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Editorial on the Research Topic

Microbiome and Machine Learning

The human microbiome has attracted more and more attention in the last decade. It has
been recognized as a major player in the homeostasis of the host, and in this manner, in the
pathophysiology of different diseases. One of the focus points of microbiome research has been
advancing the development of personalized medicine approaches, which are potentially necessary
to treat multifactorial diseases presenting with heterogenous phenotypes. While significant efforts
have been made in terms of sampling, sequencing and analysis multiple well-described disease
cohorts and controls, subsequent translation of this information into clinical use has unfortunately
been slower than expected.

On the other hand, translation of microbiome insights to clinical practice faces different
challenges. For instance, the many different analysis techniques specifically suited for the study
of the microbiome have to be standardized, due to the otherwise over-shadowing methodological
confounders. A second problem we are facing is that some particularities of microbiome data
and its management makes the development of optimized and standardized methods that can
deal with this kind of high dimensional data especially difficult. Machine learning (ML) offers
great potential to be applied in analyzing these complex datasets. The main goal of the COST
Action ML4Microbiome (https://www.cost.eu/actions/CA18131/) is to optimize, standardize and
disseminate best practice of ML usage for human microbiome data. This Action has brought
together Artificial Intelligence (AI)/ML experts and microbiome researchers to meet this aim,
which will ultimately accelerate the advance in the translation of microbiome science.

This endeavor is, however, far from trivial due to several methodological challenges that
must first be overcome. Microbiome data are inherently noisy and heterogeneous, there
are several different data types, and in most cases many more features (taxa, genes etc.)
than samples. In order to describe the current state-of-the-art of ML with microbiome
data, Macros-Zambrano et al., reviewed ML use in terms of feature selection, biomarker
identification, disease prediction and treatment. The review focused on real ML applications
and outlined relevant software and repositories of microbiome data with associated research
papers guiding the implementation of future ML efforts in this space. Indeed, ML4microbiome
members also expressed their perspective on the past, present and future of the use of
ML in microbiome in an accompanying review (Moreno-Indias et al.). Here, the main
shortcomings identified were the small size of the datasets used so far, the necessity
to combine statistical techniques that have been specifically tailored to fit the particular
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characteristics of microbiome data, and the need for more user-
friendly versions of these approaches to facilitate a wide range
usage from different areas of expertise.

Original research manuscripts have also been submitted by
the researchers in the field. The contributions published in
this Research Topic have both improved current knowledge in
particular fields, and contributed with new ML-based tools to
be applied in the microbiome space. Some papers focus on the
more technical part, including the comparison of Naive Bayes
classifiers (NBC) vs. other 16S rRNA taxonomic classifiers based
on Random Forest or Neural Networks (Ziemski et al.). The
authors demonstrated and concluded that in practical scenarios
NBC behave in a similar manner to the other classifiers. Although
further improvements will arrive, at least for the moment, NBC
use is still guaranteed.

In terms of development of new ML-based tools for
enhancing microbiome data analysis have been part of this
topic as well, Ramon et al. proposed the kernInt package
to integrate metagenomic datasets with unsupervised and
supervised microbiome analyses, including the recovery of
microbial signatures through taxa importance. One important
point is that kernlnt considers the compositionality of the
microbiome data, and that this approach is adaptable enough to
use with different applications.

Other applications presented in this Research Topic are two
new tools developed based on two disciplines in continuous
growth: virome and secretome (Fang and Zhou). Here, the
authors used a deep learning approach in order to develop
a prokaryote virus virion proteins (PVVPs) prediction tool
called VirionFinder, to identify the complete and partial PVVPs
from non-prokaryote virus virion proteins (non-PVVPs). The
identification of this kind of proteins is a critical step for
many viral analyses, such as species classification, phylogenetic
analysis and the exploration of how prokaryote virus interact
with their hosts. The researchers found that focusing only on
a 20 amino acids sequence, instead of the whole or partial
proteins VirionFinder, significantly improves sensitivity. Using
real virome data further improved the recognition rate of PVVP-
like sequences compared to previous tools.

Yu et al. presented their efforts on detecting secreted proteins
by Gram-negative bacteria, which is particularly important due to
their involvement in bacteria-host interactions. As it is currently
challenging to distinguish between different types, especially
between type III secreted effectors (T3SEs) and type IV secreted
effectors (T4SEs), the authors proposed a deep learning solution
for accurately distinguish T3SEs and T4SEs. The tool called
DeepT3_4 is able to reach a recall of 80%, providing a promising
tool for secretome analysis.

Several manuscripts submitted to this Research Topic have
focused on a translational vision. Sudhakar et al. highlighted
important computational applications to overcome some of the
limitations encountered in microbiome lab-research to enhance
our understanding of the microbe-host interactions, and how to
fill the big gaps in terms of how the microbiome mechanistically
influences host functions at both system and community levels
(Sudhakar et al.). This comprehension allows us to progress
the development of biomarkers uncovering mechanisms for
therapeutic interventions and generating integrated signatures

to stratify patients. Other authors have focused on particular
diseases, such as Bakir-Gungor et al., who used different
supervised and unsupervised ML models to investigate novel
microbiota to find Type 2 diabetes (T2D) biomarkers. They
increased the diagnostic accuracy and identified several species
from Bacteroides and other genera that were relevant for the
disease. These bacteria have been previously reported to play
roles in T2D pathophysiology.

Finally, Vilne et al. presented a minireview on the use of ML
in coronary artery disease and its risk prediction. The authors
discussed the inclusion of diet-gut microbiome interactions
in order to advance development of personalized medicine.
Although microbiome data is of paramount importance for the
development of a precision medicine approach, they argued
that there are still several hurdles to take related to the
homogenization of the data, both in terms of microbiome
and diet. Once these have been addressed, the development of
wearable biosensors for the patients’ self-care may be possible.

In conclusion, the introduction of the use of ML in
microbiome research is still in its infancy and much more
research and methods development are necessary. These new
approaches hold great potential for predicting individual health
status, the Research Topic presented in this issue will hopefully
aid in accelerating the transition. The ML4microbiome COST
Action has made great strides in bringing the microbiome
and ML community together which can lead to the necessary
advancements in both research communities.
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Gram-negative bacteria can deliver secreted proteins (also known as secreted effectors)
directly into host cells through type III secretion system (T3SS), type IV secretion
system (T4SS), and type VI secretion system (T6SS) and cause various diseases.
These secreted effectors are heavily involved in the interactions between bacteria
and host cells, so their identification is crucial for the discovery and development of
novel anti-bacterial drugs. It is currently challenging to accurately distinguish type III
secreted effectors (T3SEs) and type IV secreted effectors (T4SEs) because neither
T3SEs nor T4SEs contain N-terminal signal peptides, and some of these effectors
have similar evolutionary conserved profiles and sequence motifs. To address this
challenge, we develop a deep learning (DL) approach called DeepT3_4 to correctly
classify T3SEs and T4SEs. We generate amino-acid character dictionary and sequence-
based features extracted from effector proteins and subsequently implement these
features into a hybrid model that integrates recurrent neural networks (RNNs) and deep
neural networks (DNNs). After training the model, the hybrid neural network classifies
secreted effectors into two different classes with an accuracy, F-value, and recall of over
80.0%. Our approach stands for the first DL approach for the classification of T3SEs and
T4SEs, providing a promising supplementary tool for further secretome studies.

Keywords: Gram-negative bacteria, secreted effector, deep learning-artificial neural network, recurrent neural
networks, deep neural networks

INTRODUCTION

Protein secretion plays an important role in coordinating the interactions between bacteria and
their surrounding environment. Through a variety of secretion systems, bacteria can release
different types of proteins into the extracellular environment or even directly inject them into
eukaryotic host cells (Galan and Waksman, 2018; McQuade and Stock, 2018). Since bacterial
secreted proteins are commonly involved in important physiological activities of host cells,
they have become a new research hotspot in recent years. To date, nine different types of
secretion systems have been discovered from Gram-negative bacteria, which are named type I
secretion system (T1SS) to type IX secretion system (T9SS), respectively (Lasica et al., 2017;
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Lauber et al., 2018). Within these secretion systems, T1SS, T2SS,
and T5SS can transport enzymes and other proteins into the
surrounding environment, while type III secretion system (T3SS),
type IV secretion system (T4SS), and type VI secretion system
(T6SS) can transfer various effector proteins into host cells
directly. These secreted effectors released through the latter three
secretion systems are generally referred to as type III secreted
effectors (T3SEs), type IV secreted effectors (T4SEs), and type
VI secreted effectors (T6SEs) (An et al., 2018), and they can
exert the virulence of Gram-negative bacteria in a number of
ways, severely disrupting the normal function of host cells (Kim,
2018). Therefore, an in-depth study of secreted effectors is highly
desirable for understanding the pathogenesis of bacteria and
developing novel anti-microbial agents.

Over the past decade, dozens of machine learning-based
computational approaches have been proposed to identify
different types of secreted effectors (Zeng and Zou, 2019),
including support vector machine (SVM) (Samudrala et al., 2009;
Yang et al., 2010; Wang et al., 2011, 2014, 2017; Dong et al.,
2013; Zou et al., 2013; Goldberg et al., 2016; Esna Ashari et al.,
2019a,b), random forest (RF) (Yang et al., 2013), artificial neural
network (ANN) (Löwer and Schneider, 2009), naive Bayes (NB)
(Arnold et al., 2009), hidden Markov model (HMM) (Xu et al.,
2010; Lifshitz et al., 2013; Wang et al., 2013), logistic regression
(LR) (Esna Ashari et al., 2018), decision tree (DT) (Wang et al.,
2019a), gradient boosting (Chen et al., 2020), deep learning (DL)
(Xue et al., 2018, 2019; Açıcı et al., 2019; Fu and Yang, 2019; Hong
et al., 2020; Li et al., 2020a), and their ensemble methods (Burstein
et al., 2009; Hobbs et al., 2016; Wang et al., 2018, 2019b; Xiong
et al., 2018; Li et al., 2020b). Some of these methods have achieved
relatively high predictive accuracy, while they can recognize only
one type of secreted effector, such as SIEVE (Samudrala et al.,
2009), EffectiveT3 (Arnold et al., 2009), T3_MM (Wang et al.,
2013), GenSET (Hobbs et al., 2016), Bastion3 (Wang et al.,
2019a), DeepT3 (Xue et al., 2019), WEDeepT3 (Fu and Yang,
2019), ACNNT3 (Li et al., 2020a), and EP3 (Li et al., 2020b) for
T3SEs; T4EffPred (Zou et al., 2013), T4SEpre (Wang et al., 2014),
DeepT4 (Xue et al., 2018), PredT4SE-Stack (Xiong et al., 2018),
Bastion4 (Wang et al., 2019b), T4SE-XGB (Chen et al., 2020),
and CNN-T4SE (Hong et al., 2020) for T4SEs; and Bastion6
(Wang et al., 2018) for T6SEs. It is important to note that due
to the small number of T6SEs for model construction, researchers
usually pay more attention to identifying T3SEs and T4SEs rather
than T6SEs. In addition, several multi-label classifiers have been
developed to identify different types of Gram-negative bacterial
secreted proteins simultaneously (Yu et al., 2013; Ding and
Zhang, 2016; Liang et al., 2018; Yu et al., 2018; Kong and Zhang,
2019), but they are not good at distinguishing between T3SEs
and T4SEs. Both T3SEs and T4SEs are non-classical secreted
proteins (without classical N-terminal signal peptides) (Liang
and Zhang, 2018; Zhang et al., 2020), and some of them have
similar evolutionary conserved profiles and sequence motifs (Zou
et al., 2013), so it is difficult to distinguish them accurately using
current methods.

In this paper, we explore the use of various DL architectures
and feature descriptors to identify and classify T3SEs and T4SEs.
Four different DL architectures are used to build the classification

models, including the convolutional neural networks (CNNs),
recurrent neural networks (RNNs), convolutional-RNNs
(CNN-RNNs), and deep neural networks (DNNs). For the
CNN, RNN, and CNN-RNN architectures, we first characterize
protein sequences using dictionary encoding and then generate
amino-acid character embedding vectors to learn the features
of two types of secreted effectors. The DNN architecture is
designed as a multilayered neural network, whose input layer
is fed traditional features or descriptors, including amino acid
composition (AAC), dipeptide composition (DC), position-
specific scoring matrix (PSSM), and their different combinations.
We carry out extensive experiments for comparison and present
a systematic analysis. Our results show that a hybrid neural
network (architectures: RNN + DNN; features: dictionary
encoding + AAC + DC) performs better than other models
on the test and independent test datasets, enabling accurate
classification of T3SEs and T4SEs. We also achieve interpretable
DL for T3SEs and T4SEs classification via an advanced
dimensionality reduction procedure and visualization, which
unravels the predictions of models. Based on these results,
we develop a DL approach, which is called DeepT3_4, by
implementing both the raw sequence and sequence-derived
features of effector proteins into the hybrid model. DeepT3_4
helps to understand the similar sequences and structures for
some of T3SEs and T4SEs, facilitating the refined studies of
different types of secreted effectors.

MATERIALS AND METHODS

Dataset Collection and Processing
Reliable data are the primary factor in establishing stable and
effective predictors, and all experimental data used in this study
were extracted from the Bacterial Secreted Effector Protein
DataBase (SecretEPDB) (An et al., 2017). SecretEPDB provides
a comprehensive annotation of the T3SEs, T4SEs, and T6SEs,
including sequence, structure, and function annotations for these
secreted effectors. A total of 1230 T3SEs, 731 T4SEs, and 181
T6SEs were collected in this database, and we selected all of the
T3SE and T4SE samples as original data to construct the training
and test datasets.

In order to avoid redundancy and homology bias, all effector
proteins in the original data were aligned by CD-HIT (Huang
et al., 2010) with a maximum sequence identity of 25%. After
that, only 302 T3SEs and 375 T4SEs were kept. Subsequently,
70% of this dataset was randomly selected for building the
benchmark dataset and the remaining 30% was used to establish
the independent test set (Jiang et al., 2017). Finally, the
benchmark dataset contained 211 T3SEs and 263 T4SEs, while
the independent test set was consisted of 91 T3SEs and 112 T4SEs
(Supplementary Table S1).

For further evaluating the performance of our method and
comparing with other state-of-the-art approaches, other two
independent test datasets were established by searching publicly
available articles. The independent test dataset 2 contains 108
T3SEs and 30 T4SEs, which were extracted directly from
Bastion3 (Wang et al., 2019a) and Bastion4 (Wang et al., 2019b),
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respectively. The independent test dataset 3 is composed of 35
T3SEs and 75 T4SEs, which were collected from the studies
of Yang et al. (2013) and Wang et al. (2017), respectively.
In addition, other 1319 proteins were randomly selected to
detect the performance of our method for identifying non-
T3SEs and non-T4SEs.

Feature Extraction
Dictionary Encoding
Each amino acid in the protein sequence is represented by an
ordinal number, in which each of the 20 basic amino acids is
assigned a number from 1 to 20 (e.g., alanine is assigned a number
of 1) (Veltri et al., 2018). Thus, each protein is represented by a
one-letter code and transformed into an L-dimensional vector,
where L is the length of the protein.

Amino Acid Composition (AAC) and Dipeptide
Composition (DC)
For each protein sequence, a 20-dimensional vector {d1, d2, . . .,
d20} and a 400-dimensional vector {d1, d2, . . ., d400} are used
to represent the compositions of 20 common amino acids and
all 400 possible amino acid pairs, respectively. The 20 elements
in {d1, d2, . . ., d20} represent the occurrence frequencies of each
amino acid with a protein. The 400 elements in {d1, d2, . . ., d400}
represent the frequencies of dipeptides.

Position-Specific Scoring Matrix (PSSM)
The PSSM profiles contain the evolutionary information of a
protein. Each element in PSSM indicates the substitution scores
of the individual residue at that specific position in the multiple
sequence alignment. To generate PSSM, each protein sequence
in our training and test datasets was searched against the Swiss-
Prot database using the PSI-BLAST (Altschul and Koonin, 1998)
with three iterations and a cutoff E-value of 0.001. The generated
PSSM from PSI-BLAST includes L × 20 elements, where L is
the length of a protein. This original profile is further used to
calculate the PSSM feature by averaging the columns in PSSM
profile and then is scaled to [−1, 1]. Finally, PSSM generates a
20-dimensional feature vector by characterizing a mutation of the
corresponding amino acid type during the evolution process.

Deep Neural Networks
As the most popular machine learning algorithm, DL has
been successfully applied to solve various problems, such as
image recognition, speech recognition, language translation, and
biological data analysis (Jurtz et al., 2017; Tang et al., 2019).
There have been four common variations of DNNs, including
the CNNs, the RNNs, the CNN-RNNs, and the DNNs. The
CNNs have outstanding spatial information analysis capabilities
and have been successfully applied in the prediction of secreted
effectors (Xue et al., 2018, 2019; Açıcı et al., 2019), protein
solubility (Khurana et al., 2018), and crystallization (Elbasir
et al., 2019). Compared to CNNs, RNNs can handle sequential
inputs effectively and recognize sequence motifs of varying
length extraordinarily well, making them the preferred choice
for machine translation, text generation, and image captioning
(Esteva et al., 2019). In order to integrate the advantages of the

CNNs and RNNs, the CNN-RNNs have been developed in recent
years and applied to a variety of biological problems (Quang
and Xie, 2016; Pan et al., 2018; Tayara and Chong, 2019). As
a typical representative of feedforward neural network (FNN),
DNNs are composed of multiple perceptrons of different layers
and are therefore very suitable for solving non-linear problems
and have been widely used in data classification and other fields
(Kruse et al., 2013).

Deep Learning Architectures
To accurately classify the proteins of Gram-negative bacteria into
separate secretion classes, we used DNNs with four different
architectures. For the first three network architectures, including
CNNs, RNNs, and CNN-RNNs, we encode the primary sequence
using a dictionary amino acid representation as input and output
one score between 0 and 1, corresponding to the probability
of an effector protein of interest being a T3SE or a T4SE. The
fourth architecture DNN is a standard multilayer neural network.
The DNN model takes AAC, PSSM, DC, and their different
combinations as inputs to predict the probability scores of two
types of secreted effectors. We describe the overview of different
DL architectures below.

The CNN consists of an embedding layer, a convolutional
layer, a pooling layer, a fully connected layer, and an output
layer. The first embedding layer transforms the input into a
256-dimensional vector representation. This transformation can
best be thought of as a one-dimensional signal (over sequence
position) spanning all amino acid signal channels. The input
sequence is 1500 amino acids long, a number that was chosen to
fit out dataset’s longest sequence. If the length of the sequence
exceeds 1500 amino acids, the excess will be ignored; otherwise,
the “X” character (unknown residue) will be padded at the tail
of the sequence to fit the 1500 length. The second convolutional
layer has 250 filters, where the filter width is set to five. The
convolutional layer is then followed by a max-pooling layer with
a non-overlapping window of size 2 to halve the size of the input.
Subsequently, a fully connected layer consisted of 650 neurons
with a dropout ratio of 20% is chosen to receive the flattening
results of the pooling layer (Bogard et al., 2019). All layers
whose activation is not specified explicitly use rectified linear unit
(ReLU) activations. Finally, the output layer employs the sigmoid
activation function to provide the predicted probability score for
the test sequence.

The RNN is made up of three types of layers: an embedding
layer, a biLSTM layer, and an output layer. The bidirectional
long short-term memory (biLSTM) is an enhanced version of
general RNNs in which the scalar-valued hidden layer of RNNs
is replaced by a biLSTM memory block. The biLSTM layer is a
forward–backward structure along the input sequence consisting
of two relatively separated RNN layers. We explored biLSTM
layers with 32, 64, 128, and 256 neurons and from one to four
layers deep. A biLSTM layer with 64 neurons and one layer of
depth gave the best performance. Dropout of 20% is applied
to biLSTM layer to prevent overfitting. The final output layer
utilizes a sigmoid activation function to process the output of the
biLSTM layer and gives a value (the probability score) for each
protein sequence.
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The CNN-RNN incorporates an embedding layer with
embedding size 256 along with a 1D convolutional layer with
filter size = 5. The max-pooling layer subsamples the 1D signal
by a factor of two. The flattened pooling output is passed to
a biLSTM layer of 64 hidden neurons, which finally connects
to a sigmoid activation function that outputs the predicted
probability score.

The DNN is constructed from three fully connected layers
with decreasing sizes of features vectors (e.g., 400, 200, and 100
for the DC) to reduce feature dimensions toward convergence
of model training. As an additional precaution, a dropout
probability of 20% is used in each layer.

The same RNN and DNN architectures are used to construct
the hybrid model. The RNN and DNN models are trained
separately, and their last hidden layers are further concatenated
and inputted into a sigmoid activation node. The RNN
architecture consists of an embedding layer and a biLSTM layer.
The biLSTM layer has 64 hidden units followed by a dropout rate
of 20%. The DNN model has three fully connected layers with
420, 210, and 105 neurons, respectively.

Performance Evaluation
For evaluation, we used standard performance quantification
metrics such as Recall (Sensitivity), Precision (PRE), Accuracy
(ACC), F-value, and Matthew’s correlation coefficient (MCC),
which are defined as follows:

Recall =
TP

TP + FN
(1)

PRE =
TP

TP + FP
(2)

ACC =
TP + TN

TP + FP + TN + FN
(3)

F − value = 2×
TP

2TP + FP + FN
(4)

MCC =
TP × TN − FN × FP

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(5)

where TP, FP, TN, and FN stand for true positive, false positive,
true negative, and false negative, respectively.

Implementation
All DNNs were implemented by using autoBioSeqpy (Jing
et al., 2020). The autoBioSeqpy is an easy-to-use DL tool for
biological sequence classification. The main advantage of this
tool is its simplicity. Users only need to prepare the input
dataset. After that, data encoding, model development, training,
evaluation, and figure generation workflows can be run through
the command line interface, by which users can modify the
parameters of the workflows easily. In addition, autoBioSeqpy is
designed to separate the data encoding and model configuration
into two relatively independent parts. The DL models can be built
using python code (i.e., written in.py files) or json files (saved by
Keras), so that the model can be flexibly adjusted according to
user needs. Currently, the tool has been upgraded to version 2.0,

which supports more complex network models and incorporates
model visualization function. For example, layerUMAP is a
portable command-line tool included in the autoBioSeqpy tool
suite, written in python, that makes use of the uniform manifold
approximation and projection (UMAP) for visual understanding
of DL models (Melville, 2019).

We sampled a variety of hyperparameter sets for different DL
models, including embedding dimension (32, 64, 128, and 256),
dropout rate (10, 20, 30, and 40%), batch size (25, 50, 75, and
100), epoch number (20, 40, 60, and 80), learning rate (0.001,
0.005, 0.01, 0.05, and 0.1), convolution kernel size (3, 5, 7, 9,
and 11), number of filters (50, 100, 150, 200, and 250), and
number of neurons in BiLSTM (32, 64, 128, and 256). We took
the sampled parameter set with best performance (mean MCC
score) and varied each parameter individually while keeping
the rest constant.

During the training process, we used binary_crossentropy as
loss function of the network and it has been optimized using the
Adam optimizer approach with a learning rate 0.001. We trained
all models with 40 epochs and a batch size of 25. The weights of
the parameters were updated within 40 epochs, and at the end of
each epoch, the intermediate validation metric is calculated. After
the training, the optimized parameters were evaluated by the
predictions from the test dataset. All the training was conducted
on a Windows 10 workstation with an NVIDIA GTX 1060 GPU
with CUDA 10.2.95. To interpret the model, we visualized the
decision map of model in two dimensions. We used the output of
the last hidden layer of the model as the extracted output features,
which were then projected into a 2D manifold via UMAP. Next,
we used a two-color scheme to refer to T3SE and T4SE based on
the extracted output features.

RESULTS

Overview of the Deep Learning Models
We first used a DL classification tool (autoBioSeqpy) (Jing et al.,
2020) to design and evaluate all 11 DL classifiers. Classifiers are
divided into three categories: (1) different model architectures but
with the same model inputs (CNN, RNN, and their combination
CNN-RNN); (2) the same model architecture but with different
model inputs (DNN); and (3) a hybrid architecture combining
the above two categories (RNN and DNN). Figure 1 depicts
all DL architectures in the effector classification. Details of the
methods are reported in Section “Materials and Methods.”

Effect of Model Architectures and
Features on Performance
We analyzed the performance of 11 different models (CNN,
RNN, CNN-RNN, seven DNN models with different input
features, and a hybrid model) on our held-out test set. The
benchmark dataset comprised 474 proteins, 70% of which was
randomly extracted for establishing the training set, 20% for
the test set, and the remaining 10% for the validation set. We
performed an extensive random hyperparameter search for each
model on the validation set, and then the top-performing tuned
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FIGURE 1 | Schematic illustration of the deep neural network architectures.

models were evaluated on the test set. A summary of our results
is provided in Figure 2.

Since CNN, RNN, and CNN-RNN have the same model
inputs, we first compared these three DL architectures. The
RNN model afforded the best training performance with the
highest scores of Recall (72.9%), PRE (77.0%), ACC (77.5%),
MCC (0.546), and F-value (74.4%). The CNN model followed
with an ACC of 76.6% and an MCC of 0.528. The CNN-
RNN model showed the lowest performance (ACC = 74.9% and
MCC = 0.496), which were lower than those of the RNN model as
2.6% and 0.050 on ACC and MCC, respectively.

Based on AAC, DC, PSSM, and their different combinations,
seven different features were employed to build the DNN models.
From Figure 2, it can be seen that DNN models trained by
the single feature group (only AAC, PSSM, or DC) tended to
obtain the relatively poor results, whereas those trained by a
combination of features (AAC+PSSM, AAC+DC, PSSM+DC,
and AAC+PSSM+DC) seemed to achieve better performance.
For the seven DNN models, the model with AAC+DC yielded
the best performance, and gave the highest scores of Recall
(76.3%), F-value (77.0%), and MCC (0.578). The PSSM+DC
model offered the highest ACC score (79.3%), but other four
parameters were lower than the AAC+DC model. Although
the model with AAC+PSSM+DC learns the most information,
its overall predictive performance was also weaker than that
of the model with AAC+DC. Surprisingly, the comprehensive
performance of the model with single feature DC was almost
comparable to those models trained with the combined features.
This result indicates that DC is a very important feature for
making a distinction between T3SEs and T4SEs.

After careful analysis of above results, we proposed a hybrid
model to integrate the advantages of the RNN and best DNN
models. This hybrid DNN model yielded the best overall
prediction performance for the test dataset, and provided the
highest scores of Recall (77.9%), PRE (83.3%), ACC (83.1%),
MCC (0.663), and F-value (81.0%). Therefore, we chose this

hybrid model as the final prediction model for this study. The
receiver operating characteristic (ROC) curve, precision recall (P-
R) curve, and accuracy-loss (acc-loss) curve were exploited to
evaluate the performance of the hybrid model (Figure 3). Area
values under the ROC curve (auROC) and P-R curve (auPRC)
for the hybrid model were 0.877 and 0.832, respectively. We
also trained the RNN and DNN (AAC+DC) models separately
to evaluate the robustness of the models, showing auROCs of
(0.804 and 0.847) and auPRCs of (0.795 and 0.794), respectively
(Supplementary Figures S1, S2). The results suggest that the
RNN and DNN (AAC+DC) models learned different sets of
features that complement each other for the task of distinguishing
between two types of secreted effectors.

Visualizing and Understanding Deep
Learning Models
To investigate the ability of DL models to distinguish two
types of secreted effectors, we analyzed the features extracted
from the last hidden layer of three classification models [RNN,
DNN (AAC+DC), and RNN and DNN (AAC+DC)]. Figure 4
shows a UMAP (McInnes and Healy, 2018) for dimension
reduction projection of these features. The points are color-
coded based on the true class label. Therefore, T3SEs and T4SEs
are characterized by purple and red points, respectively, with
each point representing an effector. As shown in Figure 4, the
features clearly distinguish the different secreted effectors. In
the RNN architecture, some T3SEs are distributed across the
T4SE cluster with no obvious pattern. The DNN and hybrid
architectures have the advantage of very clearly clusters, which
is consistent with the above classification results. Furthermore,
studies have confirmed that T3SS could be divided into two
subgroups, including the injectisome (non-flagellar) system and
the fagellar system (Blocker et al., 2003; Puhar and Sansonetti,
2014). Therefore, as the secretory products of the T3SS, T3SEs
could also be classified into two subtypes, which are shown
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FIGURE 2 | Performance comparison of different model architectures and features on the test dataset.

by the two sub-populations in Figure 4. Thus, this result
implies that T3SEs do have different sequences and conserved
patterns as well.

Performance of Different Model
Architectures and Features on the
Independent Test Set
To test model performance on external data, an independent test
set was obtained whose data were never used for training and
testing. We used this dataset to further compare the predictive
performance of models established by different architectures
and features, and the results are shown in Figure 5. For the
three DL architectures whose inputs are dictionary-encoded
sequences, the RNN model also yielded the best overall prediction
performance, achieving the highest scores of Recall (75.3%),
PRE (79.4%), ACC (80.0%), MCC (0.596), and F-value (77.2%).
The CNN-RNN model got the worst predictive performance,
including the lowest scores of Recall (72.6%), ACC (75.6%),
MCC (0.508), and F-value (72.7%). The AAC+DC model also
afforded the best overall predictive performance among the seven
DNN models, receiving the highest scores for ACC (80.0%),
MCC (0.597), and F-value (77.5%). Finally, the hybrid RNN and
DNN (AAC+DC) model obtained the best overall predictive
performance on the independent test set, providing the highest
scores for Recall (81.2%), PRE (80.0%), ACC (82.3%), MCC
(0.645), and F-value (80.5%), respectively. We then evaluated
the performance of RNN, DNN (AAC+DC), and their hybrid
model using ROC, PR, and acc-loss curves (Supplementary
Figures S3, S4 and Figure 6). In terms of auROC and auPRC,
the hybrid model also performed better than other two models.
These results further suggest that combining learned features of

RNN and DNN models can deliver a better model compared with
individual models.

Development of DeepT3_4 and
Comparison With Other Existing
Methods
To further evaluate the performance of our hybrid DL model
(named DeepT3_4), we used other two independent test datasets
to compare the performance of DeepT3_4 with other three
state-of-the-art approaches, including a typical T3SE predictor-
Bastion3 (Wang et al., 2019a) and two representative T4SE
classifiers-Bastion4 (Wang et al., 2019b) and CNN-T4SE (Hong
et al., 2020). For the independent test dataset 2, all prediction
results are listed in Table 1. As shown in the table, Bastion3
correctly identified all 108 T3SEs, but 12 T4SEs were incorrectly
predicted as T3SEs; 29 T4SEs were correctly identified by
Bastion4, but 25 T3SEs were incorrectly predicted as T4SEs.
CNN-T4SE correctly identified the maximum number of T4SEs
(29), but got the minimum number of T3SEs (59). When using
DeepT3_4, 101 T3SEs and 26 T4SEs were correctly identified,
and seven T3SEs and four T4SEs were misclassified. Although
DeepT3_4 did not obtain the highest Recall for T3SEs and the
highest PRE for T4SEs, it yielded the best overall prediction
performance here. DeepT3_4 gave the highest scores of ACC
(92.0%), MCC (0.775), and F-value (94.8%), which provided a
0.7%, 0.1%, and 0.040 improvement in ACC, F-value, and MCC,
respectively. These results indicate that DeepT3_4 is stable and
reliable in distinguishing T3SEs and T4SEs.

For the independent test dataset 3, all results are shown in
Table 2. As we can see from this table, Bastion3 acquired the best
overall prediction performance with the highest scores of ACC
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FIGURE 3 | ROC, PR, and acc-loss curves generated by autoBioSeqpy tool for the hybrid deep learning model on the test dataset.

(95.5%), F-value (93.0%), Recall (94.3%), and MCC (0.896). The
performance of DeepT3_4 is slightly lower than that of Bastion3,
and afforded the second highest scores of ACC (94.5%), F-value
(91.4%), Recall (91.4%), and MCC (0.874). Though Bastion4 and
CNN-T4SE got the highest score of PRE (100.0%), their overall
prediction performances were worse than those of Bastion3 and
DeepT3_4. It is noteworthy that for most of query sequences
(known secreted effectors) in the independent test dataset 3,
Bastion3 and Bastion4 did not provide the prediction results,
but directly gave the search results of BastionDB and all results
were marked as Exp. If both of Bastion3 and Bastion4 give
the prediction results for all query sequences, we believe that
DeepT3_4 will perform better than them.

Model Robustness Evaluation
To assess the effect of data scale on the predictive performance of
DeepT3_4, we calculated and plotted learning curves to observe
the relationship between the performance and data size. To
generate learning curves, an external resampling mechanism with
replacement was used to generate subsets with five different
scales: 20, 40, 60, 80, and 100%. After resampling, the subset
was split into five training-test groups for cross-validation. Each
resampling was repeated 10 times to measure the robustness of
the DL model. Thus, a total of 250 models (10 replicates ∗ five
scales ∗ five folds) were built for predicting the generated test
sets. Supplementary Figures S5, S6 show the learning curves
of the DeepT3_4 model using the ACC and MCC metrics. The
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FIGURE 4 | UMAP visualization of learned features.

DeepT3_4 model becomes relatively stable when the scale of
the dataset reaches 60% (about 325 samples). On this scale, the
ACC and MCC scores in cross-validation are 81.0 ± 3.0% and
0.620± 0.060, respectively. Except for the learning curve, we also
used fivefold cross-validation on a 100% scale dataset to further
evaluate the generalizability of the model. The detailed results
are shown in Supplementary Table S2. The DeepT3_4 achieves
the average scores of 83.9 ± 2.6% for ACC and 0.677 ± 0.052
for MCC, which is consistent with the results of 10-time test

(Figure 2). All together, these results illustrate the robustness of
DeepT3_4, even on the small sample dataset.

DISCUSSION

In recent years, many excellent works have been done in the field
of secreted effector prediction, such as Bastion3 (Wang et al.,
2019a) and DeepT3 (Xue et al., 2019) for T3SEs and Bastion4
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FIGURE 5 | Performance comparison of different model architectures and features on the independent test set.

(Wang et al., 2019b) and CNN-T4SE (Hong et al., 2020) for
T4SEs. Different from these studies, we developed a hybrid DL
approach by integrating RNN and DNN architectures to classify
T3SEs and T4SEs in this work. We have carried out extensive
experiments for comparison and have presented an in-depth
analysis. For both the benchmark and independent test sets, the
hybrid DNN model shows a consistently better performance than
the others. The innovations of this study are as follows: (i) to
the best of our knowledge, this is the first study to use DL to
classify T3SEs and T4SEs; (ii) different DL architectures and
features are employed to construct the predictors; (iii) clustering
and visualization of model-extracted features using UMAP;
(iv) the experimental results confirm that some of T3SEs and
T4SEs may have similar evolutionary conservatism profiles and
sequence motifs, which leads to limitations in the classification
performance of computational methods.

The secretion signal of T3SEs is generally located at the
N-terminal sequences (Yang et al., 2013), while the secretion
signal of T4SEs is commonly found in the C-terminal sequences
(Nagai et al., 2005). Therefore, some state-of-the-art methods
choose only 50–100 N-terminal amino acid residues to identify
T3SEs (Wang et al., 2013; Yang et al., 2013; Xue et al., 2019), or
only 100 C-terminal amino acid residues to predict T4SEs (Zou
et al., 2013; Wang et al., 2014; Xue et al., 2018). In order to assess
the role of N-terminal or C-terminal sequence features in the
classification of T3SEs and T4SEs, we calculated the sequence-
based features within the first 100 N-terminal residues, the last
100 C-terminal residues, and the whole protein sequences using
the best hybrid model, and further compared their performance
using the independent test set consisting of 91 T3SEs and 112
T4SEs. All test results are listed in Supplementary Table S3.
As can be seen from the table, the hybrid model trained by
the full protein sequences achieved the best overall prediction

performance and afforded the highest scores of Recall (81.2%),
PRE (80.0%), ACC (82.3%), MCC (0.645), and F-value (80.5%).
However, the performance of the hybrid models trained on
the first 100 N-terminal and last 100 C-terminal residues is
lower than that of the full-length sequence. These results suggest
that the full sequences can better characterize the two types of
secreted effectors.

We further developed DeepT3_4 to be able to predict non-
T3SEs and non-T4SEs. To further estimate the performance of
DeepT3_4, we employed a new dataset for a ternary classification,
which is composed of 1319 other proteins. When tested on
the new test set 10 times, DeepT3_4 obtained an overall
average ACC of 88.2%, which is higher than that of the binary
classification (ACC = 82.3%), suggesting that the addition of
other types of protein sequences does not affect the predictive
performance of our method.

In order to gain insight into the pathogenesis of bacteria
and to effectively develop new drugs, an increasing number
of studies have been conducted on various secreted effectors.
Although DeepT3_4 can distinguish between T3SEs and T4SEs,
there is still some room for further improvement. Moreover,
there are still many issues to be solved in the study of secreted
effectors. For example, T6SEs are widespread in various Gram-
negative bacteria, but only a few computational methods are
currently available to accurately identify them (Wang et al.,
2018, 2020; Sen et al., 2019). The T3SS and T4SS can be
divided into different subgroups (Costa et al., 2015), and thus
their secretory products, T3SEs and T4SEs are also classified
into different subfamilies (Bi et al., 2013; Zou et al., 2013).
However, more detailed studies of the subfamilies of T3SEs
and T4SEs are still rare. In addition, a new predictor has been
built to recognize potential non-classical secreted proteins of
Gram-positive bacteria recently (Zhang et al., 2020), which may
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FIGURE 6 | ROC, PR, and acc-loss curves generated by autoBioSeqpy tool for the hybrid deep learning model on the independent test set.

TABLE 1 | Performance Comparisons of DeepT3_4 with other three methods on
the independent test dataset 2.

Model TP TN FN FP ACC F-value Recall PRE MCC

(%) (%) (%) (%)

Bastion3 108 18 0 12 91.3 94.7 100.0 90.0 0.735

Bastion4 83 29 25 1 81.2 86.5 76.9 98.8 0.621

CNN-T4SE 59 29 49 1 63.8 70.2 54.6 98.3 0.427

DeepT3_4 101 26 7 4 92.0 94.8 93.5 96.2 0.775

spark a wave of researches on bacterial non-classical secreted
proteins. Overall, we propose an effective computational method
to accurately differentiate between T3SEs and T4SEs in this work,
and hope it could facilitate more relevant researches on bacterial
secreted effectors.

TABLE 2 | Performance Comparisons of DeepT3_4 with other three methods on
the independent test dataset 3.

Model TP TN FN FP ACC F-value Recall PRE MCC

(%) (%) (%) (%)

Bastion3 33 72 2 3 95.5 93.0 94.3 91.7 0.896

Bastion4 27 75 8 0 92.7 87.1 77.1 100.0 0.835

CNN-T4SE 28 75 7 0 93.6 88.9 80.0 100.0 0.855

DeepT3_4 32 72 3 3 94.5 91.4 91.4 91.4 0.874
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The advent of next-generation sequencing technologies allowed relative quantification
of microbiome communities and their spatial and temporal variation. In recent years,
supervised learning (i.e., prediction of a phenotype of interest) from taxonomic
abundances has become increasingly common in the microbiome field. However, a gap
exists between supervised and classical unsupervised analyses, based on computing
ecological dissimilarities for visualization or clustering. Despite this, both approaches
face common challenges, like the compositional nature of next-generation sequencing
data or the integration of the spatial and temporal dimensions. Here we propose a kernel
framework to place on a common ground the unsupervised and supervised microbiome
analyses, including the retrieval of microbial signatures (taxa importances). We define
two compositional kernels (Aitchison-RBF and compositional linear) and discuss how
to transform non-compositional beta-dissimilarity measures into kernels. Spatial data is
integrated with multiple kernel learning, while longitudinal data is evaluated by specific
kernels. We illustrate our framework through a single point soil dataset, a human dataset
with a spatial component, and a previously unpublished longitudinal dataset concerning
pig production. The proposed framework and the case studies are freely available in the
kernInt package at https://github.com/elies-ramon/kernInt.

Keywords: microbiome, metagenomics, kernel, supervised, unsupervised, spatio-temporal, SVM, kPCA

Abbreviations: ANN, artificial neural network; ASV, amplicon sequence variant; JSK, Jensen-Shannon Kernel; kPCA,
kernel principal components analysis; MDS, multidimensional scaling; MKL, multiple kernel learning; NGS, next-generation
sequencing; NMSE, normalized mean squared error; OTU, operational taxonomic unit; PCA, principal components analysis;
PCoA, principal coordinates analysis; RBF, radial basis function; RF, random forests; SVM, support vector machines
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INTRODUCTION

The microbiome is defined as the ensemble of microorganisms
and their genomes in a given environment. Microorganisms
are present in ecological niches as diverse as soil, oceans,
freshwater, plants, and animals, but a large fraction of these
taxa cannot be cultivated with culture-dependent methods. The
advent of next-generation sequencing (NGS) revolutionized this
field by allowing the massive sequencing and quantification of
microbial habitats.

Proper analysis of microbiome data is challenging for a variety
of reasons. Abundance data obtained with NGS is multivariate,
sparse and compositional in nature (Gloor et al., 2017). Also,
microbial communities are very dynamic biological systems,
thus justifying spatial or time-course studies (Bodein et al.,
2019; Berg et al., 2020). The first approach on the field used
statistical tools from standard ecological studies (Gloor et al.,
2017). For example, one of the first steps in nearly all microbiome
studies consists in computing alpha and beta-diversities. Beta-
diversity measures, e.g., Bray-Curtis or Unifrac, quantify the
difference in diversity between samples from different habitats.
They are used for clustering analysis or, more commonly,
for visualization techniques like principal coordinates analysis
(PCoA) or multidimensional scaling (MDS). However, this
approach has been challenged, as the abundance data obtained by
NGS has a particular nature. The total number of reads delivered
is bounded by an uninformative sum: the library size (i.e., the
number of total reads per sample). Library size is uninformative
because it does not contain information about the population.
Instead, it is arbitrarily fixed by the sequencing process and
may vary by orders of magnitude across samples (McMurdie
and Holmes, 2014). This kind of data is called compositional
and deserves a specific mathematical treatment (Gloor et al.,
2017). In the case of metagenomics, extensive research is being
done to translate current statistical techniques to this paradigm
(Gloor et al., 2017; Silverman et al., 2017; Rivera-Pinto et al.,
2018). One example is the proposal of using the compositional
Aitchison distance instead of the classic beta-diversity measures
(Quinn et al., 2018).

In machine learning, the aforementioned clustering,
ordination and visualization techniques belong to the so-called
unsupervised learning. Supervised learning, which is focused
on prediction, is not so widespread in microbiome analysis yet,
but the number of studies using this kind of approach is rapidly
growing in the last years (Zhou and Gallins, 2019). Due to this
rise in popularity, widely used libraries for microbiome analysis
like QIIME2 (Bolyen et al., 2019) now include plugins for
supervised learning in their toolbox. Typical available methods
include random forests (RF), artificial neural networks (ANN),
support vector machines (SVM), and ridge regression (Qu et al.,
2019; Zhou and Gallins, 2019; Namkung, 2020). Among the
aforementioned, RF are popular in the microbiome context and
tend to outperform other methods (Zhou and Gallins, 2019;
Namkung, 2020). ANN have shown excellent performance in
some cases but are susceptible to overfitting, especially if sample
size is greatly exceeded by the number of taxa, as is often the case
in metagenomics and metataxonomics. A desirable feature for

supervised methods is the identification of microbial signatures
(i.e., taxa that are predictive of a certain phenotype), which
may enable a biological interpretation of the results. RF are
endowed with variable importance measures that can be used to
this effect, while there is not such straightforward heuristic for
ANN, although several possible strategies exist (Ibrahim, 2013).
Another supervised method, selbal (Rivera-Pinto et al., 2018), is
focused on the identification of microbial signatures based on
balances (i.e., the geometric means of data from two groups of
taxa), and has the particularity of being purely compositional.

As microbial communities are highly dynamic systems, it
is important to address their spatial and/or temporal variation
(Berg et al., 2020). In spatial-structured studies, repeated samples
of different sites (e.g., body sites, depth layers) are obtained from
the same individuals or entities, thus raising the question of how
to integrate them. A more general challenge is the integration
of datasets coming from different sources (e.g., “omics”), which
may have different data types. Several statistical methods have
been proposed to solve this question in the microbiome field.
Some examples are Link-HD (Zingaretti et al., 2020), mixKernel
(Mariette et al., 2018), and MOFA (Argelaguet et al., 2018), all
focused in the unsupervised learning setting. In most supervised
methods, this integration is usually performed at the input
data level (early integration), for example by concatenating the
datasets; or after the model is built (late integration), combining
their scores as in ensemble methods. However, early integration
may be not possible if data nature differs across sources
(Schölkopf et al., 2004). The case of the longitudinal studies
(which follow the evolution over time of microbial communities)
is more complex. Typically, longitudinal data is modeled by
fitting a function (e.g., polynomial interpolation, splines) to the
data points over time. To date, there exist few analytical tools for
this kind of data in the microbiome field. Two examples can be
found at Bodein et al. (2019) and Coenen et al. (2020), but they
are restricted to unsupervised analysis.

Difficulties like the compositionality of data or how to
accommodate the spatial and temporal dimensions affect
supervised and unsupervised methods alike. However, there is a
gap between the most widely used supervised learning methods
and the unsupervised analyses typical of the microbiome field
(Figure 1A). Libraries like QIIME2 juxtapose traditional analyses
(e.g., PCoA) with many different and powerful prediction
algorithms, but both branches remain independent from a
mathematical point of view. It is true that some beta-diversity
dissimilarity-based engines can be used as classifiers (Su et al.,
2020; Shenhav et al., 2019). However, as these tools are strongly
focused on distinguishing among a limited number of bacteria-
related conditions, they are not aimed at regression problems,
nor do they give any information about the microbial signatures.
We consider that carrying out all aforementioned analyses in
a common mathematical framework would provide a new,
holistic view to microbiome studies. With all this in mind we
propose a generic and flexible kernel framework (Figure 1B)
as a way to handle unsupervised and supervised microbiome
analyses (including the retrieval of microbial signatures), while
paying special attention to data compositionality and spatial
and temporal integration. Kernel methods are a family within
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FIGURE 1 | Metagenomic analysis workflow. (A) Current state-of-the art: supervised and unsupervised learning are completely independent. (B) Kernel framework:
the pivotal position of the kernel matrix is clearly observed. In gray, several tasks not performed during the present work but that merit future research.
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machine learning methods that share the use of kernel functions
or, simply, kernels. Some of these methods have been already
applied to some specific problems or areas within microbiome
analysis (Zhan et al., 2017; Mariette et al., 2018; Zhou and Gallins,
2019) but their potential has not been fully exploited. In this
work, we propose two new compositional kernels and discuss
how to translate non-compositional, but nonetheless widespread,
beta-diversity matrices to the kernel framework. We perform
supervised and unsupervised analyses from the same kernel
matrix, and show how to extract microbial signatures. Spatial and
longitudinal data are also treated with specific kernel tools. This
kernel framework is illustrated with three case studies: a single
point soil metagenomic dataset, a human dataset with a spatial
component, and a previously unpublished longitudinal dataset
concerning pig gut microbiota. An R package implementing the
proposed methods, along with the analyzed datasets, is freely
available at https://github.com/elies-ramon/kernInt.

MATERIALS AND METHODS

Kernels for Microbiome Data
A real symmetric two-place function is a kernel iff, for every finite
set of objects x1, . . . , xN , it generates a positive semi-definite
matrix of dimension N × N: the kernel matrix (Schölkopf et al.,
2004; Shawe-Taylor and Cristianini, 2004). Probably the most
widely known and used kernel functions are the linear and radial
basis function (RBF) kernels, both defined for real vectors.

Intuitively, a kernel can be understood as a measure of the
similarity between xi and xj. As objects x1, . . . , xN are never
represented explicitly, kernels can be designed for non-standard
data types if a notion of what is considered “similar” in that
given context exists (Schölkopf et al., 2004). Each kernel provides
a different grasp of the dataset. Furthermore, as similarity
measures, kernels are related (but opposite) to the beta-diversities
widely used in microbiome analyses. However, although every
beta-diversity distance or dissimilarity is paired with a similarity
counterpart, not all of them fulfill the aforementioned conditions
and are, therefore, kernels.

We now present two compositional and two non-
compositional kernels, all of them available in kernInt. In
addition, users have the option of entering any kernel matrix,
pre-computed with a kernel of their choice. In this work
we are restricted only to kernels that can be obtained from
taxonomic abundance tables, but further insights can be found
in the Discussion.

Compositional Kernels
Here we define two kernels analogous to the linear and RBF
kernels, but specific for compositional data. We introduce the
Aitchison-RBF kernel as:

cRBF(xi, xj)

= exp
(
−γ

∑D
k=1

(
log
(

xik
G(xi)

)
− log

( xjk
G(xj)

))2
)

(1)

where xi and xj represent the taxonomic abundances in two
different individuals, D is the number of different taxa, G(.) is
the geometric mean, and γ > 0 is a hyperparameter that has
to be tuned. This non-linear kernel derives from the Aitchison
distance, which is Euclidean and therefore (Eq. 1) is a valid
kernel. The logarithm term can be identified as the compositional
clr-transformation (Gloor et al., 2017) over the original data.

