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Editorial on the Research Topic

Behaviors and Neural Circuits in Sleep and Sedation

INTRODUCTION

The function of sleep is an enduring mystery. Research over the last few years has attempted
to unravel its complexity in the mammalian brain and determine the molecular and neuronal
underpinnings of sleep state transitions.

This topic puts together new research that improves our understanding of the neural circuitry
of sleep and its associated behaviors. Our long-term view is that understanding circuitry will drive
our understanding of why we spend one third of our lives unconscious and vulnerable; unable to
perform crucial biological functions from eating to hunting, foraging and reproduction. We seek
to understand why such a state could be so vital as to be observed in all complex life.

CONTRIBUTIONS OF ARTICLES IN THIS SERIES

The gating of sleep requires the integration of permissive signals from the environment, such
as satiety status and ambient temperature, but how these are assimilated is unclear (Harding
et al., 2019). Guillaumin and Burdakov have considered the role of neuromodulation in slow local
microcircuits, across the hypothalamus, with a particular focus on peptide neuromodulators. As
these peptides have a persistent extracellular presence, they are uniquely placed to facilitate the
integration of these context-dependent permissive signals. This is an appealing hypothesis as a
distinct feature of the hypothalamus is the diversity and abundance of neurons using neuropeptides
in transmission (de Lecea et al., 1998; Svensson et al., 2019). Understanding the functions of these
peptides may help us explain, for example, why galanin expressing neurons in the preoptic area
appear to have a role in both stereotyped parental behavior, such as pup grooming, as well as the
induction of non-rapid eye movement sleep (NREM) (Kohl et al., 2018; Kroeger et al., 2018; Ma
et al., 2019; Reichert et al., 2019).

Disruption of neuropeptide transmission is most well understood in the case of the peptide
orexin and the loss of orexin producing neurons in vivo results in narcolepsy. This peptide can also
induce action potentials in the absence of neurotransmitter co-release, suggesting functions beyond
neuromodulation (Schöne et al., 2014; Mahoney et al., 2019). Coffey et al., specifically considered
the role of sex and age on the severity of narcolepsy in a doxycycline-inducible model of mouse
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narcolepsy, revealing interesting interactions with sex. We think
this underlies the importance of considering these variables
further in sleep research. The authors also propose that
children with narcolepsy may suffer greater loss of orexin
neurons than adults thus explaining the presence of more
severe symptoms.

One of the most familiar aspects of natural sleep is that
of waking-up and experiencing a lingering drowsiness, or
“sleep-inertia.” Luppi et al., considered how emergence from
anesthesia, at a lower dose than required for induction (e.g.,
“neural-inertia”), has similarities to sleep-inertia. The authors
have proposed a new model of orexin and noradrenergic
circuitry to mediate this process and help explain why elderly
and narcoleptic patients are more susceptible to neural inertia
following anesthesia (Scammell, 2003; Kelz et al., 2008; Silva
and Duffy, 2008). Similarly, Wang L et al. have shown that
activation of basal forebrain cholinergic neurons blunts normal
sensitivity to propofol and shortens recovery from anesthesia.
These neurons also induce wake-like signals in the medial
prefrontal cortex.

Within the hypothalamus, specific populations are now well
associated to sleep control and the gating of environmental
cues. Harding et al. considered the contribution of a specific
subset of preoptic neurons, that express nitric oxide synthase,
to normal sleep and thermoregulatory cycles. Many NOS1
neurons are NREM active and, when synaptic transmission is
blocked, bi-directional changes in sleep-wake propensity occur
across the light-cycle, alongside a shift to slightly warmer
core temperatures. In agreement with previous work, these
neurons appear to have a role in gating sleep in relation to
thermoregulatory responses to ambient temperature (Harding
et al., 2018). The role of nitric oxide (NO), however, remains
unclear. NO is a gaseous and transient neuromodulator, with
diffusion distances of up to a few tens of microns. As such,
NO may influence glutamatergic transmission through cGMP
mediated changes in excitability or indirectly via local vascular
smoothmuscle, supporting vasodilation (Förstermann and Sessa,
2011).

Reitz and Kelz, have asked us to carefully consider the “shared
circuitry hypothesis”; the idea that sleep circuits are hijacked
by the actions of general anesthetics. They detail the challenges
of attributing anesthetic action to a single neuronal population,
given the ability of some preoptic neurons to induce wakefulness,
as well as our newfound understanding of exceptional cellular
heterogeneity in the preoptic region (Moffitt et al., 2018; Vanini
et al., 2020).

Cheng et al. have carried out extensive pharmacological
assessment of the flip-flop hypothesis (Saper et al., 2010).
Consistent with this model, they show that VLPO neurons can
be driven to induce NREM by targeted injection of L-glutamate,
while this action can be blocked by injecting bicuculline into
the TMN. Conversely, L-glutamate injection into the TMN

during lights-ON induced wakefulness that could be blocked by
triprolidine injection in the VLPO.

Finally, we are beginning to understand how sleep-deprivation
and sleep-rebound are perceived and encoded in the brain
Wang H. et al. recorded an impairment of fine motor control
alongside impaired functional connectivity, observed in fMRI,
following sleep deprivation in healthy adult men In contrast to
the human experience, Xu et al. found that sleep-deprivation
at the circuit level in rats, by direct activation of the medial
parabrachial nucleus (MPB), does not always result in sleep-
rebound. This has parallels to the lesioning of ventral tegmental
area (VTA) Vgat-Cre neurons in mice, that also do not
exhibit rebound sleep following sleep deprivation, showing
clearly that these intrinsic properties of sleep can be decoupled
(Yu et al., 2021). Furthermore, if only certain wake-active
populations can induce sleep-rebound, are the waking-behaviors
linked to these neurons also more important for the function
of sleep?

CONCLUSIONS AND PERSPECTIVE

This series has emphasized that molecular heterogeneity
is an on-going challenge for understanding sleep circuitry.
Common mouse lines expressing Cre recombinase (e.g.,
Vgat-Cre, Vglut2-cre) facilitate access to smaller, but
still highly diverse group of neurons, complicating our
interpretation (Moffitt et al., 2018). We should also carefully
consider the role of neuropeptides, as well as potential
neuromodulators such as nitric oxide, that may not be
functioning within the normal synaptic cascade. These non-
canonical pathways may underly the integration of permissive
conditions to sleep such as warmth-seeking and satiety
(Goldstein et al., 2018; Harding et al., 2018; Komagata et al.,
2019).

Finally, general anesthetics and sedatives share many features
with sleep but not all anesthetics use the same circuitry.
This allows for the exciting possibility that some compounds
may induce more natural sleep than others and further
development may move us closer to a true sleep-inducing
agent (Franks and Wisden, 2021).
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Medical University, Nanjing, China

The ventrolateral preoptic nucleus (VLPO) in the anterior hypothalamus and the
tuberomammillary nucleus (TMN) in the posterior hypothalamus are critical regions
which involve the regulation of sleep-wakefulness flip-flop in the central nervous
system. Most of the VLPO neurons are sleep-promoting neurons, which co-express
γ-aminobutyric acid (GABA) and galanin, while TMN neurons express histamine (HA),
a key wake-promoting neurotransmitter. Previous studies have shown that the two
regions are innervated between each other, but how to regulate the sleep-wake cycle
are not yet clear. Here, bicuculline (Bic), a GABAA-receptor antagonist, L-glutamate
(L-Glu), an excitatory neurotransmitter, and triprolidine (Trip), a HA1 receptor (HRH1)
inhibitor, were bilaterally microinjected into TMN or VLPO after surgically implanting the
electroencephalogram (EEG) and electromyography (EMG) electrode recording system.
Microinjecting L-Glu into VLPO during the night significantly increased the NREM
sleep time, and this phenomenon was weakened after selectively blocking GABAA

receptors with Bic microinjected into TMN. Those results reveal that VLPO neurons
activated, which may inhibit TMN neurons inducing sleep via GABAA receptors. On
the contrary, exciting TMN neurons by L-Glu during the day, the wakefulness time
was significantly increased. These phenomena were reversed by blocking HRH1 with
Trip microinjected into VLPO. Those results reveal that TMN neuron activating may
manipulate VLPO neurons via HRH1, and induce wakefulness. In conclusion, VLPO
GABAergic neurons and TMN histaminergic neurons may interact with each other in
regulating the sleep-wake cycle.

Keywords: VLPO, TMN, L-glutamate, bicuculline, GABAA-receptor, HRH1, sleep-wake circuitry
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INTRODUCTION

The sleep-wake cycle is controlled by homeostasis and circadian
rhythm, which regulates the amount, and the time of sleep,
respectively (Borbely, 1982). The inhibitory relationship between
sleep and wakefulness systems work as a trigger for the rapid
conversion of sleep and wakefulness in the form of a positive
feedback-loop (Wang et al., 2013). It is believed that GABAergic
neurons in the ventral lateral hypothalamus (VLPO) and central
preoptic region are the basis for the occurrence and maintenance
of sleep (Sherin et al., 1996; Saper et al., 2010). Extracellularly
electrophysiological recording results show that VLPO neurons
have more activation during sleep, and the firing rate significantly
increased during paradoxical sleep (Koyama and Hayaishi,
1994). Chemoactivating and photoactivating galanin-expressing
neurons promoted total sleep time (TST), while photoinhibiting
galanin-expressing neurons decreased NREM sleep (Kroeger
et al., 2018). Lesions of the VLPO reduced sleep time and
caused insomnia in cats and rats (Nauta, 1946; McGinty
and Sterman, 1968; Lu et al., 2000). More than 85% of the
neurons in the VLPO region are GABAergic neurons, which
co-express the inhibitory neurotransmitters GABA and galanin
(Sherin et al., 1996, 1998). VLPO neurons send axons to many
regions that are implicated in the regulation of wakefulness,
including the locus coeruleus (LC), median raphe nuclei, and
the tuberomammillary nucleus (TMN) (Saper et al., 2010; Chung
et al., 2017).

In the brain, the histaminergic (HAergic) neurons only
gathered in the TMN. During the sleep-wake cycle, compared
to non-rapid eye movement (NREM) sleep, the firing rate
significantly increased during the awakening period, while
they were almost silenced during rapid eye movement (REM)
sleep (Sakai et al., 2010). TMN projects to almost the whole
brain, and extraordinarily has highly dense innervation to the
VLPO, the basal forebrain and the amygdala (Brown et al.,
2001). Microinjection HA to VLPO can significant increase
the locomotor activity of rats, also the electrophysiological
experiments showed that HAs can inhibit the activity of
VLPO neurons, the membrane potential hyperpolarized and
firing rate were significantly decreased (Liu et al., 2010;
Cheng et al., 2018).

Therefore, we predicted that the TMN and VLPO might
inhibit each other, by which VLPO neurons release galanin
and/or GABA at its terminal in TMN, and TMN neurons release
HA and/or GABA in VLPO to maintain the balance of the
sleep-wakefulness system. Here, we focus on the innervation
of the two regions and the role of the neurotransmitters in
the transition and maintenance of the sleep-wake cycle rhythm.
In order to further explore and interpret the mechanisms in
regulating sleep between VLPO and TMN, we inject cannula
excitatory neurotransmitters L-glutamate (L-Glu), and GABAA
receptors antagonist bicuculline (Bic), and HRH1 antagonist
triprolidine (Trip) in either VLPO or TMN, and in vivo
recording by EEG and EMG observed the variations in rat
sleep-wakefulness cycles. We found that the NREM sleep time
was significantly increased after L-Glu was injected into VLPO,
and this phenomenon was weakened after selectively blocking

GABAA receptors in TMN. Furthermore, both REM and NREM
sleep time decreased after the excited TMN neurons, and these
phenomena were reversed by blocked HRH1 in VLPO. Those
results indicated that TMN histaminergic neurons and VLPO
GABAergic neurons may interact with each other in regulating
the sleep-wake cycle.

RESULTS

Activating VLPO Neurons Decreased
Wakefulness and Increased NREM in
Rats
A larger number of sleep-promoting neurons in VLPO were
identified and innervated with the wake promoting system, and
released inhibitory neurotransmitters (GABA) at its terminal,
including TMN (Sherin et al., 1996, 1998). In order to investigate
the effect of VLPO on the sleep-wake cycle, we microinjected
aCSF (1 µl) into VLPO and TMN in a part of rats at
10:00–10:20 as the night control group, and microinjected
L-Glu (L-Glu, 5 mmol/L with 1 µl) into VLPO and aCSF
into TMN in another part of rats. Compared with the
night control group (TMN + aCSF and VLPO + aCSF),
the wakefulness time at the 2nd and 3rd h, after L-Glu
was injected into VLPO, decreased about 54.0% (p < 0.01)
and 37.6% (p < 0.05), respectively (Figure 1B top). The
REM sleep time on the 2nd and the 3rd h after L-Glu
was injected into VLPO increased about 73.1% and 37.6%,
respectively (Figure 1B middle). However, the difference was
not significant in REM sleep time. The NREM sleep time at the
2nd and 3rd h after L-Glu was injected into VLPO increased
about 121.3% (p < 0.01) and 75.3% (p < 0.01), respectively
(Figure 1B under).

The cumulative amount of wakefulness, REM sleep,
NREM sleep, and TST in the next 5 h after injected L-
Glu into VLPO were calculated. Compared with the night
control group, the amount time of NREM sleep and TST
after L-Glu was injected into VLPO increased about 56.4%
(112.61 min ± 7.37 vs. 71.99 min ± 6.34, p < 0.01) and
49.5% (136.29 min ± 8.16 vs. 91.17 min ± 7.87, p < 0.01),
meanwhile, the wakefulness time decreased by about 21.6%
(163.71 min ± 8.17 vs. 208.83 min ± 7.89, p < 0.01),
respectively (Figure 2). Those results indicate that excited
VLPO neurons can decrease wakefulness and increase NREM at
night in rats.

