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Editorial on the Research Topic

Integrative Analysis of Genome-Wide Association Studies and Single-Cell Sequencing Studies

Genome-wide association studies (GWAS) have identified thousands of genetic loci that are
significantly associated with complex traits and diseases status. However, the functions/roles of
the majority (∼90%) of these associations remain poorly understood. Systematic characterization
of their function is challenging because the function of variants of most traits likely acts in a
tissue or cell-type specific fashion. The recent advances of single-cell sequencing technologies that
enable characterization of epigenetic, proteomic, and transcriptomic profiles at individual cell,
providing an unprecedented opportunity, alongside computational challenges, to comprehensively
understand the functions/roles of associations in complex traits within the cellular perspective.

Therefore, integrating known functional cell-type specific annotations (e.g., cell-type specific
expression levels etc.) into GWAS can potentially prioritize functional genetic variants and improve
the performance of genomic predictions. Although various integrative analysis methods have been
developed for such analyses, there is a pressing need to develop computationally scalable tools for
large-scale GWAS, such as UK Biobank, China Kadoorie Biobank and FINNGEN. To address
this need, this Research Topic focuses on integrative analysis to highlight the interpretation of
genome-wide associations by leveraging the recent advances in single-cell sequencing studies.

In this special issue, we accepted 9 manuscripts on genome-wide association studies and/or
single-cell sequencing in both methodology development and data analysis. We summarized the
main contribution of these studies as follows:

Li et al. developed multiple computational approaches to deconvolve the bulk transcriptome
data from whole kidney tissue with lupus nephritis (LN) into immune cell type-specific fractions
and revealed that intrarenal mononuclear phagocytes might be an adjunctive histology marker for
forecasting LN onset and retarded remission induction, which may facilitate on treatment and
monitoring of LN patients.

Xiao et al. performed transcriptome-wide association study (TWAS) analysis on amyotrophic
lateral sclerosis (ALS) and applied summary data-based Cauchy Aggregation TWAS (SCAT), a
flexible p-value combination strategy, to integrate association signals from multiple brain tissues,
and identified 5 new ALS-associated genes. Extensive simulations demonstrated that the proposed
method can produce well-calibrated p-value for the control of type I error and more powerful to
identify trait-association signals against single-tissue TWAS analysis.
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Chen et al. performed genetic correlation analysis, gene-based
association analysis, and pleiotropy-informed informatics
analysis with coronary artery disease (CAD) and chronic kidney
disease (CKD) related GWAS summary data, and identified
common genetic architectures between the CAD and CKD,
which may help to understand of the molecular mechanisms
underlying the comorbidity of both diseases.

Gong et al. performed an integrative analysis of TWAS
and mRNA expression profiles for idiopathic pulmonary
fibrosis (IPF), and identified multiple novel candidate genes,
GO terms and pathways for IPF, which would potentially
contribute to the understanding of the genetic mechanism
of IPF.

He et al. developed a new computational tool, single cell
mixed model score tests (scMMSTs), to identify differentially
expressed (DE) genes in single cell RNA sequencing (scRNA-seq)
data with zero-inflation using the generalized linear mixedmodel
(GLMM). Both simulations and real data analysis indicated that
scMMSTs have more powerful performance in defining DE genes
of zero-inflated scRNA-seq data with batch effects compared with
the existing methods.

Ye et al. performed an integrative analysis on several GWAS
and scRNA-seq data from chronic liver diseases (CLD), and
identified B cell and NK cell as potential HCC-related cell types,
which may supply clues for understanding the pathogenesis of
CLD from a new angle.

Liu et al. developed a new agglomerative nesting clustering
method for phenotypic dimensionality reduction analysis
(AGNEP), which integrates agglomerative nesting clustering
algorithm (AGNES) and principal component analysis (PCA)
to detect genetic associations between SNPs and multiple
phenotypes in GWAS. With extensive simulations and real
data applications, AGNES shows more powerful performance in
statistical power, computing time, and the number of quantitative
trait nucleotides (QTNs).

Zhang et al. developed a flexible and scalable mixed
linear model (MLM)-based method, the fast multi-locus ridge
regression (FastRR), for QTNs dissection in GWAS. With
simulations and real data applications, the results showed that the
FastRR is more powerful for both large and small QTN detection,

more accurate in QTN effect estimation, and has more stable
results under various polygenic backgrounds.

Wang et al. developed a new deep convolutional neural
network (CNN) of residual neural network (ResNet) on the
whole-slide pathology features of breast cancer H&E stains
and the patients’ gBRCA mutation status, and the results
demonstrated that the proposed method largely improve the
prediction accuracy, which may potentially improve the cancer
prognosis and therapeutics by utilizing biological markers
currently imperceptible to clinicians.

With the further development of omics techniques and related
analytical methods, integrative analysis on multiple omics data
from the perspective of all in one will help to comprehensively
understand the mechanism of complex traits and diseases status
in large extent.
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Objective: A challenging issue in the clinical management of lupus nephritis (LN) is
the resistance to immunosuppressive therapy. We postulated that perturbed intrarenal
immune cell landscape affected LN onset and remission induction, and shedding light
on the characteristics of intrarenal immune cell infiltration could cultivate more efficient
treatment regimens.

Materials and Methods: Genome-wide expression profiles of microarray datasets
were downloaded from the Gene Expression Omnibus database. The CIBERSORT
algorithm was used to analyze the intrarenal immune cell landscape, followed by
Pearson correlation analysis and principal component analysis. The differentially
expressed genes were identified and subjected to Gene Ontology (GO) enrichment
analyses and protein-protein interaction network establishment, being visualized by
Cytoscape and further analyzed by CytoHubba to extract hub genes. Hub genes were
also validated in the genomic dataset from kidney biopsy-proven LN patients.

Results: In addition to memory B cells, monocytes and M1 macrophages were
identified as two predominantly increased intrarenal immune cell types in LN-prone
NZB/W mice upon nephritis onset. Most interestingly, apart from memory B cells,
monocytes and M1 macrophages proportions in kidney tissue were significantly lower
in early remission mice compared with late remission mice. Furthermore, GO analysis
showed that intrarenal mononuclear phagocytes triggered nephritis onset mainly via the
initiation of adaptive immune response and inflammatory reaction, but this functional
involvement was mitigated upon remission induction. Hub genes related to LN onset
in NZB/W mice were validated in the genomic dataset from kidney biopsy-proven
LN patients.
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Conclusion: LN characterizes aberrant mononuclear phagocytes abundance and
signature upon disease onset, of which the reversal is associated with early remission
induction in LN-prone NZB/W mice. Mononuclear phagocytes might be an adjunctive
histology marker for monitoring disease onset and stratifying LN patients in terms of
response to remission induction therapy.

Keywords: lupus nephritis, immune cell landscape, mononuclear phagocytes, NZB/W mice, CIBERSORT

INTRODUCTION

Lupus nephritis (LN) predominantly manifests as immune
complex-mediated glomerular and tubulointerstitial immune
complex deposition and inflammation. LN occurs in 40–
60% of systemic lupus erythematosus (SLE) patients and
accounts for one of the most prevalent and serious organ
complications during the course of their disease (Lisnevskaia
et al., 2014; Hanly et al., 2016). Introduction of corticosteroids
and other immunosuppressants have profoundly contributed
to improved treatment of LN. Nevertheless, a challenging
issue in clinical practice is that 20% to 70% of patients
diagnosed with LN are documented to be resistant to standard
immunosuppressive regimens (Ginzler et al., 2005). Despite
the absence of consensus denotation for a complete response
after induction therapy, refractory LN is commonly denoted
as failure to achieve clinical remission following proper
induction immunosuppressive treatment (Chen et al., 2008).
During the past decade, some clinical trials aimed to optimize
therapeutic approaches by prolonging therapeutic course,
increasing glucocorticoid dosage, or adding a calcineurin
inhibitor ended up with varying success. In the meantime,
although biomarkers for nephritis occurrence have increasingly
being identified, a reliable way of predicting or determining
which kind of patients will respond to induction therapy is
scarce. Therefore, a more comprehensive understanding toward
the mechanisms of refractory LN is demanded to generate highly
specific predictive biomarkers and highly efficacious therapeutic
approaches. Murine models that spontaneously develop SLE
contribute a lot to our understanding of human disease and
are extensively employed for the identification of effective
therapeutics. Notably, the NZB/W F1 mice (F1 hybrid between
New Zealand Black mouse and New Zealand White mouse,
hereafter referred to as NZB/W mice) is featured by hypercellular
renal impairment and fibrinoid necrosis, resembling the lesions
that occur in human LN kidney biopsies. Intriguingly, induction
therapy using a single dose of cyclophosphamide (CYC)
administered in combination with six doses of CTLA4Ig
(cytotoxic T-lymphocyte-associated protein 4 immunoglobulin
G) and six doses of anti-CD154 (triple therapy) promptly reverses
albuminuria and stabilizes kidney function in NZB/W mice with
established nephritis (Schiffer et al., 2003), which has made it
possible to dig deeper into the underlying mechanisms linked
with remission induction of glomerulonephritis.

Efforts over the past decade have emphasized the critical role
of innate immune cells in promoting and potentiating LN. For
example, numerous studies indicate that glomerulonephritis in
LN is attributable to a systemic breakdown of B cell tolerance

that results in the local precipitation of immune complexes; thus,
B cell targeted therapeutic strategies such as depleting B cell
or blocking B cell survival factors are theoretically promising
and have also been developed accordingly. Nevertheless, the
efficacy of therapies targeting B cells still remains disputable
(Liossis and Staveri, 2017), because several studies documented
favorable outcomes in LN, while some other studies observed
no clinical refinement (Melander et al., 2009; Duxbury et al.,
2013). Therefore, a more thorough understanding of immune
cell in the pathogenesis of LN is needed for yielding
therapeutic choice with higher efficiency. Current knowledge
of the subpopulations of infiltrating immune cell in LN comes
mainly from the immunohistochemistry and flow cytometry
studies of kidney biopsies; however, the heterogeneity of
subpopulations in different disease stages remains enigmatic.
Particularly, the role and mechanism of these subpopulations of
infiltrating immune cell in the progress of remission induction
remain unrevealed, although accumulating evidence proposes
the intrarenal infiltrating immune cell as an essential factor
associated with response upon immunosuppressive therapy
(Melander et al., 2009; Duxbury et al., 2013; Liossis and Staveri,
2017). Hence, there is an imperative urge to unravel the
immunologic mechanisms bridging immune cell state with LN
progression and remission induction. These efforts may replenish
key insights to precipitate better disease predictors and better-
designed drugs targeting to tame LN autoimmunity.

Bioinformatics is emerging as a new interdisciplinary subject
that has enabled the high-throughput and high-efficacy collection
of biological information. Remarkably, the deconvolution
techniques can yield surplus insight into the abundant variation
of specific cell types that arise at different disease stages
throughout onset, development, and treatment, thus allowing
earlier and more accurate diagnosis of comorbidities and
prediction of therapeutic response. For example, a newly
developed bioinformatic approach, Cell-type Identification
By Estimating Relative Subsets Of known RNA Transcripts
(CIBERSORT) deconvolution algorithm method1, has been
successfully applied to assess the levels of 22 kinds of immune
cell types in large amounts of heterogeneous samples based on
gene expression profiles, allowing large-scale interpretation of
mRNA compound for defining novel cellular biomarkers and
therapeutic targets. On the other hand, even though several
recent studies have contributed to defining the immune cell
infiltration state milieu of LN by integrated bioinformatic
analyses (Arazi et al., 2019; Cao et al., 2019), transcriptional
signatures of infiltrating immune cell landscape that distinguish

1https://cibersort.stanford.edu/
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LN subgroups with the varied response to remission induction
have not yet been described.

We hypothesized that intrarenal immune infiltration state
possibly has predictive value in delineating the response to
therapy. Thus, to clarify the association between immune
infiltration and LN onset as well as remission induction, the
microarray datasets of LN-prone NZB/W mice at various disease
stages in Gene Expression Omnibus (GEO) were dissected by
a variety of bioinformatics techniques including CIBERSORT
to define distinct subgroups. Findings from this study correlate
LN onset with exuberant mononuclear phagocytes abundance
and signature, whose reversal is associated with early remission
induction. This explorative study extends our knowledge about
mononuclear phagocytes as a future platform for diagnosis and
precision medicine in LN.

MATERIALS AND METHODS

Overview of Microarray Datasets
Collection
The diagram of the overall study design and analysis process is
displayed in Figure 1. We screened the qualified datasets that
contained comprehensive intrarenal gene-expression profiles
of kidneys from SLE-prone murine models or human LN
patients, because these dataset types can help determine
intrarenal immune cell landscape at different disease stages
of LN. As a result, four independent LN gene expression
profiles (GSE32583, GSE49898, GSE27045, and GSE32591) were
downloaded from the GEO database and exploited to identify or
validate differentially expressed genes (DEGs). Supplementary
Table S1 provides additional information about all of the above
four datasets. A detailed description of murine and human
RNA extraction, microarray preparation and processing, as
well as gene-expression data processing and analysis could be
retrieved from the corresponding original literature (Schiffer
et al., 2003; Reddy et al., 2008; Bethunaickan et al., 2011, 2014;
Berthier et al., 2012).

In GSE32583 dataset, the NZB/W mice were allocated into
pre-nephritis control group (without proteinuria) and nephritis
group (proteinuria > 300 mg/dl). Therefore, GSE32583 was used
to discover and compare intrarenal gene expression between
pre-nephritis and nephritis mice. The expression matrix of 19
pre-nephritis mice (GSM807484–GSM807502) and 16 nephritis
mice (GSM807503–GSM807518) were obtained to profile the
infiltrating immune cell (Schiffer et al., 2003; Berthier et al., 2012).

In GSE49898 dataset, nephritic NZB/W mice
(proteinuria > 300 mg/dl) were treated with a single dose
of CYC and 6 doses of CTLA4Ig and anti-CD154. Mice
that attained proteinuria ≤ 30 mg/dl within 3–4 weeks post
induction treatment fell into the early remission group and
showed complete histologic remission. By contrast, mice
that obtained proteinuria ≤ 30 mg/dl more than 5–14 weeks
post induction treatment fell into the late remission group
and displayed only partial histologic remission by light
microscopy (Chan et al., 1997). Therefore, GSE49898 was
employed to compare the intrarenal gene expression among

nephritis, early remission, and late remission NZB/W mice.
After data processing, the expression matrix of 7 nephritis
mice (GSM1209137–GSM1209143), 7 early remission mice
(GSM1209145–GSM1209151), and 11 late remission mice
(GSM1209152–GSM1209162) were obtained to profile the
infiltrating immune cell (Bethunaickan et al., 2014).

Similarly, in GSE27045, nephritic NZB/W mice were treated
with a single dose of CYC and 6 doses of CTLA4Ig and
anti-CD154 if proteinuria > 300 mg/dl occurred. Remission
was defined as proteinuria ≤ 30 mg/dl, and some young
NZB/W mice were allocated into pre-nephritis group. The
F4/80hi (a classic mononuclear phagocyte marker) mononuclear
phagocytes, which acquire an activated phenotype during active
nephritis and reverse upon remission induction, were sorted
and isolated by flow cytometry from single-cell suspensions
of perfused kidneys. Therefore, GSE27045 was utilized to
compare the gene expression of F4/80hi intrarenal mononuclear
phagocytes among pre-nephritis, nephritis, and remission
NZB/W mice. The expression matrix of 6 pre-nephritis mice
(GSM667532–GSM667537), 7 nephritis mice (GSM667538–
GSM667544) and 4 remission mice (GSM667545–GSM667548)
were obtained for defining mononuclear phagocytes-
derived genes associated with LN onset and remission
induction (Bethunaickan et al., 2011).

In GSE32591, a total of 47 renal biopsies from the
European Renal cDNA Bank (Schmid et al., 2006) were
collected according to the guidelines of the respective
local ethics committees. The demographic, clinical, and
histologic characteristics of the included patients could
be retrieved from the original literature (Berthier et al.,
2012). Therefore, GSE32591 was exploited to investigate and
compare the gene expression of glomeruli and tubulointerstitial
compartments of renal biopsies from LN patients (n = 32)
and pretransplant healthy living donors (n = 15). The
expression matrix of renal tubulointerstitial compartment
including 32 LN patients (GSM807842–GSM807873) and
15 healthy living donors (GSM807874–GSM807888), as well
as renal glomeruli compartment including 32 LN patients
(GSM807889–GSM807920) and 14 healthy living donors
(GSM807921–GSM807934), were obtained for validation
analyses in our current study (Berthier et al., 2012).

Evaluation of Immune Cell Infiltration by
CIBERSORT Analyses
To determine the immune cell landscape in kidney tissues,
the analytical platform CIBERSORT (see footnote 1) with
the reference of 1000 permutations and LM22 signature was
employed. The CIBERSORT deconvolution algorithm has been
validated to accurately and reliably calculate 22 types of immune
cell fractions dependent on microarray expression data. These
immune cells are composed of naive B cells, memory B cells,
plasma cells, CD8+ T cells, naive CD4+ T cells, resting memory
CD4+ T cells, activated memory CD4+ T cells, follicular helper
T cells, regulatory T cells (Tregs), gamma delta T cells, resting
NK cells, activated NK cells, monocytes, M0 macrophages,
M1 macrophages, M2 macrophages, resting dendritic cells,
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FIGURE 1 | Flowchart of the analyses used in this study. GEO, Genome
Expression Omnibus; DEGs, differentially expressed genes; PPI,
protein-protein interaction.

activated dendritic cells, resting mast cells, activated mast
cells, eosinophils, and neutrophils. The significant alteration of
immune cell fractions was recognized according to the threshold
of the Wilcoxon test at p-value < 0.05. Associations between
different immune cell subtypes were evaluated via Pearson
correlation coefficient.

Principal Component Analysis
Principal component analysis (PCA) is often used as a
technique in exploratory data analysis for variable dimensionality
reduction. Therefore, PCA was utilized in the current study to
ascertain primary sources of variance in the fraction of diverse
infiltrating immune cell types among different groups, and the
prominent sources of variance can likely be the diagnostic clues
for LN onset or predictive biomarkers for early LN remission
induction. To be specific, log-ratio PCA is proposed as an efficient
tool for the exploration of compositional data (Graffelman et al.,
2019); thus, we followed that approach by applying the centered
log-ratio (clr) transformation to the compositional data. In brief,
the compositional data of immune cell fractions derived from
CIBERSORT was expressed in isometric coordinates. Afterward,

PCA was performed to decompose the normalized, log10-
transformed immune cell composition matrix by using the
dudi.pca function in R. Resulting loadings and scores were
back-transformed to the clr space where the compositional
biplot could be shown.

Identification of DEGs and Functional
Enrichment Analyses
An R-based web application, GEO2R, was employed to obtain
DEGs in GSE datasets by comparing the expression values
among different subgroups and using the GEOquery and the
linear models for microarray data (LIMMA) package of R.
The adjusted p-values (calculated by Benjamini and Hochberg
false discovery rate method) via GEO2R tool were adopted to
avoid the occurrence of false-positive results. DEGs (adjusted
p-value < 0.05) between pre-nephritis group and nephritis
group mice were identified in GSE32583 and GSE27045
dataset, respectively. GSE27045 dataset contained the genomic
profile of kidney-isolated F4/80hi mononuclear phagocytes,
hence the overlapping DGEs (adjusted p-value < 0.05)
between GSE27045 and GSE32583 datasets were further
identified to define mononuclear phagocytes-specific DEGs
associated with LN onset. On the other hand, DEGs (adjusted
p-value < 0.05) between nephritis and remission group mice
were identified in GSE49898 and GSE27045 dataset, respectively.
However, statistical analyses showed that there were no DEGs
(adjusted p-value < 0.05) between nephritis and early remission
NZB/W mice in GSE49898 dataset, hence F4/80hi mononuclear
phagocytes-specific DEGs (adjusted p-value < 0.05, and |log2 fold
change (FC)| > 1) between nephritis and remission NZB/W
mice in GSE27045 dataset were further pinpointed and deemed
as mononuclear phagocytes-derived genes associated with LN
remission induction. These DEGs or overlapping DEGs were
included for Gene Ontology (GO) enrichment analyses through
WebGestalt (WEB-based Gene SeT AnaLysis Toolkit), and
Ggplot2 of R was applied to draw heatmap for visualization of
the overlapping DEGs. Furthermore, protein-protein interaction
networks of the overlapping DEGs were established via STRING
(Search Tool for the Retrieval of Interacting Genes database)
online tool and visualized in Cytoscape software. Hub genes
with a high degree of connectivity were extracted by applying
the plug-in of CytoHubba. LN onset-related hub genes were
also validated in GSE32591 dataset that included kidney biopsies
from LN patients.

RESULTS

Composition of Immune Cell Between
Pre-nephritis and Nephritis NZB/W Mice
by CIBERSORT
To determine whether renal infiltrating immune cell
corresponded with nephritis onset, CIBERSORT was utilized
to quantify the immune cell proportions within kidney samples
(GSE32583 dataset). Compared to pre-nephritis mice, nephritis
NZB/W mice were characterized by obviously lower proportions
in naïve B cells, follicular helper T cells, and activated NK cells,
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but notably higher proportions in memory B cells, monocytes,
and M1 macrophages (Figures 2A,B and Supplementary
Table S2). Particularly, monocytes accounted for the highest
proportion and the most pronounced elevation among all
the immune cell types in the nephritic kidney from NZB/W
mice (Figures 2A,B). This result is in line with a very recent
bioinformatic study that recognized monocytes as the most
significantly increased and the most abundant infiltrating
immune cell type in kidney biopsy from human LN subjects (Cao
et al., 2019). Furthermore, a significantly positive correlation
between monocytes and M1 macrophages (r = 0.40) was
presented by the correlation analyses (Figure 2C). Intriguingly,
both the percentages of monocytes and M1 macrophages were
significantly negatively correlated with naïve B cells (r = −0.38
and −0.48 respectively), follicular helper T cells (r = −0.47
and −0.34 respectively), activated NK cells (r = −0.57 and
−0.44 respectively), and resting mast cells (r = −0.56 and
−0.54 respectively), but significantly positively correlated with
gamma delta T cells (r = 0.39 and 0.59 respectively) (Figure 2C).
The broadly notable correlations between monocytes/M1
macrophages and other immune cell types underpin the
critical role of mononuclear phagocytes in orchestrating
LN occurrence.

PCA was subsequently performed to evaluate if the fractions
of infiltrating immune cell could be exploited to distinguish
the diagnosis of LN onset. M1 macrophages, memory B cells,
gamma delta T cells, and monocytes were found to be the major
components of principal component (PC) 1, and they were
positively associated with LN onset (Figure 3A). Nevertheless,
data visualization by PCA in Figure 3B shows that the first
two PCs explained only 8.5% of the variance, indicating the
mere composition of immune cells in LN kidney tissue was
insufficient to discriminate pre-nephritis from nephritis mice.
Taken together, the above results suggested aberrant immune
infiltration in LN kidney tissues as a tightly regulated process
that influenced the pathogenesis of LN onset. Specifically, it is
worth noting that mononuclear phagocytes including monocytes
and M1 macrophages were dramatically augmented in the
nephritic kidney from NZB/W mice, making the mononuclear
phagocytes abundance a potential adjuvant diagnostic biomarker
for LN occurrence.

Composition of Immune Cell Between
Early Remission and Late Remission
NZB/W Mice by CIBERSORT
In order to examine whether the renal infiltrating immune cells
affected nephritis remission upon immunosuppressive therapy,
CIBERSORT was further utilized to profile the immune cell
landscape within kidney samples from LN mice at different
disease stages (GSE49898 dataset). Consistent with the result
from CIBERSORT analyses in GSE32583 (Figures 2A,B),
monocytes still accounted for the highest proportion among
all the immune cells in nephritic kidney (Figures 4A,B and
Supplementary Table S3). More importantly, in comparison
with late remission mice, early remission mice attained noticeably
higher proportions of naïve B cells, activated NK cells, but

significantly lower proportions of memory B cells, monocytes,
and M1 macrophages (Figures 4A,B and Supplementary
Table S3). Despite the suppressed memory B cells, the notably
decreased percentages of mononuclear phagocytes including
monocytes and M1 macrophages in early remission kidney
samples indicated an essential role of attenuating mononuclear
phagocytes abundance in contributing to early response upon
immunosuppressive therapy. Besides, the positive correlation
between monocytes and M1 macrophages was also present in the
GSE49898 dataset (Figure 4C), consistent with the results from
GSE32583 as mentioned earlier. The percentages of monocytes
and M1 macrophages were found negatively correlated with
naïve B cells (r = −0.67 and −0.64 respectively), plasma cells
(r = −0.67 and −0.74 respectively), regulatory T cells (Tregs)
(r=−0.41 and−0.54 respectively), activated NK cells (r=−0.66
and −0.68 respectively), resting mast cells (r = −0.61 and
−0.58 respectively), but positively correlated with memory B
cells (r = 0.73 and 0.75 respectively) and activated memory
CD4 T cells (r = 0.41 and 0.54 respectively) (Figure 4C).
The positive correlation between mononuclear phagocytes and
B or T cells was in line with previous evidence showing the
full capacity of mononuclear phagocytes to facilitate B and T
cell responses and orchestrate adaptive autoimmune response
(Gkirtzimanaki et al., 2018).

Furthermore, PCA results demonstrated that memory B
cells, M1 macrophages, monocytes, and gamma delta T cells
were the major components of PC1 that were negatively
associated with remission induction upon immunosuppressive
therapy (Figure 5A). These results coordinated with findings
in Figure 3A to suggest those four immune cell types as
the major components that contributed to LN onset and
hampered early remission induction. However, the first two
PCs only explained 10.3% variation (Figure 5B), suggesting
that the mere composition of immune cells in LN kidney
tissue was not compelling to distinguish early remission mice
from nephritis or late remission mice. Collectively, the above
results implied that dysregulated immune infiltration in LN
might convey important meanings for predicting the response
to immunosuppressive therapy. Particular attention should be
paid that the fraction of mononuclear phagocytes including
monocytes and M1 macrophages were significantly lower in
early remission LN mice, indicating the possibility of proposing
mononuclear phagocytes abundance as a predictive marker for
discovering potential refractory LN patients.

GO Analyses of Mononuclear
Phagocytes-Specific DEGs Associated
With LN Onset
Considering the notable amplification of mononuclear
phagocytes abundance upon nephritis onset, we sought to
examine the functional involvement of mononuclear phagocytes
in the development of LN through bioinformatic analyses.
Interestingly, GSE27045 encompassed the microarray data
from NZB/W mice kidney-isolated F4/80hi (a broadly accepted
mononuclear phagocyte marker) mononuclear phagocytes
(Bethunaickan et al., 2011; Waddell et al., 2018), which were the
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FIGURE 2 | Composition of infiltrating immune cell subpopulations in kidney tissues from pre-nephritis and nephritis NZB/W mice in GSE32583 dataset. (A) The
fraction of infiltrating immune cell subpopulations was determined by CIBERSORT. (B) Comparison of renal immune infiltration between pre-nephritis and nephritis
NZB/W mice. (C) Correlation among infiltrating immune cell subpopulations.

dominant intrarenal origin of proinflammatory cytokines and
chemokines. These F4/80hi mononuclear phagocytes acquired
an activated phenotype during active nephritis and reversed
upon remission induction (Bethunaickan et al., 2011). Hence
we assumed that the overlapping DEGs between GSE27045 and
GSE32583 could represent the mononuclear phagocytes-specific

genes closely associated with LN onset. Accordingly, 684
overlapping DEGs (adjusted p-value < 0.05) between GSE27045
and GSE32853 (Supplementary Table S4) were identified for
subsequent functional enrichment analysis.

GO enrichment analysis found that the overlapping DEGs
between GSE27045 and GSE32583 were mainly enriched in the
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FIGURE 3 | Principal component analysis (PCA) was performed to reveal differences in immune cell landscape between pre-nephritis and nephritis NZB/W mice in
GSE32583 dataset. (A) Component loading in PCA results. (B) Score plot for PC1 and PC2. The percentages of variance explained by PC1 and PC2 are in the axis
labels. PC, principal component.
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FIGURE 4 | Composition of infiltrating immune cell subpopulations in kidney tissues from nephritis, early remission, and late remission NZB/W mice in GSE49898
dataset. (A) The fraction of infiltrating immune cell subpopulations was determined by CIBERSORT. (B) Comparison of renal immune infiltration among nephritis,
early remission, and late remission NZB/W mice. (C) Correlation among infiltrating immune cell subpopulations.

mobilization of adaptive immune response and proinflammatory
reaction, with the top three enriched GO terms being T cell
activation, regulation of immune effector process, and positive
regulation of cytokine production (Figure 6A). This result
underpinned the vital role of mononuclear phagocytes signature
in mobilizing the intrarenal adaptive immune response, thus

cultivating the inflammatory reaction during the development
of LN onset. In addition, 20 hub genes were extracted from
a constructed protein-protein interaction network established
by these overlapping DEGs (Figure 6B and Supplementary
Table S5). Heatmap showed that most of these hub genes were
markedly increased in nephritic kidney samples, except Cd28
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FIGURE 5 | Principal component analysis (PCA) was applied to reveal differences of immune cell landscape among nephritis, early remission, and late remission
NZB/W mice in GSE49898 dataset. (A) Component loading in PCA results. (B) Score plot for PC1 and PC2. The percentages of variance explained by PC1 and
PC2 are in the axis labels. PC, principal component.

that were downregulated (Figure 6C). In particular, dramatically
increased hub genes like CD40 (cluster of differentiation
40), Itgam (integrin subunit alpha M), C3 (complement 3),

and Myd88 (myeloid differentiation primary response 88)
have previously been proven to play essential roles in the
expansion and activation of B and T cells (Zarnegar et al., 2004;
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FIGURE 6 | Gene set enrichment analysis of the overlapping DEGs between GSE27045 and GSE32583, which were deemed as genes linked with LN onset in
NZB/W mice. (A) GO enrichment analysis of overlapping DEGs between GSE27045 and GSE32583. The y-axis labels represent clustered GO terms, and the Gene
Ratio represents the ratio of the number of genes enriched in one GO term to the number of DEGs. (B) Network analysis of identified hub genes from overlapping
DEGs between GSE27045 and GSE32583. (C) Heatmap of identified hub genes from overlapping DEGs between GSE27045 and GSE32583. GO, gene ontology;
DEGs, differentially expressed genes.

Quigley et al., 2009; Griffin and Rothstein, 2011; Liszewski
et al., 2013), supporting the role of mononuclear phagocytes
signature in bridging innate immune response with the adaptive
autoimmune response in the context of LN. Meanwhile, elevated
hub genes like Ccl2 (C-C motif ligand 2), Cxcr4 (C-X-C
chemokine receptor type 4), Il10 (interleukin 10), and Vcam1
(vascular cell adhesion molecule 1) have already been proven
to play critical roles in recruiting immune cells for triggering
and driving inflammation (Ishida et al., 1994; Daly and Rollins,
2003; Kong et al., 2018; Garcia-Cuesta et al., 2019), strengthening

the notion of targeting mononuclear phagocytes signature to
ameliorate renal pathology in the context of LN.

GO Analyses of Mononuclear
Phagocytes-Specific DEGs Associated
With LN Remission Induction
Although we postulated that the overlapping DEGs
between GSE27045 and GSE49898 could be ascertained
and acknowledged as the potential intrarenal mononuclear
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phagocytes-specific DEGs highly associated with LN remission
induction, statistical analysis found no DEGs (adjusted
p-value < 0.05) between nephritis and early remission group
in GSE49898. Therefore, 383 intrarenal F4/80hi mononuclear
phagocytes-derived DEGs (adjusted p-value < 0.05, and
|log2 fold change (FC)| > 1, Supplementary Table S6) between
nephritis and remission NZB/W mice were directly recognized
and deemed as mononuclear phagocytes-specific and LN
remission induction-related genes for the following functional
enrichment analysis.

GO enrichment analysis found that the top enriched GO
term of these DEGs was negative regulation of immune
system process, which indicated that immunosuppressive therapy
initiated the functional signature in mononuclear phagocytes to
counteract autoimmune response with LN kidney (Figure 7A).
This result together with the GO enrichment analysis of
overlapping DEGs between GSE27045 and GSE32583 suggested
that mononuclear phagocytes-mediated immune response and
inflammatory reaction were eased upon immunosuppressive
therapy in NZB/W mice. This reversal possibly played the

FIGURE 7 | Gene set enrichment analysis of the LN remission-related DEGs in NZB/W mice from GSE27045. The y-axis labels represent clustered GO terms, and
the Gene Ratio represents the ratio of the number of genes enriched in one GO term to the number of DEGs. (A) GO analysis of LN remission-associated DEGs in
GSE27045. (B) Network analysis of identified hub genes from LN remission-associated DEGs in GSE27045. (C) Heatmap of identified hub genes from LN
remission-associated DEGs in GSE27045.
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dominant role in achieving remission induction, in agreement
with the previous consensus that successfully induced remission
was linked with reversal of renal autoimmunity and inflammation
signature. Furthermore, heatmap of 20 hub genes extracted
from DEGs between nephritis and remission mice in GSE27045
(Figure 7B and Supplementary Table S7) demonstrated that
almost all these hub genes were markedly elevated in the
nephritic kidney, but significantly reversed or downregulated
upon remission induction (Figure 7C). This result highlighted
the potential role of these critical genes in impeding remission
induction; despite how these hub genes interfere the response
to immunosuppressive regimens in the context of LN remains
elusive. Intriguingly, in line with our findings, some previous
lines of evidence have already shown that some of these hub
genes like Cdk1 (cyclin-dependent kinase 1) (Wu et al., 2016)
and Mki67 (Rahbar et al., 2018) were tightly involved in the
pathogenesis of SLE or LN.

Validation of LN Onset-Related Hub
Genes in Human Kidney Biopsies From
LN Patients
To determine the relevance to human disease, LN onset-related
hub genes identified from overlapping DEGs between GSE27045
and GSE23852 were further validated in kidney biopsies from
LN subjects in GSE32591. Results demonstrated that these
hub genes were apparently upregulated in glomeruli instead
of tubulointerstitial compartments, indicating the functional
difference of mononuclear phagocytes in these two intrarenal
microenvironments. Moreover, of the total 20 mouse LN onset-
related hub genes (corresponding to 18 human genes), most
demonstrated a striking level of concordance as that in LN-
prone NZB/W mice, as evidenced by notably higher expression
level in glomeruli from LN patients compared to healthy
living donors. The top three dramatically upregulated hub
genes were ITGB2 (integrin subunit beta 2), LYN (LYN proto-
oncogene, Src family tyrosine kinase), and CXCR4 (C-X-C
motif chemokine receptor 4) (Figure 8 and Supplementary

Table S8). It is worth noting that the hub gene CXCR4 was
previously found abundant in kidney biopsies from SLE patients,
and CXCR4 antagonist administration could improve disease
severity and nephritis in murine lupus models (Chong and
Mohan, 2009). Therefore, this overlap of a substantial subset of
molecular markers with those in human LN kidneys highlighted
mononuclear phagocytes signature as a cross-species shared
feature (Olaru et al., 2018).

DISCUSSION

High frequency of being resistant to immunosuppressive therapy
contributes to adverse renal outcomes in LN (Ginzler et al.,
2005). Only 50–70% of LN patients achieved remission by
the current therapeutic regimens, and progression to end-stage
renal disease still occurs to 10–20% patients over 5–10 years
(Tektonidou et al., 2016). Recent advances have pinpointed
the involvement of a diverse range of immune cells in LN
progression, despite the fact that the underlying pathophysiology
is not fully understood. In the current study, through the
in-depth bioinformatic analyses of LN transcriptomics data,
we implemented a comprehensive deconstruction of intrarenal
immune cell landscape in LN-prone NZB/W mice at different
disease stages. In consequence, our findings highlighted that
amplified mononuclear phagocytes abundance and signature
were attributable to not only disease onset but also the failure
of early remission induction. Besides, functional enrichment
analyses delineated the functional profile of mononuclear
phagocytes in driving nephritis onset and hampering the
early remission induction. Collectively, our research revealed
the characteristic of mononuclear phagocytes abundance and
signature to segregate pre-nephritis mice from nephritis mice,
as well as early remission mice from late remission mice. These
findings suggest the promise of utilizing mononuclear phagocytes
as prognostic and predictive biomarkers, as well as potential
therapeutic targets for LN administration.