Analogously, we define the compositional linear kernel as:

cLin (xi, xj) =

D∑
k=1

log
(

xik

G(xi)

)
log
( xjk

G(xj)

)
(2)

Although cRBF is related to Aitchison distance and has the
advantage of non-linearity, cLin is easier to interpret and allows
the retrieval of the microbial signatures.

Non-compositional Kernels
The most widely beta-diversity measures are Bray-Curtis, Unifrac
and Jensen-Shannon (Gloor et al., 2017). Bray-Curtis and Jensen-
Shannon are computed from taxonomic tables, while Unifrac
additionally needs a phylogenetic tree. The Jensen-Shannon is
metric and has a kernel counterpart that is already described in
Bai and Hancock (2011) as the Jensen-Shannon Kernel (JSK):

JSK
(
xi, xj

)
= 1−

1
2

[∑D

k=1
xik ln

(
2 xik

xik + xjk

)

+

∑D

k=1
xjk ln

(
2 xjk

xik + xjk

)]
(3)

provided that xi and xj contain relative frequencies. The Bray-
Curtis dissimilarity is semimetric, and so we propose using
Jaccard, a similar distance (Gardener, 2014), instead. The Jaccard
distance is paired with a well-known kernel (Bouchard et al.,
2013) and has a variant suitable for quantitative data. The
quantitative Jaccard (also known as Ružička) kernel is defined in
Gardener (2014) as:

qJac(xi, xj) =
∑D

k=1

min
(
xik, xjk

)
max

(
xik, xjk

) (4)

All aforementioned kernels have an asymptotic computational
complexity of O(N2 D).

Kernel Methods and Framework
Kernel methods share the use of symmetric and positive semi-
definite matrices (i.e., kernel matrices), and not the original
data, as input. That limits the potential similarity measures
that one can use to only valid kernels, but also guarantees
that every matrix generated can be processed by the kernel
method. Furthermore, using kernels places all different analyses
in a common mathematical ground (see Figure 1B), which we
refer as the kernel framework. For phenotype prediction, we
use SVM, a classical method that can perform regression and
classification (both binary and multi-class). For the unsupervised
analyses we use kernel principal components analysis (kPCA),
a kernelized version of the standard algorithm. In both
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cases, kernInt allows the user to choose the values of the
hyperparameters and (in the case of SVM) to perform a
complete cross-validation and performance evaluation using an
independent test set.

Spatial Data
The kernel framework is particularly well suited for the
integration of spatial or heterogeneous data types (Schölkopf
et al., 2004; Mariette et al., 2018). This is because the integration
can be done directly at the kernel matrices level. Let K1, . . . , KM
be the kernel matrices computed from M different sources of
data coming from the same individuals. Then, we can obtain a
consensus kernel matrix K∗:

K∗ =
M∑

z=1

βz Kz (5)

with the restriction βz ≥ 0. The optimal βz values can be
obtained through an optimization process, which is known as
multiple kernel learning (MKL) (Schölkopf et al., 2004). In
unsupervised scenarios, a consensus matrix K∗ can be obtained
by choosing the β coefficients that maximize average similarity of
K∗ with all Kz matrices (Mariette et al., 2018).

Temporal Data
A time series is an ordered set of repeated samples indexed
by time, in the form {xi, ti}. The natural way to summarize
this type of data is through a function, which can be obtained
using polynomial interpolation or splines. When data contains
the time series of several individuals, it is commonly referred as
longitudinal data.

The functional RBF kernel (Chen et al., 2013) translates the
RBF kernel to accept real functions as input. Therefore, evolution
over time among individuals is compared and used afterward for
phenotype prediction or unsupervised tasks. Let f (t) and g(t)
be univariate functions, so that they represent the variation of
a single feature in two different individuals between the time
interval [ta, tb]. Then, the kernel definition is:

fRBF
(
f , g

)
= exp

−γ

tb∫
ta

∣∣f (t)− g (t)
∣∣2 dt

 (6)

In an analogous way, the functional linear kernel is defined as:

fLin (f , g) =

tb∫
ta

f (t) g (t) dt (7)

These kernels allow irregular sampling intervals and missing
time points, but suffer of the cost of computing numerically
the integral (e.g., if an algebraic solution is not possible).
Computations can be simplified if fLin and fRBF are defined for
discrete functions, so the modeling of time series as continuous
functions is skipped. In this case, f (t) and g(t) may directly
denote the original objects {xi, ti}, so each time value directly
maps to a certain value of the feature variable x. If T is the total

number of time points and1t the time increment, then:

fRBF (f , g) = exp(−γ

T∑
i=1

(f (ti)− g(ti))
2) (8)

fLin (f , g) = 1t
T∑

i=1

f (ti) g (ti) (9)

The discrete approach is sound in cases with few data points,
when the modeling is less reliable. However, contrarily to (Eqs 6,
7), these expressions cannot deal with irregular sampling times
or missing data.

In multivariate scenarios, for instance microbiome data, many
features are simultaneously sampled over time. Let fk and gk
model taxon k in two individuals, being D the total number of
taxa. The aforementioned kernels can be combined as in:

fRBF′(f , g) =
D∏

k=1

fRBF(fk, gk) (10)

fLin′(f , g) =
D∑

k=1

fLin(fk, gk) (11)

With a computational complexity of O(N2TD) if
(Eqs 8, 9) are used.

It should be noted that the kernel approach allows the
integration of data that is both spatial and temporal-structured.
kernInt first handles the temporal dimension using a kernel for
longitudinal data (fLin or fRBF) over each space point, and then
integrates the spatial dimension by performing MKL over the
fLin or fRBF kernel matrices coming from the same individual.

Microbial Signature
In a broad sense, the “microbial signature” is the collection of
taxa associated with a trait of interest that has a high predictive
value in the context of a given model (Rivera-Pinto et al., 2018).
It can be retrieved from a linear SVM using the orientation of
the separating hyperplane (Guyon et al., 2002): if the plane is
orthogonal to a particular feature dimension, then that feature
is maximally informative. This method takes into account the
correlation between taxa. As cLin is a translation of the linear
kernel for compositional data, using (Eq. 2) we can retrieve the
microbial signatures, which should be understood as the taxa
importances after the clr-transformation. The same occurs when
assessing the variable influence on the principal components
in kPCA. A general permutation technique is proposed in
Mariette et al. (2018), but using cLin permits obtaining the
taxa influence in the same straightforward way than standard
principal components analysis (PCA).

The linearity also permits extending the microbial signature
retrieval, when using SVM, to the longitudinal and spatial cases.
When performing MKL, as long as the cLin kernel is strictly
applied to all sampled sites, the global importance of a given
taxon among all sites can be computed as the weighted sum
(using the optimal β coefficients) of its partial importance in
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each site. In the longitudinal case, the global importance of each
taxon k can be obtained from (Eq. 9) by addition of the partial
importances over all T time points.

Case Studies and Data Pre-processing
We illustrate our framework with three case studies: a single point
dataset, a dataset with a spatial component, and a longitudinal
dataset. The latter is previously unpublished while the rest of
the data is public.

Soil Dataset
Bacterial composition of soil varies significantly at a
biogeographical scale, and is related to chemical and
environmental factors. Here we reanalyzed a single point
dataset by Lauber et al. (2009), who used 16S small-subunit
ribosomal (16S rRNA) gene pyrosequencing to profile the
bacterial communities of different soils across North and
South America. Authors reported that soil pH was significantly
correlated with beta-diversity distances between samples. They
also found correlation with alpha diversity, which was highest
in soils with near-neutral pHs. To perform our analysis, we
retrieved the taxonomic abundances as well as the associated
metadata from Qiita https://qiita.ucsd.edu/ (ID: 103). The
number of operational taxonomic unit (OTUs) was 7,396,
while the number of soil samples was 89. As a part of the
pre-processing, we excluded sample number 89, with only 1 read,
which was also not included in the original paper.

Smokers Dataset
Charlson et al. (2010) analyzed the impact of cigarette smoking
on the global airway microbial population. Bacterial communities
were profiled using 454 pyrosequencing of the 16S rRNA gene
in four airway sites: the left and right sides of nasopharynx and
oropharynx. Authors reported that composition was primarily
determined by airway site, with individuals exhibiting minimal
lateral or temporal variation. They used RF to predict the
smoking status from the taxonomic abundances. We retrieved
the dataset (metadata and taxonomic abundances) from Qiita
(ID: 524) to perform our analysis. Of the original 70 individuals,
we discarded those that reported airway illness or antibiotic
usage in the 3 months prior to sampling. Thus, we analyzed the
same 62 individuals of the original work (29 smokers and 33
non-smokers). Number of different OTUs was 2,817.

Pig Dataset
Here we present a previously unpublished dataset, which
evaluates the relationship of pre-weaning diarrhea with the
early gut microbiota colonization in piglets. Gut microbiota was
profiled in 153 piglets during their first week of life. Between
days 8 and 21 (weaning day), 79 out of the 153 piglets had
diarrhea and were treated with antibiotics. Swab sampling was
done within 5 min after farrowing (day 0) and at days 3 and
7 post-farrowing. DNA was extracted from fecal samples and
profiled using Illumina sequencing of 16S rRNA gene in each
of the three time points. The cleaned sequences were processed
into amplicon sequence variants (ASVs). Further details are
described in Supplementary Method 0. Analyses were carried

out at the ASV (3,577 ASVs were obtained) and at the Genera
taxonomic levels.

Experimental Set-Up
Analyses across the three datasets included a comparison with
the original reports (for Soil and Smokers datasets), as well
as contrast with results from RF. The cLin and cRBF kernels
were applied directly to the raw counts, as they handle data
in an inherently compositional manner. Before computing both
kernels, a number under the detection limit was added to
all dataset entries to handle zeroes (Quinn et al., 2018). An
alternative normalization of data, the cumulative sum scaling
(Paulson et al., 2013) was performed prior to applying the
non-compositional Jensen-Shannon and Jaccard kernels. That
way the compositional and non-compositional kernels could be
compared. In the rest of cases (RF and longitudinal) we used the
compositional clr-transform over data. RF were obtained with
the R package randomForest (Liaw and Wiener, 2002), while the
kernel approach was carried out using kernInt (which relies on
the kernlab package for computing kPCA and SVM). A step-by-
step guide with examples can be found at the kernInt package
vignette: https://elies-ramon.github.io/kernInt/.

Unsupervised analyses were carried out using the whole
datasets. Instead, for the supervised analyses, each dataset was
split at random into the training set (80% of data) and the test
set (20%). Optimal hyperparameters’ values (number of trees in
RF, cost in SVM, and γ for RBF-like kernels) and β coefficients
for MKL were obtained by 5 × 5 cross-validation on the training
set. Hyperparameters’ ranges are in Supplementary Table 1.
Once the best values were found, the final model was built
using the whole training set. We repeated the whole process 40
times, each time with different 80/20 randomly split training/test
partitions, to obtain an error distribution. Performance over the
test set was computed using normalized mean squared error
(NMSE) for regression and Accuracy for classification. We
measured with the microbenchmark package the running time
of computing the SVM models on a 64-bit Ubuntu 20.04 LTS
workstation with Intel(R) Core(TM) i5-6300U CPU at 2.40 GHz
and 12 GiB of RAM (see Supplementary Figure 1). For the sake
of comparison, the running time of several RF implementations
(including the randomForest package) can be found at
Wright and Ziegler (2017).

For the Smokers and Pig case studies, additional conside-
rations had to be taken into account. In the Smokers dataset, in
addition to the kPCA analysis, we computed the similarity among
kernel matrices of different body sites with the mixKernel package
(Mariette et al., 2018). We compared the performance of data
integration via MKL (the kernel approach) with that of RF when
using early and late integration approaches. In the former case,
the input of the RF was the concatenated data of the four sites.
Instead, in the latter case we used the forests created for each site
separately to vote for the final decision (Li et al., 2018).

In the Pig dataset, to make sure that the training and test sets
were completely independent, piglets from the same litter (full
sibs) were always placed either in one or other set. Performance of
fLin and fRBF was contrasted to those of RF and their analogous
non-longitudinal kernels (cLin and cRBF) using all available days
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at once. For the non-longitudinal methods, 80% of the piglets
were used to train the model, using their three time points data in
separate rows, with time included as an additional variable. The
remaining piglets were reserved to test the model, but using only
one of their time points (either day 0, 3, or 7) chosen at random
and discarding the rest. This way, both longitudinal and non-
longitudinal approaches had the same test set size. Longitudinal
kernels fLin and fRBF were computed using (Eq. 9) and (Eq. 8),
as only three time points were available and we preferred not to
interpolate the day’s in-between. Also, using the expression for
discrete functions we could obtain the microbial signatures. The
information of all taxa was combined as in (Eqs 11, 10) and the
training/test partitions were carried out as in the normal case. In
a second step, the dataset was decomposed by sampling times and
the analysis was carried out for days 0, 3, and 7 separately using
RF, cLin and cRBF in the usual way.

Microbial signatures from SVMs were obtained from the
hyperplane normal vector w. The importance of taxon k is
computed by kernInt as (wk)

2 (Guyon et al., 2002). When using
RF, we used the mean decrease in node impurity (for regression
tasks) and mean decrease in Gini index (for classification). Both
RF and SVM give absolute values of taxa importance, so they were
converted to relative values. We used the R package MiRKAT
(Zhan et al., 2017) to test if the association of the target phenotype
with the signatures we obtained was statistically significant.

RESULTS

Soil Data
The cLin kPCA over the bacterial abundances is shown in
Figure 2A. The remaining kPCAs, which gave a similar profile,
can be found at Supplementary Figure 2. Soil samples are
clearly separated by their pH, in agreement with the original
results. The U-shaped projection is typical of data structured by a
gradual transition with few overlapping OTUs at the endpoints
(Supplementary Figure 3). The peak diversity in near-neutral
soils in contrast with extreme pHs may also have some effect
(Supplementary Figure 4). In addition, we used SVMs with
the four kernels described above to predict the pH of each
soil site from the bacterial abundances. This was not done in
the original work and so we used RF, a non-kernel, alternative
method, as benchmark. Results are shown in Figure 2B. The best
compositional kernel was cLin, having a median error of ∼0.09;
and the best non-compositional one was JSK, with a median error
of ∼0.10. In comparison, RF had a higher median error, almost
the double of cLin, around 0.17.

To go further in the interpretation of the results, we
analyzed the microbial signature retrieved from RF and cLin-
SVM. The distribution of the importances was highly skewed.
For subsequent analyses we kept only 5% of the taxa, which
accounted for around the 90% (RF) and 95% (SVM) of total
importance, with the two methods having 42% of OTUs in
common. Top ten relevant taxa are shown in Figure 2C (RF)
and Figure 2D (SVM). In agreement with the kPCA results,
prediction is primarily driven by few OTUs of extreme pH
ecosystems (e.g., genera Rubrobacter and Balneimonas on the

basic side, orders Solibacterales and RB41 on the acid side).
We used MiRKAT to test the significance of the association of
the pH with both the top ten and 5% most important taxa,
according to the cLin kernel. In both cases, we obtained very low
p-values (<10−8).

Smokers Data
We predicted smoking status from the taxonomic abundances.
At first models were built using the four sites separately, as in the
original study. Authors used RF and reported a median accuracy
of 64% on the right and 65% on the left oropharynx (i.e., throat),
and 71% on the right and 68% on the left nasopharynx. We
re-computed the RF accuracies with our data pre-processing,
and obtained very similar results (Figure 3A), with the only
exception of the right nasopharynx (new median accuracy: 66%).
Regarding the kernels, the worst one was cLin (Supplementary
Figure 5), which nonetheless gave similar accuracies to RF. The
best kernel was the Jaccard kernel (Figure 3A), which improved
substantially the RF accuracies, especially in the throat. Then, we
combined the spatial-structured samples of the same individuals
to test if accuracy increased when using an integrative approach
(Figure 3A). For the kernels, we first used MKL to combine
the kernel matrices at the airway level (nasopharynx on one
hand and oropharynx on the other) and, finally, we integrated
all sites. This decreased the error substantially and delivered the
best classification result, with a median accuracy of 92%. As
for the RF, we tested both the early integration approach and
the late integration approach, and found that the latter granted
better predictions. At best, integration of the four sites delivered
a median accuracy of 83%. The results for the rest of kernels can
be found in Supplementary Figure 5. In all cases, integration of
the four datasets using our MKL proposal increased the accuracy
in comparison to the individual models, and doing so gave better
or equivalent results that those of RF integration approaches.
The only exceptions to this trend were the nasopharynx and
oropharynx models delivered by cLin (but not the model with the
four sites combined).

Next, we recovered the overall microbial signature (i.e., across
the four sampling sites). The importance distribution is not as
skewed as in the Soil dataset: here the top 5% taxa accounted
for the 62% of overall importance. The association of this subset
of taxa with the target phenotype was highly significant (p-
value< 10−8). Top ten taxa are shown in Figure 3B. Neisseria sp.
large impact in discriminating smokers from non-smokers was
already reported in the original work, especially in oropharynx
models. The rest of highlighted taxa in Figure 3B were also noted
to have a role, either in models from nasopharynx alone or from
both airways sites (Charlson et al., 2010). This mostly agrees
with our results when the sampling sites are analyzed separately
(Supplementary Figure 6).

Following the original work, differences in bacterial
communities among the body sites were also analyzed. We
present results for the Jaccard kernel in Figures 3C,D, while
the rest are in Supplementary Figure 7. Figure 3C shows
the similarity across kernel matrices derived from left and
right nasopharynx and oropharynx. The highest similarity
was achieved within matrices of the same airway site but
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FIGURE 2 | (A) Compositional linear kPCA over the 88 soils. Color represents pH, while point size stands for the number of different observed taxa. (B) pH
prediction error distribution over the 40 replicates. (C,D) Top relevant taxa for pH prediction according to RF and cLin-SVM. Standard error across the 40 replicates
is marked with error bars.

different laterality. As in the original paper (Supplementary
Figure 8), using a kPCA (Figure 3D) we could discriminate
between nasopharynx and oropharynx sites (first PC) but not
between left and right.

Pig Data
Evolution of gut microbiota from 153 healthy piglets over their
first week of life was used to predict the occurrence of pre-
weaning diarrhea. In Figure 4A we compared the performance
of the longitudinal kernels (fLin and fRBF) vs. their analogous
non-longitudinal kernels (cLin and cRBF) plus RF when using
all available days at once. The longitudinal approach clearly
outperformed the non-longitudinal approach at both Genera
and ASVs levels. fRBF had a better performance than fLin, and

worked best at the ASV level (with a median accuracy around
76%) than in Genera data (median accuracy ∼70%). Although
aggregating taxa to the genus level is a relatively common
practice –see e.g., Rivera-Pinto et al. (2018)–, in our case using a
coarser taxonomic resolution decreased the accuracy. Within the
non-longitudinal approach, we obtained similar accuracies using
RF and kernels, and both were close to the median accuracy of
the random model (50.1%). To further understand the results,
the analysis was carried out in days 0, 3, and 7 separately using
RF, cLin and cRBF kernels. Figure 4B reveals that all models
from days 0 and 3 had no predictive power. Accuracy increased
dramatically after day 7 to a maximum of 73% for cRBF (ASV
level), only slightly worse than its analogous longitudinal kernel
fRBF. We used the kernel machine test of MiRKAT to further
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FIGURE 3 | (A) Non-smoker/smoker accuracies from taxonomic data: RF (green) vs. the quantitative Jaccard kernel (red). NoseL, NoseR, OroL, and OroR models
are obtained from single datasets, the Nasopharynx and Oropharynx panels contain the information from the right and left sides, and All the combination of the four
datasets. Early and Late refer to the early integration and late integration approaches for RF. (B) Top ten global cLin-SVM importances across all body sites.
(C) Similarity across the Jaccard kernel matrices of the four sites (Nasopharynx Right and Left and Oropharynx Right and Left). (D) Jaccard kPCA of the taxonomic
abundances. Color code represent airway site, whereas shape indicates the laterality of the samples.

confirm that days 0 and 3 were not significantly associated
with phenotype, while day 7 was. As expected, only the kernel
matrices of day 7 delivered significant p-values (Genera: cLin
p-value < 10−6, RBF p-value < 10−7; ASV: cLin and cRBF
p-values< 10−8) after Bonferroni correction.

In a second step we analyzed the kPCA and microbial
signatures, after discarding all models without predictive power.
Figures 5A,B show the fLin and cLin (day 7) kPCA, while
fRBF and cRBF are in Supplementary Figure 9. In all cases a
partial separation between healthy and sick piglets, with a large
area of overlap, is observed. Genera relevance on prediction of
pre-weaning diarrhea is shown in Figures 5C–E. We discuss
the microbial signature at the Genera level, as around 2/3 of
the ASVs lack species assignation (Supplementary Figure 10).
According to fLin, beneficial genera like Lactobacillus and
Bacteroides had the higher overall importance during the first
week. In day 7, it was striking the great importance given by
cLin to Desulfovibrio, and secondarily to Streptococcus. RF also
highlighted the butyrate-producing genus Dorea. Distribution of
the microbial signature at the ASV level was skewed, but again,
much less than in the Soil case study. The top 5% ASVs accounted

for a 46% (fLin) and 58% (cLin) of the total importance, with an
overlap between RF and cLin in day 7 of 2/3 of the ASVs. The
association of the 5% most important taxa (global and day 7) with
the phenotype was statistically significant according to MiRKAT
(p-values< 10−8).

DISCUSSION

The kernel framework allows performing a great diversity of
analyses in a common ground, while allowing a great flexibility on
how data is approached. However, within the microbiome field,
previous application of kernel methods has been mostly restricted
to specific areas. Zhan et al. (2017) proposed a kernel-based
semi-parametric regression method for testing the association of
the human microbiota communities with multiple phenotypes.
Their method was implemented in the R package MiRKAT.
In turn, Mariette et al. (2018) combined metagenomic data
and environmental measures of the TARA ocean expedition
using unsupervised MKL with the mixKernel package. In some
reports that compare the performance of different supervised
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FIGURE 4 | (A) Accuracy for RF, non-longitudinal kernels (cRBF, cLin) and Longitudinal kernels (fLin, fRBF) in the prediction of neonatal diarrhea from all available
days. (B) Accuracy for RF and non-longitudinal cLin and cRBF kernels from metagenomic data of days 0, 3, and 7 post-birth separately. In both panels, the red
dashed line marks the accuracy of the random model.

methods in microbiome data, SVM often appear along RF or
ANN (Qu et al., 2019; Zhou and Gallins, 2019; Namkung, 2020).
Thus, kernel methods were mostly used in an isolated way,
without exploiting the kernel framework ability to integrate a
great range of analyses while giving a unitary view. Another
advantage of this framework is that it can handle virtually any
data type. However, to our best knowledge, it has not been
previously applied to longitudinal microbiome studies. Finally, in
previous works there was a lack of kernels that took into account
the compositional nature of metagenomic datasets. Here we
addressed all these questions, while also providing some examples
of how previous kernel-based tools like MiRKAT and mixKernel
can fit into our framework.

When comparing kernInt to a popular package for
microbiome analysis like QIIME2, it becomes apparent that
the former is more specific in its scope. kernInt is not concerned
with sequence alignment, taxonomic assignation and quality
control as QIIME2 is, but with the analysis once the abundance
table is obtained. Both packages are aimed at community ecology
analysis (in QIIME2: alpha and beta diversities, PCoA, etc.)
and supervised learning areas. While kernInt does not have the
great range of methods available in QIIME2, it improves the

current state-of-the-art in the following points: (i) Proposal
and implementation of specific kernels for microbiota, while
QIIME2 currently provides default kernels for real vectors (the
linear, RBF, polynomial and sigmoid kernels). (ii) As far as we
know, SVM is available in QIIME2 but kPCA is not; therefore,
it is not possible performing both supervised and unsupervised
analysis under the same mathematical point of view (Figure 1).
(iii) Integration of spatial and temporal samples: QIIME2
does not have a specific handling of spatial (and, potentially,
multi-omic) data, while kernInt allows performing unsupervised,
supervised and retrieval of microbial signatures in this kind of
datasets. On the other hand, the QIIME2 “longitudinal” plugin
implements several tools for longitudinal data, but the option of
performing supervised learning from the variation of microbiota
over time is absent.

Throughout this work, we summarized the microbiome
analyses in three branches: unsupervised learning (represented
by kPCA), supervised learning (SVM) and identification of
phenotype-associated microbial signatures. The Soil case study
clearly illustrated how all three types are intertwined and
complementary. In agreement with the original publication, both
SVM and kPCA results showed that taxonomic abundances and
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FIGURE 5 | Above: kPCA of fLin in panel (A) and of cLin (day 7) in panel (B). Below: Microbial signatures at the Genera level. Global importance for the first week is
in panel (C). Importances for the day 7 according to the cLin kernel and RF are in panels (D,E). Standard error across the 40 replicates is marked with error bars.

pH are strongly related. This granted a quite low prediction error
(up to a median NMSE of 0.09) but, by itself, does not explain the
underlying mechanism connecting microbial abundance and pH.
Microbial signature revealed that the SVM learning is driven by
few taxa of opposite pH ecosystems. For instance, RB41 belong
to the phylum Acidobacteria. The Rubrobacter genus contains
well known extremophiles and, like the Balneimonas (renamed
Microvirga) genus, has preference for clearly alkaline soils (Dahal
and Kim, 2017; Chen et al., 2018). Furthermore, the arch in the
kPCA projection indicated that communities from acid and basic
habitats did not overlap (Morton et al., 2017). Taken together,
these complementary views point that soil microbial structure is
shaped by a gradual niche differentiation strongly modulated by
the pH. This agrees with previous findings on this dataset (Lauber
et al., 2009; Morton et al., 2017) but appears in a more concise and
unified way using the kernel framework.

In comparison to other methods, the kernel framework did
not only allow a holistic view of data, but also gave good results in
each learning area. Concerning supervised learning, in general,

the kernel methods tend to have an advantage over variable-
oriented methods (e.g., in supervised learning: ridge regression,
decision trees, RF, etc.) and over ANN (for the reasons stated in
the “Introduction” section) when faced with N < < < D data.
This is a common scenario in metagenomics when working at
the OTU or ASV level, but not necessarily in coarser taxonomic
resolutions. This is illustrated with the different behavior of
kernels with respect to RF in Figure 4B (see ASV vs. Genera
results). In the other cases, SVM were consistently better (or at
least equivalent) to RF in all the case studies that we analyzed.
This disagrees with some previous reports in the microbiome
area, e.g., Zhou and Gallins (2019). However, it should be noted
that SVM performance depends on the kernel used, and these
reports used generic linear and RBF kernels. Even when using
kernels specific for metagenomic data, we observed differences
among their mean NMSE or accuracies as large as fifteen
percentage points. At the same time, our results suggest that
there is not a single kernel that systematically achieves the best
performance in every problem. We found that cLin was the best
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one in the first case study, quantitative Jaccard in the second and
fRBF in the third. In this scenario, we consider that the linear-
like kernels like cLin are a safe starting point. They allow for
the retrieval of the microbial signatures, are faster to compute
and easier to interpret than non-linear kernels, and with high-
dimensional data (>103–104 taxa) they tend to match the RBF
kernel (usually considered the gold standard) in performance
(Hsu et al., 2003; Keerthi and Lin, 2003). RBF may be useful if
the number of different taxa is low, or when a strong non-linear
relationship is suspected. The weakness of the compositional
kernels that we proposed is that they cannot handle zeroes
without pre-processing; instead, zeroes pose no problems to the
quantitative Jaccard kernel. How to deal with zeroes is, currently,
an open topic of research in compositional analysis (Weiss
et al., 2017; Quinn et al., 2018). If there is not enough a priori
information that permits selecting the kernel beforehand, visual
assessment of the candidate kernel matrices via kPCA could be
of some help. A more rigorous approach is to perform nested
cross-validation (Cawley and Talbot, 2010) to avoid overfitting
when selecting both the candidate hyperparameters’ values and
the best kernel for a given problem. Finally, phylogenetic kernels
were beyond the scope of this work, nor the available datasets had
the phylogenetic trees needed to compute them. However, they
may be derived from (Eqs 1, 2) by replacing the clr term with
other transformations, e.g., the PhILR transformation (Silverman
et al., 2017). A phylogeny-based kernel was also proposed in Xiao
and Chen (2017).

Concerning our unsupervised analyses, we observed that the
main structure revealed by the original MDS/PCoA (ordination
by pH in the Soil dataset, and by body site in the Smoker dataset)
was conserved in our kPCAs. On the other hand, microbial
signatures obtained with SVM had a biological interpretation. In
general, the most important taxa retrieved from SVM coincided
with those of RF (40–65% of overlap depending on the dataset),
and could be recovered too when dealing with spatial and
temporal-structured datasets. However, we acknowledge that a
drawback of these signatures (though they handle well the cases
of multicollinearity) is that they are based on linear kernels. In
turn, RF can take into account both non-linearity and complex
interactions among taxa. In any case, the informativeness
of a microbial signature can be assessed by the prediction
performance of the SVM model that generated it.

Apart of the aforementioned advantages of the kernel
framework, we also showed how it can accommodate datasets
with spatial and/or temporal components. We illustrated the
integration of spatial-structured samples with the Smokers
dataset. The analysis in the original work was carried out in each
sampling site independently, with a maximum median accuracy
of 71%. Here we showed how combining the body sites using
MKL increased the median accuracy to 92%. Therefore, our
results remark the relevance of using an integrative approach
to improve the accuracy of phenotype prediction when spatial-
structured samples of the same individuals are available.

In addition to the package and framework proposal,
we analyzed a previously unpublished dataset profiling the
microbiota evolution and pre-weaning diarrhea incidence in 153
piglets. Through this dataset we illustrated the kernel framework

application to time-structured samples. Pre-weaning diarrhea is
an important issue in pig production, as the antibiotic treatment
increases both the emergence of resistances and the economic
costs. It is already known that gut colonization starts immediately
after birth, and it evolves from a highly variable to a more stable
and homogeneous ecosystem over the first weeks. However, most
of the current studies in pig production ignore early dynamics
in gut microbiota (Mach et al., 2015; Han et al., 2018; Massacci
et al., 2020). We wanted to test if pre-weaning diarrhea could
be anticipated as soon as the first week of life. In this sense,
our results suggest that the first stages of intestinal microbiota
convey some valuable information indeed. kPCAs showed a
partial separation between piglets affected of diarrhea vs. healthy
piglets, and by using longitudinal kernels we achieved a moderate
accuracy of 76%. However, it was unclear if this accuracy was to
be attributed to a different taxa evolution in the two groups over
the first week, or to a single time point with a great predictive
value. The day-by-day prediction clarified this issue, and showed
that day 7 achieved a median accuracy of 73% while the rest
of points lacked predictive power. Even so, longitudinal kernels
were able to slightly improve prediction (76% vs. 73% at the ASV
level, and 69% vs. 64% using Genera), so global taxa evolution
may also have a small role.

This is also seen in the underlying microbial signatures of
the global first week (fLin) vs. day 7 (cLin). To be noted,
in day 7 the most important genus was sulfate-reducing
bacteria Desulfovibrio, which is known to have a relevant role
during pig gut colonization (Mach et al., 2015). Instead, the
global (longitudinal) model was mainly led by Lactobacillus
and Bacteroides. Relationship of both genera to pre-weaning
diarrhea is well sustained in literature. Lactobacillus spp. are well
known probiotic bacteria, while members of Bacteroides genus
are associated with increased infants gut microbial diversity
(Stewart et al., 2018). Furthermore, both play an important role
on mammals’ gut microbial colonization (Sawicki et al., 2017;
Wexler and Goodman, 2017) and are dominant in healthy pigs
compared with diarrhea-affected piglets (Song et al., 2017), which
gives confidence in the reliability of our findings.

In summary, our kernel framework successfully places the
most important analyses in the microbiome field on a common
ground, takes into account the compositionality of data, and
is flexible enough to integrate spatial and temporal dimensions
of the datasets.
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Viruses are some of the most abundant biological entities on Earth, and prokaryote
virus are the dominant members of the viral community. Because of the diversity of
prokaryote virus, functional annotation cannot be performed on a large number of genes
from newly discovered prokaryote virus by searching the current database; therefore, the
development of an alignment-free algorithm for functional annotation of prokaryote virus
proteins is important to understand the viral community. The identification of prokaryote
virus virion proteins (PVVPs) is a critical step for many viral analyses, such as species
classification, phylogenetic analysis and the exploration of how prokaryote virus interact
with their hosts. Although a series of PVVP prediction tools have been developed, the
performance of these tools is still not satisfactory. Moreover, viral metagenomic data
contains fragmented sequences, leading to the existence of some incomplete genes.
Therefore, a tool that can identify partial PVVPs is also needed. In this work, we present
a novel algorithm, called VirionFinder, to identify the complete and partial PVVPs from
non-prokaryote virus virion proteins (non-PVVPs). VirionFinder uses the sequence and
biochemical properties of 20 amino acids as the mathematical model to encode the
protein sequences and uses a deep learning technique to identify whether a given
protein is a PVVP. Compared with the state-of-the-art tools using artificial benchmark
datasets, the results show that under the same specificity (Sp), the sensitivity (Sn) of
VirionFinder is approximately 10–34% much higher than the Sn of these tools on both
complete and partial proteins. When evaluating related tools using real virome data, the
recognition rate of PVVP-like sequences of VirionFinder is also much higher than that of
the other tools. We expect that VirionFinder will be a powerful tool for identifying novel
virion proteins from both complete prokaryote virus genomes and viral metagenomic
data. VirionFinder is freely available at https://github.com/zhenchengfang/VirionFinder.
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INTRODUCTION

Prokaryote virus are some of the most dominant biological
entities in the viral community. Recently, a large number
of experimental methods that enrich viral particles in the
microbial community or computational methods that identify
viral sequences in metagenomic data have been developed
(Hayes et al., 2017; Khan Mirzaei et al., 2020; Martínez et al.,
2020; Saak et al., 2020), leading to the discovery of a large
number of novel prokaryote virus. The functional annotation
of prokaryote virus genes is essential for understanding the
composition and function of prokaryote virus in the microbial
community. One of the most important tasks of functional
annotation of prokaryote virus genes is the identification of
prokaryote virus virion proteins (PVVPs) from non-prokaryote
virus virion proteins (non-PVVPs). The PVVPs, which are
also called structural proteins, are essential materials of the
infectious viral particles, including shell proteins, envelope
proteins, and viral particle enzymes (Feng et al., 2013). The
identification of PVVPs plays an important role in understanding
the interaction between a prokaryote virus and its host and
can further help in developing antibacterial drugs (Lekunberri
et al., 2017). Additionally, PVVPs are important for virus
classification (Galiez et al., 2016), and it has been suggested
that specific PVVPs can further serve as phylogenetic marker
genes similar to 16S rDNA in bacteria (Seguritan et al., 2012)
and therefore are important genes for viral phylogenetic analysis
in the microbial community. Another important application
of PVVPs is to identify prophages in bacterial chromosomes
since the PVVP-enriched regions in bacterial chromosomes
have a higher potential to be prophages (Roux et al., 2015).
Although a series of experimental methods have been developed
to identify PVVPs, such as protein array analysis, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and mass
spectrometry (Charoenkwan et al., 2020a), a fast and low-cost
computational method is needed to accommodate the massive
increase in sequencing data.

Computational methods based on similarity searches against
known databases for PVVP identification are intuitive strategies,
but such methods may not work well for viral metagenomic
data. Because of its non-cultivable nature, the viral community
contains a large number of novel prokaryote virus. It has been
shown that many sequences in virome data are not present in the
current database (Hayes et al., 2017). In addition, a large number
of genes annotated on the prokaryote virus genomes of current
database are predicted by related bioinformatics tools, such as
GeneMark (Besemer and Borodovsky, 2005), and their function
has not been subjected to experimental verification, indicating
that the current knowledge of viral gene function is quite
limited. Alignment-free algorithms, such as machine learning-
based methods, bypass employing similarity search strategies
and can identify novel PVVPs by universal features extracted
from known data. Therefore, Alignment-free algorithms for
PVVP identification may be better suited for virome studies.
Recently, many alignment-free algorithms for such tasks have
been developed, including iVIREONS (Seguritan et al., 2012),
the algorithm developed by Feng et al. (2013), PVPred (Ding

et al., 2014), the algorithm developed by Zhang et al. (2015), PVP-
SVM (Manavalan et al., 2018), PhagePred (Pan et al., 2018), the
algorithm developed by Tan et al. (2018), the algorithm developed
by Ru et al. (2019), Pred-BVP-Unb (Arif et al., 2020), PVPred-
SCM (Charoenkwan et al., 2020a) and Meta-iPVP (Charoenkwan
et al., 2020b). To the best of our knowledge, among these
algorithms, iVIREONS, PVPred, PVP-SVM, PVPred-SCM, and
Meta-iPVP are currently available via web servers, while the
other algorithms have not been released either via web servers
(or the server was out of order) or one-click software packages.
The biological support of these tools is that the amino acid
composition between virion proteins and non-virion proteins is
different. For example, it has been shown that the virion proteins
contain more amino acids whose molecular weight is low (Ding
et al., 2014). Based on this phenomenon, these tools constructed
specific feature sets, such as the frequency of each amino acid
on the protein, to characterize a given protein, and employed
a shallow statistical model to distinguish the PVVP and non-
PVVP according to the input feature sets. For example, the tool
iVIREONS used the amino acid frequency as the feature sets
and employed a shallow artificial neural network to classify the
PVVP and non-PVVP (Seguritan et al., 2012); the tool PVPred
used the g-gap dipeptide compositions as the feature sets and
employed a support vector machine to classify the PVVP and
non-PVVP (Ding et al., 2014); the tool PVP-SVM used the
composition of amino acid, dipeptide and atom as well as the
chain-transition-distribution and physicochemical properties as
feature sets, and employed a support vector machine to classify
the PVVP and non-PVVP (Manavalan et al., 2018); the tool
PVPred-SCM used dipeptide composition as feature sets and
employed a scoring card method to classify the PVVP and non-
PVVP (Charoenkwan et al., 2020a); and the tool Meta-iPVP
used the information of discriminative probabilistic features and
employed a support vector machine to classify the PVVP and
non-PVVP (Charoenkwan et al., 2020b). The performance of
such methods relied heavily on the selected features (Ding et al.,
2014). Since such features are constructed by the researcher
empirically, the performance of these tools will be affected if
inappropriate features are selected. In contrast, deep learning
technique bypasses the process of artificial feature selection, and
uses deep neural networks to extract useful features from the
raw data automatically and therefore, deep learning may be more
powerful in many bioinformatics tasks (Min et al., 2017). Thus,
employing deep learning technique on the PVVP identification
task may further improve the performance of the existing tools.
Recently, a deep learning based method to identify specific
virion proteins, namely capsid and tail, has been proposed (Abid
and Zhang, 2018). Moreover, the existing tools are primarily
designed for complete proteins while sequence assemblies of
viral sequencing reads in metagenomic data are more difficult
than chromosome-derived reads (Sutton et al., 2019; Martínez
et al., 2020), indicating that virome data may contain fragmented
sequences with some partial genes. Therefore, tools that can
perform PVVP identification from partial genes are also needed.

In this work, we present VirionFinder. VirionFinder takes a
sequence file containing all proteins from a single prokaryotic
viral genome or viral metagenomic data in which viral sequences
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are collected using experimental or computational method as
input, and outputs a tabular file containing the judgment for
each protein. Based on deep learning, VirionFinder can identify
complete and partial PVVPs from virome data using the sequence
and biochemical properties of amino acids. Evaluations showed
that VirionFinder outperformed all the currently available tools.

MATERIALS AND METHODS

Dataset Construction
To create a benchmark dataset, we downloaded all the
prokaryotic viruses from the RefSeq viral database (1downloaded
in November 28, 2019). In addition to phage proteins, our
dataset also contained proteins from archaeal viruses, which
were also members of prokaryotic viruses. Dividing the data into
training and testing sets according to the genome release day is a
commonly used method to test an algorithm’s ability to handle
novel data (Zhou and Xu, 2010; Ren et al., 2017; Fang et al.,
2019, 2020). To evaluate whether VirionFinder can identify a
PVVP from a novel prokaryote virus, which is important for
virology studies, we used the genomes released before 2018 to
construct the training set, while the remaining genomes were
used to construct the test set. According to the description from
Seguritan et al. (2012), genes labeled one of the following key
words “capsid,” “tape measure,” “portal,” “tail,” “fiber,” “baseplate,”
“connector,” “neck,” and “collar” were extracted in the form of
amino acid sequences to construct the PVVP set, while the
remaining genes were used to construct the non-PVVP set. Genes
labeled “hypothetical protein,” “unnamed,” “probable,” “putative,”
or “similar to” were removed from the dataset as suggested
by Seguritan et al. (2012). The accession lists of the PVVPs
and non-PVVPs of the training and test sets are provided in
Supplementary Data Sheet 2.

Mathematical Model of Amino Acid
Sequences
Each protein sequence is represented by a “one-hot” matrix and
a biochemical property matrix. We use a “one-hot” vector to
represent a certain amino acid and use a “one-hot” matrix to
represent a protein sequence. In the “one-hot” vector, each of the
20 amino acids is represented by a 20-dimensional vector with
19 bits are “0” and a certain bit is “1” (shown in Supplementary
Table 1). In this way, a protein sequence of length L can be
represented by a “one-hot” matrix with length L and width 20.
It has been shown that deep learning techniques have a strong
ability to extract complex features and specific motifs using
sequence “one-hot” encoding (Jones et al., 2017), and this “one-
hot” matrix will serve as the input of the deep neural network
described below.

It has been shown that the biochemical properties of
frequently occurring amino acids that make up PVVPs and non-
PVVPs are significantly different. The study of Charoenkwan
et al. (2020a) showed that there are 20 biochemical properties of
amino acids in the AAindex database (Kawashima et al., 2008)

1ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/

that have a strong correlation with amino acids that make up
PVVPs and non-PVVPs. The indexes of these 20 biochemical
properties in the AAindex database are FUKS010107,
FUKS010111, JACR890101, PRAM820102, QIAN880126,
SNEP660102, KOEP990101, QIAN880124, RADA880105,
WOLR790101, HUTJ700102, HUTJ700103, ZIMJ680103,
FAUJ880104, LEVM760105, FAUJ880111, CHAM830104,
LEVM760102, GEIM800101, and EISD860102. A detailed
description of these 20 biochemical properties is provided
in Supplementary Tables 2, 3 of the paper by Charoenkwan
et al. (2020a). In addition to these 20 biochemical properties,
Seguritan et al. (2012) suggested that the isoelectric point
of amino acids (corresponding AAindex: ZIMJ680104) is an
important property for classifying PVVPs and non-PVVPs.
Moreover, Ding et al. (2014) found that amino acids that
make up PVVPs are often small, and therefore, the molecular
weight property (corresponding AAindex: FASG760101) may
also be an important property for PVVP identification. In the
biochemical property matrix, an amino acid is represented
by a 22-dimensional vector in which each bit represents a
corresponding AAindex value as mentioned above. Similar to
the “one-hot” matrix, a protein sequence of length L can be
represented by a biochemical property matrix with length L and
width 22. Each AAindex value is normalized between 0 and 1 in
the biochemical property matrix.

Design of the Deep Learning Neural
Network
We designed a convolutional neural network with a “one-hot”
path and a biochemical property path to extract the complex
features from the input protein sequence and to further identify
whether the given protein is a PVVP. The structure of the
neural network is shown in Figure 1. In both the “one-hot”
and biochemical property paths, we used a one-dimensional
convolution operation to detect the sequence features from the
“one-hot” matrix and the biochemical property matrix. The
length of the convolution kernels is set to 8, the number of kernels
of each path is set to 500, and we used the rectified linear unit
(ReLU) function as the activation function to perform nonlinear
transformations. After the convolution operation, 500 feature
maps are generated for each of the “one-hot” matrix and the
biochemical property matrix. We then used a one-dimensional
global max pooling operation to handle each feature map, and
then a 500-dimensional feature vector was generated for each of
the “one-hot” matrix and the biochemical property matrix. The
two 500-dimensional feature vectors are connected into a 1000-
dimensional feature vector. After a batch normalization layer
and a fully connected layer with the ReLU activation function,
the sigmoid layer calculates a score between 0 and 1 reflecting
the likelihood that the given protein is a PVVP. To prevent
overfitting, in the training process, there is a dropout layer
between the batch normalization layer and the fully connected
layer, and a dropout layer between the fully connected layer and
the sigmoid layer.

Unlike the existing tools, considering that there may be some
incomplete genes in virome data, VirionFinder was trained using
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FIGURE 1 | Structure of VirionFinder. VirionFinder contains a “one-hot” path and a biochemical property path to extract complex features from the “one-hot” matrix
and biochemical property matrix, respectively. For a given protein sequence, VirionFinder calculates a likelihood score reflecting whether the protein is a PVVP.

protein fragments rather than complete proteins, which helps
VirionFinder extract the local features, specific motifs and local
conserved functional domains more effectively than previous
methods. Specifically, we randomly extracted protein fragments
between 30 and 40 aa in the training set and test set, respectively.
Finally, 200,000 fragments of both PVVPs and non-PVVPs were
generated for the training set, respectively, while 5,000 fragments
of both PVVPs and non-PVVPs were generated for the test set,
respectively. In the training process, we used the Adam optimizer
for the neural network, and the number of iteration epochs
was set to 80. For the 10-fold cross validation performed on
the training set fragments, VirionFinder achieved an average of
area under the receiver operating characteristic curve (AUC) of
91.46% (±0.15%). For the amino acid fragments in the test set, we
found that the neural network could achieve an AUC of 88.96%.
Furthermore, we tried to remove the biochemical property path
and “one-hot” path, respectively, and retrained VirionFinder. We
found that these two single-path neural networks could achieve
slightly lower AUCs of 87.60 and 85.46%, respectively, indicating
that the neural network with both “one-hot” and biochemical
property paths may be able to extract useful information from the
input data more comprehensively than the neural networks with
only one of these paths.

In the prediction process, for amino acid fragments longer
than 40 aa, VirionFinder uses a scan window with a length of
40 aa to move across the protein sequence without overlapping,
and a weighted average score is calculated for the whole
sequence. For example, given a 90-aa sequence, VirionFinder will

calculate three scores for the subsequences of 1–40, 41–80, and
81–90 aa. A weighted average score for these 3 scores will be
calculated, and the weights for each score are 40/90, 40/90, and
10/90, respectively.

RESULTS

Performance Comparison Against the
Benchmark Dataset
We first compared VirionFinder with the currently available
tools, namely, iVIREONS, PVPred, PVP-SVM, PVPred-SCM,
and Meta-iPVP. To evaluate each tool on both complete
and partial genes more comprehensively, we performed
the evaluation over four groups of test data with different
sequence completeness levels. Group A contains all the
complete proteins in the test set. In Group B, each protein
in the test set was randomly cut to a subsequence of 75% of
the full length. Similarly, Group C contained sequences of
50% of the full length, while Group D contained sequences
of 25% of the full length. The evaluation criteria are the
sensitivity and specificity, which are given by Sn = TP/(TP+FN)
and Sp = TN/(TN+FP), respectively. For VirionFinder, the
higher the score of a given protein, the more likely it is a
PVVP. In general, a value of 0.5 can serve as the default
threshold. To make our comparison more convincing, in
the evaluation process, we let VirionFinder achieve the same
Sp as the comparison tools by adjusting the threshold, and
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under the same Sp, we compared the Sn of VirionFinder
(denoted by SnV) with the Sn of the corresponding comparison
tool (denoted by SnC). The results are shown in Table 1.
In all cases, VirionFinder performed much better than
the other tools. Among the comparison tools, Meta-iPVP,
which is the newest tool released recently, and iVIREONS
are the two best-performing tools, but VirionFinder not
only achieves a higher performance but is also stabler for
incomplete genes. We found that in the full-length sequences,
under the same Sp, the Sn of VirionFinder is 12.62 and
13.59% higher than that of Meta-iPVP and iVIREONS,
respectively, while in the 25% full length sequences, the Sn
of VirionFinder is 16.18 and 17.15% higher than the Sn of
these tools, indicating that the advantage of VirionFinder is
more obvious in incomplete genes. Therefore, we conclude
that VirionFinder can be used as a PVVP annotation tool
not only for isolated complete prokaryote virus genomes
but also for viral metagenomic data, in which some genes
may be incomplete.

Evaluation Using Real Virome Data
We also evaluated VirionFinder and related tools using real viral
metagenomic data. It is worth noting that real metagenomic
data are hard to use as a benchmark dataset because real data
contain a large number of sequences from unknown species
that are not present in the current database, and therefore,
such an evaluation must be qualitative. We collected lung
virome data (Young et al., 2015) from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
(accession: SRR5224158.1). We performed the quality control

and assembly processes using SPAdes (Bankevich et al., 2012)
pipeline by the command “spades.py –meta –1 file1.fastq –
2 file2.fastq –o out_folder.” The assembled contigs contain
24,230 sequences with a maximum length of 32,273 bp, an
average length of 140.83 bp, and the minimum length of
55 bp, indicating that a large number of short reads are poorly
assembled. We then used the MetaProdigal (Hyatt et al., 2012)
to perform gene prediction. Among the predicted genes, only
7.02% were complete genes. To collect the potential PVVPs,
we used position-specific iterated basic local alignment search
tool BLAST (PSI-BLAST) to search all the predicted proteins
in the PVVPs from the RefSeq viral database. PSI-BLAST was
used here because such a homology search strategy is more
sensitive for novel genes with low similarity to sequences
in the current database. All potential PVVPs with e-values
less than 1e-5 were collected. Among these potential PVVPs,
VirionFinder identified 76.47% of them as PVVPs (using
a default value of 0.5 as the threshold), while iVIREONS,
PVPred, PVP-SVM, PVPred-SCM, and Meta-iPVP identified
52.94%, 17.65, 17.65, 52.94, and 70.59%, respectively (shown
in Figure 2), indicating that VirionFinder can identify the
highest proportion of PVVP-like sequences as PVVPs. Such
results are also consistent with the quantitative comparison
against the benchmark dataset in which VirionFinder is the
best-performing tool, while the Meta-iPVP tool outperforms the
other comparison tools. Additionally, we found that the PVPred
and PVP-SVM tools can identify only a few potential PVVPs
(<20%), indicating that these tools may not be able to adapt
to the situation of virome data, in which a large number of
genes are incomplete.