Activating VLPO Neurons and Blocking
GABAA Receptors in TMN Significantly
Affected the Sleep-Wakefulness Cycle in
Rats
We designed to excite VLPO by L-Glu and inhibit TMN
by Bic (0.1 mmol/L with 1 µl) in a rat, and analyzed
the sleep-wakefulness cycle variation of rats. Compared with
the night group of VLPO + L-Glu and TMN + aCSF, the
wakefulness time at the 2nd and 3rd h after Bic injected
into TMN was increased about 94.7% (p < 0.01) and 81.5%
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FIGURE 1 | The sleep-wakefulness cycle was influenced by injecting L-Glu into VLPO which could be blocked by injecting Bic into TMN. (A) Top: Schematic
drawing of the location of drug injection, or aCSF into the VLPO/TMN of a rat (Red: aCSF/L-Glu into VLPO, Yellow: aCSF/Bic into TMN). Bottom: Representative
traces of EEG and EMG with drug injected. Drugs were applied at 22:00 (red line), and PSG recording started from 20:00 and lasted for 24 h. (B) Time-course
changes of the sleep-wakefulness cycle in rat administration with L-Glu into VLPO. (C) Time-course changes of the sleep-wakefulness cycle in rat administration
with L-Glu into VLPO and Bic into TMN. Data were presented as mean ± SEM. The paired t-test was used in the statistical comparisons of two groups. *p < 0.05,
**p < 0.01 is compared between two groups at the same time. The arrow shows the time of microinjection.

(p < 0.01), respectively (Figure 1C top). The REM sleep
time at the 2nd and 3rd h after Bic was injected into TMN
was reduced by 69.0% (p < 0.05) and 54.8% (p < 0.05),
respectively (Figure 1C middle). The NREM sleep time at the
2nd and 3rd h after Bic was injected into TMN was decreased
about 36.0% (p < 0.01) and 53.1% (p < 0.01), respectively
(Figure 1C under).

The 5 h cumulative amounts of wakefulness, REM and
NREM sleep times were calculated. Compared with the night
group of VLPO + L-Glu and TMN + aCSF, the amount
of wakefulness after Bic was injected into TMN increased
about 25.6% (163.71 min ± 8.17 vs. 205.56 min ± 10.12,
p < 0.01). Meanwhile the amount of REM sleep, NREM sleep
and TST after Bic was injected into TMN decreased about
52.1% (23.67 min ± 2.78 vs. 11.33 min ± 2.78, P < 0.01),
26.2% (112.61 min ± 7.37 vs. 85.09 min ± 8.09, p < 0.05),
and 30.7% (136.29 min ± 8.16 vs. 94.42 min ± 10.12,
p < 0.01), respectively (Figure 2). Those results indicate that

the effect of L-Glu exciting VLPO neurons on sleep-wakefulness
at night can be inhibited by blocking GABAA receptors in
TMN in rats.

Excited TMN Neurons Increased
Wakefulness Time and Decreased REM
and NREM Sleep Time in Rats
In order to figure out whether the excited TMN neurons
would reduce the sleep time and increase the wakefulness
time, we stereotaxically implanted cannulas and microinjected
excitatory neurotransmitters L-Glu to TMN at 10:00–10:20.
The representative traces of EEG and EMG of the 4 day
groups after either injection of aCSF or drugs are shown in
Figure 3B. Microinjecting L-Glu (5 mmol/L with 1 µl) into
TMN increased the wakefulness time of rats at the 2nd h
and lasted 3 h (Figure 4B). Compared with the day group of
VLPO + aCSF and TMN + aCSF group, the wakefulness time
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FIGURE 2 | The 5 h cumulative amount of wakefulness, REM and NREM sleep, and TST after administration of aCSF or drugs into the TMN and VLPO of rats.
(A) The 5 h cumulative amount of wakefulness. (B) The 5 h cumulative amount of REM sleep. (C) The 5 h cumulative amount of NREM sleep. (D) The 5 h cumulative
amount of TST. Data were presented as mean ± SEM. The paired t-test was used in the statistical comparisons of two groups. Compared with the night group of
VLPO + aCSF and TMN + aCSF group, **p < 0.01. Compared with the night group of VLPO + L-Glu and TMN + aCSF group, #p < 0.05, ##p < 0.01. V, VLPO; T,
TMN; G, L-Glu; B, Bic; a, aCSF.

after L-Glu was injected into TMN at the 2nd, 3rd, and 4th h
was increased about 132.2% (p < 0.01), 54.3% (p < 0.01), and
64.6% (p < 0.01), respectively (Figure 4B upper). The REM
sleep time after L-Glu was injected into TMN at the 2nd, 3rd,
and 4th h decreased about 85.9% (p < 0.05), 55.9% and 60.6%,
respectively. However, there were no significant differences after
L-Glu was injected into TMN at the 3rd and 4th h (Figure 4B
middle). The NREM sleep time after L-Glu was injected into
TMN at the 2nd, 3rd, and 4th h was reduced to about 50.5%
(p < 0.01), 40.6% (p < 0.01), and 34.5% (p < 0.05), respectively
(Figure 4B under).

Compared with the day group of VLPO + aCSF and
TMN + aCSF group, the 5 h cumulative amount of wakefulness
time after L-Glu was injected into TMN was increased
about 35.0% (113.35 min ± 4.32 vs. 179.00 min ± 13.91,
p < 0.01). Meanwhile, the 5 h cumulative amount of REM
sleep time, NREM sleep time and TST decreased about 55.5%
(14.57 min ± 3.79 vs. 6.48 min ± 2.68, p > 0.05), 33.4%
(172.05 min ± 3.57 vs. 114.51 min ± 13.07, p < 0.01) and
35.2% (186.63 min ± 4.32 vs. 120.99 min ± 13.91), respectively
(Figure 3). Those results indicate that L-Glu excited TMN
neurons which increased wakefulness and decreased NREM
during the day.

Activating TMN Neurons and Blocking
HRH1 Receptors in VLPO Significantly
Affected the Sleep-Wakefulness Cycle in
Rats
It has been proven that the histaminergic neurons of TMN can
project to the VLPO (Sakai et al., 2010; Chung et al., 2017). Here,
we microinjected triprolidine (Trip, 0.5 µmol/L with 1 µl), a
HRH1 blocker, into VLPO to block the histaminergic afference
from TMN. Compared with the day group of VLPO + aCSF and
TMN + L-Glu, the wakefulness time at the 2nd, 3rd, and 4th h
after Trip was injected into VLPO was reduced by about 54.9%
(p < 0.01), 32.1% (p < 0.01), and 26.1% (p < 0.05), respectively
(Figure 4C upper). The REM sleep time at the 2nd, 3rd, and
4th h after Trip was injected into VLPO increased about 1175.4%
(p < 0.01), 196.5% (p > 0.05), and 89.7% (p > 0.05), respectively
(Figure 4C middle). The NREM sleep time at the 2nd, 3rd, and
4th h after Trip was injected into VLPO increased by about 87.5%
(p < 0.01), 58.8% (p < 0.05), and 36.0%(p > 0.05), respectively
(Figure 4C under).

Compared with the day group of VLPO + aCSF and TMN + L-
Glu group, the 5 h cumulative amount of wakefulness time
after Trip was injected into VLPO was decreased by 30.2%
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FIGURE 3 | The 5 h cumulative amounts of wakefulness, REM and NREM sleep, and TST after administration of aCSF or drugs into the TMN and VPO of rats.
(A) The 5 h cumulative amount of wakefulness. (B) The 5 h cumulative amount of REM sleep. (C) The 5 h cumulative amount of NREM sleep. (D) The 5 h cumulative
amount of TST. Data were presented as mean ± SEM. The paired t-test was used in the statistical comparisons of two groups. Compared with the day group of
VLPO + aCSF and TMN + aCSF, **p < 0.01; Compared with the day group of VLPO + aCSF and TMN + L-Glu, #p < 0.05, ##p < 0.01. V, VLPO; T, TMN; G, L-Glu;
B, Bic; a, aCSF.

(179.00 min ± 13.91 vs. 125.03 min ± 7.68, p < 0.01),
meanwhile, the 5 h cumulative amount of REM sleep, NREM
sleep, and TST were increased about 199.3% (6.48 min ± 2.68
vs. 19.40 min ± 2.85, p < 0.01), 35.9% (114.51 min ± 13.07 vs.
155.57 min ± 6.80, p < 0.05), and 44.6% (120.99 min ± 13.91
vs. 174.97 min ± 7.66, p < 0.01), respectively (Figure 3). Those
results indicate that the effect of exciting TMN neurons on sleep-
wakefulness at day can be inhibited by blocking HRH1 receptors
in VLPO in rats.

DISCUSSION

The sleep-promoting system is mainly composed of the preoptic
area and adjacent basal forebrain. Sleep deprivation might induce
the brain and cognitive function disorder, such as learning and
memory. Recently, studies have shown that light-induced SWS
(slow wave sleep) might have strongly enhanced the process
in memory consolidation (Lu et al., 2018). Sleep inducing
neurons in the preoptic area are mainly located in the VLPO, as

many c-fos-positive neurons found after sleep to have recovered
following sleep deprivation (Zhang et al., 2015). Neurons in the
VLPO synthesized and released the inhibitory neurotransmitter
GABA, and their fibers terminal can innervation to 5-HT
neurons in dorsal raphe nucleus, blue-spot norepinephrine
neurons, cholinergic neurons in lateral tegmental nucleus, and
histaminergic neurons in TMN. The inhibitory effect of the
sleep-promoting neurons innervated from VLPO can reduce the
sleep-promoting effects of HA neurons and other key arousal
regions, inducing and maintaining sleep (Sherin et al., 1996; Saper
et al., 2010; Chung et al., 2017; Scammell et al., 2017).

For the arousal system, polysomnography, pharmacological,
and tracing studies showed that different functional cell groups
with different terminal projections might modulate the sleep-
wake switch though various signaling pathways, such as
histaminergic, glutamatergic, orexinergic, GABAergic pathways,
and so on (Liu et al., 2010; Eban-Rothschild and de Lecea, 2017;
Scammell et al., 2017; Schöne and Burdakov, 2017). Among them,
TMN is an area where histaminergic neurons are concentrated in
the cell body of the central nervous system, and can project the
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FIGURE 4 | The sleep-wakefulness cycle was influenced by injecting L-Glu into TMN which could be blocked by injecting Trip into VLPO. (A) Top: Schematic
drawing of the location of drug injection, or aCSF into the VLPO/TMN of a rat (Red: aCSF/Trip into VLPO, Yellow: aCSF/L-Glu into TMN). Bottom: Representative
traces of EEG and EMG with drug injected. Drugs were applied at 10:00 (red line), and polysomnography recording started from 08:00 and lasted for 24 h.
(B) Time-course changes of the sleep-wakefulness cycle in rat administration with L-Glu into TMN. (C) Time-course changes of the sleep-wakefulness cycle in rat
administration with L-Glu into TMN and Trip into VLPO. Data were presented as mean ± SEM. The paired t-test was used in the statistical comparisons of two
groups. *p < 0.05, **p < 0.01, ***p < 0.001 is compared between two groups at the same time. The arrow shows the time point of microinjection.

orexinergic neurons on the lateral hypothalamus and the basal
forebrain (Eriksson et al., 2001; Schöne and Burdakov, 2017).

As an excitatory neurotransmitter, L-Glu can selectively excite
neurons via N-methyl -D-aspartate (NMDA) receptors, which
play important roles in synaptic plasticity, synaptic transmission
and neuron degeneration (Swaminathan et al., 2019). The
administration of kainite, a type of L-Glu receptor antagonist,
into the nucleus ceruleus in the rat can induce a significant
increase in REM sleep, however, damage to the preoptic area with
kainite in the rat can decrease sleep and increase wakefulness
(John et al., 1994; Onoe and Sakai, 1995; Vataev et al., 2013).
In our study, we found that microinjecting L-Glu into VLPO
can inhibit wakefulness and increase NREM sleep, but has no
significant effect on REM sleep. Therefore, this result infers

that the injection L-Glu in VLPO might excite sleep-promoting
neurons and maintain NREM sleep.

We found the microinjection of Bic (Ramshini et al., 2019), a
GABAA receptor specific antagonist, into TMN has no significant
effect on the sleep-wakefulness cycle. Bic can directly work on
histaminergic neurons to increase its firing rate (Haas et al.,
2008), and the perfusion of Bic into the hypothalamus can
increase the expression of HAs in the nucleus accumbens and
the prefrontal cortex (Cenni et al., 2006; Giannoni et al., 2009).
Thus, we microinjected Bic to TMN in the early night. During
the wakefulness state, the release of inhibitory neurotransmitters
at the terminal projection of VLPO were decreased, while
histaminergic neurons in TMN are particularly activating, and
the firing of histaminergic neurons is significantly higher than
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that during the sleep phase (Zeitzer et al., 2012; Valko et al., 2013),
with up-regulation of c-fos-protein expression (Ko et al., 2003).

In this study, L-Glu microinjected into VLPO during the
night significantly increased the NREM sleep time and decreased
the wakefulness time. Those phenomena were weakened after
selectively blocking GABAA receptors by Bic microinjected
into TMN. The phenomena were consistent with the previous
results of injecting GABAA receptor blockers into TMN and
adjacent areas, which can block the sleep-inducing effects caused
by central sedatives and anesthetics, such as pentobarbital,
muscarine, and propofol (Nelson et al., 2002). Thus, it may be
deduced that activated VLPO neurons can induce sleep, which
may mainly inhibit TMN neurons via GABAA receptors.

Bilateral microinjection HA into the basal forebrain of rats
showed that dose-dependent wakefulness was increased and
accompanied by the decreasing of NREM sleep, suggesting that
HAs might induce wakefulness by relayed cholinergic neurons
in the basal forebrain (Ramesh et al., 2004). Microinjection HAs
into the VLPO can increase the activity rate of rats, and the
electrophysiological experiment of isolated brain slices showed
that HAs can inhibit the activity of VLPO neurons by over-
polarizing the membrane potential (Liu et al., 2010). In this study,
microinjection of L-Glu into TMN at day results in increasing
wakefulness time and decreasing sleep time in rats, which was
weakened when Trip, a HRH1 blocker, was injected into VLPO
at the same time. These results reveal that activated TMN
neurons might manipulate VLPO neurons via HRH1, and induce
wakefulness.