FIGURE 8 | Validation of LN onset-related hub genes from overlapping DEGs between GSE27045 and GSE32583 in the GSE32591 dataset. A heatmap of LN
onset-related hub genes identified from the overlapping DEGs between GSE27045 and GSE32583 in the GSE32591 genomic dataset which included kidney
biopsies from LN patients. Tub, tubulointerstitial; LN, lupus nephritis; LD, healthy living donor; Glom, glomeruli.
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Abnormalities in mononuclear phagocytes phenotype,
function, and activation are increasingly being associated with
the pathogenesis of autoimmune diseases including SLE (Zhang
et al., 2016; Burbano et al., 2018) and rheumatoid arthritis (Ma
et al., 2019), despite that the underlying regulatory mechanism
of mononuclear phagocytes in the context of LN has not been
fully elucidated. Although the strong correlation of mononuclear
phagocytes with disease activity or organ damage in LN has been
recognized for over a decade, only recently has the research been
directed toward the understanding of the cellular and molecular
mechanism. For example, LN subjects with severer forms (Class
III and Class IV) or LN-prone murine models with severer
histological impairment displayed more significant intrarenal
monocytes infiltration (Bergtold et al., 2006; Yoshimoto et al.,
2007; Menke et al., 2011; Bignon et al., 2014; Barrera Garcia
et al., 2016); however, only lately have several lines of evidence
shown that three different LN-prone murine models and
LN patients were all characterized by the glomeruli-specific
accumulation of monocytes with a unique capacity to trigger
early immune complex-induced inflammation (Olaru et al., 2018;
Kuriakose et al., 2019). Meanwhile, activated renal macrophage
has been acknowledged as the hallmark of LN onset and failed
remission induction in both LN-prone murine models and
human LN subjects (Schiffer et al., 2008; Menke et al., 2009;
Triantafyllopoulou et al., 2010; Olmes et al., 2016; Kim et al.,
2020), while blockade of macrophage infiltration ameliorated
renal inflammation and proteinuria in LN-prone murine models
(Kishimoto et al., 2018; Luan et al., 2019).

The failure of most clinical trials of rationally designed
therapies in both SLE and LN pleads for an imperative
need to dissect the potential mechanisms that impel LN
(Arazi et al., 2019). Interpreting the relevance of mononuclear
phagocytes in LN and the parallel mechanisms could drive
the future identification of more potent therapeutic strategies.
Over the last decade, newly emerging technologies like
omics-based techniques (e.g., genomics, transcriptomics, and
proteomics) offer a promising path toward this goal by
expanding our understanding of the molecular basis of
LN. Furthermore, multiple computational algorithms like
CIBERSORT enable the direct enumeration of immune cell
subsets linked with LN kidney conditions. Consistent with
previous preclinical and clinical evidence, our current study
conducted by comprehensive bioinformatic analyses for the
first time depicted that mononuclear phagocytes abundance
and signature could be a robust biological marker of LN
progression and predictor of failed early remission induction.
More importantly, functional enrichment analyses further
strengthened the essential role of mononuclear phagocytes in
triggering adaptive immune response and inflammation within
the kidney upon LN onset, which was however substantially
quenched after initiation of immunosuppressive therapy.

Besides, correlation analyses together with GO functional
analyses indicated that mononuclear phagocytes signature and
other immune cell signals were interwound. This crosstalk
orchestrated the adaptive immunity like the differentiation of
monocyte to macrophage with increased capacity to drive B and
T cell response. For example, findings from Pearson correlation

analyses verified the close correlation between the fractions of
intrarenal mononuclear phagocytes and the proportions of B
cells and T cells. This result was consistent with GO functional
enrichment analyses results showing that LN onset-related DEGs
in intrarenal mononuclear phagocytes were intensively enriched
in lymphocyte differentiation, proliferation, and activation. Last
but not least, the majority of the LN onset-associated hub genes
identified in NZB/W mice were validated in human LN kidney
genomic profile. These validating hub genes demonstrated a
similar elevating trend in the glomerular compartment of LN
patients, indicating the shared common and unique features
between LN-prone murine model and human LN.

CONCLUSION

In the current study, multiple computational approaches were
performed to deconvolve the bulk transcriptome data from
whole kidney tissue into immune cell type-specific fractions.
These results delineated the intrarenal immune cell landscape
and estimated the percentages alterations associated with LN
onset and remission induction in NZB/W mice. Specifically,
our findings identify the significantly amplified mononuclear
phagocytes abundance and signature as the source of biological
markers that forecast LN onset and retarded remission induction.
These discoveries may be extremely pivotal for clinical trial
designs and management of novel immunosuppressive therapies
in patients with different remission period by shedding light on
the suitability of combining mononuclear phagocytes-targeted
adjuvant regimen against LN.
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Genome-wide association studies (GWAS) have identified multiple causal genes
associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture
of ALS remains completely unknown and a large number of causal genes have yet
been discovered. To full such gap in part, we implemented an integrative analysis
of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes
with summary statistics from 80,610 European individuals and employed 13 GTEx
brain tissues as reference transcriptome panels. The summary-level TWAS analysis
with single brain tissue was first undertaken and then a flexible p-value combination
strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed
to pool association signals from single-tissue TWAS analysis while protecting against
highly positive correlation among tests. Extensive simulations demonstrated SCAT can
produce well-calibrated p-value for the control of type I error and was often much more
powerful to identify association signals across various scenarios compared with single-
tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e.,
ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional
five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not
reported before. Furthermore, we discovered the five associations were largely driven by
genes themselves and thus might be new genes which were likely related to the risk of
ALS. However, further investigations are warranted to verify these results and untangle
the pathophysiological function of the genes in developing ALS.

Keywords: transcriptome-wide association study (TWAS), amyotrophic lateral sclerosis (ALS), genome-wide
association studies (GWAS), brain tissue, type I error control

BACKGROUND

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is an adult-onset
progressive and fatal neurodegenerative disease (Kiernan et al., 2011). Although its prevalence
rate is not high worldwide (Vazquez, 2008; Marin et al., 2017; Mehta et al., 2018), ALS can lead
to severe clinical consequence (Chio et al., 2009) and economic burden (Larkindale et al., 2014;
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Gladman and Zinman, 2015). One of the greatest challenges with
regards to ALS is that few effective therapeutic interventions have
been confirmed and nearly no cure is available in clinic (Mehta
et al., 2018; Zeng et al., 2019a). In addition, it is evaluated that the
ALS cases across the globe will elevate up to∼400K in the coming
20 years owing to aging of the population (Arthur et al., 2016),
which will further aggravate the socioeconomic threat of ALS.

Prior work has revealed that ALS is highly heritable, with
the heritability ranging from 0.52 (95%CI 0.43–0.62) for the
ordinary population, to 0.37 (95%CI 0.20–0.54) for those without
genetic risks according to population-based studies, and to 0.66
(95%CI 0.59–0.74) based on mother-daughter pairings (Ryan
et al., 2019) or 0.61 (95%CI 0.38–0.78) in terms of twin studies
(Al-Chalabi et al., 2010). Therefore, understanding the genetic
etiology of ALS and identifying risk genes are crucial for early
prevention and also have the potential to discover effective
therapeutic targets. Indeed, in the past decade dozens of genome-
wide association studies (GWAS) have identified multiple single
nucleotide polymorphisms (SNPs) and genes causally associated
with ALS (McMahon et al., 2019) (Table 1 and Supplementary
Table S1). However, the genetic architecture of ALS remains
largely unknown and the functional influences of those genetic
variants are also not completely clear. For example, the SNP-
based heritability estimated in GWAS is only 21%, which is much
smaller than that reported above (Keller et al., 2014), implying a
large amount of causal genes have not yet been identified and the
effort to find causative genes for ALS should continue.

The importance of gene expression regulation in complex
diseases motivates us to apply novel statistical tools prioritizing
causal genes of ALS through the integration of expression
quantitative trait loci (eQTL) into GWAS (Nica et al., 2010;
Nicolae et al., 2010; GTEx Consortium, 2015; Li et al., 2016;
Wen et al., 2016; GTEx Consortium, 2017; Mancuso et al., 2019).
Transcriptome-wide association study (TWAS) is exactly one of
such approaches popular in genomic integrative analysis (Gusev
et al., 2016; Hu et al., 2019; Mancuso et al., 2019; Wainberg et al.,
2019). Methodologically, TWAS can be viewed as a relatively
independent two-stage inference procedure to discover causal
genes (Figure 1). Briefly, in the first stage weights (i.e., the
joint effect sizes) of cis-SNPs of a given gene are computed
from external tissue-related transcriptome reference datasets; and
then the association between the imputed expression and the
disease of interest is examined for that gene in the second stage.
The original TWAS analysis needs large scale individual-level
data sets (Gusev et al., 2016), which limits its applicability due
to unavailability of such data sets because of privacy concerns
in data sharing among various research groups (Gusev et al.,
2016; Pasaniuc and Price, 2016). Fortunately, such limitation
is already eliminated with the development of summary-level
TWAS (Gusev et al., 2016; Barbeira et al., 2018), for which
only pre-estimated weights of QTL and summary statistics of
GWAS are necessary.

Moreover, because it has been shown that spurious
associations may be generated if integrating gene expression
from tissues that are not biologically related to the disease
(Wainberg et al., 2019), a strongly recommended strategy
in TWAS analysis is that one should calculate weights of

cis-SNPs with expression measurements from the most relevant
tissues in the first stage. For instance, the breast-cancer TWAS
analysis employs transcriptome datasets of the breast tissue (Wu
et al., 2018) and the prostate-cancer TWAS analysis applies
transcriptome datasets of the prostate tissue (Mancuso et al.,
2018; Wu et al., 2019). Therefore, it is the natural choice of brain
tissues when implementing TWAS for ALS. There are 13 GTEx
brain tissues that can be employed as reference transcriptome
panels (GTEx Consortium, 2015, 2017) (Table 2). The rich
transcriptome datasets offer an unprecedented opportunity to
comprehensively integrating QTL information into the GWAS
of ALS. In the meantime, they also propose a great statistical
challenge for such integration.

Performing ALS TWAS analysis from one brain tissue
to another and then adjusting for multiple comparisons
is a conventional approach. However, doing this may be
underpowered because of the multiple testing burden; and such
a manipulation is not optimal as it ignores useful information
of shared eQTLs across brain tissues (GTEx Consortium, 2017).
Therefore, it is important to integrate associations from all
available brain tissues in the TWAS analysis of ALS with
a more efficient manner, which would have the potential to
improve power and discover newly genes associated with ALS.
However, in terms of our literature view there is little existing
work on how to aggregate such evidence efficiently when
only summary-level eQTL and GWAS marginal statistics are
utilizable. It is hence desirable to construct feasible omnibus tests
to handle this problem.

The Fisher’s method (Fisher, 1934), one commonly used
omnibus test, may be the first choice. Unfortunately, the Fisher’s
method is only valid for independent multiple tests and thus
cannot be employed due to highly positive correlation among
individual TWAS tests (see simulations below for details). In fact,
as we will demonstrate later, the Fisher’s method is overinflated
and can lead to too many spurious associations when the
TWAS test statistics are not independent. Alternatively, one
may take the minimum p-value as the significance measure
(Conneely and Boehnke, 2007). However, due to the same
issue of unknown positive dependence, the null distribution
of the minimum p-value may be extremely complicated and
the computation is often time-consuming since numerical
permutation/bootstrap is involved (Conneely and Boehnke, 2007;
Sun and Lin, 2019).

Therefore, it is of substantial interest to develop omnibus
tests that are robust against correlation. To achieve this
objective, herein we propose a novel p-values integrative strategy
called summary data-based Cauchy Aggregation TWAS (SCAT).
Compared to previous approaches, SCAT owns an attractive
strength that it takes the summary of a set of p-values as
test statistic and evaluates the significance analytically without
the knowledge of correlation structure. Consequently, SCAT is
extraordinarily flexible and computationally fast. With extensive
simulation studies we demonstrated that SCAT can produce well-
calibrated p-value for the control of type I error and is often much
more powerful compared with single-tissue TWAS analysis.
Finally, using SCAT we discovered several new ALS-associated
genes that would be missed by existing statistical strategies.
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TABLE 1 | Previous association studies for ALS in terms of the GWAS catalog.

Year Pop cases/controls (discover + replication) m References

2007 EUR 276/271 3 Schymick et al., 2007

2007 EUR 461/450 + 876/906 1 Van Es et al., 2007

2007 EUR 221/211 + 737/721 1 Cronin et al., 2007

2008 EUR 737/721 + 1,030/1,195 3 Van Es et al., 2008

2009 EUR 958/932 + 309/404 1 Cronin et al., 2009

2009 EUR 1,821/2,258 + 538/556 14 Landers et al., 2009

2009 EUR 2,323/9,013 + 2,532/5,940 3 van Es et al., 2009

2010 EUR 405/497 4 Laaksovirta et al., 2010

2010 EUR 4,857/8,987 0 Shatunov et al., 2010

2010 EUR 639/6,257 + 183/961 2 Kwee et al., 2012

2013 EUR 4,243/5,112 19 The Alsgen Consortium, 2013

2013 EUR 6,100/7,125 + 2,074/2,556 3 Fogh et al., 2013

2014 EUR 4,377 + 435/14,431 + 4,056/3,958 10 Diekstra et al., 2014

2015 EUR 25/1,179 1 McLaughlin et al., 2015

2016 EUR 12,577/23,475 + 2,579/2,767 4 van Rheenen et al., 2016

2018 EUR 20,806/59,804 + 4,159/18,650 10 Nicolas et al., 2018

2019 EUR 4,244/3,106 1 Dekker et al., 2019

2013 CHI 506/1,859 + 706/1,777 4 Deng et al., 2013

2013 CHI 4,243 (age of ALS on-set) 15 The Alsgen Consortium, 2013

2013 CHI 250/250 174 Xie et al., 2014

2016 CHI 94/376 1 Chen C.J. et al., 2016

2017 CHI 1,234/2,850 + 576/683 7 Benyamin et al., 2017

Pop denotes which populations the GWAS was performed on, with EUR representing the European population and CHI representing the Chinese Han population; the
third column is the sample size of GWAS in the discover stage and in the replication stage if conducted; m denotes the number of unique genes mapped by associated
SNPs; these results are overviewed in terms of the GWAS catalog at https://www.ebi.ac.uk/gwas (until 2020-02-02). Of note, some of GWASs had only limited sample
sizes, which might influence the validity of the discovered genetic variants and mapped genes in these studies. Therefore, the associations need to interpret in caution.

MATERIALS AND METHODS

GWAS Summary Statistics for ALS
We obtained marginal summary statistics (e.g., Z scores) of
ALS from the largest ALS GWAS to date (Nicolas et al.,
2018). This study included several previous ALS cohorts
such as the work of van Rheenen et al. (2016). For each
SNP the logistic regression was first implemented per cohort
with individual-level genotypes while incorporating several top
principal components, age, and gender as covariates. Then,
the inverse-variance weighted fixed-effect meta-analysis was
implemented to pool association results across cohorts. Finally,
after quality control approximately 8.6 million SNPs on 20,806
cases and 59,804 controls of European ancestry were left for
our TWAS analysis.

TWAS Analysis With Single Brain Tissue
To be self-contained, we first introduce TWAS approach for
individual-level dataset. Suppose that G is an n × m matrix
of genotypes of cis-SNPs for a gene, n is the sample size for
ALS and m is the number of genetic variants and generally
changes from gene to gene; E is an n-vector for unmeasured
gene expression in the ALS GWAS and y is an n-vector of
binary variable for ALS cases and controls. In addition, assume
g is a d × m genotype matrix of cis-SNPs and e is a d-vector
of gene expression from one of the GTEx brain tissues for

the same gene, with d the sample size of the reference panel.
The individual-level TWAS analysis can be implemented as

stage 1 : _weights estimation with genetic prediction models
_e = fw(gw) ⇒ ŵ
stage 2: _ gene expression imputation and association analysis
_logit(µ) = Êθ with Ê = Gŵ

(1)
where w = (w1, w2, . . ., wm) is the m-vector of effect
sizes for cis-SNPs and can be estimated (denoted by ŵ)
with some genetic prediction model (denoted by f w) (Zeng
and Zhou, 2017); ε is a normal residual and µ is the
expectation of y; and θ is the effect size for imputed
gene expression. In the TWAS analysis we aim to test
for the null hypothesis H0: θ = 0. It is seen that TWAS
bridges the gap between QTL and GWAS in a conceptually
simple fashion.

FUSION: A Summary-Level TWAS With
Single Tissue
When only summary-level datasets are available (as the case
in our analysis of ALS), under the condition of no association
between SNP and ALS we have{

ẑALS _∼ MVN(0, R)

ẑALSŵT _∼ MVN
{

0, ŵRŵT} (2)
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FIGURE 1 | Schematic framework of TWAS with FUSION and SCAT based on only summary-level datasets and reference panel for linkage disequilibrium (LD)
structure of SNPs. TWAS can be viewed to be a relatively independent two-stage inference procedure: the first stage is to estimate weights for cis-SNPs with GTEx
brain transcriptome reference panel (the top panel); the second stage is to examine causal association between genes and ALS with weights obtained from the first
stage (the bottom panel).

where ẑALS is an m-vector of marginal Z scores of cis-SNPs
and often generated with single SNP regression (Zeng et al.,
2015); MVN denotes the multivariate normal distribution, and
R is the unknown LD correlation matrix among cis-SNPs and
can be approximately estimated with reference datasets such as
1000 Genomes Project (The 1000 Genomes Project Consortium,
2015). With these in hand we define the TWAS statistic as

Zt = {ẑALSŵT
}{ŵRŵT

}
−

1
2 (3)

The p-value of Zt can be easily obtained since it asymptotically
follows a standard normal distribution. The above TWAS
analysis is implemented through the FUSION software
(Gusev et al., 2016).

Summary-Level TWAS for
Multiple-Tissues With Known Correlation
Structure
When the correlation structure among gene expressions is known
(but it is in fact unknown), a summary-level TWAS approach
combining FUSION results of multiple tissues can be designed
assuming no association between the gene and ALS across tissues

Q _ = ZC−1ZT
∼ χ2

T (4)

where Z = (Z1, . . ., ZT) approximately follows MVN(0, C) with C
the correlation matrix of gene expressions from T tissues. The
above method is also called multiXcan (Barbeira et al., 2019)
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TABLE 2 | ALS-associated genes identified by SCAT or FUSION with 13 GTEx brain tissues.

Tissue N p0 p1 (%) FAM66D C9orf72 TRIP11 RP11-
529H20.6

ATXN3 JUP SCFD1 SLC9A8

Amygdala 81 1,799 0 (0.00) 2.85E-1

Anterior cingulate cortex BA24 102 2,653 4 (0.15) 1.20E-1 4.11E-3 6.90E-4

Caudate basal ganglia 126 3,586 1 (0.03) 2.71E-8 3.06E-1

Cerebellar hemisphere 113 4,327 6 (0.14) 3.36E-1 3.93E-10 2.01E-1 2.37E-1 3.45E-1 7.25E-4 4.76E-2

Cerebellum 137 5,752 4 (0.07) 4.97E-4 5.86E-3 1.02E-2 1.15E-3 3.73E-1

Cortex 119 3,943 3 (0.08) 7.79E-3 6.41E-3 2.00E-1 1.22E-1 2.00E-1

Frontal cortex BA9 104 3,080 1 (0.03) 5.87E-1 3.84E-16 1.88E-1

Hippocampus 99 2,245 1 (0.04) 3.66E-1 1.12E-4 8.61E-2 8.61E-2

Hypothalamus 98 2,257 3 (0.13) 4.94E-1 3.65E-1 3.65E-1 1.82E-2 1.55E-4 6.40E-3

Nucleus accumbens basal ganglia 114 3,172 2 (0.06) 5.53E-1 3.32E-24 4.91E-3

Putamen basal ganglia 98 2,766 1 (0.04) 6.04E-7 2.07E-1

Spinal cord cervical c-1 76 1,974 2 (0.10) 4.97E-1 1.26E-7

Substantia nigra 70 1,568 2 (0.13)

SCAT 11469 8 (0.07) 4.22E-2 1.08E-22 3.49E-2 4.10E-2 3.68E-2 4.22E-2 1.20E-3 4.22E-2

N is the sample size of gene expression in each tissue; p0 denotes the number of converged genes with heritability estimation, p1 (%) is the number (or proportion) of
associated genes that have FDR < 0.05 in each tissue before adjustment of the 13 GTEx brain tissues.

and provides an omnibus test for the combination of effect in
any brain tissue while accounting for correlation. We refer to
the test shown in (4) as the oracle TWAS. However, due to
the lack of transcriptome reference panels (The 1000 Genomes
Project Consortium, 2015), C is often unknown or cannot be
estimated accurately from expression datasets with small sample
sizes (Gusev et al., 2016; GTEx Consortium, 2017).

Combination of TWAS via the
Aggregated Cauchy Association Test
We here introduce how SCAT can be adopted in our ALS TWAS
analysis. First, we separately implement FUSION for each brain
tissue and yield Zt and pt (t = 1, 2, . . ., T; with T = 13 here); as
expected, these pts (or Zts) are highly correlated (see also below)
(Brown, 1975; Kost and McDermott, 2002; Poole et al., 2016;
Heard and Rubin-Delanchy, 2018). As a result, as mentioned
before the Fisher’s method, which assumes independent tests,
is not appropriate. We instead apply SCAT which allows us to
aggregate multiple potentially dependent p-values obtained from
multiple FUSION analyses into a single well-calibrated p-value
that can maintain the type I error correctly. The pooled p-value of
SCAT follows a Cauchy distribution regardless whether p-values
are correlated or not (Liu et al., 2019; Liu and Xie, 2019). Briefly,
with SCAT we have

TSCAT _ =
∑T

t = 1 -t tan
{
( 1

2 − pt)π
}

pTSCAT _ = 1
2 − arc tan

{
TSCAT/(

∑T
t = 1 -t)

}
/π

(5)

where -t denotes the non-negative weight for each pt with∑T
t = 1 -t = 1, and assume that -t is independent of pt . When

no prior information is available, equal weights are utilized.
Because SCAT only takes a group of p-values as input and no
any dependence structure is required, its implementation is thus
rather straightforward and fast.

Numerical Simulations
We implement simulation studies to assess the performance of
SCAT and compare it with the Fisher’s method. As described
before because both the two methods used only p-values
as input; we thus start our simulations by generating a
series of independent or non-independent p-values. This is
also the simulation framework used in previous work (Liu
and Xie, 2019). Specifically, we first obtained the correlation
matrix of Z values of FUSION (i.e., the C matrix; shown in
Supplementary Figure S1) and generated a 13-dimentional
multivariate random variable which followed MVN(µ, C).
Then, we yielded the p-value for each marginal random
variable by assuming it followed a standard normal distribution.
Finally, we combined these p-values with SCAT or the
Fisher’s method.

We set µ = 0 when evaluating the type I error
control, but randomly sampled µ from an independent normal
distribution with mean zero and variance 2.5 when assessing
the statistical power. A total of 106 or 103 replications were
generated for type I error control and power evaluation
respectively. Furthermore, to match the application in real-
life datasets — not all genes were identified to be cis-
heritable across all brain tissues with the current sample
sizes of transcriptome datasets (see Supplementary Figure S2
for more information) — in each replication of the power
assessment we randomly selected at least five but at most
eleven tissues to be missing. Doing this was equivalent
to generating missing values in each group of marginal
p-values.

In the present analysis genes with false discover rate (FDR)
(Benjamini and Hochberg, 1995) less than 0.05 were defined to
be associated genes. All analyses were carried out with the R
software (version 3.6.2); and the codes to reproduce simulations
as well as the FUSION results of ALS can be found at https:
//github.com/biostatpzeng. In addition, since we only employed
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summary-level genetic datasets that can be publicly available;
therefore, additional ethical review was not needed for our study.

RESULTS

Type I Error Control and Power
Evaluation
It is observed that both the Fisher’s method and SCAT can
correctly control the type I error if the p-values are independent
(Figures 2A,B). However, in the presence of positive dependence
among p-values, the Fisher’s method fails to maintain the
type I error control and is rather liberal (Figures 2C,D). In
contrast, SCAT is robust to the positive correlation structure
and still displays a desirable behavior on the control of type
I error (Figures 2C,D). Because of the failure in the type
I error control, in the following we no longer consider the
Fisher’s method.

The estimated statistical power is shown in Figures 2E,F.
Here, several pronounced observations need to emphasize.
First, SCAT substantially outperforms any individual one-tissue
FUSION in our simulation settings (Figure 2E vs. Figure 2F).
Second, as anticipated, ignoring correlation among p-values can
indeed lead to power reduction. For example, the oracle TWAS
(denoted by oracle in Figure 2F), which considers the true
correlation among the test statistics, has an approximately 10.1%
higher power compared with SCAT (denoted by SCAT13 in
Figure 2F), and the advantage of the oracle TWAS would be
more evident if less FUSION analyses are combined by SCAT
(e.g., oracle vs. SCAT4 or oracle vs. SCAT8 in Figure 2F).
However, as aforementioned, the oracle TWAS cannot be
applicable due to unavailability of correlation structure in
practice, while SCAT is a universal combination approach
without such limitation.

Third, SCAT that combines FUSION with a larger set of
tissues is often much more powerful than that contains a smaller
set of tissues (e.g., SCAT13 vs. SCAT8 or SCAT4; here the number
attached represents the number of tissues used in the SCAT
analysis, with a greater number indicating more tissues included);
in the extreme case where only one tissue in each group (i.e.,
SCAT1), SCAT reduces to FUSION and exhibits the similar
behavior to FUSION. Note that, this simulation is also equivalent
to the case where missing p-values emerge. Nevertheless, SCAT
is still better than any FUSION analysis with one tissue as long as
more than two significant tissues are contained. Fourth, however,
it is not necessarily the case that SCAT can always improve the
power. For example, we find SCAT would encounter a loss of
power if some of the combined individual FUSION analyses are
non-significant (Supplementary Figure S3). Fifth, it is shown
that SCAT would loss the power as the increase in the correlation
under various correlation structures (Supplementary Figure S4).
For instance, SCAT has a power of 0.241, 0.317, 0.427, or 0.572
when the correlation is 0.9, 0.6, 0.3 or 0 in the exchangeable
structure (Supplementary Figure S4A). In addition, as can be
expected, different correlation structures among the test statistics
have various influences on the power of SCAT (Supplementary
Figures S4A–C).

Associated Genes With ALS Discovered
in Previous GWASs
In terms of the GWAS Catalog1, most of the ALS GWASs (17
out of 22) were performed on European individuals (Table 1).
Totally, there are 313 SNP association pairs discovered across
all chromosomes, especially in chromosomes 1 (i.e., 19 SNPs),
2 (i.e., 19 SNPs), and 9 (i.e., 21 SNPs) (Figures 3A,B). Those
genetic variants are mapped to 253 unique genetic regions,
among which 25 are located within intergenic (Figure 3C). In
particular, C9orf72 — a famous risk gene of ALS (Renton, 2011;
Byrne, 2012; Garcia-Redondo, 2013; Diekstra et al., 2014; Chen
Y. et al., 2016) — is the most frequent gene. The remaining genes
with high frequency include UNC13A and CPNE4 (Figure 3C).

Associated Genes With ALS Discovered
by FUSION and SCAT
Now we applied FUSION to ALS using 13 GTEx brain tissues as
reference transcriptome datasets and then combined the results
with SCAT for the overall significance. The correlation among
gene expressions is displayed in Supplementary Figure S5.
A total of 11,469 unique genes are analyzed but only 361
overlapped genes emerging in all the 13 GTEx brain tissues. It
is empirically demonstrated that the p-values of FUSION among
various GTEx brain tissues exhibit highly positive dependency
(Supplementary Figure S5), which, together the unavailability
of correlation information makes nearly all previous p-values
combined methods cannot be directly utilized.

For each GTEx brain tissue the number of genes with
FDR < 0.05 (before adjustment of the issue of multiple tissues)
is shown in Table 2 and Supplementary Figure S6A. The full
results of TWAS for ALS are shown in Figure 4. It is seen that
more genes are discovered in cerebellar hemisphere (i.e., 6 genes),
following by anterior cingulate cortex BA24 and cerebellum (e.g.,
4 genes for both tissues). Again, we observe that C9orf72 is
discovered to be associated with ALS in almost brain tissues
which previously had been kept after screening of heritable genes
in FUSION. However, if further considering the issue of multiple
testing, many of these genes identified by single-tissue FUSION
would be non-significant, leaving only two statistically significant
genes (i.e., SCFD1 and C9orf72).

The adjusted associations are displayed in Table 2 and
Supplementary Figure S6B. Here, a total of eight genes are
found by SCAT (FDR < 0.05), among which three (i.e., SCFD1
with FDR = 0.001, ATXN3 with FDR = 0.04 and C9orf72
with FDR = 1.08E-22) are previously identified (Supplementary
Table S1), while five (i.e., SLC9A8 with FDR = 0.04, FAM66D with
FDR = 0.04, TRIP11 with FDR = 0.03, JUP with FDR = 0.04 and
RP11-529H20.6 with FDR = 0.04) are not. Except for FAM66D
(antisense) and RP11-529H20.6 (sense overlapping), all others are
protein-coding genes (Supplementary Table S2). Furthermore,
we find that there are no significant SNPs (with p < 5.00E-
8) included within any of these five genes (Supplementary
Figure S7). Thus, in our analysis SLC9A8, FAM66D, TRIP11, JUP,

1https://www.ebi.ac.uk/gwas
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FIGURE 2 | Type I error control (A–D) and Estimated statistical power (E,F) in the simulation studies. In (A,B), the correlation matrix was independent; in panels
(C,D), the correlation matrix was specified with the matrix shown in Supplementary Figure S2; in (E), the clustered lines with various colors represent the 13 types
of FUSION analysis with one tissue and cannot be clearly separated; in (F), the number attached by SCAT indicates various tissues included; oracle denotes the
oracle TWAS approach with the matrix shown in Supplementary Figure S2; because the inclusion of all 13 tissues in the oracle TWAS would result in 100%
power; thus, here we only considers three tissues that were randomly selected in the oracle TWAS.

and RP11-529H20.6 can be deemed to be newly genes that are
likely associated with ALS.

DISCUSSION

Given the severe health threat and little knowledge of ALS,
persistent work should be done to explore genetic and
environmental risk factors related to ALS. The present study is
one of such efforts with the aim to discover newly causal genes for
ALS. To achieve this goal, we conducted the TWAS analysis and
integrated association signals from multiple GTEx brain tissues to
improve power by borrowing the idea of p-values combination.
As demonstrated before, the main challenge in our TWAS
analysis of ALS emerges in two aspects. First, multiple brain
tissues were involved and the statistics of FUSION across tissues
exhibited highly positive correlation; second, the dependency
structure was unknown in practice because only summary-level
statistics results can be available. Those difficulties lead to the
failure of the Fisher’s method and also hamper the use of
other commonly employed methods that can combine dependent
p-values such as the Brown’s method (Brown, 1975), the Kost’s
method (Kost and McDermott, 2002) and some tests proposed
recently (Barnett et al., 2017; Gaynor et al., 2019; Sun et al., 2019;

Sun and Lin, 2019), which typically require known covariance
among p-values.

Our TWAS analysis relies on the newly flexible statistical
framework of SCAT for hypothesis testing. Compared with
FUSION (i.e., the summary-level TWAS analysis with one tissue
each time), SCAT is more efficient as it aggregates individual
association signals. With simulation studies we revealed that
SCAT produced well-calibrated p-value for type I error control
and was often much more powerful to identify associated
signals across various scenarios compared with FUSION with
only single tissue. Using SCAT we replicated three GWAS-
discovered genes including SCFD1 found in van Rheenen et al.
(2016) and Nicolas et al. (2018), ATXN3 identified in Nicolas
et al. (2018) and C9orf72 found in multiple previous GWASs
(Supplementary Table S1). Among those C9orf72 is a well-
known genetic mutation of ALS previously detected in both
European population (The Alsgen Consortium, 2013; Diekstra
et al., 2014; McLaughlin et al., 2015; van Rheenen et al., 2016;
Nicolas et al., 2018; Dekker et al., 2019) and East Asian population
(Benyamin et al., 2017).

More importantly, with SCAT we identified five newly
ALS-associated genes that were otherwise missed by existing
statistical strategies, including SLC9A8, FAM66D, TRIP11,
JUP, and RP11-529H20.6. Our new findings are also partially
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FIGURE 3 | Summary results for ALS-associated SNPs and mapped genes identified in previous GWASs. (A) The distribution for associated SNPs across all 22
chromosomes; (B) The p-values of circle Manhattan plot of associated SNPs for significance; (C) The distribution for genes with high frequency.

supported by previous studies. First, in the molecular level
one typical pathological hallmark for neurodegeneration of
ALS (e.g., tau, amyloid, and beta-protein precursor) is the
change in cell cycle control and progression, which can be
regulated by SLC9A8 by inhibiting Na+/H+ exchanger activity
in epithelia (Hu et al., 1998; Orlowski and Grinstein, 2004).
In the population level, SLC9A8 exhibits widely pleiotropic
influence on chronic inflammatory diseases including
ankylosing spondylitis, Crohn’s disease, psoriasis, primary
sclerosing cholangitis, and ulcerative colitis (Stuart et al.,
2010; Ellinghaus et al., 2016); in addition, SLC9A8 is also
associated with psoriasis (Stuart et al., 2010), gut microbiota
(beta diversity) (Wang et al., 2016) and multiple sclerosis
(International Multiple Sclerosis Genetics Consortium, 2013).

Second, TRIP11 can provide instruction for generating a type
of protein known as Golgi microtubule-associated protein 210
(GMAP-210) (Infante et al., 1999). This protein is found in
the Golgi apparatus, a cell structure in which newly produced
proteins are modified so they can be activated. On the other hand,
the depletion of Golgi matrix proteins can result in an abnormal,
fragmented Golgi morphology, which has been observed in
multiple neurodegenerative diseases including ALS (Fujita and
Okamoto, 2005), suggesting that the fragmentation of Golgi
apparatus may be related to the neuronal degeneration of ALS.
In population-based studies, TRIP11 is identified to be associated

with anthropometric traits including height (Gudbjartsson et al.,
2008; Lettre et al., 2008; Lango Allen et al., 2010; Wood et al.,
2014; He et al., 2015; Tachmazidou et al., 2017; Akiyama et al.,
2019) and waist circumference adjusted for body mass index
(Shungin et al., 2015; Graff et al., 2017; Justice et al., 2017), which
are in turn believed to be relevant to the development of ALS
(Desport et al., 1999; Jawaid et al., 2010; Paganoni et al., 2011;
Shimizu et al., 2012; O’Reilly et al., 2013; Reich-Slotky et al., 2013;
Calvo et al., 2017; Peter et al., 2017; Zeng et al., 2019b).

Third, JUP can regulate plakoglobin, a protein plays an
important role in signaling within cells as part of the Wingless/Int
(Wnt) pathway (Asimaki et al., 2007). The Wnt is a key
pathway involved in neural development during embryogenesis
(Wang and Wynshaw-Boris, 2004; Harrison-Uy and Pleasure,
2012) and in the maintenance of neuronal homeostasis (Ille
and Sommer, 2005; Zhang et al., 2011). In particular, the
perturbations of the Wnt pathway have been shown to have
a correlation to neurological disorders (De Ferrari and Moon,
2006) as well as neurodegenerative diseases (De Ferrari et al.,
2003; Inestrosa and Arenas, 2010).

In addition, in terms of BioSystems SLC9A8 and TRIP11
belong to the pathway of GO 0000139 Golgi membrane and
JUP belongs to the pathway of GO 0000988 transcription factor
activity, both of which have a functional role on brain tissues. All
those provide evidence that supports the relationship between
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FIGURE 4 | Results of FUSION and SCAT for TWAS analysis of ALS with multiple brain tissues. (A) The QQ plot for SCAT; (B) The QQ plot for FUSION with each of
the GTEx brain tissues as reference dataset; (C) The distribution for analyzed genes across all 22 chromosomes; (D) The p-values of circle Manhattan plot of
analyzed genes for significance. Of note, the genomic inflation factor of the p values obtained via SCAT is 1.04, indicating the slight inflation observed in (A) might be
due to the polygenicity of ALS rather than uncontrolled unknown confounders.

SLC9A8, JUP, and TRIP11 with ALS. It also suggests that those
genes may be associated with ALS in a direct, pleiotropic or
mediated manner. Those new discoveries are expected to have
the potential to advance our understanding of the molecular
mechanism with regards to ALS and offer new insight into the
etiology of ALS.

Besides discovering new ALS-associated genes, another
contribution of the present study exists in the development
of SCAT that can integrate a series of correlated association
signals efficiently. As illustrated before, SCAT owns the attractive
advantage that it takes the summary of a group of p-values as
test statistic and evaluates the significance analytically without the
knowledge of correlation structure (Liu et al., 2019; Liu and Xie,
2019). Therefore, as enthusiastic interest in TWAS continues to
grow with more and more genetic and transcriptome data sets
collected, especially since large scale individual-level datasets are
still unable to obtain for some reasons, we believe that SCAT
possesses extensive usefulness to many analogous situations of
integrative genomic analyses.