TABLE 1 | Performance comparison between VirionFinder and related tools.

Group Tool Sp (%) SnC (%) SnV (%) SnV-SnC (%)

Group A VirionFinder vs. iVIREONS 71.37 78.32 91.91 13.59

Full length VirionFinder vs. PVPred 90.07 44.01 71.52 27.51

VirionFinder vs. PVP-SVM 84.31 48.22 82.20 33.98

VirionFinder vs. PVPred-SCM 79.74 58.90 87.06 28.16

VirionFinder vs. Meta-iPVP 66.67 81.88 94.50 12.62

Group B VirionFinder vs. iVIREONS 73.20 74.76 88.67 13.92

75% of the full length VirionFinder vs. PVPred 88.76 44.34 70.23 25.89

VirionFinder vs. PVP-SVM 83.53 47.90 79.61 31.72

VirionFinder vs. PVPred-SCM 75.95 59.22 86.41 27.18

VirionFinder vs. Meta-iPVP 56.99 85.11 95.47 10.36

Group C VirionFinder vs. iVIREONS 71.63 73.79 85.76 11.97

50% of the full length VirionFinder vs. PVPred 85.88 50.49 66.99 16.50

VirionFinder vs. PVP-SVM 82.22 46.93 73.79 26.86

VirionFinder vs. PVPred-SCM 73.20 59.87 84.79 24.92

VirionFinder vs. Meta-iPVP 56.21 81.55 95.47 13.92

Group D VirionFinder vs. iVIREONS 72.29 59.87 77.02 17.15

25% of the full length VirionFinder vs. PVPred 78.82 44.01 63.43 19.42

VirionFinder vs. PVP-SVM 78.04 47.25 63.43 16.18

VirionFinder vs. PVPred-SCM 67.45 56.63 84.79 28.16

VirionFinder vs. Meta-iPVP 47.32 79.61 95.79 16.18

We let VirionFinder achieve the same Sp as the comparison tools by adjusting the threshold, and under the same Sp, we compared the Sn of VirionFinder (denoted by
SnV) with the Sn of the corresponding comparison tool (denoted by SnC). The column of SnV-SnC presents the advantage of VirionFinder with the comparison tools.
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FIGURE 2 | Identification of potential PVVPs by VirionFinder and related tools.

Virion proteins are sometimes encoded next to each other
on the genome. We analyzed the longest contig from the
virome data. This contig contained 32,273 base pairs and 34
genes. The only gene which was identified as PVVP using
PSI-BLAST was the 31st gene from the 5’ end, which showed
homology with the portal protein. We found that VirionFinder
could continuously identify the 30th–33rd genes as PVVP.
Correspondingly, iVIREONS and Meta-iPVP could continuously
identify the 31st–32nd genes as PVVP; PVPred could not
identify the 31st gene as PVVP but identify the 30th gene as
PVVP; PVP-SVM continuously identify the 29th–34th genes as
non-PVVP and PVPred-SCM continuously identify the 20th–
32nd genes as non-PVVP. This showed that VirionFinder had
the ability to identify more potential novel PVVPs around
the known PVVPs.

We further observed the distribution of VirionFinder
scores on all proteins. We found that the distribution showed
obvious bimodal distribution (shown in Supplementary
Figure 1). The bimodal distribution showed that VirionFinder
judged most proteins as non-PVVPs with the scores very
close to 0 and judged a small fraction of proteins as
PVVPs with the scores very close to 1. This observation
suggests that the rate of false-positive of VirionFinder
is not insanely high and that VirionFinder is able to
efficiently identify the subset of predicted CDS with a
composition consistent with a PVVP, including likely a
number of novel PVVPs.

We further collected 22 virome samples of healthy human gut
from Norman et al. (2015). The accession list of the samples is
provided in Supplementary Table 2. We assembled the short
reads and performed gene prediction as we mentioned above,
and a total of 278,150 genes were predicted. We used PSI-BLAST
to find all PVVP-like sequences as we mentioned above. We
found that VirionFinder can identify 83.37% of the PVVP-like

sequences as PVVPs, indicating that VirionFinder can achieve
robust performance in large scale viral metagenomic data.

It is worth noting that in the lung virome, only 17 out of 7,267
proteins were identified as PVVP with PSI-BLAST, and in the 22
samples of virome data from healthy human gut, only 8,563 out of
278,150 proteins were identified as PVVP with PST-BLAST. This
relatively low frequency of PVVP detected suggests that there are
some novel PVVPs not currently annotated in real virome data,
and alignment-free tools like VirionFinder are needed to identify
the most likely PVVPs from these large set of “hypothetical
proteins.” The related files, including the genes predicted by
MetaProdigal, PSI-BLAST output files and VirionFinder result
files, are stored in the VirionFinder GitHub website under the
“virome” folder.

DISCUSSION AND CONCLUSION

In this work, we present VirionFinder to identify PVVPs using
the sequence and biochemical properties of amino acids based
on a deep learning technique. VirionFinder takes a complete or
partial prokaryote virus protein as input and judges whether the
given protein is a PVVP. Tests show that VirionFinder achieves a
much better performance than the state-of-the-art tools.

Like other PVVP prediction tools, VirionFinder is designed
primarily for prokaryotic viruses, which are dominant in the
viral community. The protein sequences in the training set
of VirionFinder are also derived from prokaryotic viruses.
It is worth noting that the viral community also contains
eukaryotic viruses, which are not included in our training set.
To allow VirionFinder to better adapt to the real situation of
the viral community, we will consider retraining VirionFinder
regularly with eukaryotic viruses included in the future. On
the other hand, many eukaryotic viruses, such as SARS-
CoV-2, are RNA viruses that may not occur frequently in
traditional metagenomic DNA sequencing data, and we therefore
consider that the existence of eukaryotic viruses may not
seriously affect the usage of VirionFinder. We will also consider
developing another version of VirionFinder to handle RNA virus
sequencing data.

Bacterial host contamination is another issue that need to
be pay attention to when using VirionFinder. The training
set of VirionFinder did not contain bacterial proteins and
therefore, the existing of host contamination may lead to
the false positive prediction of VirionFinder. We randomly
collected 10,000 bacterial proteins from RefSeq database to
test how VirionFinder judge these host proteins and we found
that the scores of VirionFinder among these 10,000 bacterial
proteins seemed to obey the normal distribution with the mean
around 0.5 (shown in Supplementary Figure 2), indicating that
VirionFinder cannot judge whether the host protein belongs
to PVVP or non-PVVP. Therefore, we recommend that user
can use related bioinformatics tools to filter out the sequences
from host contamination as the preprocessing process before
using VirionFinder. Some of the related tools which can
distinguish viral sequences and bacterial sequences are listed in
the review of Martínez et al. (2020).
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In conclusion, VirionFinder achieves the highest performance
on both the benchmark dataset and real virome data.
It is expected that VirionFinder will be a powerful tool
for virome studies.
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The number of microbiome-related studies has notably increased the availability of data
on human microbiome composition and function. These studies provide the essential
material to deeply explore host-microbiome associations and their relation to the
development and progression of various complex diseases. Improved data-analytical
tools are needed to exploit all information from these biological datasets, taking into
account the peculiarities of microbiome data, i.e., compositional, heterogeneous and
sparse nature of these datasets. The possibility of predicting host-phenotypes based on
taxonomy-informed feature selection to establish an association between microbiome
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and predict disease states is beneficial for personalized medicine. In this regard,
machine learning (ML) provides new insights into the development of models that can
be used to predict outputs, such as classification and prediction in microbiology, infer
host phenotypes to predict diseases and use microbial communities to stratify patients
by their characterization of state-specific microbial signatures. Here we review the state-
of-the-art ML methods and respective software applied in human microbiome studies,
performed as part of the COST Action ML4Microbiome activities. This scoping review
focuses on the application of ML in microbiome studies related to association and
clinical use for diagnostics, prognostics, and therapeutics. Although the data presented
here is more related to the bacterial community, many algorithms could be applied in
general, regardless of the feature type. This literature and software review covering this
broad topic is aligned with the scoping review methodology. The manual identification of
data sources has been complemented with: (1) automated publication search through
digital libraries of the three major publishers using natural language processing (NLP)
Toolkit, and (2) an automated identification of relevant software repositories on GitHub
and ranking of the related research papers relying on learning to rank approach.

Keywords: microbiome, machine learning, disease prediction, biomarker identification, feature selection

INTRODUCTION

The human microbiome represents a complex community of
trillions of microorganisms (bacteria, archaea, viruses, as well
as microbial eukaryotes such as fungi, protozoa and helminths),
well-known to affect general health and homeostasis, e.g., by
actively participating in human metabolism and regulating the
immune system. Several disease-related states have been linked
with a disruption of the steady relationship between the gut
microbiota and gut epithelial cells (dysbiosis) (Petersen and
Round, 2014). In the last decade, the number of microbiome-
related studies has increased notably, and big populational studies
such the Human Microbiome Project (Human Microbiome
Project Consortium, 2012), the metagenomics of the Human
Intestinal Tract (Qin et al., 2010), and the American Gut
Project (McDonald et al., 2018), among others, have considerably
increased the available data on human microbiome composition
and function. These studies provide the essential material to
deeply explore host-microbiome associations and their relation
to the development and progression of various complex diseases.

Most of the above-mentioned data were generated by
amplicon sequencing, primarily by profiling the V3-V4 region
of the 16S rRNA marker gene, which allows taxonomic
identification of bacteria and archaea. A smaller number of
studies have also used 18S rRNA marker gene sequencing to
study the microbial eukaryotes such as fungi and protozoa
(Elekwachi et al., 2017; Yarza et al., 2017). In both cases,
amplicon sequences exhibiting a predefined level of sequence
similarity (usually 97%) are commonly clustered into Operational
Taxonomic Units (OTUs) that represent the abundance of a
particular bacterial taxon (Blaxter et al., 2005). However, due
to recent advances in high-throughput sequencing technologies,
OTUs are increasingly being replaced by amplicon sequence
variants (ASVs), which are un-clustered error-corrected reads

(Callahan et al., 2017). After clustering (in case of OTUs)
or denoising (in case of ASVs) and feature classification
and annotation, the OTU/ASV table with the correspondent
abundances is generated. Despite the cost-effective nature
of this methodology, 16S rRNA gene sequencing has some
drawbacks, e.g., (i) reliable bacterial classification is mostly
possible down to the genus level (Winand et al., 2020);
and (ii) limited information of the bacterial genes and their
functions is obtained.

Another approach that is increasingly being used is the
shotgun sequencing of microbial DNA without selecting a
particular gene. This approach allows for more accurate
classification of the microbial communities (even down to the
strain level), and also permits the study of genes and their
functions, e.g., by the construction of Gene Ontology (GO)
(Ashburner et al., 2000) tables and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000) pathways
(Scholz et al., 2016).

Improved data-analytical tools are needed to exploit all
the information from these biological datasets, considering
the peculiarities of microbiome data, i.e., compositional data,
heterogeneous and sparse nature of the datasets. The possibility
of predicting host-phenotypes based on taxonomy-informed
feature selection to establish an association between the
microbiome, predict various disease states or improve human
health is beneficial for personalized medicine. In fact, the
gut microbiome has become an integral part of personalized
medicine, as it not only significantly contributes to inter-
individual variability in health and disease, but also represents a
potentially modifiable factor that can be targeted by therapeutics
in a personalized manner (Kashyap et al., 2017). In this regard,
ML may provide new insights into biomedical analyses, by the
development of models that can be used to predict outputs such
as categorical labels, binary responses, or continuous values.
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Recently, a number of studies have applied ML techniques
to analyze human microbiome data, harvesting the hidden
knowledge to uncover and understand diversity in taxonomy
and function within microbial communities and their impacts on
human health. Firstly, to support the taxonomic representation
and differentiation in microbiology, models were developed to
support the classification of microbial features (Cai and Sun,
2011; Bonder et al., 2012; Werner et al., 2012; Vervier et al., 2016).
Secondly, ML was used for the inference of host phenotypes
in disease prediction (Pasolli et al., 2016; Flemer et al., 2017;
Asgari et al., 2019; LaPierre et al., 2019; Thomas et al., 2019),
and finally, to support the use of microbial communities to
stratify patients by the characterization of state-specific microbial
signatures (Koohi-Moghadam et al., 2019; Wirbel et al., 2019;
Yachida et al., 2019).

Here, we aim to review the application of the different ML
techniques to human microbiome data analysis and the available
ML-based software resources currently used in the analysis of
human microbiome data. The review is mainly focused on the
application of ML in microbiome studies related to causality and
clinical use for diagnostics, prognostics, and therapeutics.

METHODS

Scoping Review Methodology –
Identification, Selection, and
Organization of Relevant Publications
This study follows the scoping review methodology for
searching and assessment of the relevant studies (Arksey
and O’Malley, 2005). The breadth of the ML methodology
and data types in ML-based microbiome analysis hinder the
thorough qualitative analyses of the selected papers, thus giving
a scoping nature to this review which aims to search, select
and synthesize the findings related to the application of ML
in microbiome analysis and identify the available research
evidence. The scientific methodology of all emerging review
types is common as they rely on a formal and explicit
methods for search, selection and evaluation of published
studies (Moher et al., 2015). An example of such thorough
review guidelines is Preferred Reporting Items for Systematic
Review and Meta-Analysis (PRISMA) for systematic reviews in
healthcare (Moher et al., 2010). The methodological framework
for scoping reviews is established following the exact way how
systematic reviews are conducted, providing sufficient details
to reproduce the results (Moher et al., 2015). The workflow
for a scoping review and adopted in this study, includes 5
stages (Arksey and O’Malley, 2005): (1) identification of a
research question; (2) identification of relevant studies; (3) study
selection; (4) charting the data; (5) collating, summarizing, and
reporting the results.

As the motivation and relevance of the research question
has already been extensively elaborated, we focus here on the
methodology used to identify and select relevant studies. We have
used both manual and automated search of literature corpus in
the identification step, performing three independent processes:

• Manual search – crowdsourcing of the studies relevant
for the review topic by all members of the COST Action
CA18131 “Statistical and machine learning techniques in
human microbiome studies”. In this way, in total 54 papers
were collected, and 35 papers are included in the final list.
• An automated search of digital libraries of three major

publishers (PubMed, Springer and IEEE) using NLP
Toolkit (Zdravevski et al., 2019) to automate the literature
search, scanning, and eligibility assessment. This automated
search was additionally constrained to the period from
January 2008 to December 2019 (and including those). In
total 5,935 papers were identified using this method, after
removal of duplicates that appear as a result of multiple
searches using the similar subsets of keywords. From that,
67 papers were selected for a manual check, and 37 papers
are included in the final list.
• An automated search through the available GitHub

resources using NLP algorithms to identify relevant
software repositories and extract corresponding scientific
papers. The papers were automatically ranked by relevance
using the pointwise learning to rank approach (Fejzer et al.
unpublished) trained using the manually collected and
labeled papers. We found 357 repositories that matched
human microbiome research (within 1339 matching
microbiome research). In these locations, we found 410
papers, and based on model score, selected 29 papers. The
final list includes 17 papers.

The study selection procedure comprised scanning and
eligibility assessment steps. The scanning was used in NLP
Toolkit thread and served to remove the duplicates and exclude
the papers whose title and abstract could not be analyzed due to
unavailability, parsing errors, or any other reason. The eligibility
assessment step referred to all identified studies in order to select
only those relevant for this review. For the studies identified
by the NLP Toolkit, the relevance of the study was assessed
based on the NLP augmented evaluation of title and abstract
according to the prespecified criteria. The papers identified
through an automated search of GitHub resources were scored
for relevance using the trained model based on learning to
rank approach. The detailed description of the methodology
used in automated search and eligibility assessment for both
NLP Toolkit and learning to rank approach are provided in
Supplementary Material.

The scoping review workflow illustrating the number of
identified, scanned, and articles included in this scoping review
using all three data collection procedures is presented in
Figure 1. The listing of all articles included in this study labeled
with respect to different descriptors/keywords is available as
Multimedia Appendix.

Medical Subject Headings Annotations
Medical Subject Headings (MeSH) is the NLM controlled
vocabulary thesaurus used for the indexing of articles in PubMed.
We have used this resource to catalog the 89 papers included in
this review from a biomedical perspective to explore the areas that
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FIGURE 1 | The scheme summarizing the process of paper selection for this review.

are implementing ML techniques in human microbiome studies.
The Wordclouds tool was used to summarize the information1.

Data Acquisition From Different
Resources
The human microbiome has been described as a fingerprint,
unique and specific to each individual, set in early life and
modeled by diet, lifestyle and environmental factors (Gilbert
et al., 2018). Besides the high inter-variability of the microbiome,
there are some shared functions between the different microbial
strains, the so-called core human metagenome established
by the analysis of large population studies. Moreover, the
characterization of the microbial genes implied in human
metabolic functions, the creation of a “gene catalog” of the
human microbiome, and the description of differences between
specific human conditions have been pointed out by assessing
populational studies that have generated great amounts of
metagenomics data. The list of main population studies,
gene catalogs generated and database resources for analyzing
microbiome data, respectively, are shown in Table 1.

Data Selection and Pre-processing for
ML-Based Applications
Proper normalization of microbiome data is essential for
obtaining relevant outcomes from their further processing (Weiss
et al., 2017) including ML techniques, with the primary aim to
ensure comparability of data across samples. The issue is the
large variability in library sizes, constrained additionally by the
maximum number of sequence reads of the instrument. This
total count constraint induces strong dependencies among the
abundances of the different taxa; an increase in the abundance of
one taxon requires the decrease of the observed number of counts
for some of the other taxa so that the total number of counts
does not exceed the specified sequencing depth (Rivera-Pinto
et al., 2018). Moreover, observed raw abundances and the total
number of reads per sample are non-informative since extracted
DNA was normalized during library preparation and also, they
represent only a fraction or random sample of the original
DNA content in the environment. While Weiss et al. (2017)
proposed normalization strategies like cumulative sum scaling,
variance stabilization, and trimmed-mean by M-values, none
of them really captures the above property of scale invariance,

1https://www.wordclouds.com

known from the concept of compositional data as observations
carrying relative information (Aitchison, 1986; Pawlowsky-Glahn
et al., 2015; Filzmoser et al., 2018). A very simple approach of
normalization to the total amount of extractable microbial DNA
or the total number of targeted cells counted by either flow
cytometry or qPCR represented a step in the right direction.

The main idea is to represent the original microbiome
(compositional) data in new variables, formed by interpretable
log-ratios or their aggregates (log-contrasts), and then to
continue in standard statistical or ML processing. There is an
increasing number of publications motivating and using the log-
ratio methodology of compositional data for statistical processing
of microbiome (e.g., Gloor et al., 2017; Silverman et al., 2017;
Quinn et al., 2018; Randolph et al., 2018; Rivera-Pinto et al.,
2018; Jiang et al., 2019; Quinn and Erb, 2020). However, it still
cannot be considered as a mainstream concept in microbiome
analysis, mostly due to the high dimensionality of samples and
the necessity of dealing with (count) zeros. From the perspective
of ML techniques, the outcome is not necessarily a better
classification, this depends, as usual, on the capability of a specific
method to extract information from (transformed) data, but
the compositional approach should reveal relevant sources of
differences (microbiome markers) among microbiome samples
or groups of samples (e.g., diseased vs healthy).

Literature Review of ML Applications for
Microbiome Studies
We finally selected 89 papers for review (35 manually selected,
37 using the automated NLP Toolkit search through PubMed,
IEEE Xplore and Springer digital libraries, and 17 by searching
in GitHub repositories). ML implies training and evaluation
of models to identify, classify, and predict patterns from data.
Unsupervised methods aim to identify plausible patterns in the
data, without the use of ground truth/labels, while supervised
approaches rely on the given labels to train the model and learn
the mapping of input features to the labels at the output.

Here, we present the most frequently applied ML methods
in microbiome studies, taking into account that ML applied
on the large volumes of microbiome data can offer valuable
insight into human-microbiome interactions We focused on
those studies in which ML is used for: (i) the classification and
prediction of microbial taxa, i.e., microbial classification and
taxonomic assignment; (ii) the prediction of the host phenotype
by linking microbial populations to phenotypes and ecological
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TABLE 1 | Different resources and databases for microbiome data acquisition.

Study name Samples Description Data Availability/Ref.

Human Microbiome
Project phase 1 and 2
(HMP1, iHMP or HMP2).

HMP1: Healthy adult population of 242
individuals. Samples from 35 body sites,
retrieving 13,572 samples in total (i.e.,
feces = 2,151; buccal mucosa = 633;
vagina = 551; other body sites = 10,237).
HMP2: Data related to three main conditions:
preterm birth, diabetes, and inflammatory
bowel disease.

The project generated a huge number of nucleotide sequences of microorganisms, by simultaneously
creating protocols to promote reproducible sampling and data generation in microbiome studies,
essential for the establishment of computational methods for microbiome data analysis.
The iHMP aimed to study host-microbiome interactions by joining the analysis of the immunity,
metabolism, and molecular activity to untangle the complex interplay between the host and its
microbiomes.

https://hmpdacc.org/.

Metagenomics of the
Human Intestinal Tract
(MetaHIT)

Overweight and obese adults, and patients with
IBD from Spain and Denmark.

This project aimed to characterize the human gut metagenomes of healthy, overweight and obese
adults, and patients with IBD from Spain and Denmark. The project has generated 576.7 Gb of
sequence and predicted 3.3 million unique open reading frames (ORFs).

Li et al., 2014

American Gut (AGP). “Wild-type” population. This project currently
included microbial sequences from 15,096
samples of 11,336 human participants.

Initially, it was designed to study the North American population, but the initiative attracted also people
from the United Kingdom, Australia and other countries. People volunteered to collect feces and fill a
questionnaire of their general health status, disease history, and lifestyle to get their microbiome
sequenced. The diversity of the data, and the high number of microbial sequences allowed to classify
the microbiomes into four great categories, and differences according to country, sex, age, and race,
were observed, moreover it adds up to ∼467 million of 16S rRNA V4 gene fragments.

http://americangut.org

The Integrated Gene
Catalogs 1 and 2 (IGC,
and IGC2).

Comprises more than nine million genes
observed in gut microbes. Recently, an updated
version of the catalog, denoted added 517,488
supplementary genes.

A catalog of microbial genes including important functions for host-bacterial interaction, and the
determination of the so-called “minimal gut bacterial genome” that encompasses genes from bacteria
found in most human guts.
It has been applied successfully to study host-microbiome associations in the context of different
diseases such as type 2 diabetes, obesity, and other pathologies. Genes with co-varying abundance
levels can be clustered (Nielsen et al., 2014; Plaza Oñate et al., 2019) to allow taxonomic and functional
profiling, and reveal potential disease markers in metagenome-wide association studies.

Qin et al., 2010; Wen et al.,
2017

The Unified Human
Gastrointestinal Genome
(UHGG) and Protein
(UHGP) catalogs.

286,997 microbial genomes from the available
human gut microbiome datasets.

These catalogs were created by analyzing 286,997 microbial genomes and over 625 million protein
sequences, including more than four thousand species. Up to 71% of the taxons analyzed are viable
but non-culturable (VBNC), lacking viable culture indicating that most of the microbial diversity in the
catalog remains to be characterized.

Almeida et al., 2021

MGnify (formerly EBI
Metagenomics)

Diverse microbiome types, including ∼63.000
samples from human microbiome.

Free-access resource for browsing, analyzing, and archiving metagenomic and metatranscriptomic
data. The platform contains an automated pipeline for the analysis of microbiome data to determine the
taxonomic diversity along with functional and metabolic characteristics.

https://www.ebi.ac.uk/
metagenomics/\penalty-\@M
Mitchell et al., 2018, 2020

CuratedMetagenomeData Includes taxonomic and metabolic functional
profiles and curated metadata for the publicly
available human microbiome samples
generated by shotgun metagenomic
sequencing.

Bioconductor (Gentleman et al., 2004) package that provides uniformly processed and manually
annotated human microbiome data. All data is processed by using the same pipeline, i.e., MetaPhlAn2
(Truong et al., 2015) for taxonomic abundance, gene marker presence and absence, and HUMAnN2
(Franzosa et al., 2018) for coverage and abundance of metabolic pathways and gene families
abundance.

Pasolli et al., 2017

Qiita Sequencing, proteomics, taxonomic,
transcriptomics, and metabolomics data.

Open-source management platform for microbial studies. It integrates different omics data, providing a
database and compute resources for the analyses of microbiome data.

https:
//qiita.ucsd.edu/\penalty-\@M
Gonzalez et al., 2018

ML Repo 15 published human microbiome datasets. Public web-based repository of 33 curated classification and regression tasks from 15 published human
microbiome datasets. Therefore, it is not only the data repository but it can also be used for
benchmarking new machine learning approaches for microbiome data analyses.

https://knights-lab.github.io/
MLRepo/\penalty-\@M Vangay
et al., 2019
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environments, i.e., disease prediction, and (iii) the usage of
microbial communities for understanding disease mechanisms,
and the further application in personalized medicine (companion
test), i.e., biomarker-finding.

Finally, many of the reviewed ML methods have implemented
within the Bioconductor packages, initially developed for
the microchip/microarray-based data analyses (Gentleman
et al., 2004). Consequently, the lessons learned enabled their
integration into web portals, such as Microbiome Analyst2

(Chong et al., 2020) for a comprehensive statistical, visual and
meta-analysis of microbiome data.

Supervised Learning Methods
Supervised learning trains and evaluates the model based
on the input data complemented with ground truth/labels
indicating the outcomes for the given input samples. Common
supervised learning approaches include regression analysis and
statistical classification.

Logistic regression
Logistic regression (LR) is a statistical method that learns a
model that predicts an outcome for a binary variable, Y, from
one or more response variables categorical or continuous, X.
(Hoffman, 2019).

Logistic regression has been used for establishing microbial
signatures in bacterial vaginosis (Beck and Foster, 2015), a
disease associated with the vagina microbiome, however, no
single microbe has been found to cause it. The authors
found that both classifiers identify largely similar microbial
community features and that only a few features were necessary
to generate models with high classification accuracy. Moreover,
the authors investigated the importance of subsets of the
microbial community features for the classification process.
The taxa identified as more relevant were in line with those
identified by previous studies, and classification performance was
as well comparable.

In another study, a total of 300 biomarkers were selected
from 13,990 features including clinical information and the
matrix of relative gene abundance from 806 microbiomes of
Chinese individuals (383 controls, 170 with type 2 diabetes,
130 with rheumatoid arthritis, and 123 with liver cirrhosis).
Seven algorithms were used, and logistic regression achieved
the highest accuracy. This study showed that gut microbiome
biomarkers could distinguish abnormal cases from controls with
a high level of specificity. The microbiome biomarkers found,
present a promising predictive power for application in disease
diagnostics, especially disease screening within a large-scale
population (Wu et al., 2018).

Tap et al. (2017) set up a ML procedure to identify a microbial
signature to predict the severity of Irritable Bowel Syndrome
(IBS) using a LASSO-based logistic regression approach applied
to 195 subjects. The performance was assessed using the AUROC,
and a set of 90 robust OTUs was negatively associated with
microbial richness, exhaled methane, presence of methanogens,
and enterotypes enriched with the bacterial order Clostridiales
or genus Prevotella (Tap et al., 2017). Fukui et al. (2020) used

2https://www.microbiomeanalyst.ca/

a similar LASSO logistic regression-based approach to extract
a featured group of bacteria for identifying IBS patients. They
then applied Random Forest models on the selected features to
perform the classification between 85 IBS patients and from 26
healthy controls, obtaining a sensitivity of >80% and specificity
of >90% (Fukui et al., 2020).

Linear discriminant analysis (LDA)
Linear Discriminant Analysis (LDA) is a generalization of
Fisher’s linear discriminant, a method used in statistics, pattern
recognition and machine learning to find a linear combination
of features that provides good separation between the classes
of objects or events. When applied to microbiome data, this
approach finds a linear combination of microbial features in
the training data that models the multivariate mean differences
between classes (Zhou and Gallins, 2019).

The linear discriminant analysis (LDA) effect size (LEfSe)
method proposed by The Huttenhower Lab as part of bioBakery
workflows for executing microbial community analyses3 was
specifically designed for biomarker discovery in metagenomic
data (16S rRNA gene and whole-genome shotgun datasets). It
performs high-dimensional class comparisons that determine the
features: organisms, clades, operational taxonomic units, genes,
or functions; most likely explaining differences between classes.
It joins standard tests for statistical significance plus additional
tests encoding biological consistency and effect relevance. The
algorithm first uses the non-parametric factorial Kruskal-Wallis
(KW) sum-rank test to detect features with significant differential
abundance regarding the class of interest. Then, biological
consistency is investigated using a set of pairwise tests among
subclasses using the (unpaired) Wilcoxon rank-sum test, finally
uses LDA to estimate the effect size of each differentially abundant
feature and perform dimension reduction (Segata et al., 2011).

k-nearest neighbors (k-NN)
k-NN is based on simple classification rule, assigning the new
sample to a class which is in the majority among the k training
samples nearest to that point. The algorithm can be used both for
classification and regression problems, depending on a type of the
outcome variable (discrete or continuous). The neighborhood is
defined using a selected distance metric in a multidimensional
feature space. Euclidean distance or correlation coefficients
are the most regularly used distance metrics. For continuous
traits, a weighted average of the k nearest neighbor is used
(Zhou and Gallins, 2019).

k-NN has been used to effectively determine the postmortem
interval (PMI) using microbial samples from the skin microbiota
found in the nasal and ear canals of cadavers. When the
microbiota from both sites was considered jointly, the regression
was successful, yielding a model that accurately predicts the
postmortem interval to within 55 accumulated degree days
(ADD), which represents about two days of decomposition at an
average temperature of 27.5◦C (Johnson et al., 2016).

Hacılar et al. (2018) compared several ML-based techniques
to classify fecal samples as healthy or with disease [i.e.,
Inflammatory Bowel Disease (IBD)]. They used a dataset

3http://huttenhower.sph.harvard.edu/lefse/
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containing shotgun metagenomic data from 382 individuals
(234 healthy and 148 IBD patients). The training set was a
profile of gut microbial communities for each sample generated
by MetaPhlAn2 (Segata et al., 2012). Several models were
trained (RF, Adaboost, k-NN+ LogitBoost, Decision tree, Neural
network, LogitBoost and Furia) and 10-fold cross-validation
was performed to evaluate the performance for each model.
Finally, they added a feature selection (i.e., mRMR: minimum
redundancy and maximal relevance) step before the training
process. With and without feature selection k-NN + LogitBoost
performed best with 0.87 and 0.86 accuracy scores, respectively
(Hacılar et al., 2018).

Naïve Bayes classifiers
Naïve Bayes classifiers are a family of simple probabilistic
classifiers based on the application of Bayes’ theorem with
strong (naïve) assumptions of statistical independence between
the features. In one such study applying NB to microbiome
data, Werner et al. (2012) investigated the influence of the
training set on the results of the taxonomic classification of
16S rRNA gene sequences generated in microbiome studies.
The classification using a naïve Bayes classifier indicated that
taxonomic classification accuracy of 16S rRNA gene sequences
improves when a Naive Bayes classifier is trained only on a
selected region of the target sequences. This result was used for
some other classifiers (e.g., in QIIME2) (Werner et al., 2012).

Support vector machines (SVM)
SVMs is a machine learning algorithm that aims to learn a
decision boundary between the classes, so as to ensure the
maximum achievable distance (margin) between the samples
closest to the decision boundary. The samples relevant for
learning a decision boundary are only those closest to it, called
support vectors. When linear separation between classes is not
possible in original feature space, the SVM uses the kernel
trick to estimate the decision boundary in a higher-dimensional
space (Cortes and Vapnik, 1995). SVM can as well be used for
regression tasks.

A Sino-European team (Qin et al., 2010) led an early
study using WGS data in order to identify dissociative genetic
markers from fecal sample sequencing data for IBD and Type
II diabetes (T2D). They used a variety of tools to process the
raw reads: SOAPdenovo (Li et al., 2010) for assembly; MetaGene
(Noguchi et al., 2006) for gene prediction; KEGG (Kanehisa
et al., 2004) and eggNOG (Jensen et al., 2007) for functional
annotation. They selected 50 marker genes for T2D (using
mRMR: minimum redundancy and maximal relevance) out of
a gene catalog containing roughly 300,000 genes. They also
show that taxonomic abundance data segregates IBD and healthy
individuals when performing PCoA.

Cui and Zhang (2013) described an alignment-free supervised
classification procedure for the classification of metagenome
samples into predefined classes with sequence signatures from
shotgun metagenomics sequencing data by using recursive SVM,
this approach integrates feature selection and classification
steps in one method. They also applied the methodology
on a real metagenome dataset to classify IBD and non-IBD

samples. The accuracy obtained using the stringent leave-one-out
cross-validation (LOOCV) was 88%, additionally permutation
experiment were performed to evaluate statistical significance
(Cui and Zhang, 2013).

Liu Y. et al. (2011) presented “MetaGUN”4 a gene prediction
method for identifying genes in metagenomic fragments based on
SVM. Initially, input sequences were classified into phylogenetic
groups, using a k-mer based sequence binning method.
Afterward, for each group, the identification of protein-coding
sequences was performed using SVM classifiers. MetaGUN
applies universal prediction modules and a novel prediction
module to identify protein-coding sequences. Entropy density
profiles (EDP) of codon usage, Translation Initiation Side
(TIS) scores and Open Reading Frame (ORF) length are
employed as discriminative features and used as inputs into
the classifiers to distinguish protein-coding sequences from
non-coding sequences. In the last stage, TISs are relocated by
employing a modified version of MetaTISA. The MetaGUN
prediction method was compared with six existing metagenomic
gene finders (Liu Y. et al., 2011). The results showed that the
performance of MetaGUN is better for 3′ end of genes on longer
fragments, and comparable results were obtained with Glimmer-
MG on shorter fragments. For 5′ end of genes, with fragments of
various lengths, MetaGUN outperformed other tested methods
on the overall TISs. When applied on two healthy human gut
microbiome samples, MetaGUN was able to find more novel
genes than other methods (Liu Y. et al., 2011).

Ning and Beiko (2015) explored a phylogenetic approach in
classification of oral microbiota using a ML approach focusing
on classification using SVMs. The authors used phylogenetic
information as the basis for the proposed custom kernels and as
classifier features. Other than using the phylogenetic information
(such as taxon and clade abundance), PICRUSt (Langille et al.,
2013) that predicts molecular functions from 16S rRNA sequence
data was used to generate additional input features. The proposed
kernels based on UniFrac measure of community dissimilarity
(Lozupone et al., 2011) did not result in improved performance.
Even though the combinations of the selected input features were
important predictors, they did not result in increased accuracy.
The classification was performed on nine oral sites and resulted in
a modest 81% prediction accuracy which indicates the challenges
of classification of oral microbiota.

Another study, performed by Larsen and Dai (2015),
demonstrated that the metabolome derived from the human gut
microbiome might be predictive of host dysbiosis. Metagenomic
enzyme profiles predicted from 16S rRNA microbiome
community structures were used to generate metabolic models.
The authors apply SVM to show that emergent property of
the microbiome and its aggregate community metabolome of
human gut are more predictive of dysbiosis than the microbiome
community composition or predicted enzyme function profiles.

Artificial neural networks
Artificial neural networks refer to an interconnected feed-
forward network of neural units each comprising multiple inputs

4http://bioinfo.ctb.pku.edu.cn/MetaGUN/
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and a single output, organized in several layers to map a feature
vector from the input layer, to the class label at the output
layer. The inputs to each neuron are weighted outputs from the
neurons from a previous layer, which are summed and non-
linearly transformed at its output. The total number of hidden
layers and the number of neurons within each hidden layer
are specified by the user. All neurons from the input layer are
connected to all neurons in the first hidden layer, with weights
representing each connection. This process continues until the
last hidden layer is connected. The backpropagation algorithm
is used to modify the weights in a neural network optimizing
for the classification accuracy. For microbiome data, OTUs/ASVs
are commonly used at the input layer, with separate neurons
for each OTU/ASV.

Lo and Marculescu (2019) describe a neural network platform
for the classification of host phenotypes from metagenomic data,
using a new data augmentation technique to mitigate the effects
of data over-fitting. They tested the proposed framework on
eight real datasets including data from HMP (Turnbaugh et al.,
2007), and two diseases, i.e., IBD (Gevers et al., 2014), and
esophagus diseases (esophagitis, Barrett’s esophagus, esophagal
adenocarcinoma; Yang et al., 2015), finding that the new proposed
methodology outperforms other models previously used in the
literature (Lo and Marculescu, 2019).

Deep Learning
Deep learning (DL) is a ML method that assumes using artificial
neural networks (ANNs) with deep architectures, i.e., multiple
hidden layers, yielding a higher level of abstraction and in
general a significant improvement in performance given very
large data sets. Another advantage to other ML methods is that
DL architectures learn the feature representation given the raw
data at its input, thus alleviating the feature engineering step.
Currently, DL is thought to be the most advanced ML technique
for a variety of applications (Chassagnon et al., 2020).

To classify human epithelial materials highly relevant for
forensic investigations, Díez López et al. (2019) applied
taxonomy-independent DL methods on skin, saliva, and vaginal
microbiome data obtained from the Human Microbiome Project.
A total of 1636 validated reference samples from these sites
were used to identify most informative sequence positions via
correspondence analysis. High-inertia positions were used as
input matrix to train 50 DL networks based on a 4-layer ANN.
Two sets of samples (110 test and 41 mock casework samples)
were deployed to validate the output from the deep learning
approach with most of the samples being classified correctly. This
approach offers a more accurate and efficient tissue-classification
approach compared to human biomarkers, as donor DNA-based
methods often lead to cross-identification and low specificity due
to overlaps in human cell composition. However, a successful
application of DL methods in such a context ideally requires
standardized biological and methodological conditions during
the generation of training and test data (Díez López et al., 2019).

Another example of using DL approach for analyses of
metagenomic data are DeepARG networks which are trained to
predict antibiotic resistance genes (ARGs) from metagenomic
data (Arango-Argoty et al., 2018). DeepARG consists of two

models: DeepARG-LS, which was developed to classify ARGs
based on full gene length sequences, and DeepARG-SS, which
was developed to identify and classify ARGs from short sequence
reads. The initial collection of ARGs was obtained from three
major databases: CARD, ARDB, and UNIPROT and 30 ARG
categories were used to train the models. To further evaluate and
validate performance, the DeepARG-LS model was applied to
all the ARG sequences in the MEGARes database (Lakin et al.,
2017). Also, the ability of the DeepARG-LS model to predict
novel ARGs was tested on a set of 76 metallo-beta-lactamase
genes obtained from the study of Berglund et al. (2017). Based
on the results the authors conclude that the DeepARG models
can be used to get an overview or inference of the kinds of
antibiotic resistance in a collection of sequences; however, still
the downstream experimental validation is required to confirm
whether the sequences truly confer resistance.

Asgari et al. (2019) used deep learning, Random Forest(RF)
and SVM, for distinguishing among human body-sites,
diagnosis of Crohn’s disease, and predicting the environments
from representative 16S gene sequences. Moreover, they
also proposed a reference- and alignment-free approach for
predicting environments and host phenotypes from 16S rRNA
gene sequencing data based on k-mer representations. They
described that for large datasets (10K samples per class)
using DL provides more accurate predictions. However, when
the number of samples is not large enough, RFs performed
better on both OTUs and k-mer features. However, for
classification over representative sequences as opposed to
samples (pool of sequences), the SVM outperformed the RF
classifier (Asgari et al., 2019).

Convolutional neural network CNNs are similar to traditional
deep neural networks (DNNs), they are made up of layers of
neurons that have learnable weights and biases. Each neuron
receives some inputs, calculates a dot product, and optionally
follows it with a non-linear function (Lopez Pinaya et al.,
2020). In 2017, this team (Fioravanti et al., 2018) introduced
a phylogenetic CNN that would enable the classification of gut
microbiome metagenomic data into healthy or IBD phenotypes,
summing up to a total of 6 classification tasks. Those phenotypes
included the different subtypes of the disease: Crohn’s disease
(CD) and Ulcerative Colitis (UC), as well as the state of the
pathology (flare or remission) and the part of the intestine
that is affected for CD (ileum or colon). The dataset used
for training (Sokol et al., 2017) contained bacterial and fungal
community (16S rDNA and ITS) from 38 controls and 222
IBD patients. Pre-processing of the raw data was carried
out using QIIME2 (Kuczynski et al., 2012), UCLUST (Edgar,
2010) and RAxML (Stamatakis, 2014), in order to get relative
abundance, cluster the taxa and build a phylogenetic tree that
will then be input to the CNN. A synthetic dataset was also
constructed as deep learning performs better when trained
on large datasets. To do so, they generated vectors in the
Aitchison simplex that is spanned by the “real” dataset. This
improved the performance of the CNN, which tends to overfit
when trained only on the initial dataset. They compared the
performance of their newly crafted CNN with more traditional
learning models (LSVM, RF, Multi Layer Perceptron NN)
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using the Matthews Correlation Coefficient (MCC) as a metric.
Overall, for each of the six tasks, the CNN outperformed
the other models.

Ensemble Methods
Ensemble methods combine multiple classifiers to obtain a better
performance than a single classifier.

Random forests (RF)
RFs are an example of ensemble learning, in which a complex
model is made by combining many simple models. In this case,
simple models are decision trees. RFs use a bootstrap resampling
on the given dataset to learn each decision tree using a single
boostrap set. The final output of a RF is obtained using a
majority voting of the individual decision trees. As these are
well-studied methods, they are used as baselines for comparison
in many studies (Breiman, 2001). The most widely used ML
algorithm, RF classifiers have been frequently used along with
Least Absolute Shrinkage and Selection Operator (LASSO) for
feature selection, for stratification of patients (Flemer et al., 2017;
Yachida et al., 2019) and biomarker finding (Koohi-Moghadam
et al., 2019; Thomas et al., 2019; Wirbel et al., 2019) and finding
of host-microbial signatures to detect fecal contamination in
environmental samples (Roguet et al., 2018).

RF has been used for classification of pediatric patients of
Crohn’s disease (CD) according to disease state and treatment
response by using the alpha diversity of the samples and the
genetic risk score (GRS) of each patient (Douglas et al., 2018).
They found higher classification accuracy with 16S rRNA datasets
than shotgun metagenomics due to the higher contamination of
human DNA in the shotgun metagenomes.

Ross et al. (2017) analyzed the impact of cohabitation on
the individual composition of the skin microbiome. For the
analysis, the authors used 16S rDNA amplicons of bacteria and
archaea from 330 skin samples from 17 skin regions of 10
heterosexual cohabiting couples. Analysis was performed using
both statistical and ML methods. Their results showed that the
two most important factors that affect the skin microbiome are
individuality and body region, which is in line with previous
studies. The authors also showed that cohabitation strongly
influences skin microbial community diversity. When RF method
was applied for skin microbiome classification, accuracy greater
than 86% was achieved (Ross et al., 2017).

Ai et al. (2019) took advantage of the continuously decreasing
price of whole genome sequencing technology to diagnose
colorectal cancer (CRC) based on fecal shotgun sequencing
data. They used a dataset consisting of French and Austrian
cohorts both containing 156 individuals (312 in total; 124 healthy
and 188 CRC and adenoma patients). To preprocess the raw
reads and produce the relative abundance of each taxon in the
gut, they used the GRAMMy tool (Xia et al., 2011). In order
to select taxa that best discriminate a healthy sample from a
sample displaying tumor-related dysbiosis, ML techniques were
implemented; feature (taxon) selection was carried out using
information theory (mutual information) and a RF classifier was
trained using a 6-fold cross-validation process. This resulted
in the selection of a set of taxa whose abundance was a good

indicator of the presence or not of CRC related dysbiosis in the
gut (Ai et al., 2019).

Rahman et al. (2017) used metagenomes to identify antibiotic
resistance genes in the infant gut microbiome. Their findings
were in line with previous work showing that there is an
increase of resistance gene levels after antibiotics intake, which
is followed by the recovery of the microbial community. The
authors also found that, over time, the formula feeding influences
the gut resistome. A RF model was used to classify resistomes
of formula-fed and breast-fed babies. Using feature importance,
the trained model was then used in the selection of resistance
genes. Furthermore, ML methods were used to select genes that
can predict the change in relative abundance of an organism
after the intake of vancomycin and cephalosporin antibiotics.
The best results were obtained using the boosted decision trees
(Rahman et al., 2017).

Yang et al. (2019) applied a RF classifier for forensic
identification based on an individual’s microbial sample using a
combination of single-nucleotide polymorphisms (SNPs) in the
16S rRNA gene of Cutibacterium acnes and skin microbiome
OTU table, achieving 93.3% accuracy. Their work also showed
that the genotype of C. acnes 16S rRNA gene was more stable
over time than that of the skin microbiome profile. The proposed
method showed promising results for microbiome-based forensic
identification (Yang et al., 2019).

Gupta et al. studied a cohort of patients with CRC from
India by using shotgun metagenomics. They identified 20
potential microbial taxonomic markers based on their significant
association with the health status, and 33 potential microbial gene
markers using Weka and the Boruta R packages. They applied RF
with the selected biomarkers and combined with two different
cohorts from China and Austria successfully discriminated the
Indian CRC from healthy microbiomes with high accuracy
(Gupta et al., 2019).

Sze and Schloss (2016) conducted a meta-analysis to
detect if specific microbiome-based markers can be associated
with obesity. The authors selected ten previously published
studies, re-calculated OTU tables with the available 16S rRNA
sequencing data, applied RF models trained on each data
set and tested them on the remaining data sets to predict
the obesity status of the subjects. The authors found weak
relationships between richness, evenness, and diversity and
obesity status. Moreover, they also showed that most studies
lack the power to detect small differences in alpha diversity
metrics and phylum-level relative abundances. The analysis
demonstrated that the ability to reliably classify individuals
as obese only based on the composition of their microbiome
was limited. The authors concluded that the involvement of
the microbiome in obesity is not apparent based on the
taxonomic information provided by 16S rRNA gene sequence
data (Sze and Schloss, 2016).

Braun et al. (2019) studied patients with quiescent Celiac
Disease (CD) and compared their microbiota with both CD and
healthy patients. The RF model was used to prioritize taxa that
best distinguish relapses from non-relapses. Top three taxa were
used to construct the flare index that was significantly different
for flare and no-flare samples. Flare index also significantly
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correlated with microbial richness and microbial dysbiosis index
(Braun et al., 2019).

Fabijanić and Vlahoviček (2016) utilized the translational
optimization effect, a property of gene regulation, to distinguish
subjects with liver cirrhosis from healthy controls using the
RF classifier (Fabijanić and Vlahoviček, 2016). Another study
that utilized the RF algorithm on gut microbiome data is
described by Hasic and Music; the condition studied was Multiple
Sclerosis (MS). The results demonstrate the best accuracy in
distinguishing control samples from MS samples when genus-
level taxa abundances were used as features. The model learned
on one dataset was evaluated on another set of the MS samples
coming from people living in another country. The classification
accuracy on this test set was comparable to the error on the
validation set (Telalovic and Azra, 2020).

Multiple decision tress
Travisany et al. (2015) proposed an ensemble method for
microbial taxa prediction present in a specific environment as
well as their abundances using multiple CARTs (classification
and regression tree). The authors first constructed a dataset of
genomic fragments by collecting genomes from publicly available
databases. They built two predictors, one using a dataset with
98 genera of the gastrointestinal tract available from the Human
Microbiome Project, and the other with 17 early studied genera
of the gastrointestinal tract. They computed the statistics of
k-mer frequencies, GC radio and GC skew for each read for a
specific environment-associated dataset. The prediction was then
performed by majority vote selection of multiple (n = 558) CART
trees. The proposed method was evaluated using simulated and
public human gut microbiome datasets. Using 17 representative
genera, the authors achieved an accuracy of 77% in read
assignments (Travisany et al., 2015).

Gradient boosting (GB)
A ML method that addresses regression and classification
problems by generating a prediction model as an ensemble
of weak predictors, mostly decision trees, and then averaging
predictions over decision trees of fixed sizes. As with other forms
of boosting, the process successively computes weights for the
poorly predicted samples.

