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Objective: Amino acids (AA) and their derivatives play an integral role in the synthesis
of structural and regulatory elements in human organisms and therefore pathologies
such as systemic sclerosis that may alter the blood pattern of these compounds.
This study aimed to evaluate changes in plasma concentrations of amino acid-related
metabolites in systemic sclerosis in a search for potential biomarkers and mechanisms
of the disease.

Methods: Plasma samples from 42 patients diagnosed with systemic sclerosis (SSc)
according to the 2013 American College of Rheumatology and European League
Against Rheumatism ACR/EULAR classification criteria were compared to 27 matched
healthy controls. Liquid chromatography/mass spectrometry was applied for the
analysis of 36 amino acid-related metabolites.

Results: The analysis of plasma AA metabolite patterns revealed the number
of changes including an increase (20%) in concentrations of NO synthase
(NOS) inhibitor asymmetric dimethylarginine (ADMA) in SSc vs. healthy subjects.
Furthermore, SSc patients had higher glutamine, proline, betaine, 1-methylhistidine,
and methylnicotinamide levels, while the concentration of tryptophan was lower. The
specific metabolic pattern was identified for several aspects of disease presentation.
Most interestingly NOS inhibitor L-NAME was elevated in patients with diffuse systemic
sclerosis or telangiectasia.

Conclusions: These results provide further evidence for the involvement of
endothelium-dependent pathways in the mechanisms and presentation of SSc.
Endothelial dysfunction biomarkers may be useful in the assessment of presentation
and prognosis in SSc.

Keywords: systemic sclerosis, amino acids, metabolome, endothelium, inflammation
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INTRODUCTION

Systemic sclerosis (SSc) is an autoimmune connective tissue
disease characterized by fibrosis of the tissues, preceded
by microvascular alterations and immune dysfunction
(Zanatta et al., 2019). The proliferation of fibroblasts with
the production of excessive extracellular matrix leads to the
thickening of the skin and damage to internal organs. It is a
highly heterogeneous disease with a wide variety of clinical
presentations and is connected with increased morbidity
and mortality (Barsotti et al., 2019). SSc can occur in two
main cutaneous subsets: diffuse systemic sclerosis (dcSSc)
and limited systemic sclerosis (lcSSc) (Young and Khanna,
2015). In the lcSSc subset, skin fibrosis is mainly restricted
to distal extremities and the face, with slow accumulation of
organ involvement, while Raynaud’s phenomenon typically
occurs even years before any skin and visceral changes. By
contrast, the dcSSc subset presents a more aggressive progression
characterized by severe internal organ manifestations with
skin thickening extended proximally to elbows and knees as
well as the trunk. In the dcSSc subtype, anti-topoisomerase I
autoantibodies (anti-Scl-70) are more frequent, while in the lcSSc
subtype, anti-centromere autoantibodies are dominant features
(Kranenburg et al., 2016).

In 2013, EULAR published new criteria for SSc, which
can help early diagnose this illness (Van Den Hoogen et al.,
2013). These include main clinical features as extending
of skin involvement, finger changes as sclerodactyly, puffy
fingers, digital ulcerations and pitting scars, telangiectasia,
the presence of lungs complications (pulmonary hypertension
and/or interstitial disease) but other manifestations as from GI
tract, heart, arthritis with tendon inflammation, or calcinosis
in the skin also occur commonly in SSc. Many studies
have shown that dcSSc characterized by rapid progression
of skin thickness has been associated with earlier onset of
heart, lung involvement, and also with increased disease
severity and mortality rates due to this organ involvement
(Kumánovics et al., 2017). Predicting which organs are likely
to be involved, and better understanding who is at the risk for
potentially devastating complications is critical for appropriate
patient counseling.

Metabolomic profiling including the analysis of plasma amino
acid balance is a new, promising biochemical approach that
can be applied for SSc screening, diagnosis, disease typing,
and treatment monitoring, as well as may be promising
for SSc biomarker discovery (Sandlers, 2020). Amino
acids play a very integral role as metabolic intermediates
and in the building block of proteins, while their plasma
concentration highly depends on the organs’ functions and
pathological conditions that alter human body metabolism
(Bröer and Bröer, 2017).

This study aimed to evaluate the changes in plasma
concentrations of amino acids and related metabolites in SSc
depending on the clinical characteristics of patients and organ
involvement regarding potential mechanisms of the disease. The
additional goal was to investigate whether individual amino acids
and their derivatives can be potential SSc biomarkers.

MATERIALS AND METHODS

Patients
This study included 42 adult patients (35 women, 7 men, aged
59.9 ± 12.4; min–max: 28–78 years) diagnosed with SSc referred
to the Outpatient Rheumatology Clinic of the Department of
Internal Diseases, Connective Tissue Diseases and Geriatrics of
the University Hospital in Gdańsk, Poland. The control group
represented age and sex-matched individuals (n = 27) with
no report of any pathology. All the investigation involving
human subjects was performed in compliance with standards
of the Declaration of Helsinki (1975/83). The study has been
approved by the Bioethics Committee at the Medical University
of Gdańsk, Poland. The diagnosis of SSc was established
according to the 2013 American College of Rheumatology
and European League Against Rheumatism ACR/EULAR
classification criteria. The SSc patients were categorized into
the limited (lcSSc, n = 21) or the diffuse cutaneous (dcSSc,
n = 21) subsets. The modified Rodnan skin score was used for
grading the cutaneous extension of sclerosis. Organ involvement
was evaluated using double-contrast esophagography, high-
resolution computed tomography (HRCT) scans, pulmonary
function tests (PFTs), two-dimensional echocardiogram, X-ray,
and ultrasonography of the musculoskeletal system. All patients
were subjected to basic routine laboratory and serological tests.
Further clinical features are summarized in Table 1.

The Analysis of Plasma Amino Acids and
Nicotinamide Metabolites
The concentrations of plasma amino acids and related
compounds were determined using liquid chromatography/mass
spectrometry (LC/MS) according to our described procedure
(Olkowicz et al., 2017) that expanded earlier use of the
reversed-phase ion-paring approach for analysis of amino acids
(Chaimbault et al., 1999). Briefly, an aliquot of plasma (0.05 mL)
was spiked with internal standards and deproteinized with
0.1 mL of acetonitrile followed by maintenance on ice for 15 min.
The tubes were then centrifuged at 4◦C, 12,000 × g for 5 min.
The supernatant was collected and freeze-dried. Samples were
then dissolved in 0.1 mL of water and analyzed with the use of
ion-pair high-performance liquid chromatography with mass
detection. Chromatographic separation was performed using
2.5 µm Synergy Hydro-RP 50 × 2.0 mm column. The mobile
phase was delivered at 0.2 mL/min in a gradient from 0 to 60%
acetonitrile in 12 min. The mass detector (TSQ Vantage, Thermo,
United States) with heated electrospray (HESI-2) ion source was
operating in positive MS2 mode for the detection of amino acids.
The electrospray cone voltage was set at 4.5 kV and a heated
capillary temperature was 275◦C. Sheath gas flow was set for
35 arbitrary units. Post column make-up flow of methanol with
0.05% formic acid at 0.2 mL/min was used to improve ionization
efficiency. The identity of individual amino acids and their
derivatives was confirmed by the similarity of molecular weights,
fragmentation pattern, and chromatographic retention time. The
procedure allowed interference-free quantitation of all analyzed
compounds including challenging molecule pairs such as SDMA
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TABLE 1 | Demographic and clinical presentation of systemic sclerosis patients
(n = 42).

Gender 85% F/15% M

Age (y) 59.9 ± 12.4 (28–78)

C-reactive protein (mg/L) 4.9 ± 4.3 (0.2–45.9)

Erythrocyte sedimentation rate (mm/h) 15.3 ± 12.3 (1.6–66.0)

Calcinosis 14%

Joint involvement 73%

Lung involvement 61%

Dysphagia 28%

Telangiectasia 65%

Scleroderma 49%

Upper GI tract involvement 45%

Heart involvement 17%

and ADMA that despite similar molecular weights produced
different fragments in MS2 mode that were used for quantitation.
Calibration was based on curve prepared in spiked plasma matrix
as we have described in detail earlier (Olkowicz et al., 2017).

Statistical Analyses
The significance of differences in the level of analyzed
compounds between patients and controls or their association
with pathology were evaluated by Student t-test or by
Mann-Whitney’s U-test when variables distribution was not
symmetrical (as confirmed by Shapiro-Wilks’ W test) or the
groups of patients were much different from the sample
size. All results are presented as mean ± S.D. with the
minima and maxima observed. p < 0.05 was considered as a
significant difference.

RESULTS

The comparison of amino acid (AA)-related metabolites
concentration between systemic sclerosis patients and healthy
control group is shown in Table 2. The patients have higher
concentration of glutamine (12% increase over control = IOC),
proline (17% IOC), 1-methylhistidine (39% IOC), betaine (23%
IOC), methylnicotinamide (MNA, 35% IOC) and asymmetric
dimethylarginine (ADMA, 19% IOC). The level of tryptophan
was lower in the SSc group than in controls by 20%.

We have demonstrated many alterations in plasma
concentrations of amino acid-related compounds that were
dependent on specific disease presentations within the SSc
patient group (Table 3). Patients with dcSSc revealed higher
concentrations of sarcosine, β-alanine, MNA and N(G)-nitro-
L-arginine Methyl Ester (L-NAME) than the lcSSc group.
Disease presentation with calcinosis was associated with a
significant elevation of glutamate, sarcosine, proline, tyrosine,
3-methylhistidine, and ornithine concentrations. Patients with
joint pain have a lower level of plasma glutamine but higher
levels of ornithine and 1-methylhistidine. Lung involvement was
associated with higher concentrations of valine and arginine.
Patients with telangiectasia have a higher concentration of

glutamate, lysine, and L-NAME. The presence of extensive skin
changes (scleroderma) was associated with lower concentrations
of a broad range of AA such as asparagine, sarcosine, proline,
histidine, ornithine, citrulline, and phenylalanine.

DISCUSSION

In this study, we investigated the plasma amino acid (AA)
profile in patients with SSc to detect potential biomarkers and
to relate particular changes in the AA pattern with clinical
characteristics of patients and organ involvement in the context
of potential pathological mechanisms. We indicated a group of
AA related compounds that have prevalent fluctuations in this
pathology. The most significant changes between SSc patients and
healthy controls were observed in plasma 1-methylhistidine (39%
increase over control, IOC) > MNA (35% IOC) > betaine (23%
IOC) > tryptophan (20% decrease over control, DOC) > ADMA
(19% IOC) > proline (17% IOC) > glutamine (12% IOC).
Moreover, we have demonstrated significant alterations in the
plasma AA levels within the SSc patient group that deserve
attention as potential molecules that may predict the specific
course of the disease and are worth further studies as clinical
biomarkers. The disturbed balance of the AA metabolites that
we observed is known to be associated with vascular endothelial
dysfunction, inflammation, or methylation disturbances.

Cardiovascular dysfunction is of fundamental importance in
SSc pathogenesis from the early onset of the disease through
the late clinical complications (Silva et al., 2015; Smoleńska
et al., 2019). In this study, we revealed an increased plasma
concentration of the endogenous NO synthase (NOS) inhibitor –
ADMA, that was increased in the entire SSc patients’ group
in comparison to healthy controls. The impaired nitric oxide
production leads to the augmentation of vasoconstrictor episodes
and pathological changes in the vascular system such as
inflammatory and thrombotic signaling or vascular remodeling
(Flavahan, 2015). Moreover patients with SSc expressed a
decreased level of plasma tryptophan. This AA could be utilized
by endothelial cells and via the kynurenine pathway may direct
them to ROS-dependent apoptosis (Duran and San Martín,
2014). Interestingly, patients with specific clinical presentations
such as dcSSc and telangiectasia revealed an elevated level of
other NOS inhibitor - L-NAME, suggesting increased severity
of the endothelial dysfunction that could mark active disease
pattern and more extended vascular injury. Therefore, our
research highlights the importance of multi-parameter profiles
of endothelium analysis in patients with SSc that will help to
track the severity of endothelial dysfunction and contribute to the
monitoring of endothelium protection therapy.

The pathogenesis of SSc involves the Th1-related early
inflammatory phase, which is then followed by a switch to Th2,
leading to irreversible fibrosis. However, in some subgroups of
SSc patients, there is a prolonged active inflammatory response.
Therefore, specific inflammatory markers were proposed as
important candidates for the diagnosis and differentiation
of the form of the disease (Ross et al., 2018). Overall,
patients with inflammatory SSc seems to represent a subgroup
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TABLE 2 | The comparison of amino acid metabolite concentrations in systemic sclerosis patients with control healthy subjects.

Control (n = 27) Systemic sclerosis (n = 42)

Mean S.D. Min Max Mean S.D. Min Max

Alanine 223.5 119.6 65.0 528.3 265.5 134.6 83.4 682.6

Asparagine 36.7 13.0 9.1 60.9 36.5 13.7 15.8 83.4

Aspartate 9.7 4.3 4.6 23.5 7.8 4.9 1.1 20.2

Arginine 67.8 22.1 17.8 113.6 76.7 26.8 38.2 167.7

Cystine 16.5 8.3 2.8 35.6 18.6 9.5 0.9 41.3

Glutamate 86.7 52.1 4.8 225.2 98.0 42.7 36.1 205.3

Glutamine 618.4 165.3 231.0 893.1 689.0* 122.3 457.2 971.1

Glycine 219.3 107.4 54.3 541.3 216.4 85.1 82.5 464.7

Histidine 88.6 21.6 31.7 120.5 93.0 27.7 43.6 166.0

Isoleucine 96.9 41.8 27.7 213.9 102.9 33.5 41.0 198.9

Leucine 129.5 36.3 28.3 190.6 131.3 31.9 81.2 233.7

Lysine 146.1 43.4 32.6 218.9 139.6 30.3 74.6 212.5

Methionine 33.3 12.4 4.7 55.5 29.8 9.0 13.5 52.7

Phenylalanine 69.0 24.2 20.1 140.9 74.8 30.1 42.0 207.5

Proline 152.5 47.3 23.7 247.1 178.8* 55.2 93.7 342.6

Serine 94.8 39.3 22.2 200.7 93.1 24.8 32.2 152.7

Threonine 141.8 52.6 34.5 238.5 141.2 41.2 77.1 282.6

Tryptophan 40.8 12.3 13.3 61.8 32.5** 9.6 11.5 66.6

Tyrosine 73.1 24.5 15.3 130.2 70.8 24.9 32.1 166.8

Valine 242.7 80.5 55.0 470.6 240.5 49.8 147.6 389.9

1-methylhistidine 4.1 1.5 0.9 7.0 5.7* 3.9 1.6 26.4

3-methylhistidine 5.1 5.6 0.5 21.7 6.4 7.5 0.0 39.6

α-aminobutyrate 26.4 9.6 6.6 51.0 25.5 9.1 9.9 52.8

β-aminobutyrate 5.1 1.3 3.0 8.3 5.6 1.3 3.5 8.3

Betaine 52.8 17.8 19.2 82.8 64.8* 20.8 29.4 117.0

β-alanine 6.1 3.7 0.5 13.1 7.1 4.3 1.3 17.6

Citrulline 39.5 15.1 9.7 69.1 40.0 13.5 17.7 81.0

Hydroxyproline 5.9 4.8 1.8 23.3 6.7 3.6 2.1 20.7

Methylnicotinamide 0.232 0.106 0.065 0.550 0.312* 0.166 0.112 0.959

Ornithine 45.6 15.9 8.5 68.6 52.2 16.2 25.8 100.8

Sarcosine 7.5 1.9 3.2 11.0 7.8 2.7 3.4 17.0

Taurine 66.7 29.6 22.8 134.4 60.0 24.0 34.7 156.6

ADMA 0.289 0.100 0.096 0.512 0.344* 0.112 0.101 0.576

L-NAME 0.051 0.015 0.026 0.081 0.056 0.018 0.030 0.102

Values are in µmol/L. *p < 0.05; **p < 0.01.

with higher morbidity and mortality. Accordingly, patients
with inflammatory SSc showed a faster decline of forced
vital capacity (FVC) over time and received more frequently
immunosuppressive treatment (e.g., cyclophosphamide, CYC)
(Mitev et al., 2019). It has been demonstrated that these patients
showed persistent long-term CRP elevations and even treatment
with CYC did not affect CRP levels. Presumably, macrophages,
less affected by CYC treatment, maintain inflammation in this
subgroup. In our patient group, systemic inflammation may be
responsible for the increased concentration of MNA in dcSSc,
while elevated sarcosine and β-alanine may relate to more
severe pathological processes and muscle injury. Moreover, the
consistent increase of betaine, 1-methylhistidine, and MNA (by
20–40%) in SSc patients in comparison to healthy controls
implies the activation of methylated derivatives formation.
One challenge is that these compounds are produced by

completely different methylation mechanisms: methylation of
histidine residues in skeletal muscle proteins in the case of 1-
methyhistidine, methylation of free nicotinamide by liver-specific
enzyme in the case of MNA, and methylation of phospholipid
elements in the case of betaine (Houweling et al., 2012; Obeid,
2013; Pissios, 2017). One common factor that is needed in all
these processes is S-adenosylmethionine. However, it needs to be
established whether the production or turnover of this molecule
is indeed stimulated in patients with SSc.

The disease presentation with calcinosis was associated with
a significant elevation of glutamate, sarcosine, proline, tyrosine,
3-methylhistidine, and ornithine concentration. It is difficult
to speculate on the mechanism but the broad range and
unidirectional trend for amino acid changes may indicate its
reduced utilization in general that may be related to impaired
mobility. Patients with joint pain have a lower level of plasma
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TABLE 3 | The concentrations of amino acid metabolites in plasma of systemic sclerosis patients that were significantly different (p < 0.05) in patients with specific
pattern of disease.

dcSSc (n = 21) lcSSc (n = 21)

Mean S.D. Min Max Mean S.D. Min Max

β -alanine 6.05 3.76 1.32 13.3 9.27 4.7 2.83 17.62

Methylnicotinamide 0.31 0.17 0.15 0.95 0.35 0.12 0.22 0.70

Sarcosine 7.35 2.91 3.81 17.03 8.98 2.36 4.22 14.35

L-NAME 0.052 0.012 0.034 0.074 0.065 0.020 0.035 0.102

Calcinosis present (n = 6) No calcinosis (n = 36)

Glutamate 146.6 57.5 36.1 205.2 98.3 37.2 41.7 201.5

Proline 246.8 35.9 214.8 315.0 178.5 50.1 102.4 342.6

Tyrosine 99.0 36.1 54.7 148.4 68.9 22.4 42.6 166.7

3-methylhistidine 14.5 13.4 2.3 39.6 5.2 5.7 0.05 22.7

Ornithine 69.3 15.0 44.1 87.7 52.8 15.5 32.6 100.8

Sarcosine 10.1 2.1 8.6 14.3 7.9 2.7 3.8 17.0

Joint pain (n = 28) No joint pain (n = 14)

Glutamine 690.6 134.9 457.2 971.1 716.3 121.8 540.8 906.3

Ornithine 58.2 17.1 32.6 100.8 47.5 12.0 33.6 74.5

1-methylhistidine 6.9 1.56 26.3 4.9 4.2 2.5 6.5 1.1

Lung involvement (n = 26) No lung involvement (n = 16)

Arginine 81.3 26.4 43.4 167.7 63.7 22.5 38.1 123.9

Valine 249.0 48.6 147.6 346.7 222.5 34.5 178.4 286.6

Telangiectasia (n = 24) No telangiectasia (n = 18)

Glutamate 112.7 44.2 36.1 205.2 89.0 39.4 45.2 201.5

Lysine 148.0 30.1 88.3 212.5 130.8 29.9 74.5 203.7

L-NAME 0.07 0.02 0.03 0.10 0.05 0.13 0.03 0.08

Scleroderma (n = 20) No scleroderma (n = 22)

Asparagine 34.9 15.2 17.8 83.3 42.0 11.3 20.0 73.0

Proline 167.1 38.7 102.5 235.6 205.0 62.7 100.0 342.7

Histidine 86.6 26.5 49.0 166.0 104.3 26.57 48.9 146.8

Phenylalanine 68.0 24.3 42.0 144.3 85.4 39.6 44.1 207.5

Citrulline 35.7 10.3 17.6 60.7 45.2 16.0 23.3 81.0

Ornithine 49.6 14.4 32.6 77.1 60.8 16.1 44.1 100.8

Sarcosine 7.2 2.6 4.0 13.2 9.2 2.3 5.6 17.0

Values are in µ mol/L.

glutamine but higher of ornithine and 1-methylhistidine. That
again may relate to impaired mobility or in the case of glutamine
to impaired immune system function (Cruzat et al., 2018).

The presence of extensive skin changes (scleroderma) was
associated with lower concentrations of asparagine, sarcosine,
proline, histidine, ornithine, citrulline, and phenylalanine. Such
a broad range of changes may indicate accelerated protein
synthesis associated with this specific disease presentation. In
turn, proline deficiency, which is an essential amino acid during
periods of increased body stress, in patients with scleroderma
can be an indicator of poor prognosis (Liang et al., 2013).
Extensive skin involvement corresponds to more severe internal
organ manifestation and increased impairment (Wu, 2009). The
differences in intestinal absorption or diet may also contribute.

Histidine and phenylalanine are nutritionally essential amino
acids and their lower levels suggest that there are disturbances in
absorption from the digestive tract in scleroderma patients. Even
90% of cases with SSc involve the digestive tract suggesting the
need for appropriate nutritional care, treatment, and dedicated
monitoring (Miller et al., 2018).

One compound that differentiated several groups was
sarcosine. This molecule is an intermediate of glycine
metabolism, being a specific substrate of sarcosine dehydrogenase
that is a mitochondrial enzyme, which converts sarcosine to
glycine. Sarcosine is formed from betaine via dimethylglycine
by dimethylglycine dehydrogenase (Augustin et al., 2016).
Concentration of sarcosine was lower in dcSSc patients
and in those with scleroderma while higher concentration
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was observed in calcinosis presentation. No differences in
betaine concentration indicate that its conversion to glycine is
responsible for the changes in sarcosine concentration. While
the exact mechanism of differences in sarcosine concentration
is difficult to propose at present, this molecule is worth further
investigation as a biomarker of specific disease complications.

CONCLUSION

This study confirmed that the pathobiology of systemic sclerosis
interferes with the plasma amino acid profile and particular
amino acid metabolites can be selected as potential biomarkers
and predictive factors that differentiate individual subtypes of
systemic sclerosis.
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Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes
mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated
metabolism and can be prevented in pre-diabetic individuals with impaired glucose
tolerance. A metabolomic approach emphasizing metabolic pathways is critical to
our understanding of this heterogeneous disease. This study aimed to characterize
the serum metabolomic fingerprint and multi-metabolite signatures associated with
IR and T2DM. Here, we have used untargeted high-performance chemical isotope
labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate
biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese
adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs
detected, 62% were either identified or matched. A group of 78 metabolites were
up-regulated and 111 metabolites were down-regulated comparing obese to lean
group while 459 metabolites were up-regulated and 166 metabolites were down-
regulated comparing T2DM to obese groups. Several metabolites were identified as
IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met)
sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-
oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation
of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides.
In conclusion, these pilot data have identified IR and T2DM metabolomics panels as
potential novel biomarkers of IR and identified metabolites associated with T2DM,
with possible diagnostic and therapeutic applications. Further studies to confirm these
associations in prospective cohorts are warranted.

Keywords: type 2 diabetes mellitus, insulin resistance, obesity, untargeted metabolomics profiling, clinical
metabolic panel, chemical isotope labeling liquid chromatography

Abbreviations: AAA, aromatic amino acids; ACN, acetonitrile; Asn, asparagine; BCAA, branched-chain amino acid; BMI,
body mass index; CIL, chemical isotope labeling; DnsCl, dansyl chloride; FA, formic acid; Gln, glutamine; HG, hyperglycemia;
His, histidine; HOMA-IR, homeostatic model assessment; INSR, insulin receptor; IR, insulin resistance; IRS-1, insulin
receptor substrate-1; LC-MS, liquid chromatography-mass spectrometry; LDL, low-density lipoprotein; LHD, lower high-
density lipoprotein; NEFAs, non-esterified fatty acids; PLS-DA, partial least squares discriminant analysis; T2DM, type 2
diabetes mellitus; Trig, triglycerides.
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INTRODUCTION

Obesity is considered the most crucial factor in the development
of several metabolic diseases such as T2DM. The prevalence
of obesity in the Middle East is increasing, where about
70% of males above 20 years old are overweight compared
to females (74%) in Saudi Arabia (Ng et al., 2014). Obesity
and T2DM are conditions that are interlinked biochemically,
metabolically, and at multiple levels making it difficult to
discern the differences in their pathologies. Although closely
interconnected, not all individuals with obesity develop diabetes
and remain metabolically healthy, while a majority of patients
diagnosed with T2DM are obese (predominant central obesity).
The strong bidirectional relationship existing between obesity
and T2DM is causally linked by IR (Al-Goblan et al., 2014) as
a result of an increased chronic low-grade inflammation and
oxidative stress, which are characteristics of both states. IR is
characterized by a decreased tissue responsiveness to circulating
insulin levels leading to defects in uptake and oxidation of
glucose, a decrease in glycogen synthesis, decreased ability to
suppress lipid oxidation, and the existence of a pro-oxidant state.
The presence of IR far precedes the onset and presentation of the
clinical symptoms of T2DM due to HG, delaying its prediction,
diagnosis, and management by several years (Sas et al., 2015).

Insulin resistance, commonly observed in patients with
obesity, affects multiple organs, including the adipose tissue,
muscle, and liver, and attenuates insulin signaling pathways.
In obese individuals, adipose tissue releases bigger amounts
of NEFAs that promote triglyceride accumulation, resulting in
worsening IR and β-cell dysfunction (Scheen, 2003). Shortly after
an acute increase in plasma NEFA levels in humans, IR starts
to develop. On the other hand, when the level of plasma NEFA
decreases, as in antilipolytic agent used cases, peripheral insulin
uptake improves. It has also been proposed the connection of
NEFA and fatty acids delivery and intracellular metabolism to
the levels of intracellular content of fatty acid metabolites such
as diacylglycerol (DAG), which activates a serine (Ser)/threonine
kinase cascade leading to Ser/threonine phosphorylation of IRS-
1 and INSR substrate-2 (IRS-2), and a reduced ability of these
molecules to activate PI3K (Snel et al., 2012). Subsequently,
events downstream of INSR signaling are diminished due to the
lipotoxicity giving rise to IR in obese individuals. Initiation of
IR forms the first phase in the pathogenesis of T2DM followed
sequentially by elevations in plasma glucose levels (that stimulate
β-cells to secrete higher amounts of insulin), oxidative stress (that
accelerates β-cell insufficiency) exacerbating the existing HG,
ultimately leading to apoptosis (β-cell death) and development
of overt T2DM (Cernea and Dobreanu, 2013).

Metabolomics has recently become a powerful method
to measure subtle biochemical changes in several diseases
(Adamski, 2016). Several metabolites associated with IR and
obesity have been identified in T2DM including BCAAs,
AAA, mannose, fructose, α-hydroxybutyrate, and phospholipids
(Wang et al., 2011; Ferrannini et al., 2013; Yu et al., 2016). The
onset of T2DM is relatively long, and symptoms of T2DM can
occur at a very late stage without acute metabolic disturbances,
making it difficult for early diagnosis (Sas et al., 2015). The

current clinical practice for T2DM diagnoses, such as fasting
glucose and glucose tolerance tests, lacks efficient early diagnose
of T2DM. Identification of sensitive in vivo biomarkers that
could reflect the early onset of T2DM would be crucial for
the identification of high-risk asymptomatic diabetic individuals
for better prevention. To identify metabolomics patterns for IR
and T2DM individuals, a high-performance CIL LC-MS was
utilized in this study. Our goal is to identify potential metabolic
biomarkers for IR and T2DM, other than HOMA-IR and HG.
CIL is used to modify the chemical and physical properties
of metabolites for much-improved separation and enhanced
detection sensitivity, thereby increasing the number of detectable
metabolites (Jacob et al., 2019a; Dahabiyeh et al., 2020). Using
differential isotope labeling also provides more accurate and
precise quantification of metabolite concentration differences in
comparative samples (i.e., relative quantification) (Jacob et al.,
2019a; Dahabiyeh et al., 2020).

MATERIALS AND METHODS

Subjects
All subjects were recruited from a primary healthcare hospital
located at King Abdulaziz Medical City in Riyadh, Saudi Arabia.
All subjects underwent a medical check-up at the Department
of Medicine and were screened for medical history. The
anthropometric measurements included weight, height, waist,
and hip circumferences. The study participants comprised of
three groups: 30 adults of normal weight, 26 obese adults, and 16
adults newly diagnosed with T2DM. Exclusion criteria included
(1) patients with coronary event or procedure (myocardial
infarction, unstable angina, coronary artery bypass surgery, or
coronary angioplasty) in the previous 3 months; (2) patient on
steroids; (3) hepatic disease (transaminase > 3 times normal);
(4) renal impairment (serum creatinine > 1.5 mg/dL); (5)
history of drug or alcohol abuse; (6) participation in any other
concurrent clinical trials; (7) any other life-threatening diseases;
and (8) use of an investigational agent within 30 days of study.
Institutional review board (IRB) approval was obtained from
both King Abdulaziz Medical City Ethics Committee (Protocol
# RC12/105), and King Faisal Specialist Hospital and Research
Center (KFSHRC) (RAC# 2170 013), and all study participants
signed a written informed consent form. All volunteers were
properly instructed to fast for 12 h before the day appointed
for vein puncture.

Chemicals and Reagents
Liquid chromatography-mass spectrometry grade reagents,
including water, ACN, methanol, and FA, were purchased from
Fisher Scientific (Ottawa, ON). 13C-DnsCl was available from
Nova Medical Testing, Inc. (Edmonton, Canada) with the
procedures published previously (Zhao et al., 2019).

Metabolomic Profiling Workflow
Supplementary Figure S1 shows the schematic of the overall
metabolomics analysis workflow. Each sample was derivatized
by 12C-DnsCl, while a pooled sample generated by mixing of
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aliquots of all individual samples was labeled by 13C-DnsCl.
The 13C-labeled pool sample served as an internal standard
for all 12C-labeled individual samples. The sample amount of
each sample was normalized using the LC-UV method (Wu and
Li, 2012). The 12C-labeled individual sample was mixed with
the same mole amount of 13C-labeled pool. The mixture was
injected onto LC-MS. All the labeled metabolites were detected
as peak pairs on mass spectra. The peak area ratios were used
for quantitative metabolomics analysis; the same 13C-labeled pool
was spiked into all 12C-labeled individual samples, and thus the
peak ratio values of a labeled metabolite in different samples
reflected the concentration differences of this metabolite in these
samples. In other words, every 12C-labeled metabolite from an
individual sample had its corresponding 13C-labeled metabolite
in the pooled sample as a reference, resulting in high accuracy for
relative quantification (Jacob et al., 2019a; Dahabiyeh et al., 2020).

Serum Samples and Dansylation
Labeling
Serum samples including lean control (n = 30), obese (n = 26),
and T2DM (n = 16) were collected and stored at−80◦C. A 15 µL
sample was used and the metabolites were extracted by protein
precipitation with 45 µL of methanol. After 2 h incubation
at −20◦C, 45 µL of supernatant was dried and then mixed
with 25 µL of water, 12.5 µL of ACN, 12.5 µL of sodium
carbonate/sodium bicarbonate buffer, and 25 µL of 12C-DnsCl
or 13C-DnsCl (18 mg/mL in ACN). The mixture was incubated
at 40◦C for 45 min and 5 µL of 250 mM NaOH were added and
incubated for 10 min at 40◦C. Twenty-five µL of 425 mM FA in
1:1 ACN/H2O was added to consume excess NaOH.

LC-UV
Before LC-MS injections, sample normalization was performed
to minimize variations in the total sample amount of individual
samples when comparing samples. A step-gradient LC-UV
method measured the total concentration of dansyl labeled
metabolites (Wu and Li, 2012). In brief, 5 µL of the labeled
sample was injected into a Phenomena’s Kinetes C18 column
(2.1 mm× 5 cm, 1.7 µm particle size, 100 Å pore size) connected
to a Waters ACQUITY UPLC system (Waters, Milford, MA,
United States). Mobile phase A was 0.1% (v/v) FA in 5% (v/v)
ACN, and mobile phase B was 0.1% (v/v) FA in ACN. The
6.5 min LC gradient including: t = 0 min, 0% B; t = 1 min,
0% B; t = 1.1 min, 95% B; t = 2.6 min, 95% B; t = 3.1 min,
0% B, and the flow rate was 0.45 mL/min. PDA detector was
operated at 338 nm. The area under the peak representing the
total concentration of dansyl-labeled metabolites was integrated
using Waters Empower (V6.00).

LC-MS
Each sample was labeled by 12C-DnsCl and mixed in equal
mole amount with a 13C-labeled pool sample based on the
quantification results from LC-UV analysis. The samples were
analyzed by a Dionex Ultimate 3000 UHPLC System (Thermo
Scientific, Sunnyvale, CA, United States) connected to Maxis II
quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker,

Billerica, MA, United States). The analytes were separated using
a reversed-phase Eclipse Plus C18 column (2.1 mm × 10 cm,
1.8 µm particle size, 95 Å pore size) (Agilent Inc., Santa Clara,
CA, United States). Mobile phase A was 0.1% (v/v) FA in 5%
(v/v) ACN, and solvent B was 0.1% (v/v) FA in ACN. The
LC gradient was: t = 0 min, 20% B; t = 3.5 min, 35% B;
t = 18 min, 65% B; t = 21 min, 99% B; t = 34 min, 99% B,
and flow rate of 0.18 mL/min. MS conditions were as follows:
polarity, positive; dry temperature, 230◦C; dry gas, 8 L/min;
capillary voltage, 4500 V; nebulizer, 1.0 bar; endplate offset, 500 V;
spectra rate, 1.0 Hz.

The quality control (QC) sample was prepared by mixing
the 12C- and 13C-labeled pooled samples in equal mole. A QC
injection was performed every 15 LC-MS sample runs. In total,
there were 14 QC samples injected and analyzed. Peak pairs
with ratio values having >±25% RSD in the QC samples
were filtered out.

Data Analysis
The MS spectra of the detected analytes were converted into.cvs
files using Bruker Daltonics Data Analysis 4.3 software. The raw
data generated from multiple LC-MS runs were processed by
peak picking, peak pairing, and peak-pair filtering to remove
redundant peaks (IsoMS; Zhou et al., 2014). IsoMS files from
each injection were aligned together based on the peak’s accurate
mass and retention time to generate the aligned file. The missing
peak pair information in aligned files was re-extracted from
raw data by Zerofill software (Huan and Li, 2015). The final
metabolite-intensity data file was used for statistical analysis after
normalization and/or scaling. The PLS-DA was performed by
MetaboAnalyst1.

Metabolite identification was carried out using the three-
tier metabolite identification approach (Zhao et al., 2019). In
tier 1, peak pairs were searched against a labeled metabolite
library (CIL Library) based on accurate mass and retention
time. The CIL Library (i.e., dansyl amines and phenols) contains
711 experimental entries, including metabolites and dipeptides
(Huan et al., 2015). In tier 2, linked identity library (LI Library)
was used for identification of the remaining peak pairs. LI
Library includes metabolic-pathway-related metabolites (more
than 7000 entries extracted from the KEGG database), providing
high-confidence putative identification results based on accurate
mass and predicted retention time matches. In tier 3, the
remaining peak pairs were searched, based on accurate mass
match, against the MyCompoundID (MCID) library composed
of 8021 known human endogenous metabolites (zero-reaction
library) and their predicted metabolic products from one
metabolic reaction (375,809 compounds) (one-reaction library)
and two metabolic reactions (10,583,901 compounds) (two-
reaction library) (Li et al., 2013). The identified features were
processed for building the IR and T2DM models using Multiple
Professional Profiler (MPP) Software (Agilent Inc., Santa Clara,
CA, United States) to construct the Venn diagrams, clustering
heat maps, and the profiles.

1www.metaboanalyst.ca
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RESULTS

Demographic Data of Study Participants
Demographic data of study participants are summarized
in Table 1. The study groups are lean, obese, and newly
diagnosed obese with T2DM. Both obese and T2DM
groups were significantly older than the normal weight
group. Few subjects from groups 2 and 3 were on statins
or other cholesterol-lowering agents, angiotensin-converting
enzyme inhibitors (ACE-I) or other anti-hypertensives, non-
steroidal anti-inflammatory drugs, or anti-oxidants and
they were on stable doses for the last 2 months of their
participation in the study. T2DM group had significantly
higher LDL and Trig and HDL when compared to the healthy
disease-free groups.

Metabolomics Results
Based on the unique characteristics of the peak pair of the
CIL LC-MS method, 3633 peak pairs were detected in the
participants’ samples (the full data can be found in https://www.
ebi.ac.uk/metabolights/MTBLS2098) (Supplementary Table S1).
The IsoMS software filtered out redundant peak pairs such
as those from adduct ions, dimers, multimers, etc., to retain
only one peak pair ([M + H]+) for each metabolite. Thus, the
number of peak pairs detected reflects the number of detected
metabolites. From the detected peak pairs, 216 metabolites were
positively identified using both retention time and accurate mass
searching against the labeled metabolite library (CIL Library).
One hundred thirty-five peak pairs were putatively identified
based on accurate mass and predicted retention time matches
by searching against the LI Library. Six hundred and eleven
and 1296 metabolites were putatively matched with the zero-
reaction and one-reaction library via accurate mass only by
searching against the MCID library, respectively. Thus, 62.2% of
the 3633 peak pairs detected were either identified or matched,
which shows the significant coverage of the submetabolome using
the dansylation labeling LC-MS method for the serum samples
analyzed in this study.

TABLE 1 | Demographic data of study participants.

Lean (n = 30) Obese (n = 26) T2DM (n = 16)

Age (years) 25.7 ± 5.77 36.2 ± 12.12† 49.4 ± 12.12†‡

Geniler (FM) (11/19) (17/9) (4/12)

BMI (kg/m2) 23.0 ± 1.48 38.8+8.59† 32.7 ± 7.61†

Glucose (mmol/L) 5.1 ± 0.5 5.4 ± 0.67 10.2 ± 4.99†‡

HbA1c – 5.3 ± 1.73 8.7 ± 2.82†

LDL(mmol/L) 2.5 ± 0.94 3.0 ± 0.81 3.6 ± 0.72†

HDL (mmol/L) 1.35 ± 0.16 1.18 ± 0.27† 1.01 ± 0.21†

Trig (mmol/L) 0.83 ± 0.33 1.26 ± 0.61 2.01 ± 1.04†

Insulin (µU/mL) 4.59 ± 2.04 9.98 ± 6.17† 7.44 ± 8.53

HOMA-IR 1.03 ± 0.56 2.30 ± 1.44† 2.80 ± 2.55

Results are presented as Mean ± SD. †p < 0.05 vs normal weight subjects.
‡P < 0.05 vs obese.

Statistical Analysis Between Study
Groups
Multivariate statistical analysis was performed to analyze the
serum metabolome dataset. PLS-DA was first performed to
reveal the distinct separation between the groups visually. The
metabolome dataset was analyzed to see the separation between
lean and obese groups, as shown in Supplementary Figure S2A,
where the clusters of two groups were separated with Q2 = 0.737
and R2 = 0.972. Univariate analysis to further analyze the
metabolome changes using volcano plots was performed on
the metabolome set. In the volcano plot, the x-axis is the fold
change (FC) of the obese group over the lean control group,
and the y-axis is the p-value from the t-test for comparing
the two groups., The q-value (false discovery rate) less than
0.05, and FC > 1.5 (or FC < 0.67) were used to determine
metabolites with significance, that has been calculated using R
Script. Herein, the cutoff p-value equals q-value, which is 0.05.
The FC criterion chosen was based on the technical accuracy and
reproducibility, i.e., for dansylation LC-MS, the errors and RSD
values are less than ± 25%. Thus, we conservatively used ± 50%
change as the criterion. In Supplementary Figure S2B, a total of
189 metabolites were dysregulated. Among them, 78 metabolites
were up-regulated (FC > 1.5) and 111 metabolites were down-
regulated (FC < 0.67) comparing obese to lean group. By
searching against our dansyl standard library using these 189
metabolites, 30 of them were positively identified.

A clear separation was observed with Q2 = 0.885 and
R2 = 0.985 from the PLS-DA score plot of T2DM and obese
groups in Supplementary Figure S2C. The clear separation
illustrates that obese and T2DM groups experienced some
significant metabolome alterations. From the volcano plot
showed in Supplementary Figure S2D, 459 metabolites were
up-regulated (FC > 1.5), and 166 metabolites were down-
regulated (FC < 0.67) comparing T2DM to obese groups. The
cut-off p-value here is 0.038 (when q-value = 0.05). Sixty-seven
metabolites out of 625 were positively identified using the Dnsyl
library. PLS-DA analysis was also performed to the lean vs T2DM.
Two clusters were well separated on the PLS-DA score plot
with Q2 = 0.809 and R2 = 0.977 as shown in Supplementary
Figure S2E. From the volcano plot showed in Supplementary
Figure S2F, 189 metabolites were up-regulated (FC > 1.5), and
117 metabolites were down-regulated (FC < 0.67) comparing
lean to T2DM groups. The cut-off p-value here is 0.068 (when
q-value = 0.05). Three hundred and five metabolites were
common between the three groups and were used in the
downstream analysis for building the IR and T2DM models.

Metabolic Profile for Study Confounder
Metabolomics expression in human serum is highly sensitive to
specific physiological changes such as age, BMI, LDL-cholesterol
(LDL-C), etc. (Jacob et al., 2019b). In this study, BMI, age, and
LDL-C are the main confounders that were considered in the
downstream data analysis. The values of these confounders for
the study participants were integrated into the metabolomics
dataset. Pearson similarity test (R = 0.95–1) reveals 27 metabolites
depend on BMI (Figure 1A), and 56 metabolites on age
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FIGURE 1 | Pearson similarity tests (r = 0.95–1) were filtered out with 27, 56, and 42 metabolites as (A) BMI-dependent; (B) age-dependent, and
(C) LDL-C-dependent, respectively.

(Figure 1B), while 42 depend on LDL-C (Figure 1C). These
confounders-related metabolites were excluded from IR and
T2DM metabolic profiles. HOMA-IR and glucose-dependent
metabolites were also determined using the same similarity
approach as the other diabetic confounders and used to compare
them with the final metabolic pattern of IR and T2DM.

IR Metabolic Pattern
Insulin resistance metabolic pattern was built using a model
where dysregulated metabolites in obesity remained unchanged
in T2DM compared to the lean group. After one-way ANOVA
and Tukey honest significant difference (HSD) analysis,
significantly different metabolites for each pair of groups were
demonstrated in a Venn diagram by applying IR metabolic model
on overall detected features, 351 identified and unidentified
metabolites fell within this IR pattern (Supplementary
Figure S3A), only 66 feature were up-regulated and 100 down-
regulated in both obese and T2DM compared to lean as shown
in Supplementary Figures S3B–D. The identified metabolites
between the study groups (n = 305) were further analyzed to
extract the IR metabolic pattern (Figure 2A). IR metabolic group
were 43 metabolites that are statistically significant between both
the lean vs obese and lean vs T2DM groups, and insignificant
between obese vs T2DM. Figure 2B shows the breakdown of
the 43 metabolites based on FC analysis (FC > 1.5 or <0.67),
where 18 metabolites (G18) were up-regulated in both obese
and T2DM compared to lean group (Figure 2C), while nine

metabolites (G9) were down-regulated in both obese and
T2DM compared to lean (Figure 2D). Among the identified IR
metabolic panel, the up- and down-regulated metabolites (G18,
and G9, respectively) were further analyzed to exclude BMI-,
age, and LDL-C-related metabolites (Supplementary Figures
S4A,B). Only nine metabolites were down-regulated in obesity
and T2DM and are independent of these three confounders
(Supplementary Figure S4B).

T2DM Metabolomics Pattern
In this study, a metabolomics pattern for T2DM has been
determined by extracting the metabolites that significantly
unchanged between the lean and obese groups and significantly
dysregulated in T2DM compared to both lean and obese groups.
As shown in Supplementary Figure S5A, out of 3633 detected
features, 605 metabolites were dysregulated in T2DM compared
to both lean and obese groups based on one-way ANOVA Tukey
HSD cutoff (FDRp < 0.05). A total number of 529 significantly
changed metabolites were filtered out based on FC analysis
(FC > 1.5 or < 0.67) (Supplementary Figure S5B). One hundred
eighty metabolites were down-regulated (G180) (Supplementary
Figure S5C), and 349 (G349) were up-regulated (Supplementary
Figure S5D) in T2DM compared to both lean and obese groups.
Applying the same analysis on the identified molecules (n = 305),
62 metabolites were dysregulated in T2DM compared to both
lean and obese groups (FDRp < 0.05), as shown in Figure 3A.
Fifty-six metabolites out of 60 were significantly dysregulated
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FIGURE 2 | IR metabolic model based on the positively identified features. (A) A Venn diagram showing that out of 3633 detected features, only 305 (˜8%)
metabolites were positively identified. 43 (G43) significant metabolites were considered a metabolic pattern for IR, where they were statistically significant between
lean vs obese and lean vs T2D, and insignificant between obese vs T2D (FDR-corrected p-value < 0.05). (B) A Venn diagram showing the number of the up- and
down-regulated metabolites after fold change analysis (cutoff l.5) on the significant metabolites (G43) (nine and 18 metabolites, respectively). (C) The expression
profile of G18 and (D) G9 metabolites.

based on FC analysis (FC > 1.5 or < 0.67) (Figure 3B), where
31 metabolites were up-regulated (Figure 3C), and 23 down-
regulated (Figure 3D) in T2DM compared to other groups.
After applying the confounder filters (BMI, age, and LDL-C) on
these 54 metabolites (Supplementary Figures S6A,B), T2DM
metabolic profile, 19, and 23 metabolites were up-regulated
and down-regulated as BMI, age, and LDL-C-independent
metabolites, respectively, as summarized in Figure 4.

Biomarkers Evaluation for IR and T2DM
Metabolic Patterns
The nine metabolites of IR metabolic pattern are independent
of glucose, HOMA-IR, and insulin as shown in Supplementary
Figures S7A–C. On the other hand, the 42 metabolites of
T2DM metabolic pattern were found to be HOMA-IR- and
insulin-independent. However, only 11 metabolites were found
to be glucose-dependent and up-regulated in T2DM compared
to other groups (Supplementary Figure S7A). Heat maps
that show cluster analysis of the entire average expression of
each metabolite for IR specific panels (n = 9) (Figure 5A)
and T2DM specific (n = 42) (Figure 5B) were generated
after excluding all confounder related metabolites. The glucose-
dependent metabolites are highlighted in these heat maps,
which were created by Entities Hierarchical clustering for the

average normalized data, and the similarity-based on Pearson.
Also, two metabolites were gender-dependent and are up-
regulated in males (prolyl-leucine and prolyl-isoleucine). The
nine metabolites that represent IR metabolic pattern were
analyzed as potential biomarkers, where the area under the
curve (AUC) of the receiver operating characteristic (ROC)
analysis was found 0.77 for the top changed five metabolites;
serotonin, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate,
Asn, His, and methionine (Met) sulfoxide, when the comparison
was done between the lean and obese groups (Figures 6A,B).
Another comparison for the ability of this panel to predict
IR in T2DM patients was performed for the same set of
metabolites and found five metabolites (serotonin, 2-methyl-
3-hydroxy-5-formylpyridine-4-carboxylate, His, Met sulfoxide,
and 4, 6-dihydroxyquinoline) to have AUC 0.79 (Figures 6C,D).

The T2DM metabolic panel with 42 metabolites was evaluated
for being used as potential biomarkers using the AUC of the
ROC analysis. Pipecolate, cytidine, homogentistic acid, cystenyl-
glycine, phosphoethanolamin, 7-caraboxy-7-carbaguanidine,
glutaminyl-leucine, 3,4-dihydroxymandelate, hydroquinone, and
alanyl-Ser were found to be the highest to predict hyperglycemic
diabetic patients from lean and obese with AUC 0.958 and
0.975, respectively.

The top-scoring IPA metabolomic networks “cell-to-cell
signaling and interaction, molecular transport, small molecule
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FIGURE 3 | T2DM metabolic model based on the identified features only. (A) Among the positively identified metabolites, 62 features were considered T2DM
metabolic profile, where they are statistically significant between lean and T2DM, and obese and T2DM, and insignificant between lean and obese (FDR-corrected
p-value < 0.051). (B) Fold change analysis (cutoff 13) separates these 62 significant metabolites into up- and down-regulated in T2DM compared to both lean and
obese groups (31 and 23 metabolites, respectively). (C) Representative profile of the up-regulated (G31) and (D) down-regulated (G23) metabolites.

biochemistry” (Figure 8A), and “cellular compromise, lipid
metabolism, small molecule biochemistry” (Figure 8B), are
depicted for IR and T2DM metabolic patterns, respectively.

DISCUSSION

Insulin resistance is observed when higher than normal insulin
concentrations are needed to achieve normal metabolic responses
or when normal insulin concentrations fail to achieve a normal
metabolic response (Kahn, 1978; Campbell et al., 1988). IR
can be identified earlier than insulin secretion failure and is
not always associated with the development of diabetes when
islet cell secretion can keep up with normal insulin demand.
Many methods and indices are available for the estimation of
IR. At present, the most reliable reference methods available
for estimating IR are hyperinsulinemic-euglycemic clamp and
intravenous glucose tolerance test. The glucose clamp approach
has several limitations such as time-consuming, labor-intensive,
expensive, and requires an experienced operator to manage the
technical difficulties. Other simple methods, from which indices
can be derived, include homeostasis model assessment (HOMA-
IR), quantitative insulin sensitivity check index (QUICKI), and
Matsuda index developed by Matsuda and DeFronzo (1999).
These indices are used in epidemiological and clinical studies

to predict diabetes development in a non-diabetic population.
HOMA-IR is a model of the relationship between insulin and
glucose dynamics that predicts fasting steady-state insulin and
glucose concentrations for a wide range of possible combinations
of IR and β-cell function. HOMA-IR values inversely connected
to insulin sensitivity (Gutch et al., 2015). Nevertheless, HOMA-
IR has limitations in subjects with a lower BMI, a lower β-cell
function, and high fasting glucose levels such as lean T2DM with
insulin secretory defects (Kang et al., 2005). Recently, Quantose
IR Test has been introduced commercially. Quantose IR Test is a
fasting blood test that measures a panel of biomarkers comprised
of a small organic acid [alpha-hydroxybutyric acid (AHB), two
lipids (oleic acid and linoleoylglycerophosphocholine (LGPC)],
and insulin. In our present study, the top five metabolites;
serotonin, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate,
Asn, His, and Met sulfoxide were found to have a significantly
high discriminatory capacity in identifying IR. Aside from these,
we also identified three amino acids (Gln, Asn, and His) and 4,6
dihydroxyquinoline [product of tryptophan (Trp) metabolism]
to be associated with the IR metabolic profile. A high-fat
diet in animal models reduced the levels of Gln and Asn
(gluconeogenic amino acids) and 4,6-dihydroxyquinoline (Liu
et al., 2017). Higher levels of Gln and His (suppressor of hepatic
gluconeogenesis) are known to be significantly associated with a
lower risk for incident T2DM (Kimura et al., 2013; Chen et al.,
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FIGURE 4 | IR and T2DM metabolic panel data mining scheme. IR metabolic model was generated based on the fold change difference (FC cutoff 1.5) and
statistically significant features between lean vs obese and lean vs T2D, and insignificance between obese vs T2D (FDR-corrected p-value < 0.05; n = 27
metabolites; 18 up-regulated, and nine down-regulated) T2DM metabolic panels were built based on fold change (FC cutoff 1.5), and statistical significance between
lean and T2DM, and obese and T2DM, and insignificance between lean and obese (FDR-corrected p-value < 0.05) (n = 54 metabolites: 31 were up-regulated, and
23 down-regulated). These panels underwent several filtration stages to exclude BMI, age, and LDL-C effects. Eventually, the remaining metabolites in each panel
were correlated with HOMA-IR and glucose levels.

2019) while lower levels of circulating Asn are associated with
increased BMI, IR, and HG (Banerji, 2015; Ottosson et al., 2018).
Consistent with these findings, we found a decrease in the levels
of Asn in obese T2DM compared to the obese and the lean
groups, while the levels of Gln and His were lowered more in the
obese than the obese T2DM patients.

Several studies have shown a correlation between certain
amino acids and the development of diabetes years later.
The mechanism by which elevations in plasma of certain
amino acids links to the development of T2DM is currently
unclear (Yamada et al., 2015; Chen et al., 2019; Vangipurapu
et al., 2019). Glutamate (Glu) was the most strongly associated
metabolite with T2DM, followed by increased levels of BCAA
(Ottosson et al., 2018). Glu and Asn were both associated
with a composite endpoint of developing T2DM or coronary

artery disease (CAD; Ottosson et al., 2018). On the other hand,
high Gln concentrations were associated with a decreased risk
of incident T2DM (Chen et al., 2019) and decreased blood
glucose in adolescents with T1DM after exercise while IR was
unaltered during the euglycemic clamp (Torres-Santiago et al.,
2017). Gln supplementation also reduced waist circumference in
overweight and obese humans and improved insulin sensitivity
in DIO Wistar rats (Abboud et al., 2019). Similarly, His oral
supplementation improved IR (DiNicolantonio et al., 2018).
His metabolism in T2DM may affect insulin sensitivity. His
metabolism by the gut microbiota, in some T2DM patients,
increases imidazole propionate levels which can decrease insulin
sensitivity (Koh et al., 2018). Reduction of Gln, Asn, and
His in obese and T2DM in this study is consistent with the
previous reports of their role in increasing insulin sensitivity.
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FIGURE 5 | (A) A heat map for IR metabolic panel (n = 9), where all of them are glucose, insulin, and HOMA-IR independent. (B) A heat map for T2DM specific
metabolic panel (n = 42) after excluding BMI, age, LDL-C, and HOMA related metabolites, where 11 of them are glucose dependent (*). The heat maps were created
by entities hierarchical clustering for the average normalized data, where the similarity based on Euclidean. Two metabolites were gender dependent (up-regulated in
male, #).

Metabolites detected in the serum were decreased in obese
and T2DM groups compared to lean subjects. Prominent
decreases were also observed for metabolites from amino
acids including 4,6-dihydroxyquinoline, Met sulfoxide, and L-
2-amino-3-oxobutanoic acid. It is interesting to note that 4,6-
dihydroxyquinoline was reported to be inhibited in high-fat
diet-fed rats compared to normal diet controls (Liu et al., 2017).
On the other hand, Met is one of the most susceptible to reactive
oxygen species (ROS), resulting in both S and R diasteroisomeric
forms (oxidation) of Met sulfoxide. Two Met residues in serum
albumin (Met-111 and Met-147) are highly oxidized to Met
sulfoxide in patients with diabetes (Suzuki et al., 2016) and the
higher Met sulfoxide content in apoA-I from diabetic patients
is consistent with lipid peroxidation products levels in plasma
(Brock et al., 2008). Oxidative damage, mainly Met sulfoxide
residues apolipoprotein B100 of LDL, was also increased in
T2DM (Rabbani et al., 2010). The data on Met sulfoxide in this
study contradict these studies and require further examination to
elucidate the reduction of Met sulfoxide and its relation to IR.

Other serum metabolites that were reduced in IR include
2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, and
serotonin or 5-hydroxytryptamine (5-HT). Reduction in
2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, an
intermediate metabolite in vitamin B6 metabolism, observed

in this study is consistent with the fact that vitamin B6 has
been reported to help regulate blood glucose levels and insulin
release (Liu et al., 2016). Moreover, low B6 levels have been
associated with diabetic complications, such as neuropathy and
retinopathy (Ellis et al., 1991; Nix et al., 2015), and to help
in reducing diabetes complications (Kannan and Jain, 2004).
Serotonin improves insulin sensitivity through serotonylation
of Rab4, which likely represents the converging point between
insulin and serotonin signaling cascades (Al-Zoairy et al., 2017).
Bioinformatic and network pathway analysis carried out using
IPA identified dysregulation of insulin as the central node in
the pathway related to IR (Figure 8A). The second node with
the highest connectivity in the network was serotonin, which
showed that the highly interconnected regulation of serotonin
with insulin altering the insulin signaling pathway. Moreover,
5-hydroxyindoleacetic acid (5HIAA), a breakdown product of
serotonin, is down-regulated in the urine of diabetic patients.
Serotonin plays a key role in controlling insulin secretion and its
absence could lead to diabetes (Robinson, 2009). Elevation of the
brain serotonin level may be regarded as an effective approach to
treat T2DM and its complications (Derkach et al., 2015).

Branched-chain amino acids, including essential amino acids,
play key roles in the energy homeostasis regulation, nutrition
metabolism, gut health, immunity, and diseases. A positive
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FIGURE 6 | (A,B) Lean vs obese ROC analysis for IR top five metabolites. (C,D) Lean vs T2DM.

association between increased circulating BCAAs with higher
T2DM risk (Lotta et al., 2016) and IR in obese or diabetic
patients (Zhao et al., 2016) has been reported. Similarly, AAA
are strongly associated with the development of T2DM and
IR (Yang et al., 2018). In a recent prospective study, aimed
at identifying novel metabolic biomarkers predictive of future
diabetes in 11,896 young adults from four Finnish cohorts, the
strongest biomarkers of diabetes risk were BCAA and AAA
(Ahola-Olli et al., 2019). In another targeted metabolomics
platform, BCAA, AAA [phenylalanine (Phe) and tyrosine (Tyr)],
Glu/Gln, Met, and C3 and C5 acylcarnitines were found to
be strongly associated with IR (Newgard et al., 2009; Chen
et al., 2016). A dramatic drop in BCAA and C3 and C5
acylcarnitines was observed in obese cases with T2DM following
gastric bypass or gastric sleeve (Laferrere et al., 2011; Magkos
et al., 2013). Furthermore, Leu, Ile, Val, Phe, and Tyr levels
in plasma were also found to be associated with future
development of T2DM (Wang et al., 2011; Chen et al., 2016).
However, results seem to be controversial in different races,
diets, and distinct tissues (Zhao et al., 2016). Recently, Lone
et al. reported an association between five essential [Ile, Leu,
lysine (Lys), Phe, and Val] and five non-essential [alanine
(Ala), Glu, Gln, glycine (Gly), and Tyr] amino acids and the

prevalence of T2DM (Lu et al., 2019). Association with the
incidence of T2DM and four essential (Ile, Leu, Trp, and Val)
and two non-essential (Gln and Tyr) amino acids was also
reported while the accumulation of Gln and Gly was associated
with T2DM lower risk (Lu et al., 2019). Moreover, abnormal
circulating amino acid profiles in obesity, T2DM, and metabolic
syndrome as measured by UPLC-TQ-MS demonstrated a decline
in serum Gly and an increase in Val, Ile, Glu, and proline
(Pro) in obesity, metabolic syndrome, and T2DM (Okekunle
et al., 2017). In our study, arginine (Arg), Ser, Asp, and Gly
were inhibited in T2DM whereas Asn, Gln, and His serum
levels were lower in IR. The metabolomics profile of T2DM
in our study showed the involvement of AAA through the
presence of their intermediates. Metabolites of Phe, namely,
homogentistic acid and 4-Amino-4-deoxychorismate, and of Tyr;
3,4 hydroxymandelic acid and hydroquinone, were identified.
All these variations stem from using different methodologies
and instrumentations and the fact that T2DM is a disease
caused by a complex interchange between genetic, epigenetic,
and environmental factors (diet and activity level), and that
diabetes affects many major organs, including the heart, blood
vessels, nerves, eyes, and kidneys. Additionally, genetic factors
can make some people more vulnerable to diabetes. Thus, it
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FIGURE 7 | (A,B) Lean vs T2DM ROC analysis for T2DM top 10 metabolites. (C,D) Obese vs T2DM.

is hard to identify distinct metabolic patterns that could serve
as metabolic biomarkers for IR and T2DM. Moreover, in our
study, we excluded age, BMI, and LDL-C in the analysis. This
resulted in a reduction of the number of metabolites correlating
with IR and T2DM. Age was considered as a confounder factor
since both obese and T2DM groups were significantly older
than the normal weight group. This represents a limitation
for the study. Other confounders could impact IR and T2DM
metabolome panels.

An interesting metabolite that was inhibited in T2DM in our
study is pipecolate or 2 aminoadipic acid (2-AAA) which is an
intermediate of the Lys degradation pathway. Previous studies
have shown that circulating pipecolate levels were strongly
associated with obesity and metabolic syndrome and had the
ability to predict the risk of future T2DM, HG, increasing
insulin secretion in early IR, and had a lesser role in the setting
of advanced IR or T2DM (Wang et al., 2013; Libert et al.,
2018). In turn, pipecolate reported to enhance insulin secretion
in cell-based, islet, and animal model systems (Wang et al.,
2013), and contribute to a compensatory mechanism by up-
regulating insulin secretion to maintain glucose homeostasis in

early IR. It has been found to independently act on β-cells
of the pancreas to regulate the release of insulin at glucose-
dependant concentrations. It augments the release of insulin at
2.5 mmol/L whereas higher levels of glucose (>11.1 mmol/L)
inhibit this augmentation. This was also seen in our metabolic
profile where levels of pipecolic acid were reduced in T2DM
compared to the obese while those in the obese were higher
than their lean counterparts. In another study, Wang et al.
showed that treatment of diet-induced obesity with pipecolic acid
significantly reduced body weight, fat accumulation, and lowered
fasting glucose. Pipecolate regulating glycolipid metabolism is
independent of diet and exercise, implying that improving
its level can be a mean to treat diabetes (Xu et al., 2019).
Our observations of a decrease in the levels of pipecolate
in established T2DM cases are consistent with the previous
findings and a possible explanation could be that pipecolate
contribution to maintaining glucose homeostasis is overcome in
established diabetes. In this scenario, an early measurement of
pipecolate could serve as a novel potential metabolic marker of
hyperglycemia that would predict a predisposition to T2DM and
would be used in diabetes risk assessment.
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FIGURE 8 | Depicted top scoring I PA metabolomic networks. (A) “Cell-to-cell signaling and interaction, molecular transport, small molecule biochemistry“ for IR
metabolomic panel and (B) “cellular compromise, lip id metabolism, small molecule biochemistry” for T2DM metabolomic panel. The dotted lines indicate indirect
and the straight lines indicate direct relationships. Nodes colored red represent up-regulation and green represent down-regulation. The interaction networks were
generated through the use of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/).
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Few dipeptides are known to be associated with physiological
or cell-signaling effects such as ophthalmic acid in cystic
fibrosis (DiBattista et al., 2019). However, most are simply
short-lived intermediates on their way to degradation pathways
following further proteolysis. His-Ala is a dipeptide resulting
from incomplete breakdown of protein digestion or protein
catabolism. In this study, His-Ala is inhibited in T2DM.
Interestingly, His-Ala has been patented for reducing uric
acid (Patent# JP2004359663A). High levels of uric acid in
the blood are associated with increased risk of developing
diabetes (Xiong et al., 2019). On the other hand, T2DM is
associated with high serum uric acid levels and thus levels
of His-Ala could be inhibited by uric acids. Peptidases play
a pivotal role in the production, degradation, and regulation
of peptides in vivo (Tiruppathi et al., 1990; Rosenblum and
Kozarich, 2003). Prolyl peptidases are characterized by a
biochemical preference for cleaving Pro-containing peptides.
Prolyl peptidases family includes prolyl endopeptidase, prolyl
endopeptidase-like, dipeptidyl peptidase 4 (DPP4), DPP7, DPP8,
DPP9, and fibroblast activation protein (Lone et al., 2010).
DPP4 (also known as CD26) selectively cleaves dipeptides
from peptides and proteins containing Pro or Ala in the
N-terminal penultimate position (Gorrell et al., 2001; Kirby
et al., 2009). This proteolysis can alter activities of target
substrates, including the functional activity of bioactive
peptides or facilitated degradation of macromolecules by
other peptidases. DPP4 plays a major role in glucose and
insulin metabolism (Rohrborn et al., 2015). DPP4 does cleave
Ala containing dipeptides and thus lowering levels of His-
Ala could result from higher levels of DPP4 in diabetes.
Similarly, six serum dipeptides had concentrations lower
in T2DM than obese and control groups. These include
Glu-Ser, Gly-Ala, Prol-Gly, Leu-Gln, Arg-Pro, and Arg-Glu
dipeptides. Lower serum levels of these peptides could result
from increased peptidases and could represent a target for
T2DM treatment. On the other hand, other serum dipeptides
concentrations are increased in T2DM. These include dipeptides
Cys-Gly, Ala-Ser, Ala-Glu, and BCAA-Pro dipeptides, Pro-
Val, Pro-Leu, Pro-Ile. Among these dipeptides, only Ala-Glu
and Ala-Ser are glucose-dependent metabolites. Further
investigations are needed to clarify the role of these dipeptides in
diabetes.

We identified phosphoethanolamine (PE) and diethanolamine
in T2DM metabolomics profile. PE and diethanolamine
are substrates for the synthesis of phospholipids,
phosphatidylcholine (PC), and phosphatidylethanolamine
(PtdE). PE is the crucial metabolite determining the rate-limiting
step of the reaction, to produce CDP–ethanolamine via the
cytidine dependant CDP-ethanolamine metabolic pathways,
which, together with DAG, generates PtdE (Steenbergen
et al., 2005). Phospholipids are major components of all
cellular membranes with PtdE being the major phospholipid
of the mitochondrion. The CDP-ethanolamine pathway is an
important regulator of hepatic lipid homeostasis (Leonardi
et al., 2009). The involvement of PtdE and more importantly
the PtdE/PC ratio points to alterations in phospholipid pathway
that regulates muscle IR, insulin sensitivity, and to the presence

of endoplasmic reticulum stress and mitochondrial dysfunction
(Fu et al., 2011; Meikle et al., 2013). Interestingly, we also
identified two metabolites participating in the folate metabolism,
namely, 7-craboxy-7-carbaguanidine and pyrimidodiazepine.
Folate is a cofactor known to regulate major metabolic
pathways including the phospholipid pathways. Decreased
levels of folate in an animal study showed optimal folate levels
determine the synthesis of PC via the methylation of PtdE,
giving further credence to our findings of dysregulation of
phospholipids with T2DM (Zhao et al., 2018). Besides, folate
deficiency is known to predispose to obesity, lipid disorders,
and T2DM, and an increase in the metabolites involved in
its synthesis may account for a compensatory mechanism
(Li et al., 2017).

Another interesting finding in our metabolomic profiling of
T2DM is the dysregulation of the pyrimidine metabolic pathway;
cytidine, 5-amino-6-(5’-phospho-D-ribitylamino) uracil, uracil,
and aminoacrylate. Cytidine is an important molecule required
for the synthesis of di/triphosphates that act as a fundamental
source of energy for cellular reactions and are involved in
signaling pathways. Aside from being intracellular energy
molecules, nucleotides play an important role as extracellular
signaling molecules and have been described for adenosine
(Burnstock and Novak, 2013) and uridine (Yamamoto et al.,
2010) in terms of glucose regulation, IR, and diabetes. We
found a decrease in the levels of uracil in our study. Previous
studies have shown changes in the levels of nitrogen compounds,
such as nucleotides, nucleosides, and their metabolites, vary
considerably, depending on the degree of IR in obese subjects
(Yang et al., 2018). By the same inference, this role can be
extended to cytidine which is being reported in this study.
Network pathway analysis relating to HG centered around
dysregulation of signaling pathways related to ERK, p38 MAPK,
and Akt (Figure 8B). Ser and threonine kinases are known
regulators of cellular functions that include glucose metabolism,
glycogen synthesis, protein synthesis, cell proliferation, cell
hypertrophy, and cell death. These signaling pathways also
regulate proinsulin, another node identified in the network map.
Interactions of Akt and p38 MAPK are important mediators
of insulin action via modulating INSR substrate and GLUT 4
activity. HG alters the Akt and members of the MAP kinase
family signaling proteins there contributing to type 2 diabetes
(Rane et al., 2001). Interpretation of the metabolome database
thus contributes to the development of a comprehensive and
accessible dataset of detected metabolites in obese and obese
T2DM plasma samples for the discovery of disease associations
and diagnoses in future research.

The current study is the lack of an independent external
validation cohort. We plan to expand this work in the future
by recruiting more subjects from multiple centers. Another
limitation of the current study is the coverage of small molecules.
While CIL LC-MS offers a high-coverage analysis of a chemical-
group-based submetabolome, the current work only profiled
the amine/phenol submetabolome. Other submetabolomes (e.g.,
acids, carbonyls, and hydroxyls) need to be examined in the
future. In addition, we did not examine the lipidome. The
results reported in this study demonstrated significant changes
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in comparative groups, suggesting that global metabolome and
lipidome analysis is warranted in future studies where larger
cohorts of samples will be collected in order to increase both
coverage and statistical power.

CONCLUSION

Metabolomics is an emerging approach for studying metabolic
changes connected to disease development and progression.
Metabolite-profiling techniques improvement is providing the
increased extent of coverage of the human metabolome and
advances have led to the application to defining predictive
biomarkers and pathways for diseases including T2DM. Different
metabolomic profiles have been reported in obesity and
T2DM. This study identified nine metabolomics profile for
IR and 42 for T2DM after the exclusion of confounders
(age, BMI, and LDL-C). Identification and characterization
of the metabolomic pattern in obese subjects might aid in
identifying subjects at a high risk of developing metabolic diseases
such as T2DM, thus allowing early treatment intervention.
Future studies are required to establish causal relationships
between metabolic biomarkers identified in this study for
IR and T2DM and to examine their predictive values for
developing T2DM.
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Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous

disease characterized by different clinical features and treatment responsiveness.

This study aimed to compare the serum metabolomics profiles between eosinophilic

CRSwNP (eCRSwNP) and non-eosinophilic CRSwNP (neCRSwNP) and healthy controls

(HC) and explore objective biomarkers for distinguishing eCRSwNP before surgery.

Methods: Serum samples were collected from 33 neCRSwNP patients, 37

eCRSwNP patients, and 29 HC. Serum metabolomics profiles were investigated by

ultra-high-performance liquid chromatography–mass spectrometry.

Results: The analysis results revealed that neCRSwNP, eCRSwNP, and HC exhibited

distinctive metabolite signatures. In addition, eCRSwNP could be distinguished from

neCRSwNP referring to their serum metabolic profiles, and the top ten different

metabolites were citrulline, choline, linoleic acid, adenosine, glycocholic acid, L-serine,

triethanolamine, 4-guanidinobutyric acid, methylmalonic acid, and L-methionine, which

were related to several most important pathways including arginine and proline

metabolism; glycine, serine, and threonine metabolism; linoleic acid metabolism;

and purine metabolism. Among these distinctive metabolites, citrulline, linoleic acid,

adenosine, and 4-guanidinobutyric acid showed good predictabilities, and the serum

levels of citrulline, linoleic acid, and adenosine were significantly correlated with tissue

eosinophil (T-EOS) percentage and T-EOS count.

Conclusion: eCRSwNP patients exhibited discriminative serum metabolic signatures

in comparison with neCRSwNP patients and HC. These results suggested that

metabolomics profiles contributed to understanding the pathophysiological mechanisms

of CRSwNP and distinguishing its phenotypes

Keywords: chronic rhinosinusitis with nasal polyps, eosinophil, metabolomics, metabolites, biomarker

INTRODUCTION

Chronic rhinosinusitis (CRS) is a common inflammatory disease characterized by inonasal
mucosa paranasal sinuses with nasal blockage, rhinorrhea, post-nasal discharge, and olfactory
dysfunction (Yao et al., 2017). Previous studies reported that CRS affected ∼5.5–28%
of the general population worldwide, and the prevalence still continues to increase
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(Chitsuthipakorn et al., 2018; Grayson et al., 2019; Li et al.,
2019; Yao et al., 2019). Based on the presence or absence of
nasal polyp, CRS is grouped into chronic rhinosinusitis with
nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal
polyps (CRSsNP) (Bayar Muluk et al., 2019; Qing et al., 2019;
Hoy, 2020). Due to disease heterogeneity, CRSwNP is further
classified into eosinophilic CRSwNP (eCRSwNP) and non-
eosinophilic CRSwNP (neCRSwNP), and these two phenotypes
have obviously different disease characteristics, treatments, and
prognosis (Ho et al., 2018; Fujieda et al., 2019; Yao et al., 2020).
In comparison with neCRSwNP, eCRSwNP exhibits more serious
disease symptoms, a higher rate of comorbid asthma, poorer
treatment response, and a higher risk of recidivism (Ho et al.,
2018; Hoy, 2020). Thus, a pre-operative examination that could
discriminate eCRSwNP from neCRSwNP was pivotal to develop
personalized treatments and follow-up. However, endotyping of
CRSwNP is extremely challenging for rhinologists because of a
lack of objective approaches. Therefore, it is urgently needed
to develop an objective indicator or biomarker to distinguish
CRSwNP phenotypes before surgery that can improve the
prognosis and long-term management strategies.

Metabolomics is a burgeoning omics technology which
provides opportunities to establish a powerful exploratory
tool for monitoring disease status and help to expound the
pathogenesis of diseases (Kelly et al., 2017; Turi et al., 2018;
Spertini, 2020). Recent studies utilized metabolomics analysis
to evaluate the metabolic signature in airway inflammatory
diseases, such as asthma (Reisdorph andWechsler, 2013), allergic
rhinitis (Ma et al., 2020), pneumonia (Ning et al., 2018), and
chronic obstructive pulmonary disease (Adamko et al., 2015)
and identified several biomarkers and major metabolic pathways
which might improve the understanding of these disorders and
develop novel therapy target. However, no previous study has
employed metabolomics to analyze metabolites and metabolic
pathway changes in the serum of CRSwNP patients and explore
objective biomarkers to distinguish eCRSwNP before surgery.

Therefore, we aimed to evaluate the serum metabolic
signatures of CRSwNP and explore the association between the
metabolite differences and CRSwNP phenotypes. In the present
study, ultra-high-performance liquid chromatography–mass
spectrometry (UHPLC-MS) was utilized to investigate serum
metabolic profiles in eCRSwNP, comparing with neCRSwNP and
healthy control (HC). Linear regression analysis was conducted
to assess the correlation between different metabolites and
tissue eosinophil (T-EOS) percentage and T-EOS count in
CRSwNP patients.

MATERIALS AND METHODS

Participants and Settings
We recruited 70 consecutive patients with CRSwNP from June
2018 to October 2018 in our tertiary clinic. CRSwNP was
diagnosed referring to the guidelines of the European Position
Paper on Rhinosinusitis and Nasal Polyps 2012 (Fokkens et al.,
2012). Exclusion criteria are as follows: (1) other nasal or
sinus diseases, such as fungal sinusitis, allergic rhinitis, cystic
fibrosis, aspirin-exacerbated respiratory disease, and tumor; (2)

treatment including antibiotics, oral or systemic corticosteroids,
immunotherapy, or anti-allergic drugs 4 weeks before the
surgery; (3) inflammatory, septic diseases or autoimmune
diseases; (4) age <18 years or >75 years old; (5) severe heart,
kidney, or other organ dysfunction; and (6) pregnant condition.
All CRSwNP patients received routine preoperative examination,
including blood tests, nasal endoscopy, computed tomography
(CT) or magnetic resonance imaging (MRI), chest X-rays,
and electrocardiography. All participants scored their nasal
symptoms by utilizing the widely accepted visual analog scale
(VAS) as previously described (Zhu et al., 2020). Preoperative
CT score was recorded using the Lund–Mackay staging system
(Lund andMackay, 1993). A total of 29 age- and gender-matched
healthy volunteers with no evidence of rhinitis or rhinosinusitis,
diabetes mellitus, or inflammatory or autoimmune conditions
were enrolled as healthy controls (HC).