Finally, several limitations of our work need to state. First,
among the five new SCAT-identified genes, we do not find

reasonable evidence for FAM66D and RP11-529H20.6 in the
literature. Second, we cannot replicate those new discoveries in
external data sets since such data resources are unavailable for us;
we thus simultaneously highlight the need to further validate our
findings with additional investigation and experimental follow-
up. Third, the used GTEx brain transcriptome reference panels
have small samples sizes (ranging from 70 to 137, with the average
of 102); as a result, our TWAS analysis may have only limited
power. Nevertheless, we note that, in terms of the number of
associated genes detected by FUSION with single brain tissue,
we believe those new associations are more likely biologically
relevant to ALS rather than completely driven by tissues with
greater sample size. For example, only 0.07% (i.e., 4) genes were
found in brain cerebellum although it has the largest sample size
(i.e., 137) and the greatest cis-heritable genes (i.e., 5,752); while
0.15% genes were identified in brain anterior cingulate cortex
BA24 which has only moderate sample size (i.e., 102) and cis-
heritable genes (i.e., 2,653). Fourth, because not all genes can
be available across all GTEx brain tissues (e.g., Table 2), we
cannot determine ALS-specific tissues or identify tissue-specific
ALS-associated genes, although both are also very interesting
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and worth of pursuing further (Sonawane et al., 2017; Finucane
et al., 2018; Hao et al., 2018). Nevertheless, results displayed in
Table 2 offer some suggestive observations for this issue. For
instance, FAM66D is likely specially associated with ALS in brain
cortex and RP11-529H20.6 is possibly specifically associated with
ALS in brain nucleus accumbens basal ganglia; ATXN3, SCFD1
and SLC9A8 are relevant to ALS in some brain tissues but not
others; while C9orf72 is associated with ALS across nearly all
brain tissues. We note that the step-down inference procedure
introduced in Sun et al. (2019) may be a promising approach that
can be applied to discriminate which genes drive the observed
association signal; but we reserve this problem for investigation
in the future.
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The coexistence of coronary artery disease (CAD) and chronic kidney disease (CKD)
implies overlapped genetic foundation. However, the common genetic determination
between the two diseases remains largely unknown. Relying on summary statistics
publicly available from large scale genome-wide association studies (n = 184,305 for
CAD and n = 567,460 for CKD), we observed significant positive genetic correlation
between CAD and CKD (rg = 0.173, p = 0.024) via the linkage disequilibrium score
regression. Next, we implemented gene-based association analysis for each disease
through MAGMA (Multi-marker Analysis of GenoMic Annotation) and detected 763
and 827 genes associated with CAD or CKD (FDR < 0.05). Among those 72 genes
were shared between the two diseases. Furthermore, by integrating the overlapped
genetic information between CAD and CKD, we implemented two pleiotropy-informed
informatics approaches including cFDR (conditional false discovery rate) and GPA
(Genetic analysis incorporating Pleiotropy and Annotation), and identified 169 and 504
shared genes (FDR < 0.05), of which 121 genes were simultaneously discovered
by cFDR and GPA. Importantly, we found 11 potentially new pleiotropic genes
related to both CAD and CKD (i.e., ARHGEF19, RSG1, NDST2, CAMK2G, VCL,
LRP10, RBM23, USP10, WNT9B, GOSR2, and RPRML). Five of the newly identified
pleiotropic genes were further repeated via an additional dataset CAD available from
UK Biobank. Our functional enrichment analysis showed that those pleiotropic genes
were enriched in diverse relevant pathway processes including quaternary ammonium
group transmembrane transporter, dopamine transport. Overall, this study identifies
common genetic architectures overlapped between CAD and CKD and will help to
advance understanding of the molecular mechanisms underlying the comorbidity of the
two diseases.

Keywords: coronary artery disease, chronic kidney disease, pleiotropy-informed integrative analysis, gene-based
association analysis, pleiotropic gene, genome-wide association study
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INTRODUCTION

Both coronary artery disease (CAD) and chronic kidney disease
(CKD) are the leading causes of death and disability worldwide,
representing serious global public health threats (Kessler et al.,
2013; Inrig et al., 2014; Ene-Iordache et al., 2016; Levin et al.,
2017; Musunuru and Kathiresan, 2019). In practice, it is often
observed that CKD patients encounter an increased risk of
CAD and CAD is in turn a major cause of death for CKD
patients (Tonelli et al., 2012). Pathologically, the endothelial
dysfunction is closely related to cardiovascular diseases and
plays an important role in all stages of atherosclerosis (Ross,
1999). On the other hand, the role of CAD in CKD is also
widely studied; for example, the endothelial dysfunction in the
development of CKD was also well documented (Moody et al.,
2012). As originally proposed by Lindner et al. (1974), CKD
patients with an estimated glomerular filtration rate (eGFR)
<60 ml/min per 1.73 m2 have 2∼16 times higher risk of major
adverse cardiovascular events (MACE) compared to those with
an eGFR > 60 ml/min per 1.73 m2 (Go et al., 2004). Moreover,
for CKD patients not yet requiring renal replacement therapy, the
probability of developing MACE is much higher than reaching
end-stage renal disease (ESRD) and requiring renal replacement
therapy (Foley et al., 2005).

All those empirical observations suggest that there exist a
common susceptible mechanism underlying these two complex
diseases. As part of efforts to understand their genetic foundation,
in the past few years many large scale genome-wide association
studies (GWASs) have been implemented for CAD (Nikpay
et al., 2015) and CKD (Wuttke et al., 2019). It is found that
a lot of genes and single nucleotide polymorphisms (SNPs)
exhibit pleiotropic effects and are associated with both the two
diseases (Solovieff et al., 2013; Supplementary Table 1). This
genetic overlap partly contributes to the co-existence of CAD
and CKD. The understanding of common genetic determinants
has significant implication for identifying important biomarkers
and developing novel therapeutic strategies for joint prediction,
prevention, and intervention of CAD and CKD.

However, like many other diseases/traits (Manolio et al., 2009;
Eichler et al., 2010; Gusev et al., 2013; Girirajan, 2017; Kim et al.,
2017; Young, 2019), CAD- or CKD-associated SNPs identified by
GWAS only explain a very small fraction of phenotypic variance
of CKD (Wuttke et al., 2019) and CAD (Nikpay et al., 2015),
implying that a large number of genetic variants with small to
modest effect sizes (but still important) have yet been discovered
and that more pleiotropic genes would be found if increasing
sample sizes (Wang et al., 2005; Altshuler et al., 2008; Tam
et al., 2019). However, the increase of sample sizes is generally
not feasible since the recruiting and genotyping of additional
participants are time consuming and expensive. Therefore, it is
a promising way to leverage genetic computational methods that
can efficiently analyze information contained in the existing pool
of available GWAS summary statistics for identifying loci with
pleiotropic effects.

To achieve this aim, many pleiotropy-informed approaches
have been proposed (Andreassen et al., 2013; Chung et al.,
2014; Zeng et al., 2018). Those previous studies were focused

on individual SNP associations and fine-mapping was further
needed to find causal genes once newly novel genetic variants
were detected (Hormozdiari et al., 2014, 2015; Wen et al.,
2015; Kichaev et al., 2016). In addition, those methods cannot
effectively handle the correlation among genetic variants due
to linkage disequilibrium (LD) (Zeng et al., 2018). As a result,
pruning [e.g., using PLINK (Purcell et al., 2007)] has to be
employed to keep less dependent SNPs in their analysis, which
inevitably leads to the loss of useful information included in
correlated SNPs. Compared with the traditional single SNP
analysis which only considers only one SNP each time and often
suffers from power reduction (Zeng et al., 2015), the gene-based
association study is another popular supplementary analysis,
which examines the joint significance of a group of SNPs and
has the potential to aggregate weak association signals across
multiple genetic variants and is thus more powerful (Zeng et al.,
2014). Moreover, gene-based associations are easily to interpret
because gene is a more meaningfully biological unit compared
with individual genetic variant.

Given the potential pleiotropy between CAD and CKD that
was widely implied in previous work (Go et al., 2004; Liu et al.,
2012; Ene-Iordache et al., 2016), we hypothesize that shared
genes identified by different pleiotropy-informed methods should
have a higher probability to be candidate pleiotropic genes.
To do so, in the present study we first evaluated the overall
genetic correlation between CAD and CKD with summary
statistics available from large scale GWASs through cross-trait
LDSC (linkage disequilibrium score regression) (Bulik-Sullivan
B. et al., 2015). We next conducted a gene-based association
analysis using MAGMA (Multi-marker Analysis of GenoMic
Annotation) (de Leeuw et al., 2015) to integrate association
signals from SNP level into gene level. We thus obtained P-value
for each protein coding gene. Depending on those gene-level
P-values, we detected pleiotropic genes with two pleiotropy-
informed association methods including cFDR (conditional false
discovery rate) (Andreassen et al., 2013; Smeland et al., 2020) and
GPA (Genetic analysis incorporating Pleiotropy and Annotation)
(Chung et al., 2014). We also attempted to validate our results
in another CAD dataset available from the UK Biobank (UKB)
cohort. The framework of our data analysis is demonstrated in
Figure 1.

MATERIALS AND METHODS

GWAS Summary Statistics
We obtained summary statistics (e.g., effect allele, effect
size, and P-values) for CKD from the latest GWAS of the
CKDGen consortium (Wuttke et al., 2019). In this study the
creatinine value obtained with a Jaffé assay before 2009 was
calibrated by multiplying by 0.95, and glomerular filtration
rate (GFR) was estimated with the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation for adults
(larger than 18 years age) while using the Schwartz formula for
individuals less than 18 years old and was winsorized at 15–
200 ml min−1 per 1.73 m2. CKD was defined as an eGFR below
60 ml min−1 per 1.73 m2. After stringent quality control, a total
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GWAS summary data for CAD

(CAD: ~9.5 million SNPs)

GWAS summary data for CKD

(CKD: ~9.2 million SNPs)

CKD: 9,094,245 SNPs

non-ambiguous strand mapping

exclude no rs labels of SNPs

CAD: 9,416,879 SNPs

CAD: 5,253,977 SNPs

CKD: 5,269,810 SNPs

CAD: 17,231 genes

CKD: 17,223 genes

shared SNPs with 1000G Project

exclude parts of SNPs in Chr 6/8

LDSC
GPA cFDR

MAGMA

121 pleiotropic genes; among those 11 may be novel genes)

Validate analysis with another CAD dataset from UK Biobank

FIGURE 1 | Flowchart of data preparation and analysis for CKD and CAD in the present study. CAD, coronary artery disease; CKD, chronic kidney disease;
MAGMA, Multi-marker Analysis of GenoMic Annotation; LDSC, linkage disequilibrium score regression; GPA, Genetic analysis incorporating Pleiotropy and
Annotation; pleiotropy-informed methods, GPA and cFDR; cFDR, conditional false discovery rate; 1000G, 1000 Genomes Project phase III.

of 567,460 (64,164 cases and 502,296 controls; Neff = 227,584)
individuals of European ancestry and ∼9.6 million SNPs for
CKD were left. We yielded summary statistics of CAD from
the CARDIoGRAMplusC4D Consortium (Nikpay et al., 2015),
which included 184,305 (60,801 cases and 123,504 controls;
Neff = 162,972) individuals of European ancestry and ∼9.4
million SNPs after quality control.

We further validated our results using another summary
statistic of CAD obtained from the UKB cohort1. The UKB-
CAD dataset included 405,940 individuals of European ancestry
(23,888 cases and 382,052 controls; Neff = 89,929) and 23,861,747
SNPs after quality control (i.e., INFO scores >0.8, allele count at
least 20 and minor allele count less than 20). The association in
the UKB-CAD dataset was analyzed through the SAIGE method
(Zhou et al., 2018), which implemented the logistic mixed model
with a kinship matrix as random effects and age, sex, age × sex,
age2, age2

× sex as well as the first ten principal components as
fixed-effects covariates.

Estimated Overall Genetic Correlation
With LDSC
We applied the cross-trait LDSC (Bulik-Sullivan B. et al., 2015)
to assess the overall genetic correlation rg between CKD and
CAD using all available SNPs. The software of LDSC (version
v1.0.1) was downloaded at https://github.com/bulik/ldsc and
our analysis was conducted with default settings. Following

1https://pan.ukbb.broadinstitute.org/

prior studies (Bulik-Sullivan B. et al., 2015), we performed
stringent quality control procedures during the LDSC analysis:
(1) excluded non-biallelic SNPs and those with strand-ambiguous
alleles; (2) excluded duplicated SNPs and those having no
rs labels; (3) excluded SNPs that were located within two
genetic regions including major histocompatibility complex
(chr6: 28,500,000–33,500,000) (Bulik-Sullivan B. et al., 2015)
and chr8: 7,250,000–12,500,000 (Price et al., 2008); (4) kept
SNPs that were included in the 1000 Genomes Project phase
III; (5) removed SNPs whose allele did not match that in the
1000 Genomes Project phase III (The 1000 Genomes Project
Consortium, 2015).

The LD scores `j were computed using genotypes of 7,120,251
common SNPs (minor allele frequency >0.01 and the P-value of
Hardy Weinberg equilibrium test >1E-5) with a 10 Mb window
on 503 European individuals in the 1000 Genomes Project phase
III (The 1000 Genomes Project Consortium, 2015); and then
regressed on the product of Z-score statistics of the two diseases

E(z1jz2j) =

√
N1N2`j

M
× rg +

ρNs
√

N1N2
(1)

where N1 and N2 are the sample sizes for CAD and CKD,
respectively; Ns is the number of individuals shared by the
two GWASs, and ρ is the disease correlation among the Ns
overlapping individuals. Theoretically, SNPs with high LD will
have higher χ2 statistics on average than those with low LD
provided that the disease has a polygenic genetic foundation
(Bulik-Sullivan B. K. et al., 2015). In terms of LSDC shown in
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(1), the regression slope provides an unbiased estimate for genetic
correlation rg and is in general not influenced by sample overlap
(Bulik-Sullivan B. et al., 2015).

Summary Statistics-Based Gene-Level
Association With MAGMA
Many gene-based association approaches with only summary
statistics have been developed recently; among those MAGMA
is a fast and flexible method and widely employed (de Leeuw
et al., 2015). During the implementation of MAGMA, we defined
the set of SNPs that were located within a given gene in terms
of the annotation file provided in VAGIS (Liu et al., 2010). For
numerical stability, we only focused on protein coding genes with
at least ten SNPs (note that, this threshold was to some extent
chosen arbitrarily). The genotypes of 503 European individuals
in the 1000 Genomes Project phase III (The 1000 Genomes
Project Consortium, 2015) were exploited as reference panel
for calculating the LD matrix to incorporate the correlation
structure among SNPs. After the implementation of MAGMA,
the P-value for each gene can be available in the CAD or CKD
GWAS. Depending on those P-values we attempted to discover
significant genes that were related to CAD or CKD as well as
potentially pleiotropic genes that were associated with both the
two types of disease. To detect newly novel association signals,
we ruled out identified genes located within 1 Mb on each side
of previously reported CAD- or CKD associated genes or SNPs
from the GWAS Catalog2 as done similarly in other studies (Bis
et al., 2020). Of note, doing this was a conservative strategy and
might miss potentially important association signals although
false discoveries were well controlled.

Pleiotropy-Informed Association
Methods With Summary Statistics
To further leverage the pleiotropic information shared between
CAD and CKD to identify gene association signals more
efficiently, we employed two novel statistical genetic methods in
the following. First, we utilized the cFDR method (Andreassen
et al., 2013) which extended the unconditional FDR (Benjamini
et al., 2001) from an empirical Bayes perspective. The cFDR
measures the probability of the association of the principal
disease conditioned on the strength of association with the
conditional disease (Andreassen et al., 2013)

cFDR(pi||Pi ≤ pi, Pj ≤ pj) (2)

where pi and pj are the observed P-values of a particular gene of
the principal and conditional diseases, respectively; H(i)

0 denotes
the null hypothesis that there does not exist association between
the gene and the principal disease.

Besides cFDR, we also carried out the GPA analysis (Chung
et al., 2014), which was constructed as

π00 = Prob(Zj00 = 1) : (Pj1|Zj00 = 1) ∼

U[0, 1], (Pj2|Zj00 = 1) ∼ U[0, 1]

2www.ebi.ac.uk

π10 = Prob(Zj10 = 1) : (Pj1|Zj10 = 1) ∼

Beta(α1, 1), (Pj2|Zj10 = 1) ∼ U[0, 1]

π01 = Prob(Zj01 = 1) : (Pj1|Zj01 = 1) ∼

U[0, 1], (Pj2|Zj01 = 1) ∼ Beta(α2, 1)

π11 = Prob(Zj11 = 1) : (Pj1|Zj11 = 1) ∼

Beta(α1, 1), (Pj2|Zj11 = 1) ∼ Beta(α2, 1) (3)

where the latent variables Zj = (Zj00, Zj10, Zj01, Zj11) indicates the
association between the j-th gene and the two diseases: Zj00 = 1
denotes the j-th gene is associated with neither of them (with
probability π00), Zj10 = 1 denotes the j-th gene is only associated
with the first one (with probability π10), Zj01 = 1 denotes the
j-th gene is only associated with the second one (with probability
π01), and Zj11 = 1 denotes the j-th gene is associated with both the
diseases (with probability π11), indicating the extent of common
biological pathways to which the two diseases may share (Chung
et al., 2014). In addition, α1 and α2 (0 < αk < 1, k = 1, 2) are
unknown shape parameters of the Beta distribution.

Functional Analysis
To explore functional features of newly discovered pleiotropic
genes, we performed functional enrichment analysis [e.g., Gene
Ontology (GO) and KEGG pathway analysis] with DAVID 6.83

(Huang da et al., 2009). Enrichment analysis allows us to validate
our findings by determining functional annotations for those
genes with pleiotropic effects. We also conducted the protein–
protein interaction analysis to detect interaction and association
in terms of the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING 11.0 at https://string-db.org/) database
(Szklarczyk et al., 2019). We implemented the signaling pathways
of these significant genes by Cytoscape software and visualized
them by CluePedia (Bindea et al., 2009).

RESULTS

Estimated Overall Genetic Correlation
Between CAD and CKD
After quality control, a total of 5,253,977 and 5,269,810 genetic
variants are reserved for CAD or CKD, respectively. The genome-
wide SNP-based heritability is estimated to be 4.69% (SE = 0.35%)
for CAD and 0.53% (SE = 0.12%) for CKD with LDSC. The
genomic inflation factor (i.e., the ratio of the observed median
χ2 statistic to the expected median) is 1.015 for CAD and
1.143 for CKD, which, together the LDSC intercept [i.e., 0.903
(SE = 0.005) for CAD and 1.134 (SE = 0.007) for CKD], suggests
that the weak inflation of the χ2 statistic of CKD is primarily due
to polygenicity rather than population stratification or cryptic

3https://david.ncifcrf.gov/
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relatedness. In terms of those results, the adjustment of genomic
control is also not necessary.

Next, based on all overlapped genetic variants (i.e., 5,117,020
SNPs), using LDSC we observe there exists a positive genetic
correlation between the two types of diseases [r̂g = 0.173, 95%
confidence interval (CI) 0.023 ∼ 0.332, P = 0.024], providing
empirical evidence that the two diseases share common genetic
components. We further quantify genetic correlation between
CAD and CKD separately in six functional categories (Gusev
et al., 2014), including coding, UTR (untranslated region),
promoter, DHS (DNaseI hypersensitivity sites), intronic and
intergenic. It is found that all the estimates of rg in those
categories are positive, again supporting the statement that CAD
and CKD have overlapped genetic foundation. In particular, there
exists a significantly positive genetic correlation in the regions
of DHS (r̂g = 0.197, 95% CI 0.074 ∼ 0.319, P = 1.60E-3) and
intergenic (r̂g = 0.264, 95% CI 0.153 ∼ 0.375, P = 3.03E-6)
(Supplementary Table S2 and Figure 2).

Overall, through genetic correlation analysis we reveal that
CAD and CKD are genetically similar and share moderate
overlap in genetic etiology, especially at some certain
regions. Therefore, it is worthy of additional investigation
into shared genetic mechanisms through pleiotropy-informed
statistical tools.

Associated Genes Identified With
MAGMA, cFDR, and GPA
In our gene-based association analysis, we assign a set of genetic
variants to predefined genes and obtain a total of 17,231 and
17,223 protein coding genes for CAD or CKD, respectively. Using
MAGMA, we identify 763 CAD-associated genes and 827 CKD-
associated genes (FDR < 0.05) (Supplementary Tables 3, 4 and
Supplementary Figure 1). Importantly, 25.8% (=197/763) CAD-
associated genes (e.g., ACER2, ACSS2, ARHGEF19, and BBS10)
and 60.7% (=503/827) CKD-associated genes (e.g., BAG6, BAK1,
BTNL2, and C4BPB) are likely novel genes because those genes
are not nearby (within 1 Mb upstream and downstream) any
previous GWAS index SNPs or associated genes in terms of the
GWAS catalog (McMahon et al., 2019).

In our cFDR analysis the Q–Q plot of CAD conditional on the
nominal P-value of CKD illustrates the existence of enrichment
at different significance thresholds of CKD (Supplementary
Figure 2A). The presence of leftward shift suggests that the
proportion of true associations for a given CKD P-value would
increase when the analysis is limited to include more significant
SNPs. On the other hand, in terms of the Q–Q plot of CKD
conditional on the nominal P-value of CAD (Supplementary
Figure 2B), we observe a more pronounced separation in
different curves, implying that there exists a stronger enrichment
for CKD given CAD than that for CAD given CKD. We further
formally analyze the two diseases jointly using cFDR and show
the results in Supplementary Tables 5, 6 and Supplementary
Figure 3. Briefly, with cFDR we identify 875 CAD-associated
genes and 1,062 CKD-associated genes (cFDR < 0.05). Among
those genes, 243 CAD-associated and 639 CKD-associated genes
are possibly novel (Supplementary Tables 5, 6). More interesting,

all CAD-associated genes identified by MAGMA are replicated
and 111 additional genes are discovered (Supplementary
Figure 4); and all CKD-associated genes identified by MAGMA
are also verified and 234 more genes are newly discovered
(Supplementary Figure 5).

We next employ GPA to implement another integrative
analysis for the two diseases. In terms of the GPA result we
discover 504 and 1395 significant genes that are related to CAD or
CKD (Supplementary Tables 7, S8 and Supplementary Figure
6). Among those, 17.3% (=87/504) novel CAD-associated
genes (e.g., ACVR2A, AP3M1, ARHGEF19, and BACH1) and
61.2% (=854/1395) CKD-associated genes (e.g., ABCA4, ABCC2,
ABCF3, and ACOX1) may be newly novel genes because they
are not nearby (within 1 Mb upstream and downstream) any
previous GWAS index SNPs or associated genes in terms of
the GWAS catalog (McMahon et al., 2019). Furthermore, we
find 504 CAD-associated and 770 CKD-associated genes that are
identified simultaneously by GPA and MAGMA (Supplementary
Figures 7, 8).

Identified Pleiotropic Gene With Both
cFDR and GPA
According to the result of MAGMA, 72 genes are related to both
CAD and CKD (Supplementary Table 9 and Figure 3A). Based
on the two integrative analyses, 169 genes are shared between
CAD and CKD when using cFDR (Supplementary Table 10 and
Figure 3B) and 504 genes are shared between CAD and CKD
when using GPA (Supplementary Table 11 and Figure 3C). In
addition, through GPA we observe that a substantial fraction of
genes that are simultaneously related to CAD and CKD, with π11
estimated to be 8.2% (SE = 0.1%), offering additional statistical
evidence supporting the existence of pleiotropy between CAD
and CKD [the statistic of the likelihood ratio test is 225.6 and
P = 5.35E-51 (Chung et al., 2014)].

Due to the difference of power in identifying pleiotropic
genes via cFDR or GPA, we expect that a gene would be more
likely to have pleiotropic effect if it is discovered by cFDR
and GPA simultaneously. Relying on this principle we define a
set of 121 genes that are associated with CAD and CKD and
are jointly detected by cFDR and GPA to be pleiotropic genes
(Supplementary Table 12 and Figure 3D), among which five
(i.e., IGF2R, LPA, BCAS3, SLC22A2, and ATXN2) were identified
in previous studies (Supplementary Table 1). Furthermore,
after ruling out genes located within 1 Mb on each side of
previously reported genes or SNPs, we ultimately discover 11
newly novel pleiotropic genes associated with both CAD and
CKD (i.e., RHGEF19, RSG1, NDST2, CAMK2G, VCL, LRP10,
RBM23, USP10, WNT9B, GOSR2, and RPRML) (Table 1 and
Supplementary Figures 9–13).

Validation the Results in a Latest GWAS
From the UK Biobank
We further validate the main results using the UKB-CAD
summary statistics and show the results in Supplementary
Tables 13–16. The genome-wide SNP-based heritability is
estimated to be 2.42% (SE = 0.20%) for UKB-CAD with LDSC.
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FIGURE 2 | Genetic correlation between CAD and CKD in six functional categories, including coding, UTR, promoter, DHS, intronic, and intergenic. Error bars show
1.96 × SE. Besides DHS and intergenic, the genetic correlation is r̂g = 0.053 (SE = 0.122, P = 6.64E-1) for coding, r̂g = 0.127 (SE = 0.125, P = 3.10E-1) for UTR,
r̂g = 0.161 (SE = 0.089, P = 7.00E-2) for promoter, r̂g = 0.089 (SE = 0.075, P = 2.55E-1) for intronic.

FIGURE 3 | (A) A total of 72 associated genes shared by CAD and CKD using MAGMA; (B) 169 associated genes shared by CAD and CKD using cFDR; (C) a total
of 504 genes shared by CAD and CKD using GPA; (D) a total of 121 pleiotropic genes of CAD and CKD simultaneously discovered by cFDR and GPA. CAD,
coronary artery disease; CKD, chronic kidney disease; MAGMA, Multi-marker Analysis of GenoMic Annotation; GPA, Genetic analysis incorporating Pleiotropy and
Annotation; cFDR, conditional false discovery rate.
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TABLE 1 | Pleiotropic genes associated with CAD and CKD identified by cFDR and GPA jointly.

Gene CHR Position cFDR GPA

CAD CKD CAD CKD

ARHGEF19 1 16,424,598–16,639,104 2.55E-03 4.16E-02 1.19E-02 1.76E-03

RSG1 1 16,458,181–16,663,659 2.83E-03 3.38E-02 1.28E-02 1.47E-03

NDST2 10 75,461,668–75,671,589 1.09E-02 4.13E-03 4.69E-02 8.63E-04

CAMK2G 10 75,472,258–75,734,349 5.06E-03 3.02E-03 2.51E-02 4.13E-04

VCL 10 75,657,871–75,979,914 6.07E-03 1.52E-02 2.75E-02 1.58E-03

LRP10 14 23,240,959–23,447,291 8.22E-03 2.21E-02 3.35E-02 2.42E-03

RBM23 14 23,269,853–23,488,396 7.62E-03 2.80E-02 3.13E-02 2.78E-03

USP10 16 84,633,554–84,913,527 6.48E-03 2.63E-04 4.08E-02 1.01E-04

WNT9B 17 44,828,967–45,054,437 4.20E-04 3.37E-02 1.84E-03 2.47E-04

GOSR2 17 44,900,485–45,118,733 8.13E-04 3.22E-02 4.08E-03 5.39E-04

RPRML 17 44,955,521–45,156,614 1.90E-03 2.16E-02 8.30E-03 6.50E-04

We also do not observe a substantial inflation in the UKB-
CAD summary statistics [the estimated λ = 1.178 with the
intercept = 1.057 (SE = 0.005)].

According to the result of MAGMA, 184 genes are related
to both UKB-CAD and CKD (Supplementary Table 13 and
Supplementary Figure 14). Based on the two pleiotropy-
informed integrative analyses, 373 genes are shared between
UKB-CAD and CKD using cFDR (Supplementary Table 14 and
Supplementary Figure 15) and 371 genes are shared between
UKB-CAD and CKD using GPA (Supplementary Table 15 and
Supplementary Figure 16). All the 11 pleiotropic genes described
above are also analyzed here and five (i.e., RSG1, LRP10, RBM23,
WNT9B, and GOSR2) are replicated (Supplementary Table 16).

Functional Analyses for Pleiotropic
Genes
We now undertake functional analyses for the 121 pleiotropic
genes. Among these, most are located within chr 17
(20.7% = 25/121), followed by chr 1 (15.7% = 19/121) and
chr 11 (12.4% = 15/121) (Supplementary Figure 17). In
terms of the DAVID analysis, these genes are enriched
in 34 GO terms (Supplementary Table 17). The top five
candidate pathways include “dopamine transmembrane
transporter activity” (P = 2.28E-04), “quaternary ammonium
group transport” (P = 3.54E-04), “quaternary ammonium
group transmembrane transporter activity” (P = 3.79E-04),
“dopamine transport” (P = 7.38E-04), and “organic cation
transmembrane transporter activity” (P = 7.89E-04). There
pathways offer part of evidence supporting common genetic
foundations between CAD and CKD. For instance, it has
been shown that CKD patients had higher levels for some
quaternary ammonium salts (e.g., choline) (Rennick et al.,
1976), which were also risk factors for CAD (Guo et al.,
2020). In our PPI analysis (Supplementary Figure 18), strong
interactions are found among pleiotropic genes, such as
NDST2, CAMK2G, RASGRF1, IGF2R, SORT1, and TRIB1.
These genes were reported to be associated with organic cation
transmembrane transporter, such as organic anion transporters
oat1 and oat3, and organic cation transporters oct1 and oct2,

which was also altered with chronic kidney failure in rats
(Komazawa et al., 2013).

DISCUSSION

It has been widely observed that CAD and CKD share common
pathological and clinical feature (Go et al., 2004; Liu et al., 2012;
Tonelli et al., 2012; Ene-Iordache et al., 2016). However, the
underlying genetic overlap between the two diseases remains
unclear and a large proportion of genes related to CAD and
CKD are yet discovered (Manolio et al., 2009). Large-scale
GWASs undertaken for CAD and CKD offer an unprecedented
opportunity to answer this question. In the present study a
positive genetic correlation was found between CAD and CKD,
implying genetic variants that were associated with the risk of
CKD would be also related to the risk of CAD. This finding also
partly explained the observed comorbidity of the two diseases
(Go et al., 2004; Ene-Iordache et al., 2016).

Using existing well-established statistical approaches, we
ultimately identified 11 novel pleiotropic genes shared by CAD
and CKD, including ARHGEF19, RSG1, NDST2, CAMK2G, VCL,
LRP10, RBM23, USP10, WNT9B, GOSR2, and RPRML, some
of which were previously reported to play important roles in
the pathogenesis of CAD or CKD (Agosti, 2002; Sivapalaratnam
et al., 2012; Zanders, 2015). Furthermore, we also validated
our main finding in an independent UKB-CAD dataset and
replicated five genes.

Specifically, prior studies showed that ARHGEF19 (Klarin
et al., 2018) and LRP10 (Sugiyama et al., 2000) were associated
with total cholesterol and low-density lipoprotein (LDL)
cholesterol, which were in turn related to CAD (Nissen et al.,
2005) and CKD (Baigent et al., 2011). RSG1 is involved in targeted
membrane trafficking, and further involved in cilium biogenesis
by regulating the transportation of cargo proteins to the basal
body and apical tips of cilia with its protein (Agbu et al., 2018).
Mice and humans with abnormal primary cilia can exhibit defects
in cardiac morphogenesis, and also can cause kidney disease
(Agbu et al., 2018).
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NDST2 encodes a member of the N-deacetylase/N-
sulfotransferase subfamily, which has dual functions
(N-deacetylation and N-sulfation) in processing heparin
polymers (Humphries et al., 1998). Inactivation of NDST2
may impact the atherosclerosis by altering the structure of
monocytes/macrophages heparan sulfate (HS) (Gordts et al.,
2014), while also alter the glomerular HS to impact the primary
kidney diseases (Goode et al., 1995). CAMK2G belongs to the
Ca2+/calmodulin-dependent protein kinase subfamily (Moyers
et al., 1997). Vascular calcification correlates with the vessel
stiffening and hypertension, and further increases the risk of
atherosclerosis and myocardial infarction. It also exhibits a
hugely elevated risk of cardiovascular mortality in CKD patients
(Shanahan Catherine et al., 2011).

Vinculin (VCL) is a membrane-cytoskeletal protein, which
associated with the linkage of integrin adhesion molecules to the
actin cytoskeleton (Burridge and Feramisco, 1980), and the cell–
cell and cell-matrix junctions, where it is thought to function in
anchoring F-actin to the membrane (Geiger, 1979). Endothelial
dysfunction caused by F-actin cytoskeleton disorder is a well-
recognized instigator of cardiovascular diseases and CKD (Ding
et al., 2016). USP10 encodes a member of the ubiquitin-specific
protease family of cysteine proteases (Wang et al., 2015; Lim
et al., 2019). Inactivation of USP10 can diminish Notch-induced
target gene expression in endothelial cells. Importantly, tight
quantitative and temporal control of Notch activity is essential
for vascular development (Wang et al., 2015; Lim et al., 2019).

WNT9B, encodes the secreted signaling proteins (Garriock
et al., 2007), is significantly associated with systolic blood
pressure (Hoffmann et al., 2017), which is further related
to the risk of CAD (Turner et al., 1998) and CKD (Jafar
et al., 2003). GOSR2 encodes a trafficking membrane protein
which transports proteins among the medial- and trans-Golgi
compartments (Bui et al., 1999). Due to its chromosomal location
and trafficking function, GOSR2 may be involved in familial
essential hypertension (Boissé Lomax et al., 2013), and also was
reported to be relevant to systolic blood pressure (Ehret et al.,
2011) and CAD (van der Harst and Verweij, 2018).

The major strength of our work is that multiple pleiotropy-
informed methods were implemented to detect pleiotropic
genes by combining existing GWASs summary results without
requiring individual-level datasets. Unlike previous studies
(Andreassen et al., 2013; Chung et al., 2014; Zeng et al., 2018), we
perform MAGMA methods to enrich a group of SNPs which may
be likely associated with CAD or CKD but cannot reach genome-
wide significance because of modest effects if using single marker
analysis. Moreover, to minimize possible false discovery, we only
reported pleiotropic genes that were simultaneously discovered
by GPA and cFDR and thus were more likely to be related to both
CAD and CKD. Therefore, our findings are robust.

Nevertheless, there are some limitations needed to state. First,
we cannot replicate all these genes via in vivo and in vitro
experiments. Second, the individuals involved in our study are
of European ancestry, it is not clear whether the finding can
be generalized to other populations because of ethnic diversity
in genetics. Third, although empirical evidence shown above
indicates that the newly identified pleiotropic genes may underlie

certain aspects of the pathogenesis of CAD and CKD in a direct
or indirect way, the causally biological mechanisms of those genes
are still largely unclear; therefore, further studies are needed to
completely delineate their functions on CAD and CKD.

CONCLUSION

This study identifies common genetic architectures overlapped
between CAD and CKD and will help to advance understanding
of the molecular mechanisms underlying the comorbidity of
the two diseases.
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Idiopathic pulmonary fibrosis (IPF) is a type of scarring lung disease characterized
by a chronic, progressive, and irreversible decline in lung function. The genetic basis
of IPF remains elusive. A transcriptome-wide association study (TWAS) of IPF was
performed by FUSION using gene expression weights of three tissues combined
with a large-scale genome-wide association study (GWAS) dataset, totally involving
2,668 IPF cases and 8,591 controls. Significant genes identified by TWAS were then
subjected to gene ontology (GO) and pathway enrichment analysis. The overlapped
GO terms and pathways between enrichment analysis of TWAS significant genes and
differentially expressed genes (DEGs) from the genome-wide mRNA expression profiling
of IPF were also identified. For TWAS significant genes, protein–protein interaction (PPI)
network and clustering modules analyses were further conducted using STRING and
Cytoscape. Overall, TWAS identified a group of candidate genes for IPF under the
Bonferroni corrected P value threshold (0.05/14929 = 3.35 × 10−6), such as DSP
(PTWAS = 1.35 × 10−29 for lung tissue), MUC5B (PTWAS = 1.09 × 10−28 for lung
tissue), and TOLLIP (PTWAS = 1.41 × 10−15 for whole blood). Pathway enrichment
analysis identified multiple candidate pathways, such as herpes simplex infection (P
value = 7.93 × 10−5) and antigen processing and presentation (P value = 6.55 × 10−5).
38 common GO terms and 8 KEGG pathways shared by enrichment analysis of TWAS
significant genes and DEGs were identified. In the PPI network, 14 genes (DYNLL1,
DYNC1LI1, DYNLL2, HLA-DRB5, HLA-DPB1, HLA-DQB2, HLA-DQA2, HLA-DQB1,
HLA-DRB1, POLR2L, CENPP, CENPK, NUP133, and NUP107) were simultaneously
detected by hub gene and module analysis. In conclusion, through integrative analysis
of TWAS and mRNA expression profiles, we identified multiple novel candidate genes,
GO terms and pathways for IPF, which contributes to the understanding of the genetic
mechanism of IPF.

Keywords: idiopathic pulmonary fibrosis, transcriptome-wide association study, gene expression profiling,
pathway enrichment, protein–protein interaction network
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung
disease characterized by the formation of scar tissue and a
progressive, and irreversible decline in lung function (Raghu
et al., 2011; Lederer and Martinez, 2018), with a median
survival time from diagnosis of 2–4 years (Ley et al., 2011).
The incidence of IPF is increasing worldwide and has been
estimated to be 3–9 cases per 100,000 people per year in Europe
and North America, and fewer than four cases per 100,000
people per year in East Asia and South America (Hutchinson
et al., 2015). IPF has been confirmed to be related to varieties
of environmental and genetic factors. Potential risk factors for
IPF include aging, male sex, smoking, certain occupational
exposures (Baumgartner et al., 2000), gastroesophageal reflux
(Tobin et al., 1998; Bedard Methot et al., 2019), herpesvirus
infection (Tang et al., 2003), air pollution (Sack et al., 2017),
and obstructive sleep apnea (Kim et al., 2017). Genome-wide
association studies (GWAS) on IPF (Mushiroda et al., 2008;
Fingerlin et al., 2013, 2016; Noth et al., 2013; Allen et al.,
2017, 2020) have identified common genetic variants related to
IPF, highlighting the significance of several IPF susceptibility
factors, such as telomere maintenance, host defense, cell-cell
adhesion. Rare genetic variants regarding surfactant dysfunction
and telomere biology have also been identified in studies of
familial pulmonary fibrosis (Nogee et al., 2001; Armanios et al.,
2007; Cogan et al., 2015; Stuart et al., 2015).

