al.,
2002a,b; Majaj et al., 2002; Oruç and Landy, 2009).

Majaj et al. (2002) further suggested that the center frequency
of the band mediating letter identification was driven by the spa-
tial frequencies available in the signal. In the presence of added,
filtered visual noise observers persisted in using the same spatial
frequency channel to identify letters rather than shifting channels

to avoid the masking effects of the noise. Furthermore, when let-
ters were filtered with a Gaussian bandpass (on a log-frequency
scale) filter, the center frequency of the band mediating their
identification scaled, although less than proportionally, with the
center frequency of the filter. In addition to shifting the visual
channel in response to filtering of the stimulus, Oruç and Landy
(2009) also suggested that, when the masking noise that is added
to the stimulus dominates the equivalent noise that is associated
with the contrast sensitivity function of human observers (which
describes how spatial frequencies are transmitted by the visual
system), it is possible for an observer to switch visual channels,
although not necessarily optimally.

Under natural viewing, images formed on the retina are
affected by the optical quality of the eye and the distortion intro-
duced is equivalent to filtering that image. In this paper we aim
to quantify the effect that reduced image quality has on the
mechanism of letter identification by considering the interaction
between the spatial frequency filtering effects of optical aberra-
tions and the spatial frequency demands of a letter identification
task.
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The optical quality of the human eye can be characterized by
its optical transfer function (OTF), which quantifies the phase
and contrast with which different spatial frequency components
are transmitted. For an optically perfect eye, image quality is
limited only by diffraction and the OTF is a linearly decreasing
real-valued function with a cut-off frequency determined by the
pupil diameter and the wavelength of light. However, real eyes
are composed of imperfect optical components that introduce
aberrations and these distort the wavefront of the incident light
and blur the image formed on the retina. The wavefront error
can now be routinely measured in vivo using a Shack-Hartmann
aberrometer to quantify both the low order aberrations, such as
defocus and astigmatism, as well as the higher-order aberrations
that cannot easily be compensated with current vision correction
aids.

The filtering properties of an aberration (quantified by its
OTF) are different from the bandpass filters that Majaj et al.
(2002) applied to letters in two respects. Firstly, the OTFs of
real optical aberrations are not typically bandpass in nature
but are non-monotonic and tend to attenuate high frequencies
more than low frequencies. The second is that the OTFs of real
optical aberrations (as opposed to Gaussian blur, for example)
can be complex-valued functions, indicating spatial-frequency-
dependent phase changes (quantified by the phase transfer func-
tion, PTF) in addition to spatial-frequency-dependent contrast
changes (quantified by the modulation transfer function, MTF).
These phase changes are an important consideration as they can
have a significant impact on the spatial forms in an image. A π

phase change, one that changes the polarity of the contrast at
a particular spatial frequency, can be particularly disruptive to
object recognition (Ravikumar et al., 2010) as it creates spurious
resolution, which introduces additional contours. If, as suggested
by Majaj et al. (2002), the visual filter mediating an identifica-
tion task is selected from the signal, introduction of additional
contours could bias channel selection to a sub-optimal band of
frequencies.

Considering these points the following question arises—is the
spatial frequency band mediating the task altered in the pres-
ence of an aberration? In this paper we use critical band masking
to estimate the center frequency of the channel mediating letter
identification and we measure how this is altered by three dif-
ferent types of aberration—defocus, coma and secondary astig-
matism. We additionally mask some of the spurious resolution
present in the images to look for changes in channel selection.
Masking is achieved by adding (ideal) bandpass filtered noise to
the stimuli and the contrast threshold elevation (from the no
noise condition) for letter identification is measured for differ-
ent noise center frequencies, giving a response profile. For each
condition, the center frequency of the visual filter mediating the
task is derived from this response profile.

There has been increasing interest in the relationship between
the higher-order aberrations in the eye and visual performance. It
has been shown that higher-order aberrations are detrimental to
visual performance and that the reduction in performance varies
between the types of aberration and their amplitudes (Applegate
et al., 2002, 2003; Chen et al., 2005; Rocha et al., 2007; Zhao
et al., 2009; Cheng et al., 2010; Rouger et al., 2010; Young et al.,

2013b). Furthermore, higher-order aberrations can additionally
affect higher-level visual tasks such as reading (Young et al., 2011),
facial recognition (Ravikumar et al., 2010; Sawides et al., 2010)
and viewing natural images (Sawides et al., 2010). It is clear that
the effects of these aberrations vary between visual tasks (Pepose
and Applegate, 2005) and therefore it is likely that the effects of
spatial-frequency-dependent changes in the stimulus depend on
the spatial frequency requirements of the task. Indeed we have
shown that, at least in the case of letter-based tasks, visual per-
formance is better predicted by a model that incorporates the
spatial frequencies used by the visual system for a particular task,
in addition to considering image-based changes (Young et al.,
2013a). Aberrations that have a strong effect on the spatial fre-
quencies that mediate letter identification are likely to degrade
performance more than aberrations that have a strong effect on
task-irrelevant frequencies. Our approach to date has been to
assume that the visual channel mediating letter identification is
invariant under changes in aberration type and magnitude. One
of the motivations of the current study is to consider the inter-
action between image properties and the neural channel mediat-
ing letter identification. Specification of the eye’s optics permits
calculation of the retinal images formed from letter-stimuli
and previous work provides estimates of the neural channels
mediating letter identification but, here, we consider the inter-
action between these two determinants of letter-identification
performance.