In conclusion, our results indicate that activation of VLPO
by L-Glu can promote sleep and weaken the transition
to wakefulness. Moreover, inactivation of TMN by GABAA
antagonist can turnover those phenomena. On the contrary,
exciting TMN neurons by glutamate receptor antagonist can
promote wakefulness and weaken the transition to sleep, and,
these phenomena can be reversed by blocking HRH1 with
Trip microinjected into VLPO. This relationship between TMN
arousal and VLPO sleep-promoting pathways may produce the
conditions for a flip-flop switch, which can generate rapid and
complete transitions between waking and sleeping states, but
certain types of neurons in VLPO and TMN participate and
modulate the transition between REM, NREM, and wakefulness
need to be further studied.

MATERIALS AND METHODS

Animal Model
Adult male Sprague Dawley rats (SPF grade) weighing 270–
290 g were used. All rats were housed in a free moving
environment kept at room temperature (22–24◦C), with the
humidity maintained at 55% and 12 h of light/dark (light on 8:00–
20:00 h, illumination intensity ≈ 100 lx). The sound insulation
shielding and ventilated environment was kept separately, free
to water and feeding. The animals in the experiment were kept
strictly in accordance with the regulations of the People’s Republic
of China on the management of experimental animals and the
methods for quality management of experimental animals.

Surgery and Implantations for in vivo
Polysomnographic Recording
After anesthetized by pentobarbital (50 mg/kg, i.p.), EEG and
EMG electrodes were implanted for polysomnographic recording
(MP150, Data acquisition and analysis system, Biopac Ltd.,
United States), and two guide cannulas were bilaterally inserted
into VLPO (AP: −0.36 mm; R: 1.00 mm; H: −7.50 mm) and
TMN (AP: −4.20 mm; R: 1.10 mm; H: −7.70 mm) for drug
application in rats. The microinjection cannulas for drugs were
embedded at 2 mm above the VLPO or TMN regions in the brain.
The recording electrodes for EEG recording were embedded at
1 mm in front of the coronal suture and herringbone stitch
before 1 mm and side open 1 mm node installed on both sides
of the midline skull, and recording electrodes for EMG were
inserted into the bilateral neck muscle. Guide cannulas and
recording electrodes were fixed to the skull surface with dental
cement. Each animal needed 7 days for recovery in a sound
proof recording room after surgery, then they were connected to
an EEG/EMG recording cable and habituated for 3 days before
polysomnographic recording.

Grouping
Rats were randomly divided into day and night groups: the night
group was composed of (1) VLPO + aCSF (artificial cerebrospinal
fluid) and TMN + aCSF group (both TMN and VLPO are
microinjected with aCSF (Cheng et al., 2018) containing (mM):
125 NaCl, 1.25 KCl, 25 NaHCO3, 1.25 KH2PO4, 25 D-Glucose, 2
CaCl2, 1 MgCl2, supplemented with 400 Na-pyruvate and 80 L-
ascorbic acid, n = 8), The pH was adjusted to 7.25 with D-gluconic
acid and osmolarity was adjusted to 290–300 mOsm with D-
Glucose as necessary; (2) VLPO + L-Glu and TMN + aCSF
group (Microinjection of aCSF and L-Glu into TMN and VLPO,
respectively, n = 7); (3) VLPO + L-Glu and TMN + Bic group
[microinjection of Bic (Sigma, St. Louis, MO, United States)
and L-Glu (Sigma, St. Louis, MO, United States) into TMN and
VLPO, respectively, n = 8]. The day group was composed of
(1) VLPO + aCSF and TMN + aCSF group (both VLPO and
TMN are microinjected with aCSF, n = 7); (2) VLPO + aCSF
and TMN + L-Glu group (microinjection of aCSF and L-Glu
into VLPO and TMN, respectively, n = 8); (3) VLPO + Trip
and TMN + L-Glu group [microinjection of Trip (Sigma, St.
Louis, MO, United States) and L-Glu into the VLPO and TMN,
respectively, n = 7].

Microinjection
The drugs (L-Glu, Bic, and Trip) of 1 µl were dissolved in aCSF.
Each administration was 5 mmol/L L-Glu, 0.1 mmol/L Bic or
0.5 µmol/L Trip. Control groups were microinjected in aCSF.
The microinjection was through a stainless steel guide cannula
at an injection rate of 1 µl per min, and the needle was kept in the
cannula for 1 min to prevent the physic liquor overflow. For the
night group, the administration was performed at 22:00–22:20
for polysomnography (PSG) recording. For the day group, the
administration was performed at 10:00–10:20 for PSG recording.
Figures 1A, 4A present the schematic drawing of the location of
drug or aCSF injection into the VLPO/TMN of the rat.
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Polysomnography Recording
Polysomnography recording (including EEG and EMG) was
started 2 h before drug application at 20:00 or 08:00, and
was sustained for 24 h. According to the PSG results, every
10 s were regarded as one epoch. The sleep-wake cycle
is divided into wakefulness (W), non-rapid eye movement
sleep (NREM), and rapid eye movement sleep (REM), each
of which have distinct characteristics. W was characterized
by high frequency and low amplitude waves of EEG and
relatively high tone EMG; NREM sleep was characterized by
low frequency, spindles, high amplitude and slow waves of EEG
with significantly decreased EMG tone, and REM sleep was
characterized by high frequency and low amplitude waves of
EEG with a lack of EMG tone, except for occasional muscle
twitches. The representative traces of EEG and EMG of the
four night groups after either injection of aCSF or drugs
were shown in Figure 1A. In our study, we counted the
total sleep time (TST),which was composed of NREM sleep
and REM sleep time.

Statistical Analyses
GraphPad Prism 7 was used for statistical analyses. The
experimental data was presented as mean ± SEM. The
paired t-test was used in the statistical comparisons of the
experimental data between the two groups, the line charts
were performed in Igor pro (WaveMetrics, Portland, OR,
United States), and those at P < 0.05 were considered as the level
of significance.
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The role of the hypothalamic preoptic area (POA) in arousal state regulation has
been studied since Constantin von Economo first recognized its importance in the
early twentieth century. Over the intervening decades, the POA has been shown
to modulate arousal in both natural (sleep and wake) as well as drug-induced
(anesthetic-induced unconsciousness) states. While the POA is well known for its
role in sleep promotion, populations of wake-promoting neurons within the region
have also been identified. However, the complexity and molecular heterogeneity of the
POA has made distinguishing these two populations difficult. Though multiple lines of
evidence demonstrate that general anesthetics modulate the activity of the POA, the
region’s heterogeneity has also made it challenging to determine whether the same
neurons involved in sleep/wake regulation also modulate arousal in response to general
anesthetics. While a number of studies show that sleep-promoting POA neurons are
activated by various anesthetics, recent work suggests this is not universal to all arousal-
regulating POA neurons. Technical innovations are making it increasingly possible to
classify and distinguish the molecular identities of neurons involved in sleep/wake
regulation as well as anesthetic-induced unconsciousness. Here, we review the current
understanding of the POA’s role in arousal state regulation of both natural and drug-
induced forms of unconsciousness, including its molecular organization and connectivity
to other known sleep and wake promoting regions. Further insights into the molecular
identities and connectivity of arousal-regulating POA neurons will be critical in fully
understanding how this complex region regulates arousal states.

Keywords: preoptic area, sleep, anesthesia, sedation, hypothalamus

INTRODUCTION

Prior to the twentieth century, sleep was considered to be a passive process, caused not by specific
neural circuits but rather by reduced sensory input that led to low levels of brain activity. This
thinking shifted in the early twentieth century during a viral pandemic of encephalitis lethargica. In
some of the earliest examinations into the neurobiology of sleep and wake regulation, neurologist
Constantin von Economo noted lesions in the posterior hypothalamus of his patients with excessive
sleepiness. Conversely, others exhibiting lesions in the anterior hypothalamus, suffered from severe
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insomnia. This led him to propose the existence of a “sleep
center” in the anterior hypothalamus and a corresponding “wake
center” in the posterior hypothalamus that act in opposition to
actively regulate arousal state (von Economo, 1930). Since these
original findings, the existence of hypothalamic circuits involved
in regulating arousal state has been repeatedly confirmed across a
variety of mammalian species.

Since these early investigations, the hypothalamus has been
increasingly recognized as a loose confederation of autonomous
neurons that regulate many essential social and homeostatic
functions (Sternson, 2013; Wu et al., 2014; Scott et al., 2015;
Tan et al., 2016; Allen et al., 2017; Leib et al., 2017), including
sleep and wake (Szymusiak et al., 2007). More specifically, the
preoptic area of the hypothalamus (POA) is known to modulate
arousal in both natural (sleep and wake) (Gallopin et al., 2000;
Lu et al., 2000, 2002; McGinty and Szymusiak, 2001; Gong et al.,
2004; Chung et al., 2017) as well as drug-induced (anesthetic-
induced unconsciousness) states (Nelson et al., 2002; Lu et al.,
2008; Li et al., 2009; Moore et al., 2012; Liu et al., 2013; Han
et al., 2014; McCarren et al., 2014; Zhang Y. et al., 2015; Yatziv
et al., 2020). However, the degree to which the same population
of neurons within the POA modulates arousal in both sleep
and anesthesia is unclear. Failure to properly regulate arousal
state can have serious costs, including increased risk of obesity,
cardiovascular disease, and impaired cognition from improper
sleep/wake regulation (Everson, 1993; Taheri, 2006; Gallicchio
and Kalesan, 2009; Vgontzas et al., 2009; Buxton and Marcelli,
2010; Cappuccio et al., 2010; Besedovsky et al., 2012)., as well as
intraoperative awareness and delayed emergence from anesthesia
(Mesa et al., 2000; Sebel et al., 2004; Mashour and Avidan, 2015;
Sanders et al., 2017). Given these consequences of improper
arousal state regulation—both in natural sleep/wake and in
response to general anesthesia—untangling the circuits by which
the brain coordinates arousal state is critical.

In this review, we summarize the current understanding
of the POA’s involvement in regulating arousal states, both
in natural sleep and wake, and under anesthesia, including
a growing body of literature that suggests the POA is not
strictly a somnogenic node. We also review the shared circuitry
hypothesis of anesthesia, and examine the evidence for and
against a shared population of sleep- and anesthesia-modulating
neurons in the POA. Further, we discuss the obstacles facing
investigations into arousal state regulation by the POA, focusing
on the functional and molecular heterogeneity of the region.
New technical innovations are also highlighted that should
enable more refined targeting of POA neuronal subtypes and
greatly enhance our understanding of how this complex region
regulates arousal states.

POA REGULATION OF
UNCONSCIOUSNESS ACCOMPANYING
NATURAL SLEEP

Regulating the timing and stability of the states of consciousness
and unconsciousness is critical for an individual’s health and
survival. A complete and extended period of sleep deprivation

can result in death, while both total and partial sleep deprivation
cause neurobehavioral deficits including diminished cognitive
performance, increased risk of obesity and cardiovascular disease,
and impaired immune system function, among other effects
(Everson, 1993; Taheri, 2006; Vgontzas et al., 2009; Besedovsky
et al., 2012; Irwin et al., 2016; Al Khatib et al., 2017; Gaine et al.,
2018; Hudson and Van Dongen, 2019; Frau et al., 2020). On
the other hand, excessive sleep is also associated with pathology,
including obesity, diabetes, heart disease, and increased mortality
(Gallicchio and Kalesan, 2009; Buxton and Marcelli, 2010;
Cappuccio et al., 2010; Barateau et al., 2017). Thus, regulating
arousal to ensure the proper timing and amount of sleep is
crucial for normal physiological function. While essential for
survival, sleep confers a period of extreme vulnerability, as the
unconscious individual is unaware of its surroundings. Thus,
the ability to rapidly transition from sleep to wake is crucial
in order to defend against external threats and respond to the
surrounding environment. Given the importance of these states,
an understanding of how the brain properly regulates arousal
state is essential. Although the POA was one of the earliest studied
regions in regards to sleep and wake regulation, it remains one of
the most difficult to untangle.

POA Involvement in Sleep
The POA can be divided into four anatomically defined regions:
the median preoptic area (MnPO), medial preoptic area (MPO),
lateral preoptic area (LPO), and ventrolateral preoptic area
(VLPO). Early investigations into the role of the POA in arousal
state regulation found that broad activation of the POA results
in the rapid onset of sleep (Sterman and Clemente, 1962), while
lesions of the area significantly decrease sleep (Nauta, 1946;
McGinty and Sterman, 1968; John and Kumar, 1998; Lu et al.,
2000). Subsequent recordings from individual neurons revealed
that, while sleep-active neurons are scattered across the POA,
higher densities of these neurons exist in the VLPO and MnPO
(Sherin et al., 1996, 1998; Szymusiak et al., 1998; Takahashi et al.,
2009). For this reason, the majority of studies examining POA
regulation of arousal state has focused on these two subregions,
though a small number of more recent studies have investigated
the wider POA as well, which will also be discussed. Although
GABAergic neurons in the MnPO show increases in activity just
prior to the onset of sleep (Suntsova et al., 2007), suggesting
a role in sleep initiation, their activity has been shown to be
more strongly correlated with sleep pressure, rather than sleep
per se. Thus, this region will be discussed further in a later
section of this review.

VLPO
The VLPO contains a small cluster of largely GABAergic
neurons that are most active during NREM and REM sleep
(Sherin et al., 1996; Szymusiak et al., 1998; Gong et al., 2000,
2004; Alam et al., 2014). These GABAergic VLPO neurons
also express galanin, an inhibitory neuropeptide (Sherin et al.,
1998). VLPO activity correlates with sleep amount, with the
average number of c-Fos-expressing VLPO neurons increasing
with more time spent asleep (Sherin et al., 1996). In addition
to being sleep-active, VLPO neurons are also sleep-promoting.