Genome-wide association study have significantly succeeded
in identifying IPF-related susceptibility genetic loci. However,
a great number of genetic variations identified reside in non-
coding regions, which are generally difficult to characterize
biologically. Indeed, one common sense for GWAS is that most
disease-associated genetic variants are located in non-coding
regions, resulting in the hypothesis that the underlying biological
mechanism of disease may be closely related to gene expression
regulation. Furthermore, several expression quantitative trait
loci (eQTLs) studies have illustrated that the information
on expression regulation may play a pivotal role in disease
development (Albert and Kruglyak, 2015). Transcriptome-wide
association study (TWAS) is widely utilized in integrating
GWAS with eQTL studies for investigating the causal genes
associated with complex traits or diseases (Gamazon et al.,
2015; Gusev et al., 2016; Yuan et al., 2020). Therefore, TWAS
analysis may help us to identify novel genes associated with
IPF. On the other hand, the genome-wide mRNA expression
profiling of IPF provides the opportunity to identify differentially
expressed genes (DEGs). Furthermore, omics integrative analysis
can combine different types of omics data and provides more
comprehensive insights than that offered by any single type
of omics data (Liu et al., 2013). These integrative analyses
are implemented and expected to rebuild meaningful biological
networks by integrating information from different types of
data, thus have the potential to provide a more novel and
reliable understanding with respect to the underlying biological
mechanisms. Statistically, complementary information can be
better captured and exploited by such data integration analyses
(Yu and Zeng, 2018). Indeed, in high-throughput genomic

studies, one common sense is that the analysis from single
dataset often lack of reproducibility and integrative analysis can
efficiently investigate and make full use of multiple datasets
in a cost-efficient manner to enhance reproducibility (Yu and
Zeng, 2018). This motivated us to perform a comprehensive
integrative analysis of TWAS and mRNA expression profile of
IPF, which may provide the better understanding of the molecular
mechanisms of IPF.

In the present study, we leveraged expression imputation
from a large-scale IPF GWAS dataset to perform a TWAS
analysis in peripheral blood, whole blood and lung tissue.
The TWAS significant genes and DEGs identified by mRNA
expression profiling of IPF were then subjected to gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. Through
this analysis, the common GO terms and KEGG pathways
were identified. Furthermore, for significant genes identified
by TWAS for IPF, STRING and Cytoscape software were
applied to implement protein–protein interaction (PPI)
network and clustering modules analyses. Our results
may provide novel insights into the understanding of the
molecular mechanisms underlying the development of IPF.
The detailed procedure of integrative analysis was displayed in
Figure 1.

FIGURE 1 | The flowchart illustrates the procedure of integrative analysis of
TWAS and mRNA expression profile of IPF. Software for the integrative
analysis were shown in bold. IPF, idiopathic pulmonary fibrosis; GWAS,
genome-wide association study; GTEx, Genotype-Tissue Expression Project;
NTR, Netherlands Twin Registry study; YFS, Young Finns Study; EUR,
European; LD, linkage disequilibrium; TWAS, transcriptome-wide association
study; GEO, Gene Expression Omnibus database; DEGs, differentially
expressed genes; STRING, Search Tool for the Retrieval of Interacting Genes;
PPI, protein–protein interaction; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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MATERIALS AND METHODS

GWAS of IPF
The current and largest-scale GWAS summary data of IPF
were used (Allen et al., 2020). Briefly, it included 2,668
IPF cases and 8,591 controls of European ancestry from a
meta-analysis of three case-control studies and restricted to
unrelated individuals of European ancestry. Genotype data were
imputed using the Haplotype Reference Consortium r1.1 panel.
Stringent quality control was performed for the genotyped
data. In each separate study, a genome-wide analysis of IPF
susceptibility was conducted using SNPTEST v2.5.2, adjusting
for the first 10 principal components to account for fine-scale
population structure. Only biallelic autosomal variants that had
a minor allele count ≥10, were in Hardy-Weinberg Equilibrium
(P > 1 × 10−6), and well-imputed (imputation quality R2 > 0.5)
in at least two studies were included. Detailed description
related to study participants, genotyping, imputation, association
analysis, and quality control can be found in the previous IPF
GWAS study (Allen et al., 2020).

TWAS of IPF
FUSION software was applied here for tissue-related TWAS
analysis (Gusev et al., 2016). Briefly, FUSION leveraged a set
of reference individuals to measure both gene expression and
SNPs, and then to impute the cis genetic component of expression
into a much larger set of individuals using their SNP genotype
data. The imputed expression data can be viewed as a linear
model of genotypes with weights based on the correlation
between SNPs and gene expression in the reference data while
accounting for linkage disequilibrium among SNPs. FUSION
uses pre-computed gene expression weights together with disease
GWAS summary statistics to evaluate the association between
the expression levels of genes and target diseases (Gusev et al.,
2016). The genetic values of expression were computed as one
probe set at a time using SNP genotyping data located 500 kb on
both sides of the gene boundary. The pre-computed expression
reference weights of different tissues were downloaded from the
FUSION websites1. For IPF TWAS, we used three expression
reference panels, including lung, peripheral blood and whole
blood, and a TWAS P value was obtained for each gene. Gene
expression weights of lung were driven from the Genotype-Tissue
Expression Project (GTEx v7; n = 383) (GTEx Consortium et al.,
2017). Gene expression weights of peripheral blood and whole
blood reference panels were driven from the Netherlands Twin
Registry study (NTR) (n = 1,247) (Boomsma et al., 2006; Wright
et al., 2014) and Young Finns Study (YFS) (n = 1,264) (Raitakari
et al., 2008), respectively.

Gene Expression Profile Associated With
IPF
The IPF gene expression profile data of lung tissue were obtained
from the Gene Expression Omnibus database (access number:
GSE110147) (Cecchini et al., 2018). Briefly, fresh frozen lung

1http://gusevlab.org/projects/fusion/

samples were obtained from the organs of 22 patients with IPF;
normal lung tissue (n = 11) was obtained from the tissue flanking
lung cancer resections. RNA was extracted and hybridized
on Affymetrix microarrays. Individual-level gene expression
data were included in the mRNA expression profile analysis
implemented by LIMMA package (Ritchie et al., 2015). The
DEGs between IPF patients and controls were identified at fold
change >1.2 and adjusted P value < 0.05. Detailed description
of sample characteristics, experimental design, statistical analysis,
and quality control can be found in the previous study
(Cecchini et al., 2018).

Gene Set Enrichment Analysis
The IPF-related genes identified by TWAS and mRNA expression
profiling were, respectively, subjected to GO and KEGG pathway
enrichment analysis implemented by Metascape (Zhou et al.,
2019)2. Note that in the enrichment analysis for IPF-related genes
identified by TWAS, we included all the genes with a TWAS
P value less than 0.05, rather than those under the Bonferroni
corrected P value threshold (0.05/14929 = 3.35 × 10−6), to
increase the ability to identify more biological processes relevant
to IPF and to make the results more stable by including more
input genes (Reimand et al., 2019). A P value was calculated
by Metascape for each GO term and pathway. Terms with a P
value < 0.01, a minimum count of 3, and an enrichment factor
>1.5 were collected and grouped into clusters based on their
membership similarities. Kappa scores were used as the similarity
metric when performing hierarchical clustering on the enriched
terms, and sub-trees with a similarity of >0.3 were considered a
cluster. The most statistically significant term within a cluster was
chosen to represent the cluster. Finally, the Metascape analysis
of TWAS was compared with that of mRNA expression profiles
of lung tissue to identify the common GO terms and pathways
shared by enrichment analysis for IPF-related genes from TWAS
and for DEGs from mRNA expression profiling of IPF. Note that
the common GO terms were obtained by overlapping the original
GO enrichment results before grouping into clusters.

Protein–Protein Interaction Network,
Hub Genes, and Module Analysis
The PPI network of TWAS significant genes was constructed
by the online Search Tool for the Retrieval of Interacting
Genes (Szklarczyk et al., 2019) (STRING; 2017 release) database
to evaluate the interactive relationships among the genes.
Interactions with a combined score >0.9 were defined as
statistically significant. Cytoscape software (Shannon et al.,
2003) (version 3.5.1) was applied to visualize the integrated
regulatory networks. The cytoHubba plugin and Molecular
Complex Detection (MCODE) plugin in Cytoscape were used to
identify hub genes and screen modules of the PPI network. All
parameters of the plugin were set at their default values. Again,
GO and KEGG enrichment of hub genes and genes in modules
were also analyzed by Metascape.

2http://metascape.org
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RESULTS

TWAS Analysis Results
Totally, 14,929 genes were analyzed by TWAS in this study.
Overall, TWAS identified 29 genes under the Bonferroni
corrected P value threshold (0.05/14929 = 3.35 × 10−6)
and 1,147 genes with P value < 0.05 (Supplementary
Table S1), such as DSP (PTWAS = 1.35 × 10−29 for lung
tissue), MUC5B (PTWAS = 1.09 × 10−28 for lung tissue),
TOLLIP (PTWAS = 1.41 × 10−15 for whole blood), MAPT
(PTWAS = 9.60 × 10−15 for lung tissue), and DEPTOR
(PTWAS = 8.58 × 10−9 for lung tissue). The top 30 genes identified
by TWAS are summarized in Table 1.

Gene Set Enrichment Analysis
A total of 1,147 genes with a TWAS P value < 0.05 were
included in the GO enrichment analysis. Metascape detected 76
GO terms under P value < 0.01 (Figure 2 and Supplementary
Table S2), such as antigen processing and presentation of
peptide or polysaccharide antigen via major histocompatibility
complex (MHC) class II (PTWAS = 1.43 × 10−8), vacuolar

TABLE 1 | Top 30 genes identified by TWAS for IPF.

Gene Chromosome PTWAS Tissue

DSP 6 1.35 × 10 −29 Lung

MUC5B 11 1.09 × 10−28 Lung

TOLLIP 11 1.41 × 10−15 Whole blood

DND1P1 17 8.12 × 10−15 Lung

CRHR1-IT1 17 9.20 × 10−15 Lung

MAPT 17 9.60 × 10−15 Lung

RP11-259G18.2 17 1.04 × 10−14 Lung

RP11-707O23.5 17 1.19 × 10−14 Lung

RP11-259G18.3 17 1.22 × 10−14 Lung

LRRC37A4P 17 1.59 × 10−14 Lung

KANSL1-AS1 17 2.75 × 10−14 Lung

RP11-259G18.1 17 3.81 × 10−14 Lung

KIAA1267 17 2.19 × 10−13 Peripheral blood

LRRC37A2 17 2.91 × 10−13 Lung

WNT3 17 1.21 × 10−12 Lung

DND1 17 2.17 × 10−12 Peripheral blood

PLEKHM1 17 5.00 × 10−11 Peripheral blood

FAM215B 17 7.66 × 10−11 Lung

PLEKHM1 17 3.08 × 10−10 Lung

RP11-158M2.5 15 1.41 × 10−9 Lung

FAM13A 4 2.12 × 10−9 Lung

LRRC37A 17 6.40 × 10−9 Lung

DEPTOR 8 8.58 × 10−9 Lung

RP11-760H22.2 8 1.06 × 10−8 Lung

BAHD1 15 1.16 × 10−8 Lung

BRSK2 11 1.49 × 10−8 Lung

RP11-798G7.5 17 2.97 × 10−8 Lung

GCHFR 15 1.94 × 10−7 Whole blood

RP11-64K12.8 15 2.37 × 10−7 Lung

ZNF514 2 4.41 × 10−6 Whole blood

part (PTWAS = 5.98 × 10−6), ncRNA metabolic process
(PTWAS = 1.61 × 10−5), snRNA transcription by RNA
polymerase II (PTWAS = 3.03 × 10−5), and SWI/SNF complex
(PTWAS = 5.81 × 10−5). For KEGG pathway enrichment
analysis of the genes identified by TWAS, Metascape detected
30 candidate pathways for IPF under P value < 0.01
(Figure 3 and Supplementary Table S3), such as Staphylococcus
aureus infection (PTWAS = 3.69 × 10−7), allograft rejection
(PTWAS = 4.45 × 10−6), asthma (PTWAS = 7.65 × 10−6), type I
diabetes mellitus (PTWAS = 1.32 × 10−5), inflammatory bowel
disease (IBD) (PTWAS = 7.37 × 10−5), and herpes simplex
infection (PTWAS = 7.93 × 10−5).

A total of 2,204 DEGs were identified by mRNA expression
profiling analysis of IPF (Supplementary Table S4), and
were then conducted GO and KEGG pathway enrichment
analysis (Supplementary Tables S5, S6). 38 common GO terms
were identified by enrichment analysis of IPF-related genes
identified by TWAS and DEGs (Supplementary Table S7),
including antigen processing and presentation of peptide
or polysaccharide antigen via MHC class II (GO:0002504,
PTWAS = 1.43 × 10−8, PmRNA = 8.87 × 10−3), lytic vacuole
(GO:0000323, PTWAS = 6.25 × 10−6, PmRNA = 5.91 × 10−3),
ncRNA metabolic process (GO:0034660, PTWAS = 1.61 × 10−5,
PmRNA = 4.43 × 10−7), microtubule organizing center
(GO:0005815, PTWAS = 1.24 × 10−4, PmRNA = 2.46 × 10−23),
and autophagy (GO:0002504, PTWAS = 1.10 × 10−3,
PmRNA = 2.11 × 10−4). Table 2 summarizes the top 20 common
GO terms detected by enrichment analysis of IPF-related genes
identified by TWAS and DEGs. We also detected 8 common
KEGG pathways (Table 3), such as staphylococcus aureus
infection (PTWAS = 3.69 × 10−7, PmRNA = 9.17 × 10−3), herpes
simplex infection (PTWAS = 7.93 × 10−5, PmRNA = 8.76 × 10−4),
HTLV-I infection (PTWAS = 8.84 × 10−5, PmRNA = 5.92 × 10−4),
phagosome (PTWAS = 8.99 × 10−5, PmRNA = 1.93 × 10−4),
and systemic lupus erythematosus (PTWAS = 2.25 × 10−3,
PmRNA = 3.12 × 10−3).

PPI Network, Hub Gene and Module
Analysis
To evaluate the association of IPF-related genes identified
by TWAS, a PPI network was constructed by STRING and
visualized by Cytoscape, containing 329 nodes and 893 edges
(Supplementary Figure S1). The top 20 hub genes were
identified by cytoHubba plugin that uses 12 different algorithms
(Supplementary Table S8). Then, from the genes that can be
detected by more than five algorithms, 16 hub genes with
the highest degree of connectivity were selected to build the
hub gene PPI network (Figure 4A). The enrichment analysis
showed that the IPF-related processes hub genes were enriched
in antigen processing and presentation of exogenous peptide
antigen via MHC class II, chromosome, centromeric region, and
cytoplasmic dynein complex.

In addition, module analysis conducted by MCODE plugin in
Cytoscape identified several modules in the PPI network. Then,
the top four significant modules were selected for subsequent
analysis. A significant module, which gained the highest MCODE
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FIGURE 2 | The top 20 gene ontology terms identified by enrichment analysis for IPF-related genes from TWAS.

FIGURE 3 | The top 20 KEGG pathways identified by enrichment analysis for IPF-related genes from TWAS.

score, contained 24 nodes and 150 edges. Subsequent functional
enrichment analysis indicated that the genes in this module
were primarily enriched in antigen processing and presentation
of exogenous peptide antigen via MHC class II, chromosome,
centromeric region, cytoplasmic dynein complex, and type
I interferon signaling pathway (Figure 4B). Fourteen genes
(DYNLL1, DYNC1LI1, DYNLL2, HLA-DRB5, HLA-DPB1, HLA-
DQB2, HLA-DQA2, HLA-DQB1, HLA-DRB1, POLR2L, CENPP,
CENPK, NUP133, and NUP107) were simultaneously detected by
both hub gene and module analysis.

DISCUSSION

Although the biological basis of IPF has been investigated in the
past years, the cellular and molecular mechanisms of IPF are
very complicated and remain unclear. In the present study, we
performed the first large-scale integrative analysis of TWAS and
mRNA expression profiles for IPF, which successfully detected
some plausible genes as well as pathways, and can potentially
provide novel insights to better understand the molecular
mechanisms underlying the development of IPF.
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TABLE 2 | Top 20 overlapped gene ontology terms identified by enrichment analysis for IPF-related genes from TWAS and for differentially expressed genes from mRNA
expression profiling of IPF.

ID Category Description PTWAS PmRNA

GO:0002504 BP Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 1.43 × 10−8 8.87 × 10−3

GO:0000323 CC Lytic vacuole 6.25 × 10−6 5.91 × 10−3

GO:0034660 BP ncRNA metabolic process 1.61 × 10−5 4.43 × 10−7

GO:0042795 BP snRNA transcription by RNA polymerase II 3.03 × 10−5 8.88 × 10−3

GO:0006338 BP Chromatin remodeling 2.47 × 10−4 1.37 × 10−5

GO:0007346 BP Regulation of mitotic cell cycle 9.76 × 10−5 1.43 × 10−12

GO:0005815 CC Microtubule organizing center 1.24 × 10−4 2.46 × 10−23

GO:1990234 CC Transferase complex 1.32 × 10−4 9.74 × 10−6

GO:0016604 CC Nuclear body 2.50 × 10−4 2.37 × 10−16

GO:0006163 BP Purine nucleotide metabolic process 2.56 × 10−4 2.17 × 10−6

GO:0034605 BP Cellular response to heat 2.68 × 10−4 4.12 × 10−3

GO:0044417 BP Translocation of molecules into host 2.95 × 10−3 5.04 × 10−4

GO:0043687 BP Post-translational protein modification 9.48 × 10−4 8.44 × 10−6

GO:1903827 BP Regulation of cellular protein localization 1.08 × 10−3 2.58 × 10−6

GO:0006914 BP Autophagy 1.10 × 10−3 2.11 × 10−4

GO:0098687 CC Chromosomal region 1.31 × 10−3 7.26 × 10−15

GO:0072594 BP Establishment of protein localization to organelle 1.55 × 10−3 6.00 × 10−5

GO:0008134 MF Transcription factor binding 1.55 × 10−3 4.44 × 10−4

GO:0032984 BP Protein-containing complex disassembly 3.84 × 10−3 7.07 × 10−3

GO:0000139 CC Golgi membrane 1.87 × 10−3 7.40 × 10−6

Biological Processes (BP); Cellular Components (CC); Molecular Functions (MF).

TABLE 3 | Overlapped KEGG pathways identified by enrichment analysis for IPF-related genes from TWAS and for differentially expressed genes from mRNA expression
profiling of IPF.

ID Description PTWAS PmRNA

hsa05150 Staphylococcus aureus infection 3.69 × 10−7 9.17 × 10−3

hsa05168 Herpes simplex infection 7.93 × 10−5 8.76 × 10−4

hsa05166 HTLV-I infection 8.84 × 10−5 5.92 × 10−4

hsa04145 Phagosome 8.99 × 10−5 1.93 × 10−4

hsa05164 Influenza A 3.46 × 10−4 1.32 × 10−3

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 2.04 × 10−3 2.64 × 10−4

hsa05322 Systemic lupus erythematosus 2.25 × 10−3 3.12 × 10−3

hsa04620 Toll-like receptor signaling pathway 9.97 × 10−3 9.76 × 10−3

Transcriptome-wide association study detected several
significant IPF-related genes previously reported in GWAS, such
as DSP and MUC5B. DSP encodes desmoplakin, which is an
important component of the desmosome structure. Desmoplakin
is involved in the mechanical linkage of cells, stabilization of
tissue structure and the process of cell migration, proliferation,
and differentiation. Accordingly, DSP is essential to cell-cell
adhesion and epithelial barrier function (Vasioukhin et al.,
2001). Previous evidence has suggested that DSP expression is
higher in IPF lung than in the lungs of healthy control subjects
and the intron 5 variant rs2076295 was found to be associated
with decreased DSP expression, indicating that differential DSP
expression plays an important role in IPF etiology (Mathai et al.,
2016). MUC5B encodes for mucin 5B, which is produced by
airway epithelial cells and is a major gel-forming mucin in the
mucus. Mucin 5B is involved in the production of airway mucous
and may have a significant role in mucociliary clearance and

airway defense (Roy et al., 2014; Evans et al., 2016). Increased
MUC5B expression might impair mucosal defense of host and
thus lead to the reduction of lung clearance of inhaled particles,
dissolved chemicals, and microorganisms (Seibold et al., 2011).
The MUC5B promotor variant rs35705950 is a common variant
that accounts for a large proportion of risk for the development of
familial interstitial pneumonia and IPF (Seibold et al., 2011; Todd
et al., 2015; Evans et al., 2016; Zhang et al., 2019). Interestingly,
a retrospective study has demonstrated improved survival of
patients with this promoter variant compared with those without
this variant, indicating that this variant might be a potential
prognostic indicator (Peljto et al., 2013). These paradoxical
findings imply that further investigation is required to clarify the
biological mechanism by which this promoter variant promotes
the development of IPF.

Besides, attention should be paid to genes simultaneously
detected by hub gene and module analysis, such as DYNC1LI1,
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FIGURE 4 | PPI network for hub genes and modules analyses of IPF-related genes identified by TWAS. (A) The network of 16 hub genes with a higher degree of
connectivity and enrichment analysis of these genes. (B) Genes of top four modules were subjected to GO and KEGG enrichment analysis by Metascape.
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DYNLL1, and DYNLL2, which are likely to be related with
IPF but not reported earlier. DYNLL1 and DYNLL2 are related
to cell cycle spindle assembly and chromosome separation
and may be involved in the change or maintenance of the
spatial distribution of cytoskeletal structures (Dunsch et al.,
2012). DYNC1LI1 is related to microtubule motor activity and
may play a role in binding dynein to membranous organelles.
These three genes belong to the cytoplasmic dynein subunit
gene. Cytoplasmic dynein acts as a motor for the intracellular
retrograde motility of vesicles and organelles along microtubules
(Dunsch et al., 2012). Besides, human airway epithelium is
characterized by the presence of ciliated cells bearing motile cilia,
and specialized cell surface projections containing axonemes
consisted of microtubules and dynein arms, providing ATP-
driven motility (Tilley et al., 2015). In the airways, cilia function
together with airway mucus, plays an important role in mediating
mucociliary clearance and eliminating the inhaled particles and
pathogens (Evans et al., 2016). Cilia dysfunction and clearance
impairment would result in chronic airway inflammation and
infection, bronchiectasis, and distal lung remodeling. Besides, the
hub gene PPI network showed that the genes involved are mainly
enriched in cytoplasmic dynein complex and antigen processing
and presentation, suggesting the critical role of cilia function and
immune response in the development of IPF.

Gene ontology and KEGG pathway enrichment analysis
detected several candidate biological pathways for IPF, mainly
involved in immune inflammation response and infection. For
instance, antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II. Human leukocyte
antigen (HLA), encoded by the human MHC gene complex,
plays a critical role in the antigen presentation of peptides
and the regulation of immune response (Bodis et al., 2018).
A GWAS analysis has identified two risk alleles in the HLA
region (DRB1∗15:01 and DQB1∗06:02) that were related to IPF
(Fingerlin et al., 2016). Besides, several studies have suggested
the role of HLA region in the development of IPF (Falfan-
Valencia et al., 2005; Aquino-Galvez et al., 2009; Xue et al., 2011;
Zhang et al., 2012, 2015). The association between HLA and
IPF may suggest the potential etiologic role of autoimmunity in
IPF. Recently, a nationwide retrospective cohort study in Korea
involving 38,921 IBD patients and 116,763 patients without IBD
suggested that patients with IBD, especially Crohn’s disease,
have an increasing risk for the development of IPF (Kim et al.,
2020). In addition, a 1:1 retrospective case-control study (196
IPF cases and 196 controls) has indicated that hypothyroidism,
an immune-mediated process, was common among IPF patients
and was found to be associated with decreased survival time as an
independent predictor of mortality in IPF patients (Oldham et al.,
2015). Besides, diabetes has been reported to be a risk factor of
IPF (Enomoto et al., 2003; Gribbin et al., 2009). Type 1 diabetes,
also known as insulin-dependent diabetes, is an organ-specific
autoimmune disease. Gene variants in the HLA region have been
found to be related to the susceptibility of type 1 diabetes mellitus
(Nejentsev et al., 2007). Naturally, these autoimmune diseases
may share genetic basis contributed by genetic variations in HLA
region. Since, observational associations are prone to reverse
causality and confounding, further investigation is warranted

to characterize the pathophysiologic link between this genetic
variation and disease.

Another primary candidate biological pathway was shown
to be infections (both viral and bacterial), which is also closely
related to the antigen stimulation and immune response, such
as herpes simplex and Staphylococcus aureus infection. Previous
studies have demonstrated that virus may be involved in disease
initiation. And the presence of herpes viral DNA and epithelial
cell stress in the lungs of asymptomatic relatives are at risk
for the development of familial IPF (Moore and Moore, 2015).
A recent meta-analysis of 20 case-control studies with 1,287
participants (634 IPF cases and 653 controls) has reported that
the existence of persistent or chronic viral infections significantly
associate with the increasing risk of the development of IPF, but
not with the aggravation of IPF (Sheng et al., 2020). Previous
studies in mice models have reported that viral infection could
promote the formation of lung fibrosis (Mora et al., 2006, 2007;
Qiao et al., 2009). Especially, animal experiments have been
applied to provide evidence of the pathogenesis of lung fibrosis
regulated by gamma herpesvirus (Moore and Moore, 2015).
These animal experiments have also indicated that previous
infections seem to make lung epithelial cells reprogrammed
during the incubation period, producing profibrotic factors,
leading to the enhanced susceptibility to subsequent fibrosis
damage in lung. Nevertheless, infections in susceptible hosts
or the exacerbation of existing fibrosis involve active viral
replication and are affected by antiviral therapy (Moore and
Moore, 2015). In addition, activated leukocyte signals in IPF
patients provide further support for infectious processes driving
the progression of IPF. Studies have also reported that bacterial
infections play a role in the progression and prognosis of IPF.
A microbiome analysis of IPF bronchoscopic alveolar lavage
(BAL) samples suggested that the increase in relative abundance
of two operational taxonomic units (Streptococcus OTU1345
and Staphylococcus OTU1348) was positively correlated with
the progression of IPF (Han et al., 2014). In another study,
reduced diversity of the lung microbiome has been found to
be associated with low forced vital capacity and early mortality
in patients with IPF, and a mouse model demonstrated that
bleomycin-induced lung fibrosis led to a decrease in the diversity
and modification of microbiota (Takahashi et al., 2018). In
addition, compared with the control group, bacterial load in
BAL of IPF patients has been shown to be greater. The rate
of decline in lung function and the mortality risk can be
partly predicted by the baseline bacterial load (Molyneaux et al.,
2014). Haemophilus, Streptococcus, Neisseria, and Veillonella
have found to be more abundant in cases in comparison with
controls. However, animal modeling implicated that infection of
Pseudomonas aeruginosa did not aggravate bleomycin-induced
fibrosis (Ashley et al., 2014), suggesting that there might be
some microbial specificity in the progression of lung fibrosis or
the bleomycin-induced mouse model cannot accurately reflect
the alterations of the IPF disease course induced by bacterial
infection in humans. To summarize, both viral and bacterial
infections may play a crucial role in the progression of IPF
and may be potential predictors of disease prognosis. Additional
work will be warranted to investigate the biological mechanism

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 60432452

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-604324 December 4, 2020 Time: 18:51 # 9

Gong et al. Integrative Omics Analysis of IPF

of infections in the progression of IPF and further explore the
potential benefit of antiviral and antimicrobial therapy.

There are several limitations in our study. First, the number
of genes that can be accurately imputed in the TWAS analysis
is limited by the training cohort sample size, the majority of
subjects were of European ancestry, and the results cannot be
directly generalized to other ethnic population. Second, there
may be tissue bias using lung, peripheral blood and whole blood
expression reference panels. Cell-type heterogeneity within or
between tissues and cross-tissue pleiotropy may introduce tissue
bias. Further investigation can be implemented to address this
issue if reference panels for individual cell types or states are
available (Wainberg et al., 2019). Third, TWAS significant genes
cannot guarantee causality, since co-regulation may lead non-
causal hits. Some fine-mapping methods such as FOCUS (fine-
mapping of causal gene sets) may partly address this issue, due
to its ability to directly model predicted expression correlations
and use them to assign genes posterior probabilities of causality
(Mancuso et al., 2019). FOCUS, as a post-TWAS analysis method,
can be applied on top of the genes identified by TWAS to further
reduce false discoveries.

CONCLUSION

In conclusion, we conducted a large-scale integrative analysis
of TWAS and mRNA expression profiles for IPF. Our results
provide novel insights into a better understanding of the
genetic mechanism of IPF. Further functional biology studies are
warranted to validate our findings and clarify the potential roles
of identified genes and pathways in the development of IPF.
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Single cell RNA sequencing (scRNA-seq) allows quantitative measurement and
comparison of gene expression at the resolution of single cells. Ignoring the batch
effects and zero inflation of scRNA-seq data, many proposed differentially expressed
(DE) methods might generate bias. We propose a method, single cell mixed model
score tests (scMMSTs), to efficiently identify DE genes of scRNA-seq data with batch
effects using the generalized linear mixed model (GLMM). scMMSTs treat the batch
effect as a random effect. For zero inflation, scMMSTs use a weighting strategy
to calculate observational weights for counts independently under zero-inflated and
zero-truncated distributions. Counts data with calculated weights were subsequently
analyzed using weighted GLMMs. The theoretical null distributions of the score statistics
were constructed by mixed Chi-square distributions. Intensive simulations and two real
datasets were used to compare edgeR-zinbwave, DESeq2-zinbwave, and scMMSTs.
Our study demonstrates that scMMSTs, as supplement to standard methods, are
advantageous to define DE genes of zero-inflated scRNA-seq data with batch effects.

Keywords: score test, generalized linear mixed model, zero inflation, observational weights, differential
expression analyses, single cell RNA sequencing

INTRODUCTION

In modern biology, transcriptomics has been widely used to elucidate the molecular basis of
biological processes and diseases (Van den Berge et al., 2018). Previous transcriptome sequencing
techniques (bulk RNA-seq) (Wang et al., 2009) might obscure the cell type heterogeneity in different
samples. Because of the resolution, bulk RNA-seq hardly defines the rare cells, such as stem cells and
tumor cells. Single cell RNA sequencing (scRNA-seq) enables researchers to study characteristics of
gene expression in the resolution of individual cells (Kolodziejczyk et al., 2015). scRNA-seq has been
treated as an effective method to study cellular heterogeneity in complex biological systems, and is
being applied by more researchers in various biological processes, such as stem cell development
and differentiation, embryonic organ development, tumors, immunology, and neurology (Tang
et al., 2009; McEvoy et al., 2011; Zeisel et al., 2015; Chu et al., 2016; Papalexi and Satija, 2018; Sun
et al., 2019). Identifying differentially expressed (DE) genes is one of the most common analysis of
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both bulk RNA-seq and of scRNA-seq analysis (Robinson et al.,
2010; Van den Berge et al., 2017, 2018; Sun et al., 2018).

For bulk RNA-seq and scRNA-seq data, batch effects
conventionally were treated as the non-biological differences
that occurs when samples or cells are measured in distinct
batches. The measure of transcriptome can be influenced by
different environments for cells (Luecken and Theis, 2019).
Various methods to correct batch effects and preserve biological
variability have been presented. Some methods directly remove
or correct batch effects using linear models (Johnson et al.,
2007; Tung et al., 2017; Somekh et al., 2019). ComBat (Johnson
et al., 2007) is an empirical Bayes method which takes batch
effects into a linear regression model of gene expression. ComBat
was recommended for batch correction when groups or cell
types and state compositions between batches are consistent
(Luecken and Theis, 2019). Mutual nearest neighbors (MNNs)
(Haghverdi et al., 2018) and canonical correlation analysis (CCA)
(Butler et al., 2018) remove batch effects using nonlinear models.
A method comparison study showed ComBat was the best one
for both bulk RNA-seq and scRNA-seq data (Büttner et al., 2019).
For DE analysis, it was recommended that DE testing should be
conducted on measure data with covariates including the batch
information in the model design, not on batch corrected data
(Luecken and Theis, 2019).

Some studies directly used traditional bulk RNA-seq DE
methods (Krieg et al., 2018; Roerink et al., 2018; Li et al., 2019;
Mehtonen et al., 2020). Limma-voom (Ritchie et al., 2015) applies
weighted linear regression models for log-transformed count
data. edgeR (Robinson et al., 2010; McCarthy et al., 2012) and
DESeq2 (Love et al., 2014) model the gene expression count
data based on generalized linear models (GLMs) under negative
binomial (NB) distributions. It was demonstrated that NB models
overestimated the dispersion parameter with excess zero counts,
which influenced the power to DE analysis (Van den Berge
et al., 2018). Different to bulk RNA-seq data, dropout events
cause excess zeros for scRNA-seq read count data (Finak et al.,
2015; Hashimshony et al., 2016). Therefore, zero inflation or an
excess of zeros is a particular feature of scRNA-seq data, and
it is not considered for these methods. SCDE (Kharchenko and
Fan, 2019) and MAST (Finak et al., 2015; McDavid et al., 2019)
model the redundant zeros of scRNA-seq data by zero inflation
and hurdle models, respectively. Both zinbwave (Risso et al.,
2018; Van den Berge et al., 2018) and zingeR (Van den Berge
et al., 2017) estimates observational weights based on a zero-
inflated negative binomial (ZiNB) model and downweight excess
zeros followed by classical bulk RNA-seq DE tools (e.g., edgeR
and DESeq2). The performance of two combinations, edgeR-
zinbwave and DESeq2-zinbwave, outperform other DE methods
(Van den Berge et al., 2018).

Here, based on isoVCT (Yang et al., 2017) and SMMATs (Chen
et al., 2019), we implement a series of efficient methods, the single
cell mixed model score tests (scMMSTs), to identify DE genes for
defined cell types in scRNA-seq data considering batch effects and
zero inflation. isoVCT, a DE method for bulk RNA-seq, uses a
random effect to consider the heterogeneous isoform effects. In
large-scale whole-genome sequencing (WGS) studies, SMMATs
are powerful and computationally efficient variant set tests for

continuous and binary traits, which integrates the burden test and
SKAT (Wu et al., 2011) under the framework of generalized linear
mixed models (GLMMs).

METHODS

Generalized Linear Mixed Models
For a single gene, we consider the following:

g (µi) = α+giBiβ+ Bib,

where g (·) is a monotonic differentiable link function for GLMs,
µi = E

(
yi|gi,Bi, b

)
denotes the mean of phenotype or count

yi for subject or cell i for a given gene with sample size n to
the intercept α, gi is the group, cluster or cell type covariate
dummy variable binary value for subject i, Bi is the row vector
of dummy variables values of the batch or individual covariate
for subject i, β is the group effects associated with bathes and
b is the batch effects. In the above equation, the group effects
β are assumed to follow the normal distribution N(β01p, σ

2
βIp),

where 1p is the p× 1 dimensional vector whose elements are all
1, Ip is the p× p dimensional identity matrix, β0 and σ2

β are mean
and variance of the normal distribution and p is the number of
batches. If σ2

β > 0, group effects are associated with the batches.
We assume the batch random effects b ∼ N(0p, σ

2
bIp), where 0p

is the p× 1 dimensional vector whose elements are all 0 and
σ2

b is the variance. We consider the binomial, quasi-binomial,
Poisson, quasi-Poisson, and NB distributions to model yi. Binary
phenotypes are commonly modeled by binomial and quasi-
binomial distributions and counts are commonly modeled by
Poisson, quasi-Poisson, and NB distributions.

For single cell RNA-seq data of a given gene, yi is the count
for cell i. We identify DE genes for each defined cell type in
the form of one-against-others, so gi, the cell type covariate for
cell i, is binary. GLMMs under Poisson, quasi-Poisson and NB
distributions are appropriate in this scenario.

Single Cell Mixed Model Score Tests
Testing H0 : β = 0 is equivalent to testing H0 : β0 = 0
and σ2

β = 0. Under the null hypothesis, the reduced GLMM
is as follows.

g (µ0i) = α+ Bib,

where µ0i = E
(
yi|µ0, bi

)
.

We construct a variance component score test statistic T
derived by testing H′0 : σ

2
β = 0 under the assumption β0 = 0.

SMMAT-O was also derived in the same manner. Under H′0 with
the assumption β0 = 0, we have the same reduced null model as
that under H0 : β = 0. Therefore, our derived test statistic T is
applicable for testing H0. The test statistic T is shown as follows.