For the gut microbiome, GB has been applied by Zeevi et al.
(2015). Their study included a cohort of 800 overweight or
obese non-diabetic individuals, in which the gut microbiome
was being profiled (relative abundances of 16S rRNA amplicon-
based phyla, metagenome-based species and KEGG modules)
along with their nutritional profiles, as well as several blood
parameters and anthropometrics to successfully predict the post-
meal glucose levels for each individual and each meal. Their ML
model was based on a stochastic gradient boosting regression
(Friedman, 2001). When using stochastic gradient boosting, at
each iteration, a randomly selected subsample is drawn from the
training data without replacement, which is then used to fit the
model. Zeevi et al. used 80% of their samples and 40% of the
features. They did not limit the depth of the three, however,
it was required that the leaves have at least 60 instances (i.e.,
meals, in their case). In total, 4000 iterations were used with a

learning rate of 0.002. The authors subsequently validated the
output from the trained ML model in an independent cohort of
100 participants. Further, they conducted a blinded randomized
controlled dietary intervention in another cohort based on the
ML-based predictions, observing similar improvements in the
post-meal glucose levels, accompanied by consistent alterations
to the gut microbiota (Zeevi et al., 2015).

Faust et al. (2012) employed GB to investigate co-occurrence
relationships in 16S rRNA data obtained from the Human
Microbiome Project. Generalized boosted linear models were
fitted using taxa abundance data from source sites to predict
abundances of target taxa within targets sites. The analysis
was augmented with the integration of a set of similarity and
dissimilarity measures (Pearson and Spearman coefficients for
correlation, Bray-Curtis and Kullback-Leibler as dissimilarity
measures) to finally create a network of co-occurrence and co-
exclusion relationships within the analyzed microbiomes. By
putting these tools together, the authors were able to reveal
that closer related taxa tend to co-occur in special vicinity
or environmentally similar habitats whereas phylogenetically
more distant microbes with similar functional aptitudes are
more likely to compete. A major difficulty in developing this
method was taking into account the compositional character
of relative abundance data which could lead to spurious
correlations. However, coupling permutations and repeated
renormalization contributed to maintaining true correlations.
While these observations were made on data from the Human
Microbiome Project, the computational methodology can be
transferred to other research questions involving marker gene
sequencing (Faust et al., 2012).

GB has been applied to analyze a combination of 16S
rRNA, host transcriptome, epigenome, genotype and dietary
data from colonic biopsies of inflammatory bowel disease
patients and healthy controls using XgBoost (Ryan et al., 2020).
When microbiota information was combined with diet and
host genotype, the disease classifications improved significantly,
and even more so when host epigenome and microbiota
data were combined.

Applications of Several Machine Learning Methods
Le Goallec et al. (2020) proposed a framework for building
microbiome-derived indicators of host phenotypes of infant age,
sex, breastfeeding status, historical antibiotic usage, country of
origin, and delivery type. By leveraging five different types of
data and their combinations (host demographics (“baseline”
data) and the four microbiome data type: BioCyc pathway
relative abundance, Co-Abundance Groups (CAGs) relative
abundance, MetaPhlAn2 taxa relative abundance, and gene
relative abundance, they compared the prediction performances
of 8 machine learning methods: 2 different elastic net (Elastic
Net Caret and Elastic Net 2) implementations, 2 random
forest (RF Caret and RF2) implementations, 2 gradient boosted
machine (GBM Caret and GBM2) implementations, support
vector machines (SVM, kernels: linear, polynomial of degree
2 and radial), K-nearest neighbors (KNN) and naive Bayes
(NB). In their investigation, they found that non-linear models
and particularly the Gradient Boosted Machines (Caret) were
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the most consistently effective at the classification of sex,
breastfeeding status, country of origin. For other phenotypes such
as age and prior antibiotic usage, the information encoded in the
microbiome seems to be linear, as no significant difference was
observed between the elastic nets and the tree-based methods.
In these cases, linear methods were a better choice, because of
the ease of interpretation. The authors concluded that significant
pairwise relationships could be detected between phenotypes and
biomarkers (Le Goallec et al., 2020).

A UK based team carried out a study aiming at building a
hybrid classifier that would perform several classification tasks
[IBD presence (1), subtype (2) and severity(3)] (Wingfield et al.,
2016). A publicly available dataset of 16S rRNA containing
fecal sequencing data from 37 healthy individuals and 122 IBD
patients) was used in order to train the three aforementioned
models. For each sample, the sequenced reads were pre-processed
into taxonomic and functional profiles using QIIME2 (Kuczynski
et al., 2012) and PICRUSt (Langille et al., 2013) respectively.
Then, a pipeline of three consecutive classifiers (SVM for stages
one and two, multilayer perceptron (MLP) for stage three)
was developed and the classifiers were cross-validated. The
outcomes of the different classification steps were disease-free,
IBD remission and IBD active for stage one. Ulcerative colitis
(UC), Crohn’s disease and control for stage two and finally
mild, moderate and severe for stage three. The average precision
scores for the k-fold cross-validations were rather low, 0.71, 0.65
and 0.61 for stages one, two and three respectively, however
the average area under the ROC curves were consistently better
(ranging from 0.7 to 0.9).

In another study, a framework entitled Phy-PMRFI
(Phylogeny-aware modeling for prediction of metagenomic
functions using RF Feature Importance), the authors use
ML for microbiome functional properties. They integrated
quantitative profiles of taxa (abundance counts of OTUs)
and biological information derived from the phylogeny of
microbial taxa. This approach helped to select taxa at different
taxonomic levels that reck in associating a metagenomic sample
with the host environmental phenotypes. It implemented a
phylogeny and abundance-aware matrix (PAAM) (Wassan
et al., 2018b) that combines phylogeny with the abundance
counts of microbial taxa. For Phy-PMRFI, the authors used RF
to recognize microbial features that are useful for classifying
phenotypic groups and improve metagenomic predictions.
Afterward, the informative microbial taxa obtained acted as
an input to three commonly used MLclassifiers: (1) SVM, (2)
Logistic Regression, and (3) Naive Bayes, intending to identify
if phylogenetic relatedness is a good predictor of functional
similarity. For this, the authors used three microbiome
datasets as cases to demonstrate the utility of the Phy-PMRFI
framework in predicting functions of metagenomic data.
They concluded that inclusion of the phylogenetic measure
potentially maximizes the opportunity of classifying microbiome
functions according to naturally inherent properties of taxa
(Wassan et al., 2019).

Beck and Foster (2014) applied genetic programming, RF
and logistic regression to classify microbial communities into
bacterial vaginosis (BV) positive and negative categories. Using

the mentioned classification models, most important features of
the microbial community used to predict BV were also identified.
The classification was applied to two different datasets. The
authors obtained an accuracy above 90% for Nugent score and
above 80% for the Amsel criteria. Even though different sets of
most important features were identified by the tested classifiers,
the shared features, in general, agree with the previous research
(Beck and Foster, 2014).

In the context of the human gut microbiome, Zhu et al. (2020)
proposed a DL ensemble feature selection model, Deep Forest,
which is based on the RF method to perform microbiome-wide
association studies (MWAS). When tested on three data sets
using several classifiers, the proposed method achieved better
classification performance than SVMs, k-NNs and convolutional
neural networks (CNNs). Performance evaluation of Deep Forest
was also evaluated in terms of feature selection. The method
achieved better results with the selected reduced feature subset.
When the selected features were compared to the existing
literature, identified microbial biomarkers have found to have a
relationship with the diseases (Zhu et al., 2020).

Statnikov et al. (2013) performed a comprehensive evaluation
of 18 ML methods and five feature selection methods to
perform body site and subject multicategory classification and
diagnosis using microbiome data. The evaluation was performed
on eight datasets using constructed OTU tables as input
features for the ML methods. Performance of evaluated methods
was measured using the proportion of correct classifications
and relative classifier information metrics. From the evaluated
methods, RF, SVM, kernel ridge regression, and Bayesian logistic
regression with Laplace priors were among the best-performing
methods with statistically similar levels of classification accuracy
(Statnikov et al., 2013).

In work published by Eck et al. (2017) two datasets were
analyzed. One distinguished skin from gut microbiome samples
and the other IBD patients from healthy individuals. Several
ML algorithms were applied: Linear SVM, RF, nearest shrunken
centroids, logistic regression with l2 regularization. The authors
measured the most important taxa on species level (applying
intergenic spacer profiling of 16S-23S rRNA) for the classification
when applying different algorithms. The identification of such
taxa facilitates biologically meaningful interpretation of the
microbiota-based predictions (Eck et al., 2017).

Hollister et al. (2019) evaluated the relationships of pediatric
IBS and abdominal pain with intestinal microbes and fecal
metabolites. By leveraging both metagenomic and metabolomic
information, and using LASSO feature selection, RF models, and
SVM, the authors selected ten features including abundances and
distributions of the metabolites, bacterial species, and functional
pathways. Features selected were capable of distinguishing
pediatric IBS cases from controls with an AUC of 0.93 and≥ 80%
accuracy. Moreover, the bacterial features and metabolites
described appeared to be closely linked with abdominal pain and
emphasized the importance of the microbiome-gut-brain axis to
human health (Hollister et al., 2019).

Pasolli et al. (2016) used the SVM, RF classifiers, LASSO
and elastic net regularized multiple logistic regression, Neural
Networks and Bayesian logistic regression, and assessed the
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prediction power of metagenomic data in linking the gut
microbiome with disease states (Pasolli et al., 2016).

Liu Z. et al. (2011) developed a method called MetaDistance
that integrates SVM and k-NN for multiclass classification and
additionally performs feature selection. The proposed method
showed good classification accuracy for classifying body sites
and skin sites according to 16S rRNA gene data. Besides, the
method was demonstrated to be robust for small sample sizes and
unbalanced classes (Liu Z. et al., 2011).

Mohammed and Guda (2015) used a consensus-based
ensemble of k-NN, SVM, RF, decision stump and Naive Bayes
classifier to hierarchically predict enzymes encoded by the human
gut microbiome. They further applied their method to analyze
the enzyme profiles of lean vs obese and IBD vs non-IBD subjects
(Mohammed and Guda, 2015).

Chen et al. (2016) explored the differences between the gut
microbiome from three different races (Asian, European and
American races), by analyzing the expression levels of their
gut microbiome genes. They applied minimum redundancy
maximum relevance incremental feature selection methods
and four ML methods to determine the most relevant gut
microbiome genes that are differentially expressed in individuals
from different races. The approaches used were: RF, k-NN,
sequential minimal optimization (a type of SVM method
where training is performed using the sequential minimal
optimization algorithm proposed by Platt (1998), and dagging
(a type of meta classifier, where multiple models are built and
integrated using majority voting). For performance evaluation,
the authors used the overall prediction accuracy and Matthews’s
correlation coefficient (MCC). MCC was used since it is a
suitable performance measure to evaluate model performance
even in the case of imbalanced classes (Chicco and Jurman,
2020). Sequential minimal optimization method achieved the
best performance results (overall prediction accuracy 99.6%,
MCC 99.3%) in identifying 454 most important differentially
expressed genes. The obtained results also show that the first
25 out of the 454 identified genes were observed to achieve
accuracy greater than 96% and were analyzed in more detail. The
identified genes reflected differences among analyzed races such
as eating habits, living environments/geographic localization and
metabolic levels, which are also known to influence the gut
microbiome (Chen et al., 2016).

In more recent work, Zhou and Gallins (2019) evaluated the
most commonly used supervised ML methods for microbiome
host trait prediction: regression methods, linear discriminant
analysis, SVM, similarity matrices and related kernel methods,
k-NN, RFs, gradient boosting for decision trees, and neural
networks. The authors first performed a comparative analysis
based on the literature review of published work, focusing on
17 reported datasets generated from OTU tables. Additionally,
the authors performed their own comparative analysis of the
mentioned ML methods using three datasets available from
MicrobiomeHD database5 (Duvallet et al., 2017). For feature
extraction, the authors applied a hierarchical feature engineering
(HFE) (Oudah and Henschel, 2018). Among the compared

5https://github.com/cduvallet/microbiomeHD

methods, decision tree-based methods, in general, performed
well, achieving similar results with the neural network models
in the analyzed published literature. Furthermore, by applying
HFE for OTU table feature reduction, better performance
results were achieved for almost all of the evaluated methods
(Zhou and Gallins, 2019).

Unsupervised Learning Methods
Unsupervised methods identify apparent patterns in the
data, without the use of predefined labels. These are
important exploratory tools to examine the data and to
determine important data structures and correlation patterns
(Zhou and Gallins, 2019).

Clustering
Hierarchical clustering is a classic unsupervised learning
technique, which builds a hierarchy of nested clusters using a
dendrogram, merging or splitting clusters based on different
metrics (Zhou and Gallins, 2019). Cai and Sun (2011) used
hierarchical clustering for classification of 16S rDNA sequences,
they developed ESPRIT-Tree, a hierarchical clustering-based
algorithm and demonstrated its utility by performing analysis
of millions of 16S rRNA sequences, simultaneously addressing
the space and computational issues. The novel algorithm exhibits
a quasilinear time and space complexity comparable to greedy
heuristic clustering algorithms while achieving a similar accuracy
to the standard hierarchical clustering algorithm using 16S rRNA
data (Cai and Sun, 2011). In another study, the authors applied
hierarchical clustering for establishing possible relations between
microbiota and disease-associated host changes, i.e., disease
prediction. Here, the authors used as feature transcriptome
(RNA-seq) signatures of the host cell (colonocytes), and the 16S
rRNA data from gut microbiota. The authors treated colonic
epithelial cells with live microbiota from five healthy individuals.
Their results show an important role of gut microbiota in
regulating host gene expression and suggest that manipulation
of microbiome composition could be useful in future therapies
(Richards et al., 2019).

Possible correlation between microbiota and disease-
associated host changes is done through another microbiome
communities clustering algorithm - a novel multivariate testing
method called an adaptive Microbiome-based Sum of Powered
score (aMiSPU) (Wu et al., 2016). The aMiSPU method is
proposed to assess how the compositions of microbiotas
are associated with human overall health. Since it is a data-
driven approach based on a sum of powered score (SPU)
tests and adaptive variable weighting, using a generalized
taxon proportion combining microbial abundance information
with phylogenetic tree information, it reduces the criticality
of the choice of a phylogenetic distance which was a weak
point in most previous methods. Most univariate tests depend
on strong parametric assumptions on the distributions or
mean-variance functional forms for microbiome data which
results in a false positive (type I errors). So, some findings are
considered significant when they have occurred by chance. As
no assumption is imposed, the proposed method - a multivariate
semi-parametric test - eliminates the chance of incorrectly
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rejecting a true null hypothesis that there is no association
between any taxa and the outcome of interest. The evaluation
of aMiSPU test on simulated and real data indicates that the
aMiSPU test is better performing than several competing with
well-controlled type I error rates. A by-product of the method
is a ranking of the importance of the taxa and be used as a
selection tool for the taxa which are likely to be associated with
the outcome of interest. The MiSPU R package is public and
accessible at https://github.com/ChongWu-Biostat/MiSPU. Its
application for understanding the association between microbial
communities (i.e., microbiotas) throughout the human body and
disease can help in developing personalized medicine.

Biclustering is a powerful data mining technique that allows
simultaneously clustering rows and columns of a data matrix to
find submatrices that can overlap (Xie et al., 2019). In principle,
there exist four categories of biclustering methods: (1) variance
minimization methods, (2) two-way clustering methods, (3)
motif and pattern recognition methods and (4) probabilistic
and generative approaches (Madeira and Oliveira, 2004). For
many years, biclustering algorithms have been widely used
for the analysis of gene expression data, but new biclustering
applications are emerging, such as detecting disease marker
genera from gut microbiome as those methods are suitable
to detect overlapping clusters on both microbes and hosts.
Falony et al. (2016) used biclustering to identify sample subsets
with specific taxonomic signatures detecting two stable clusters
showing that partially overlapped with previously described
enterotypes (Falony et al., 2016). Zhou et al. (2020) proposed
an identifiable Bayesian multinomial matrix factorization model
to infer overlapping clusters on both microbes and hosts. The
authors demonstrate the utility of the proposed approach by
comparing four alternative methods in simulations and then by
applying it into Qin’s IBD microbiome dataset revealing clusters
which contain bacteria families that are known to be related to
the inflammatory bowel disease and its subtypes according to
biological literature (Zhou et al., 2020).

To cluster groups of communities with similar compositions
into envirotypes or enterotypes and thus into “metacommunities”
the Dirichlet multinomial mixture (DMM) generative modeling
framework has been developed (Holmes et al., 2012). It assesses
the community structure, including the sample density and size.
Multinomial sampling coupled with Dirichlet prior was used
before, but the extension of the prior to a mixture of Dirichlet
components is a novelty in this work. The method describes
each community by a vector, generated by one of finite possible
Dirichlet mixture components with different hyperparameters,
where each entry is the probability that a read is from given
taxa. These vectors of the frequency of taxa occurrences in
each sample are placed in a matrix, which is sparse as most
species are observed with low abundance. This multinomial
sampling is a discrete model that can be used for assessing
the size and sparsity of a community. Moreover, it becomes
a starting point for a generative modeling framework which
explicitly describes a model for generating the studied data, and
provides a means to cluster groups of communities with similar
compositions. The product of the research is a software package
for fitting DMM models which uses a Laplace approximation

to integrate out the hyperparameters and estimate the evidence
of the complete model. The authors leveraged the methodology
to estimate the association of obesity with distinct microbiota
by applying the DMM model to human gut microbe genera
frequencies from Obese and Lean twins. They did not find
a significant impact of body mass on community structure,
but rather a possible relation to a disturbed enterotype. They
conclude that disturbed states are associated with a more variable
community, as this was observed apart from the obese twins, also
in people suffering from inflammatory bowel disease (IBD) and
ileal Crohn’s disease (ICD).

Non-negative matrix factorization (NMF)
This method aims to extract hidden patterns from a series
of high-dimensional vectors automatically and has been
widely applied in many areas, such as image and natural
language processing, and computational biology for dimensional
reduction, unsupervised learning (clustering, semi-supervised
clustering and co-clustering, etc.) and prediction (Zhang,
2012). The NMF analysis can provide a range of interpretable
conclusions about the data sets. For metagenomic data, the
features extracted can be mapped to metabolic pathways.

In the work by Cai et al. (2017), the authors use non-
negative matrix factorization to identify key features of microbial
communities, by analyzing 16S rDNA amplicon and functional
data. Using three data sets: the difference in macrolide synthesis
pathways for the non-ruminant herbivores; the change in gut
and tongue microbial composition for person two in the moving
picture data (Caporaso et al., 2011); and the differences in various
pathways for the IBD microbiome dataset (Qin et al., 2010) the
authors demonstrate how to interpret the features identified by
NMF to draw meaningful biological conclusions and discover
hitherto unidentified patterns in the data (Cai et al., 2017).

Other ML Methods
Causal inference methods
Causal inference methods provide exploratory data analysis of
causal relationships between variables, e.g., relationship between
microbial species and disease outcome.

Bayesian networks (BN). BN are probabilistic graphical models
consisting of a directed acyclic graph (DAG). In this model,
nodes correspond to random variables, and the directed edges
correspond to potential conditional dependencies between them.
In a recent study, authors constructed a BN model via
Augmented Markov Blanket algorithm to identify microbial
networks and species-related with the complete response after
concurrent chemoradiation in rectal cancer. The BN analysis
revealed a link between a specific taxon and an improved
therapeutic response (Jang et al., 2020). BN has also been used in
combination with other methods, in particular, the Intervention
calculus when the DAG is absent (IDA) method (Kharrat et al.,
2019), to identify microbial species that are likely to have a causal
role in colorectal cancer (CRC) risk and onset.

Dynamic Bayesian networks (DBNs). Dynamic Bayesian
Networks (DBNs) are BNs attested for modeling relationships
over temporal data. In this regard, a DBN is a directed acyclic
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graph where, at each time slice or instance, nodes correspond
to random variables of interest and directed edges correspond
to their conditional dependencies in the graph (Russell and
Norvig, 2016). DNB has been used for analyzing longitudinal
microbiome data sets to establish temporal relationships between
different taxonomic ranks and other clinical factors that affect
the microbiome (Lugo-Martinez et al., 2019). They studied
longitudinal data sets from three human microbiome body sites:
infant gut, vagina, and oral cavity, and use temporal alignments to
normalize the differences in the progress of biological processes
of each subject, they found that microbiome alignments improve
the predictive performance of the methodology over previous
studies of longitudinal datasets, and increase the ability to infer
new and previously reported biological and environmental
relationships between the components of the microbiome and
other factors that influence it, this methodology allows to predict
microbiome states and relationships based on longitudinal data
applying DBN. Moreover, authors build up the CGBayesNets
package that is freely available under the MIT Open Source
license agreement.

In general, time series analyses represent a valuable approach
to determine the resilience and variability of microbial
communities. Perturbations and changing environmental
conditions can drive communities into alternative stable states,

while bi- and multi-stable states are mostly induced by member
interactions within a microbial community. However, a detailed
exploration of these temporal shifts is often restricted by either
intensively sampled but small treatment groups or large studies,
including only few sampling time points. Faust et al. (2015)
compared twelve-time series analysis techniques used for high-
throughput sequencing studies. These techniques mostly operate
on cross-correlation, autocorrelation or network inference.
Although the sampling scheme is highly dependent on the
environment of interest, appropriate sampling frequency and
regularity are crucial. These parameters define the resolution,
completeness, sparsity, and noisiness of the data and potentially
limit the explanatory power of the analysis output. By applying
DBN techniques, incomplete data may be amended and used
to model dependencies in time series. Apart from that, the
identification of early warning signs indicating an upcoming
change in microbiome-inherent networks could help to predict
responses to environmental factors (Faust et al., 2015).

Mendelian randomization (MR). Mendelian randomization
(MR) has been used to understand the causal role of gut
microbiome in disease. MR uses human genetic variants, such
as single nucleotide polymorphisms (SNP), as proxy measures
for clinically relevant traits of interest (e.g., gut microbiome) to

FIGURE 2 | Plot summarizing reviewed articles that apply machine learning in human microbiome data analysis. Articles are summarized based on microbiome input
data type and broadly defined ML categories and constrained by year. Please note that in the case of the year 2020 the input does not cover all publications from
this year.
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estimate the causal relationship between a trait and a disease or
health outcome, therefore eliminating confounding and reverse
causation effects between the exposure of interest and outcome.
In a bidirectional MR analysis on over 3800 individuals from
the Flemish Gut Flora Project and two German cohorts, Hughes
and co-workers (Hughes et al., 2020) were able to estimate
relationships among five microbial traits and seven outcomes,
namely waist circumference and body mass index.

Also, Sanna et al. (2019) used bidirectional MR to assess the
causal role of the gut microbiome on metabolic traits, based
on genome-wide genetic information, gut metagenomic
sequence and fecal short-chain fatty acid (SCFA) levels
from 952 normoglycemic individuals, combined with
genome-wide-association summary statistics for 17 metabolic

and anthropometric traits. The authors found a causal role of
gut-produced fecal SCFA with respect to energy balance and
glucose homeostasis. In particular, a genetically influenced shift
in the gut microbiome toward increased production of butyrate
with beneficial effects on beta-cell function, and host genetic
variation resulting in increased fecal propionate levels affecting
type 2 diabetes risk (Sanna et al., 2019).

Correlation-based network analysis. Seo et al. (2017) studied
which of the gut microbes responded to probiotic intervention,
and their association with gastrointestinal symptoms in healthy
adult humans. The study consisted of 21 individuals after
probiotics consumption for 60 days and evaluated the changes
in microbiome composition through 16S rRNA amplicon

FIGURE 3 | Plot based on Wordcloud with MESH (Medical Subject Headings) terms annotated from the 89 articles.
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TABLE 2 | Clinical Applications of Machine Learning for human microbiome studies.

Disease Datasets Features Aim Method Citation

Crohn’s Disease (CD) BISCUIT cohort (Hansen et al., 2012; Pascal
et al., 2017), CD n = 20, Controls n = 20,
Validation Cohort RISK cohort (Gevers et al.,
2014).

Shotgun metagenomics data
and 16S rRNA gene data.

Classify pediatric CD patients by disease state
and treatment response.

Random forest. Douglas et al., 2018

Colorectal Cancer
(CRC)

Patients with CRC S0 n = 27, Patients with
CRC SIII/IV n = 54. Healthycontrols n = 127.

Shotgun metagenomics data
(Species, KO genes, Metabolite
profiles).

Classification of CRC patients according to
cancer stage.

Feature selection by LASSO.
Random forest.

Yachida et al., 2019

Colorectal Cancer
(CRC)

Fecal CRC metagenomes: n = 38 previously
published, n = 22 new. Control n = 60.

Feature selection by LASSO.
Features: IGC gene
abundances.

Predict taxonomic and functional microbiome
CRC signatures.

Feature selection by LASSO.:
Random forest.

Wirbel et al., 2019

Colorectal cancer
(CRC)

Stool: Controls n = 62, CRC n = 69, Polyps
n = 23. Swabs: Controls n = 25, CRC n = 45,
Polyps n = 21.

Log-ratio transformed values of
OTUs present in at least 5% of
individuals.

Development of an oral and fecal microbiota
classifier that distinguish individuals with CRC
and adenomas from controls.

Feature selection by LASSO.
Random forest.

Flemer et al., 2017

Colorectal cancer
(CRC)

Cohort 1: CRC n = 29, adenomas n = 27,
controls = 24. Cohort 2: CRC n = 32,
Control = 28. Validation Datasets: CRC
n = 313, Adenomas n = 143, Controls = 308.

Taxonomic species-level
abundances, gene-family and
pathways related abundances.

Finding of reproducible microbiome markers
and disease-predictive models for CRC.

Supervised Learning Methods:
Random forest.

Thomas et al., 2019

Colorectal cancer
(CRC)

Previously published data from France,
Hong Kong and Austria. France (Zeller et al.,
2014).

Shotgun metagenomics,
FASTA.

Discovery of biomarkers from WGS that could
be used to build a machine learning classifier
for CRC prediction.

Supervised Learning Methods:
Random forest. Neural network.
Support vector machine.

Koohi-Moghadam
et al., 2019

Abnormal cases vs.
Controls

Controls n = 383. Abnormal Cases: Type 2
diabetes n = 170, Rheumatoid arthritis n = 130,
Liver cirrhosis n = 123.

Shotgun metagenomics. Develop a pipeline to address the challenging
characterization of multilabel samples from type
2 diabetes, rheumatoid arthritis, and liver
cirrhosis.

Logistic Regression. Wu et al., 2018)

Bacterial Vaginosis (BV) Dataset 1: Asymptomatic BV-:299.
Asymptomatic BV + :97
Dataset 2: Asymptomatic BV-:6. Asymptomatic
BV + :214.

OTU tables from 16S rRNA
gene data.

Establishing microbial signatures in bacterial
vaginosis (BV).

Logistic Regression, Genetic
Programming, and Random
Forest.

Beck and Foster, 2015

Colorectal cancer
(CRC)

n = 30 Controls
n = 30 CRC patients from Previously published
datasets from Austria (n = 57 health ycontrols,
n = 46 CRC patients) and China (n = 53 healthy
controls and 75 CRC patients) (Feng et al.,
2015; Purcell et al., 2017).

Shotgun Metagenomics data
(mOTU, MGS, Methaphlan
species)
Gene counts.

Identify cohort-specific non-invasive biomarkers
to be used in diagnosis of CRC.

Weka
“CfsSubsetEval” + Boruta
algorithm for feature selection.
RF with 33 genes and 20
taxonomic markers.

Gupta et al., 2019

Obesity Data from 10 previously published studies
(n = 2.786 subjects) (Turnbaugh et al., 2006;
Wu et al., 2011; Human Microbiome Project
Consortium, 2012; Zupancic et al., 2012;
Escobar et al., 2014; Goodrich et al., 2014;
Schubert et al., 2014; Ross et al., 2015; Zeevi
et al., 2015; Baxter et al., 2016).

OTU tables from 16S rRNA
gene data.

Predict obesity status on the basis of the
microbial composition of the microbiome.

Random Forest. Sze and Schloss, 2016

Pediatric irritable bowel
syndrome (IBS)

n = 23 IBS patients
n = 22 Healthy Controls.

Shotgun metagenomics, Gene
Counts and pathways,
Metabolomics.

Evaluate the relationship between pediatric IBS
and abdominal pain with intestinal microbes
and fecal metabolites.

RF
LASSO feature selection
SVM
naïve Bayes.

Hollister et al., 2019
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TABLE 2 | Continued

Disease Datasets Features Aim Method Citation

Gastrointestinal
symptoms in healthy
humans

n = 21 volunteers after probiotics consumption
for 60 days.

16S rRNA gene data. Establish which of the gut microbes respond to
probiotics interventions.

Correlation-based network
analysis. Dimensionality
reduction.

Seo et al., 2017

Chron’s Disease Chron’s Disease dataset:
n = 731 Pediatric patients with CD
n = 628 Non-CD.
n = 300 healthy controls from HMP (Turnbaugh
et al., 2007).

16S rRNA gene data. Use of deep learning methods and classic
machine learning approaches for distinguishing
among human body sites, diagnosis of Crohn’s
disease, and predicting the environments from
representative 16S gene sequences.

RF, SVM, Deep Learning. Asgari et al., 2019

Inflammatory Bowel
Disease (IBD) and
esophagus diseases

n = 3501 samples from different datasets
(Costello et al., 2009; Knights et al., 2011).

16S rRNA gene data. Classification of metagenomic data using
Neural Networks approaches.

Neural Networks.
Comparison with supervised
ML methods (Linear regression,
Boosting gradients, SVM, RF).

Lo and Marculescu,
2019

Islet autoimmunity (IA)
and Type 1 Diabetes
(T1D).

n = 10,913 metagenomes in stool samples
from persistent confirmed IA or T1D vs controls.
(TEDDY cohort) (Hagopian et al., 2011).

Shotgun metagenomics. Gene
count.

Describe the functional profile of the developing
gut microbiome in relation to islet autoimmunity,
T1D and other early childhood events.

RF to separate between
case-controls.

Vatanen et al., 2018

Irritable Bowel
Syndrome

71 samples from 22 children with IBS (pediatric
Rome III criteria) and 22 healthy children.

16S rRNA gene data. Finding microbial signatures for Irritable Bowel
Syndrome.

Random Forest. Saulnier et al., 2011

Sclerosing cholangitis 46 controls and 80 patients with PSC during
ERC (37 with early disease, 32 with advanced
disease, and 11 with biliary dysplasia).

16S rRNA gene data. Explore the microbial involvement in the
etiopathogenesis and risk for development of
biliary neoplasia in primary sclerosing
cholangitis.

Generalized linear models. Pereira et al., 2017

Allergy Skin microbiota samples from 118 individuals. 16S rRNA gene data. Analyzing atopic sensitization (i.e., allergic
disposition) in a random sample of adolescents.

Linear and logistic regression,
and PCA.

Hanski et al., 2012

Liver disease FINRISK population cohort (Borodulin et al.,
2018).

Shallow shotgun metagenome
sequencing.

Study the link between the Fatty Liver Index
(FLI) and gut microbiome composition in a
population sample in Finland.

Gradient boosting. Ruuskanen et al., 2020

Liver disease A large population-based cohort (N ≥ 7,115)
and ∼15 years of electronic health register
follow-up of the FINRISK population cohort
(Borodulin et al., 2018).

Shallow shotgun metagenome
sequencing.

Investigate the predictive ability of gut microbial
markers in conjunction with conventional risk
factors, for incident liver disease and alcoholic
liver disease.

Gradient boosting. Liu et al., 2020

Serum lipids Healthy Finnish adults (n = 25, 18 females, 7
males).

16S rRNA gene data. Evaluate the association between the gut
microbiome and lipid profile.

Linear models, unsupervised
hierarchical clustering.

Lahti et al., 2013

IBD (Crohn’s disease,
Ulcerative Colitis,
collagenous colitis) vs
healthy

Three publicly available human metagenomics
data sets as Use Cases (Turnbaugh et al.,
2009; Koren et al., 2013; Halfvarson et al.,
2017).

OTU tables. Predicting gut microbiome functional role. Supervised Learning method
comparison.

Wassan et al., 2018a

Obesity 267 children aged 7–18 years from the
American Gut Project (McDonald et al.).

16S rRNA gene data. Composition of gut microbiota and its
associations with BMI level, weight change and
lifestyle.

Linear decomposition model. Bai et al., 2019

Postmortem Changes 144 sample swabs were from 21 cadavers. 16S rRNA gene data. Use of necrobiome data in the prediction of the
Postmortem interval.

Regression. Johnson et al., 2016
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sequencing. They used correlation-based network analysis and
dimensionality reduction to assess the effect of probiotics
consumption and found that probiotic intervention reduced the
abundance of potential bacteria such as Citrobacter and Klebsiella
spp. in the human gut microbial community. Moreover, they
found that probiotic intervention may reduce the flatulence
through downregulation of Methanobrevibacter spp. abundance
(Seo et al., 2017).

Biomedical Applications of ML
Techniques in Human Microbiome
Analyses
Figure 2 summarizes reviewed papers based on the input data
type and ML method type. The most dominant input data type
in the case application of ML methods for human microbiome
analysis has been 16S rRNA amplicon-based sequencing data
either in the form of OTU or ASV tables while usage of
shotgun metagenomes has increased during recent years. There
are a small number of studies that have tested ML methods on
both amplicon-based and shotgun datasets. Most often applied
ML methods have been feature classification, selection and
regression. Most often different ensemble learning methods have

been applied while deep learning has been used in few cases. The
number of yearly published papers using ML for microbiome
data analysis has been slightly growing during years 2011–2018
and increased more than twice in 2019 compared to the previous
year (Supplementary Figure 2).

The application of DP to human microbiome analysis is
not well captured by our dataset as its application for human
microbiome analysis is an emerging field. Recent example
includes disease state prediction (inflammatory bowel disease,
type 2 diabetes, liver cirrhosis, obesity) using deep representation
learning framework that deploys various autoencoders to learn
robust low-dimensional representations from high-dimensional
microbiome profiles and trains classification models based on
the learned representation (Oh and Zhang, 2020) or that relate
key microbial biomarkers with metabolite biomarkers in gut
microbiome (Le et al., 2020).

Our results indicate that the biomedical application of ML
for analyses of human microbiome datasets has been mainly
focused on the characterization of differently abundant microbial
groups between different body sites and the effect of diet on
microbiome composition and dynamics. The gut microbiome
datasets have been extensively used to stratify and classify patients
according to symptoms or characteristics to assist in the diagnosis

TABLE 3 | Available Resources for applying ML to human microbiome studies.

Tool Name Description References

Feature Selection with the
R Package MXM

Includes several feature selection algorithms. In particular, the Statistically Equivalent Signatures (SES)
algorithm that is very suitable for microbiome data because it scales up to high dimensions and requires
few samples. It also reports “multiple biosignatures” meaning multiple, minimal-size subsets of features
that lead to an equally predictive model. A more recent feature selection algorithm that scales up well to
high dimensional data called Forward-Backward Selection with Early Dropping (FBED) also
implemented in the MXM R package; It is preferable to SES when the sample size is higher.

Lagani et al., 2017;
Borboudakis and
Tsamardinos, 2019

Automated Machine
Learning (AutoML) with
JADBio.

End-to-end AutoML tool designed to deliver predictive and diagnostic models to non-experts while
drastically increasing the productivity of expert analysts. Several qualifications make JADbio
(www.jadbio.com) very suitable for microbiome data analysis. First, it accepts numerical measurements
(e.g., abundance tables), as well as discrete predictors (e.g. experimental factors and curated
metadata), and incomplete datasets with missing values. Second, it facilitates a novel out-of-sample
bootstrapping protocol able to provide accurate, non-optimistic estimates of predictive performance
even in cases of low sample sizes (e.g., 40) and hundreds of thousands of features Finally. It uses SES
and FBED to return the corresponding biosignatures. This allows the creation of predictive models that
are equally good up to statistical equivalence, thus, providing the researcher with choices when
designing new cost-benefit diagnostic assays.

Tsamardinos et al., 2018,
2020

Microbiome network
inference with SCENERY.

SCENERY is a free online application that allows users to perform several network learning tasks
(scenery.csd.uoc.gr). It is the first of its kind to facilitate advanced algorithms for the inference of
association networks, probabilistic causal networks and Bayesian networks. The qualifications of
SCENERY have been successfully shown on the single-cell cytometry domain. At the moment,
SCENERY does not treat missing values or compositionality, yet, it is readily applicable to the
microbiome data domain for inferring causal or non-causal networks of microbiome molecules and
species.

Papoutsoglou et al., 2017

The Microbiome Modeling
Toolbox

Comprehensive toolbox to model (i) microbe-microbe and host-microbe metabolic interactions, and (ii)
microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data.

Baldini et al., 2019

Constraint-based
reconstruction and analysis
(COBRA) Toolbox v.3.0.

Software suite for quantitative prediction of cellular and multicellular biochemical networks with
constraint-based modeling.

Heirendt et al., 2019

Reconstruction, Analysis
and Visualization of
Metabolic Networks
(RAVEN).

RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model reconstruction,
curation and constraint-based modeling and simulation.

Wang et al., 2018

Fizzy: feature subset
selection for metagenomics

Python command line tool compatible with BIOM format, for microbial ecologists that implements
information-theoretic subset selection methods for biological data formats.

Ditzler et al., 2015; http:
//github.com/EESI/Fizzy.
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TABLE 4 | Common problems in machine-learning analyses.

Problem type Problem description

Not cross-validating
the feature
selection step

Perhaps the most common pitfall of performance estimation is that of performing feature selection on the complete, labeled dataset (e.g. by
differential expression) and subsequently cross-validating only the modeling algorithm on the same data (Hastie et al., 2009). The same account
for any other step on the pipeline that peeks at the labels or the outcome to predict. In the case of large sample and balanced datasets the
overestimation should be unnoticeable. On small sample or imbalanced datasets, however, overestimation can become quite significant
(Tsamardinos et al., 2020). An analyst should cross-validate all steps of the analysis as atoms, including the preprocessing, imputation, feature
selection, and modeling to obtain accurate estimates of performance.

Not correcting for
winner’s curse

A second common error is reporting the cross-validation predictive performance of the winning algorithm or ML pipeline as the final performance
estimate. For example, an analyst may try 1000 combinations of different algorithms for each step of the analysis with various values for their
hyper-parameters and find that the winning combination has a cross-validated accuracy of 80%. This estimate is on average, overestimated
because of the “winner’s curse” (Ioannidis, 2008). The overestimation due to the winner’s curse is again large in small or imbalanced datasets. It
is not uncommon to find 0.7 AUC when the true one equals random guessing (0.5 AUC) due to the winner’s curse. Other estimation protocols
need to be applied in these cases. The simplest solution is to withhold a separate test set to estimate the performance of the winning model;
unfortunately, this technique loses samples to estimation and cannot be applied when samples are scarce. Techniques that remove the winner’s
curse in small samples are the nested cross-validation and the bootstrap bias-corrected CV (Tsamardinos et al., 2018).

Not stratifying the
split to folds

Another typical error occurs when randomly splitting the available samples, either for creating an external validation dataset, or to perform
cross-validation, without accounting the class imbalance and sample dependency. The partitioning should be stratified, i.e., the class
distribution should be maintained in the folds. When the classes are imbalanced, sample stratification leads to improved performance
estimations (Tsamardinos et al., 2015).

Not handling
repeated
measurements

When sampling is correlated, e.g., the same subject is measured repeatedly, care needs to be exercised. Treating samples as identically and
independently distributed (i.i.d.) as cross-validation assumes, provides overestimated performance estimations. When samples are grouped in
repeated measurements, one should take care to assign all samples in the group in the same fold. This way, they all belong in the train set or
the test set during cross-validation and never in both.

Splitting data
inappropriately

When building ML models, typically data is broken into training and test sets. The training set is used to teach the model, and the model’s
performance is evaluated by how well it describes the test set. Researchers typically split the data at random that may not be the correct
approach always. The “right” way to split data might not be obvious, but careful consideration and trying several approaches may give more
insight (Riley, 2019).

and management of diseases with a preference on those related
with gut microbiome, due to easy accessibility for obtaining
fecal samples, such as inflammatory bowel diseases, obesity and
colorectal neoplasms (see Figure 3). A list of selected studies on
the application of machine learning to human microbiome data
in biomedical research is presented in Table 2.

However, it should be noted that many of the reviewed
papers are focused on the comparison of the performance of
different ML methods, developing workflows or creating new ML
approaches considering the technical aspects of ML related to the
nature and complexity of the microbiome data, but without a
clear biological or clinical question behind to solve. A detailed
analysis of the dataset obtained showed that 20 of 89 papers
used their own unique datasets, while the rest of publications
made repetitive and intensive use of a limited number of datasets
to develop ML solutions, like the Human Microbiome Project
widely used for microbiome body composition studies. Besides,
we identified 9 papers related to the development of ML methods
for microbiome longitudinal analysis that are mainly based on
the reuse of five datasets (Caporaso et al., 2011; Gajer et al., 2012;
David et al., 2014; La Rosa et al., 2014; DiGiulio et al., 2015)
with Gajer et al. being reused in four of them. In addition, we
need to highlight the limited sample size in many of the studies
what compromises the applicability and the conclusions of the
ML methods reviewed.

Table 3 summarizes the main available resources for
applying different ML methods to human microbiome studies.
Most of the reviewed studies have applied ML methods
incorporated in general data analysis packages. As stated
by Moreno-Indias et al. (2021). it is important to foster the

development of user-friendly ML-based tools for translational
and clinical personnel. This process is strongly dependent
on open-source software ecosystems as application of ML in
microbiome data analysis is rapidly evolving field and involves
high degree of multidisciplinary.

Building prediction models for the analysis of microbiome
or similar biological data often requires the design of an ML
pipeline in which different algorithms for data preprocessing,
imputation, feature selection, and modeling are combined along
with their hyper-parameter values. The implementation of such
a complex modeling strategy could be tedious and requires
substantial human resources to optimize. Most importantly,
however, this process is prone to serious methodological errors
that lead to models whose training performance estimates are
inflated (overestimated) and, thus, fail to generalize on external
validation datasets. Some common pitfalls of ML application are
listed in Table 4.

CONCLUSION

Human microbiome research has received increasing interest
during recent years, mainly due to the large potential applicability
of metagenomics data from human microbiome studies in
personalized medicine. International and interdisciplinary efforts
have made possible to collect large volumes of microbiome data,
facilitating the development and implementation of different
ML methods. Here we reviewed the different ML methods
developed and applied to human microbiome data analysis
for an insight of the development in the field with their
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achievements and pitfalls. Although the data presented here is
mostly centered on the analysis of bacterial community, many
principles reviewed could be applied in general, regardless of
the microbiome feature type. The advantages of ML techniques
over classical statistical models are to infer relationships between
variables for automatic pattern discovery and handling with
multi-dimensional data. Therefore, these methods have been
widely used for classification, biomarker identification, gene
prediction or association studies in human microbiome research.
Based on the performed review, most common machine
learning algorithms that were used for microbiome analysis were
Random Forest, Support Vector Machines, Logistic Regression
and k-NN. Since there are several factors that need to be
considered during the selection of the ML algorithm (i.e.,
number of features, number of observations, data quality, data
type etc.), it is recommended to apply and evaluate more than
one method and select the one with the best performance.
However, other ML applications that will be of high interest
in the near future are underrepresented like deep learning,
spatiotemporal and dynamic modeling, methods for longitudinal
and mechanistic analyses or integrative methods for data from
different sources to understand microbiome-host interaction and
diseases. Nevertheless, the full deployment of ML techniques
in human microbiome studies for a complete application and
integration in the personalized medicine field requires further
efforts. Personalized medicine requires a deep understanding of
features characterizing individual particularities and responses a
frequent lack of ML methods. ML models with high complexity
often come with a loss of interpretability running as black boxes.
In many cases, ML methods fail to provide easily, understandable
and interpretable predictions essential to identify mistakes or
biases in the input data when the model is trained. Moreover,
ML methods introduced in this review require fine-tuning
of many hyper-parameters to achieve optimal results being
a time-consuming task given the high number of possible
alternatives. In addition, for training powerful ML methods
with reliable results a large amount of data and a lot of
computing resources are required. In general, ML methods
introduced in this review are based on datasets with a limited
number of cases and without other independent datasets what
conditions their results and applicability. Therefore, from
our review perspective future efforts in the field should be
focused in (1) create standards (incl data pre-processing)
for the development and deployment of ML techniques with
an easy, transparent, and trustable interpretability for non-
experts taking in account the peculiarities of microbiome data;
(2) increase the number and quality of human microbiome
studies; (3) create efficient data structures and ML repositories
following Findable, Accessible, Interoperable and Reusable
(FAIR) principles and (4) build bridges between different

disciplines, microbiology, biology, statistics, bioinformatics,
engineering and others to increase interdisciplinary for
innovative solutions. COST Action CA18131 on Statistical
and Machine Learning Techniques in Human Microbiome
Studies (ML4Microbiome) is highly committed to pursuit these
objectives in collaboration with the international community and
extended discussions on contemporary challenges and proposed
solutions are addressed by the ML4Microbiome consortium in
Moreno-Indias et al. (2021).
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The human microbiome has emerged as a central research topic in human biology and
biomedicine. Current microbiome studies generate high-throughput omics data across
different body sites, populations, and life stages. Many of the challenges in microbiome
research are similar to other high-throughput studies, the quantitative analyses need
to address the heterogeneity of data, specific statistical properties, and the remarkable
variation in microbiome composition across individuals and body sites. This has led
to a broad spectrum of statistical and machine learning challenges that range from
study design, data processing, and standardization to analysis, modeling, cross-
study comparison, prediction, data science ecosystems, and reproducible reporting.
Nevertheless, although many statistics and machine learning approaches and tools
have been developed, new techniques are needed to deal with emerging applications
and the vast heterogeneity of microbiome data. We review and discuss emerging
applications of statistical and machine learning techniques in human microbiome studies
and introduce the COST Action CA18131 “ML4Microbiome” that brings together
microbiome researchers and machine learning experts to address current challenges
such as standardization of analysis pipelines for reproducibility of data analysis results,
benchmarking, improvement, or development of existing and new tools and ontologies.

Keywords: machine learning, microbiome, ML4Microbiome, personalized medicine, biomarker identification

INTRODUCTION

The microbiome has long been defined as a community of
commensal, symbiotic, or pathogenic microorganisms that
inhabit a particular body site or environment (Lederberg and
McCray, 2001). The current apprehension of the microbiome
encompasses the totality of microorganisms and their
interactions, interplay with the host and the surrounding
environment, and is further influenced by constant co-evolution
(Berg et al., 2020). Understanding the composition, balance, and
role of the microbiome in human health and disease has become
a field of extensive research over the past decade (Wang and
Kasper, 2014; Gagnière et al., 2016; Sampson et al., 2016; Barratt
et al., 2017). The potential for applications in biomedicine and
biotechnology has been especially evident from gut microbiome
studies. Furthermore, microbiome research has become an
important subject of popular science and led to the acceleration
of development in different biotechnology industry sectors.

Some of the key topics in this field cover early life (Tamburini
et al., 2016), mechanisms of colonization resistance against
pathogens (Buffie and Pamer, 2013; Kim et al., 2017), and stability
and individuality of adult microbiota (Mehta et al., 2018), and
its associations with diseases, diet, medication, and lifestyle in
various populations across the globe (Segata et al., 2011; Schmidt
et al., 2018; Cullen et al., 2020). Moreover, the research focus is
shifting toward considering the role of genetics and environment

(Org et al., 2015; Roslund et al., 2020), as well as of diet (Singh
et al., 2017), and to translate this knowledge into microbiota-
based clinical solutions (Lynch et al., 2019).

Compared to many other fields of multi-omic studies,
microbiomes are dynamic ecosystems with active host regulation.
This adds interesting new dimensions and complexity to
the analyses and interpretation of data. Thus, the field
also requires additional ecological perspectives. The advances
in high-throughput sequencing technologies have accelerated
microbiome research (Malla et al., 2019), but the volume of
data and their complexity sets challenges for analysis. Adaptive
statistical and machine learning (ML) methodologies can help
us to overcome many of these barriers, but these methodologies
need to be adjusted to the specific properties of microbiome data.

Microbiome Data Properties and
Analysis Challenges
Two commonly used strategies for microbiome profiling include
the sequencing of a highly conserved region, such as the bacterial
16S ribosomal RNA (16S rRNA), and the untargeted sequencing
of genetic material present in the sample, as in shotgun
metagenomics (see Box 1 for more information) (Nayfach et al.,
2019). The quality of microbiome data and profiling is influenced
by experimental, biological, and environmental factors (Poussin
et al., 2018). Further variation arises from differences in sequence
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BOX 1 | Common data types in microbiome research.
Amplicon data. Amplicon based approaches are the most widely used high-throughput method for microbiome studies. Amplicon studies comprise data from
specific regions of various types of marker genes used for taxonomic profile determination of microbiome: 16S ribosomal RNA (16S rRNA) gene for prokaryotes; 18S
ribosomal RNA (18S rRNA) gene for eukaryotes; internal transcribed spacers (ITS) for fungi. These data are characterized by variability in the selected regions,
amplification primers and amplification protocols. Due to the sequence similarity, the data are often organized into operational taxonomic units (OTUs) (Schmitt et al.,
2012). The two most popular approaches for obtaining groups of related OTUs are based on (i) aligning sequences to a reference database or (ii) clustering
sequences based on sequence identity (de novo approach). Once OTU clusters are defined, taxonomic information is given for the representative sequences of each
OTU to deduce the phylogeny. However, probabilistic techniques such as DADA2 (Callahan et al., 2016) have recently gained more attention, and are now
increasingly used to replace the standard OTU clustering approaches by ASVs, which are un-clustered error-corrected reads. Although amplicon sequencing is
cost-effective, the reliability of bacterial classification decreases below genus level, and this methodology does not directly quantify bacterial genes and functions.