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 64433017

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644330 February 8, 2021 Time: 18:13 # 3

Reitz and Kelz POA Regulation of Arousal

Chemogenetic and optogenetic activation of galaninergic VLPO
neurons significantly increases NREM sleep (Kroeger et al.,
2018). While the VLPO is typically associated with NREM sleep,
a cluster of GABAergic/galaninergic neurons in the extended
VLPO is active during REM sleep and reduces REM when
lesioned (Lu et al., 2002).

Investigations into the VLPO’s connectivity support the flip-
flop switch theory of sleep regulation. The VLPO projects to
many members of the arousal-promoting circuitry, including
the cholinergic basal forebrain (BF), the lateral hypothalamus
(LH), tuberomammillary nucleus (TMN), raphe nuclei (RN),
parabrachial nucleus (PB), and locus coeruleus (LC) (Figure 1).
It is in turn reciprocally innervated by these same regions
(Figure 2; Sherin et al., 1998; Steininger et al., 2001; Chou et al.,
2002; Yoshida et al., 2006). VLPO neurons with projections
to the LH, RN and ventral periaqueductal gray (vPAG)
express c-Fos during sleep (Uschakov et al., 2006, 2009; Hsieh
et al., 2011). GABAergic VLPO neurons are directly inhibited
by acetylcholine, norepinephrine, and serotonin (Gallopin
et al., 2000), providing a mechanism by which the release
of wake-promoting neurotransmitters can inhibit sleep-active
VLPO neurons to reinforce the waking state. Conversely, the
combination of increasing GABA levels in the LC and RN
during sleep (Nitz and Siegel, 1997a,b) and enhanced inhibitory
galaninergic signaling in the TMN and LC (Schönrock et al., 1991;
Pieribone et al., 1995) reduce activity of wake-promoting neurons
and further stabilize states of sleep. Furthermore, activation of the
VLPO in ex vivo brain slices produces GABA-mediated inhibitory
postsynaptic potentials in histaminergic TMN neurons (Yang
and Hatton, 1997), supporting a role for GABAergic/galaninergic
VLPO neurons in promoting sleep. Thus, not only are the VLPO
and many wake-promoting regions reciprocally connected, they
also mutually inhibit each other, providing support for the flip-
flop switch theory of arousal regulation.

Wider POA
Lesioning neurons within the POA, including those within
the MPO, MnPO, LPO, and VLPO all have been shown to
cause insomnia (Szymusiak and McGinty, 1986b; John and
Kumar, 1998; Lu et al., 2000; Srividya et al., 2006; Lortkipanidze
et al., 2009). This insomnia has been partially reversed by
transplantation of fetal preoptic neurons into the lesioned MPO
preoptic area (John et al., 1998). Single cell recordings of 128
LPO neurons show that ∼38% are wake/REM-active, ∼43%
are sleep-active, and ∼19% are state-indifferent (Alam et al.,
2014). Given this evidence that arousal state regulating neurons
exist throughout the POA, not just in the VLPO and MnPO,
more recent studies have begun investigating the wider POA,
including the LPO. A majority of recent studies have focused
on the GABAergic/galaninergic population in the region. These
populations project to many of the same wake-promoting centers
as VLPO and MnPO, including the LH and TMN (Saito
et al., 2013; Chung et al., 2017). Activation of GABAergic POA
projections to the LH directly inhibits orexinergic neurons in
the area (Saito et al., 2013). Furthermore, optogenetic activation
of GABAergic POA projections to the TMN promotes sleep,
while inhibition promotes wake (Chung et al., 2017). From

this population of TMN-projecting, GABAergic POA neurons,
they identified 3 subpopulations labeled by neuropeptide
markers (cholecystokinin, corticotropin-releasing hormone, and
tachykinin 1) that, when optogenetically activated, promote sleep
(Chung et al., 2017). Within the LPO, activation of galaninergic
neurons promotes NREM sleep, while ablation of this population
fragments NREM sleep during the active phase, increasing the
number of transitions between the wake and NREM sleep states
(Ma et al., 2019). This suggests that galaninergic LPO neurons
are essential for consolidated sleep, and are sufficient, but not
necessary, for NREM sleep.

POA Involvement in Wake
While many optogenetic and chemogenetic stimulation and
lesion/inhibition studies demonstrate a sleep-promoting role for
the POA, a growing body of evidence suggests that the region
also plays an important role in promoting wakefulness. Single
cell in vivo recordings illustrate that the POA is much more
heterogeneous than originally thought. In addition to sleep-
active neurons, the POA contains wake-active and arousal state-
indifferent neurons scattered among the sleep-active population
(Figure 3; Kaitin, 1984; Szymusiak and McGinty, 1989; Takahashi
et al., 2009).

Furthermore, optogenetic activation of GABAergic POA
neuronal cell bodies, or glutamatergic POA projections to
TMN neurons promotes wakefulness (Chung et al., 2017).
A recent study also demonstrated that chemogenetic activation
of glutamatergic neurons in the ventral half of the POA increases
time spent awake (Vanini et al., 2020). Additionally, we recently
showed that chemogenetic activation of tachykinin 1-expressing
POA neurons strongly stabilizes and consolidates the waking
state, decreasing the number of transitions between sleep and
wake, while greatly increasing the average length of wake bouts
(Reitz et al., 2020). With this growing evidence supporting a dual
role in sleep and wake, it is clear that more work is needed in
order to more accurately characterize and understand the POA’s
roles in arousal state regulation.

Homeostatic and Adaptive Arousal State
Regulation by the POA
While sleep and wake cycles are strongly regulated by circadian
rhythms, a core feature of sleep is that it is also subject
to homeostatic regulation. Total or partial sleep deprivation
increases sleep drive, ultimately resulting in a period of
recovery sleep that is longer and deeper (characterized by
enhanced delta power in the EEG) than sleep under unrestricted
conditions. The mechanisms by which the brain senses and
responds to this homeostatic sleep pressure are not fully
understood, though the evidence discussed below points toward
the involvement of the POA.

In addition to increasing activity during sleep, both VLPO
and MnPO neurons exhibit higher activity in response to sleep
deprivation, prior to recovery sleep, suggesting a role in tracking
sleep debt (Alam et al., 2014). It was previously thought that
VLPO had no role in sensing or responding to sleep pressure,
as c-Fos levels were not increased unless animals experienced
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FIGURE 1 | Current understanding of NREM sleep circuitry in the mouse brain. At the onset of NREM sleep, sleep-promoting neurons (red circles) become active
and inhibit many of the wake-promoting nuclei of the brain (green circles) to reinforce and stabilize the sleep state. Figure created with BioRender.com.

FIGURE 2 | Current understanding of wake-promoting circuitry in the mouse brain. During periods of wake, the wake-promoting nuclei (green circles) become active
and inhibit sleep-promoting regions (dark green lines), particularly the POA. Inhibitory projections to other sleep-promoting regions have yet to be established. The
orexinergic LH stabilizes the wake state by exciting many of the wake-promoting areas (light green arrows). Many of the wake-promoting regions (LH, TMN, SuM,
RN, vPAG, LC) also promote wakefulness by activating the cortex, as illustrated by the BF (light green arrows). Figure created with BioRender.com.

recovery sleep following sleep deprivation (Sherin et al., 1996;
Gvilia et al., 2006). However, more recent studies found that
the VLPO exhibits increased c-Fos expression and higher firing
rates during sleep deprivation, prior to recovery sleep, suggesting
at least a minor role for VLPO in sleep homeostasis as well
(Gong et al., 2004; Alam et al., 2014). These may represent
two distinct subpopulations within VLPO: one that promotes
sleep in response to sleep pressure, and one that maintains sleep
(Gallopin et al., 2005).

Similar to VLPO, the MnPO consists largely of GABAergic
neurons that are most active during NREM and REM sleep

compared to baseline wake (Gong et al., 2000; McGinty et al.,
2004; Alam et al., 2014). These neurons are also sleep-promoting,
as chemogenetic activation of the GABAergic MnPO promotes
sleep (Vanini et al., 2020). However, MnPO activity appears to
correlate with sleep pressure rather than sleep amount (Suntsova
et al., 2002). The number of c-Fos positive, GAD-expressing
MnPO neurons is highest following sleep deprivation but prior
to recovery sleep (Gvilia et al., 2006). Additionally, sleep-
active MnPO neurons exhibit increased firing rates as sleep
pressure builds during sleep deprivation, ultimately firing twice
as frequently after 2 h of sleep deprivation compared to baseline
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FIGURE 3 | Distribution of sleep-active and wake-active neurons in the POA. Camera lucida drawings of frontal sections (five different planes at 0.2 mm intervals
rostral to caudal). (A–E) Distribution of ChAT-immunoreactive neurons (dots and circles). (F–J) The four groups of sleep-active neurons (squares, circles, circles with
a central dot, and dots). (K–O) Distribution of waking-specific (squares), waking/PS-specific (circles), and waking/PS-active (dots and thick-lined circles) neurons.
The dots and circles in (A–E) indicate heavily and faintly stained ChAT-immunoreactive neurons, respectively. The large and small symbols indicate rapidly firing (fast)
and slowly firing (slow) neurons, respectively. The thick-lined circles in (K,M,O) indicate W/PS-active neurons discharging in close relation to theta waves. 3V, third
ventricle; ac, anterior commissure; BST, bed nucleus of the stria terminalis; f, fornix; LA, lateroanterior hypothalamic nucleus; opt, optic tract; OX, optic chiasma;
SCh., suprachiasmatic nucleus; SON, supraoptic nucleus; VP, ventral pallidum. Modified from Takahashi et al. (2009). Reprinted with permission from Elsevier.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 64433020

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644330 February 8, 2021 Time: 18:13 # 6

Reitz and Kelz POA Regulation of Arousal

sleep. This firing returns to baseline levels as the animal is allowed
to sleep (Alam et al., 2014). Together, this suggests a role for the
MnPO in tracking sleep debt and maintaining sleep homeostasis.

The MnPO may contribute to sleep homeostasis via inhibition
of numerous wake-promoting regions. Like the VLPO, the
MnPO is also reciprocally connected to many members of the
arousal-promoting circuitry, including the cholinergic BF, LH,
TMN, RN, PB, and LC (Steininger et al., 2001; Yoshida et al.,
2006; Uschakov et al., 2007). MnPO neurons with projections to
the RN and vPAG exhibit increased expression of c-Fos during
sleep (Uschakov et al., 2009; Hsieh et al., 2011). Furthermore,
activation of MnPO neurons suppresses activity in the wake-
active LH, while inhibition of the MnPO had the opposite effect
(Suntsova et al., 2007). Similarly, inhibition of MnPO neurons
increases c-Fos in the orexinergic LH neurons and serotonergic
RN neurons (Kumar et al., 2008), further suggesting functional
inhibition of these two wake centers by the MnPO. In contrast
to the MnPO and VLPO, sleep-active neurons in the LPO do
not show increased activity in response to sleep deprivation
(Alam et al., 2014), suggesting this population is not involved in
sleep homeostasis.

One possible mechanism by which the POA senses sleep
pressure is via a buildup of sleep-generating small molecules,
called somnogens, in the brain (Benington and Craig Heller,
1995; Porkka-Heiskanen et al., 1997; Scammell et al., 2001;
Basheer et al., 2004). One of the best studied somnogens is
adenosine. Adenosine is a byproduct of metabolism in the
brain, and brain levels of this molecule increase across waking
and during sleep deprivation, decreasing during recovery sleep
(Porkka-Heiskanen et al., 1997, 2000; Basheer et al., 2004;
Kalinchuk et al., 2011). Application of adenosine to VLPO
neurons in ex vivo rat brain slices suppresses spontaneous
IPSPs (Chamberlin et al., 2003). Furthermore, administration
of adenosine A2A receptor agonists into the POA directly
activates VLPO neurons and promotes sleep in rats (Ticho and
Radulovacki, 1991; Gallopin et al., 2005; Kumar et al., 2013).
Additionally, local administration of A2A receptor antagonists
into the VLPO reduces sleep deprivation- and recovery sleep-
induced firing of VLPO neurons (Alam et al., 2014). Finally,
the aforementioned cycles of adenosine levels in the POA
that correspond to sleep and wake are present in rats at
post-natal day 30 (P30), but not at P22, suggesting that the
development of this homeostatic response to sleep loss coincides
with the functional emergence of adenosine signaling in the
brain. This study also found that sleep-active MnPO neurons are
more responsive to sleep deprivation at P30 compared to P22
(Gvilia et al., 2017).

Another small molecule linked to sleep pressure is
prostaglandin D2 (PGD2). PGD2 is generated in the
leptomeninges and choroid plexus, and is found circulating
in the cerebrospinal fluid, where it fluctuates in parallel with
the sleep-wake cycle (Huang et al., 2007). Like adenosine, PGD2
levels also increase during sleep deprivation (Ram et al., 1997).
Administration of PGD2 in the subarachnoid space just anterior
to the MnPO and VLPO promotes sleep and increases c-Fos
expression in VLPO neurons (Scammell et al., 1998; Hayaishi
and Urade, 2002). This effect is likely mediated by adenosine, as

infusion of PGD2 into the subarachnoid space dose-dependently
increases extracellular adenosine (Mizoguchi et al., 2001).

As emphasized earlier, regulating the timing and stability of
sleep and wake is critical for health and survival, as life-sustaining
activities such as eating, seeking shelter, copulating, and escaping
from danger all depend upon proper control of arousal. Multiple
lines of evidence suggest the POA is capable of integrating
diverse inputs, such as temperature and energy status, to produce
the most appropriate arousal state response. For instance, local
administration of glucose in the VLPO, simulating the “well-fed”
state, activates VLPO neurons and promotes NREM sleep, thus
providing a potential link between metabolism/energy status and
arousal state regulation in the POA (Varin et al., 2015).