Diagnosis of eCRSwNP and neCRSwNP
During the surgery, nasal polys were obtained from all patients
with CRSwNP, then immersed in 10% formalin and embedded
with paraffin wax. The embedded tissues were sectioned at 5-µm
thickness and were stained with hematoxylin and eosin (H&E)
for the visualization of eosinophils. The numbers of eosinophils,
lymphocytes, neutrophils, and plasma cells were counted in 10
randomly selected high-power fields by two observers who were
blinded to the clinical data. eCRSwNP was diagnosed when the
tissue eosinophils (T-EOS) percentage was higher than 10% of
total inflammatory cells, otherwise defined as neCRSwNP (Hu
et al., 2012; Zhong et al., 2020).

Serum Sample Collection and Preparation
Fasting peripheral whole blood from CRSwNP patients and
HC were collected with vacuum blood collection tubes in the
morning. The blood samples were centrifuged at 1,200 g for
10min at 4◦C within 1 h of venipuncture. The serum samples
were collected and stored at−80◦C. Serum samples were thawed
on ice and vortexed thoroughly. The serum samples were mixed
with 300 µL methanol and vortexed for 30 s and incubated at
−40◦C for 1 h and centrifuged at 12,000 g for 10min at 4◦C.
100 µL of supernatant was transferred to a fresh tube vial for
UHPLC-MS analysis (Dunn et al., 2011; Naz et al., 2014). The
quality control (QC) sample was utilized as previous described
to assess the stability and reliability of the analytical system (Liu
et al., 2016).

UHPLC-MS Analysis
The untargeted metabolomic analysis was performed by utilizing
a 1,290 Infinity series UHPLC System (Waters Corporation,
Milford, MA, USA). The mobile phase was composed of 25
mmol/L ammonium acetate in water was applied as phase A,
and 25 mmol/L ammonia in acetonitrile was used as phase B.
The analysis procedure was processed as previously described
(Zhao et al., 2019). The Triple TOF 6600 mass spectrometry (AB
Sciex, Boston, MA, USA) was used to obtain spectra data, and
the acquisition software (Analyst TF 1.7, AB Sciex, Framingham,
MA, USA) continuously evaluated the full-scan survey MS data.
In each cycle, the most intensive 12 precursor ions (intensity >
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100) were chosen for MS/MS at collision energy (CE) of 30 eV.
The cycle time was 0.56 s. Electrospray ionization (ESI) source
conditions were set as previous study described (Liu et al., 2016;
Zhao et al., 2019).

Data Processing and Analysis
MS raw data (.wiff) files were converted to the mzXML format
by Proteo Wizard and processed by R package XCMS V3.2. The
process includes peak deconvolution, alignment, and integration.
Peak extraction and alignment were performed by Proteo
Wizard and analyzed by R package as previous study described
(Kuhl et al., 2012; Zhao et al., 2019). Metabolites identification
refers to the In-house MS2 database. The processed data was
exported to SIMCA (Version 14.1, Umetrics, Umea, Sweden)
for multivariate analysis. Orthogonal partial least squares-
discriminant analysis (OPLS-DA) was conducted to identify the
major latent metabolites in the data matrix (Yang et al., 2020).
The quality of the models was validated by R2Ycum (goodness
of fit) and Q2cum (goodness of consistency). Meanwhile, the
200 permutations of cross-test were conducted to reduce the
risk of overfitting and possibilities of false-positive findings.
Metabolites contributing were calculated based on the variable
importance for project (VIP) values (VIP > 1.0) and P-values
(P < 0.05) (Wang et al., 2018). A volcano plot was presented
to project the metabolic regulations of the remarkable shifts
in metabolites. The receiver operating characteristic (ROC)
analysis was applied to the serum data to assess the performance
of potential biomarker, and the area under the curve (AUC)
was calculated to evaluate the sensitivity and specificity. To
identify associated metabolic pathways, the pathway analysis was
conducted using MetaboAnalyst 3.0.

Statistical Analysis
Continuous variables are described asmean± standard deviation
(SD). When the variables distributed normally, one-way analysis
of variance (ANOVA) or Student’s t-test was used, otherwise
Kruskal–Wallis H test or Mann–Whitney U-test was performed.
Discontinuous variables were described as number (percentage)
and compared using Chi-square test. To evaluate the correlation
between different metabolites and T-EOS percentage and T-EOS
count in CRSwNP patients, Spearman’s correlation analyses were
performed. Significant difference was accepted when P-value <

0.05. All statistical analyses were conducted on SPSS statistics
software version 23.0 (IBM, Chicago, IL, USA).

RESULTS

Baseline Characteristics of All Subjects
Demographic and clinical characteristics of all subjects are
listed in the Table 1. Among 70 CRSwNP patients, 33 (47.14%)
patients were identified as eCRSwNP, and the other 37 (52.86%)
patients were defined as neCRSwNP. Compared to the HC and
neCRSwNP groups, the eCRSwNP group showed higher levels
of blood eosinophil (B-EOS) count and B-EOS percentage (all
P < 0.001). However, no statistical difference was observed in
age, gender, rate of smoking, drinking, and BMI among three
groups, and VAS score and Lund–Mackay score between the

neCRSwNP and eCRSwNP groups. Typical histological findings
of neCRSwNP and eCRSwNP are exhibited in Figures 1A,B. The
T-EOS count and percentage in the eCRSwNP patients were
significantly higher than those in the neCRSwNP (all P < 0.001,
Figures 1C,D).

Metabolomic Signatures of neCRSwNP vs.
HC
The OPLS-DA model exhibited a clear and distinctive clustering
between neCRSwNP and HC (Figure 2A), R2X (cum), R2Y
(cum), and Q2 were 0.236, 0.724, and 0.202, respectively. The
OPLS-DA model was then assessed by permutation analysis, and
all permuted R2s were below or around 0.6 and all permuted
Q2s were below 0, which means that all R2s and Q2s are
lower than the original on the right (Figure 2B). Thus, this
suggests that the model fittings were valid and predictive. The
potential differential metabolites were selected referring to the
contribution of VIP (VIP > 1 and P < 0.05). Finally, a total of 20
metabolites including 11 upregulated and nine downregulated for
distinguishing neCRSwNP from HC were detected by UHPLC-
MS analysis and they are shown in Figure 2C. In addition,
metabolic pathway analysis results showed that cysteine and
methionine metabolism and purine metabolism were the major
involved metabolic pathways (Figure 2D).

Metabolomic Signatures of eCRSwNP vs.
HC
Figure 3A shows that eCRSwNP patients were distinguished
from HC based on serum metabolic profiles. In the OPLS-
DA model, R2X (cum), R2Y (cum), and Q2 were 0.254,
0.695, and 0.391, respectively, and the model was assessed by
permutation analysis, and analysis results suggested that the
model fittings were valid and predictive (Figure 3B). Compared
to HC, 49 metabolites were expressed at significantly different
concentrations in the eCRSwNP group including 39 upregulated
and 10 downregulated (Figure 3C). The most affected pathways
including arginine and proline metabolism and linoleic acid
metabolism are displayed in the Figure 3D.

Metabolomic Signatures of eCRSwNP vs.
neCRSwNP
Figure 4A exhibits that serummetabolomic profiles of eCRSwNP
patients had significantly different serum metabolomics profiles
in comparison with neCRSwNP patients. In theOPLS-DAmodel,
R2X (cum), R2Y (cum), and Q2 were 0.215, 0.509, and 0.244,
respectively. The permutation analysis results demonstrated that
the discriminating models were reliable (Figure 4B). In the
eCRSwNP group, 24 metabolites were observed at different
levels including 11 upregulated and 13 downregulated in
comparison with the neCRSwNP group (Figure 4C). The most
important pathways including arginine and proline metabolism;
glycine, serine, and threonine metabolism; purine metabolism;
and linoleic acid metabolism are displayed in the Figure 4D.
Results of top 10 potential discriminant metabolites are
displayed in the Table 2, and their relative serum concentrations
between two groups are comparatively shown in Figure 5.
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TABLE 1 | Clinical characteristics of subjects.

Variables HC (n = 29) neCRSwNP (n = 33) eCRSwNP (n = 37) P-value

Age (years), mean ± SD 28.5 ± 8.5 32.8 ± 12.2 35.1 ± 14.8 0.103

Gender (male/female), n 14/15 18/15 19/18 0.885

Smoking (yes/no), n 10/19 17/16 19/18 0.306

Drinking (yes/no), n 7/22 8/25 12/25 0.673

BMI (kg/m2 ), mean ± SD 22.2 ± 1.8 22.7 ± 1.8 22.3 ± 1.5 0.570

B-EOS counts (106/L), mean ± SD 81.2 ± 24.0 174.7 ± 84.4 405.8 ± 159.3 < 0.001

B-EOS percentage, % 1.2 ± 0.8 2.2 ± 1.0 4.5 ± 1.2 < 0.001

VAS score, mean ± SD – 5.5 ± 1.5 5.9 ± 1.7 0.300

Lund-Mackay score, mean ± SD – 18.8 ± 3.9 18.2 ± 3.8 0.499

eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; neCRSwNP, non-eosinophilic chronic rhinosinusitis with nasal polyps; HC, healthy control; SD, standard deviation; BMI,

body mass index; B-EOS, blood eosinophil; VAS, visual analog scale.

FIGURE 1 | Representative H&E staining of neCRSwNP and eCRSwNP. (A) neCRSwNP. (B) neCRSwNP. (C,D) Comparison of T-EOS percentage and T-EOS count

per HPF between neCRSwNP and eCRSwNP. Mann–Whitney U test was utilized. eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; neCRSwNP,

non-eosinophilic chronic rhinosinusitis with nasal polyps; T-EOS, tissue eosinophil; H&E, hematoxylin and eosin; HPF, high-power field. ***P < 0.001.

The ROC curves of these distinctive metabolites are depicted
in Supplementary Figure 1, and analysis results are shown
in Supplementary Table 1. Citrulline, linoleic acid, adenosine,

and 4-guanidinobutyric acid exhibited good accuracy for
distinguishing eCRSwNP (AUC > 0.7), and they were included
in Spearman’s correlation analysis to explore their association
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FIGURE 2 | Metabolomic analysis of serum samples of neCRSwNP and HC. (A,B) OPLS-DA model and permutation test of the OPLS-DA model. (C) Volcano plot.

(D) Metabolic pathway bubble chart. neCRSwNP, non-eosinophilic chronic rhinosinusitis with nasal polyps; HC, healthy control; OPLS-DA, orthogonal partial least

square-discriminate analysis.

with the severity of eosinophils infiltration in the nasal polys. The
serum levels of citrulline and adenosine were positively correlated
with T-EOS percentage and T-EOS count, while linoleic acid
levels were negatively correlated with T-EOS percentage and
T-EOS count (Supplementary Figure 2).

DISCUSSION

CRSwNP is a complex disease with persistent inflammation in
the nasal and sinonasal mucosa, and its physiopathologic
mechanisms are poorly clarified (Yamada et al., 2019).
Considering the heterogeneity, CRSwNP is divided into
eCRSwNP and neCRSwNP, and these two phenotypes have
distinctive clinical and pathologic features, drug sensitivity,
prognosis, and recurrence rate (Sivrice et al., 2020). Thus,
discriminating eCRSwNP from neCRSwNP through a simple
and reliable method before surgery is important to promote the
precision medicine and improve the management strategies. Up
to now, tissue pathological evaluation with H&E staining is the
golden standard to diagnose eCRSwNP, which is invasive and

relatively subjective and inapplicable to patients who prefer non-
surgical treatment (Brescia et al., 2020). Therefore, it is urgently
needed to develop an easy, minimally invasive, objective, and
feasible method or biomarker to identify subtypes of CRSwNP
before treatment. Our study is the first one to describe an
innovative application of metabolomics analysis in exploring
metabolic signatures to distinguish CRSwNP phenotypes. Our
analysis results showed that eCRSwNP exhibited discriminative
serum metabolites and metabolic pathway in comparison
with neCRSwNP and HC. These results suggested that serum
metabolomics was useful for developing objective biomarkers
for distinguishing eCRSwNP, and the metabolites and metabolic
pathway highlighted in the present study will help us to improve
the understanding of underlying pathogenesis of eCRSwNP and
explore new therapeutic targets.

We firstly reported that the arginine and proline metabolism
pathway was disturbed in eCRSwNP patients. Previous studies
demonstrated that arginine metabolism was pivotal in the
nitric oxide (NO) synthesis and associated with cellular
metabolism, inflammation, and immune response (Xu et al.,
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FIGURE 3 | Metabolomic analysis of serum samples of eCRSwNP and HC. (A,B) OPLS-DA model and permutation test of the OPLS-DA model. (C) Volcano plot. (D)

Metabolic pathway bubble chart. eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; HC, healthy control; OPLS-DA, orthogonal partial least

square-discriminate analysis.

2016). In a recent study, Xu et al. (2017) found that
arginine metabolism was regulated in the asthma patients, and
the elevated level of arginine promoted the production of
fraction of exhaled nitric oxide and then aggravated asthma
symptoms. In another study, the researchers reported that the
concentrations of ornithine, citrulline, creatine, creatinine, and
sarcosine were increased in the serum of asthma patients,
and they suggested that arginine metabolism was the most
crucial in the development of asthma (Quan-Jun et al., 2017).
Liang et al. (2019) observed that arginine metabolism was
significantly changed in the serum of commuters who exposure
to automobile exhaust, and the arginine metabolism dysfunction
increased oxidative stress and inflammation response and
aggravated air pollution toxicity. In the present study, we
also found that the serum concentrations of citrulline and
4-guanidinobutyric acid were significantly elevated in the
eCRSwNP group, and the AUCs for discriminating eCRSwNP
were 0.791 and 0.809, respectively, and the serum levels of
citrulline were positively correlated with T-EOS percentage
and T-EOS count. Citrulline and 4-guanidinobutyric acid were

the downstream products of arginine metabolism, and they
were proved to participate in regulating T cell proliferation
and differentiation and promote inflammatory response in
several diseases including asthma and allergic rhinitis (Xu
et al., 2017). In addition, citrulline is a key molecule in the
citrulline–arginine–NO cycle, and it has been demonstrated to
maintain the high NO production and promote the cellular
metabolism and the inflammation response (King et al., 2004;
Xu et al., 2016). Thus, we suggested that arginine metabolism
associated with the development of eCRSwNP, and citrulline
could distinguish eCRSwNP and associate with the severity of
eosinophils infiltration. Further studies are needed to discover
the underlying mechanism.

We firstly found that linoleic acid metabolism was disturbed
strongly in the serum of eCRSwNP, and the serum levels of
linoleic acid were decreased in eCRSwNP patients compared to
neCRSwNP patients and HC and were negatively correlated with
T-EOS percentage and T-EOS count, which meant linoleic acid
might be a promising biomarker for discriminating eCRSwNP
and a novel therapeutic target. Recently, increasing evidence
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FIGURE 4 | Metabolomic analysis of serum samples of neCRSwNP and neCRSwNP. (A,B) OPLS-DA model and permutation test of the OPLS-DA model. (C)

Volcano plot. (D) Metabolic pathway bubble chart. neCRSwNP, non-eosinophilic chronic rhinosinusitis with nasal polyps; eCRSwNP, eosinophilic chronic rhinosinusitis

with nasal polyps; OPLS-DA, orthogonal partial least square-discriminate analysis.

demonstrated that fatty acid metabolism played emerging roles
in regulating immune responses in allergic and inflammatory
diseases (Arita, 2016; Ishihara et al., 2019). A previous study
reported that oleic acid could reduce the production of
inflammatory cells and eosinophils in bronchial alveolar lavage
fluid, and IgE in serum of mouse models, then suppressed
the occurrence and development of asthma (Lee et al., 2019).
Previous publications showed that polyunsaturated fatty acids
could affect the functions of T cells via inhibiting its proliferation
and activation, and also could suppress the activation and
secretion of mast cells (Yu and Björkstén, 1998; Wang and
Kulka, 2015; Arita, 2016; Radzikowska et al., 2019). Linoleic
acid, a common polyunsaturated fatty acid, has been proved to
be crucial in activating both autophagy and antioxidation in a
synergistic feedback loop and greatly aids in the prevention and
treatment of multiple inflammatory disease (Wang and Kulka,
2015; Lee et al., 2019). Therefore, we have reasons to believe
that linoleic acid may play a pivotal role in the eCRSwNP
and can serve as an objective indication for distinguishing
CRSwNP phenotypes.

Another interesting finding was that the serum concentrations
of adenosine were most indicative of distinguishing eCRSwNP
and reflecting the severity of eosinophil infiltration in the nasal
polys tissue. Adenosine, an endogenous purine nucleoside, can
be accumulated during different physiologic and pharmacologic
processes, such as hypoxia, trauma, and inflammation, and
several studies suggested that it played an important role in
modulating mast cell, monocytes, and T cell functions (Gomez
et al., 2013; Yuryeva et al., 2015). A recent study reported
that adenosine was produced in high concentrations in the
serum of chronic obstructive pulmonary diseases, and the serum
levels of adenosine significantly correlated with disease severity
(Singh Patidar et al., 2018). Mao et al. (2020) found that the
levels of adenosine were significantly increased in the plasma
of chronic spontaneous urticaria and associated with disease
activity, and they also observed that plasma adenosine was a
promising biomarker for predicting treatment outcomes. Vass
et al. (2006) demonstrated that the adenosine concentrations
were elevated in the exhaled breath of allergic rhinitis and
positively correlated with NO concentrations. Collectively, these
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TABLE 2 | Top 10 metabolites discriminating eCRSwNP from neCRSwNP.

Metabolites VIP P FC AUC Pathways

Citrulline 2.73 < 0.001 4.11 0.791 Arginine and proline metabolism

Glycine 2.47 0.008 0.36 0.544 Glycine, serine and threonine metabolism

Linoleic acid 2.13 < 0.001 0.41 0.823 Linoleic acid metabolism

Adenosine 2.08 < 0.001 2.48 0.902 Purine metabolism

Glycocholic acid 1.94 0.005 2.06 0.627 Primary bile acid biosynthesis

L-Serine 1.90 0.024 0.52 0.615 Glycine, serine and threonine metabolism

Triethanolamine 1.84 < 0.001 1.93 0.524 Glycerophospholipid metabolism

4-Guanidinobutyric acid 1.80 0.002 2.37 0.809 Arginine and proline metabolism

Methylmalonic acid 1.79 0.036 1.77 0.672 Pyrimidine metabolism

L-methionine 1.72 0.010 0.62 0.690 Cysteine and methionine metabolism

eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; neCRSwNP, non-eosinophilic chronic rhinosinusitis with nasal polyps; VIP, variable importance for project; FC, fold

change; AUC, area under the curve.

FIGURE 5 | Top 10 most discriminant metabolites in their relative levels in neCRSwNP group and neCRSwNP group. neCRSwNP, non-eosinophilic chronic

rhinosinusitis with nasal polyps; eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps. Mann–Whitney U-test was used for the statistical analysis. *P < 0.05,

**P < 0.001, ***P < 0.001.

studies provide a reasonable explanation for our observation of
elevated adenosine in eCRSwNP and its value in distinguishing
CRSwNP phenotypes.

Of note, abnormal glycine, serine, and threonine metabolism
was also found in the present study, and the serum levels of
glycine and L-serine were decreased in the eCRSwNP patients.
Accordingly, serine is one of the crucial amino acids in the
synthesis of human proteins, and L-serine, another isoform of
serine, was proven to be pivotal in suppressing the production
of reactive oxygen species and reducing oxidative stress in
several inflammatory diseases (Rodriguez et al., 2019). A previous
study reported that L-serine provided components for nerve
function and exerted anti-inflammatory properties, it could
relieve chronic pain in low-back and knee pain patients (Sasahara

et al., 2020). Glycine has been previously demonstrated to
be critical in controlling the levels of oxygen species, and it
exhibits anti-inflammatory and immunomodulatory effects in
several disorders (Yang et al., 2020). Alonso et al. (2016) utilized
nuclear magnetic resonance to analyze the urine metabolites
of several inflammatory diseases and found that the serum
levels of glycine were significantly decreased. Therefore, we
ultimately believed that glycine and L-serine were associated with
eCRSwNP, and they might serve as novel metabolic biomarkers
for discriminating CRSwNP phenotypes.

Our study has several limitations. First, the sample size is
relatively small, and a validation cohort study is needed to
confirm the conclusions. Second, all included patients are from
single centers with the same ethnicity and region, which might
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limit their generalization. Third, there is a wide variation in
diagnostic criteria of eCRSwNP among previous reports, and no
clear criteria currently exists regarding the cutoff value, this may
limit the applicability of our findings. Lastly, because CRSwNP
is a nasal and sinus disease mainly characterized by local
inflammation and metabolic changes, the degrees of systemic
metabolic disturbance and metabolic pathway dysfunction are
relatively low, and these may partly influence the accuracy and
predictability of OPLS-DA and permutation models. Future
studies with larger sample sizes and unified diagnostic criteria are
needed to validate and strengthen our present conclusion.

In conclusion, we have demonstrated that serum
metabolomics could be utilized to distinguish CRSwNP
phenotypes and establish metabolic signatures which
might reflect the severity of eosinophil infiltration. These
results suggested that metabolomic profiles contributed to
understanding the pathophysiological mechanisms of eCRSwNP.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethical committee of Xiangya Hospital of
Central South University. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

ShaoX and HZ wrote the manuscript. HZ and YL collected
the sample. KG and JZ performed the data analysis. RF and

ShuX provided statistical support. ZX, FW, and WJ designed
the research study. All authors reviewed the manuscript and
approved the final version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Nos. 81770985, 81873695, and 81800917)
and Natural Science Foundation of Hunan Province (Nos.
2020JJ4910, 2018JJ2662, and 2018JJ2632).

ACKNOWLEDGMENTS

We are grateful for the help of Shanghai BIOTREE Biological
Technology Co., Ltd. (Shanghai, China) in the metabolite
detection and data analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.
2020.593976/full#supplementary-material

Supplementary Figure 1 | The ROC analysis results of top 10 most discriminant

metabolites for distinguishing CRSwNP phenotypes. ROC, receiver operating

characteristics; CRSwNP, chronic rhinosinusitis with nasal polyps; AUC, area

under the curve.

Supplementary Figure 2 | Relationship between eosinophilic infiltration and

metabolites with good predictabilities. (A–D) Correlation between T-EOS

percentage and citrulline, linoleic acid, adenosine and 4-guanidinobutyric acid.

(E–H) Correlation between T-EOS percentage and citrulline, linoleic acid,

adenosine and 4-guanidinobutyric acid. T-EOS, tissue eosinophil. Spearman

correlation analysis was used.

Supplementary Table 1 | ROC analysis results of top ten metabolites for

discriminating eCRSwNP from neCRSwNP.

REFERENCES

Adamko, D. J., Nair, P., Mayers, I., Tsuyuki, R. T., Regush, S., and Rowe, B. H.

(2015). Metabolomic profiling of asthma and chronic obstructive pulmonary

disease: a pilot study differentiating diseases. J. Allergy Clin. Immunol. 136,

571-80.e3. doi: 10.1016/j.jaci.2015.05.022

Alonso, A., Julià A., Vinaixa, M., Domènech, E., Fernández-Nebro, A.,

Cañete, J. D., et al. (2016). Urine metabolome profiling of immune-

mediated inflammatory diseases. BMC Med. 14:133. doi: 10.1186/s12916-016-

0681-8

Arita, M. (2016). Eosinophil polyunsaturated fatty acid metabolism and its

potential control of inflammation and allergy. Allergol. Int. 65, S2–S5.

doi: 10.1016/j.alit.2016.05.010

Bayar Muluk, N., Cingi, C., Scadding, G. K., and Scadding, G. (2019). Chronic

rhinosinusitis-could phenotyping or endotyping aid therapy? Am. J. Rhinol.

Allergy. 33, 83–93. doi: 10.1177/1945892418807590

Brescia, G., Alessandrini, L., Giacomelli, L., Parrino, D., Zanotti, C., Tealdo,

G., et al. (2020). A classification of chronic rhinosinusitis with nasal

polyps based on structured histopathology. Histopathology 76, 296–307.

doi: 10.1111/his.13969

Chitsuthipakorn, W., Seresirikachorn, K., Sommer, D. D., McHugh, T.,

and Snidvongs, K. (2018). Endotypes of chronic rhinosinusitis across

ancestry and geographic regions. Curr. Allergy Asthma Rep. 18:46.

doi: 10.1007/s11882-018-0800-z

Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre,

S., Anderson, N., et al. (2011). Procedures for large-scale metabolic

profiling of serum and plasma using gas chromatography and liquid

chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083.

doi: 10.1038/nprot.2011.335

Fokkens, W. J., Lund, V. J., Mullol, J., Bachert, C., Alobid, I., Baroody, F., et al.

(2012). European position paper on rhinosinusitis and nasal polyps 2012.

Rhinology 23:3. doi: 10.4193/Rhino50E2

Fujieda, S., Imoto, Y., Kato, Y., Ninomiya, T., Tokunaga, T., Tsutsumiuchi, T.,

et al. (2019). Eosinophilic chronic rhinosinusitis. Allergol. Int. 68, 403–412.

doi: 10.1016/j.alit.2019.07.002

Gomez, G., Nardone, V., Lotfi-Emran, S., Zhao, W., and Schwartz, L. B.

(2013). Intracellular adenosine inhibits IgE-dependent degranulation of human

skin mast cells. J. Clin. Immunol. 33, 1349–1359. doi: 10.1007/s10875-013-

9950-x

Grayson, J. W., Cavada, M., and Harvey, R. J. (2019). Clinically relevant

phenotypes in chronic rhinosinusitis. J. Otolaryngol. Head Neck Surg. 48:23.

doi: 10.1186/s40463-019-0355-6

Ho, J., Hamizan, A. W., Alvarado, R., Rimmer, J., Sewell, W. A., and

Harvey, R. J. (2018). Systemic predictors of eosinophilic chronic

Frontiers in Molecular Biosciences | www.frontiersin.org 9 January 2021 | Volume 7 | Article 59397636

https://www.frontiersin.org/articles/10.3389/fmolb.2020.593976/full#supplementary-material
https://doi.org/10.1016/j.jaci.2015.05.022
https://doi.org/10.1186/s12916-016-0681-8
https://doi.org/10.1016/j.alit.2016.05.010
https://doi.org/10.1177/1945892418807590
https://doi.org/10.1111/his.13969
https://doi.org/10.1007/s11882-018-0800-z
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.4193/Rhino50E2
https://doi.org/10.1016/j.alit.2019.07.002
https://doi.org/10.1007/s10875-013-9950-x
https://doi.org/10.1186/s40463-019-0355-6
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Xie et al. Metabolomics in Distinguishing CRSwNP Phenotypes

rhinosinusitis. Am. J. Rhinol. Allergy. 32, 252–257. doi: 10.1177/1945892418

779451

Hoy, S.M. (2020). Dupilumab: a review in chronic rhinosinusitis with nasal polyps.

Drugs 80, 711–717. doi: 10.1007/s40265-020-01298-9

Hu, Y., Cao, P. P., Liang, G. T., Cui, Y. H., and Liu, Z. (2012). Diagnostic

significance of blood eosinophil count in eosinophilic chronic rhinosinusitis

with nasal polyps in Chinese adults. Laryngoscope. 122, 498–503.

doi: 10.1002/lary.22507

Ishihara, T., Yoshida, M., and Arita, M. (2019). Omega-3 fatty acid-derived

mediators that control inflammation and tissue homeostasis. Int. Immunol. 31,

559–567. doi: 10.1093/intimm/dxz001

Kelly, R. S., Dahlin, A., McGeachie, M. J., Qiu, W., Sordillo, J., Wan, E. S.,

et al. (2017). Asthma metabolomics and the potential for integrative omics

in research and the clinic. Chest. 151, 262–277. doi: 10.1016/j.chest.2016.

10.008

King, N. E., Rothenberg, M. E., and Zimmermann, N. (2004). Arginine

in asthma and lung inflammation. J. Nutr. 134, 2830S−2836S.

doi: 10.1093/jn/134.10.2830S

Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., and Neumann, S. (2012).

CAMERA: an integrated strategy for compound spectra extraction and

annotation of liquid chromatography/mass spectrometry data sets.Anal. Chem.

84, 283–289. doi: 10.1021/ac202450g

Lee, S.-Y., Bae, C.-S., Seo, N.-S., Na, C.-S., Yoo, H. Y., Oh, D.-S., et al. (2019).

Camellia japonica oil suppressed asthma occurrence via GATA-3 and IL-4

pathway and its effective and major component is oleic acid. Phytomedicine 57,

84–94. doi: 10.1016/j.phymed.2018.12.004

Li, X., Li, C., Zhu, G., Yuan, W., and Xiao, Z. A. (2019). TGF-β1

induces epithelial-mesenchymal transition of chronic sinusitis with nasal

polyps through MicroRNA-21. Int. Arch. Allergy Immunol. 179, 304–319.

doi: 10.1159/000497829

Liang, D., Ladva, C. N., Golan, R., Yu, T., Walker, D. I., Sarnat, S.

E., et al. (2019). Perturbations of the arginine metabolome following

exposures to traffic-related air pollution in a panel of commuters with

and without asthma. Environ. Int. 127, 503–513. doi: 10.1016/j.envint.2019.

04.003

Liu, S., Liang, Y. Z., and Liu, H. T. (2016). Chemometrics applied to

quality control and metabolomics for traditional Chinese medicines. J.

Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1015–1016, 82–91.

doi: 10.1016/j.jchromb.2016.02.011

Lund, V. J., and Mackay, I. S. (1993). Staging in rhinosinusitus. Rhinology.

31, 183–184.

Ma, G. C., Wang, T. S., Wang, J., Ma, Z. J., and Pu, S. B. (2020). Serum

metabolomics study of patients with allergic rhinitis. Biomed. Chromatogr.

34:e4739. doi: 10.1002/bmc.4739

Mao, M., Liu, H., Yan, S., Yuan, Y., Liu, R., Wu, Y., et al. (2020). Plasma adenosine

is linked to disease activity and response to treatment in patients with chronic

spontaneous urticaria. Allergy. doi: 10.1111/all.14502. [Epub ahead of print].

Naz, S., Moreira dos Santos, D. C., García, A., and Barbas, C. (2014). Analytical

protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics

of biological tissues. Bioanalysis. 6, 1657–1677. doi: 10.4155/bio.14.119

Ning, P., Zheng, Y., Luo, Q., Liu, X., Kang, Y., Zhang, Y., et al. (2018). Metabolic

profiles in community-acquired pneumonia: developing assessment tools for

disease severity. Crit. Care. 22:130. doi: 10.1186/s13054-018-2049-2

Qing, X., Zhang, Y., Peng, Y., He, G., Liu, A., and Liu, H. (2019). Mir-142-3p

regulates inflammatory response by contributing to increased TNF-α in chronic

rhinosinusitis with nasal polyposis. Ear Nose Throat J. 100, NP50–NP56.

doi: 10.1177/0145561319847972

Quan-Jun, Y., Jian-Ping, Z., Jian-Hua, Z., Yong-Long, H., Bo, X., Jing-Xian, Z.,

et al. (2017). Distinct metabolic profile of inhaled budesonide and salbutamol

in asthmatic children during acute exacerbation. Basic Clin. Pharmacol. Toxicol.

120, 303–311. doi: 10.1111/bcpt.12686

Radzikowska, U., Rinaldi, A. O., Çelebi Sözener, Z., Karaguzel, D., Wojcik, M.,

Cypryk, K., et al. (2019). The influence of dietary fatty acids on immune

responses. Nutrients. 11:2990. doi: 10.3390/nu11122990

Reisdorph, N., and Wechsler, M. E. (2013). Utilizing metabolomics to distinguish

asthma phenotypes: strategies and clinical implications. Allergy. 68, 959–962.

doi: 10.1111/all.12238

Rodriguez, A. E., Ducker, G. S., Billingham, L. K., Martinez, C. A., Mainolfi,

N., Suri, V., et al. (2019). Serine metabolism supports macrophage IL-

1β production. Cell Metab. 29, 1003–1011.e4. doi: 10.1016/j.cmet.2019.

01.014

Sasahara, I., Yamamoto, A., Takeshita, M., Suga, Y., Suzuki, K., Nishikata, N., et al.

(2020). l-serine and EPA relieve chronic low-back and knee pain in adults:

a randomized, double-blind, placebo-controlled trial. J Nutr. 150, 2278–2286.

doi: 10.1093/jn/nxaa156

Singh Patidar, B., Meena, A., Kumar, M., Menon, B., Rohil,

V., and Kumar Bansal, S. (2018). Adenosine metabolism in

COPD: a study on adenosine levels, 5’-nucleotidase, adenosine

deaminase and its isoenzymes activity in serum, lymphocytes

and erythrocytes. COPD 15, 559–571. doi: 10.1080/15412555.2018.

1537365

Sivrice, M. E., Okur, E., Yasan, H., Tüz, M., Kumbul, Y., and Akin,

V. (2020). Can the systemic immune inflammation index preoperatively

predict nasal polyp subtypes? Eur Arch Otorhinolaryngol. 277, 3045–3050.

doi: 10.1007/s00405-020-06174-6

Spertini, F. (2020). Metabolomics and allergy: opening pandora’s box. J. Allergy

Clin. Immunol. 145, 782–784. doi: 10.1016/j.jaci.2020.01.012

Turi, K. N., Romick-Rosendale, L., Ryckman, K. K., and Hartert, T. V. (2018).

A review of metabolomics approaches and their application in identifying

causal pathways of childhood asthma. J. Allergy Clin. Immunol. 141, 1191–1201.

doi: 10.1016/j.jaci.2017.04.021

Vass, G., Huszár, E., Augusztinovicz, M., Baktai, G., Barát, E., Herjavecz, I.,

et al. (2006). The effect of allergic rhinitis on adenosine concentration

in exhaled breath condensate. Clin. Exp. Allergy 36, 742–747.

doi: 10.1111/j.1365-2222.2006.02496.x

Wang, W., Zhao, L., He, Z., Wu, N., Li, Q., Qiu, X., et al. (2018). Metabolomics-

based evidence of the hypoglycemic effect of Ge-Gen-Jiao-Tai-Wan in type 2

diabetic rats via UHPLC-QTOF/MS analysis. J. Ethnopharmacol. 219, 299–318.

doi: 10.1016/j.jep.2018.03.026

Wang, X., and Kulka, M. (2015). n-3 polyunsaturated fatty acids and

mast cell activation. J. Leukoc. Biol. 97, 859–871. doi: 10.1189/jlb.2RU081

4-388R

Xu, W., Comhair, S. A. A., Janocha, A. J., Lara, A., Mavrakis, L. A., Bennett, C.

D., et al. (2017). Arginine metabolic endotypes related to asthma severity. PLoS

ONE 12:e0183066. doi: 10.1371/journal.pone.0183066

Xu, W., Ghosh, S., Comhair, S. A., Asosingh, K., Janocha, A. J., Mavrakis,

D. A., et al. (2016). Increased mitochondrial arginine metabolism supports

bioenergetics in asthma. J. Clin. Invest. 126, 2465–2481. doi: 10.1172/

JCI82925

Yamada, T., Miyabe, Y., Ueki, S., Fujieda, S., Tokunaga, T., Sakashita, M., et al.

(2019). Eotaxin-3 as a plasma biomarker for mucosal eosinophil infiltration

in chronic rhinosinusitis. Front. Immunol. 10:74. doi: 10.3389/fimmu.20

19.00074

Yang, Y., Wu, Z., Li, S., Yang, M., Xiao, X., Lian, C., et al. (2020). Targeted blood

metabolomic study on retinopathy of prematurity. Invest. Ophthalmol. Visual

Sci. 61:12. doi: 10.1167/iovs.61.2.12

Yao, Y., Xie, S., and Wang, F. (2019). Identification of key genes and pathways in

chronic rhinosinusitis with nasal polyps using bioinformatics analysis. Am. J.

Otolaryngol. 40, 191–196. doi: 10.1016/j.amjoto.2018.12.002

Yao, Y., Xie, S., Yang, C., Zhang, J., Wu, X., and Sun, H. (2017). Biomarkers in

the evaluation and management of chronic rhinosinusitis with nasal polyposis.

Eur. Arch. Otorhinolaryngol. 274, 3559–3566. doi: 10.1007/s00405-017-

4547-2

Yao, Y., Yang, C., Yi, X., Xie, S., and Sun, H. (2020). Comparative analysis

of inflammatory signature profiles in eosinophilic and noneosinophilic

chronic rhinosinusitis with nasal polyposis. Biosci. Rep. 40:BSR20193101.

doi: 10.1042/BSR20193101

Yu, G., and Björkstén, B. (1998). Polyunsaturated fatty acids in school children in

relation to allergy and serum IgE levels. Pediatr. Allergy Immunol. 9, 133–138.

doi: 10.1111/j.1399-3038.1998.tb00359.x

Yuryeva, K., Saltykova, I., Ogorodova, L., Kirillova, N., Kulikov, E., Korotkaya, E.,

et al. (2015). Expression of adenosine receptors in monocytes from patients

with bronchial asthma. Biochem. Biophys. Res. Commun. 464, 1314–1320.

doi: 10.1016/j.bbrc.2015.07.141

Frontiers in Molecular Biosciences | www.frontiersin.org 10 January 2021 | Volume 7 | Article 59397637

https://doi.org/10.1177/1945892418779451
https://doi.org/10.1007/s40265-020-01298-9
https://doi.org/10.1002/lary.22507
https://doi.org/10.1093/intimm/dxz001
https://doi.org/10.1016/j.chest.2016.10.008
https://doi.org/10.1093/jn/134.10.2830S
https://doi.org/10.1021/ac202450g
https://doi.org/10.1016/j.phymed.2018.12.004
https://doi.org/10.1159/000497829
https://doi.org/10.1016/j.envint.2019.04.003
https://doi.org/10.1016/j.jchromb.2016.02.011
https://doi.org/10.1002/bmc.4739
https://doi.org/10.1111/all.14502
https://doi.org/10.4155/bio.14.119
https://doi.org/10.1186/s13054-018-2049-2
https://doi.org/10.1177/0145561319847972
https://doi.org/10.1111/bcpt.12686
https://doi.org/10.3390/nu11122990
https://doi.org/10.1111/all.12238
https://doi.org/10.1016/j.cmet.2019.01.014
https://doi.org/10.1093/jn/nxaa156
https://doi.org/10.1080/15412555.2018.1537365
https://doi.org/10.1007/s00405-020-06174-6
https://doi.org/10.1016/j.jaci.2020.01.012
https://doi.org/10.1016/j.jaci.2017.04.021
https://doi.org/10.1111/j.1365-2222.2006.02496.x
https://doi.org/10.1016/j.jep.2018.03.026
https://doi.org/10.1189/jlb.2RU0814-388R
https://doi.org/10.1371/journal.pone.0183066
https://doi.org/10.1172/JCI82925
https://doi.org/10.3389/fimmu.2019.00074
https://doi.org/10.1167/iovs.61.2.12
https://doi.org/10.1016/j.amjoto.2018.12.002
https://doi.org/10.1007/s00405-017-4547-2
https://doi.org/10.1042/BSR20193101
https://doi.org/10.1111/j.1399-3038.1998.tb00359.x
https://doi.org/10.1016/j.bbrc.2015.07.141
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Xie et al. Metabolomics in Distinguishing CRSwNP Phenotypes

Zhao, H., Cheng, N., Wang, Q., Zhou, W., Liu, C., Liu, X., et al. (2019). Effects

of honey-extracted polyphenols on serum antioxidant capacity and metabolic

phenotype in rats. Food Funct. 10, 2347–2358. doi: 10.1039/C8FO02138D

Zhong, B., Yuan, T., Du, J., Tan, K., Yang, Q., Liu, F., et al. (2020). The

role of preoperative blood eosinophil counts in distinguishing chronic

rhinosinusitis with nasal polyps phenotypes. Int. Forum Allergy Rhinol.

doi: 10.1002/alr.22636. [Epub ahead of print].

Zhu, Z., Wang, W., Zhang, X., Wang, X., Zha, Y., Chen, Y., et al. (2020).

Nasal fluid cytology and cytokine profiles of eosinophilic and non-

eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 58, 314–322.

doi: 10.4193/Rhin19.275

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Xie, Zhang, Liu, Gao, Zhang, Fan, Xie, Xie, Wang and Jiang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 11 January 2021 | Volume 7 | Article 59397638

https://doi.org/10.1039/C8FO02138D
https://doi.org/10.1002/alr.22636
https://doi.org/10.4193/Rhin19.275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Comprehensive Metabolomics
Identified the Prominent Role of
Glycerophospholipid Metabolism in
Coronary Artery Disease Progression
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Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical
Sciences, Guangzhou, China, 4School of Biology and Biological Engineering, South China University of Technology, Guangzhou,
China, 5Department of Cardiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,
Guangzhou, China, 6Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China, 7Department of
Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 8Department of Clinical Pharmacology,
Xiangya Hospital, Central South University, Changsha, China

Background: Coronary stenosis severity determines ischemic symptoms and adverse
outcomes. The metabolomic analysis of human fluids can provide an insight into the
pathogenesis of complex disease. Thus, this study aims to investigate the metabolomic
and lipidomic biomarkers of coronary artery disease (CAD) severity and to develop
diagnostic models for distinguishing individuals at an increased risk of atherosclerotic
burden and plaque instability.

Methods: Widely targeted metabolomic and lipidomic analyses of plasma in 1,435 CAD
patients from three independent centers were performed. These patients were classified
as stable coronary artery disease (SCAD), unstable angina (UA), and myocardial infarction
(MI). Associations between CAD stages and metabolic conditions were assessed by
multivariable-adjusted logistic regression. Furthermore, the least absolute shrinkage and
selection operator logistic-based classifiers were used to identify biomarkers and to
develop prediagnostic models for discriminating the diverse CAD stages.

Results: On the basis of weighted correlation network analysis, 10 co-clustering
metabolite modules significantly (p < 0.05) changed at different CAD stages and
showed apparent correlation with CAD severity indicators. Moreover, cross-
comparisons within CAD patients characterized that a total of 72 and 88 metabolites/
lipid species significantly associated with UA (vs. SCAD) and MI (vs. UA), respectively. The
disturbed pathways included glycerophospholipid metabolism, and cysteine and
methionine metabolism. Furthermore, models incorporating metabolic and lipidomic
profiles with traditional risk factors were constructed. The combined model that
incorporated 11 metabolites/lipid species and four traditional risk factors represented
better discrimination of UA and MI (C-statistic � 0.823, 95% CI, 0.783–0.863) compared
with the model involving risk factors alone (C-statistic � 0.758, 95% CI, 0.712–0.810). The
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combined model was successfully used in discriminating UA and MI patients (p < 0.001) in
a three-center validation cohort.

Conclusion: Differences in metabolic profiles of diverse CAD subtypes provided a new
approach for the risk stratification of unstable plaque and the pathogenesis decipherment
of CAD progression.

Keywords: coronary artery disease, metabolome, lipidome, severity, glycerophospholipid metabolism, diagnostic
marker

INTRODUCTION

Coronary artery disease (CAD) refers to underlying coronary
artery atherosclerotic lesions that cause vascular lumen stenosis
or occlusion and insufficient blood supply and result in
myocardial ischemia, hypoxia, or necrosis (Malakar et al.,
2019). Despite the advances in medical treatment,
percutaneous coronary intervention, and surgical therapies,
atherosclerotic CAD persists as a major clinical problem
leading to a significant proportion of mortality of aging
populations (Zhou et al., 2019; Virani et al., 2020). CAD can
be stratified into stable coronary artery disease (SCAD), unstable
angina (UA), and myocardial infarction (MI) according to the
clinical symptoms, the extent of arterial blockage, and the
condition of myocardial damage (Shao et al., 2020).
Atherosclerotic plaque accumulation and development become
chronic, complicated, and dynamic over time. The detailed
mechanisms of plaque formation and development are poorly
known. Thus, novel biomarkers for patients with risks of plaque
instability and rupture need to be identified to delay onset and
improve treatment.

Emerging metabolomics is a powerful tool to systematically
investigate the functional small molecule in biological fluid
samples. An abnormal metabolome can reportedly characterize
CAD, further providing clues for physiological and pathological
explorations (Wishart, 2016; Tzoulaki et al., 2019). Elevated
plasma trimethylamine N-oxide levels can predict a future risk
of major adverse cardiac events (MACE) and an increased
prevalence of cardiovascular disease (CVD) (Dannenberg
et al., 2020; Gencer et al., 2020). Short-chain fatty acids and
primary and secondary bile acids affect CVD progression (Fan
et al., 2016; Tang et al., 2019). Previous studies highlighted the key
role of lipid species in the formation and subsequent disruption of
atherosclerotic plaques, including ceramides, sphingomyelin,
phosphatidylcholines, and cholesterol esters (Wang D. D.
et al., 2017; Poss et al., 2020). Altered lipid metabolism
correlated with inflammation and oxidative stress, such as the
oxidation of phospholipids and cholesterol in LDL and played an
important part in the formation of lipid-laden foam cells within
the intima to the necrotic lipid core of unstable plaque (Meikle
et al., 2011; Lu et al., 2017; Zhong et al., 2019). However, the
relationship between plasma metabolic profiling and detailed
characterization and quantification of atherosclerosis burden at
different CAD stages needs to be systematically elucidated.

The goals of the present study were to comprehensively
investigate the plasma metabolomic and lipidomic signatures

associated with increased CAD severity and to evaluate the
significantly differential metabolites and lipid species for their
use in discriminating the subgroups of CAD, thereby providing
an enhanced understanding of disease progression. Herein, we
performed a widely targeted metabolomic and lipidomic
evaluation in plasma of patients with SCAD, UA, and MI and
identified specific features of metabolite profiles that are
associated with increase in CAD severity and can be used to
differentiate these three subgroups. The subsequent pathway
analysis revealed that glycerophospholipid metabolism was the
most significantly altered metabolic pathway. Disease diagnostic
classifiers for discriminating between different CAD subgroups
were constructed and validated based on novel metabolic markers
and traditional risk factors.

MATERIALS AND METHODS

Study Population
An overview of the workflow is depicted in Figure 1. This study
was a two-stage study that included a total of 1,435 Chinese
subjects with CAD. In the discovery cohort (N � 942), we
evaluated the association of plasma metabolome and lipidome
with CAD using consecutively enrolled samples with clinical and
demographic information obtained from Guangdong Provincial
People’s Hospital (Cai et al., 2018) in 2010–2014. In the
verification cohort (N � 493), we enrolled multi-center
patients with CAD from three centers (including Guangdong
Provincial People’s Hospital, Xiangya Hospital of Central South
University, and the First Affiliated Hospital of Sun Yat-sen
University) from 2017 to 2018.

All subjects were 18–80 years andmet the diagnostic criteria of
CAD. They were further stratified into three subgroups (SCAD,
UA, and MI) on the basis of a detailed diagnosis performed by
cardiologists, their symptoms, ischemic changes in
electrocardiogram, laboratory measurements, and coronary
angiographic results. The specific diagnostic criteria of CAD
subtypes are summarized under Supplemental Materials:
Supplementary Methods. The exclusion criteria were as
follows: 1) severe renal dysfunction, serum creatinine >3.0 mg/
dl, renal transplantation, or dialysis; 2) liver dysfunction,
alanine aminotransferase >135 U/L, or cirrhosis; 3) during
pregnancy or lactation; 4) malignant tumors or
hemodialysis; 5) autoimmune disorders; and 6) unavailable
information. Demographic information, medication history,
and biochemical measurements were collected according to
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standard procedures and obtained from the hospital electronic
case system.

Ethics Statement
The study fully complies with the guidance of the Helsinki
Declaration. The Medical Ethical Review Committee of
Guangdong Provincial People’s Hospital granted ethics
approval (GDREC2010137 and GDREC2017071H). Written
informed consent was obtained from all subjects.

Plasma Sample Collection
Each eligible subject fasted for at least 8 h tominimize the influence
of nutrition on metabolite levels. The subjects’ venous blood
samples were collected in ethylene diamine tetraacetic acid
(EDTA) vacutainer tubes in the morning (between 9 AM and
12 PM) after overnight fasting and cooled in a freezer (4°C)
immediately. Plasma was separated by centrifugation (2095 g,
10 min, 4°C) within 2 h and refrigerated at −80°C until analysis.

Severity Evaluation of Coronary Artery
Disease Via Angiographic Analysis
Coronary angiography (CAG) was performed to define the extent
and severity of CAD in patients with suspected symptoms whose
clinical characteristics and results of noninvasive testing indicated a
high likelihood of CAD and who are amenable to, and candidates

for coronary revascularization (Fihn et al., 2014). CAG was
performed using the standard technique and images of coronary
angiograms were obtained from Syngo Dynamics cardiovascular
imaging software (Siemens Medical Solutions, United States, Inc,
Malvern, Pennsylvania). The complexity and burden of
atherosclerotic CAD were evaluated using an angiographic
scoring system (SYNTAX scores) (Thuijs et al., 2019; Takahashi
et al., 2020) and diagnosed by two professional cardiologists
blinded to the clinical outcome (details are presented in the
Supplemental Materials: Supplementary Methods).

Widely Targeted Metabolomic Analysis and
Data Preprocessing
The hydrophilic and hydrophobic compounds were extracted
from each plasma sample and detected via ultra-performance
liquid chromatography and electrospray ionization-tandem mass
spectrometry (UPLC-ESI-MS/MS) system in the positive and
negative ionization modes in Metware Biotechnology (Wuhan,
China). Details for the sample preparation and UPLC-MS/MS
experiment parameters are provided in the Supplemental
Materials: Supplementary Methods.

In total, 202 metabolites (including nucleosides, hormones,
carbohydrates, organic acids and derivatives, and amino acids
and derivatives) and 667 lipid species (including ceramides,
cholesteryl esters, diacylglycerol, lysophosphatidic acid,

FIGURE 1 |Overview of workflow chart for data generation and analysis. CAD, coronary artery disease; cTnI, cardiac troponin I; hs-CRP, high-sensitivity C-reactive
protein; LASSO, least absolute shrinkage and selection operator; MI, myocardial infarction; SCAD, stable coronary disease; UA, unstable angina; SYNTAX scores,
Synergy between percutaneous coronary intervention with TAXUS and Cardiac Surgery scores; UPLC-MS/MS, ultra-performance liquid chromatography-tandemmass
spectrometry.
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lysophosphatidylcholine, lysophosphatidylethanolamine,
lysophosphatidylserine, monoglyceride, phosphatidic acid,
phosphatidylcholines, phosphatidylglycerol, phosphatidylserine,
phosphatidylethanolamine, and triacylglycerol) were identified
and quantified.

Quality control (QC) samples were utilized for the
normalization of the data. A QC sample was created via
pooling aliquots from all samples and was injected every 10
samples throughout the run to assess the instrument’s stability.
Highly stable QC data showed that the run had great repeatability
and reliability (Supplementary Figure S1).

For metabolomic and lipidomic analyses, raw signals with
more than half of the missing rate in the QC samples (those
with zero ion intensity) were removed. Missing metabolomic
data were imputed by replacing the missing value with a
minimum value of the metabolite quantified. To adjust
signal drift, we applied the Quality Control–based Robust
LOESS (LOcally Estimated Scatterplot Smoothing) Signal
Correction (QC–RLSC) algorithm for analytical batch effect
correction (Luan et al., 2018), which is an effective way to
normalize the metabolic features to the QC samples within an
analytical block. The dataset of discovery cohort after batch
effect correction is available in Supplemental Materials:
Supplementary Table S3. The dataset was then scaled by
pareto scaling with procedures of mean centering and
scaling to the square root of standard deviation (van den
Berg et al., 2006). Then, the matrix was exported for further
analysis.

Clustering of Metabolites Using Weighted
Correlation Network Analysis.
A metabolic network was constructed by the weighted
correlation network analysis (WCNA), which used
metabolites’ pairwise correlations to identify modules of
highly correlated metabolites (Pei et al., 2017). An
unsigned weighted metabolite co-expression network was
constructed. Considering the scale-free topology fit index
and mean connectivity, the soft-thresholding power β � 4
and min module size � 5 were chosen for the analysis.
Spearman correlation between metabolite modules and
clinical parameters was calculated using R. The
Benjamini–Hochberg method was used to control the false
discovery rate (FDR). Hub metabolites indicated a high degree
of connectivity in biological interaction networks and ,thus, they
were considered biologically important. Clusters of co-abundant
plasma metabolites were identified using the “WGCNA”
package in R.

Statistical Analysis
Among the baseline characteristics of the study population,
continuous variables were described using medians
(interquartile ranges) and were compared using
Mann–Whitney U tests (non-normal distribution). Categorical
variables were presented as counts (percentages) and were
compared with Chi-squared tests. Statistical significance was
determined as p < 0.05.

The linear regression analysis, adjusted for traditional
Framingham risk factors, including age, sex, hypertension,
diabetes mellitus, smoking, low-density lipoprotein cholesterol
(LDLC), high-density lipoprotein cholesterol (HDLC), and
triglycerides (TG) (Senthong et al., 2016), was applied to
examine the associations of metabolomic and lipidomic
profiles with SYNTAX score, SYNTAX score Ⅱ, hs-CRP, and
cardiac troponin I (cTnI) levels.

To assess the association of individual metabolomic and
lipidomic signatures against the different stages of CAD, we
performed adjusted logistic regression of metabolomic and
lipidomic profiles against SCAD vs. UA and UA vs. MI to
estimate the odds ratios (ORs) and 95% confidence intervals
(CIs). To avoid potential confounders, traditional risk
factors, including age, sex, hypertension, diabetes mellitus,
smoking, LDLC, HDLC, and TG, were used as covariates for
adjustment. Subjects with missing covariates were omitted.
Statistical significance was determined as a p-value of <0.05.
Open database sources, including the Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases (http://www.
genome.jp/kegg/) and the MetaboAnalyst (https://www.
metaboanalyst.ca) (version 4.0), were used to identify the
highly enriched metabolic pathways based on the
significantly differential levels of metabolites and lipid
species.

In the development of diagnostic models to classify CAD
subgroups, firstly, the following were added to develop the
traditional risk factor-based model in a stepwise regression
(forward and backward) with the aim to minimize the Akaike
information criterion (AIC): age, sex, hypertension, diabetes
mellitus, smoking, LDLC, HDLC, and TG (traditional risk
factors); APOA and Lp(a) (risk lipid traits); and left
ventricular ejection fraction (LVEF, heart function indicator).
This procedure was performed within 10 iterations of a 5-fold
cross-validation framework (“MASS”, “caret” packages).
Subsequently, metabolites and lipid species that were
nominally significantly (p < 0.05) associated with UA (vs.
SCAD) and MI (vs. UA) in the adjusted logistic regression
analysis were included into least absolute shrinkage and
selection operator (LASSO) penalized models (“glmnet”
package) to further reduce the number of markers and select
the most powerful predictive features. In the LASSO selection
analysis, the optimal value for the tuning parameter λ was
determined via 5-fold cross-validation (200 iterations). We
adopted the largest value of lambda, such that the error was
within one standard error of the minimum, known as “1-se”
lambda. The relative contribution of features to classification
assignment (UA vs. SCAD andMI vs. UA) was determined by the
occurrence frequency in our multivariate model training. The
feature was selected with an occurrence frequency of more than
100 times.

To evaluate the predictability of the models, a binary logistic
regression model was then fitted using the chosen biomarkers as
the covariates; this model was generated as follows: combined
diagnostic score (probability) � 1/1 + exp [-(intercept + coefficient1
(biomarker1) + coefficient2 (biomarker2) . . . + coefficient n
(biomarker n))]. The area under the curve (AUC, equivalently
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known as C-statistic) of the receiver operating characteristic
(ROC) was applied to calculate the proportions of concordant
pairs among all pairs of observation with 1.0 indicating perfect
prediction accuracy. Moreover, the continuous net reclassification
improvement (NRI) and integrated discrimination improvement
(IDI) were calculated in assessing the models. The 95%

confidence intervals (CIs) were estimated for each parameter.
The difference of combined diagnostic scores between CAD
subgroups in the validation cohort was examined by the
Wilcoxon rank sum test.

All the above analyses were conducted on the R platform
(version 3.6.1, http://www.R-project.org/).

TABLE 1 | Baseline characteristics of discovery cohort.

SCAD (N = 310) UA (N = 368) MI (N = 264) p Value

SCAD vs. UA UA vs. MI

Age, years 63.2 (56.9, 70.4) 65.0 (57.5, 72.5) 61.6 (52.9, 68.9) 0.066 <0.001
Male 243 (78.4) 286 (77.7) 228 (86.4) 0.91 0.0081
SBP, mmHg 132 (120, 145) 130 (120, 143) 124 (110, 135) 0.37 <0.001
BMI, kg/m2 24 (22, 27) 24 (22, 26) 24 (21, 26) 0.2 0.16
Current smokers 79 (25.6) 98 (27.1) 97 (37.0) 0.74 0.01
Comorbidities
Hypertension 200 (64.7) 235 (63.9) 129 (48.9) 0.88 <0.001
Hyperlipidemia 39 (12.6) 41 (11.1) 24 (9.1) 0.64 0.48
Arrhythmia 30 (9.7) 38 (10.3) 11 (4.2) 0.89 <0.001
Diabetes mellitus 83 (26.7) 100 (27.2) 75 (28.4) 0.99 0.80

Laboratory data
ALT, U/L 22.0 (17.9, 29.0) 23.5 (18.0, 33.0) 28.0 (19.0, 39.0) 0.049 <0.001
AST, U/L 23.0 (19.0, 27.0) 24.0 (20.0, 29.0) 26.0 (21.0, 36.0) 0.064 <0.001
GLUC, mmol/L 5.6 (5.0, 7.1) 5.8 (5.0, 7.3) 6.0 (5.1, 7.9) 0.21 0.13
eGFR, ml/min/1.73 m2 90.1 (76.0, 106.5) 87.5 (70.8, 103.6) 87.7 (71.2, 103.0) 0.08 0.57
CK, U/L 89.5 (64.0, 122.0) 86.0 (63.0, 116.0) 86.0 (62.1, 132.8) 0.41 0.60
CKMB, U/L 5.9 (4.3, 8.2) 6.6 (4.7, 9.2) 6.9 (5.0, 9.2) 0.04 0.34
TC, mmol/L 4.1 (3.5, 5.0) 4.2 (3.5, 4.8) 4.0 (3.5, 4.7) 0.47 0.18
TG, mmol/L 1.3 (1.0, 1.9) 1.4 (1.0, 1.9) 1.3 (1.0 1.8) 0.29 0.51
LDLC, mmol/L 2.4 (1.9, 3.1) 2.5 (2.0, 3.1) 2.4 (1.9, 3.0) 0.73 0.52
HDLC, mmol/L 0.97 (0.84, 1.12) 0.94 (0.81, 1.12) 0.85 (0.72, 0.99) 0.1 <0.001
APOA, g/L 1.07 (0.90, 1.23) 1.01 (0.89, 1.21) 0.93 (0.80, 1.09) 0.11 <0.001
Lp(a), mg/dL 151.0 (76.0, 400.9) 169.4 (80.9, 357.3) 238.1 (118.9, 457.8) 0.98 0.0053
CREA, μmol/L 80.7 (69.0, 93.0) 81.4 (71.0, 97.0) 85.0 (73.5, 100.0) 0.21 0.026
BNP, pg/mL 114.4 (41.2, 278.0) 168.7 (59.9, 549.0) 670.1 (280.3, 1749.0) 0.0025 <0.001
hs-CRP, mg/L 2.3 (0.7, 4.5) 2.1 (1.0, 6.4) 6.4 (2.2,15.2) 0.14 <0.001
cTnI, μg/mL 0.01 (0.005, 0.04) 0.02 (0.008, 0.02) 0.3 (0.04, 1.9) 0.025 <0.001

Medication
ß-blockers 277 (89.6) 319 (86.9) 239 (90.5) 0.33 0.20
ACEI or ARB 191 (61.8) 225 (61.3) 182 (68.9) 0.91 0.058
CCBs 95 (30.7) 113 (30.8) 49 (18.6) 1 <0.001
PPIs 152 (49.2) 176 (48.0) 127 (48.1) 0.81 1

Cardiac function
SYNTAX score 13.0 (8.0, 23.0) 14.0 (9.0, 22.0) 19.0 (10.0, 27.1) 0.76 <0.001
SYNTAX score Ⅱ 26.0 (22.0, 32.0) 27.0 (21.0, 34.0) 28.0 (22.0, 34.0) 0.09 0.57

Counts of Long-lesion 0.53 0.0017
1 74 (23.9) 87 (23.6) 97 (36.7)
2 25 (8.1) 30 (8.2) 23 (10.2)
3 5 (1.6) 2 (0.5) 3 (1.1)
4 - 1 (0.3) -
No. of SV 0.032 0.067
1 75 (26.8) 118 (35.0) 61 (25.3)
2 110 (39.3) 109 (32.3) 81 (33.6)
3 77 (27.5) 99 (29.4) 90 (37.3)
LVEF 65.0 (61.0, 69.0) 65.0 (60.0, 69.0) 54.0 (45.0, 63.0) 0.31 <0.001
LVMI 112.5 (97.9, 132.8) 112.7 (95.6, 135.8) 125.6 (103.7, 150.2) 0.73 0.0015

Data are shown asmedian (interquartile range) or n (%). p values were calculated usingMann–WhitneyU test for non-normally distributed continuous variables and the Chi-squared test for
categorical variables. ACEI, angiotensin converting enzyme inhibitor; ALT, alanine aminotransferase; APOA, apolipoprotein A; ARB, angiotensin receptor Blocker; AST, aspartate
aminotransferase; BMI, body mass index; BNP, B-type natriuretic peptide; CCB, calcium channel blocker; CK, creatine kinase; CKMB, MB isoenzyme of creatine kinase; CREA,
Creatinine; cTnI, cardiac troponin I; eGFR, estimated glomerular filtration rate; GLUC, glucose; HDLC, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein;
LDLC, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; MI, myocardial infarction; No of SV, No. of stenosed
vessels; PPI, proton pump inhibitor; SBP, systolic blood pressure; SCAD, stable coronary artery disease; SYNTAX, Synergy between PCI with TAXUS and Cardiac Surgery; TC, total
cholesterol; TG, triacylglycerol; UA, unstable angina.
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RESULTS

Characteristics of the Study Population
A total of 1,435 CAD patients were included from three
independent centers in China (Figure 1). The discovery
cohort included 942 participants enrolled at Guangdong
Provincial People’s Hospital, which were further classified into
the following groups on the basis of the guidelines for diagnosis:
SCAD (N � 310), UA (N � 368), and MI (N � 264). The baseline
characteristics and laboratory data of each group are shown in
Table 1. With disease shifting, the disturbance in lipid
metabolism occurred with decreasing HDL-C and APOA but

increasing Lp(a). Inflammatory state increased, as significant
differences in hs-CRP levels were found between UA vs. MI
(p < 0.001). The systemic atherosclerotic burden of CAD was
determined using SYNTAX score system, and the median scores
of each group were as follows: SCAD, 13.0 (8.0, 23.0); UA, 14.0
(9.0, 22.0); and MI, 19.0 (10.0, 27.1). The SYNTAX score showed
a significant difference between SCAD vs. MI (p < 0.001) and UA
vs. MI (p < 0.001). TheMI group exhibited a higher proportion of
three-stenosed vessels (37.56%), a larger left ventricular mass
index (LVMI), and a lower LVEF. The median levels of cTnI, an
indicator of myocardial infarction, were 0.01 (0.005, 0.04), 0.02
(0.008, 0.02), and 0.3 (0.04, 1.9) μg/ml in the SCAD, UA, and MI

FIGURE 2 | Assessment of the metabolite modules associated with the CAD progression. (A) Heatmap of metabolite modules and major CAD risk factors. (B)
Heatmap of metabolite modules and major CAD phenotypes. (C) Boxplot of 10 significantly altered metabolite modules between CAD subgroups compared by the
Wilcoxon rank sum test. In (A,B), the colors varying from blue to orange indicate negative to positive correlations, and *FDR< 0.05, **FDR <0.01 by the spearman
correlation. In (C), boxes represent the inter-quartile ranges, lines inside the boxes denote medians and the asterisk represents p values < 0.05 by the Wilcoxon
rank sum test. APOA, apolipoprotein A; GLUC, glucose; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; LP(a), lipoprotein(a);
LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; No. of SV, No. of stenosed vessels; SBP, systolic blood pressure; TC, total cholesterol; TG,
triacylglycerol; other abbreviations as in Figure 1.
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groups, respectively. Significant differences in cTnI levels were
found with SCAD vs. UA (p � 0.025) and UA vs. MI (p < 0.001).

The validation cohort from three centers included 493
participants. Their baseline characteristics are summarized in
Supplementary Table S11.

Identification of Modules Associated With
Multiple Clinical Traits
In the WCNA, 756 of the metabolites and lipid species in the
discovery set were parsed into 35 co-abundance modules,
whereas the gray module comprised unassigned metabolites
and lipids due to weak correlation with others. However, each
metabolite and lipid were further analyzed individually.

The correlations of thirty-five eigenmetabolites of the modules
and external traits are shown in Figures 2A,B (Detailed annotation
and information are listed in Supplementary Tables S2–S5). We
identified 16 of 35modules (45.7%) that were significantly associated
with major CAD phenotypes (either SYNTAX scores, number of
stenosed vessels, LVEF, LVMI, or cTnI levels). Moreover, by
abundance cross-comparison, 10 of these 35 modules (28.6%)
showed significant differences with p < 0.05 between CAD stages
(Figure 2C). Notably, the eigenmetabolites in darkmagenta module
(hexocylceramides) were positively correlated with hs-CRP levels
(Rho � 0.28, FDR <0.001), cTnI (Rho � 0.17, FDR � 0.0034), LVMI
(Rho � 0.14, FDR � 0.0030), and TG (Rho � 0.35, FDR <0.001) but
negatively correlated with LVEF (Rho � −0.12, FDR � 0.0077) and
HDL-C (Rho � −0.12, FDR � 0.0095) (Figure 2A). Moreover, the
dark gray module (lysoglycerophospholipids) was negatively
correlated with hs-CRP (Rho � −0.27, FDR <0.001) and cTnI
(Rho � −0.19, FDR <0.001) but positively correlated with APOA
(Rho � 0.23, FDR <0.001), HDLC (Rho � 0.18, FDR <0.001), and
TG (Rho � 0.17, FDR <0.001, Figure 2A).

Several modules also showed strong correlations with the
conventional lipid traits (Supplementary Table S2). Except for
the modules with triglyceride inside, sphingolipids such as Cer
and glycerophospholipids such as PEs and LPCs showed a close
correlation with TC, LDLC, HDLC, and APOA. For example, the
black module contains PE(P)s and dark red module contains
PC(O), both of which showed a decreasing tendency with disease
development (Figure 2C); these were positively correlated with
HDLC (Rho � 0.334, FDR � 1.20E-23; Rho � 0.371, FDR� 2.06E-
29) and APOA (Rho � 0.318, FDR� 4.83E-18; Rho � 0.339, FDR�
1.28E-20). Moreover, green (glycerophospholipids) and gray60
(ceramides), were positively correlated with TC (Rho � 0.541,
FDR � 3.84E-68; Rho � 0.360, FDR � 1.00E-27) and LDLC
(Rho � 0.506, FDR � 1.93E-58; Rho � 0.336, FDR � 6.43E-24).

Correlations Between Plasma Metabolite
Levels and Severity Indicators
The linear regression analysis of metabolites and lipid species to the
SYNTAX scores (atherosclerotic burden), cTnI (myocardial
necrosis), and hs-CRP (inflammatory state) was conducted by
adjusting for traditional risk factors, including age, sex,
hypertension, diabetes mellitus, smoking, LDLC, HDLC, and TG.
Numerous metabolites and lipid species showed strong association

for one or more severity indicators (Supplementary Tables S6–S9).
Three lipid species, namely, the hexosylceramide HexCer(d18:1/22:
0) and the alkylphosphatidylcholine PC(O-32:0) and PC(O-42:3),
were consistently significantly (p< 0.05) correlated with four severity
indicators (Supplementary Figure S2A, Supplementary Tables
S6–S9). We also found that high HexCer (d18:1/22:0) exhibited a
high proportion of three-stenosed vessels (stenosed defined as
>50%) with a univariate estimate of 0.11 ± 0.039, p � 0.0057,
and an adjusted estimate (for the traditional risk factors above)
of 0.082 ± 0.040, p � 0.042 (Supplementary Figure S2B).

Changes in the Plasma Metabolomic
Features Between Different Coronary
Artery Disease Subgroups
We focused on SCAD vs. UA for transition from coronary stability to
instability and UA vs. MI for cardiac events. The logistic regression
analysis of the metabolic and lipidomic profiles against UA (vs.
SCAD) adjusting for traditional risk factors, identified 72
metabolites/lipid species that were significantly (p < 0.05)
associated with UA (Figure 3A). The regression analysis against
MI (vs. UA) conducted by adjusting for traditional risk factors
identified 88 metabolites/lipid species that were significantly (p <
0.05) associated with MI (Figure 3B). The enrichment pathway
analysis of significantly differential metabolites and lipid species for
SCAD vs. UA andUA vs.MI are presented in Supplementary Figure
S3 and Supplementary Table S10. For SCAD vs. UA, themetabolism
pathway significantly changed in glycerophospholipid metabolism
(p � 7.22E-05, FDR � 6.06E-03) and valine, leucine, and isoleucine
biosynthesis (p � 1.25E-03, FDR � 5.26E-02). Furthermore, the
pathway analysis revealed that cysteine and methionine
metabolism (p � 4.88E-03, FDR � 0.263) and glycerophospholipid
metabolism (p � 6.26E-03, FDR � 0.263) were the main perturbed
pathways forUAvs.MI. The glycerophospholipidmetabolismwas the
most significantly altered pathway among all paired comparisons.

Generating Optimal Diagnosis Models for
Subgroup Identification and Prediction
We focused on UA vs. MI for the prediction of cardiac events. In
the first model (the traditional model), 11 conventional CAD risk
factors, including age, sex, hypertension, diabetes mellitus,
smoking, TG, LDLC, HDLC, APOA, Lp(a), and LVEF, were
considered in the stepwise variable selection modeling. Finally
five variables, namely, age, hypertension, TG, HDLC, and LVEF
were retained in the model with minimal AIC and had an AUC
value of 0.758 (Figure 4B; Table 2). In the second model
(metabolic model), 88 metabolites/lipid species that were
significantly (p < 0.05) associated with MI (vs. UA) were
considered as input variables. The model was obtained by the
LASSO logistic analysis (5-fold cross validation, 200 repeats,
Table 3) and consisted of 16 metabolic biomarkers that
performed similarly as the traditional model with continuous
NRI of −0.0763 (95% CI, −0.271–0.118, p � 0.443) and IDI of
−0.0178 (95% CI, −0.0669–0.0313, p � 0.478; Tables 2, 3). The
third model (combined model) incorporated the 11 most
predictive metabolic biomarkers to four conventional risk
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factors from LASSO selection (Table 3). It yielded better
discrimination for the prediction of MI than the traditional
model with an increased AUC from 0.758 to 0.823
(Figure 4B), a continuous NRI of 0.751 (95% CI, 0.571–0.932,
p < 0.0001), and an IDI of 0.105 (95% CI, 0.072–0.137, p < 0.0001;
Table 2).

However, the discriminating performance between SCAD and
UA was not as satisfactory. The characteristics at baseline of the
discovery cohort did not show many differences, and the
traditional model based on AIC selection only included LVEF
as the predictor with a poor AUC of 0.526. Nevertheless, the

utilization of metabolic and lipidomic biomarkers provided
another approach for discrimination. On the basis of the 72
variables (p < 0.05) selected from adjusted logistic regression,
LASSO logistic analyses were further applied to identify the most
predictive biomarkers. The optimized model consisting of 17
features exhibited a considerable performance with an AUC of
0.688 (Tables 2, 4). The ROC curve of SCAD vs. UA is plotted
in Figure 4A. The diagnostic efficiency of the metabolic
model showed a small improvement compared with that of
the traditional model with an AUC from 0.562 to 0.688, a
continuous NRI of 0.474 (95% CI, 0.289–0.659, p < 0.0001),

FIGURE 3 | Relationship between metabolic features against UA (vs. SCAD) and MI (vs. UA). Forest plot of odds ratios and 95% confidence intervals for logistic
regression of individual metabolites/lipid species against (A) SCAD vs. UA (p < 0.05) (B) UA vs. MI (p < 0.05), adjusting for age, sex, hypertension, diabetes mellitus,
smoking, LDLC, HDLC and TG. Cer, ceramide; CI, confidence interval; DG, diacylglycerol; HexCer, hexosylceramide; LPA, lysophosphatidic acid; LPC,
lysophosphatidylcholine; LPC(O), lysoalkylphosphatidylethanolamine; LPE, lysophosphatidylethanolamine; MG, monoglyceride; OR, odds ratio; PA, phosphatidic
acid; PC, phosphatidylcholine; PC(O), alkylphosphatidylcholine; PE, phosphatidylethanolamine; PE(P), phosphatidylethanolamine; PS, phosphatidylserine; other
abbreviations as in Figures 1, 2.
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FIGURE 4 | Diagnostic performances in discovery cohort are shown via ROC curves between (A) SCAD vs. UA (B) UA vs. MI. The combined diagnosis score in
validation cohort were compared between (C) SCAD and UA patients (D) UA and MI patients. AUC, area under curve; CI, confidence interval; ROC, receiver operating
characteristic; other abbreviations as in Figure 1.

TABLE 2 | Model performance measures (95% CIs) for discrimination of CAD subtypes in the discovery cohort.