Shotgun metagenomics data. A growing number of studies use shotgun metagenomics and offer untargeted sequence data from the analyzed samples. These
data typically include contamination from host or environmental reads as well. The non-host DNA can be used for taxonomic analysis or functional profiling of all
types of microorganisms present in the microbiome–it allows the analyses of bacteria, viruses, fungi and parasites at the same time. Sequences from metagenomic
data can be classified using existing databases or assembled de novo. This type of analysis offers the possibility to analyze strain or even SNP level dynamics of the
microbiome (Quince et al., 2017; Zeevi et al., 2019) as well as reconstruction of draft genomes, which enables the identification of novel organisms and provides a
way to link functions with taxa. Depending on the aims of the study, shotgun metagenomics can provide a variable amount of data as shallow, deep, or even
ultradeep sequencing (Hillmann et al., 2018).

Metatranscriptome data. Metatranscriptomics characterize the expressed transcripts of the analyzed community at a given time point/conditions transcripts of the
analyzed community by RNA sequencing data. Depending on the sequencing depth, with this method it is possible to obtain information on gene expression levels
both for the microbiome communities and for the host. This requires the highest sequencing depth, most stringent standards for sample storage and processing,
and data analysis workflows and benchmarking for these data are only in the developmental stage. Despite these advantages, metatranscriptomes will need to be
supported by additional shotgun metagenomics measurements for accurate interpretation.

Other-omics data such as metabolomics data, metaproteomics data. These data represent directly measured metabolites or expressed proteins, therefore
providing additional functional information. Similarly, these data can contain information both from the microbiome and the host.

filtering, clustering, taxonomic assignment and binning, as
different bioinformatic tools and pipelines are in use. This lack
of standardization introduces statistical biases, and subsequent
challenges for reproducibility and cross-study comparisons
(Lozupone et al., 2013; Falony et al., 2016; Zhernakova et al.,
2016). Some of the first large microbiome profiling studies, as
the Human Microbiome Project (Turnbaugh et al., 2007) and
the MetaHIT project (Qin et al., 2010), were established as a
population-scale framework to develop metagenomic protocols
(for a more comprehensive list of large-scale microbiome
studies, see Marcos-Zambrano et al., 2021). Despite various
attempts to standardize methods, a gold standard of microbiome
research is yet to be established (Quince et al., 2017;
Knight et al., 2018).

The special characteristics of metagenomic sequencing data
are posing additional challenges for statistical analysis. For
instance, the large inter-individual variability, heteroscedastic
variation (i.e., variance increasing with mean abundance) and
large biological and technical variations are often not properly
approximated by classical Gaussian or log-normal models,
requiring customized analytical approaches. Microbiome data
sets tend to be sparse and skewed, and typically include
many more microbial features compared to the number of
samples or observations collected in most microbiome studies
to date (Supplementary Table S1). Moreover, microbiome
features often exhibit complex and hierarchical dependency
structures in terms of taxonomies or co-variation in abundance
and function. Moreover, unaligned and misaligned sequence
reads, and challenges to distinguish technical and biological
variation especially at the level of low-abundant organisms add
additional challenges to the microbiome analyses. The demand
to represent microbiome data with an arbitrary, but fixed sum
of components without loss of information are known from the
concept of compositional data (Aitchison, 1986; Gloor et al.,

2017). Furthermore, complementary multi-omic and other data
types (Box 1) may require different modeling approaches. The
integration of different types of data often lacks rigorous model
selection procedures, correction for multiple testing, handling
of missing data features/labels, or data harmonization and
integration (Namkung, 2020).

Finally, the reliability and integration of relevant metadata
such as demographics, health, diet, age, medication, lifestyle,
and other factors are critical for drawing informative insights
from microbiome studies. However, these crucial pieces of
information are most often missing or insufficiently machine-
readable in publicly available data resources, thus forming
bottlenecks on data reuse.

Statistics and Machine Learning Aspects
Microbiome research has set fresh challenges for statistical
analysis. Instead of a thorough literature review of this rapidly
expanding and heterogeneous field, we provide hereby a topical
perspective on the application of ML techniques in microbiome
research (for an extensive review, please see Marcos-Zambrano
et al., 2021).

One of the most common applications of ML is dimensionality
reduction, which facilitates the exploration and visualization of
community similarity and distribution across the population of
study samples. Non-linear approaches have become a common
choice due to the inherent complexity of microbial communities,
including methods such as PCoA, UMAP, and other techniques
(Legendre and Legendre, 2012; Becht et al., 2019; Kobak and
Berens, 2019), as well as autoencoders (Oh and Zhang, 2020) have
been taken into use. Many automated analysis pipelines readily
include these methods (Buza et al., 2019; Liao et al., 2019).

Clustering has found many applications in microbiome
research, ranging from data preprocessing to downstream
community analyses. A popular method is the denoiser DADA2
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(Callahan et al., 2016), designed to identify unique 16S rRNA
amplicon sequence variants (ASVs) (Davis et al., 2018). In
metagenome sequencing studies, probabilistic methods have
been used to assemble contigs into genome bins based
on information of abundance and sequence information;
CONCOCT (Alneberg et al., 2014) implements non-parametric
clustering based on a variational Gaussian mixture model. The
advantage of the non-parametric approach is the automated
determination of the cluster number based on the model,
rather than post hoc evaluation indices such as the Kalinski-
Harabasz or Silhouette index. In the downstream analysis of
microbiome data, a notable application of clustering algorithms
has been the identification of microbiome community types,
used to stratify individuals into specific subgroups based on
microbiome composition (Holmes et al., 2012; Costea et al.,
2018). Recently, more detailed assemblage models have been
developed to identify latent factors and sub-communities that
can complement ecosystem-wide stratification that focuses on
overarching community types. Examples include phylofactor
(Washburne et al., 2019), tipping elements (Lahti et al., 2014),
non-negative matrix factorization, latent Dirichlet allocation, and
other latent mixture models (Sankaran and Holmes, 2019).

Classification methods are commonly used in taxonomic
assignment of metagenomic reads to annotate genome sequences
(Treangen et al., 2013; Tamames et al., 2019) or in the production
of metagenome-assembled genomes (Murovec et al., 2020).
Another application is sample classification in diagnostic or
prognostic studies (Pasolli et al., 2016; Aryal et al., 2020).
Common ML algorithms such as random forest, support vector
machines (SVM), elastic net, and LASSO have all been used
for disease-prediction tasks (Pasolli et al., 2016), and automated
feature selection schemes have been reported to perform will
in comparison with standard tests in disease prediction (Ai
et al., 2017). Instead of hard classification, some applications
focus on detecting estimated percentage contribution, or soft
classification, of each potential source environment related
to the sample (Knights et al., 2011; Shenhav et al., 2019;
McGhee et al., 2020).

Deep learning (DL) is increasingly applied in microbiome
research Convolutional Neural Networks (CNNs) (Armour
et al., 2019) have recently been augmented with phylogenetic
tree information (Reiman et al., 2018), or combined neural
networks with random forests (Rahman and Rangwala, 2020).
Variable evaluation metrics including accuracy, precision,
recall, F1-score and area under curve (AUC), have been
used, highlighting the need for standardized benchmarks
regarding well-defined modeling tasks; systematic evaluations
have been carried out for instance for metagenome-based
disease prediction and differentiation of body sites based
on microbiome composition (Asgari et al., 2018; Reiman
et al., 2018; Díez López et al., 2019; LaPierre et al., 2019).
DL has been also applied to classify antibiotic resistance
genes (ARGs) derived from metagenomic data (Arango-
Argoty et al., 2018) and to overcome the lack of well-
curated taxonomic trees for newly discovered species in
metagenome assembled genomes (Murovec et al., 2020).
DL has also been used to predict how gut microbiome

responds to perturbations by antibiotics (Rahman et al., 2018).
Whereas DL methods are notoriously data-hungry, recent
applications have shown promising performance with moderate
training sample sizes.

A vast number of microbiome studies quantify associations
between the abundances of specific metagenomic and functional
features, and key covariates such as health and disease,
and other factors including diet, medication, geography,
or stool consistency (Turnbaugh et al., 2007; Qin et al.,
2010; Falony et al., 2016; Zhernakova et al., 2016). The
analysis covers a vast spectrum of standard ML methods
with additional adaptations to microbiome data. Popular
approaches include adaptations of linear discriminant
analysis (Segata et al., 2011), negative binomials (Love
et al., 2014), and Dirichlet distributions (Fernandes et al.,
2014), and non-parametric methods (Weiss et al., 2017; Lin
and Peddada, 2020). Non-parametric regression models,
such as Gaussian processes, have been also used to study
associations between microbiome diversity and external
conditions (Arbel et al., 2016). Common techniques for
community comparisons include regularized discriminant
analysis (RDA) (Legendre and Legendre, 2012), random
forest (Sze and Schloss, 2018; Topçuoğlu et al., 2020), and
gradient boosting (Qin et al., 2020; Topçuoğlu et al., 2020).
Further strategies have been developed in order to consider
hierarchical dependencies between taxonomic groups to
control for multiple testing and to identify the appropriate
taxonomic levels for associations (Sankaran and Holmes, 2014;
Washburne et al., 2017).

Other emerging applications include spatio-temporal
modeling of microbiome variation both at the individual
and population levels as well as the biogeographical variation
within and across body sites; agent-based models provide
interesting opportunities in this area (Juhász et al., 2014; Lin
et al., 2018). Probabilistic joint species distribution models
have also been recently applied in the microbiome context
(Björk et al., 2018). Bayesian ML techniques can help to deal
with uncertainties related to the limited information in short
and sparse time series or spatial sampling. The uncertainty,
the limited sampling density, or the limited amount of labeled
examples when training a model can also be addressed through
semi-supervised methods. Prospective analyses predicting long-
term incident of health and disease risk based on microbiome
composition have remained scarce due to the lack of large-
scale cohorts with long-term follow-ups, but the need for
prospective analysis methods is now emerging (Liu et al.,
2020; Salosensaari et al., 2020). Mendelian randomization and
related techniques are finding applications to understand the
causal role of gut microbiome in disease (Sanna et al., 2019;
Hughes et al., 2020).

DISCUSSION

Statistics and ML provide tools to extract useful information
from scarce, noisy, and limited data. In particular, within
microbiome data, this has to be balanced with the complexity
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and limited understanding of the host-regulated ecological
processes and the high levels of individual variation. ML
has great potential to improve disease diagnosis and identify
personalized biomarkers, due to its ability to detect informative
patterns in the data with limited prior knowledge of the
underlying system.

One of the main shortcomings is, however, the use
of inappropriately small datasets, as apparent from the
example studies (and their corresponding datasets) listed in
Supplementary Table S1. Data accumulation will further
enhance the use of more advanced ML technologies. Efficient
data structures and making microbiome data Findable,
Accessible, Interoperable, and Reusable (FAIR)1 can provide
invaluable support for the open development of statistical
and ML tools to help to advance the field (Shetty and
Lahti, 2019). Consequently, data repositories maintained
by large consortia could serve as a central resource for the
research community (Meyer et al., 2008; Mitchell et al.,
2020). However, to this aim, the submission of the metadata
must follow controlled vocabulary and minimal standards
(ten Hoopen et al., 2017).

Some of the main challenges in detecting associations
between specific microbiome features and key covariates are
related to choosing appropriate distributional assumptions
including sparsity and compositionality, appropriate
feature selection, controlling for technical biases such as
read count variations, the potential confounding effects,
and multiple testing. Successful solutions often present
combinations of statistical techniques that have been
specifically tailored to fit the particular characteristics of

1https://microbiomedata.org/fair/

microbiome data. Besides, over-fitting, incomplete model
selection or performance assessment can lead to poor
generalizability of the results in previously unseen data sets
and lack of reproducibility. It is essential to understand
the principles underlying each method and follow the
recommended guidelines in order to ensure compliance
with the modeling assumptions (Rule et al., 2019) and avoid
overfitting (Eetemadi et al., 2020). Another important driver
for the field is the development of suitable data structures in
statistical programming languages, such as the R/Bioconductor
ecosystem as curatedMetagenomicData (Pasolli et al.,
2016) and the phyloseq (McMurdie and Holmes, 2013) or
TreeSummarizedExperiment classes (Huang et al., 2020), that
permit standardization and efficient collaborative development
of methods.

The microbiome field is moving from associations to
causality, mechanisms, and prediction, and ML will aid in
this transition. Data obtained from ML methods can help to
propose new hypotheses to be tested in experimental models,
as well as to accelerate the translation of the microbiome
data into clinical practice. Its optimal use will presumably
trigger the improvement of the searching of biomarker
candidates for disease diagnostics, prognostics, and the use of
statistical inference for causal insights (Pearl, 2009; Walhout
et al., 2013), as with the increasing need to model temporal
and dynamical variation. But these advances will appear
through validation of the results obtained by sequencing (e.g.,
using an independent approach such as qPCR), followed by
combinations with other omics, especially with metabolomics
and metatranscriptomics.

Interpretability by non-experts is an essential consideration
when ML models are put in practice by translational researchers.

FIGURE 1 | Approach of the Action ML4Microbiome to the implementation of machine learning methods in microbiome research, driving change of the field in
personalized medicine.
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To overcome existing trade-offs between model interpretability
and performance (Topçuoğlu et al., 2020) an active collaboration
and joint education/training of researchers from statistical,
biomedical and clinical fields is essential. Therefore, one
main priority is the development of user-friendly tools for
translational and clinical personnel, who may have limited
experience with bioinformatics methods. In this line, popular
software like mothur (Schloss et al., 2009, QIIME2 (Bolyen
et al., 2019), and MicrobiomeAnalyst (Chong et al., 2020), the
R/Bioconductor ecosystem (Qin et al., 2010), Anvi’o (Eren et al.,
2015), and Biobakery (McIver et al., 2018) have incorporated
ML methods into their applications in a readily usable
format. Hence, the role of open source software ecosystems
is critical for the overall development of the whole field.
This can support and advance open collaboration networks
and co-creation models that have been further complemented
with open benchmark data sets (Olson et al., 2017) and
reproducible notebooks (Rule et al., 2019). None of the above,
however, can be achieved without multidisciplinary training of
“next-generation” experts that could be integrated in clinical
environments, ultimately facilitating clinical decision-making
based on microbiome data as part of personalized medicine
strategies (Gómez-López et al., 2019).

In order to accelerate this transition, the COST
(European Cooperation in Science and Technology) Action
“ML4Microbiome” (Machine Learning for Microbiome) started
in 2019 with the aim to coordinate a synergistic network
of the use of ML in Microbiome research at the European
level. This COST Action CA18131 on Statistical and Machine
Learning Techniques in Human Microbiome Studies is a step
toward tackling the challenges by strengthening the network of
European researchers in this emerging research area (Figure 1).
A space of discussion to break down barriers of communication
between fields, as well as their engagement, is being constructed
through its four working groups (WG) and several networking
and training events http://www.ml4microbiome.eu. It is also
planned to launch a DREAM challenge2. DREAM challenges
are crowdsourced benchmark efforts. By decoupling the method
development (open to any scientist) to their evalution (by the
organizers based on hold-back data, these challenges provide
an unbiased and transparent assessment of methods (Saez-
Rodriguez et al., 2016). Furthermore, the action ML4Microbiome
identified multiple shortcomings in the current research that
need to be taken into consideration. The field will benefit
from increasing sample sizes, and the availability of spatial
and longitudinal profiling that can be used to train more
detailed and accurate models of microbiome variation. The
development of interpretable and transparent ML methods will
help to bridge the gap between methodological and applied
fields. ML4Microbiome is open for new multi-disciplinary
collaborations and collaborative ML methods development,
and is welcoming researchers to participate in workshops,
courses, source code/tool development aiming to promote the
use of appropriate statistical and machine learning methods
in metagenomics.
2 www.dreamchallenges.org
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Truică, Vilne, Vlachakis, Yilmaz, Zeller, Zomer, Gómez-Cabrero and Claesson. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 63578174

https://doi.org/10.1016/j.cell.2018.02.044
https://doi.org/10.1038/ismej.2011.116
https://doi.org/10.1038/ismej.2011.116
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1038/s41592-019-0431-x
https://doi.org/10.1186/s12967-017-1175-y
https://doi.org/10.1128/mBio.00630-18
https://doi.org/10.1186/s12864-019-6289-6
https://doi.org/10.1038/nm.4142
https://doi.org/10.1038/nm.4142
https://doi.org/10.1093/gigascience/gix047
https://doi.org/10.1128/mBio.00434-20
https://doi.org/10.1186/gb-2013-14-1-r2
https://doi.org/10.1038/nature06244
https://doi.org/10.1016/j.bbi.2013.12.015
https://doi.org/10.1016/j.bbi.2013.12.015
https://doi.org/10.7717/peerj.2969
https://doi.org/10.7717/peerj.2969
https://doi.org/10.1002/ecm.1353
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1038/s41586-019-1065-y
https://doi.org/10.1038/s41586-019-1065-y
https://doi.org/10.1126/science.aad3369
https://doi.org/10.1126/science.aad3369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-618856 May 5, 2021 Time: 18:19 # 1

REVIEW
published: 11 May 2021

doi: 10.3389/fmicb.2021.618856

Edited by:
Isabel Moreno Indias,

University of Málaga, Spain

Reviewed by:
Zhili He,

University of Oklahoma, United States
Christopher L. Hemme,

University of Rhode Island,
United States

Swagatika Sahoo,
Indian Institute of Technology Madras,

India

*Correspondence:
Padhmanand Sudhakar

padhmanand.sudhakar@kuleuven.be
orcid.org/0000-0003-1907-4491

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 18 October 2020
Accepted: 19 March 2021

Published: 11 May 2021

Citation:
Sudhakar P, Machiels K,

Verstockt B, Korcsmaros T and
Vermeire S (2021) Computational

Biology and Machine Learning
Approaches to Understand

Mechanistic Microbiome-Host
Interactions.

Front. Microbiol. 12:618856.
doi: 10.3389/fmicb.2021.618856

Computational Biology and Machine
Learning Approaches to Understand
Mechanistic Microbiome-Host
Interactions
Padhmanand Sudhakar1,2,3* , Kathleen Machiels1, Bram Verstockt1,4,
Tamas Korcsmaros2,3 and Séverine Vermeire1,4

1 Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders
(TARGID), KU Leuven, Leuven, Belgium, 2 Earlham Institute, Norwich, United Kingdom, 3 Quadram Institute Bioscience,
Norwich, United Kingdom, 4 Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven,
Leuven, Belgium

The microbiome, by virtue of its interactions with the host, is implicated in various
host functions including its influence on nutrition and homeostasis. Many chronic
diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by
a disruption of microbial communities in at least one biological niche/organ system.
Various molecular mechanisms between microbial and host components such as
proteins, RNAs, metabolites have recently been identified, thus filling many gaps in
our understanding of how the microbiome modulates host processes. Concurrently,
high-throughput technologies have enabled the profiling of heterogeneous datasets
capturing community level changes in the microbiome as well as the host responses.
However, due to limitations in parallel sampling and analytical procedures, big gaps
still exist in terms of how the microbiome mechanistically influences host functions
at a system and community level. In the past decade, computational biology and
machine learning methodologies have been developed with the aim of filling the existing
gaps. Due to the agnostic nature of the tools, they have been applied in diverse
disease contexts to analyze and infer the interactions between the microbiome and
host molecular components. Some of these approaches allow the identification and
analysis of affected downstream host processes. Most of the tools statistically or
mechanistically integrate different types of -omic and meta -omic datasets followed
by functional/biological interpretation. In this review, we provide an overview of the
landscape of computational approaches for investigating mechanistic interactions
between individual microbes/microbiome and the host and the opportunities for basic
and clinical research. These could include but are not limited to the development of
activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic
interventions and generating integrated signatures to stratify patients.

Keywords: health, disease, microbiome-host interactions, molecular mechanisms, computational approaches,
machine learning, basic and clinical research
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INTRODUCTION: MICROBIOME-HOST
INTERACTIONS

Across different niches and ecosystems, micro-organisms
including bacteria, viruses, archaea inhabit a wide range of hosts
(Braga et al., 2016). This community of microbes imparts various
functions such as making nutrients accessible to the host (Martin
et al., 2019), modulating the host immune system (Mendes et al.,
2019), warding off pathogens (Pickard et al., 2017), maintaining
homeostasis (Ohland and Jobin, 2015; Penny et al., 2018)
among others. These functions are in turn driven primarily by
molecular interactions between microbial and host molecules
such as proteins, RNA and metabolites (Hughes and Sperandio,
2008; Braga et al., 2016). Deciphering these interactions could
not only reveal the microbe-host cross-talk but also provide
us with insights into formulating therapeutic strategies aimed
at maintaining health and/or ameliorating disease states. The
past decades have witnessed a surge in research interest to
study microbial communities (and their interactions) which
inhabit various niches – from the gut to the soil ecosystem.
This was made possible by technological advancements leading
to plummeting costs of 16S and metagenomic sequencing,
higher sequencing depth and resolution (Levy and Myers, 2016;
Jacob et al., 2019; Valli et al., 2020), novel in vitro systems
(Shah et al., 2016; Eain et al., 2017; May et al., 2017), and new
methodologies for high-throughput profiling of multiple -omic
data types such as metaproteomics, metabolomics, lipidomics
(Muller et al., 2013; Roume et al., 2015). However, due to
many other limitations related to scale, scope, feasibility and
sample availability for parallel omic read -outs, experimentally
determining the inter-species microbe-host interactions is a
challenging task (Fritz et al., 2013). Computational methods
can overcome some of these limitations thereby enhancing our
understanding of microbe-host interactions (Dix et al., 2016). In
this review, we outline some key concepts, tools, and methods
involved in computationally inferring the molecular mechanisms
mediating microbe-host interactions.

BIOLOGICAL NETWORKS: CONCEPTS
AND APPLICATIONS

Biological networks represent relationships (termed edges)
between any two biological entities (species, organisms, and
molecules, etc.) which are usually called as nodes. At the
level of molecules (genes, proteins, metabolites, RNAs, and
small molecules, etc.), biological networks could either denote
the physical interactions (e.g., protein–protein, protein-DNA,
and RNA-protein, etc.) between molecules or any measure
of association (e.g., co-expression and co-occurrence) between
molecules (Gosak et al., 2018). In this paper, we will
refer only to physical interactions. Physical interactions can
be classified based on various criteria such as molecular
types (protein–protein, protein-DNA, and RNA-protein, etc.),
experimental scale (high-throughput or low-throughput), source
(experimentally determined or computationally predicted),
directionality (directed or undirected), relational signs (positive

or negative relationships) and coverage (genome-wide or
targeted). Since biological networks provide the larger context in
which genes or proteins tend to exert their action, researchers
can thereby fine-tune their hypotheses. Networks have largely
been used in the domain of biological sciences (a) as a scaffold
to integrate either singular or multiple contextual -omic datasets
such as gene expression, proteomics, etc., measured in response
to intrinsic or extrinsic stimuli (Charitou et al., 2016), (b) as
a graph to trace potential signaling and regulatory pathways
connecting any two nodes (Azeloglu and Iyengar, 2015), (c) to
perform functional analysis at a local or global level (Emmert-
Streib and Glazko, 2011), (d) to reconstruct the networks of non-
model organisms from those of model organisms (Thompson
et al., 2015), (e) to discover drug and disease targets (Huang et al.,
2018), and (f) to infer globally or locally conserved signatures
such as modules, motifs, etc (Wong et al., 2012). Various
resources of molecular interactions and tools for integrative
network analysis have been compiled and developed by the
research community of network biologists. Since a very detailed
description of the resources and tools is out of scope of the
current review, readers are hereby referred to Pedamallu and
Ozdamar (2014), Miryala et al. (2018), Romano et al. (2019).

Due to their utility in capturing contextual backgrounds and
communication between molecular entities, biological networks
have been used to not only study intra-species interactions
but also inter-species cross-talks. Molecular ecological networks
(Deng et al., 2012; Heleno et al., 2014) are a case in point by
which the concept of networks are used to study the interactions
between molecules (derived from different species or even
kingdoms) in a larger ecological context (Yang et al., 2017;
Meyer et al., 2020; Yu et al., 2020; Zheng et al., 2020). At the
very core of it, a typical molecular ecological network inference
workflow (Zhou et al., 2010; Deng et al., 2012; Chen et al.,
2017) starts with the generation of meta -omic datasets (such as
metagenomics, metatranscriptomics, and metaproteomics, etc.)
followed by differential abundance testing between samples from
contrasting conditions. Various measures of correlations and
associations can then be applied to determine the distance
between samples based on the differences and similarities in
terms of the molecular features measured in the -omic datasets
across the sample classes. Such correlations or associations can
be used as a primary point of reference to investigate the
possibility of mechanistic interactions which could in turn be
driving the associative relationships. Furthermore, a network
based representation of the feature-space can be used to compare
samples with each other or to associate network properties such
as the presence of motifs and modules to higher-level ecological
traits/phenotypes. However, since molecular ecological networks
do not directly infer molecular mechanisms which is the topic of
this review, a detailed discussion on the topic is not undertaken.

COMPUTATIONAL METHODS IN
MICROBIOME-HOST INTERACTIONS:
FILLING THE GAPS

Computational methods bring in various advantages to the
analysis of interactions between the host and individual microbes
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FIGURE 1 | Overview of the four different categories of computational methods which help infer the molecular mechanisms of microbe-host interactions. Some
examples of data types corresponding to each of the four methods are depicted.

and/or the microbial community. These include their attributes
of (a) enhancing scalability, i.e., perform the computational
inferences for a large number of variables and samples,
(b) improving reproducibility (if complemented by inter-
operability, automation, proper version control and sufficient
documentation), (c) assessing performance by using a series
of metrics, (d) shortlisting and prioritizing interactions, (e)
and thereby (f) enabling the fine-tuning of hypothesis for
experimental and/or epidemiological studies. Although most of
the methods hitherto have focused on inferring the interactions
between individual microbial species (mostly well studied
pathogens) and the host, a few methods have been developed to
predict the interactions at a community level. In principle, many
of the methods which have been used to infer interactions of
single species can be scaled up (with appropriate modifications)
to infer community level interactions.

CLASSIFICATION OF COMPUTATIONAL
METHODS IN MICROBIOME-HOST
INTERACTIONS

From a mechanistic view-point, the most widely studied
interaction types in interspecies cross-talks include (a) microbial
metabolite-mediated networks, (b) protein–protein interactions
(PPIs), and (c) RNA-mediated interactions. Accordingly, many
of the computational methods developed to investigate microbe-
host interactions have focused on the three above-mentioned
interaction types (Figure 1). As a fourth method approach,
integrated pipelines combine multiple microbial and host -omic
data types and networks to infer the cumulative functional effects
of inter-species interactions/communication on the host.

Approaches Inferring Mechanistic
Metabolic Interactions
The metabolomic layer (which comprises the enzymes,
metabolites, and the reactional interactions between them)
has a prominent influence on both health and disease states

associated with alterations in microbiota composition (Wong
et al., 2016; Martinez et al., 2017). Metabolic networks can
thus represent and capture the underlying mechanisms driving
various phenotypes (Pey et al., 2013; Samal et al., 2017; Zampieri
et al., 2019). Computational approaches aimed at inferring the
microbe-host co-metabolic networks can be classified into three
prominent categories namely (a) Community-wide metabolic
network modeling using metagenomic datasets: this approach
is based on the assumption that the metagenomic read-outs
represent the gene-distribution structure of the entire microbial
community. The autonomy of species – i.e., information about
which gene is derived from which species, are disregarded. Thus,
the metabolic network reconstructed using this approach consists
of relationships (reactions) catalyzed by enzymes (encoded by
the measured genes) between molecular entities (metabolites) at
a community level. (b) High throughput data driven approaches
using metabolic datasets – this data-driven methodology uses
targeted or untargeted profiling of metabolites from different
groups of samples. Subsequently, multi-variate modeling
methods and various statistical methods including simple
PCAs are applied to identify biomarkers which distinguish
different sample groups from each other. (c) Genome scale
reconstruction applying constraint-based modeling approaches
which are described below. The first two methods do not
provide direct mechanistic insights and hence are not covered
further in this review.

Genome-scale reconstruction models provide mechanistic
information by integrating multiple inputs. These inputs include
the curated genome scale metabolic models of both the host
and microbial species, high-throughput meta -omic datasets
including metabolites, reaction fluxes, biochemical traits and
accessory phenotypic data. However, due to the strenuous nature
of various steps involved in constructing the models and in
scaling it up to multiple species or multiple hosts, only a handful
of studies have applied this concept to infer microbe-host co-
metabolic interactions (Table 1). The AGORA (assembly of gut
organisms through reconstruction and analysis) collection is
a resource of genome-scale metabolic models for 773 human
gut bacterial species using a combination of metagenomics and
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experimental data from literature. Furthermore, the framework
employed by AGORA is amenable to scale-up given its easy
adaptability to novel species of interest. AGORA also serves
as a source of genome scale metabolic models reconstructed
in a standardized manner. Thus, various studies have in turn
used the genome scale models from the AGORA resource to
construct context-specific models (Bauer et al., 2017; Bunesova
et al., 2018; Tramontano et al., 2018; Pryor et al., 2019;
Yilmaz et al., 2019). Recently, the authors of AGORA and
their collaborators extended the framework to 7206 strains by
incorporating information on the drug-metabolizing potential of
the bacterial strains (Heinken et al., 2020).

The reported studies on genome-scale reconstruction models
have been distributed across many different ecological contexts
such as the human and rumen gut ecosystems (Islam et al.,
2019), microbe-plant interactions, human alveolar macrophages,
the effect of viral demands on the metabolism of human
macrophages, microbe-host interactions in Parkinson’s Disease
to name a few. Due to the mechanistic nature of such models,
they can be used as a template for further integrating other -omic
datasets. This not only refines the models thereby increasing their
predictive power but also assigns contextuality.

By incorporating the individual reconstructed metabolic
models of tomato (Solanum lycopersicum) and the tomato late
blight pathogen Phytophthora infestans, Rodenburg et al. (2019)
pointed out specific pathways which mediate the dependencies
of the pathogen on the metabolism of S. lycopersicum.
The individual metabolic models for S. lycopersicum and
P. infestans were derived by manually adding reactions and
sub-cellular localization of metabolites and reactions (based
on curation of literature) to the corresponding genome-
scale models. Furthermore, by over-laying dual RNA-seq
transcriptomic datasets from the host-pathogen duo into the
co-metabolic network, various metabolic changes characterizing
the scavenging nature of P. infestans were revealed. A similar
study was performed in a mammalian setting wherein co-
metabolic interactions and metabolic exchanges were inferred
between the respiratory pathogen Mycobacterium tuberculosis
and human alveolar macrophages (Bordbar et al., 2010). The
metabolic model for the alveolar macrophages was derived from
Recon1, the global human metabolic model (Thiele et al., 2013b).
Briefly, a curated version of Recon1 was overlaid with gene
expression data for healthy, inactivated alveolar macrophages and
combined with information on flux limits for major pathways
of central metabolism and a host of heterogeneous datasets
such as immunohistological staining, transporter proteins, etc
(Bordbar et al., 2010). The macrophage model was then
combined with that of Francisella tularensis and corrected for
compartment-specific reactions and metabolites. Unsurprisingly,
given the advancement in terms of data generated and metabolic
models made available, most of the genome-scale metabolic
reconstruction studies (Table 1) were carried out for the gut
ecosystem (Heinken et al., 2013; Heinken and Thiele, 2015; Ding
et al., 2016; Islam et al., 2019).

Other microbe-host co-metabolic studies have been
performed using publicly available tools based on constraint-
based modeling approaches. The Constraint-based

TABLE 1 | Studies using genome-scale metabolic models and constraint based
approaches to infer mechanistic co-metabolic interactions between microbial
and host species.

Study Context

Rodenburg et al.
(2019)

Integrated metabolic model of P. infestans infecting tomato
(S. lycopersicum)

Islam et al. (2019) Genome-scale metabolic model between key members in
the rumen microbiome and the viral phages

Hertel et al. (2019) Integrated constraint-based model revealing microbe-host
interactions in Parkinson’s Disease

Aller et al. (2018) Genome-scale model integrating biochemical demands
arising from virus production and human macrophage cell
metabolism

Ding et al. (2016) Simulation of co-metabolic model of different
enteropathogens in response to various host environments

Heinken and Thiele
(2015)

In silico microbe-host gut co-metabolic model to predict
effects of different host dietary schemes

Heinken et al.
(2013)

Experimentally validated gut co-metabolic model between
commensal bacterium B. thetaiotaomicron and mouse

Bordbar et al.
(2010)

Francisella tularensis infecting human alveolar macrophage
supported by high-throughput data from infected conditions

reconstruction and analysis (COBRA) toolbox (Heirendt
et al., 2019) is one such compendium of methods containing
various user-guided steps to reconstruct genome-scale metabolic
models. It is characterized by properties such as interoperability,
customized reconstruction, modeling, visualization, modeling,
simulation, and integration of -omic datasets in various contexts
(compartments, cell-types, etc.). By harnessing these properties,
researchers have used the COBRA toolbox to model and
investigate microbe-host metabolic interactions (Heinken et al.,
2013; Thiele et al., 2013a) in the context of mammalian health
with implications on human health. A representative study
of the gut ecosystem using the COBRA toolbox integrated
two previously published constraint-based models of mouse
and a gut commensal Bacteroides thetaiotaomicron (Heinken
et al., 2013). The B. thetaiotaomicron model was generated
by the manual curation of a seed model produced by Model
Seed (Henry et al., 2010) from the genome sequence annotated
using RAST (Aziz et al., 2008) (which is a prokaryotic genome
annotation tool). The mouse metabolic model was compiled by
integrating a previously annotated and reconstructed model with
gene essentiality data from experiments followed by corrections
for duplicate reactions. The two models were then brought
together by setting rules based on the subcellular localization of
metabolites and reactions. The integrated metabolic model could
capture many of the phenotypes exhibited in vivo namely the
dependence of B. thetaiotaomicron on glycans derived from the
metabolism of the host as well as the host diet itself (Heinken
et al., 2013). It is noteworthy to mention that the authors also
introduced novel methodologies such as Pareto analysis to
complement the power of the COBRA toolbox. Pareto analysis
is a bi-objective linear programming-based methodology which
enables the analysis and identification of growth dependencies
and trade-offs between the microbe and the host as captured by
their metabolic networks.
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A similar study (Hertel et al., 2019) was performed using
the COBRA toolbox in conjunction with other supplementary
tools such as the Microbiome Modeling Toolbox (Baldini
et al., 2019) which can integrate the individual reconstructed
models together into one reconstructed model in addition
to other useful properties (such as inferring interactions
by taxa, reconstruction of pairwise/community co-metabolic
networks, compartment-based modeling, pareto analysis, and
various downstream operations) to extend the constraint-based
modeling framework. The study integrated the microbiome
and longitudinal metabolomic datasets from patients with
Parkinson’s disease (Hertel et al., 2019). This microbiome-host
-omic integration study provided clues as to how alterations
in particular co-metabolized pathways (by both the host and
microbiome) such as sulfur metabolism could contribute to the
varying severity of the disease. In particular, the authors were able
to identify that changes in the co-metabolized pathways could be
driven by particular members of the gut microbiota. This opens
up possibilities to design gut microbiome-based therapies to treat
or even prevent Parkinson’s disease.

Approaches Inferring Protein–Protein
Interactions (PPIs)
Protein–protein interactions are one of the most well-studied
interaction types mediating inter-species communication
(Schweppe et al., 2015). Accordingly, a large number of
computational microbe-host interaction studies have focused
on PPIs. Congruently, PPI-based approaches have also been
propelled by the adoption of concepts from other domains of
computational biology and computational sciences in general.
Hence, PPI-based approaches can be sub-classified into four
predominant methods (Table 2) depending on the concepts
used (1) Machine learning based PPI methods, (2) Structural
feature based PPI methods, (3) Data/Literature mining based PPI
methods, and (4) Interolog based PPI methods. In this section, we
provide a brief overview of the concepts involved in each of these
methods (Table 2) and provide a few representative examples.

Structural Feature Based PPI Methods
Interactions between proteins are usually a by-product of
physical interactions between structural features of the proteins
and/or could be characterized indirectly by co-occurring
functional features of the proteins (Ding and Kihara, 2018).
Structural features of the proteins include their domain and
motif architectures/compositions, amino acid composition and
frequencies, post-translational modification signatures, amino
acid k-mers, mimicry motifs and 3D structural properties (Ding
and Kihara, 2018). Structural feature-based PPI prediction,
applied initially for intra-species PPIs, was subsequently extended
to inter-species studies. Essentially, the fundamental principle
on which structural feature-based PPI prediction methods work
involves the use of mechanistic evidence between structural
features to identify potentially interacting proteins. These
could include for example interactions between domains,
between domains and motifs, post-translational modifications
and pairwise structural similarity (Ding and Kihara, 2018). Such
structural studies have been confined to considerably well studied

TABLE 2 | Computational approaches and methods inferring protein–protein
interactions mediating inter-kingdom cross-talk between microbial
and host organisms.

Method and corresponding studies Reported use-case (host-microbe)

Machine learning based methods

Leite et al. (2018) Bacteria–phage

Tastan et al. (2009); Qi et al. (2010),
Dyer et al. (2011); Nouretdinov et al.
(2012), Shoombuatong et al. (2012);
Mei (2013), Hongjaisee et al. (2019)

Human–HIV

Kshirsagar et al. (2013) Human–F. tularensis, Human–Y. pestis,
Human–B. anthracis, Human-S. typhi

Wuchty (2011) Human–Plasmodium falciparum

Kösesoy et al. (2019) Human–Y. pestis, Human–B. anthracis

Cui et al. (2012); Emamjomeh et al.
(2014), Kim et al. (2017)

Human–Hepatitis C virus

HOPITOR (Basit et al., 2018) Generic (Human–virus PPIs)

Liao et al. (2011) Human–Schistosoma japonicum

Mei et al. (2018); Sun et al. (2018) Human–Francisella tularensis

Kargarfard et al. (2016) 3 hosts and 674 influenza strains

Cui et al. (2012); Dong et al. (2015),
Kim et al. (2017)

Human–Human papillomavirus

Lai et al. (2012) Human–Influenza A virus

Mei and Zhu (2014a) Human–HTLV retroviruses

Mei and Zhu (2014b) Human–Salmonella

Lian et al. (2019) Human–Y. pestis

Structural feature based methods (features used)

Dyer at al. (2007) (DDI) Human–Plasmodium falciparum

Nourani et al. (2016) (DDI) Human–multiple viruses

Sudhakar et al. (2019) (DDI and DMI) Human–multiple bacterial pathogens

Doolittle and Gomez (2011) (PSS) Human–Dengue virus, Aedes
aegypti–Dengue virus

Cui et al. (2016) (PSS) Human–HIV, Human–Francisella
tularensis

P-HIPSTer (Lasso et al., 2019) (PSS) Human–multiple viruses

Chen at al. (2019) (PSS) Human–Dengue virus 2, Human–West
Nile virus

Guven-Maiorov et al. (2017) (Mimicry) Human–Helicobacter pylori

Mahajan and Mande (2017) (DDI) Human–Francisella tularensis

Zhang et al. (2017a) (DMI) Grass carp–Grass carp reovirus

Mehrotra et al. (2017) (PSS, DDI, and
localization)

Human–Leptospira interrogans,
Human–Leptospira biflexa

Halehalli and Nagarajaram (2015) (DDI,
DMI)

Human–multiple viruses

SugarBindDB (Mariethoz et al., 2016)
(glycan mediated PPIs)

Generic

Rajasekharan et al. (2013) (PSS) Human–Chandipura virus

Carducci et al. (2010) (DDI) Human–papillomavirus type 16

Franzosa and Xia (2011) (PSS and
sequence identity)

Human–multiple viruses

Sahu et al. (2014) (DDI) Arabidopsis-Pseudomonas syringae

Zhou et al. (2018) (DDI) Human–Dengue virus, Aedes
aegypti–Dengue virus

Kim et al. (2017) (DDI) Human–multiple viruses

Kerr et al. (2015) (Computational
docking)

Human–Dengue virus 2, Human–West
Nile virus

Evans et al. (2009) (DMI) Human–HIV

Doxey and McConkey (2013) (Mimicry) Human–Francisella tularensis

(Continued)
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TABLE 2 | Continued

Method and corresponding studies Reported use-case (host-microbe)

Mei and Zhang (2020) (Mimicry) Human-S. typhimurium and
Human-Human respiratory syncytial
virus

Data/Literature mining based methods

Thieu et al. (2012) Generic

Viruses.STRING (Cook et al., 2018) 319 hosts and 239 viruses

Li et al. (2018) Human–Epstein-Barr virus

Saik et al. (2016) Human–Hepatitis C virus

García-Pérez et al. (2018) Human–Influenza A virus

“Interolog” based methods

Krishnadev and Srinivasan (2008); Lee
et al. (2008)

Human–Plasmodium falciparum

Krishnadev and Srinivasan (2011) Human–E. coli, Human–
S. typhimurium, Human–Y. pestis

Tyagi et al. (2009) Human–Helicobacter pylori

Cui et al. (2016) Human–HIV, Human–Francisella
tularensis

Schleker et al. (2012) Human–Salmonella,
Salmonella–A. thaliana

Li et al. (2012) A. thaliana–Ralstonia solanacearum

Wallqvist et al. (2017) Human–Coxiella burnetii

Cuesta-Astroz et al. (2019) Human and 15 eukaryotic parasites

Zhou et al. (2014); Cui et al. (2016) Human–Francisella tularensis

Barh et al. (2013) Human–Corynebacterium
pseudotuberculosis,
Human–Corynebacterium diphtheriae,
Human–Francisella tularensis,
Human–Corynebacterium ulcerans,
Human–Y. pestis, and Human–E. coli

DDI, domain–domain interaction; DMI, domain-motif interaction; PSS, pairwise
structural similarity. Supplementary Table 1 provides further details into the novelty
of the methods and results.

species pairs involving H. sapiens and prominent viral and
bacterial pathogens (Table 2). Along with pairwise structural
similarity-based methods using 3D protein complexes, domain–
domain interaction (DDI) and domain-motif interaction (DMI)
based methods are one of the most commonly used methods
within the structural feature based methodological framework
for predicting inter-species PPIs. Due to the ease of annotating
domains and motifs, DDI- and DMI-based methods have been
harnessed widely (Table 2). While DDI based methods have been
applied to infer PPIs for a large number of species-pairs including
Human–Plasmodium falciparum (Dyer et al., 2007), Human–
Francisella tularensis (Zhou et al., 2013; Mahajan and Mande,
2017), Human–Leptospira interrogans (Mehrotra et al., 2017),
Human–Leptospira biflexa (Mehrotra et al., 2017), Human–
papillomavirus type 16 (Carducci et al., 2010), Arabidopsis–
Pseudomonas syringae (Sahu et al., 2014), Rice–Xanthomonas
oryzae (Kim et al., 2008), they have the inherent disadvantage of
not being able to explicitly discern directionality.

On the other hand, DMIs provide directionality for PPIs,
thus indicating the flow of signal transduction (Akiva et al.,
2012; Gibson et al., 2015). For example, if a microbial protein A
contains a domain known to be interacting with a motif on the

host protein B, it is graphically represented as A > B, translating
into “microbial protein A modulates host protein B.” Due to their
specificity, DMI-based methods are preferred over DDI based
methods for research questions seeking to answer the role of post-
translational modifications elicited on host proteins by microbial
proteins or vice versa. However, due to the short sequence
length of protein sequence motifs, even the most stringent search
strategies have the tendency to result in thousands of false-
positive hits while performing motif searches on a proteome-wide
basis (Perkins et al., 2010; Idrees et al., 2018). Therefore, proper
quality controls need to be applied to filter out false-positives
based on structural properties such as the occurrence of truly
interacting motifs within disordered regions and outside globular
domains (Perkins et al., 2010; Idrees et al., 2018; Figure 2).

Several studies (Table 2) have been conducted to apply the
principles of DMIs to predict PPIs for multiple microbe-host
species-combinations including grass carp-grass carp reovirus
(Zhang et al., 2017a), human-multiple bacterial pathogens
(Sudhakar et al., 2019) and human-multiple viruses (Evans et al.,
2009; Halehalli and Nagarajaram, 2015). By integrating DMI
predictions between grass carp and grass carp reovirus (GCRV)
proteins with differential gene expression and tissue-specific
gene expression followed by functional enrichment, Zhang
et al. (2017a) were able to pinpoint several signaling pathways
modulated by GCRV. The authors also highlight an enrichment
of host genes expressed in the intestinal niche suggesting that
GCRV might have a higher influence on the gut. Recently, we
conducted a study (Sudhakar et al., 2019) using DDI and DMI
based methods to identify cross-talks between several bacterial
pathogens including Salmonella and autophagy – a prominent
biological process involved in host cellular homeostasis. Firstly,
to identify microbial proteins targeted by selective autophagy,
we scanned the bacterial proteins for the presence of the
recognition motifs corresponding to the selective autophagy
receptors p62 and NDP52 and the autophagy adapter protein
LC3. Conversely, to infer the modulation of host autophagy
by the bacterial pathogens, DMI and DDI based methods were
used to identify the bacterial proteins which are able to bind
to/modulate the 37 core autophagy host proteins. By overlapping
the two above-mentioned sets of predictions, bacterial proteins
involved in interplays were identified. Such bacterial proteins
are also targeted by the host autophagy machinery for clearance
and degradation. This was followed by experimentally verifying
the effect on autophagy of a Salmonella protease involved in
human-Salmonella interplay.

A variation of the motif-based methodologies is the use
of motifs to characterize pathogen mimicry. This essentially
involves the identification of eukaryotic linear motifs on
microbial proteins which in turn can hijack host proteins
and thereby promote antagonistic binding (Hurford and Day,
2013; Via et al., 2015). Motif-mediated molecular mimicry
therefore rewires the host signaling and regulatory networks
by titrating essential host proteins and enabling the microbe
to create favorable micro-environments in the host cell by
altering immune responses for example (Cusick et al., 2012).
In addition to motifs, molecular mimicry can also be mediated
at the level of protein, structural and interface levels. At the
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FIGURE 2 | Graphical representation of a typical integrated workflow predicting interactions between microbial and host proteins and their effect on host processes.

protein level, specific studies investigating the role of molecular
mimicry in the pathogenesis of prominent bacterial pathogens
(Doxey and McConkey, 2013) including Salmonella typhimurium
and Human respiratory syncytial virus (Mei and Zhang, 2020)
have been carried out (Table 2). At the interface level, Guven-
Maiorov et al. (2017) devised a computational method to infer
mimicry induced by a prominent gastric cancer causing pathogen
Helicobacter pylori. Besides DDI and DMI based methods,
researchers have also used other structure-based methodologies
such as pairwise structural similarity (PSS) to predict inter-
species PPIs. PSS methods at their very core are based on

the premise that proteins possessing similar structures have a
greater probability of interacting with the same set of protein
partners (Ding and Kihara, 2018). This has been applied to
infer the interactions with the host of various pathogens such
as Dengue virus (Doolittle and Gomez, 2011), HIV (Cui et al.,
2016), Francisella tularensis (Cui et al., 2016), West Nile virus
(Chen et al., 2019), Chandipura virus (Rajasekharan et al., 2013),
and other viral pathogens (Franzosa and Xia, 2011; Lasso et al.,
2019).

As a means of ensuring proper quantitative evaluation of de
novo PPI predictions, emerging computational methods such as
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machine learning have been used in conjunction with structural-
feature based PPI prediction methods. In order to avoid
repetitions, methods using ML for evaluating the performance of
structural feature dependent PPI predictions are discussed in the
next subsection.

Machine Learning Based PPI Methods
Due to their ability to discern complex patterns among a
large number of features in big datasets, machine learning
(ML) methods have found favor in various applications of
computational biology and bioinformatics (Shastry and Sanjay,
2020) including the prediction of microbe-host molecular
interactions. A variety of supervised and unsupervised methods
have been used to predict the interactions between microbial and
host proteins (Table 2). In general, supervised machine learning
methods utilize features from “gold-standard” interaction
datasets to identify potential protein–protein interaction pairs
from the user provided list of microbial and host proteins
(Zhang et al., 2017b). In supervised methods, the “gold-standard”
datasets are either compiled from high-throughput experimental
methodologies or from curated lists of interactions from the
literature (Zhang et al., 2017b). In the case of ML being used
in combination with “interolog” based methods (explained in
section 5.2.4), “gold-standard” PPI datasets can also be retrieved
from other related or unrelated microbe-host species pairs
depending on the scope of the study. Some of the features used
to infer de novo PPI predictions include protein properties such
as post-translational modifications, chemical composition, tissue
distribution, molecular weight, domain/motif compositions,
ontologies, gene expression, amino-acid frequencies, homology
to human binding partners, and relevance of proteins in host
network. By using these features, supervised methods are able to
discern truly interacting protein pairs from all possible pairs of
microbial and host proteins (Zhang et al., 2017b).

Supervised methods can also be differentiated by the
kind of ML methodology/model used for the task of rightly
classifying truly interacting protein pairs. Several supervised
studies employing individual ML models [such as I2-regularized
logistic regression (Mei et al., 2018), random forests (RF)
(Kösesoy et al., 2019), etc], support vector machine (SVM)
(Cui et al., 2012; Shoombuatong et al., 2012; Kim et al.,
2017) have been applied to infer PPIs between microbial and
host species. SVMs use a framework of searching and finding
the best hyperplane (aka decision boundary represented by a
mathematical equation) to separate sample with different labels
corresponding to a class. Several variations of the SVM exist to
handle data with underlying linear or non-linear relationships
(Byvatov and Schneider, 2003).