T =
(
y− µ̂0

)T
8̂GBGT

B8̂
(
y− µ̂0

)
τ̂

,

where y =
(
y1 y2 · · · yn

)T is an n× 1 vector of counts or
phenotypes, µ̂0 = g−1 (̂α+Bîb

)
is the estimated mean vector of
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the reduced null model under H0, α̂ and b̂ are estimates of the
α and b, 8 = diag

{
1/
(
1+

(
µ̂0i/̂θ

))}
for the NB distribution

with the estimated dispersion parameter θ̂ and 8̂ = In for
other distributions mentioned, B =

(
BT

1 BT
2 · · · BT

n
)T is an n×

p design matrix of group covariate dummy variables values,
GB =

(
g1BT

1 g2BT
2 · · · gnBT

n
)T is an n× p design matrix of

interactions of group and batch covariates with the multiplication
of corresponding dummy variables values and τ̂ is the estimate
of dispersion parameter τ for quasi distributions, which is 1 for
the binomial, Poisson and NB distributions and is estimated
by the residual deviance divided by the degree of freedom
of the reduced null model for quasi-binomial and quasi-
Poisson distributions.

The asymptotic distribution of the statistic T under H0 is
derived as follows. Following the theoretical results of mixed
models (Harville, 1977; Breslow and Clayton, 1993; Santos
Nobre and da Motta Singer, 2007; Chen et al., 2016), we
have ê = (y− µ̂0)/

√
τ̂ asymptotically following a n-dimensional

multivariate normal distribution MVNn(0, D̂−1V̂P̂6̂P̂V̂D̂−1)
under H0, where D̂ = diag

{
g′(µ̂0i)

}
, whose diagonal elements

are the first order derivative of the link function g (·)
evaluated at µ̂0i, P̂ is the n× n projection matrix of the

reduced null model P̂ = 6̂
−1
−6̂
−11n

(
1T

n 6̂
−11n

)−1
1T

n 6̂
−1 with

6̂ = V̂+σ̂2
bBBT, V̂ = diag

{(
g′(µ̂0i)

)2V̂ar(yi)
}

, the first order
derivative function of the link function g′(·) and the estimated
variance of yi, V̂ar(yi). For binomial and quasi-binomial
distributions,

(
g′ (µ̂0i)

)2V̂ar(yi) = 1/[µ̂0i (1− µ̂0i)]. For Poisson
and quasi-Poisson distributions,

(
g′ (µ̂0i)

)2V̂ar(yi) = 1/µ̂0i. For
NB distributions,

(
g′ (µ̂0i)

)2V̂ar
(
yi
)
= (1/µ̂0i)+

(
1/̂θ

)
. Since

P̂6̂P̂ = P̂ and 8̂ = V̂−1D̂, the asymptotic distribution can be
simplified as MVNn (0, 8̂−1P̂8̂

−1
). Therefore, under H0, T,

a quadratic form of ê, asymptotically follows a mixture Chi-
square distribution

∑p
i=1 ξiχ

2
1,i, where χ2

1,i are independent
Chi-square distributions with 1 degree of freedom, and ξi are
the eigenvalues of E = GT

BP̂GB. Notably, 6̂ in P̂ has a simple
structure which makes 6̂

−1 to be solved explicitly and E to be
calculated efficiently. The p-value of the test can be calculated
soon after the estimation of the reduced null model. More details
of the computational efficiency of scMMSTs are discussed in
section “Performance Evaluation”. The estimation procedure of
µ̂0i is the same for binomial and quasi-binomial distribution
pair and the Poisson and quasi-Poisson distribution pair. Thus,
we implement quasi distributions to allow flexibility. In the
followings, unless specified otherwise, “binomial” stands for both
binomial and quasi-binomial and “Poisson” stands for both
Poisson and quasi-Poisson.

There is zero inflation in scRNA-seq count data. Therefore,
following the idea of ZINB-WaVE, a weighting strategy
is implemented. Firstly, observational weights are calculated
for all counts independently with details shown in sections
“Zero-Inflated and Zero-Truncated Distributions for Counts”
and “Calculations of Observational Weights for scMMSTs.”
Afterward, counts data with calculated weights are analyzed
under the weighted GLMMs. Accordingly, a weighted version

test statistic Tw for scMMSTs is proposed as follows with
above notations.

Tw =

(
y− µ̂0

)T
8̂WGBGT

BW8̂
(
y− µ̂0

)
τ̂

,

where W = diag {wi} and wi is the given weights for count yi.
The estimation is based on the weighted GLLMs for the reduced
null model. We denote 1w,n =W

1
2 1n, Bw =W

1
2 B, V̂w =

W−
1
2 V̂W−

1
2 , 6̂w = V̂+σ̂2

bBwBT
w, ˜̂6w =W−

1
2 6̂wW−

1
2 and P̂w =

W
1
2 6̂
−1
w W

1
2−W

1
2 6̂
−1
w 1w,n

(
1T

w,n6̂
−1
w 1w,n

)−1
1T

w,n6̂
−1
w W

1
2 =

˜̂6−1
w −

˜̂6−1
w 1n

(
1T

n
˜̂6−1

w 1n

)−1
1T

n
˜̂6−1

w . Based on the theoretical

results of weighted GLMMs (Harville, 1977; Breslow and
Clayton, 1993; Santos Nobre and da Motta Singer, 2007;
Chen et al., 2016), if H0 and W are true, we have ê
asymptotically normally distributed as MVNn(0, D̂−1V̂wP̂w˜̂6wP̂wV̂wD̂−1). Since P̂w

˜̂6wP̂w = P̂w, 8̂ = V̂−1D̂ and
D̂−1V̂w = D̂−1W−

1
2 V̂W−

1
2 = 8̂

−1W−1, where W−
1
2 , D̂−1

,V̂
are diagonal matrices, the asymptotic distribution can be
simplified as MVNn(0, 8̂

−1W−1 P̂wW−18̂
−1
). If H0 and W

are true, Tw, a quadratic form of ê, asymptotically follows a
mixture Chi-square distribution

∑p
i=1 ξiχ

2
1,i, where χ2

1,i are
independent Chi-square distributions with 1 degree of freedom,
and ξi are the eigenvalues of Ew = GT

BP̂wGB. Note that 6̂w
in P̂w does not have the simple structure of 6̂, which makes
it hard to analytically and explicitly solve 6̂

−1
w . Therefore, we

propose E′w = GT
BWP̂WGB to approximate Ew for simplicity

and efficiency, where we treat ê as it is estimated by GLMMs
without weights. Calculated weights are 1 for nonzero counts
and between 0 and 1 for zero counts. Thus, this approximation
performs worse when there are more redundant zeros, which
might influence the performance of scMMSTs.

Zero-Inflated and Zero-Truncated
Distributions for Counts
Zero-Inflated Distributions for Counts
A zero-inflated distribution for counts is a mixture distribution
with two components, which are a point mass at zero and
a conventional random variable distribution for counts, e.g.,
Poisson and NB distributions. The probability mass function
(pmf) of a zero-inflated distribution for counts is as follows.

fZI
(
y; θ,π

)
= πδ0

(
y
)
+ (1− π) f

(
y; θ

)
, ∀y ∈ N,

where π ∈ [0, 1] indicates the probability of zero inflation, δ0 (·)
the Dirac function, f (·; θ) the pmf of a conventional distribution
with parameter vector θ. The observational weights of the counts
can be calculated under a zero-inflated distribution model as
the conditional probability that a given count y belongs to the
conventional distribution with parameter estimates θ̂, π̂:

w =
(1− π̂) f

(
y; θ̂

)
fZI
(
y; θ̂, π̂

) .

Note that w is 1 for nonzero counts and ∈ (0, 1) for zeros counts.
All the weights for counts under the conventional distribution
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are 1. Under a zero-inflated distribution, we take the weights
of nonzero counts remain 1 and downweight zero counts from
1 to the conditional probability that a given count y belongs
to the conventional distribution. Counts with observational
weights are subsequently analyzed under the weighted version of
models for the conventional distribution. In ZINB-WaVE, this
weighting strategy is applied and the above formula is applied
to calculate observational weights under the ZiNB distribution
(Van den Berge et al., 2018).

Zero-Truncated Distributions for Counts
A zero-truncated distribution for counts is a distribution for
counts with random variable values truncated at zero, i.e., only
counts larger than zero can be observed. In the followings, we
refer to zero-truncated distributions as truncated distributions
for short. The pmf of a truncated distribution for counts is as
follows.

fTr
(
y; θ

)
=

f
(
y; θ

)
Pf (t > 0; θ)

=
f
(
y; θ

)∑
+∞

t=1 f (t; θ)
, ∀y ∈ N+,

where f (·; θ) denotes the pmf of a conventional distribution
for counts with parameter vectorθ. The observational weights of
nonzero counts are 1 and weights of zero counts can be calculated
under a truncated distribution model as following:

w =
n1f

(
y = 0; θ̂

)
n0
∑
+∞

t=1 f
(
t; θ̂
) ,

where n1 is the number of nonzero counts, n0 is the number
of the zero counts in the whole sample and θ̂ is the parameter
vector estimate.

The derivation of the above formula is as follows. Nonzero
counts follow the truncated distribution with parameter θ

which is the also the parameter for the corresponding
conventional distribution. Therefore, the probability of zero
counts is estimated as f

(
y = 0; θ̂

)
. All the weights for

counts under the conventional distribution are 1. However,
since excess zeros are presented, the observational weights
of nonzero counts remain 1 and zero counts are reweighted
from 1 to w, so that w·n0

w·n0+1·n1
= f

(
y = 0; θ̂

)
. The resulting

formula for observational weights w is derived by solving
the equation. Counts are then analyzed with observational
weights calculated under the weighted version of models for the
conventional distribution.

Calculations of Observational Weights
for scMMSTs
In ZINB-WaVE, the weighting strategy shown in the previous
section is applied and observational weights are estimated
by the ZiNB regression (Van den Berge et al., 2018). For
our methods, the truncated Poisson (TrPois), zero-inflated
Poisson (ZiPois), truncated negative binomial (TrNB), and ZiNB
distributions are considered. Following the weighting strategy
mentioned and H0 : β = 0, we estimate parameters for counts
in each batch and calculate the weights accordingly using
the formulas in section “Zero-Inflated and Zero-Truncated

Distributions for Counts” for simplicity with the assumption of
no group effects.

For zero-inflated distributions, weights are the conditional
probabilities that a count y belongs to the corresponding
conventional distribution. We directly use ZINB-WaVE for the
ZiNB distribution, and implement the algorithm in Appendix A
of the paper (Böhning et al., 1999) for the ZiPois distribution.
In ZINB-WaVE, no mixed models are involved. Thus, we treat
batch effects as fixed effects in the ZiNB regression without group
effects to calculate weights using all counts data, when using
ZINB-WaVE. For TrPois distribution, since the pmf fTrPois

(
y
)
=

fPois(y)
1−e−λ =

λye−λ

y!1−e−λ , we can derive the method of moment estimate
and maximum likelihood estimate λ̂ and they are identical by
numerically solve the equation λ̂

1−e−λ̂
= y, where y is the sample

mean for the truncated sample. For each batch, the weights
are wi =

n1e−λ̂

n0

(
1−e−λ̂

) for a zero count and wi = 1 for nonzero

yi, where n1 is truncated sample size for the batch and n0 is
the number of the zero counts in the batch. TrPois and ZiPois
perform very close to each other. For TrNB distribution, we
implement the formulas in section “Results” of the paper (Rider,
1955) to estimate the mean parameter µ and the dispersion
parameter θ for each batch. The common dispersion parameter
θ is estimated by the harmonic mean of the estimated θ̂ for each
batch. However, this algorithm is not robust for small θ (θ < 2,

based on simulations). The weights are wi =
n1
(̂
θ/
(̂
θ+µ̂

))̂θ
n0

(
1−
(̂
θ/
(̂
θ+µ̂

))̂θ)
for zero counts in each batch, where θ̂ and µ̂ are respectively
the estimated dispersion and mean parameters for the NB
distribution using counts in the batch, and wi = 1 for nonzero
yi for each corresponding batch.

After weights are calculated, counts data with weights are
analyzed under weighted GLMMs shown in section “Single Cell
Mixed Model Score Tests.” Note that weights are calculated
independently of GLMMs. Theoretically, the weights are 1 under
conventional distributions. The calculated observational weights
for nonzero counts remain 1. If there are calculated weights of
zero counts far from 1 and closer to 0, it indicates that there
are excess zeros. If calculated weights of zero counts are close
to 1, the results for conventional distributions are similar to
those considering zero inflation. In ZiNB-Wave, weights are
calculated through the ZiNB regressions on all counts. However,
the weights for TrPois, ZiPois, and TrNB are calculated using
counts for each batch with smaller sample sizes. Therefore,
although the calculation of weights for TrPois, ZiPois and TrNB
is easier to implement and time saving, it is less accurate and
less reliable than that for ZiNB-Wave and the performances of
scMMSTs are affected.

Performance Evaluation
Performances of DE methods considered are assessed in terms
of the per-comparison error rate (PCER), which refers to type I
error rate (i.e., the proportion of false positives), line plots of the
true positive rate (TPR) vs. the false discovery proportion (FDP)
and the areas under the receiver operating characteristic (ROC)
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curves [i.e., the TPR vs. the false positive rate (FPR) curves]
(AUCs) with definitions as follows.

TPR =
TP
P
, FPR =

FP
N
, FDP =

FP
max(1, FP + TP)′

where we use the following abbreviations for empirical quantities:
FP (the number of false positives), TP (the number of true
positives), N (the number of negative samples), P (the number
of positive samples). FDP-TPR curves for adjusted p-values
are plotted by iCOBRA Bioconductor R package (version
1.12.1) (Soneson and Robinson, 2016) and AUCs for adjusted
p-values are calculated by pROC R package (version 1.16.2)
(Robin et al., 2011). Unless otherwise stated, the adjusted
p-values for all DE methods considered are calculated by the
Benjamini and Hochberg method (Benjamini and Hochberg,
1995) for FDR control.

Comparison Methods
The 12 methods considered for comparisons are Poisson, TrPois,
ZiPois, NB, TrNB, NB-zinb, DESeq2, DESeq2-zinb, edgeR,
edgeR-zinb, limma-voom, and MAST. The first six methods
are our implemented methods of scMMSTs s under GLMMs
assumptions and the last six methods are the state-of-the-art DE
methods, where Tr, Zi, Pois, NB, and zinb are abbreviations of
truncated, zero-inflated, Poisson, ZINB-WaVE, respectively. We
follow the implementations of the last six DE methods above
in the zinbwave paper (Van den Berge et al., 2018) and the
R packages used are edgeR (version 3.28.1), DESeq2 (version
1.26.0), limma (version 3.42.2), MAST (version 1.12.0), and
zinbwave (version 1.8.0), which was developed to deal with zero
inflation for scRNA-seq data by a weighting strategy and was
used in edgeR-zinb, DESeq2-zinb, and NB-zinb. The binomial
distribution scMMST is implemented, however, not covered in
the simulations and real data analysis since only methods for
count data are considered in thisarticle.

The implementations of scMMSTs are available in
Supplementary Data S1. Codes for simulations and real
data analysis are partially based on the GitHub repositories12

of papers (Yang et al., 2017; Van den Berge et al., 2018) and the
GMMAT R package (version 1.3.0) (Chen et al., 2016, 2019). R
packages doParallel (version 1.0.15) (Corporation and Weston,
2019) and BiocParallel (version 1.20.1) (Morgan et al., 2019)
are used for parallel computation. The reduced null model
is estimated by lme4 R package (version 1.1.23) and p-values
are calculated by CompQuadForm R package (version 1.4.3).
Simulated single cell datasets are generated by splatter R package
(version 1.10.1) (Zappia et al., 2017). Additionally, the code
to reproduce all analyses, figures and tables reported in this
manuscript is attached in Supplementary Data S1.

Simulations
We perform simulations to evaluate performances of scMMSTs,
which are our methods of association tests under the proposed
GLMMs, comparing with state-of-art DE methods under a range

1https://github.com/biostat0903/RNAseq-Data-Analysis
2https://github.com/statOmics/zinbwaveZinger

of scenarios. We simulate the scRNA-seq data based on GLMMs
directly and by the R package splatter. Splatter can directly
estimate model parameters for real scRNA-seq data and generate
quality controlled simulated mock datasets with DE genes easily
and can add batch effects, which are not associated with group
effects, to the simulated data. The simulated number of genes for
one dataset by splatter and GLMMs is 10,000 and the number of
cells is 250 with balanced two groups and five batches. In the DE
genes simulations, the proportion of the DE genes is set to be 0.1.

Additional parameters of splatter simulations, batch.facLoc–
batch factor location, batch.facScale–batch factor scale, and
out.prob–the expression outlier probability, are set to be 0.5. For
DE gene simulations, de.facLoc, DE factor location, is set to 2 and
de.facScale, DE factor scale, is set to be 0.5.

The procedure to simulate datasets based on the proposed
GLMMs is as follows. We assume that the scRNA-seq count
data follow Poisson and NB distributions and generate yi
based on the GLMM shown with the parameters setting and
generate a Bernoulli random variable zi with parameter πi =

logit−1 (µπ + Bib). Larger values of parameter µπ causes smaller
baseline proportions of zeros. If zi = 0, then yi = 0, and
yi remains the same otherwise. The parameter settings for
simulations are based on the real data analysis and references
(Yang et al., 2017). Seven parameters are considered: the variance
of the batch or individual effects b(σ2

b), the variance of the group
or cell type effects β(σ2

β), the baseline group effect (β0), the
number of batches (p), the dispersion parameter (θ = 1/φ) for
NB distributions and the intercepts (µ0) and (µπ) for the GLMM
and logstic regression for excess zeros, respectively. σ2

b shows the
heterogeneity of batch effects in different batches. σ2

β shows the
heterogeneity of group effects in different batches. β0 shows the
baseline group effect. The larger the |β0|, the larger the baseline
group effect is. Other parameters describe the features of the gene
expression and zero inflation. σ2

b is set to be 0.25 and σ2
β varies in

0, 0.01, 0.25, and 1. β0 varies in 0, 0.01, 0.1, 0.3, and 0.5. θ varies
in 0.5, 1, and 2. µπ varies in−1, 0, and 2. p = 5 and µ0 = 5.

Real Data Sets
Usoskin Dataset
This scRNA-seq dataset contains mouse neuronal cells in the
dorsal root ganglion (Usoskin et al., 2015). The processed
expression values were downloaded from the Github respiratory3

of the zinbwave paper. Following the process procedures given
in the zinbwave paper, the authors considered 622 cells with a
classification of 11 neuronal cell-types, which were denoted as
NF1 to NF5, NP1 to NP3, PEP1, PEP2 and TH. Genes with
less than 20 counts were removed and a total of 12,132 genes
are considered for the following analyses with 68% zero counts.
The authors showed the existence of a batch effect related to the
picking session for the cells. Thus, the picking session covariate
(with values Cold, RT-1, and RT-2) in this dataset was considered
as a batch covariate for real data analysis. The batch effect
was associated with expression measures and the relationship
between zero inflation and sequencing depth, which was shown

3https://github.com/statOmics/zinbwaveZinger/tree/master/datasets
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in Figure 5 of the zinbwave paper (Hicks et al., 2015; Van den
Berge et al., 2018). We repeated the results of Figures 5A,B of
the zinbwave paper in Supplementary Figures S1A,B. There is a
large variation in the depth of sequencing among batches, which
weaken the overall association with zero inflation when pooling
cells across batches (Supplementary Figure S1A). Zero inflation
was also identified for the Usoskin dataset. Histograms of
observational weights for nonzero counts, which were calculated
by the ZINB-WaVE model including the cell type as a covariate
with and without the batch effect as fixed effects, are shown
in Supplementary Figure S1B. Calculated weights of nonzero
counts with and without the batch effect both have high modes
near zero. This suggests zero inflation in the Usoskin dataset. The
real data analysis of the processed Usoskin dataset was done to
identify DE genes for defined 11 cell types vs. the rest. Simulated
datasets based on this dataset were generated by spaltter with
estimated corresponding parameters. For a null dataset without
DE genes, we created 10,000 genes, 250 cells, five balanced
batches and two balanced groups for cells. Twelve methods were
implemented to identify DE genes between the two groups for
each of the 30 simulated null data sets. A gene was declared to
be DE if its unadjusted p-value was less than or equal to 0.05.
Declared DE genes were false positives for these simulated null
datasets. The empirical PCER of each method was calculated as
the proportion of declared DE genes and was compared to the
0.05 nominal PCER.

Tung Dataset
This scRNA-seq dataset is for induced pluripotent stem cells from
three individuals from HapMap (Tung et al., 2017). Following
the splatter paper (Zappia et al., 2017), the matrix of molecules
(UMIs) was treated as counts and was used directly. This
dataset is available from GEO (accession GSE77288)4 and the
Github respiratory5 of the splatter paper. No batch information
is available for this dataset. Genes with less than 20 counts were
removed and a total of 14,893 genes with 864 cells containing
44% zero counts were considered. Zero inflation was identified
for the Tung dataset. Histograms of observational weights of
nonzero counts of two filtered datasets (18,726 genes with more
than 0 count and 14,893 genes with more than 19 counts,
respectively), which were calculated by the ZINB-WaVE model,
are shown in Supplementary Figures S1C,D. There are moderate
proportion s of calculated weights of nonzero counts close to
zero. This suggests zero inflation in the Tung dataset. Comparing
to the Usoskin dataset, the Tung dataset is less zero inflated.
We generated 30 simulated null datasets and identified DE genes
using the same procedures for the Usoskin dataset with spaltter.

RESULTS

Method Overview
Single cell mixed model score tests are computationally efficient
DE analysis tools for scRNA-seq data considering batch effects

4https://github.com/jdblischak/singleCellSeq
5https://github.com/Oshlack/splatter-paper

and zero inflation. Bath effects are estimated as random effects
under the reduced null models of GLMMs. A weighting
strategy is implemented to characterize excess zeros. The score
statistics are derived on theoretical asymptotic distributions.
First, we estimated normalization factors of count matrix
by the function calcNormFactors in edgeR after counts per
million (CPM) normalization. Second, the estimation of the
observational weights is efficient. We use zinbwave to fit NB-
zinb which might be the most time-consumed assumption.
Third, we use lme4 for the estimation, the most efficient
method to fit GLMM, to estimation the parameters in the
null hypothesis (Eddelbuettel and François, 2011; Eddelbuettel,
2013; Eddelbuettel and Balamuta, 2017). Considering the
real data, the estimation procedure of mixed model is not
related to the number of groups or cell types. Compared
to the traditional estimation procedure, scMMSTs use three
strategies to decrease memory usage and computation time.
First, scMMSTs do not need to store n× n matrices P̂
and 6̂ explicitly. The p-value is efficiently calculated by
CompQuadForm with eigenvalues of E or E′w, which is
only a p× p matrix. Second, scMMSTs use an analytical
form to calculate the inverse of 6̂ which might be the
most time consumption procedure in the estimation of T
or Tw. Third, scMMSTs is implemented for parallel computing.
Therefore, although more complicated models GLMMs are
considered, scMMSTs are computationally affordable compared
to other DE methods.

Simulations by Real Datasets and
Splatter
Simulated datasets generated by the splatter used parameters
estimated from two publicly available real scRNA-seq datasets,
the Usoskin (Usoskin et al., 2015) and Tung (Tung et al.,
2017) datasets.

The FPR control was assessed by the PCER. Results are shown
in Figure 1. For the Usoskin dataset, the estimated common
dispersion parameter value of biological coefficient of variation
(BCV) was φ̂ = 1/̂θ =1.89. TrNB and Poisson failed to control
the FPR. The PCERs of NB-zinb, DESeq2, edgeR-zinb, and edgeR
were a little inflated. DESeq2-zinb and MAST controlled the FPRs
with large variability, especially for MAST. Other methods were
a little conservative with PCERs smaller than the nominal level
0.05. For the Tung dataset, the estimated common dispersion
parameter value of BCV was φ̂ = 1/̂θ = 0.11. Poisson failed
to control the FPR. The PCERs of TrNB and edgeR were a
little inflated. Other methods conservatively controlled FPRs,
especially for NB, DESeq2-zinb, and NB-zinb. We treated “NA”
p-values of DE methods as 1, thus, there are peak bars at 1 for
some methods in the unadjusted p-value histograms shown in
Figures 1B,D. In summary, standard DE methods can control the
FPRs and scMMSTs except Poisson and TrNB can conservatively
control the FPRs. FPRs of scMMSTs increase as the dispersion
parameter θ decreases.

False discovery proportion-true positive rate curves
for adjusted p-values are shown in Figure 2. For the
Usoskin dataset, bulk RNA-seq DE methods are shown to
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FIGURE 1 | False positive rate control on simulated null Usoskin datasets and Tung datasets. (A) Boxplot of PCER for 30 simulated null Usoskin datasets generated
by splatter for each of 12 DE methods. scMMSTs are marked in blue. (B) Histogram of uncorrected p-values for one dataset in panel A. (C) Boxplot of PCER for 30
simulated null Tung datasets generated by splatter for each of 12 DE methods. scMMSTs are marked in blue. (D) Histogram of uncorrected p-values for one dataset
in panel C. PCER, per-comparison error rate; DE, differential expression; scMMST, single cell mixed model score test.
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FIGURE 2 | FDP-TPR curves of DE methods on simulated Usoskin datasets and Tung datasets. (A) Line plot of the FDP-TPR curves for simulated Usoskin datasets
generated by splatter for each of 12 DE methods. (B) Line plot of the FDP-TPR curves for simulated Tang datasets generated by splatter for each of 12 DE
methods. Circles represent values at a 0.05 nominal FDR threshold and are filled in if the FDP (i.e., empirical FDR) is less than 0.05. DE, differential expression; TPR,
true positive rate; FDP, false discovery proportion; FDR, false discovery rate.

perform well, possibly due to the high proportion of zeros
and low counts (Van den Berge et al., 2018). In general,
standard DE methods except MAST perform better than
scMMSTs when the batch effects is not associated with
group effects.

Simulations by GLMMs
Results of PCERs are shown in Supplementary Figures S2,
S3 and Supplementary Table S1. Methods performances of
the FPR control were similar to those in simulations by
splatter. Based on FDP-TPR curves for adjusted p-values shown
in Figure 3, scMMSTs performed better than standard DE
methods when batch effects were associated with weak group
effects. NB-zinb was the best among all methods considered
for comparisons. EdgeR-zinb and DESeq2-zinb were the best
two methods among the six standard DE methods considered.
TrPois and ZiPois perform very close to each other. Figure 4
demonstrates bar plots of AUCs for adjusted p-values. |β0|,
σ2

β , θ and µπ exhibited positive correlations with AUCs.
Our scMMSTs performed better when the group effect size
and its heterogeneity are larger and the counts dispersion
BCV and proportion of zeros are smaller. Similar results are
obtained to those of FDP-TPR curves. Therefore, our results
demonstrate that scMMSTs performs better than standard DE

methods when the group effect size is small with large group
effect heterogeneity.

Real Data Analysis
Table 1 and Supplementary Figure S4 show the numbers of
DE genes detected by the 12 methods considered in simulations
for 11 cell types in the Usoskin dataset. This dataset was also
analyzed in the zinbwave paper. MAST failed for some cell-
types, so no DE gene was detected. NB-zinb defined smallest
number of DE genes in general. The results of Venn diagrams
and Upset plots by R packages VennDiagram (version 1.6.20)
(Chen, 2018) and upsetR (version 1.4.0) (Gehlenborg, 2019) are
shown in Supplementary Figures S5–S15. Since NB-zinb is
conservative for FDR, the DE genes only detected by NB-zinb
highly likely have weak group effects with their heterogeneity
across batches. In general, scMMSTs, as supplement to standard
methods, are superior at selecting DE genes with weak group
effects and their heterogeneity in different batches for scRNA-
seq data.

Computational Time
To demonstrate the computation time scale of DE methods
considered, we benchmarked two different simulated null
datasets by splatter with parameters estimated by the Usoskin
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FIGURE 3 | FDP-TPR curves of DE methods on simulated datasets generated by GLMMs with µπ = 0. (A) Line plot of the FDP-TPR curves for simulated datasets
based on NB GLMMs for each of 12 DE methods with the dispersion parameter θ = 0.5. (B) Line plot of the FDP-TPR curves for simulated datasets based on
negative binomial (NB) GLMMs for each of 12 DE methods with θ = 1. (C) Line plot of the FDP-TPR curves for simulated datasets based on NB GLMMs for each of
12 DE methods with θ = 2. (D) Line plot of the FDP-TPR curves for simulated datasets based on Poisson GLMMs for each of 12 DE methods with β0 = σ2

β = 0.01.
Circles represent values at a 0.05 nominal FDR threshold and are filled in if the FDP (i.e., empirical FDR) is less than 0.05. DE, differential expression; GLMM,
generalized linear mixed model; NB, negative binomial; TPR, true positive rate; FDP, false discovery proportion; FDR, false discovery rate.
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FIGURE 4 | AUCs of DE methods for simulated datasets generated by GLMMs with µπ = 0. Adjusted p-values are used as predictors. (A) Bar plot of AUCs for
simulated datasets generated by NB GLMMs for each of 12 DE methods with the dispersion parameter θ = 0.5. (B) Bar plot of AUCs for simulated datasets
generated by NB GLMMs for each of 12 DE methods with θ = 1. (C) Bar plot of AUCs for simulated datasets generated by NB GLMMs for each of 12 DE methods
with θ = 2. (D) Bar plot of AUCs for simulated datasets generated by Poisson GLMMs for each of 12 DE methods. AUC, area under curve; DE, differential
expression; GLMM, generalized linear mixed model; NB, negative binomial.
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TABLE 1 | Numbers of declared differentially expressed genes by 12 methods for 11 defined cell types vs. the rest in the Usoskin dataset (n = 622 cells).

Methods NF1 NF2 NF3 NF4 NF5 NP1 NP2 NP3 PEP1 PEP2 TH

edgeR 826 1206 348 646 1070 1877 880 362 1833 328 2424

DESeq2 906 963 218 402 782 1988 748 407 2649 102 2387

limma-voom 5427 3762 3777 721 2572 2505 4857 203 7892 173 4800

MAST 0 0 0 2 0 85 5 2 10 0 112

edgeR-zinb 509 778 244 550 985 1871 987 486 2475 185 3225

DESeq2-zinb 555 1003 319 453 1235 1985 786 392 2249 153 3166

NB 295 517 186 365 555 462 329 218 592 145 533

TrNB 910 703 596 1763 885 1127 2139 2254 3752 537 1986

NB-zinb 192 308 77 295 364 976 467 270 2004 100 878

Pois 745 1214 410 881 1195 1401 745 583 2104 339 1942

TrPois 242 298 82 345 321 602 756 444 3353 54 708

ZiPois 337 311 81 487 376 607 1019 446 3350 137 704

and Tung datasets. Other settings remained the same as those in
the simulations for PCERs. Results are shown in Figure 5. For
both datasets, the fastest method was limma-voom. DESeq2 was
slower than edgR, thus, DESeq2-zinb was also slower than edgeR-
zinb. Our scMMSTs performed in the same scale of DESeq2-
zinb and DESeq2-zinb. The computation times of simulated null
Tung datasets were shorter than those of simulated null Usoskin
datasets with the same number of cores. More cores used in
the parallel computation made our scMMSTs faster. With eight
cores, the computation times of Poisson related methods were
close to MAST, edgeR, and DESeq2. In summary, our scMMSTs
are computationally affordable compared to other DE methods
especially when parallel computing is allowed. All computations
were done on a cluster with 24 Intel Xeon Processor (Skylake,
IBRS) at 2.60 GHz (2593 MHz) and 128 GB RAM.

FIGURE 5 | Computational times for differential expression methods on the
simulated null Usoskin and Tung datasets, which were generated by splatter.
The number of cores were set to be 1 and 8 on a cluster with 24 Intel Xeon
Processor (Skylake, IBRS) at 2.60 GHz (2593 MHz) and 128 GB RAM.

DISCUSSION

We proposed scMMSTs to identify DE genes, considering batch
effect and zero inflation of scRNA-seq data. Both simulations
and real data indicated that these methods have advantages
in selecting DE genes with weak group effects and their
heterogeneity in different batches. In simulations, scMMSTs
conservatively controlled FPRs or type I error rates in each setting
under assumptions of NB and Poisson distributions, except TrNB
and Poisson assumption. However, TrNB controlled FPRs when
θ is large. Second, following the model assumption, scMMST was
the best one when |β0|was small and σ2

β was large, especially when
θ was large. In real data analysis, the Venn diagrams and Upset
plots of DE genes (Supplementary Figures S5–S15) directly
indicated the relationships among the DE methods. scMMATs
defined smaller numbers of DE genes and NB-zinb defined the
smallest. Since scMMATs are conservative, the DE genes only
defined by NB-zinb are likely to have the small group effect size
with its heterogeneity across batches.

Furthermore, scMMSTs exhibited three innovations. First,
scMMSTs derived the association test score statistics and their
theoretical null distributions in the framework of GLMMs under
the binomial, Poisson and NB assumptions. Second, the group
effect β was modeled as random effects associated with batches
in the framework of GLMMs. Third, scMMSTs verified their
effectiveness to detect DE genes with the weak group effect
and its heterogeneity in different batches. However, scMMSTs
have some limitations. scMMSTs performed worse than other
standard DE methods to detect DE genes without group effect
heterogeneity across batches. scMMSTs performed worse when
the dispersion parameter θ was small, especially for the TrNB
method, this may due to the non-robust estimation of θ.
scMMSTs, in fact, are derived to test H′0 under the assumption
β0 = 0, not to jointly test β0 = 0 and σ2

β = 0. This decreases
the power of testing H0 for scMMSTs. For association tests,
the Mixed effects Score Test (MiST), which jointly tests H0, is
more powerful. Therefore, scMMSTs may be extended using the
framework of GLMM-MiST (Sun et al., 2013) in future work
to overcome these drawbacks. E′w is used to approximate Ew
for the statistic Tw of scMMSTs. This approximation performs
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worse when there are more excess zeros. Better approximations
of Ew or methods to efficiently calculate Ew may improve the
performance of scMMSTs. The weighting strategy implemented
may be explained in a Bayesian framework and scMMSTs may
be extended accordingly. In addition, following the idea of PEA
(Shao et al., 2019), scMMSTs may be extended to efficiently
identify gene-pathway interactions without permutations of test
statistics. In conclusion, scMMSTs, supplements to standard
single cell DE methods, are advantageous at selecting genes with
the weak group effect and its heterogeneity across batches for
scRNA-seq data analysis.
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Background: Components of liver microenvironment is complex, which makes it
difficult to clarify pathogenesis of chronic liver diseases (CLD). Genome-wide association
studies (GWASs) have greatly revealed the role of host genetic background in CLD
pathogenesis and prognosis, while single-cell RNA sequencing (scRNA-seq) enables
interrogation of the cellular diversity and function of liver tissue at unprecedented
resolution. Here, we made integrative analysis on the GWAS and scRNA-seq data
of CLD to uncover CLD-related cell types and provide clues for understanding on
the pathogenesis.

Methods: We downloaded three GWAS summary data and three scRNA-seq
data on CLD. After defining the cell types for each scRNA-seq data, we used
RolyPoly and LDSC-cts to integrate the GWAS and scRNA-seq. In addition, we
analyzed one scRNA-seq data without association to CLD to validate the specificity
of our findings.

Results: After processing the scRNA-seq data, we obtain about 19,002–32,200 cells
and identified 10–17 cell types. For the HCC analysis, we identified the association
between B cell and HCC in two datasets. RolyPoly also identified the association, when
we integrated the two scRNA-seq datasets. In addition, we also identified natural killer
(NK) cell as HCC-associated cell type in one dataset. In specificity analysis, we identified
no significant cell type associated with HCC. As for the cirrhosis analysis, we obtained
no significant related cell type.

Conclusion: In this integrative analysis, we identified B cell and NK cell as HCC-related
cell type. More attention and verification should be paid to them in future research.

Keywords: chronic liver diseases, GWAS, scRNA-seq, integrated analysis, cell type
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INTRODUCTION

Chronic liver disease (CLD) is a public health topic of global
concern. As estimated, about 844 million people worldwide are
suffering from CLD and 2 million deaths each year (Asrani
et al., 2019). Starting with diverse etiology-related chronic
hepatitis, CLD might develop into cirrhosis and hepatocellular
carcinoma after repetitive liver damage (Gadd et al., 2020).
Environment risk factors associated with CLD are virus, diet,
drug, and autoimmune (Marcellin and Kutala, 2018). With the
development of molecular biology, the role of host genetic
background in CLD has also gained wide attention (Anstee
et al., 2020). Genome-wide association studies (GWASs) have
contributed greatly to our understanding of the genetic roles
in CLD pathogenesis and prognosis (Matsuura et al., 2017).
A number of associated polymorphisms, including variants on
CDK14, SH2B3, CARD10, TLL1, PNPLA3, and HLA, have been
reported (De Boer et al., 2014; Sudlow et al., 2015; Matsuura
et al., 2017; Nicoletti et al., 2017; Li et al., 2018; Ishigaki et al.,
2020; Schwantes-An et al., 2020). Nevertheless, the current
understanding of CLD is far from enough, and it is still of
great significance to further clarify the pathological process
of CLD and explore new treatment strategy for CLD patients
(Marcellin and Kutala, 2018).