Prediction of UA (vs. SCAD)

Feature AUC IDI p Value Continuous NRI p Value

Traditional modela 0.526 (0.471–0.580)
Metabolic modelb 0.688 (0.627–0.723) 0.105 (0.0749–0.135) <0.0001 0.474 (0.289–0.659) <0.0001

Prediction of MI (vs. UA)

Feature AUC IDI p Value Continuous NRI p Value

Traditional modelc 0.758 (0.712–0.810)
Metabolic modeld 0.744 (0.697–0.792) −0.0178 (−0.0669–0.0313) 0.443 −0.0763 (−0.271–0.118) 0.478
Combined modele 0.823 (0.783–0.863) 0.105 (0.072–0.137) <0.0001 0.751 (0.571–0.932) <0.0001
aTraditional model for UA (vs. SCAD) based on LVEF.
bMetabolic model for UA vs. SCAD based on: D-Norvaline, LPC(20:5/0:0), HexCer(d18:1/18:1), Cer(m18:1/22:1), 3,3′,5-Triiodo-L-thyronine, LPC(20:0/0:0), D-Sucrose, TG (18:2/18:3/
20:2), 3-Hydroxy-3-methyl butyric acid, L-Isoleucine, Deoxycholic acid, 1-Methylxanthine, LPC (16:0/0:0), PC(18:3/20:4), PE (40:3), PC(O-42:5), and TG (14:0/20:3/20:3).
cTraditional model for MI (vs. UA) based on: age, hypertension, TG, HDLC and LVEF.
dMetabolic model for MI (vs. UA) based on: TG (14:0/20:3/22:2), 3-Hydroxy-3-methyl butyric acid, HexCer(d18:1/22:0), HexCer(d18:1/22:1), PA (36:1), PC(O-38:2), D-Methionine,
Deoxycholic acid, PC(18:2/18:2), HexCer(d18:1/26:1), PC(O-34:2), PC(18:2/20:2), L-Cystine, TG (14:1/16:1/22:3), 3-Methylcrotonyl glycine, and MG (18:1).
eCombinedmodel for MI (vs. UA) based on: age, LVEF, HexCer(d18:1/22:1), 3-Hydroxy-3-methyl butyric acid, CerP (d18:1/20:3), Cer(d18:1/22:1), PC(18:2/18:2), PC(16:0/20:3), HDLC,
Hypertension, PC(18:2/20:4), PC(O-38:2), Deoxycholic acid, L-Cystine, and D-Methionine.
AUC, area under the curve; CAD, coronary artery disease; CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification improvement; other abbreviations as
in Tables 1, 4.
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and a IDI of 0.105 (95% CI, 0.0749–0.135, p < 0.0001;
Table 2).

We subsequently assessed the optimal model for ability
to differentiate among CAD subgroups in the validation
cohort (Supplementary Table S11). The validation cohort was
also divided into the following groups: SCAD (N � 152); UA (N �
184); and MI (N � 157). We used the established optimal LASSO
models to further demonstrate the potential ability of subgroup
discrimination. Consistently, the combined diagnostic score

could help differentiate UA vs. MI patients (p < 0.001,
Figure 4D). Similarly, the performance on SCAD and UA
patients was not satisfactory (p � 0.084, Figure 4C).

DISCUSSION

In this study, we demonstrated that the plasma metabolomic
and lipidomic signatures changed dynamically with CAD

TABLE 3 | Feature inclusion frequency using LASSO based feature selection for MI (vs. UA).

Metabolites-only model Metabolites and risk factor model

Variable Frequency Coefficient Variable Frequency Coefficient

1 TG (14:0/20:3/22:2) 200 0.16 Age 200 −0.02
2 3-Hydroxy-3-methyl butyric acid 200 0.13 LVEF 200 −0.05
3 HexCer(d18:1/22:0) 200 0.08 HexCer(d18:1/22:1) 200 −0.13
4 HexCer(d18:1/22:1) 200 −0.16 3-Hydroxy-3-methyl butyric acid 200 0.19
5 PA (36:1) 200 −0.17 CerP (d18:1/20:3) 199 −0.08
6 PC(O-38:2) 200 −0.22 Cer(d18:1/22:1) 185 −0.05
7 D-Methionine 199 0.12 PC (18:2/18:2) 174 −0.02
8 Deoxycholic acid 199 −0.06 PC (16:0/20:3) 166 0.15
9 PC (18:2/18:2) 199 −0.12 HDLC 149 −0.04
10 HexCer (d18:1/26:1) 182 0.06 Hypertension 126 −0.04
11 PC (O-34:2) 182 −0.03 PC (18:2/20:4) 126 −0.04
12 PC (18:2/20:2) 182 −0.07 PC(O-38:2) 126 −0.02
13 L-Cystine 137 0.02 Deoxycholic acid 126 −0.01
14 TG (14:1/16:1/22:3) 137 −0.02 L-Cystine 101 0.01
15 3-Methylcrotonyl glycine 104 0.02 D-Methionine 101 0.02
16 MG (18:1) 104 −0.05
LASSO based feature selection was performed within a 5-fold cross-validation framework (200 iterations). Variables selected with frequency >100 times and their average coefficient
(Coefficient) were indicated. MI, myocardial infarction; PA, phosphatidic acid; MG, monoglyceride, other abbreviations as in Table 4.

TABLE 4 | Feature inclusion frequency using LASSO based feature selection for UA (vs. SCAD).

Metabolites-only model Metabolites and risk factor model

Variable Frequency Coefficient Variable Frequency Coefficient

1 D-Norvaline 195 −0.26 PE (40:3) 70 −0.03
2 LPC (20:5/0:0) 194 −0.08 Cer(m18:1/22:1) 70 0.06
3 HexCer(d18:1/18:1) 194 0.09 Cer(t18:0/24:1) 70 0.01
4 Cer(m18:1/22:1) 191 0.26 HexCer(d18:1/18:1) 70 0.02
5 3,3′,5-Triiodo-L-thyronine 191 −0.13 D-Norvaline 70 −0.05
6 LPC (20:0/0:0) 184 −0.08 LPC (20:5/0:0) 68 −0.01
7 D-Sucrose 184 0.05 CerP (d18:1/20:3) 58 0.01
8 TG (18:2/18:3/20:2) 177 −0.04 PC (16:0/16:1) 47 0.01
9 3-Hydroxy-3-methyl butyric acid 177 0.08 PC (18:3/20:4) 47 0.00
10 L-isoleucine 177 −0.07 LPA (18:1/0:0) 37 0.00
11 Deoxycholic acid 167 0.02 Deoxycholic acid 37 0.00
12 1-Methylxanthine 167 −0.03 1-Methylxanthine 37 0.00
13 LPC (16:0/0:0) 167 −0.05 LPC (16:0/0:0) 37 −0.01
14 PC (18:3/20:4) 153 0.00 D-Sucrose 24 0.00
15 PE (40:3) 153 −0.01 LVEF 8 0.00
16 PC(O-42:5) 153 0.05 L-isoleucine 3 0.00
17 TG (14:0/20:3/20:3) 153 −0.05 HDLC 2 0.00
18 LDLC 2 0.00
19 PE (38:7) 2 0.00
20 PC(O-42:5) 2 0.00

LASSO based feature selection was performed within a 5-fold cross-validation framework (200 iterations). Variables selected with frequency >100 times and their average coefficient
(Coefficient) were indicated. Cer, ceramide; HDLC, high-density lipoprotein cholesterol; HexCer, hexosylceramide; LASSO, least absolute shrinkage and selection operator; LDLC, low-
density lipoprotein cholesterol; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LVEF, left ventricular ejection fraction; PC, phosphatidylcholine; PC(O),
alkylphosphatidylcholine; PE, phosphatidylethanolamine; SCAD, stable coronary artery disease; TG, triacylglycerol; UA, unstable angina.
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progression, implying that CAD may involve a universal
metabolomic and lipidomic disturbance. A total of 72 and 88
metabolites/lipid species have been identified to be significantly
associated with UA (vs. SCAD) and MI (vs. UA), respectively.
Moreover, the pathway analysis of these potential biomarkers
indicated that glycerophospholipid metabolism exhibited the
most significantly altered metabolic pathway in all paired
comparisons. Lastly, the newly developed combined
diagnostic models improved stratification performance of
CAD subtypes compared with the traditional risk model,
offering further evidence of dysbiotic metabolome and
lipidome and highlighting its potential to distinguish various
stages of CAD.

Specifically, the co-clustering modules within lipid classes
including phosphatidylcholine (PC), lysophosphatidylcholine
(LPC), lysophosphatidylethanolamine (LPE),
phosphatidylethanolamine (PE(P)), and
alkylphosphatidylcholine (PC(O)) tended to decrease with
plaque instability and were inversely correlated with CAD
severity and myocardial markers. Moreover, modules containing
five PCs were positively correlated with HDLC (as seen in
darkolivegreen module, Rho � 0.314, FDR � 5.77E-21) and
primarily decreased in the MI group. Different PC species
showed diverse effects on CAD progression. We observed that
PCs with longer and more unsaturated acyl chain had an inverse
association with UA (vs. SCAD). PCs are the most abundant
membrane lipids in mammals (van Meer et al., 2008) and are
the key structural molecules in the surface monolayer of HDL
particles (Kontush et al., 2013). Shorter and highly saturated acyl
chains of PC molecules confer less fluidity of the lipid monolayer,
thereby directly affecting HDL’s ability to accept cholesterol from
peripheral tissues and phospholipid hydroperoxides from low-
density lipoproteins (Kontush et al., 2013; Toledo et al., 2017).

PC in lipoproteins or from cell membrane can be further
hydrolyzed on the sn-2 position fatty acid to generate LPC and
free fatty acid by the phospholipase A2 enzyme (Norris et al.,
2014). Although the catalysis of phospholipase A2 was
expected to generate LPC to promote inflammation and
atherosclerosis development (Huang et al., 2020; Schmitz
and Ruebsaamen, 2010), most LPC species exhibited a
negative association with UA (vs. SCAD) and MI (vs. UA).
As shown in Figure 3, LPC(16:0/0:0), LPC(20:0/0:0), and
LPC(20:5/0:0) were decreased in UA patients compared
with SCAD patients. LPC(22:0/0:0) and LPC(18:2/0:0) were
decreased in MI patients (vs. UA), which is consistent with
previously reported results (Fan et al., 2016; Lu et al., 2017).
LPC is reportedly an inducer of endothelial dysfunction and a
regulator of vascular tone (Zhang et al., 2009; Paapstel et al.,
2018). Lower levels of LPC in the circulation may result from
the increase in the catabolism of these species or to their more
efficient removal from blood circulation into the tissues, either
in the form of modified lipoprotein or directly from albumin
(Meikle et al., 2011).

One of the prominent features observed was that a number of
PE(P) species with polyunsaturated fatty acids displayed a
significant inverse association with MI compared with UA
patients (Figure 3B). Alkylphospholipids [alkylphosphatidylcholine,

PC(O) and alkylphosphatidylethanolamine, PE(O)] and
alkenylphospholipids [primarily presented as phosphatidylcholine,
PC(P), and phosphatidylethanolamine, PE(P) species, equivalently
known as plasmalogens] have been proposed to protect against
atherosclerosis due to their antioxidant characteristics and a
high proportion of polyunsaturated fatty acids and alkyl/alkenyl
linked fatty acids. They are more susceptible to oxidation under
heightened oxidative stress (Lessig and Fuchs, 2009; Ford,
2010). In addition, plasmalogens are essential for intracellular
cholesterol transport (Munn et al., 2003) and HDLC-mediated
cholesterol efflux (Maeba et al., 2018). Recently, the inclusion of
plasmalogens into reconstituted HDL improved the lipoprotein
anti-apoptotic activity on endothelial cells (Sutter et al., 2015).
Therefore, low plasmalogens levels in plasma may reflect the
high oxidative stress and the action of reactive oxygen species on
these lipids.

However, the module containing ceramides was elevated
with disease shifting and was positively associated with CAD
severity, myocardial markers, and inflammatory state. Notably,
hexosylceramide species played an important role in the
development of CAD. Specific hexosylceramide species [e.g.,
HexCer(22:0/0:0)] were related to the enhanced coronary
atherosclerosis burden. Both mono- and dihexosylceramide
have a direct association with the risk of future
cardiovascular events in patients with type 2 diabetes, which
is a potential atherogenesis-contributing factor (Alshehry et al.,
2016).

Some plasma ceramide levels were observed to be up-
regulated with the disease shifting direction as SCAD, UA,
and MI and positively correlated with atherosclerosis burden
quantified by the SYNTAX score and SYNTAX score Ⅱ and the
evidence of subclinical myonecrosis quantified by cTnI. This
result corroborates the finding that elevated plasma ceramide
levels are independent biomarkers of MACE (Laaksonen et al.,
2016). Cer (d18:1/20:1) was significantly elevated in UA (vs.
SCAD) and we previously reported that Cer (d18:1/20:1) was
negatively related with LVEF and could serve as an
independent predictor of MACE and all-cause mortality
(Qin et al., 2020). As the metabolites of sphingolipid,
ceramides are considered lipotoxic inducers of disturbed
glucose homeostasis and insulin resistance and causative agents
in the pathophysiology of atherosclerosis (Chaurasia and Summers,
2015; Laaksonen et al., 2016). Studies in rodentmodels revealed that
the inhibition of ceramide synthesis prevents ischemic
cardiomyopathy-related heart failure post hypoxia or MI while
simultaneously diminishing ventricular remodeling and lowering
cell death rates and changing the abundance of proinflammatory
detrimental neutrophils (Park and Goldberg, 2012; Hadas et al.,
2020). The underlying functions of ceramides involve the
promotion of lipoprotein transport into the arterial wall, platelet
activation, and endothelial dysfunction via uncoupling of NO
signaling pathways (Chaurasia and Summers, 2015; Meikle and
Summers, 2017).

In addition to the use of certain lipid species of sphingolipids
and glycerophospholipids as predictors of CAD progression, the
downregulation of deoxycholic acid in MI, which plays key roles
in bile acid and cholesterol metabolism, indicated that the
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metabolism of cholesterol and phospholipids might be inhibited
(Sayin et al., 2013). Moreover, low triiodothyronine was inversely
associated with UA occurrence, which indicated a close link
between thyroid function and atherosclerosis process. Since
triiodothyronine is the most biologically active thyroid
hormone, it plays a vital role in regulating heart rate,
contractile force, and peripheral arterial resistance (Jabbar
et al., 2017). A meta-analysis of 56 studies showed that a
reduced serum triiodothyronine level was further associated
with the increased risk of all-cause and cardiogenic death, and
was an independent predictor of MACE (Wang B. et al., 2017).
Lastly, a number of amino acids and their derivatives were altered
with CAD shifting. Elevated levels of plasma cystine (the
disulphide form of cysteine) were positively associated with
MI (vs. UA) and werepositively correlated with SYNTAX
score Ⅱ and hs-CRP, which is indicated to link with a higher
oxidative stress and endothelial dysfunction (Oliveira and
Laurindo, 2018). A high level of methionine served as a strong
predictor for MI (vs. UA) selected by LASSO. A previous study
has shown that methionine promotes atherosclerotic plaques
independent of homocysteine levels in the rodent model
(Selhub and Troen, 2016).

Our study had some limitations that needed be considered.
First, due to the upgrading of analytical platform and technical
issues with the mass spectrometry, the metabolites and lipid
species detected were not in accordance, thereby resulting in
the lack of four independent predictors for UA (vs. SCAD) model
and one for MI (vs. UA) model which affected the model
estimation in the verification cohort. Second, site-to-site and
observer-to-observer variations in the evaluation of coronary
stenosis may exist, leading to diagnostic bias. Third, the
improvement in AUC for a model is often very minor, yet the
category-free NRI may overstate the incremental value of a
biomarker. Last, our study population tended to consist of
middle-aged to elderly Chinese patients. Thus, other
ethnicities within Asia and other races, such as Caucasians
and Africans, should be included in future studies.

CONCLUSION

Multiple plasma metabolites and lipid species differed between
CAD subgroups, and the alterations were correlated with CAD
severity. The metabolites involved in glycerophospholipid
metabolism appeared to be a predominant alteration in CAD
progression. A small number of these biomarkers significantly
improved the diagnostic value for differentiating patients between
CAD types. These findings may help to predict disease progression
and clinical outcome and indicate the potential for novel
intervention strategies to attenuate disease progression.
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Metabolomics Reveals Differences in
Aqueous Humor Composition in
Patients With and Without
Pseudoexfoliation Syndrome
Diana Anna Dmuchowska1*†, Karolina Pietrowska2†, Pawel Krasnicki 1, Tomasz Kowalczyk2,
Magdalena Misiura3, Emil Tomasz Grochowski 1, Zofia Mariak1, Adam Kretowski2,4 and
Michal Ciborowski2*

1Department of Ophthalmology, Medical University of Bialystok, Bialystok, Poland, 2Metabolomics Laboratory, Clinical Research
Center, Medical University of Bialystok, Bialystok, Poland, 3Department of Pharmaceutical Analysis, Medical University of
Bialystok, Bialystok, Poland, 4Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok,
Bialystok, Poland

Pseudoexfoliation syndrome (XFS) is stress- or inflammation-induced elastosis
accompanied by excessive production of microfibrils and their deposition in the
anterior segment of the eye. Approximately 60–70million people are affected by XFS
worldwide. It is a component of a systemic disorder, considered a major risk factor for
accelerated cataract formation, cataract surgery complications and development of
glaucoma, which untreated or inadequately treated may lead to blindness. Moreover,
XFS has been associated with cardiovascular and cerebrovascular morbidity, dementia,
sensorineural hearing loss and pelvic organ prolapse. The pathogenesis of XFS has not
been fully elucidated yet. Aqueous humor (AH) is a transparent fluid filling the anterior and
posterior chambers of the eye. Determination of AH metabolites that are characteristic for
XFS may provide valuable information about the molecular background of this ocular
disorder. The aim of this study was to compare the composition of AH in XFS and non-XFS
patients undergoing cataract surgery. The AH samples from 34 patients (15 with XFS and
19 without) were analyzed using liquid chromatography coupled to a Quadrupole Time-of-
Flight mass spectrometer (LC-QTOF-MS). The obtained metabolic fingerprints were
analyzed using multivariate statistics. Eleven statistically significant metabolites were
identified. Compared with the non-XFS group, the AH of patients with XFS contained
significantly lower levels of amino acids and their derivatives, for example, arginine (−31%,
VIP � 2.38) and homo-arginine (−19%, VIP � 1.38). Also, a decrease in the levels of two
acylcarnitines, hydroxybutyrylcarnitine (−29%, VIP � 1.24) and decatrienoylcarnitine
(−46%, VIP � 1.89), was observed. However, the level of indoleacetaldehyde in XFS
patients was significantly higher (+96%, VIP � 2.64). Other significant metabolites were two
well-recognized antioxidants, ascorbic acid (−33%, VIP � 2.11) and hydroxyanthranilic
acid (−33%, VIP � 2.25), as well as S-adenosylmethionine, a compound with anti-
inflammatory properties (−29%, VIP � 1.93). Metabolic pathway analysis demonstrated
that the identified metabolites belonged to eight metabolic pathways, with cysteine and
methionine metabolism as well as arginine and proline metabolism being the most
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frequently represented. XFS can be associated with enhanced oxidative stress and
inflammation, as well as with the disturbances of cellular respiration and mitochondrial
energy production. Implementation of non-targeted metabolomics provided a better
insight into the still not fully understood pathogenesis of XFS.

Keywords: ophthalmology, pseudoexfoliation syndrome, aqueous humor, metabolomics, mass spectrometry

INTRODUCTION

Pseudoexfoliation is a stress- and inflammation-induced
deposition of extracellular fibrillary protein material visible in
the anterior segment of the eye. The complex is highly cross-
linked and glycosylated. Among others, it contains elastic
microfibrillar components, as well as noncollagenous
components, such as laminin, nidogen, and fibronectin. The
condition is caused by excessive production and reduced
degradation of these constituents (Kivelä, 2018; Zenkel, 2018).
Aqueous humor (AH) is a transparent fluid filling the anterior
and posterior chamber of the eye. AH maintains intraocular
pressure and provides nutrients for avascular ocular tissues. It is a
mixture of electrolytes, organic solutes, growth factors, cytokines
and proteins (Pietrowska et al., 2018a) Pseudoexfoliation syndrome
(XFS) can be found on a routine ophthalmic examination. It
presents as whitish deposits on the anterior capsule of the
crystalline lens and pupil margin. It can also be found
throughout the anterior segment of the eye including trabecular
meshwork, Schlemm canal, zonules, and ciliary body (Ritch and
Schlötzer-Schrehardt, 2001). About 60–70 million people are
affected by XFS worldwide. The prevalence of XFS varies across
populations, with more frequent occurrence in people of
Scandinavian descent. XFS is an age-related progressive
condition (Aboobakar et al., 2017). It is considered a major risk
factor for accelerated cataract formation, lens subluxation, cataract
surgery complications, and the development of glaucoma, which
untreated or inadequately treated may lead to blindness (Vazquez-
Ferreiro et al., 2016; Vazquez-Ferreiro et al., 2017). Moreover, XFS
is a component of a systemic disorder, as similar deposits were
found in other (non-ocular) organs, e.g. skin, heart, lungs, liver and
kidneys. XFS has been associated with cardiovascular and
cerebrovascular morbidity, dementia, sensorineural hearing loss
and pelvic organ prolapse (Aboobakar et al., 2017; Aviv et al., 2017;
Scharfenberg et al., 2019). It is unclear whether XFS is an ocular
condition with systemic implications or systemic disease with
ocular manifestation (Aviv et al., 2017). The pathogenesis of
XFS is multifactorial and has not been fully elucidated yet.
Systemic, environmental and genetic factors have been
implicated (Vazquez and Lee, 2014).

Metabolomics provides information about the current
biochemical status of a given biological material.
Metabolomics analysis of the AH enabled to detect hundreds
of molecules and dysregulated metabolic pathways. As
metabolomics reflects the phenotype more accurately than
many other omics technologies, the results can be more easily
translatable to clinical practice (Kell et al., 2005). This is the first
study on the metabolomics of AH in XFS. To the best of our
knowledge, the metabolomics of AH was the subject of only one

published study involving patients with pseudoexfoliation
glaucoma (Myer et al., 2020). Moreover, some authors
analyzed the proteomics of AH in pseudoexfoliation glaucoma
(Kliuchnikova et al., 2016; Sharma et al., 2018; Botling Taube
et al., 2019) and plasma metabolomics in XFS (Leruez et al.,
2018). The aim of this study was to compare the composition of
AH in XFS and non-XFS patients undergoing cataract surgery.
Identification of metabolites distinctive for XFS might provide
valuable information about the molecular background of this
ocular disorder. There is a need for biomarkers to accurately
assess the risk of glaucoma, its progression rate and response to
treatment in patients with XFS. Identification of such biomarkers
would allow for tailored follow-up and treatment of this
condition. This is a vitally important objective, given that
nearly half of XFS patients will eventually develop
pseudoexfoliation glaucoma that if inadequately treated, is a
potentially blinding disease (Ritch, 2008).

This study identified novel metabolites related to XFS, as well
as metabolic pathways that are disturbed during the course of this
condition. These findings contribute to a better understanding of
XFS pathophysiology and may help to identify potential novel
therapeutic targets.

MATERIALS AND METHODS

Study Participants and Sample Collection
The study included AH samples from 34 patients undergoing
cataract surgery. The patients were divided into two groups:
with XFS and without (controls). The presence of XFS was
assessed on slit-lamp examination. The groups were sex-, age-
and BMI-matched. The XFS group included 15 patients (10
women, mean age ±SD � 80.5 ± 5.7 years, mean BMI ±SD �
26.8 ± 3.2 kg/m2), and the control group was comprised of 19
patients (11 women, mean age ±SD � 80.1 ± 4.1 years, mean
BMI ±SD � 26.4 ± 4.2 kg/m2). There were no major
differences in systemic comorbidities or medications used
(Supplementary Tables S1 and S2). The presence of
concomitant ocular disorders and/or diabetes mellitus was
an exclusion criterion from the study.

Before the cataract extraction, the anterior chamber of the eye
was punctured using a 30 G needle; approximately 50–100 μl of
AH was aspirated, transferred to Eppendorf tubes (Eppendorf,
Hamburg, Germany), frozen and stored at −80°C until the
analysis.

The protocol of the study was reviewed and approved by the
Medical Ethics Committee of the Medical University of Bialystok
(decisions no. R-I-002/154/2014 and R-I-002/140/2018) and
conformed with the provisions of the Declaration of Helsinki.
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The patients provided their written informed consent to
participate in this study.

Chemicals
Purified water was obtained using the Milli-Q Integral 3 system
(Millipore SAS, Molsheim, France). Zomepirac sodium salt (used
as an internal standard, IS), L-serine, L-arginine hydrochloride
monohydrate, ascorbic acid, L-homoarginine hydrochloride, LC-
MS grade methanol acetonitrile, formic acid and LC grade
ethanol were purchased from Sigma-Aldrich Chemie GmbH
(Steinheim, Germany). Pure p. a. ammonium solution (25%)
was purchased from Avantor Performance Materials (Gliwice,
Poland). The API-TOF reference mass solution kit
(G1969–850001) and tuning solutions, ESI-L low
concentration tuning mix (G1969–85000) and ESI-TOF
Biopolymer Analysis reference masses (G1969–850003) were
purchased from Agilent Technologies (Santa Clara, California,
United States).

Sample Treatment
AH samples were treated as described elsewhere (Pietrowska
et al., 2017; Pietrowska et al., 2018b). Briefly, protein
precipitation and metabolite extraction were performed by
1-min vortex-mixing of the equal volumes of the AH sample
and freeze cold (−20°C) methanol/ethanol (1:1) mixture
containing 1 ppm of Zomepirac. Following the extraction,
the samples were stored on ice for 10 min and centrifuged at
21,000 × g for 20 min at 4°C. The supernatant was filtered
through a 0.22 µm nylon filter. Blank extraction followed the
same protocol but using the freeze cold (−20°C) methanol/
ethanol (1:1) mixture solely.

Aqueous Humor Metabolic Fingerprinting
The extracted samples were analyzed using an LC-MS system
consisting of 1290 Infinity UHPLC (Agilent, Santa Clara,
California, United States) with a degasser, two binary pumps
and a thermostated autosampler coupled to a 6550 Q-TOF-MS
detector (Agilent, Santa Clara, California, United States). The
analyses were carried out in a positive (+) and negative (−) ion
mode. The samples were analyzed using two different types of
chromatography, hydrophilic interaction liquid chromatography
(HILIC) for polar compounds and reversed-phase liquid
chromatography (RP) for less polar and non-polar
compounds. The samples were analyzed against a quality
control (QC) sample prepared by mixing several AH samples.
The mixture was prepared using some of the samples included in
this project and additional samples, as the volume obtained by
mixing spare samples from this project was not sufficient. The QC
sample was prepared according to the same protocol as the other
samples; it was injected ten times at the beginning of the sequence
to equilibrate the LC column and later injected again at intervals
(every 3–4 samples) to control the stability of the LC-MS system.
The samples were analyzed using our standard AH fingerprinting
methods (Pietrowska et al., 2017; Pietrowska et al., 2018b).
Detailed LC-MS parameters are listed in the Supplementary
Material.

Liquid Chromatography-Mass
Spectrometry Data Treatment
The raw data collected by the analytical instrumentation were
cleaned of background noise and unrelated ions with the
Molecular Feature Extraction (MFE) tool of the Mass Hunter
Qualitative Analysis Software B.06.00 (Agilent, Santa Clara,
California, United States). The MFE algorithm uses the
accuracy of the mass measurements to group ions related by
charge-state envelope, isotopic distribution and/or the presence
of adducts and dimers. The MFE then creates a list of all possible
compounds described by mass, retention time (RT) and
abundance. The limit for the background noise for data
extraction by the MFE was individually selected for each type
of chromatography and each ion mode. The values of 1500, 800,
1200, and 1000 were used for HILIC (+), HILIC (−), RP (+), and
RP (−), respectively. The following adduct settings: +H, +Na, +K
for positive ion mode and −H, +HCOO, +Cl for negative ion
mode were applied to identify the co-eluting adducts of the same
feature. Dehydration neutral losses were also allowed.
Additionally, +NH4 was included in the list of possible
adducts for data recorded in HILIC ESI + mode. Only
metabolic features with a quality score ≥80% were accepted to
preserve a good quality of the data. The sample alignment, as well
as data cleaning and filtering, were performed using Mass Profiler
Professional 12.6.1 (Agilent, Santa Clara, California,
United States). The parameters applied for the alignment were
1% for RT and 15 ppm for the mass variation. During the first
step of the data treatment, the signals present in the blank sample
were separated from the signals present in the biological samples
by the use of the Venn diagram. Before the statistical analysis, a
quality assurance (QA) protocol was implemented to keep solely
the repetitively measured metabolic features. As the QC sample
was prepared by mixing additional AH samples, not only
metabolic features with CV <30% but also those absent in QC
samples were accepted. Additionally, the features were filtered to
keep only those present in at least 80% of the samples in at least
one of the studied groups. Missing values were replaced as
described by Armitage et al. (2015).

Statistical Analysis
Principal component analysis (PCA) was used to check the quality
of the data (clustering of the QC samples) and to detect potential
outliers. A multivariate statistical analysis based on the orthogonal
partial least squares discriminant analysis (OPLS-DA) models was
carried out to identify the metabolites that discriminated the XFS
group from the controls. The validity of the models was evaluated
based on the results of a permutation test and p-value provided by
cross-validated analysis of variance (CV-ANOVA). Additionally,
to assess the predictive accuracy of the OPLS-DA models, for each
model receiver operating characteristic (ROC) analysis was
performed. The contribution of each metabolite to the observed
sample discrimination was assessed based on the volcano plots
obtained by plotting variable importance in the projection (VIP)
against loading values scaled as correlation coefficient values
[p(corr)] generated based on the obtained OPLS-DA models.
Variables with VIP >1.0 and absolute p(corr) >0.4 were
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considered significant. Multivariate calculations and plots were
obtained with SIMCA−P + 13.0.3.0 (Umetrics, Umeå, Sweden) or
with SIMCA 17 (Sartorius Stedim Data Analytics AB, Gottingen,

Germany). Additionally, for eachmetabolite p-value was calculated
using t-test orMann-Whitney nonparametric U test, depending on
the normality of the data distribution (assessed by the Shapiro-
Wilk test). Obtained p-values were corrected by Benjamini-
Hochberg false discovery rate (FDR).

Metabolite Identification
The metabolites were identified based on the MS/MS
fragmentation, as described previously (Pietrowska et al.,
2017). Accurate masses of features were searched against the
METLIN, KEGG, LIPIDMAPS, and HMDB databases, accessed
simultaneously by CEUMassMediator (an on-line search engine,
http://ceumass.eps.uspceu.es/mediator/). Putative identities were
then confirmed by matching the experimental MS/MS spectra
with the MS/MS spectra from the databases or with the
fragmentation spectra and retention times obtained for the
metabolite’s standard. The experiments were repeated under
identical chromatographic conditions as the primary analysis.
Ions were targeted for collision-induced dissociation (CID)
fragmentation on the fly based on the previously determined
accurate mass and retention time. The identity of carnitines was
confirmed based on the already described fragmentation pattern
(Piszcz et al., 2016).

Metabolic Pathway Analysis
The pathway analysis was performed with MetaboAnalyst 4.0
(http://www.metaboanalyst.ca/). This on-line tool analyses the
impact of particular compounds on biochemical pathways
specifically for metabolomics studies (Chong et al., 2018).

RESULTS

We analyzed AH samples from cataract patients with XFS (n �
15) and without (n � 19). The metabolites in extracted AH
samples were separated by two types of liquid chromatography
(RP and HILIC) and then detected with a QTOF mass analyzer.
Four datasets were obtained with 296, 120, 211, and 150
metabolic features for HILIC (+), HILIC (−), RP (+) and RP
(−), respectively. PCA models were obtained to verify the quality
of the obtained data. Clustering of the QC samples
(Supplementary Figure S1) indicated the proper quality of the
data. OPLS-DA models were used to identify statistically
significant metabolites differentiating XFS patients from the
controls. The models were obtained for each dataset
(Figure 1). The study groups could not be differentiated based
on the negative ion mode data obtained using RP
chromatography.

The OPLS-DA scatter plots show a clear distinction between
patients with XFS (green dots) and the controls (blue dots).
Panels A, B, and C show models obtained for the HILIC (+)
data (R2 � 0.635, Q2 � 0.345), HILIC (−) data (R2 � 0.559, Q2 �
0.471) and RP (+) data (R2 � 0.624, Q2 � 0.417), respectively. The
results of permutation tests and CV-ANOVA showed that
models were statistically valid. For each model obtained Q2
intercept values and p-values were as follow: HILIC (+)
data (Q2 � −0.342, p � 0.01), HILIC (−) data (Q2 � −0.616,

FIGURE 1 | Classification of XFS patients and controls based on AH
metabolic fingerprinting data.
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p � 0.0008), and RP (+) data (Q2 � −0.345, p � 0.008). AUC
values obtained for all three models based on ROC analysis were
equal to 1.0, indicating perfect predictive accuracy.

Eleven metabolites (Table 1; Supplementary Table S3) were
shown to discriminate significantly patients with XFS and the
controls. Compared with the controls, AH of patients with XFS
contained significantly lower levels of amino acids, organic acids
and acylcarnitines. Indoleacetaldehyde was the only metabolite,

the level of which was significantly higher in XFS patients than in
the controls. Biochemical pathway analysis involving the
significant metabolites mentioned above identified several
altered pathways in the AH of XFS patients, especially the
metabolism of amino acids and aminoacyl-tRNA biosynthesis
(Figure 2). Among other alterations, the disturbances of
tryptophan metabolism were found in XFS patients, with a
resultant decrease in 3-hydroxyanthranilic acid level and an
increase in indoleacetaldehyde level.

DISCUSSION

The aim of this study was to identify potential differences in the
metabolic composition of AH obtained from patients with and
without XFS. We focused on XFS, rather than on its consequence,
pseudoexfoliation glaucoma, to characterize an initial
pathological stage of the latter condition. Our findings imply
that XFS is associated with enhanced oxidative stress and
inflammation, as well as with the disruption of cellular
respiration and mitochondrial energy production. Gut
microbiota might also play a role in the pathogenesis of this
condition. These observations are consistent with the results of
previous studies (Koliakos et al., 2008; Erdurmuş et al., 2011;
Zenkel et al., 2011; Aboobakar et al., 2017; Borrás, 2018;
Papadopoulou et al., 2018; Schlötzer-Schrehardt, 2018; Sharma
et al., 2018; Botling Taube et al., 2019; Ghaffari Sharaf et al., 2020).

To the best of our knowledge, only one metabolomics study of
AH from patients with pseudoexfoliation glaucoma, not XFS, has
been conducted thus far (Myer et al., 2020). Similarly to Myer
et al. (2020), we have found decreased levels of L-arginine.
Interestingly, according to Leruez et al. neither arginine nor
tryptophan proved to be significant in the plasma of XFS
(Leruez et al., 2018), which implies that the metabolism of
these amino acids in XFS is affected locally, in the anterior
chamber of the eye, rather than systemically. L-arginine is
utilized by NO synthases for the synthesis of NO (Stuehr,
2004). Another substrate for NO synthase is Homo-L-arginine,

TABLE 1 | Metabolites differentiating significantly AH of patients with XFS from AH of non-XFS controls.

Name Change (%) p(corr) VIP p-value Corrected p-value Monoisotopic mass [Da]

L-serine* −30.76 −0.44 1.01 0.02 0.07 105.0426
3-hydroxy anthranilic acid −33.10 −0.50 2.25 0.05 0.3 153.0426

−38.22 −0.40 2.12 0.002 0.2 153.0426
Indoleacetaldehyde +96.36 0.64 2.64 0.006 0.2 159.0684
2-hydroxycinnamic acid/m-coumaric acid (co-elution) −25.24 −0.51 1.23 0.01 0.2 164.0473
L-arginine* −30.68 −0.59 2.38 0.04 0.3 174.1117
Ascorbic acid* −32.81 −0.50 2.11 0.02 0.3 176.0321
Homo-L-arginine* −18.72 −0.41 1.38 0.01 0.2 188.1273
Ergothioneine −66.42 −0.41 1.81 0.05 0.3 229.0884

−64.76 −0.44 2.48 0.03 0.3 229.0885
Hydroxybutyrylcarnitine −28.86 −0.46 1.24 0.02 0.2 247.142
Decatrienoylcarnitine −45.83 −0.45 1.89 0.002 0.09 309.194
S-adenosyl-L-methioninate −29.15 −0.59 1.93 0.0004 0.04 398.1372

The direction of change indicates increased (+) or decreased (−) abundance of ametabolite in the AH of patients with XFS in comparison to its abundance in the AH of the controls. The VIP
values were calculated based on OPLS-DA models built separately for each method and ion mode.
*The identity of these metabolites was confirmed by the LC-MS/MS analysis of the standard.

FIGURE 2 | Pathway analysis of metabolites that were shown to differ
significantly between the metabolic profiles of aqueous humor in patients with
XFS and without. 1. Cysteine and methionine metabolism; 2. Arginine and
proline metabolism; 3. Tryptophan metabolism; 4. Aminoacyl-tRNA
biosynthesis; 5. Arginine biosynthesis; 6. Sphingolipid metabolism; 7.
Glyoxylate and dicarboxylate metabolism; 8. Glycine, serine and threonine
metabolism.
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which in this study was also found decreased in AH of patients
with XFS (Tsikas and Wu, 2015). Thus, the reduction of arginine
and homoarginine levels in patients with XFS points to a
dysfunction of the NO pathway, which plays a significant role
in regulating AH outflow balance in the eye (Kotikoski et al.,
2002; Chang et al., 2015) and seems to be involved in the
pathogenesis of glaucoma (Polak et al., 2007). Lower levels of
NO in AH of XFS patients with glaucoma have already been
reported by Kotikoski et al. (2002). L-arginine has also
antioxidant and anti-inflammatory properties (Jobgen et al.,
2006; Thomas et al., 2008; Tosun et al., 2012; Pimentel et al.,
2013; Wang et al., 2014; Erdinest et al., 2015; Park et al., 2020).

As an important one-carbon donor to the folate cycle, serine
contributes to nucleotide synthesis, methylation reactions and the
antioxidant defense (Bleich et al., 2004). Folate deficiency is a risk
factor for XFS (Aboobakar et al., 2017). A decreased level of serine
might be associated with a reduced concentration of S-adenosyl-
methionine. S-adenosyl-methionine has anti-inflammatory
activity and is an intermediate in the homocysteine
biosynthesis pathway. Its decreased level in patients with XFS
might reflect the increased activity of the methionine cycle and
excessive production of homocysteine. Although homocysteine
was not identified as a significant metabolite in the present study,
it has been well-documented in both plasma and AH of patients
with XFS. It is unclear whether hyperhomocysteinemia is a cause
or consequence of XFS (Bleich et al., 2004; Aboobakar et al., 2017;
Leruez et al., 2018). According to Rebecca et al.
hyperhomocysteinemia in XFS causes structural changes
promoting elastin aggregation (Rebecca et al., 2019). Serine
metabolism also intersects with the methionine cycle (Yang
and Vousden, 2016), in which methionine synthase
remethylates homocysteine in a vitamin B12-dependent
reaction (Yang and Vousden, 2016; Koc and Kaya, 2020). It is
suggested that the intake of vitamin B6 and vitamin B12 may
reduce the risk of pseudoexfoliation glaucoma (Kang et al., 2014).
This observation might support the theory about the increased
activity of the methionine pathway and a deficit of serine and
S-adenosyl-methionine in patients with XFS.

In line with Koliakos et al. (2003) we have found decreased
level of ascorbic acid, a potent antioxidant. It implies that XFS is
associated with enhanced oxidative stress within the eye.
Furthermore, vitamin C supplementation is believed to protect
against the XFS progression (Koliakos et al., 2003). Due to the
reduced concentration of ascorbic acid in AH, patients with XFS
might be protected less against UV radiation. This hypothesis is
supported by the observation that prolonged time spent outdoors
is an independent risk factor for the development of XFS (Kang
et al., 2012; Pasquale et al., 2014). The role of vitamin C in cataract
prevention was described by Weikel et al. (2014). Aside from the
reduced levels of ascorbic acid, we also found decreased levels of
3-hydroxyanthranilic acid in the AH of XFS patients. The latter is
one of the tryptophan-derived compounds that act as physical
filters for bands from the UVA spectrum (Wilson et al., 2016).
UV radiation is implicated in the photodamage to the human eye.
Decreased levels of tryptophan-derived constituents impair
protection from UV light, lead to enhanced oxidative damage
and accumulation of modified proteins implicated in nuclear

cataract formation (Tweeddale et al., 2016). Moreover,
Laganovska et al. suggested that XFS might be associated with
disturbances in the kynurenine pathway, the primary route for
tryptophan catabolism (Laganovska et al., 2003). This might
lead to the enhancement of oxidative stress in the eye, a key
factor in the pathogenesis of ocular diseases (Kruk et al., 2015).
Chronic oxidative stress may disrupt the balance between
matrix metalloproteinases and their tissue inhibitors, which
leads to the accumulation of extracellular matrix fibrils
constituting pseudoexfoliation material (Zenkel et al., 2011;
Schlötzer-Schrehardt, 2012). Enhanced oxidative stress in the
eye was also reported by other authors, along with
mitochondrial dysfunction (Koliakos et al., 2008; Erdurmuş
et al., 2011; Zenkel et al., 2011; Borrás, 2018; Papadopoulou
et al., 2018; Schlötzer-Schrehardt, 2018; Sharma et al., 2018;
Botling Taube et al., 2019; Ghaffari Sharaf et al., 2020). The
latter might play a role in XFS progression. Non-functioning
mitochondria were observed in vitro models of XFS; the
mitochondrial dysfunction might negatively affect the
efficiency of respiration, leading to a decrease in ATP levels
and enhanced synthesis of reactive oxygen species (Want et al.,
2016). Acylcarnitines are involved in the mitochondrial
metabolism of lipids and fatty acids and are essential for
the proper function of the eye (Pescosolido et al., 2008;
Pescosolido et al., 2009). Carnitines may protect against
selenite-induced cataract, and their loss may be a marker
of disease development (Ritch, 2007). As postulated
recently, the reduced level of carnitines in XFS might
reflect mitochondrial dysfunction (Want et al., 2016;
Ghaffari Sharaf et al., 2020). Our findings seem to support
this theory, as the levels of hydroxybutyrylcarnitine and
decatrienoylcarnitine in XFS patients were significantly
lower than in the controls. The deficit of carnitines in the
AH might reflect enhanced β-oxidation and elevated levels of
mitochondrial acetyl-CoA, conditions that eventually lead to
the development of cellular oxidative stress (Schönfeld et al.,
2010). In summary, we have demonstrated that the AH of XFS
patients shows a decreased antioxidant content and increased
oxidative stress factors.

Some of the metabolites identified in this study (e.g.
indoleacetaldehyde, 2-hydroxycinnamic acid/m-coumaric acid,
ergothioneine) might be related to the human microbiome,
especially the intestinal microflora (Filannino et al., 2014;
Cumming et al., 2018; Gao et al., 2018). Several authors
suggested a link between gut microbiota and eye diseases (Lin,
2018; Shivaji, 2019; Petrillo et al., 2020). AH from patients with
XFS contained significantly higher levels of indoleacetaldehyde, a
precursor in the bacterial synthesis of indoleacetic acid from
tryptophan (Gao et al., 2018; Roager and Licht, 2018). An elevated
level of indoleacetic acid in mammalian cells may cause many
disorders, such as disruption of apoptosis, protein degradation
and cell cycle progression arrest (Holland et al., 2012; Zhao et al.,
2015). While the function of ergothioneine in mammalian cells is
still not fully understood, recent evidence suggests that this
metabolite is a powerful antioxidant; cells deficient in
ergothioneine were shown to be more prone to oxidative
stress, with resultant increased damage to mitochondrial DNA,
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protein oxidation and peroxidation of lipids (Paul and Snyder,
2010; Cheah and Halliwell, 2012). Hence, the deficit of
ergothioneine in the AH of patients with XFS seems to
support the notion that this condition is associated with
enhanced oxidative stress in the eye.

This study had several potential limitations. The sample size
was relatively small and from a limited geographical area. Hence,
it is unclear whether the results could be generalized to other
ethnic groups, especially considering the uneven distribution of
XFS globally. Moreover, the study focused solely on XFS rather
than on pseudoexfoliation glaucoma. Finally, not all metabolites
could be analyzed with the LC-MS approach.

An interesting direction of future research would be a
comparative analysis of the AH and plasma metabolomics in
the same patients, especially given that XFS is a systemic
condition associated with increased vascular permeability of
the blood-aqueous barrier (Scharfenberg et al., 2019). From a
clinical perspective, the results of this study might justify further
research on the anti-oxidative and anti-inflammatory treatment
of XFS.

CONCLUSION

The results of this study suggest that the pathogenesis of XFS may
involve enhanced oxidative stress and inflammation, as well as the
dysfunction of mitochondria and gut microbiota. The knowledge
of metabolites and metabolic pathways involved in XFS
pathogenesis might facilitate the development of novel
prevention and treatment strategies.
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Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by persistent
symptoms associated to the development of nasal polyps. To this day, the molecular
mechanisms involved are still not well defined. However, it has been suggested that a
sustained inflammation as allergy is involved in its onset. In this exploratory study, the aim
was to investigate the effect of the allergic status in the development of CRSwNP. To
achieve this, we recruited 22 patients with CRSwNP and classified them in non-allergic and
allergic using ImmunoCAP ISAC molecular diagnosis. Plasma samples were analyzed
using liquid chromatography coupled to mass spectrometry (LC-MS). Subsequently,
significant metabolites from plasma that were commercially available were then
analyzed by targeted analysis in some nasal polyps. Additionally, nasal polyp and nasal
mucosa samples were examined for eosinophils, neutrophils, CD3+ and CD11c+ cells, as
well as collagen deposition and goblet cell hyperplasia. We found that 9 out of the 22
patients were sensitized to some aeroallergens (named as allergic CRSwNP). The other 13
patients had no sensitizations (non-allergic CRSwNP). Regarding metabolomics, bilirubin,
cortisol, lysophosphatidylcholines (LPCs) 16:0, 18:0 and 20:4 and lysophosphatidylinositol
(LPI) 20:4, which are usually related to a sustained allergic inflammation, were
unexpectedly increased in plasma of non-allergic CRSwNP compared to allergic
CRSwNP. LPC 16:0, LPC 18:0 and LPI 20:4 followed the same trend in nasal polyp
as they did in plasma. Comparison of nasal polyps with nasal mucosa showed a significant
increase in eosinophils (p < 0.001) and neutrophils (p < 0.01) in allergic CRSwNP. There
were more eosinophils in polyps of non-allergic CRSwNP than in their nasal mucosa (p <
0.01). Polyps from non-allergic CRSwNP had less eosinophils than the polyps of allergic
CRSwNP (p < 0.05) and reduced amounts of collagen compared to their nasal mucosa
(p < 0.001). Our data suggests that there is a systemic inflammatory response associated
to CRSwNP in the absence of allergy, which could be accountable for the nasal polyp
development. Allergic CRSwNP presented a higher number of eosinophils in nasal polyps,
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suggesting that eosinophilia might be connected to the development of nasal polyps in this
phenotype.

Keywords: metabolomics, nasal polyps, allergy, targeted analysis, untargeted analysis

INTRODUCTION

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a disease
characterized by persistent inflammatory symptoms in nasal and
paranasal mucosa that result in the development of a nasal polyp
(Fokkens et al., 2012). This is an outgrowth of tissue that arises
into the nasal cavity (Schleimer, 2017). The prevalence of the
disease is estimated between 1–4% of the population (Fokkens
et al., 2012; Chen et al., 2020). Symptoms include nasal blockage
and itching, rhinorrhea, sneezing, facial pain, headache and smell
impairment or loss (Georgy and Peters, 2012; Chen et al., 2020).
Treatment starts with intranasal topic corticosteroids in the
milder cases, followed by surgical extirpation or biological
drugs, such as omalizumab, in the most severe ones (Lund,
1995; Georgy and Peters, 2012).

CRSwNP presents several endotypes, which are subtypes of
diseases defined either by having the same molecular mechanism
or because they respond to the same treatment (Anderson, 2008).
In this sense, the analysis of cells and molecules involved in
inflammation and the underlying pathophysiological mechanism
is essential in CRSwNP (Brescia et al., 2020).

There are several comorbidities associated to CRSwNP
appearance and recurrence, including asthma, allergic rhinitis,
cystic fibrosis or aspirin-exacerbated respiratory disease (AERD)
(Lund, 1995; Wynn and Har-El, 2004; Pearlman et al., 2010). In
addition, nasal polyps relapse in up to 60–70% of the patients
(Wynn and Har-El, 2004).

There are significant differences in histological features between
nasal mucosa and nasal polyps, such as the development of oedema
or fibrosis, goblet cell hyperplasia and/or squamousmetaplasia; the
thickening of the basal membrane; and the infiltration of
inflammatory cells, including lymphocytes, eosinophils and
neutrophils (Ferreira Couto et al., 2008).

However, the molecular mechanisms involved in the
development of nasal polyps are still not well defined
(Hopkins, 2019). Due to the inflammatory features described
in several cohorts of CRSwNP (Brescia et al., 2018), most of the
hypothesis agree that long-termmaintained inflammation plays a
key role in this process (Tos et al., 2010; Chojnowska et al., 2013;
Brescia et al., 2021) and, therefore, inflammatory diseases such as
allergy and/or asthma might be associated with its onset.

The role of allergy in CRSwNP development has been
extensively discussed. In their 2014 review, Wilson et al
(Wilson et al., 2014) examined the existing evidence both for
and against an association of these two diseases. Although the role
of allergy in CRSwNP was inconclusive, the review showed a
higher rate of positive skin prick test among CRSwNP patients;
and greater improvement in patients with negative skin prick
tests compared to those with positive ones. These differences
suggest that allergic inflammation might play a role in nasal
polyposis.

Metabolomics is one of the most promising tools in the
identification of biomarkers. It allows the detection of dynamic
changes and alterations in the metabolism that point to a given
pathological state (Villaseñor et al., 2017). The metabolome is
closely linked to the phenotype and can be an extremely useful
tool for diagnosing diseases and evaluating the effect of
treatments. From a practical point of view, it uses very
sensitive and specific techniques, such as liquid
chromatography coupled to mass spectrometry (LC-MS),
which allows the simultaneous detection of a great variety of
metabolites in a biological sample (Crestani et al., 2020). Once the
study subjects are well characterized, these results should be
validated in a new and larger cohort of patients in subsequent
studies. Compared to other omics, such as transcriptomics or
genomics, the validation of metabolites found after exploratory
studies is carried out through the development of analytical
methodologies. This process is usually laborious depending on
the number of metabolites and their physicochemical properties,
and is conditioned by the availability of commercial standards.

Previous reports show that allergic inflammation has both
systemic and local effects. As for the systemic role of allergy, we
have previously demonstrated that severe allergic phenotypes
induce significant changes in the plasma metabolome (Obeso
et al., 2018). Similarly, allergic inflammation also induces local
remodeling in oral mucosa (Aceves and Ackerman, 2009; Samitas
et al., 2018; Rosace et al., 2019). In fact, this remodeling might
result in the formation of the nasal polyp (Tos et al., 2010).
However, to our knowledge, no metabolomic analysis has been
performed for CRSwNP.

Here, our aim is to determine the role of allergic inflammation
in patients with CRSwNP and how it affects both systemic and local
features. Thus, we performed: 1) a systemic analysis, using a non-
targeted metabolomics approach to achieve an overall picture of
themetabolic profile in CRSwNP patients with andwithout allergy,
and 2) a local analysis using both a targeted metabolomic analysis
of the nasal polyps to evaluate if the systemic potential metabolites
found are associated specifically to the nasal polyp, and a
histological analysis to better characterize the local polyp
environment. Our results support the idea that the nasal polyp
has a specific inflammatory environment characterized by immune
cells infiltrates, epithelial damage and the presence of
inflammatory-related metabolites.

MATERIALS AND METHODS

Patients and Sample Collection
Twenty-two adult patients diagnosed with CRSwNP within an
age range of 48 ± 8 years that arrived for the first time to the
Otorhinolaryngology Service of the Hospital Madrid
Monteprincipe (Spain) were included in this study. Patients
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underwent a basic allergy history questionnaire. The inclusion
criteria were: patients older than 18 years of age, with nasal polyps
that needed to undergo a surgery to remove following their
clinician’s diagnosis. Patients received the same
pharmacological pre-surgery treatment and their corticosteroid
medication was removed two weeks prior the procedure. The
exclusion criteria were: patients with concomitant inflammatory
diseases such as autoimmune diseases or cancer. The ethical
committee approved the study protocol and all subjects were
informed and provided written consent prior to any procedure.
Data were anonymized.

During endoscopic surgical procedures to remove the polyp,
5 mm biopsies of nasal polyp and nasal mucosa were obtained
and either kept in RNAlater at −80°C or fixed in 4%
paraformaldehyde (PFA) for 24–48 h. PFA-fixed samples were
dehydrated and included in paraffin using Leica TP 1020 tissue
processor. From these, 3 μm sections were obtained and used for
histological and immunohistochemical analysis. Additionally,
from the twenty-two patients, a blood sample from nineteen
was obtained. About 20 ml of heparinized blood were collected to
obtain plasma using a Ficoll-Paque (GE Healthcare™) density
gradient centrifugation. Supernatants were stored at −80°C until
their use.

ImmunoCAP ISAC
To determine the sensitization profile of the patients,
ImmunoCAP ISAC® (Phadia, Uppsala, Sweden) with chips for
112 allergens assays were performed to detect specific IgE (sIgE)
as described in the manufacturer protocol. Values above 0.3 ISU-
E were considered positive.

Untargeted Plasma Metabolomic Analysis
Plasma samples were measured using a Liquid Chromatography
coupled to Mass Spectrometry (LC-QTOF-MS Agilent series
6520). We followed previously described methodologies
developed in our group (Ciborowski et al., 2010). Principal
component analysis and heatmaps with hierarchical clustering
were obtained using MetaboAnalyst v 5.0 webpage (https://www.
metaboanalyst.ca).

Full descriptions are available in the Supplementary
Information. Metabolite annotation was carried out using the
online advanced CEU Mass Mediator tool (Godzien et al., 2015;
Dudzik et al., 2018; Gil-de-la-Fuente et al., 2019). Statistical
analysis was performed using non-parametric Mann Whitney
U test, with statistical significance set at 95% (p < 0.05) with a
Benjamini-Hochberg (also known as False Discovery Rate, FDR).
Annotation was confirmed through LC-MS/MS experiments
using 20 eV for fragmentation. Data were uploaded to
Metabolomics Workbench webpage (ID study: ST001733 and
ST001734).

Target Method for Nasal Polyps
Sample Preparation
Three nasal polyp samples of each group collected in RNAlater
were used to measure the metabolites from plasma that were
commercially available. RNAlater solvent was removed by
washing the tissue 3 times with PBS 1X. Then, the nasal polyp

was frozen in liquid nitrogen for 30 s. The frozen sample was put
in cryoPREPTMCP02 (Covaris, MA, United States) plastic bags
and submerged again for 30 s in liquid nitrogen. Once the plastic
bag was inside the automated cryoPREPTMCP02, two
consecutive impact forces of levels 2 and 4 out of 6 were
applied. The resultant powder was gathered and weighted.
Then, 100 µL of cold methanol:ethanol (1:1, v/v) and 0.5 µL of
internal standard (LPC 18:1-d7; 0.01 mM) were added per each
10 mg of tissue for metabolite extraction and protein
precipitation. Samples were then vortex-mixed and
homogenized using Tissue-Lyser LT homogenizer (Qiagen,
Germany) for 5 min at 50 Hz, 3 times. Supernatant containing
the metabolites was separated from the pellet by centrifugation
(2,000 rcf for 10 min at 4°C). Then, an aliquot of 70 µL was
transferred to an LC vial and diluted with 490 µL of mobile phase
(5% water: 95% acetonitrile; both with 7.5 mM ammonium
acetate and 0.1% acetic acid). All samples were randomized
before metabolite extraction and for the corresponding
analytical run.

Analysis of Nasal Polyp by Liquid Chromatography
Coupled to Triple Quadrupole Mass Spectrometry
(LC-QqQ-MS)
Samples were measured using Dynamic Molecular Reaction
Monitoring (dMRM) in LC-QqQ-MS for the analysis of
metabolites. We used HPLC system (1260 Infinity, Agilent
Technologies) coupled to an ESI(AJS)-QqQ-MS (6470 Agilent
Technologies). The metabolites were separated on a Kinetex
hydrophilic interaction liquid chromatography (HILIC) silica
column (150 mm × 2.1 mm, particle size 100Å, Phenomenex,
United States) maintained at 25°C. The mobile phases consisted
of: A) water, and B) acetonitrile, both with 7.5 mM ammonium
acetate and 0.1% acetic acid, with a final pH of 4.0 in the aqueous
phase. The flow rate was 0.5 ml/min with an injection volume of
5 µL. Gradient started with 5% of A for 2 min, then increased up
to 50% until 12 min, and back to initial conditions until 22 min.
The MS conditions were: 5500 V of capillary voltage in positive
ESI mode, a nebulizer gas flow rate of 11.0 L/min; a source
temperature of 250°C; and a source pressure of 60 psi. The
sample tray temperature was maintained at 4°C. Each
transition was optimized adjusting the fragmentor and
collision energy voltages, which can be seen in Table 1.

Data Acquirement, Pre-processing and Treatment
Data were acquired in MassHunter Workstation B.05.00 (Agilent
Technologies), and re-processed using MassHunter QQQ
Quantitative Analysis B.08.00 (Agilent) where peak areas were
integrated. Concentration of metabolites were calculated using
external calibration curves with the standard addition method.
Once the concentrations were obtained, all data treatment and
statistical comparisons was performed using Excel 2016,
MATLAB R 2018b and GraphPad Prism v8.1.2.

Immune Cell Quantification
Tissue Staining
We quantified eosinophils, neutrophils, CD3+ and CD11c+ cells,
and checked for collagen deposition and goblet cell hyperplasia,
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in nasal polyps and nasal mucosa samples. For eosinophil
quantification, we adapted a Luna staining protocol. Samples
were stained with a working solution prepared with 0.9 parts of
homemade Weigert’s Iron Hematoxylin, and 0.1 parts of
commercial Briebrich-Scarlett solution (Sigma Aldrich, ref.
HT151) for 5 min. Slides were then differentiated in 1% acid
alcohol and 0.25% lithium carbonate solutions, and preparations
were mounted.

Regarding goblet cell hyperplasia, we optimized a Periodic
Acid-Schiff (PAS) staining. Briefly, samples were kept in a 0.5%
periodic acid solution, then stained with Schiff’s reactive (Merck,
ref. 109033) and washed. Nuclei were stained with a 1:4 Harris
Hematoxylin solution and differentiated with a 1% acid alcohol
(1% of HCl in 70% ethanol) solution and a saturated lithium
carbonate (Sigma-Aldrich, ref. 62470) solution. Preparations
were mounted with DPX medium.

Regarding neutrophil, CD3+ cells and CD11c+ cells
quantification, we performed immunohistochemical staining
with anti-human neutrophil elastase (ab68672, ABCAM), anti-
CD3 (MCA 1477, AbD Serotec) and anti-CD11c (NCL-L-
CD11c-563, Novocastra) using the automatized system Leica
Bond Max (Leica Biosystems), as previously described
(Sanchez-Solares et al., 2019). For negative controls, the
antibody was substituted with antibody diluent Bond™ (Leica
Biosystems) for incubation.

Masson Trichrome staining (Sigma-Aldrich, ref HT15-1KT)
was performed following the manufacturer’s instructions.

Image Analysis
All slides were scanned with Leica SCN400 scanner (Leica
Biosystems). Images were obtained for each staining using the
Leica Scan Viewer software. Luna and neutrophil elastase-
positive cells were counted in the whole sample, while CD3+

cells and CD11c+ cells were counted in five representative areas
on the sample. Areas were measured using ImageJ v1.51j8 by at
least two independent observers. Results are presented as number
of cells per area. For goblet cell hyperplasia, PAS+ stained areas in
the epithelium were measured, while for collagen deposition,
green areas of Masson staining were measured in the whole
sample using Image-Pro Plus v4.5.0.29 for Windows (Media
Cybernetics) software.

Statistical Analysis
GraphPad Prism v8.1.2 for Windows (GraphPad Software) was
used for statistical analysis. We checked data distribution and
then used t-test or Mann-Whitney U test to determine significant

differences between the means accordingly. Statistical
significance was set at 95% (p < 0.05).

RESULTS

Patient Classification
Patients with CRSwNP were classified according to their allergic
sensitization phenotype by ImmunoCAP ISAC (Figure 1). As
observed in the figure, 13 patients (59.1%) had undetectable sIgE
levels and were classified as non-allergic CRSwNP. On the other
hand, 9 (40.9%) had significant levels of sIgE. They were
sensitized to either one or more perennial allergen sources (i.e.
cat, dog, mites or Alternaria) and/or to a group of seasonal
allergen sources. Thus, we consider them to be perennial allergic
patients and classified them as allergic CRSwNP patients.

Untargeted Plasma Metabolomic Analysis
The plasma metabolic profile of each patient with CRSwNP with
or without allergic sensitization was acquired. After data
treatment, 535 features for LC-MS positive and 429 for LC-
MS negative ionization modes in each plasma sample were
obtained. These features passed the different quality filters
(blank subtraction, presence in quality control samples (QCs;
>50%) and patients (>75%), and coefficient of variation in
QCs (<30%)).

To assess the correct performance of the LC-MS equipment
and the quality of the acquired data, samples were projected on a
PCA model (Figure 2A). Clustering of the QC injections in the
non-supervized plot indicated the high quality of the data, while
dispersion of the samples showed the biological variability of the
patients. The groups were compared using a discriminant PLS-
DA analysis, obtaining no model. Thus, a Mann Whitney-U test
was used for the selection of significant features, finding a total of
13 and 26 features from LC-MS in positive and negative
ionization modes, respectively. For these significant features,
we assessed that they had a coefficient of variation (CV) on
QCs lower than the percentage of change between the non-
allergic CRSwNP compared to the allergic CRSwNP group.
Additionally, we checked that metabolites had a % of change
higher than 20% or that the feature matched the complementary
polarity. These features were represented using a heatmap with
hierarchical clustering for each ionization mode (Figures 2B,C).
As observed, the significant features from the positive ionization
mode were able to define a specific metabolic signature for each
group, accurately clustering all the samples. On the other hand,

TABLE 1 |Optimized MS transitions and parameters for the targeted analysis. LPC: Lysophosphatidylcholine, LPI: Lysophosphatidylinositol, RT: Retention time, V: Volt, eV:
Electronvolt.

Compound name Precursor ion (m/z) Product ion (m/z) RT (min) Fragmentor (V) Collision energy (eV) Polarity

Bilirubin 585.3 299.1 0.91 131 25 +
LPC 16:0 496.3 183.9 9.95 100 28 +
LPC 18:0 524.4 183.8 9.80 100 28 +
LPI 20:4 621.3 361.3 7.83 84 17 +
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the significant features from the negative ionization mode were
able to correctly cluster around 85% of the samples (16 out of 19).

We carried out an annotation for all the significant features.
After tentative annotation and confirmation by MS/MS
fragmentation experiments, we were able to annotate 14
features. Taking into account both polarities, eight metabolites
had a unique annotation–comprizing sn-1 and sn-2 for
lysophospholipids– (Table 2). We found increased levels of
lysophosphatidylcholines (LPC 16:0, LPC 18:0 and LPC 20:4),
a lysophosphatidylinositol (LPI 20:4), cortisol and bilirubin in the
non-allergic CRSwNP compared to the allergic CRSwNP group.

Overall, specific systemic metabolic changes were defined for
non-allergic and allergic CRSwNP patients.

Targeted Metabolomic Analysis of Nasal
Polyps
The significant metabolites found in plasma that had available
commercial standards were used to test their presence in the nasal
polyp. Therefore, nasal polyp samples from six CRSwNP patients
(three non-allergic and three allergic) were analyzed to confirm the
results found in plasma. We applied univariate statistical analysis
between the two groups, obtaining no statistically significant changes
in any metabolite (p > 0.05, Mann Whitney U test). However, to
study the metabolite patterns, these were represented in a heatmap
using the average per group (Figure 2D).We observe that, despite the
low number of samples, the LPC 16:0, LPC 18:0 and LPI 20:4
followed the same increasing trend in the non-allergic CRSwNP
patients as we described in plasma samples. Finally, these metabolites
in plasma and in the nasal polyps from untargeted and targeted
analyses were represented using trajectories in Figure 3.

Histological Features
To better characterize the specific local features of nasal polyps
and mucosa associated to allergy, we analyzed the infiltration of
eosinophils, neutrophils, CD3+ and CD11c+; along with the

hyperplasia of goblet cells and the abundance of collagen
fibers in all of them.

Eosinophil quantification (Figure 4A) revealed that the
number of these cells in nasal polyps was higher than in the
nasal mucosa samples (9.7 ± 2.3 cells/area vs 0.71 ± 0.41 cells/
area, p < 0.001). Importantly, the highest number of eosinophils
was detected in nasal polyps from allergic CRSwNP patients
(Figure 4B). In fact, polyps of non-allergic CRSwNP patients had
significantly less eosinophils than those of allergic CRSwNP
patients (16.6 ± 3.6 cells/area vs 4.5 ± 1.4 cells/area, p < 0.05).

We also found more neutrophils (Figure 5A) in nasal polyps
than in the nasal mucosa (0.60 ± 0.10 cells/area vs 0.31 ± 0.10 cells/
area, p < 0.01). Nasal polyps of allergic CRSwNP patients had the
highest number of neutrophils (Figure 5B), being significantly
different to their own nasal mucosa (0.70 ± 0.17 cells/area vs 0.16 ±
0.060 cells/area, p < 0.01). However, there were no significant
differences in the number of neutrophils in nasal polyps between
non-allergic and allergic CRSwNP patients (p > 0.41).

No statistical differences were observed between the nasal
polyps of non-allergic CRSwNP and those of allergic CRSwNP
regarding collagen deposition (Figure 6, p > 0.66), goblet cell
hyperplasia (Figure 7, p < 0.87), infiltration of CD3+ (Figure 8,
p < 0.22) and CD11c+ cells (Figure 9, p > 0.41).

However, more collagen deposition was observed in the nasal
mucosa compared to the nasal polyps in the non-allergic
CRSwNP (p < 0.001). Moreover, the same trend was found for
the allergic CRSwNP patients, although the difference was not
significant (p > 0.059) (Figure 6B).

There also seemed to be a higher area stained with PAS in the
epithelium of nasal polyps compared to the nasal mucosa for both
allergic and non-allergic CRSwNP groups (Figure 7). Although
the difference was not significant (p > 0.29 for non-allergic
CRSwNP and p > 0.41 for allergic CRSwNP patients), this fact
suggests the presence of goblet cell hyperplasia.

Finally, for the infiltration of CD3+ and CD11c+ cells (Figures
8,9, respectively), no statistical differences were obtained between

FIGURE 1 | Percentage of allergic patients sensitized to each allergen. Cyn d: Cynodon dactylon (Bermuda grass); Phl p: Phleum pratense (timothy); Cup a:
Cupressus arizonica (cypress); Ole e:Olea europaea (olive); Pla a: Platanus acerifolia (London plane tree); Sal k: Salsola kali (saltwort); Fel d: Felis domesticus (cat); Can f:
Canis familiaris (dog); Alt a: Alternaria alternata (Alternaria plant rot fungus); Bet v: Betula verrucose (European white birch); Hev b: Hevea brasiliensis (latex); Mer a:
Mercurialis annua (annual mercury); MUXF3: Bromelain.
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nasal mucosa and nasal polyp for both allergic and non-allergic
CRSwNP groups.

In summary, we found that nasal polyps present a higher
immune cell infiltration (eosinophils and neutrophils) than nasal
mucosa for both allergic and non-allergic CRSwNP patients.
Moreover, allergic CRSwNP patients were characterized by
eosinophilia in their nasal polyps compared to non-allergic
CRSwNP patients. In the case of non-allergic CRSwNP

patients, more collagen deposition in their nasal mucosa than
in their nasal polyp was observed.

DISCUSSION

Nasal polyps are growths of inflamed nasal tissue that have been
well-known for a long time. However, the molecular mechanisms

FIGURE 2 | (A). Unsupervized PCA for QC injections (C; green dot), allergic patients with CRSwNP (C; red dot) and non-allergic patients with CRSwNP (C; blue
dot) models showing the quality of the data for LC-MS. Confidence regions for each group were set at 95% and are depicted with the corresponding color group. Data
were centered scaled and Log transformed. (B,C). Significant signals were depicted on a heatmap using hierarchical clustering of the samples (represented in columns)
and metabolites (in rows) for ESI + and ESI − , respectively. Red cells represent higher levels of the specific metabolite in that sample, whereas blue cells represent
lower levels. Samples and metabolites are clustered according to their similarity. Mann-Whitney U test with a Benjamini-Hochberg correction was used to detect
statistical significance (p < 0.05). Unknown features are represented by “Mass@Retention Time.” (C). Heatmaps of significant plasma metabolomics signals using
hierarchical clustering analysis of the experimental samples LC-MS positive polarity. MannWhitneyU test was used to detect statistical significance (p < 0.05). (D). Target
metabolites analyzed by LC-QqQ-MS in nasal polyps were represented in a heatmap using hierarchical clustering of the samples (represented in columns) and
metabolites (in rows) showing group averages.
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involved in the development of nasal polyps remain unclear.
Additionally, even though allergy and CRSwNP have been
traditionally linked, whether there is a connection between
allergy and the development of nasal polyps or not is yet to be
described. Here, we perform an original experimental design,
aiming to elucidate systemic metabolic differences in CRSwNP
patients with and without allergy.

From our patient cohort, 40% (9 out of 22) of the patients were
allergic, close to the levels in average population which is around
30% (Bauchau and Durham, 2004; Bousquet et al., 2008).

A metabolic fingerprint in plasma of patients with CRSwNP
was obtained. Non-allergic CRSwNP patients displayed an
increase of LPCs (LPC 16:0, LPC 18:0, LPC 20:4) together
with LPI 20:4, compared to allergic CRSwNP. These LPCs
have been previously associated with systemic inflammation
(Chiurchiù et al., 2018; Obeso et al., 2018). Moreover, they
have been described in asthma (Ried et al., 2013; Comhair
et al., 2015; Villaseñor et al., 2017) as arachidonic acid (AA)
precursors. The free fatty acids from the LPCs are released after
the action of lipase A2 to synthesize inflammatory mediators, that
participate as precursors in the AA pathway (Balgoma et al., 2010;
Arita, 2016; Bennett and Gilroy, 2016). Interestingly, LPI 20:4,
which is one of the more abundant LPIs in plasma, has been
related to a potent pro-inflammatory signaling in intestinal bowel
disease and colorectal cancer in animal models (Grill et al., 2019)
and in type 2 diabetes (Lu et al., 2016). Overall, the LPI 20:4
metabolite seems to be involved in the inflammatory response.

On the other hand, there is growing evidence that bilirubin
exerts potent anti-inflammatory effects. Bilirubin is able to
suppress inflammatory responses by preventing the migration
of leukocytes into target tissues through the disruption of vascular
cell adhesion molecule-1 (VCAM-1)-dependent cell signaling. In
a previous study, bilirubin was shown to alleviate colitis (Vogel
and Zucker, 2016). Additionally, nanoparticles containing
bilirubin were used for the treatment of allergic lung
inflammation disease in a mouse model obtaining
amelioration of the disease (Kim et al., 2017). Therefore,
bilirubin has been demonstrated that has anti-oxidative, anti-
inflammatory and immunosuppressive functions in various
diseases such as inflammatory bowel disease, cardiovascular
disease, autoimmune disorders, cancer and type 2 diabetes
mellitus (Peng et al., 2017). Mildly elevation of this metabolite
is associated with better prognosis; thus, the decrease we observe
in allergic CRSwNP patients might be related with a worse
outcome. As bilirubin can be measured in a laboratory
standard test, this metabolite can be compared in future
studies in these patients.

Finally, cortisol has been described as a hormone which acts
suppressing early inflammatory responses; however, when
cortisol is not enough to control inflammation, it prepares
immune cells for major subsequent inflammatory episodes
(Yeager et al., 2018). Interestingly, circadian rhythms of
salivary cortisol were found to be disrupted in patients with
extensive nasal polyposis compared to controls (Fidan et al.,
2013). The authors suggest that a therapy with cortisol-based
drugs might be useful in the treatment of CRSwNP (Fidan
et al., 2013). In this line, intrapolyp steroid injections appear toT
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be effective and safe for the treatment of nasal polyps (Kırıs
et al., 2016). Additionally, it has been shown that polyp-
derived epithelial cells produce cortisol, which may be
involved in the anti-inflammatory response established
when patients receive treatment with glucocorticoid for
nasal polyps (Kook et al., 2015). The elevation of this
metabolite in the non-allergic CRSwNP patients might point

to a specific pathway to cope with inflammation. Additionally,
this suggests that, in allergic CRSwNP patients, the cortisol acts
by recruiting immune cells instead of solving the inflammation
by itself.

Our results demonstrate that allergy produces metabolic
changes in plasma in patients with CRSwNP. The increase
of LPC 16:0, LPC 18:0, LPC 20:4, LPI 20:4, cortisol and

FIGURE 3 | Trajectories of representative metabolites in non-allergic CRSwNP (blue), and allergic CRSwNP (red) patients in plasma and nasal polyp samples. The
median is indicated by the discontinuous line within the violin plot, and each sample’s value is shown individually.

FIGURE 4 | Analysis of eosinophil infiltrates in nasal polyps and nasal mucosa. (A). Representative images of Luna staining in nasal mucosa (n � 20) and nasal
polyps (n � 14) in all experimental groups (eosinophils: black arrow →, scale bar � 50 μm). (B). Comparison of the number of eosinophils per area in nasal polyps and
nasal mucosa samples between non-allergic CRSwNP (NA) and allergic CRSwNP (A) patients. Results are presented asmean ± SEM.Mann-WhitneyU test was used to
state significant differences.
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bilirubin metabolites in the plasma of non-allergic CRSwNP
patients points toward a systemic inflammatory response
in the absence of allergy. These metabolites might participate
in the development of a characteristic tissue environment,
responsible for the differences observed at the histological
and inflammatory infiltration levels. Therefore, we

hypothesized that they might be also altered in the nasal polyp
in the same way.

Consequently, we implemented a novel target methodology to
analyze these significant metabolites from plasma that were
commercially available in the nasal polyp, obtaining good
analytical parameters. We observed that the trends of the LPC

FIGURE 5 | Analysis of neutrophil infiltrates in nasal polyps and nasal mucosa. (A). Representative images of anti-neutrophil elastase immunostaining in nasal
mucosa (n � 20) and nasal polyps (n � 14) in all experimental groups (neutrophils: black arrow→, scale bar � 50 μm). (B). Comparison of the number of eosinophils per
area in nasal polyps and nasal mucosa samples between non-allergic CRSwNP (NA) and allergic CRSwNP (A) patients. Results are presented as mean ± SEM. Mann-
Whitney U test was used to state significant differences.

FIGURE 6 | Analysis of collagen fibers deposition in nasal polyps and nasal mucosa. (A). Representative images of Masson-Trichrome staining in nasal mucosa
(n � 20) and nasal polyps (n � 14) in all experimental groups (collagen fibers: green, cytoplasm: red, erythrocytes: gold, scale bar � 50 μm). (B). Comparison of the
green-stained area (collagen fibers) in nasal polyps and nasal mucosa samples between non-allergic CRSwNP (NA) and allergic CRSwNP (A) patients. Results are
presented as mean ± SEM. Mann-Whitney U test was used to state significant differences.
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16:0, LPC 18:0 and LPI 20:4 metabolites are similar in plasma
and nasal polyps samples. However, further studies are needed,
including a higher number of tissue samples to validate these
results.