In this paper we report the results of two analyses that aim to
quantify the optical effects and predict the channel-based effects.
The first analysis employs a template-matching model, based
on maximum values of cross-correlations between letters, which
quantifies the similarity (“confusability”) of letters for a particu-
lar aberration. We use this analysis to show the spatial frequency
demands of the task based purely on the stimulus and the result
is consistent with the findings of Solomon and Pelli (1994), even
in the presence of an aberration. The second analysis is based on
a visual Strehl metric for predicting visual performance from a
measure of the optical quality of the eye. Visual Strehl metrics
usually calculate the ratio of the sum under the OTF weighted
by the human neural contrast sensitivity function (NCSF) to that
same weighted sum for a diffraction limited system (Thibos et al.,
2004). In our modified version of the visual Strehl ratio (Young
et al., 2013a) we weight the OTF by the spatial frequency band
mediating the task, which for sharp letters we assumed to be a
Gaussian profile (in log-frequency space) with a center frequency
of 3 cycles per letter (which subtended 1◦ in our experiment) and
a bandwidth of 1 octave (consistent with the findings of Solomon
and Pelli, 1994). Here we report visual Strehl ratios calculated
using the magnitude of the OTF, termed the VSMTF, and visual
Strehl ratios explicitly incorporating phase via a multiplicative
combination of the MTF and PTF, which we have termed the
VScombined (Young et al., 2013b). We additionally calculated the
VSOTF, which uses the real part of the OTF, but this gave very
similar results to the VSMTF.

We have previously used both template matching and visual
Strehl analyses to successfully predict the increase in contrast
threshold (from the no aberration condition) for letter recog-
nition in the presence of the three types of aberration under
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investigation. For letters presented with an aberration, and in
the absence of a noise mask, the increases in contrast threshold
(from the no aberration condition) quantify the performance loss
over the entire frequency spectrum of those letters. Since aber-
rations cause spatial-frequency-dependent modifications to the
stimulus it is not unreasonable to expect that the increases in
contrast threshold may be spatial-frequency dependent. In this
study we use critical-band masking to limit the spatial frequen-
cies available to the observer by masking a band of frequencies
with noise. For letters presented with an aberration, and in the
presence of noise, the increase in contrast threshold (from the
no aberration condition) should be related to the contrast loss
induced by the aberration only within the spatial frequency range
that remains available to the observer. For frequencies at which
the aberration has little effect we would expect the increase in
contrast threshold to be small. It is therefore entirely possible
that the shape of the response profiles that we measure, and
consequently the center frequencies derived from them, can be
accounted for by considering the spatial-frequency dependent fil-
tering of the aberrations. In this paper, by introducing additional
filtering steps to our model to represent the masking effects of
the visual noise, we make a direct comparison between the pre-
dicted performance and our observers’ performance. We suggest
that comparisons between the response profiles derived from our
model and those derived from human observers should sepa-
rate signal-based effects (due to image quality degradation) from
observer-dependent effects (due to changes in the visual chan-
nel). Effects that are not captured by the model imply additional
adaptive visual behaviors on behalf of the observer, which them-
selves have implications for the development of more effective
models.

Finally, we recalculate the visual Strehl ratio with an additional
step to optimize the center frequency of the standard Gaussian
weighting that we use to represent the visual filter mediating letter
identification, in order to find the best fit to the observer-derived
data. Assuming that the visual Strehl metric effectively predicts
performance loss due to image quality degradation, optimizing
the Gaussian weighting (representing the visual channel) should
capture observer-dependent effects and indicate the channel cen-
ter frequency that gives rise to the contrast threshold elevations
that we measure.

2. MATERIALS AND METHODS
2.1. LETTERS
In a previous experiment we tested the effects of different ampli-
tudes (0.5, 0.6, 0.7, 0.8, and 0.9 µm rms) of three types aberration
(defocus, coma and secondary astigmatism) on observers’ con-
trast thresholds for the identification of 1◦ letters (Young et al.,
2013b). In the current experiment we have chosen to study
the same three types of aberration but at a single amplitude—
0.6 µm—at which observers showed a difference in performance
between these three types of aberration. This amplitude corre-
sponds to 2.7 D of equivalent defocus over a 2.5 mm diameter
pupil. As in our previous experiment, single lower-case letter
images were produced as black text on a light background (in this
case a gray value of 0.5 was used whereas previously it had been
1.0) using Courier font. Images of aberrated letters, such as those

FIGURE 1 | Examples of the letter stimuli to which noise was added.

The control condition (i.e., no aberration) is shown in (A) and aberrated
letters were generated with 0.6 µm of (B) defocus (Z0

2), (C) coma (Z1
3) or

(D) secondary astigmastim (Z2
4).

shown in Figure 1, were generated using custom-written Python
code that performed a convolution with the appropriate point
spread function (PSF). We have made this code available to the
community (see the Supplementary Materials).