Under more extreme conditions, when faced with resource
scarcity, some mammals will adapt by initiating energy-
conserving survival strategies, such as hibernation or torpor.
Recent work highlights that the MPO and LPO are capable
of overriding homeostatic setpoints to coordinate profound
reductions in metabolism, body temperature, and caloric need
to enhance survival (Hrvatin et al., 2020). Work in hibernating
ground squirrels has shown increases in c-Fos expression
in MPO neurons during entry into hibernation (Bratincsák
et al., 2007). Additionally, microinjections of opioid receptor
antagonists into the POA of hibernating ground squirrels
increased the squirrels’ body temperature and induced arousal
from hibernation, suggesting a role for opioid signaling in the
POA in hibernation (Yu and Cai, 1993).

Even under less extreme conditions, alterations in body
temperature are known to correlate with arousal state. The
onset of sleep coincides with a decline in body temperature,
and entry into REM is accompanied by near total inhibition
of thermoregulatory responses in many species (Krueger and
Takahashi, 1997). The POA is poised to be the link between
sleep and thermoregulation, as the POA is known to contain
thermosensitive and thermoregulatory neurons (Zhao et al.,
2017; Ma et al., 2019), with many of the warm-sensitive POA
neurons also exhibiting sleep-active firing, while cold-sensitive
POA neurons show increased activity during wake (Alam et al.,
1995, 1997). Further supporting this link is evidence that local
warming of the broad POA or the GABAergic MPO neurons
promotes sleep (Roberts and Robinson, 1969; Harding et al.,
2018), while local cooling promotes wakefulness (Sakaguchi et al.,
1979; McGinty and Szymusiak, 1990).

Recent studies using activity-dependent tagging and
reactivation of neurons further reveal a link between arousal
state and body temperature. Reactivation of neuronal nitric oxide
synthase (Nos1)-expressing MnPO/MPO neurons activated
during external warming induces both sleep and hypothermia
in mice, while reactivation of warming-tagged GABAergic
MPO neurons produces NREM sleep (Harding et al., 2018).
Further investigations revealed that reactivation of MPO or LPO
neurons that were activated during recovery sleep produces
profound drops in body temperature (Zhang Z. et al., 2015).
Additionally, chemogenetic activation of galaninergic VLPO
neurons reduces core body temperature by 4–6◦C (Kroeger
et al., 2018). Moreover, activation of those same neurons at
warmer temperatures (29 and 36◦C) decreases latency to NREM

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 64433021

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644330 February 8, 2021 Time: 18:13 # 7

Reitz and Kelz POA Regulation of Arousal

and increases NREM duration compared to activation at 22◦C
(Kroeger et al., 2018). The extreme drop in body temperature
resulting from galaninergic VLPO activation also suggests a
role for the VLPO in torpor, another state of unconsciousness
accompanied by hypothermia, decreased metabolism, and slow
wave EEG activity (Berger, 1984).

POA REGULATION OF DRUG-INDUCED
UNCONSCIOUSNESS

While sleep is a universal, natural form of unconsciousness,
unconsciousness also occurs under general anesthesia. However,
despite the use of anesthetics for over 170 years and in over
300 million surgeries annually (Weiser et al., 2016), the precise
molecular and neuronal mechanisms underlying their hypnotic
actions remain poorly understood.

The molecular mechanisms of anesthetic-induced
unconsciousness remain unknown due in part to the transient
interactions and promiscuous number of general anesthetic
binding partners (Eckenhoff, 2001; Urban, 2002), yet all produce
an apparently similar behavioral endpoint. While a variety of ion
channels are affected by anesthetics, the net effect of anesthetic
binding is the hyperpolarization of resting membrane potentials,
enhancement of inhibitory neurotransmission, and inhibition
of excitatory neurotransmission (Rudolph and Antkowiak,
2004). With the knowledge that anesthetics act on a diverse
range of ion channels yet all enhance inhibition and/or inhibit
excitation, more recent research has examined the hypothesis
that anesthetics may exert their effects not by acting at identical
molecular targets, but rather by differentially affecting neurons
in a common neural pathway. However, because these receptors
are widely expressed throughout the brain, identifying the
exact neural circuits critical for producing a state of anesthesia
has been difficult.

The Shared Circuitry Hypothesis
One target that has emerged as a likely mediator of anesthetic
hypnosis is the neural circuitry governing sleep and arousal
discussed earlier. Although sleep and anesthesia are undoubtedly
two distinct states, they share a number of similar traits (Lydic
and Biebuyck, 1994). For example, both NREM sleep and
anesthetic hypnosis show EEG patterns that include spindles
and slow waves (Murphy et al., 2011). Neuroimaging studies
have also shown reduced activity in brain regions involved in
arousal (Alkire et al., 2000; Vahle-hinz et al., 2001; Detsch et al.,
2002) as well as cortical regions involved in association and
integration in both states of unconsciousness (Fiset et al., 1999;
Franks, 2008).

In addition to these phenotypic similarities, multiple lines of
evidence demonstrate a functional relationship between sleep and
anesthetic hypnosis. Sleep deprivation reduces the amount of
anesthetic required to enter the hypnotic state (Tung et al., 2002),
while administration of barbiturates during the waking phase
results in a shorter duration of hypnosis (Einon et al., 1976).
Furthermore, administration of select anesthetics for prolonged
periods does not incur new sleep debt and may actually relieve

preexisting sleep debt (Tung et al., 2004; Nelson et al., 2010;
Pal et al., 2011; Pick et al., 2011). These findings have led to
what is known as the “shared circuitry hypothesis” of anesthesia,
which posits that anesthetics exert their hypnotic effects in part
by acting on the neural circuitry that regulates endogenous
sleep and wake. More specifically, this theory hypothesizes
that anesthetics cause unconsciousness via activation of sleep-
promoting populations and/or inhibition of wake-promoting
populations, rather than by the wet-blanket theory of non-
specific, global disruption of CNS function (Lydic and Biebuyck,
1994; Yatziv et al., 2020).

Although a number of studies have implicated sleep- and
wake-regulating brain areas in anesthetic hypnosis, controversy
remains as to whether the neural circuits, and more specifically,
the same neurons shaping sleep and wakefulness actually do
influence the anesthetic state in vivo. Past work has demonstrated
that the POA, in addition to modulating sleep and wake, is
also capable of modulating anesthetic-induced unconsciousness
(Nelson et al., 2002; Lu et al., 2008; Li et al., 2009; Moore et al.,
2012; Liu et al., 2013; Han et al., 2014; McCarren et al., 2014;
Zhang Y. et al., 2015; Yatziv et al., 2020). However, the degree to
which the same population of neurons within the POA modulates
arousal in both sleep and anesthesia is unclear.

POA Involvement in General Anesthesia
Because the VLPO and MnPO contain the highest densities of
sleep-active neurons, the majority of work investigating the role
of the POA in anesthetic hypnosis has focused on these two
regions, particularly the VLPO.

VLPO
Exposure to hypnotic doses of all anesthetics except for ketamine
increases c-Fos expression in VLPO (Nelson et al., 2002; Lu
et al., 2008; Li et al., 2009; Moore et al., 2012; Han et al.,
2014), positioning this region as a potential common mediator
of anesthetic hypnosis. Furthermore, c-Fos expression in VLPO
is positively correlated with isoflurane dose, suggesting that
isoflurane may dose-dependently activate VLPO neurons (Moore
et al., 2012). Activation of VLPO under anesthesia may arise
from either disinhibition or from direct excitation. This has
not been examined for many anesthetics, though isoflurane is
known to directly depolarize putative sleep-active VLPO neurons
(Moore et al., 2012). However, not every VLPO neuron is
activated by isoflurane. Single cell recordings within VLPO reveal
two distinct subpopulations: isoflurane-activated VLPO neurons,
and isoflurane-inhibited VLPO neurons (Moore et al., 2012;
McCarren et al., 2014). The isoflurane-activated neurons are
considered to be putative sleep-active as well since they match
the ex vivo neurochemical phenotype of low-threshold spiking
neurons that are inhibited by norepinephrine (Moore et al.,
2012); however, formal in vivo proof of this potential convergence
was not obtained.

On a functional level, VLPO lesions increase resistance to
propofol, significantly increasing the time to loss of righting
reflex after administration and decreasing the duration of loss
of righting reflex (Zhang Y. et al., 2015). Lesions of VLPO
neurons also increase wakefulness and decrease isoflurane

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 64433022

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644330 February 8, 2021 Time: 18:13 # 8

Reitz and Kelz POA Regulation of Arousal

sensitivity, though only acutely following the lesion. This
decreased sensitivity to isoflurane subsequently transitioned to
enhanced sensitivity at later timeponts (Eikermann et al., 2011;
Moore et al., 2012). The enhanced sensitivity to isoflurane
observed at these later timepoints is thought to be the result of
sleep deprivation caused by the VLPO lesions, which increases
sensitivity to anesthetics as discussed earlier (Tung et al.,
2002). Conversely, inhibition of VLPO neurons, via activation
of α2 adrenergic receptors, increases behavioral arousal under
isoflurane anesthesia (McCarren et al., 2014). Together, these
results support a role of VLPO in regulating arousal under
anesthesia. However, these studies did not confirm their VLPO
modulations also affected sleep/wake activity. Thus, though
evidence supports a role for the VLPO in arousal state
regulation under sleep/wake and anesthesia, to what degree
these two populations converge remains an open question.
Recent work supports the existence of two distinct populations
within the VLPO, demonstrating that chemogenetic activation
of GABAergic VLPO neurons alters sleep-wake architecture
without affecting anesthetic sensitivity or recovery time in the
same mice (Eikermann et al., 2011; Vanini et al., 2020).

MnPO
Evidence for a role of the MnPO in anesthetic hypnosis is much
less clear than VLPO. Exposure to isoflurane increases c-Fos
expression in MnPO neurons, however, exposure to halothane,
pentobarbital, and chloral hydrate do not (Lu et al., 2008; Han
et al., 2014). This activation by isoflurane likely results from
either disinhibition or secondary activation via VLPO or another
anesthetic-activated region, as isoflurane-induced activation of
MnPO does not occur in the presence of tetrodotoxin (Han
et al., 2014). Additionally, reactivation of MnPO neurons that
were active during dexmedetomidine-induced sedation does
not promote sleep (Zhang Z. et al., 2015) and activation of
GABAergic MnPO neurons that promote sleep do not alter
anesthetic state transitions (Vanini et al., 2020), suggesting that
anesthetic-activated MnPO neurons are not the same neurons
that promote sleep.

Broader POA
POA Tac1 neurons that promote and consolidate wakefulness
also enhance resistance to isoflurane and sevoflurane anesthesia
(Reitz et al., 2020). This increase in resistance is more
pronounced on emergence from the anesthetic state compared
to induction. Thus, the potent effects of Tac1 activation
work to support the waking state over both endogenous as
well as anesthetic-induced impairment of arousal. However,
chemogenetic inhibition of this population had no effect on
either sleep or anesthetic sensitivity. Whether this is due to a
technological limitation, a relative quiescence of Tac1 neurons
at baseline, or a true indication that POA Tac1 neurons are
sufficient but not necessary for promoting wakefulness remains
to be seen. Also unclear is whether POA Tac1 neurons play any
endogenous role in circuits regulating natural sleep/wake and
those regulating anesthetic-induced unconsciousness, or whether
POA Tac1 neurons increase resistance to anesthesia via a neural
pathway independent from that utilized by general anesthetics.

POA Involvement in Sedation
Distinct from the deep unconsciousness achieved by general
anesthetics such as propofol or isoflurane, dexmedetomidine
produces a state of moderate sedation. This moderate sedation
shares many properties with natural sleep, with both states
characterized by a loss of consciousness, but intact ability to be
aroused by external stimuli.

A recent study examined the relationship between sleep
and dexmedetomidine-induced sedation in the LPO. Zhang
and colleagues show that the same neurons active during
dexmedetomidine-induced sedation promote NREM sleep when
subsequently re-activated. Zhang’s clever use of the TetTag system
provides causal support for the shared circuitry hypothesis in
the LPO. Whether these results are true for general anesthetics
such as isoflurane or propofol remain unknown. Additionally,
re-activation of these dexmedetomidine-active LPO neurons
produces a drop in body temperature, linking the POA to
thermoregulation in both natural and drug-induced forms
of unconsciousness. Finally, deletion of the Vgat gene from
LPO neurons increases resistance to dexmedetomidine-induced
sedation (Zhang Z. et al., 2015), suggesting that GABAergic
LPO neurons specifically are required for dexmedetomidine-
induced sedation.

CHALLENGES IN STUDYING AROUSAL
REGULATION BY THE POA

Molecular Heterogeneity
Perhaps the largest challenge facing the study of arousal
regulation by the POA is the immense heterogeneity of the
region (Figure 4; Moffitt et al., 2018). In addition to regulating
arousal state, the POA is involved in many essential social
and homeostatic functions, including thermoregulation, thirst
and osmotic homeostasis, parenting, and social play behaviors
(Sternson, 2013; Wu et al., 2014; Scott et al., 2015; Tan
et al., 2016; Allen et al., 2017; Leib et al., 2017; Zhao et al.,
2020). As mentioned earlier, heterogeneity exists even among
arousal state regulating neurons in the POA, with sleep-active
neurons interspersed among wake-active and arousal state-
indifferent neurons (Kaitin, 1984; Szymusiak and McGinty,
1986a; Szymusiak et al., 1998). Recordings in the LPO and MPO
found 21% of recorded neurons to be wake/REM-active, 66%
to be sleep-active, and 13% to be state-indifferent (Figure 3;
Takahashi et al., 2009). Additional recordings of 128 LPO
neurons show that roughly 38% are wake/REM-active, 43% are
sleep-active, and 19% are state-indifferent (Alam et al., 2014).
Similarly, although the VLPO and MnPO are more densely
populated by sleep-active neurons, roughly 20% of neurons in
each area are estimated to be wake-active (Gaus et al., 2002;
Alam et al., 2014).