Together, the metabolomic results demonstrate that allergy
induces specific metabolic changes in CRSwNP patients. These

are LPC 16:0, LPC 18:0, LPC 20:4, LPI 20:4, cortisol and bilirubin.
Most of these metabolites were measured in nasal polyp, a
biological sample that has not been previously analyzed by
metabolomics. We showed that LPC 16:0, LPC 18:0 and LPI
20:4 follow the same trend in the nasal polyp than in plasma. This
novel methodological procedure could be used in future studies to

FIGURE 7 | Analysis of goblet cell hyperplasia in nasal polyps and nasal mucosa. (A). Representative images of PAS staining in nasal mucosa (n � 10) and nasal
polyps (n � 12) in all experimental groups (mucopolysaccharides: pink, nuclei: purple, scale bar � 50 μm). B. Comparison of the PAS-positive (pink) stained area in the
epithelium of nasal polyps and nasal mucosa samples between non-allergic CRSwNP (NA) and allergic CRSwNP (A) patients. Results are presented as mean ± SEM.
Mann-Whitney U test was used to state significant differences. Only samples with sufficient epithelial integrity were included in this analysis.

FIGURE 8 | Analysis of CD3+ cells infiltrates in nasal polyps and nasal mucosa. (A). Representative images of anti-CD3 immunostaining in nasal mucosa (n � 18)
and nasal polyps (n � 14) in all experimental groups (CD3+ cells: black arrow→, scale bar � 50 μm). (B).Comparison of the number of CD3+ cells per area in nasal polyps
and nasal mucosa samples between non-allergic CRSwNP (NA) and allergic CRSwNP (A) patients. Results are presented as mean ± SEM. Mann-Whitney U test was
used to state significant differences.
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better understand the local metabolomic environment of nasal
polyps.

Histological characteristics in the nasal polyp and their nasal
mucosa of these patients was also analyzed. Tissue eosinophils
have been described both in nasal polyps and in allergic
pathologies. In fact, treatment with anti-IL5 (mepolizumab)
has shown a reduction in both nasal polyp and blood
eosinophils, and a significant improvement in CRSwNP
patients, resulting in better prognosis (Bachert et al., 2017).
Eosinophils have been also measured locally and systemically.
Therefore, a high number of tissue eosinophils and/or their
proteins in nasal polyps have been related to more severe and
maintained symptoms (Sun et al., 2017) and recurrence (Tos
et al., 2010; Van Zele et al., 2014; Yang et al., 2018). High numbers
of eosinophils in plasma correlate with higher allergy incidence
and worse symptomatology as well (Erbek et al., 2007). Thus, it
seems clear that eosinophils might play a role in the development
and prognosis of allergic CRSwNP.

On the other hand, neutrophil quantification showed a similar
distribution pattern between non-allergic CRSwNP and allergic
CRSwNP patients, which was independent of the presence or
absence of eosinophils. Although there are studies describing
lower numbers of neutrophils in eosinophilic CRSwNP compared
to the non-eosinophilic polyps (Schleimer, 2017); other authors
(Pothoven et al., 2017; Kong and Kim, 2018) have recently
reported similar results, linking the role of neutrophils in this
disease to their expression of oncostatinM (OSM), a cytokine that
has been found elevated in CRSwNP and that induces barrier
dysfunction.

Additionally, a lower collagen deposition in nasal polyps
compared to nasal mucosa for both allergic and non-allergic

CRSwNP patients, suggest that the polyps of the study are
edematous, rather than a fibrous (Brescia et al., 2021).

In brief, immune cell infiltration analysis revealed
differential features between nasal polyp and nasal mucosa
and suggest that a maintained allergy would enhances the
inflammatory response mediated by eosinophils in nasal
polyps but, surprisingly, not in nasal mucosa for allergic
CRSwNP patients.

Separately, according to Brescia et al (Brescia et al., 2021), CRS
appears to be a very heterogeneous inflammatory condition, with
various emerging endotypes. Molecular and cellular screening
together with clinical phenotyping in CRSwNP could be useful to
define endotypes, and thus clarify the inflammatory mechanisms
and allow the establishment of a more precise treatment.
However, because of the aim of this exploratory study was to
use allergy as the main classifying criterion, we are not able to
describe our data in terms of CRS endotypes. This limitation
should be addressed in the future including a more complete
immunological, histopathological and clinical phenotyping
approach, what will lead to an improvement in the endotyping
capability, as it has been reported (Brescia et al., 2017; Kim and
Cho, 2017; Bachert et al., 2018). In this sense, metabolomics could
offer help in both 1) the endotyping of patients with CRSwNP,
along with cellular and other molecular analysis; and 2) the
understanding of the molecular mechanisms that underlay the
endotypes.

Our findings suggest that the two phenotypes (non-allergic
CRSwNP and allergic CRSwNP), although sharing histological
features such as cellular infiltration, have distinctive metabolomic
fingerprints and eosinophilia, which point toward different
mechanisms of formation.

FIGURE 9 | Analysis of CD11c+ cells infiltrates in nasal polyps and nasal mucosa. (A). Representative images of anti-CD11c immunostaining in nasal mucosa
(n � 19) and nasal polyps (n � 14) in all experimental groups (CD11c+ cells: black arrow→, scale bar � 50 μm). (B).Comparison of the number of CD11c+ cells per area in
nasal polyps and nasal mucosa samples between non-allergic CRSwNP (NA) and allergic CRSwNP (A) patients. Results are presented asmean ±SEM.Mann-WhitneyU
test was used to state significant differences.
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Previous studies from our group have followed thismetabolomics
approach in other respiratory allergy models and have found
alterations in the AA pathway, as we report in this manuscript
(Obeso et al., 2018; Barker-Tejeda et al., 2020). Although,
surprisingly, this route was downregulated in allergic CRSwNP
patients, an increased recruitment of eosinophils in the nasal
polyp was observed. Therefore, we hypothesized that the
development of the phenotype CRSwNP without allergy requires
a great underlying uncontrolled systemic inflammation, which is
different in the allergic phenotype. Thus, eosinophils seem to be
accountant for the inflammation leading to CRSwNP development
in the allergic phenotype, while non-allergic CRSwNP phenotype
would be characterized by higher levels of AA precursors and other
inflammatory mediators needed to develop the nasal polyp. The
reason of the increase in these biological pathways is, however, yet to
be defined.

This is an exploratory study, where the design is innovative and
aimed to understand the effect of respiratory allergy in the
development of CRSwNP; however, it has some limitations.
Although the sample size was small, the samples (nasal polyps,
nasal mucosa and plasma) were extensively characterized by
metabolomics and histology. Moreover, despite the metabolic
alterations that were observed between these two groups of
patients not being able to generate a discriminant model (i.e. PLS-
DA) capable of predicting new samples, the findings are promising in
this field and would shed light on the mechanism by which patients
without allergy develop CRSwNP. Therefore, in further studies, the
validation of these results in a bigger cohort is needed.

Overall, CRSwNP is a pathology of high level of clinic-
pathological complexity where the collection of biopsies is not
an easy task. Although the role of histological study of biopsies is a
complementary approach for the endotyping of nasal polyps, the
inclusion of a metabolomic analysis has allowed us to identify
biological processes associated with the allergic or non-allergic
phenotypes and, therefore, could be helpful in the design of novel,
less invasive treatments for these patients.

CONCLUSION

Our results demonstrate that patients with CRSwNP with and without
allergy display systemic metabolic changes. Surprisingly, these
metabolites (LPC 16:0, LPC 18:0, LPC 20:4, LPI 20:4, cortisol and
bilirubin), which are associated with inflammation, appear to be
increased in the absence of allergy, suggesting that non-allergic
CRSwNP patients develop the nasal polyp after a sustained systemic
inflammation. We have developed a new method for the analysis of
nasal polyps using targeted metabolomics. With this, we spotted the
same trends of LPC 16:0, LPC 18:0 and LPI 20:4 that were observed in
plasma. The increased numbers of eosinophils in the nasal polyp of
allergic CRSwNP patients hints that nasal polyps might develop by a
local immune effector cell recruitment that ends in tissue remodeling.
Finally, this is an exploratory study, where the significant metabolites
were obtained by a semi-quantitative comparison between the groups.
Thus, interpretation of these results should bemade taking into account
these limitations. Further validation studies in new cohort of samples
using targeted quantitative methods must be carried out.
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Chojnowska, S., Kępka, A., Waszkiewicz, N., Zp, K., Duchnowska, E., Ościłowicz, K.,
et al. (2013). Etiopathogenesis of Nasal Polyps. Prog. Heal Sci. 3 (2), 151–159.
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Because of its ability to generate biological hypotheses, metabolomics offers an
innovative and promising approach in many fields, including clinical research. However,
collecting specimens in this setting can be difficult to standardize, especially when
groups of patients with different degrees of disease severity are considered. In
addition, despite major technological advances, it remains challenging to measure
all the compounds defining the metabolic network of a biological system. In this
context, the characterization of samples based on several analytical setups is now
recognized as an efficient strategy to improve the coverage of metabolic complexity. For
this purpose, chemometrics proposes efficient methods to reduce the dimensionality
of these complex datasets spread over several matrices, allowing the integration
of different sources or structures of metabolic information. Bioinformatics databases
and query tools designed to describe and explore metabolic network models offer
extremely useful solutions for the contextualization of potential biomarker subsets,
enabling mechanistic hypotheses to be considered rather than simple associations.
In this study, network principal component analysis was used to investigate samples
collected from three cohorts of patients including multiple stages of chronic kidney
disease. Metabolic profiles were measured using a combination of four analytical
setups involving different separation modes in liquid chromatography coupled to high
resolution mass spectrometry. Based on the chemometric model, specific patterns
of metabolites, such as N-acetyl amino acids, could be associated with the different
subgroups of patients. Further investigation of the metabolic signatures carried out
using genome-scale network modeling confirmed both tryptophan metabolism and
nucleotide interconversion as relevant pathways potentially associated with disease
severity. Metabolic modules composed of chemically adjacent or close compounds
of biological relevance were further investigated using carbon transfer reaction paths.
Overall, the proposed integrative data analysis strategy allowed deeper insights into the

Frontiers in Molecular Biosciences | www.frontiersin.org 1 May 2021 | Volume 8 | Article 68255976

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.682559
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmolb.2021.682559
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.682559&domain=pdf&date_stamp=2021-05-14
https://www.frontiersin.org/articles/10.3389/fmolb.2021.682559/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-682559 May 10, 2021 Time: 15:20 # 2

Boccard et al. Chemometrics and Bioinformatics for Clinical Metabolomics

metabolic routes associated with different groups of patients to be gained. Because
of their complementary role in the knowledge discovery process, the association of
chemometrics and bioinformatics in a common workflow is therefore shown as an
efficient methodology to gain meaningful insights in a clinical context.

Keywords: metabolomics, chemometrics, bioinformatics, integrative data analysis, chronic kidney disease,
metabolic networks

INTRODUCTION

While efforts are still being made to improve both technological
and computational aspects, metabolomics is now recognized
as an essential approach to assess biochemical phenotypes
in many application fields, including clinical research. Mass
spectrometry (MS) has established itself as a major analytical
detection technique by offering high sensitivity and substantial
throughput (Zhang et al., 2020). Metabolomic experiments
often generate large amounts of high-dimensional and complex
biochemical data involving multiple signals measured from
thousands of low molecular weight compounds. Dedicated
strategies need thus to be applied to extract meaningful
biological knowledge from the collected MS data (Boccard
et al., 2010). Despite the considerable developments made
to improve the different steps of the workflow (Pezzatti
et al., 2020), assessing the metabolic diversity of a complex
sample still constitutes a challenging analytical endeavor.
The difficulty is mainly due to the large chemical space and
concentration ranges covered by metabolites characterizing
biological systems (Frainay et al., 2018). The integration of
data collected from different sample preparation protocols,
separation principles, ionization modes or analytical platforms
has been recognized as an efficient strategy to improve the
metabolome coverage of complex samples, thus potentially
offering better understanding of the underlying biological
mechanisms associated with a given phenotypic pattern
(Richards et al., 2010). Dedicated data mining tools accounting
adequately for metabolomic signals spread over multiple data
tables are therefore needed, and chemometrics offers potent
solutions for data integration based on dimensionality reduction
approaches. More specifically, multivariate models able to
handle multiple blocks of variables (multiblock) associated
with different groups of observations (multigroup) are now
established as effective methods for data integration in omics
disciplines (Boccard and Rudaz, 2014).

An additional complexity frequently encountered in clinical
research is due to a certain degree of heterogeneity in sample
collection among different groups of individuals. Classical case–
control studies usually involve a group of healthy volunteers
used as a reference and compared to one or various pathological
situations. On one hand, it could be difficult to collect
measurements obtained by a highly invasive technique for the
control group. On the other hand, a longitudinal follow-up of
critical patients involving repeated measures at different time
points may be required in standard protocols. This temporal
follow-up offers rich information, but these types of longitudinal
setups generate multiway data, i.e., three-dimensional tensors

in this case (individuals × variables × time) making the global
analysis of all available data more challenging.

In this context, Network Principal Component Analysis
(NetPCA) has been recently proposed as a novel and generic
approach to handle any type of structure composed of several
data matrices (Codesido et al., 2020). Relationships between
groups of observations or blocks of variables are translated
into a network structure, where the nodes are standard two-
dimensional data matrices. Two types of edges link the nodes
to connect data tables characterized by the same observations
or variables. This formalism translates any links between data
matrices into optimization constraints to find principal directions
of covariations by using the same model parameters (i.e.,
coefficients or loadings), that are then extracted using a set
of linear models.

Handling data spread over multiple matrices constitutes a
crucial step toward insightful data integration, but biological
information is rarely obtained directly from statistical models,
e.g., based on variables coefficients, or selected subsets of
annotated metabolites. It is now well-recognized that a
contextualization of metabolomic results is mandatory
to go beyond simple associations and provide reliable
mechanistic hypotheses (Kell, 2004). Converting subsets of
up- or down-modulated biomarkers into biological processes
and functions plays thus another critical role to go toward a
functional description of the molecular events under study
(Booth et al., 2013).

A first approach to this aim is to derive a biological meaning
from a subset of relevant metabolites by retrieving metadata
associated with each compound, such as chemical classes or
known metabolic pathways. This can be done using a controlled
vocabulary, i.e., ontologies allowing functional annotations, and
bioinformatic tools that are designed to query this information
stored in dedicated databases, e.g., KEGG (Kanehisa and Goto,
2000) and HMDB (Wishart et al., 2018). Biological processes
and/or molecular functions can then be ranked using a statistical
test (e.g., Fisher exact test or hypergeometric test) according
to their probability to be represented more frequently than it
would occur by random chance (Kankainen et al., 2011). The
rationale behind this strategy is that the metabolites belonging
to a metabolic pathway involved in the manifestation of a
specific metabolic signature are expected to be modulated
simultaneously. This is a rather strong hypothesis that may not
be fulfilled in a real biological context and this type of analysis
has therefore some limitations (Marco-Ramell et al., 2018).

Alternatively, describing metabolic networks as graphs
constitutes a very efficient methodology to model biochemical
reactions defining the metabolism. A metabolite-centric
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representation can be gained using a compound graph defining
metabolites as nodes, which are connected if they are substrate
and product of the same reaction (Guimera and Amaral, 2005).
Metabolic pathways can then be defined as subgraphs involving
a series of metabolites belonging to the same metabolic process.
Such a strategy allows to go much further in the biological
interpretation of altered metabolic patterns, compared to
standard metabolic pathways over-representation analysis. As
enzymes drive most of these reactions, they can be related to
specific proteins, which are synthesized from their corresponding
genes. These biological links between genes and metabolites
constitute valuable information that can be used to infer
metabolic networks from genomes, following a systems biology
approach. Major improvements of the sequencing technology
and databases have indeed enabled the reconstruction of
genome-scale metabolic networks of several model organisms
(Yilmaz and Walhout, 2017). It is, however, to be noted that
network curation and validation remain mandatory to correct
for false positive or missing reactions, and guarantee an adequate
stoichiometric balance. Various metrics can then be applied to
highlight specific topological features of interest, such as path
lengths, degree centrality and clustering coefficient, which allow
hubs and modules of topological importance to be highlighted
(Lacroix et al., 2008). Moreover, subnetworks focusing on specific
sets of reactions related to modulated metabolites can be easily
extracted and visualized (Frainay and Jourdan, 2017). Such a
strategy is useful to reduce the complexity of large networks and
to gain a better mechanistic understanding of the phenomenon
under study, through the possibility to investigate a reduced
list of biochemical reactions characterizing particular metabolic
phenotypes. Resources for pathway mapping and/or network
analysis include KEGG (Kanehisa and Goto, 2000), MetaCyc
(Caspi et al., 2016), Recon (Thiele et al., 2013; Noronha et al.,
2017), and MetExplore (Cottret et al., 2010, 2018).

This work presents the integrative analysis of data collected
from several metabolomic studies designed to investigate the
effects of chronic kidney disease (CKD). The selected analytical
strategy was based on multiple chromatographic separation
setups, including reversed-phase liquid chromatography
(RPLC), hydrophilic interaction chromatography with amide
(aHILIC), and polymeric zwitterionic stationary phases
(ZICpHILIC) coupled to high-resolution mass spectrometry
(HRMS). The heterogeneous and complex data structure
generated was successfully handled using chemometrics for
multiblock and multiset data integration, and state-of-the-art
bioinformatic resources were implemented for an in-depth study
of metabolic events.

MATERIALS AND METHODS

Chronic Kidney Disease Dataset
Plasma samples collected during four prospective observational
monocentric CKD studies performed at a tertiary hospital
(Geneva University Hospitals, Geneva, Switzerland) were
considered. CKD severity stages were defined according to the
glomerular filtration rate (GFR) criterion KDIGO guidelines

(Levey et al., 2020). A first cohort of patients was recruited to
assess the impact of different stages of CKD severity (3b–5) on
plasma metabolites (Gagnebin et al., 2019). A second and third
one explored the benefits offered by kidney transplantation,
as well as the potential impact of kidney donation on healthy
living donors (LKD) (Gagnebin et al., 2020b). Finally, the last
one was designed to investigate plasmatic metabolites patterns
of patients with end-stage renal disease (ESRD) undergoing
regular hemodialysis (HD) (Gagnebin et al., 2020a). The latter
were under chronic HD for at least 3 months with three dialysis
per week. In addition, a control group of healthy volunteers
was also included.

Plasma from all cohorts were collected for an integrative
analysis of these different renal conditions. All samples were
collected in the morning after an overnight fast and several
times points were considered for individuals undergoing HD or
transplantation, as well as LKD. Samples were directly thawed,
aliquoted and stored at –80◦C. More details about the inclusion
criteria, GFR, HD characteristics and ethical concerns can be
found in the specific reference of each study.

Sample Preparation and Analysis
Sample Preparation
Pipetting and liquid handling was carried out using a Tecan
Freedom Evo-2 (Tecan, Switzerland) to ensure sample
preparation repeatability. First, solvent protein precipitation
was performed using cold methanol spiked with isotopically
labeled standards [(d5-indole)-L-tryptophan, 1,2-13C2-taurine
and 2,2,4-d3-DL-glutamic acid)], all from Cambridge Isotope
Laboratories Inc. (Andover, United States) at 1.25 µg mL-1.
A volume of 960 µL cold methanol containing the standards was
added to 240 µL of thawed plasma. Samples were then vortexed
for 20 s, mixed at 1,200 rpm for 30 min at 4◦C and centrifuged
at 15,000 × g for 20 min at 4◦C. Supernatants were divided into
300 µL aliquots and dispatched on 96-well plates. Each extract
was then dried for 8 h in a Thermo Fisher Scientific Savant
210A SpeedVac (Thermo Electron LED GmbH, Langenselbold,
Germany) and stored at –80◦C. Before analysis, samples were
reconstituted in 60 µL of H2O/MeCN (95:5, v/v) for RPLC and
in 60 µL of H2O:MeCN (25:75, v/v) for aHILIC and ZICpHILIC.
Quality control (QC) and diluted QC (dQC) samples were
prepared to assess and correct analytical variations using the
same sample preparation procedures as the individual samples.

LC-MS Analysis
Liquid chromatography was carried out on a Waters H-Class
Acquity UPLC system (Waters Corporation, Milford, MA,
United States) using different separation modes. RPLC analysis
was performed using a Phenomenex Kinetex C18 column
(150 × 2.1 mm, 1.7 µm), and a SecurityGuard ULTRA pre-
column. A gradient of mobile phase A (0.1% FA in water) and
mobile phase B (0.1% FA in MeCN) was applied as follows:
2% B for 1 min, increased to 100% B over 14 min, held for
3 min, and then returned to 2% B to re-equilibrate the column
for 7 min (total run time of 25 min) at a flow rate of 300
µL min-1 and a column temperature of 30◦C. Separation using
aHILIC was achieved on a Waters Acquity BEH Amide column
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(150 × 2.1 mm, 1.7 µm), and a VanGuardTM pre-column.
A gradient of mobile phase A (H2O:MeCN; 5:95 v/v) and mobile
phase B (10 mM ammonium formate in H2O:MeCN, 70:30 v/v
adjusted at pH 6.50 in the aqueous part) was applied as follows:
0% B for 2 min, increased to 70% B over 18 min, held for 3 min,
and then returned to 0% B to re-equilibrate the column for 7 min
(total run time of 31 min) at a flow rate of 500 µL min-1 and a
column temperature of 40◦C.

ZICpHILIC analysis was carried out on a Merck SeQuant Zic-
pHILIC column (150 × 2.1 mm, 5 µm) and the appropriate
guard kit was applied. A gradient of mobile phase A (MeCN)
and mobile phase B (2.8 mM ammonium formate adjusted to
pH 9.00) was applied as follows: 5% B for 1 min, increased to
51% B over 9 min, held for 3 min at 51% B and then returned to
5% B in 0.1 min before re-equilibrating the column for 6.9 min
(total run time of 20 min) at a flow rate of 300 µL min-1 and a
column temperature of 40◦C. For all separation modes, a volume
of 5 µL of the 393 samples was analyzed in eight batches using
constrained randomization (Jonsson et al., 2015). QC samples
were injected for system conditioning (15 first injections in each
batch), while QCs and dQCs were analyzed regularly during the
sequence (every 6 samples).

The UPLC system was coupled to a maXis 3G Q-TOF high-
resolution MS from Bruker (Bruker Daltonik GmbH, Bremen,
Germany) with an electrospray ionization source working in
positive (ESI+) mode for RPLC and aHILIC, or negative (ESI−)
mode for RPLC and ZICpHILIC. The instrument was operated
using the following parameters: capillary voltage of –4.7 kV
for ESI+ and 2.8 kV for ESI-, nebulizing gas pressure of 2.0
bar, drying gas temperature of 225◦C for RPLC and 200◦C
for aHILIC and ZICpHILIC and a flow rate of 8.0 L min−1.
Data acquisition between 50 and 1,000 m/z was performed in
profile mode at a rate of 2 Hz. In-run automatic calibration
was achieved using formate adducts in the 90–1,247 m/z range
and the quadratic plus high-precision calibration algorithm
(Bruker Daltonics). The detailed analytical protocol can be found
elsewhere (Gagnebin et al., 2019).

Data Processing and Analysis
Raw data processing was performed using Progenesis QI
2.3 (Non-linear Dynamics, Waters, Newcastle upon Tyne,
United Kingdom). QCs and dQCs were used to monitor and
control data acquisition quality, remove unreliable signals,
and correct for within-batch drifts and between-batch effects.
A filtering procedure was carried out to remove unreliable signals
by applying a threshold of 50% for the dQC/QC ratio relative
standard deviation (RSD) and a dQC/QC ratio between 0.2
and 0.8. LOESS regression was used for intra- and inter-batch
normalization based on QC samples. Finally, the position of the
QCs was assessed separately for each data block using Principal
Component Analysis (data not shown).

Metabolite annotation was achieved using an in-house
database containing experimental data from more than
900 authentic standard compounds measured in different
chromatographic conditions. Briefly, level 1 annotation was
achieved by matching m/z values, retention times, and isotopic
patterns, while MS/MS spectra and collisional cross-section

values were considered for confirmatory purpose. Cytoscape
3.8.2 was used to generate circular layout graphs. NetPCA was
computed after unit variance scaling using the NetPCA Python
package (Codesido et al., 2020).

Clustering was computed under the MATLAB 9.5
environment (The MathWorks, Natick, United States).
MetExplore (Cottret et al., 2010) and MetExploreViz (Chazalviel
et al., 2018) were used with the Recon3D human metabolic
reconstruction (Brunk et al., 2018) for mapping identified
metabolites, pathway over-representation analysis, network
visualization and evaluation of carbon transfer reaction
paths. A more detailed description of the data processing
and analysis workflow, as well as the dataset, are available as
Supplementary Material.

RESULTS

Metabolomic Dataset Structure
In total, 393 blood samples were collected from the pre-
defined cohorts of patients grouped into different categories
according to their renal status: 56 healthy control volunteers
(CTRL), 69 CKD patients at intermediate stage (ICKD), 35
patients with ESRD undergoing HD (HD), 42 ESRD undergoing
kidney graft (KG) and 24 healthy LKD (DV). Repeated
measures were carried out for three groups: (i) HD: before
(preHD) and after (postHD) blood dialysis on the mid-
week session, (ii) KG: before (preKG), 1 week (postKG1),
and 1 month (postKG2) after the graft, (iii) DV: before
(preDV), 1 week (postDV1) and 1 year (postDV2) after the
transplantation procedure.

All samples went through our standard analytical workflow
already presented elsewhere (Pezzatti et al., 2020). Briefly,
generic sample preparation was first carried out to cover a
large chemical diversity of compounds and each sample was
analyzed using four LC-HRMS setups, i.e., RPLC+, RPLC−,
aHILIC+, and ZICpHILIC-. Raw data processing involving
baseline correction, peak picking, adduct deconvolution and
retention time alignment was carried out with Progenesis QI,
while subsequent filtering and normalization based on QC
samples (Broadhurst et al., 2018; Pezzatti et al., 2020) was
performed using in house scripts. Metabolite annotation was
then performed by matching reference values measured with
standards in the same analytical conditions, and a scoring
strategy was implemented to remove compounds annotated
in more than one LC-MS setup. For that purpose, a peak
quality score based on intensity, shape, and retention time
was used to select the best analytical information (Pezzatti
et al., 2019). In the present work, annotation was restricted
to metabolites matching entries from our in-house database.
This strategy led to a set of 218 compounds annotated at level
1 for each sample. These identified metabolites were spread
over four blocks of variables corresponding to the different
LC-MS setups as follows: 88 in RPLC+, 38 in RPLC−, 27 in
aHILIC+, and 65 in ZICpHILIC-. A schematic diagram of the
dataset structure composed of 40 data matrices involving the
five different groups of individuals, the four blocks of variables,
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FIGURE 1 | Schematic diagram of the dataset structure composed of 40 data matrices involving the five different groups of individuals, the four blocks of variables,
and repeated measurements. CTRL, control group; ICKD, intermediate chronic kidney disease; HD, hemodialysis; KG, kidney graft; DV, living kidney donors. Sharps
indicate the numbering of the tables.

and repeated measurements for HD, KT, and KD is provided
in Figure 1.

Network Principal Component Analysis
Modeling
This type of complex data structure involving multiple groups
of observations and blocks of variables, together with repeated
measures for certain individuals, is not straightforward to
handle efficiently, i.e., without breaking connections between
data matrices linking their rows and/or columns. NetPCA
was performed after unit variance scaling using connection
links between data matrices to define the constraints of the
model. For that purpose, a network incidence matrix was
used to define the topology of the data structure. By these
means, matchings between the same sets of observations (rows),
variables (columns), or both (rows and columns) could be
explicitly included in the optimization process, thus leading to
global components accounting for these links. Circular layout
graphs corresponding to the connections between (A) groups of
observations and (B) blocks of variables are presented in Figure 2.
Using this representation, blocks of data associated with the same
individuals appear clearly (data matrices #1–4 for CTRL and #5–
8 for ICKD), while tensorial substructures generated by repeated
measures during the longitudinal follow-ups form larger clusters
(data matrices #9–16 for HD, #17–28 for KG, and #29–40 for
DV). Moreover, the four subsets of metabolites measured using
the different LC-MS setups were also clearly visible.

FIGURE 2 | Circular layout graphs describing network connections between
(A) groups of samples and (B) blocks of variables. The numbering of the data
matrices corresponds to that given in Figure 1.

A two-component NetPCA model was considered to
investigate the main metabolic variations in the dataset. From
the distribution of the groups on the score plot (Figure 3), it
appeared that the first component, summarizing 27.0% of the
total variability, strongly followed the severity of CKD. The
CTRL and preDV groups of healthy individuals were located
on the left (negative scores), ICKD transitional situation in
the middle, while preHD and preKG patients characterized by
ESRD requiring specific treatment were distributed on the right
(positive scores). This important part of explained variance
is consistent with prior knowledge regarding the massive
kidney dysfunction associated with CKD status characterized by
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FIGURE 3 | NetPCA score plot of the two first global components. CTRL, dark green crosses; ICKD, filled orange triangles; preHD, filled red squares; postHD,
empty red squares; preKG, filled violet diamonds; postKG1, light violet diamonds; postKG2, empty violet diamonds; preDV, filled brown circles; postDV1, light brown
circles; postDV2, empty brown circles.

markedly decreased glomerular filtration. These characteristics
are indeed shared by the preKG and preHD groups with the
most severe kidney damage. It should also be noted that postHD
samples are associated with a return to a situation similar to
ICKD along this first component, compared to the preHD group.
A similar observation can be made by comparing the samples of
the KG group before (preKG) and after (postKG1 and postKG2)
transplantation. As patients seem to recover (at least partially) a
metabolic profile similar to less severe stages of renal disease, this
suggests marked beneficial effects offered by hemodialysis and
graft on many metabolite levels. In addition, kidney donation
does not appear to affect the metabolomic profile of LKD over
the long term, as postDV1 and postDV2 groups of samples
were located close to healthy individuals on the left, with only
slightly higher metabolites levels possibly resulting from reduced
filtration capacity with a single kidney.

Finally, samples from the postHD group, i.e., metabolic
profiles measured after dialytic therapy, are characterized by
negative scores on the second component on which they appear
separated from the other sample groups, revealing thus another
pattern of metabolic profiles that was not observed in the case
of endogenous renal alteration. It is to be noted that the second
component summarized a trend driven only by a subset of
samples with 5.9% of the total variability, thus more specific to
the impact of hemodialysis. The NetPCA score plot of the two
first global components is depicted in Figure 3.

Relative block influences were computed for both
components, thus offering an objective way to evaluate
the relative contributions of each data matrix to the global

decomposition. Prior observations were confirmed, as the first
component was mainly associated with variations from data
blocks related to the preHD and preKG groups, while the second
component summarized the trend associated with postHD
samples. Interestingly, balanced contributions from the four
LC-MS setups could be highlighted, underlining their overall
agreement in terms of biochemical information. Relative blocks
influences are summarized in Table 1.

Metabolite-Centric Analysis
The contributions of the variables to the components (or
loadings) are helpful to investigate the trends associated with
meaningful observations groupings and interpret multivariate
models. Because NetPCA accounts explicitly for multigroup
structures, these influences of the variables can be computed
by taking only specific subsets of observations into account,
i.e., subsets of metabolites associated with a specific renal
status in this case. This provides also an objective basis to
highlight specific differences between two groups, e.g., CTRL
and postHD, by assessing potentially dissimilar patterns of
compounds summarizing the variability of the two metabolic
phenotypes. Based on this information, it is also possible to adopt
another way of interpreting the model through a variable-centric
approach. In this case, the contribution of each metabolite to
the explained variability can be summarized using the different
components of the model. A cumulative contribution for each
component, according to its relative part of variability explained
can be expressed as a percentage of the total variance of the
metabolite. Ranking the variables according to their percentage
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TABLE 1 | Relative block influences for the two first NetPCA components.

NetPCA Component 1 NetPCA Component 2

Group RPLC+ RPLC− aHILIC+ ZICpHILIC− RPLC+ RPLC− aHILIC+ ZICpHILIC−

CTRL 2.6% 2.6% 2.4% 2.3% 1.4% 1.5% 1.0% 1.6%

ICKD 0.3% 0.3% 0.3% 0.1% 0.1% 0.1% 0.1% 0.3%

preHD 13.3% 13.7% 13.1% 15.1% 0.1% 0.1% 0.0% 0.0%

postHD 0.0% 0.1% 0.1% 0.1% 11.2% 12.0% 14.0% 15.7%

preKG 4.6% 6.4% 2.2% 7.6% 2.3% 1.7% 0.7% 3.3%

postKG1 0.8% 0.8% 0.7% 0.4% 3.8% 4.1% 4.2% 4.0%

postKG2 0.5% 0.5% 0.4% 0.4% 3.8% 3.6% 3.5% 4.7%

preDV 0.7% 0.8% 0.7% 0.6% 0.1% 0.1% 0.1% 0.0%

postDV1 0.9% 0.9% 0.9% 0.8% 0.2% 0.2% 0.2% 0.1%

of variance explained for a given component of interest allows a
straightforward extraction of the biological variability of interest.
Explicitly accounting for the data structure provides thus a better
understanding of the role of each variable in the decomposition.
The percentage of explained variance for the 218 metabolites is
summarized in Supplementary Table 1. A threshold of 20% was
applied in order to underline relevant metabolites accounting
for at least this proportion of their total variability on the
different axes. This led to a large subset of 106 compounds
markedly modulated according to disease severity on the first
component, while a smaller pattern composed of 14 metabolites
was associated with the second axis. From these results, it can
be observed that a massive increase of the abundance of a large
number of metabolites is associated with first component. This
general accumulation of blood metabolites is in line with prior
knowledge of the pathology (Zhao, 2013).

Levels of known uremic retention solutes, such as creatinine,
adipate, allantoin, or hippuric acid were observed as positively
correlated with the first component, i.e., levels that were
increased according to disease severity (Boelaert et al.,
2013). Moreover, numerous N-acetyl amino acids were
also in the subset of metabolites with markedly augmented
abundances, including N-acetylmethionine, N-acetyltryptophan,
N-acetylphenylalanine, N-acetylleucine, N-acetylproline,
N-acetyllysine, N-asparagine. These may be the hallmark of
N-acetylation as an altered detoxification mechanism in CKD
(Sekula et al., 2016). Other noticeably increased metabolites
were kynurenic acid, formylmethionine, anthranilic acid,
5’-methylthioadenosine, myo-inositol and indoxyl sulfate.
Tryptophan and guanidinoacetic acid (a precursor of creatine,
creatinine and urea) were characterized by a decrease level
when compared to healthy volunteers with fully efficient kidney
function. Overall, these results were in agreement with previous
studies (Hocher and Adamski, 2017; Kalim and Rhee, 2017).

Additionally, a subset of metabolites was highlighted as
characteristic of the dialyzed patients (postHD), on the second
component, involving various amino acids, such as lysine,
arginine, methionine, proline, threonine, cysteine, valine and
norvaline. Interpretation remains, however, challenging, as
this observation could result from lower overall metabolite
concentration and reduced ion suppression that may increase
signal (Gagnebin et al., 2017). Moreover, HD patients were

under chronic hemodialysis for at least 3 months with standard
three dialysis per week, and this effect could be due to
a cyclic equilibria of metabolite levels, as discussed with
the medical team. An evaluation of the net balance would
require quantitative plasmatic measurements as well as proper
assessment of clearance.

Bioinformatics
In order to go beyond simple lists of potential biomarkers
and propose biological hypotheses, further analysis of metabolic
pathways was carried out using MetExplore (Cottret et al.,
2010). The latter uses biosources, i.e., curated metabolic networks
obtained from genome-scale reconstructions, to offer deeper
insights into metabolic modulations and a better understanding
of potential mechanisms leading to a specific metabolic
phenotype. The Recon3D (Brunk et al., 2018) biosource of
Homo sapiens derived from 2,990 genes was used as the
most accurate reconstruction of the human metabolic network
to date. Recon3D topology includes the cellular localization
of metabolites (e.g., mitochondria, cytoplasm, etc.) but this
description of biological compartments is not relevant for
biological matrices such as plasma. A simplified version of the
network was obtained by removing this information, and a
single node was considered for each metabolite in the case of
multiple occurrences in different compartments. This network
was composed of 109 pathways involving 4,095 metabolites,
5,389 reactions and 3,099 enzymatic complexes. A subset of
134 metabolites were successfully mapped on Recon3D using
MetExplore Metabolite Identifier Matcher module, corresponding
to 61% of the pool of compounds identified in the samples.

Over-Representation Analysis
Potential biomarker metabolites related to the first components
were investigated using over-representation analysis. The latter
aims to highlight pathways the more likely associated with
a subset of metabolites by assessing whether they contain
significantly more differentially expressed compounds than
expected by chance. Because hemodialysis cannot be considered
as a biological process, differences between preHD and postHD
conditions summarized by the second component should indeed
not be associated with specific biological pathways. Therefore,
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FIGURE 4 | Over-representation analysis (–log10 of the right-tailed Fisher test p-value corrected using the Benjamini-Hochberg False Discovery Rate procedure).
The –log10 value of the 5% significance threshold is 1.301.

it was not relevant to further investigate potentially impacted
metabolic pathways.

Metabolite mapping allowed 55 compounds associated
with the first NetPCA component to be localized on the
Recon3D network and over-representation analysis was
therefore performed based on this subset. By these means, two
pathways were reported as over-represented, namely tryptophan
metabolism and nucleotide interconversion. The latter were thus
objectively confirmed as metabolic pathways associated with
CKD with 7 and 6 metabolites present in the subset of potential
biomarkers, respectively. Moreover, urea cycle and purine
catabolism were close to the significance threshold. A summary
of the results of the over-representation analysis is proposed
in Figure 4.

Network Analysis
Investigating metabolic pathways characterizing specific
phenotypes provide valuable information about biological
processes but are, however, limited to offer a global overview of
the metabolism and its potential alterations. As many metabolites
are involved in multiple interconnected pathways, the specificity
of a metabolic signature is often difficult to guarantee. This is
particularly crucial in a case such as CKD, because relevant
phenotypic features of the disease may be spread over several
pathways. As a consequence, it could be challenging to gain an
overall understanding of the molecular events based only on
pathway analysis.

Metabolic networks connecting all the pathways as a
single object constitute therefore a very interesting alternative
strategy. Subnetwork extraction was carried out based on
significantly over-represented metabolic pathways associated
with the first NetPCA component, namely tryptophan metabolism
and nucleotide interconversion. By these means, it was then
possible to highlight hubs, modules and bridges from the
topology of the graph. This was done by investigating paths
between pairs of metabolites, as a sequence of edges (i.e.,
reactions) connecting the starting node to the ending node. Due
to the high number of edges composing a metabolic network,
a very large amount of paths is possible, but by far not all
of them are biologically relevant. Following the parsimony

principle, the shortest path between two compounds might
seem to be a suitable answer to make a choice among this
multiplicity of alternatives. However, in many situations this
solution is biochemically not optimal. Therefore, path search
algorithms have been developed by incorporating biochemical
rules to find the most relevant metabolic routes. Investigating
lightest paths constitutes an efficient strategy, and it was
performed based on the evaluation of the minimal squared
degree sum of the nodes in the path, thus avoiding to give
too much emphasis to uninformative ubiquitous compounds
(Croes et al., 2006).

As a result, the two pathways highlighted as the most
relevant using over-representation analysis, namely tryptophan
metabolism and nucleotide interconversion could be efficiently
displayed and linked in the subnetwork related to the first
NetPCA component. Interestingly, the central role played
by nucleotides and their derivatives could be highlighted,
as metabolic hubs involved in a large number of reactions.
Moreover, the reaction paths between tryptophan, kynurenic
acid and indole-3-acetate are in line with prior studies reporting
the link between renal dysfunction and the enzymatic activity
of indoleamine 2,3-dioxygenase. The latter is responsible
for tryptophan catabolism, the initial molecular event of
the kynurenin pathway (Schefold et al., 2009). A decreased
tryptophan plasmatic level is associated with CKD, while
increased abundances of downstream products such as kynurenic
acid have been reported (Kalim and Rhee, 2017). Related to
these findings, a protein-bound uremic toxin from gut microbial
origin, namely indoxyl sulfate was also highlighted as a metabolite
of tryptophan associated with kidney failure (Niwa et al., 1994).
Alterations in nucleotide interconversion may involve disturbed
purine and pyrimidine metabolism. These have already been
linked to both an increase in the prevalence and progression
of the disease (Sekula et al., 2016; Shen et al., 2016). The
degradation of purine derivatives generates hypoxanthine, which
is further converted to xanthine and finally to uric acid, which
is in accordance with known associations with CKD and uremic
solutes. The subnetwork associated with these two pathways and
the subset of altered metabolites related to the first NetPCA
component is presented in Figure 5.
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FIGURE 5 | Pink pathway: Tryptophan metabolism. Blue pathway: Nucleotide interconversion (purine and pyrimidine metabolism). Metabolites related to the first
NetPCA component and the corresponding subnetwork are shown in bold.

Carbon Transfer Reaction Paths
Investigating the importance of individual nodes in a metabolic
network is often challenging because these parameters are
correlated with high degrees, therefore giving preference to
highly connected pathways in terms of global topological
properties. A node having many connections may therefore
lack specificity in terms of metabolic information and not be
a key determinant for a given process. Ubiquitous compounds
playing an auxiliary role in metabolic reactions, e.g., H2O,

CO2, or NAD, often constitute shortcuts in the graph and
this also includes compounds associated with the nucleotide
interconversion pathway, i.e., AMP, ADP, and ATP, as well as
their deoxy counterparts. As it makes the investigation of local
connectivity and bridges between modules challenging, a list
of such side compounds was excluded from further topological
investigations. Based on this, atom mapping was used for each
reaction to evaluate the transfer between substrate and product
atoms (Rahman et al., 2016), and edges not supporting any
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FIGURE 6 | HCA dendrogram and heatmap of the metabolic fingerprint distance matrix, with the five clusters highlighted as relevant biological modules. The darker,
the shorter reaction path.

carbon atom transfer were removed from the compound graph.
Conversely, those meeting this criterion were further considered
as relevant for topological analysis (Frainay and Jourdan, 2017).
Metabolic modules were then evaluated based on their reaction
path in this graph using a distance matrix computed to
summarize the different reaction paths between the compounds
of the selected metabolic subset. Hierarchical clustering was
then carried out on the distance matrix using complete-linkage
to highlight potential biologically meaningful groupings. This
agglomeration strategy helps to find compact clusters and avoid
the chaining effect that would make the detection of biological
modules more difficult. The HCA dendrogram and heatmap are
presented in Figure 6.

A visual inspection of the dendrogram revealed five main
clusters: (1) a small cluster composed of 3 amino acids of the urea
cycle (N.N-dimethyl-L-arginine, L-citrulline and allantoin), that
was connected with (2) a group of 8 metabolites associated with
creatine metabolism (creatine, creatinine, guanidoacetic acid,
hippuric acid, homovanillic acid, methyl indole-3-acetic acid,
indole-3-acetic acid, 5-methylthioadenosine). It is well-known
that creatinine blood levels reflect glomerular filtration efficiency
and the urea to creatinine ratio can be used to characterize kidney
function impairment (Duarte and Preuss, 1993). It constitutes
therefore a clear positive control biomarker, reinforcing the
biological validity of the findings.

A third cluster (3) composed of 10 metabolites included small
carboxylic acids that could be potentially linked to disorders
of fatty acid oxidation (adipic acid, sebacic acid, suberic acid,

caprylic acid, deoxycarnitine, acetylcholine, choline, citric acid,
ethylmalonic acid, 4-acetamidobutanoic acid) (Kang et al.,
2015). Moreover, carnitine is necessary to transfer fatty acids
for their oxidation in the mitochondria, and it also plays an
important role in acetylcholine metabolism (Hoppel, 2003).
The fourth (4) subset of 5 metabolites involving L-tryptophan,
3-(4-hydroxyphenyl)lactic acid, N-carbamoyl-beta-alanine,
L-aspartate, and 3-methyl-2-oxovaleric acid, could be linked
to aromatic amino acids metabolism and related compounds.
Finally, (5) a cluster of sugar derivatives formed the last group
(myo-inositol, N-acetyl-D-mannosamine, galactitol, D-xylose,
and sucrose). Sugars are associated with the pathogenesis of
diabetic nephropathy, but the underlying mechanisms involved
are still unclear. Detrimental effects of advanced glycation
end products constitute an interesting hypothesis (Dronavalli
et al., 2008), but it remains, however, to be explored to better
understand the progression of CKD. Box-plots of metabolites
with representative alteration patterns from altered pathways are
presented in Figure 7.

DISCUSSION

The association of chemometrics and bioinformatics in a
common workflow was shown to be an effective approach
for the integrative analysis of samples collected from several
groups of patients suffering from multiple stages of CKD
and/or undergoing different treatments. Despite heterogeneous
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FIGURE 7 | Box-plots showing nine metabolites with representative alteration patterns from altered pathways.

sample collection, NetPCA allowed all groups of individuals
to be included in a global model for an overall evaluation of
their metabolic phenotypes. This integrative strategy underlined
similar subsets of compounds describing the beneficial metabolic
effects provided by hemodialysis and kidney graft, but also, for
the first time, to compare the different alteration patterns on
a common scale. The latter could be related to pathological
modifications due to CKD and showed that kidney donors
were only moderately affected by the decline in kidney function
following organ donation. Notably, N-acetylation detoxification
was reported to be altered in CKD, while tryptophan metabolism
and nucleotide interconversion were highlighted using over-
representation analysis. Further investigation using network
reconstruction allowed deeper insights into their link to be
gained. Tryptophan metabolism was already reported as an
altered metabolic route in CKD, with decreased tryptophan
plasmatic concentration and increased levels of downstream
products such as kynurenic acid. Nucleotide interconversion
can be considered as a generic biological process covering both
purine and pyrimidine metabolism, both known to be affected
during CKD. Further information about meaningful metabolic
modules was finally obtained using hierarchical clustering based
on reliable reaction paths. By these means, additional hypotheses
involving creatine metabolism and urea cycle, carnitine and
disorders of fatty acid oxidation, as well as aromatic amino acids
metabolism and sugar derivatives could be drawn.

Although the coverage of some parts of metabolic networks
or chemical families still needs to be improved and/or refined
(e.g., lipids), the current databases already allow a fine assessment
of the interconnectivity of the different metabolic pathways and
their topology. This allows to put into perspective the differences
observed between samples characterizing specific clinical or
experimental situations, and to go further in the biological
interpretation of the regulatory networks governing phenomena
of interest. In addition, the annotation of metabolic networks is
being actively carried out thus offering continuous improvements
to grasp the complexity of the metabolism. With this aim in
sight, the association of chemometrics and bioinformatics in a
common workflow will certainly play a central role in the future
of metabolomics.
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Blood Microsampling to Monitor
Metabolic Profiles During Physical
Exercise
Cindy Nix, Maryam Hemmati, Gaël Cobraiville, Anne-Catherine Servais and Marianne Fillet *
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Monitoring approaches and technical improvements are key factors to improve a
sportsman’s health, training, and recovery after an injury. In this study, a targeted
metabolomics approach using microsampling with hemaPEN

®
was developed to

measure changes in blood concentrations of nine amino acids and four organic acids
before, during, and after exercise. The aim of this research project was to investigate if a
reliable monitoring of metabolite levels during sports activity can be achieved by collecting
one drop of whole blood at different time points. A hemaPEN device is an easy-to-use and
noninvasive microsampling technique designed to collect four accurate and precise blood
volumes simultaneously (10.96 µl). Twenty healthy volunteers between 19 and 30 years of
age were included in this study. Physical activity consisted in running as fast as possible
1,600 m after 400 m warm-up. One drop of blood was collected at five time points: before
exercise, after 800-m running, after 1,600m, and 30 min and 60min after finishing the
exercise. The influence of physical activity on metabolite levels was evaluated using two
ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry
(UHPLC-MS/MS) methods. Analytical performance criteria such as metabolite stability,
method precision, trueness, and accuracy were found to be satisfactory. Expected
significant metabolic changes were identified for lactic acid, main TCA cycle
intermediates, and some amino acids (e.g., creatinine, choline, and taurine). This
preliminary study performed on a small cohort demonstrated a high interest of using
microsampling for fluxomics analysis, not only to collect quickly and easily biological
samples during sports events but also because it is much easier to store and to process
the samples than classical plasma/serum samples obtained by venipuncture. The present
results open new avenue for fluxomics analysis in the context of health care.

Keywords: amino acids, organic acids, running, hemaPEN
®
, UHPLC-MS/MS, targeted metabolomics
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INTRODUCTION

Exercise is one key factor to sustain good health (Kelly et al.,
2020). Indeed, it is widely proven that physical activity reduces
the risk of obesity (Mielke et al., 2019), cardiovascular diseases
(Porter et al., 2019), diabetes, hypertension (Aune et al., 2015),
and depression (Matta et al., 2021). The World Health
Organization (WHO) recommends at least 150 min of
moderate exercise or 75 min of intense exercise per week for
adults. Muscle strengthening activities and reduced sedentary
time also constitute two critical points to keep fit. Despite all the
recognized benefits of sports, worldwide around 1 in 4 adults is
not sufficiently physically active (WHO, 2020). In order to
promote physical exercise, various awareness campaigns and
programs have recently been set up, such as the Project Smart
which promotes physical activity for children through games
(Julien et al., 2021) or the global action plan of the WHO to
encourage sport activities (WHO, 2018). In order to avoid any
risk of injury, it is crucial that sports practice is supervised and
adapted to each person. For athletes, this consideration is
particularly crucial since an injury can have a big impact on
their health and their career as well as financial repercussions.
Currently, the number of competitions in which athletes
participate is increasing. Therefore, athletes intensify their
training to be always competitive. Nevertheless, health
professionals agree that overloading training and
competitions can have serious consequences for the health of
athletes (Soligard et al., 2016). To avoid the risk of injury, several
strategies are available.

In those contexts of amateur and professional sports,
fluxomics could be an interesting approach to implement
personalized athlete monitoring to reduce the risk of injury,
adapt the training, and speed up recovery after injury if any
(Al-Khelaifi et al., 2019). Indeed, the measurement of
metabolite levels in individuals at different time frames
provides information concerning the evolution of their
physiopathological state. For example, several studies have
shown that exercise induced metabolic changes. Lewis et al.
demonstrated that the concentrations of niacinamide, glucose-
6-phosphate, pantothenate, and succinate increased in plasma
after an exercise (Lewis et al., 2010). More recently, Stander
et al. have shown that the serum concentrations of
carbohydrates, fatty acids, TCA cycle intermediates, and
ketones were increased after a marathon, while the levels of
amino acids were reduced (Stander et al., 2018). Prado et al.
even proposed the term “sportomics” to qualify the use of
“-omics” sciences to better understand the metabolic changes
induced by a physical activity (Prado et al., 2017). They
performed untargeted metabolomics in urine before and
after a soccer match. Different categories of metabolites
were found to be interesting, among which are organic
acids (Prado et al., 2017).

Although several studies showing metabolomic changes
during or after physical activity have already been published
(Sakaguchi et al., 2019), none allowed athletes to collect blood
by themselves directly at the training site. In this study, we
aimed to make the proof of concept that well-known

biomarkers such as lactic acid or creatinine can easily be
monitored during physical activity using a noninvasive and
easy-to-handle microsampling device. Blood collection was
achieved using a microsampling device named hemaPEN®
(Trajan Scientific and Medical, VIC, Australia). This pen-
shaped device allows the accurate and precise collection of
samples from a single drop of blood and, depending on the
studied compounds, is influenced in a limited way or not
influenced by hematocrit compared to classical DBS (Deprez
et al., 2019; Protti et al., 2020). Blood is absorbed by four
capillaries and transferred to four paper discs. Each capillary
collects 2.74 µl of blood. This device can be used everywhere by
everyone without specific training (Trajan-HemaPEN
brochure, 2020) (cf. Figure 1). In this study, we investigated
whether it is possible to monitor metabolism changes in a
reliable manner from 2.74 µl of blood not only before and after
the exercise but also during the effort.

MATERIALS AND METHODS

Chemicals and Reagents
L-asparagine (≥98%), choline chloride (≥99%), creatine
(≥99.5%), creatinine (≥98%), L-leucine (≥98%), L-methionine
(≥98%), L-proline (≥99.5%), taurine (≥99%), L-valine (≥98%),
2-hydroxybutanoic acid, L-lactic acid (≥98%), malic acid
(≥99%), and 2-oxo-glutaric acid (≥99%) were purchased from
Sigma Aldrich (St. Louis, MO, United States). L-lactic acid-d3
and choline-d9 were obtained from Toronto Research
Chemicals (Toronto, ON, Canada). L-asparagine 13C4 (≥99%)
and L-leucine-d3 (≥99%) were obtained from Euriso-top (Saint-
Aubin, France). Acetonitrile, formic acid, trifluoroacetic acid,
isopropanol, methanol, and water (MS-grade) were bought from
Biosolve (Valkenswaard, The Netherlands). hemaPEN® devices
were obtained from Trajan Scientific and Medical (VIC,
Australia) and Ostro® 96-well sample preparation plates from
Waters Corporation (Dublin, Ireland). MiniCollect® safety
lancets were purchased from Greiner Bio-One (Vilvoorde,
Belgium).

Healthy Volunteers
The protocol of this study was reviewed and approved by the
Ethical Committee of the University of Liège (Liège, Belgium), Nr
Eudra CT: B7072020000041; ref: 2020/182. The participants
provided their written informed consent to participate in the
study. Twelve women and eight men between 19 and 30 years of
age with a body mass index (BMI) between 18.5 and 25 were
included in this study. The participants did not suffer from any
chronic respiratory, inflammatory, cardiovascular, or metabolic
diseases and were not smokers. The participants did not have any
fever, and they have not been infected with COVID-19. They
exercised at least 1 h per week (4.2 h/week in average). To
minimize the impact of nutrition on metabolic changes, they
had standard meals (breakfast and lunch) on the day of running
and no excess food or drink the day before the exercise. The
parameters of all the participants are described in Supplementary
Table S1.
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Physical Exercise
The physical exercise consisted of running 400 m as a warm-up
that was followed by running 1,600 m at high speed on athletic
tracks.

Sample Collection
Blood samples were collected at five different time points.
At every time point, four replicate samples were collected.
The first sample was collected at rest, shortly before running
(Step 1), the second sample after running of 400-m warm-up
and 800-m running (Step 2), the third sample after the
completion of 1,600-m running (Step 3), and the fourth and
fifth samples at 30 min (Step 4) and 60 min (Step 5) after
finishing the exercise, respectively. Blood was collected with a
hemaPEN® device via a finger prick with a safety lancet
(Figure 1).

Sample Storage
After collection, the hemaPEN® devices were kept at ambient
temperature for 2 h to allow the samples to dry. The devices were
then stored at −20°C before analysis.

Stock Solutions of Amino Acids andOrganic
Acids
Aqueous stock solutions of nine amino acids and four organic
acids were prepared at specific concentrations: 200 mM choline
chloride, 100 mM L-methionine, 150 mM L-asparagine,
150 mM L-leucine, 100 mM creatine, 200 mM taurine,
500 mM L-proline, 300 mM L-valine, 500 mM creatinine,
800 mM L-lactic acid, 150 mM 2-hydroxybutanoic acid,
120 mM malic acid, and 80 mM 2-oxoglutaric acid. Stocks
solutions were stored at −80°C. Aqueous stock solutions of
10 mM L-lactic acid-d3, choline-d9, L-asparagine 13C4, and
L-leucine-d3 were prepared to be used as internal standards.
These solutions were stored at −80°C.

Calibration Standards and Quality Control
Calibration solutions were prepared by diluting aqueous stock
solutions in human blood to reach the targeted concentrations.
Separate calibration curves were prepared for the analytes in the
range of their endogenous concentrations. Calibration ranges
were as follows: 15–150 µM for 2-hydroxybutanoic acid,
640–6400 µM for lactic acid, 6–60 µM for malic acid,
2.4–24 µM for 2-oxoglutaric acid, 14–140 µM for asparagine,
5.5–55 µM for choline, 92.5–925 µM for creatine, 27–270 µM
for creatinine, 28–280 µM for leucine, 5.5–55 µM for
methionine, 55–550 µM for proline, 41.5–415 µM for taurine,
and 56–560 µM for valine.

Five calibration levels were used to construct calibration
curves. Concentration at the upper limit of the calibration
curves (C5) was considered as the 100% concentration. This
C5 solution was diluted to obtain the other levels: 10%�C1
(lowest level of the calibrations curves), 25%�C2, 50%�C3,
and 75%�C4. The calibration standards were prepared with
hemaPEN® devices and extracted according to the sample
preparation procedure, and each calibration standard was
injected six times. A quality control (QC) sample was
prepared at C3 and injected after every twenty injections to
check the system performance during the batch analysis.

Sample Preparation
Using Trajan’s specially designed tool, the hemaPEN® devices
were opened and the cartridge containing the four replicate
samples removed. One paper disc was used for this study, and
the other three were kept in the cartridge in a sealed box at −20°C
for possible future analyses.

The extraction solvent was a mixture of acetonitrile and water
(60:40, v/v) containing the internal standards in the
concentrations as follows: 80 μM for L-lactic acid-d3, 1.25 μM
for choline-d9, 5 μM for L-asparagine 13C4, and 7.5 μM for
L-leucine-d3. The hemaPEN® paper disks were placed in an
Ostro™ 96-well plate (Waters Corporation, Dublin, Ireland)

FIGURE 1 | Design of the study.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6814003

Nix et al. Microsampling for Fluxomics Analysis

91

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and were incubated with 200 µl extraction solvent for 5 min
without agitation followed by an agitation step of 5 min using
a ThermoMixer C (Eppendorf, Aarshot, Belgium) at 20°C and
850 rpm. The samples were then collected in a 96-well plate
(Agilent Technologies, Waldbronn, Germany) by passing them
through the Ostro™-plate using a vacuum manifold.

Before the analysis of organic acids by UHPLC-MS/MS, a
volume of 100 µl of the extracted samples was evaporated during
60 min at 40°C in a CentriVAP Concentrator (LabConco, Kansas-
City, MO, United States). The dried residues were reconstituted
in 50 µl water and analyzed by UHPLC-MS/MS. The sample
preparation procedure is described in Supplementary Figure S1.

UHPLC-MS/MS Analysis
The samples containing the amino acids and organic acids were
analyzed with an ultrahigh-performance liquid
chromatography–tandem mass spectrometry (UHPLC-MS/MS)
method that was published previously by our group (Kok et al.,
2019). LC-MS/MS analyzes were conducted on an Agilent® 1290
Infinity system coupled to an Agilent® 6495 triple quadrupole
mass spectrometer.

Sample Randomization
Samples were analyzed in a randomized way to ensure that the
results obtained are not influenced by the order of analysis.

Stability Evaluation
The stability of the analytes in the autosampler was assessed. To
evaluate the stability in the autosampler, three samples at
concentration level C1 (first level of the calibration curves)
and three samples at concentration level C5 (upper limit of
the calibration curve) were analyzed immediately after
preparation and after 24-h storage at 4°C in the autosampler.
The responses obtained after 24 h were compared to the
responses obtained immediately after sample preparation.

Long-term stability was assessed using one of the four replicate
samples collected with the hemaPEN® device. One paper sample
disc collected after 1,600 m of running was analyzed after
5 months of storage and compared to the freshly analyzed
samples. This study was possible because four replicates per
sample are collected simultaneously with one hemaPEN®
device. Stability is considered satisfactory if the responses do
not vary more than 15% compared to fresh samples (Smith,
2012).

Performance Criteria of Analytical Methods
Response Function, Trueness, Precision, and
Accuracy
For all the studied compounds, the most appropriate regression
model as well as the trueness, the precision, and the accuracy of
the methods were obtained performing the prevalidation of the
methods. Calibration curves with five levels were prepared
independently on three different days. The most suitable
regression models were chosen according to the obtained
accuracy profiles. The acceptance limits and the maximum
risk of having future measurements falling out of these
acceptance limits were set at ±20%. All accuracy profiles are

presented in Supplementary Figure S2. Trueness of the
analytical method was evaluated using the relative bias (%) at
five concentration levels. Within-run precision was assessed by
the repeatability (RSD%) and between-run precision by the
intermediate precision (RSD%).

Matrix Effect
The matrix effect was assessed according to the method described
by Matuszewski et al. (2003) at two concentration levels
(midrange of the calibration curve and the upper limit of the
calibration curve). For amino acids, neat standard solutions
containing the appropriate concentration of all the amino
acids were prepared in acetonitrile/water (6:4). For organic
acids, a neat standard solution containing the appropriate
concentration of all the organic acids was prepared in water.
Post-extraction spiked matrices were prepared by extracting
blank blood. For amino acids, extracted blank blood was
directly spiked with a mixture containing all the studied
amino acids at the appropriate concentration. For organic
acids, 100 µl of extracted blank blood was evaporated during
60 min at 40°C in a CentriVAP Concentrator (LabConco, Kansas
City, MO, United States) and reconstituted with 50 µl of water
containing the appropriate concentration of all the organic acids
studied. The matrix effect was calculated by dividing the peak
areas obtained with the post-extraction spiked matrices by the
peak areas obtained with the neat standard solutions. Neat
standard solutions and post-extraction spiked matrices were
prepared in triplicates for each concentration level.

Carryover
Carryover was assessed according to the guideline on
bioanalytical method validation from the European Medicines
Agency (EMA) (Smith, 2012). A solution at the highest
concentration level was injected three times. After each
injection, a blank was injected. For all compounds, the peak
area obtained in blanks should not exceed 20% of the peak area
obtained at the lowest level of the calibration curves. For the
internal standards, the peak area obtained should not exceed 5%.
Carryover was calculated according to the formula below:

Carryover (%) �
Peak area obtained in a blank after an injection of

a solution at the highest concentration level
Peak area obtained at the lowest level of the calibration curve.

Data Analysis
Data acquisition was performed with MassHunter Data
Acquisition software (B.08.02, Agilent Technologies,
Waldbronn, Germany). Data analysis was performed with
Quantitative Analysis software (version 10.1, Agilent
Technologies, Waldbronn, Germany). Peak areas
corresponding to the endogenous concentrations of studied
compounds in blood used to prepare calibration curves were
subtracted from the values obtained for the calibration solutions
(Vishwanathan et al., 2000). The concentration obtained at each
step of the study was divided by the concentration obtained at
step 1 (at rest before exercise) to obtain a change of magnitude
factors. The means of the change of magnitude factors obtained at
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each step were compared with a one-way ANOVA test for data
with a normal distribution and a Friedman test for data not
satisfying the normality test. These statistical analyzes were
performed using GraphPad prism 6 and as well as the
construction of the different graphs. Results of prevalidation
were computed with e-noval 4.1 software (Pharmalex, Mont-
Saint-Guibert, Belgium).

RESULTS

In this study, two previously developed UHPLC-MS/MSmethods
were used to quantify nine amino acids and four organic acids in
whole blood after microsampling. Five samples were collected by
each participant before, during, and after a physical activity
consisting in 1,600 m of intensive running. This study focused
on 13 metabolites because the influence of physical activity on
their blood concentration is well-described in the literature
(Stander et al., 2018; Schranner et al., 2020). Indeed, the aim
of our study was not to discover new biomarkers but to
investigate the potential of microsampling using hemaPEN®
devices for fluxomics analysis.

Analytical Performance of the Methods
For all the studied compounds, the most adequate response
functions to quantify the analytes over the entire range of
concentrations were determined by applying different
regression models and selecting the most suitable accuracy
profiles. The selected models for which the tolerance limits are
included within the acceptance limits (±20%) as well as the
accuracy profiles are presented in Supplementary Figure S2.

In term of trueness, relative bias was below ±8.63% for all the
organic acids and below ±8.24% for all the amino acids at the five
investigated concentration levels. For within- and between-run
precision, repeatability (RSD%) and intermediate precision (RSD
%) were below 13.9% for all the compounds at the five
concentration levels. The results obtained for trueness,
repeatability, and intermediate precision are presented in
Supplementary Table S2.

Stability
For all the studied compounds, the responses obtained directly
after preparation and after 24-h storage in the autosampler or
after 5 months storage at −20°C do not vary by more than 15%,
except for 2-oxoglutaric acid, methionine, creatine, and taurine at
long-term storage. For 2-oxoglutaric acid and methionine,
concentrations obtained after 5-month storage were 35.1 and
56.5% lower than the nominal concentrations, respectively.
Concentrations of creatine and taurine obtained after 5-month
storage at −20°C were 17.6 and 15.7% higher than the nominal
concentrations, respectively. Results concerning the stability in
the autosampler and the long-term stability are presented in
Supplementary Tables S3, S4, respectively.

Matrix Effect and Carryover
The matrix effect represents the influence of the matrix on the
ionization of the compounds of interest in the ESI source

(Matuszewski et al., 2003). Indeed, human blood contains a
large number of compounds. These compounds can interfere
with the ionization of the quantified analytes. A matrix effect
lower than 100% means that the matrix reduces ionization
efficiency, while a matrix effect higher than 100% means that
the signal is enhanced in the matrix. The obtained results are
presented in Supplementary Table S5.

The matrix effect was lower than 100% (in average 76.6%) for
all the compounds, except for asparagine (117%). The ionization
of creatine does not seem to be influenced by the matrix (99.9%).
For creatinine, proline, valine, and methionine, the matrix has a
more important impact on the ionization process. The results
obtained at the different concentration levels were comparable
(Supplementary Table S5).

Concerning the carryover, the peak areas obtained in the blank
samples did not exceed 2.07% of the peak area obtained at the
lowest level of the calibration curve, for all the compounds.
Percentages of carryover are presented in Supplementary
Figure S3.

QC Samples
The relative standard deviation (RSD) of the concentrations
obtained for the QC samples was below 10.8% for all the amino
acids and below 10.0% for all the organic acids. In clinical
laboratories, the Levey–Jennings charts are commonly used to
report values obtained for QC samples. An example of the
Levey–Jennings chart obtained with the QC samples injected
along all the analyses of runners’ samples are given in
Supplementary Figure S4. This type of graph is usually
interpreted, thanks to the Westgard rules. According to
these rules, no QC sample should exceed ±3 SD; four
consecutive QC samples should not exceed +1 SD or −1 SD;
two consecutive QC samples should not exceed ±2 SD, and ten
consecutive QC samples should not fall on one side of the
mean (Dasgupta and Wahed, 2014). In this case, QC samples
met all these criteria.

Monitoring of Metabolites Levels Before,
During, and After Exercise
In this study, the blood concentrations of three amino acids,
namely, creatinine, choline, and taurine, increased
significantly during the exercise (Figure 2). Results are
expressed in change of magnitude factors compared to the
blood concentration before running. The blood concentration
of creatinine increased by a factor 1.22 during the exercise,
and no statistically significant decrease was observed during
the 60 min following the physical activity. The blood
concentration of choline and taurine increased by factors
1.21 and 1.31 during running, respectively. A decrease
was already observed 30 min after the end of the physical
activity. The means of the change of magnitude factors
observed at each step were compared with a one-way
ANOVA test for creatinine and taurine and with a
Friedman test for choline.

Regarding the organic acids, the 1,600-m running induced an
increase of the blood concentration of lactic acid, malic acid, and

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6814005

Nix et al. Microsampling for Fluxomics Analysis

93

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2-oxoglutaric acid. The blood concentration of these compounds
decreased during the 60 min after finishing the exercise
(Figure 3). On average, the blood concentration of lactic acid,
malic acid, and 2-oxoglutaric acid increased by factors 4.86, 1.65,
and 1.67 between step 1 and step 3, respectively. A Friedman test

was performed to compare the means of the change of magnitude
factors for lactic acid, malic acid, and 2-oxoglutaric acid.

For 2-OH butanoic acid, the highest blood concentration was
observed 30 min after finishing the exercise (see Figure 3). A
slight decrease was observed at step 5, but this decrease was not

FIGURE 2 | Graphs representing the “changes of magnitude” obtained during the five steps of the study. Step 1: before physical exercise, step 2: after 400-m
warm-up and 800-m running, step 3: after the completion of 1,600-m running, step 4: 30 min after finishing the exercise, and step 5: 60 min after finishing the exercise.
Each color represents one participant. Black lines represent the mean ± SD of the change of magnitude factor obtained at each step (n � 20). (A) Creatinine, (B) choline,
(C) taurine: amino acids for which an increase in blood concentration was observed during the exercise (*, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001;
****, and p-value < 0.0001).

FIGURE 4 | Graphs representing the “changes of magnitude” obtained during the five steps of the study. Step 1: before physical exercise, step 2: after 400-m
warm-up and 800-m running, step 3: after the completion of 1,600-m running, step 4: 30 min after finishing the exercise, and step 5: 60 min after finishing the exercise.
Each color represents one participant. Black lines represent the mean ± SD of the change of magnitude factor obtained at each step (n � 20). (A) Asparagine, (B) valine,
and (C) methionine: examples of compound for which no change in blood concentration was observed during the study.

FIGURE 3 | Graphs representing the “changes of magnitude” obtained during the five steps of the study. Step 1: before physical exercise, step 2: after 400-m
warm-up and 800-m running, step 3: after the completion of 1,600-m running, step 4: 30 min after finishing the exercise, and step 5: 60 min after finishing the exercise.
Each color represents one participant. Black lines represent the mean ± SD of the change of magnitude factor obtained at each step (n � 20). (A) Lactic acid, (B)malic
acid, (C) oxoglutaric acid, (D) 2-OH butanoic acid: organic acids for which an increase in blood concentration was observed during and/or after the exercise
(*, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; ****, and p-value < 0.0001).
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statistically significant. The results obtained at the different steps
were compared with a one-way ANOVA for this compound.

The concentration of the other analyzed compounds did not
significantly vary in this study. Some examples are presented in
Figure 4.

DISCUSSION

In this study, we have demonstrated the potential of microsampling
to follow up easily several metabolites. The hemaPEN® device offers
many advantages compared to classical blood sampling. Indeed, this
type of blood collection can be done by everyone and everywhere.
The volume of blood collected is low, and thus, multiple collections is
not an issue. Moreover, this type of sampling is less invasive than a
venipuncture. The integrity of the sample is guaranteed because the
paper discs onwhich the blood is absorbed are not accessible once the
sample has been collected. They are protected from light and from
humidity, thanks to a fully integrated desiccant. Compared to other
microsampling devices that are available, for example, in the VAMS
device from Neoteryx or the new Microsampling Wing™ from
Shimadzu, four replicates of the same sample are collected with
one drop of blood. This constitutes a key advantage because one
paper disc can be analyzed, while the three others can be stored for
future analyzes or used as backup if an issue is encountered during the
first analysis. In this study, we demonstrated the potential of the
hemaPEN® for the follow-up of athletes, but many other applications
could be developed in the near future such as drug therapeutic
monitoring or anti-doping tests. The World Anti-Doping Agency
(WADA) recommends long-term sample storage and re-analysis
programs for a more effective detection of doping (Word Anti-
Doping Agency, 2020). In the near future, WADA also wants to
develop guidelines for the collection, transport, analysis, and storage
of DBS samples to implement this type of sampling in routine
analyses. In this context, the hemaPEN® device could be
interesting for anti-doping tests (World Anti-Doping Agency, 2020).

In this study, the most appropriate regression models were
chosen, thanks to the accuracy profiles with acceptance limits
below ±20%. Both UHPLC-MS/MS methods showed acceptable
trueness and precision. The stability of the studied analytes in the
autosampler conformed to EMA guidelines. The long-term stability
at −20°C was satisfactory, except for 2-oxoglutaric acid, methionine,
creatine, and taurine. Depending on the metabolites, stability might
be affected during storage. Nevertheless, since relative quantification
is performed in this kind of monitoring, the impact of the
degradation should not be an issue, provided that all the
compared samples are prepared simultaneously.

Importantly, we observed that the Levey–Jennings charts
obtained for the QC samples during the analysis of the runners’
samples met all the criteria described in the Westgard rules. All the
samples were therefore analyzed in appropriate conditions.

Since the cohort was small (20 individuals), statistical analysis
was performed using the one-way ANOVA or Friedman test.
Since the reliability of the analytical process involving self-
microsampling was demonstrated in this study, it would be
interesting to conduct additional studies involving larger
cohorts to investigate the influence of different parameters

such as BMI, sex, age, ethnicity, intensity of the efforts, and
genetic predisposition, on metabolic changes. Such studies could
include a broader panel of targeted metabolites or could be done
by untargeted metabolomics. In those cases, dedicated
multivariate analysis should be employed (i.e., PCA analysis).

Concerning the change in magnitude factors observed in our
study, low variation in blood concentrations of amino acids was
observed. Nevertheless, an increase in the blood concentration of
taurine and creatininewas observed. Cuisinier et al. andMedelli et al.
already described an increased concentration of taurine in plasma
after a marathon (Cuisinier et al., 2001) and after a cycling
competition (Medelli et al., 2003). Several other studies
mentioned an increase in serum creatinine levels after physical
activity (Hodgson et al., 2017). This increase in creatinine can be
explained by an increased muscle breakdown (Hodgson et al., 2017;
Omassoli et al., 2019). Pechlivanis et al. observed a decrease in
leucine and valine serum concentrations after sprint running
(Pechlivanis et al., 2013). After a marathon, Stander et al.
observed a reduced concentration of methionine, valine, and
leucine (Stander et al., 2018). Nevertheless, for the amino acids,
conclusions are not consistent across all the studies (Schranner et al.,
2020). The duration and the intensity of exercise or the fitness of the
participants could explain these discrepancies between studies. A
decrease in blood concentrations of amino acids can be explained by
the fact that the body activates the catabolism of these molecules to
find energy when carbohydrate stores are depleted. In our study,
exercise duration was short. This is probably why the body may not
have used all of its carbohydrate stores. Therefore, the concentrations
of the amino acids were not decreased. Future studies with a longer
exercise duration should be conducted to confirm this hypothesis.

Concerning the organic acids, lactate represents one key
compound. Indeed, several articles already described an increase
in lactate during exercise (Pechlivanis et al., 2013; Gáspari et al., 2015).
This accumulation in lactate reflects the shift from an aerobic to an
anaerobic energy production system.Monitoring this shift constitutes
an essential parameter to adapt athletes’ training in endurance sports
(Etxegarai et al., 2019). In our study, the blood concentration of lactic
acid was found to increase significantly during exercise, showing the
potential of ourmethod to follow up athletes. Thirtyminutes after the
end of the physical exercise, the concentration of lactic acid decreased
to reach a concentration near the nominal one. The blood
concentration of two other organic acids, that is, malic acid and
2-oxoglutaric acid, intermediates in the TCA cycle, also increased
during physical effort. This finding corresponds to the conclusions
previously obtained in other studies. Indeed, Stander et al. found
elevated serum concentrations of these molecules after a marathon
(Stander et al., 2018). Recently Schranner et al. published a review
bringing together 27 studies and 57 experiments. They concluded that
the blood concentrations of intermediates of the TCA cycle such as
malate or 2-oxoglutaric acid were upregulated by exercise as well as
the concentration of lactate. This increase in lactate was particularly
noted with high-intensity exercise. The concentration of these three
organic acids decreased during the 60min after physical activity, as
observed in our study (Schranner et al., 2020). Schranner’s review also
reported an increase in the concentration of ketone bodies during
exercise. In our study, 2-hydroxybutanoic acid, a ketone body, was
found to increase during and after exercise. Therefore, the
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conclusions obtained in this study for the organic acids are in
agreement with the literature.