As in our previous experiment, an unaberrated letter size of
1◦ of visual angle, corresponding to a Snellen acuity of 20/240,
which is equivalent to 14 mm or 40 pt font at a typical read-
ing distance of 40 cm, was chosen so that letter identification
would be limited by the aberration and not by our observers’
acuity limits. It is useful to consider how data collected at only
one letter-size and one aberration amplitude might in princi-
ple generalize to other conditions. In the case of a bandpass
filter applied to the letters, the center frequency of the filter is
defined in cycles per letter so that when the size of a letter is
changed the filtering effects remain consistent. However, whilst
the OTF of an aberration can be specified as a function of fre-
quency expressed in cycles per letter to give a consistent effect
on a smaller letter, the result is not necessarily meaningful. The
frequency scaling of real optical aberrations is determined by
the wavelength of light and the diameter of the pupil, not by
any simple combination of the size of the letters and the ampli-
tude of the aberration. Changing the amplitude of the aberration
does not simply re-scale the OTF along the frequency axis, it
also changes its shape. In a previous experiment we compared
the effects of an aberration at two different letter sizes (Young
et al., 2013b). We used a normalized cross-correlation to find
the amplitude of aberration that, when applied to a small let-
ter, gave a similar stimulus appearance to a higher amplitude of
aberration applied to a larger letter. Although the letters used in
our experiments were large, and the amplitude of aberration was
also correspondingly large, we know from our previous analysis
that these stimuli are similar (correlation > 0.98) to 0.25◦ letters
(corresponding to a Snellen acuity of 20/60, which is equivalent
to 3.5 mm or 10 pt font at a typical reading distance of 40 cm)
with an aberration amplitude of 0.25 µm rms. The aberration
amplitudes found in the normal population are typically around
0.1 µm for horizontal coma and 0.05 µm for secondary astigma-
tism (Porter et al., 2001) though higher amplitudes are found in
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damaged or diseased eyes, such as those with keratoconus. Thus,
the aberration amplitude we have used for large letters is high
compared to the amplitudes found in the normal population,
but the equivalent amplitude for small letters (at sizes typically
encountered when reading text) is much closer to those normally
found.

Majaj et al. (2002) showed that for filtered letters, changing the
size of the letter alone gave a proportional relationship between
the center frequency of the channel mediating letter identifica-
tion and the size of the letter. We might expect that using a smaller
letter size in our experiment would result in a proportional shift
in the channel frequency that we measure for our observers. For
unfiltered letters, as in the no aberration condition, the center fre-
quency could be determined based on the stroke frequency of the
letters, which they defined as the number of lines crossed by a
horizontal slice through a letter, divided by the letter width, and
averaged over all letters.

fchannel

10 cycles/degree
=
(

fstroke

10 cycles/degree

)2/3

. (1)

The stroke frequency of the letters we used in the current exper-
iment (1◦ Courier font letters) is 1.57 strokes per degree and we
therefore expect the center frequency in the control condition to
be 2.91 cycles per letter.

2.2. NOISE
White noise samples were generated by using an array of pixel
values (each 0.75 arcmin pixel contributed an individual noise

check) that were sampled from a zero-mean Gaussian distri-
bution with a standard deviation (rms contrast in this case)
of 0.15 and truncated at two standard deviations. These white
noise samples were bandpass filtered according to two classes
of noise. The first part of the experiment was aimed at finding
the center frequency of the channel mediating the identifica-
tion of the aberrated letters. For this, noise samples were filtered
with a one-octave-wide ideal bandpass filter centered at 1, 2, 3,
4, 6, 9, 11, or 14 cycles per degree. This was repeated with an
additional bandpass filter to mask some of the spurious resolu-
tion. This additional filter was centered at 11 cycles per degree
with a bandwidth of 0.5 octaves, determined by examining the
OTFs of the three aberrations (see Figure 2). The final three
conditions (9, 11 and 14 cycles per degree) were omitted when
the additional mask was used as the noise-bands overlap. The
entire noise field spanned 4◦ of visual angle and intensity val-
ues were scaled to a constant peak-to-valley contrast of 0.5 with
a mean gray value of 0.5 (the same as the background of the
letters).

2.3. STIMULUS DISPLAY
In these experiments blurred stimuli were created computation-
ally via a convolution of a PSF with an image of a letter (see
the Supplementary Materials). The resulting stimuli represent the
image that would be formed on the retina by an eye with the spec-
ified PSF. To ensure that this was indeed the image formed on
the retina of our observers it was necessary to consider the effects
of aberrations introduced by the observer’s eye and also to com-
pensate for the effects of the display and the optics that relay the
stimulus to the observer’s eye (see Figure 3).

FIGURE 2 | The magnitude of the phase transfer functions for 0.6 µm of

defocus (Z0
2
), coma (Z1

3
) and secondary astigmastim (Z2

4
). An additional

band of noise was added centered at 11 cycles per degree with a bandwidth

of 0.5 octaves (indicated by the dashed line) to coincide with spurious
resolution created by defocus and secondary astigmatism. The phase shifts
for coma are wrapped.
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FIGURE 3 | The optical system used to relay the stimulus on the CRT to the observer’s retina. An aperture was used to control the observer’s effective
pupil size and an interference filter was used to reduce chromatic effects. The dotted line shows optical path relaying the aperture to the observer’s pupil.

The resolution of an image formed on the retina is limited by
the optical quality of the eye and the fundamental limit is that
imposed by diffraction. Considering only the effects of diffraction
it is best to use a large pupil to obtain the highest resolution
images, however aberrations in the eye tend to increase with
increasing pupil size. The optimal pupil size for lateral resolu-
tion has been shown to be 2.5 mm (Campbell and Green, 1965;
Donnelly and Roorda, 2003), which is a diameter that has previ-
ously been used when simulating the effects of higher-order aber-
rations (see Cheng et al., 2010; Young et al., 2013b, for example).
Additionally, we have measured the aberrations in our observers’
eyes using a Zywave aberrometer and can confirm that over a
2.5 mm pupil they are close to diffraction-limited. Chromatic
aberrations were avoided by using a narrowband interference
filter centered at a wavelength of 550 nm.