As the largest internal organ of the body, the liver consists
of many cell types, including not only epithelial cells and
some non-parenchymal cells (e.g., endothelial and mesenchymal
cells) but also a variety of immune cells (MacParland et al.,
2018; Aizarani et al., 2019; Ramachandran et al., 2019; Sharma
et al., 2020). Different cell types vary greatly in abundance
and function, leading to their completely distinct roles in the
physiological and pathophysiological processes of liver diseases
(Ramachandran et al., 2020). Single-cell genomics technologies
are transforming our understanding on diseases like CLD,
enabling interrogation of cellular diversity and function at
unprecedented resolution, and adding a new dimension to
traditional bulk transcriptomic techniques (Giladi and Amit,
2018). Single-cell RNA sequencing (scRNA-seq) has been used
to feature the fundamental liver biology and the cellular
mechanisms underpinning liver regeneration (Aizarani et al.,
2019). It also has been used to uncover the pathophysiological
changes of hepatic fibrosis and hepatocellular carcinoma, where
the heterogeneity and changes of T cells (Zheng C. et al., 2017),
macrophages (Ramachandran et al., 2019), and endothelial cells
(Sharma et al., 2020) residing within the liver tissue may be
critical in driving disease states.

Both GWAS and scRNA-seq have thrown light on the way
to indepthly understand the pathogenesis of CLD and further
laid a foundation for the development of precision treatment
strategy (Saviano et al., 2020). Integrating GWAS summary data
and scRNA-seq data to identify the cell types associated to CLD
might provide new clues for understanding the pathogenesis
of CLD (Calderon et al., 2017; Finucane et al., 2018; Hao
et al., 2020). Here, we used RolyPoly and LDSC-cts to ensure
the robustness and confidence of the result. Especially, we first
processed the scRNA-seq data to derive averaged expression
vector and differential expression gene (DEG) list of each cell

type for RolyPoly and LDSC-cts, respectively. Then, we used the
Ensembl database to obtain the position relationship between
SNPs and gene (Yates et al., 2019). Finally, with GWAS data,
scRNA-seq data and block annotation in place, as well as
accounting for linkage disequilibrium (LD) of related population,
we applied RolyPoly and LDSC-cts to identify and prioritize
CLD-relevant cell types.

MATERIALS AND METHODS

Genome-Wide Association Studies Data
The first category of summary statistics is Asian ancestry GWAS.
The datasets are from the Biobank of Japan (BBJ)1 (Ishigaki et al.,
2020). We focus on the CLD-related phenotype that contain allele
information and variant ID and that contain effect size and its
standard error. With the two criteria, we obtained two GWAS
summary statistics: cirrhosis (n = 212,453, prevalence = 1.03%)
and HCC (n = 197,611, prevalence = 0.94%). Here, cirrhosis and
HCC in BBJ were adjusted for age, sex, and top five genotype
PCs (Ishigaki et al., 2020). The details of the two GWAS data
are provided in Supplementary Table 1. Based on Asian ancestry
from the 1000 Genome Project (1000 GP), we filtered out variants
with minor allele frequency (MAF) < 0.01 and Hardy–Weinberg
equilibrium (HWE) < 10−6 (Auton et al., 2015). After these
quality control (QC) steps, we finally obtained 7,246,475 and
7,246,543 SNPs from the two datasets.

The second category of GWAS summary statistics is from
European ancestry. The dataset is from GeneATLAS website2

(Canela-Xandri et al., 2018). We focus on the CLD-related
phenotype that contain allele information and variant ID and
that contain effect size and standard error. With the two criteria,
we obtain one GWAS summary statistics: cirrhosis (n = 452,264,
prevalence = 1.99%). This cirrhosis GWAS data was adjusted
for sex, array batch, UK Biobank Assessment Center, age, age2
(Sudlow et al., 2015), and the top 20 genotype PCs as computed
by UK Biobank. The details of these data are also provided in
Supplementary Table 1. Based on European ancestry from the
1000 Genome Project, we filtered out variants with MAF < 0.01
and HWE < 10−6 (Auton et al., 2015). After these QC steps, we
finally obtained 7,636,847 SNPs from this dataset.

We treated the phase 3 of the 1000 Genome Project as
the reference panel (Auton et al., 2015). Here, we collected
503 European individuals and 504 East Asian individuals with
81,271,745 SNPs. We used PLINK to calculate Pearson’s r2 values
of pairwise SNPs for RolyPoly with the default 1 MB window size
(Chang et al., 2015). In LDSC-cts, we set the window size to 1
centiMorgan to estimate LD scores (Finucane et al., 2018).

Four Single-Cell Data
Considering the cirrhosis and HCC data acquired from GWAS,
we searched the GEO database for related scRNA-seq data
and obtained one data for liver cirrhosis and two for HCC,
whose raw counts data are available (Barrett et al., 2012;

1http://jenger.riken.jp/en/
2http://geneatlas.roslin.ed.ac.uk/
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Ramachandran et al., 2019; Losic et al., 2020). In addition, to
verify the specificity of the outcomes, we also downloaded
an idiopathic Parkinson’s disease (IPD) data. The details are
provided in Supplementary Table 2. Following the original
study, we performed QC and clustering for each scRNA-seq
data. Note that scRNA-seq data usually have the potential to
have its clusters continuously subdivided, but we just controlled
the cell type number of each data within 10–20 depending on
the features and quality of each data. The specific processing
details of each data are as follows: After demultiplexing, aligning,
and estimating cell-containing partitions and associated UMIs, a
cirrhosis dataset (GSE136103) consisting of CD45 + and CD45-,
blood and liver, healthy and cirrhosis, and human and mice
samples were downloaded (Ramachandran et al., 2019). Here,
we only chose nine human cirrhotic samples, including five
CD45+ and four CD45- samples, for downstream analysis.

For scRNA-seq data analysis, we first removed potential
doublets, and then excluded the cells that expressed fewer than
300 genes or mitochondrial gene content >30% of the total
UMI count (Ramachandran et al., 2019). We also excluded genes
expressed in fewer than three cells. We followed the analysis
flow in Seurat (Stuart et al., 2019): (1) used SCTransform, a
new strategy to remove the influence of technical characteristics
while preserving biological heterogeneity via regularized negative

binomial regression, to normalize and scale scRNA-seq data
(Hafemeister and Satija, 2019); (2) used default setting of
IntegrateData to remove the batch effect (Butler et al., 2018);
(3) performed unsupervised clustering and differential gene
expression analyses on the integrated data; (4) used principal
component analysis (PCA) for linear dimension reduction,
and then used shared nearest neighbor (SNN) graph-based
clustering, in which the graph was constructed using the top 30
principal components; and (5) used UMAP to visualize by the
same number of principal components (PCs) as the associated
clustering, with perplexity ranging from 30 to 300 according to
the number of cells in the dataset or lineage. The details of data
processing are shown in Figure 1.

In cell type definition, we referred to marker genes that are
widely recognized and those from the original research. We used
BuildClusterTree to assess cluster similarity by constructing the
phylogenetic tree (Stuart et al., 2019). Totally, we identified 20
clusters on 23,184 cells (Supplementary Table 2 and Figure 2).
Marker genes used for cell type definition are shown in
Supplementary Table 3.

The first HCC dataset (GSE149614) contains 21 primary
tumor, portal vein tumor thrombus (PVTT), metastatic lymph
node, and non-tumor liver samples from 10 HCC patients.
We downloaded the raw count data, which have been

FIGURE 1 | General procedure for scRNA-data processing.
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FIGURE 2 | Cell types inferred from expression of marker gene signatures in GSE136103. NKT, natural killer T cells; Pdc, plasmacytoid dendritic cell; Treg, regulatory
T cell; LEC, lymphatic endothelial cell; MDM, monocyte-derived macrophage; NK, natural killer cell; LSEC, liver sinusoids endothelial cell; DC, dendritic cell.

processed and aligned by Cell Ranger, and chose only 10
primary tumor samples for downstream analysis (Zheng
G.X.Y. et al., 2017). After processing and clustering, we
totally identified 14 cell types on 30,983 cells in this dataset
(Supplementary Table 2).

Another HCC dataset (GSE112271) contains three and
four tumor samples coming from different regions of two
different individuals, and we included all seven samples for
downstream analysis. After data processing, we totally identified
13 clusters on 32,200 cells in this dataset (Losic et al., 2020;
Supplementary Table 2).

We downloaded the processed and aligned IPD dataset
(GSE157783), which contains samples from six control and
five idiopathic Parkinson’s disease cases. We chose only
five disease samples for downstream analysis and totally
identified 12 clusters on 19,002 cells following our procedure
(Supplementary Table 2).

Defining the Specific Cell Types
Associated With Cirrhosis and HCC
We used RolyPoly and LDSC-cts to define the specific cell
types associated with cirrhosis and HCC (Calderon et al., 2017;
Finucane et al., 2018). Based on polygenic model, RolyPoly treats
the variance of each gene as the linear combination of each
cell type and estimates the coefficients by method-of-moment.
Then, RolyPoly uses block bootstrap to estimate the variance
for the cell type effects, then construct t-statistics to test them
(Efron and Tibshirani, 1986). By utilizing GWAS summary
statistics for all SNPs near protein-coding genes, the model
performed joint analysis with gene expression of a variety of
cell types simultaneously, to define prioritized trait-relevant cell
types (Calderon et al., 2017). We extracted the log-normalized
matrix from each processed data and averaged the expression
across each identified cell-type classes. We also scaled the
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expression data, and then took the absolute expression values,
so as to form the input of RolyPoly (Calderon et al., 2017). We
referred to the Ensembl database (GRCh37) and defined a 10-
kb window center around the transcription start site (TSS) of a
gene as its transcribed region, to construct a block annotation
as recommended that could link the location of GWAS variants
with related genes. Of note, we only retained genes on autosomes
(Calderon et al., 2017). We used the default parameters and set
1,000 times bootstrap to obtain robust standard errors.

Based on partition heritability, LDSC-cts needs the top
upregulated genes list of each cell type rather than the expression
data (Finucane et al., 2018). Here, we used Wilcoxon rank sum
test embedded in Seurat to find the DEGs for each cell type
with all remaining clusters as control. Following Finucane et al.
(2018), we extracted the top 10% upregulated genes ranked by
P value from each cell type. DEGs were identified as genes
expressed in at least 0.1% total cells and with log-transformed
fold change above 0 in the target cluster under comparison, so
as to ensure a sufficient number of genes could be obtained
from each cluster. DEGs lists of each scRNA-seq data used for
LDSC-cts analysis are summarized in Supplementary Tables 4,8.
We referred to the Ensembl database (GRCh37) and defined
the region from the TSS to the transcription end sites (TES)
of a gene as its transcribed region (Yates et al., 2019). We also
added 100-kb windows on either side of the transcribed region
of each gene. Finally, we applied LDSC-cts by jointly modeling
the annotation that corresponded to each cell type, a common
annotation that included all of the genes, and the 52 annotations
in the default “baseline model,” to identify CLD-specific cell types
(Finucane et al., 2018).

We also made a sensitivity analysis. Specifically, we changed
the resolution used in clustering to obtain a coarser cell type list
for analysis. In particular, since LDSC-cts is sensitive to the gene
list used for analysis, we simultaneously changed the number of
genes included in LDSC-cts to the top 5% upregulated ones.

Bonferroni correction was used for multiple tests (P < 0.1/n,
where n = 4 or three is the number of cell type groups, including
epithelial cell, non-parenchymal cell, lymphatic immune cell,
myeloid immune cell for liver tissue, or gliocyte, neuron, and
vascular cell for the brain tissue, Supplementary Table 9)
(Hao et al., 2020).

Statistical Software
We used scDblFinder package (version 1.4.0), Seurat package
(version 1.4.0), biomaRt package (version 2.45.6), and
RolyPoly package (version 0.1.0) in R software (version
3.6.3) (R Core Team, 2020). We used PLINK (version 2.0)
(Chang et al., 2015) to analyze GWAS data. We also used
LDSC-cts (version 1.0.1) in python software (version 2.7.18)
(Van Rossum and De Boer, 1991).

RESULTS

HCC Datasets Analysis
For the HCC GWAS data from BBJ, we totally retained 7,246,543
variants with HWE < 10−6 and MAF > 0.01, as well as their

annotation. For the scRNA-seq data (GSE149614), we identified
14 cell types on 30,983 cells (Supplementary Table 2 and
Supplementary Figures 1,2). We further excluded cluster with
less than 100 cells (63 mast cells) to avoid the interference of their
unstable signal on the results. We also excluded the circulating
cluster (2,510 cells), since it usually contains various immune
cells from the circulation and may represent a mixed signal.
Finally, we retained a total of 28,410 cells from 12 cell types.
After integrative analysis, we identified B cell (β = 2.956 × 10−4,
se = 1.442× 10−4, P = 0.0228) as cell type associated with HCC in
RolyPoly (Figure 3), whereas natural killer cell (NK), monocyte,
CD4 + T cell, plasma, macrophage, hepatocyte, regulatory T
cell (Treg), endotheliocyte, mesenchymal cell, CD8 + T cell,
and dendritic cell (DC) showed no significance (P > 0.05). In
LDSC-cts analysis, we also obtained B cell (β = 2.475 × 10−9,
se = 1.116× 10−9, P = 0.0133) as the significant cell type.

We used another HCC scRNA-seq data from GEO for
verification. Totally, we recognized 12 cell types on 30,931
cells from the GSE112271 data with one circulating (1,192
cells) and one small cluster (77 liver sinusoids endothelial
cells) excluded (Supplementary Table 2 and Supplementary
Figures 3,4). We identified monocyte-derived macrophage
(MDM, β = 1.665 × 10−4, se = 6.098 × 10−5, P = 0.0031), T
cell (β = 1.732 × 10−4, se = 7.170 × 10−5, P = 0.0076), and
natural killer cell (NK, β = 1.458 × 10−4, se = 6.976 × 10−5,
P = 0.0191) as cell types significantly associated with HCC in
RolyPoly (Figure 3), whereas the obtained NK (β = 2.331× 10−9,
se = 1.118 × 10−9, P = 0.0186) and B cell (β = 2.255 × 10−9,
se = 1.134 × 10−9, P = 0.0234) as the significant cell types in
LDSC-cts analysis.

We also integrated the two HCC scRNA-seq data and obtained
a combined data consisting of 60,120 cells and 13 cell types
for further analysis (Supplementary Figures 5,6). The RolyPoly
analysis showed that B cell (β = 2.451× 10−4, se = 9.240× 10−5,
P = 0.0040) was significantly associated with HCC (Figure 3),
whereas the LDSC-cts identified no significant cell type.

HCC Dataset Specificity and Sensitivity
Analysis
We used scRNA-seq data from other disease to verify the
specificity of our findings. To be specific, we downloaded one
IPD (GSE157783) scRNA-seq data, and identified 12 cell types
on 19,002 cells (Supplementary Table 2 and Supplementary
Figures 7,8). After excluding clusters with too few cells
(47 fibroblasts and 26 T cells), we identified no cell type
significantly associated with HCC in either RolyPoly or LDSC-cts
analysis (Figure 4).

We also made a sensitivity analysis by changing the resolution
used in clustering and got nine, eight, and nine cell types for
GSE149614, GSE112271, and their integrated data, respectively.
Sensitivity analysis showed that B cell was still significantly
associated with HCC in RolyPoly analysis on GSE149614 and the
integrated data, as well as in LDSC-cts analysis on the integrated
data. It also showed nominal significance (P < 0.1) in LDSC-cts
analysis on GSE112271, and was the top cell type (P = 0.119) in
the analysis on GSE149614 (Supplementary Figure 9).
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FIGURE 3 | Association between HCC scRNA-seq data and HCC GWAS data from RolyPoly and LDSC-cts. Using RolyPoly and LDSC-cts to detect the association
of cell types in GSE149614, GSE112271, and their combined HCC scRNA-seq data with EAS HCC GWAS data. Dashed lines in each panel represent a threshold of
P = 0.1/4. NK, natural killer cell; Treg, regulatory T cell; DC, dendritic cell; MDM, monocyte-derived macrophage; LEC, lymphatic endothelial cell.

Cirrhosis Data Analysis
For the cirrhosis GWAS data from BBJ of East Asian population,
we totally retained 7,246,475 variants with their annotation. For
the scRNA-seq data (GSE136103), we identified 20 cell types on
23,184 cells (Supplementary Table 2; Figure 2; Supplementary
Figure 10), but further excluded circulating cluster (309 cells) and
clusters with less than 100 cells (56 CLEC9A+ dendritic cells and
31 mast cells). Finally, we retained a gene expression data of 17
cell types. RolyPoly showed that CD4+ T cell (β = 2.278× 10−4,
se = 1.149 × 10−4, P = 0.0259) was significantly associated
with cirrhosis, whereas LDSC-cts identified no significant cell
type (Figure 5).

We also used a cirrhosis GWAS summary data of European
population from GeneATLAS website to verify the stability of our
outcomes, in which a total of 7,636,847 variants was retained after
QC. We identified natural killer T cell (NKT, β = 6.535 × 10−10,
se = 2.423 × 10−10–1.110 × 10−9, P = 0.0038) and hepatocyte
(β = 2.891 × 10−10, se = 1.364 × 10−10, P = 0.0149) as
cell types significantly associated with cirrhosis in RolyPoly,
while we obtained no significant cell type in the LDSC-cts
analysis (Figure 5).

DISCUSSION

Identifying disease-specific cell types has important implications
to understand the mechanisms of disease, to guide research, and
to develop more precise therapies (Calderon et al., 2017). In this

study, using two separate methods and based on available data,
we explored the CLD-related cell types through an integrative
analysis on GWAS and scRNA-seq data.

In the analysis of HCC, both RolyPoly and LDSC-cts identified
B cell as significant associated with HCC (P = 0.0228 and
P = 0.0133, respectively). B cell mainly exerts its humoral
immunity function through the antibody production and antigen
presentation, and can also regulate T cells and innate immune
responses (Tsou et al., 2016). Recently, the regulation role of
resident B cell in tumor has been investigated (Garaud et al.,
2018; Lechner et al., 2019; Wang et al., 2019). The balance
between B cells in different states and their activities may have
the potential to affect pro- or anti-tumor functions (Largeot et al.,
2019; Liu et al., 2019). A similar phenomenon has also been
observed in liver disease. In a Hras12V HCC mouse models,
B cells were found to have a potential role in suppressing
hepatic tumorigenesis (Wang et al., 2017), whereas in another
mouse model with inflammation-associated HCC, infiltrating
B cells was correlated with increased tumor aggressiveness
and mortality (Faggioli et al., 2018). In addition, activated
FcγRIIlow/− B cells from HCC tumor may also suppress host
anti-tumor immune response via IL-10 signals (Ouyang et al.,
2016; Jin et al., 2017). Nevertheless, the depth of research
on tumor-associated B cells and their subsets is far less than
that of T cells. As for the liver diseases, existing several
unbiased scRNAseq research on CLD have not revealed major
alterations in the composition or transcriptional profile of liver
B cells in disease state (MacParland et al., 2018; Ramachandran
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FIGURE 4 | Association of IPD scRNA-seq data with HCC GWAS data form RolyPoly and LDSC-cts. Using RolyPoly and LDSC-cts to detect the association of cell
types in GSE157783 IPD scRNA-seq data with EAS HCC GWAS data. Dashed lines in each panel represent a threshold of P = 0.1/3. OPC, Oligodendrocyte
precursor cell; GABA, GABAergic neurons.

et al., 2019; Losic et al., 2020; Sharma et al., 2020). Separate
single-cell research has not been conducted specifically on the
relationship between B cells and liver disease. However, with
the development of single-cell technology, the combination of
single-cell transcriptomics and immunomics (B cell receptor)
is expected to further reveal the exact role of B cells in
HCC and other CLD, and explore B cell-based immunotherapy
(Setliff et al., 2019).

We also used another HCC-related scRNA-seq data to
verify our findings. RolyPoly identified MDM, T cell, and NK
cell, rather than B cell, as significant cell types, whereas B
cell remained significant together with NK cell in LDSC-cts
analysis. This might have resulted from LDSC-cts using DEGs,
which may be conserved but more robust among different
studies for a specific disease. Although we have averaged the
expression for each identified cell type and taken a scale on
the averaged data, differences in data structure arising from
the different angles of the two original studies may also be
a probable interpretation (Losic et al., 2020). Therefore, we
further integrated the two data and repeated these analyses,
and found that B cell regained its significance in the integrated
data under RolyPoly method. In addition, we used the IPD

scRNA-seq data (GSE157783) from brain tissue to make
specificity analysis, and found that neither RolyPoly nor LDSC-
cts method identified significant cell types. The above results
jointly indicated that B cells may be a significant cell type
for HCC, and more attention should be paid to them in
future research.

Of note, outcomes from the second HCC data also suggested
that NK cells might be HCC-related cells, which was significant
in both RolyPoly and LDSC-cts analysis. Although this result has
not been verified in our analysis, a previous study has identified
the contribution of NK cell in liver injury (Luci et al., 2019),
NK cell composition alteration and an interaction with other
clusters was also observed in HCC (Zhang et al., 2019). Thus,
it is also of meaning to further explore the relationship between
NK cell and HCC.

As for the analysis on cirrhosis, we have not obtained an
overlap cell type in the two methods, with CD4 + T cell
significant in RolyPoly analysis using the GWAS data on East
Asian population, while NKT and hepatocyte are significant in
RolyPoly analysis on European population. That might be caused
by the different linkage disequilibrium and minor allele frequency
(MAF) for different ancestry, cross-population correlations of
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FIGURE 5 | Association between cirrhosis scRNA-seq data and cirrhosis GWAS data from RolyPoly and LDSC-cts. Using RolyPoly and LDSC-cts to detect the
association of cell types in GSE136103 cirrhosis scRNA-seq data with EAS and EUR cirrhosis GWAS data. Dashed lines in each panel represent a threshold of
P = 0.1/4. NKT, natural killer T cell; pDC, plasmacytoid dendritic cell; Treg, regulatory T cell; LEC, lymphatic endothelial cell; MDM, monocyte-derived macrophage;
NK, natural killer cell; LSEC, liver sinusoids endothelial cell; DC, dendritic cell.

causal SNP effects, and heritability (Mather and Thalamuthu,
2020; Wang et al., 2020; Yang and Zhou, 2020). For example, there
are 1,558 SNPs and 76 SNPs with P < 10−6 in EAS and EUR
datasets, respectively (Supplementary Table 10).

Certainly, several limitations remain in our study. First,
all data used came from public databases, and external
experiments were not conducted to verify our findings; but
alternatively, we used other available GWAS and scRNA-
seq data to make verification as well as specificity analysis,
which would also ensure the reliability of our results to
some extent. Second, SCTransform is a relative powerful
normalization method, which may weaken the heterogeneity
among samples when used for integration (Butler et al., 2018;
Tran et al., 2020). Since we were aimed to apply similar
cell type definition strategy in different samples and focused
mainly on the similarity rather than heterogeneity, it may
offer more help than interference to our analysis. In addition,

since current research advances have limited ability in cell type
definition and explanation, we applied a relative conservation
cell subdivided strategy in the current study. With the in-
depth research on various cell subtypes and the development
of single-cell technology, similar research is expected be
carried out in a larger sample with a higher resolution and
precision, and more novel findings with biological explanation
would be obtained.

In summary, we performed integrative analysis on
GWAS summary data and single scRNA-seq data of CLD,
and identified B cell as a potential HCC-related cell type.
Since we have made verification from multiple angles,
our outcomes are of relative reliability. In addition, as
the single-cell atlas of different tissues and diseases has
been completed, more targeted researches are expected,
and our study would provide valuable clues for further
research on CLD.
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The mixed linear model (MLM) has been widely used in genome-wide association
study (GWAS) to dissect quantitative traits in human, animal, and plant genetics. Most
methodologies consider all single nucleotide polymorphism (SNP) effects as random
effects under the MLM framework, which fail to detect the joint minor effect of multiple
genetic markers on a trait. Therefore, polygenes with minor effects remain largely
unexplored in today’s big data era. In this study, we developed a new algorithm under
the MLM framework, which is called the fast multi-locus ridge regression (FastRR)
algorithm. The FastRR algorithm first whitens the covariance matrix of the polygenic
matrix K and environmental noise, then selects potentially related SNPs among large
scale markers, which have a high correlation with the target trait, and finally analyzes the
subset variables using a multi-locus deshrinking ridge regression for true quantitative
trait nucleotide (QTN) detection. Results from the analyses of both simulated and real
data show that the FastRR algorithm is more powerful for both large and small QTN
detection, more accurate in QTN effect estimation, and has more stable results under
various polygenic backgrounds. Moreover, compared with existing methods, the FastRR
algorithm has the advantage of high computing speed. In conclusion, the FastRR
algorithm provides an alternative algorithm for multi-locus GWAS in high dimensional
genomic datasets.

Keywords: genome-wide association study, mixed linear model, multi-locus algorithm, statistical power,
polygenic background, minor effect

INTRODUCTION

Genome-wide association study (GWAS) has been widely used in the genetic dissection of
quantitative traits in human, animal, and plant genetics. GWAS typically searches for the
correlations between genetic variants and hundreds or thousands of individuals. However, a
complete characterization of the biological mechanism for most quantitative traits remains elusive

Abbreviations: MLM, the mixed linear model; GWAS, genome-wide association study; FastRR, fast multi-locus ridge
regression; SNP, single nucleotide polymorphism; QTN, quantitative trait nucleotide; EMMA, efficient mixed model
association; DRR, deshrinking ridge regression; ORR, ordinary ridge regression; BLUP, best linear unbiased prediction; lasso,
least absolute shrinkage and selection operator; SCAD, smoothly clipped absolute deviation; DEMMA, Decontaminated
efficient mixed model association; MAF, minor allele frequency; LD, days to flowering under long days; SD, days to flowering
under short days; SDV, days to flowering under short days with vernalization; MSE, mean squared error.
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(Dahl et al., 2016) and a number of polygenes with minor effects
are unexplored (Zhang and Xu, 2005; Wen et al., 2019). This
may be because the GWAS approach is still quite crude, and
most of the minor biological associations between sequence
and phenotype remain unmeasured. Recently, advanced
biotechnology has generated large-scale single nucleotide
polymorphisms (SNPs) and phenotypes, which have been
valuable for genetic analysis. A large number of statistical
methodologies for GWAS have been proposed (Atwell et al.,
2010; Lippert et al., 2011; Zhou and Stephens, 2012; Wen et al.,
2018, 2020; Sun et al., 2019; Wang et al., 2020).

Since the introduction of the Q + K (Q represents the
population structure and K represents the kinship matrix)
mixed linear model (MLM) approach (Yu et al., 2006) to the
concept of GWAS, the power of quantitative trait nucleotide
(QTN) detection has been significantly increased. On this
basis, the compressed MLM (Zhang et al., 2010) and enriched
compressed MLM (Li et al., 2014) have been proposed to improve
computational efficiency. Meanwhile, an efficient mixed model
association (EMMA) (Kang et al., 2008) was regarded as the
milestone improvement in the MLM approach, which treated
the polygenic effect as the random effect to fit the mixed model.
Currently, this concept has become more and more popular in
genomic analysis. A number of methods based on this concept
are continually emerging, such as EMMAX (Kang et al., 2010),
FaST-LMM (Lippert et al., 2011), and GEMMA (Zhou and
Stephens, 2012). Because of the dissection of genetic variants and
computational speed, all these methods have been successfully
applied in MLM. For all the above methods, they comprise a
one-dimensional genome scan by testing one marker at a time,
more importantly, the SNP effect is considered as the fixed effect,
which may be disadvantageous to the detection of QTN in GWAS
(Goddard et al., 2009; Zhang et al., 2017; Wen et al., 2018, 2020).

Although the current single variant methods of GWAS have
succeeded in identifying QTNs associated with the interested
traits, these approaches fail to consider the joint minor effect
of multiple genetic markers on a trait (Tamba et al., 2017);
furthermore, they do not match the internal genetic mechanism
of these quantitative traits (Tamba et al., 2017; Zhang et al., 2017;
Sun et al., 2019; Wen et al., 2019). To overcome this drawback,
multi-locus methodologies have been developed, such as least
absolute shrinkage and selection operator (lasso) (Tibshirani,
1996; Xu, 2010; Zhang et al., 2012), Bayesian lasso (Yi and Xu,
2008), adaptive mixed lasso (Wang et al., 2011), and empirical
Bayes (Xu, 2007). All SNPs can be included in the model and can
be simultaneously estimated by using multi-locus methodologies.
If the number of SNPs (p) is many times larger than the
number of individuals (n), the approaches will fail to analyze
this oversaturated model. Under this circumstance, a natural
response is to consider reducing the number of SNP effects in
the multi-locus genetic model. Zhou et al. (2013) and Moser
et al. (2015) proposed the Bayesian model, which estimates
only a few variance components instead of considering all. It is
an alternative approach to solve the “big p, small n” problem.
Currently, two-stage methodologies (Tamba et al., 2017; Zhang
et al., 2017; Wen et al., 2018) borrowed this idea and have
been proposed for multi-locus GWAS. All these methodologies

provide the tools for high-dimensional genetic data analysis.
It is known that the quantitative traits are controlled by a
few genes with large effects and numerous polygenes with
minor effects. Nevertheless, the dissection of the polygenes with
minor effects needs to be improved in above mentioned multi-
locus approaches.

In this study, we propose a multi-stage flexible approach
for GWAS to detect the associated (large and minor effects)
variables/SNPs. In our model, the fast multi-locus ridge
regression algorithm (FastRR), all SNP effects are considered
as random effects. The FastRR algorithm first whitens the
covariance matrix of the polygenic matrix K and environmental
noise. Subsequently, the FastRR algorithm reduces the number
of SNPs according to correlation, the variables of which
significantly correlate with the response are retained for the next
stage. In the final stage, deshrinking ridge regression (DRR)
is applied to implement parametric estimation and significance
tests of variables. In this study, a series of simulated and
real dataset analyses are used to validate this new method.
For comparison, five established methods – lasso, adaptive
lasso, smoothly clipped absolute deviation (SCAD), EMMA, and
decontaminated efficient mixed model association (DEMMA) are
used for analysis.

MATERIALS AND METHODS

Genetic Model
Let yi(i = 1, 2, ..., n) be the phenotypic value of the i-th
individual in a sample of size n from a natural population, and
the genetic model can be described as:

y = Wα + Zγ + u + ε (1)

where y = (y1, ..., yn)T ; α is a c × 1 vector of the fixed
effects, such as the intercept, population structure effect and
so on, W is the corresponding designed matrix for α; Z is an
n × 1 vector of marker genotypes, and γ ∼ N(0, σ 2

γ ) is a random
effect of putative QTN. σ 2

γ is the variance of the putative QTN;
u∼MVN(0, σg2K) is an n × 1 random vector of polygenic
effects, σg2 is the variance of polygenic background, K is a known
n × n relatedness matrix; ε is an n × 1 vector of residual errors
with an assumedMVN(0, σ 2In) distribution; σ 2 is the variance of
residual error; and In is a n × n identity matrix. MVN denotes
multivariate normal distribution.

As γ is treated as being a random effect, the variance of y in
the model (1) is:

var(y) = σ 2
γZZT

+ σg
2K + σ 2In =

σ 2(λγZZT
+ λgK + In) (2)

where λγ = σγ
2/σ 2, λg = σg

2/σ 2.

Fast Multi-Locus Ridge Regression
Algorithm
The FastRR algorithm is a multi-stage flexible approach for
GWAS, which simultaneously implements estimation and testing
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to detect associated variables/SNPs. We describe it with the
following stages:

The Polygenic and Residual Noise Whitening Stage
The key point of solving the model (1) is to estimate two ratios
of variance components, λγ and λg , which cause expensive
computational burden. It is noted that polygenic variance is
always larger than zero, while variance components for most
SNPs are zero because these markers are not associated with the
interested trait, which is λγ = 0 for most SNPs. Therefore, in the
first step, we estimate λ̂g by the reduced form of the model (1),
which deleted Zγ with only polygenic background, and replace
λg in (2) by the λ̂g (Wen et al., 2018, 2020), avoiding re-estimate
λg for each single marker scanning. Thus,

var(y) = σ 2(λγZZT
+ λ̂gK + In) = σ 2(λγZZT

+ B) (3)

An eigen (or spectral) decomposition of the positive definite
matrix B = λ̂gK + In is:

B = Q3QT
= (Q3

1
2 QT)(Q3

1
2 QT) (4)

where Q is orthogonal and 3 is a diagonal matrix with positive
eigenvalues. Let C = Q3−

1
2 QT, the model (1) is changed to:

yc = Wcα + Zcγ + εc (5)

where, yc = Cy, Wc = CW, Zc = CZ, εc = Cu + Cε ∼
MVN(0, σ 2In) (Wen et al., 2018, 2020).

Variable Reduction Stage
A number of studies have illustrated that most quantitative traits
are controlled by a small portion of genes, including a few genes
with large effects and polygenes with minor effects (Zhang et al.,
2017; Wen et al., 2019). It is critical to dissect all associated loci
from large-scale genetic markers. Herein, we conduct a variable
reduction stage, whose purpose is dimension reduction. At this
stage, the FastRR algorithm detects a subset of putative variables
associated with the phenotype, and thus avoids the intractable
computational problems of high-dimensional datasets analysis.

We calculate the marginal correlation coefficients between
Zc (variables after polygenic background correction) and yc
(phenotype after polygenic background correction) under model
(5), R function cor.test returns the p-value of the correlation
test. The critical value for significance was set at p-value < 0.01
(Tamba et al., 2017). For the threshold of 0.01, even the slight
correlations between predictors and the response will be captured
(Tamba et al., 2017), and the unassociated loci will be removed.
All the most potential QTNs are selected to construct the reduced
multi-locus model for the next stage. Essentially, this marginal
correlation step is similar to the single marker scanning, which
combined with the polygenic background without considering
variance components σ 2

γ .

Parameter Estimation Stage
In the multi-locus model,

y = Wα + Zγ + ε (6)

where y is the phenotypic value of the quantitative trait, which is
the same as that in the model (1); α is a vector of fixed effects, γ

is a q × 1 random effect vector of the selected q markers from
the above stage, and γk ∼ N

(
0, φ2) , k = 1, ..., q; W and Z are

the corresponding design matrices for α and γ. Here, polygenic
background correction is not considered in model (6), because
the above two steps under the polygenic background model had
already selected all potential associated QTNs. All the parameters
in model (6) are estimated by DRR proposed by Wang et al.
(2020).

Before introducing the DRR, let us briefly recall the ordinary
ridge regression (ORR). According to the best linear unbiased
prediction (BLUP) of the marker effects and the prediction
error variances using the conditional expectation and conditional
variance, the estimates of ORR are as follows,

γ̂ORR = E
(
γ|y
)
= λZTH−1(y −Wα) (7)

var
(̂
γORR|y

)
=

(
λI−λZTH−1Zλ

)
(8)

where λ = φ2

σ2 ,H =
(
ZZT) λ+ In.

Ordinary ridge regression is inflexible and inaccurate for
GWAS (Wang et al., 2020). Therefore, we apply the following
DRR method, which can bring both the accurate effects and tests
back. The essential difference between ORR and DRR is the well-
measurement-factor (also called degree of freedom), which is

dk = 1−
var

(̂
γORRk |y

)
φ2 = λZT

k H−1Zk (9)

γ̂ORRk is the k-th element of γ̂ORR, where φ2and var
(̂
γORRk |y

)
are

prior and posterior variances for γk, respectively.

γ̂DRRk =
φ2

φ2 − var
(̂
γORRk |y

) γ̂ORRk = d−1
k γ̂ORRk (10)

var
(̂
γDRRk

)
=

φ2

φ2 − var
(̂
γORRk |y

)var (̂γORRk |y
)

= d−1
k var

(̂
γORRk |y

)
(11)

Wk =

(̂
γDRRk

)2

var
(̂
γDRRk

) = (̂
γORRk /dk

)2

var
(̂
γORRk |y

)
/dk
= d−1

k

(̂
γORRk

)2

var
(̂
γORRk |y

)
(12)

The test statistic of DRR, Wk, follows a Chi-square distribution
with one degree of freedom under the null model, H0 : γk = 0.
The DRR method deshrinks both the estimated effects of
markers and their estimated variances from the ORR, resulting
in deshrunk Wald test statistics.

Comparison Methods
LASSO
Lasso regression (Tibshirani, 1996) is a type of linear regression
that implements shrinkage by performing L1 regularization and
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selects the most correlated with response variables. It is a popular
method for simultaneous estimation and variable selection. The
method was implemented by the R software package lars1.

Adaptive Lasso
Similar to the lasso, the adaptive lasso (Zou, 2006) is
a mainstream method of variable selection, in which the
adaptive weights are used for penalizing different coefficients
in the L1 penalty. Adaptive lasso shows more consistence for
variable selection than lasso in data analysis. The method was
implemented by the R software package glmnet2.

SCAD
SCAD (Fan and Li, 2001) as the variable selection has the nice
oracle property. The estimator of SCAD attempts to alleviate bias
from variable selection, while also retaining a continuous penalty
that encourages sparsity. The method was implemented by the R
software package ncvreg3.

EMMA
Efficient mixed-model association (Kang et al., 2008) is an
established genome-wide single-marker scan methodology under
the framework of MLM, in which the polygenic background
and population structure are controlled. The method was
implemented by the R software package EMMA4.

DEMMA
The polygenic effect (the sum of all marker effects) is treated as
a random effect in EMMA. On the other side, EMMA already
included the marker effect as the fixed effect. Thus, there are two
effects for each marker, which lead to a reduced power for testing.
Wang et al. (2020) proposed DEMMA to overcome the above
drawback. The method was implemented by the R code5.