Finally, this study demonstrates that microsampling with
hemaPEN® followed by targeted metabolomics has a great
potential for the follow-up of metabolic profiles. This study
used two UHPLC-MS/MS methods to quantify 13 metabolites
using only 2.74 µl of whole blood and offers the main advantage
that sampling can be performed directly at the training site
without special skill. In the future, targeted and untargeted
metabolomics approaches on broader cohorts could be
investigated to expand the panel of applications.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

This study involving human participants was reviewed and
approved by the Ethical Committee of the University of Liège
(Liège, Belgium) Nr Eudra CT: B7072020000041; ref: 2020/182.
The patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

CN: experiments and redaction. MH: experiments. GC: technical
support. A-CS: data processing and manuscript handling. MF:
design of the study and article handling.

FUNDING

This research was conducted by the financial support provided by
the National Fund for Scientific Research (FNRS) (CN: ID
40001038 and MH: ID 31239052), the European funds of
regional development (FEDER), and Walloon Region of
Belgium as part of the operational program “Walloon-2020. EU”.

ACKNOWLEDGMENTS

Authors thank all the participants of this study.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681400/
full#supplementary-material

REFERENCES

Al-Khelaifi, F., Abraham, D., Diboun, I., and Elrayess, M. A. (2019). “Proteomics
and metabolomics research in exercise and sport,” in Sports, Exercise, and
Nutritional Genomics: Current Status and Future Directions (Amsterdam:
Elsevier), 539–566. doi:10.1016/B978-0-12-816193-7.00023-3

Aune, D., Norat, T., Leitzmann, M., Tonstad, S., and Vatten, L. J. (2015). Physical
Activity and the Risk of Type 2 Diabetes: A Systematic Review and Dose-
Response Meta-Analysis. Eur. J. Epidemiol. 30, 529–542. doi:10.1007/s10654-
015-0056-z

Cuisinier, C., Ward, R. J., Francaux, M., Sturbois, X., and De Witte, P. (2001).
Changes in Plasma and Urinary Taurine and Amino Acids in Runners
Immediately and 24 H after a Marathon. Amino Acids. 20, 13–23. doi:10.
1007/s007260170062

Dasgupta, A., and Wahed, A. (2014). “Laboratory Statistics and Quality Control,”
in Clin. Chem. Immunol. Lab. Qual. Control. (Amsterdam: . Elsevier), 47–66.
doi:10.1016/b978-0-12-407821-5.00004-8

Deprez, S., Paniagua-González, L., Velghe, S., and Stove, C. P. (2019). Evaluation of
the Performance and Hematocrit Independence of the HemaPEN as a
Volumetric Dried Blood Spot Collection Device. Anal. Chem. 91,
14467–14475. doi:10.1021/acs.analchem.9b03179

Etxegarai, U., Portillo, E., Irazusta, J., Koefoed, L., and Kasabov, N. (2021). A
Heuristic Approach for Lactate Threshold Estimation for Training Decision-
Making: An Accessible and Easy to Use Solution for Recreational Runners. Eur.
J. Oper. Res. 291, 427–437. doi:10.1016/j.ejor.2019.08.023

Gáspari, A. F., Berton, R., Lixandrão, M. E., Perlotti Piunti, R., Chacon-Mikahil, M.
P. T., and Bertuzzi, R. (2015). The Blood Lactate Concentration Responses in a
Real Indoor Sport Climbing Competition. Sci. Sports. 30, 228–231. doi:10.1016/
j.scispo.2015.05.002

Hodgson, L., Walter, E., Venn, R., Galloway, R., Pitsiladis, Y., Sardat, F., et al.
(2017). Acute Kidney Injury Associated with Endurance Events-Is it a Cause for
Concern? A Systematic Review. BMJ Open Sport Exerc. Med. 3, e000093. doi:10.
1136/bmjsem-2015-000093

Julien, C., Castelli, D., Bray, D., Lee, S., Burson, S., and Jung, Y. (2021). Project
SMART: A Cooperative Educational Game to Increase Physical Activity in
Elementary Schools. Smart Health. 19, 100163. doi:10.1016/j.smhl.2020.100163

Kelly, R. S., Kelly, M. P., and Kelly, P. (2020). Metabolomics, Physical Activity,
Exercise and Health: A Review of the Current Evidence. Biochim Biophys Acta
Mol Basis Dis. 1866, 165936. doi:10.1016/j.bbadis.2020.165936

Kok, M. G. M., Nix, C., Nys, G., and Fillet, M. (2019). Targeted Metabolomics of
Whole Blood Using Volumetric Absorptive Microsampling. Talanta. 197,
49–58. doi:10.1016/j.talanta.2019.01.014

Lewis, G. D., Farrell, L., Wood, M. J., Martinovic, M., Rowe, G. C., Souza, A., et al.
(2010). Exercise Metabolomics. Sci. Transl Med. 2, 33ra37. doi:10.1126/
scitranslmed.3001006.Metabolic

Matta, P. N., Baul, T. D., Loubeau, K., Sikov, J., Plasencia, N., Sun, Y., et al. (2021).
Low Sports Participation Is Associated with Withdrawn and Depressed
Symptoms in Urban, School-Age Children. J. Affective Disord. 280, 24–29.
doi:10.1016/j.jad.2020.11.076

Matuszewski, B. K., Constanzer, M. L., and Chavez-Eng, C. M. (2003). Strategies
for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods
Based on HPLC−MS/MS. Anal. Chem. 75, 3019–3030. doi:10.1021/ac020361s

Medelli, J., Lounana, J., and Hill, D. (2003). Variation in Plasma Amino Acid
Concentrations during a Cycling Competition. J. SportsMed. Phys. Fitness 43, 236–242.

Mielke, G., Bailey, T., Burton, N., and Brown, W. (2019). Associations between
Participation in Recreational Sports with Hypertension, Diabetes and Obesity
in a Cohort of Australian Adults. J. Sci. Med. Sport. 22, S56. doi:10.1016/j.jsams.
2019.08.249

Omassoli, J., Hill, N. E., Woods, D. R., Delves, S. K., Fallowfield, J. L., Brett, S. J.,
et al. (2019). Variation in Renal Responses to Exercise in the Heat with
Progressive Acclimatisation. J. Sci. Med. Sport 22, 1004–1009. doi:10.1016/j.
jsams.2019.04.010

Pechlivanis, A., Kostidis, S., Saraslanidis, P., Petridou, A., Tsalis, G.,
Veselkov, K., et al. (2013). 1H NMR Study on the Short- and Long-
Term Impact of Two Training Programs of Sprint Running on the
Metabolic Fingerprint of Human Serum. J. Proteome Res. 12, 470–480.
doi:10.1021/pr300846x

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6814008

Nix et al. Microsampling for Fluxomics Analysis

96

https://www.frontiersin.org/articles/10.3389/fmolb.2021.681400/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681400/full#supplementary-material
https://doi.org/10.1016/B978-0-12-816193-7.00023-3
https://doi.org/10.1007/s10654-015-0056-z
https://doi.org/10.1007/s10654-015-0056-z
https://doi.org/10.1007/s007260170062
https://doi.org/10.1007/s007260170062
https://doi.org/10.1016/b978-0-12-407821-5.00004-8
https://doi.org/10.1021/acs.analchem.9b03179
https://doi.org/10.1016/j.ejor.2019.08.023
https://doi.org/10.1016/j.scispo.2015.05.002
https://doi.org/10.1016/j.scispo.2015.05.002
https://doi.org/10.1136/bmjsem-2015-000093
https://doi.org/10.1136/bmjsem-2015-000093
https://doi.org/10.1016/j.smhl.2020.100163
https://doi.org/10.1016/j.bbadis.2020.165936
https://doi.org/10.1016/j.talanta.2019.01.014
https://doi.org/10.1126/scitranslmed.3001006.Metabolic
https://doi.org/10.1126/scitranslmed.3001006.Metabolic
https://doi.org/10.1016/j.jad.2020.11.076
https://doi.org/10.1021/ac020361s
https://doi.org/10.1016/j.jsams.2019.08.249
https://doi.org/10.1016/j.jsams.2019.08.249
https://doi.org/10.1016/j.jsams.2019.04.010
https://doi.org/10.1016/j.jsams.2019.04.010
https://doi.org/10.1021/pr300846x
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Porter, A. K., Schilsky, S., Evenson, K. R., Florido, R., Palta, P., Holliday, K. M., et al.
(2019). The Association of Sport and Exercise Activities with Cardiovascular
Disease Risk: The Atherosclerosis Risk in Communities (ARIC) Study. J. Phys.
Act. Heal. 16, 698–705. doi:10.1123/jpah.2018-0671

Prado, E., Souza, G. H. M. F., Pegurier, M., Vieira, C., Lima-Neto, A. B. M., Assis,
M., et al. (2017). Non-targeted Sportomics Analyses by Mass Spectrometry to
Understand Exercise-Induced Metabolic Stress in Soccer Players. Int. J. Mass
Spectrom. 418, 1–5. doi:10.1016/j.ijms.2017.02.002

Protti, M., Marasca, C., Cirrincione, M., Cavalli, A., Mandrioli, R., andMercolini, L.
(2020). Assessment of Capillary Volumetric Blood Microsampling for the
Analysis of Central Nervous System Drugs and Metabolites. Analyst. 145,
5744–5753. doi:10.1039/d0an01039a

Sakaguchi, C., Nieman, D., Signini, E., Abreu, R., and Catai, A. (2019). Metabolomics-
based Studies Assessing Exercise-InducedAlterations of the HumanMetabolome: A
Systematic Review. Metabolites. 9, 164. doi:10.3390/metabo9080164

Schranner, D., Kastenmüller, G., Schönfelder, M., Römisch-Margl, W., and
Wackerhage, H. (2020). Metabolite Concentration Changes in Humans after
a Bout of Exercise: a Systematic Review of Exercise Metabolomics Studies.
Sports Med Open. 6. doi:10.1186/s40798-020-0238-4

Smith, G. (2012). European Medicines Agency Guideline on Bioanalytical Method
Validation: What More Is There to Say?. Bioanalysis. 4, 865–868. doi:10.4155/
bio.12.44

Soligard, T., Schwellnus, M., Alonso, J.-M., Bahr, R., Clarsen, B., Dijkstra, H. P.,
et al. (2016). How Much Is Too Much? (Part 1) International Olympic
Committee Consensus Statement on Load in Sport and Risk of Injury. Br.
J. Sports Med. 50, 1030–1041. doi:10.1136/bjsports-2016-096581

Stander, Z., Luies, L., Mienie, L. J., Keane, K. M., Howatson, G., Clifford, T., et al.
(2018). The Altered Human Serum Metabolome Induced by a Marathon.
Metabolomics. 14, 1–11. doi:10.1007/s11306-018-1447-4

Trajan-HemaPEN brochure (2020). Available at: https://cdn.shopify.com/s/files/1/
0767/9441/files/BR-0536-G_RevC.pdf?v�1593616400 (Accessed January 7, 2021).

Vishwanathan, K., Tackett, R. L., Stewart, J. T., and Bartlett, M. G. (2000).
Determination of Arginine and Methylated Arginines in Human Plasma by
Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B:
Biomed. Sci. Appl. 748, 157–166. doi:10.1016/s0378-4347(00)00399-6

WHO (2018). Global Action Plan on Physical Activity 2018-2030: More Active
People for a Healthier World. Available at: https://www.who.int/publications/i/
item/9789241514187 (Accessed January 4, 2021).

WHO (2020). Physical activity. Available at: https://www.who.int/news-room/fact-
sheets/detail/physical-activity (Accessed January 4, 2021).

World Anti-Doping Agency (2020). WADA Welcomes Enhanced Long-Term
Sample Storage and Re-analysis Program. Available at: https://www.wada-
ama.org/en/media/news/2020-12/wada-welcomes-enhanced-long-term-sample-
storage-and-re-analysis-program (Accessed January 11, 2021).

Conflict of Interest: The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The handling editor declared a past collaboration with one of the authors (MF).

Copyright © 2021 Nix, Hemmati, Cobraiville, Servais and Fillet. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6814009

Nix et al. Microsampling for Fluxomics Analysis

97

https://doi.org/10.1123/jpah.2018-0671
https://doi.org/10.1016/j.ijms.2017.02.002
https://doi.org/10.1039/d0an01039a
https://doi.org/10.3390/metabo9080164
https://doi.org/10.1186/s40798-020-0238-4
https://doi.org/10.4155/bio.12.44
https://doi.org/10.4155/bio.12.44
https://doi.org/10.1136/bjsports-2016-096581
https://doi.org/10.1007/s11306-018-1447-4
https://cdn.shopify.com/s/files/1/0767/9441/files/BR-0536-G_RevC.pdf?v=1593616400
https://cdn.shopify.com/s/files/1/0767/9441/files/BR-0536-G_RevC.pdf?v=1593616400
https://cdn.shopify.com/s/files/1/0767/9441/files/BR-0536-G_RevC.pdf?v=1593616400
https://doi.org/10.1016/s0378-4347(00)00399-6
https://www.who.int/publications/i/item/9789241514187
https://www.who.int/publications/i/item/9789241514187
https://www.who.int/news-room/fact-sheets/detail/physical-activity
https://www.who.int/news-room/fact-sheets/detail/physical-activity
https://www.wada-ama.org/en/media/news/2020-12/wada-welcomes-enhanced-long-term-sample-storage-and-re-analysis-program
https://www.wada-ama.org/en/media/news/2020-12/wada-welcomes-enhanced-long-term-sample-storage-and-re-analysis-program
https://www.wada-ama.org/en/media/news/2020-12/wada-welcomes-enhanced-long-term-sample-storage-and-re-analysis-program
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Urine NMR Metabolomics Profile of
Preterm Infants With Necrotizing
Enterocolitis Over the First Two
Months of Life: A Pilot Longitudinal
Case-Control Study
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Antonio Noto4, Vassilios Fanos3 and Flaminia Cesare Marincola5
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Objective: To investigate changes in the urine metabolome of very low birth weight preterm
newborns with necrotizing enterocolitis (NEC) and feed intolerance, we conducted a
longitudinal study over the first 2months of life. The metabolome of NEC newborns was
compared with two control groups that did not develop NEC: the first one included preterm
babies with feed intolerance, while the second one preterm babies with good feed tolerance.

Methods: Newborns developing NEC within the 3weeks of life were identified as early onset
NEC, while the remaining as late onset NEC. Case-control matching was done according to
the gestational age (±1week), birth weight (± 200 g), and postnatal age. A total of 96 urine
samples were collected and analyzed. In newborns with NEC, samples were collected before,
during and after the diagnosis over the first 2months of life, while in controls samples were
collected as close as possible to the postnatal age of newborns with NEC. Proton nuclear
magnetic resonance (1H NMR) spectroscopy was used for metabolomic analysis. Data were
analyzed by univariate and multivariate statistical analysis.

Results: In all the preterm newborns, urine levels of betaine, glycine, succinate, and citrate
positively correlated with postnatal age. Suberate and lactate correlated with postnatal age
in preterms with NEC and in controls with food intolerance, while N,N-dimethylglycine
(N,N-DMG) correlated only in controls with good digestive tolerance. Preterm controls with
feed intolerance showed a progressive significant decrease of N-methylnicotinamide and
carnitine. Lactate, betaine, myo-inositol, urea, creatinine, and N,N-dimethylglycine
discriminated late-onset NEC from controls with good feed tolerance.

Conclusion: Our findings are discussed in terms of contributions from nutritional and
clinical managements of patients and gut microbiota.

Keywords:metabolomics, proton nuclearmagnetic resonance spectroscopy, necrotizing enterocolitis, prematurity,
urine
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INTRODUCTION

Cellular metabolism plays a crucial role both in health and
disease, mirroring interactions between the host genome,
environment, and microbiome. Environmental and lifestyle
factors as well as traumatic events or diseases, have the
potential to alter the individual metabolic phenotype both
directly, by inducing perturbations in various metabolic
pathways, and indirectly, by promoting epigenetic changes,
which in turn lead to changes in gene expression, transcripts,
and ultimately in the metabolic profile of a given cell, tissue, or
biological fluid (Eicher et al., 2020). However, the organism’s
rapid response to any exogenous or endogenous factor altering
the cellular and tissue homeostasis (e.g., asphyxia, sepsis, gut
dysbiosis) can be unveiled and monitored overt time NEITHER
by genomics nor by transcriptomics and proteomics. These
“omics” offer specific but tardive information on any
biological change; conversely, metabolomics, the science that
identifies and quantifies endogenous and exogenous
metabolites, represents an “instant omics” capable to provide
information on the current status of a living system (Ashrafian
et al., 2020). Indeed, changes in the individual metabolic profile
occur much earlier than any clinically detectable sign or
symptom, and thus, metabolomics is strategic in the context of
the precision medicine approach (Karczewski and Snyder, 2018).
One of the most important applications of metabolomic studies is
the early identification of critically ill newborns at risk of adverse
clinical outcomes during their stay in the neonatal intensive care
unit (NICU) (Fanos et al., 2018; Bardanzellu et al., 2020; Locci
et al., 2020). Necrotizing enterocolitis (NEC) is a life-threatening
disease affecting almost exclusively preterm newborns, consisting
of abnormal intestinal colonization followed by an immune-
inflammatory response leading to the loss of intestinal barrier
function and possible perforation of the intestine (Neu and
Walker, 2011; Meister et al., 2020; Neu, 2020). The pooled
estimated NEC incidence in very low birth weight (VLBW)
newborns is approximately 7% (Alsaied et al., 2020), while it
is less common in late premature and in full term newborns.
NEC’s pathogenesis is primarily marked by an abnormal
inflammatory response and necrosis of the gut mucosa along
the whole gastrointestinal tract (Niño et al., 2016). Further risk
factors include sepsis, enteral formula feeding, prolonged
antibiotic exposure, and gut dysbiosis (Raba et al., 2021).
Recently, it was demonstrated that NEC is associated with
elevated blood levels of CCR9 + CD4 + T cells as well as
CCR9 + interleukin-17 (IL-17) producing Treg (previously
called regulatory T cells); the histological NEC severity is
positively and negatively correlated with their gut and blood
concentration, respectively (Ma et al., 2019). As a consequence,
the therapeutic modulation of lymphocyte balance may open new
perspectives for improving NEC severity and outcome (Nguyen
and Sangild., 2019). Recommendations on feeding practices, such
as breastfeeding, the proper management of feeding intolerance,
the application of feeding guidelines, and the implementation of
probiotics with diet, can prevent NEC onset in critically ill
newborns admitted in NICU (Bi et al., 2019). Several studies,
recently revised in an elegant review (Agakidou et al., 2020), have

investigated the metabolic profile of blood, plasma, serum, urine,
stools, and intestinal epithelial cells in preterm neonates with
NEC, opening new horizons on the molecular mechanisms
associated with the disease and searching candidate
biomarkers for the early diagnosis and prognosis of NEC. This
pilot study aimed to explore the presence of the urinary metabolic
signature in VLBW preterm newborns by using a proton nuclear
magnetic resonance spectroscopy (1H NMR)-based metabolomic
approach. We investigated the dynamic changes of the urine
metabolome in infants with NEC over the first 2 months of life by
collecting samples at different time points, namely before, during,
and after the diagnosis. Since all babies with NEC were also
affected by feeding intolerance (FI), each of them was matched
with two preterm newborns without NEC, the first one with FI
and the second one with good digestive tolerance.

MATERIALS AND METHODS

Patients
This case-control study was conducted in the NICU, Hospital de
la Croix Rousse (HCR), Hospices Civils de Lyon, Lyon, France.
The study was approved by the local Ethics Committee (Comité
de Protection des Personnes Sud-Est IV, Lyon) and performed
following the approved guidelines. Infant parents signed
informed consent forms before participation. We considered
eligible for the study VLBW preterm babies recruited
prospectively. Eighteen VLBW preterm infants were included:
6 with NEC and feeding intolerance (group 1, NEC); 6 with
feeding intolerance without any sign of NEC (group 2, FI); and 6
with good digestive tolerance without NEC (group 3, GDT). We
considered feeding intolerance the inability of the baby to ingest
and digest enteral nutrition. This condition became clinically
evident with the appearance of (a) gastric residues (more than
50% of the ingested food after 2–3 consecutive meals); (b) biliary
or hemorrhagic color of residues; (c) abdominal distension with
discomfort on palpation and gaseous dilation of the loops of the
small intestine (Lucchini et al., 2011). Good feeding tolerance was
defined as the ability of the preterm infant to safely ingesting and
digesting the prescribed enteral feeding without complications
associated with aspiration, infection, and gastrointestinal
dysfunction (Shulman et al., 1998). In group 1, three babies
developed the disease within the first 3 weeks of life (hereafter
called early-onset NEC), while the remaining three developed
NEC 6–8 weeks after birth (hereafter called late-onsetNEC). Each
baby belonging to group 1 NEC was matched with two babies, the
first one belonging to group 2 FI and the second one to control
group 3 GDT. In order to reduce uninformative variations that
could interfere with the identification of relevant information
encoded in the experimental spectral dataset, controls were
selected according to matched gestational age (± 1 week), birth
weight (± 200 g), and postnatal age at the time of urine sampling
(± 7 days). NEC was defined as the presence of clinical evidence
fulfilling modified Bell’s stage criteria (Bell et al., 1978; Juhl et al.,
2019) and was confirmed by radiological pneumatosis
intestinalis. All NEC cases were Bell stage II. Neonates with
major congenital abnormalities (including those of the
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gastrointestinal tract) were excluded as controls from the study.
Total parenteral nutrition was used for all infants up to 2–3 weeks
of life (Darmaun et al., 2018). As soon as tolerated, enteral feeding
was gradually introduced using a milk bank or expressed breast
milk provided by their mother. According to the European Milk
Bank Association (EMBA) Working Group recommendations
(Arslanoglu et al., 2019), milk was fortified in both cases.
Fortema® (Bledina, Villefranche-sur-Saône, France) for protein
and carbohydrate intakes, Liquigen® (Nutricia, Saint-Ouen,
France) for lipid intakes and the multicomponent fortifier
Nutriprem® (Bledina, Villefranche-sur-Saône, France) were
used. In babies manifesting feeding intolerance, enteral
nutrition was interrupted and then gradually reintroduced
when clinical conditions went back to normal. During the
study period, no change was made in the enteral parenteral
nutritional policy.

Sample Collection and Preparation
Urine samples were collected over approximately two months
after birth. In babies with NEC (group 1), urine samples were
collected at various intervals: before, during, and after the
disease’s onset. In babies belonging to groups 2 FI and 3
GDT, samples were collected at the day of life as close as
possible to those collected in babies with NEC. Samples
(volume 1–2 ml) were collected using a cotton ball inserted
into the disposable diaper; the urine was aspired by a syringe
and then transferred to a sterile 2 ml vial and immediately frozen
at −80°C until their shipping to the metabolab of the University of
Cagliari. Before analysis, 800 μL of thawed urine were transferred
into a 1.5 ml centrifuge microtube, and then 8 μL of sodium azide
(10% w/w) were added to avoiding any possible bacterial growth.
The sample was then centrifuged at 12,000 g for 10 min at + 4°C.
To stabilize the pH of urine samples, 630 μL of supernatant were
mixed with 70 μL of phosphate buffer solution [1.5M KH2PO4,
1% sodium 3-trimethylsilyl-propionate-2,2,3,3-d4 (TSP, 98 atom
% D), pH 7.4]. Finally, 650 μL were placed into a 5 mm wide
NMR tube.

Proton Nuclear Magnetic Resonance
Spectroscopy Analysis
The analysis was conducted at 300K by using a Varian UNITY
INOVA 500 spectrometer (Agilent Technologies, CA,
United States) operating at 499.839 MHz. A standard 1-D
pulse sequence NOESY was used with water suppression. For
each urine spectrum, a total of 128 scans were collected in 64k
data points over a spectral width of 6,000 Hz using a relaxation
delay of 2 s, an acquisition time of 1.5 s, and mixing of 0.1 s.
Before Fourier transformation, the free induction decay was
multiplied with 0.3 Hz exponential line broadening spectra. All
spectra were phased, and baseline corrected using MestReNova
(Version 8.1, Mestrelab Research SL, Santiago de Compostela,
Spain). The chemical shift scale was set by assigning a value of δ �
0.00 ppm to the internal standard TSP signal. After correction for
misalignments in chemical shift, primarily due to pH-dependent
signals and deleting the regions containing the water and TSP
signals, the NMR spectra were binned into 0.0025 ppm buckets

over a chemical shift range of 0.5–9.5 ppm. Bins were normalized
to the sum of total spectral area to compensate for the overall
concentration differences and used as a dataset (97 x 4,423) for
multivariate analysis. The assignment of the metabolites in the 1H
NMR spectra was performed according to literature data (Diaz
et al., 2016; Scalabre et al., 2017), the Human Metabolome
database, available at http://www.hmdb.ca (Wishart et al.,
2018), and Chenomx NMR suite 8.1 software (evaluation
version, Chenomx, Edmonton, Canada). All the samples were
analyzed simultaneously.

Data Processing and Statistical Analysis
For multivariate statistical analysis, data were Pareto scaled (Misra,
2020). Multivariate statistical analysis of the NMR dataset consisted of
principal component analysis (PCA), orthogonal projection to latent
structures (OPLS) regression, and orthogonal projection to latent
structures discriminant analysis (OPLS-DA) supported by the SIMCA
software (version 16.0, Umetrics, Umeå, Sweden). OPLS was used in
the case of a continuous Y-matrix (i.e., multiple time points) and
OPLS-DA for identifying discriminant metabolites in a pairwise
comparison between case and control groups. The quality of OPLS
and OPLS-DA models were evaluated through the following
parameters: the cumulative values of total Y explained variance,
i.e., goodness of fit (R2Y), and the Y predictable variation, i.e., the
goodness of predictability (Q2). The latter was extracted by the default
method of 7-fold internal cross-validation of SIMCA. Additionally,
the models were tested for overfitting using permutation testing (n �
400). The models’ significance was further assessed by an ANOVA
based on the cross-validated predictive residuals (CV-ANOVA) with
a p-value ≤ 0.05 (Eriksson et al., 2008). The models were considered
valid if the permutation test and the CV-ANOVA test were
significant. The variables with the most significant contributions to
OPLS and OPLS-DA models were identified by exploring the
correlation coefficients line plots by following two criteria: absolute
p and p(corr) values were set to be greater than 0.05 and 0.5,
respectively. p-value represents each variable’s importance and
p(corr) its reliability (Cloarec et al., 2005). The univariate statistical
analysis was performed by the GraphPad Prism Statistics software
package, version 8.1.2 (GraphPad Prism Software Inc., SanDiego, CA,
United States), to measure the Pearson’s correlation coefficient
between metabolites and postnatal time and compare the variation
in the abundance of discriminant metabolites between groups. The
magnitude of variationwas evaluated by calculating the effect size (ES)
adjusted for small sample number (Berben et al., 2012). Effect sizes
were classified small between 0.2 and 0.5, medium between 0.5 and
0.8, and large when greater than 0.8. The non-parametric Mann-
Whitney U test was used for the univariate statistical approach; a p-
value ≤ 0.05 was considered statistically significant.

RESULTS

The main characteristics of the study population are reported
in Table 1. Group 1 NEC does not significantly differ from
group 2 FI and 3 GDT for gestational age, birth weight, mean
Apgar scores at 5 min (p > 0.05). The male:female ratio was 1:1
for each group. A total of 97 urine samples were collected
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during the first 2 months of life: 38 in group 1 NEC (18 early-
onset NEC, 20 late-onset NEC), 27 in group 2 FI, and 32 in
control group 3 GDT. A preliminary PCA analysis was
performed for searching any inherent separation among
samples and the presence of outliers. The total amount of
variance explained by the first two principal components (PCs)
was 40%. The PC1 vs. PC2 scores plot clearly indicates the
absence of any cluster (Figure 1A). Conversely, the scores plot
unveils a similar, unidirectional temporal trend for groups 2 FI
and 3 GDT, scores shifting from the left to the right side of the
PC1 axis as age increases (Figure 1B). The temporal shift of the
urine metabolome of the early-onsetNEC subgroup follows the
same trajectory along the PC1 axis as those exhibited by groups
2 and 3 (Figures 2A–C). On the other hand, the time course of
the late-onset NEC subgroup is similar to that of the other
groups, but only until the diagnosis of the disease; soon after,
the trajectory inverts the direction, approaching the metabolic
profile of the first days of life (Figures 2D–F). The PCA
loadings plot revealed that this behavior was mainly related
to the urinary gluconate concentration (Supplementary
Figure S1). Indeed, in the urine sample of the late-onset
NEC subgroup, rigorously collected after the diagnosis, the
content of gluconate was much higher than that found in the
urine of the same babies collected just before the diagnosis;
moreover, gluconate concentration was comparable with that
observed in the urine collected during the first day of life in all
the neonates. Gluconate is a nutrient degraded by
gluconokinase to generate 6-phosphogluconate, playing a
crucial physiological role (Ramachandran et al., 2006;
Riganti et al., 2012); however, during the total parenteral
nutrition (TPN) at birth and after the clinical diagnosis of
NEC, the intravenous calcium administration was a source of
exogenous gluconate in babies with NEC. The subgroup of
early-onset NEC babies developed the disease during TPN,
while in the late-onset subgroup, NEC was diagnosed during
enteral nutrition (EN). In detail, the latter received two cycles
of TPN, namely at birth and after the onset of NEC, alternated
by an EN cycle. Based on these findings, the analysis of the
temporal trajectories of late-onset NEC scores in the PCA
model showed that the inversion of the trend observed after the
diagnosis was associated with the introduction of the second

cycle of TPN therapy, leading to the reasonable conclusion that
the nutritional intervention may be the main source of this
dynamic modification. Since the urine NMR spectra of all
infants under TPN showed very intense signals due to
exogenous gluconate, we removed these signals before
statistical analysis to avoid any TPN contribution to the
spectral profile. A more detailed insight into the time
dependence of urine metabolome of group 1 NEC and
groups 2 and 3 was undertaken by OPLS regression by
using the 1H NMR urine spectral data as an independent
variable and the postnatal sampling days as Y-variable. An
OPLS model was built separately for each group. Model
performances are summarised in Table 2, while Figure 3
depicts the corresponding scores and loading plots. The
models built for group 2 FI and 3 GDT demonstrated good
modeling and predictive abilities, while a lower but acceptable
predictivity characterized the model for group 1 NEC. The
robustness of the models was validated by the permutation test
(n � 400) and CV-ANOVA. The corresponding loadings plots
(Figures 3D–F) allow identifying the most significant
metabolic signature associated with postnatal age.
Metabolites positively correlating with postnatal age were:
betaine, glycine, citrate, and succinate in all the groups;
N,N-dimethylglycine (DMG) in control group 3 GDT;
suberate and lactate in group 1 NEC and group 2 FI;
creatinine in control group 3 GDT only. Besides,
unassigned resonances at δ � 3.95 and δ � 3.74 were
inversely correlated with postnatal age in all the groups,
while carnitine and N-methylnicotinammide (N-MNA) only
in group 2 FI. These time-dependent changes were also
investigated by the univariate statistical analysis; in
particular, the Pearson’s correlation coefficient (r) was
computed. Results confirmed the statistical significance of
the findings mentioned above- (p < 0.05) (Supplementary
Table S1). To identify the metabolic signature(s) associated
with NEC, the two subgroups of early-and late-onsetNEC were
compared with the corresponding matched groups 2 and 3 by
using the OPLS-DA approach. We included only spectra of
urine collected either immediately before or at the diagnosis
time, based on the assumption that they may provide more
information on the presence of metabolic perturbations

TABLE 1 | Characteristics of study population.

Variable, description NEC (n = 6) Controls (n = 12)

FI-PT (n = 6) GDT-PT (n = 6)

Gestational age (weeks, mean ± SD) 27.1 ± 1.6 27.2 ± 1.3 27.7 ± 1.6
Male/Female, n 3/3 3/3 3/3
Birth weight (g, means ± SD) 1,016 ± 104 920 ± 104 950 ± 65
Cesarean section delivery, n 2 5 3
IUGR, n 1 4 1
Apgar score: ≤5 at 5 min, n 1 2 2
Early-onset of NEC (< 25 days), n 3 / /
Late-onset of NEC (> 40 days), n 3 / /
Antibiotics, n 6 6 6

Abbreviation: FI-PT, preterm with feed intolerance; GDT-PT, preterm with good digestive tolerance; IUGR, intrauterine growth restriction; NEC, necrotizing enterocolitis; SD, standard
deviation.
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associated with the disease. In Table 3, we reported the quality
parameters of the pairwise OPLS-DA models. No model
comparing the early-onset NEC subgroup with groups 2 and 3
was found significant; conversely, the model comparing the late-
onset NEC subgroup with control group 3 GDT showed a
significant group separation (p � 0.02) as reported in
Figure 4A. The analysis of the OPLS-DA loadings plot
(Figure 4B) showed the leading metabolites responsible for
sample discrimination, providing an assessment of the main
statistically significant differences between the two groups:
lactate was more abundant in the late-onset NEC subgroup,
while N,N-DMG, betaine, creatinine, myo-inositol, and urea
were more abundant in group 3. These findings were further

supported by the univariate statistical analysis for assessing
significant differences in the relative content of these
metabolites between the two groups (Figure 5).

DISCUSSION

Despite the impressive body size of literature on clinical
metabolomics-based studies in human disease, the number of
metabolomics-based studies on NEC is small, and the
identification of reliable candidate omics-based biomarkers for
the prediction and the early diagnosis of NEC is still far from
being definitive. After the exclusion of metabolomics-based

FIGURE 1 | PCA scores plot from the model built with the 1H-NMR spectra of infant urine samples: (A) +, group 1 NEC; ■, group 2 FI (feed intolerance without
NEC); ▲, control group 3 GDT (good digestive tolerance without NEC); (B) Scores are coloured according to the postnatal age. Samples in the dotted circle were
collected during total parenteral nutrition (TPN).
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studies enrolling babies with sepsis (both early-onset and late-
onset sepsis), approximately ten studies have utilized
metabolomics alone or combined with other omics in preterm
newborns with NEC; five were based only on metabolomics in
various biological fluids, including serum (Wilcock et al., 2016;
Wang et al., 2019), stools (Rusconi et al., 2018), urine
(Thomaidou et al., 2019), and dry blood spots (Sinclair et al.,
2020). A study combined metabolomics with proteomics in
serum samples (Stewart et al., 2016a), and four studies

integrated metagenomics with metabolomics in urine (Morrow
et al., 2013) and stools (Stewart et al., 2016b; Wandro et al., 2018;
Brehin et al., 2020). The heterogeneity of patient cohorts, patients
and samples size, samples type, analytical methods, length of
patient monitoring, diagnostic criteria of NEC, nutrition, and the
presence of potentially confounding factors such as comorbidities
(sepsis, bronchopulmonary dysplasia) hampers an adequate
comparison between our results and those previously
published. Overall, the time-dependent shift of scores observed

FIGURE 2 | Temporal trajectories (obtained from the model built with the 1H-NMR spectra) of each individual early-onset (A–C) and late-onset (D–F) NEC baby in
the PC1 vs PC2 scores plot. FI and GDT (o); NEC (+). Scores are colored according to the postnatal age. Numbers denotes the post-natal age of NEC at the time of
sampling and the asterisk marks the day of the disease onset.
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TABLE 2 | Statistical parameters of the OPLS models derived from the 1H-NMR spectra of urine samples from group 1 NEC, group 2 FI, and group 3 GDT cases.a

Data set R2Y Q2Y Permutation testb p-valuec

R2Y intercept Q2Y intercept

Group 1 NEC 0.743 0.398 0.509 −0.463 2.01 . 10−3

Group 2 FI 0.813 0.567 0.531 −0.545 7.26 . 10−3

Group 3 GDT 0.880 0.638 0.461 −0.430 1.05 . 10−5

aGluconate signals were removed from the dataset.
bn � 400.
cp-value obtained from cross validation ANOVA (CV-ANOVA). NEC, necrotizing enterocolitis; FI, food intolerance; GDT, good digestive tolerance.

FIGURE 3 |OPLS scores (A–C) and loadings line (D–F) plots of the 1H-NMR urine spectra from control group 3 GDT (top), group 2 FI (middle), and group 1 NEC
(bottom). The scores are coloured according to the postnatal age. Abbreviations: Bet, betaine; Car, carnitine; Cre, creatinine; Cit, citrate; N,N-DMG, N,N-
dimethylglycine; N-MNA, N-methylnicotinamide; Gly, glycine; Lac, lactate; Sub, suberate; Suc, succinate.
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in all the babies enrolled in our study confirms the dynamic
postnatal metabolic change due to the influence of age, height,
and weight progression, with the concomitant development and
maturation of organs and tissues, as previously found elsewhere
(Cesare Marincola et al., 2016; Scalabre et al., 2017).

Betaine, a trimethylated glycine derived either from diet or the
oxidation of choline, increased over time in all the three groups of
infants, while N,N-dimethylglycine (N,N-DMG), derived from the
loss of a methyl group from betaine, increased only in control group
3, GDT. Betaine and N,N-DMG are methyl donors in several
metabolic pathways, including the homocysteine and the DNA
methylation. Betaine is involved in osmotic homeostasis,
protecting cells from dehydration and kidneys from injuries;
betaine is also an anti-oxidant and is involved in
neurodevelopment and immune functions. In the urine of healthy
adults, betaine is almost completely absent; conversely, in healthy
newborns’ urine, high betaine levels are usually present, reflecting
dietary choline disposal (Davies et al., 1988). Breast milk is an
important dietary source of choline which is essential during
infant growth and development. Interestingly, urine betaine and
N,N-DMG levels were significantly reduced in the subgroup of
babies with late-onset NEC (20 samples) compared with control
group 3 GDT (32 samples), confirming previous findings that
associated the reduction of urine betaine with NEC (Thomaidou
et al., 2019). Data from the literature evidence that urine betaine was
found decreased over the first 48-h of life in various groups of full-
term infants with impaired growth and this trend was followed

by the increase of betaine at the end of the first week of life
(Marincola et al., 2015). Conversely, high urine levels of
betaine were observed in full-term infants with congenital
cytomegalovirus infection (Fanos et al., 2013) and hypoxic-
ischemic encephalopathy (Locci et al., 2018). Thus, the
decrease of urine betaine in babies with late-onset NEC may
be associated with prematurity and kidney dysfunction rather
than with sepsis and inflammation. In our preterms, the
influence of infant growth and maturation over time is
reflected by the positive correlation between postnatal age
and glycine, succinate, and citrate. However, in the group of
babies with early- and late-onset NEC (38 samples), urinary
succinate and citrate were significantly reduced (fold change
−0.161 and −0.163, respectively) compared to control group 3
GDT. On the other hand, they were closely comparable
between group 2 FI (27 samples) and group 3 GDT (32
samples). Conversely, urine glycine abundance was almost
equal between group 1 NEC and control group 3 GDT and
significantly increased in group 2 FI (fold change 0.161). The
reduction in succinate and citrate in group 1 NEC may be
related to the impairment of the tricarboxylic acid (TCA or
Krebs) cycle in babies with NEC, leading to decreased
carbohydrates, amino acids, and lipids availability. Indeed,
as newborns gain weight during the early postnatal age, the
increase of urine succinate and citrate may reflect the high
metabolic turnover due to the increasing energy demand
(Moltu et al., 2014; Scalabre et al., 2017).

TABLE 3 | Statistical parameters for the OPLS-DA models built for the pairwise comparison between cases and controls.a

Pairwise comparison Permutation test

R2X R2Y Q2Y R2Y intercept Q2Y intercept p-value

Early-onset NEC vs FI 0.325 0.906 0.263 0.860 0.114 1
Early-onset NEC vs GDT 0.395 0.811 0.023 0.740 −0.034 0.99
Late-onset NEC vs FI 0.434 0.844 0.461 0.624 −0.554 0.07
Late-onset NEC vs GDT 0.273 0.805 0.624 0.627 −0.606 0.02

aThe models were considered valid only if the permutation test and p-value obtained from the cross validation ANOVA (CV-ANOVA) test (p < 0.05) were satisfied at the same time. NEC,
necrotizing enterocolitis; FI, food intolerance; GDT, good digestive tolerance.

FIGURE 4 | OPLS-DA scores (A) and correlation loading (B) plots for the pair-wise comparison between the late-onset NEC subgroup (+) and control group 3
GDT (▲). 1H NMR spectra of urine samples collected just prior to and at the days of NEC diagnosis were analyzed.
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A positive correlation between urine creatinine and postnatal age
was observed in control group 3 GDT but not in group 1 NEC; a
weak correlationwas also found in group 2 FI. Creatinine abundance
was significantly lower in group 1NEC comparedwith group 3GDT
(fold change −0.74) and with group 2 FI (fold change −0.68),
confirming similar results (fold change −0.35) previously
published elsewhere (Thomaidou et al., 2019). Based on our
results and data from the literature, we could argue that in
preterm babies with good digestive tolerance (group 3 GDT), the
positive correlation between creatinine and postnatal age is due at
least to two factors: the progressive maturation of the kidney leading
to the increase in glomerular filtration rate (GFR), even though
slower than in full-term infants (Gubhaju et al., 2014), and the
progressive increase of muscle mass. The latter is closely related to
the rate of protein synthesis, which depends on feeding (Davis and
Fiorotto, 2009). In groups 1 NEC and 2 FI, the replicated
interruptions overtime of the enteral feeding, in response to
clinical symptoms of food digestive intolerance, slows down the
synthesis of proteins, with a negative consequence on the growth of
organs and tissues, such as the kidney and muscle mass, and
ultimately with the decrease of urine creatinine excretion. In the
urine samples of the subgroup of babies with late-onset NEC (20
samples), we observed high lactate levels compared with those of the
control group 3 GDT, especially close to the onset of the disease. A
possible explanationmay be the impaired TCAproduction of energy
associated with NEC. In babies with early-onset NEC and in those
with food intolerance (group 2 FI), the predominance of
hyperlactatemia over the first 48–72 h of life in preterm

infants may reduce differences between groups (Junior et al.,
2021); later, lactate levels may better discriminate critically ill
preterm infants with NEC or other acute diseases, from preterm
infants with non-severe acute disease. Increased levels of lactate
may also originate from different sources. Lactate produced by
human metabolism is primarily the levorotatory isomer
L-lactate; conversely, D-lactate is prevalently produced by
bacterial fermentation of undigested carbohydrates in the
gastrointestinal tract, and only a small fraction of this isomer
is endogenously formed from methylglyoxal through the
glyoxalase system (Adeva-Andany et al., 2014). High levels of
D-lactate have been found in the urine and plasma of preterm
babies with NEC (Garcia et al., 1984; Lei et al., 2016); this
finding suggests that D-lactate may be considered an index of
increased enteric bacterial activity (Grishin et al., 2013).
Although 1H NMR is unable to distinguish the lactate
enantiomers, we cannot rule out that the high abundance of
lactate in the urine of infants with late-onset NEC may derive at
least in part from the accumulation of D-lactate. The positive
correlation between lactate and postnatal age in group 2 FI and
in the subgroup late-onset NEC, together with the concomitant
decrease in N-methylnicotinamide, seem to confirm an
imbalance of the host−microbial metabolism in these infants.
Indeed, N-methylnicotinamide has been utilized as an index of
the suppression of the gut microbiome in an experimental study
in an animal model on NEC (Jiang et al., 2017).

Myo-inositol, an inositol stereoisomer mediating cell signal
transduction in response to a variety of hormones,

FIGURE 5 | Selected metabolites discriminating control group 3 GDT and late-onset NEC subgroup the day before the onset of the disease and at the disease
onset. Values in the box plots are shown as the normalized peak areas of the metabolites.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6801599

Picaud et al. Longitudinal Metabolic Profile in NEC

106

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


neurotransmitters, and growth factors, was decreased in the urine of
babies with late-onset (fold change −0.20), but not early-onset NEC,
and in the urine of babies with FI (group 2, fold change −0.17),
compared with control group 3 GDT. Factors such as kidney
impairment and perturbances in the metabolism of glucose and
lung surfactant influence the urinary level ofmyo-inositol in preterm
infants; however, myo-inositol is a natural constituent of breast milk
and is commonly added to formula milk (Brion et al., 2021).
Therefore, the nutritional intake strongly influences the myo-
inositol concentration. It is reasonable to argue that the dietary
restriction, applied after multiple episodes of feeding intolerance
prior to the onset of the NEC and their management during the
disease, contributes to decreasing urine myo-inositol in late-onset
NEC and FI groups. Our result confirms similar results previously
reported elsewhere (Thomaidou et al., 2019); it is also supported by
the simultaneous decrease of urea, a nutritional index reflecting the
protein intake, in babies with NEC and FI.

Our study is affected by several limitations. First, the small
number of preterm infants limits the strength of results;
however, this is a pilot study. Second, the lack of any
taxonomic characterization of the gut microbiota hampers
to elucidate the significance of metabolic alterations
originating from dysbiosis and abnormal gut microbiota
fermentation. Third, this single-center study hampers the
recruitment of a large number of patients and the
comparison of the effects of the therapeutic management on
the urine metabolome between different centers. Fourth, this
study adopted a single analytical platform. Combining the
highly quantitative and reproducible nature of 1H NMR
spectroscopy with the high sensitivity and specificity of MS
may improve the panels of detectable metabolites, and
potentially the reliability and accuracy of statistical models.
A further limitation is the lack of ANOVA for repeated
measurements (RM ANOVA); however, this limitation does
not hamper the identification of candidate biomarkers for
NEC, derivable by the OPLS-DA model. The strengths of
this study are the analysis of longitudinal data and the
classification of infants with NEC in early-onset (sample
size � 18) and late-onset NEC (sample size � 20). In a
previous study, babies with NEC were divided based on the
gut microbiota composition (Morrow et al., 2013);
unfortunately, a specific bacterial fingerprint associated with
NEC was never identified unambiguously. Thus, even that
study reported no definitive metabolic data. Overall, previous
metabolomics-based studies on preterm infants with NEC are
often inconclusive, even when metabolomics was combined
with proteomics or microbiomics; (Stewart et al., 2016a;
Wilcock et al., 2016; Brehin et al., 2020). Our study

confirms that the urine metabolome of infants with NEC is
significantly different from that of preterms infants with food
intolerance but without NEC and from that of preterm infants
with good digestive tolerance. However, the identification of
robust candidate biomarkers of NEC requires the system
biology approach based, at least, on metabolomics and
microbiomics for defining an early accurate diagnosis of the
disease and predicting the risk of an adverse clinical outcome
much earlier than the clinical onset of the disease.
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Comprehensive Metabolic Signature
of Renal Dysplasia in Children. A
Multiplatform Metabolomics Concept
Szymon Macioszek1†, Renata Wawrzyniak1†, Anna Kranz2, Marta Kordalewska1,
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Pediatrics, Nephrology and Hypertension, Medical University of Gdańsk, Gdańsk, Poland, 3Centre for Rare Diseases, Medical
University of Gdańsk, Gdańsk, Poland

Renal dysplasia is a severe congenital abnormality of the kidney parenchyma, which is an
important cause of end-stage renal failure in childhood and early adulthood. The
diagnosis of renal dysplasia relies on prenatal or postnatal ultrasounds as children
show no specific clinical symptoms before chronic kidney disease develops. Prompt
diagnosis is important in terms of early introduction of nephroprotection therapy and
improved long-term prognosis. Metabolomics was applied to study children with renal
dysplasia to provide insight into the changes in biochemical pathways underlying its
pathology and in search of early indicators for facilitated diagnosis. The studied cohort
consisted of 72 children, 39 with dysplastic kidneys and 33 healthy controls. All subjects
underwent comprehensive urine metabolic profiling with the use of gas chromatography
and liquid chromatography coupled to mass spectrometry, with two complementary
separation modes of the latter. Univariate and multivariate statistical calculations identified
a total of nineteen metabolites, differentiating the compared cohorts, independent of their
estimated glomerular filtration rate. Seven acylcarnitines, xanthine, and glutamine were
downregulated in the urine of renal dysplasia patients. Conversely, renal dysplasia was
associated with higher urinary levels of dimethylguanosine, threonic acid or glyceric acid.
This is the first metabolomic study of subjects with renal dysplasia. The authors define a
characteristic urine metabolic signature in children with dysplastic kidneys, irrespective of
renal function, linking the condition with altered fatty acid oxidation, amino acid and purine
metabolisms.

Keywords: renal dysplasia, metabolomics, pediatric nephrology, multiplatform approaches, LC-MS, GC-MS

INTRODUCTION

Renal dysplasia, though classified as a rare disease (birth prevalence: 1/2,300) is one of the major
causes of chronic kidney disease in childhood. This congenital abnormality of the kidneys is due to
early abnormal kidney development which results in malformation of the normal histologic structure
of the kidney with the characteristic presence of embryological tissue in the form of undifferentiated
and metaplastic tissues. Due to an accompanying reduction in the number of overall nephrons, renal
dysplasia may lead to chronic kidney disease (CKD) and with time progress to end-stage renal
disease (ESRD). Renal dysplasia is one of the most frequent underlying pathologies in children
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requiring renal replacement therapy (13.5%) (www.orpha.net).
Its treatment focuses mainly on slowing down the progression
of CKD.

Renal dysplasia is usually symptomless before complications
of CKD develop. It is diagnosed through prenatal or postnatal
radiological screening. Ultrasonography reveals a normal-sized or
small kidney with increased echogenicity and either absent or
poor corticomedullary differentiation, frequently accompanied
by the presence of small cysts. The extent of dysplastic changes is
extremely variable and when mild is difficult to visualize. Early
diagnosis is hampered by the lack of available biomarkers of
abnormal kidney differentiation in the initial period of stable
renal function. Prompt diagnosis of renal dysplasia is important
in terms of management and long term prognosis due to the risk
of future end-stage renal disease.

Metabolomics is an advanced tool providing insight into
molecular processes occurring in a living organism and
enabling the observation of disturbances in metabolic
pathways resulting from changes in both genome and
proteome or from environmental factors. In untargeted
metabolomics, a whole set of metabolites present in a studied
biological matrix is analysed and subsequently evaluated. Due to
the wide range of compounds with various physicochemical
properties, usually several complementary analytical techniques
are used to cover the whole metabolome. Initially, metabolomics
was used in search of disease biomarkers that are challenging for
traditional diagnosis (López-López et al., 2018; Parfieniuk et al.,
2018) and increasingly for elucidating molecular mechanisms of
various disorders such as cancers (Armitage and Barbas, 2014;
Kaushik and DeBerardinis, 2018), cardiovascular diseases (Rhee
and Gerszten, 2012; Ussher et al., 2016) but also renal diseases
(Hocher and Adamski, 2017; Kalim and Rhee, 2017). Detailed
knowledge about the molecular basis of a disease may be a
starting point for the proposition of new therapeutic targets.

The kidney diseases that are most frequently studied by
metabolomics include CKD, diabetic nephropathy, renal cell
carcinoma, and acute kidney injury (Kalim and Rhee, 2017).
Kidney function, assessed by the estimated glomerular filtration
rate (eGFR), has been related to about one third of the detected
metabolites in both general and CKD populations (Benito et al.,
2018). Studies including the pediatric population are scarce since
only one study performed on children was found. Atzori et al.
(2010) collected a group of children with various
nephrouropathies (renal dysplasia, vesico-ureteral reflux,
urinary tract infection, acute kidney injury, and others), and
compared their 1H NMR-based metabolic profile with healthy
children. However, only five children with renal dysplasia were
employed, and for statistical analysis dysplasia samples were
combined with other pathologies.

The aim of the performed study was to search for urine
metabolites which may discriminate children with dysplastic
kidneys from those with normally developed ones, taking into
account the confounding presence of metabolites
characteristic for decreased glomerular filtration rate
associated with CKD, which is a characteristic hallmark for
this disorder.

MATERIALS AND METHODS

Study Design and Population
72 children were enrolled in the study; 39 subjects with renal
dysplasia [mean age 5.68 years (range 0.08–17.40)] and 33
healthy controls [mean age 7.28 years (range 0.09–17.69)]. The
majority of children in both cohorts were below 5 years of age.
Males were predominant in both the study (66.6%) and control
groups (60.6%). Renal dysplasia was diagnosed by
ultrasonography. Dysplastic changes were present in both
kidneys (bilateral renal dysplasia) in the majority of subjects
(61.5%). The renal function was assessed based on the eGFR,
calculated with the new Schwartz formula. CKD with a decreased
renal function (eGFR <60 ml/min/1.73 m2) was present in 41% of
the studied cohort with dysplastic kidneys. The clinical features of
the studied pediatric cohorts are presented in Table 1. The study
was approved by the local Bioethics Committee of the Medical
University of Gdańsk (NKBBN/499/2016, NKBBN/493/2018).

Chemicals and Reagents
The LC-MS grade methanol and acetonitrile were purchased
from Fisher Scientific (Loughborough, United Kingdom). The
mobile phase additive formic acid was from Chem-Lab
(Zedelgem, Belgium). Ammonium formate, pentadecanoic
acid, pyridine, urease, methoxyamine hydrochloride,
N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS) and alkane standard mixture for
GC were from Sigma-Aldrich (United States, Switzerland,
Germany). The Milli-Q PLUS system (Millipore, Austria) was
used to obtain ultrapure water for sample dilution and urease
solution preparation.

Sample Collection and Preparation
First morning urine samples were collected to minimalize the
effects of diet but also of circadian rhythm or physical activity.
The samples were collected in 1.5 ml Eppendorf tubes and placed
immediately at −80°C. The samples were stored frozen until the
day of analyses, when they were thawed at room temperature.

Untargeted GC-MS and LC-MS
Metabolomic Analysis
The urine samples were analyzed along with the quality control
(QC) and blank samples, using two complementary analytical
platforms namely, gas chromatography coupled to triple
quadrupole mass spectrometry (GC-QQQ/MS) and liquid
chromatography coupled to time-of-flight mass spectrometry
(LC-TOF-MS). Additionally, in terms of the LC technique,
two complementary separation modes were used: reversed-
phase (RP) and hydrophilic interaction chromatography
(HILIC), both in positive (RP+, HILIC+) and negative (RP−,
HILIC−) ionization modes. In RP, lipids and other nonpolar
metabolites can be separated while HILIC is suitable for the
separation of polar compounds such as amino acids, nucleosides,
sugars, organic acids, or amines. This yielded five analytical
batches for each urine sample. The detailed protocols of
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sample preparation and analysis for both LC-MS and GC-MS are
provided in the Supplementary Material.

Agilent 1,200 HPLC system coupled to a 6,224 TOF/MS
system (Agilent Technologies, Germany) was used to
determine the urine metabolic fingerprints. Reversed-phase
separation was achieved using a 2.1 mm × 100 mm, 1.8 μm,
Zorbax Extend-C18 column (Agilent Technologies,
United States), with mobile phase consisting of 0.1% formic
acid in water and 0.1% formic acid in acetonitrile. In HILIC
mode, 10 mM ammonium formate water solution and
acetonitrile were used to enable separation of polar
compounds in a Poroshell 120 HILIC 4.6 x 50 mm, 2.7 µm
column (Agilent Technologies, United States).

Complementary GC-MS analysis was conducted on a GCMS-
TQ8030 system (Shimadzu, Japan). The chromatographic
separation was performed in a Zebron ZB-5MS column (30 m
× 0.25 mm, 0.25 μm) with helium as a carrier gas. The scan mode
from 50 m/z to 600 m/z was applied.

Data Processing and Analysis
The software used for raw data processing included: MassHunter
Qualitative Analysis version B.06.00 (Agilent Technologies,
Germany), MassHunter DA Reprocessor version B.08.00
(Agilent Technologies, Germany), Mass Profiler Professional
(MPP, Agilent Technologies, Germany) and Automated Mass
Spectra Detection and Identification System (AMDIS, National
Institute of Standards and Technology, United States). Only
peaks with intensity higher than 5,000 counts and present in
at least 80% of samples in a group of children with dysplasia or
healthy controls were retained for further data processing. Raw
data were normalized with the use of probabilistic quotient
normalization (PQN) to correct for differences in urine
dilution between the patients.

For statistical analysis, Matlab 2014a (Mathworks, Natrick, MA,
United States), SIMCA 16 (Sartorius Stedim Biotech, Sweden) and
Metaboanalyst 4.0 (https://www.metaboanalyst.ca) were employed.
First, principal component analysis (PCA) was applied for each
dataset to verify whether the QC samples were measured identically,
regardless of their position in the analytical run. To examine the
differences between the renal dysplasia group and the healthy
controls, t-test or Mann-Whitney U test with multiple testing

correction was applied, depending on data distribution and
equality of variances. The variables with corrected p value ≤0.05
were considered as significantly differentiating the compared groups.
The samemethodology was used to compare renal dysplasia patients
with normal and decreased eGFR to separate the influence of
impaired renal function from metabolic changes due to abnormal
kidney structure.

A supervised multivariate statistical method - partial least
squares discriminant analysis (PLS-DA), was used to analyse the
predictive power of the metabolites to identify patients with
dysplasia, considering relationships between all metabolites, in
contrast to univariate methods. For PLS-DA models built in
SIMCA 16, CV-ANOVA values were calculated to assess their
reliability. Based on the PLS-DA models, VIP (variable
importance in projection) and SR (selectivity ratio) values were
calculated to select compounds that are potentially related to the
differentiation between the groups. A VIP coefficient higher than
one indicates the variables’ relevance for the differentiation between
the compared groups. SR, a further tool for ranking variables
importance in regression models, was used for the selection of
metabolites that have a different abundance in renal dysplasia
patients and healthy controls. For correlation analysis of
metabolite abundances with the eGFR values of the patients,
Spearman’s rank correlation was calculated.

Metabolite Identification
In the LC-MS analysis, identification of the analytical signals was
the last step of the workflow, following the statistical comparisons.
The metabolites were annotated using the measured accurate mass
and isotopic distribution pattern, while their identity was confirmed
after a fragmentation pattern analyses. For the confirmation of
metabolite structures, MS/MS analysis on HPLC-Q-TOF/MS
System 6550A (Agilent Technologies, Germany) was
implemented. Therefore, the metabolite identification was
provided at level 2 according to Metabolomics Standards
Initiative. For GC-MS data, annotated metabolites were selected
based on their retention indices, calculated from the retention times
of the alkane mixture. Further identification of the signals was
possible by comparing the metabolite fragments in mass spectra
libraries, such as NIST 11 and an in-house library of urinary
metabolites.

TABLE 1 | Clinical features of the studied cohorts of 72 children (39 with renal dysplasia and 33 healthy controls).

Cohort of subjects with renal dysplasia Cohort of healthy controls p-value

Total number enrolled 39 33 —

Females (%) 13/39 (33.3) 13/33 (39.4) 0.540
Males (%) 26/39 (66.6) 20/33 (60.6) 0.540
Mean age ± SD 5.68 ± 5.84 7.28 ± 5.62 0.135
Range age in years (0.08–17.40) (0.09–17.69) —

<5 years age (%) 23/39 (58.9) 15/33 (45.5) 0.215
>5 years age (%) 16/39 (41.1) 18/33 (54.5) 0.215
Mean BMI ± SD 17.05 ± 5.12 16.48 ± 2.65 0.560
Range BMI (7.07–19.46) (8.89–25) —

eGFR >60 ml/min/1.73 m2 (%) 21/37 (56.8) — —

eGFR <60 ml/min/1.73 m2 (%) 16/37 (43.2) — —

Bilateral dysplasia (%) 25/39 (64.1) — —

Unilateral dysplasia (%) 14/39 (35.9) — —
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RESULTS

Untargeted GC-MS and LC-MS
Metabolomic Analysis
Urine metabolic fingerprints from 72 children (39 with renal
dysplasia and 33 healthy controls) were measured by means of
two complementary analytical platforms, LC-TOF-MS (RP and
HILIC in both positive and negative ionization modes) and GC-
QQQ/MS. The yielded datasets consisted of 252 (RP+), 54 (RP−),
383 (HILIC+), 32 (HILIC−) and 66 features (GC-MS) after
alignment and filtration. Figure 1 illustrates the metabolic
fingerprints obtained from the urine of a child with dysplastic
kidneys by the two complementary platforms and for LC–MS in
the four different separation modes.

PCA models built on PQN-normalized and log-transformed
data demonstrated the clustering of the QC samples on the PCA
score plots verifying the stability of the analytical system and the
method reproducibility. The wide spread of studied urine samples
from children with dysplastic kidneys and healthy controls
confirmed the validity of the applied experimental procedures
and the negligibility of the analytical variability in comparison to
the obtained biological variability. The distribution of the samples
from both studied cohorts, in comparison to the QC samples, is
presented in Figure 2.

Comparison of Urine Metabolomic Profiles
Derived FromChildrenWith Renal Dysplasia
and Healthy Controls
The total number of statistically significant variables in the
comparison of healthy and disease groups was 44 for RP-LC-
MS(+), 10 for RP-LC-MS(−), 52 for HILIC-LC-MS(+), 10 for
HILIC-LC-MS(−), and 7 for GC-MS. All of the features detected
by LC-MS were subjected to metabolite identification with the use

of available databases, and their identity was confirmed by
fragmentation patterns analyses with the use of LC-QTOF/MS.
Finally, 28 significant metabolites from univariate statistical
analysis were successfully identified. Multivariate PLS-DA
analysis distinguished 10 relevant metabolites with a VIP value
higher than 1, and eight metabolites with an SR value higher than
0.5 that significantly differentiated children with dysplastic
kidneys from healthy controls. Figure 3 illustrates a significant
separation of urine samples between children with dysplastic
kidneys and healthy controls by multivariate PLS-DA analysis.
Significant metabolites obtained from all analytical techniques
and ionization modes are compiled in Table 2.

Metabolic Changes Potentially Associated
With Renal Function due to Reduced eGFR
in Patients With Dysplastic Kidneys
In this study, the urinary metabolomic signature of children with
renal dysplasia in comparison to the healthy pediatric controls,
was evaluated using complementary analytical platforms and
advanced statistics. The observed urinary metabolite changes
derived mainly from the purine, lipid and amino acid
metabolism as well as from glycolysis, the TCA cycle and the
urea cycle. Among the 28 metabolites which were significantly
different in renal dysplasia subjects in comparison to the healthy
controls, nine were found to differentiate subjects with normal
and reduced eGFR (Table 3). The highest correlation with eGFR
values was calculated for metabolites shown in Table 4. Due to
the presence of CKD (eGFR <60 ml/min/m2) in a significant
proportion of the studied cohort, further statistical comparisons
were conducted in patients with renal dysplasia based on eGFR
criteria. The final set of 19metabolites which significantly differed
subjects with renal dysplasia independently of eGFR from healthy
controls is listed in Table 5.

FIGURE 1 | Chromatograms of urine metabolic fingerprints measured by means of RP LC-TOF-MS in positive (A) and negative (B) ionization modes, HILIC LC-
TOF-MS in both positive (C) and negative (D) ionization modes and GC-QQQ/MS (E) in a child with dysplastic kidneys.
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Furthermore, no significant differences were observed
between male and female patients, according to the applied
uni- and multivariate statistical techniques. The age of the
subjects did not influence the differences in findings between
the cohorts.

DISCUSSION

Renal dysplasia constitutes a complex and multifaceted
disorder characterized by abnormal renal cell
differentiation, which leads to the presence of primitive
tubules, interstitial fibrosis, renal cysts and cartilage in the

renal parenchyma (Phua and Ho, 2016). The most common
etiologies of renal dysplasia include both intrinsic defects in
the renal parenchyma’s differentiation and functional or
structural obstruction of the lower urinary tract (Woolf
et al., 2004). Recently, several genetic mutations, mainly
associated with Six2, Wnt, Bmp7, and Hnf1β, and copy
number variations have been identified in patients with
renal dysplasia (Weber et al., 2006; Braun et al., 2016;
Verbitsky et al., 2019). Nevertheless, the pathophysiology
and underlying molecular mechanisms of renal dysplasia
still remain poorly explored and understood in spite of it
being one of the most common causes of renal failure in
neonates and a leading cause of CKD in childhood.

FIGURE 2 | PCA models built on data obtained from RP-LC-TOF-MS analysis in positive (A) and negative (B) ionization modes, HILIC-LC-TOF-MS analysis in
positive (C) and negative (D) ionization modes and from GC-MS analysis (E). Red circles correspond to samples from disease group, blue ones represent healthy
controls and yellow ones QC samples.
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To the authors’ best knowledge, no publicly available studies
have used metabolomics to investigate renal dysplasia, especially
in children. Benito et al. (2018) have evaluated the metabolic
indicators of CKD in a cohort which included a pediatric
population. The results of this study show increased levels of
sphingosine-1-phosphate, n-butyrylcarnitine, and cis-4-
decenoylcarnitine in plasma from patients with CKD and
decreased level of bilirubin. The authors have stressed that
kidney function (estimated by the eGFR) is related to about
one third of the detected metabolites in both the general and CKD
populations (Benito et al., 2018).

In this study, the observed urinary metabolite changes derived
mainly from purine, lipid and amino acid metabolism as
well as from glycolysis, the TCA cycle and the urea cycle.
Altered levels of acetylasparagine, trimethylamine-N-Oxide,

betaine, dimethylarginine, hippuric acid, uric acid, and
hypoxanthine were potentially more characteristic of impaired
kidney function measured by decreased eGFR. Most of these
metabolites have been previously described in terms of CKD
pathophysiology. The main biochemical pathways associated
with renal dysplasia and/or a decreased eGFR are graphically
displayed in Figure 4.

Metabolic Changes Related to CKD
Pathophysiology
In a recent study based on plasma untargeted metabolomics,
the increase in some N-acetyl amino acids was observed in
all stages of CKD (N-acetylmethionine, N-acetylserine,
N-acetyltryptophan, N-acetylglycine, N-acetylphenylalanine,

FIGURE 3 | PLS-DA models built on data obtained from RP-LC-TOF-MS analysis in positive (A) (R2 � 0.25, Q2 � 0.282, CV-ANOVA p < 0.001) and negative (B)
(R2 � 0.453, Q2 � 0.236, CV-ANOVA p � 0.013) ionization modes, HILIC-LC-TOF-MS analysis in positive (C) (R2 � 0.227, Q2 � 0.505, CV-ANOVA p < 0.001) and
negative (D) (R2 � 0.264, Q2 � 0.271, CV-ANOVA p < 0.001) ionization modes and fromGC-MS analysis (E) (R2 � 0.164, Q2 � 0.174, CV-ANOVA p � 0.017). Red circles
correspond to samples from disease group, while blue ones represent healthy controls.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6656616

Macioszek et al. Metabolic Signature of Renal Dysplasia

115

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


N-acetylleucine, N-acetylproline, N-acetyllysine,
N-acetylasparagine, and N-acetylaspartic acid) (Gagnebin et al.,
2019). N-acetylserine and N-acetyllysine were indicated as risk
factors of end-stage renal disease for type 1 diabetes and CKD
(Niewczas et al., 2017). Sekula et al. (2016) observed that N-
acetylation might be a crucial detoxification mechanism in CKD.
Moreover, N-acetylalanine was also observed to be correlated
with GFR (Sekula et al., 2016). In the presented study, an

increased urinary level of N-acetylasparagine was observed in
patients with renal dysplasia and was correlated with a decreased
eGFR. The above alterations of N-acetylated compounds in
plasma and urine may indicate a link between N-acetylation
and renal dysfunction. Trimethylamine-N-oxide (TMAO), a
small amine plasma molecule, originates mainly from the
intestinal microbiota’s metabolism. Gut microbiota produce
trimethylamine (TMA) from food products containing TMA

TABLE 2 | Statistically significant metabolites differentiating patients with renal dysplasia from healthy controls.

Compound Analytical
technique

Retention
time (min)

Fragmentation pattern Statistical
analysis

Change in
dysplasia

Fold
change

Biochemical pathway

Methylguanosine RP (+) 3.1 166.0843 UV Decrease −35% Purine metabolism
6-Keto-decanoylcarnitine RP (+) 10.1 60.0806, 85.0283,

271.1543
UV Decrease −44% Fatty acid metabolism

Dodecanedioylcarnitine RP (+) 10.9 60.0806, 85.0284 UV Decrease −36% Fatty acid metabolism
HILIC(+) 10.5 297.1695 UV −37%

Hydroxyisovaleroylcarnitine RP (+) 1.6 60.0807, 85.0284,
185.0809

UV Decrease −31% Fatty acid metabolism

Hydroxydecanoylcarnitine RP (+) 10.3 60.0806, 85.0283,
255.1593

UV Decrease −55% Fatty acid metabolism

Citric acid RP (−) 1.0 111.0088, 85.0295,
87.0088

VIP, SR Increase +31% Citric acid cycle (TCA)

Hippuric acid RP (−) 6.8 134.0615, 77.0399,
56.0144

VIP Decrease −10% Phenylalanine metabolism

Furoic acid RP (−) 1.0 67.0190 SR Increase +16% Microbial metabolism
Dimethylguanosine RP (−) 5.2 178.0736,220.0839,

192.0892
SR Increase +18% Degradation product of

tRNA
Betaine HILIC(+) 11.5 58.0650, 59.0728 UV, VIP, SR Increase +80% Glycine and serine

metabolism, methionine
metabolism

Nonanoylcarnitine HILIC(+) 10.2 60.0805, 85.0283,
243.1591

UV Decrease −46% Fatty acidmetabolism

Tiglylcarnitine HILIC(+) 11.4 60.0807,85.0284 SR Decrease −54% Fatty acid metabolism
Butyrylcarnitine HILIC(+) 11.7 60.0805, 85.0282,

173.0808
UV Decrease −55% Fatty acidmetabolism

Trimethylamine N-oxide HILIC(+) 11.9 58.0649, 59.0728 VIP Decrease −34% Microbial metabolism in
diverse environments

Carnitine HILIC(+) 12.7 57.0334, 60.0807,
85.0284, 103.0391

VIP Increase +24% Fatty acid metabolism

Dimethylarginine HILIC(+) 13.2 70.0650, 88.0868,
116.0706, 158.1288

VIP Decrease −42% L-arginine derivative

Xanthine HILIC(−) 2.8 80.9652, 108.0206 UV Decrease −43% Purine metabolism
Uric acid HILIC(−) 4.6 124.0143, 96.0195,

69.0086
VIP, SR Increase +228% Purine metabolism

Indoxyl sulfate HILIC(−) 1.0 79.9571,80.9557,
132.0452

UV Decrease −18% Tryptophan metabolite

p-Cresol sulfate HILIC(−) 1.0 107.0501, 79.9572 VIP, SR Decrease −40% Microbial metabolism
Glutamine HILIC(−) 7.2 127.0513,128.0353,

109.0407, 101.0720
UV Decrease −35% D-Glutamine and

D-glutamate metabolism
Hexadecanoic acid GC 23.0 313.0,117.0,132.0 UV, SR Increase +38% Fatty acid biosynthesis
Threonic acid GC 15.9 292.0, 205.0, 220.0 UV, VIP Increase +20% Ascorbate and aldarate

metabolism
Glyceric acid GC 12.3 292.0, 189.0, 133.0 UV Increase +234% Glycerolipid metabolism,

glycine and serine
metabolism

Arabitol GC 18.5 307.0,217.0,103.0 UV, VIP Increase +51% Pentose and glucuronate
interconversions

Lactose GC 30.1 361.0,204.0,319.0 UV Increase +15% Lactose synthesis,
galactose metabolism

Aconitic acid GC 18.9 375.0,229.0,285.0 UV Decrease −30% Citric acid cycle (TCA)
Lactic acid GC 7.3 117.0,191.0 UV Increase +270% Glycolysis/

Gluconeogenesis

UV- univariate statistical analysis, VIP- variable importance in projection, SR-selectivity ratio.
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or TMAO and dietary precursors such as choline,
phosphatidylcholine, betaine, and carnitine (Al-Waiz et al.,
1992; Zhang et al., 1999; Bain et al., 2005). TMA is
subsequently absorbed through the intestinal barrier into the
bloodstream, then N-oxidized by the hepatic enzyme flavin-
containing monooxygenase isoform 3 (FMO3) and excreted as
TMAO with urine (de la Huerga et al., 1951; Bell et al., 1991).
Thus, TMAO levels could be a result of various production
processes, including dietary precursor intake, endogenous
TMA production from gut microbiota, TMA and TMAO
intestinal absorption, as well as FMO3 enzymatic activity and
its renal excretion (Pelletier et al., 2019). Some previous studies
have already reported TMAO accumulation in CKD patients
(Gagnebin et al., 2019; Pelletier et al., 2019). In this study, a
decrease in the urinary level of TMAO was observed in renal
dysplasia patients with altered eGFR. A recent study assessed the
plasma TMA, TMAO, choline, betaine, and carnitine
concentrations in the consecutive stages of CKD (Pelletier
et al., 2019) using the measured glomerular filtration rate
(mGFR) and the renal clearance. TMAO, choline, and
carnitine were inversely correlated with the mGFR in CKD
patients.

The elimination of circulating betaine in humans is mainly due to
its metabolism rather than renal excretion (Schwahn et al., 2003).
However, some previous studies reported that renal excretion of

betaine is elevated in patients with kidney injury (Lever et al., 1994;
Dellow et al., 1999). In this study the increased urinary level of betaine
was observed in renal dysplasia patients with accompanying
decreased eGFR, which rather supports the latter opinion. Similar
findings were reported by Missailidis at al. (Missailidis et al., 2016),
who observed a decrease in the plasma betaine level that was
associated with a declined renal function, with the lowest levels
observed in stage 5 CKD patients. The results may vary due to
different disease stages in these studies. Hippuric acid constitutes the
glycine conjugate of benzoic acid, which originates from the
phenylalanine metabolism (Zhao et al., 2013). It is primarily
eliminated from the blood by the kidneys, through active tubular
secretion via organic anion transporters (Deguchi et al., 2005).
Additionally, hippuric acid represents one of the well-known
protein-bound uremic toxins. In this study, the decreased urinary
level of this metabolite was observed as significant in the statistical
comparisons between the renal dysplasia patients and the control
group, as well as among the renal dysplasia patients with differences
in eGFR values. An earlier study also showed the increased tissue level
of hippuric acid in CKD rats in comparison to the control group,
probably due to the reduced renal clearance of these metabolites.
Nevertheless, hippuric acid in humans is also an excretory product of
environmental-toxic exposures, dietary protein degradation, and
resynthesis by intestinal microbial metabolism of quinic acid
through the shikimate pathway (Pero, 2010).

In the presented study, alterations in the purine metabolism
were observed in both comparisons, namely in renal dysplasia
patients as compared to the control group and in renal dysplasia
patients regarding the differences in the eGFR. Themetabolism of
uric acid is a complex process that includes hepatic production
and renal as well as gut excretion (Maiuolo et al., 2016). Uric acid
constitutes the end product of both exogenous and endogenous
purine metabolisms (Chaudhary et al., 2013). The endogenous
production takes place mainly in the liver, intestines, muscles,
kidneys, and the vascular endothelium (Chaudhary et al., 2013).
Approximately two-thirds of the uric acid load are eliminated by
the kidneys, while the remaining one-third is excreted by the
gastrointestinal system. Almost all uric acid is filtered from the
glomeruli and the amount of its excretion is regulated by post-
glomerular reabsorption and secretion (Maiuolo et al., 2016).
Reabsorption of uric acid occurs at the S1 segment of the
proximal tubule and approximately 10% of the filtered uric
acid appears in the urine (Chaudhary et al., 2013). Therefore,
hyperuricemia is considered as a crucial risk factor for the renal

TABLE 3 | Statistically significant metabolites differentiating patients with normal and reduced estimated glomerular filtration rate (eGFR).