The display and the optical system change the contrast of spa-
tial frequencies in the image, quantified by their individual MTFs.
The MTF of the entire optical system, including the display and
the aperture, was measured via the slanted edge method (Estibeau
and Magnan, 2004) using a camera that had been calibrated using
the same technique in conjunction with an ISO 12233 test chart.
This measure of the MTF of the optical system was used to pre-
compensate the images for the contrast changes caused by the
optical system.

The pre-compensated images were displayed on a CRT (Sony
Trinitron, 1024 × 768 resolution) display using a Cambridge
Research Systems VSG stimulus generator (VSG2/5) and the CRS
Matlab toolboxes. To account for the intensity non-linearity in
the display a gamma correction was applied to the stimuli using
a look-up table, which was specified to maintain a resolution of 8
bits per gun for all stimulus contrasts, selected from 212 available
gray levels across the full intensity range. The letter image and the
noise image were combined by temporally interleaving frames at
a rate of 100 Hz. The mean luminance of the monitor measured
through the optical system was 7.75 cd m−2.

Due to space constraints the image on the monitor had to
be demagnified to maintain an acceptable sampling rate at the
retina. In this arrangement, a single pixel on the display spanned
0.75 arc min on the retina, giving a sampling frequency of 80
pixels per degree. To prevent aliasing all stimuli were digitally low-
pass filtered with a cut-off frequency of 40 cycles per degree. An
aperture was used to artificially stop the pupil down to 2.5 mm
and this was relayed to the eye’s pupil using the optical system
shown in Figure 3. This system produced a magnification fac-
tor of two between the artificial pupil and the observer’s pupil,

so an artificial pupil diameter of 1.25 mm was used. The cut-off
frequency, fcut-off, of an optical system is defined by:

fcut-off = D

λ
, (2)

where D is the diameter of the aperture and λ is the wavelength
of light. The cut-off frequency in the intermediate focus, resulting
from the aperture, was 40 cycles per degree. After demagnification
this corresponded to a frequency of 80 cycles per degree at the
retina, which was well above the cut-off frequency of the digital
low-pass filter.

2.4. PROCEDURE
The study received ethical approval from the Medical Sciences
Division (MSD) Interdivisional Research Ethics Committee
(IDREC) which operates under the Central University Research
Ethics Committee (CUREC) at the University of Oxford.
Informed consent was obtained from all observers. Three
observers, two aged 28 and one aged 37, took part in the experi-
ment. Two of the observers required refractive correction and so
wore contact lenses. Observers were aligned to the instrument
prior to beginning the experiment and were held in position by
a chin rest. A separate rest was carefully positioned in front of
the eye that observers could comfortably rest their cheek and
brow bones against, allowing them to re-align themselves. Stimuli
were displayed monocularly for 200 ms after which observers
responded via a keyboard and audio feedback was then given.

For each trial, a letter was chosen at random and the probabil-
ity of selection was weighted by the frequency counts of letters in
the English language (Jones and Mewhort, 2004) in order to sim-
ulate natural reading conditions. The contrast of the noise was
kept constant and Weber contrast thresholds for the letters were
measured using the ML-PEST algorithm implemented with the
Matlab Palamedes Toolbox (Prins and Kingdom, 2009). The algo-
rithm converged to the threshold corresponding to 64% correct.
Individual staircases for the experimental conditions were inter-
leaved with each running for 20 trials per experimental condition
and observers completed five sessions.

2.5. PREDICTION METRICS
To investigate the effect of an aberration on image quality we used
two types of metric, one based on template matching and one
based on the visual Strehl ratio. In both cases we specifically con-
sidered the frequency-dependent changes, to consider the effect
of the aberration on channel selection.
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2.5.1. Template matching
Cross-correlation-based template matching models have been
shown to have a high correlation with acuity measures (Watson
and Ahumada, 2008, 2012, for example). We used a similar
technique that we have previously shown to correlate well with
empirical measures of performance in letter-based tasks (Young
et al., 2011, 2013a,b). For the current experiment we added an
additional filtering step to account for the masking effects of the
noise. This technique made pair-wise comparisons between let-
ters via a cross-correlation, as described in the following steps,
which were repeated for each type of aberration and noise pass-
band: (i) all of the letters of the alphabet were individually
notch-filtered to remove the spatial frequencies that would be
masked by noise in the experiment, (ii) the maximum of the
cross-correlation between pairs of filtered letter images (one fil-
tered, aberrated letter and one filtered, unaberrated letter) formed
a 26-by-26 matrix, an example of which is given in Figure 4, (iii)
the confusion matrix was normalized to one along the diagonal,
(iv) the columns of the confusion matrix were weighted according
the frequency with which letters appeared in the experiment, (v)
the average value of the matrix was used as a measure of confus-
ability between letters, (vi) confusability values were scaled such
that a value of zero means that the only overlap is between a letter
and its (unaberrated) template (i.e., the raw, unweighted corre-
lation matrix is the identity matrix), and a confusability value of
one means that all aberrated letters overlap with the unaberrated
template by the same amount as the aberrated version of the tem-
plate letter. The confusability value for unaberrated, unfiltered
letters is 0.6. The confusion analysis was performed for com-
parisons between the aberrated letters and the unaberrated letter
templates, as well as between pairs of aberrated letters. Similar
results were obtained in both cases. Here we report only the
comparisons between aberrated letters and the unaberrated letter
templates.