Experimental Materials
The Simulation Data
Three Monte Carlo simulation experiments were conducted
to evaluate the performances of the FastRR algorithm and
other methods. We generated genotypes according to the
minor allele frequency (MAF) in the interval (0.1, 0.5) under
Hardy–Weinberg equilibrium. The simulation datasets contained
n = 2000 individuals with p = 10,000 genetic variants, which
were generated with MLM. The total average was set at 10.0
and residual variance was set at 10.0. We considered three
scenarios for each simulation, including two times polygenic
background, five times polygenic background, and ten times
polygenic background.

Only one QTN with a fixed position (Table 1) was simulated
and placed on the SNPs with 0.1 heritability for the first
simulation; five QTNs with fixed positions were assigned and
placed on the SNPs for the second simulation, the heritabilities of
the QTNs were set as 0.02, 0.05, 0.05, 0.08, and 0.10, respectively.

1https://cran.r-project.org/web/packages/lars/index.html
2https://glmnet.stanford.edu/
3https://cran.r-project.org/web/packages/ncvreg/index.html
4http://mouse.cs.ucla.edu/emma/
5https://doi.org/10.1093/bioinformatics/btaa345/ TA
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TABLE 2A | Comparison of lasso, adaptive lasso, SCAD, EMMA, DEMMA, and FastRR methods in the second simulation experiment (scenarios 1: two times polygenic background).

QTN True value Lasso Adaptive lasso SCAD EMMA DEMMA FastRR

Position Effect r2 Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE

Polygenic background (2K)

1 98 0.5451 2% 99.0 0.298
(0.091)

6.833 96.0 0.416
(0.149)

3.703 99.0 0.269
(0.122)

9.011 91.0 0.600
(0.087)

0.956 94.0 0.596
(0.089)

0.978 99.0 0.587
(0.094)

1.035

2 301 0.8622 5% 100.0 0578
(0.100)

9.080 100.0 0.782
(0.114)

1.924 100.0 0.683
(0.174)

6.221 100.0 0.822
(0.095)

1.044 100.0 0.822
(0.095)

1.044 100.0 0.820
(0.094)

1.054

3 540 0.8598 5% 100.0 0.605
(0.093)

7.350 100.0 0.811
(0.101)

1.240 100.0 0.730
(0.150)

3.906 100.0 0.852
(0.089)

0.788 100.0 0.852
(0.089)

0.788 100.0 0.850
(0.089)

0.788

4 801 1.0789 8% 100.0 0.807
(0.099)

8.34 100.0 1.030
(0.105)

1.333 100.0 1.025
(0.139)

2.211 100.0 1.061
(0.094)

0.914 100.0 1.061
(0.094)

0.914 100.0 1.059
(0.094)

0.911

5 1000 1.2093 10% 100.0 0.957
(0.095)

7.276 100.0 1.118
(0.098)

1.023 100.0 1.207
(0.251)

10.129 100.0 1.223
(0.094)

0.886 100.0 1.223
(0.094)

0.886 100.0 1.220
(0.094)

0.878

False positive rate (h) 0.461 0.024 0.355 0.000 0.007 0.422

Three scenarios, including two times polygenic background, five times polygenic background, and ten times polygenic background.
MSE, mean squared error.
The numbers in parentheses represent the standard deviation.

TABLE 2B | Comparison of lasso, adaptive lasso, SCAD, EMMA, DEMMA, and FastRR methods in the second simulation experiment (scenarios 2: five times polygenic background)

QTN True value Lasso Adaptive lasso SCAD EMMA DEMMA FastRR

Position Effect r2 Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE

Polygenic background (5K)

1 98 0.5451 2% 89.0 0.239
(0.091)

9.048 71.0 0.375
(0.179)

4.297 88.0 0.216
(0.098)

10.367 52.0 0.656
(0.072)

0.943 73.0 0.622
(0.082)

0.910 96.0 0.587
(0.095)

1.029

2 301 0.8622 5% 100.0 0.527
(0.119)

12.673 100.0 0.764
(0.166)

3.703 100.0 0.606
(0.200)

10.515 99.0 0.841
(0.106)

1.140 99.0 0.841
(0.106)

1.140 100.0 0.820
(0.126)

1.283

3 540 0.8598 5% 100.0 0.518
(0.117)

13.063 100.0 0.754
(0.153)

3.439 100.0 0.591
(0.191)

10.812 99.0 0.831
(0.107)

1.195 100.0 0.828
(0.110)

1.297 100.0 0.826
(0.109)

1.299

4 801 1.0789 8% 100.0 0.755
(0.116)

11.824 100.0 1.029
(0.126)

1.811 100.0 0.957
(0.186)

4.911 100.0 1.077
(0.117)

1.336 100.0 1.077
(0.116)

1.336 100.0 1.075
(0.116)

1.334

5 1000 1.2093 10% 100.0 0.897
(0.109)

10.937 100.0 1.176
(0.117)

1.480 100.0 1.165
(0.150)

2.428 100.0 1.234
(0.101)

1.063 100.0 1.234
(0.101)

1.063 100.0 1.232
(0.100)

1.049

False positive rate (h) 0.510 0.102 0.473 0.040 0.014 0.431

Three scenarios, including two times polygenic background, five times polygenic background, and ten times polygenic background.
MSE, mean squared error.
The numbers in parentheses represent the standard deviation.
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Their positions and effects are listed in Tables 2A–C. For the
third simulation experiment, we randomly selected 100 QTNs,
and the sum contribution of QTNs to the total phenotypic
variance was 0.5. Each simulation experiment was repeated 100
times. The power for each QTN was defined as the proportion
of samples over the threshold to the total number of replicates
(100), the criterion for lasso, adaptive lasso, and SCAD was set
as LOD ≥ 3.0, the criterion for ORR, EMMA, DEMMA, and
the FastRR algorithm was set as 0.05/p, where p was the number
of markers in the genetic model. The false positive rate was
calculated as the ratio of the number of false positive effects to
the total number of zero effects.

The Rice Data
To validate the FastRR algorithm, the rice data that was used
in this study for GWAS demonstration consists of 524 inbred
varieties, which were collected from China and southeast Asia
(Chen et al., 2014; Wei et al., 2018). A total of 6.5 million high-
quality SNPs covering 90% of total SNPs were analyzed by Chen
et al. (2014). A total of 314,393 SNPs and grain width traits
(Wang et al., 2020) were analyzed in this study. These data were
downloaded from the link.6

The Arabidopsis Data
To further evaluate the performance of FastRR, we reanalyzed
the genetic data sets of Arabidopsis published by Atwell et al.
(2010). Both phenotypes and genotypes were obtained from the
link7. A total of 199 Arabidopsis lines and 216,130 SNPs were used
for analysis. Among all traits, we analyzed three traits related to
flowering time: (1) LD: days to flowering under long days; (2)
SD: days to flowering under short days; and (3) SDV: days to
flowering under short days with vernalization.

RESULTS

Simulation Studies
Statistical Power for QTN Detection
In the first simulation experiment, only one QTN with a
fixed position is simulated, and the power in the detection
of the QTN is higher for the FastRR algorithm than for the
others (Figure 1 and Table 1). The FastRR algorithm has a
dramatically higher statistical power for 10 times polygenic
background especially. When five QTNs with the fixed position
are simulated in the second experiment, a similar trend is
observed (Figure 2 and Tables 2A–C). Three minor effect QTNs
(QTL 1 and QTL 2 for three scenarios; QTL 3 for the third
scenario) are illustrated in Figure 2, the power of each QTN is
less than 100%. Notably, the FastRR algorithm has the highest
power for the 98th marker (minor effect locus, r2 = 2%) under
different polygenic backgrounds. One hundred random QTNs
are simulated in the third experiment and the total heritabilities
are 50%. As the genetic background increases, the power of
the FastRR algorithm is getting increasingly high (Figure 3).

6https://doi.org/10.1093/bioinformatics/btaa345/
7http://www.arabidopsis.usc.edu/
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FIGURE 1 | The statistical powers for the fixed position QTN in the first simulation experiment using six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA, and
the FastRR algorithm).

FIGURE 2 | The statistical powers for the minor effect QTNs in the second simulation experiment using six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA,
and the FastRR algorithm).

The results illustrate that the trends are similar to the above
experiments (Figure 3). In summary, the FastRR algorithm
retains an obviously advantageous performance for the random
loci experiment. These results demonstrate the highest power of
the FastRR algorithm across all the approaches under various
genetic backgrounds.

Accuracy for the Estimated QTN Effects
The average effect and mean squared error (MSE) are used
to measure the accuracy of an estimated QTN effect. We
evaluated the accuracies for the (fixed positions, including
simulation experiment 1 and 2) estimates using all six methods
(Tables 1, 2A–C). As a result, the estimates for each QTN effect
for EMMA, DEMMA, and FastRR are much closer to the true
value, and EMMA and DEMMA are slightly better than the
FastRR algorithm, nevertheless, EMMA and DEMMA methods
have relatively lower power than FastRR. The performance of

SCAD, adaptive lasso, and lasso are unsatisfactory. The MSE
shows a similar trend to the average effect. On these occasions,
the FastRR algorithm, EMMA, and DEMMA methods are
recommended for the estimation of QTN effects.

The false positive rate is a crucial index in GWAS. All the false
positive rate results of simulation experiment 1 and 2 are listed
in Tables 1, 2A–C. Obviously, the false positive rate becomes
increasingly high along with the stronger polygenic background.
EMMA, DEMMA, and adaptive lasso have a relatively lower false
positive rate followed by FastRR, SCAD, and lasso. The false
positive rates of all six methods are under control.

Computing Time
We compare the computing time of 100 repeated simulated
analyses by using six approaches. In each of the three simulation
experiments, computing times are recorded and are shown in
Figure 4 and Supplementary Figures 1, 2 (Intel Xeon E5-2630
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FIGURE 3 | The average statistical powers for all QTNs in the third simulation experiment using six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA, and the
FastRR algorithm).

FIGURE 4 | Comparison of computing times to analyze simulation experiment 1 using all six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA, and the
FastRR algorithm).

v4, CPU 2.20 GHz, Memory 64G). The computing time of the
LASSO and FastRR algorithm have a faster computing speed than
the other methods, which are on the same order of magnitude.
They are followed by the adaptive lasso and SCAD. DEMMA
and EMMA methods take the most expensive computing time
at about 600 min, which is nearly seven times more than the
FastRR algorithm.

Analysis of the Rice Data Set
To validate the FastRR algorithm, the grain width trait of
rice data is analyzed by using six methods: lasso, adaptive
lasso, SCAD, EMMA, DEMMA, and the FastRR algorithm. The
rice dataset contains 310,000 SNPs genotyped for 524 inbred
varieties. Supplementary Figure 3 shows the LOD plot for three
variable selection methods and Manhattan plots for the other

three methods. Obviously, DEMMA method and the FastRR
algorithm have the identical detected regions, two significant
peaks on chromosome 5 and 9. Both DEMMA and FastRR
detect the cloned gene GW5 (Weng et al., 2008) that controls
grain width trait. The test statistics of SNP135176 (the most
significant SNP) for the DEMMA method and FastRR algorithm
are 2.31 × 10−26 and 1.92 × 10−20, respectively; the p-value for
the DEMMA method is lower than for the FastRR algorithm.
However, the test statistics for the EMMA method do not
reach the Bonferroni correction threshold. In addition, three
variable selection methods, lasso, adaptive lasso, and SCAD, show
unsatisfactory performance according to the LOD scores.

The average computing times are listed in Table 3. The
relatively fast methods, lasso, SCAD, and FastRR, are 235.33,
455.31, and 561.31 s, respectively. Lasso is the fastest method
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TABLE 3 | The computation times (seconds) for analyzing Arabidopsis flowering time traits and rice grain width by using lasso, adaptive lasso, SCAD, EMMA, DEMMA,
and FastRR methods.

Traits Lasso Adaptive lasso SCAD EMMA DEMMA FastRR

Rice

Grain width 235.33 1067.22 455.31 60813.82 26417.71 561.31

Arabidopsis

LD 36.11 189.36 128.79 1362.55 1117.49 105.17

SD 37.17 159.00 114.17 1350.19 4114.88 112.75

SDV 44.47 140.96 112.34 1665.94 4123.34 107.36

among all six methods, which is followed by SCAD and FastRR.
In Table 3, the adaptive lasso is different from the above
simulation experiments, which consumes much computing time
in the cross-validation along with the increasing number of SNPs.
The EMMA method takes more than ten times the computing
time than the FastRR algorithm.

Analysis of the Arabidopsis Data Set
To further validate the FastRR algorithm, this new algorithm
FastRR along with lasso, adaptive lasso, SCAD, EMMA, and
DEMMA methods are used to reanalyze the Arabidopsis data
for three traits related to flowering time (LD, SD, and SDV).
The results are illustrated in Supplementary Figures 4–6.
Each putative QTN (over the threshold) is used to mine the
candidate genes by The Arabidopsis Information Resource8.
The FastRR algorithm detects the confirmed genes AGL17
and CDKG1, which are detected by SCAD and DEMMA
as well. From the analysis results, lasso shows several false
positive loci in the detection of SD and SDV, meanwhile the
adaptive lasso and SCAD methods are inflexible in dissecting
the SNPs associated with the target traits. The statistical tests
of EMMA are under the Bonferroni corrected threshold. The
FastRR algorithm shows a similar pattern as the DEMMA
method for all results of three traits, the statistics of part
SNPs using the DEMMA method are slightly more significant
than the FastRR algorithm, which is similar to the results of
the rice datasets.

In terms of the computing speed for all three traits, lasso
is computationally much faster than the other methods. The
computing times of FastRR, SCAD, and adaptive lasso are
on the same order of magnitude, which require less than
200 s. The DEMMA and EMMA methods have much more
computational burden than the other methods, both of which
require over ten times the computing time required by the FastRR
algorithm. Overall, the FastRR algorithm is recommended
from the perspective of detection and computing speed across
all experiments.

DISCUSSION

The FastRR algorithm is a multi-stage flexible approach for
QTNs dissection in GWAS, and displays high power for
detecting QTN of large and minor effects, even under the

8https://www.arabidopsis.org/

ten times polygenic background. We aimed to understand the
performance of regression analysis methods, thus the following
three regression analysis methods, ORR, DRR, and FastRR, are
used to analyze simulation experiment 1 and 2. As the results
show (Supplementary Tables 1, 2A–C), ORR has the worst
detection ability, and even major QTN with large effects are
not identified. This explains why ORR is rarely used in GWAS.
DRR performs well in simulation 1 and 2, and shows slightly
lower power for the major QTNs than FastRR. However, DRR
loses power in detecting QTNs with minor effects, and this
difference becomes more and more obvious with the increase
of the polygenic background. Among three regression analysis
methods, the FastRR performs well in the simulation experiment
and has the highest statistical power.

Currently, the two-stage methodologies (Tamba et al., 2017;
Zhang et al., 2017; Wen et al., 2018) are more popular in GWAS,
which are the alternative approaches to solve the “big P, small N”
problem. The FASTmrEMMA (Wen et al., 2018; Wen et al., 2020)
algorithm is a fast and accurate two-stage methodology for QTNs
detection. We further compare the FastRR and FASTmrEMMA
algorithm in this study. The results of simulation experiment 1
and 2 are listed in Supplementary Tables 1, 2A–C. Observably,
the FastRR and FASTmrEMMA algorithm are powerful in QTNs
detection from the perspective of statistical power. However,
the estimation of FASTmrEMMA is slightly worse than FastRR,
which has a relatively larger MSE. In addition, FASTmrEMMA
consumes a median computing time (∼150 s for each replication)
among all methods, and much more than FastRR. Therefore, the
FastRR algorithm was shown to be a good alternative method for
multi-locus GWAS.

Mixed linear model methodologies are mainstream in GWAS;
most of them treat QTN effects as fixed effects. In this study,
the QTN effects are viewed as random, and it is more consistent
with genetic mechanisms (Wen et al., 2018). In order to avoid
the influence of the increase of computational complexity,
several acceleration techniques have been incorporated into the
algorithm. Firstly, we estimate and fix the polygenic-to-residual
variance ratio, and then transform the phenotypes and genotypes
in the first stage. This technique was adopted in pLARmEB
(Zhang et al., 2017) and FASTmrEMMA (Wen et al., 2018),
avoiding re-estimating this ratio for each marker. Secondly,
the marginal correlation in the second step is similar to the
single marker scanning, which quickly filters the unassociated
SNPs. The number of SNPs reduces from tens of thousands
to hundreds of putative QTNs in the simulation and real data
analysis. Thirdly, in the multi-locus model (6), we assume
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all σγ 2
= φ2, thus only two variance components (φ2 and

σ 2) requires DRR to estimate. The results from simulation
and real data analysis indicate that the estimation under
this simple assumption has achieved better performance
for QTN detection and fast computational speed. Lastly,
multithreaded marginal correlation is implemented in
the FastRR.

Efficient mixed model association and DEMMA as popular
single-locus genome scan approaches have been successfully used
in GWAS to dissect quantitative traits. However, single-locus
approaches ignore the potential information of neighboring
markers and fail to consider the joint minor effect of multiple
genetic markers on a trait. The FastRR algorithm overcomes
this shortcoming. From the results of the simulation, FastRR
is more powerful in the detection of QTNs (Figures 2, 3).
Although the three popular variable selection approaches, lasso,
adaptive lasso, and SCAD, utilize the potential information
of markers, the detection and estimation are not accurate
(Tables 1, 2A–C). This may be due to the over shrinkage of
QTNs, and therefore the effect of QTN is smaller than the
true effect; specifically, the minor effect of QTN is shrunk to 0.
Consequently, the FastRR algorithm is shown to be more robust
in data analysis.

The analysis of large-scale genetic data in GWAS is a hot topic
at present. In this study, the correlation coefficients are employed
to reduce the dimension of potentially related variables, which
are then included in the subsequent multi-locus analysis. The
threshold of the correlation coefficient test is set to 0.01 (Tamba
et al., 2017), and even the slight correlations between predictors
and the response are easily captured. The other thresholds are
used, such as 0.001 and 0.0001, which are more rigorous and
allows the filtering out of the minor effect loci that will not
be included in the multi-locus model. The threshold equal to
0.05 is too loose and includes a large number of SNPs over the
threshold; the putative loci are included in the subsequent multi-
locus analysis, and furthermore, it is time consuming and results

in intractable calculations. Thus, it is reasonable to choose 0.01 as
the threshold value in the selection of variables.
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Genome-wide association study (GWAS) has identified thousands of genetic variants
associated with complex traits and diseases. Compared with analyzing a single
phenotype at a time, the joint analysis of multiple phenotypes can improve statistical
power by taking into account the information from phenotypes. However, most
established joint algorithms ignore the different level of correlations between multiple
phenotypes; instead of that, they simultaneously analyze all phenotypes in a genetic
model. Thus, they may fail to capture the genetic structure of phenotypes and
consequently reduce the statistical power. In this study, we develop a novel method
agglomerative nesting clustering algorithm for phenotypic dimension reduction analysis
(AGNEP) to jointly analyze multiple phenotypes for GWAS. First, AGNEP uses an
agglomerative nesting clustering algorithm to group correlated phenotypes and then
applies principal component analysis (PCA) to generate representative phenotypes for
each group. Finally, multivariate analysis is employed to test associations between
genetic variants and the representative phenotypes rather than all phenotypes. We
perform three simulation experiments with various genetic structures and a real dataset
analysis for 19 Arabidopsis phenotypes. Compared to established methods, AGNEP
is more powerful in terms of statistical power, computing time, and the number of
quantitative trait nucleotides (QTNs). The analysis of the Arabidopsis real dataset further
illustrates the efficiency of AGNEP for detecting QTNs, which are confirmed by The
Arabidopsis Information Resource gene bank.

Keywords: genome-wide association study, statistical power, clustering algorithms, principal component
analysis, genetic structure

Abbreviations: GWAS, genome-wide association study; SNP, single nucleotide polymorphism; QTN, quantitative trait
nucleotide; PCA, principal component analysis; AGNES, agglomerative nesting clustering algorithm; AGNEm, AGNES
with mean representative phenotypes; AGNEmed, AGNES with median representative phenotypes; AGNEP, AGNES for
phenotypic dimension reduction analysis; ANOVA, analysis of variance; MANOVA, multivariate analysis of variance; CLC,
cluster linear combination; HCMM, a hierarchical clustering method with mean representative phenotypes.
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INTRODUCTION

Genome-wide association study (GWAS) is a powerful tool for
exploring associations between genetic variants and phenotypes.
To date, GWAS has been successfully applied to human, plant
and animal genetic research, to identify thousands of genetic
variants related to phenotypes or diseases. Common statistical
methods only test the relationships between a single phenotype
and loci, that is, only one phenotype is analyzed at a time.
Compared to univariate analysis, joint analysis of multiple
phenotypes can improve the accuracy and efficiency of the test by
using more information from multiple phenotypes (Allison et al.,
1998; Zhou and Stephens, 2014), which can be very advantageous
for two reasons (Allison et al., 1998; Zhou and Stephens, 2014).
First, it promotes computing efficiency. Most of the multi-
phenotype methods perform the test for association with all traits,
instead of analyzing phenotypes one by one. Joint analysis greatly
reduces calculating time and promotes analytical efficiency.
Second, multivariate analysis increases statistical power by using
genetic structure and potential information among different traits
rather than ignoring them as in univariate analysis (Ferreira
and Purcell, 2009; Huang et al., 2011). Currently, more and
more multivariate analyses have been put forward to analyze the
related phenotypes.

The previous studies illustrated that more than 4.6% of
single nucleotide polymorphism (SNPs) and 16.9% of genes
are reported to be significantly associated with more than
one trait (Solovieff et al., 2013). Due to the fact that the
joint analysis of multiple phenotypes is more consistent with
biological theory (van der Sluis et al., 2013), many multivariate
methods have been proposed (Galesloot et al., 2014). O’Brien’s
method (O’Brien, 1984), one of the earliest methods of jointly
analyzing multiple phenotypes, can be used to integrate the
results of univariate association tests. If the means of individual
statistics are homogeneous, O’Brien’s method is more effective
among linear combination statistics. Multivariate analysis of
variance (MANOVA) (Cole et al., 1994) is a classic method
of analyzing multiple phenotypes that jointly tests whether the
independent variables explain the variance of the dependent
variables statistically significant at the same time. Subsequently,
Multiphen (O’Reilly et al., 2012) and TATES (van der Sluis et al.,
2013) are powerful to test associations between genetic variants
and corresponding multiple traits. Under the framework of linear
mixed models, multi-trait mixed model (Korte et al., 2012) and
multivariate linear mixed model (Zhou and Stephens, 2014) are
proposed, which take into account the variance components of
multiple phenotypes and the population structure in GWAS.

However, established procedures for analyzing multiple
phenotypes face several challenges from the following
perspectives. First, computing is infeasible. Hundreds and
thousands of phenotypes are being collected in biological
experiments and surveys. However, most methods become
computationally intractable or hard to implement as the number
of phenotypes increases (Dahl et al., 2016). Second, estimates
are inaccurate. The complexity and the number of parameters
increase sharply in joint analysis of more than 10 phenotypes,
and hence accuracy and statistical stability decrease (Solovieff

et al., 2013). Finally, most multivariate algorithms simultaneously
analyze all phenotypic data and thus might ignore different level
of correlation or homogeneous genetic basis among traits,
resulting in an unsatisfactory power (Liang et al., 2018).

Clustering algorithm is an alternative method of overcoming
these challenges. It aims to maximize homogeneity within a
cluster so that similarity is greater between elements in the same
cluster than those in different clusters. As the dimension of the
data is reduced by clustering, temporal and spatial complexity
decreases. In addition, the intragroup phenotypic correlation
is stronger than the intergroup correlation, which improves
the efficiency and accuracy of the statistical test. Therefore,
clustering is great importance to the study of the joint analysis
of high-dimensional phenotypes. Recently, Sha et al. (2019)
proposed the cluster linear combination (CLC) method, which
groups phenotypes and then analyzes quadratic combination
of individual data. CLC takes full advantage of similar genetic
information in the same group. However, CLC does not work well
with negative or mixed correlations.

In this study, we propose a new method agglomerative
nesting clustering algorithm for phenotypic dimension reduction
analysis (AGNEP), which uses an agglomerative nesting
(AGNES) clustering algorithm to group multiple correlated
phenotypes and then applies principal component analysis
(PCA) to generate representative phenotypes for each group.
Finally, MANOVA is employed to test associations between
genetic variants and the representative phenotypes rather than
all phenotypes. In three simulation experiments, we consider
six scenarios under three kinds of genetic structures to compare
the performance of different methods: MANOVA, analysis of
variance (ANOVA), a hierarchical clustering method with mean
representative phenotypes (HCMM), AGNEP, AGNES with
mean representative phenotypes (AGNEm), and AGNES with
median representative phenotypes (AGNEmed). All of these
methods are applied to analyze 19 traits of Arabidopsis real
dataset. AGNEP is validated by the analysis of real dataset and
the series of simulation experiments.

MATERIALS AND METHODS

Genetic Model
Consider the multivariate linear model:

Y(d × n) = αW(d × n) + B(d × 1)X(1 × n) + E(d × n) (1)

where Yd × n = (Y1, ...,Yd)
T is a d × n matrix of phenotypes, n

is the number of individuals and d is the number of phenotypes;
Yi = (yi1, ..., yin)T is the ith phenotype of n individuals. α is the
intercept and Wd × n is a d × n matrix with elements of 1. B is a
d-vector of effect sizes for the d phenotypes, which are considered
as fixed effects. X1 × n = (x1, ..., xn) is an n-vector of genotypes
for a particular marker, and xj is denoted as the number
of minor alleles that the jth individual carries at the variant.
E(d × n) ∼ MN(d × n) (0,V, In) is a d× n matrix of residual error.
MNd × n (0,V, In) denotes the d × n matrix normal distribution
with mean 0, row covariance matrix V (a d× d symmetric matrix
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of environmental variance component) and column covariance
matrix In (an n× n identity matrix).

Clustering Algorithms
Generally, hundreds or even thousands of phenotypes are
cataloged from biological experiments and surveys. However,
either these phenotypic data are analyzed separately by univariate
analysis, or all phenotypes are analyzed without distinction. This
creates some challenges for the statistical analysis, such as a
reduction in statistical power, inflexibility in the computational
analysis, a high computing time, and so on. From the
perspective of multi-phenotype joint analysis, grouping high-
dimensional phenotypic data by clustering algorithms is an
alternative to overcome above challenges (Fung, 2001). Here
we integrate clustering algorithms, AGNES into analysis of
multiple phenotypes.

Hierarchical clustering algorithm creates a tree-like cluster
structure based on the similarity between samples. In general,
two partitioning strategies are possible according to the direction
of hierarchical decomposition, that is, agglomerative (bottom up)
and divisive (top down). The agglomerative method starts with all
samples in their own clusters and then groups two clusters with
the greatest similarity until only one cluster remains. The divisive
method adopts an inverse procedure with agglomerative method
(Liang et al., 2018).

AGNES is a typical hierarchical clustering algorithm, which
implements bottom-up strategy until a preset criterion is satisfied
(Deng et al., 2018). The similarity between Yi and Yj is evaluated
by formula (2). The minimum distance is calculated by formula
(3) to measure the similarity of clusters ci and cj (Murtagh and
Legendre, 2014).

dist
(
Yi,Yj

)
= ||Yi − Yj||2 =

√∑n

t=1
|y(it) − y(jt)|2 (2)

distmin
(
ci, cj

)
= min

p∈ci,q∈cj
dist(p, q) (3)

where Yi is the ith phenotype; ci = (ci1, ..., cin)T is the ith cluster;
p is a sample belonging to cluster ci, and q is a sample belonging
to cluster cj.

The Optimal Number of Clusters K
In this study, the optimal number of clusters K is calculated
according to the maximum silhouette coefficient s, which is
an index used to evaluate the clustering algorithm (Rousseeuw,
1987). The silhouette coefficient combines two factors, cohesion
and resolution. Assuming all phenotypes are divided into K
clusters by using AGNES, for each sample, we assume that Yi
belongs to the cluster ck, we can calculate the silhouette coefficient
s as formula (4):

s (i) =
b(i)− a(i)

max
(
b(i), a(i)

) (4)

a(i) =

{
1
|ck|−1

∑
p∈ck,p6=Yi dist(Yi, p), |ck| > 1
0, |ck| = 1

b(i) = min
cd 6=ck

dist(Yi, cd) =
1
|cd|

∑
q∈cd

, (Yi, q)

where s (i) is the silhouette coefficient of the sample Yi, s (i)
ranges from −1 to 1, and |ck| is the number of phenotypes
in cluster ck.

Obviously, s (i) close to 1 indicates that the distance
within a cluster is small and the distance between clusters is
large, that is, relatively better clustering results. The silhouette
coefficient s is the average of silhouette coefficient of all samples,
s = d−1 ∑d

i = 1 s (i). The optimal classification, say K clusters,
is determined according to the maximum characteristics of the
silhouette coefficient. In this study, the number of clusters K
ranges from 2 to d−1, which means two situations are not
considered, each phenotype is a cluster, and all phenotypes are
clustered into one cluster.

Representative Phenotypes of Clusters
In the following multivariate analysis, representative
phenotype(s) are analyzed instead of all phenotypes by three
ways: (i) the mean of each group (AGNEm), (ii) the median of
each group (AGNEmed), and (iii) the top principal components
of each group (AGNEP).

We scale each phenotype for each cluster and define the
representative phenotype for the kth cluster as the average or
median phenotypic value within the group using formula (5) and
(6):

Yk
mean =

1
|ck|

∑
Yi∈ck

Yi (5)

Yk
median = median

Yi∈ck
Yi (6)

In addition, top m principal components
Yk
PCA =

(
Yk1
PCA, ...,Y

km
PCA

)
with a cumulative contribution

rate over 85% (Xue, 2007) are regarded as the representative
phenotypes for the kth cluster.

Experimental Materials
Three simulation experiments are conducted to evaluate the
performances of AGNEP and other methods. We generate
genotypes according to the minor allele frequency in the interval
[0.1, 0.5] under Hardy–Weinberg equilibrium. The simulation
datasets contain n = 5000 individuals with m = 10,000 genetic
variants, which are generated by using the factor model (Sha et al.,
2019). We consider two scenarios for each simulation, including
10 quantitative trait nucleotides (QTNs) for scenario 1 and 50
QTNs for scenario 2.

In simulation experiment I, 20 phenotypes are divided
into five independent clusters (Table 1). Each cluster
consists of four phenotypes based on genetic correlation
(Figure 1A). In simulation experiment II, we consider
a pervasive genetic structure. The adjacent clusters have
overlapping phenotypes, and the overlapped phenotypes
share the same or similar genetic basis. Twenty phenotypes
are divided into five correlated clusters (Table 1). Group 1
and group 2 share two phenotypes, group 3 is independent
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TABLE 1 | Different genetic structures for three simulation experiments, including five independent clusters (simulation I), five dependent clusters (simulation II), and eight
dependent clusters of high-dimensional phenotypes (simulation III).

Simulation experiments Simulation setting

Clustering 1 2 3 4 5 6 7 8

I No. of phenotypes 1–4 5–8 9–12 13–16 17–20

II No. of phenotypes 1–5 4–8 9–12 13–18 16–20

III No. of phenotypes 1–15 10–30 31–40 41–60 61–75 70–90 85–95 90–100

FIGURE 1 | Genetic correlations for three simulation experiments. (A) Five independent clusters (simulation I). (B) Five dependent clusters (simulation II). (C) Eight
dependent clusters of high-dimensional phenotypes (simulation III).

with the other groups, and group 4 shares three phenotypes
with group 5 (Figure 1B). In simulation experiment III, we
focus on high-dimensional phenotypes with more complex
correlations. All 100 phenotypes are divided into eight
phenotypic groups. The genetic correlations are exhibited
in Figure 1C. The high-dimensional correlations are more
complicated than the correlations in the previous two
simulation experiments.

Arabidopsis Real Dataset
We reanalyze the Arabidopsis thaliana (Atwell et al., 2010)
dataset, including 199 diverse inbred lines, each of which has
216,130 SNPs and 107 phenotypes. To evaluate the performance
of different methods, we focus on 19 quantitative phenotypes:
days to flowering under long days (LD), days to flowering
under LD with vernalization (LDV), days to flowering under
short days (SD), days to flowering under SD with vernalization
(SDV), days to flowering at 10, 16, and 22◦C (FT10, FT16,
and FT22), days to flowering with 8 weeks vernalization in
greenhouse (8WGHFT), leaf number at flowering with 8 weeks
vernalization in greenhouse (8WGHLN), days to flowering in
field (FTF), diameter of plants at flowering in field (FTD), leaf
number at 10, 16, and 22◦C (LN10, LN16, and LN22), plant
diameter at 10, 16, and 22◦C (Width10, Width16, and Width22),
and presence of leaf serration at 16 and 22◦C (Leafserr16 and
Leafserr22). We filter out SNPs with minor allele frequency
less than 5% and each individual with missing phenotypic data.
After quality control, the data consist of 206,603 SNPs and 137
individuals. The genetic structure of the phenotypic data is shown
in Figure 2.

RESULTS

Simulation Results
To evaluate the performance of the following multivariate
methods (MANOVA, HCMM, AGNEP, AGNEm, and
AGNEmed) and univariate method (ANOVA), we conduct
three simulations: independent phenotypic groups in simulation
I (Figure 1A), correlated groups in simulation II (Figure 1B),
and high-dimensional phenotypes divided into eight groups in
simulation III (Figure 1C).

Statistical Power for Detection
In the three simulations, 10 (scenario 1) and 50 (scenario 2) QTNs
are simulated in each dataset. For simulation I (independent
groups), Figures 3A,B show the significant advantages of all
multivariate analysis over the univariate analysis (ANOVA).
According to the optimal silhouette coefficient of clustering
algorithm (Supplementary Figure 1), the power under various
FDR is higher for AGNEP than the other methods in simulation
I. MANOVA easily captures the independent genetic structure
of 10 QTNs (Figure 3A) and has slightly higher power than
HCMM, AGNEm, and AGNEmed. In scenario 2, the multivariate
analysis based on clustering algorithm obviously outperforms
than MANOVA (Figure 3B). The clustering results for AGNEm
and HCMM are completely consistent with the optimal silhouette
coefficient, thus, these two methods have the same power,
and their curves are overlapping in Figures 3A,B. From the
results of simulation I, we conclude that AGNEP seems slightly
more robust and multivariate algorithms easily capture genetic
information for independent groups.
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FIGURE 2 | Genetic correlations between 19 phenotypes in the Arabidopsis dataset.

For simulations II (related groups) and III (high-dimensional
related groups), the powers of almost all multivariate algorithms
are significantly higher than that of the univariate analysis
(ANOVA; Figures 3C–F). AGNEP has higher power and more
significant detection in simulations II and III, which is followed
by HCMM, MANOVA, AGNEm, AGNEmed, and ANOVA. In
addition, the results of simulations II and III show that the power
of AGNEm and AGNEmed are even worse than MANOVA and
similar to ANOVA. It is evident that different representative
phenotypes achieve significantly different results under the same
clustering algorithm, and PCA appears to be a powerful tool for
flexibly taking full advantage of potential information. Moreover,
this difference becomes more and more obvious with the increase
in the number of phenotypes, the complexity of the genetic
structure, and the number of QTNs. The results of the three
simulations demonstrate the superior power of AGNEP over all
the other methods under various genetic structures.

Computing Time
The computing times of the different methods in the three
simulations are shown in Figure 4. For analyses of multiple
phenotypes based on different clustering algorithms, the
computing times are in the same magnitude, which are less
than MANOVA and ANOVA. However, as the number of
phenotypes increases, the differences among the methods are
more and more obvious. The results of the three simulations

illustrate that AGNEP effectively captures potential information
and reduces the computing complexity. In particular, AGNEP
is recommended for high-dimensional phenotypes and complex
related structures.

Real Data Analysis
To further evaluate the performance of the different methods,
we analyze an Arabidopsis real dataset with 19 quantitative
phenotypes including LD, LDV, SD, SDV, FT10, FT16, FT22,
8WGHFT, 8WGHLN, FTF, FTD, LN10, LN16, LN22, Width10,
Width16, Width22, Leafserr16, and Leafserr22. All phenotypes
are related to flower, leaf, plant growth, and the presence of leaf
serration. After filtering, the dataset consists of 137 samples and
a total of 206,603 SNPs. The genetic correction of the phenotypic
data is shown in Figure 2.

QTNs Detected
The numbers of putative QTNs for the six different methods are
calculated by 10 permutations (Figure 5). Based on the maximum
silhouette coefficient, AGNEP detects more putative QTNs than
the other five methods, and the other multivariate algorithms
and ANOVA have relatively poor detection ability. The results
of the Arabidopsis real dataset show similar trends to simulation
III. This may result from that the genetic structures are relatively
complex, and the other methods cannot effectively capture this
type of information, so their performances are not satisfactory.
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FIGURE 3 | The comparison of the power for AGNEP and established approaches. (A,B) The powers of simulation experiment I are presented. (C,D) The powers of
simulation experiment II are presented. (E,F) The powers of simulation experiment III are presented. Scenario 1 and 2 indicate that 10 and 50 QTNs are simulated in
the three simulations, respectively.
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FIGURE 4 | The average computing time (in minutes) of the six methods in three simulations. Scenario 1 (A) and 2 (B) indicate that 10 and 50 QTNs are simulated,
respectively.