Compound Analytical technique Statistical analysis Biochemical pathway

Methylguanosine RP (+) UV Purine metabolism
Citric acid RP (−) VIP Citric acid cycle (TCA)
Hippuric acid RP (−) VIP Phenylalanine metabolism
Betaine HILIC(+) VIP, SR Glycine and serine metabolism, methionine metabolism
Trimethylamine N-oxide HILIC(+) VIP Microbial metabolism in diverse environments
Carnitine HILIC(+) VIP Fatty acid metabolism
Dimethylarginine HILIC(+) UV, VIP L-arginine derivative
Uric acid HILIC(−) VIP Purine metabolism
p-Cresol sulfate HILIC(−) VIP, SR Microbial metabolism

TABLE 4 | Metabolites with the highest correlation with eGFR value (Spearman’s
rank correlation).

Compound r Analytical technique

3-Methylglutarylcarnitine −0.58 RP+
Methyluric acid −0.44 RP+

−0.40 RP-
−0.60 HILIC-

Methylguanosine 0.77 RP+
0.63 HILIC+

N-Acetylasparagine −0.68 HILIC+
Guanidinosuccinic acid −0.48 HILIC+
Dimethylarginine 0.71 HILIC+
Hypoxanthine 0.72 HILIC+
Xanthine 0.47 HILIC-
Ethanolamine 0.63 GC
Uracil 0.58 GC
D-Allose 0.38 GC
Phenylalanine 0.38 GC
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dysfunction, hypertension, hyperlipidemia, diabetes, and obesity
(Maiuolo et al., 2016). Hyperuricemia may be a consequence of
the increased production or impaired renal excretion, as well as of
a combination of both processes (Su et al., 2014). In this study the
increased urinary levels of uric acid and hypoxanthine were
observed in renal dysplasia patients as compared to the
control group, also in terms of eGFR differences. There are
many previous studies that indicated the blood hyperuricemia
and disturbed purine nucleotide metabolism as potential
contributory risk factors in the development and progression

of CKD (Johnson et al., 2013; Mazumder et al., 2018; Zoccali and
Mallamaci, 2018; Oh et al., 2019). Thus, the disturbances of the
purine metabolism observed in this study, may rather indicate
kidney dysfunction than renal dysplasia.

Metabolomic Signature Potentially
Characteristic for Renal Dysplasia
The metabolic changes, observed in this study as statistically
significant only between renal dysplasia patients and control

TABLE 5 | Metabolic signature of renal dysplasia, unrelated to eGFR value.

Compound Change in dysplasia Biochemical pathway

6-Keto-decanoylcarnitine Decrease Fatty acid metabolism
Dodecanedioylcarnitine Decrease Fatty acid metabolism
Hydroxyisovaleroylcarnitine Decrease Fatty acid metabolism
Hydroxydecanoylcarnitine Decrease Fatty acid metabolism
Furoic acid Increase Microbial metabolism
Dimethylguanosine Increase Degradation product of tRNA
Nonanoylcarnitine Decrease Fatty acidmetabolism
Tiglylcarnitine Decrease Fatty acid metabolism
Butyrylcarnitine Decrease Fatty acidmetabolism
Xanthine Decrease Purine metabolism
Indoxyl sulfate Decrease Tryptophan metabolite
Glutamine Decrease D-Glutamine and D-glutamate metabolism
Hexadecanoic acid Increase Fatty acid biosynthesis
Threonic acid Increase Ascorbate and aldarate metabolism
Glyceric acid Increase Glycerolipid metabolism, glycine and serine metabolism
Arabitol Increase Pentose and glucuronate interconversions
Lactose Increase Lactose synthesis, galactose metabolism
Aconitic acid Decrease Citric acid cycle (TCA)
Lactic acid Increase Glycolysis/Gluconeogenesis

FIGURE 4 | Themain biochemical pathways altered only in renal dysplasia (*) and renal dysplasia accompanied by decreased eGFR (**). Decreased levels of urinary
metabolites are marked in green. Increased urinary metabolite levels are marked in red.
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group, include decreased urinary levels of acylcarnitines,
indoxyl sulfate, xanthine, aconitate, glutamine as well as
increased urinary levels of lactate, dimethylguanosine, and
guanidinosuccinic acid.

Acylcarnitines, esters of L-carnitine, and fatty acids play a crucial
role in the cellular metabolism (Li et al., 2019). The main function of
acylcarnitines constitutes long-chain fatty acids (LCFAs) metabolism,
as they transport activated LCFAs into the mitochondria for
subsequent β-oxidation to provide energy for various cell processes
(Tarasenko et al., 2018). Acylcarnitines are also involved in glycolysis,
TCA cycle, branched-chain amino acid metabolism, fatty acid
peroxidation, and ketone bodies production. Therefore, they are
key factors regulating the balance of the intracellular sugar and
lipid metabolism (Qu et al., 2016). In this study, the decreased
urinary levels of a few acylcarnitines (6-keto-decanoylcarnitine,
dodecanedioylcarnitine, hydroxyisovaleroylcarnitine,
hydroxydecanoylcarnitine, nonanoylcarnitine, butyrylcarnitine) were
observed as statistically significant in renal dysplasia patients as
compared to the control group. These alterations can be explained
by blood accumulation of acylcarnitines, potentially associated with
mitochondrial dysfunction. The matrix of mitochondria constitutes a
central place for metabolic pathways such as the TCA cycle and
oxidative phosphorylation (OXPHOS) (Podrini et al., 2020). The
reduced forms of nicotinamide adenine dinucleotide (NADH) and
flavin adenine dinucleotide (FADH2) derived from the glycolysis
pathway. The fatty acid oxidation (FAO) and TCA cycle are
energy-rich molecules containing a pair of electrons with high
transfer potential. These electrons are used to reduce molecular
oxygen to water and large amount of free energy is released, which
subsequently can be used for adenosine triphosphate (ATP)
generation. OXPHOS constitutes a process involved in ATP
production as a result of the electron transfer from NADH or
FADH2 to O2.

Several renal diseases, including tubular disorders, chronic
tubulointerstitial nephritis, cystic renal disease, and glomerular
diseases were reported as mitochondrial cytopathies affecting
the OXPHOS activity (Ueda et al., 2004; Au et al., 2007;
Emma et al., 2011). One of the recent reports, indicated
mitochondrial damage as a key feature of renal inflammation
and fibrosis (Chung et al., 2019). In this study, the human kidney
tissue and kidney tissue samples collected from animal models with
fibrosis were analyzed. The significant mitochondrial defect,
including the loss of the mitochondrial transcription factor A
(TFAM) in kidney tubular cells, resulting in a reduced
OXPHOS, was observed. Additionally, the kidney histological
analysis was performed and significant epithelial atrophy,
dilated tubules, and interstitial fibrosis were indicated (Chung
et al., 2019). Interstitial fibrosis is frequently present in
dysplastic kidneys and increases with the progression of CKD.
Since FAO is the main energy source for renal proximal tubular
epithelial cells, the reduced FAO process would impact the lipid
metabolism (Zhou and Liu, 2016). It could lead to disruption of
balance between fatty acid synthesis and consumption, as well as
dysregulation of intracellular lipid accumulation. Inhibition of
FAO in tubular epithelial cells in vitro results in ATP depletion,
apoptosis, cell dedifferentiation, and intracellular lipid deposition
(Kang et al., 2015). The potential relationship between metabolic
reprogramming of mitochondrial metabolism (FAO, OXPHOS)
and kidney fibrosis is presented in Figure 5.

The metabolic alterations related to the glutamine, aconitate,
and lactate levels were also observed to be statistically significant
in the comparison between renal dysplasia patients and the
control group. All these alterations indicate the involvement of
the aerobic glycolysis (a Warburg-like effect), glutamine
anaplerosis and the dysregulation of fatty acid biosynthesis.
These metabolic changes are also connected with the above

FIGURE 5 | Relationship between metabolic reprogramming of mitochondrial metabolism (FAO, OXPHOS) and kidney interstitial fibrosis.
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described reduced FAO and OXPHOS activities. Recently, the
same metabolic reprogramming related to mitochondrial
dysfunction has been observed in polycystic kidney disease
(Podrini et al., 2020). Additionally, Zhao et al. (2016) reported
these metabolic alterations in renal fibrosis in rats, which suggests
that the cells utilize mainly the glucose and lipid metabolism to
maintain energy homeostasis during renal fibrotic process.

In this report, the decrease in urinary level of indoxyl sulfate
was observed in renal dysplasia patients as compared to control
group. The gut microbiota convert the dietary tryptophan to
indole, which is absorbed by the intestine and subsequently
metabolized to indoxyl sulfate in the liver (Pezzatti et al., 2019).
Indoxyl sulfate represents another established uremic toxin
(Pezzatti et al., 2019). The above-mentioned metabolic
alteration observed in this study, may be related to renal
dysfunction and altered kidney elimination of indoxyl
sulfate. However, in the recent 1H-NMR-based kidney and
urine untargeted metabolomics of renal interstitial fibrosis
rats, the altered level of indoxyl sulfate was observed (Zhao
et al., 2016). Zhao et al. (2013) reported the increased level of
indoxyl sulfate in the kidney of a rat model of early renal injury,
using UPLC Q-TOF/HSMS untargeted metabolomics
approach. Moreover, many of previous studies, marked this
metabolite as indicator of renal function, vascular disease and
mortality in CKD patients (Gika et al., 2012; Gagnebin et al.,
2019; Pezzatti et al., 2019). By contrast, in the longitudinal
metabolomics studies, plasma levels of indoxyl sulfate showed
no association with incident CKD (Rhee et al., 2013) or with
CKD progression (Niewczas et al., 2014). The observed results
of the above-mentioned studies may be associated with various
biological models used, different range of patients’ age or the
stage of the disease. However, indoxyl sulfate seems to be a
metabolic indicator of early kidney dysfunction or renal
histopathological changes.

Xanthine represents a significant metabolic byproduct of
guanine triphosphate (GTP) or guanine metabolism and is
derived from the purine metabolism pathway (Giulia Battelli
et al., 2016). The elevated plasma or urinary xanthine levels may
result from the inhibition of xanthine oxidase or from the
blockage of the metabolism of xanthine to uric acid (Marro
et al., 1997). In this study, the decline in urinary level of
xanthine was observed in renal dysplasia patients as compared
to the control group. The decrease of this metabolite in the
kidneys of rats with renal fibrosis was also recently reported
(Zhou and Liu, 2016). This alteration may underline the reduced
purine metabolism and bioenergy production. The same trend in
xanthine levels in the kidneys was observed in an animal model of
early renal injury (Zhao et al., 2013).

Dimethylguanosine, a modified nucleotide indirectly
associated with purine metabolism, constitutes a degradation
product of transfer RNA and is mainly excreted by the
kidneys (Tsalik et al., 2015). In this study, the elevation in
urinary level of dimethylguanosine was observed in the renal
dysplasia group as compared to the healthy subjects. Previously,
consistently higher serum levels of this metabolite were reported
in polycystic kidney disease (Grams et al., 2017). Probably, the
early decline in kidney blood flow in polycystic kidney disease

compared with GFR differentially affects the secretion of small
molecules by the proximal tubule. Dimethylguanosine was also
indicated to have reduced urinary excretion in patients with
kidney failure related to proximal tubule function (Niwa et al.,
1998). Additionally, the elevated plasma level of
dimethylguanosine was observed in patients with acute renal
injury (Tsalik et al., 2015).

Guanidinosuccinic acid (GSA), a derivative of L-arginine, is a
precursor of nitric oxide (NO) which tends to accumulate in
uremic plasma (Zerra and Josephson, 2019). GSA constitutes
also an example of a well-known uremic toxin. GSA impairs
the secondary wave of ADP-induced platelet aggregation as well
as the release and synthesis of thromboxane A2 in platelets in
advanced renal disease (Zerra and Josephson, 2019). In this study,
the statistically significant elevation in urinary level of GSA was
observed in the renal dysplasia subjects as compared to the control
group. Previously, the increased serum level of GSA was reported
in end-stage renal failure patients (de Deyn et al., 2003).
Additionally, the accumulation of guanidino compounds has
been associated with neurological, cardiovascular, hematological,
and immunological complications of renal failure (Ringoir et al.,
1988). The increased levels of GSAwere also reported in the plasma
and kidneys of a rat model of polycystic kidney disease (Torremans
et al., 2006).

In summary, the urine metabolic changes discovered in
children with dysplastic kidneys seem to be characteristic and
point towards the presence of altered fatty acid oxidation, amino
acid, and purine metabolisms in this parenchymal disorder.
However, there are some limitations of this research. The
studied renal dysplasia group included mostly young children
on different diets and with a significant proportion of subjects
with a decreased GFR. Furthermore, while decreased renal
function has been reported to influence the metabolic findings
in renal diseases, the influence of age and diet requires more
extensive investigation. It is also difficult to unequivocally
interpret the recognized metabolic signature that is present in
children with renal dysplasia as specific for this disorder. It may
also represent early abnormalities of the initial stages of CKD
which are poorly described. Another option may be that the
obtained metabolic signature is due to the presence of renal cysts
or ongoing processes of kidney fibrosis.

Integration of the obtained metabolic data with further
proteomic, genomic or transcriptomics research may unravel
the still poorly understood mechanisms of progression of renal
dysplasia in the future. Additionally, it may facilitate earlier
recognition of renal dysplasia and enable the introduction of
novel therapies for nephroprotective management of children
with this congenital abnormality.

CONCLUSION

The novel application of a comprehensive metabolomic analysis
enabled the recognition of a characteristic urinary metabolic
profile for renal dysplasia, allowing the evaluation of different
metabolic pathways involved in this disorder. Metabolites
associated with the decreased eGFR were excluded to eliminate
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the influence of decreased kidney function which has been
recognized as an important confounding factor. The main
biochemical pathways that have been found to be altered in
dysplastic kidneys include the glycolysis pathway, the lipid,
purine and amino acid metabolism, and the TCA and urea
cycles. We suggest that the decreased levels of acylcarnitines in
the urine of the renal dysplasia subjects are caused by their
accumulation in the blood, due to mitochondrial dysfunction.
In consequence, oxidative phosphorylation and fatty acid
oxidation may be disturbed, leading to ATP depletion,
apoptosis, cell dedifferentiation, and intracellular lipid
deposition. A further validation of the reported results is
necessary and should be performed in larger populations of
children with renal dysplasia, notably in those with a normal
renal function.
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Free Triiodothyronine Connected With
Metabolic Changes in Patients With
Coronary Artery Disease by
Interacting With Other Functional
Indicators
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This study aims to evaluate the association between free triiodothyronine (FT3) and
outcomes of coronary artery disease (CAD) patients, as well as to assess the
predictive power of FT3 and related functional markers from the perspective of
potential mechanism. A total of 5104 CAD patients with an average follow-up of three
years were enrolled into our study. Multivariate Cox regression was used to evaluate the
associations between FT3, FT4 (free thyroxin), FT3/FT4 and death, MACE. We developed
and validated an age, biomarker, and clinical history (ABC) model based on FT3 indicators
to predict the prognosis of patients with CAD. In themultivariable Cox proportional hazards
model, FT3 and FT3/FT4 were independent predictors of mortality (Adjusted HR � 0.624,
95% CI � 0.486–0.801; adjusted HR � 0.011, 95% CI � 0.002–0.07, respectively).
Meanwhile, emerging markers pre-brain natriuretic peptide, fibrinogen, and albumin levels
are significantly associated with low FT3 (p < 0.001). The new risk death score based on
biomarkers can be used to well predict the outcomes of CAD patients (C index of 0.764,
95% CI � 0.731–0.797). Overall, our findings suggest that low levels of FT3 and FT3/FT4
are independent predictors of death and MACE risk in CAD patients. Besides, the
prognostic model based on FT3 provides a useful tool for the death risk stratification
of CAD patients.

Keywords: free triiodothyronine, coronary artery disease, pre-brain natriuretic peptide, fibrinogen, metabolism, risk
model, prognostic markers

Edited by:
Michal Jan Markuszewski,

Medical University of Gdansk, Poland

Reviewed by:
Gaurav Sharma,

University of Texas Southwestern
Medical Center, United States

Naqiong Wu,
Chinese Academy of Medical

Sciences, China

*Correspondence:
Shilong Zhong

zhongsl@hotmail.com
Wei-hua Lai

laiweihuax@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Metabolomics,
a section of the journal

Frontiers in Molecular Biosciences

Received: 17 March 2021
Accepted: 12 July 2021
Published: 30 July 2021

Citation:
Tian X, Zheng S, Liu J, Wu Y, Lin L,

Chen H, Li L, Qin M, Wang Z, Zhu Q,
Lai W and Zhong S (2021) Free
Triiodothyronine Connected With

Metabolic Changes in Patients With
Coronary Artery Disease by Interacting

With Other Functional Indicators.
Front. Mol. Biosci. 8:681955.

doi: 10.3389/fmolb.2021.681955
Abbreviations: FT3, free triiodothyronine; FT4, free thyroxine; ALB, albumin; FIB, fibrinogen; proBNP, pro-B-type natriuretic
peptide; HR, hazard ratio; 95%CI, 95% confidence interval.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6819551

ORIGINAL RESEARCH
published: 30 July 2021

doi: 10.3389/fmolb.2021.681955

124

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.681955&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681955/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681955/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681955/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681955/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681955/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhongsl@hotmail.com
mailto:laiweihuax@163.com
https://doi.org/10.3389/fmolb.2021.681955
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.681955


INTRODUCTION

Coronary artery disease (CAD), also known as coronary
atherosclerotic heart disease (CHD), is an inflammatory
atherosclerotic disease that manifests as stable angina, unstable
angina, myocardial infarction, and sudden cardiac death (álvarez-
álvarez et al., 2017.; Pothineni et al., 2017; Musunuru and
Kathiresan, 2019). Despite the prominent enrichment of
treatments, patients with CAD have poor prognoses and high
mortality (Li et al., 2015; Elmariah et al., 2018). The prognosis of
CAD is affected by many factors, and the prognostic value of
traditional risk factors for CAD is limited. A complex relationship
exists between thyroid hormone (THs) levels and outcomes of
CAD. THs play a central role in many cellular processes,
including differentiation, growth, metabolism, and physiology
(Boelaert; Gorman, 2006). Changes in TH concentrations in
plasma, especially low triiodothyronine (T3) levels, represent
hormonal imbalance, which is usual among patients suffering
from an acute coronary event (Iervasi, 2008; Xu, 2012; Hao,
2014).

T3, the biologically active form of THs, is derived mainly from
the peripheral transformation of precursor thyroxine (T4).
Variations in the concentrations of T3 and T4 in plasma may
exert a wide range of functions in several mechanisms, including
heart dysfunction (Iervasi et al., 2003; Yazıcı et al., 2017). The
levels of free triiodothyronine (FT3) and free thyroxin (FT4) are
important indicators of the metabolic status of THs and have
gained increasing attention as markers of many acute diseases
(Iervasi et al., 2003; Zhang et al., 2016). The value of FT3 as an
independent risk factor for the prognosis of patients with CAD
remains controversial (Coceani et al., 2010; Wang et al., 2013;
Lamprou et al., 2017; Wang et al., 2017). In addition, guidelines
recommended for routine screening of low T3 syndrome in
patients with CAD have not been pushed (Levine et al., 2016).
Low T3 syndrome, known as nonthyroidal illness syndrome and
euthyroid sick syndrome, is characterized by low serum levels of
total T3 and FT3 with normal levels of thyroid stimulating
hormone (TSH) and FT4; this condition is deemed as a strong
prognostic determinant of chronic and systolic heart failure (HF)
(Iervasi et al., 2003; Cooper and Biondi, 2012; Zhang et al., 2012;
Jabbar et al., 2015; Yazıcı et al., 2017).

To the best of our knowledge, precise identification and
discriminatory risk evaluation are important prerequisites to
targeted treatment and prevention in high risk of all-cause
death and major adverse cardiovascular (MACE) for CAD.
Identifying novel and overlooked biomarkers, which not only
guide the diagnosis and prognosis of patients with CAD but also
detect new molecular mechanisms to elucidate the pathological
progress of CAD, is important due to the limited predictive power
of few predictors based on genetic factors and traditional clinical
risk biomarkers available for risk stratification in patients with
CAD. Hyperthyroidism is linked to an increased risk of thrombus
(Kim et al., 2017). Data from epidemiological studies indicate that
patients with low thyroid hormone levels are at higher risk of
heart failure, and the prognosis of heart failure is also worse (Vale
et al., 2019). A study suggested that a rise in thyroxine level is
associated with the increase of FVIII, FIX, VWF and fibrinogen

levels (Debeij et al., 2010). It has been reported that there is a
positive correlation between FT3 level and cardiac ejection
fraction, and a significant negative correlation with NT-
proBNP. Although the imbalance of FT3 and FT4 levels is the
most common manifestation of thyroid dysfunctions in patients
with CAD, previous data on the prevalence of low FT3 and high
FT4 levels in CAD patients are insufficient, and their prognostic
roles are unclear. Thus, we evaluated the association of FT3 with
other functional parameters and outcomes in 5104 CAD patients
and assessed the predictive power of FT3 combined with other
markers. The levels of thyroid hormone and related biomarkers
are predictive of death in CAD, likely expressing different and
synergistic pathogenic pathways, and their combined assay
significantly improves the ability of risk stratification.

METHODS

Study Populations
During the prospective study period, 5,104 Chinese CAD
participants from Guangdong Provincial People’s Hospital,
who underwent coronary angiography, were included. Patients
were consecutively enrolled between January 2010 and December
2013 and followed up for all-cause death and MACE up to five
years. The exclusion criteria for patients in single-center cohort
study included the following: 1) age <18 years or >80 years, 2)
renal insufficiency (defined as serum creatinine concentration >
two times the upper limit of normal [230 μmol/L], history of renal
transplantation or dialysis), 3) hepatic insufficiency (defined as
serum transaminase concentration > two times the upper limit of
normal [80 U/L], or a diagnosis of cirrhosis), 4) being pregnant or
lactating, 5) advanced cancer or hemodialysis, 6) history of
thyroid problems and use of antithyroid drugs or thyroid
hormone medication, and 7) incomplete information about
cardiovascular events during follow-up.

The primary endpoint of interest was all-cause death, followed
by MACE. MACE is the occurrence of cardiac death, nonfatal
myocardial infarctions, coronary revascularization, and cerebral
infarction. All participants were followed up prospectively for the
study endpoints by inpatient and outpatient hospital visits and
telephone contacts with the patients or their families. At each
follow-up assessment (every 6 months), the participants were
questioned about new adverse cardiovascular events. From
August 2010 to August 2018, all patients were followed up for
the primary endpoint (all-cause death) and secondary endpoint
(MACE), with a mean follow-up time of 3 years. Baseline
information, including demographics, medical history,
biochemical measurements, and medication, were obtained from
the hospital information database. This study was approved by the
Medical Ethical Review Committee of Guangdong Provincial
People’s Hospital and conducted according to the Declaration
of Helsinki. Informed consent was obtained from all individual
participants included in the study.

Study Design
Eligible participants were evaluated for demographic factors (e.g.,
age and gender), clinical characteristics (e.g., The Synergy
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between PCI with TAXUS and Cardiac Surgery score, left
ventricular ejection fraction [LVEF]), CAD risk factors (e.g.,
diabetes mellitus, smoking, hypertension, body mass index,
and dyslipidemia), and current medication use. Baseline
characteristics, including demographics, medical history,
biochemical measurements, and medication, were obtained
from the hospital information database. Follow-up data on
mortality (time and cause of death) were used in the analysis
as the primary outcome of interest. In some cases, these outcome
data were unavailable. The serum concentrations of T3, FT3, T4,
FT4, and of TSH have been determined and recorded. Normal
range was as follows: T3, from 70 ng/dl to 170 ng/dl; FT3, from
3.28 to 6.47 pmol/L; T4, from 4.5 μg/dl to 12.0 μg/dl; FT4, from
7.64 to 16.03 pmol/L; TSH, from 0.49 to 4.91 μIU/ml, pro-brain-
type natriuretic peptide (proBNP), from 0 to 125 pg/ml.

Statistical Analysis
Continuous variables were expressed as mean ± SD, and
categorical variables are described using number and
percentage. Student’s t-test was used to compare continuously
normal variables, the Wilcoxon rank-sum test was used for
continuously abnormal variables, and the χ2-test was used for
categorical variables. Cox proportional hazards analysis was
performed to investigate the associations of clinical
parameters, levels of FT3, FT4 or FT3/FT4 ratio with
outcomes. In the multivariable analysis. We implemented
three models to evaluate the impact of potential confounders.
Model 1 included age, sex. Model 2 further adjusted for a history
of diabetes, heart failure, aspartate aminotransferase,
apolipoprotein a, creatine, creatine kinase MB, high-density
lipoprotein cholesterol, glucose, lipoprotein (a), medication
history of calcium channel blockers and proton pump

inhibitors. Model 3 incorporated the components of model 2,
heart rate, systolic blood pressure and diastolic blood pressure.
Variables with p < 0.05 in the univariate Cox regression analysis
were included in the multivariate Cox proportional hazard
regression models by an improved backward stepwise
procedure to select covariates based on the Akaike information
criterion (AIC). The Spearman rank correlation coefficient
(Spearman ρ) was used to determine the associations among
FT3, FT4, FT3/FT4, and other risk factors. In addition, the
Harrell–Lee C-index was used to quantify the additional
predictive value of the new model over the traditional model
containing common clinical variables. The area under the curve
(AUC) of time-dependent receiver-operating characteristic
(ROC) analysis was used to quantify the predictive
performance. In addition, each selected biomarker was
assigned a corresponding score based on its value on the
nomogram. Thus, the total score of death and MACE risk was
calculated by nomogram, and the cutoff points of the total score
detected by x-tile analysis could be used to divide CAD patients
into different categories.

The final model was represented as a nomogram. Calibration
curves (2000 bootstrap resamples) were generated to verify the
accuracy of the nomogram. Decision curve analyses were
performed to assess the clinical utility of the nomogram.
Finally, we used X-tile software (Version 3.6.2, calculated by
the “rms package” of R software) to calculate the optimal cut-off
points for linear prediction and established a prognostic risk
stratification. Kaplan-Meier method was used to estimate the
survival probabilities and obtain survival curves, which are used
to illustrate the cumulative incidence of clinical endpoints based
on the cut-off values, and the log-rank (Mantel–Cox) test was
adopted to compare survival curves. A two-tailed p < 0.05 was

FIGURE 1 | Study design (Flowchart of the study population).
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statistically significant. All tests were performed using SAS
(version 9.4) and R (version 3.6.2, http://www.R-project.org/).

RESULTS

Baseline Characteristics
A total of 5104 CAD patients were investigated, including
3,886 males (76.3%) and 1,218 females (23.7%), with an
average age of 64.2 years at baseline, and a flowchart of the
study population is shown in Figure 1. Table 1 provides the
baseline characteristics of the participants. During an average
of 3 years of follow-up, 274 (5.61%) died and 865 (16.9%) had
MACE events. The mean ± standard deviations of FT3, FT4,
and FT3/FT4 were 4.4 ± 0.93 pmol/L, 11.73 ± 2.86 pmol/L, and
0.39 ± 0.1 pmol/L, respectively. FT3 < 3.5 pmol/L and FT4 >
17.8 pmol/L are divided into low FT3 group (N � 326) and high
FT4 group (N � 105). In addition, patients with FT3/FT4 <0.33
were classified as the low FT3/FT4 group (N � 1,194) in
accordance with the lower quartile lower limit. The
proportion of patients with HF was higher in the low FT3
group (14.11 vs 6.23%, p < 0.0001), and no significant

difference was found in the proportion of patients with
smoking history. The common clinical indicators in the low
FT3 group were higher than those in the normal FT3 group.
Myocardial damage indexes of proBNP, hydroxybutyrate
dehydrogenase (HBDH), cardiac troponin (cTnl), high-
sensitivity C-reactive protein (hs-CRP), and high-sensitivity
cardiac troponin (hs-cTnl) in the low FT3 group were higher
than those in the normal FT3 group (all p < 0.001). However,
the level of albumin (ALB), triglyceride (TRIG), total protein
(TP), hemoglobin (HGB), and lymphocyte in the low FT3
group was lower than that in the normal FT3 group
(Supplementary Table S1).

Associations Between Thyroid Hormones
and Other Functional Parameters
A significant correlation exists between FT3/FT4 and ALB (r �
0.381, p < 0.001) and followed by proBNP (r � −0.285, p < 0.001).
The results showed that ALB (r � 0.348), TP (r � 0.268), HCT (r �
0.279), and HGB (r � 0.276) were positively correlated with FT3
concentration (p < 0.001). Meanwhile, proBNP (r � −0.194),
HBDH (r � −0.156), and DBIL (r � −0.161), and myocardial

TABLE 1 | Baseline characteristics.

Characteristics Value N (%) or mean ± SD

Total (N = 5,104) Low FT3 (N = 326) Normal FT3(N = 4,778) p Value

Demographic data
Age 64.17 ± 10.61 69.79 ± 9.35 63.79 ± 10.57 <0.0001
Sex (male) 3,886 (76.3%) 224 (69.14%) 3,632 (76.84%) 0.0017
BMI, kg/m2 24.68 ± 4.99 23.84 ± 4.59 24.73 ± 5.02 0.0005
Smoke 977 (21.72%) 56 (22.13%) 912 (21.69%) 0.8695
Comorbidities
Arrhythmia 481 (9.43%) 42 (12.88%) 435 (9.19%) 0.0272
Diabetes 1,425 (27.92%) 110 (33.74%) 1,300 (27.46%) 0.052
Heart failure 346 (6.78%) 46 (14.11%) 295 (6.23%) <0.0001
Hypertension 3,053 (59.82%) 213 (65.34%) 2,811 (59.35%) 0.0356
Hyperlipidemia 623 (12.21%) 32 (9.82%) 589 (12.44%) 0.173
Baseline biochemical measurements
ALT, U/L 31.31 ± 32.69 41.09 ± 66.79 30.67 ± 28.89 0.1013
AST, U/L 35.64 ± 55.71 59.37 ± 106.21 34.07 ± 50.29 <0.0001
CK, U/L 173.38 ± 435.84 296.58 ± 620.98 165.63 ± 420.73 0.0497
eGFR, ml/min/1.73 m2 100.37 ± 365.33 66.62 ± 29.07 102.94 ± 379.86 <0.0001
CKMB, U/L 10.52 ± 18.4 13 ± 24.26 10.37 ± 18 0.5443
CHOL, mmol/L 4.48 ± 1.21 4.51 ± 1.51 4.48 ± 1.19 0.5021
LDLC, mmol/L 2.76 ± 0.97 2.73 ± 1.14 2.77 ± 0.96 0.0769
HDLC, mmol/L 0.98 ± 0.24 0.96 ± 0.27 0.99 ± 0.24 0.0566
TRIG, mmol/L 1.68 ± 1.31 1.61 ± 1.52 1.69 ± 1.29 0.0007
GLUC, mmol/L 6.79 ± 2.99 7.43 ± 3.22 6.74 ± 2.97 <0.0001
Lpa, mg/L 290.4 ± 325.83 353.84 ± 377.45 286.53 ± 321.31 0.0004
APOA, g/L 1.09 ± 0.26 1 ± 0.26 1.09 ± 0.26 <0.0001
TSH,mu/L 1.93 ± 3.47 3.72 ± 10.68 1.82 ± 2.22 0.5547
FT4,pmol/L 11.72 ± 2.86 11.85 ± 3.29 11.62 ± 2.22 0.0856
Medication
β-blockers 3,746 (76.39%) 258 (79.63%) 3,457 (76.16%) 0.155
ACEIs 2,612 (53.32%) 195 (60.19%) 2,394 (52.8%) 0.0103
CCBs 1,458 (29.76%) 111 (34.26%) 1,334 (29.42%) 0.0669
PPIs 2,356 (48.09%) 206 (63.58%) 2,136 (47.11%) <0.0001

SD � standard deviation; BMI � body mass index; ALT � alanine aminotransferase; AST � aspartate aminotransferase; CK � creatine kinase; eGFR � estimated glomerular filtration rate;
CKMB � creatine kinase MB; CHOL � cholesterol; LDLC � low-density lipoprotein cholesterol; HDLC � high-density lipoprotein cholesterol; TRIG � triglyceride; GLUC � glucose; Lpa �
lipoprotein (a); APOA � apolipoprotein a; ACEIs � angiotensin converting enzyme inhibitors; CCBs � calcium channel blockers; PPIs � proton pump inhibitors.
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injury indicators Troponin I, high-sensitivity troponin T were
negatively correlated with FT3 concentration (p < 0.001)
(Table 2), Similar patterns of correlation strength were also
found in FT3/FT4 ratio. In addition, statistically significant
associations were also found between coagulation markers and
thyroid hormone levels.

Clinical Outcomes
After an average of three years of follow-up, 116 (35.58%) of the
326 patients had MACE events and 63 (20.93%) died in the low
FT3 group. Supplementary Tables S2–S3 provides univariable
Cox modeling results for clinical indices and biomarkers in
relation to mortality and MACE. As shown, age conferred
increased risk for death (HR � 1.055, 95% CI � 1.041–1.069,
and p � 3.33E-15). Biomarker data demonstrated a strong
association between elevated FIB and risk for death (HR �
1.33, 95% CI � 1.23–1.43, and p � 8.06E-13). Low ALB levels
may prompt increased death MACE risks (HR � 0.859, 95% CI �
0.837–0.881, and p � 3.98E-32; HR � 0.933, 95% CI �
0.918–0.947, and p � 6.98E-18, respectively). In the
multivariable Cox regression analyses, FT3, FT4 and FT3/FT4
were all independent predictors of mortality after controlling for
age and other clinical markers (p < 0.05) (Table 3). Notably,

multivariate regression yielded similar results regarding relation
between FT3, FT3/FT4 and MCACE risk, while after adjustment
by clinical variables, no significant correlation was observed
between FT4 and MACE risk (Adjusted HR � 1.008, 95%
CI � 0.985–1.032). The cumulative survival curves of MACE
and death in patients with different FT3, FT4, and FT3/FT4 levels
are shown in Figure 2. Results demonstrate consistently the
prognositic difference in different FT3, FT4 or FT3/FT4 ratio
groups.

Development and Validation of the
Predictive Model Based on FT3 and FT4
After univariate Cox regression analysis of 15 indicators
significantly related to FT3 and FT4 (Supplementary Table
S3), the indicators with p < 0.05 were screened out as the
candidate variables for subsequent model constructions. A
model including all candidate predictors were fitted. Then, the
importance of each predictor variable in the model was measured
by partial chi-square statistics minus degrees of freedom. Finally,
the top three relevant candidate indicators were obtained. In the
fitted predictive death model, proBNP (X2-df � 139.77), ALB (X2-
df � 120.33), and HGB (X2-df � 88.67) were significantly

TABLE 2 | Cox proportional hazards analysis for Death.

Characteristics Univariate analysis Multivariate analysis

HR (95%CI) p value HR (95%CI) p value

Demographic data
Age 1.055 (1.041–1.069) 3.33E-15 1.035 (1.02–1.051) 5.34E-06
Sex 1.098 (0.823–1.465) 0.5248
Smoke 1.786 (1.209–2.639) 0.0036
BMI 0.914 (0.864–0.966) 0.0015
Comorbidities
Arrhythmia 2.11 (1.555–2.862) 1.63E-06
Diabetes 1.378 (1.155–1.643) 0.0004
Heart failure 4.048 (3.071–5.334) 3.11E-23 2.484 (1.808–3.412) 1.94E-08
Hypertension 1.461 (1.133–1.882) 0.0034
Hyperlipidemia 0.612 (0.388–0.965) 0.0345
Medication
β-blockers 0.965 (0.707–1.318) 0.8248
ACEIs 1.088 (0.85–1.393) 0.5019
CCBs 1.552 (1.212–1.985) 0.0005
PPIs 1.291 (1.013–1.646) 0.0392
Biochemical measurements
eGFR 0.979 (0.974–0.984) 4.34E–15
ALT 1.001 (0.999–1.004) 0.2539
AST 1.002 (1–1.003) 0.0061
APOA 0.366 (0.218–0.612) 0.0001 0.328 (0.18–0.597) 0.00026
CHOL 0.875 (0.786–0.973) 0.014
CK 1 (1–1) 0.0385
CKMB 1.004 (1–1.009) 0.0527
GLUC 1.067 (1.039–1.096) 2.35E–06 1.068 (1.03–1.108) 0.0003
HDLC 0.484 (0.294–0.797) 0.0043
LDLC 0.864 (0.758–0.985) 0.0283
LPa 1.001 (1–1.001) 0.0004 1 (1–1) 0.018
TRIG 0.914 (0.813–1.028) 0.1343
FT3 0.411 (0.336–0.503) 7.69E–18 0.577 (0.454–0.734) 7.17E-06
FT4 1.051 (1.032–1.069) 3.49E–08
FT3/FT4 4.12E-04 (9.05E-05-0.00188) 7.45E–24 0.01 (0.001–0.064) 7.37E-07
TSH 0.998 (0.966–1.032) 0.9268
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correlated with death. However, proBNP (X2-df � 61.56) and ALB
(X2-df � 60.97) were strongly independent predictors of MACE,
and FIB (X2-df � 37.56) had greater prognostic value than other
candidate variables involved in the outcome of MACE (Figure 3).

Our aim is to develop and validate a new predictive model
based on FT3, including age, biomarker, and clinical history
(ABC). HF, which was significantly correlated with endpoint
events after multivariate Cox correction based on AIC stepwise
regression, was selected as the clinical variable. The final
predictive model established by age and candidate markers
was represented via a nomogram (Figure 4).

On the one hand, the final MACE predictive models including
age, HF, FT3, FIB, and proBNP showed a C index of 0.621 (95%
CI � 0.596–0.646), which was significantly higher than the
traditional model consisting of common clinical variables (C
index of 0.586, 95% CI � 0.554–0.618) (Table 4). On the
other hand, the death predictive models of the single AUC of
ALB, proBNP, and FT3/FT4 obtained 0.666, 0.708, and 0.634,
respectively. The MACE predictive models of the single AUC of
FIB, proBNP, and FT3 obtained 0.597, 0.594, and 0.55,
respectively (Figure 5).

The final model was represented by a nomogram, which
showed that low FT3/FT4 values; low ALB levels, high FIB

levels, and high proBNP levels were associated with low
survival rates. The calibration curves of the nomogram for the
predicted five-year mortality and MACE risk demonstrated
consistency with the prediction and observation of the
primary cohort (Figure 6). Decision curve analysis showed
that the use of nomogram to predict mortality adds more
benefit than either the treat-all-patients scheme or the treat-
none scheme (Figure 7). Finally, the prognostic model for death
was divided into three groups according to the total score, as
follows: low risk (<118), medium risk (118–124) and high risk
(≥124). Similarly, the scores of low-, medium-, and high-risk of
MACE groups were <113, 113–122, and ≥122, respectively. The
cumulative survival curve of risk stratification is shown in
Figure 8.

DISCUSSION

Our study demonstrated that the levels of FT3 and FT3/FT4 were
independent predictors of death and MACE risk in patients with
CAD on multivariate analyses including conventional CAD risk
factors. We also proved that thyroid hormone indicators were
significantly related to the emerging biomarkers proBNP, FIB,

TABLE 3 | Cox proportional hazards analysis for MACE.

Characteristics Univariate analysis Multivariate analysis

HR (95%CI) p value HR (95%CI) p value

Demographic data
Age 1.014 (1.007–1.021) 0.0002 1.008 (1–1.016) 0.032
Sex 1.218 (1.03–1.441) 0.0212 1.281 (1.039–1.581) 0.02
Smoke 1.092 (0.881–1.353) 0.4218
BMI 0.982 (0.96–1.004) 0.1023
Comorbidities
Arrhythmia 1.296 (1.056–1.589) 0.0129
Diabetes 1.345 (1.212–1.492) 2.54E-08 1.44 (1.218–1.704) 1.94E-05
Heart failure 1.934 (1.584–2.36) 8.60E-11 1.795 (1.463–2.201) 1.90E-08
Hypertension 1.274 (1.108–1.465) 0.0007
Hyperlipidemia 1.051 (0.855–1.293) 0.637
Medication
β-blockers 0.907 (0.768–1.072) 0.2519
ACEIs 1.025 (0.893–1.176) 0.73
CCBs 1.432 (1.245–1.647) 5.27E-07 1.366 (1.152–1.62) 0.0003
PPIs 1.207 (1.053–1.384) 0.0068
Biochemical measurements
eGFR 0.998 (0.997–1) 0.0487
ALT 1.001 (1–1.003) 0.1452
AST 1.001 (1.001–1.002) 5.15E-05
APOA 0.532 (0.404–0.699) 6.09E-06
CHOL 1.032 (0.979–1.089) 0.2405
CK 1 (1–1) 6.00E-04
CKMB 1.004 (1.002–1.007) 4.00E-04
GLUC 1.047 (1.028–1.066) 1.01E-06
HDLC 0.514 (0.388–0.68) 3.17E-06
LDLC 1.055 (0.987–1.128) 0.1144
LPa 1 (1–1.001) 5.30E-06 1 (1–1) 0.0003
TRIG 0.991 (0.941–1.042) 0.7163
FT3 0.79 (0.71–0.879) 1.42E-05 0.831 (0.735–0.939) 0.003
FT4 1.027 (1.011–1.044) 0.0009
FT3/FT4 0.104 (0.0465–0.233) 3.54E-08 0.312 (0.121–0.8) 0.015
TSH 0.985 (0.959–1.011) 0.254
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and ALB, which suggested that thyroid hormone levels may have
an impact on adverse outcomes by the key biological pathways,
such as heart function and injury, liver function, and coagulation.
Finally, according to the predictive characteristics of FT3 and
other cardiovascular biomarkers, we developed and validated a
new, well-calibrated, biomarker-based risk score to assess the
death risk of patients with CAD.

In our study, FT3 and FT3/FT4 are powerful prognostic
markers. In recent years, the consequences on the
cardiovascular system of milder forms of thyroid dysfunction

have been increasingly recognized (Gomberg-Maitland and
Frishman, 1998). The further clinical and experimental
evidences suggest that a low FT3 level is a strong predictor of
a poor prognosis in patients with chronic cardiovascular diseases.
However, the relationship between low FT3 and adverse
prognosis of CAD patients had a controversy in the last few
years (Iervasi et al., 2003; Boelaert and Franklyn, 2005; Coceani
et al., 2009; Iervasi, 2009; Ichiki, 2014). In this study, we found
that more deaths and MACE occurred in the low FT3 group.
Previous studies showed that FT3 promoted the progression of
atherosclerosis probably due to the inhibition of lipoprotein
enzyme activity and the decreasing clearance rate of total
cholesterol (Chapidze et al., 2006; Asvold et al., 2007;
Maria Moreno et al., 2019). Although FT3 is associated with
lipid levels and linked with the increased mortality of CAD, the
mechanism is worthy of further study due to the result of the
interaction of many factors (Danese et al., 2000; Duntas, 2002;
Erem, 2006).

On the basis of the relationship between FT3 and the
prognosis of CAD, we also analyzed the correlation between
FT3 and other clinical indicators of CAD patients to further
understand whether or not the function was influenced by low
FT3 with other common risk factors of CAD. Low T3 syndrome is
associated with many traditional risk factors of CAD, such as
proBNP, FIB, and ALB (Knezl et al., 2008; Chuang et al., 2014;
Brozaitiene et al., 2016). Liang et al. reported that BNP was
increased six-fold, and its promoter activity increased three to
fivefold following T3 treatment (Liang et al., 2003). Afandi et al.
reported that the decrease in thyroid hormone binding proteins is
often a consequence of the acute phase response by impaired
synthesis, rapid breakdown, and movement out of the plasma

FIGURE 2 |Cumulative Kaplan–Meier Curves for FT3, FT4 and the ratio of FT3 and FT4. (A)Cumulative Kaplan–Meier Curves for MACE according to FT3 quartiles;
(B) Cumulative Kaplan–Meier Curves for MACE according to FT4 quartiles; (C) Cumulative Kaplan–Meier Curves for MACE according to FT3/FT4 quartiles; (D)
Cumulative Kaplan–Meier Curves for death according to FT3 quartiles; (E) Cumulative Kaplan–Meier Curves for death according to FT4 quartiles; (F) Cumulative
Kaplan–Meier Curves for death according to FT3/FT4 quartiles.

FIGURE 3 | Relative importance of each variable in the full model.
Measured by partial Wald χ2 minus the predictor degrees of freedom.
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FIGURE 4 | Nomogram for the new biomarker-based risk score. (A) Nomogram for the final biomarker-based ABC-MACE risk score; (B) Nomogram for the final
biomarker-based ABC-death risk score. Note: The scores of each variable were added to obtain the total score, and a vertical line was drawn on the total score to obtain
the corresponding probability of outcomes.

TABLE 4 | C indices of models.

Model C Index (95%CI)

Death MACE

Model 1 0.693 (0.633–0.752) 0.586 (0.554–0.618)
Model 2 0.751 (0.715–0.787) 0.621 (0.596–0.646)
Model 3 0.764 (0.731–0.797) 0.614 (0.590–0.638)
Model 4 0.758 (0.724–0.793) 0.619 (0.596–0.643)

Model 1 of Death: Traditional model (age + sex + HyperT + DM + CHOL + HDLC + BMI + smoking + TRIG)
Model 2 of Death:age + HF + FT3/FT4+HGB + ProBNP
Model 3 of Death:age + HF + FT3/FT4+ALB + ProBNP
Model 4 of Death:age + HF + FT3/FT4+ALB + HGB
Model 1 of MACE: Traditional model (age + sex + HyperT + DM + CHOL + HDLC + BMI + smoking + TRIG)
Model 2 of MACE:age + HF + FT3+FIB + ProBNP
Model 3 of MACE:age + HF + FT3+ALB + ProBNP
Model 4 of MACE:age + HF + FT3+ALB + FIB

FIGURE 5 | Receiver operating characteristics curves (ROC) of different parameters andmodels. (A) ROC curves of different parameters and models for predicting
all-cause mortality; (B) ROC curves of different parameters and models for predicting MACE.
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space (Afandi et al., 2000). However, there are no detailed data on
thyroid parameters in patients with acute liver failure (ALF) so
far. One study showed that more than 50% of ALF patients
exhibit abnormal thyroid parameters, and their prognosis was
worse than that of normal thyroid patients (Anastasiou et al.,
2015). In addition, a study suggested that hyperthyroidism was
associated with an increased risk of thrombosis, and patients with
hyperthyroidism show higher levels of fibrinogen (Kim et al.,

2017). Another study confirmed that VWF and fibrinogen
mediate up to 10% of the association between FT4 and
cardiovascular disease (Bano et al., 2019). In our study, the
level of coagulation parameters we observed changes
significantly with the increase of FT4 level, and seems to be
less affected by FT3 level. It can be concluded from the existing
literature that patients with hypothyroidism are at increased risk
of bleeding complications due to impaired coagulation and

FIGURE 6 |Calibration curves for the nomogrammodel. (A)Calibration curves of the prognostic nomogram for 5-years overall survival; (B)Calibration curves of the
nomogram predicting risk of MACE.

FIGURE 7 | The Decision Curves Analysis (DCA) curve of the prognostic nomogram for predicting probability of overall survival at 5 years. Note: The traditional
group-composed by parameters of age, sex, hypertension, diabetes, CHOL, HDLC, BMI, smoking, TRIG; Novel group: age, HF, FT3/FT4, ALB, and proBNP. The
horizontal axis represents the threshold value, which is the reference probability of whether a patient receives treatment, and the vertical axis represents the net benefit
rate after the advantages minus the disadvantages. Under the same threshold probability, the larger net benefit implies that patients can obtain the maximum
benefit using the diagnosis of this model. The closer the curve in the DCA graph is to the top, the higher the value of the model diagnosis will be.
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fibrinolysis (Elbers et al., 2018). Notably, thyroid function with
the pathophysiological mechanism of the heart and the
prognosis of acute myocardial infarction is still being
explored. A study demonstrated a significant relationship
between the suppression of thyroid axis function, increased
inflammation markers and increased NT-pro-BNP levels in
CAD patients undergoing rehabilitation after ACS. They have
also demonstrated that measures of FT4 and FT3/FT4 ratio
together with NT-pro-BNP can be important prognostic
markers of negative long-term outcomes (i.e., mortality)
(Brozaitiene et al., 2016). A study aimed at explaining the
relationship between T3 and cardiac function found that in
the multiple regression analysis, FT3 levels were positively
correlated with cardiac ejection fraction, and significantly
negatively correlated with NT-proBNP(She et al., 2018). This
is consistent with the correlation trend results of FT3 and
proBNP obtained in this study. Overall, this study provides
further insights into the relationship between thyroid hormones
and liver function, thrombosis, and heart function. Whether the
effect of thyroid hormones on cardiovascular events and
cardiovascular death is mediated by coagulation factors or
regulated by heart and liver functions requires further
research in the future.

Identifying new biomarkers to effectively improve the
prediction for prognosis and guide the individualized
treatment of patients with CAD is critical (Malakar et al.,
2019). As a quantitative tool for assessing risk and benefit,
clinical predictive models provide risk estimates for the
presence of the disease (diagnosis) or an event in the future
course of disease (prognosis) for individual patients (Steyerberg
and Vergouwe, 2014). We developed and validated a well-
calibrated new risk score based on biomarkers to assess the
risk of death in CAD patients. The novel ABC death score
includes age, clinical history of HF, and biomarkers of
proBNP, FT3/FT4, and ALB. The developed model including
multiple and novel risk factors is useful for estimating prognosis

in patients with CHD to inform treatment decisions or for use as a
risk stratification tool in future research.

Although this novel ABC–CHD model has few variables, it
provides reliable CV death prediction compared with models
composed of traditional clinical factors. In our model, the most
important prognostic variable is proBNP, which is a well-known
marker of stress and dysfunction of cardiomyocytes (Beatty et al.,
2015). Recent evidence suggests that proBNP also plays a role in
metabolic pathways, including lipolysis and regulation of blood
glucose levels, which are important in the pathophysiology of
CAD (Zois et al., 2014). A study suggested that proBNP is
independent of other prognostic markers, including systolic
and diastolic dysfunction, left ventricular mass index,
inducible ischemia, exercise capacity, C-reactive protein (CRP),
cTnT, and New York Heart Association classification, which can
predict cardiovascular morbidity and mortality (Bibbins-
Domingo et al., 2007). Increasing concentration of proBNP
may also be a signal of vascular dysfunction, in which the
natriuretic peptides produce changes in vascular smooth
muscle proliferation or contractility, in part via cyclic
guanosine monophosphate cascades or nitric oxide synthesis
(Ahluwalia et al., 2004).

In summary, these findings suggest that a simple test of
biomarkers (i.e., proBNP and ALB) may stratify the risk of
prognosis in patients with CAD and provide treatment
strategies aimed at reducing future cardiovascular disease
morbidity and mortality. The novel model can bring more
incremental risk prediction (C index difference: 0.071) than
the traditional predictive models of death. Furthermore,
considering the powerful performance of the novel ABC-CHD
model with a small number of variables provides a tool that may
be easier to use in the clinical environment.

This study has several limitations. First, this study was based
on a single center. Larger studies enrolling a more diverse
population are needed to verify these findings and the external
validity of prognostic models. Second, because measurements of

FIGURE 8 | Cumulative Kaplan–Meier curves of the prediction model. (A) Cumulative risk of MACE by predicted 5-years ABC-MACE risk group; (B) Cumulative
probability of mortality by predicted 5-years ABC-death risk group. Note: Survival curves stratified by the score calculated by the nomogram scoring system [low risk,
moderate risk and high risk].
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FT3, FT4, and TSH were performed only once during initial
hospitalization, we were unable to account for possible variations
in thyroid function over time. Third, more patients with low FT3
have a history of HF compared with normal patients. Thus, the
outcomes of patients may be biased. Further mechanism studies
about low FT3 on the risk of death should be considered in the
interaction with proBNP, FIB, and ALB. This complex relation
merits further well-designed investigations.

CONCLUSION

This study demonstrated that low levels of FT3 and FT3/FT4 are
independent predictors of death andMACE risk in CAD patients.
The associations of thyroid hormone with other functional
parameters (i.e. heart function and injury, liver function, and
coagulationmarkers) warrant further study. A novel risk score for
the prediction of death including age, HF, and three biomarkers
was successfully developed and validated. It can be widely used to
complement clinical assessment and guide management based on
death and MACE risk stratification in patients with CAD because
it is based on a small number of readily available biomarkers and
clinical factors.
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A Cross-Platform Metabolomics
Comparison Identifies Serum
Metabolite Signatures of Liver Fibrosis
Progression in Chronic Hepatitis C
Patients
Meera Shanmuganathan1, Mohammad Omair Sarfaraz2, Zachary Kroezen1, Holly Philbrick1,
Richel Poon1, Andrew Don-Wauchope2, Marco Puglia3, David Wishart 4 and
Philip Britz-McKibbin1*

1Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada, 2Department of Pathology and
Molecular Medicine, McMaster University, Hamilton, ON, Canada, 3Department of Medicine, Division of Gastroenterology,
McMaster University, Hamilton, ON, Canada, 4Departments of Biological Sciences and Computing Science, University of Alberta,
Edmonton, AB, Canada

Metabolomics offers new insights into disease mechanisms that is enhanced when
adopting orthogonal instrumental platforms to expand metabolome coverage, while
also reducing false discoveries by independent replication. Herein, we report the first
inter-method comparison when using multisegment injection-capillary electrophoresis-
mass spectrometry (MSI-CE-MS) and nuclear magnetic resonance (NMR)
spectroscopy for characterizing the serum metabolome of patients with liver fibrosis
in chronic hepatitis C virus (HCV) infection (n � 20) and non-HCV controls (n � 14). In this
study, 60 and 30 serum metabolites were detected frequently (>75%) with good
technical precision (median CV < 10%) from serum filtrate samples (n � 34) when using
standardized protocols for MSI-CE-MS and NMR, respectively. Also, 20 serum
metabolite concentrations were consistently measured by both methods over a
500-fold concentration range with an overall mean bias of 9.5% (n � 660).
Multivariate and univariate statistical analyses independently confirmed that serum
choline and histidine were consistently elevated (p < 0.05) in HCV patients with late-
stage (F2-F4) as compared to early-stage (F0-F1) liver fibrosis. Overall, the ratio of
serum choline to uric acid provided optimal differentiation of liver disease severity (AUC
� 0.848, p � 0.00766) using a receiver operating characteristic curve, which was
positively correlated with liver stiffness measurements by ultrasound imaging (r �
0.606, p � 0.0047). Moreover, serum 5-oxo-proline concentrations were higher in
HCV patients as compared to non-HCV controls (F � 4.29, p � 0.0240) after adjustment
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for covariates (age, sex, BMI), indicative of elevated oxidative stress from glutathione
depletion with the onset and progression of liver fibrosis. Both instrumental techniques
enable rapid yet reliable quantification of serum metabolites in large-scale metabolomic
studies with good overlap for biomarker replication. Advantages of MSI-CE-MS include
greater metabolome coverage, lower operating costs, and smaller sample volume
requirements, whereas NMR offers a robust platform supported by automated spectral
and data processing software.

Keywords: metabolomics (OMICS), capillary electrophoresis-mass spectrometry, nuclear magnetic resonance,
serum, biomarkers, liver fibrosis, hepatitis C virus infection

INTRODUCTION

High-field nuclear magnetic resonance (NMR) spectroscopy and
high-resolution mass spectrometry (MS) are two core
instrumental platforms used in discovery-based metabolomics
research. Selection of one or more analytical method(s) is
dependent on several factors, including infrastructure/
operating costs, sample volume/workup requirements, sample
throughput, as well as selectivity and sensitivity that impact
overall metabolome coverage. In general, NMR offers excellent
reproducibility and quantitative performance together with
unambiguous metabolite identification, and thus is well suited
for longitudinal metabolomic studies, metabolic flux analysis, and
non-invasive analysis of tissue specimens (Emwas et al., 2019).
However, concentration sensitivity and resolution are limited
without isotopic enrichment when using fast spectral acquisition
protocols in one-dimensional proton (1H)-NMR. These
constraints result in quantification of typically a few dozen
polar serum metabolites depending on magnet field strength,
probe design, and spectral processing strategies (Wishart, 2019;
Casadei-Gardini, et al., 2020). NMR metabolite coverage can be
further expanded to include various lipoprotein, cholesterol and
fatty acid species when ultrafiltration is avoided (Würtz et al.,
2017). In contrast, MS-based metabolomic methods are more
accessible when using bench-top instrumentation with greater
sensitivity and resolution especially when coupled to one or more
high efficiency separation techniques (Kuehnbaum and Britz-
McKibbin, 2013). For instance, liquid chromatography (LC)-MS
using separation mechanisms (e.g., reversed-phase, hydrophilic
interaction) provide exceptional metabolome coverage (Rhee
et al., 2019) especially when using chemical isotope labeling
methods (Han and Li, 2018). Yet, separations in LC-MS are
generally constrained by lower throughput and complicated data
pre-processing when performing non-targeted metabolite
profiling (i.e., time alignment, peak picking), where a major
fraction of molecular features comprise compounds with
unknown chemical structures (da Silva et al., 2015).
Alternatively, multisegment injection-capillary electrophoresis-
mass spectrometry (MSI-CE-MS) offers a multiplexed separation
platform for metabolomics (Kuehnbaum et al., 2013) with higher
sample throughput, improved quality control, and lower sample
volume requirements (Nori de Macedo et al., 2017) Furthermore,
customized serial injection configurations accelerate biomarker
discovery using novel data workflows to encode mass spectral

information temporally within a separation (DiBattista et al.,
2017) while providing robust inter-batch adjustment in large-
scale metabolomic studies (Shanmuganathan et al., 2021).
Although there have been several cross-platform metabolomic
analysis involving NMR and LC-MS (Nevedomskaya et al., 2011;
Psychogios et al., 2011; Bruno et al., 2018; Bhatia et al., 2019), to
the best of our knowledge no study to date has explored the
potential benefits of combining CE-MS with NMRmethodologies
in metabolomics (Marshall and Powers, 2017).

Chronic hepatitis C virus (HCV) infection can lead to
progressive liver disease with a high risk for death from
cirrhosis and hepatocellular carcinoma if not treated early with
pangenotypic direct-acting antiviral regimens (Ghany and
Morgan. 2020). Most individuals (∼85%) infected with HCV
develop chronic infections, which contribute to a high burden
of liver-related disease complications and spiraling healthcare
costs (Myers et al., 2014). Similar to other forms of chronic liver
disease, HCV infections are accompanied by liver fibrosis, a
scarring process characterized by thickening of liver tissue and
accumulation of extracellular matrix proteins with eventual loss
of liver function (Khatun and Ray, 2019). Optimal patient care
and treatment decisions are dependent on staging of disease
progression, which has relied on a liver biopsy to assess the
severity of fibrosis, such as the widely used Meta-analysis of
Histological Data in Viral Hepatitis (METAVIR) scoring system
(Goodman, 2007). However, liver biopsy is an expensive and
invasive procedure with risks for patient bleeding, including other
complications. It is also prone to both sampling and inter-subject
variability depending on quality of biopsy, and thus has been
increasingly supplanted by less invasive methods for liver fibrosis
assessment, such as ultrasound imaging and blood-based liver
protein panels. As a result, there is growing interest in
metabolomics to identify novel biomarkers of hepatic fibrosis
that offer greater specificity, sensitivity, and reproducibility, and
accessibility in a clinical setting (Chang and Yang, 2019). This is
urgently needed to augment diagnostic applications for chronic
liver disease differentiation (Soga et al., 2011), monitoring
treatment responses to therapy (Meoni et al., 2019), and risk
assessment of advanced stages of liver disease (Diren and Idle,
2020), including patients co-infected with HCV/HIV (Naggie
et al., 2020).

In this work, metabolomic analyses were performed on serum
filtrate samples collected from HCV patients at different stages of
liver fibrosis, as well as non-HCV controls when usingMSI-CE-MS
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and 1H-NMR. Standardized protocols were used for sample
preparation, data acquisition, and data pre-processing allowing
for an inter-method comparison of serum metabolites consistently
measured by both techniques. Importantly, this cross-platform
metabolomics study allowed for independent replication of serum
biomarker candidates associated with liver fibrosis progression
from chronic HCV infection, which complement tissue
histopathology, serum liver protein panels, and ultrasound
imaging techniques.

RESULTS

Clinical Characteristics of Study
Participants
Demographic and clinical characteristics of all study participants,
including healthy non-HCV participants (n � 14), and patients
with chronic HCV infection at different stages of liver fibrosis (n �
20) are summarized in Table 1. In this pilot study, most recruited
subjects were older, overweight male adults, with non-HCV
participants generally being younger (p � 0.0318). HCV infected
patients were treatment naïve at the time of recruitment with most
having a HCV genotype A, as confirmed by positive serum anti-
HCV antibodies andHCVRNA test results. Staging of liver fibrosis
using the METAVIR scoring system was performed by tissue
histopathology which confirmed no fibrosis (F0) in non-HCV
controls, whereas minimal scarring/inflammation (early-stage, F0-
F1, n � 9) ormore advanced stages of fibrosis (late-stage, F2-F4, n �
11) in HCV patient sub-groups with four individuals having
cirrhosis (F4). Similarly, FibroScan test results using transient

elastography measurements revealed no differences in liver
stiffness between non-HCV and early-stage liver fibrosis HCV
patients (FibroScan <7.0 kPa, p < 0.05), in contrast to the late-stage
fibrosis HCV patients (FibroScan >8.0 kPa, p � 1.73 × 10−4). As
expected, a panel of blood liver proteins and FibroTest scores were
elevated in HCV patients as compared to non-HCV controls.
However, there were no significant differences in circulating
liver protein levels between HCV sub-groups at different stages
of liver fibrosis severity (p > 0.05).

Serum Metabolome Characterization by
Multisegment Injection-Capillary
Electrophoresis-Mass Spectrometry
Serum samples were prepared by ultrafiltration to remove protein
after dilution with recovery/internal standards prior to MSI-CE-
MS analysis, which were analyzed under two configurations for
cationic (pH 1.8, positive ionmode) and anionic (pH 8.5, negative
ion mode) metabolites with full-scan data acquisition. Sample
throughput in MSI-CE-MS is enhanced when using a serial
sample injection format comprising 13 serum filtrates analyzed
within a single run. In this case, duplicate analysis of each serum
filtrate diluted in a distinctive pattern (1:2, 1:1, 2:1) together with
a pooled QC sample were acquired in random sequence as shown
for alanine and lactic acid in Figure 1A. Data pre-processing in
MSI-CE-MS combined both targeted analysis of known serum
metabolites, as well as a nontargeted screening strategy to
authenticate unknown metabolites from a pooled serum
sample as described elsewhere (Shanmuganathan et al., 2021).
All serum metabolites were annotated based on their

TABLE 1 | Study characteristics of treatment-naïve hepatitis C virus (HCV) infected patients (n � 20) at different stages of liver fibrosis, and healthy non-HCV infected
participants (n � 14).

Criteria Non-HCV (n = 14) HCV early-stage (n = 9) HCV late-stage (n = 11) p-valuea

Age (years) 44 ± 15 57 ± 10 63 ± 11 0.0318; 0.216
Sex (male) 10 (77%) 8 (89%) 9 (82%) —

BMI (kg/m2) 24.4 ± 1.3 26.0 ± 5.8 26.5 ± 5.0 0.334; 0.843
FibroScan test (kPa)b 4.81 ± 0.55 5.39 ± 1.1 11.2 ± 3.6 0.111; 1.73 × 10−4

FibroTest scorec 0.22 ± 0.17 0.63 ± 0.23 0.69 ± 0.23 1.61 × 10−4; 0.592
γ-Glutamyltransferase (U/L) 29 ± 26 132 ± 125 76 ± 77 8.69 × 10−3; 0.233
Total bilirubin (µM) 11.0 ± 6.3 14.8 ± 7.5 11.8 ± 6.8 0.216; 0.369
Alpha-2-macroglobulin (g/L) 1.82 ± 0.56 3.4 ± 1.2 4.4 ± 1.2 4.08 × 10−4; 0.0747
Hapatoglobin (g/L) 1.03 ± 0.39 1.09 ± 0.51 1.40 ± 0.75 0.780; 0.337
Apolipoprotein A1 (g/L) 1.36 ± 0.20 1.44 ± 0.11 1.40 ± 0.30 0.311; 0.720
Alanine aminotransferase (U/L) 24.1 ± 8.4 82 ± 55 52 ± 36 1.16 × 10−3; 0.151
Fibrosis grade/METAVIR scored

F0 14 5 — —

F1 — 4 — —

F2 — — 5 —

F3 — — 2 —

F4 — — 4 —

HCV genotype
1A/1B — 9/0 9/2 —

aStudent’s t-test to assess statistical significance (p < 0.05) when comparing healthy non-HCV controls with early-stage HCV, as well as early-stage HCV with late-stage HCV patients,
respectively.
bFibroScan test results to assess liver fibrosis based on transient elastography using ultrasound imaging.
cFibroTest uses an algorithm that combines 5 standard serum protein biomarkers, including c-glutamyltransferase, total bilirubin, alpha-2-macroglobulin, haptoglobin, and
apolipoprotein A1.
dMETAVIR score to assess the extent of inflammation and fibrosis by histopathological examination of a liver biopsy.
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characteristic accurate mass: relative migration time (m/z:RMT)
under positive (p) or negative (n) ion mode detection after
rejecting spurious signals, background ions and dataset
redundancy (Saoi et al., 2020). Overall, 55 serum metabolites
in this study were identified with high confidence (level 1) after
spiking with authentic standards (i.e., co-migration) and having

lowmass error (<5 ppm). This also allowed for their quantification
using an external calibration curve with ion responses normalized to
an internal standard (20 μM, 4-chlorotyrosine, Cl-Tyr or naphthalene
monosulfonic acid, NMS) over a 100-fold dynamic range with good
linearity (R2 > 0.990). Otherwise, unknown metabolites
(5 compounds, level 4) were annotated based on their most likely

FIGURE 1 | Cross-platformmethod comparison for characterization of the serummetabolome from HCV patients with liver fibrosis and non-HCV controls when using
(A)MSI-CE-MS and (B) 1H-NMR. In both cases, diluted serum filtrate sampleswere analyzed using standardizedprotocols, which included 60 and 30 polar/ionicmetabolites
measured in most samples (>75%) with adequate precision (CV < 35%) by MSI-CE-MS and NMR, respectively. Each sample was analyzed by NMR with signal averaging
(120 scans, 12 min/sample) followed by automated spectral processing by MAGMET using a targeted metabolite library, whereas six pairs of serum filtrates together
with a pooled QC were analyzed in each MSI-CE-MS run (8 min/sample) using both targeted and nontargeted approaches with metabolite quantification using external
calibration curves with internal standards. Serum metabolite concentrations measured consistently by both platforms are illustrated in this case for alanine and lactic acid.
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molecular formula. Overall, 60 polar/ionic metabolites were
consistently analyzed (median CV < 35%) in most serum samples
(>75%) from non-HCV controls andHCV patients (n � 34) byMSI-
CE-MS. Figure 2 depicts a 2D scores plot from principal component
analysis (PCA) confirming acceptable technical precision achieved
for 60 serummetabolites from QC samples (median CV � 8.8%, n �
6) relative to the larger biological variance in non-HCV (median CV
� 29%, n � 14) and HCV patients (median CV � 64%, n � 20). Also,
control charts for the recovery standard (20 μM, 3-
fluorophenylalanine, F-Phe) added to all serum samples and
analyzed under both MSI-CE-MS configurations demonstrated
good intermediate precision (mean CV � 6.8%, n � 156) with few
data (∼5%) exceeding warning limits (±2s).

Targeted Metabolite Profiling of Serum
Filtrates by Nuclear Magnetic Resonance
A standardized approach was also used to prepare serum samples
(280 μl) after ultrafiltration to remove protein followed by a 1.25-fold
dissolution in a buffer system (70 μl, 250 mM phosphate, pH 7.0
with 54% vol D2O) containing a chemical shift reference that also
served as internal standard (1.0 mM 2,2-dimethyl-2-silapentane-5-
sulfonate, DSS-d6). 1H-NMR spectra (700MHz) in 5 mm diameter
tubes were acquired using a NOESY pulse sequence with water
suppression after a manual shimming protocol, which generated an
average line width for DSS-d6 of (0.95 ± 0.14) Hz (n � 40). Each
1H-NMR spectrum required 12min for 128 scans as shown for a
pooled serum filtrate sample from the study cohort in Figure 1B.

Most proton resonances for serummetabolites have signals clustered
within distinct chemical shift windows (δ ∼ 3.2–4.2 ppm; 1.8–2.7
ppm; 0.8–1.2 ppm) as compared to prominent peaks for lactic acid
(methyl proton, δ � 1.40 ppm, doublet), alanine (methyl proton, δ �
1.46 ppm doublet), and D-glucose (α-anomeric proton, δ � 5.22
ppm, doublet). Raw FID NMR data was uploaded to a user-friendly
webserver, Magnetic Resonance for Metabolomics (MAGMET)
using an automated workflow for data pre-processing and
spectral deconvolution from a library of 47 serum metabolites
(Ravanbakhsh et al., 2015). After spectral processing, serum
metabolite concentrations were calculated using a reference
standard with known concentration (DSS-d5, 1,000 µM).
Technical precision was assessed from the intermittent analysis
of an external QC comprised of four amino acid standards (mean
CV � 2.5%, n � 3), as well as internal QC of pooled serum from
cohort (median CV � 9.0%, n � 3) which had higher variance
(CV > 35%) for certain serum metabolites prone to spectral
interferences (e.g., arginine, methionine, leucine, hydroxyvaleric
acid). Overall, 30 polar/ionic metabolites were reliably quantified
by 1H-NMR in most serum samples in this study.

Serum Metabolite Quantification:
Multisegment Injection-Capillary
Electrophoresis-Mass Spectrometry vs
Nuclear Magnetic Resonance
An inter-method comparison was next performed for serum
metabolites measured with high detection frequency (>75% of

FIGURE 2 | Overview of the serum metabolome and data quality when using MSI-CE-MS as depicted in 2D scores plot using PCA, which compares the technical
precision (median CV � 8.8%, n � 6) from repeat QC samples relative to the larger biological variance in chronic HCV liver fibrosis patients (median CV � 64%, n � 20) and
non-HCV controls (median CV � 29%, n � 14). Control charts for the recovery standard (3-fluorophenylalanine, F-Phe) confirms acceptable intermediate precision (mean
CV � 6.8%, n � 156) when analyzing all serum samples in this study by MSI-CE-MS in positive and negative ion modes.
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all samples analyzed) and adequate technical precision (CV <
35%) by both MSI-CE-MS and NMR platforms. Concentration
detection limits for 1H-NMR under the acquisition conditions
used were about 5 μM, but higher detection thresholds were
evident for certain serum metabolites prone to chemical shift
spectral overlap. In MSI-CE-MS, concentration sensitivity is
metabolite dependent given the disparity in solute ionization
efficiency (Chalcraft et al., 2009) with detection limits (S/N ∼ 3)
ranging from 0.2 to 0.5 μM when using a conventional coaxial
sheath liquid interface with small volumes (∼5 nL) introduced on-

capillary. Figure 3A depicts a Bland-Altman %difference plot
highlighting a normal data distribution with an overall mean
bias of 9.5% (n � 660) based on 20 serum metabolite
concentrations measured in 34 serum samples by MSI-CE-MS
and NMR with few missing data (20 or 2.9% in total). There was a
significant overlap in metabolome coverage (∼67%) between both
platforms that comprised primarily micromolar levels of polar/
ionic metabolites from serum filtrates. Over a 500-fold dynamic
range in serum metabolite concentrations was assessed in non-
HCV controls and HCV patients (n � 34) ranging from D-glucose

FIGURE 3 | Inter-method comparison for serum metabolite quantification by 1H-NMR and MSI-CE-MS platforms in non-HCV and HCV patients (n � 34). (A) A
Bland-Altman %difference plot confirms a normal distribution for 20 serum metabolite concentrations measured independently in 34 serum filtrate samples having a
mean bias of 9.5% (n � 660) with few metabolites (∼5%) exceeding mutual agreement limits ( ± 2s). (B) A summary of the mean concentration (μM) for each serum
metabolite consistently measured by both instrumental platforms, as well as a bar graph depicting the mean bias (% difference) together with an error bar indicating
the mean precision (+1 s) in reported bias across all samples (n � 34). Serum metabolites analyzed in this study were ranked ordered (top to bottom) from lowest to
highest bias having an overall bias and precision of 10.4 and 27%, respectively.
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(mean concentration of 4.8 mM) to O-acetyl-L-carnitine (mean
concentration of 11 μM). Bias was evident among a sub-set of
samples/serum metabolites (e.g., proline, tyrosine, phenylalanine),
yet only a small fraction of total data (∼5.0%) exceeded mutual
agreement limits (±2s). Figure 3B illustrates the bias distribution
for each of the 20 serum metabolites (mean bias of 10.4% ranging
from -29 to +51%) that are depicted as solid bars. Also, the mean
precision in measured bias between the two platforms is 27%,
which is shown as an error bar (+1s) for each serum metabolite.
Overall, serum alanine, glycine, ornithine, valine, histidine,
glutamine, isoleucine, lactic acid, glucose, carnitine and betaine
had the most consistent measurements across both methods in
terms of acceptable bias and variability (<25%) when using only a
single internal standard for data normalization. An excel file in the
Supplementary Material provides a complete list of serum

metabolites and their responses/concentrations measured in
non-HCV and HCV patients using MSI-CE-MS and NMR,
including calibration curves and figures of merit acquired for 20
serum metabolites used in this inter-method comparison.

Serum Metabolites Differentiating Liver
Fibrosis Progression in Hepatitis C
A major focus of this pilot study was to identify putative serum
biomarkers that differentiate liver fibrosis in treatment naïve
HCV patients. Complementary multivariate and univariate
statistical analyses were performed on serum metabolome data
to identify putative serum biomarkers that may enable less
invasive assessment of liver fibrosis. Figure 4 compares two
partial least squares-discriminant analysis (PLS-DA) models

FIGURE 4 | Supervised multivariate data analysis of serum metabolome characterized by (A) MSI-CE-MS and (B) 1H-NMR when using a partial least-squares-
discriminate analysis (PLS-DA) model for differentiation of chronic HCV patients with early (F0-F1) from late-stage (F2-F4) liver fibrosis as determined by histopathology. A
variable importance in projection (VIP) scores (VIP >1.5) were used to rank order important serum metabolites associated with liver fibrosis progression highlighting
consistent outcomes for choline and histidine (bolded) in both platforms. All serummetabolites were generalized log-transformed and autoscaled, where * indicates
statistically significant serum metabolites between HCV sub-groups (p < 0.05).
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from MSI-CE-MS and 1H-NMR data to rank order significant
serum metabolites (VIP >1.5) that differentiate late-stage fibrosis
(F2-F4, n � 11) from early-stage (F0-F1, n � 9) fibrosis in well-
matched HCV patients based on their METAVIR scores
(Table 1). Overall, serum choline and histidine were among
the top ranked metabolites consistently elevated in late-stage

as compared to early-stage fibrosis HCV patients by both
MSI-CE-MS and NMR. Table 2 confirms that both MSI-CE-
MS (choline, proline, histidine) and NMR (2-hydroxybutyric
acid, choline, histidine) identified four serum metabolites
elevated (mean fold-change, FC > 1.2, p < 0.05, effect size
>0.90) with more advanced stages of liver fibrosis when using
a two-tailed student’s t-test with equal variance. Hydroxybutyric
acid isomers were not fully resolved by MSI-CE-MS in this study
preventing their accurate quantification, whereas serum proline
was not found to be different between HCV sub-groups using
NMR, and thus not independently replicated. Several other serum
metabolites also had higher serum concentrations with increasing
liver fibrosis (e.g., asparagine, arginine, tyrosine, hydroxyproline)
in contrast to uric acid and phenylalanine (Figure 4); however,
these trends were not statistically significant (p > 0.05).