2.5.2. Visual Strehl metrics
Using two types of visual Strehl metric (VSMTF and VScombined)
we modeled the effect of the change of image quality on observers’
performance. The visual Strehl ratio is a measure of (neurally
weighted) relative image quality, quantifying the ratio of the sum
under the OTF of an aberrated optical system to that of a diffrac-
tion limited one. In the traditional visual Strehl ratio (Thibos
et al., 2004) the OTF is weighted by the human neural contrast
sensitivity function, which attenuates high and very low spatial
frequencies. We recently modified this metric such that the OTF
is weighted by the neural filter that mediates the task (which for
letter identification we had assumed to be a Gaussian function
with a mean of 3 cycles per letter and a bandwidth of 1 octave) to
give improved predictions of performance (Young et al., 2013a).
In this paper we perform the same calculations but with two addi-
tional modifications. Firstly, for each observer, instead of using a
Gaussian weighting, LB(fx,fy), with a mean of 3 cycles per letter
we use a mean equal to the center frequency derived from the
observer’s performance in the control condition. Secondly, as for
the template matching model, we introduce an additional notch
filter, NF(fx,fy), to account for the masking effects of the noise.
The equations representing the VSMF and VScombined are

FIGURE 4 | An example confusion matrix indicating the maximum

values of cross-correlations between letter images, in this case for the

no aberration condition with no notch filter. Gray values indicate values
ranging from zero (black) to one (white). The matrix is normalized such that
the values along the diagonal are equal to one. The confusability value
associated with this matrix is 0.6.
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and
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, (4)

where MTF(fx,fy) is the MTF of the aberrated PSF, MTFDL(fx,fy)
is the diffraction-limited MTF and PTF(fx,fy) is the PTF (in the
range -π to π) of the aberrated PSF. A summary of the method for
calculating the visual Strehl ratio is given in Figure 5 and further
details can be found in our previous paper Young et al. (2013a).

As we have already shown that modified visual Strehl metrics
are a good predictors of the increase in contrast threshold for
letter identification from the no aberration condition, we would
expect these results to closely match observers’ change in noise-
masked performance if observers continued to use the same band
of spatial frequencies for each type of aberration. If this is the case
we can assume that the change in the response profile (associ-
ated with an aberration) is caused by a reduction in image quality
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FIGURE 5 | The steps used to calculate the visual Strehl ratio (VSMTF in

this example). The numerator in equation 3 is calculated as follows: For a
particular aberration (shown on the left half of the figure) (A) the PSF is
computed from the wavefront error associated with the aberration, (B) the

MTF is computed as the Fourier transform of the PSF, (C) the MTF is
weighted by a Gaussian function (in log frequency space and with mean
equal to an observer’s channel center frequency in the control condition)

(Continued)
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FIGURE 5 | Continued

representing the visual channel mediating letter identification and (D) the
result (green shaded area) is then additionally weighted by a notch filter that
removes the spatial frequencies masked by the passband of noise. The result
of this additional weighting (red shaded area) is then summed. The
denominator in equation 3 is calculated by repeating steps (A–D) for a
diffraction-limited PSF, as shown on the right half of the figure. The visual

Strehl ratio is then the sum for the aberration divided by the sum for the
diffraction-limited case and the result is weighted by the total signal power in
the notch filter. A similar calculation is performed for the VScombined (see
Equation 4) except that in the numerator the MTF is weighted by the PTF,
normalized between zero (at a phase shift of π ) and one (at a phase shift of
zero) and in the denominator the diffraction-limited MTF is replaced by the
MTF for the aberration (Young et al., 2013a).

alone. If this is not the case, we wish to estimate which band of
spatial frequencies our observers are using.

To estimate shifts in the putative neural channel underlying
performance over and above changes imposed by the frequency-
dependent changes in image quality, we additionally determine
the center frequency of the Gaussian weighting (letter band, LB)
with which to weight the OTF (as step Figure 5C), so as to mini-
mize the sum of the squared differences between the visual Strehl
ratio and the observer-derived increase in threshold (from the no
aberration condition), within each particular noise band.

3. RESULTS
3.1. THRESHOLD ELEVATION
For individual observers, threshold energy values, E, were calcu-
lated from the contrast threshold measure for each experimen-
tal condition and these were averaged over five sessions. These
thresholds could be a result of intrinsic visual noise as well as
the noise we have added. Therefore, we quote threshold eleva-
tions, E+ = E − E0, where E0 is the average threshold energy with
no external noise. We also quote threshold signal-to-noise ratios,
SNR, which are calculated as:

SNR = E +

N
, (5)

where N is the noise power spectral density (Pelli and Farrel,
1999).

Thresholds were obtained as a function of the center frequency
of the one-octave ideal bandpass noise. The center frequency of
the channel was estimated from the location of the maximum
threshold elevation determined by fitting a Gaussian function (on
a log-frequency scale) to the threshold signal-to-noise ratio and
extracting the mean value. Thresholds were additionally obtained
in the presence of an additional passband of noise designed to
mask spurious resolution. The threshold elevations and signal-
to-noise ratios are given in Figure 6 (simple bandpass mask) and
Figure 7 (bandpass mask plus additional band to mask spuri-
ous resolution) and the center frequencies are summarized in
Figures 10A,B.

Fitting Gaussian profiles to a measure of contrast threshold
elevation gave an average center frequency (across observers) of
2.3 cycles per letter (standard error, SE = 0.1 cycles per letter)
for defocus, 2.7 cycles per letter (SE = 0.1 cycles per letter) for
coma, 2.3 cycles per letter (SE = 0.1 cycles per letter) for sec-
ondary astigmatism and 3.6 cycles per letter (SE = 0.1 cycles per
letter) in the control condition. With the additional spurious res-
olution mask the average center frequencies were 1.7 cycles per
letter (standard error, SE = 0.1 cycles per letter) for defocus, 2.6
cycles per letter (SE = 0.2 cycles per letter) for coma, 2.2 cycles

per letter (SE = 0.2 cycles per letter) for secondary astigmatism
and 3.2 cycles per letter (SE = 0.2 cycles per letter) in the control
condition.