Using four different ML models namely RF, SVM, Artificial
Neural Networks (ANN) and K-Nearest Neighbors (K-NN), and
multiple lines of -omic evidence including experimental PPIs
as predictive features, Leite et al. (2018) devised a model based
on a supervised protocol to accurately predict bacterium-phage
interactions. The model, a type of ensemble learning, due to its
generic nature, can also be used to predict interactions between
any two given species, given the availability of informative feature
sets. Ensemble learning (Che et al., 2011), combines multiple

individual classifiers to achieve a final classification and has been
used to predict PPI based HIV-human and hepatitis C virus-
human networks (Mei, 2013; Emamjomeh et al., 2014). Ensemble
classification methods outperform individual classifiers based on
several use-cases (Krawczyk, 2015; Haque et al., 2016; Yijing et al.,
2016; Lin et al., 2019) and can be generalized into three distinct
categories namely bagging, boosting and stacked generalization.
The last of the three approaches, stacked generalization, was used
by Emamjomeh et al. (2014) to predict PPIs between human
and the hepatitis C virus. While bagging assigns training sets to
individual classifiers based on a random selection of the initial
training dataset with replacement for subsequent sampling runs,
boosting involves the creation and evaluation of classifiers in
a sequential manner, with the succeeding classifier assigning
more weights to the misclassification errors committed by the
preceding classifier. The ”boosted” weights are then normalized
for all the instances in the entire dataset which is then used as
the training dataset for the next classifier after which the final
classification step is carried out based on the weighted individual
classifiers. The stacked generalization methodology is designed
to overcome some of the errors committed by the individual
classifiers even if they are used in the ensemble framework. The
stacked approach achieves this by using a “stacks” of base learners
so that its output is the input for a meta-learner which knows
how best to combine the base learners’ outputs. The training
data may or may not overlap between the two stacks and can be
specified accordingly.

Various auxiliary algorithms have been used in conjunction
with machine learning methods to predict inter-species PPIs.
An example of such a study includes the use of a novel protein
sequence based feature extraction method called Location Based
Encoding (LBE) with different classifier models including RFs.
Such integrated methodologies have been used to predict protein
interactions with the human host of two important pathogens –
Bacillus anthracis and Yersinia pestis (Kösesoy et al., 2019). LBE
is a methodology which complements the ML approaches for
PPIs by differentiating proteins only based on the locations of the
amino acids in the sequence (Li et al., 2009).

Supervised methods are sometimes constrained due to the
small size of “gold-standard” datasets that restricts the inference
and prediction of proteome-wide PPIs between the full list of
proteins of any two given species. Mei and Zhu (2014a) harness
the power of multi-instance AdaBoost, a type of boosting-based
ensemble learning protocol, which is a multi-instance learning
based ML method, to reconstruct proteome-wide Human T-cell
leukemia virus-human PPI networks using homology knowledge
derived protein features. AdaBoost improves classification
performance by combining multiple weak classifiers into one
strong classifier. It works in part by assigning more weight to
instances which can only be classified with greater difficulty than
to instances which can be easily classified (Kim et al., 2012).
The dearth of true interacting protein-pairs has also prompted
researchers to use unsupervised or semi-supervised approaches
to infer microbe-host PPIs. Qi et al. (2010) complement the list of
true interactions with a list of protein-pairs wherein association
evidence exists with no interaction evidence between the proteins
of a pair. Supervised learning is performed thereafter with a
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multilayer perceptron network and by using the true interaction
list. Subsequently, the semi-supervised approach uses the same
network layers of the supervised classifier but instead trains
on the protein-pairs with association evidence only. By using
this hybrid approach, the authors report improved performance
for predicting interactions between HIV and human proteins
(Qi et al., 2010).

Data/Literature Mining Based PPI Methods
Even though many databases have been compiled to collect,
curate and store microbe-host PPIs (Kumar and Nanduri, 2010;
Durmus Tekir et al., 2013; Cook et al., 2018; Gao et al., 2018;
Singh et al., 2019), these are mostly confined to well-studied
pathogens and are predominantly comprised of interactions from
high-throughput experiments. Contrastingly, in the literature,
there exist inter-species PPIs from low-throughput experiments
with some of them from non-model organisms, and commensal
microbes, but mostly distributed over several individual studies.
Very often, the inter-species PPI databases and repositories do
not capture these sparse interactions. Hence, researchers have
adapted and modified data- and text-mining tools to search
for and extract microbe-host PPIs from existing literature.
Retrieving such PPIs not only helps in increasing the number
of true positive and true negative interactions (which helps
aid the predictive performance of algorithms) but also extends
our knowledge of existing microbe-host interactions. Motivated
by the above explained need to mine-out microbe-host PPIs,
Thieu et al. (2012) combine and compare the performance
of a language based method based on a link grammar parser
to a supervised ML methodology (SVM) and report that the
combined approach results in a higher classification accuracy
when compared to existing literature mining methods. As
part of a bigger analytical framework aimed at uncovering
the cellular mechanisms involved in human B lymphocytes
during Epstein-Barr virus infection, Li et al. (2018) use a big-
data mining methodology to identify a diverse range of inter-
species molecular interactions including PPIs. Similar text/data
mining approaches were also executed to extract PPI-mediated
interactions of the human host with multiple viruses such as
Hepatitis C virus (Saik et al., 2016) and Influenza A virus (García-
Pérez et al., 2018; Table 2).

Interolog Based PPI Methods
For most species-pairs of interest, especially those belonging
to the category of non-model organisms, there is a scarcity
of experimentally verified PPIs. This has necessitated the
development of novel bioinformatic methods, one of which
is the inference of interactions from existing experimentally
determined inter-species PPIs (Kshirsagar et al., 2015). These
types of methodologies are usually based on the principle of
homology (hence the term “interolog”: meaning interacting
orthologs) – either at the level of proteins or protein structural
features or both. Protein features used for homology based
extrapolation include but are not limited to domains, motifs,
amino-acid k-mers, and 3D structural properties (Kshirsagar
et al., 2015). Interolog based approaches have been applied
to harness the large volume of experimentally verified PPIs

for model organisms including prominent bacterial/viral
pathogens. Despite the potentially large coverage that can be
achieved by such approaches, there exist several disadvantages
of using interolog approaches as a silver bullet for inferring
inter-species PPIs especially for novel species-pairs. These
disadvantages are attributed to different pathogenic mechanisms
between the microbes in the context of infecting different host
species, different cellular localizations, and varying activity
levels (expression, post-translational modifications, etc.) of
the orthologous microbial proteins. Such differences lead
to accessibility bottlenecks i.e., the ability of the proteins to
physically access host proteins and thereby interact. Hence,
interolog based approaches need to be complemented with
additional filtering and quality control steps such as selecting
proteins from infection-relevant cellular compartments,
expression/activity measurements, etc.

Interolog based methods have been used to infer inter-
species PPIs for many prominent pathogens and parasites
(Table 2). Different versions of the interolog approach have
been used to extrapolate PPIs corresponding to interactions
between the human host and various pathogens such as
Plasmodium falciparum (Krishnadev and Srinivasan, 2008; Lee
et al., 2008), Escherichia coli (Krishnadev and Srinivasan, 2011),
S. typhimurium (Krishnadev and Srinivasan, 2011; Schleker et al.,
2012), Y. pestis (Krishnadev and Srinivasan, 2011), Helicobacter
pylori (Tyagi et al., 2009), HIV (Cui et al., 2016), Francisella
tularensis (Zhou et al., 2014; Cui et al., 2016), Coxiella burnetii
(Wallqvist et al., 2017), Corynebacterium pseudotuberculosis
(Barh et al., 2013), Corynebacterium diphtheriae (Barh et al.,
2013), and Corynebacterium ulcerans (Barh et al., 2013). Using
PPIs from the STRING database as the starting interaction set,
Cuesta-Astroz et al. (2019) used the interolog methodology to
predict PPIs between 15 different eukaryotic pathogens and the
human host. To assign species-specific and lifecycle- specific
contextuality, the authors confined the analysis to proteins
from particular cellular compartments which are relevant to the
infection process. From the analysis of the ensuing PPI networks,
various invasion and evasion mechanisms adopted commonly
and specifically by particular parasites were inferred (Cuesta-
Astroz et al., 2019). Schleker et al. (2012) present another version
of the interolog approach to predict human-Salmonella and
A. thaliana-Salmonella PPI networks. As a source of template
PPIs, publicly available interaction databases are used along
with databases containing 3D structures between Pfam domains.
As an add-on to the sequence based orthology of proteins,
domain based orthology is also performed in order to reduce
the false positive rates. Several additional filtering strategies such
as restriction to predicted transmembrane proteins, relevance in
host network and functional attributes such as gene ontology are
used to make the PPIs more specific.

Approaches Inferring RNA Mediated
Interactions
The role of RNAs, especially non-coding RNAs such as
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)
in mediating molecular microbe-host interactions have been
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reported in the literature (Li et al., 2015b; Agliano et al.,
2019). RNA molecules are either secreted by the microbial cell
into the host cell or are packaged into vesicles along with
other molecules which are then taken up by the host cell by
endocytosis (Weiberg et al., 2014; Huang et al., 2019; Ahmadi
Badi et al., 2020). Such microbial RNAs then modulate host
cell activity by either binding to DNA, messenger RNAs or
proteins. Thus, by salvaging and titrating host components,
microbial RNAs modulate regulatory and signaling networks
and subsequently host cell activity (Duval et al., 2017; Agliano
et al., 2019; Shirahama et al., 2020). However, in contrast to
PPI based methods, even though RNA-mediated microbe-host
interactions are well studied from an experimental point of
view, very few methods or studies exist that have systemically
and systematically applied computational analysis (Table 3).
As such, the resources which exist in the domain of RNA-
mediated microbe-host interactions comprise of databases such
as ViRBase (Li et al., 2015b) which is predominantly a
source of experimentally verified virus–host non-coding RNA-
associated interactions. In addition, it also contains predicted
binding sites of virus non-coding RNAs on host proteins and
RNAs. A prominent study which comprehensively examines
and evaluates the role of RNAs in microbe-host interactions
is that of Saçar Demirci and Adan (2020) who investigated
the roles in infection of miRNA-like sequences encoded within
the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) genome. They used a modified version of izMiR
(Allmer et al., 2016), a SVM based ML method to predict
pre-miRNAs which are homologous to the human precursor
miRNAs from miRbase. The SVM based ML method identified
several viral hairpin sequences which were smaller in length
compared to the human miRNA precursors while many of
the human and viral miRNA precursors were similar in length
and shared identical minimum free energy, a feature used
by the izMiR workflow (Allmer et al., 2016). Based on this
observation, a revised classifier trained using only the known
human miRNAs was used on the entire SARS-CoV-2 hairpin
dataset which resulted in the identification of potential hairpins
from which mature miRNA candidates were extracted. As a
next step, the psRNATarget tool (Dai et al., 2018) was used
to predict de novo the human genes targeted by the inferred
viral miRNAs. Functional analysis of the human genes targeted
revealed that the SARS-CoV-2miRNAs can affect various host
processes including transcription, defense systems, Wnt and
EGFR signaling pathways.

TABLE 3 | Examples of studies utilizing computational approaches to infer
RNA-mediated interactions between microbes and hosts.

Study Context

Saçar Demirci and
Adan (2020)

Analysis revealing the potential interactions between mature
micro-RNA like viral RNA sequences and host genes

ViRBase (Li et al.,
2015b)

Source of experimentally verified virus–host non-coding
RNA-associated interactions; also contains predicted
binding sites of virus non-coding RNAs on host proteins
and RNAs

Approaches Utilizing Pipelines
Integrating Multiple-Omic Datasets
Besides the computational methods based on particular types of
molecular interactions, some integrated pipelines (Table 4) have
been compiled to infer mechanistic microbe-host interactions. In
general, such pipelines (Figure 2) incorporate the prediction of at
least one molecular interaction type between microbial and host
molecular components followed by various other functionalities
such as integration of host responses. Table 5 provides a
non-exhaustive overview of the different tools, databases and
resources which are available in the public domain to compile
integrated workflows based on PPIs for example.

KBase (Arkin et al., 2018) is an integrated bioinformatics
platform enabling users to share datasets with the research
community as well as facilitating the integration, and analysis
of -omic datasets from microbes and plants by creating
computational workflows. Recently, we developed MicrobioLink
(Andrighetti et al., 2020), an integrated pipeline which carries
out de novo DDI and DMI based microbe-host PPI prediction
followed by quality control using information from disordered
region predictions from built-in tools such as IUPred (Mészáros
et al., 2018). The pipeline then utilizes network diffusion
principles and tools (Paull et al., 2013) to infer the molecular
mechanisms and signaling pathways which mediate the effect
of microbial proteins on host responses as measured by
transcriptomic or proteomic read-outs. Flexibility is provided for
users to feed in the desired datasets at any given step of the
pipeline. Given the advent of new computational tools in inter-
species interactions and pipeline management platforms, it is
expected that an increasing number of dedicated bioinformatic
workflows for microbe-host interactions will be developed in
the near future.

DISCUSSION: OPPORTUNITIES AND
CHALLENGES

Opportunities
Clinical and Translational Research
Since the aforementioned computational tools help researchers
narrow down on both microbial and host components involved
in mechanistic cross-talks, the tools may discover molecules
which can delineate different clinical phenotypes. In addition,

TABLE 4 | Integrated pipelines used to infer microbe-host interactions by
combining heterogeneous -omic datasets.

Methodology Functionalities

MicrobioLink
(Andrighetti et al.,
2020)

Integrating microbe-host protein interaction networks with
host responses and host regulatory/signaling networks
using network diffusion principles

KBase (Arkin et al.,
2018)

Integrated platform enabling data sharing, integration, and
analysis of -omic datasets from microbes, plants, and their
communities by creating computational workflows

Li et al. (2015a) Identifying critical effectors involved in host-pathogen
interactions by integrating multiple lines of -omic evidence
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TABLE 5 | A non-exhaustive catalog of resources, tools and databases to compile
protein–protein interaction based workflows for inferring microbe
(microbiome)-host interactions.

Step in workflow Resource/Tool/Database

Source of
proteomes
(sequence
information)

UniProt (The UniProt Consortium, 2018), HumanPSD
(Hodges et al., 2002), YPD (Payne and Garrels, 1997),
PombePD (Costanzo et al., 2001), WormPD (Costanzo
et al., 2001), and SWISS-PROT (Bairoch and Apweiler,
1996)

Source of
proteomic datasets
(expression
information)

ProteomicsDB (Schmidt et al., 2018), Human Protein Atlas
(HPA) (Thul and Lindskog, 2018), PRIDE (Perez-Riverol
et al., 2019), PeptideAtlas (Desiere et al., 2006),
MassIVE.quant (Choi et al., 2020), jPOSTrepo (Okuda et al.,
2017), iProX (Ma et al., 2019), and Panorama Public
(Sharma et al., 2018)

Proteomic
annotations
(structural features)

InterPro (Mitchell et al., 2019), Pfam (El-Gebali et al., 2019),
ELM (Gouw et al., 2018), and PDB (Burley et al., 2017)

Protein sub-cellular
localization
(databases and
prediction tools)

ComPPI (Veres et al., 2015), HPA (Thul and Lindskog,
2018), LocDB (Rastogi and Rost, 2011), LocSigDB (Negi
et al., 2015), COMPARTMENTS (Binder et al., 2014),
eSLDB (Pierleoni et al., 2007), SCLpred-EMS (Kaleel et al.,
2020), DeepLoc (Almagro Armenteros et al., 2017),
PSORTdb (Peabody et al., 2016), SecretomeP (Bendtsen
et al., 2004), and Signal P (Armenteros et al., 2019)

Base information
for prediction of
PPIs

Domain-domain predictions – DOMINE (Raghavachari
et al., 2008) and Domain-motif predictions – ELM (Gouw
et al., 2018)

Quality control of
inferred PPIs (using
disordered region
prediction)

IUPred (Mészáros et al., 2018), PrDOS (Ishida and
Kinoshita, 2007), D2P2 (Oates et al., 2013), PONDR-FIT
(Xue et al., 2010), DISOPRED (Ward et al., 2004), MFDp2
(Mizianty et al., 2013), and Meta-Disorder (Kozlowski and
Bujnicki, 2012)

Network resources OmniPath (Türei et al., 2016), IntAct (Orchard et al., 2014),
Reactome (Fabregat et al., 2018), STRING (Szklarczyk
et al., 2017), HTRI (Bovolenta et al., 2012), and DoRothEA
(Garcia-Alonso et al., 2018)

Network diffusion
approaches

NBS (Hofree et al., 2013), HotNet (Vandin et al., 2011),
TieDie (Basha et al., 2013; Paull et al., 2013), RegMod (Qiu
et al., 2010), and stSVM21 (Cun and Fröhlich, 2013)

Databases for host
gene expression

GEO (Clough and Barrett, 2016) and ArrayExpress
(Parkinson et al., 2007)

they can also be possible targets for therapeutic interventions.
In other words, mechanistic predictions combined with clinical
meta-data have a dual-purpose – they provide information on
molecular components which could both represent and drive
clinical phenotypes (Younesi, 2015) and thereby could potentially
minimize our reliance on association-based biomarkers alone
which need not explain causality (Levenson and Mori, 2014).
The discovery of such mechanistic knowledge warrants the
combinatorial use of different methodologies including machine
learning and molecular interaction analysis. While many
community level studies have been conducted on meta -omic
datasets for the clinical classification of patients and the discovery
of associative biomarkers (Wen et al., 2017; Yu et al., 2020;
Clos-Garcia et al., 2019; Conteville et al., 2019), they have not
incorporated mechanistic inferences. On the other hand, most
mechanistic studies (Tables 2, 3) have been carried out on

particular pathogens/microbial species without including clinical
meta-data and/or clinical classifications.

Multi-omic approaches integrating heterogeneous -omic
datasets from patients have been implemented for several
diseases including IBD (Lloyd-Price et al., 2019) which are
associated with microbial dysbiosis. However, these studies do
not provide the required mechanistic insights for formulating
therapeutic interventions. Beltran and Brito (2019) devised an
integrated methodology to unravel the molecular mechanisms
underlying the microbe-host interactions associated with
various diseases such as colorectal cancer, IBD, obesity and
type-2 diabetes. The aforementioned study represents one of
the first and few initiatives to use community-wide microbe-
host interaction predictions using meta -omic datasets from
patients to discover mechanistic interactions driving the clinical
phenotypes. By combining orthology based approaches to
extrapolate interactions from experimental PPIs, machine
learning and patient derived -omic datasets, the authors
identified a subset of inter-species PPIs which are associated
with disease phenotypes (Beltran and Brito, 2019). Thiele
et al. (2020) published a novel study by integrating different
levels of information (dietary information, physiological
parameters, organ weights, and organ connectivities, etc.) and
datasets such as molecular -omics (proteomics, metabolomics,
metabolites produced by the gut microbiota) in an organ
specific manner to arrive at a whole-body-model of human
metabolism. Although not fully mechanistic, with this model, the
authors were able to predict biomarkers of inherited metabolic
diseases and host-microbiome co-metabolism. Such integrated
studies and workflows combining statistical and mechanistic
inference of multi -omic datasets awaits further adoption and
application in the research on various diseases associated with
microbial dysbiosis.

Research on Comparative Ecological Networks
The tools and resources listed in this review can be used to infer
and predict molecular interactions between species in several
contexts [microbe/microbiota in host, microbe/microbiota in
several hosts, microbe (vs) microbe, and microbiota (vs) microbe,
etc]. In almost all of the above-mentioned cases, molecular
interactions between the autonomous entities (be it species
or communities) could be driving the emergent phenotypes.
Since the tools discussed in this manuscript also concern
themselves with extrapolating interactions based on homology
between species-pairs, it could be a right fit to predict de novo
interaction relationships for species with very little experimental
interaction information.

For example, Crohn’s disease, a sub-type of IBD, is
characterized by the dysbiosis of the gut microbiome (Joossens
et al., 2011; Schaubeck et al., 2016; Shaw et al., 2016). This
results in persistent inflammation of the gut mucosal barrier
as a result of the unbalanced host responses (co-influenced by
host genetic factors as well) to the dysbiosed microbiome and its
various components such as proteins, metabolites, etc (Li et al.,
2014; Lavelle and Sokol, 2020). Some of the CD patients also
display lesions of the skin during or after therapeutic regimens
(Huang et al., 2012; Gravina et al., 2016). It is known that the
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skin also houses a complex microbial community which plays
a role in maintaining homeostasis (Schommer and Gallo, 2013;
Chen et al., 2018). Understanding the mechanisms by which CD
medications impact the microbe-host interactions in the gut as
well as the skin could help in avoiding the unintended side-effects
of therapy in CD.

Yet another relevant context to apply the tools discussed
herein is the inference of underlying molecular mechanisms
which mediate the evasion of immune responses by bacterial
pathogens in various hosts and their importance in transmission
between hosts. We recently showed that bacterial pathogens
and autophagy, a primary intracellular line of defense in
the host, are engaged in an evolutionary tug of war, as
evidenced by the presence of various interplays and cross-
talks (Sudhakar et al., 2019). Given the exposure of host
animals such as poultry and cattle to xenobiotic compounds
such as antibiotics, many zoonotic pathogens are under
constant selection pressure to evolve survival strategies to
modulate/evade/survive within the host animal (Harada
and Asai, 2010). This opens the door for impending risks
of transmission (from animal hosts to human hosts or
between various animal hosts) via the food chain of zoonotic
species which have been selected for survival over many
generations of persistence in the host (Farrell and Davies,
2019; Mollentze and Streicker, 2020). Microbe-host interaction
mechanisms are at the evolutionary cross-roads of such
transmission events between hosts. In this context, studying
such interactions is expected to provide deeper insights into
designing strategies to prevent and/or minimize spill-over
transmission events.

Challenges
Over the past decade, various advances in the domain of
computational analysis of microbe-host interactions have been
made. However, despite this progress, there remain many
challenges as described below. These challenges also present
opportunities and the need to come up with innovative
approaches and solutions.

Catching Up With Complex Infection Processes
Infection biology has taken new strides over the past years
with new molecule classes (Katiyar-Agarwal and Jin, 2010;
Rana et al., 2015; Duval et al., 2017; Long et al., 2017; Peters
et al., 2019; Acuña et al., 2020) and cell-types (Chattopadhyay
et al., 2018) being discovered as having a role in the infection
process. With that, novel interaction types between various
molecular classes are also unearthed (Silmon de Monerri
and Kim, 2014). In some cases, computational methods have
not caught up with molecular mechanisms. For example,
hepadnaviruses utilize host DNA ligases to generate covalently
closed circular DNAs which play a major role in mediating
viral infection and persistence (Long et al., 2017). Similarly
long non-coding RNAs are known to be involved in host-
pathogen interactions (Duval et al., 2017; Agliano et al.,
2019). However, till date, computational methods do not
exist to predict or infer the mechanisms by which the
viruses recruit the host DNA ligases or directly modulate the

biogenesis, conformation and activity of long non-coding RNAs.
Hence, computational method developments are always a step
behind the complexity associated with infection biology. This
gap is all the more prevalent for commensal organisms in
contrast to pathogens due to the constant and historically
prevalent study bias.

Lack of Experimental Datasets
Non-model organisms and non-pathogenic organisms such
as probiotics and commensals also suffer from a considerable
knowledge gap in terms of known/experimentally verified
molecular interactions. This affects the performance of
computational methods considerably due to the need for
large sets of true positives for the satisfactory performance
and assessment of predictive algorithms (Jiao and Du, 2016).
In addition, this also influences the coverage and accuracy of
interolog approaches since they harness already existing true
positive datasets for extrapolating to the species-pairs of interest
based on orthology.

False-Positives
As with any computational algorithm, microbe-host interaction
prediction methods also face the curse of false positives.
This issue could be exacerbated by the availability of
relatively small true positive (truly interacting) and true
negative (non-interacting sets) datasets (Jiao and Du, 2016).
Furthermore, the evolutionary distance and difference in
infection process between the template species-pairs and the
species-pair of interest as well as the absence of orthologous
molecular components involved in the interactions could
also contribute to the inflated false positive rates, reduced
performance and coverage.

Community-Wide Interaction Prediction
Most of the microbe-host interaction computational tools have
been directed at uncovering interactions corresponding to
individual microbe-host pairs. This is a major drawback of
existing methodologies, especially given the fact that phenotypes
related to health and disease are associated with changes in
community wide alterations (Clemente et al., 2012; Koboziev
et al., 2014; Wang et al., 2017; Bailey and Holscher, 2018;
Dominguez-Bello et al., 2019).

Modeling Dynamics of Microbe-Host Interactions
Last but not the least, current methods involved in microbe-
host interaction analysis are not equipped to handle the dynamic
nature of natural ecosystems and ecological niches in which the
interactions are embedded. Although it is a generic drawback
of many bioinformatic approaches, this challenge will need
coordinated efforts between modelers, experimental biologists
and bioinformaticians.

CONCLUSION

Since the advent and expansion of high-throughput sequencing
technologies, various observational studies of microbial
communities inhabiting various ecological niches (inside host
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organisms for example) have been carried out. This has
mostly resulted in associations with health- or disease-associated
phenotypes. However, there is a huge gap in terms of the
mechanisms mediated by these microbial communities and
how these mechanisms contribute to the observed phenotypes.
Despite the availability of experimental datasets which capture
some of these mechanisms such as PPIs, these are either confined
to model organisms or well-studied pathogens. Computational
approaches provide researchers with the tools to upscale
microbe-host interaction research by enabling them to make
de novo inter-species molecular interactions and to extrapolate
existing microbe-host interaction datasets to the species-pairs of
interest. Computational methods may aid the study of microbe-
host interaction by reducing the variable space, prioritizing
interactions, and eventually building hypothesis for further
experimental verification.
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Naive Bayes classifiers (NBC) have dominated the field of taxonomic classification of
amplicon sequences for over a decade. Apart from having runtime requirements that
allow them to be trained and used on modest laptops, they have persistently provided
class-topping classification accuracy. In this work we compare NBC with random forest
classifiers, neural network classifiers, and a perfect classifier that can only fail when
different species have identical sequences, and find that in some practical scenarios
there is little scope for improving on NBC for taxonomic classification of 16S rRNA gene
sequences. Further improvements in taxonomy classification are unlikely to come from
novel algorithms alone, and will need to leverage other technological innovations, such
as ecological frequency information.

Keywords: microbiome, metagenomics, marker-gene sequencing, taxonomic classification, machine learning,
neural networks

INTRODUCTION

Microbial communities are integral components of diverse ecosystems on planet Earth, supporting
both environmental and human health (The Human Microbiome Project Consortium, 2012;
Thompson et al., 2017). Investigating the role of microorganisms in these environments
often involves characterizing the composition of these communities using high-throughput
DNA sequencing methods, most commonly of universal marker genes, such as small subunit
rRNA genes (Thompson et al., 2017). Even short sequences (e.g., as obtained from “second-
generation” sequencing instruments) of 16S rRNA gene hypervariable domains can differentiate
bacterial families and genera (Liu et al., 2008), making these marker genes popular targets for
microbial census studies.

A critical step in any microbial census study is the taxonomic classification of observed DNA
sequences, to infer the relative abundance of different taxonomic groups. This is performed by
comparison of observed sequences to a reference database of sequences from known taxa, using an
appropriate taxonomic classifier (Robeson et al., 2020). A large number of taxonomic classification
methods have been developed and benchmarked for classification of marker gene sequences
(Bokulich et al., 2018b; Gardner et al., 2019), but among the most successful and ubiquitous in
microbiome studies have been naive Bayes classifiers (NBC). The primacy of NBC was established
by the Ribosomal Database Project (RDP) classifier (Wang et al., 2007), which utilized an NBC and
demonstrated that genus-level accuracy could be achieved from short 16S rRNA gene sequences.
The superiority of NBC for marker-gene sequence classification has proven robust over time,
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as we have shown more recently with the various classifiers
implemented in q2-feature-classifier (Bokulich et al., 2018b),
a taxonomic classification plugin for the popular QIIME
2 microbiomics software platform (Bolyen et al., 2019).
Furthermore, we demonstrated that the accuracy of NBC could
be significantly enhanced by providing ecological information
about the expected frequency of different taxonomic groups in
specific natural environments (Kaehler et al., 2019) to enable
more reliable species-level classification of 16S rRNA gene
sequences. This improves upon the assumptions of earlier NBC
for marker-gene sequences (e.g., RDP classifier), which assume
uniform class weights, i.e., that microbial species are equally
likely to be observed.

Newer methods for taxonomic classification have been
developed and tested, but have failed to reliably exceed the
accuracy of NBC for marker-gene taxonomic classification,
both in individual benchmarks (Lu and Salzberg, 2020) and
in independent benchmarks (Almeida et al., 2018; Gardner
et al., 2019). Notably, all benchmarks to date (except those in
Kaehler et al., 2019) have tested NBC with uniform class weights,
underlining that naive Bayes remains most accurate even without
full optimization for specific sample types. This led us to consider
three questions in the current study:

1. Could taxonomic frequency information benefit other
taxonomic classifiers?

2. Could newer supervised learning algorithms exceed the
accuracy of NBC?

3. Do decreasing performance advances in the microbiome
taxonomy classification literature indicate that we are
reaching an upper limit of performance for classification
of short marker-gene sequences?

Class weight information can be utilized by a variety of
supervised classification methods, so we hypothesized that
using class weights could provide these methods with a much-
needed performance boost. We chose two newer machine
learning classification algorithms that have been successfully
applied to other problems in bioinformatics (e.g., sample
classification, e.g., Bokulich et al., 2016, 2018a; Roguet et al.,
2018), but little-explored for DNA sequence annotation: Random
Forests (RF) (Breiman, 2001) and convolutional neural networks
(CNN) (Lecun et al., 1998). These algorithms have shown
favorable performance against the RDP classifier in isolated tests
(Chaudhary et al., 2015; Fiannaca et al., 2018; Busia et al.,
2019; Zhao et al., 2020) but have not been independently
benchmarked, nor compared against NBC with ecologically
informed class weights.

We demonstrate that RF and CNN come close to but fail
to exceed the accuracy of NBC when utilizing class weight
information. Additionally, we use a “perfect” classifier to establish
an upper bound for classification accuracy. We discover that,
at least for short reads of 150 nt, there can be almost no
improvement over an NBC if class weights are used. If longer
reads are used (all of the V4 region) then there is limited scope
for improvement, but again only if class weights are used. Finally,

NBCs remain easier and faster to train than RF and CNN
classifiers with fewer hardware requirements.

RESULTS

We selected RF and CNN classifiers as promising methods
for DNA sequence taxonomy classification, due to promising
performance of various implementations in recent isolated
reports (Chaudhary et al., 2015; Fiannaca et al., 2018; Busia
et al., 2019; Zhao et al., 2020). In particular, the use of ensemble
classification by RF is a potentially attractive means of efficiently
calculating class probabilities via random selection of sequence
data in each decision tree. The ability of CNNs to learn complex
patterns, and in particular to model spatial organization in
sequence data (Busia et al., 2019), make CNNs promising for
DNA sequence annotation tasks. We utilized a kmer bagging
approach for feature extraction prior to both RF and NBC
classification, as has been commonly implemented in NBC
including the RDP classifier (Wang et al., 2007; Bokulich et al.,
2018b). However, kmer bagging fails to leverage the mid- to
long-range spatial organization of DNA sequences. Hence, we
used a Word2Vec (Mikolov et al., 2013) encoding for feature
extraction prior to CNN classification, similar to the spatial
encoding schemes implemented for other CNN classifiers (Busia
et al., 2019; Zhao et al., 2020).

Random Forest Classifiers
We performed hyperparameter tuning of the RF classifiers
following a two-tiered approach. Cross validation was performed
on sequences in the Greengenes reference data set (McDonald
et al., 2012) and on sample compositions derived from
real samples downloaded from the Qiita database (Gonzalez
et al., 2018). All of the tests of the NBC and RF classifiers
that we performed used taxonomic weighting information
(Kaehler et al., 2019).

First, a grid search was performed on a comparatively smaller
data set to select hyperparameters with primary performance
effects (all samples of 150 nt length labeled as sediment (non-
saline) in Qiita on 20 March 2019 (Thompson et al., 2017), 188
samples, downloaded using q2-clawback (Kaehler et al., 2019)
see Supplementary Material and Supplementary Table 1 for
details). A second grid search was performed on a much larger
animal distal gut data set (downloaded from Qiita on 23 May,
2019 with the same parameters, 22,454 samples). The results
of the initial tests were that max_depth and max_features were
the only classifier parameters that had a meaningful impact on
classification accuracy. Except for confidence, all parameters are
those of the scikit-learn classifier (see section “Materials and
Methods”). Additionally, a confidence parameter of 0.7 was found
to give greater accuracy than a confidence parameter of 0.9.

In all cases, classification accuracy was measured using
F-measure for species-level classification. We also tested final
results using the Matthews correlation coefficient (MCC) (Chicco
and Jurman, 2020). MCC was chosen to reduce the reported
bias in F-measure in the presence of imbalanced classes. In all
cases results were qualitatively the same. For the same confidence
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level, parameter choice also gave the same rankings for MCC as
F-measure (see Supplementary Figure 1).

The parameters selected for the second tier of parameter
tuning are shown in Table 1. A full grid search testing all
combinations of parameters was not performed because of
operational difficulties balancing requests for walltime, number
of CPUs, and memory usage on a shared computational resource
(see Supplementary Table 2 and Supplementary Figure 4) and
negligible impacts on performance (Figure 1). If it is not possible
to train a classifier on a machine with 14 CPUs and 3TB of
memory in under 24 h, it is not useful to the wider community
regardless of accuracy (Bokulich et al., 2020), and hence these
configurations were not pursued further. A max_depth of None
implies that nodes were expanded until all nodes were pure.
max_features of None implies that the maximum number of
features was the number of features.

Results indicate that maximum tree depth (max_depth)
exerted the greatest influence on classification accuracy (Figure 1
and Supplementary Figure 1). Regardless of the confidence level,
increasing the maximum depth leads to an increase in F-measure.
The most significant change can be observed between 16 and 64
nodes (average F-measures of 0.636 ∓ 0.006 and 0.768 ∓ 0.004 at
confidence 0.7, respectively, standard error measured over folds).
Increasing max_depth beyond 64, however, does not lead to an
appreciable increase in accuracy, and using unlimited tree depth
(i.e., max_depth = None; tree nodes are expanded until leaf purity
is achieved) yields marginally higher F-measures at all confidence
levels (F = 0.779 ∓ 0.005 at confidence 0.7) (Figure 1).

Decreasing the number of features (max_features) to be taken
into account while deciding on node splitting resulted in a modest
decrease in classification accuracy [0.636 ∓ 0.006 and 0.608 ∓

0.003 average F-measure for using all of the features as compared
to sqrt (number of features)]. This performance decrease was
least pronounced at lower confidence levels. Similarly, increasing
the number of estimators (n_estimator, i.e., trees in the forest)
had no or very low influence on classification accuracy, regardless
of the confidence level. Increasing the number of estimators from
100 to 1,000 reliably caused memory issues, however, particularly
with a maximum tree depth of 64 (see Supplementary Table 2).

None of the parameter sets tested in our study outperformed
the NBC at any of the confidence levels we tested (Wilcoxon
signed-rank p < 0.05). To test whether reducing the classification
confidence threshold further beyond the level of 0.6 could
help increase RF’s performance, we trained and evaluated an
additional set of classifiers with fixed parameters (max. number
of features, 100 estimators, max. tree depth) while varying
confidence in the range 0.3–0.5. Decreasing the confidence

TABLE 1 | Parameter values used for computationally intensive grid search on
animal-distal-gut samples.

Parameter Values

n_estimators 100 1,000 –

max_depth 16 64 None

max_features sqrt None –

Confidence 0.6 0.7 0.8

marginally increased the test set’s recall and F-measures at
the cost of precision (Figure 1 and Supplementary Figure 1),
however the accuracy achieved by the NBC could still not be
obtained (Figure 1).

Interestingly, precision of the RF classifier tested with most
of the parameter sets could in many cases outperform the NB
model and it was rather insensitive to parameter changes given
a confidence level (Supplementary Figure 1, top panel). It
was the recall, however, that not only varied greatly between
parameter sets, but also could never come close to that of the NB
(Supplementary Figure 1, bottom panel).

Convolutional Neural Networks
Following our tests of RF classifiers, we were interested in
evaluating whether we could leverage recent advances in neural
network-based models for superior taxonomic classification.
Cross validation was performed as described for RF. To reduce
run time, we used a relatively small data set that consisted of all
5,632 of the animal distal gut 150 nt samples that were available
from Qiita on 1 June, 2018 (downloaded using q2-clawback;
Kaehler et al., 2019).

More specifically, we focused on CNNs as their performance
is favorable in the literature (Chaudhary et al., 2015; Fiannaca
et al., 2018; Busia et al., 2019; Zhao et al., 2020) and for
their relatively parsimonious parameterization and insensitivity
to insertion and deletion events. Before feeding the DNA
sequences to the network, we applied the Word2Vec model in its
Continuous-bag-of-words (CBOW) implementation to convert
genetic information into a series of 300-element vectors. That not
only allowed us to convert the k-mers into numerical values but
also carried additional information about relatedness/similarity
between any two k-mers within a given sequence.

For most of our tests we used a simple neural network with
a single (one-dimensional) convolutional layer followed by a
global max pooling layer and a classification layer (Figure 2A,
architecture I). We varied the number of filters and kernel size of
each filter (see Table 2) to test which of those parameters would
have the greatest influence on the model performance (measured
as Precision, Recall, F-measure, and MCC at the species level,
similarly as was done for the Random Forest models).

Increasing either the number of filters or kernel size resulted
in an increase of classification accuracy with average F-measures
between 0.710 ∓ 0.009 and 0.801 ∓ 0.006 for models with
filters = 64/kernel_size = 3 and filters = 512/kernel_size = 7,
respectively (evaluated at 0.7 confidence level, Figure 2B and
Supplementary Figure 2). Based on these initial findings,
we selected a subset of parameter configurations to test
the effect of confidence settings on CNN classification
performance. Reducing the confidence parameter to 0.5
improved performance (average F-measure of 0.849 ∓ 0.005,
filters = 512/kernel_size = 7), but further improvements were
not observed when we further reduced confidence to 0.25 (see
alternate model specifications in Supplementary Material).

We also attempted to improve performance by then extending
the test range of number of filters and kernel size to
4,096 and 14 at a confidence level of 0.5 and found that
doubling the number of filters or kernel size had little to
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FIGURE 1 | F-measure accuracy performance of RF and NB classifiers. Box-and-whisker plots indicate the median and quartile distributions of F-measures for each
classifier and configuration, across 5-fold of CV. RF classifier configurations were tested via a grid search across the hyperparameters listed in the subset table. NB
classifiers do not have equivalent parameters, and hence only NB is listed in the table beneath bars representing NB classifiers. Both RF and NB classifiers were
tested at multiple confidence levels. None of the tested parameter sets outperformed the NBC at any of the confidence levels (Wilcoxon signed-rank test p < 0.05).

FIGURE 2 | F-measure accuracy performance of CNN and NB classifiers. (A) CNN architectures implemented in this benchmark. (B) Box-and-whisker plots indicate
the median and quartile distributions of F-measures for each classifier and configuration, across 5-fold of CV. CNN classifier configurations were tested via a grid
search across the hyperparameters listed in the subset table. NB classifiers do not have equivalent parameters, and hence only NB is listed in the table beneath bars
representing NB classifiers. Both CNN and NB classifiers were tested at multiple confidence levels. None of the tested networks outperformed the NBC at a given
confidence level (Wilcoxon test p < 0.05).

no effect on the classifier accuracy (average F-measure of
0.843 ∓ 0.004, filters = 2,048/kernel_size = 7, 0.827 ∓ 0.009,
filters = 2,048/kernel_size = 14). Finally, we tested a variety

of different network architectures and two feature-extraction
methods other than Word2Vec (see Supplementary Materials
for details). One of the better results is represented by
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TABLE 2 | Parameter values used for grid search using the convolutional neural
network.

Parameter Values

Filters 64 128 256 512

Kernel size 3 5 7 –

Confidence 0.5 0.7 0.95 –

Architecture II in Figure 2B, which also used one-hot-encoding
of individual nucleotides to build a sequence of vectors for input
to the neural network.

While exhaustively testing all of the possible neural network
architectures is not practical, a pattern emerged in our testing.
That is that with tuning, it was possible to approach an average
F-measure of around 0.85, but none of the models that we
tested outperformed the NBC, which on the same data set with
reads of the same length had an average F-measure of 0.866
∓ 0.002 (all differences between CNN and NB results were
statistically significant at p < 0.05 when evaluated at the same
confidence level).

Comparing accuracy reported between F-measure and
MCC, again the differences were qualitatively the same and
different configurations were ranked almost identically within
confidence levels.

Moreover, also in the case of CNN classifiers it is recall
that plays a major role in differentiating between different
parameter configurations (Supplementary Figure 2). While
classification precision remained on an approximately similar
level for most of the configurations tested, the recall increased
as model complexity increased (in terms of model parameters).
Regardless of the parameters used, however, CNN recall was
always lower than that of NBC at a given confidence level
(Supplementary Figure 2).

Finally, we were interested in checking whether the networks
described above were prone to overfitting. Large model capacity
(expressed as number of model parameters) with respect to
the amount of training data can lead to the network learning
features of the training set that are not universally relevant, thus
reducing the accuracy when evaluating the model on the test
set. We compared training histories of the architecture I with
512 filters and kernel size of 7 and architecture II with 1,024
filters and kernel size of 7 (Supplementary Figure 5). For all of
the results that we report we trained for either 5 or 10 epochs
(Supplementary Table 3), and overfitting was not evident at that
stage in either of these examples.

The Perfect Classifier
The underwhelming performance exhibited by RF and CNN
classifiers led us to hypothesize that NBCs may already be
approaching the upper limit of classification accuracy for this
problem and hence alternative algorithms alone cannot exceed
this performance. To test this hypothesis, we constructed a
perfect classifier to measure the upper bound of classification
accuracy for a given classification task. This classifier performs
in-sample testing where the classifier can only fail if two or
more species share exactly the same sequence. Where they do

share the same sequence, one matching classification is chosen
at random as the label for that sequence. The performance
of such a classifier represents the upper limit of possible
classification accuracy (Busia et al., 2019; Robeson et al.,
2020).

We trained perfect classifiers with and without taxonomic
class weighting to assess the upper bound of accuracy when
using sequence information alone (uniform weights) or when
leveraging ecological information. We also tested a range
of confidences and for 150 nt amplicons or sequences that
captured all of V4. See section “Materials and Methods” for
implementation details of how confidence affected the perfect
classifiers. We used the same data set that we had used for testing
CNNs for this purpose.

It is an implementation detail of the CNN classifiers that
variable length amplicons are difficult to handle, so our above
tests truncated sequences at 150 nt. So comparing the 150 nt
perfect classifiers first, average F-measures for perfect classifiers
that used class weight information varied between 0.887 and
0.903. The best NBC with the same constraints achieved an
average F-measure of 0.865 ∓ 0.002 (significantly different from
the perfect classifier; Wilcoxon rank test p < 0.05). Note that the
NBCs were performing out-of-sample cross validation whereas
the perfect classifier is in-sample and therefore naturally inflated.
While there is a small gap between these two figures, it certainly
strongly limits scope for improvement over NBCs.

The story is slightly different if the perfect classifier was
allowed to use all of the V4. In that case, where class weight
information is utilized, the perfect classifier scored average
F-measure between 0.934 and 0.943 whereas the similarly
constrained NBC achieved 0.866 ∓ 0.002 (differences statistically
significant at p < 0.05; Wilcoxon rank test). In other words, it
performed roughly identically to where V4 was constrained to its
first 150 nt. This is consistent with other empirical results (Liu
et al., 2008; Bokulich et al., 2018b).

Interestingly, MCC gave slightly different results to F-measure
for the perfect classifier for classifiers with high confidence
levels (0.75 and 0.95). At these confidence levels, MCC was
penalized with respect to the lower confidence levels. At lower
confidence levels all differences were statistically significant when
comparing the top-performing classifiers to “perfect” classifiers
evaluated with similar parameters (Wilcoxon rank sum test,
p < 0.05). As the purpose of the perfect classifier is to provide an
upper bound on classification accuracy, however, the significant
result indicates that additional optimization can only yield
diminishingly small performance improvements.

Finally, it is interesting to note the effect of incorporating
class weight information on the NBC and perfect classifiers.
For the NBC, the uniform classifiers (that did not use that
information) performed almost the same for truncated and
untruncated V4 sequences but were around 0.06 worse than
when class weight information was used (average F-measure
0.812 ∓ 0.002 and 0.805 ∓ 0.002 respectively). For the perfect
classifiers there was a clear progression where using all of
V4 always improved accuracy and incorporating class weight
information also increased accuracy. Class weight information
did not improve classification accuracy for 150 nt sequences to
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FIGURE 3 | “Perfect” classifiers demonstrate the upper bound of classifier performance for V4 and full 16S rRNA gene sequences. These classifiers only fail when
two species share an identical sequence, assuming uniform weights. Taxonomic weighting slightly increases classification accuracy both for V4 and full-length
sequences. Box-and-whisker plots indicate the median and quartile distributions of F-measures for each classifier, across 5-fold of CV. The top-performing NB, RF,
and CNN classifiers (trained and tested on V4 sequences) are compared to the “perfect” classifiers to demonstrate that the upper bound of performance is already
being approached. All differences were statistically significant when comparing the top-performing classifiers to “perfect” classifiers evaluated with similar parameters
(Wilcoxon rank sum test, p < 0.05). (Weights: w, weighted; u, uniform; 16S V4, 150–150 nt fragment of 16S rRNA V4 region; FL, all of the V4 region).

match that of uniform classification on full V4 for the perfect
classifier (Figure 3).

DISCUSSION

The goal of this study was to evaluate the utility of newer
supervised learning techniques for taxonomic classification
of 16S rRNA gene sequences, and in particular whether
models based on convolutional neural networks could leverage
ecological distribution information to match classification
performance as shown previously for NBC (Kaehler et al., 2019).
The implementations tested here managed to approach
the classification accuracy of NBC, but even optimized
CNNs could not match or exceed the performance of NBC,
corroborating the recent findings of others (Zhao et al.,
2020). Importantly, the goal of this study was not to test the
exact implementations of RF or CNN classifiers developed
by others (which have shown promising results but to our
knowledge were not designed to leverage taxonomic weight
information), but rather to evaluate the potential promise
of advances in extracting taxonomic weight information
(Kaehler et al., 2019) combined with spatial embedding of
sequence information (Mikolov et al., 2013) for exceeding
the taxonomic classification performance of NBC. Further
independent benchmarks by others, and evaluation in more
diverse test scenarios (e.g., non-16S rRNA gene targets) are
warranted to further assess and optimize the performance
of deep learning algorithms for taxonomic classification
(Bokulich et al., 2020).

Following optimization of the hyperparameters evaluated in
this study, RF was able to approach the accuracy performance
delivered by NBC. Computational resources required to train
this classifier, however, are substantially greater and could
prohibit its practical application. Particularly large memory and
computation time (<20 CPU hours vs. hundreds of CPU hours

for NBC and RF, respectively) needed for training seemed to
be a problem for some of the better-performing parameter sets
due to a requirement to train many large trees (i.e., comprising
many split nodes).

Given the best set of parameters and an optimized model
architecture, CNN classifiers could approach, but not match,
NBC accuracy performance. Moreover, training CNNs required
a significant amount of computational resources and specific
hardware, particularly in the case of more complex networks
with many parameters. Our testing was only made feasible by
employing modern graphics processing units (GPUs). GPUs are
widely used to train neural networks, and this capacity has
been suggested as an attractive feature of CNNs for taxonomic
classification versus conventional methods (Busia et al., 2019).
Even though training networks presented in this study required
only a couple of hours (∼3 h) on a single GPU (NVIDIA GeForce
RTX 2080) compared to ∼20 CPU hours for a typical NBC, GPUs
can be considerably more expensive and difficult to configure
and maintain, and hence are out of reach or less attractive to
many researchers.

Our “perfect” classifier tests underline the fact that
evolutionary conservation in most genetic targets for microbiome
profiling limits the degree of taxonomic resolution that is
possible, particularly when sequencing short marker-gene
reads. Hence, mature, existing methods for classification (NBC
and some alignment-based classifiers) have already neared
the upper limits of classification accuracy. The relationship
between read length, primer selection, marker-gene target,
sequence entropy, and taxonomic resolution has been well
documented for 16S rRNA genes and other common targets,
and even with long sequence reads (e.g., full-length 16S rRNA
genes) species-level resolution can be challenging for many
clades (Wang et al., 2007; Liu et al., 2008; Bokulich et al.,
2018b; Johnson et al., 2019; Robeson et al., 2020). This is in
part complicated by muddled microbial taxonomies (Oren
and Garrity, 2014; Yarza et al., 2014) and misannotations
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and other issues with reference databases used for taxonomic
classification (Kozlov et al., 2016). Further improvements
in taxonomy classification are unlikely to come from novel
algorithms alone, and will require some combination of the
following:

1. Use of spatial dependency in DNA sequences or other
latent information. In spite of the current disappointing
results, others have demonstrated the promise of spatially
aware feature extraction prior to CNN classification for
taxonomy or sample predictions (Busia et al., 2019; Zhao
et al., 2020).