Because of this heterogeneity, the majority of studies
investigating arousal state regulation by the POA have
focused on two broad classes of neurons: the inhibitory
GABAergic/galaninergic neurons typically shown to be sleep-
active, and the excitatory glutamatergic neurons, typically
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FIGURE 4 | Major cell classes and their spatial organizations in the POA as revealed with MERFISH. (Top) Spatial distribution of all major cell classes across sections
at different anterior–posterior positions from a single female mouse. Cells are marked with cell segmentation boundaries and colored by cell classes as indicated. Six
of the twelve 1.8- by 1.8-mm imaged slices are shown. The 0, 100, 200, 300, 400, and 500 mm labels indicate the distance from the anterior position
(Bregma + 0.26). (Bottom) Enlarged image of the slice at 400 mm from the anterior position (left) and a further magnified image of the region shown in the gray
dashed box (right). Scale bars, 500 mm (left), 250 mm (right). From Moffitt et al. (2018). Reprinted with permission from AAAS.

associated with wake. However, the assumption that inhibitory
neurons are sleep-active and excitatory neurons are wake-active
is not as straightforward as is often assumed. Though the
majority of galaninergic VLPO neurons are sleep-active, roughly
20% of the population is actually wake-active (Gaus et al., 2002).
Further, of the POA neurons activated during recovery sleep,
roughly 15% are glutamatergic (Zhang Z. et al., 2015). These
functional differences within the broad class of excitatory POA
neurons is further illustrated by work showing that activation
of glutamatergic VLPO neurons promotes wake (Vanini et al.,
2020), while activation of largely glutamatergic NOS1-expressing
MnPO neurons causes entry into NREM sleep (Harding et al.,
2018). While activation of inhibitory POA neurons promotes
sleep in some studies (Chung et al., 2017; Kroeger et al., 2018;
Ma et al., 2019), yet have no effect on sleep or wake in others
(Vanini et al., 2020).

As a result, investigations into the role of inhibitory
POA neurons in anesthetic-induced unconsciousness have also
produced sometimes-opposing results. For instance, isoflurane-
induced unconsciousness directly depolarizes and increases
expression of c-Fos in putative sleep-active GABAergic neurons
within the VLPO (Moore et al., 2012), yet broad activation of
this GABAergic population alters sleep-wake architecture (Saito
et al., 2013; Kroeger et al., 2018) without affecting the time to

anesthetic induction or time required for emergence (Vanini
et al., 2020). Together, this emphasizes that these molecular
markers traditionally used to distinguish the sleep-active and
wake-active populations within the POA are not accurate enough,
and that a more refined targeting of POA cell types is needed
when investigating arousal state regulation.

The immense heterogeneity of these two neuronal subtypes
may underlie these differing results. Recent studies have
shown that the molecular marker chosen to access the
inhibitory population is one important consideration. The GABA
transporter, VGAT, is rarely expressed alongside Vglut2, the
glutamatergic transporter. However, GABA synthesis genes gad1
and gad2 are sometimes expressed in the same neurons as Vglut2,
representing a population of POA neurons capable of coreleasing
GABA and glutamate (Romanov et al., 2016; Moffitt et al., 2018).
Thus, studies using Gad as a marker of inhibitory neurons in the
POA may unintentionally also modulate glutamatergic signaling
to an unknown degree. Furthermore, recent single-cell RNA-
sequencing of GABAergic and glutamatergic neurons within the
POA has revealed an enormous level of molecular diversity
within these two groups, consisting of nearly 70 subpopulations
clustered based on gene expression (Moffitt et al., 2018). Even
more selective neuropeptide markers may be inadequate to
conclusively distinguish sleep-from wake-promoting neuronal
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populations within the POA, as activation of POA Tac1 neurons
has been shown to increase sleep in one investigation (Chung
et al., 2017), yet strongly enhance and stabilize wakefulness in
another (Reitz et al., 2020).

Together, this suggests that a single molecular marker may
not be sufficient to accurately distinguish sleep and wake
population within the POA. Molecular markers combined
with projection-specific labeling may be one method to more
accurately identify these populations, as past work has shown that
optogenetic activation of GABAergic POA neuronal cell bodies or
glutamatergic POA projections to the TMN produces wake, while
activation of GABAergic POA terminals in the TMN produces
sleep (Chung et al., 2017). However, optogenetic stimulation
of GABAergic POA projections to either the habenula or the
dorsomedial hypothalamus have no effect on arousal state
(Chung et al., 2017), further emphasizing the importance of
examination specific axonal targets.

Methodological Limitations and
Considerations
Another set of challenges when studying arousal state regulation
by the POA arise from methodological limitations, both from
an experimental design standpoint and inherent limitations
with the methods themselves. Studies investigating the shared
circuitry hypothesis in the POA often use GABA or galanin
as markers of the sleep-active neuronal population, yet many
fail to confirm that these same anesthetic-activated neurons
are also involved in arousal regulation. Thus, though multiple
lines of evidence demonstrate that general anesthetics and
sedatives modulate the activity of the POA, and even the
GABAergic/galaninergic POA, it is still unclear whether the
same population of neurons involved in sleep/wake regulation
also modulate arousal in response to general anesthetics, or
whether these are two separate populations that exist in the same
region. Given the uncertainty of the exact role of GABAergic
and glutamatergic POA neurons in sleep and wake, it is clear
that modulations of sleep and anesthesia must be examined
in the same cohort without assuming that neurons expressing
a particular molecular marker represent an arousal state-
regulating population.

Another important consideration when studying arousal state
regulation in the POA is the method of activation used. We
recently demonstrated that chemogenetic activation of POA
Tac1 neurons using designer receptors exclusively activated
by designer drugs (DREADDs) strongly stabilizes the wake
state, decreasing the number of transitions between sleep and
wake while greatly increasing the average length of wake bouts
(Reitz et al., 2020). This is in contrast to previously published
results describing NREM-promoting effects when POA Tac1
neurons are optogenetically activated (Chung et al., 2017). It
is possible that fundamental differences between the neuronal
activation achieved by DREADDs compared to that achieved
by optogenetics underlie these contrasting findings. While we
will briefly discuss important considerations to take into account
when utilizing either method, more detailed comparisons of these
techniques can be found in a number of reviews specifically

discussing this topic (Aston-Jones and Deisseroth, 2013; Krook-
Magnuson and Soltesz, 2015; Vlasov et al., 2018).

When utilizing optogenetic activation, the stimulation
frequency is a critical concern. This has been highlighted in
recent work demonstrating optogenetic activation of GABAergic
POA neurons promotes wakefulness when stimulated at 10 Hz
(Chung et al., 2017). However, chemogenetic activation or
optogenetic activation at lower frequencies (0.5–4 Hz), which
more closely match the endogenous firing rate during NREM
sleep, have been shown to promote NREM sleep (Kroeger
et al., 2018). This discrepancy is likely due to a conduction block
resulting from stimulation above 8 Hz, functionally inhibiting the
neurons (Kroeger et al., 2018). Thus, in addition to emphasizing
the importance of identifying endogenous firing rates of the
targeted neuronal population, these results demonstrate that
care should be given to stimulate the neurons at a frequency
that matches their endogenous firing rate during the behavioral
state of interest.

The interpretation of results from chemogenetic or
optogenetic inhibition presents another set of challenges.
Inhibition using hM4Di DREADDs is known to have variable
efficacy, with incomplete suppression of activity of hM4Di-
expressing neurons occurring whether CNO is administered
locally or systemically (Mahler et al., 2014; Chang et al., 2015;
Cichon and Gan, 2015). Our own hM4Di results reflect this, with
the number of c-Fos-expressing POA Tac1 neurons decreasing
by only 30% after systemic administration of 3 mg/kg CNO.
Incomplete inhibition may not be enough to alter behavior,
given that many of the neurons of interest remain active. While
optogenetic inhibition with halorhodopsin or archaerhodopsin
may be more effective at silencing neuronal activity than
chemogenetic inhibition, the effect of photoinhibition is more
spatially limited, only to the area illuminated by the laser.
Thus, the laser penetration may not be enough to effectively
silence the entire POA.

Ultimately, the benefits and drawbacks of each method must
be weighed carefully in order to select the most appropriate
technique for a given experiment, and comparisons of studies
using each technique when investigating POA regulation of
arousal state will be important to fully untangle its role.

TECHNICAL INNOVATIONS

New innovations in biomedical science and equipment are
bringing the field ever closer to untangling the role of
the POA in natural and anesthetic-induced arousal state
regulation. The use of more temporally specific measurements
of neuronal activity, such as calcium imaging and in vivo
electrode recordings in freely behaving animals, now allows
for examinations of POA neuronal activity across sleep stages
as well as anesthetic induction, maintenance, and emergence.
Given evidence that the neural circuitry involved in anesthetic
induction may not be identical to that involved in emergence
(Kelz et al., 2008; Dong et al., 2009; Gompf et al., 2009;
Friedman et al., 2010; Zhang et al., 2012, 2016), the ability to
record neuronal activity across each of these phases will
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be an invaluable contribution to understanding anesthetic
mechanisms. Additionally, advancements in neural circuit
mapping such as channel rhodopsin-assisted circuit mapping
(Petreanu et al., 2007) will aid in distinguishing functional
projections to and from the POA that may help mediate the
region’s effects on arousal state.

One exciting area of technical innovation lies in techniques
linking immediate early gene expression to an effector molecule,
controlled by pharmacological treatment. These have been
discussed in detail in a recent review (Franceschini et al., 2020),
so we will only highlight a selection here. One technique that
has already been utilized to study the POA is the TetTag system
(Reijmers et al., 2007). This system uses the Fos promoter
to drive the expression of a tetracycline transactivator in the
absence of doxycycline. Thus, this system is switched off in the
presence of doxycycline, which can be administered in a number
of ways. Once doxycycline is removed and a c-Fos activating
stimulus occurs, the tetracycline transactivator is expressed,
ultimately driving the expression of a downstream effector
molecule, which can include optogenetic or chemogenetic tools
(Reijmers et al., 2007).

This TetTag system has been used to study the relationship
between sleep and dexmedetomidine-induced sedation in the
POA. Neurons tagged with excitatory DREADDs during
dexmedetomidine sedation and later reactivated promote sleep,
demonstrating that an identical population of neurons is
involved in both states (Zhang Z. et al., 2015). Given that
dexmedetomidine produces a type of sedation distinct from
other general anesthetics, the degree to which this result can
be generalized to other anesthetics is not clear given the
distinct types of unconscious induced by each. Still, these results
highlight the utility of this technique when investigating arousal
state regulation.

Another drug-dependent immediate early gene-linked
technique is targeted recombination in active populations
(TRAP), which shows improved temporal resolution compared
to TetTag (Guenthner et al., 2013). This technique places a
tamoxifen-inducible recombinase under control of an immediate
early gene reporter such as c-Fos. Thus, the recombinase is
only active in the presence of tamoxifen, the administration
of which is controlled by the experimenter. By coupling this
technique with optogenetic and chemogenetic effector molecules,
neuronal populations active during a specific task or time can
be TRAPed and later reactivated (Franceschini et al., 2020).
Additionally, neuronal populations can be TRAPed with a
fluorescent molecule during one stimulus and this fluorescent
pattern can be compared to a c-Fos signal induced by a later,
second type of stimulus. A new version of TRAP (TRAP2)
was also recently developed that exhibits enhanced effector
expression and improved penetration in many brain regions
(DeNardo et al., 2019).

Finally, another recently developed immediate early gene-
linked tool has already been used to study sleep and anesthetic
mechanisms. This technique, called capturing activated neuronal
ensembles with engineered mice and viruses (CANE), inserts a
destabilized avian tumor virus receptor A (TVA) under the
control of the Fos promoter (Sakurai et al., 2016). Thus, the TVA

is only expressed in activated neurons, and only for a window
of a few hours until the TVA is degraded. A virus pseudotyped
with the ligand of TVA, EnvA, is injected into the brain region
of interest and infects neurons that express TVA during the
injection window. This virus can carry fluorescent proteins to
label the active neurons, or chemogenetic or optogenetic effector
molecules to enable subsequent activation or inhibition of this
tagged population (Sakurai et al., 2016; Jiang-Xie et al., 2019).
Though not in the POA, this technique identified a population
of anesthetic-activated neurons in the neighboring supraoptic
nucleus that promote NREM sleep when reactivated at a later
time (Jiang-Xie et al., 2019), highlighting the power of this
technique in investigations of the shared circuitry hypothesis in
the POA and other regions.

CONCLUSION

Understanding the role of the POA in regulating arousal state
is a critically important topic, given the range of consequences
that result from improper arousal state regulation. Each
year a small but nevertheless significant number of patients
experience undesirable arousal state transitions in response
to general anesthesia. Such patients may regain consciousness
during surgery (Sebel et al., 2004; Mashour and Avidan, 2015;
Sanders et al., 2017) or exhibit delayed emergence from the
anesthetic state (Mesa et al., 2000; Cascella et al., 2018). Thus,
understanding the mechanisms by which general anesthetics
alter the arousal state of an organism, producing a state of
unconsciousness, is an important medical question to ultimately
reduce or prevent these inappropriate arousal state transitions
from occurring. Additionally, insights into the mechanisms
of anesthetic-induced unconsciousness will have important
implications for our understanding of the neural basis of
consciousness and natural arousal state regulation itself, as
well as disorders of consciousness such as coma and sleep
disorders. With the continuous improvement and development
of technical methods and an improved ability to distinguish
and target arousal state-regulating neurons, our understanding
of the exact role that POA plays in regulating arousal states
under natural sleep and wake as well as general anesthesia is
closer than ever.
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“Neural inertia” is the brain’s tendency to resist changes in its arousal state: it is
manifested as emergence from anaesthesia occurring at lower drug doses than those
required for anaesthetic induction, a phenomenon observed across very different
species, from invertebrates to mammals. However, the brain is also subject to another
form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion
and impaired performance that typically follows awakening. Here, we propose a novel
account of neural inertia, as the result of sleep inertia taking place after the artificial sleep
induced by anaesthetics. We argue that the orexinergic and noradrenergic systems
may be key mechanisms for the control of these transition states, with the orexinergic
system exerting a stabilising effect through the noradrenergic system. This effect may
be reflected at the macroscale in terms of altered functional anticorrelations between
default mode and executive control networks of the human brain. The hypothesised
link between neural inertia and sleep inertia could explain why different anaesthetic
drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic
patients are more susceptible to neural inertia. This novel hypothesis also enables us
to generate several empirically testable predictions at both the behavioural and neural
levels, with potential implications for clinical practice.