FIGURE 5 | Numbers of QTNs under various FDR detected by six methods
for the Arabidopsis dataset.

Manhattan Plots
Manhattan plots of the Arabidopsis analysis are shown in
Supplementary Figures 2,3. For ANOVA (Supplementary
Figure 2), the QTNs related to phenotypes associated with
flower and plant growth can be detected, whereas the QTNs
related to other phenotypes have relatively low P-value. The
results of statistical tests of AGNEP, AGNEm, AGNEmed,
and HCMM (Supplementary Figure 3) show similar patterns,
and several genomic regions reach the Bonferroni corrected
threshold (−log10(0.001/206603) = 8.3151). According to the
results for confirmed Arabidopsis genes, MANOVA detects
more false associated SNPs. Therefore, compared to the
univariate method, multivariate methods have the ability to
increase statistical power. Moreover, multivariate methods
based on the clustering algorithm further improve detection
ability and accuracy by using information about complex
genetic structure.

TABLE 2 | Average computing time (in minutes) and number of confirmed genes
in analysis of the Arabidopsis dataset by six different methods.

Method Number of confirmed genes Computing time

AGNEP 453 91.33

AGNEm 386 113.49

AGNEmed 373 95.64

HCMM 321 105.05

MANOVA 315 110.72

ANOVA 159 788.15

Genomic Patterns
According to the results of the 19 traits of Arabidopsis,
all significant QTNs are listed in Figure 6 as hot spots,
which illustrate information about the overall genomic
patterns of significant SNPs (QTNs) on multiple traits.
Almost all multivariate methods have the similar pattern.
Compared to univariate method, multivariate methods easily
identify associations between QTNs and phenotypes. This
figure shows the genetic basis of functional relationships
between phenotypes. These hot spots would be the primary
targets for functional analysis and for genetic improvement
by selection.

Confirmed Genes
To further validate the AGNEP method, we compare the number
of candidate genes detected by six methods for the Arabidopsis
dataset. All SNPs under 0 FDR within 20 kB of each putative
QTN are used to mine the candidate genes by The Arabidopsis
Information Resource1. Table 2 shows the quantity of confirmed
genes for all approaches (Hagemann and Gleissberg, 1996;
Wang et al., 2003; Nikovics et al., 2006; Albayrak et al., 2012;
Nakayama et al., 2012). AGNEP detects the largest number
of confirmed genes, 453, followed by HCMM (439), AGNEm
(386), AGNEmed (373), MANOVA (315), and ANOVA (159).

1https://www.arabidopsis.org/
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FIGURE 6 | The plot of top 100 significant SNPs of six methods in the analysis of 19 traits. (Left) The hierarchical cluster diagram of 19 traits. (Right) The bubble
chart of P-value.

FIGURE 7 | The heat map of confirmed genes for the six methods in analysis
of the Arabidopsis real dataset. The darker the square, the greater the number
of confirmed genes detected two methods.

A heat map (Figure 7) illustrates the confirmed candidate
genes simultaneously detected by two methods. It is obvious
that the multivariate methods detect more identical confirmed
genes than the univariate method (ANOVA). Furthermore,
multivariate methods based on a clustering algorithm, say
AGNEP, AGNEm, AGNEmed, and HCMM, detect more than
350 confirmed genes.

Computing Time
The computing time of each approach for the 19 Arabidopsis
traits is listed in Table 2. Apparently, all the multivariate methods
are faster than the univariate method, which consumes about
seven to eight times longer than the multivariate methods. The
multivariate analysis greatly reduce the calculating time and
promotes analytical efficiency. AGNEP and AGNEmed have the
shortest running time, less than 100 minutes; HCMM, AGNEm,

and MANOVA have moderate computing times. All in all,
AGNEP not only performs best in QTNs detection, but also has
the fastest computing speed, which is validated by the analysis of
the real dataset.

DISCUSSION

In this study, we propose a new method called AGNEP, which
applies AGNES clustering algorithms and PCA to detect genetic
associations between SNPs and multiple phenotypes in GWAS.
The results of three simulations and a real data analysis indicate
the merits of AGNEP. There are three main advantages. First,
AGNEP easily captures the correlation of multiple phenotypes by
clustering methods, which increases statistical power in analysis
of simulations and Arabidopsis dataset (Figures 3, 5). Second, the
detection accuracy of AGNEP is significantly improved. From
the Arabidopsis dataset, AGNEP detects the most confirmed
genes, obviously more than the other established methods.
Third, because of the decrease in phenotypic dimension and the
optimization of representative phenotypes, AGNEP enjoys fast
computing speed, even with high-dimensional phenotypes and
complex genetic structures.

To further validate the new method, we incorporate
representative phenotypes into seven different clustering
methods, including K-means, PAM, CLARA, HCDS, HCM,
FCM, and EM algorithms. All of these methods are used
to reanalyze the simulated datasets and Arabidopsis real
data. The PCA-based methods are more robust than the
methods, MANOVA and ANOVA from the perspective
of power (simulation results, Supplementary Figure 4;
Arabidopsis results, Supplementary Figure 5), efficiency
(Supplementary Table 1), and detection of confirmed
genes (Supplementary Table 2). However, all of these
methods perform slightly worse than AGNEP in the
simulations and real data analysis. Furthermore, CLC is
used to comparing, which appears a tremendous increase
in computational burden along with permutation and the
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number of phenotypes, and thus the simulation I and II
datasets are analyzed. Nevertheless, the performance of CLC is
unsatisfactory in terms of statistical power and efficiency.

Essentially, the representative phenotypes of PCA are linear
combinations of individual phenotypic data in the same cluster.
When the cluster consists of highly positively correlated
phenotypes, all the linear combinations can represent the
cluster reasonably well (Bühlmann et al., 2013; Shah and
Samworth, 2013). To further validate PCA combinations,
the mixed (both positive and negative) correlations are
induced to simulation II. The PCA-based methods are better
than the mean and median, and ANOVA has the lowest
power (Supplementary Figure 7). For mixed and complex
correlated phenotypes, the results demonstrate the good
performance of the PCA combinations as well (Figure 3 and
Supplementary Figure 7). This is because the PCA combinations
consist of the most within-cluster information and reduce the
phenotypic dimensions. It is necessary to further explore other
representative phenotypes forms, such as quadratic and non-
linear combinations.

With the development of life sciences and biotechnology,
genetic data is becoming larger in scale and more complicated.
How to cluster phenotypes efficiently and accurately is very
important. In this study, the silhouette coefficient is a key
index for evaluating the clustering model and determining
the optimal number of clusters. In addition to the silhouette
coefficient, many other criteria can be used to evaluate the
model, such as Calinski-Harabaz, Dunn validity, and Davies-
Bouldin. Silhouette coefficient is recommended according to
empirical analysis.
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Background: Breast cancer is one of the most common cancers and the leading
cause of death from cancer among women worldwide. The genetic predisposition to
breast cancer may be associated with a mutation in particular genes such as gene
BRCA1/2. Patients who carry a germline pathogenic mutation in BRCA1/2 genes have
a significantly increased risk of developing breast cancer and might benefit from targeted
therapy. However, genetic testing is time consuming and costly. This study aims to
predict the risk of gBRCA mutation by using the whole-slide pathology features of breast
cancer H&E stains and the patients’ gBRCA mutation status.

Methods: In this study, we trained a deep convolutional neural network (CNN) of ResNet
on whole-slide images (WSIs) to predict the gBRCA mutation in breast cancer. Since
the dimensions are too large for slide-based training, we divided WSI into smaller tiles
with the original resolution. The tile-based classification was then combined by adding
the positive classification result to generate the combined slide-based accuracy. Models
were trained based on the annotated tumor location and gBRCA mutation status labeled
by a designated breast cancer pathologist. Four models were trained on tiles cropped
at 5×, 10×, 20×, and 40× magnification, assuming that low magnification and high
magnification may provide different levels of information for classification.

Results: A trained model was validated through an external dataset that contains 17
mutants and 47 wilds. In the external validation dataset, AUCs (95% CI) of DL models
that used 40×, 20×, 10×, and 5× magnification tiles among all cases were 0.766
(0.763–0.769), 0.763 (0.758–0.769), 0.750 (0.738–0.761), and 0.551 (0.526–0.575),
respectively, while the corresponding magnification slides among all cases were 0.774
(0.642–0.905), 0.804 (0.676–0.931), 0.828 (0.691–0.966), and 0.635 (0.471–0.798),
respectively. The study also identified the influence of histological grade to the accuracy
of the prediction.

Conclusion: In this paper, the combination of pathology and molecular omics was
used to establish the gBRCA mutation risk prediction model, revealing the correlation
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between the whole-slide histopathological images and gRCA mutation risk. The results
indicated that the prediction accuracy is likely to improve as the training data expand.
The findings demonstrated that deep CNNs could be used to assist pathologists in the
detection of gene mutation in breast cancer.

Keywords: breast cancer, BRCA gene, deep learning, artificial intelligence, digital pathology

INTRODUCTION

Female breast cancer (BC) made up 11.7% of 19.3 million
new cancer cases in 2020 and has overtaken lung cancer as
the most diagnosed cancer globally, and ranks as the fourth
leading cause of cancer-related mortality, according to a report
from the International Agency for Research on Cancer (Sung
et al., 2021). BC is a heterogeneous collection of diseases with
various incidences, risk factors, genetic, prognosis, and treatment
responses. Genetic susceptibilities to BC may be associated with
mutations in a specific gene or a series of genes, including the
key tumor suppressor gene BRCA (BRCA1 or BRCA2). BRCA1/2
mutation may be inherited (germline, gBRCA) or may arise de
novo because of a combination of genetic and environmental
factors (somatic) (Engel and Fischer, 2015). The frequency of
these genetic mutations varies among different countries and
ethnic groups. A study of a large cohort of a Chinese population
shows that the BRCA mutation rate was 9.1% in BC patients
with at least one risk factor, 3.5% in sporadic patients, and
0.38% in healthy controls (Lang et al., 2017). BRCA1/2 plays
an essential role in DNA damage response, DNA double-strand
break, repair, transcriptional regulation, etc. Loss of BRCA1/2
educes impairment of the homologous recombination DNA
repair pathway, thereby leading to genomic instability which
may ultimately contribute to cancer development. Patients who
carry a germline pathogenic mutation in the BRCA1/2 gene
have a significantly increased risk of developing BC and other
cancers (e.g., ovarian, pancreatic, and prostate cancer) (Paul
and Paul, 2014). Previous meta-analyses of published trials
show that BRCA1 and BRCA2 carriers have a 57–65% and 45–
49% probability of developing BC over lifetime, respectively.
Furthermore, if there is a positive family history of BC, this risk
increases to 85 and 84%, respectively (Antoniou et al., 2003; Chen
and Parmigiani, 2007).

BCs with BRCA1/2 mutations are different from sporadic
BC in clinical and pathological features. Patients with gBRCA1
mutations have a higher prevalence of triple-negative (absence
of estrogen receptor, progesterone receptor, and HER-2
expression), invasive ductal carcinoma with medullary features
(Sønderstrup et al., 2018). The multivariate analysis revealed
that morphological features predictive of the BRCA1 phenotype
include the presence of lymphocytic infiltrate, higher mitotic
figures, and pushing margins compared with sporadic BC
(Atchley et al., 2008). BRCA2 tumors are also more frequently
higher histological grade compared with sporadic tumors.
However, the unique characteristic that is significant for
BRCA2-associated BC is lack of tubule formation and pushing
margins (Atchley et al., 2008). The detection of a pathogenic
gBRCA mutation in a woman diagnosed with BC may affect

her current cancer treatment and prognosis, but it can also
prevent future cancers and identify healthy mutation carriers
in their family members (Metcalfe et al., 2014; Faraoni and
Graziani, 2018; Torrisia et al., 2019). Knowing one’s gBRCA
status plays an important role for healthy women, because
cancer can be prevented by risk-reducing mastectomy and
salpingo-oophorectomy (Domchek et al., 2010). The latest
recommendations in the guidelines for the treatment of gBRCA-
mutated advanced BC highlight the promise of platinum-based
chemotherapies and poly adenosine diphosphate–ribose
polymerase inhibitors (PARPi) (National Comprehensive Cancer
Network, 2020). Consequently, genetic testing becomes more and
more important to identify patients with gBRCA-mutant tumors.

Although the methodology of detecting genetic variants has
greatly improved, molecular testing is usually time-consuming
and could be limited by availability of adequate samples.
Moreover, the cost of genetic testing is still too high for
most families. Therefore, BRCA detection has traditionally been
limited to BC patients who have an a priori high risk of being a
mutation carrier. These risk factors include triple-negative BC,
young age at diagnosis (below 45 years), or a family history
of breast and/or ovarian cancer (Wong-Brown et al., 2015;
Grindedal et al., 2017). Although many guidelines in various
countries focus on identifying such high-risk groups, the latest
guidelines adopt broader criteria regardless of family history. This
supports the increasing evidence in the literature that clinical
criteria (e.g., family history) may omit individuals with BRCA1/2
mutations, some of which suggest that BRCA testing should be
expanded to a wider population. Thus, the method to predict
gene mutations quickly and inexpensively from histopathology
images could be beneficial to the treatment of patients with BC
given the importance and impact of these mutations.

The latest development in artificial intelligence (AI) provided
a novel method to assist clinicians to classify medical information
and images (Bera et al., 2019; Bi et al., 2019). The possibility
of digitizing whole-slide images (WSIs) of pathology tissue
has led to the emergence of AI and machine learning (ML)
tools in digital pathology, which can mine the subvisual
morphometric phenotypes and ultimately enhance patient
management. Recently, pathologists and computer scientists
have come together to apply the latest AI technology (e.g.,
deep learning) to the problem of analyzing pathology slides for
assisting diagnosis, prediction, prognosis, and other clinically
related purposes, as well as other applications such as improving
the efficiency of the diagnostic workflow. In breast pathology,
deep learning (DL) has already been applied in classifying
the type and subtype of breast tumors, identifying metastasis
in lymph nodes, detecting tubular formation and nuclear
pleomorphism, tumor grading, counting mitotic figures, etc.
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(Bejnordi et al., 2017; Sudharshan et al., 2019; Mahmood et al.,
2020; Xu et al., 2020). Furthermore, researchers investigated
whether the molecular characteristics of cancer are encoded
in histomorphological structures that are beyond human
apprehension (Xu et al., 2019; Schmauch et al., 2020; Bilal
et al., 2021). As such, Shamai et al. (2019) applied an
ML method, termed morphological-based molecular profiling
(MBMP), on BC specimens to explore the associations between
histomorphological characteristics and expression of multiple
molecular biomarkers. For at least half of the patients in
this study, MBMP seemed to predict the expression of
biomarkers and is not inferior to immunohistochemistry (Shamai
et al., 2019). Similarly, Narula et al. (2018) trained a deep
convolutional neural image processing network to automatically
classify histopathological subtypes from digital pathology slides
of lung specimens and predict common mutant genes in
lung adenocarcinoma.

These results suggest that DL models can be used to
effectively assist pathologists in detecting gene mutations and
tumor histological subtypes. However, it remains unclear whether
DL can be applied to predict BRCA gene mutation status
using BC digital pathology slides. Therefore, we focused on
the BC specimens and tested whether DL can be trained to
predict gBRCA1/2 mutations using images as the only input. In
this study, we constructed DL models based on convolutional
neural networks (CNN) using WSIs of hematoxylin and
eosin (H&E)-stained digital pathology slides obtained from
the Jiangsu Province Hospital of Chinese Medicine (JSPHCM)
and Jiangsu Cancer Hospital (JSCH) to predict the gBRCA1/2
mutation status in BC.

MATERIALS AND METHODS

Study Cohort
All the cases were collected from two medical centers in China,
which were Jiangsu Province Hospital of Chinese Medicine
(JSPHCM) and Jiangsu Cancer Hospital (JSCH), Nanjing. A total
of 22 BC patients were eventually enrolled in the BRCA-mutation
group, and 40 patients were enrolled in the BRCA-wild group. We
combined H&E-stained WSIs from two datasets: the JSPHCM
dataset, which contains 60 H&E images from 12 BRCA-mutation
patients and 50 H&E images from 10 BRCA-wild patients, and
the JSCH dataset, which contains 25 H&E images from 10
BRCA-mutation patients and 87 H&E images from 30 BRCA-
wild patients. Slides were digitized with a NanoZoomer Digital
slide scanner (Hamamatsu Photonics Scientific Instrument Co.,
Ltd., Beijing, China) at a resolution of ×40. This study has been
approved by the Institutional Ethical Review Boards of JSPHCM
with patient consent.

The tumor pathology for all patients with BC was
reviewed under the criteria of the World Health Organization
Classification of Tumors: Breast Tumors (5th edition) (WHO,
2019) by one of our designated breast pathologists. All 22
patients with BRCA mutation have invasive breast carcinoma,
not otherwise specified (invasive ductal carcinoma). Among
the 40 patients with BRCA wild type, 36 cases were invasive

ductal carcinoma, two cases were mucinous carcinoma, one case
was invasive lobular carcinoma, and one case was a metaplastic
carcinoma. Using Automated Slide Analysis Platform (ASAP
1.9), pathologists can navigate WSI images at a very high
resolution and annotate the whole-tumor regions within slides
for ease of adjudication. The DL model was trained based on the
annotated tumor location.

Pathologists classified all the invasive BCs according to
the Nottingham histological grading system (NGS). The NGS
has three parameters, which are tubule formation, nuclear
pleomorphism, and mitotic count. Each parameter has been
divided into three categories, with the score from 1 to 3, assigned
as follows: tubule formation (1: 75%, 2: 10–75%, 3: 10%); nuclear
pleomorphism (1: none, 2: moderate, 3: pronounced); and the
number of mitoses/10 high-power fields (HPF) (40 objective lens)
(1: 0–9 mitoses; 2: 10–19 mitoses; and 3: > 19 mitoses). The
final histological grade is based on a sum of the scores of the
three parameters: 3, 4, or 5 = grade 1; 6 or 7 = grade 2; and
8 or 9 = grade 3 (WHO, 2019). In the cohort of 62 patients,
grade 1 tumors have been observed in 1 patient with BRCA-wild
(1/40, 2.5%), and none has been observed in patients with BRCA-
mutation (0/22, 0%); grade 2 tumors have been observed in 14
patients with BRCA-wild (14/40, 35%) and 3 patients with BRCA-
mutation (3/22, 13.6%); and grade 3 tumors have been observed
in 25 patients with BRCA-wild (25/40, 62.5%) and 19 patients
with BRCA-mutation (19/22, 86.4%).

Data on BRCA1/2 mutations were routinely collected and
extracted in clinic from electronic medical records. BRCA testing
has been done in a centralized clinical testing center (Nanjing
Geneseeq Technology Inc., Nanjing, China), using germline DNA
(from blood), according to protocols reviewed and approved
by the ethical committee of each participating hospital, and the
test results were categorized as either positive or negative of a
deleterious mutation.

Method of DL With Convolution Neural
Networks
The DL model we used in this study is a residual neural
network (ResNet), which is a type of artificial neural network that
builds based on pyramid cells in the cerebral cortex. The typical
ResNet is built by having layer-skipping connections to avoid
the problem of gradient vanishing. Thus, it allows to train on a
deeper neural network (He et al., 2016). In this case, the network
is ideal to be used to classify complex histomorphological
structures. A ResNet with 18 layers has been used (Figure 1).
At the end of the network, a fully connected layer is added for
binary classification between BRCA-wild and BRCA-mutation.
The model has been trained by using a dual GPU setup with
2 × 1,080 ti graphics card from Nvidia. The stochastic gradient
descent method based on adaptive estimation of first-order and
second-order moments has been used as the loss function in the
training (Kingma and Ba, 2015).

From the JSPHCM dataset reviewed by our designated breast
pathologists, 58 H&E images of BRCA-mutation and 44 H&E
images of BRCA-wild have been selected for the training, among
which 56 H&E images of BRCA-mutation, and 33 H&E images
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FIGURE 1 | Steps to extract small tiles from whole-slide images at ×40 magnification for training. (A) An example WSI with BRCA-mutation or BRCA-wild. (B) The
binary mask (top) was created using color differences in RGB color space, and then element-wise matrix multiplication was done with the manually labeled lesion
(bottom) to create a lesion mask without void spaces. (C) Tiles with resolution of 384 × 384 were extracted from the lesion mask. (D) The tiles that were extracted
will be used in the training.

of BRCA-wild are categorized as histological grade 3. From the
JSCH dataset, 17 H&E images of BRCA-mutation and 47 H&E
images of BRCA-wild have been selected for external validation,
among which 17 H&E images of BRCA-mutation and 27 H&E
images of BRCA-wild are categorized as histological grade 3, In
all the selected images, a brief location of the tumor is annotated
and will be used as labels for supervised training. Training and
internal testing datasets were created from JSPHCM dataset, and
the external testing was created from the JSCH dataset.

Training Data Preparation
WSI has a large resolution which sometimes has a resolution
larger than 50,000 × 50,000 pixels. It is not possible to process
the entire image for DL due to the memory usage. Therefore,
we chose to break down each image into tiles with a smaller
resolution (Dimitriou et al., 2019). Using brief annotation of
the tumor annotated by designated breast pathologists, tiles with
tumor tissue were extracted using the labeled data. To avoid
extracting tiles from the void area, a binary mask for cellular
tissue was created by using the color spacing in the RGB space.
An element-wise matrix multiplication between the binary mask
and the labeled tumor area was performed to extract the tumor
mask from the binary mask without the void area. The tumor
mask was then divided into tiles. For each tile, at least 30% of
the area is covered with tissue to make sure no void area is
used in the DL computation. A detailed illustration is found in
Figure 2. The input size of the DL model is 256 × 256, but
during data preparation, we extracted tiles at a resolution of
384 × 384 to create enough resolution space for augmentation
during training. To maintain an even number of tiles from each
slide, the number of tiles to be extracted from each slide was
determined by the minimum number of the tiles that could be
extracted among all the slides.

WSI can be inspected at different magnifications. The pixel
information varies at different magnifications within a fixed
pixel area. Morphological structures of the cellular tissues
were preserved at low magnification while better details of
cellular structure were preserved at high magnification. Different

morphological structures might contain different features that
could contribute differently to the DL algorithm. In our study, we
used four types of magnifications ranging between×5,×10,×20,
and ×40 to find the optimal range of magnification to achieve
the best prediction. From 102 slides from the JSPHCM dataset,
a total of 18,109 tiles were extracted with 10,140 BRCA-
mutation tiles and 7,969 BRCA-wild tiles at ×5 magnification.
At ×10 magnification, a total of 58,745 tiles were extracted
with 32,344 BRCA-mutation tiles and 26,401 BRCA-wild tiles.
At ×20 magnification, a total of 239,108 tiles were extracted
with 131,467 BRCA-mutation tiles and 107,641 BRCA-wild tiles.
At ×40 magnification, a total of 962,868 tiles were extracted,
with 529,242 BRCA-mutation tiles and 433,626 BRCA-wild tiles.
All the tiles were randomly and equally divided into 90 and
10% for the training and internal testing datasets, respectively,
to be used to train the model. All the tiles with histological
grade 3 were labeled.

Data Augmentation and Training
Due to limitations among the slides available, to prevent
overfitting of the model, each tile in the training dataset
undergoes multiple steps of augmentation before feeding into
the model (Figure 3). Tiles at a resolution of 256 × 256 were
extracted randomly from tiles created during data preparation
that has a 384 × 384 resolution. The extracted tiles later went
through random flips in left/right and up/down orientation
to increase data complexity. Since each slide has variability in
artifacts and staining, and H&E staining has high pixel intensity
in the red and blue channels with RGB color space, a random
intensity adjustment at both red and blue channels was also
done in a range of –20 to + 20-pixel value in the 8-bit color
channel to synthetically capture the variabilities. In the end, an
overall brightness change was added in a range of –20 to + 20
to the image. Through these extensive augmentations, we tried
to increase the data complexity to let the model focus on cellular
morphology or other “unknown” features to differentiate BRCA-
mutation and BRCA-wild, without being influenced by the color
saturation or brightness, which is different case by case due
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FIGURE 2 | Data augmentation to normalize the training data and simulate and prevent overfitting during training. (A) 256 × 256 tiles were randomly extracted from
the 320 × 320 tiles. (B) The brightness of the tiles was randomly adjusted in a range of –20 to + 20-pixel value in an 8-bit space. (C) The red and blue channels of
the tiles were randomly adjusted in a range of –20 to + 20-pixel value in an 8-bit space. (D) Tiles were randomly flipped up/down and left/right.

FIGURE 3 | Procedure to validate the trained model using the external dataset with BRCA-mutation. (A) The WSI with BRCA-mutation. (B) The binary mask (top)
was created using color differences in the RGB color space and then element-wise matrix multiplication was done with the manually labeled lesion (bottom) to create
a lesion mask without void spaces. (C) Tiles with a resolution of 256 × 256 were extracted from the lesion mask. (D) Heatmap which illustrates the probability of the
region being classified as BRCA-mutation.

to scanning, staining method, etc. Models were trained for
extensiveness among iterations until the minimum loss function
gradient of the training validation dataset is reached. The same
steps were repeated for tiles with histological grade 3.

External Validation
We used the JSCH dataset for external validation since it was not
involved in any training. It served as a good validation dataset
to evaluate the performance and robustness of our trained DL
model. During external validation, each image was broken down
into 256 × 256 tiles from the binary mask and the labeled tumor
mask, which was the same as the data preparation for training
using the range of ×5, ×10, ×20, and ×40 magnifications.
The extracted tiles were fed into the model as the input and
model output classification probability of BRCA-mutation. The
outputs were illustrated as heatmap images; the higher the
probability of BRCA-mutation, the higher the heatmap intensity
(Figures 4, 5). The average probability across all the slides was
calculated from the probability of the tiles. Anything higher
than the 0.5 probability was considered as BRCA-mutation. The
receiver operating characteristic curve (ROC), area under the
ROC (AUC), and confusion matrix were created for the testing
results (Figures 6, 7 and Table 1). The same steps were repeated
for WSI with histological grade 3.

Statistical Analysis
We performed the ROC and calculated the validity (true
positive rate, false negative rate, false positive rate, true negative
rate, likelihood ratio) and predictive value to demonstrate the
classification ability of the DL model. Delong tests were then
applied to compare the AUC of slides and tiles with different
magnifications from all cases and grade 3 cases. A percentage bar
plot was plotted to visualize the validity (true positive rate, false
negative rate, true negative rate, and false positive rate) of the
DL model. Box plot and Student’s t-test were used to compare
the predictive BRCA mutation probability of mutation and wild
group by the DL model. A Bland–Altman plot was plotted
to evaluate the agreement of predicted mutation probability
for per-slide at different magnifications. All statistical analyses
and figures were performed by using R version 4.0.3 (The R
Foundation for Statistical Computing; Vienna, Austria) with
packages “ggplot2” and “ggthemes.” A p-value of less than 0.05
was considered as statistical significance.

RESULTS

In the external validation dataset, AUCs (95% CI) of DL models
using ×40, ×20, ×10, and ×5 magnification tiles among
all cases were 0.766 (0.763–0.769), 0.763 (0.758–0.769), 0.750
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FIGURE 4 | Procedure to validate the trained model using the external dataset with BRCA-wild. (A) The WSI with BRCA-wild. (B) The binary mask (top) was created
using color differences in the RGB color space and then element-wise matrix multiplication was done with the manually labeled lesion (bottom) to create a lesion
mask without void spaces. (C) Tiles with a resolution of 256 × 256 were extracted from the lesion mask. (D) Heatmap which illustrates the probability of the region
being classified as BRCA-mutation.

FIGURE 5 | ROC curves of 5 DL models for slides and tiles at ×40, ×20, ×10, and ×5 magnification. (A) slides, (B) slides G3, (C) tiles, (D) tiles G3.
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FIGURE 6 | The ROC and comparison of AUCs of DL models using tiles between all cases and G3 cases.

(0.738–0.761), and 0.551 (0.526–0.575), respectively; those using
corresponding magnification tiles among grade 3 cases were
0.810 (0.808–0.813), 0.841 (0.837–0.846), 0.769 (0.758–0.780),
and 0.526 (0.513–0.540), respectively, those using corresponding
magnification slides among all cases were 0.774 (0.642–0.905),
0.804 (0.676–0.931), 0.828 (0.691–0.966), and 0.635 (0.471–
0.798), respectively, and those using corresponding magnification
slides among grade 3 cases were 0.852 (0.737–0.967), 0.906
(0.818–0.994), 0.817 (0.676–0.958), and 0.532 (0.347–0.716),
respectively (Figure 5). Delong test demonstrated that AUCs
(95% CI) of DL models using ×40 (P < 0.001), ×20 (P < 0.001),
and ×10 (P < 0.001) magnification tiles among all cases
were less than those among grade 3 cases, and that using
×5 magnification tiles among all cases and grade 3 cases was
marginally significant (Figure 6). Additionally, the ROC and the
comparison of AUCs among another magnification slides and
tiles are listed in Supplementary Figure 1.

The validity and predictive value of DL models using different
magnification tiles or slides are listed in Figure 8 and Table 1.
The positive likelihood ratios (+ LR) of DL models using ×10,
×20, and ×40 magnification slides and tiles among all cases
and grade 3 cases were high, and the negative likelihood ratios (-
LR) were low. Meanwhile, the almost negative predictive values
of those were more than 0.700, except ×40 magnification
tiles among grade 3 cases (0.681). The above results suggest
that the validity of these models was high, and a higher
proportion of patients with negative diagnoses (wild rather than
mutation) were actually negative. Slides at ×10 magnification
that had the best performance suggest that a bigger field of
view contributes positively to the classification between BRCA-
mutation and BRCA-wild. It corresponds to the features for
the prediction of BRCA1 and BRCA2 mutation, such as the
presence of lymphocytic infiltrate, pushing margin, and lack
of tubule formation, which are mostly shown in ×10 slides
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FIGURE 7 | The validity of the DL model using different magnification tiles and slides. (A) slides, (B) slides G3, (C) tiles, (D) tiles G3.

rather than ×20 and ×40 slides. Moreover, slides at ×20
magnification had the best performance among grade 3 cases,
which suggests that a higher histological grade of BC has more
complex and tiny features. Therefore, an appropriate higher
magnification enables the DL model to have better ability of
gBRCA-mutation classification.

In order to assess the classification accuracy on per-slide
level and per-tile level, the results were aggregated using ×40,
×20, ×10, and ×5 magnifications. The ×10, ×20, and ×40
magnifications that were applied to the mutation groups show
significantly higher probabilities than the wild group in both
slide level and tile level (Figure 8). Next, according to the results
of the box plot and the comparison, we plotted the Bland–
Altman plot using the predictive probability obtained from the
three magnifications (×10, ×20, and ×40) to investigate the
agreement of per-slide on classification among all cases and grade
3 cases. Figures 9-1, 9-2 show that most of the points were
distributed within the range of 95% limits of agreement (LoA).
In other words, all results were in a good agreement.

DISCUSSION

We have developed a computerized system (CNN-based DL) to
predict molecular markers (gBRCA mutation) of BC by analysis
of tumor histomorphology. Since BRCA1/2 gene mutations occur
at a relatively high frequency in BC, to predispose an individual

with developing BC and other cancers, PARP inhibitors are
regarded as one of the potential targeted drugs for gBRCA mutant
BC. Although it has been suggested that gene mutations could

TABLE 1 | The likelihood ratio (+LR and −LR) and predictive value (PPV and
NPV) of DL models.

Classification +LR −LR PPV NPV

Slides × 40 1.761 0.331 0.389 0.893

Slides × 20 2.250 0.356 0.448 0.886

Slides × 10 2.424 0.267 0.467 0.912

Slides × 5 0.710 1.847 0.205 0.6

Slides × 40 G3 3.973 0.484 0.714 0.767

Slides × 20 G3 12.730 0.549 0.889 0.742

Slides × 10 G3 2.498 0.476 0.611 0.769

Slides × 5 G3 1.058 0.532 0.400 0.750

Tiles × 40 2.055 0.399 0.567 0.797

Tiles × 20 2.108 0.398 0.571 0.799

Tiles × 10 2.320 0.426 0.585 0.794

Tiles × 5 0.868 1.291 0.339 0.567

Tiles × 40 G3 6.000 0.629 0.817 0.681

Tiles × 20 G3 8.147 0.478 0.859 0.736

Tiles × 10 G3 2.259 0.447 0.624 0.752

Tiles × 5 G3 1.108 0.705 0.449 0.658

+LR, positive likelihood ratio;−LR, negative likelihood ratio; PPV, positive predictive
value; NPV, negative predictive value; G3, grade 3.
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FIGURE 8 | Box plot of probabilities on slide and tile level with different magnifications. (A) slides, (B) slides G3, (C) tiles, (D) tiles G3.

be predicted from H&E-stained WSIs [AUC of ∼0.85 for the
prediction of STK11 mutations from lung cancer H&E images
(Narula et al., 2018); AUC of ∼0.71 for the prediction of SPOP
mutations from prostate cancer H&E images (Schaumberg et al.,
2018); AUC of 0.71∼0.89 for the prediction of CTNNB1, FMN2,
TP53, and ZFX4 mutations from hepatocellular carcinoma H&E
images (Chen et al., 2020)], prior to this study, it was unclear
whether gBRCA mutations would affect the pattern of tumor cells
on BC H&E-stained WSIs.

We have trained the DL model (ResNet) using the presence
or absence of BRCA mutation as a label revealed that gBRCA
mutational status can be predicted from image data alone (AUCs
0.55–0.91 in different DL models). Interestingly, BC cases with
high-grade histology (Grade 3) achieved higher AUC (95% CI)
using the DL model at ×40, ×20, and ×10 magnifications. It
corresponds to that gBRCA-mutated BCs are more frequently of
higher histological grade. Moreover, slides at ×20 magnification
had the best performance among grade 3 cases (AUC up to

0.906), and slides at ×10 magnification had the highest negative
predictive value (0.91), which suggest that histopathological
images with different magnifications can represent different
information. The images with low magnification (×5–×10) cover
a larger field of view, while the images with high magnification
(×20–×40) correspond to a relatively small area with more
details. In the analysis of histopathological images, it is necessary
to recognize complex morphological patterns of various sizes.
AI can capture cellular level information by high-magnification
images and tissue spatial structures by low-magnification images
at the same time. We found that the tumor morphology captured
in H&E-stained images contains signals that predict the status
of tumor molecular markers. DL approaches can extract sub-
visual morphological phenotypes from WSIs beyond that which
a human is capable. We show that DL can recognize a group with
morphological features within the tissue structure captured from
WSIs and predict the gBRCA1/2 mutation status. The prediction
of gBRCA mutation using DL will be of great significance for
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FIGURE 9 | Bland–Altman plot of probabilities on slide level. (1) (A) ×10
vs. ×20 slides, (B) ×10 vs. ×40 slides, (C) ×20 vs. ×40 slides, (2) (D) ×10
vs. ×20 slides G3, (E) ×10 vs. ×40 slides G3, (F) ×20 vs. ×40 slides G3.

select patients who are most likely to respond to PARP inhibitor-
targeted therapy and identification of healthy mutation carriers
within their families.

The model used in this study is ResNet with 18 layers. It is a
simplified ResNet with a smaller number of layers, compared with
the original ResNet (He et al., 2016) proposed by Kaiming He.
The advantage of ResNet is that it is possible to go deeper without
losing generalization capability. It is making sense that the deeper
the network, the better the result for the convolutional network.
However, we need to simplify the network to avoid overfitting due
to the size of the dataset. The depth of the model can be adjusted

as the size of datasets grows. Both models trained at ×10 and
×40 magnification show effective results. Each model operates at
a different level of magnification, which the user could choose
to use a single model for efficiency or a combined model for
higher accuracy. With the updates in the computer systems and
hardware, the resolution of the tiles and the number of models
at multiple magnifications could also be improved to exploit for
better accuracy.

This is the first study to predict the BRCA gene mutation in
BC, while using an independent database from JSCH to externally
validate the performance of the model. It has been proved that
CNN-based DL can be used to assist gene mutation prediction
based on histopathological slides in BC. However, the present
study has several limitations. One limiting factor in achieving
higher accuracy lies in the small number of slides containing
BRCA mutation instances that can be used for training and
validation. Furthermore, the ability of any such AI approaches
to predict all targetable mutations is critical, as more and more
molecular markers are expected to be quantified in each sample,
and treatment decisions are usually delayed until information
about all such driver mutations is obtained. Subsequently, further
validation of our model is necessary in a larger dataset with
multiple centers and other BC-related genes should be considered
in further study.

In conclusion, the study demonstrates that CNN-based DL
can predict the gBRCA mutation status from H&E-stained
WSIs in BC, and DL potential to improve cancer prognosis
and therapeutics by utilizing biological markers currently
imperceptible to clinicians. Although AI cannot completely
replace humans in practice nowadays, gene mutation prediction
can be used as a prescreening to improve the cost efficiency before
next-generation sequencing, thereby improving the performance
of precision medicine.
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