2. Use of ecological information from prior studies to hone
classification accuracy (Kaehler et al., 2019).

3. Improvement of reference sequence and taxonomy
databases (Parks et al., 2018; Robeson et al., 2020).

4. Longer read lengths and/or marker-gene targets (Johnson
et al., 2019; Milani et al., 2020)

5. Improvements are not limited to accuracy, and could
include more efficient classifiers with less runtime,
memory, or other resource requirements (Bokulich et al.,
2020).

We note that none of the methods compared in this
work incorporated a feature selection step. It is possible
that a feature selection step might increase performance of
these methods (except for the perfect classifier), and warrants
future investigation.

CONCLUSION

Naive Bayes classifiers have demonstrated robust performance
for taxonomic classification of DNA sequences for more than
a decade (Wang et al., 2007), and recent improvements have
further increased their accuracy (Bokulich et al., 2018b; Kaehler
et al., 2019). Newer supervised learning methods such as
neural networks offer exciting features with potential to further
improve pattern recognition in microbiome data but so far have
only demonstrated small or no improvements for taxonomic
classification specifically (Zhao et al., 2020). In the current
study, we find further evidence that NBCs remain supreme
for taxonomic classification, even when applying taxonomic
weighting and spatial encoding of sequence information, as well
as hyperparameter tuning to optimize RF and CNN classifiers for
16S rRNA gene classification. It is worth noting that both RF
and CNN classifiers comfortably outperform NBCs when they
use taxonomic weighting information but the NBC does not.
We demonstrate that NBCs are already nearing the performance
limit of taxonomic classification of short 16S rRNA gene reads,
indicating that further improvements will require technological
and biological improvements or by leveraging other information
(e.g., ecological observations) beyond sequence information
alone. CNNs and other methods remain promising, however,
and further optimization and benchmarking is warranted to
fully assess the opportunities of deep learning techniques for
microbial classification.

MATERIALS AND METHODS

Random Forests
Cross validation of RF classifiers was performed using the
methodology described in Kaehler et al. (2019). The RF classifier
was tested using the standard q2-feature-classifier (Bokulich
et al., 2018b) using a custom scikit-learn classifier specification
to implement the scikit-learn random forest classifier (Pedregosa
et al., 2011). Feature extraction was performed using the standard
bag of overlapping 7-mers approach, also using scikit-learn.
The code for the q2-feature classifier is available at https://
github.com/qiime2/q2-feature-classifier. Cross validation code
and classifier specifications are available at https://github.com/
BenKaehler/paycheck.

Greengenes release 13_8 (McDonald et al., 2012) was used
for the reference database and sample data was downloaded
from Qiita (Gonzalez et al., 2018) using q2-clawback (Kaehler
et al., 2019). 188 samples labeled as sediment (non-saline) were
downloaded on 20 March 2019 and 22,454 samples labeled as
animal distal gut were downloaded on 23 March 2019. These
samples have been uploaded to Zenodo1.

Convolutional Neural Networks
Cross validation of CNN classifiers was again performed using
the methodology described in Kaehler et al. (2019). Neural
networks were implemented using the Tensorflow library2

via the Keras interface3. Feature extraction was performed
using the Word2Vec algorithm (Rehurek and Sojka, 2010).
A fork of the standard q2-feature-classifier was necessary
to accommodate Keras models and is available at https:
//github.com/BenKaehler/q2-feature-classifier. Cross validation
code and classifier specifications are available at https://github.
com/BenKaehler/paycheck.

Greengenes release 13.8 (McDonald et al., 2012) was used for
the reference database and sample data was downloaded from
Zenodo4. That data was the Qiita animal distal gut data originally
used in Kaehler et al. (2019).

In the embedding step, sequences were trimmed to 150 nt.
Each sequence was converted into a “sentence” of overlapping
7-mers, which were then used as input to the Word2Vec
algorithm as implemented in Gensim (Rehurek and Sojka, 2010)
to transform each sequence into a sequence of 144 length-300
vectors. A window of 5 words was used for training and the
Common Bag of Words (CBOW) algorithm (Rehurek and Sojka,
2010) was selected. Those images were then presented to the
various neural network models as described in “Results” section.

Perfect Classifier
The perfect classifier used the same data set as the CNN
experiments and tests were entirely in-sample. The perfect
classifier tests were “cross validation” tests only in the sense
that they used the same frozen, randomized test sets as the

1https://zenodo.org/record/4361424#.X90hI1MzaV4
2https://www.tensorflow.org/
3https://keras.io/
4https://zenodo.org/record/2548899#.X9rPG1MzaV4
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CNN experiments to reduce random variation between the two.
Code for the perfect classifier is available at https://github.com/
BenKaehler/paycheck.

“Perfect” classification was made possible by in-sample testing
because every sequence that was used for testing had already been
seen by the classifier. Sample weight cross validation was also in-
sample, in that the same aggregate weights were used for every
test, although we found that performing weight-wise out-of-
sample testing did not make a qualitative difference to the results.

For each sequence, a list of taxa that matched that exact
sequence was compiled. Weights for each taxon in the list were
calculated using the taxonomic weighting information or by
equally weighting taxa for uniform weights. In both cases the
weights were normalized for each sequence. If one of the taxa’s
weight was greater than the chosen confidence level, the taxon
with the maximum weight was chosen. If two or more taxa had
equal maximum weight (as most often happened in the uniform
case), one was chosen at random. If the confidence level was not
exceeded by any weights, weights were aggregated at the second
lowest taxonomic level and the procedure was repeated until a
potentially truncated taxon was assigned.

Statistical Analysis
To assess whether the classification performance (expressed as
F-measure) differs significantly between various models (i.e.,
random forest and convolutional neural network variations) and
the Naive Bayes classifier, we employed a two-tailed Wilcoxon
rank sum test (when comparing CNN to NB results where sample
sets differed) and a two-tailed Wilcoxon signed rank test (for
all other comparisons). The analysis was performed at α = 0.05
using all of the test samples available for a given model (combined
across all the folds) followed by Hommel correction for multiple
testing (Hommel, 1988).

Additionally, to account for the potential bias resulting
from highly imbalanced classes we evaluated all the models
using the Matthews correlation coefficient (MCC) (Chicco
and Jurman, 2020). MCC metric was shown to be a more

reliable metric as it assesses the entire confusion matrix
(i.e., true positive and negative, false positives and negatives),
proportionally to class size.
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Human gut microbiota is a complex community of organisms including trillions of
bacteria. While these microorganisms are considered as essential regulators of our
immune system, some of them can cause several diseases. In recent years, next-
generation sequencing technologies accelerated the discovery of human gut microbiota.
In this respect, the use of machine learning techniques became popular to analyze
disease-associated metagenomics datasets. Type 2 diabetes (T2D) is a chronic disease
and affects millions of people around the world. Since the early diagnosis in T2D is
important for effective treatment, there is an utmost need to develop a classification
technique that can accelerate T2D diagnosis. In this study, using T2D-associated
metagenomics data, we aim to develop a classification model to facilitate T2D
diagnosis and to discover T2D-associated biomarkers. The sequencing data of T2D
patients and healthy individuals were taken from a metagenome-wide association study
and categorized into disease states. The sequencing reads were assigned to taxa,
and the identified species are used to train and test our model. To deal with the
high dimensionality of features, we applied robust feature selection algorithms such
as Conditional Mutual Information Maximization, Maximum Relevance and Minimum
Redundancy, Correlation Based Feature Selection, and select K best approach. To
test the performance of the classification based on the features that are selected by
different methods, we used random forest classifier with 100-fold Monte Carlo cross-
validation. In our experiments, we observed that 15 commonly selected features have
a considerable effect in terms of minimizing the microbiota used for the diagnosis of
T2D and thus reducing the time and cost. When we perform biological validation of
these identified species, we found that some of them are known as related to T2D
development mechanisms and we identified additional species as potential biomarkers.
Additionally, we attempted to find the subgroups of T2D patients using k-means
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clustering. In summary, this study utilizes several supervised and unsupervised machine
learning algorithms to increase the diagnostic accuracy of T2D, investigates potential
biomarkers of T2D, and finds out which subset of microbiota is more informative than
other taxa by applying state-of-the art feature selection methods.

Keywords: feature selection, metagenomic analysis, classification, machine learning, type 2 diabetes, human gut
microbiome

INTRODUCTION

Trillions of living creatures live in our bodies, especially in our
gut. These organisms are important to regulate our immune
system. They provide energy, break down foreign matters,
produce some hormones, etc., which are extremely important
for our health. The gut microbiome including different types
and amounts of microorganisms is crucial for human health and
human disorders (Valdes et al., 2018). With the help of new
technologies and methods, we can get gut microbiome data. In
other words, we can measure their amount in our gut more
easily than ever before. Hence, we can try to go after some
correlation signs between these creatures and human diseases.
Type 2 diabetes (T2D) is one of such diseases, which affects
millions of people around the world. Approximately 9–11% of
people in the United States and China have T2D. Four hundred
sixty-three million people in the world, who are older than 20,
have diabetes. One of three people in the United States, who
are older than 20, has prediabetes. Seventy percent of these
prediabetic individuals will also have diabetes (James et al.,
2003; National Diabetes Clearinghouse, 2011; Tabak et al., 2012;
Diabetes.co.uk, 2019; International Diabetes Federation, 2019;
Centers for Disease Control and Prevention, 2020).

Several studies have been conducted on human microbiota
and its relations with type 1 diabetes, T2D, or obesity (Turnbaugh
et al., 2009; Vrieze et al., 2012; Trøseid et al., 2013; Boulangé
et al., 2016; Chobot et al., 2018; Peters et al., 2018). Brunetti
(2007) defined T2D as a worldwide epidemic in 2010 and claimed
that obesity was one of the most important driving forces for
the development of T2D. This is varied by ethnicity though.
For North America, the relationship between T2D and obesity is
90%. Whereas it is smaller than 40% in South Asia (International
Diabetes Federation, 2003; James et al., 2003). The microbiota
studies for obesity is also important for T2D studies. Not all obese
individuals have also T2D, but 86% of T2D individuals are obese
or overweight (Daousi et al., 2006; Narayan et al., 2007). The
diet is one of the important factors that affect the gut microbiota
(Falony et al., 2016; Zhernakova et al., 2016). found that while the
dietary changes have a 57% role for the gut microbiota variations,
the genetic mutations only have 12% role. Despite that there are
some contrary arguments, it is reported in Zhang et al. (2010)
that we can slow down the increase of obesity, and so the T2D, by
regulating the variations of our gut microbiota by doing dietary
changes. After the meal, even the glycemic action type of a body
can be affected by its gut microbiota composition (Zeevi et al.,
2015; Mendes-Soares et al., 2019). Some studies show that biotin
deficiency may be associated with T2D (Maebashi et al., 1993;
Wu et al., 2020) and biotin supplementation may help glucose

regulation (Fernandez-Mejia, 2005; Albarracin et al., 2008; Lazo
de la Vega-Monroy et al., 2013).

Conducting different studies to discover the associations and
the relationships between variations of the gut microbiota and
T2D is essential. For example, Karlsson et al. (2013) emphasize
the importance of gender, age, and family history in these
kinds of studies. Therefore, in order to minimize the source
of variation, they worked on such data that consist of 145
women who are 70 years old. Interestingly, they found that
some Lactobacillus species are increased and some Clostridium
species are decreased in the microbiomes of the T2D patients.
They got 0.83 AUC with a metagenomics cluster level. Increased
Clostridium clostridioforme and decreased Roseburia in T2D
patients are common findings of Karlsson et al. (2013) and Qin
et al. (2012). Larsen et al. (2010) and Lê et al. (2013) also found
that Lactobacillus species are increased in T2D patients.

Forslund et al. (2015) presented a different perspective such
that the possible effects of the T2D drugs on the human gut
microbiome also need to be taken into account. They also
addressed the need to disentangle microbiota signs of the disease
from the medications that patients use. Forslund et al. (2015),
Wu et al. (2017), and Sun et al. (2018) show the effects of
the most commonly used anti-T2D drug metformin. But they
also found that metformin-untreated T2D is still associated with
the butyrate producer species deficiency. The importance of
butyrate-producing species for glucose health is also emphasized
by Karlsson et al. (2013), Qin et al. (2012), Allin et al. (2018), and
Sanna et al. (2019). Wu et al. (2020) also showed that butyrate
producers’ deficiency and the loss of genes for butyrate synthesis
from both proteins and carbohydrates start to occur even from
the prediabetic level. Diet is also important at this point, as
mentioned before. The function of butyrate producers is also
regulated by diet, especially fiber intake, which positively affects
glucose control (Makki et al., 2018; Zhou et al., 2019).

Wu et al. (2020) also considered the potential effects of drugs
on gut microbiota, and they studied the diabetes treatment-naive
T2D cohort. Their findings were also in agreement with earlier
studies (Qin et al., 2012; Karlsson et al., 2013; Forslund et al.,
2015; Allin et al., 2018). They showed that their finding was
independent of metformin, other confounding factors affecting
gut microbiota, and also other confounders like age, BMI, and
sex. Their microbiome-based machine learning model to detect
T2D samples and healthy samples generated a 0.78 AUC score.

Zhong et al. (2019) worked on 254 samples of Chinese cohort.
They found that Dialister nvisus (MLG-3376) and Roseburia
hominis (MLG-14865 and 14920) are lower in the T2D patients
who were also reported before by Forslund et al. (2015). They
also found that Streptococcus salivarius (MLG-6991) is high in the
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pre-sick people, which is in agreement with the previous findings
of Allin et al. (2018) in the Danish prediabetic cohort. Zhong
et al. showed that Megasphaera elsdenii (MLG-1568) was found
in higher amounts in T2D patients compared to the pre-DM and
healthy individuals. A similar finding was previously presented
by He et al. (2018) by conducting a study on 7,000 individuals
from South China.

On the other hand, Thingholm et al. (2019) claim that we
need to differentiate the gut microbiota of obese individuals
with T2D and obese individuals without T2D. This is
proposed because they show different functional capacities and
composition. Obesity is more associated with alterations in
microbiome composition than T2D. They also concluded that
only nominal increases in Escherichia/Shigella happen in the
microbiomes of T2D patients. Also, medications and dietary
supplements are highly related to gut microbiome variations
(Thingholm et al., 2019).

Another important point to consider is the daily changes of the
microbiota. There are some studies about gut microbiota’s diurnal
oscillations in composition (Thaiss et al., 2014; Liang et al.,
2015; Kuang et al., 2019). More specifically to diabetes, Reitmeier
et al. (2020) found that T2D patients exhibit disrupted circadian
rhythms in their microbiome. They show that arrhythmic
bacterial signatures have an additional value for the classification
of T2D, and they found that 13 arrhythmic bacterial species
contribute to risk profiling of T2D. On the other hand, they
found that daily dietary habits (like mealtime or number of
meals per day) are independent of gut microbiota composition
(Reitmeier et al., 2020).

A recent survey paper by Marcos-Zambrano et al. (2021)
summarized the applications of machine learning in the human
microbiome studies and reviewed popular feature selection,
biomarker identification, disease prediction, and treatment
strategies. In this review, the most widely used machine learning
algorithms that were used for microbiome analysis were reported
as Random Forest, support vector machines (SVM), Logistic
Regression, and k-NN. However, no clear recommendation is
given and they have suggested to perform comparison study
to choose the one with the optimal performance. All of
those algorithms require a parameter tuning step to achieve
its optimal model.

In this study, we analyzed T2D-associated metagenomic
dataset via some feature selection algorithms such as Fleuret’s
Conditional Mutual Information Maximization (CMIM), Peng’s
Maximum Relevance and Minimum Redundancy (mRMR), Fast
Correlation Based Filter (FCBF), and select K best (SKB). To
assess the performance of different classifiers, in our preliminary
analysis, we used Random Forest (RF), Decision Tree, Logitboost,
Adaboost, SVM, and K-NN as classification methods. In our
further experiments, we focused on RF classifier. In summary,
this study utilizes both supervised and unsupervised machine
learning algorithms (i) to generate a classification model that aids
T2D diagnosis, (ii) to investigate potential pathobionts of T2D,
and (iii) to find out subgroups of T2D patients.

The rest of this paper is organized as follows. In section
“Materials and Methods”, we present the dataset that we
have used in this study and we describe our methodology.

In section “Experiments”, we present our findings when we
apply feature selection algorithms, classification methods, and
clustering algorithms to T2D-associated metagenomic data. In
section “Discussions”, we discuss the identified species in our
study as candidate taxonomic biomarkers of T2D and compare
them with the gold standard features that are known to be
associated with T2D in literature. In section “Conclusion”, we
conclude the manuscript.

MATERIALS AND METHODS

In this study, we used the raw microbiome DNA sequencing
data of 290 human samples. The raw sequencing data of
samples were obtained from the repository provided by
Qin et al. (2012), deposited in the NCBI Sequence Read
Archive under accession numbers SRA045646 and SRA050230,
and categorized into disease states based on the associated
metadata. The raw sequences were subject to quality filtering
steps, which were described in the SOP of the Human
Microbiome Project Consortium (2012). After preprocessing,
using MetaPhlAn2 taxonomic classification tool, metagenome
samples were assigned to its microbial species of origin (taxa)
and the relative abundance composition of each taxon of a
sample was inferred accordingly. These taxa and their relative
abundances formed the features to be employed in the machine
learning algorithms. As illustrated in Table 1, the data consist of
290 samples and 1,455 microbial species. One hundred thirty-
five of the samples are T2D patients, and 155 are healthy.
Table 1 presents some lines of the metagenomics dataset for
T2D, following the initial preprocessing of the original data. The
relative abundance values of each species for each sample are
shown in this dataset. The features correspond to different species
including bacteria, viruses, and archea. The samples have one
of the two class labels, i.e., healthy (shown with 0) and T2D
patient (shown with 1).

Figure 1 shows the workflow of our methodology. As shown
in Figure 1, the following flowchart is applied: (i) the application
of feature selection to detect the most important species for
the development of T2D (T2D-associated microorganisms),
(ii) model construction and classification, and (iii) application
of clustering algorithms to specify subgroups of patients and
control samples.

Feature Selection
The dimension of the data is 1,455 (1,455 microbial species) that
might influence the performance of the classification algorithms.
Thus, a feature selection process is necessary to reduce the
dimension of the model and make it also easier for classification
and for interpretation. In order to select informative features,
in other words to reduce the number of taxa (species), min
Redundancy Max Relevance (mRMR) (Brown et al., 2012), Lasso
(Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005), and
iterative sure select algorithm (Duvallet et al., 2017) have been
applied in literature.

We suggest that using some feature selection algorithms
such as Peng’s mRMR (Brown et al., 2012), Fleuret’s CMIM
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TABLE 1 | The metagenomics dataset of T2D, after the initial preprocessing of the original metagenomics data.

Methanobrevibacter
smithii

Methanosphaera Acidobacteriaceae . . . Megasphaera sp.
BV3C16

Class label
(healthy/T2D patient)

Sample 1 0.334 0 0 0 0 (Healthy)

Sample 2 0.141 0 0 0.632 0.03 1 (T2D patient)

. . .

Sample 290

The relative abundance values of each species for each sample are shown in this dataset. The features correspond to different species including bacteria, viruses, and
archea. The samples have one of the two class labels, i.e., healthy (shown with 0) and T2D patient (shown with 1).

FIGURE 1 | Flowchart of our method, including three main parts. (i) Feature selection methods are applied to detect the most important species for the
development of T2D (T2D-associated microorganisms). (ii) Using the selected features, models are constructed and used for classification. (iii) K-means clustering
algorithm is applied on data to specify subgroups of patients and control samples.

(Fleuret, 2004), FCBF (Senliol et al., 2008), and SKB (Pedregosa
et al., 2011) could improve classification performance, and
by reducing the number of features, we can detect candidate
taxonomic biomarkers.

Basically, the mRMR (Brown et al., 2012) method aims
to select the features that have the least correlation between
themselves (min redundancy) and the highest correlation with
a class to predict (max relevance). In order to find the
best subset of features, this method starts with an empty
set and uses mutual information to weight features and
forward selection technique with sequential search strategy. It
is a multivariate feature selection method, which calculates
the dependency between each feature pair, in addition to
class relevance.

Conditional Mutual Information Maximization (Fleuret,
2004) determines the importance of features based on their
conditional entropy and mutual information with the class.
If the feature carries additional information, it selects that
feature. Similarly, FCBF (Senliol et al., 2008) ranks features
based on their mutual information with the class to predict,
and then removes the features whose mutual information
is less than a predefined threshold. It uses the idea of
“predominant correlation”. It selects features in a classifier-
independent manner, selecting features with high correlation
with the target variable, but little correlation with other variables.
Notably, the correlation used here is not the classical Pearson or
Spearman correlations, but Symmetrical Uncertainty (SU). SU
is based on information theory, drawing from the concepts of
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Shannon entropy and information gain. In other words, FCBF
aims at reducing redundancy among selected features. FCBF
provides an interpretable and robust option, with results that are
generally good. The application of filter-based feature selections
for big data analysis in the biomedical sciences not only can
have a direct effect in classification efficiency but also might
lead to interesting biological interpretations and possible quick
identification of biomarkers.

Select K best scores the features against the class label using a
function and selecting features according to the k highest score
(Pedregosa et al., 2011). CMIM, mRMR, FCBF, and SKB feature
selection methods are applied using the skfeature and sklearn
libraries in Python 31.

Hacilar et al. (2019) applied some of these feature
selection methods on inflammatory bowel disease-associated
metagenomics dataset and reported to obtain good performance
metrics. Most of those feature selection approaches are
well studied and well known to achieve good results in
human microbiome studies, as reported in a recent review
(Marcos-Zambrano et al., 2021).

Classification Model Construction
In order to evaluate the effects of different classification methods,
in our preliminary analysis, we have used Decision Tree, RF,
LogitBoost, AdaBoost, an ensemble of SVM with kNN (k
nearest neighbor), and an ensemble of the Logitboost with
kNN. Since the tree model is easy for interpretation and since
one can easily convert the model into rule set, in our further
experiments, we continued with RF. Additionally, RF is one of
the most used algorithms in the human microbiome studies as
reported by Marcos-Zambrano et al. (2021).

We designed our actual experiments as follows. We used 100-
fold Monte Carlo cross-validation (MCCV), which is the process
of randomly selecting (without replacement) some fraction of
the data to generate the training set and then assigning the rest
to the test set (Xu and Liang, 2001). This process is repeated
multiple times, and new training and test partitions are randomly
generated each time. We have chosen 90% for training and 10%
for testing. As shown in Figure 1, the feature selection methods
are applied on the training set.

The Konstanz Information Miner (KNIME) platform
(Berthold et al., 2008) is used for the implementation of our
methodology. We used the RF predictor node from H20
library in KNIME.

Model Performance Evaluation
In order to evaluate model efficiency, we measured a range of
statistical measures such as sensitivity, specificity, accuracy, and
F1 measure for each created model. In this respect, we used the
following formulations:

Sensitivity (Recall) = True Positive
/ (

True Positive + False Negative
)

(1)

Precision = True Positive
/ (

True Positive + False Positive
)

(2)

1https://www.python.org/about/

Specificity = True Negative
/ (

True Negative + False Positive
)

(3)

F1−measure =
(
2∗Precision∗Recall

) / (
Precision+ Recall

)
(4)

Accuracy = (True Positive + True Negative)/(True Positive + True

Negative + False Positive + False Negative). (5)

Additionally, the area under the receiver operating
characteristic (ROC) curve (AUC) is used to approximate
the probability of the classifier that would score a randomly
selected positive instance higher than a randomly selected
negative instance.

The average of 100-fold MCCV (Xu and Liang, 2001) results is
reported for all performance measures.

Unsupervised Learning
In order to find subgroups of patients and subgroups of
healthy people, we have applied the k-means algorithm. k-means
(Steinley and Brusco, 2007) is an unsupervised clustering
algorithm that groups the data into clusters based on similarity
or distance metric. k-means algorithm minimizes the error inside
groups and maximizes the distance between the clusters. We
have considered the Euclidean distance metric in our analysis.
We used the Elbow method2 to determine the optimum number
of clusters. In this method, the slow down point denotes the
optimum number of clusters.

EXPERIMENTS

Feature Selection and Classification
We have 1,455 features in our data, and we investigated for
irrelevant and uninformative features. For this purpose, we
applied four most well-studied feature selection algorithms,
which are CMIM, mRMR, FCBF, and SKB. In our preliminary
analysis, in order to evaluate the effects of different classification
methods, Decision Tree, RF, LogitBoost, AdaBoost, an ensemble
of SVM with kNN (k nearest neighbor), and an ensemble of the
Logitboost with kNN are applied. As shown in Supplementary
Table 1 and Supplementary Figure 1, RF classifier generated the
best performance results and we decided to continue with this
classifier in our further experiments.

At the end of our experiments with 100-fold MCCV and
RF classifier (as shown in Figure 1), we have listed the
top 100 and top 500 identified features for each feature
selection method in Supplementary Tables 2, 3, respectively.
The commonalities between those top 100 and top 500
identified feature sets are investigated, and the commonly
detected 15 and 199 features within top 100 and top 500
identified features are shown in Supplementary Tables 2, 3,
respectively. The commonalities between top 100 identified
feature sets, and the details of the 15 features, which are
selected by all of the feature selection methods, are shown in

2https://predictivehacks.com/k-means-elbow-method-code-for-python/
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FIGURE 2 | Numbers of features, which are selected by different feature selection algorithms. The commonalities between the selected features by different
methods are also illustrated.

Figure 2. In addition to the commonalities in species level, we
investigated the commonalities in genus level. Nineteen genera
are selected by all of the feature selection methods, as shown in
Supplementary Figure 2.

By using several metrics as described in section “Model
Performance Evaluation”, we have compared the performances
of (i) all features (without feature selection); (ii) top 100 and top
500 features selected using CMIM, mRMR, FCBF, and SKB; (iii)
15 and 199 features that are common among top 100 and top
500 features of all four tested feature selection methods; (iv) 329
identified features of 19 commonly detected genera in all four
tested feature selection methods (Supplementary Table 4); and
(v) 162 features of the gold standard genera that are reported
to be associated with T2D in Gurung et al. (2020), as shown in
Supplementary Table 5. A detailed comparative evaluation of
our findings is presented in Table 2 and Figure 3. As shown in
Figure 3, the generated RF model resulted in 0.79 F1-score, 0.74
AUC, and 73% accuracy when all 1,455 features are used (without
applying feature selection methods). On the other hand, when
199 features that are commonly selected in the top 500 features
of all feature selection methods are used, the generated RF model
resulted in 0.79 F1-score, 0.75 AUC, and 73% accuracy. Those
selected 199 features performed as good as all features, even 1%
higher in terms of AUC metric. Those selected 199 features also
performed better compared to the performance (0.78 F1-score,
0.71 AUC, and 71% accuracy) of the 162 features (species) that
belong to the gold standard genera, which are reported to be
associated with T2D in a recent review paper (Gurung et al.,
2020). By only using the 15 features that are commonly selected
in the top 100 features list of all four tested feature selection

methods, 0.75 F1-score, 0.62 AUC, and 64% accuracy metrics
were obtained. In other words, T2D diagnosis could be possible
with 64% accuracy by checking only the amounts of 15 specific
species among 1,455 different species. As shown in Figure 3, the
model using only those 15 species resulted in almost the same F1-
score (0.75), with the F1-score obtained using all features (0.79).
Checking the amounts of fewer features means less time and
cost. In this respect, only using 15 features yielded comparable
evaluation metrics.

Feature Correlations
The pairwise correlations of 15 features, which are commonly
selected by all four tested feature selection methods, may be
important for the further studies of T2D in terms of developing
probiotics. For this reason, we have calculated the pairwise
correlations of those 15 selected features using the tool in3, and
we have generated a heat map, as presented in Figure 4. It can
be concluded from Figure 4 that there are no important positive
correlations between any two species among any two pairs of 15
selected species. This result indicates that each one of the selected
15 features has its own information and each feature (species) has
an independent contribution to T2D development.

Clustering
We attempt to answer whether there could be any direct
relationship between specific species and T2D subgroups. In
order to answer this question, we used k-means clustering

3https://github.com/bhattbhavesh91/GA_Sessions/blob/master/ga_dsmp_
5jan2019/16_feature_selection.ipynb
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TABLE 2 | Comparative evaluation of the different feature selection methods, based on different performance metrics.

Methods Accuracy Recall Specificity Precision AUC F1 Number of features

CMIM Score 0.71 0.90 0.48 0.72 0.72 0.78 100

Std. dev. 0.10 0.11 0.34 0.15 0.11 0.05

Score 0.73 0.89 0.53 0.72 0.74 0.78 500

Std. dev. 0.08 0.11 0.25 0.12 0.07 0.04

FCBF Score 0.68 0.91 0.41 0.68 0.70 0.76 100

Std. dev. 0.08 0.10 0.27 0.10 0.09 0.04

Score 0.72 0.91 0.48 0.71 0.74 0.78 500

Std. dev. 0.09 0.10 0.28 0.12 0.09 0.05

MRMR Score 0.63 0.95 0.23 0.62 0.59 0.74 100

Std. dev. 0.06 0.12 0.27 0.10 0.12 0.02

Score 0.73 0.86 0.57 0.74 0.74 0.78 500

Std. dev. 0.07 0.11 0.28 0.14 0.08 0.03

SKB Score 0.69 0.91 0.41 0.68 0.71 0.77 100

Std. dev. 0.08 0.10 0.27 0.10 0.09 0.04

Score 0.71 0.92 0.46 0.69 0.74 0.78 500

Std. dev. 0.08 0.08 0.25 0.10 0.09 0.04

Commonly identified species
(using top 100 features of each
feature selection method)

Score 0.64 0.96 0.25 0.62 0.62 0.75 15

Std. dev. 0.06 0.06 0.19 0.06 0.1 0.03

Commonly identified species
(using top 500 features of each
feature selection method)

Score 0.73 0.89 0.54 0.73 0.75 0.79 199

Std. dev. 0.08 0.09 0.25 0.11 0.09 0.05

Identified species of commonly
detected genus names

Score 0.71 0.91 0.46 0.70 0.73 0.78 329

Std. dev. 0.09 0.09 0.28 0.11 0.09 0.05

Species of gold standard
genera of T2D

Score 0.71 0.91 0.46 0.70 0.71 0.78 162

Std. dev. 0.09 0.11 0.28 0.11 0.10 0.05

All features Score 0.73 0.89 0.52 0.72 0.74 0.79 1,455

Std. dev. 0.08 0.09 0.26 0.11 0.09 0.05

algorithm and subgrouped the healthy samples and sick samples
separately. As shown in Supplementary Figure 3, we decided to
generate four subgroups for healthy samples and four subgroups
for sick samples. Figure 5 illustrates the identified healthy and
T2D subgroups and the presence of the species in each of these
subgroups. In Figure 6, we displayed more in detail the presence
of four selected species in each of the healthy subgroups and one
T2D subgroup, which covers 86% of the T2D patients from our
dataset. It can be concluded from Figures 5, 6 that even though
the samples were divided into subgroups, a single species may
not have a direct effect on the development of T2D for a specific
group. Nevertheless, there are a few observations that we can
make: (i) Bacteroides vulgatus (shown in green in Figures 5A,
6C) is mainly observed in healthy subgroups (healthy 0, 2, and 3)
and found in reduced amounts in T2D patients. (ii) Eggerthella
lenta is observed in reduced amounts in all healthy subgroups
compared to the biggest subgroup of T2D patients (sick0), which
includes 86% of the T2D patients from our dataset (shown in
Figure 6A). (iii) Bacteroides stercoris (shown in red in Figure 5A)
is present in reduced amounts in three of the healthy groups
(healthy 0, 1, 2), compared to the biggest subgroup of T2D

patients (sick0 in Figure 6B). (iv) Similarly, Subdoligranulum
(shown in light green in Figure 5B) is present in reduced amounts
in three of the healthy groups (healthy 0, 1, and 2), compared to
the biggest subgroup of T2D patients (sick0 in Figure 6D).

DISCUSSION

The human gut microbiome contains trillions of living species.
T2D is a disease that affects approximately 500 million people
in the world. Like many other diseases, T2D might have a
special association with gut microbiota (Manor et al., 2020).
In the last decade, the identification of gut microbiota related
to T2D has served as a stimulus for exponential advances in
scientific production (Gurung et al., 2020). Multiple factors are
reported to be involved in the changes of gut microbiota and
hence its relationship to T2D (Sharma and Tripathi, 2019).
The contribution of various molecular mechanisms of gut
microbiota to T2D has been recently reviewed in Aw and
Fukuda (2018). In order to change the gut microbiota to our
benefit, several possibilities are currently available, and these
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FIGURE 3 | Comparative evaluation of different feature selection methods based on (A) ROC area, (B) accuracy, and (C) F-measure metrics.

possibilities are providing encouraging results. In this respect,
in this study, by analyzing the T2D-associated metagenomics
data using several supervised and unsupervised machine
learning algorithms, we attempt to discover potential taxonomic
biomarkers of T2D. Our metagenomics dataset includes the
amounts of 1,455 species, measured on the gut microbiota of 290
humans. We used different feature selection algorithms including
CMIM, mRMR, FCBF, and SelectKBest. In our preliminary
study, we used different classification algorithms including RF,
Decision Tree, LogitBoost, AdaBoost, SVM + k means, and

Logitboost + k means. In these preliminary experiments, as
shown in Supplementary Table 1 and Supplementary Figure 1,
we observed that RF resulted in best performance metrics and we
decided to continue with our experiments using RF classifier.

All tested feature selection methods commonly identified 15
specific features (as shown in Figure 2). Using the amounts of
these 15 features, our generated model with RF could predict the
T2D status of a sample with 64% accuracy. Compared to the 73%
accuracy level using all 1,455 features, 73% accuracy level using
199 selected features, and 71% accuracy level using 162 gold

Frontiers in Microbiology | www.frontiersin.org 8 August 2021 | Volume 12 | Article 628426110

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-628426 August 19, 2021 Time: 16:37 # 9

Bakir-Gungor et al. Biomarkers of T2D Using ML

FIGURE 4 | Pairwise correlation heat map of 15 commonly identified features. While number 1 (shown in yellow) indicates full correlation, number 0 (shown in dark
blue) indicates no correlation.

FIGURE 5 | The relative amounts of 15 species (A) in all healthy and T2D subgroups. (B) Zoomed-in view of all healthy subgroups and one T2D subgroup, which
covers more than 86% of all samples.

standard features, these 15 selected features yielded reasonable
accuracy results with much lower features. Also, the model using
only those 15 species resulted in almost the same F1-score (0.75),
with the F1-score obtained using all features (0, 79), as shown
in Figure 3. Hence, these features could be further evaluated
as potential taxonomic biomarkers of T2D. The identified
features are Bacteroides dorei, Bacteroides fragilis, Bacteroides
ovatus, Bacteroides stercoris, Bacteroides thetaiotaomicron,
Bacteroides uniformis, Bacteroides vulgatus, Bacteroides
xylanisolvens, E. lenta, Escherichia coli, Faecalibacterium
prausnitzii, Lachnospiraceae bacterium, Parabacteroides
distasonis, Ruminococcus torques, and Subdoligranulum. The

associations of most of these features with T2D is also reported
in literature as follows.

A recent review paper (Gurung et al., 2020) summarized
the potential mechanisms of microbiota and its effects on
the metabolism of T2D patients. Briefly, microbiota modulates
inflammation, interacts with dietary constituents, and affects gut
permeability, glucose and lipid metabolism, insulin sensitivity,
and overall energy homeostasis in the mammalian host. In that
study, Gurung et al. highlighted specific taxa that can affect
T2D and presented the possible roles of these species in terms
of T2D development. They surveyed 42 human observational
studies on T2D and the bacterial microbiome, and they reported
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FIGURE 6 | Zoomed-in view of all healthy subgroups and the biggest T2D subgroup for (A) Eggerthella lenta, (B) Bacteroides stercoris, (C) Bacteroides vulgatus,
and (D) Subdoligranulum.

Bacteroides as the second most commonly reported genus
(Gurung et al., 2020). The studies that investigated this genus
on the species level indicated that the levels of Bacteroides
intestinalis, Bacteroides 20-3, and Bacteroides vulgatus were
dropped in T2D patients, and the levels of Bacteroides stercoris
were increased after sleeve gastrectomy surgery in T2D patients
with diabetes remission (Wu, 2010; Karlsson et al., 2013; Zhang
et al., 2013; Murphy et al., 2017). Additionally, two experimental
animal studies tested the ability of Bacteroides in order to
treat diet-induced metabolic disease (Cano, 2012; Yang, 2017).
These studies indicated that the administration of Bacteroides
acidifaciens (Yang, 2017) and Bacteroides uniformis (Cano, 2012)
improved glucose intolerance and insulin resistance in diabetic
mice. In another study, using a mouse model, Yoshida et al.
(2018) found that B. vulgatus and B. dorei upregulates the

expression of tight junction genes in the colon, which leads to
reduction in gut permeability, reduction of lipopolysaccharides
production, and amelioration of endotoxemia. T2D is known
to be associated with increased levels of pro-inflammatory
cytokines, chemokines, and inflammatory proteins (Gurung
et al., 2020). Along this line, using mono-associated mice,
Hoffman et al. (2016) reported that Bacteroides thetaiotaomicron
reduces Th1, Th2, and Th17 cytokines. Chang et al. (2017)
demonstrated that the induction of IL-10 by Bacteroides fragilis
may contribute to the improvement of glucose metabolism
because the overexpression of this cytokine in muscle protects
from aging-related insulin resistance (Dagdeviren, 2017; Gurung
et al., 2020). Taken together, these studies indicate that
Bacteroides species play a beneficial role on glucose metabolism
in humans and experimental animals. Among these Bacteroides
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species, B. dorei, B. fragilis, B. stercoris, B. thetaiotaomicron,
B. uniformis, and B. vulgatus are identified among the top
15 features list in our study. In addition to these species
as potential taxonomic biomarkers of T2D, in this study, we
suggest B. ovatus and B. xylanisolvens as two potential taxonomic
biomarkers of T2D. Among the abovementioned Bacteroides
species, B. intestinalis, B. 20-3, and B. acidifaciens did not exist
in our top 15 species list.

In addition to the genera of Bacteroides, the effect of
Faecalibacterium genus with respect to T2D development is
discussed in the same review paper by Gurung et al. (2020).
Gao et al. (2018) and Salamon et al. (2018) reported the lower
frequencies of Faecalibacterium in the disease group of case–
control study on T2D. While this genus was mostly reported
to be decreased after different types of antidiabetic treatments
ranging from metformin and herbal medicine (Tong et al., 2018)
to bariatric surgery (Murphy et al., 2017), one study reported an
opposite effect (Patrone et al., 2016). The studies that investigate
this genus at species level usually detected Faecalibacterium
prausnitzii. F. prausnitzii and the peptides secreted by this
bacterium are shown to perform anti-inflammatory effects in
different chemically induced colitis models in mice (Sokol et al.,
2008; Quévrain et al., 2016; Breyner et al., 2017). In different
human case–control studies, F. prausnitzii was found to be
negatively associated with T2D (Furet et al., 2010; Graessler et al.,
2013; Karlsson et al., 2013; Zhang et al., 2013; Remely et al.,
2014). Although F. prausnitzii is commonly used as a probiotic
for colitis (Rossi et al., 2015), only a few studies suggested using
F. prausnitzii as a probiotic for metabolic disease. As shown
in Figure 2, our top 15 features list includes F. prausnitzii
and we suggest it as a potential taxonomic biomarker
of T2D.

The genera of Ruminococcus has also been reported to
have a positive association with T2D in the recent review
paper by Gurung et al. (2020). Gurung et al. added that
the studies reporting species levels of these bacteria reported
conflicting results (Graessler et al., 2013; Murphy et al., 2017;
Wu et al., 2017). For example, while Wu et al. (2017) found
that Ruminococcus sp. SR1/5 is enriched by metformin treatment,
Murphy et al. (2017) demonstrated that Ruminococcus bromii is
enriched and Ruminococcus torques is decreased after bariatric
surgery and diabetes remission. Among these Ruminococcus
species, Ruminococcus torques is identified among the top 15
features list in our study.

A recent study by Wang et al. (2019) demonstrated that
P. distasonis prevents obesity and metabolic dysfunctions
by producing succinate and secondary bile acids. Using
ob/ob and high-fat diet-fed mice, they showed the metabolic
benefits of P. distasonis in terms of decreasing weight gain,
hyperglycemia, and hepatic steatosis. As shown in Figure 2,
we detected P. distasonis in the top 15 features list in
our study and we suggested it as a potential taxonomic
biomarker of T2D.

Recently, the metformin treatment, which is the most
prescribed antidiabetic drug, is shown to disturb the intestinal
microbes. Hence, the compositional shifts were detected in the
representative gut microbiomes of T2D patients undergoing

metformin treatment. Subdoligranulum variabile is one of those
microbes that is found to display increased abundance in those
T2D patients undergoing metformin treatment (Forslund et al.,
2015; Mardinoglu et al., 2016; Wu et al., 2017). As shown in
Figure 2, we identified S. variabile in the top 15 features list.

Qin et al. (2012) demonstrated that the opportunistic
pathogens (e.g., Clostridium hatheway, Bacteroides caccae, E. coli,
and E. lenta) are increased in diabetes. On the other hand,
Doumatey et al. (2020) reported that they did not find any
evidence of such enrichment in their study, where they analyzed
the gut microbiome profiles of T2D patients in Urban Africans.
As shown in Figure 2, our top 15 features list includes E. coli
and E. lenta. Although our top 15 features list did not include
C. hatheway, different strains of this species are identified
by all four tested feature selection methods, as shown in
Supplementary Tables 2, 4. We realized that different strains of
this species such as C. hathewayi_GCF_000160095, Clostridium
hathewayi_GCF_000235505, and C. hathewayi unclassified are
detected in the top 100 lists of all four tested feature selection
methods, as shown in Supplementary Table 2. Also, increased
levels of C. clostridioforme in T2D patients are reported
by Karlsson et al. (2013) and Qin et al. (2012). In our
study, C. clostridioforme is included within the 199 commonly
identified features of top 500 selected features, as shown in
Supplementary Table 3, and the genera of Clostridium is
identified by all tested feature selection methods, as shown in
Supplementary Figure 2.

Lachnospiraceae species constitute the core of gut microbiota.
They colonize the intestinal lumen from the birth, and during
the host’s life, they increase both in terms of the diversity of
their species and their relative abundances. Although they are
commonly found in the gut microbiota and their members are
among the main producers of short-chain fatty acids, different
Lachnospiraceae species are also associated with different intra-
and extraintestinal diseases (Vacca et al., 2020). Kostic et al.
(2015) reported that Lachnospiraceae genus negatively affects
glucose metabolism, which leads to inflammation and promotes
the onset of T1D. Along this line, using both human and mouse
models, some other metagenomics studies demonstrated that
Lachnospiraceae may also be specifically associated with T2D
(Qin et al., 2012; Kameyama and Itoh, 2014). As shown in
Figure 2, we detected Lachnospiraceae in the top 15 features
list in our study.

The recent review paper by Gurung et al. (2020) pointed
out that in addition to the genera of Bacteroides, the
genera of Bifidobacterium is another beneficial genera and
it is most frequently reported in the studies of T2D. They
reported that the genera of Bifidobacterium is most consistently
supported by the literature in terms of containing the microbes
potentially protective against T2D (Gurung et al., 2020). For
example, Wu et al. (2017) and Murphy et al. (2017) found
a negative association between Bifidobacterium adolescentis,
Bifidobacterium bifidum, Bifidobacterium pseudocatenulatum,
Bifidobacterium longum, Bifidobacterium dentium, and disease
in patients treated with metformin or after undergoing gastric
bypass surgery. Although Bifidobacterium has not been used
alone as probiotics for T2D, most of the animal studies that
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tested different species from this genus (B. bifidum, B. longum,
B. infantis, B. animalis, B. pseudocatenulatum, and B. breve)
showed improvement of glucose tolerance (Le, 2015; Moya-
Perez et al., 2015; Wang, 2015; Aoki, 2017; Kikuchi et al., 2018).
These studies strengthen the idea that Bifidobacterium naturally
habituating the human gut or introduced as probiotics play a
protective role in T2D. In our study, several Bifidobacterium
species (including B. bifidum, B. longum, B. pseudocatenulatum,
B. breve, B. animalis, B. adolescentis, and B. dentium) are
found as important features in the top 100 features lists of
each one of four tested feature selection methods (as can
be seen in Supplementary Table 2). However, each feature
selection method selected a different Bifidobacterium species.
When we get the intersection of the selected features from
four different methods, these Bifidobacterium species did not
show up in the top 15 selected features list. But on the
genus level, Bifidobacterium is identified by all feature selection
methods (as can be seen in Supplementary Table 2 and
Supplementary Figure 2). Once we focus on commonly
detected genera instead of commonly detected species in all
four tested feature selection methods, these Bifidobacterium
species showed up among those 329 features, and using
these features, 0.78 F1-score, 0.73 AUC, and 71% accuracy
performance metrics are obtained, as shown in Figure 3. On
the other hand, when we generate the list of top 500 selected
features from each feature selection method and check for the
commonly identified features among these four lists (as shown
in Supplementary Table 3), we end up with 199 commonly
selected features. Bifidobacterium longum, B. pseudocatenulatum,
and B. breve existed in this list. Classification using these
199 commonly selected features resulted in 73% accuracy,
0.75 ROC, and 0.79 F1-measure, as shown in Figure 3.
Those selected 199 features also performed better compared
to the performance (0.78 F1-score, 0.71 AUC, and 71%
accuracy) of the 162 features (species) that belong to the
gold standard genera, which are reported to be associated
with T2D in a recent review paper (Gurung et al., 2020).
Figure 3 illustrates the comparative evaluation of all the feature
selection methods.

Similarly, in our analyses, several Ruminococcus species
(including R. gnavus, R. obeum, R. torques, R. albus, R. callidus,
R. sp, R. lactaris, R. champanellensis, and R. flavefaciens) and
several Blautia species including B. hansenii, B. producta, and
B. sp_KLE_1732 are detected as important features in the top 100
features lists of each one of four tested feature selection methods
(as can be seen in Supplementary Table 2). Accordingly, these
species are included in the identified features list of commonly
detected genera in all four tested feature selection methods,
shown in Supplementary Table 4. In Gurung et al. (2020),
Ruminococcus, Blautia, and Fusobacterium were reported to be
positively associated with T2D. The genera of Fusobacterium is
identified only by SKB feature selection method, as shown in
Supplementary Table 4.

On the other hand, two genera (Akkermansia and Roseburia)
that were found to be negatively associated with T2D in Gurung
et al. (2020) did not show up in the commonly identified
genera list (Supplementary Figure 2). However, these two genera

were detected in the top 100 lists of different feature selection
methods, as shown in Supplementary Tables 2, 4. As shown
in Supplementary Table 4, while the genera of Akkermansia
is identified by FCBF and SKB feature selection methods, the
genera of Roseburia is identified by all tested feature selection
methods except mRmR.

Pasolli et al. (2016) attempted to classify the T2D patients
and healthy samples using the metagenomic-associated dataset
of T2D, downloaded from Qin et al. (2012). They followed
the same preprocessing as we performed. Before applying
MetaPhlAn2, the samples were subject to standard pre-
processing as described in the SOP of the Human Microbiome
Project. Similar to our study, they used species abundance
as input data and tested the performances of the SVM
and RF classifiers and also evaluated Lasso and elastic net
regularized multiple logistic regression. On T2D-associated
metagenomics dataset, without applying any feature selection,
they obtained 0.75 F1-score, 0.62 AUC, and 64% accuracy using
RF classifier, as shown in Figure 2 of their study. Our RF model
without applying feature selection methods resulted in 0.79 F1-
score, 0.74 AUC, and 73% accuracy, as shown in Figure 3
and Table 2.

Pasolli et al. (2016) also investigated the effect of
different feature selection algorithms. On the T2D-associated
metagenomics dataset, by only using 40 species (features)
that are selected using Lasso feature selection, Pasolli et al.
(2016) obtained 0.70 AUC using RF classifier, as shown in
Supplementary Figures 2, 3. In our study, by only using 15
species, 0.74 AUC is obtained using RF classifier, as shown in
Figure 3 and Table 2. We can conclude that there is added value
in studying T2D through metagenomics and machine learning.