Figure 5A depicts a receiver operating characteristic (ROC)
curve for the ratio of serum choline to uric acid based on MSI-CE-
MS data, which provided optimal discrimination between HCV
liver fibrosis patient sub-groups (AUC � 0.848, p � 0.00766) not
feasible by serum liver protein panels or FibroTest scores (Table 1).
Moreover, Figure 5B confirms that there was a moderate positive

TABLE 2 | Cross-platform comparison of serum metabolites that differentiate
HCV patients with late (F2-F4, n � 11) to early-stage (F0-F1, n � 9) liver fibrosis.

Serum Metabolite/ID Mean FC p-value Effect sizea

MSI-CE-MS — — —

Choline 1.43 0.0312 1.03
Proline 1.41 0.0401 0.99
Histidine 1.19 0.0653 0.90

1H-NMR — — —

2-Hydroxybutyric acid 2.24 0.0307 1.04
Choline 1.32 0.0447 0.94
Histidine 1.21 0.0456 0.97

aA two-tailed student’s t-test with equal variance of log-transformed serum metabolite
concentrations was used to differentiate liver fibrosis progression, where effect size is
defined as eta2.

FIGURE 5 | (A) Receiver operating characteristic (ROC) curve highlighting that serum choline:uric acid ratio optimally differentiates late (F2-F4) from early (F0-F1)
stage liver fibrosis in treatment naïve HCV patients with an area under the curve, AUC � 0.848. (B) Amoderate positive correlation is shown between the serum choline to
uric acid ratio and independent FibroScan results from ultrasound imaging of HCV patients at different stages of liver fibrosis. (C) ANCOVA (between-subject effects) with
covariate adjustments confirms that serum 5-oxo-proline concentrations are elevated in HCV patients with early and late-stage liver fibrosis as compared to non-
HCV controls (*p < 0.05). (D) A weak positive correlation is depicted for serum 5-oxo-proline concentrations and FibroTest scores from a blood liver protein panel that
differentiate non-HCV controls from HCV patients with chronic hepatic inflammation.
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correlation (r � 0.606, p � 0.0047, n � 20) between the serum
choline to uric acid ratio and liver stiffness measurements from
FibroScan test results (kPa) in HCV patients. Also, an ANCOVA
(between-subject effects) with adjustment for covariates (age, sex
and BMI) revealed that serum 5-oxo-proline concentrations
measured only by MSI-CE-MS were consistently elevated (mean
FC � 1.44, F � 4.29, p � 0.0240) in HCV patients with early and
late-stage fibrosis as compared to non-HCV controls as shown in
Figure 5C. In contrast, liver stiffness measurements based on
FibroScan test results were not able to differentiate non-HCV
controls from early-stage fibrosis (F0-F1) HCV patients (Table 1).
Figure 5D highlights that there was a weak correlation between
serum 5-oxo-proline concentrations and FibroTest score (r �
0.349, p � 0.0586, n � 30), which is derived from an age/sex-
adjusted algorithm of five serum liver proteins.

DISCUSSION

Cross-Platform Serum Metabolomics
Comparison
CE-MS based methods have not been widely used within the
metabolomics community due to longstanding concerns regarding
migration time variability and long-term robustness. However,
these technical obstacles can be overcome with implementation of
standardized protocols in large-scale metabolomic studies (Harada
et al., 2018; Shanmuganathan et al., 2021). These protocols have
been recently implemented in international ring trials to
demonstrate cross-laboratory comparability (Drouin et al.,
2020). Also, CE-MS inter-method comparisons increasingly
demonstrate reliable quantification of metabolite concentrations
relative to validated assays used in a clinical setting (DiBattista
et al., 2017;Wild et al., 2019; Azab et al., 2020). Yet, there have been
few cross-platform metabolomic studies involving CE-MS in
conjunction with other widely used instrumental methods, such
as LC-MS and GC-MS (Büscher et al., 2009; Naz et al., 2013; Rojo
et al., 2015). To the best our knowledge, this work represents the
first direct comparison between CE-MS and NMR for
characterization of the serummetabolome following ultrafiltration.

There was considerable metabolome overlap between MSI-
CE-MS and 1H-NMR with 20 metabolites consistently measured
in serum filtrate samples, including amino acids, carnitines,
organic acids, and glucose (Figure 3). MAGMET uses
automated spectral processing, phasing, water-removal,
baseline correction, chemical shift referencing, peak picking,
curve fitting and spectral deconvolution via a biofluid-specific
reference library for targeted quantitative profiling of 47 serum
metabolites (Ravanbakhsh et al., 2015); however, only 30 serum
metabolites were reliably measured in most non-HCV controls
and HCV patients. This was likely due to sub-optimal shimming
contributing to higher-than-average spectral line widths
(∼0.95 Hz) and lower signal-to-noise for detecting several
lower abundance metabolites (e.g., hypoxanthine, acetoacetate)
and organic solvents (e.g., methanol, acetone) within the spectral
library. In contrast, MSI-CE-MS takes advantage of both a
targeted and nontargeted metabolomics data workflow with
serum filtrates analyzed under two separation/ionization

conditions for cationic and anionic metabolites (Figure 1); this
process also allows for the discovery of unknown metabolites
lacking authentic standards or reference data available in the
Human Metabolome Database (Wishart et al., 2018). In this
study, 60 serum metabolites (including five unknowns) were
measured in most serum filtrates by MSI-CE-MS with good
technical precision (CV < 10%) comparable to NMR
(Figure 2). The greater serum metabolome coverage for MSI-
CE-MS is mainly attributed to its improved resolution and lower
detection limits as compared to 1D 1H-NMR. Both methods had
good mutual agreement for 20 metabolites measured in 34 serum
samples from non-HCV and HCV patients with a mean bias of
9.5% (n � 660) and few outlier data (Figure 3). Better quantitative
performance in MSI-CE-MS may be realized when using
matching stable-isotope internal standards with multiple
reaction monitoring (Saoi et al., 2020) to correct for potential
ion suppression effects unlike discovery-based metabolomics
using a single internal standard with full-scan data acquisition.
Furthermore, concentration sensitivity with deeper metabolome
coverage can be further enhanced when using sheathless or low-
flow CE-MS interface designs (Zhang et al., 2017).

Similarly, NMR quantification using automated MAGMET
processing was prone to spectral interferences and potential
bias, which can be minimized with lower detection limits when
using higher field magnets. Overall, multiplexed electrophoretic
separations based on MSI-CE-MS (Figure 1) enable faster data
acquisition than NMR (<8 min/sample [both ion modes] vs
12 min/sample) with a two-fold greater metabolome coverage
and analogous reproducibility. Additionally, MSI-CE-MS
requires far less sample volume than NMR (<5 μl [if required]
serum vs 450 μl serum) that is optimal for analysis of volume-
restricted biospecimens (Nori de Macedo et al., 2017), and single-
cell analyses (Duncan et al., 2019). Expandedmetabolome coverage
can be further realized when using non-aqueous buffers systems in
MSI-CE-MS for a diverse range of water-insoluble yet ionic lipids
and fatty acids from serum ether extracts (Azab et al., 2020).

Serum Metabolites Signatures of Liver
Fibrosis in Chronic Hepatitis C Virus
Patients
Chronic HCV viral infections are one of several causes of liver
disease, including fibrosis, cirrhosis, and hepatocellular
carcinoma. Although liver biopsies remain the gold standard
for diagnosis and staging severity, there is increasing use of
ultrasound-based transient elastography for monitoring liver
fibrosis progression as it correlates well with the METAVIR
scoring system. However, this non-invasive method for
assessing liver stiffness suffers higher failure rates for obese
patients with ascites, and improved diagnostic confidence is
achieved for mild disease states when combined with serum
protein biomarker panels (Wilder and Patel, 2014). In our
study, recruited HCV patients at different stages of liver
fibrosis were well-matched (age, sex, BMI, HCV genotype,
treatment naïve), with FibroScan test results differentiating
moderate to severe fibrosis (F2-F3) or cirrhosis (F4) from no
fibrosis (F0) or mild fibrosis (F1) patient sub-groups (Table 1).
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There was no difference in liver stiffness measurements when
comparing early-stage liver fibrosis (F0-F1) HCV patients to a
younger/healthy non-HCV control unlike the FibroTest score
primarily from elevated γ-glutamyl transferase and alpha-2-
macroglobulin levels in circulation. Despite aberrant metabolic
signatures of fibrosis reported in various liver diseases (Chang
and Yang, 2019), few metabolomic studies have identified serum
biomarkers to differentiate liver fibrosis progression caused by
HCV infection (Sarfaraz et al., 2016).

In this work, we identified four serum metabolites that
differentiate fibrosis progression in HCV patients, including
choline, histidine, proline and 2-hydroxybutyric acid.
Interestingly, choline and histidine from serum filtrates were
elevated in severe fibrosis/cirrhosis (F2-F4) as compared to early-
stage fibrosis (F0-F2) HCV patients as independently confirmed
by both MSI-CE-MS and NMR methods (Table 2). Choline is an
essential dietary nutrient required for the biosynthesis of
phospholipids and donor in methylation reactions, which
plays a critical role in maintaining liver function (Mehedint
and Zeisel, 2013). Although choline deficient diets can
contribute to fatty liver and hepatic fibrosis, previous NMR
metabolomic studies have shown that elevated serum choline
in HCV patients differentiates hepatocellular carcinoma from
HCV controls without liver cancer (Wei et al., 2012). Yet,
contradictory findings were reported by NMR with lower
levels of serum choline in hepatocellular carcinoma as
compared to patients with liver cirrhosis (Gao et al., 2009). In
our case, chronic HCV patients with hepatocellular carcinoma
were excluded from study recruitment. However, more advanced
stages of liver fibrosis/cirrhosis may progress to cancer without
effective anti-viral medications. Additionally, serum histidine was
previously demonstrated by NMR to be elevated in HCV patients
with increasing liver fibrosis and necroinflammation (Safaraz
et al., 2016). Histidine is an essential amino acid that also
functions as an important antioxidant and metal chelator,
which has been shown to attenuate thioacetamide-induced
liver fibrosis in rats (El-Batch et al., 2011). Independent
replication by two orthogonal instrumental methods further
supports our findings in a well-matched patient cohort despite
a modest study power involving primarily older male
participants. Overall, the serum choline to uric acid ratio was
found to improve discrimination between different stages of liver
fibrosis (Figure 5A) as compared to choline alone (AUC � 0.803,
p � 0.0317). In our study, lower circulating levels of uric acid were
associated with more advanced fibrosis in largely overweight male
HCV patients (Figure 4A), although hyperuricemia has been
associated with liver damage in patients with non-alcoholic fatty
liver disease (Afzali et al., 2010; Zhou et al., 2016). Importantly,
there was a positive correlation (r � 0.606, p � 0.0047) in the
serum choline to uric acid ratio with FibroScan test results, which
links aberrant metabolism in circulation to liver disease
phenotype/pathology in HCV patients (Figure 5B). Further
validation in a larger patient cohort is needed to reproduce
our findings and better demonstrate its clinical utility when
used in conjunction with ultrasound imaging techniques.

Serum 5-oxo-proline as measured by MSI-CE-MS was found
to be elevated in both early and late-stage fibrosis HCV patients as

compared to non-HCV controls (Figure 5C). Oxo-proline (or
pyroglutamic acid) is an important yet infrequently measured
amino acid intermediate within the glutathione cycle (Bachhawat
and Yadav, 2018), which accumulates in circulation due to
acquired 5-oxoprolinemia from hepatic oxidative insult and
glutathione depletion (Gamarra et al., 2019). However, most
studies to date have focused on a high anion gap metabolic
acidosis from 5-oxoprolinemia following sepsis or
acetaminophen toxicity (Liss et al., 2013) rather than liver
fibrosis/inflammation from chronic HCV infection or non-
alcoholic steatohepatitis (Saoi et al., 2020). Serum cystine
concentrations were also elevated among HCV patients with
liver fibrosis relative to non-HCV controls in this study
indicative of elevated oxidative stress in liver diseases (Cichoz-
Lach and Michalak, 2014). In fact, serum 5-oxo-proline and
cystine were highly co-linear (r � 0.619, p � 9.38 × 10−5, n �
34), yet they were not measured by NMR preventing their
independent replication. FibroScan test results did not
differentiate early-stage fibrosis HCV patients (F0-F1) from
non-HCV controls without fibrosis unlike specific serum liver
proteins, or FibroTest scores (Table 1), which were weakly
correlated with oxo-proline concentrations (Figure 5D).
Elevated circulating concentrations of oxo-proline reflecting
oxidative stress and impaired glutathione-dependent redox
homeostasis offers a plausible biochemical mechanism
associated with the onset and progression of liver fibrosis in
HCV patients.

CONCLUDING REMARKS

We conducted the first cross-platform serummetabolomics study
to compare the performance of MSI-CE-MS and NMR methods
using standardized protocols, which was also applied to identify
putative biomarkers of liver fibrosis from chronic HCV infection.
Both techniques offered similar reproducibility with good mutual
agreement and few outliers when quantifying 20 serum
metabolites using a single internal standard. A targeted NMR
metabolomics approach was facilitated by use of an automated
spectral processing and deconvolution software together with a
serum-specific metabolite library; however, sub-optimal
shimming contributed to line width broadening and lower
sensitivity with potential bias for certain serum metabolites
prone to spectral interference. On the other hand, multiplexed
separations by MSI-CE-MS offer faster data acquisition speeds,
much lower sample volume requirements and greater
metabolome coverage. Four serum metabolites were elevated
in HCV patients with more advanced liver fibrosis severity,
with choline and histidine being replicated independently by
both instrumental platforms. Overall, the choline to uric acid
ratio was found to optimally differentiate between late (F2-F4)
and early (F0-F1) stages of liver fibrosis, which was also correlated
well with liver stiffness measurements by ultra-sound imaging.
Similar to serum liver protein panels, oxo-proline concentrations
were higher in HCV patients with liver fibrosis as compared to
non-HCV controls reflecting elevated oxidative stress and
glutathione depletion from chronic inflammation. Further
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validation of serum biomarker candidates in this pilot study is
warranted in a larger cohort of HCV patients while evaluating
their clinical utility as compared to FibroTest scores and
FibroScan test results. Serum biomarkers of hepatic fibrosis
offer a less invasive procedure to liver biopsies when
monitoring disease progression and treatment interventions
for HCV patients to prevent end-stage liver failure.

MATERIALS AND METHODS

Chemical and Reagents
All metabolite standards and buffers were purchased from Sigma-
Aldrich (St. Louis, MO, United States). All LC-MS grade solvents,
including acetonitrile, isopropanol, methanol, and water were
obtained from Caledon Laboratories Ltd (Georgetown, ON,
Canada). Calibrant solutions for serum metabolites were
prepared by serial dilution of stock solutions (50 mM) in LC-
MS grade water and stored refrigerated (4°C). A NMR
Metabolomics Analysis Kit with access codes to MAGMET
software were supplied by The Metabolomics Innovation
Centre (Edmonton, AB, Canada). The kit includes Amicon
filters with a 3 kDa molecular weight cut-off (MWCO),
microcentrifuge tubes, NMR buffer (250 mM potassium
phosphate, pH 7.0, 5 mM 2,2-dimethyl-2-silapentane-5
sulfonate, DSS-d6, 5.84 mM 2-chloropyrimidine-5-carboxylic
acid, CPCA, and D2O 54% vol in H2O) and a QC standard
mixture (1.25 mM glycine, 1.25 mM alanine, 1.25 mM threonine
and 1.25 mM aspartic acid).

Study Population and Sample Collection
The study approval was obtained from the McMaster University
Health Research Ethics Board (REB Project #0932) and all study
participants (20 patients with chronic hepatitis C and 14
participants as healthy controls) provided signed informed
consent for study enrolment according to the Declaration of
Helsinki. Relevant clinical and demographic information was also
collected, including sex, age, body mass index (BMI), HCV
genotype, cardiovascular risk factors (e.g., hypertension,
diabetes, and dyslipidemia), medication history (e.g., lipid
lowering therapies, oral hypoglycemics, and insulin), and
habitual alcohol intake. An attending physician recruited
patients if they meet the inclusion criteria while a research
nurse, independent of the attending physician, obtained
consent. Peripheral blood samples were collected during clinic
visits. Following blood clotting (45 min at 25°C), the isolated
serum samples were immediately transferred to cryovials and
stored at −80°C. Routine clinical tests were also collected using Li-
heparin, K-EDTA, and plain collection vials for total bilirubin,
alanine aminotransferase, γ-glutamyltransferase, alpha-2-
macroglogulin, haptoglobin and apolipoprotein A1. The study
included patients chronically infected with HCV from the 2F
Digestive Diseases Clinic at McMaster University (Hamilton,
ON). Study inclusion criteria included: 1) adult patients
(≥18 years of age) and 2) treatment naïve, chronic HCV
patients (genotype 1, positive anti-HCV antibodies and HCV
RNA in serum). Exclusion criteria included: 1) chronic hepatitis

A, B, D and E, 2) conditions that may alter the accuracy of serum
biomarkers of fibrosis: extra-hepatic biliary obstruction;
immunosuppression (e.g., due to HIV, medications);
pregnancy; and systemic inflammatory conditions (e.g., sepsis,
inflammatory bowel disease), 3) excessive alcohol consumption
defined as ≥ 40 g/d for men and ≥20 g/d for women, 4) antiviral
therapy for HCV within the previous 6 months, 5) patients with
NAFLD as determined by echogenic liver on ultrasound, and
6) patients with hepatocellular carcinoma. Percutaneous liver
biopsy was performed under local anesthesia with an
ultrasound guidance via the right costal approach (McGill,
2001). Although liver biopsies are considered the “gold
standard” for staging fibrosis, there has been a decline in its
use (Myers et al., 2014). FibroScan test results were used to
non-invasively assess liver fibrosis progression in non-HCV
and HCV patients at the Liver Clinic at McMaster University,
and liver fibrosis was graded using the METAVIR scoring
system. Also, the FibroTest score was calculated from a panel
of five serum liver protein measurements after adjustment for
age and sex.

Serum Filtrate Preparation Prior to
Metabolomic Analyses
Prior to NMR and MSI-CE-MS analysis, frozen serum samples
were slowly thawed on ice and a pooled quality control (QC)
sample was prepared by taking 10 µl aliquots of serum from each
participant in the study. All serum samples were processed
according to the protocol provided by the TMIC NMR
metabolomics kit (http://magmet.ca/spectra_collection). The
serum pre-treatment protocol was as follows: 3 kDa MWCO
filters (Amicon Ultra 0.5 ml Centrifugal Filter Unit, Millipore
Sigma Inc.) were first rinsed with 500 µl of water and centrifuged
for 15 min at 14,000 g to remove additives from the
manufacturing process. The rinsing process was repeated five
times after which the filters were air dried prior to serum
processing. An aliquot of 450 µl of serum sample was then
added to the pre-rinsed filter tube and centrifuged for 25 min
at 14,000 g. The serum filtrate containing free circulating polar/
ionic metabolites (i.e., non-protein bound fraction) was then
separately aliquoted for independent MSI-CE-MS and 1H-NMR
analysis. In this case, removal of serum protein by ultrafiltration
reduced spectral interferences for metabolite quantification in
NMR, as well as deleterious capillary surface adsorption and ion
source contamination in MSI-CE-MS. An aliquot of 50 µl was
used for MSI-CE-MS analysis while 280 µl was required for NMR
analysis. The serum filtrate (280 µl) for NMR analysis was then
diluted 1.25-fold with 70 µl of the NMR kit buffer and the
solution was vortexed for 30 s and transferred to a 5 mm
NMR tube. The serum filtrate (50 µl) for MSI-CE-MS analysis
was diluted 4-fold in deionized water containing several internal/
recovery standards, including 4-fluoro-L-phenylalanine (F-Phe,
20 µM), 3-chloro-L-tyrosine (Cl-Tyr, 20 µM), 2-
naphthalenesulfonic acid (NMS, 20 µM), and 13C6-D-glucose
(13C-glucose, 2 mM). The solution was vortexed for 30 s and a
20 µl aliquot was transferred into a polypropylene vial prior to
MSI-CE-MS analysis.
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Nuclear Magnetic Resonance Data
Acquisition
Data was obtained on a Bruker Avance III 700 MHz NMR
spectrometer (Bruker Biospin, Rheinstetten, Germany)
equipped with a 5 mm QNP cryoprobe, operating at
700.17 MHz for 1H and controlled by TopSpin software (v.3.5
for Linux OS). Data was collected at room temperature, using a
noesypr 1d pulse program with water suppression (Ravanbakhsh
et al., 2015). The acquisition and mixing time were set to 4 s and
100 ms, respectively. Spectra was acquired with eight steady state
scans with a field width of ≤80 Hz and O1P and spectral width
were set to 4.69 and 12 ppm, respectively. Each sample was
shimmed using a manual shimming protocol which included
Z6 shimming along the Z-X-Y axes before the Z-X-Y-XZ-YZ axes
to maintain a peak linewidth for DSS-d5 (<1 Hz) required for
automated MAGMET spectral processing. Each sample required
about 12 min to complete 128 scans.

Nuclear Magnetic Resonance Data Spectral
Profiling and Annotation
The raw NMR data was uploaded in a zip format (FID file) to
the MAGMET webserver (http://magmet.ca/users/login) that is
based on the automated 1H-NMR spectral processing of serum
filtrate samples as described previously (Ravanbakhsh et al.,
2015). Briefly, a standardized workflow is used to process NMR
spectral files, including Fourier transform/phase correction,
baseline correction, water suppression, spectral smoothing,
chemical shift referencing, followed by spectral
deconvolution and metabolite quantification from a library
of 47 serum metabolites. The following parameters were
selected: the biofluid was set to serum, spectrometer
frequency was set to 700 MHz, chemical shift (CS) reference
and CS concentration were set to 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS-d6) and 1,000 μM, respectively. The internal
DSS-d6 standard was used to calculate the concentration of all
metabolites detected in the serum filtrates by comparing the
peak area of individual metabolites in the spectra with the
known concentration of DSS-d6. Also, CPCA was used for
optimal automated phase correction based on its stable
chemical shift at 8.76 ppm. A list of identified metabolites
with their absolute concentration was outputted as a table
format from the webserver. Serum metabolites detected in
more than 75% of serum samples analyzed in this study were
included in the data matrix for statistical analysis and any
missing values and/or non-detects were replaced with half of
lowest detected value.

Serum Metabolomics by Multisegment
Injection-Capillary Electrophoresis-Mass
Spectrometry
AnAgilent 6230 time-of-flight mass spectrometer (TOF-MS) with a
coaxial sheath liquid Jetstream electrospray ion source with heated
nitrogen gas was equipped to an Agilent G7100A capillary
electrophoresis (CE) unit and used for the analysis of polar/ionic

metabolites under aqueous buffer conditions. An Agilent 1260
Infinity Isocratic pump, and a 1260 Infinity degasser were used
to deliver the sheath liquid at a rate of 10 μl/min. Separations were
performed on an uncoated open tubular fused-silica capillary with
an internal diameter of 50 μm and outer diameter of 360 µm
(Polymicro Technologies Inc., AZ, United States) with a total
capillary length of 135 cm. About 7 mm of the polyimide coating
was removed from both ends of the capillary using a capillary
window maker (MicroSolv, Leland, NC, United States) to reduce
sample carry-over and prevent polymer swelling and/or degradation
of the outer polyimide coating. Purine (10 µl) and hexakis (2,2,3,3-
tetrafluoropropoxy) phosphazine (HP-921, 10 µl) were added into
200ml of sheath liquid (0.1% vol formic acid in 60:40 MeOH:H2O,
and 50:50 MeOH: H2O for positive and negative ion mode,
respectively) to allow for real-time mass correction while also
monitoring for potential matrix-induced ion suppression effects
during separations since constant mass signals were detected atm/z
121.0509 and 922.0098 for purine and HP-921, respectively. The
instrument was operated in 2 GHz extended dynamic range under
positive and negative ion modes that spanned a mass range of m/z
50–1700. The data acquisition rate was set to 500ms/spectrum and
both profile and centroid data was stored in a “*.d” file format. The
electrospray ionization conditions were set to, 2000 V for the Vcap
and nozzle voltage during separation while turned off during
injection, nebulizer was turned off during injection but was set
to 10 psi during separation, while the drying gas was delivered at 8 L/
min at 300°C with a sheath gas flow of 3.5 L/min at 195°C. In
addition, the MS voltage settings for the fragmentor, skimmer and
Oct1 RF were set to 120, 65, and 750 V, respectively. Instrument
control and data acquisition were performed using Agilent
MassHunter Workstation LC/MS Data Acquisition Software
(B.06.01). New capillaries were conditioned by flushing at high
pressure (900mbar) with methanol for 30 min, 1.0M NaOH for
30min, de-ionized water for 30 min, and background electrolyte
(BGE) for 30 min. At the start of each day, the CE electrode andMS
interface was wiped daily with isopropanol:water (50:50) to avoid
salt build-up followed bymass calibration of TOF-MS instrument as
preventative maintenance measures.

All serum filtrate samples were analyzed by MSI-CE-MS under
two configurations prior to a 10 min capillary flush with BGE
namely an acidic BGE under positive ion mode for cationic/
zwitterionic metabolites (1 M formic acid with 15% vol
acetonitrile, pH 1.8), and an alkaline BGE under negative ion
mode for acidic metabolites (50 mM ammonium bicarbonate, pH
8.5 adjusted with ammonium hydroxide). Serial sample injections
in MSI-CE-MS were performed by alternating a hydrodynamic
injection for each serum filtrate (100 mbar for 5 s) followed by an
electrokinetic injection of BGE (30 kV for 75 s) to initiate
electrophoretic separation at the capillary inlet. This interrupted
separation process was repeated for a total of 13 serum samples that
were introduced in a randomized order within a single run byMSI-
CE-MS to ensure no effective loss in separation performance
(Saoi et al., 2019). An applied voltage of 30 kV at 25°C was used
for all runs in both positive and negative modes while a pressure
gradient of 2 mbar/min was applied during separation (total
time of 45 min) to allow for faster elution of slower migrating
metabolites. BGE and sheath liquid were degassed before use by
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sonication for 10min. Data normalization for peak integration
used 20 μM 4-chlorotyrosine (Cl-Tyr) and naphthalene
monosulfonic acid (NMS) as internal standards for positive and
negative ion mode, respectively with the exception of glucose (total
hexose) that used 13C6-glucose as it co-migrates with the
electroosmotic flow (Shanmuganathan et al., 2021). A recovery
standard, 3-fluorophenylalanine (F-Phe) was added to all serum
samples prior to ultrafiltration to monitor for technical precision
using control charts. Each sample effectively required 4 min to
analyze by MSI-CE-MS in each ion mode while including a pooled
quality control (QC) sample in every run. Metabolite identification
for serum metabolites was confirmed (e.g., co-migration, accurate
mass) by spiking authentic standards in pooled serum filtrates.
Serum metabolite quantification by MSI-CE-MS was achieved
using a six-point calibration curve (in duplicate) over a 100-fold
dynamic range with good linearity (R2 ∼ 0.998) after least-squares
linear regression with detection (S/N ∼ 3) and quantification (S/N
∼ 10) limits ranging from 0.2 to 0.5 μM to 1 and 2 μM, respectively
as summarized in the excel file of the Supplementary Material.

Statistical Analysis
Raw MSI-CE-MS data (*.d format) was processed using Mass-
Hunter Workstation Qualitative Analysis software (version
B.06.00, Agilent Technologies, 2012). A comprehensive study
of all detectable molecular features from the raw data was
performed using Mass-Hunter Molecular Feature Extractor,
Molecular Formula Generator tools, and an in-house
compound database. Molecular features were extracted using a
symmetric 10 ppm mass window and all ions were annotated
using their accurate mass (m/z), relative migration time (RMT)
normalized to an internal standard (Cl-Tyr, NMS, or
13C-glucose), and ionization mode of detection (p: positive, n:
negative). RMTs are reported since they are an important
parameter used to exclude redundant adducts and/or fragment
ion peaks, which exhibit identical RMTs as the parent compound.
Peak smoothing was performed using a quadratic/cubic Savitzky-
Golay function (7 points) prior to peak integration. Peak areas and
migration times for all molecular features and internal standards
were transferred to an Excel worksheet (Microsoft Office) and
relative peak areas (RPA) for each unique molecular feature was
saved as csv file. Molecular features detected in more than 75% of
all serum samples analyzed with a coefficient of variance (CV <
35%) for QC samples were included in the final data matrix for
further statistical analysis. Any non-detects were replaced by a
value that was half the detection limit, where the limit of detection
was set to the smallest value in the data set. Multivariate data
analysis such as principal component analysis (PCA), partial least
squares-discriminant analysis (PLS-DA) and receiver operating
characteristic (ROC) curves were performed using the online
webserver, MetaboAnalyst 5.0 (Chong et al., 2018), where data
sets were (generalized) log-transformed (glog) and auto-scaled
(PCA, PLS-DA) unless otherwise stated. Univariate statistical
analysis, including student’s t-test and ANCOVA (between-
subjects with adjustments for age, sex and BMI), and data
normality test (Shapiro-Wilk test, α � 0.05) were performed
using the Statistical Package for Social Science (IBM SPSS
Statistical for Windows, Version 20.0. NY, United States). The

inter-method comparison between MSI-CE-MS and 1H-NMR
serum metabolite concentrations was performed using Bland-
Altman %difference plots with MedCalc statistical software
(MedCal® Version 12.5, Ostend, Belgium). All
electropherograms, mass spectra and graphs were displayed
using Igor Pro (Wavemetrics Inc, OR, United States) or
Microsoft Excel (Redmond, WA, United States).
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Personalized medicine is probably the most promising area being developed in modern
medicine. This approach attempts to optimize the therapies and the patient care based on
the individual patient characteristics. Its success highly depends on the way the
characterization of the disease and its evolution, the patient’s classification, its follow-
up and the treatment could be optimized. Thus, personalized medicine must combine
innovative tools to measure, integrate and model data. Towards this goal, clinical
metabolomics appears as ideally suited to obtain relevant information. Indeed, the
metabolomics signature brings crucial insight to stratify patients according to their
responses to a pathology and/or a treatment, to provide prognostic and diagnostic
biomarkers, and to improve therapeutic outcomes. However, the translation of
metabolomics from laboratory studies to clinical practice remains a subsequent
challenge. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry
(MS) are the two key platforms for the measurement of the metabolome. NMR has several
advantages and features that are essential in clinical metabolomics. Indeed, NMR
spectroscopy is inherently very robust, reproducible, unbiased, quantitative, informative
at the structural molecular level, requires little sample preparation and reduced data
processing. NMR is also well adapted to the measurement of large cohorts, to multi-sites
and to longitudinal studies. This review focus on the potential of NMR in the context of
clinical metabolomics and personalized medicine. Starting with the current status of NMR-
based metabolomics at the clinical level and highlighting its strengths, weaknesses and
challenges, this article also explores how, far from the initial “opposition” or “competition”,
NMR and MS have been integrated and have demonstrated a great complementarity, in
terms of sample classification and biomarker identification. Finally, a perspective
discussion provides insight into the current methodological developments that could
significantly raise NMR as a more resolutive, sensitive and accessible tool for clinical
applications and point-of-care diagnosis. Thanks to these advances, NMR has a strong
potential to join the other analytical tools currently used in clinical settings.
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CLINICAL METABOLOMICS AND
PERSONALIZED MEDICINE

Amongst “omics” approaches, metabolomics is generally
presented as the last that appeared in terms of occurrence and
development, but also as the final biological and biochemical
stones in the complex networks of organisms. Indeed, this
approach aims at identify and quantify organic low molecular
weight molecules (<1,500 Da) belonging to different classes of
metabolites (Nicholson and Lindon, 2008; Patti et al., 2012).
These metabolites form the metabolome, which is composed of
endogenous but also exogenous biochemicals coming from
environment, life-style, food, medicines, microbiome and
which could be involved in catabolic and anabolic reactions
(Figure 1). Metabolomics is clearly correlated with the
functionality of the organism, while the other “omics” such as
genomics, transcriptomics and proteomics, are closest to its
capabilities (Figure 1). While the applications of metabolomics
are numerous and varied in areas such as food and natural
products quality controls (Lee et al., 2017; Li et al., 2021),
environmental studies (Viant, 2009; Bedia et al., 2018) or
agriculture (Kumar et al., 2017), the most highlighted and
probably the most promising application fields of this
methodology are clinical metabolomics and personalized
medicine (Wishart, 2016; Li B. et al., 2017; Kohler et al., 2017;
Nielsen, 2017; Tolstikov et al., 2017; Trivedi et al., 2017; Jacob
et al., 2019; Pang et al., 2019). Clinical metabolomics is a general
terminology that deals with all the applications of this approach
that involve human subjects. It includes fundamental studies of
diseases (Nielsen, 2017), searches for new biomarkers discovery
(Kohler et al., 2017) as well as for new therapeutic targets and
drug development processes (Powers, 2014; Cuperlovic-Culf and
Culf, 2016; Frédérich et al., 2016), epidemiology (Moayyeri et al.,
2013; Chan et al., 2017; Yu et al., 2019) and, recently, appears as
an interesting tool in the development of personalized or
precision medicine (Wishart, 2016; Li B. et al., 2017; Trivedi

et al., 2017; Jacob et al., 2019). Indeed, medical care is
continuously evolving toward a more patient-centered approach.

Personalized medicine is probably the most important
paradigm change in medical care that occurred during the last
few years and is clearly the future of modern medicine (Di Sanzo
et al., 2017; Elemento, 2020). This approach attempts to optimize
the therapies and the patient care based on the individual patient
characteristics (i.e., genetic dispositions, phenotype, life-style,
environmental parameters . . . ) and is expected to improve
treatment efficacy and the quality of life of the patients. The
keystone of this approach is linked to the ability of the clinicians
1) to precisely characterize the disease, 2) to stratify the patients
(i.e., according to genotype but also to phenotype), 3) to select the
right treatments adapted to the disease and the patient conditions
and 4) to follow the pathology and the treatment outcomes and to
predict their evolutions. Thus, the classical clinical tools currently
used must be improve so personalized medicine can reach such
ambitious objectives. Modern and innovative approaches are
instrumental to propose more robust and trustworthy
preventive/prognostic solutions, in order to measure, integrate
and model informative data that could help clinicians to select the
best option for the patient care. In this way, biomarker discovery
andmeasurement for longitudinal patient follow-up appear as the
cornerstones of personalized medicine (Kohler et al., 2017)

Given all these demands and needs, it is clear that clinical
metabolomics should play an important role in changing the way
patient care is approached. Patients’ metabolic profiles are very
dynamic and can be influenced by external or internal stimuli,
lifestyle and clinical changes and can be used to monitor and
explore cellular or tissue homeostasis as well as physiological and
pathological conditions (Wishart, 2016; Tolstikov et al., 2017). A
robust, quantitative and reproducible study of their metabolome
is then essential to accurately define their phenotype (Jacob et al.,
2019). Moreover, human pathologies are often complex, with
multiple molecular pathogenesis and heterogeneous clinical
pictures between patients and are not only driven by genetics

FIGURE 1 | Metabolomics in the field of other omics.
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but can also be strongly influenced by the function or dysfunction
of different metabolic and biochemical networks. These networks
are highly controlled by several internal but also external patient
parameters, and therefore, the identification and integration of
these parameters is essential for a better understanding of the
mechanisms that led to the causality and the development of a
pathology. Since it allows measuring the occurrence and
variations of metabolites in organs, tissues and biofluids to be
reported in a spatial and temporal manner, clinical metabolomics
is to be an essential tool and will play a major role for the search
for biomarkers, the identification of biochemical pathways
involved in a pathology, the study of the environment and
lifestyle influences and the treatment follow-up. However,
there are still many obstacles and challenges to overcome in
order to bring this approach from the laboratory to the clinical
practice (Pinu et al., 2019).

The study of the metabolome and the monitoring of
metabolites can be considered through two approaches: non-
targeted approach and targeted approach. Non-targeted (or
untargeted) metabolomics could be defined as the
comprehensive and extensive measurement of a larger number
of metabolites without a selection based on chemical class or
biological activity. This approach is most commonly used for
without a priori exploratory studies of pathologies and for the
discovery of new specific biomarkers. Targeted or biology-driven
metabolomics is the analysis of selected, chemically similar or
groups of biochemically annotated metabolites such as known
clinical biomarkers. It deals with quantitation or semi-
quantitation of a set of known metabolites. It currently
requires prior knowledge of the chemical or spectral properties
of the metabolites of interest. This approach is used to study
particular pathways, chemical families or biological activities and
is mandatory for validating the metabolites identified by an
untargeted strategy. Targeted metabolomics is particularly

suited to the longitudinal studies and monitoring of patients
and treatments that are essential in personalized medicine. Some
classes of metabolites have led to the development of specific
metabolomics fields. Lipids, which are considered an essential
and crucial class of compounds, led to an “omics” approach
named lipidomics, while sugars are studied in glycomics. Going
one step further, fluxomics, which is the analysis of metabolic
fluxes relying on labeled metabolic precursors, represents a very
interesting approach for the in-depth study of the intracellular
metabolism as well as the biochemical and metabolic pathways of
an organism.

The classical workflow of a metabolomics study consists of
several steps, as shown in Figure 2. The first step starts with the
biological and/or clinical questions and leads to the experimental
design, the choice of models and samples to be collected and
analyzed (biofluids, biopsies, cells). The second important step is
the measurement and analysis of the collected samples using
high-throughput technological platforms. After the measurement
and pre-processing of the data, statistical analyses are necessary to
extract the most relevant information to interpret the results
biologically and to identify metabolites or patterns that could be
considered as biomarkers of the pathology of interest. Depending
on the structure of the data, this usually requires reducing the size
of the data via multivariate statistical analysis or applying classical
univariate approaches. As these analyses deal with variance, all
experimental and analytical variabilities must be minimized in
order to reduce noise, avoid confounding factors and maximize
response. Finally, the features that have been identified can be
correlated to biochemical pathways and interpreted in the light of
the original question and/or hypothesis. Metabolomics is thus a
highly collaborative field that requires interaction between
biologists, analytical chemists and statisticians.

The accurate and complete measurement of the metabolome is
not an easy task at the analytical level (Kohler et al., 2017). Indeed,

FIGURE 2 | Workflow of a metabolomics study.
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the great diversity of metabolites both at the physico-chemical
level, the broad range of concentrations (up to mmol/L at best for
the most concentrated metabolites) as well as the associated
dynamic range detection issues represent probably the most
important and specific challenges for the classically used
analytical methods. Moreover, the analysis of complex
biological matrices is further hampered by the presence of
proteins, high ionic strength and the sample heterogeneity.
Therefore, pre-treatment of the samples is often necessary to
reduce these problems and to adapt the samples to the analytical
method. However, it is obvious that the more complex and time-
consuming this treatment is, the higher the risk of altering the
sample (in terms of metabolites composition) and the higher the
risk of introducing experimental variability.

Although the first work identified as relating to metabolomics
involved GC-MS in the 70th (Zlatkis and Liebich, 1971), Nuclear
Magnetic Resonance (NMR) quickly appeared to be a powerful
analytical technique in this field. This is mainly due to the fact
that NMR is a highly robust, reproducible and non-destructive
method that can be straightforwardly adapted to the analysis of
complex media (Emwas et al., 2019; Wishart, 2019; Sahoo et al.,
2020). Largely in minority before the 2000s, the use of mass
spectrometry (MS), coupled with chromatographic techniques
(Gas or liquid chromatographies- GC or LC) for metabolome
analysis has also been developed (Gowda and Djukovic, 2014;
Beale et al., 2018; Cui et al., 2018; Rampler et al., 2021). Indeed,
the need to better understand and characterize the metabolome,
as well as the advent of concepts such as biological systems and
metabolic networks and the use of metabolomics in the
discovery of disease-specific biomarkers, have made it
necessary to increase the number of metabolites identified,
especially those present in lower concentrations. In this
context, mass spectrometry coupled with chromatographic
techniques naturally appeared to be the most suitable
analytical platform, thanks to its favorable limit of detection.
This is mainly due to the rapid technological progress of this
technique, the accessible cost of routine instrumentation as well
as its impressive sensitivity compared to NMR. This have
progressively reversed the situation to the point where at
present the use of MS is applied in the majority of
metabolomics studies. This technological evolution inevitably
raises the question of the future of NMR in metabolomics and
more particularly in clinical metabolomics. On the one hand, if
one looks at the basic opposition of the two techniques by
comparing their sensitivity and the number of metabolites
detected, it’s a done deal. On the other hand, if we look in
more details at the situation, at the real needs in clinical
metabolomics, and if we humbly remember that no single
analytical technique can answer 100% of the questions, nor
cover 100% of the needs, it is possible to consider these two
approaches as perfectly complementary and equally essential,
each with its advantages, covering the deficiencies of the other
(this complementarity will be discussed in detail later in the
article). The right tool(s) for the right biological question(s)
must be the rule. Besides NMR and LC-MS (and to a lesser
extent GC-MS), which are the two most widespread platforms,
other approaches have also been or are being explored, such as

vibrational spectroscopy (i.e., FT-IR and Raman) (Du et al.,
2020; Sherman et al., 2020) and capillary electrophoresis
coupled or not with a MS detector (Maier and Schmitt-
Kopplin, 2016; Sasaki et al., 2019).

There are many studies comparing the advantages and
disadvantages of NMR and MS in the field of metabolomics
and it is not our intention here to add one more (Frédérich et al.,
2016; Kohler et al., 2016; Emwas et al., 2019; Wishart, 2019).
Instead, we want to focus on what NMR can bring to clinical
metabolomics and personalized medicine, how it can address the
challenges of these fields and how its use provides them with a
new opportunity and an added value (Markley et al., 2017; Emwas
et al., 2019; Takis et al., 2019; Giraudeau, 2020). Thus, the three
following chapters respectively highlight the current position of
NMR in clinical metabolomics, the complementarity of NMR
with MS and the recent and future developments of NMR in the
same field.

NUCLEAR MAGNETIC RESONANCE IN
CLINICAL METABOLOMICS AND
PERSONALIZED MEDICINE

To fully understand the role that NMR can play in clinical
metabolomics and personalized medicine, it is important to
keep in mind the weaknesses and strengths of this technique
in these particular applications. With this in mind, we will
examine how this analytical approach has been used
advantageously and successfully in a wide range of research
and projects and how its weaknesses can be improved.

Initial Limitations of Nuclear Magnetic
Resonance Approach
When discussing NMR and comparing it to other analytical
techniques, particularly MS, its lack of sensitivity and resolution
are often highlighted. In fact, despite significant technical
improvements in recent years, the limit of detectable and
quantifiable concentrations for hydrophobic metabolites in NMR
is often in the micromolar range, - a few tens of micromolar at best
on the typical metabolomics platforms. Moreover, the absence of
separative techniques preceding the NMR analysis often leads to the
overlapping of certain signals, which sometimes drastically reduces
the resolution, especially in 1D-NMR. While multi-dimensional
NMR techniques greatly improve the resolution (see Recent and
Future Developments in Nuclear Magnetic Resonance-Based
Metabolomics), sensitivity remains the main weak point of
NMR. Knowing that many metabolites in biofluids have
concentrations often close to or below the detection limit of
NMR, it is obvious that this technique can only visualize a small
part of the metabolome. However, this limitation should be
counterbalanced, on the one hand, because the part of the
metabolome that can be visualized and quantified by NMR is
often of crucial importance, and on the other hand because reliable
metabolomics analysis can be multiple and should not be boiled
down to the detection of a maximum number of metabolites.
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Advantages and Specificities of the Nuclear
Magnetic Resonance Approach and Its
Applications
Although the limitations of NMR have been briefly stated, we
must keep in mind some of its interesting characteristics to
understand why NMR is an analytical technique of choice in
the field of clinical metabolomics (Figure 3). First, NMR is highly
reproducible, and it has intrinsic quantitative properties. Second,
NMR is non-selective for analytes whose concentration is above
the limit of detection, allowing almost universal detection for all
organic molecules, depending of course of the sample preparation
applied. Third, it provides crucial structural information owing to
the high informative character of chemical shift and J-coupling
information contained in NMR spectra. Fourth, NMR is non-
destructive, which makes it possible to recover precious samples,
and most importantly allows multiple 1D and 2D experiments on
a single sample. As shown in Figure 3, all of these properties,
which will be detailed above, have a positive impact on clinical
metabolomics and enable many valuable NMR-based
metabolomics studies.

Robustness and Reproducibility
The robustness and high reproducibility of NMR relies on the
spectroscopic and physical measurement of samples. This
capability is very important in the context of statistical data
processing to minimize experimental variability and thus
increase the sensitivity of the approach. Furthermore, with an
adapted standardization of the acquisition parameters, NMR
could also potentially allow the comparison and the
integration of datasets from different instruments and/or
performed at several sites. This potential will greatly facilitate

biomarker validation. Indeed, the comparison of different
datasets is one of the challenges that clinical metabolomics
have to address in order to improve the quality and the
robustness of the results and reach the standard required to
enter into clinical practices. Moreover, coupled with automated
samples preparator and changers, NMR, and more especially 1H
NMR, allows high throughput measurements of samples. Thus,
this approach is currently the unique analytical platform that is
adapted to large scale epidemiology but also to longitudinal
studies as described in many recent publications (Jobard et al.,
2017; Locci et al., 2018; Sliz et al., 2018; Welsh et al., 2018; Vignoli
et al., 2019b; Debik et al., 2019; Deelen et al., 2019). For example,
Vignoli et al. analyzed by NMR-based metabolomics the serum
samples of 978 patients collected after an acute myocardial
infarction and that were clinically followed during 2 years. The
aim of this study was to explore if metabolomics profiles of
patients could be correlated with a higher death risk and could
enhance the existing prognostic risk models of death. Authors
demonstrated on both training and validation sets that
metabolomics data were relevant to identify high risk patients
and that combination of these data with existing scoring methods
was able to improve risk classification (Vignoli et al., 2019b). In a
same epidemiologic approach, Deelen & al. measure with a
standardized high-throughput NMR-based procedure, the
metabolome signature of more than 40,000 individuals selected
in several European cohorts. The aim to this study was to identify
metabolites that could predict long term mortality. Using a
stepwise procedure, they identified 14 circulating biomarkers
that are independently associated with all-cause mortality.
These markers could improve the existing score based on
conventional risk factors and could potentially be used to help
clinicians to define individual strategy for at risk patients (Deelen

FIGURE 3 | Properties of NMR that allow specific advantages for clinical metabolomics.
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et al., 2019). In another recent publication, urine NMR
metabolomics has been identified as an interesting pipeline
for large-scale epidemiology studies. This study demonstrated
that it was possible to quantify 43 metabolites and to assigned
more than 100 metabolites using a semi-automated
methodology in a 1,004 individuals’ cohort. Intra-assays
measurement of metabolites concentrations highlighted that
with a coefficient of variation (CV%) less than 5%, urine NMR
could provide highly robust and accurate results. However, the
authors also reported that, as expected, the intra-individuals’
variations in the metabolites over 30 days, as well as inter-
individuals’ variations are very high (respectively CV > 20%
and >40% for most of the metabolites). They conclude that high
throughput urine NMR-based metabolomics could be an
interesting and new base for epidemiologic and genetic
applications (Tynkkynen et al., 2019). At the longitudinal
level, Jobard et al. were able to follow-up by NMR-based
metabolomics two types of treatments of HER-2 positive
breast cancer patients (79 individuals) during 13 weeks (6
time-points). With this approach, the authors identified
which treatment led to the most relevant impact on the
patient’s metabolism and highlighted that this effect is still
observable several weeks after the end of the therapy. This work
demonstrated that metabolomics could be used to predict
clinical response or toxicity and tailored the treatment to
patients (Jobard et al., 2017).

Detection and Quantitation
NMR is often presented as a universal detector. Indeed, any
organic molecule with carbon, phosphorus, nitrogen or protons
present in a solution will give a specific NMR signal or signals. Of
course, for reasons of sensitivity and chemical and physical
characteristics, compounds with one or more protons are the
most easily detectable. Thus, within the detection limits of the
system, NMR can visualize all the molecules present in a sample,
without matrix or ionization effects that could affect the signal of
certain compounds, and depending on the sample preparation
applied. This property makes it possible to quickly visualize all the
samples in a cohort and to easily identify outliers and possible
subgroups. This is crucial for a better understanding of the
structure of cohorts or groups. Moreover, this “universal”
detection can be correlated with one of the most important
properties of NMR, namely that it could be intrinsically
quantitative. Indeed, not only signal intensity is directly
proportional to the concentration of a molecule (taking into
account the number of nuclei in the molecule), but if qNMR
conditions are ensured, such as full relaxation, sufficient signal-
to-noise and proper reference signal, the coefficient of
proportionality is the same for all peaks, making it possible to
quantify multiple analytes with a single internal or external
reference (Holzgrabe et al., 2005). Hence, under controlled
spectral conditions, NMR is one of the few techniques that
allows quantification without the need for reference
compounds or calibration curves. It is probably this feature
that makes NMR unique and a tool of choice for clinical
metabolomics. It is indeed clear that in the context of
personalized medicine, the longitudinal aspect of the

metabolomics studies is an essential point especially for
patient follow-up and treatment evaluation. Comparison of
metabolic profiles over time is not possible without a solid
baseline and robust values. Moreover, no biomarkers could be
useful without quantitation (Wishart, 2016). For multi-omics
integration, as well as for translational purposes and clinical
applications, absolute quantification appears as a keystone and
a requirement of metabolomics studies (Wishart, 2016; Pinu
et al., 2019). Depending on the biofluid or tissue examined,
several protocols, recommendations and commercial solutions
(such as Bruker IVDr NMR platform) have been proposed that
allow quantification of 50–150 metabolites in one experiment
through 1D NMR spectroscopy and in a range of concentrations
from µM to mM and with a huge reproducibility (Nagana Gowda
et al., 2015a; Emwas et al., 2016; Wallmeier et al., 2017; Jiménez
et al., 2018; Amiel et al., 2019). This number may appear relatively
small compared to the hundreds of metabolites that can be
identified in MS, but it should be borne in mind that we are
talking about quantification and not just identification.
According to the importance of the field, commercial
softwares, algorithms and workflows have been recently
developed to facilitate automated or high throughput NMR
quantification (i.e., Batman, Bayesil, Speaq 2.0, SasMeQ,
AQuA, SigMa, ChenomX) (Hao et al., 2012; Ravanbakhsh
et al., 2015; Jung et al., 2016; Verhoeven et al., 2017; Beirnaert
et al., 2018; Röhnisch et al., 2018; Khakimov et al., 2020). Some
recent publications have demonstrated the interest of
quantification in clinical metabolomics studies. For example,
in a targeted approach, 27 metabolites (mainly amino acids)
serum concentrations have been measured in a cohort of 157
smoker’s patients with and without chronic obstructive
pulmonary disease (COPD) and have highlighted that reduced
amino acid concentrations could be associated with an increase
incidence of respiratory exacerbation (Labaki et al., 2019). In a
longitudinal study of ischemia reperfusion injury in adult cardiac
surgery, NMR-based metabolomics on serum was used to follow-
up patients up to 20 h post-operatively. 57 metabolites were
quantified to get a longitudinal dataset that allow the
exploration of the time-dependent alterations related to
surgical trauma (Maltesen et al., 2020). NMR was also used to
quantify short chain fatty acid (SCFA) in patients stools and
demonstrated good correlations between high levels of SCFA,
hypertension and on non-dipping blood pressure profile. This
study highlighted the capability of NMR to easily quantify
metabolites in stools and to also understand the impact of
microbiota on human disease (Huart et al., 2019; Huart et al.,
2021a).

Metabolite Identification
The development of two-dimensional approaches (COSY,
TOCSY, HSQC, etc), coupled with methodological advances,
should make it possible to increase the number of metabolites
that can be detected and quantified (Féraud et al., 2020;
Martineau et al., 2020). These developments are further
discussed in Recent and Future Developments in Nuclear
Magnetic Resonance-Based Metabolomics. Interestingly, NMR
could also be used to guide MS quantification demonstrating
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the good complementarity between these two analytical platforms
(see Combining Nuclear Magnetic Resonance to Mass Spectrometry
in Clinical Metabolomics). Moreover, NMR is known to be the
technique that provides the most structural information to
characterize organic molecules. This can be extremely important
for the identification of known or still unknown or undescribed
metabolites (Dona et al., 2016; Wang et al., 2019). Accurate
identification of metabolites is obviously essential at different
levels for the accuracy and the relevance of the all the
metabolomics studies. During the last decade, the development of
metabolites databases and automated comparison tools increased
the possibility to assign metabolites by comparing the NMR data
between samples and reference spectra. We can cite HMDB (https://
hmdb.ca), which is probably the most complete in terms of
metabolites, BNL-NMR database (http://www.bml-nmr.org),
BMRB (https://bmrb.io/metabolomics/), Metabolight (https://
www.ebi.ac.uk/metabolights/) and some commercial software and
platforms that allow the identification and quantification of
metabolites (i.e., Bruker IVDr platform and ChenomX
software©). Many of these databases are interconnected to
increase their potency and include more or less complex
identification and search automated systems. Table 1 describes
the main characteristics of the open access and free databases.
Obviously, these spectral databases as well as the comparison,
identification and quantification tools still need to be improved
by adding newmetabolites spectra and data and by the development
of more powerful algorithms for the automation of metabolite
identification and quantification.

Multi-Nuclei Detection
Even if 1H is the most frequently detected atom in NMR-based
metabolomics, 31P and especially 13C can also be used in
metabolomics. Even if the sensitivity of 31P NMR is less than
that of proton, it remains extremely interesting to explore. Indeed,
phosphorus is an essential element in the biochemistry of the
organisms. Phosphorylation or dephosphorylation of enzymes and

proteins via kinases or phosphotransferases plays a key role in
many processes, while certain phosphorylated metabolites and
enzymes (NAD, NADH, NADP, UTP, CTP, ATP, ADP, AMP,
etc.) are the mainstays of the energy machinery of cells. Moreover,
phosphometabolites would represent more than 30% of the
metabolites identified (Mazurek et al., 1997). Phosphorus NMR
is still under-exploited at the moment, but because of its specificity,
it represents a unique tool that is very interesting to develop for
metabolomic applications (Bhinderwala et al., 2020). At the
organic level, carbon is undoubtedly the most interesting
element to examine, especially in NMR because it is present in
all the molecules of interest and its chemical shift range is much
wider than that of the proton, which considerably increases its
resolution and facilitate the identification of the biomarkers.
Unfortunately, 13C NMR suffers from a low sensitivity, owing
to the low natural abundance and gyromagnetic ratio of 13C nuclei.
Moreover, quantification is not as straightforward as with 1H
NMR. Therefore, direct carbon measurement is hardly ever
applied in the field of clinical metabolomics. Still, 13C
spectroscopic information can be obtained with enhanced
sensitivity via two-dimensional heteronuclear correlation
experiments with inverse detection such as HSQC and HMBC.
We have also to mention that 13C and sometime 15N observations
are also very important in fluxomics which aims to quantify fluxes
of metabolic reactions and is extremely important in in vivo and
in vitro fundamental studies of biological systems (Crown and
Antoniewicz, 2013; Niedenführ et al., 2015; Millard et al., 2017;
Giraudeau, 2020). For example, by using labeled substrate (i.e., 13C
labelled glucose or 15N glutamine), this approach allows to follow
the evolution of selected biochemical pathways by observing the
labeled metabolites that are formed over time. NMR is particularly
well suited for monitoring and quantifying the precursors and
products of these biochemical pathways. It also allows to easilymap
the location of stable isotopes and to determine the incorporation
points of markers in metabolites (Massou et al., 2007; Lane and
Fan, 2017).

TABLE 1 | The main free access NMR databases.

Databases NMR data Number of
metabolites

Automation search Quanta Others

HMDB 1D and 2D spectra, experimental
and raw data, chemical shifts list

>100,000 (not all with
measured NMR
spectra)

1D and 2D search according to
chemical shifts

No Multiple information about the metabolites
(concentrations in different fluids, physical
and biological properties, enzymes and
transporters, metabolic pathways . . . )
Very complete

BML-NMR 1D 1H and 2D J-resolved
spectra, experimental and raw
data, different spectral
conditions

208 Possible with J-resolved data Possible with
J-resolved data

Many experimental conditions are
proposed (experiment type, water
suppression, buffer, excitation angle and
relaxation delay)

BMRB 1D (proton and carbon) and 2D
spectra, experimental and raw
data, chemical shifts list

Repository for data 1D and 2D search according to
chemical shifts, to mass, to
solvent and field strength

No Many 1D and 2D spectral types, 3D
structure. Not limited to metabolitesHuge number of

metabolites

Metabolight Mainly 1D proton spectra,
spectral experimental conditions
and raw data

Repository for data According to name No Database containing many metabolomics
datasetsHuge number of

metabolites

aQuantification.
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Sample Preparation
The nature of biological samples analyzed in clinical
metabolomics is often complex and sometimes not directly
compatible with analytical techniques, especially NMR and
MS. This leads to the need to adapt pre-analytical protocols,
for example by precipitating proteins, which considerably
increases the complexity of the analyses by introducing a
significant risk of variability. However, in NMR, it has been
possible to develop spectral techniques that limit the pre-
analytical steps and thus the manipulation of the samples (e.g.,
CPMG pulse sequence to suppress protein signals, pre-saturation
pulse sequences to suppress the water signal). At this level, NMR
is therefore less time consuming and less likely to introduce
undesirable experimental variability (Beckonert et al., 2007;
Emwas et al., 2016; Vignoli et al., 2019a; Giskeødegård et al.,
2019; Snytnikova et al., 2019). The absence of chromatographic
techniques gives more flexibility to this approach and allows the
rapid analysis of classical biofluids (blood, urine, saliva,
cerebrospinal fluid) but also of various samples types (e.g.,
biopsies, cells, feces, bronchoalveolar lavage fluid) (Ciaramelli
et al., 2017; Kim et al., 2018; Romano et al., 2018; Albrecht et al.,
2020; Duarte et al., 2020). Due to the nature of the analytical
platforms used, most metabolomics experiments require the use
of liquid samples. For solid samples such as cells or biopsies, this
necessarily involves the insertion of a lysis step in the sample
preparation process (Beckonert et al., 2007; Matheus et al., 2014;
Kostidis et al., 2017; Mili et al., 2020). This step is sometimes
difficult to implement and can lead to a lack of reproducibility
and a loss of time. Direct observation of solid or semi-solid
samples would limit these drawbacks. The use of high-resolution
magic angle spinning (HRMAS) NMR spectroscopy enables the
measurement of metabolites in intact tissue or cells and the
detection of few dozens of compounds (Gogiashvili et al.,
2019; Ruhland et al., 2019; Tilgner et al., 2019). Even if the
resolution is lower than in classical high-resolution liquid NMR,
this unique application can be particularly interesting at the
clinical level, especially as a rapid diagnostic tool (10–15 min)
for the analysis of biopsies. Moreover, recent progress in the
miniaturization of such approach make it possible to limit its
invasive character, hence promising application perspectives in
clinics (Lucas-Torres et al., 2021).

Nuclear Magnetic Resonance-Based
Lipidomics
Lipids are a large group of biomolecules, classified, due to their
molecular weight, among the metabolites. Different subgroups
are often distinguished including fatty acids, glycerolipids,
phospholipids, sterols and more specifically, ceramides,
sphingolipids, acyl-carnitines, lipoproteins. They play a key
role in many biological processes since they can act as energy
reservoir, signal molecules, protein traffickers and of course main
constituents of plasma membranes (Gross and Han, 2011). Many
diseases (such as cancer, diabetes, cardiovascular diseases) and
pathological conditions are often accompanied by lipid
dysregulation (Lydic and Goo, 2018; Guo et al., 2020). Initially
included in metabolomics, the importance of this field, linked to

the physicochemical specificities of these compounds, to their
very huge number and to their essential biological role quickly led
to the appearance of a distinct approach called lipidomics
(Dennis, 2009). The analysis of lipids can face several critical
issues: 1) the complexity of the samples, the huge number of
compounds and their broad diversity of concentrations, 2) their
nature and the high number of isomers and isobaric lipids and 3)
their physicochemical properties. Mass spectrometry, generally
coupled with liquid or gas separative techniques, is currently the
analytical technique of choice for lipidome analysis, especially
since the development of devices providing additional separation
via ion mobility (Paglia et al., 2015; Jurowski et al., 2017; Leaptrot
et al., 2019). Due to its lack of sensitivity and resolution, the use of
NMR for lipidomics has been limited for a long time to
fundamental studies such as 1) determining the structure of
lipids of biological interest, 2) studying the structure and the
composition of plasma membranes using 13C-labeled precursors
and 31P NMR, 3) monitoring the impact of pathological
conditions on lipid metabolism. More recently, NMR
demonstrated its ability to be useful in classical lipidomic
analyses and to be a very interesting and complementary tool
to MS (Li J. et al., 2017; Gil et al., 2019). For example, 31P
spectroscopy could be chosen to monitor selectively and
quantitatively phospholipid classes. Moreover, even if it does
not allow, like MS, to finely separate lipids, proton NMR can
nevertheless be used to carry out quantitative studies of lipids
belonging to the different major classes. Several studies have thus
demonstrated the interest of this approach in clinical lipidomics
(Ouldamer et al., 2016; Curtarello et al., 2019; Bruzzone et al.,
2020; Huart et al., 2021b) and specific workflows and tools
(i.e., Lipspin) have been developed for semi-automated
profiling (Barrilero et al., 2018; Amiel et al., 2019; Johnson
et al., 2021). Recent developments in two-dimensional NMR
also open new perspectives to increase the resolution and the
identification of lipids (Marchand et al., 2018; Wang et al., 2020).
Another specific aspect related to NMR is its ability to profile
lipoproteins in blood (Soininen et al., 2015; Kostara et al., 2017;
Jiménez et al., 2018). Lipoproteins are supramolecular lipid
transporters classified by density ranging from Very Low-
Density Lipoproteins (VLDL) to chylomicrons. These particles
and more specifically their profile of distribution between the
different subclasses is particularly important to measure in
different pathological status such as cardiovascular diseases,
metabolic syndrome neuropathologies and degenerative
diseases (Catapano et al., 2016; Lambert et al., 2020). As
described in different papers of the literature, 1H NMR is
probably the most adapted methodology to obtain fine
quantitative profiles of lipoproteins (Jiménez et al., 2018).

Nuclear Magnetic Resonance
Metabolomics and Personalized Medicine
Personalized medicine is a new paradigm in patient care and thus
is still under development. It will be based on a better
characterization of the patient, his physiological state and his
response to treatment. Because it allows the discovery of
biomarkers and the stratification of patients, metabolomics, as
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well as pharmacometabolomics which evaluates their response to
treatment, are and will certainly be part, with genomics,
transcriptomics and proteomics of the key tools in this new way
of approaching pathologies (Wishart, 2016; Jacob et al., 2019; Beger
et al., 2020; Ashrafian et al., 2021). Its characteristics of
reproducibility, robustness, speed and its ability to quantify
metabolites, certainly position NMR as an analytical technique
of choice in metabolomics-based personalized medicine, especially
because longitudinal aspect is essential (Everett, 2017; Jacob et al.,
2019). As mentioned previously, clinical metabolomics and
personalized medicine approach are clearly connected.
Therefore, most of the recent studies in clinical metabolomics
are clearly oriented towards this personalization. Oncology is
certainly the field of application where personalized medicine
using “omics” is the most advanced (Yu and Snyder, 2016).
Indeed, a fine classification of patients, a better evaluation of
the efficacy of treatments and a clear vision of prognoses are
essential for effective patient management. Thus, several recent
studies and papers have demonstrated that NMR-based
metabolomics can be effectively applied to precision oncology
(Palmnas and Vogel, 2013; Hu et al., 2021; Vignoli et al., 2021).

Fingerprinting Approach and Application in
Clinical Biology
Among all the possible approaches developed in metabolomics,
fingerprinting is probably the one that has been applied first. It
refers to the non-targeted and without a priori metabolomics
studies that led to the identification of specific spectral or
chemical patterns that could be related to a pathological or a
particular status without identification of the metabolites
(Kosmides et al., 2013). This approach is obviously not
incompatible with the identification and quantification of
biomarkers, but it is focused on a more holistic view of the
metabolome and its possible transformation over time or under
the effect of a pathology. The possible diagnostic application of
fingerprinting is immediately obvious. However, it is equally
obvious that such an application inevitably implies
reproducibility, robustness, standardization of analytical
methods and capability for high throughput analyses as it is
the case in clinical biology. These are precisely among the
strengths of NMR. As previously mentioned, NMR is indeed
particularly well adapted to the study of large cohorts and thus to
fingerprinting (Amathieu et al., 2014; Rzeznik et al., 2017; Takis
et al., 2019). This approach faces several challenges and requires
obviously the development of specific workflows and
methodologies, especially for the multivariate analyses of the
raw data (Zacharias et al., 2018; Markley et al., 2019). Besides
the diagnostic models that metabolomic fingerprints can
generate, it could also be very useful in a preventive
framework, essential in the personalized approach to
treatment. Indeed, regular observation of the metabolomic
profile of patients would undoubtedly allow early identification
of deviations that could be linked to the onset of certain
pathologies (Takis et al., 2019).

Another important question concerning NMR-based
metabolomics is its interest and its capacity to become one of

the tools used in clinical practice and its interest compared to the
techniques used until now in clinical biology. The numerous
examples found in the literature demonstrate the strong potential
of metabolomics in clinics, but the transition from laboratory to
clinical practice is still a major challenge (Pinu et al., 2019). It can
only be filled by the transition of metabolomics to the standards
of quality, robustness and reproducibility required in clinical
biology and NMR certainly has an important role to play
(Ashrafian et al., 2021). It is clear that one of the first clinical
applications of metabolomics remains the discovery of new
biomarkers but that this approach, because of its holistic
aspect, can bring much more to the understanding of
pathologies, the prediction of their evolution, the stratification
of patients and the evaluation and adaptation of treatments. Far
from competing with existing tools, clinical metabolomics, once it
masters and standardizes its analysis and data processing
protocols, will undoubtedly provide essential information for
improving patient care. NMR, thanks to its analytical qualities,
its robustness and its ease of automation is undoubtedly a
technological platform that will find its place among other
instruments capable of providing clinicians with the data
necessary for diagnosis and monitoring of patients.

For the sake of completeness, we should also highlight in vivo
Magnetic Resonance Spectroscopy (MRS) which consists in
localized NMR spectroscopic acquisitions performed within
Magnetic Resonance Imaging (MRI) systems. It is the only
technique that allows in vivo investigation of the human
metabolome. (Rhodes, 2017; van de Weijer and Schrauwen-
Hinderling, 2019). In this review, we have focused on classical
high-resolution NMR spectroscopy without detailing in vivo or
imaging applications, which are vast areas of clinical interest and
would deserve a dedicated review. We will describe in the
following sections how NMR limitations have been or will be
challenged, what are the methodological and technological
evolutions that will allow NMR to evolve in the near future
and to remain a powerful analytical platform in metabolomics.
We will also examine how this technique can be advantageously
combined with other analytical approaches and why this
complementarity may represent a solution for improving our
knowledge and exploration of the metabolome.

COMBINING NUCLEAR MAGNETIC
RESONANCE TO MASS SPECTROMETRY
IN CLINICAL METABOLOMICS

The previous section demonstrated the strong potential that
NMR spectroscopy has within the field of clinical
metabolomics. However, it is well-known that NMR-based
metabolomics has some drawbacks, namely its lack of
sensitivity and the non-negligible signal overlap in routine 1D
1H experiments of complex biological samples. This limits its
application within several fields, including personalized
medicine. Indeed, signal overlap makes the difficult task of
metabolite identification and the subsequent biomarker
discovery even more difficult. As such and as explained
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previously, mass spectrometry based metabolomics became more
popular than NMR spectroscopy in a vast majority of
metabolomics applications (Letertre et al., 2021). However, MS
techniques come with their set of drawbacks as well: lack of
robustness and repeatability, and the difficulty to identify the
biomarkers corresponding to the numerous features detected in
MS spectra. These drawbacks are not to be ignored in clinical
research, as the discovery of biomarkers of a given pathology, or
biomarkers of an exposition to a therapeutic treatment, request
robust and repeatable methods for intra and inter-laboratory
comparison. To overcome the respective drawbacks of each
techniques and to combine their strengths, the
complementarity between both NMR spectroscopy and MS-
based metabolomics techniques has been discussed several
times in the past 15 years (Pan and Raftery, 2007; Marshall
and Powers, 2017; Letertre et al., 2021). In the following
section, different examples of studies combining both NMR
and MS-based metabolomics applied in clinical settings are
presented, and their advantages and drawbacks are discussed.

Nuclear Magnetic Resonance Hardware
Hyphenation to Mass Spectrometry
Hardware
Combining NMR with liquid chromatography (LC-NMR) and
further with MS (LC-NMR-MS) through hardware hyphenation
has been long done, especially in natural products analysis and the
different ways of doing it have been nicely described recently
(Gebretsadik et al., 2019). This approach has also been found useful
for drug metabolism (Shockcor, 2002) and pharmaceutical
research (Lindon et al., 2000; Lindon et al., 2002). For instance,
the combination HPLC-NMR with an ion-trap MS made the
identification of paracetamol metabolites and endogenous
compounds in human urine possible (Shockcor et al., 1996). By
successfully detecting phenylacetylglutamine, which was not
possible by using only 1H NMR, this triple-hyphenated system
overcame the NMR signal overlap issue. One the other hand, the
NMR part of the system was an essential tool to determine which
isomers of the paracetamol-glucuronide conjugate was present in
the sample (Shockcor et al., 1996). A similar investigation applied
this system to characterize ibuprofen metabolism in human urine
(Clayton et al., 1998). LC-NMR-MS was also used in parallel to 19F
NMR spectroscopy to investigate the metabolism of fluorinated
novel drug candidates (Dear et al., 1998) or drug intermediates
(Scarfe et al., 1999; Scarfe et al., 1998) within urine samples of
animal models and without requesting specific radiolabeling.
However, the community has lost interest in LC-NMR-MS
since the past decade, most certainly due to the technical
difficulties encountered by combining techniques coming with
orthogonal analytical requirements (Silva Elipe, 2003).

Combining Nuclear Magnetic Resonance
and Mass Spectrometry Datasets
To Increase Metabolic Coverage
Rather than hyphenating their respective hardware, combining
the datasets of NMR and MS-based metabolomics workflows has

had more success. The most obvious reason to use both NMR and
MS-based metabolomics is to increase the metabolic coverage,
thus increasing the chance of identifying new biomarkers. Indeed,
it is well emphasized within themetabolomics community that no
tools whatsoever offer a full coverage of the metabolic landscape.
Several studies nicely supported this assessment by using a Venn
diagram, which shows how the metabolite identification overlays
between the different platforms used. One of the most famous
example is a study of Human Serum Metabolome (Psychogios
et al., 2011). By using five analytical platforms (NMR
spectroscopy, LC-ESI-MS/MS, GC-MS, DFI-MS and TLC-GC-
FID), the authors were able to identify 3,764 compounds, from
which only 200 were commonly detected by at least two
platforms. Furthermore, this effort was completed by
quantitative data for some of the detected metabolites, and
although some of the results differed between platforms, good
agreement overall were found (Psychogios et al., 2011). The
combination of GC-MS, LC-MS and NMR was also applied to
explore a NIST standard reference material for human plasma
and its application in clinical laboratories. A total of 353
metabolites were identified, and whilst GC-MS was the
analytical technique showing the most of unique identification
(65), and that LC-MS and NMR identifications were found to
overlap, NMR still allowed to detect small sugars which were not
directly accessible by LC-MS (Simón-Manso et al., 2013). Similar
to the Human Serum Metabolome, a study focused on the mouse
skeletal muscle metabolome by combining NMR, FIA-MS, GC-
MS and LC-HRMS, highlighted 132 discriminant metabolites,
from which only 17 were detected by more than one analytical
platform (Bruno et al., 2018). Importantly, the analytical
approach proposed in this article was aimed to be easily
adapted for human clinical trials. In a final example, the effect
of therapeutic treatment on human gastric cancer cells was
assessed by metabolomics and lipidomics by using three
analytical platforms (NMR spectroscopy, GC-MS and LC-MS).
Once again, out of the 111 compounds detected, only 21 were
commonly highlighted by at least two analytical techniques
(Goulitquer et al., 2018). This proves the importance of using
multiple platforms if the aim of a given study is to capture the
metabolome as broadly as possible, or to carefully chose the
appropriate platform if only a specific subpart of the metabolome
is of interest, as the different requirements in term of sample
preparation as well as the very essence of the analytical platform
selected will give access only to a limited part of the metabolome.

To Correlate Variables Detected by Nuclear Magnetic
Resonance and Mass Spectrometry Techniques
Another way to show the limited overlap that can be observed
between NMR and MS datasets is to correlate their respective
signals, as it was done in a study focusing on colorectal cancer and
polyps serum samples that were analyzed by NMR spectroscopy
and targeted LC-MS/MS (Deng et al., 2016). It is clear that in
Figure 4B, the correlation taking into consideration only the
variables that were commonly detected by both NMR and MS
techniques represented only a small subset of all the features
detected either by NMR orMS (Figure 4A). However, correlating
the intrinsic covariance of signals detected by each of the
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analytical techniques can also serve as a tool to confirm
metabolite annotation made by one analytical technique, or to
acquire deeper knowledge on biomolecular reactions and thus to
enhance biomarker discovery. The first tool based on this
methodology was the so-called SHY (statistical
heterospectroscopy), based on a Pearson correlation method.
Crockford et al. showed positive or negative correlations
between NMR with LC-MS signals measured within urine
samples of rats treated with hydrazine as a proof-of-concept
(Crockford et al., 2006). This approach was further applied to
human urine samples, for instance to highlight biological
processes of inborn errors of metabolism by correlating NMR
and DESI-MS signals (Pan et al., 2007) or to successfully
investigate the xenometabolome of a random subset of an
epidemiological study (Crockford et al., 2008). In this last
study, new drug metabolites were discovered thanks to the
correlation between NMR and MS signals but also to the use
of MS tools to investigate ion fragmentations, such as MSE and
different collision energies (Crockford et al., 2008).