These fitted center frequencies revealed a shift from the no
aberration condition of between −0.45 and −0.82 octaves for
defocus, between −0.25 and −0.56 octaves for coma and between
−0.51 and −0.78 octaves for secondary astigmatism. The thresh-
old signal-to-noise ratios show a consistent increase in threshold
with the additional spurious resolution mask in the presence of
an aberration (Figure 7). However, the spurious resolution mask
only produced a significant shift (as determined by the 95% con-
fidence limits) in center frequency for defocus for observers RJL
and HES, and this was to lower frequencies. For observers LKY
and HES, there is little difference between the control condi-
tion with the spurious resolution mask and the control condition
without it, suggesting that this additional mask is having a negligi-
ble effect on performance. However, observer RJL exhibited a sig-
nificant shift in the channel frequency for the control condition.

3.2. PREDICTING THE CHANNEL
For unaberrated, unfiltered letters the confusability value is 0.60.
For defocus, coma and secondary astigmatism the confusability
values for unfiltered letter stimuli are 0.80, 0.78 and 0.82 respec-
tively. Unsurprisingly, the aberrations increase confusability. But,
of interest in our present experiment is how the distinguishing
features that remain are distributed across the spatial frequency
range. Figure 8 shows the relationship between confusability and
the center frequency of the notch filter that had been applied
to the letters to represent the masking effects of the bandpass
noise. A high confusability value suggests that removing the band
of frequencies (via filtering in our model or via masking in
the experiment) makes letters more difficult to distinguish and
therefore the identification task should be more difficult and the
associated contrast thresholds correspondingly larger. The results
show that, based purely on the demands of a template matching
task, the response should be low pass, which is in agreement with
the findings of Solomon and Pelli (1994). The low-pass charac-
teristic found with unaberrated letters is retained for aberrated
letters.

To investigate the effects of a reduction in image quality caused
by each aberration, we used the visual Strehl metrics described in
Section 2.5.2. The visual Strehl ratios, shown in Figure 9, indicate
the change in visual image quality associated with the addi-
tion of an aberration, within the band of frequencies we assume
observers to be using for the task (based on their threshold eleva-
tions in the control condition). If a change in image quality were
the only factor driving the difference in performance between
aberrated and unaberrated letters, we would expect these values
to correlate with the increases (from the no aberration condition)
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FIGURE 6 | Threshold elevations (above the no noise condition) for letter

identification measured with noise that had been filtered using

one-octave-wide (ideal) passbands at different center frequencies.

(A,B) Show the threshold energy elevations and threshold signal to noise

ratios for observer LKY, (C,D) show the equivalent results for observer RJL
and (E,F) for observer HES. The frequency axis is shown on a log10 scale and
Gaussian functions were fitted to the data in log-frequency space. Error bars
represent the standard error on the mean.
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FIGURE 7 | Threshold elevations (above the no noise condition) for

letter identification measured with noise that had been filtered

using one-octave-wide (ideal) passbands at different center

frequencies plus an additional band to mask spurious resolution in

the letter images. (A,B) Show the threshold energy elevations and
threshold signal to noise ratios for observer LKY, (C,D) show the

equivalent results for observer RJL and (E,F) for observer HES. The
dashed lines with open symbols show the data in the absence of the
spurious resolution mask, replotted from Figure 6. The frequency axis
is shown on a log10 scale and Gaussian functions were fitted to the
data in log-frequency space. Error bars represent the standard error on
the mean.

Frontiers in Psychology | Perception Science September 2014 | Volume 5 | Article 1060 | 121

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Young and Smithson Aberrations and letter identification channels

FIGURE 8 | The confusability of letters as a function of the center

frequency of a one octave-wide notch filter applied to the letters.

A confusability value of zero means that the only overlap is between a letter
and its (unaberrated) template (i.e., the raw, unweighted correlation matrix is
the identity matrix), and a confusability value of one means that all the
aberrated letters overlap to the same degree as they do with the
(unaberrated) template (i.e., the raw, unweighted correlation matrix is a
matrix of ones). A confusability value greater than one can be obtained, if on
average, there is more overlap between an “incorrect” aberrated letter and
the (unaberrated) template than there is between the “correct” aberrated

letter and its (unaberrated) template. The confusability values for unfiltered
letters are 0.60 in the control condition and 0.80, 0.78 and 0.82 for defocus,
coma and secondary astigmatism respectively (indicated by the dashed
lines). For all three types of aberration and the control, the confusability of
letters is highest for low frequency notch filters. The notch filter removes a
band of frequencies from the image, which we use to simulate bandpass
filtered noise masking those same frequencies. The results suggest that the
image characteristics that distinguish letters are concentrated at low spatial
frequencies, since removing these frequencies increases confusability the
most.

in threshold SNR measured empirically. Figure 9 shows that this
is not the case.

To determine the weighting that should be applied to the OTF
to represent the visual filter our observers are actually using in
the aberration conditions, a sliding filter (as opposed to one
generated from observers’ measured center frequencies in the
control condition) was used to reproduce the analysis summa-
rized in Figure 5. Using this method we determined the center
frequency of the sliding filter that produced visual Strehl ratios
that most closely matched the observer-derived increase (from the
no aberration condition) in threshold SNR. The results, given in
Figures 10C,D, suggest that in the presence of an aberration the
center frequency of the visual filter mediating letter identification
is most likely lower than that for the control condition.