Lastly, we clustered the healthy samples and cases according
to these 15 features (the amounts of 15 selected species)
using k-means clustering. Hence, we attempt to distinguish
the subgroups of healthy samples and sick samples. While
the relative amounts of 15 selected species are shown in
Figure 5 for all healthy and T2D subgroups, in Figure 6, the
relative amounts of some specific species are shown for all
four healthy subgroups vs. sick0 subgroup, which covers 86%
of all the patient samples. Once we evaluated Figures 5, 6,
we had some important observations. For example, it can
be deduced from Figure 6A that the amount of E. lenta in
healthy samples is at least 10–11 times less than its amount in
patients. Therefore, the abundance of E. lenta can be evaluated
as a candidate taxonomic biomarker for T2D disorder. Qin
et al. (2012) also demonstrated that the levels of opportunistic
pathogens such as E. lenta are increased in diabetes. Figures 6B–
D indicate that Bacteroides stercoris (which is numbered as
47), Bacteroides vulgatus (which is numbered as 51), and
Subdoligranulum (which is numbered as 179) can be considered
as candidate taxonomic biomarkers of T2D. In literature, the
levels of Bacteroides vulgatus were reported to be dropped
in T2D patients and the levels of Bacteroides stercoris were
reported to be increased after sleeve gastrectomy surgery in
T2D patients with diabetes remission (Wu, 2010; Karlsson
et al., 2013; Zhang et al., 2013; Murphy et al., 2017). In
another study, using a mouse model, Yoshida et al. found that
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B. vulgatus upregulates the expression of tight junction genes
in the colon, which leads to reduction in gut permeability,
reduction of lipopolysaccharides production, and amelioration
of endotoxemia (57). Subdoligranulum variabile is one of those
microbes that is found to display increased abundance in those
T2D patients undergoing metformin treatment (Forslund et al.,
2015; Mardinoglu et al., 2016; Wu et al., 2017).

CONCLUSION

Human gut microbiota, which consists of nearly 200 prevalent
bacterial species and approximately 1,000 uncommon species, is
considered as a multicellular organ. Gut microbiota can affect the
host immune system, which is central to program several host
activities (Qin et al., 2010). Hence, the metagenomic analysis of
the human gut microbiome provides novel insights for several
diseases, including T2D. Although several studies reported
the significance of the gut microbiota in pathophysiology of
T2D, this field is still in its infancy. The existing studies
concluded that some microbial taxa and related molecular
mechanisms may be involved in glucose metabolism related
to T2D. Nevertheless, such simple interpretations are not
enough to explain the heterogeneity and complexity of T2D,
and the redundancy of gut microbiota further complicates
these analyses. Along this line, in this study, we used
the T2D-associated metagenomics data and developed a
machine learning model to increase the diagnostic accuracy
of T2D. We discovered potential taxonomic biomarkers of
T2D and investigated which subset of microbiota is more
informative than other taxa applying some of the state-of-the
art feature selection methods. In our experiments, especially
15 species came into prominence. We present support from
literature regarding the association of these species with T2D.
Hence, we propose these species as candidate taxonomic
biomarkers of T2D, where wet lab scientists can design
validation experiments.
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Supplementary Figure 1 | Preliminary performance evaluation results for
T2D-associated metagenomics dataset using 10 fold cross-validation.
Comparative evaluation of different classifiers using different feature selection
methods based on (A) ROC area, (B) accuracy, and (C) F-measure.
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Vilne B, Ķibilds J, Siksna I, Lazda I,
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Coronary artery disease (CAD) is the most common cardiovascular disease (CVD)

and the main leading cause of morbidity and mortality worldwide, posing a huge

socio-economic burden to the society and health systems. Therefore, timely and precise

identification of people at high risk of CAD is urgently required. Most current CAD risk

prediction approaches are based on a small number of traditional risk factors (age,

sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are

incompletely predictive across all patient groups, as CAD is a multi-factorial disease

with complex etiology, considered to be driven by both genetic, as well as numerous

environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle

and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D)

and CVD/CAD indicates that the “one-size-fits-all” approach may not be efficient, due

to significant variation in inter-individual responses. Recently, the gut microbiome has

emerged as a potential and previously under-explored contributor to these variations.

Hence, efficient integration of dietary and gut microbiome information alongside with

genetic variations and clinical data holds a great promise to improve CAD risk prediction.

Nevertheless, the highly complex nature of meals combined with the huge inter-individual

variability of the gut microbiome poses several Big Data analytics challenges in

modeling diet-gut microbiota interactions and integrating these within CAD risk prediction

approaches for the development of personalized decision support systems (DSS). In this

regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML)

is opening intriguing perspectives, as these approaches are able to capture large and

complex matrices of data, incorporating their interactions and identifying both linear

and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML

approaches and their different use cases for CAD risk prediction (2) modeling of the
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content, choice and impact of dietary factors on CAD risk; (3) classification of individuals

by their gut microbiome composition into CAD cases vs. controls and (4) modeling of

the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an

outlook for putting it all together for improved CAD risk predictions.

Keywords: machine learning, diet, gut microbiome, personalized nutrition, coronary artery disease, artificial

intelligence, risk prediction

1. INTRODUCTION

Coronary artery disease (CAD) is the most common
cardiovascular disease (CVD) and the main leading cause
of morbidity and mortality worldwide, posing a huge socio-
economic burden to the society and health systems (Lopez
et al., 2006). Currently, our health care system is facing
a paradigm shift from a “one size fits all” approach to a
more optimized model to identify prevention strategies
and treatments tailored to each individual, the so called
personalized medicine. Moreover, the vision of prevention has
also transformed toward a concept of “positive health” and
primordial prevention—the prevention of disease risk factors
before they actually occur, i.e., through targeted modifications
of person’s environment/lifestyle (Movsisyan et al., 2020).
Therefore, timely and precise identification of people at high risk
of CAD is of utmost importance for the personalized cardiology
(Alaa et al., 2019), as such persons may need more aggressive
health promotion strategies, especially the modifiable CAD risk
factors could be effectively reduced or even eliminated in this way
(Movsisyan et al., 2020).

Over the past two decades, numerous approaches for CAD
risk prediction have been developed and several have also
entered the clinical routine such as the Framingham Risk Score
(FRS) (Wilson et al., 1998) or the Systematic Coronary Risk
Evaluation (SCORE) metrics (Conroy et al., 2003), extensively
reviewed elsewhere (Damen et al., 2016; Westerlund et al.,
2021). However, these approaches are mostly based on a limited
number of predictors—the traditional CAD risk factors (age,
sex, diabetes, systolic blood pressure, LDL/HDL cholesterol,
smoking). Hence, incompletely predictive of disease onset,
progression and clinical outcome across all patient groups
(Alaa et al., 2019), overestimating the 10-year CAD/CVD risk,
especially for high-risk individuals and European populations
(Damen et al., 2016). These models typically do not take into
account the fact that the treatment options have improved and
that, by modifying the person’s environment/lifestyle, the disease
risk can be reduced over time (Westerlund et al., 2021).

CAD is a multi-factorial disease with complex etiology,
considered to be driven by both environment/lifestyle and
genetic factors (Davey Smith et al., 2005; Erdmann et al., 2018;
Vilne and Schunkert, 2018). Over the last 14 years, several large-
scale genome-wide association studies have aimed to identify the
genetic factors associated with CAD risk (Samani et al., 2007;
Erdmann et al., 2009; Tregouet et al., 2009; Schunkert et al., 2011;
Deloukas et al., 2012; Nikpay et al., 2015; Howson et al., 2017;
Nelson et al., 2017; Webb et al., 2017; van der Harst and Verweij,

2018) and their functional consequences (Brænne et al., 2015;
Kessler et al., 2015, 2016, 2017; Zhao et al., 2016; Aherrahrou
et al., 2017; Vilne et al., 2017; Lempiäinen et al., 2018; Schunkert
et al., 2018; Neiburga et al., 2021). It is currently a matter of
intense debate, whether it might be time to implement genetic
variations in the clinical routine CAD risk predictions (Inouye
et al., 2018; Khera et al., 2018; Cecile et al., 2019; Gola et al., 2020;
Lieb and Vasan, 2020).

At the same time, the contribution of environmental/lifestyle
factors, in particular, dietary factors have remained less
investigated (Khera et al., 2017; Dimovski et al., 2019). Diet is
one of the modifiable factors for disease prevention and dietary
recommendations have been formulated for decades to guide us
toward changing our eating habits in favor of healthy choices.
For example, the consumption of foods abundant in cholesterol
and fats, such as (processed) red meats, have been associated with
increased CAD risk and mortality (Bernstein et al., 2010; Micha
et al., 2010). First evidence suggests that even for individuals
at high genetic CAD risk and with pre-existing non-modifiable
risk factors (age, sex, positive family history) adherence to a
healthy lifestyle could be associated with an almost 50% lower
relative risk of CAD (Khera et al., 2017; Dimovski et al., 2019),
indicating that the inclusion of dietary factors can substantially
improve CAD risk prediction, as compared to standard Cox
models without these additional variables (Rigdon and Basu,
2019; Ho et al., 2020). With the advent of biosensors and
wearable health technology connected to mobile apps, large-scale
longitudinal food diaries and images of meals consumed are
increasingly becoming available and are even being integrated
within electronic health records (Verma et al., 2018; Dinh-
Le et al., 2019; Moraes Lopes et al., 2020), whereas further
advances in and rapidly decreasing costs of next generation
sequencing generate increasing data volumes describing the
human gut microbiome qualitative and quantitative composition
and function (Eetemadi et al., 2020), thus providing valuable
sources of data for integration in the context of personalized diet
recommendation systems (Eetemadi et al., 2020), which could
be further integrated into clinical decision support systems for
improved CAD risk predictions. However, the current rise in
obesity, type 2 diabetes (T2D) and CVD/CAD (Pallazola et al.,
2019), indicates that the “one-size-fits-all” approach may not be
efficient, due to significant variation in inter-individual responses
to diet (Hughes et al., 2019), and that interactions between diet
and other factors need to be considered (Qi, 2012).

Recently, the human gut microbiome has emerged as
a potential and previously under-explored contributor to
these variations (Bashiardes et al., 2018), as the composition
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and function of this complex community of trillions of
microorganisms (including bacteria, archaea, viruses, and
microbial eukaryotes) (Garud and Pollard, 2020) is modulated
by dietary components, e.g., the well-known beneficial impact
of the so called Mediterranean diet (De Filippis et al., 2016).
This impact is partly mediated through the metabolization and
transformation of different nutrients by the gut microbiome,
generating secondary metabolites, with changed retention time,
bioactivity and different impact on health outcomes: being
either protective, such as the short-chain fatty acids (SCFA) or
promoting the disease development such as hydrogen sulfite or
bile acids (Ni et al., 2015; Hughes et al., 2019; Eetemadi et al.,
2020). Changes in the qualitative and quantitative composition
of the gut microbiome have been increasingly linked to a number
of diseases, including obesity (Turnbaugh et al., 2009; Maruvada
et al., 2017; Miyamoto et al., 2019) and CVD/CAD (Koeth et al.,
2013; Miele et al., 2015; Tang et al., 2017; Ascher and Reinhardt,
2018). Hence, efficient integration of dietary factors with the
gut microbiome holds a great promise to revolutionize the
way diseases are treated, through dietary recommendations and
lifestyle changes or even the optimization of our gut microbiome,
personalized to each individual and the desired health outcomes
(Bashiardes et al., 2018; Eetemadi et al., 2020).

Taken together, the multifactorial and complex etiology
of CAD (driven by both genetic and environmental/lifestyle
factors), combined with the highly complex nature of meals
(containing multiple ingredients and spices) and with the
additional complexity and huge inter-individual variability of
the gut microbiome (Marcos-Zambrano et al., 2021; Moreno-
Indias et al., 2021), resulting in completely different responses
to identical meals (Zeevi et al., 2015), urgently calling for
more advanced problem-solving approaches. Moreover, with the
development of high-throughput omic measurement platforms
and digitalization of health records, the field is rapidly entering
the Big Data era, as the volumes of these data are increasing
exponentially (Stephens et al., 2015) and need to be transformed
into valuable knowledge. In this regard, the recent re-emergence
of advanced computational data-driven technologies such as
Artificial Intelligence (AI)/Machine Learning (ML) approaches
are opening intriguing perspectivesfor the integration of omics
data (genetic variations, gut microbiome) with additional
clinical (Reel et al., 2021) and environmental/lifestyle and the
development personalized CAD diagnostics tools (Alizadehsani
et al., 2019). AI/ML represent automated approaches that are
adaptive and able to capture large and heterogeneous matrices of
data extracting meaningful patterns and identifying both linear
and non-linear relationships between these high-dimensional
input variables and the outcomes (Alaa et al., 2019; Rigdon and
Basu, 2019; Bodnar et al., 2020; Moraes Lopes et al., 2020).
Especially, Deep Learning (DL) approaches, hold a great promise
for future progress due to its capabilities to learn from input raw
data, instead of using hand-crafted features that require domain
expertise (Ching et al., 2018; Solares et al., 2020).

In this Mini Review, we explore, whether the inclusion of
dietary factors and/or gut microbiome data in combination
with the power of AI/ML could potentially improve CAD risk
prediction. In particular, we consider: (1) the most used AI/ML

approaches for CAD risk prediction; (2) the use cases of AI/ML
approaches to model the content, choice and impact of dietary
factors and how this could be used to predict CAD risk; (3) the
use cases of AI/ML approaches to classify individuals by their gut
microbiome composition into CAD cases vs. controls and to (4)
model the diet-gut microbiome interactions and their impact on
CAD risk (as illustrated in Figure 1 and summarized in Table 1).
(5) Finally, we provide an outlook for putting it all together into
a smart clinical decision support system (DSS), considering the
traditional risk factors in combination with individual’s genetic
variations, as well as dietary factors and gut microbiome and
discuss the potential of AI/ML based methods vs. conventional
approaches for risk predictions.

2. ARTIFICIAL INTELLIGENCE / MACHINE
LEARNING APPROACHES FOR CAD RISK
PREDICTION

Artificial Intelligence (AI) / Machine Learning (ML) has recently
caught the interest of both academia and industry, and the
different approaches have been explicitly reviewed elsewhere, e.g.,
Cao et al., 2018; Goecks et al., 2020. Hence, we only give a
very brief overview, highlighting some of the most popular and
widely used approaches and common terminology in the field, to
prepare the reader for the sections to follow.

In general, AI/ML-based approaches can be considered as
a set of methods that can effectively use large and complex
data sets to extract meaningful patterns (i.e., “learn”) in order
to use this “knowledge” to make predictions on other data
(Vilne et al., 2019) and improve with experience (Libbrecht and
Noble, 2015). Moreover AI/ML can be performed either (1) in
a unsupervised manner by exploring and detecting what types
of labels best explain the data i.e., using unlabeled data; (2) in a
supervised manner by classifying, predicting and explaining the
data, requiring labels (Vilne et al., 2019; Eetemadi et al., 2020),
or (3) in a semi-supervised manner, taking advantage of both
unlabeled and labeled data, where only a subset of data is labeled
(Libbrecht and Noble, 2015).

In particular, supervised learning has gained much attention
recently (Reel et al., 2021), as it allows to define certain outputs
that can be used for classification of patients, and will be the main
focus of this Mini-Review. In this class, one of the most popular
is the Random Forest (RF) approach (Breiman, 2001), which
randomly selects a subset from the training data to construct
an ensemble of Decision Tree (DT) predictors to aggregate
the predictions, by this attempting to lower the variance and
deal with the issue of overfitting. Decision Tree (DT) approach
is also a commonly used classifier, splitting the input data
into branch-like segments, according to a certain parameter
(Goecks et al., 2020).

Another popular method in the field is the Support Vector
Machine (SVM) classifier, representing a pattern classification
technique, based on the idea of transforming the original
data that is not linearly separable to a higher dimensional
space and finding a hyperplane separating the data into
classes, based on a priori defined criteria, with the aim to
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FIGURE 1 | An overview of the current status and future directions to improve CAD risk prediction. The left panel (triangle separated by a dashed line) demonstrates

the current status (in gray, as not explicitly considered in this Mini-Review), demonstrates the current metrics such as FRS (Wilson et al., 1998) or SCORE (Conroy

et al., 2003) using the traditional CAD risk factors (age, sex, diabetes, systolic blood pressure, LDL/HDL cholesterol, smoking). The right panel (separated by a dashed

line) highlights the possible future directions to improve CAD risk prediction using AI/ML approaches and, alongside with clinical data and genetic variations (in gray, as

not explicitly considered in this Mini-Review) dietary factors (in green) and/or gut microbiome (in blue).

overcome overfitting (Suykens et al., 2001). However, further
improvements may be necessary when dealing with omics
data (Han and Jiang, 2014).

Gradient Boosting (GB), such as Stochastic Gradient Boosting
Regression (Friedman, 2001) is a technique that, similar to
RF, constructs multiple decision trees by drawing a random
samples from the data set (termed bagging). However, instead
of constructing many parallel deep trees, it constructs multiple
shallow trees (weak learners) and in a sequential manner (i.e.,
one after the other) so that the next tree improves upon
the classification of previous trees in an additive manner. GB
is known to perform best with fewer input variables of low
dimensionality, whereas RF performs better with many input
variables or high dimensionality (Hughes et al., 2019).

Finally, Artificial Neural Networks (ANN), and their
extension, Deep Learning (DL), are graph computing models,
which, at least to some extent, should mimic the functioning
of the human brain, hence their computing units are called
neurons and are interconnected for passing information to each
other. Moreover, networks of neurons are additionally organized
in layers. The first one is an input layer, receiving the training
data. This is followed by several hidden layers. The last one is an
output layer, which performs the actual prediction of the class
(McCulloch and Pitts, 1990). ANN have been demonstrated to

outperform other AI/ML approaches in many areas, especially
(medical) image analyses (Eetemadi et al., 2020).

Performance of an AI/ML classifier is often expressed
as the area under the curve (AUC), where a value of 0.5
indicates poor performance (equal to a random guess) while
higher values (approaching 1) indicate better classification
performance, allowing an easy comparison of the success of
various implementations of AI/ML approaches (Bradley, 1997).
However, considering that, in most cases, the users are more
interested in positive outputs (i.e., people at high CAD risk),
some other performance measures would need to be considered
as well, such as the Jaccard index (J) or the F1-score, focusing
on the fraction of true positives (Jiao and Du, 2016). Moreover,
if the input data sets are imbalanced (i.e., many more controls
than CAD patients in the training set), precision-recall (PR)
curve should be considered along the ROC curve and additional
performance measures, such as the balanced accuracy (BAcc)
and the Matthew’s Correlation Coefficient (MCC) considered
(Jiao and Du, 2016). We refer the interested reader to Jiao and
Du (2016) for more details. Moreover, if the input data is not
normally distributed, maximum likelihood estimation (MLE)
should be used to model this data and determine the model
parameters for the evaluation metrics (Maximum-likelihood
method, 2001).
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TABLE 1 | A list of the case studies related to improved CAD risk prediction considered in this Mini-Review.

Category Study purpose AI/ML approaches(s) used References

Dietary factors To create an automated mobile vision food diary (Im2Calories), which

can recognize the nutritional contents and calories of an individual’s

meal from its image.

Deep Learning (DL)/Convolutional Neural

Network (CNN), adjusted for a mobile

phone and images taken “in the wild”

Myers et al., 2015

Use public food diaries of MyFitnessPal app users to study the food

components of a successful (“below” the user defined “daily calories

goal”) or un-successful (“above”) diet.

Support Vector Machine (SVM) Weber and

Achananuparp,

2016

Use the data from the ThinkSlim app, to assess and predict individual’s

eating behavior in relation to their individual states (location, activity,

emotions).

Decision Tree (DT), tailored to longitudinal

real-time data

Spanakis et al.,

2017

Evaluate, how healthy Brazilian children and teens respond

inter-individually to nutritional intervention of multivitamins and minerals,

to develop recommendations for optimizing the levels of these

supplements.

Elastic Net (EN) penalized regression

model

Mathias et al., 2018

Investigate whether the consideration of additional variables (in total

473 available variables, including dietary and nutritional information)

could increase the accuracy of CVD risk prediction in 423,604 UK

Biobank participants.

AutoPrognosis Alaa et al., 2019

Investigate whether the consideration of dietary information can

improve CVD risk prediction.

Gradient Boosted Machines (GBMs) and

Random Forests (RF), tailored to the

analyses of survival data

Rigdon and Basu,

2019

Gut microbiome Assess the potential of the (mainly gut) microbiome species-level

abundances to be used for the classification of healthy vs. unhealthy

(including obese and T2D patients) individuals.

Random Forests (RF), Support Vector

Machine (SVM)

Pasolli et al., 2016

Predict different traits, including cholesterol levels and BMI using the

gut microbiome data in healthy participants.

Regularization of Learning Networks

(RLN), Deep Neural Networks (DNNs),

Gradient Boosting Trees (GBTs), Linear

Models (LM)

Ira Shavitt, 2018

Compare the composition of the gut microbiome in CAD patients vs.

healthy controls.

Random Forests (RF) Zhu et al., 2018

Test, whether gut microbiome could be potentially used for diagnostic

screening of CVD.

Random Forests (RF), Support Vector

Machine (SVM), Decision Trees (DT),

Elastic-Net (EN) and Neural Networks (NN)

Aryal et al., 2020

Dietary factors

and gut

microbiome

Identify associations between the gut microbiome composition and the

concentration of butyrate, in response to dietary supplementation with

resistant starch.

Random Forests (RF) Venkataraman et al.,

2016

Investigate, the post-meal glucose levels in response to 46,898

standardized and real-life meals, in conjunction with the gut

microbiome composition.

Stochastic Gradient Boosting Regression

(SGBR)

Zeevi et al., 2015

To validate the predictions by Zeevi et al. (2015) in an independent 327

cohort of individuals.

Stochastic Gradient Boosting Regression

(SGBR)

Mendes-Soares

et al., 2019

Develop standardized protocols for the analyses of the diet-induced

gut microbiome changes.

Spector et al., 2019

Compare the post-meal glucose levels in response to the traditionally

made sourdough-leavened whole-grain bread vs. industrially made

white bread, in conjunction with the gut microbiome composition.

Stochastic Gradient Boosting Regression

(SGBR)

Korem et al., 2017

Use the gut microbiome data to predict changes of TMAO in healthy

individuals after choline intake or screening population at high risks of

CVD.

Random Forests (RF) Lu et al., 2017

Considering that only a few studies so far have used dietary factors (Alaa et al., 2019; Rigdon and Basu, 2019) or gut microbiome (Zhu et al., 2018; Aryal et al., 2020), and no studies

using both (the closest being Zeevi et al., 2015 related to blood glucose levels), in combination with AI/ML for CAD risk prediction, we also consider closely related research on dietary

factors (in green), gut microbiome (in blue) and combinations of both (in turquoise) in other disease settings vs. healthy individuals.

The added value of AI/ML models in CAD diagnostics
has been thoroughly reviewed before, examining 149 relevant
studies between 1992 and 2019 (Alizadehsani et al., 2019).
Most of this research focused on the usage of clinical
data (symptom, examination and echo features), laboratory
measurements and medical images (e.g., coronary computed

tomography angiography, myocardial perfusion imaging or
intravascular ultrasound) (Alizadehsani et al., 2019). The Authors
observed that there were three approaches applied to almost all
the datasets—ANN/DL, DT, and SVM—most probably due to
their ease of use, low computational burden and encouraging
performance (Alizadehsani et al., 2019). In particular, studies
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with best performances (i.e., with a reported accuracy of >98%)
used ANN and SVM as their classifiers, which may be due
to the use of non-linear kernel functions (Alizadehsani et al.,
2019). However, it was concluded that further investigation are
needed to determine which approaches are most appropriate for
a particular feature category (e.g., ejection fraction, regional wall
motion abnormality, and valvular heart disease extracted from
echo). Of note, however, neither of the data types highlighted
above provide any information on the molecular bases of a
disease, which could possibly yield a more timely and precise
diagnosis, or even risk prediction, allowing for individually
tailored treatments (Westerlund et al., 2021) or even prevention
strategies, toward the goal of “positive health”, resulting in a
significantly improved life-span and quality (Movsisyan et al.,
2020).

Genomic data have been used in combination with AI/ML for
CAD risk prediction. In particular, (penalized) logistic regression,
Naïve Bayes (NB), RF, SVM, andGBwere compared vs. polygenic
risk scores (PRS) on a data set of 7,736 CAD cases vs. 6,774
controls, testing the final models on an independent data set (527
CAD cases vs. 473 controls) (Gola et al., 2020). Interestingly, they
found that PRS actually outperformed AI/ML-based approaches
in predicting CAD status (AUC∼0.92 vs.∼0.81 for NB and SVM
and AUC∼0.75 for RF and GB). The Authors conclude that
“there is no need to use a sledge-hammer to crack the nut”, i.e.,
the assumption of linear additive effects influencing the risk of
CAD seems sufficient. On the other hand, PRS may not be a
suitable option, if the goal would be to predict the changes in
CAD risk over time or the particular molecular basis driving the
development and progression CAD (Westerlund et al., 2021).

This is were additional data layers such dietary factors and
gut microbiome, as an integrator of this information (Bashiardes
et al., 2018; Eetemadi et al., 2020), come in. However, only a few
studies so far have used dietary factors (Alaa et al., 2019; Rigdon
and Basu, 2019) or gut microbiome (Zhu et al., 2018; Aryal et al.,
2020), and no studies using both (the closest being Zeevi et al.,
2015 related to blood glucose levels), in combination with AI/ML
for CAD risk prediction. We further discuss these few studies
and also consider closely related research on dietary factors, gut
microbiome and combinations of both in other disease settings
vs. healthy individuals.

3. PERFORMING DIET-BASED CAD RISK
PREDICTION USING AI/ML

Dietary information is mainly collected via questionnaires, either
through self-reporting or by a trained interviewer. For self-
reporting, a food frequency questionnaire and dietary recall can
be used, where participants report their meal intake either every
24 h or over a longer period through a checklist of food items
(Eetemadi et al., 2020). At the same time, fitness apps are gaining
increased popularity, as food logging can be performed during its
consumption or even by capturing an image of the meal, thus the
bias related to individual’s memory can be reduced (Weber and
Achananuparp, 2016; Verma et al., 2018; Eetemadi et al., 2020).
Clearly, such food tracking would be of utmost importance for
a more efficient management of patients with obesity, T2D and

CVD/CAD (Bernstein et al., 2010; Pallazola et al., 2019), when
successfully coupled with an effective coaching to modulate it
toward healthy food choices (Spanakis et al., 2017). The AI/ML
approaches can be leveraged for such purposes (Verma et al.,
2018).

In this regard, Myers et al. (2015) created a Google app,
Im2Calories, to predict the nutritional contents and calories of
individual’s meal from its image, using a Convolutional Neural
Network/DL-based classifier, which was modified to run on a
mobile phone analyzing images taken by users, demonstrating
promising first results in this direction.

Weber and Achananuparp (2016) used public food diaries of
>4,000MyFitnessPal users to train a SVM classifier to distinguish
between a successful (“below” a user specified “daily calories
goal”) vs. un-successful (“above” the goal) diet and analyzed the
different dietary factors influencing these two outcomes. It was
observed that “oil”, “butter”, “mcdonalds”, “dessert” or “pork”
vs. “poultry” were related to being “above” the calories goal.
Moreover, there were less food logging on the weekend and the
users were most likely to be “above” the calories goal (Weber and
Achananuparp, 2016).

Spanakis et al. (2017) made use of data collected from the
fitness app ThinkSlim, to link the individual states (like location,
activity, emotions- cheerful, relaxed vs. sad, bored, stressed,
angry, worried) of healthy-weight vs. overweight individuals to
their dietary choices or wishes, using a Decision Tree (DT)-
based classifier, modified to use longitudinal real-time data. They
derived several groups of individuals with similar eating behavior
and used this information to warn the participants before the
individual states that may lead to unhealthy eating behavior
(Spanakis et al., 2017).

Mathias et al. (2018) conducted a six-week study to evaluate,
how 136 healthy Brazilian children and teens (9–13 years
old) responded to multivitamins and minerals, to develop
recommendations for optimizing their levels, based on several
clinical, anthropometric and food intake parameters. These data
were then used to predict each individual’s response to the
intervention, based on these measures using an Elastic Net
penalized regression model.

However, none of the above mentioned studies were directly
related to CAD risk prediction. There have been only a few
studies considering the dietary factors for CAD risk prediction, so
far. Alaa et al. (2019) analyzed 423,604 UK Biobank participants
without CVD at baseline with the aim to predict their future
disease risk. They investigated, whether AI/ML-based approaches
could possibly improve disease risk prediction, as compared to
conventional approaches (such as FRS) and whether considering
additional information (i.e., 473 variables, including dietary
information) could increase the accuracy of their predictions.
They used AutoPrognosis, which allows to automatically select
and tune the best possible AI/ML approaches, by comprising
different imputation strategies, feature selection and processing,
as well as classification and calibration approaches. They
observed and improvement in comparison to (AUC∼0.77 vs.
∼0.72 for FRS) conventional approaches (Alaa et al., 2019).

Rigdon and Basu (2019) performed a retrospective study
using AI/ML exploring whether considering randomly sampled
sparse nutrition data could possibly improve CVD mortality risk
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prediction. They made use of NHANES interview data collected
from 1999 to 2011 linked to the National Death Index (NDI)
in the US, selecting 29,390 participants as their training set and
further 12,600 participants as their test set. Similarly to Alaa et al.
(2019), they aimed at testing whether AI/ML-based approaches
vs. standard (Cox) models and considering additional predictor
variables (dietary information) could possibly improve CVD
mortality risk prediction. They applied two DT-based AI/ML
approaches the Gradient Boosted Machines (GBM) (Chen et al.,
2013) and RF (Ishwaran et al., 2008), tailored to the analyses
of survival data to demonstrated that the inclusion of dietary
information significantly improved risk prediction, as compared
to the standard models and when including only the traditional
risk factors. In particular, they found that a standard Cox model
without dietary factors overestimated the CVD mortality risk
nearly two-fold, whereas AI/ML models in combination with
these additional data substantially improved their predictions
(AUC∼0.87 vs.∼0.93).

4. PERFORMING GUT
MICROBIOME-BASED CAD RISK
PREDICTION USING AI/ML

In addition to genetic and environmental/life-style factors,
gut microbiota has emerged as a additional factor influencing
the CAD risk (Aryal et al., 2020). Clearly, researchers have
asked, whether gut microbiome profiling combined with
AI/ML approaches could be used for improved CAD/CVD
risk prediction. In the last 10 years, a number of studies
have demonstrated that there is a possible relationship
between the gut microbiome composition, such as changes
in the abundance of Bacteroidetes, Firmicutes, Lactobacillus,
Streptococcus, Bifidobacterium, Roseburia, or Escherichia spp.
and the development of several diseases, including obesity
(Turnbaugh et al., 2009; Maruvada et al., 2017; Miyamoto et al.,
2019) hypertension (Karbach et al., 2016), and CVD (Karlsson
et al., 2012; Koeth et al., 2013; Miele et al., 2015; Kelly et al., 2016;
Tang et al., 2017; Ascher and Reinhardt, 2018).

Several studies have used AI/ML approaches to classify
test subjects into groups (such as healthy vs. disease) based
on microbiome data. In most studies, relative abundances
of microbiome taxa are used as features, obtained either by
amplicon sequencing of the 16S rRNA phylogenetic marker gene
or by shotgun metagenomic sequencing (Hughes et al., 2019).
As the costs of shotgun metagenomic sequencing decrease, the
functional profiles derived from metagenome sequences can be
expected to increasingly be used as input features with AI/ML
approaches (Eetemadi et al., 2020; Sanchez-Rodriguez et al.,
2020). Pasolli et al. (2016) utilized 2,424 shotgun metagenomic
samples from eight studies to assess the potential of the (mainly
gut) microbiome species-level abundances to be used in order
to differentiate healthy vs. unhealthy (including obese and
T2D) individuals and compare the prediction accuracy of RF
vs. SVM approaches. Interestingly, for T2D and obesity, the
models demonstrated lower discrimination ability as compared,
for example, to liver cirrhosis (AUC of 0.74 and 0.65 vs. 0.94,

respectively), suggesting less significant changes in microbiome
composition related to T2D and obesity. Comparing the
accuracy of RF vs. SVM, in all cases, RF demonstrated similar
or even better results than SVM (for T2D: AUC∼0.74 vs.
∼0.66, respectively).

However, although the approach of using gut microbiome in
combination with AI/ML approaches for disease risk prediction
is not novel, it has not been widely applied for CAD, yet (Aryal
et al., 2020). Zhu et al. (2018) compared the composition of
the gut microbiome between 70 CAD patients vs. 98 healthy
controls and used RF to potentially differentiate these two groups
of individuals, achieving and AUC of 0.67. In addition, the
gut microbiome of CAD patients displayed decreased diversity
and richness, with decreased abundances of Faecalibacterium,
Roseburia, and Eubacterium rectale (the butyrate producers) and
increased abundances of Escherichia-Shigella and Enterococcus.
More recently, in order to test whether gut microbiome could
be potentially used for diagnostic screening of CVD, Aryal
et al. (2020) applied five different AI/ML approaches (RF, SVM,
DT, Elastic-Net and Neural Networks) to the gut microbiome
relative abundances of 478 CVD patients vs. 473 healthy controls,
collected as part of the American Gut Project [https://microsetta.
ucsd.edu/american-gut-project/] and profiled using fecal 16S
ribosomal RNA sequencing. However, when using 39 differential
bacterial taxa as features, the best AUC this study could achieve
was AUC∼0.58 (with Neural Networks), followed by Elastic-
Net (AUC∼0.57), SVM (AUC∼0.55) and DT (AUC∼0.51).
Interestingly, the performance of RF significantly improved
(AUC∼0.65) when trained with the top 500 high-variance OTU
features, instead of taxonomic features, whereas the AUC of
Neural Networks dropped (AUC∼0.48). Furthermore, highly
contributing OTU features (HCOFs) were selected based on their
variable importance (0–100, where 0: no contribution to the
model and 100: max contribution to the model) to further reduce
the dimensionality of the OTU feature space. The top 100HCOFs
with the highest scores were selected for training the RF model.
As a result, the RF models trained with the top 20 and top 25
HCOFs achieved further improved performance (AUC∼0.70).

5. CONSIDERING DIET-GUT MICROBIOME
INTERACTIONS FOR CAD RISK
PREDICTION USING AI/ML

It can be assumed that particular diets, such as those high
in fats and/or sugars might lead to variations in the gut
microbiome composition and changes in its functional capacity
that potentially might facilitate the development of diseases,
including metabolic disorders such as obesity, insulin resistance
and atherosclerosis/CVD (Sanchez-Rodriguez et al., 2020).
Despite the close link between our diet and gut microbiome, the
number of studies collecting and analyzing both types of data
is sparse and either not considering the full spectrum of dietary
factors (Lu et al., 2017) or not directly addressing the prediction
of CVD/CAD risk (Zeevi et al., 2015; Venkataraman et al., 2016;
Spector et al., 2019).
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Zeevi et al. (2015) used a the GB approach to investigate
whether individuals’ gut microbiome profiles in combination
with several other sources of information (blood parameters,
anthropometrics, self-reported lifestyle behaviors and physical
activity) could predict glucose levels in response to standardized
and real-life meals in a cohort of 800 overweight or obese
non-diabetic individuals, observing high inter-individual
variability, even in response to identical meals, suggesting that
dietary recommendations need to be personalized. Later, these
predictions were validated by Mendes-Soares et al. (2019) in
an independent cohort of 327 individuals and by Korem et al.
(2017), when focusing on the consumption of sourdough-
leavened whole-grain bread vs. industrially made white bread,
also using the GB approach. In the latter case, the relative
abundances of Coprobacter fastidiosus and Lachnospiraceae
bacterium were among the most informative features.

Venkataraman et al. (2016) used RF to predict whether
the gut microbiome composition of individuals can predict
their response to dietary supplementation with resistant starch,
as measured using fecal butyrate concentrations. This study
could identify three different response groups—enhanced, high
and low, and could attribute these differences to the increase
of starch-degrading bacteria Bifidobacterium adolescentis and
Ruminococcus bromii in the enhanced and high, but not in the
low fecal butyrate concentration group.

Spector et al. (2019), as part of the PREDICT study [http://
www.tim-spector.co.uk/predict/], is actively working toward
personalized nutrition tools by systematically analyzing the
diet-induced gut microbiome changes using AI/ML approaches
in order to stratify individual responses to dietary interventions
based on the individual’s gut microbiome and develop
standardized protocols for the purpose. Among others, this
study has demonstrated that shotgun metagenomic sequencing
may be more accurate than 16S rRNA amplicon sequencing, as
it allows also capturing individual-specific strain-level features,
thus improving the stratification.

In the context of CVD/CAD risk prediction, most studies
have focused on the circulating levels of the diet- and
gut microbiota-dependent metabolite trimethylamine-N-oxide
(TMAO) (Trøseid et al., 2020). Lu et al. (2017) used RF and the
gut microbiome data to predict changes of TMAO levels after
choline intake, as a potential approach for screening population
at high risk of CVD and identified the beta (inter-individual)
diversity of the gut microbiome as a significant predictor (AUC
of 0.86) of increased vs. decreased plasma TMAO level.

6. DISCUSSION

Timely and precise identification of people at high risk of CAD
is of utmost importance for the development of personalized
treatment strategies (Alaa et al., 2019; Westerlund et al., 2021),
as such persons may need more aggressive health promotion
strategies, especially the modifiable CAD risk factors could be
effectively reduced or even eliminated in this way (Movsisyan
et al., 2020). Although, numerous algorithms for CAD risk
prediction have been developed over the years and several have

also entered the clinical routine (FRS Wilson et al., 1998, SCORE
Conroy et al., 2003), these are typically based on a limited
number of traditional CAD risk factors (age, sex, diabetes, LDL
and HDL cholesterol, smoking, systolic blood pressure) and are
not suitable across all patient groups (Alaa et al., 2019) and do
not take into account the fact that by modifying the person’s
environment/lifestyle the disease risk could be reduced over time
(Westerlund et al., 2021).

The added value of AI/ML approaches in CAD diagnostics
has been explored before, however, so far, most of this research
has focused on the usage of clinical data and medical images
(Alizadehsani et al., 2019), thus providing no information on
the molecular bases of a disease (Westerlund et al., 2021). A
small number of studies has used genomic data have been used
in combination with AI/ML for CAD risk prediction (Gola
et al., 2020). However, AI/ML approaches underperformed in
comparison to a simple PRS, assuming linear additive effects
(Gola et al., 2020). This is were additional data layers such
dietary factors and gut microbiome, as an integrator of this
information (Bashiardes et al., 2018; Eetemadi et al., 2020), come
in. However, only a few studies so far have used dietary factors
(Alaa et al., 2019; Rigdon and Basu, 2019) or gut microbiome
(Zhu et al., 2018; Aryal et al., 2020), and no studies using both
[the closest being (Zeevi et al., 2015) related to blood glucose
levels], in combination with AI/ML for CAD risk prediction. We
further discuss these few studies and also consider closely related
research on dietary factors, gut micorbiome and combinations of
both in other disease settings vs. healthy individuals.

With the advent of wearable biosensors connected to mobile
applications, large-scale longitudinal food diaries and images of
meals consumed will become increasingly available providing
a valuable data source for such investigations (Munos et al.,
2016). The future vision for personalized nutrition has led
to great interest for advancements in the diagnostics and
decision support systems (DSS) that would allow continuous
assessment of individual’s dietary features, in conjunction with
gut microbiome composition and additional information, such
as access to the electronic health record (EHR) and lifestyle
and environment information, physical activity from the
biosensors and wearable health technology. All of it would
aid in forming tailored recommendations such as choosing an
optimal meal for lowering post-meal glucose levels (as shown
by Zeevi et al., 2015) in patients with T2D. Although, the
recent re-emergence of AI/ML approaches is opening intriguing
perspectives in this direction, it must be remembered that
these data-driven technologies and their predictions strongly
depend on the quantity and quality of the input data. In this
regard, several limitations to the current food intake and
composition databases have been observed. Apparently, these
databases currently contain only 0.5% of the known nutritional
compounds (Eetemadi et al., 2020). Another issue is the data
standardization, which is challenging as complex dietary patterns
need to be captured in an organized manner, translating
chemicals constituents of the food into the intake of energy and
nutrients (Verma et al., 2018). Currently, the most widely applied
methods of food intake monitoring include the food diaries,
which make it difficult to convert the food descriptions into the

Frontiers in Microbiology | www.frontiersin.org 8 April 2022 | Volume 13 | Article 627892126

http://www.tim-spector.co.uk/predict/
http://www.tim-spector.co.uk/predict/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Vilne et al. AI/ML, Diet-Gut Microbiome & CAD

energy. Additional challenges arise when the food is collected
from different sources, i.e., individual and/or hospital-based
sources.The missing data problem could be partly addressed
through improved data imputation techniques, which should be
complemented by improved food intake monitoring and data
collection methods, creating integrated databases with defined
standard formats for annotation and classification, considering
the FAIR (Findability, Accessibility, Interoperability, and
Reuse) data principles [https://www.go-fair.org/fair-principles/].
Initiatives such as the EuroDISH project [https://www.eurofir.
org/our-resources/past-projects/eurodish/] are already working
in this direction.

There are a number of challenges and limitations related
to the application of AI/ML approaches for microbiome
studies, as thoroughly and systematically summarized in several
literature reviews (Marcos-Zambrano et al., 2021; Moreno-
Indias et al., 2021) by the members of the COST Action CA18131
“ML4Microbiome” (https://www.cost.eu/actions/CA18131/),
bringing together AI/ML experts and microbiome researchers.
Overall, similar to other high-throughput studies, one of the
main limitations in current research has been the usage of
inappropriate study design, including small datasets and lack
of additional data to estimate confounding effects, especially
considering the well-known huge variations in microbiome
composition across individuals and body sites and their strong
dependence on the environment/lifestyle factors such as
geographic location, diet and medications (Marcos-Zambrano
et al., 2021; Moreno-Indias et al., 2021). In order to identify
generalized responses, a much larger number of individuals
spanning a range of microbiome types and a careful adjustment
for potential confounding effects would be required (Johnson
et al., 2020). In addition, a number of data processing/statistical
and AI/ML challenges have been observed, such as the selection
of appropriate normalization methods to address the variability
in raw read counts, inappropriate distributional assumptions
considering the data sparsity, compositional nature and
complex and hierarchical dependency structures, the choice of
suitable feature selection approaches, i.e., requiring customized
analytical approaches (Eetemadi et al., 2020; Marcos-Zambrano
et al., 2021; Moreno-Indias et al., 2021). In fact, successful
examples often present a combination of different statistical
approaches, specifically tailored to the characteristics of different
data types (Marcos-Zambrano et al., 2021; Moreno-Indias
et al., 2021). On top of that the dependence on the reference
databases is a well-known major limitation of the sequence
alignment-based approaches, used to assign taxa in sequencing
studies (Chaudhary et al., 2015; Vilne et al., 2019), resulting
in large numbers of uncharacterized microbes (the “microbial
dark matter”) (Marcos-Zambrano et al., 2021). Finally, the
field of high-throughput sequencing overall needs a rigorous
assessment, benchmarking and standardization of approaches
and tools (Vilne et al., 2019), to allow cross-study comparisons
and modeling (Marcos-Zambrano et al., 2021). Currently, the
integration of microbiome data across several studies is difficult
due to the above mentioned factors, as well as the differences
in sample collection, storage and processing protocols in the
wet-lab, which may introduce biases (Eetemadi et al., 2020).
Hence, all findings should be validated, e.g., using quantitative

PCR (Jian et al., 2020). Finally, also for these data, the above
mentioned FAIR data principles should be widely incorporated
[https://www.go-fair.org/fair-principles/] to facilitate such
efforts. For more details we refer the reader toMarcos-Zambrano
et al. (2021), Moreno-Indias et al. (2021). However, we note
that these current limitations related to microbiome studies are
posing additional challenges for CAD risk prediction.

Moreover, several studies have shown that the inter-individual
responses to dietary factors may differ, mostly due to the
differences in the gut microbiome composition (Zeevi et al.,
2015; Korem et al., 2017; Mendes-Soares et al., 2019). However,
especially in the context of multi-factorial diseases, such as CAD,
the differences in individual genetic predisposition (Nikpay et al.,
2015; Nelson et al., 2017) and its down-stream implications
(Brænne et al., 2015; Vilne et al., 2017; Lempiäinen et al., 2018;
Vilne and Schunkert, 2018) in addition to variations in other
(besides diet) environmental and lifestyle factors such as physical
activity, stress and sleep may play and important role in these
responses (Khera et al., 2017). Hence, emphasizing the need to
collect a wide variety of measures in large populations that would
allow for stratification of patients in sub-groups and perform
longitudinal sampling to also capture the dynamics of these
responses. Endeavors to standardize the study protocols have
already started (Spector et al., 2019).

On the other hand, benchmark investigations have
demonstrated that, whether a particular AI/ML approach would
actually improve the predictions compared to conventional
approaches, may depended on the specific dataset at hand
(Westerlund et al., 2021). For example, in microbiome studies,
DL approaches have been demonstrated to underperform
in comparison to GB, possibly due to the potentially large
variability in the relative importance of different input features.
To overcome this limitation, Ira Shavitt (2018) have proposed
an approach called Regularization of Learning Networks (RLN).
They used it to predict a number of traits related to disease
risk, such as cholesterol levels and body mass index (BMI) from
the gut microbiome data of 2,574 healthy individuals. They
evaluated four different AI/ML approaches [RLN, GB, DL, and
Linear Models (LM)] and, although, GB still outperformed the
other three, RLN performed significantly better than DL (15%
vs. ca. 2% less explained variance than GB on average).

Currently, the number of studies investigating the potential of
gut-microbiome in combination with AI/ML to predict CVD risk
is limited (Aryal et al., 2020) an so is the prediction power of these
models, with a max AUC of 0.70, when training a RF model with
the top 25 highest contributing OTU features (Aryal et al., 2020).
However, it must be noted that the authors did not normalize the
OTU data across all the samples to test the option of classifying
new samples without the need for repeated processing (Aryal
et al., 2020). In addition, this study addressed the prediction
of CVD, which, as the authors themselves recognize (Aryal
et al., 2020) includes a range of conditions (from hypertension
and atherosclerosis to CAD). Hence, these predictions may
improve when stratifying CVD patients into specific disease
sub-types. Moreover, another interesting observation from this
study is the fact that bacterial taxonomic features achieved a
lower (AUC∼0.58) AUC, in comparison to high-variance OTU
features (AUC∼0.65), and especially when further reducing the
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dimensionality of the feature space by pre-selecting the top 25
highest contributing OTU features (AUC∼0.70) (Aryal et al.,
2020). From the usage in clinical routine, focusing on a small
number of highly contributing OTUs may be indeed more
practical, analogous to the handful of traditional CAD risk
factors, however, we will need further studies to arrive replicate
these findings and arrive at these gut microbiome biomarkers.
Furthermore, their mechanistic implications in CVD need to be
further investigated (Aryal et al., 2020). Gut microbiota as the
only type of data used for diagnostic classification of non-CVD
vs. CVD may not be sufficient Especially, considering that gut
microbiome can be influenced by other features such as diet
and medications, hence these data should be always collected
in parallel.

Clearly, AI/ML (especially DL approaches due to their
capabilities to learn from input raw data, instead of using
hand-crafted features that require domain expertise, Ching
et al., 2018) in combination with timely access to numerous,
potentially relevant, data sources [e.g., gut microbiome and
genetic data, in addition to the current 7 CVD metrics smoking,
physical activity, body mass index, blood pressure, cholesterol,
glucose and dietary factors (Angell et al., 2020), combined with
longitudinal clinical data from electronic health records (Matlock
et al., 2013; Reynolds et al., 2017)] also holds a great promise
for the improvements of public health surveillance systems,
formulation of policies by forecasting the impact of a factor or
intervention on the burden of disease and the cost of care, and to
propose recommendations to stakeholders (medical institutions,
public health authorities, scientific communities) enabling public
health action and measure progress with the aim to reduce
the huge socio-economic burden of CVD/CAD and increase
healthy life expectancy in future (Angell et al., 2020; Roger et al.,
2020). The same is true for the implementation of personalized
decision support system (DSS) for CAD risk prediction and
patient management that would be a great support for clinicians
in health care.

However, despite the rapid development of several
technologies and advancements in Big Data analytics,
the implementation of such systems that would integrate
comprehensive health and related data (such as genetic
variations, dietary factors, gut microbiome) to provide either
generalized recommendations for public health surveillance
and policy makers or individual recommendations for the
routine clinical practice, still poses a number of challenges that
will need to be overcame first, in order to move toward their
implementation and usability in practice. Overall, such systems

will need to deal with heterogeneous datasets and we will require
a rigorous assessment, benchmarking and standardization of
AI/ML-based CVD/CAD risk prediction models, ensuring
model availability and extensive multiple external validations
and calibration across different disease outcomes, populations
(in men and women separately) and geographical regions via
head-to-head comparisons across different studies and model
impact and performance generalizability assessment and to
identify potential sources of heterogeneity (Damen et al., 2016;
Marcos-Zambrano et al., 2021; Westerlund et al., 2021).

Moreover, In April 2016, the European Union adopted new
rules regarding the use of personal information, the General
Data Protection Regulation, which imposes additional legal and
privacy constraints when analyzing sensitive health data, hence
model training will need to be accomplished within a differential
privacy framework without sharing the raw data (e.g., federated
learning) and considering other rules regarding the use of
personal information as input for decision-making approaches,
such as the ‘right to an explanation’, meaning that when using
AI/ML, we must be able to explain how a decision was reached,
especially if the ground-truth is unknown (Ching et al., 2018).
This calls for the AI/ML models to be human-interpretable,
reliable and explainable to aid the formulation guidelines or
personalized advice on treatment strategy, or even prevention,
plans (Ching et al., 2018; Westerlund et al., 2021).

In any case, the AI/ML tools will not be a replacement for the
human experts, who are still an integral part of the knowledge
discovery process, hence, managing huge amounts of health data
will need to become an integral part of future medical, policy
making and research activity, across sub-disciplines (Moreira
et al., 2019).
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