Keywords: neural inertia, sleep inertia, anaesthesia, orexin, noradrenaline, anticorrelations, aging

INTRODUCTION

Anaesthesia and Sleep
General anaesthesia refers to a pharmacological intervention designed to produce a state of
controlled and reversible unconsciousness and unresponsiveness to sensory stimulation. Its
discovery is among the greatest in medical history: it allows surgeons to perform millions of
life-saving interventions every year, which would be otherwise impossible or extremely distressing.

However, the mechanisms of anaesthetic action in the brain remain incompletely understood—
especially since multiple anaesthetic drugs exist, with different pharmacological profiles (Scharf and
Kelz, 2013). Nevertheless, anaesthesia is not the only way in which one can become unconscious:
the brain exhibits a strong need for periodic unconsciousness in the form of sleep, with the average
human spending about a third of their life in this state. A sleep-like state of rapidly reversible
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physical quiescence, with elevated thresholds to sensory
stimulation, has been identified in most species, including even
insects (Shaw, 2000) and nematodes (Raizen et al., 2008).

In addition to behavioural similarities with sleep, several
anaesthetic drugs generate EEG rhythms that resemble those
observed during different stages of sleep: halothane and
isoflurane produce a theta rhythm (5–9 Hz) reminiscent of
rapid eye movement (REM) sleep (Pang et al., 2009), whereas
the GABA-ergic agent propofol and the α2-adrenoreceptor
agonist dexmedetomidine induce slow-wave activity (<4 Hz)
analogous to what is observed during non-REM (NREM) sleep
(Gent and Adamantidis, 2017). Given the behavioural and
electrophysiological similarities between sleep and the effects
of several anaesthetic agents, the neuronal circuitry underlying
sleep may provide critical insights into the mechanisms of
anaesthetic action (Karan et al., 2007), with evidence that at least
some anaesthetics do in fact intervene on sleep-wake regulating
neurons, especially in hypothalamic areas (Franks, 2008; Zecharia
et al., 2009; Zhang et al., 2015; Gent and Adamantidis, 2017)—
although it should be noted that this similarity is not universal:
some other anaesthetics produce desynchronised EEG with little
resemblance to sleep EEG, e.g., ketamine, benzodiazepines (Gent
and Adamantidis, 2017). The function of sleep is only partly
understood, and several different theories have been put forward
to explain the existence of this peculiar state (Vyazovskiy, 2015;
Joiner, 2016; Krueger et al., 2016), including energy restoration
(Berger and Phillips, 1995; Schmidt, 2014) memory consolidation
(Abel et al., 2013) and synaptic homeostasis (Tononi and Cirelli,
2014, 2016). Nevertheless, the brain circuits that control sleep
are relatively well understood: a wake-promoting and a sleep-
promoting system interact in the brain (Figure 1; Saper et al.,
2005; Luppi, 2010; Weber and Dan, 2016).

The ascending reticular activating system (Moruzzi and
Magoun, 1949) comprises cholinergic, monoaminergic
(serotonin, noradrenaline, histamine) and orexinergic nuclei
in the brainstem, basal forebrain, and hypothalamus—with
wide-ranging projections throughout the entire brain (Luppi,
2010). The hypothalamus also contains key sleep-promoting
neuronal populations; in particular, the ventrolateral preoptic
area (VLPO) and median preoptic area (MNPO) primarily
express the inhibitory neurotransmitters γ-aminobutyric acid
(GABA) and galanin, and project to all major hypothalamic
and brainstem nuclei of the wake-promoting system (Sherin
et al., 1996). Homeostatically arranged, the sleep-active neurons
of the preoptic hypothalamus are in turn inhibited by the
wake-active nuclei they target, especially those of predominantly
noradrenergic and serotonergic transmitter phenotype (Gallopin
et al., 2000; Chou et al., 2002). This architecture of mutually
inhibitory wake-promoting and sleep-promoting circuits
constitutes what is known as a “flip-flop switch” (Saper et al.,
2001, 2005, 2010): a bistable system characterised by sharp
transitions between its two possible states. Damage to the wake-
promoting system causes excessive sleep, while insomnia results
from damage to the VLPO (Economo, 1930; Lu et al., 2000). In
addition to their sleep-promoting effects, VLPO neurons have
also been implicated in the mechanisms of action of anaesthetic
drugs (Moore et al., 2012; Zhang et al., 2015). Of note, recent

evidence also indicates a common role of hypothalamic
neuroendocrine cells of the mouse in sleep generation and
general anaesthesia induced by several different anaesthetics,
with opto- or chemo-genetic activation of these cells promoting
both slow-wave sleep and anaesthesia, and the opposite result
obtained by inhibiting them (Jiang-Xie et al., 2019).

Current theories propose that at least some anaesthetic drugs
may exert their effect by recruiting the brain’s endogenous
mechanisms for the production of unconsciousness (Franks,
2008; Alkire et al., 2009; Scharf and Kelz, 2013; Van Swinderen
and Kottler, 2014; but see Vanini et al., 2020, for a recent
suggestion that this may not be the case, for isoflurane). This
may occur through activation of the sleep-promoting pathways,
inhibition of the wake-promoting ones, or both [especially since,
given their mutually inhibitory nature, activating one will also
result in inhibition of the other (Pace-Schott and Hobson, 2002)].

Neural Inertia and Sleep Inertia
Neural Inertia
“Neural inertia” refers to the brain’s tendency to resist changes
in its arousal state: it is manifested as emergence from
anaesthesia (recovery of responsiveness, ROR) occurring at
lower drug doses than those required for anaesthetic induction
(loss of responsiveness, LOR) (Friedman et al., 2010). Thus,
for intermediate dosages between those required for ROR
and LOR, a given individual may be anaesthetised or awake,
depending on their previous state. This “path dependence”
(referred to as hysteresis in physics; Figure 2) is in contrast with
pharmacokinetic-pharmacodynamic accounts, which assume
that anaesthetic state is fully determined by current effect-site
concentration of anaesthetic (McKay et al., 2006).

Rather, evidence of hysteresis between anaesthetic induction
and emergence obtained in mice and Drosophila led to the
proposal that the brain has a tendency to resist transitions in
its arousal state, called “neural inertia” (Friedman et al., 2010).
Indeed, bistable systems—of which the brain appears to be one,
with respect to its sleep-wake states (Saper et al., 2001)—tend
to show distinct non-overlapping paths between their states,
indicating hysteresis (Chatterjee et al., 2008). Consistent with
theoretical work on anaesthesia (Steyn-Ross et al., 2004), this is
precisely what Friedman and colleagues observed with regard
to anaesthetic induction and emergence in both mammals and
invertebrates (Friedman et al., 2010). However, evidence for
neural inertia in humans is less clear-cut (Sepúlveda et al., 2019)
since it is not possible to measure anaesthetic concentration in the
brain in the same way this is commonly done in animal models.
Sepulveda and colleagues (Sepúlveda et al., 2018) found that LOR
occurred at greater propofol concentrations than ROR, but noted
that this result may be alternatively explained by incomplete
equilibration between plasma and effect-site concentrations.
A different team of researchers (Kuizenga et al., 2018) did not
find evidence of neural inertia with propofol, whereas they did
observe it with sevoflurane, when combined with the opioid
remifentanil. These authors also observed that the choice of
marker (behavioural endpoint) with respect to which to compute
differences in drug concentration at induction and emergence
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FIGURE 1 | Schematic drawing of some key components of the ascending arousal system, highlighting projections of the ventrolateral preoptic area. This comprises
cortical projection neurons originating from the basal forebrain (BF); the recently characterised orexin/hypocretin neurons in the lateral hypothalamus (LH); perifornical
orexin neurons (PeF); and several monoaminergic nuclei: the noradrenergic locus coeruleus (LC), the histaminergic tuberomammillary nucleus (TMN) and the
ventrolateral preoptic area (VLPO) and median preoptic area (MNPO). Serotonergic and dopaminergic components are not shown. MCH, melanin-concentrating
hormone; Gal, galanin; Ach, acetylcholine; ORX, orexin; His, histamine; NA, noradrenaline.

(e.g., loss and recovery of responsiveness, or EEG features) may
also make a difference in investigators’ ability to detect evidence
of neural inertia (Kuizenga et al., 2018).

In line with this observation, Warnaby et al. (2017) reported
hysteresis for the prevalence of slow-wave EEG activity for both
propofol and sevoflurane, with or without addition of opioids;
slow-wave persistence was therefore proposed as a marker of
neural inertia in humans. While some authors (Colin et al., 2018)
criticised this study by arguing that the hysteresis observed by
Warnaby and colleagues can be collapsed if a different effect-
site equilibration model is assumed, recent modelling work
by Proekt and Kelz (2020) demonstrated that—since effect-site
concentration is a theoretical construct that cannot be measured
directly—it is experimentally impossible to distinguish between
an equilibration model that collapses hysteresis and one that
does not, even when hysteresis is in part attributable to genuine
neuronal dynamics. Therefore, although it is clear that improved
methodologies will be required (Proekt and Kelz, 2020), there
is reason to believe that humans may also be subject to neural
inertia—a postulation consistent with the unequivocal evidence
that neural inertia is a widespread phenomenon observed in
species as diverse as fruit flies, zebrafish, and rodents (Sepúlveda
et al., 2019; Wasilczuk et al., 2020). As Proekt and Kelz observe:
“whereas going from the structured to the unstructured state is
trivial, the restoration of structure is not generically expected

after a dramatic perturbation” (Proekt and Kelz, 2020). Thus,
emergence may be an active rather than passive phenomenon,
the understanding of which will likely need to invoke specific and
distinct neurobiological mechanisms beyond a mere reversal of
the induction process.

Sleep Inertia
Transitions in the brain’s arousal state do not occur only after
anaesthesia, but also after sleep. Familiar to many people, this
state of transition between sleep and wakefulness, characterised
by low levels of arousal and vigilance, sleepiness, confusion, and
a temporary reduction in performance, is called sleep inertia
(SI) (Tassi and Muzet, 2000; Voss, 2010; Trotti, 2017). Sleep
inertia dissipates with time awake, with estimates of its typical
duration ranging from 20 to 30 min (Dinges et al., 1987; Tassi
et al., 1992) to 1–2 h post-awakening (Jewett et al., 1999).
Although sleep inertia occurs even in the absence of sleep debt
(Akerstedt and Folkard, 1997), its effects are more profound
and long-lasting after a period of sleep deprivation (Ferrara
and De Gennaro, 2000). Finally, waking up from slow-wave
sleep appears to have the most profound negative impact on
subsequent vigilance and performance (Dinges, 1990; Bonnet,
1993; Matchock and Mordkoff, 2014).

From a behavioural perspective, sleep inertia
affects performance in the same way as sleepiness
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FIGURE 2 | Schematic of neural inertia. As anaesthetic dose is increased,
responsiveness is diminished. However, the dose at which a certain
proportion of responses is observed is not the same for induction (downward
arrow, in red) and emergence (upward arrow, in blue), indicating
path-dependence (hysteresis). Between the two curves, subjects may be
awake or anaesthetised, depending on whether the drug concentration is
being increased or decreased. The wider the gap between the two curves, the
greater the hysteresis.

(Balkin and Badia, 1988). The human electroencephalographic
(EEG) signatures of sleep inertia are also analogous to what
is observed at increased levels of sleepiness (Voss, 2010). For
approximately 10 min post-awakening, EEG is characterised
by elevated low-frequency (1–9 Hz) and reduced beta (18–
25 Hz) power (Ogilvie and Simons, 1992; Ferrara et al., 2006;
Marzano et al., 2011). Analogous results have been obtained in
rodents using intracranial recordings during the first 10 min
post-sleep: neuronal activity was low upon awakening, with brief
periods of neuronal silence (Vyazovskiy et al., 2014). Crucially,
such population OFF periods are typically observed not only
during sleep, but also after prolonged wake, as revealed by
intracranial recordings in rats (Vyazovskiy et al., 2011). Likewise,
recordings in monkeys transitioning from wake to sleep show
sleep-like patterns of activity in their visual cortex, even while
performing a visual task (Pigarev et al., 1997). Thus, across
species sleep inertia appears to be the post-sleep counterpart of
pre-sleep sleepiness, with both states characterised by similar
behavioural changes and EEG signatures, as well as local
sleep-like OFF periods.

Neural Inertia as the Effect of Sleep Inertia
Single-gene mutations that increase or decrease neural inertia
also affect the sleep-wake cycle, pointing to a connection between
anaesthesia, neural inertia and sleep in both invertebrates and
mammals (Friedman et al., 2010; Joiner et al., 2013). Here,
we propose that neural inertia—the reduction in anaesthetic
dose required for emergence compared to induction—may be
an effect of the sleep inertia that follows anaesthetic-induced
sleep. Specifically, GABA-ergic anaesthetics such as propofol and
the inhalational agents sevoflurane, isoflurane, and halothane

are believed to induce a state of artificial sleep (Brown et al.,
2010; Van Swinderen and Kottler, 2014; but see Vanini et al.,
2020). Like natural sleep, this artificial sleep should then be
followed by sleep inertia—especially for intravenous drugs such
as propofol that induce an artificial sleep characterised by high
levels of slow-wave activity (SWA) (Brown et al., 2011; Murphy
et al., 2011; Gent and Adamantidis, 2017), since sleep inertia is
particularly pronounced upon awakening from slow-wave sleep
(Dinges, 1990).

