Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.
Flavonoids are a class of secondary metabolites found in plant and fungus. They have been widely used in food, pharmaceutical, and nutraceutical industries owing to their significant biological activities, such as antiaging, antioxidant, anti-inflammatory, and anticancer. However, the traditional approaches for the production of flavonoids including chemical synthesis and plant extraction involved hazardous materials and complicated processes and also suffered from low product titer and yield. Microbial synthesis of flavonoids from renewable biomass such as glucose and xylose has been considered as a sustainable and environmentally friendly method for large-scale production of flavonoids. Recently, construction of microbial cell factories for efficient biosynthesis of flavonoids has gained much attention. In this article, we summarize the recent advances in microbial synthesis of flavonoids including flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. We put emphasis on developing pathway construction and optimization strategies to biosynthesize flavonoids and to improve their titer and yield. Then, we discuss the current challenges and future perspectives on successful strain development for large-scale production of flavonoids in an industrial level.
Monoterpenoids, such as the plant metabolite geraniol, are of high industrial relevance since they are important fragrance materials for perfumes, cosmetics, and household products. Chemical synthesis or extraction from plant material for industry purposes are complex, environmentally harmful or expensive and depend on seasonal variations. Heterologous microbial production offers a cost-efficient and sustainable alternative but suffers from low metabolic flux of the precursors and toxicity of the monoterpenoid to the cells. In this study, we evaluated two approaches to counteract both issues by compartmentalizing the biosynthetic enzymes for geraniol to the peroxisomes of Saccharomyces cerevisiae as production sites and by improving the geraniol tolerance of the yeast cells. The combination of both approaches led to an 80% increase in the geraniol titers. In the future, the inclusion of product tolerance and peroxisomal compartmentalization into the general chassis engineering toolbox for monoterpenoids or other host-damaging, industrially relevant metabolites may lead to an efficient, low-cost, and eco-friendly microbial production for industrial purposes.