4. DISCUSSION
When studying the effects of an optical aberration on visual per-
formance it is important to consider not only the degradation of
the image per se but specifically the loss of information in the
image that is required to succeed at a visual task. Previous work
has shown that visual performance is impaired in the presence
of optical aberrations (Applegate et al., 2002, 2003; Chen et al.,
2005; Rocha et al., 2007; Zhao et al., 2009; Cheng et al., 2010;
Rouger et al., 2010; Young et al., 2013b). The reduction in visual
performance is related to both the type of aberration and the
amplitude of that aberration (Applegate et al., 2003, for exam-
ple) and the effect is task-specific (Pepose and Applegate, 2005).
Most work in this respect has focussed on letter-based tasks, most

likely because they are a standard clinical optotype for assess-
ing visual impairment and, being over-learned, they are ideal for
testing object recognition. Aberrations cause spatial-frequency-
dependent changes in an image and with letters being broadband
stimuli we might expect that visual information is disrupted
across the entire spectrum. However, any method for predict-
ing performance that makes this assumption has the potential
to incorrectly estimate the performance loss, since it will include
degradation at spatial frequencies that do not ultimately mediate
the task. Restricting the band of spatial frequencies over which
a prediction metric is calculated to those mediating the task can
mitigate this problem.

Solomon and Pelli (1994) showed that an ideal observer model
predicts that the response profile, based purely on the demands
of the task, should be low-pass. We additionally show that, even
in the presence of aberrations, the response of an ideal observer
(which we model via template matching) should also be low pass
(Figure 8). Contrary to the predictions of their ideal observer
model, Solomon and Pelli (1994) found, using critical band mask-
ing, that human observers use a single band of spatial frequencies
centered at three cycles per letter with a bandwidth of one to two
octaves. Further to this, Majaj et al. (2002) demonstrated that fil-
tering a letter (at a fixed size) causes the center frequency to shift,
scaling less than proportionally with the center frequency of the
filter (defined in cycles per letter). Oruç and Landy (2009) also
proposed that observers could switch spatial-frequency channels,
but not necessarily to the optimal one. We hypothesized that real
ocular aberrations, which act to spatially filter an image, could
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FIGURE 9 | (A,B) Comparison between observer LKY’s measured
performance (dashed lines, open symbols) and a prediction of performance
based on the visual Strehl ratio (solid lines, closed symbols) computed using
(A) the VSMTF and (B) the VScombined . Panels (C,D) are the equivalent data
for observer RJL and (E,F) are those for observer HES. As the visual Strehl
ratio is high for good image quality the data are presented as the reciprocal of
the visual Strehl ratio for comparison with threshold values. The

observer-derived values reported here are the increase in threshold
signal-to-noise ratio from the no aberration condition (i.e., the data presented
as colored lines in the right half of Figure 6 minus the corresponding control
data, presented as black lines), and in the absence of the additional spurious
resolution mask. If our observers’ performance were affected only by image
quality degradation, and not a shift in the putative neural channel, the dashed
lines should overlap with the solid lines.
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FIGURE 10 | The channel center frequencies derived from Gaussian fits

(in log-frequency space) to the response profiles or by running the

visual Strehl model. Closed symbols show center frequencies in the
absence of the spurious resolution mask and open symbols show the center
frequencies with the additional spurious resolution mask. Data from different

aberration types are shown in rows and data from different observers are
shown in columns. Each sub-panel shows (A) the center frequency in the
control condition (replotted in each row) derived from the empirical measure
of threshold signal-to-noise ratio (as shown in right half of Figures 6, 7),

(Continued)
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FIGURE 10 | Continued

(B) the similarly derived center frequency in the aberration condition,
where the aberration type is indicated by the labels on the right of the
figure, (C) the optimal center frequency for the Gaussian weighting (i.e.,
the putative visual channel) when calculating the VSMTF to most closely
match the increase in the observer-derived threshold signal-to-noise ratio
from the no aberration condition and (D) the optimal center frequency for

the Gaussian weighting (i.e., the putative visual channel) when calculating
the VScombined to most closely match the increase in the observer-derived
threshold signal-to-noise ratio from the no aberration condition. Error bars
represent the 95% confidence limits, which were calculated by
bootstrapping the data for each observer and each condition, drawing
randomly with replacement from the data for individual trials, repeated for
1000 simulations.

affect the spatial frequency channel mediating letter identifica-
tion. Additionally, some aberrations create spurious resolution
that introduces extra contours, which may drive the channel to
a sub-optimal center frequency.

By using a critical-band masking technique for aberrated letter
stimuli we have demonstrated measurable shifts in the chan-
nel frequency mediating their identification to lower frequen-
cies. A shift from higher to lower spatial frequencies may be
expected since aberrations generally attenuate higher frequencies
but maintain contrast better at lower frequencies, yet confusabil-
ity is less low pass in aberrated conditions than in the control
(Figure 8). Across all observers there was a consistent trend show-
ing that defocus and secondary astigmatism caused the largest
shift in frequency band producing the peak masking effect and
coma showed a smaller change.