To Improve Statistical Models Through Multi-Block
Data Integration
The second advantage of combining NMR and MS-based
metabolomics datasets is to produce more robust and
trustworthy multivariate statistical models. To do so, multi-
block data fusion, or data integration, is gaining in popularity
within the metabolomics community (Doeswijk et al., 2011;
Boccard and Rudaz, 2014). Three levels are available to apply
data integration, often referred as low-, mid- and high-levels. The
difference between these levels have been clearly explained
previously (Boccard and Rudaz, 2014). Briefly, low-level data
fusion consists in taking the matrices obtained by each of the
analytical technique as they are, without performing multivariate
statistics on the individual blocks beforehand. Mid-level consists
in reducing the individual matrices before integration (e.g., by

selecting the most discriminant variables), and high-level data
fusion integrates only the global outputs of the individual
statistical models. Once the fusion matrix has been produced,
chemometrics can be applied, in a very similar way as for the
individual matrix, by using unsupervised and supervised
statistical analysis (Boccard and Rudaz, 2014).

In a first example which aimed at determining metabolic
differences between serum samples from breast cancer patients
and healthy controls, a mid-level data fusion approach was used
to enhance the discriminative performance of unsupervised
analyses and limit the misclassification of the supervised
analyses performed on the individuals NMR and the direct
analysis in real time (DART-MS) models (Gu et al., 2011). In
that end, another supervised analysis was performed by setting up
the Y variable to the first component of the unsupervised NMR
model, which performed better than the MS model, and the X
matric was set as the DART-MS dataset, containing more
variables. The resulting model performed better in term of
both discriminative and misclassification performances.
However this is not always the case, as shown in another
example where the discriminative power of supervised models
based on the combined NMR and GC-MS datasets did not
outperform the supervised models of the individual datasets
(Teul et al., 2009). Still, correlations between the discriminant
features of the multi-block model, which were detected by both
the NMR and GC-MS datasets, offered a better understanding of
the metabolic alterations lying in the plasma samples of patients
suffering from stable carotid atherosclerosis compared to controls
(Teul et al., 2009). This proves the benefits of combining those
two techniques to either help increasing the metabolic coverage,
improving multivariate analysis performance or have a deepest
understanding of the biological processes.

This is also well exemplified in a study which investigated the
metabolic profiles of human dopaminergic neuroblastoma cells
treated with different neurotoxins and analyzed by both NMR

FIGURE 4 | Increasing the metabolic coverage of serum samples from patients suffering from colorectal cancer and polyps, by using both NMR and MS analytical
platforms. (A)Correlation between all NMR and MS variables. (B)Correlation between the subset of metabolites (labeled in the figure) that can be detected by both NMR
and MS. The X axis provides an index of all NMR variables in the data matrix, and the Y axis provides an index of all MS variables in the data matrix. Reproduced with
permission from (Deng et al., 2016).
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and high-throughput direct-ionization electrospray ionization
MS (DI-ESI-MS) (Marshall et al., 2015). Firstly, the sample
preparation was optimized to propose a dual analysis of the
same sample which thus prevented extra sample handling.
Secondly, the discriminant power of the multi-block principal
component analysis (PCA) model which integrated the NMR
dataset with the DI-ESI-MS dataset through a low-level approach,
was clearly higher than the single NMR or DI-ESI-MS-based PCA
models. Finally, the metabolite identification of the discriminant
features were facilitated by accurate mass measurements and
fragmentation patterns obtained by tandem MS experiments
(Marshall et al., 2015). From top to bottom, this demonstrates
how it is possible to successfully combined NMR and MS dataset
to explore the effect of a specific treatment relevant to Parkinson’s
disease, and further clinical applications will most certainly be
observed in the coming decade. However, careful attention
should be paid to single block formatting during multi-block
integration, especially through a low-level approach. Indeed, the
aim is not to give too much weight to some variables or to one of
the block considered for the integration (Boccard and Rudaz,
2014). In the study discussed previously combining NMR with
DI-ESI-MS, each block were scaled to unit variance and by the
square root of its variable count (Marshall et al., 2015).

As highlighted by the above examples, data integration has a lot
of potential in clinical metabolomics, as the NMR and MS datasets
can be fused with metadata describing life-style factors from large
human cohorts. This was done in a study which aimed at observing
metabolic alterations in human plasma samples from patient
suffering from three different chronic diseases (acute coronary
syndrome, breast and colon cancers) (Acar et al., 2017). The
samples were analyzed by NMR and LC-MS (positive and
negative ionization) and the integration of these three blocks
with the metadata (Figure 5A), by using multiple kernel
learning, provided a model which outperformed the individual
models when it came to acute coronary syndrome (Figure 5B).
However, the fusion of the different datasets did not improve the
performance of the individual NMR model for the breast cancer
samples, and of none of the individual models for the colon cancer
samples (Figure 5C). In fact, the integration of the metadata can be
useful, as it can help picking up novel confounding factors, as it was
shown for metabolites linked to coffee consumption and smoking
habits (Acar et al., 2017), but these very same confounding factors
can also influence the selection of discriminative variables. This is a
problem often encountered in metabolomics and even though
several methods have been proposed to optimize the variable
selection step, such as the one based on sparse multi-block
PLSR for biomarker discovery (Karaman et al., 2015) or
backward variable elimination from PLS-DA models combined
with Monte Carlo Cross-Validation (Deng et al., 2016), this issue
remains a current limitation of data fusion.

Using Nuclear Magnetic Resonance and
Mass Spectrometry Strengths to Help
Metabolite Identification
Increasing metabolic coverage and sensitivity also means more
biomarkers to identify, which is obviously of major interest to

understand their roles in specific diseases. The complementarity
of the information that can be gathered by both NMR and MS-
based techniques represents also an advantage when it comes to
identifying biomarkers, especially when high resolution MS
(HRMS) is used to acquire accurate mass measurements from
parent compounds and their fragments in addition to the
structural information obtained by 1D and 2D NMR
spectroscopy. Detailed approaches to combine both have
actually been proposed, such as SUMMIT MS/NMR (Bingol
et al., 2015) or NMR/MS translator (Bingol and Brüschweiler,
2015a). The first one relies on HRMSmeasurements of a complex
sample, from which putative molecular formulas and scaffolds
can be proposed and NMR spectra predicted. Those predicted
spectra are then compared to experimental HSQC NMR spectra,
which have been deconvoluted for each of the sample metabolites
(Bingol and Brüschweiler, 2017). To put it simply, NMR/MS
Translator could be seen as the reverse of SUMMIT MS/NMR, as
it starts with 1D and 2D NMR acquisition, so putative
annotations can be made by comparing the experimental
NMR spectra to databases. For the best hits, the MS spectra
are predicted and then compared to experimental MS spectra
(Bingol and Brüschweiler, 2015a). This last approach allowed the
authors to identify new human urine metabolites which had
never been reported previously. It has also been suggested by the
same group that the SUMMIT MS/NMR approach could be
applied on analytes which remained unidentified even following
the application of the NMR/MS translator approach (Bingol and
Brüschweiler, 2017). Upon the fact that some of the steps of these
two approaches need to be automated in order to make the entire
process more rapid, it could promote the identification of
biomarkers in clinical research (Bingol and Brüschweiler,
2015b), but this has not really been widely applied yet.

Combining Nuclear Magnetic Resonance
and Mass Spectrometry Techniques in a
Quantitative Approach
Once the strengths of NMR and MS have been joined to increase
the metabolic coverage, to provide more powerful statistical
models and to identify new metabolites, new biomarkers of
interest can be highlighted. However, approaches combining
NMR and MS datasets often considers relative concentrations.
Needless to say, that this is not satisfactory for clinical
applications and on the contrary, absolute concentrations are
needed for intra- and inter-laboratory comparison, as well as to
compare data obtained with different analytical strategies. Recent
methods have been proposed toward that goal. One, called «
NMR-guided-MS quantitation », which consist in acquiring the
absolute concentrations of analytes present in a randomly
selected reference sample by NMR, which are then used as
concentrations of reference for the rest of the samples
analyzed by LC-MS/MS (Nagana Gowda et al., 2018). This
method was applied to quantify 30 human serum metabolites
in eight samples, and showed excellent correlations between the
concentrations obtained by NMR and the ones obtained by
NMR-guided MS, and good agreement between the NMR-
guided MS approach and stable-isotope-labelled internal
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standards (SIL IS) measurements by MS. However once
considering each of the metabolites individually, even though
most of them showed good correlations between NMR and
NMR-guided MS (e.g., R2 � 0.989 for proline), some
demonstrated very poor correlations (e.g., R2 � 0.207 for
pyroglutamic acid) (Nagana Gowda et al., 2018). This needs to
be seriously consider when it comes to clinical biomarker
discovery as whatever explanation lying behind those poor
correlations (e.g., glutamine cyclization (Purwaha et al., 2014;
Nagana Gowda et al., 2015a; Nagana Gowda et al., 2015b),
multiple or poor signals, ion suppression . . . ), it proves that it
is wrong to assume that MS can provide stable measurements of
all metabolites. To identify those unstable metabolites, or as an
alternative to labour-intensive calibration curves, the NMR-
guided MS can be of interest. Build on this approach, another
one has been proposed, based on the derivatization of the

reference sample with SIL IS and of the rest of the samples
with unlabelled IS (Fei et al., 2019). This new approach, called the
qNMR-MS, offers the possibility to reduce matrix effect but
presents the drawback of adding additional sample handling,
potentially limiting when large number of samples are
considered.

Nuclear Magnetic Resonance and Mass
Spectrometry Techniques as the Keystones
of Fluxomics
A branch of metabolomics which combines both analytical
platforms which gathered a lot of interest in clinical research
is Stable Isotope-Resolved Metabolomics (SIRM), also referred as
fluxomics analysis. SIRM offers the possibility to quantitatively
apprehend metabolic pathways and fluxes by measuring

FIGURE 5 |Multiblock data fusion applied to study the metabolic alterations in human plasma samples from patient suffering from chronic diseases. (A) Data sets
used in this study: metabolomics measurements (LC–MS and NMR), the metadata set containing life-style information, and the label information corresponding to each
sample. (B) Acute coronary syndrome. (a) Average ROC curves showing the forecasting performance of individual data sets as well as fusion methods for women and
men. (b) Boxplots summarize the performance of different approaches across 100 training/test sets. (C) Average ROC curves illustrating the forecasting
performance of (a) breast cancer and (b) colon cancer. Figure reproduced with permission from (Acar et al., 2017).
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isotopomers, by NMR, and isotopologues, by MS, following
labelling of a precursor molecule with stable isotope tracers.
Most importantly, one of the advantages of fluxomics is that it
can be done either in vitro or in situ. SIRM has thus the potential
to lift the veil on the metabolic mechanism of numerous diseases,
especially cancer (Lane et al., 2011; Lane et al., 2016; Lane et al.,
2019). More active glycolysis and Krebs cycle, as well as an
activated pyruvate carboxylation were for instance found to
promote tumour development in lung tissues (Fan et al.,
2009). The deep gain in knowledge on how diseases actually
work can clearly improve personalized treatment (Fan et al.,
2012). SIRM is probably the metabolomics branch presenting the
finest achievements in combining NMR and MS analytical
technologies to unravel disease understanding, but also the
most complex one. However tremendous efforts have been
done to promote rapid development of new computational
tools to help SIRM and other metabolomics branches to be
implemented in the long term within clinical laboratories.
These computational tools will also certainly help the
integration of SIRM findings, or metabolomics in general, with
other kinds of datasets, such as genomics, transcriptomics,
proteomics or clinical metadata to acquire a more in-depth
knowledge of biomolecular mechanism of a pathology.

Combining Nuclear Magnetic Resonance
and Mass Spectrometry Techniques for
Personalized Medicine: Where Do We
Stand?
Some studies apply both NMR andMS-based analytical strategies
to clinical research to combine the respective biomarkers of
interest, and include them in a common metabolic pathway
analysis, as it was done to study the primary membranous
glomerylonephritis and the subsequent nephrotic syndrome
that it can cause in adults (Taherkhani et al., 2019). Others
use NMR as a primary tool for open-profiling metabolomics,
and then use subsequent LC-MS/MS to confirm the results
obtained by NMR or to quantitatively target a subset of
metabolites. This approach was used to analyze 244 human
serum samples from the ECLISPE study and to identify
biomarkers of chronic obstructive pulmonary disease (Ubhi
et al., 2012), or to analyze 32 neonate urine samples and
identify biomarkers related to late-onset sepsis (Sarafidis et al.,
2017). Through an example of large epidemiological study
performed on 4,680 urinary samples from the INTERMAP
study, 1H NMR was also used for metabolic phenotyping
before applying GC-MS and LC-MS/MS to analyze the urinary
amino acids (Chan et al., 2017). Surprisingly when it comes to
large epidemiological cohorts, in the 47 studies reported in the
COMETS initiative (Yu et al., 2019), relatively few are applying
both NMR and MS-based metabolic profiling approaches. From
those, it is worse mentioning the AIRWAVE study (Elliott et al.,
2014), the MAC study (Chow et al., 2017), the MESA study (Bild
et al., 2002) or the TwinsUK study (Moayyeri et al., 2013). The
same observation can been done when it comes to metabolomics
biomarkers from acute respiratory distress syndrome, chronic
obstructive pulmonary disease and asthma (Bowler et al., 2017).

In another review focusing on preeclampsia, 16 metabolomics
studies were based on MS-data and 12 by NMR, but none were
employing both (Kelly et al., 2017). However and as nicely
pointed out in this review, combining both could provide
more robust and accurate preeclampsia metabolic profile, as
the metabolic coverage accessible with each methods in the
studies reviewed were not always comparable, also because of
the targeted approach often applied in MS which focus only on a
subset of the metabolome (Kelly et al., 2017). The integration of
NMR and MS metabolomics with other OMICS analytical
platforms gathered a lot of interest in the last 3 years in the
field of biomedical sciences (Manzoni et al., 2018), personalized
medicine (Jacob et al., 2019), environmental health (Yao et al.,
2019), microbiome research (Zimmermann et al., 2019) or
toxicology (González-Ruiz et al., 2019). Integration of different
OMICS platforms have even been of interest for personalized
medicine in human space flight (Schmidt and Goodwin, 2013).
Furthermore, optimized extraction protocol to analyzed on the
same sample the metabolites, the proteins and the lipids have
been proposed (Coman et al., 2016), so upon further
computational development, the perspectives of integrating
NMR-based metabolomics with MS-based metabolomics or
other OMICS will certainly promote its application within
clinical settings.

RECENT AND FUTURE DEVELOPMENTS IN
NUCLEAR MAGNETIC
RESONANCE-BASED METABOLOMICS

The first section of this review highlighted themajor role that NMR
plays as an analytical tool in clinicalmetabolomics. The second part
described how this role can be further strengthened by combining
NMR with other analytical techniques, especially MS-based
metabolomics. Nevertheless, there are still major challenges
posed to the NMR spectroscopists in order to further improve
the potential of NMR spectroscopy within clinical metabolomics
Indeed, NMR has well-known limitations. As mentioned in the
previous section, the main limitation is a reduced sensitivity
compared to other analytical methods and particularly MS. The
sensitivity of NMR at high magnetic field (>500MHz) is in the
micromolar range. This is sufficient to detect major metabolites in
biofluids or extracts, but relatively large sample amounts are often
required, and the detection of less concentrated, specialized
metabolites can be a challenge. A second limitation arises from
resolution issues, since it can be difficult to separate overlapping
metabolite signals in crowded spectral regions of the 1H spectrum.
Finally, a third reason whyNMR is less used thanMS in the clinical
world is the relatively high purchase cost of NMR instruments
(>1M€ for a 600MHz spectrometer) and the associated
consumption of cryofluids.

NMR spectroscopy would certainly be muchmore widely used
in the clinical world if the above-mentioned limitations were
circumvented. While these challenges are not new, several recent
(<10 years) methodological advances in the NMR community
have laid the foundations for a more sensitive, better resolved and
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more accessible NMR spectroscopy (Giraudeau, 2020). This part
focuses on such recent advances, which, in addition to the high
robustness of NMR spectroscopy, have the potential to provoke a
significant paradigm shift regarding the role of NMR for
biomedical applications. Some of them have already proved
their usefulness in the field while other rather offer mid-term
perspectives, but in our view, all are of interest to the fields of
clinical studies and personalized medicine.

Improving the Sensitivity
The sensitivity of NMR directly results from the level of nuclear
polarization, generally determined by a Boltzmann law at thermal
equilibrium. This results in relatively weak nuclear polarization
levels, for instance, only 0.000008 for 1H at 300 K in a 14 T
magnetic field -the typical NMR metabolomics configuration.
The most direct -but technologically challenging-approach
consists in increasing the static B0 field, since the sensitivity
increases with B0

3/2. NMR metabolomics experiments are
typically performed between 500 and 800 MHz, but magnets
up to 1.2 GHz are now commercially available, providing
impressive results on biofluids (Banci et al., 2019). However,
such very high field magnets only provide a modest sensitivity
gain (a factor 2.8 between 600 MHz and 1.2 GHz) while their cost
is at least ten times higher. On the hardware side, more promising
perspectives probably arise from the development of more
sensitive NMR probes. Cryogenically cooled probes can
provide a signal to noise ratio (SNR) improvement by a factor
3 to 4, however they are expensive and show limited efficiency for
samples with high salinity (Kovacs, 2005). On the one hand,
higher field and cryoprobes are well suited to improve the limit of
detection for a given sample volume, but on the other hand,
numerous small volume probes have been developed to analyze
mass-limited samples without compromising on sensitivity.
These include microprobes that can accommodate sample
volumes of a few tens of µL (Clendinen et al., 2014), but also
recent microfluidic-based probes that can detect metabolites at
sub-millimolar concentrations in sample volumes of ca. 2 µL
(Finch et al., 2016). The incorporation of such microfluidic
devices in NMR experiments also makes it possible to perform
flow experiments, opening great avenues for time-resolved
metabolomics. Patra et al. recently applied this approach to
non-invasive metabolomic monitoring of microfluidic cultures
with as few as 1,250 individual cells (Patra et al., 2021).

In addition to such magnet and probe advances that will
certainly enhance the performance of clinical NMR
metabolomics, great promises arise from hyperpolarization
methods, which have been the focus of many exciting
developments in the NMR community in the last 2 decades.
Indeed, these approaches can enhance the sensitivity of NMR
spectroscopy by up to four orders of magnitude by enhancing the
nuclear polarization to values close to unity. The two most
popular methods for hyperpolarization are para-hydrogen
induced polarization (Duckett and Mewis, 2013) and dynamic
nuclear polarization (Plainchont et al., 2018). Both have been
discovered many decades ago, but only recent developments have
made them applicable to the analysis of complex samples with
metabolomics relevance.

The first approach, para-hydrogen induced polarization, is
based on the transfer of hyperpolarization from H2 in the para
state to the nuclear spins of analytes (Duckett and Mewis, 2013).
While the initial approach involved a chemical hydrogenation
reaction, it was made more versatile and general by the
development of the SABRE technique (signal amplification by
reversible exchange) which involves the addition of a metal-based
complex to reversibly transfer the hyperpolarization to the
analytes (Lloyd et al., 2012). This method is very attractive for
practical applications since it is simple and relatively cheap.
However, it has a certain degree of selectivity since the SABRE
catalyst mainly binds to compounds containing electron-
donating heteroatoms such as nitrogen. SABRE-based
hyperpolarization has already been successfully applied to
quantify metabolites in natural extracts (Hermkens et al.,
2016). Although it has not yet been applied to a metabolomics
study, Tessari and co-workers were recently able to detect
numerous metabolites at nanomolar concentrations in solid
phase extracts of urine, which forms a promising perspective
for metabolomics (Sellies et al., 2019).

Parallel developments in the NMR world have been focusing
on another hyperpolarization technique, dissolution dynamic
nuclear polarization (d-DNP, Figure 6A) proposed in 2003 by
Ardenkjaer-Larsen and co-workers (Ardenkjaer-Larsen et al.,
2003). This approach consists in mixing the sample with small
amounts of free radicals, freezing it in a glass-forming solution at
liquid Helium temperature and in a static magnetic field, then
irradiating it by microwaves at the Larmor frequency of the
unpaired electrons. Under such conditions, the very high
polarization of the electrons is transferred to nuclei, leading to
polarizations close to unity within a few minutes. The frozen
sample is then rapidly transferred to a nearby NMR spectrometer,
where classical spectra can be obtained with sensitivity
enhancements by up to four orders of magnitude. The d-DNP
approach is technically demanding but very general, since all
metabolite signals can be enhanced in a non-selective fashion. A
more fundamental limitation arises from the decrease of
hyperpolarization during sample transfer, which occurs as a
function of nuclear longitudinal relaxation times (T1). As a
consequence, most applications of d-DNP have been focusing
on 13C nuclei, since their T1 can reach several tens of seconds,
especially for quaternary carbons. In the MRI community,
d-DNP has rapidly had a great impact on metabolic imaging,
with the first injection of hyperpolarized pyruvate to humans in
2013 (Nelson et al., 2013), and not less than 25 undergoing
clinical trials reported in 2019 (Ardenkjaer-Larsen, 2019). In
NMR spectroscopy, d-DNP has also been widely used to
investigate metabolic processes in real-time, for instance to get
insight into enzymatic kinetics (Wilson et al., 2010). In this
context, the application of d-DNP to extracts or biofluids
opens promising perspectives to enhance the sensitivity of
NMR metabolomics, and first steps towards this goal have
been reported recently. In 2015, Dumez et al. showed that
d-DNP could be applied to enhance the 13C NMR signals in
plant and cancer cell extracts at natural abundance (Dumez et al.,
2015), and in 2016, the very good analytical repeatability (<4%) of
the method was demonstrated (Bornet et al., 2016). Lerche et al.
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also reported a complementary approach relying on the
incubation of the targeted biological material with a13C-labeled
substrate (Lerche et al., 2017). More recently, in 2020, Dey et al.
demonstrated, on the example of plant extracts, the first
hyperpolarized metabolomics study at natural 13C abundance
(Figure 6B) (Dey et al., 2020). While these recent methods have
not yet been applied to clinical metabolomics, they could pave the
way towards the detection of biomarkers that were not accessible
by NMR so far. In particular, ongoing technological
developments to accelerate the sample transfer (Bowen and
Hilty, 2010) -thus making d-DNP compatible with 1H
detection- and to increase the lifetime of hyperpolarized
samples (Ji et al., 2017) could help spreading this promising
approach in the metabolomics community.

Improving the Resolution
Typical samples of metabolomics relevance are extremely
complex, since they contain a great diversity of metabolites.
Although NMR is not as sensitive as MS, resulting spectra can
be extremely complex and characterized by strong and numerous
peak overlaps that can alter the high analytical performance of
NMR. In a classical untargeted metabolomics workflow, several
NMR signals pertaining to different metabolites can be observed
within a single bucket, making it difficult to identify relevant
biomarkers. When quantitative data are being sought, the
accurate determination of peak areas is hampered by such
overlaps, leading to errors in concentration determination.
Signal processing methods can help deconvoluting individual
metabolite contributions, but such methods often rely on
databases which are specific of a given matrix prepared under
specific conditions (Hao et al., 2012; Lacy et al., 2014;
Ravanbakhsh et al., 2015). One can also rely on the detection
of heteronuclei, such as 13C, that offer a much broader chemical
shift dispersion compared to 1H (Clendinen et al., 2014).
However, due to a limited sensitivity, the routine application
of 13C NMR metabolomics will require highly sensitive detection

methods such as those reported in the previous paragraphs.
Fortunately, in addition to these approaches, many innovative
NMR methods -based on pulse sequence developments-have
been developed to simplify the analysis of complex mixtures,
that were successfully transferred to metabolomics in recent
studies, and there is not much doubt that at least some of
them will become part of the daily clinical metabolomics
workflow in a near future.

The most widely used strategy to better separate overlapping
signals in NMR of complex mixtures is to rely on multi-
dimensional methods such as 2D NMR. Indeed, in 2D NMR
spectra, peaks are spread along two orthogonal dimensions
(typically 1H–1H or 1H-13C), hence reducing peak overlap
while providing crucial information on atomic connectivity.
2D NMR has been used for decades to elucidate the molecular
structure of chemical compounds, including metabolites. In
metabolomics studies, popular experiments such as J-resolved
spectroscopy, COSY (correlation spectroscopy), TOCSY (total
correlation spectroscopy) or HSQC (heteronuclear single-
quantum correlation) are generally applied to a subset of
samples from a given study, or to a purified fraction of a
biological matrix, to elucidate the structure of biomarkers
(Mahrous and Farag, 2015). However, the systematic use of
2D NMR peaks volumes as a raw data in metabolomics
workflow is still far from routine. Nevertheless, this would
provide a great way to better extract individual metabolite
variations, since 2D peaks are much less prone to overlap than
their 1D counterparts. Indeed, early studies have shown the
potential of using 2D NMR in metabolomics. For instance,
Van et al. showed that 2D TOCSY spectra of mice urine
samples allowed to better characterize concentration changes
in low-concentrated metabolites compared to classical 1D
NMR (Van et al., 2008). Since then, 2D spectra have been
used in a number of metabolomics studies that highlighted the
relevance of using 2D NMR data in such context (Robinette et al.,
2011; Féraud et al., 2015; Puig-Castellví et al., 2018). An

FIGURE 6 | Potential of dissolution dynamic nuclear polarization (d-DNP) for highly sensitive 13C NMR metabolomics at natural abundance. (A) d-DNP
experimental scheme, where the sample is first hyperpolarized at liquid He temperature in a glass-forming solvent by microwave irradiation of free radicals, then rapidly
transferred through a magnetic tunnel to a classical NMR spectrometer where conventional detection occurs. (B) First application of this experimental scheme in a
natural abundance 13C metabolomics study, reported in 2020 by Dey et al. Scores plot of the principal component analysis (PCA) obtained from 40 spectral
buckets from hyperpolarized 13C spectra of 16 tomato fruit extracts at different ripening stages (green vs red). Integrals were normalized to Na-TSP-d4 as an internal
reference and to the weight of the sample used for extraction. Mean centering and unit variance scaling were used in PCA. (B) Reproduced from (Dey et al., 2020).
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additional benefit of 2D NMR is that it requires a less advanced
level of pre-processing, since data are already well separated at the
acquisition stage (Féraud et al., 2019).

However, a major obstacle which has limited the systematic
use of 2D NMR in metabolomics has been the long experiment
time needed to record 2D spectra with sufficient sensitivity and
resolution. Indeed, typical 2D NMR experiments may last
between a few tens of minutes until many hours since they
rely on the repetition of numerous 1D experiments with a
slight incrementation of a specific delay in the pulse sequence.
Such durations are not compatible with the high-throughput
analysis of large sample cohorts. They may also not be compatible
with time stability issues of some biological samples. Fortunately,
several methodological developments have been carried out to
accelerate the acquisition of 2D NMR spectra (Rouger et al.,
2016). These include spectral aliasing (Njock et al., 2010), fast
repetition techniques (Schanda, 2009), non-uniform sampling
(NUS) (Mobli and Hoch, 2014) or ultrafast (UF) spectroscopy
(Giraudeau and Frydman, 2014). The reader is referred to the
aforementioned reviews for detailed explanations on the
corresponding methodologies, but in summary, these methods
can accelerate the acquisition of 2D NMR spectra while
preserving a good sensitivity and resolution performance,
leading to reasonable acquisition times. A particularly
interesting feature of fast 2D NMR is that it offers many

different pulse sequences with complementary features that
make it possible to choose, for a given matrix and application,
the best compromise between experiment time, sensitivity and
resolution (Figure 7) (Martineau et al., 2020). Some of these
methods have been successfully applied in metabolomics
workflows. For instance, Marchand et al. showed that UF
COSY and NUS TOCSY applied to pig lipid serum lipid
extracts offered an improved detection of biomarkers
characterizing the administration of a growth promoted
(Marchand et al., 2018). Feraud et al. showed that NUS COSY
spectra recorded in less than 10 min provided a fast and efficient
approach for the profiling of human urine samples (Féraud et al.,
2020). It is also worth highlighting that most 2D NMR
approaches only provide information on relative metabolite
concentration variations between samples. However, when
associated with appropriate analytical procedures, fast 2D
NMR can yield accurate absolute quantitative data, which can
be an interesting alternative to 1D NMR when targeted
quantification of metabolites (Marchand et al., 2017). This
strategy has been applied, for instance, to the quantification of
metabolites in cancer cell extracts (Martineau et al., 2011; Le
Guennec et al., 2012).

Another promising perspective on the pulse sequence
development side arises from pure-shift NMR methods. The
term “pure-shift” refers to an ensemble of methodologies that

FIGURE 7 | Typical fast 2D NMR pulse sequences for high-throughput metabolomics and their corresponding spectrum obtained on a model mixture of
metabolites (A,D) Ultrafast 1H–1H correlation spectroscopy (UF COS)Y (B,E) Z-filter 1H–1H total correlation spectroscopy (ZF-TOCSY) with 50% of non-uniform
sampling in the indirect dimension (C,F) 1H–13C heteronuclear single-quantum correlation (HSQC) with 25% of non-uniform sampling in the indirect dimension. Pulse
sequences offer complementary performances in terms of speed, resolution and sensitivity. Adapted with permission from (Martineau et al., 2020).
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aim at transforming all NMR multiplets into singlets (Castañar,
2017). In the case of 1H NMR, pure-shift NMR provides a great
way of reducing peak overlap in the case of complex mixtures,
while retaining the simplicity of 1D spectra. These methodologies
suffer from a strong sensitivity penalty but could be attractive for
metabolomics workflows. Recent studies demonstrated the
potential of pure-shift NMR in plant metabolomics (Lopez
et al., 2019), and application to samples of clinical relevance
may occur in the coming years.

Finally, an alternative to these pulse sequence approaches to
simplify NMR spectra of complex mixtures is to rely on selective
methods that reduce the number of observable analytes. While
this strategy may seem counter-intuitive in metabolomics, such
methods can be of interest when focusing on a limited set of
targeted metabolites which can be of interest as markers of a given
pathology. Most promising strategies rely on “chemosensing”
methods such as the addition of charged nanoparticles that
selectively suppress NMR signals of metabolites whose charge
is opposite to those of the nanoparticles (Zhang et al., 2016), or
the coating of nanoparticles with ligands that selectively bind to
some classes of metabolites (Salvia et al., 2015).

Improving the Accessibility
A major challenge for a widespread clinical application of NMR
spectroscopy lies in the limited accessibility to NMR instruments
arising from their high cost, heaviness and high level of technicity
-including the regular handling of cryogenic fluids. Very exciting
perspectives arise along this direction from the recent
development of compact NMR spectrometers, which have
been made commercially available for a few years and have
already known a great success in chemistry labs and industries
(Singh and Blümich, 2016). Such spectrometers rely on
permanent magnets that do not require any specific
maintenance and which provide a medium magnetic field
(1–2 T) yielding a 1H resonance frequency between 40 and

100 MHz (Figure 8A) (Kuster et al., 2011). Benchtop NMR
spectrometers are transportable (<100 kg), low-cost (<100,000
€) and most commercial models can easily be used in both static
and flow configurations, which explains their success for chemical
applications. Of course, they also have a reduced performance
compared to high-field NMR spectrometer, with a lower
sensitivity and a limited ability to separate overlapping peaks
(owing to the small frequency range in Hz, while multiplet
structures such as J-couplings are invariant to the magnetic field).

In this context, it goes without saying that benchtop NMR will
not replace high-field NMR in the detection and structure
elucidation of low-concentrated biomarkers. But it could play
a significant role as an affordable and high-throughput metabolic
profiling tool at the point-of-care, especially when sample
amounts are not limited, e.g. urine samples. Along this line,
impressive results have been achieved by Wilson and co-workers,
who demonstrated that a 60 MHz commercial benchtop
spectrometer could detect and even quantify major metabolites
in urine within a few minutes, reaching limits of detection of ca.
25 µM (Percival et al., 2018). They also showed nicely resolved 2D
COSY spectra (Figure 8B) (Leenders et al., 2020), and they
eventually reported an efficient group separation between type
2 diabetes patients and healthy controls (Figure 8C). In another
recent study, Izquierdo-Garcia et al. showed that a tuberculosis
biomarker in urine -previously determined by high-field NMR-
could also be detected by benchtop NMR (Izquierdo-Garcia et al.,
2020).

While these results remain preliminary and will need to be
validated at a larger scale, they highlight how NMR spectroscopy
could soon make its way towards the patient’s bed and help as a
routine tool for rapid and accurate sample classification in a
clinical context. In addition, recent developments have shown
how high-resolution pulse sequences could be implemented on
benchtop spectrometers (Gouilleux et al., 2020). These include
solvent-suppression pulse sequences such as those used in routine

FIGURE 8 | Potential of benchtop NMR spectroscopy to make NMR metabolomics more accessible in a clinical context. (A) Typical benchtop NMR spectrometer
(B) 2D 1H–1H COSY NMR of type 2 diabetes urinary profile acquired at 60 MHz using a benchtop NMR spectrometer. Creatinine blue squares represent the long-range
connectivity cross-peak for this metabolite. Blue squares labelled A represent unassigned, unusual doublet resonances arising from ‘mirroring’ spectral signal located at
δ � 5.13–5.29 ppm (in this case, reflecting the α-glucose cross-peak). (C) Principal component analysis (PCA) scores plot of PC2 (17.04% of total variance) versus
PC1 (64.94% of total variance) for a preliminary investigation of distinctions between healthy control and type 2 diabetic cohorts, and also potential sample outliers.
Colour codings: blue, urine samples collected from healthy controls; green, those from type 2 diabetes participants. The black points represent scores plot centroids for
the two groups explored. PCA was performed using XLSTAT2014 software, and the dataset was TSP-normalised, generalised logarithmically (glog)-transformed and
Pareto-scaled prior to analysis. (A) Courtesy of Magritek GmbH. (B) Reproduced from (Leenders et al., 2020) under Creative Commons Attribution 4.0 International
License. (C) Reproduced from (Percival et al., 2018) under Creative Commons Attribution 4.0 International License.
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high-field NMR metabolomics, as well as methods which have
been described above to improve the resolution such as fast 2D
NMR or pure-shift approaches. Recent results highlighted the
potential of such advanced benchtop NMR methods for sample
classification (Gouilleux et al., 2018), and one can expect that
clinical metabolomics will benefit from such advances in the
coming years.

CONCLUSION

Thanks to intrinsic properties such as high reproducibility, the
possibility to quantify, a high degree of structural information, its
“universal” detection capacity for all organic molecules as well as
its adaptability in the analysis of biological samples, NMR very
early appeared as a platform of choice in clinicals metabolomics.
The numerous publications, works and results based on NMR
attest this fact and keep contributing to the development of this
approach. The recent progresses in mass spectrometry coupled
with liquid or gas chromatography, a more sensitive and higher
resolution technique, have progressively led NMR to play a
“second” role in metabolomic studies, raising the question of
its future in the field. However, the applications of metabolomics
in clinical research and personalized medicine have brought new
needs and challenges for metabolomics, such as the analysis of
large cohorts, the stratification and the longitudinal follow-up of
patients and the identification and quantification of biomarkers.
To face such multiple requirements and needs, NMR has real
assets and opportunities. Indeed, the many recent instrumental
and methodological developments aiming at improving both

sensitivity and resolution, as well as the demonstration of its
excellent complementarity with mass spectrometry, highlight
the leading role of NMR spectroscopy in clinical metabolomics
and in personalized medicine. The translation from laboratory
studies to clinical practice is another challenge that
metabolomics is facing and, in this respect, we are confident
that NMR will be one of the key analytical platforms that can
provide valuable and innovative solutions and opportunities
with a view to a personalized approach to medicine. Considering
the numerous promising perspectives mentioned in this review,
there is no doubt that the recent and future developments will
rekindle the flame of NMR spectroscopy in clinical metabolomics
for the next decades.
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Triple-negative breast cancer (TNBC) is the most fatal type of breast cancer (BC). Due to the
lack of relevant targeted drug therapy, in addition to surgery, chemotherapy is still the most
common treatment option for TNBC. TNBC is heterogeneous, and different patients have an
unusual sensitivity to chemotherapy. Only part of the patients will benefit from chemotherapy,
so neoadjuvant chemotherapy (NAC) is controversial in the treatment of TNBC. Here, we
performed an NMR spectroscopy–based metabolomics study to analyze the relationship
between the patients’ metabolic phenotypes and chemotherapy sensitivity in the serum
samples. Metabolic phenotypes from patients with pathological partial response, pathological
complete response, and pathological stable disease (pPR, pCR, and pSD) could be
distinguished. Furthermore, we conducted metabolic pathway analysis based on identified
significant metabolites and revealed significantly disturbed metabolic pathways closely
associated with three groups of TNBC patients. We evaluated the discriminative ability of
metabolites related to significantly disturbed metabolic pathways by using the multi-
receiver–operating characteristic (ROC) curve analysis. Three significantly disturbed
metabolic pathways of glycine, serine, and threonine metabolism, valine, leucine, and
isoleucine biosynthesis, and alanine, aspartate, and glutamate metabolism could be used
as potential predictive models to distinguish three types of TNBC patients. These results
indicate that a metabolic phenotype could be used to predict whether a patient is suitable for
NAC. Metabolomics research could provide data in support of metabolic phenotypes for
personalized treatment of TNBC.

Keywords: metabolomics, triple-negative breast cancer, metabolic pathway, ROC curve, NMR spectroscopy

INTRODUCTION

According to the American Cancer Society estimates, in the female patients, breast cancer (BC) was
the tumor with the highest incidence (about 30%) among the new invasive cancer cases in the US in
2020; in addition, BC had the second highest mortality rate, accounting for 15% among the new
cancer death cases (Siegel et al., 2020). Approximately 10–20% of all invasive BC cases were triple-
negative breast cancer (TNBC) (Kumar and Aggarwal, 2016). Due to the lack of estrogen receptor
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(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) expression, TNBC lacked standardized
treatment strategies (Yin et al., 2020). Chemotherapy is still the
most common treatment option for TNBC (Masuda et al., 2017).
Neoadjuvant chemotherapy (NAC) is controversial in the
treatment of TNBC. A part of the TNBC patients were
sensitive to chemotherapy drugs, and about 30–40% of
patients’ pathological symptoms disappeared completely. This
was defined as pathological complete response (pCR) (Liedtke
et al., 2008; Gluck et al., 2012). Patients whose pathological
symptoms have not changed at all were defined to have
pathological stable disease (pSD). Some patients’ pathological
symptoms were somewhere in between, and this was defined as
pathological partial response (pPR). On the contrary, the cancer
recurrence rate and metastasis rate of patients with residual
disease after NAC have greatly increased (Liedtke et al., 2008;
Masuda et al., 2013). After NAC differences in clinical response
and survival tips, it is necessary to consider a more detailed
classification in clinical TNBC. With the rise of metabolomics
research, differences in metabolic phenotypes could provide us
with a new idea of NAC for TNBC.

Metabolomics is the study of the multi-parametric metabolic
response of living systems to pathophysiological stimuli or genetic
modification (Nicholson et al., 1999). Metabolomics is a part of
systems biology, which is downstream concerning the other -omic
sciences (Vignoli et al., 2019). Metabolomics has a wide range of
applications, including human health and diseases (Johnson et al.,
2016), animals (Kirwan 2013), plants (Pontes et al., 2017),
microorganisms (Ramirez-Gaona et al., 2017), and other areas
(Kim H.-Y. et al., 2016; Munger et al., 2017). More and more
researchers were using metabolomics technology to study tumor
metabolism (Armitage and Ciborowski, 2017; Kumar and Misra,
2019). In the BC field, metabolomics has been fully applied
(McCartney et al., 2018). Four metabolites of glutamine, isoleucine,
threonine, and linolenic acid could be used as potential markers for
predicting response to NAC for BC, by comprehensive use of nuclear
magnetic resonance (NMR) spectroscopy and mass spectrometry
(MS) techniques (Wei et al., 2013). However, studies on the
prognosis of TNBC surgery have not been performed.

On the contrary, metabolomics was also applied to
individualize treatment (Jacob et al., 2019). Our early study
used NMR-based metabolomics for finding the new
biomarkers of colorectal cancer (Gu et al., 2019a). Mohammad
et al. reviewed the application of metabolomics in the prognosis
of acute coronary syndrome (Pouralijan Amiri et al., 2019).
Similarly, metabolomics was also applied to bariatric surgery
(Samczuk et al., 2018). In this study, we used metabolomics for
the evaluation of NAC for TNBC. Our work looks forward to
discovering metabolic phenotypes and differential metabolic
pathways between the patients with pCR, pPR, and pSD.

MATERIALS AND METHODS

Chemical Reagents
Deuterated reagents of D2O and sodium 3-(trimethylsilyl)
propionate-2,2,3,3-d4 (DSS) were purchased from Cambridge

Isotope Laboratories, Inc. (Andover, MA, United States).
Chromatographic grade methanol was bought from Sigma-
Aldrich (St. Louis, MO, United States). Other analytical grade
reagents (NaH2PO4·2H2O and K2HPO4·3H2O) were purchased
from J&K Scientific Ltd. (Beijing, China). All ultra-pure water
used in this study was produced by a Milli-Q IQ 7000 system.

Selection of TNBC Patients and Collection
of Serum Samples
TNBC patients were recruited and treated at the Department of
Breast Surgery, Zhejiang Cancer Hospital (tumor hospital
affiliated to the University of Chinese Academy of Sciences).
These female patients were enrolled in the study between 2019
and 2020. This study was performed in accordance with protocols
approved by the Zhejiang Cancer Hospital Ethics Committee.
The clinicopathological characteristics of participating subjects
are summarized in Supplementary Table S1. There were 52
patients in our study, of which 8 had pCR, 16 had pSD, and 28
had pPR. There was no difference in age and BMI index of these
patients. Based on T category, the classification of patients was
mainly concentrated in III and IV stages. The criteria for patient
selection included 1) pathologically confirmed primary TNBC; 2)
being in line with NAC indications; 3) age of 20–65 years; and 4)
performance status (PS) score 0–1. The criteria for patient
exclusion included 1) non-primary TNBC; 2) combination
with other malignant tumors; 3) not meeting NAC indications;
4) combination with blood system diseases and kidney diseases,
including hemophilia, aplastic anemia and myelodysplastic
syndromes, immune thrombocytopenia, sickle cell disease,
sickle cell trait, and other hemoglobinopathies, diabetes, and
thalassemias; 5) patients with advanced BC; 6) age >65°years
or <20°years; and 7) those who cannot tolerate chemotherapy and
surgery, or those who have a PS score >1.

The effect of NAC in the treatment of TNBC was
comprehensively obtained by magnetic resonance imaging
(MRI) and two-dimensional or three-dimensional ultrasound
and mammography with histopathology. According to these
test results, patients were divided into three groups, including
pCR, pPR, and pSD. Here, pCR indicates all tumor tissue is
disappeared, pPR indicates tumor volume is reduced by more
than 30%, while the tumor volume is reduced by less than 30% or
increased by not more than 20% in pSD (Neubauer et al., 2008).

Each patient had a light diet for 48 h before blood collection.
After blood collection (5 ml), it was coagulated and centrifuged
(4°C, 4,000 rcf, 15 min) to obtain serum. All serum samples were
frozen and stored in the −80 C refrigerator until the NMR
experiment.

Pretreatment of Serum Samples and
Acquisition of NMR Spectra
Before NMR data acquisition, the serum samples were thawed on
ice. 300 μL serum was mixed with 600 μL methanol (Tiziani et al.,
2008). Then, the mixed samples were stored in the −20 C
refrigerator for 30 min. The macromolecules in sera underwent
denaturation and precipitation and were removed by
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centrifugation (12,000 g, 4°C, 30 min). Then, all these supernatant
solvents were removed by the lyophilizer. The lyophilized
metabolites were redissolved in 450 μL of ultrapure water, and
then 50 μL of phosphate buffer (1.5 M K2HPO4/NaH2PO4, pH
7.4, D2O) was added for stabilizing the pH of serum and
deuterium lock-in NMR measurements. All samples were
analyzed in the BRUKER AVANCE III HD 600 MHz
spectrometer (BRUKER BioSpin, Germany). The one-
dimensional 1H spectra were operated in the TXI probe at
300 K by using a pulse sequence with water suppression
(NOESYPR1D [RD-90°-t1-90°-τm-90°-ACQ]) with 3s relaxation
delay and 120 m mixing time. The detailed acquisition
parameters were described in the following kinds of literature
(Gu et al., 2019b; Rohnisch et al., 2018; Shao et al., 2014). Then,
the metabolites were identified from the NMR spectra according
to the following reference (Rohnisch et al., 2018) and the HMDB
(http://www.hmdb.ca/) (Wishart et al., 2018). Meanwhile, the
two-dimensional (2D) NMR spectrum named “13C-1H HSQC”
(heteronuclear single-quantum coherence spectroscopy) was
used for the identification of metabolites (Bingo et al., 2016).

Multivariate Statistics
Data preprocessing including data organization, removal of
undesired areas, and binning was performed with MATLAB
2015b (MathWorks, Inc., United States). Minor adjustments in
peak alignment between different samples were performed using
the icoshift algorithm in MATLAB 2015b (Savorani et al., 2010).
At the same time, visualization of the data was also carried out in
MATLAB. According to the identified metabolites, we developed
and utilized a metabolite database in this study for metabolite
quantification. Using the same method of metabolite
quantification from the literature of Cuperlovic-Culf et al.
(2012), the relative concentrations of identified metabolites
were calculated, which were based on multivariable linear
regression of spectra with properly aligned metabolite data.
On the contrary, the calculation of the relative concentration
of the identified metabolites is also referred to as the AQuA
(Rohnisch et al., 2018). Before multivariate statistical analysis, all
data are normalized and par scaled. Then, principal component
analysis (PCA) was performed to show clusters among all
samples (Trygg et al., 2007). The partial least squares-
discrimination analysis (PLS-DA) was applied for
distinguishing the metabolic phenotypes among three groups
(Trygg et al., 2007), and the corresponding response permutation
test (RPT) was used for verifying the robustness of PLS-DA
models (Lin et al., 2019). The orthogonal PLS-DA (OPLS-DA)
was applied for differential metabolite analysis by using the
variable importance in projection (VIP) (Cloarec et al., 2005)
and the correlation coefficients (r) for the variables that are
related to the first predictive component (tp1) (Cho et al.,
2008). Besides, probability p values of the Kruskal–Wallis test
and fold changes were also calculated between the pSD group, the
pPR group, and the pCR group for assessing the statistical
significance of differential metabolites. These four parameters
(VIP value, correlation coefficients (r), p value, and fold change)
were employed in the enhanced volcano plots for visualizing the
differential metabolites (Hur et al., 2013; Lin et al., 2019).

Identifying the Disturbed Metabolic
Pathways
Metabolic pathway analysis was performed to identify
significantly disturbed pathways associated with the three
groups of TNBC patients in the Pathway Analysis module of
MetaboAnalyst 5.0 (www.metaboanalyst.ca/) according to the
relative concentration of the metabolites. Two parameters,
statistical p value and pathway impact value, were used to
evaluate the importance of the metabolic pathway. By
matching the different metabolites with the metabolites in
each metabolic pathway, the p value was calculated by the
hyper-geometric test (Goeman and Bühlmann, 2007). At the
same time, the pathway impact value was calculated from
the topological analysis using the out-degree centrality
algorithm through matched differential metabolites in
metabolic pathways (Chong et al., 2018). According to the
approaches described in other previous works (Gu et al., 2016;
Gu et al., 2020a), we identified significantly disturbed metabolic
pathways associated with p less than 0.05 and pathway impact
values greater than 0.3.

Analyzing the Discriminative Ability of
Disturbed Metabolic Pathways
Metabolomic analysis could help develop potential biomarkers
for early diagnosis in multiple medical fields (Ni et al., 2014;
Nobakht 2018; Gu et al., 2019a). In this study, the multi-
receiver–operating characteristic (multi-ROC) curve analysis
was operated on assessing discriminant capabilities of the
metabolites involved in the significantly disturbed metabolic
pathways (Zweig and Campbell, 1993; Gu et al., 2020b). In
multi-ROC curve analysis, the logistic regression arithmetic
was used for the classification of these three groups of
patients, and the area under the ROC curve (AUC) value was
used for evaluating the prediction performance of the metabolites
in the disturbed metabolic pathway as the AUC was greater than
0.70 (Mandrekar, 2010).

RESULTS

Characteristics of Enrolled TNBC Patients
In this prospective study, detailed clinical characteristics of the
participants are summarized in Supplementary Table S1. In our
study, we used the TNM system to stage cancer, which is
determined after cancer is assigned a letter to describe it,
including tumor (T), node (N), and metastasis (M). On the
contrary, a number after T (such as T1, T2, T3, or T4) might
describe the tumor size. Supplementary Table S1 shows that no
significant differences were observed in age, BMI, and clinical T
stage, between these three groups (p > 0.05).

Metabolic Profiles of Serum Samples
In the present study, all serum samples were collected from
TNBC patients before neoadjuvant chemotherapy. A total of
63 metabolites were identified and relatively quantified from
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the NMR spectra (Supplementary Table S2, Figure 1, and
Supplementary Figure S1), which were calculated out by
using the automated method based on multivariable linear
regression (Cuperlovic-Culf et al., 2012) in MATLAB (version
2015b, MathWorks, Inc., United States). Then, the multivariate
statistical analysis was utilized to analyze the quantitative data of
metabolites. Using the first three components, the PCA score
plots are shown in Figure 2. The metabolic phenotypes of the
three groups could be roughly distinguished (Figure 2A). Overall,
the pCR group was distinguished from the pSD group
(Figure 2B), and the pPR group was roughly distinguished
from the pSD group and pCR group (Figures 2C,D).

Furthermore, supervised multivariate statistical analysis was
also applied to distinguish the metabolic profiles. These PLS-DA
score plots and corresponding RPTs indicated the metabolic
phenotypes of the three groups could be distinguishable
(Supplementary Figure S2).

Comparison of the Relative Concentration
of Different Metabolites in TNBC Patients
According to the relative quantitative value of 63 metabolites in
serum samples, the mean and standard error of the mean (SEM)
were calculated for each group (Table 1). Then, we performed the
Kruskal–Wallis multiple-comparisons test to identify differential
metabolites with p < 0.05 (Table 1 and Supplementary Figure
S3). By comparing the serum metabolites of the three groups of
patients, it was found that a total of 26 metabolites changed in the
three groups. In the pCR group, there were 10 metabolites with
the highest relative concentration, including τ-methylhistidine,
phenylalanine, π-methylhistidine, lactic acid, glucose, alanine,
glutamic acid, citric acid, dimethylamine, and phosphocholine.
In the pSD group, these were seven metabolites with the highest
relative concentration, including valine, 2-aminobutanoic acid,

propionic acid, ethanol, proline, asparagine, and N,N-
dimethylglycine. In the pPR group, there were six metabolites
with the highest relative concentration, including 2-
hydroxyisovaleric acid, acetoacetate, trimethylamine, creatine,
myo-inositol, and ornithine, and there were five metabolites
with the lowest relative concentration, including isoleucine,
phenylalanine, threonine, dimethylamine, and
glycerophosphocholine.

Determination of Differential Metabolites
Between Different TNBC Patients
For analyzing the differential metabolites, the four-dimensional
enhanced volcano plots were used for data visualization (Lin
et al., 2017). Based on OPLS-DA models, the VIP value and
correlation coefficients (r) were calculated. The score plots of
OPLS-DA models also showed that the metabolic profiles of
different groups (pCR, pPR, and pSD) were differentiable
(Figures 3A–C). And the corresponding RPTs demonstrated
that the OPLS-DA models were not overfitting (Figures
3D–F). In the enhanced volcano plot (Figure 4), the
differential metabolites were determined using the following
four criteria: VIP value > 1, p value < 0.05, absolute log2 (fold
change) > 0.2, and correlation coefficient (r) > corresponding
threshold (|r|>0.297 in pPR vs. pSD; |r|>0.329 in pCR vs. pPR; |r|
>0.404 in pCR vs. pSD). The differential metabolites are located at
the upper-left and upper-right areas of the volcano plot with
larger circular shapes and gradually warm colors. In Figure 4A
(pPR vs. pSD), six metabolites were a significant difference.
Compared with the pSD group, three of the metabolites
(trimethylamine, glucose, and lactic acid) were increased and
three metabolites (N,N-dimethylglycine, proline, and
glycerophosphocholine) were decreased in the pPR group. The
relevant statistical parameters in Figure 4A are shown in

FIGURE 1 | NMR spectrum of metabolites used for multi-linear regression analysis of the global spectrum. Sixty-three metabolites used in the analysis included all
metabolites previously determined in the HMDB and also confirmed on the Chenomx NMRSuite. One-dimensional spectra of all sixty-three metabolites are shown along
with the outline of the average spectrum for the serum sample. Complete spectra of all metabolites were used in multivariate linear regression analysis.
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Supplementary Table S3. Compared with the pPR group, three
of the metabolites (lactic acid, glutamic acid, and alanine) were
increased and three metabolites (2-aminobutanoic acid, N,N-
dimethylglycine, and ornithine) were decreased in the pCR group
(Figure 4B). Similarly, the relevant statistical parameters in
Figure 4B are shown in Supplementary Table S4. Compared
with the pSD group, eight metabolites were a significant
difference, including three of the metabolites (lactic acid,
alanine, and glucose) which increased and five metabolites (2-
aminobutanoic acid, N,N-dimethylglycine, asparagine, proline,
and ornithine) which decreased in the pCR group (Figure 4C).
The relevant statistical parameters in Figure 4C are shown in
Supplementary Table S5.

Significantly Disturbed Metabolic Pathways
in Different Groups
Based on the differential metabolites, we identified significantly
disturbed metabolic pathways through pairwise comparison
(Figure 5). On comparison between the pSD group and the
pPR group, three metabolic pathways were changed, including
glycine, serine, and threonine metabolism, valine, leucine and
isoleucine biosynthesis, and alanine, aspartate, and glutamate
metabolism (Figure 5A). Simultaneously, on comparison
between the pCR group and the pSD group, more metabolic
pathways were disturbed, including glycine, serine, and threonine
metabolism, valine, leucine, and isoleucine biosynthesis, alanine,
aspartate, and glutamate metabolism, glutamine and glutamate

FIGURE 2 | PCA score plots of the relative concentration of metabolites’ data from three groups of TNBC patients: (A) all patients; (B) pSD patients vs. pCR
patients; (C) pSD patients vs. pPR patients; (D) pPR patients vs. pCR patients.
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TABLE 1 | Comparison of metabolite levels among the three groups on relative integrals calculated from 1D 1H-NMR spectra of TNBC patients’ serum samples.

Mean ± SEM Pairwise comparisons of Kruskal–Wallis test

pSD pPR pCR pPR vs. pSD pPR vs. pCR pCR vs. pSD

2-Hydroxybutyric acid 1.859 ± 0.052 1.877 ± 0.059 1.827 ± 0.124 0.656 0.497 0.638
2-Hydroxyisovaleric acid 0.612 ± 0.028 0.558 ± 0.028 0.540 ± 0.045 0.012 0.573 0.019
Isocaproic acid 0.067 ± 0.014 0.063 ± 0.016 0.100 ± 0.045 0.703 0.139 0.215
3-Methyl-2-oxovaleric acid 0.690 ± 0.023 0.662 ± 0.016 0.636 ± 0.024 0.058 0.092 0.005
Isovaleric acid 0.454 ± 0.046 0.489 ± 0.042 0.385 ± 0.090 0.279 0.068 0.212
Valine 0.066 ± 0.016 0.106 ± 0.018 0.162 ± 0.038 0.002 0.024 0.001
Isoleucine 0.326 ± 0.023 0.280 ± 0.021 0.317 ± 0.055 0.006 0.247 0.794
Leucine 1.355 ± 0.032 1.421 ± 0.057 1.544 ± 0.184 0.058 0.247 0.089
2-Aminobutanoic acid 0.450 ± 0.067 0.385 ± 0.073 0.188 ± 0.072 0.204 0.001 0.000
2-Oxoisocaproate 0.264 ± 0.016 0.257 ± 0.014 0.284 ± 0.049 0.507 0.327 0.465
Isobutyric acid 0.034 ± 0.007 0.033 ± 0.006 0.025 ± 0.011 0.812 0.194 0.157
Propionic acid 0.107 ± 0.004 0.098 ± 0.004 0.102 ± 0.007 0.006 0.342 0.348
Isopropanol 0.079 ± 0.007 0.075 ± 0.008 0.081 ± 0.005 0.427 0.264 0.683
Ethanol 0.151 ± 0.008 0.140 ± 0.006 0.133 ± 0.013 0.045 0.354 0.027
3-Hydroxybutyric acid 0.798 ± 0.118 0.753 ± 0.082 0.692 ± 0.142 0.543 0.488 0.278
Formic acid 0.005 ± 0.001 0.005 ± 0.001 0.006 ± 0.001 0.285 0.468 0.198
Hypoxanthine 0.006 ± 0.002 0.005 ± 0.002 0.004 ± 0.003 0.526 0.598 0.347
τ-Methylhistidine 0.075 ± 0.035 0.123 ± 0.030 0.169 ± 0.070 0.045 0.248 0.036
Histidine 0.584 ± 0.032 0.592 ± 0.037 0.530 ± 0.076 0.721 0.187 0.224
Hippuric acid 0.063 ± 0.013 0.080 ± 0.016 0.075 ± 0.030 0.123 0.765 0.488
Phenylalanine 0.174 ± 0.013 0.173 ± 0.025 0.218 ± 0.035 0.931 0.058 0.047
Tyrosine 0.214 ± 0.031 0.215 ± 0.024 0.216 ± 0.044 0.955 0.964 0.933
π-Methylhistidine 0.532 ± 0.018 0.578 ± 0.025 0.646 ± 0.074 0.004 0.132 0.019
Threonine 0.298 ± 0.023 0.261 ± 0.021 0.296 ± 0.055 0.023 0.277 0.965
Lactic acid 2.844 ± 0.300 3.363 ± 0.420 4.821 ± 0.778 0.044 0.007 0.001
3-Hydroxyisovaleric acid 0.229 ± 0.018 0.205 ± 0.017 0.250 ± 0.043 0.065 0.086 0.412
Proline 3.285 ± 0.140 2.978 ± 0.130 2.995 ± 0.161 0.002 0.857 0.013
Pyroglutamic acid 0.362 ± 0.042 0.349 ± 0.028 0.375 ± 0.041 0.601 0.335 0.689
Glucose 6.449 ± 0.591 7.571 ± 1.089 7.970 ± 1.421 0.042 0.678 0.043
Serine 0.997 ± 0.044 1.070 ± 0.081 1.055 ± 0.087 0.125 0.812 0.267
Glycerol 0.300 ± 0.047 0.262 ± 0.039 0.273 ± 0.086 0.244 0.827 0.627
Glycine 0.198 ± 0.025 0.225 ± 0.030 0.225 ± 0.050 0.168 0.692 0.364
Arginine 3.505 ± 0.094 3.582 ± 0.110 3.564 ± 0.234 0.303 0.848 0.666
Lysine 3.229 ± 0.112 3.341 ± 0.136 3.354 ± 0.243 0.221 0.937 0.381
2-Oxoglutaric acid 0.010 ± 0.004 0.009 ± 0.003 0.013 ± 0.016 0.624 0.627 0.726
Alanine 0.242 ± 0.048 0.300 ± 0.050 0.513 ± 0.085 0.111 0.001 0.000
Acetic acid 0.088 ± 0.006 0.098 ± 0.007 0.094 ± 0.011 0.062 0.635 0.346
Acetoacetate 0.012 ± 0.006 0.032 ± 0.012 0.023 ± 0.011 0.005 0.327 0.134
Glutamic acid 0.384 ± 0.068 0.402 ± 0.064 0.512 ± 0.072 0.678 0.037 0.017
Glutamine 0.863 ± 0.080 0.828 ± 0.092 0.936 ± 0.158 0.603 0.287 0.448
Pyruvate 0.053 ± 0.003 0.053 ± 0.004 0.062 ± 0.008 0.855 0.081 0.065
N-Acetylglycine 0.132 ± 0.009 0.119 ± 0.014 0.108 ± 0.021 0.131 0.414 0.075
Citric acid 0.006 ± 0.002 0.008 ± 0.002 0.016 ± 0.008 0.196 0.128 0.043
Methionine 0.199 ± 0.008 0.203 ± 0.010 0.211 ± 0.017 0.531 0.415 0.232
Acetone 0.018 ± 0.001 0.018 ± 0.002 0.020 ± 0.002 0.355 0.063 0.167
Aspartic acid 0.136 ± 0.018 0.139 ± 0.014 0.155 ± 0.013 0.823 0.135 0.121
Methylguanidine 0.024 ± 0.002 0.022 ± 0.003 0.026 ± 0.006 0.302 0.223 0.441
Asparagine 1.565 ± 0.112 1.452 ± 0.078 1.220 ± 0.211 0.121 0.084 0.013
Trimethylamine 4.513 ± 0.212 5.007 ± 0.298 4.912 ± 0.576 0.012 0.784 0.265
Sarcosine 0.016 ± 0.004 0.015 ± 0.003 0.021 ± 0.009 0.788 0.276 0.375
Dimethylamine 0.010 ± 0.001 0.009 ± 0.001 0.013 ± 0.002 0.674 0.021 0.027
N,N-Dimethylglycine 6.994 ± 0.217 6.424 ± 0.219 5.423 ± 0.443 0.002 0.001 0.000
Creatine 0.046 ± 0.014 0.069 ± 0.012 0.062 ± 0.022 0.022 0.702 0.224
Dimethyl sulfone 0.034 ± 0.002 0.036 ± 0.002 0.040 ± 0.005 0.401 0.186 0.088
Choline 0.217 ± 0.023 0.216 ± 0.014 0.196 ± 0.028 0.944 0.335 0.309
Phosphocholine 0.245 ± 0.035 0.279 ± 0.032 0.390 ± 0.054 0.189 0.003 0.002
Glycerophosphocholine 0.407 ± 0.036 0.325 ± 0.051 0.395 ± 0.127 0.020 0.502 0.799
Succinic acid 0.062 ± 0.004 0.060 ± 0.004 0.060 ± 0.007 0.403 0.952 0.608
Betaine 0.116 ± 0.033 0.098 ± 0.031 0.076 ± 0.034 0.448 0.421 0.215
Trimethylamine N-oxide 0.236 ± 0.043 0.209 ± 0.030 0.216 ± 0.083 0.225 0.884 0.567
myo-Inositol 1.022 ± 0.029 1.077 ± 0.042 1.057 ± 0.065 0.027 0.587 0.343
Creatinine 0.484 ± 0.018 0.502 ± 0.022 0.472 ± 0.043 0.277 0.208 0.658
Ornithine 8.057 ± 0.245 8.080 ± 0.264 7.454 ± 0.476 0.912 0.037 0.046

SEM means the standard error of the mean, confidence interval.
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metabolism, histidine metabolism, and arginine biosynthesis
(Figure 5B). On comparison between pCR and pPR groups,
we found the disturbed metabolic pathways were the same as the
metabolic pathways which were changed in comparison between
the pSD and pPR groups (Figure 5C).

Potential Discriminant Analysis of Disturbed
Metabolic Pathways in Different TNBC
Patients
Based on the discriminant capabilities of the significant
metabolites predicted from the multivariate ROC curve
analysis, we analyzed the potential discriminative ability of
disturbed metabolic pathways which could metabolically
discriminate the different TNBC groups (Figures 6–8).
Compared to the pSD group, three significant pathways
displayed good discriminant capabilities in the pPR group
with larger AUC values of 0.9129 for glycine, serine, and
threonine metabolism, 0.8638 for valine, leucine, and
isoleucine biosynthesis, and 0.8460 for alanine, aspartate,
and glutamate metabolism (Figure 6). More significantly, the

AUC values of N,N-dimethylglycine, valine, isoleucine, and
creatine were higher than the threshold (0.7813, 0.7366,
0.7254, and 0.7009) in these pathways. These results showed
that N,N-dimethylglycine, valine, isoleucine, and creatine could
be used as potential biomarkers to distinguish between the pPR
group and the pSD group.

Meanwhile, six significant pathways also showed good
discriminant capabilities when the pCR group was compared
with the pSD group (Figure 7), of which three of the same
significant metabolic pathways showed excellent distinguishing
ability (AUC values � 1) and the other three significant metabolic
pathways also had a good distinguishing ability with a larger AUC
value of 0.8047 for glutamine and glutamate metabolism, 0.8906
for arginine biosynthesis, and 0.9297 for histidine metabolism.
The metabolites involved in these significant metabolic pathways
also had a good ability to distinguish between pCR and pSD
groups. The AUC values of N,N-dimethylglycine and pyruvate
were higher than the threshold (0.9687 and 0.7734) in the
metabolic pathway of glycine, serine, and threonine
metabolism (Figure 7A). Valine and 3-methyl-2-oxovaleric
acid had an excellent distinguishing ability with larger AUC

FIGURE 3 |OPLS-DA score plots and corresponding permutation tests of the relative concentration of metabolites’ data from three groups of TNBC patients: (A,
D) pSD patients vs. pPR patients; (B, E) pSD patients vs. pCR patients; (C, F) pPR patients vs. pCR patients. In the RPT plots, the green square is R2 (cum), denoting the
explained variance of the model. The blue diamond is Q2 (cum), standing for the predictive ability of the model.
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values (0.9844 and 0.8281, Figure 7B). In the metabolic pathway of
alanine, aspartate, and glutamate metabolism, the metabolites of
alanine, glutamic acid, pyruvate, citric acid, and asparagine hadAUC
values that exceed the threshold (0.9609, 0.7734, 0.7734, 0.7734, and
0.8438, Figure 7C). The same, the metabolite of glutamic acid
showed the same discriminative ability in the metabolic pathway
of glutamine and glutamate metabolism (Figure 7D). Similarly,
ornithine had good discriminative ability in the metabolic pathway
of arginine biosynthesis with 0.7856 AUC value (Figure 7E), and
π-methylhistidine had good discriminative ability in the metabolic
pathway of histidine metabolism with 0.8516 AUC value
(Figure 7F). According to this multi-ROC curve analysis, the
metabolites of N,N-dimethylglycine, pyruvate, valine, 3-methyl-2-
oxovaleric acid, citric acid, asparagine, ornithine, and
π-methylhistidine could be used as potential biomarkers to
distinguish between the pCR group and the pSD group.

On comparison between the pCR group and pPR group
patients, these three significant pathways also had a good
discriminative ability with larger AUC values (Figure 8). In

the metabolic pathway of glycine, serine, and threonine
metabolism, the AUC values of N,N-dimethylglycine and
pyruvate were higher than the threshold (0.8795 and 0.7366,
Figure 8A). In the metabolic pathway of valine, leucine, and
isoleucine biosynthesis, valine was the metabolite that mainly
contributed to the discriminative ability with a larger AUC value
(0.7902, Figure 8B). In the metabolic pathway of alanine,
aspartate, and glutamate metabolism, only alanine and
pyruvate contributed to the discriminative ability of this
metabolic pathway (0.8928 and 0.7366, Figure 8C). According
to this multi-ROC curve analysis, N,N-dimethylglycine, pyruvate,
valine, and alanine could be used as potential biomarkers to
distinguish between the pCR group and the pPR group.

According to the AUC values from the multi-ROC curves by
differential metabolites, the AUC values of the pairwise
comparison of N,N-dimethylglycine and valine were greater
than 0.7. These two metabolites (N,N-dimethylglycine and
valine) could be utilized as most potential biomarkers to
distinguish among these three groups.

FIGURE 4 | Enhanced volcano plots showing significantly different metabolites: (A) pSD patients vs. pPR patients; (B) pPR patients vs. pCR patients; (C) pSD
patients vs. pCR patients. The volcano plot shows log2 (fold change) on the x-axis and -log10 (p value) on the y-axis. Each point represents a metabolite. Circles’ size and
color are determined based on the variable importance in projection (VIP) and absolute correlation coefficient values (|r|), respectively. For each comparison, the larger the
VIP value, the larger the size of the circle, and the warmer color corresponds to higher |r|; the gradient blue means |r| is less than 0.297; the gradual bright yellow
means |r| is greater than 0.297 and is less than 0.384; the gradient red means |r| is greater than 0.384.
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DISCUSSION

In this experimental study, we used the NMR-based
metabolomics technology to predict the different sensitivities
of NAC for TNBC patients. Our study found that the
metabolic phenotype could classify the sensitivity of NAC,
although each group of TNBC patients has different clinical
and histopathological parameters. Some studies used
transcriptomics to study the chemotherapy sensitivity of
TNBC. Ozge Saatci et al. found lysyl-oxidase (LOX) to be a
key inducer of chemoresistance in TNBC by whole-transcriptome
sequencing (RNA-seq) (Saatci et al., 2020). In the same way, some
research studies used metabolomics technology to analyze the
predictive aspects of NAC of cancer (Wei et al., 2013; Hou et al.,
2014; Yang et al., 2018). Meanwhile, our research was more
focused on the differences in the overall metabolic pathways to
distinguish the three groups of TNBC patients.

In our study, the resulting prediction models (OPLS-DA
models) have high sensitivity and specificity. Through pairwise
comparisons (pSD vs. pCR; pSD vs. pPR; pPR vs. pSD) by
using the AUC values in multi-ROC curve analysis, three
significant metabolic pathways of glycine, serine, and
threonine metabolism, valine, leucine, and isoleucine
biosynthesis, and alanine, aspartate, and glutamate
metabolism could distinguish three groups in pairs. The
metabolic pathway of glycine, serine, and threonine
metabolism is linked to human BC invasion by comparing
metabolic profiling of BC cells with different metastatic
potentials (Kim S. et al., 2016). N,N-Dimethylglycine is
involved in glycine, serine, and threonine metabolism, and
also the methylation product of glycine. Biochemical
methylation reaction mediates the transfer of methyl groups
and regulates life activities. Ming Zhang et al. found the seven
differentially methylated sites (DMSs) that were highly

FIGURE 5 | Significantly disturbed metabolic pathways calculated in the comparison of three groups of TNBC patients: (A) pSD patients vs. pPR patients; (B) pSD
patients vs. pCR patients; (C) pPR patients vs. pCR patients.
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correlated with cell cycle as potential specific diagnostic
biomarkers for BC patients (Zhang et al., 2020). Branched-
chain amino acid metabolism was reprogrammed during
tumorigenesis in many types of human cancers (Holecek
2018; Peng et al., 2020; Sivanand and Vander Heiden,
2020), including glioblastoma (Zhang et al., 2021), non-
small-cell lung cancer (NSCLC) (Mayers et al., 2016), BC
(Zhang, 2017), and ovarian cancer (Wang et al., 2015). In
our work, we found the patients with different responses to
NAC (pSD, pPR, and pCR) had different reprogramming
metabolic pathways of valine, leucine, and isoleucine
biosynthesis. Alanine, aspartate, and glutamate metabolism

was reported to function as an alternative carbon source that
fuels tumor metabolism (Sousa et al., 2016).

On the contrary, the other three metabolic pathways only
could be used to distinguish between the pCR group and the
pSD group. Glutamine and glutamate metabolism was
perturbed in many types of cancers (Mates et al., 2019).
Glutamine and glutamate metabolism has indispensable
functions to provide amino acids, lipids, nucleotides,
hexosamines, and polyamines, but also to render metabolic
energy (ATP) (Mates et al., 2020). Meanwhile, glutamine and
glutamate metabolism could regulate glutathione (GSH), the
most important intracellular antioxidant molecule (Mates

FIGURE 6 | Multi-ROC curves assessing discriminant capabilities of the significantly disturbed metabolic pathways in the pPR patients compared with the pSD
patients. The AUC values shown in brackets are used to evaluate the performances of various biomarker models: (A) glycine, serine, and threonine metabolism; (B)
valine, leucine, and isoleucine biosynthesis; (C) alanine, aspartate, and glutamate metabolism.
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FIGURE 7 | Multi-ROC curves assessing discriminant capabilities of the significantly disturbed metabolic pathways in the pCR patients compared with the pSD
patients. The AUC values shown in brackets are used to evaluate the performances of various biomarker models: (A) glycine, serine, and threonine metabolism; (B)
valine, leucine, and isoleucine biosynthesis; (C) alanine, aspartate, and glutamate metabolism; (D) glutamine and glutamate metabolism; (E) arginine biosynthesis; (F)
histidine metabolism.
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et al., 2018). Cancer cells frequently increase oxidative damage
in response to changes in glutamine and glutamate metabolism
(Mates et al., 2020). In our study, the significant metabolic
pathway of glutamine and glutamate metabolism could
distinguish different metabolic phenotypes between the pCR
group and the pPR group. This result indicates that the
oxidative stress state of the BC patients’ microenvironment
is different. Arginine biosynthesis was linked to the metabolic
regulation of nitric oxide synthesis in cancer (Keshet and Erez,
2018). Paniz Jasbi et al. also found the arginine/proline
metabolism was disturbed in the BC patients by using the

targeted plasma metabolomics (Jasbi et al., 2019). Von Mach-
Szczypiński et al. found histidine metabolism was abnormal in
tissues of primary ductal BC (von Mach-Szczypinski et al.,
2009a; von Mach-Szczypinski et al., 2009b). Similarly,
histidine metabolism was abnormal in the serum of primary
ductal BC (Sieja et al., 2005). Our research results also verify
this result.

Since the chemotherapy response prediction for cancer
remains challenging around the world, this promising
metabolomics approach might open a new view for patients
to select the promising treatment or even a truly “personalized

FIGURE 8 | Multi-ROC curves assessing discriminant capabilities of the significantly disturbed metabolic pathways in the pCR patients compared with the pPR
patients. The AUC values shown in brackets are used to evaluate the performances of various biomarker models: (A) glycine, serine, and threonine metabolism; (B)
valine, leucine, and isoleucine biosynthesis; (C) alanine, aspartate, and glutamate metabolism.
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treatment” in clinical practice. Compared with other studies
on single or multiple molecules as potential biomarkers, our
research was more focused on the overall differences in
metabolic pathways or metabolic phenotypes as potential
biomarkers.

Our study analyzed differences in the metabolic phenotypes
of TNBC patients with different sensitivity to neoadjuvant
chemotherapy by using NMR-based metabolomics and then
constructed a prediction model based on the metabolic
phenotype. Three significant metabolic pathways of glycine,
serine, and threonine metabolism, valine, leucine, and
isoleucine biosynthesis, and alanine, aspartate, and
glutamate metabolism could distinguish groups of patients
with no, partial, or complete response. Additional three
significant metabolic pathways of glutamine and glutamate
metabolism, arginine biosynthesis, and histidine metabolism
could distinguish groups of patients with no or complete
response. Although this study only involved a small number
of patient cohorts, the results have shown that these several
metabolic pathways have good distinguishing ability for
different patients with no, partial, or complete response. Of
course, we need more clinical cohort samples for verifying
these results. This method could be used as a preoperative
choice for efficacy evaluation for patients with BC neoadjuvant
chemotherapy.

LIMITATION

This study has the limitation that we lack of verification of
other data of transcriptomics, proteomics, etc. Furthermore,
given our relatively small sample size, our observation still
remains to be verified in a large cohort. Thus, follow-up studies
involving long-term studies of a large cohort of TNBC patients
receiving NAC are required.
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