Another possible effect could be that the bandwidth of the
channel changes in the presence of an aberration if the informa-
tion in the original channel is insufficient to identify the letter.
We also tested the effects of changing the bandwidth of the noise
by repeating the experiment with filtered noise having a vary-
ing bandwidth centered on the center frequencies determined for
individual observers. These results are not presented here because
they were too noisy to draw any firm conclusions from, most
likely because the spatial frequency dependent contrast changes
caused by these aberrations are non-monotonic. As the band-
width increases it could potentially mask spurious resolution, or
any other phase changes that may disrupt letter identification, and
performance may partially improve. The results demonstrated a
sigmoid shape but with additional dips that would be consis-
tent with this hypothesis. However, as an approximation to the
expected sigmoid shape it appeared that the bandwidth of the
filter was not changing dramatically.

Ideally we would have compared thresholds measured in band-
pass noise with those measured in notch filtered noise. This would
have indicated whether observers were channel switching. While
we did attempt this, any effects from the interaction between
the notch filter and the aberration were lost in the noise due
to having insufficient dynamic range for the noise contrast. We
chose instead to look specifically at masking a secondary band
of frequencies, coinciding with spurious resolution to investigate
interactions between frequency channels.

If threshold performance depended only on a narrow band
of frequencies, centered on 3 to 4 cycles per letter, adding the
additional high-frequency mask should have no effect on perfor-
mance. Our results on the other hand show a consistent increase
in threshold with the additional mask (Figure 7) and in aberrated
conditions there is a suggestion that the mask shifts the putative
neural channel to lower frequencies (Figure 10B). Clearly there
is some interaction between channels, although our results are

insufficient to describe the nature of this interaction. The effects
of spurious resolution are likely to be complex, perhaps pro-
ducing false positives based on contours or features that might
wrongly identify a letter, or driving looking to a suboptimal chan-
nel that has relatively high contrast. However, the way in which
this is affected by the mask and by the observer’s familiarity with
the stimuli is beyond what we have tested here.

What is not clear from the data in Figures 6, 7 is whether
the threshold elevations simply represent the residual informa-
tion available in the noise-masked stimulus, or whether there is an
interaction between the spatial frequencies used by the observer
and the nature of the aberration. If observers persist in using the
same visual channel in the presence of an aberration, we should be
able to predict the change in threshold simply from the change in
image quality within that channel. We have chosen to use visual
Strehl metrics for this analysis. Our conclusions are dependent
on these metrics providing an adequate summary of image qual-
ity, which is supported by several studies showing that they work
well for predicting performance on letter-based tasks in the pres-
ence of an aberration (e.g., Marsack et al. 2004; Thibos et al. 2004;
Young et al. 2013b). Using the center frequencies measured for
the control condition we calculated the visual Strehl ratio in each
noise filter band. Figure 9 shows how the increase in threshold
SNR (from the no aberration condition) of our observers should
be skewed if their performance were affected only by image qual-
ity degradation in the absence of any change in the visual channel
they were using. It is clear that the values predicted from the
visual Strehl ratio do not match the observer-derived increases in
threshold SNR and we therefore assume that the our observers are
using a different band of spatial frequencies than those derived in
the control condition.

The response profile derived from an observer’s threshold SNR
in the control condition can be used to infer the center frequency
of the neural channel associated with letter recognition for an
optically ideal visual system. The corresponding response pro-
files measured in the aberration conditions include the effects of
changes in image quality and any changes in the putative neu-
ral channel supporting performance. We use a modified visual
Strehl ratio to capture the changes in the image (from the no-
aberration condition) and the changes in the neural channel
by finding the neural filter that, when used as the weighting
function in the visual Strehl calculation, gives the best match
between the metric and the measured increases in threshold
SNR. We consider aberration-induced changes in the putative
channel mediating letter identification to be the shifts in cen-
ter frequency from the no-aberration condition (in which there
are no image quality effects) to the center frequency of the slid-
ing filter that most closely captures the measured performance
changes. Figures 10C,D summarizes these results. The VSMTF
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reveals shifts in the putative visual channel to much lower spatial
frequencies (as compared to the control condition, panel in
Figure 10A), and this was also observed in the presence of the
additional spurious resolution mask. The VScombined metric pro-
duces inconsistent results across observers and this is most likely
due to the non-monotonic nature of the VScombined profiles. The
non-monotonic profiles arise due to additional π phase changes
at lower spatial frequencies (e.g., see Figure 2). Interestingly, these
have a substantial effect on the metric but not on performance.
Accurately modeling the consequences of phase changes for visual
performance is difficult, and these results suggest the VScombined

metric should be further refined.
It is important to note that our observers were not adapted to

these aberrations, as they might be if they were permanent feature
of their vision. Therefore we cannot be sure that an observer with
these aberrations occurring naturally would have a shifted center
frequency with respect to the normal population. Additionally we
have tested these three types of aberration in isolation whereas in
a normal eye there would be combination of aberration types and
amplitudes.

Our results suggest that the impact optical aberrations have
on letter identification performance is not only based upon
a loss of contrast or changes in phase but that there is also
the potential for them to alter the neural channel selected to
support letter identification. We already know that optical aber-
rations can have far reaching effects on visual performance
as we have shown that certain types of aberration specifically
affect the process of word recognition (Young et al., 2011)
with uncommon words taking disproportionally longer to iden-
tify than common words in the presence of defocus or sec-
ondary astigmatism than with no aberration applied. Majaj
et al. (2002) suggested that the channel mediating letter iden-
tification is selected bottom-up by the signal and our results
broadly agree with this hypothesis in that observers’ response
profiles changed when an aberration was present. The mea-
sured change in performance was not simply predicted by the
spatial-frequency-dependent change in image quality within a
fixed channel, at least based on the image quality metrics we
have used, suggesting that observers exhibit flexibility in the
channel they select for letter identification in the presence of an
aberration.
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