Thus, in the process of emerging from anaesthesia the
brain would find itself in the state of sleep inertia, which
is behaviourally and neurally equivalent to sleepiness. Since
sleepiness is known to increase susceptibility to anaesthesia with
propofol, isoflurane, and sevoflurane by lowering the dose that
is required for induction, as indicated by rodent studies (Tung
et al., 2002; Pal et al., 2011; Scharf and Kelz, 2013), this could
explain neural inertia: due to being in a state equivalent to
sleepiness, the brain during emergence is more susceptible to
anaesthetics than it was at induction, and a smaller dose is
sufficient to maintain unconsciousness—producing the hysteresis
characteristic of neural inertia.

If this hypothesis is correct, then we predict that neural
inertia should be larger when awakening from “recovery sleep”
after sleep deprivation, since sleep deprivation increases the
sleep inertia that is observed after awakening (Ferrara and De
Gennaro, 2000). This is precisely what is observed empirically,
with higher neural inertia in previously sleep-deprived animals
(Joiner et al., 2013). Moreover, this hypothesis could explain
why Friedman and colleagues (Friedman et al., 2010) observed
greater neural inertia with halothane than with isoflurane—a
result that was recently replicated in mice exposed to equipotent
doses of isoflurane, sevoflurane, and halothane, demonstrating
that different anaesthetics have different effects on neural inertia,
distinct from their potency (Wasilczuk et al., 2020). Specifically,
to explain these results we note that unlike isoflurane, halothane
does not reduce NREM sleep-debt in rodents (Pick et al., 2011;
Scharf and Kelz, 2013). Thus, higher levels of NREM sleep
debt would be present upon emergence from halothane than
isoflurane, leading to stronger sleep inertia, and hence stronger
neural inertia, as observed.

Thus, we have proposed that anaesthesia causes artificial,
SWA-rich sleep, which in turn induces sleep inertia. The latter’s
effects resemble those of sleepiness, which increases sensitivity to
anaesthetics. Therefore, a lower dose of anaesthetic will suffice
to keep the brain anaesthetised, resulting in neural inertia at
emergence (Figure 3). This hypothesis for the origin of neural
inertia could be tested by inducing anaesthesia during the state of
sleep inertia, and assessing the prediction that the induction dose
will be lower than usual and comparable to the drug level at which
emergence typically occurs.

Furthermore, our hypothesis predicts that in the presence of
neural inertia, neural activity during emergence should resemble
the patterns of sleep-like activity characteristic of sleepiness
and sleep inertia—and indeed, there is evidence that slow-
wave activity reminiscent of sleep dominates human EEG at the
beginning of emergence from anaesthesia, before most patients
transition to non-slow-wave activity and subsequent waking
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FIGURE 3 | Schematic of our hypothesis equating neural inertia with
post-anaesthetic sleep inertia. (A) Sleep inertia (represented by the depleted
battery icon over the brain) is neurally and behaviourally equivalent to
sleepiness. (B) Sleepiness reduces the need for anaesthetic, and increases
post-anaesthetic neural inertia. Therefore, (C) neural inertia may be seen as
the manifestation of sleep inertia occurring after anaesthesia, reducing the
amount of anaesthetic that is needed for the brain to be unresponsive.

(Chander et al., 2014). Additionally, individual measures of
susceptibility to sleep inertia could be used to predict individual
susceptibility to neural inertia, such as the recently developed
Sleep Inertia Questionnaire (Kanady and Harvey, 2015). Indeed,
there is already evidence that state-dependent EEG markers
at baseline can predict individual susceptibility to anaesthetic
induction with propofol (Chennu et al., 2016; Zhang et al., 2020),
and future research may seek to determine whether such markers
are related to sleep inertia.

We also note that our hypothesis would likely not apply to the
dissociative anaesthesia induced by ketamine, whose molecular
mechanisms of action and neurophysiological effects at the
micro- and macroscale are very different from other known
anaesthetics, and do not appear to resemble sleep (Hemmings
et al., 2019). Although we are not aware of tests of neural
inertia with ketamine, our hypothesis leads us to predict that
little should be observed, since sleep does not seem to be
involved in the context of dissociative anaesthesia. Testing this
prediction in humans is not straightforward, for the same reason
that complicates existing attempts to identify neural inertia
in humans (Sepúlveda et al., 2019): namely Proekt and Kelz
(2020) demonstrated that since effect-site concentration cannot
be measured directly, effect-site models could be constructed to
collapse hysteresis even when it would actually be attributable
to genuine neuronal dynamics. However, the hypothesis is
not specific to humans and could be tested in other species

for which neural inertia has already been demonstrated with
other anaesthetics (Friedman et al., 2010; Joiner et al., 2013;
McKinstry-Wu et al., 2019; Wasilczuk et al., 2020), with
the prediction being that little hysteresis should be observed.
Additionally, we reported above that if neural inertia is due to the
increased susceptibility to anaesthetics that occurs during post-
anaesthetic sleep inertia, then our hypothesis predicts that higher
susceptibility to anaesthesia should be observed during sleep
inertia (e.g., as induced by awakening from slow-wave sleep).
We expect that ketamine would constitute an exception to this
general prediction—which should be testable in humans.

Recently, a modelling study observed that neural inertia
is compatible with an account of the brain as a bistable
system, stochastically switching between two states (Proekt and
Hudson, 2018). If the states are seen as wells in an energy
landscape, the system can be conceptualised as transitioning
between them whenever noise-driven (stochastic) fluctuations
are large enough to overcome the energy differential between
the wells. Under conditions of low noise, the system is therefore
more likely to remain trapped in whatever state it is currently
occupying, and therefore inertia (resistance to state transitions)
will be observed (Proekt and Hudson, 2018). It is important
to note that our hypothesis of neural inertia as the effects of
sleep inertia arising from anaesthetic-induced “artificial sleep”
is not incompatible with this account of neural inertia: the
two operate at different levels of explanation (Marr, 2010).
In fact, if our hypothesis is correct, then it suggests that the
account of Proekt and Hudson (2018) could also be invoked to
understand sleep inertia.

If corroborated, the hypothesis presented here could have
direct relevance for clinical practice: anaesthetists could use
tools such as the recently developed Sleep Inertia Questionnaire
(Kanady and Harvey, 2015) to evaluate each patient’s individual
susceptibility to sleep inertia, which we expect should predict
(together with their current amount of sleep debt) their
individual likelihood of experiencing neural inertia.

Neuroimaging Evidence: Diminished Anticorrelations
in the Inert Human Brain
At the macroscale, there is additional recent evidence to suggest
that anaesthesia resembles the state of sleep inertia. Under
conditions of normal restfulness, it is well known from functional
MRI that the human brain self-organises into distinct sets of
brain regions, known as resting-state networks (Yeo et al., 2011;
Smith et al., 2012). In particular, a “default mode” network
(DMN) of medial frontal and parietal regions, and a set of “task-
positive” networks such as the “executive control” network of
lateral fronto-parietal regions (FPN) and the “dorsal attention
network” (DAN) tend to exhibit anticorrelated patterns of
activation (Raichle et al., 2001; Fox et al., 2005) (but note that
the DMN can also be recruited by tasks, especially pertaining
to self-referential cognition, “mental time travel,” or automated
processing (Vatansever et al., 2015a,b, 2017; Buckner and
DiNicola, 2019) (Figure 4).

Intriguingly, recent EEG-fMRI evidence indicates that loss of
DMN-FPN/DAN anticorrelations is a neural correlate of sleep
inertia itself in humans (Vallat et al., 2018; but see Chen et al.,
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FIGURE 4 | Anticorrelations in the human brain. (A) Surface projection of the
default mode network (red) and fronto-parietal (blue)/dorsal attention networks
(cyan) onto medial and lateral surfaces of a standard brain (left hemisphere).
(B) The timecourses of default mode and fronto-parietal networks are
anti-correlated during quiet wakefulness. (C) Anticorrelations are reduced or
even abolished in the anaesthetised brain. Data from one representative
subject, before and during propofol anaesthesia; for experimental details, see
Stamatakis et al. (2010) and Varley et al. (2020).

2020). Indeed, earlier work had also demonstrated, by employing
positron emission tomography (PET) that for a short period of
time after awakening (5–20 min, compatible with the duration of
sleep inertia; Trotti, 2017), there is a gradual increase of cerebral
blood flow in heteromodal areas, especially lateral prefrontal
cortex (lPFC), a core component of the executive control network
(Balkin et al., 2002). Additionally, as previously mentioned,
both awakening from deep sleep and previous sleep deprivation
intensify subsequent sleep inertia upon awakening. And indeed, a
loss of DMN-FPN/DAN anticorrelations is also observed during
sleep in humans (Sämann et al., 2011), as well as in the awake
but sleep-deprived human brain (De Havas et al., 2012). Thus,
sleep inertia and conditions that favour it, share a common neural
substrate in the reduction of DMN-FPN/DAN anticorrelations.

Conversely, caffeine consumption, perhaps the most widely
adopted countermeasure to sleep inertia (Van Dongen et al.,
2001) is known to have the opposite effect: it increases the
anticorrelations between DMN and FPN/DAN in the human
brain (Wong et al., 2012).

This suggests that sleep inertia, at least in the human brain,
may correspond to a carry-over of diminished DMN-FPN/DAN
anticorrelations. Remarkably, perturbed DMN-FPN/DAN
interactions are also one of the most robustly observed neural
markers of human loss of consciousness induced by a variety
of anaesthetics (Boveroux et al., 2010; Guldenmund et al., 2013;
Golkowski et al., 2019; Luppi et al., 2019, 2020; Huang et al.,
2020) (Figure 4), and the anticorrelations are even diminished
one hour after emergence from sevoflurane anaesthesia (Nir
et al., 2020). Thus, we propose that neural inertia may be the
effect of anaesthetic-induced sleep inertia, which corresponds
to a carry-over of diminished anticorrelations between DMN
and FPN/DAN. In other words, we propose that the inert
brain is a brain that has lost its characteristic anticorrelations.
This specific hypothesis could be empirically tested, since
it predicts that humans experiencing higher neural inertia
after anaesthesia should exhibit more prominent loss of
anticorrelations.

Inertia in the Aging Brain
Intriguingly, the hypothesis presented here may also explain why
older adults are more susceptible to neural inertia (Warnaby et al.,
2017). Namely, according to the present view, this is because they
are more susceptible to sleep inertia. Reduced and fragmented
sleep is common among the elderly, and especially patients with
Alzheimer’s disease (Bonanni et al., 2005; Guarnieri et al., 2012).
Since fragmented sleep tends to increase subsequent slow-wave
activity (Bonnet, 1987), awakening from which causes higher
levels of sleep inertia (Dinges, 1990), as does sleep deprivation,
the elderly should show higher levels of sleep inertia. This is
indeed the case (Silva and Duffy, 2008).

Additionally, if the hypothesis proposed here about the
link between sleep inertia and neural inertia is correct, these
populations should also suffer from higher levels of neural
inertia. Again, this is precisely what is observed: rat studies
indicate that ageing increases sensitivity to anaesthetics, and
prolongs their effect (Chemali et al., 2015); likewise, older
humans are also more susceptible to anaesthesia (Kanonidou
and Karystianou, 2007). Furthermore, recent evidence indicates
that age influences the newly discovered EEG marker of neural
inertia in humans, slow wave activity saturation (SWAS): SWAS
is more likely to cease abruptly rather than gradually in older
patients, predicting their likelihood of post-operative delirium
(Warnaby et al., 2017).

Neuroimaging evidence in older adults further supports the
link between sleep and neural inertia and loss of anticorrelations
between DMN and FPN/DAN: it is well established that aging
corresponds to a reduction of anticorrelations between these
networks (Keller et al., 2015; Siman-Tov et al., 2017), even in the
absence of concomitant psychiatric conditions (Kobuti Ferreira
et al., 2015) and more so in those with mild cognitive impairment
(Esposito et al., 2018). Thus, older brains are intrinsically more
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prone to loss of anticorrelations, and suffer from higher sleep
inertia and higher neural inertia.

Molecular Mechanisms of Sleep and
Neural Inertia
Orexin/Hypocretin
One candidate system for the control of sleep inertia—and
hence, we have argued, neural inertia—is the orexinergic system.
Located exclusively in the lateral hypothalamus (De Lecea et al.,
1998; Sakurai et al., 1998), orexin/hypocretin neurons are wake-
active (Lee et al., 2005; de Lecea and Huerta, 2014), and
innervate the wake-promoting monoaminergic and cholinergic
nuclei (Carter et al., 2012). And indeed, using channelrhodopsin-
2 to selectively stimulate orexin neurons promotes awakening
from sleep in mice (Adamantidis et al., 2007), and increased
wakefulness is reported in rodents after orexin-A administration,
either intracerebroventricular or directly into monoaminergic
and cholinergic wake-promoting nuclei (Hagan et al., 1999;
Sakurai and Mieda, 2011).

Conversely, optogenetic suppression of orexin neurons
with archaerhodopsin has sleep-promoting effects in mice
(Tsunematsu et al., 2011, 2013); and in humans, orexin blockers
are now available as medication against insomnia (Bennett
et al., 2014). These effects were confirmed using Designer
Receptors Exclusively Activated by Designer Drugs (DREADDs)
to chemogenetically activate or silence orexin neurons, resulting
in increased wakefulness or sleep in rodents, respectively (Sasaki
et al., 2011). Loss of orexin neurons causes the sleep disorder
narcolepsy in dogs (Lin et al., 1999) and humans (Nishino
et al., 2000; Thannickal et al., 2000), and the same is obtained
by selective orexin knock-out in mice (Chemelli et al., 1999;
Mochizuki et al., 2004), as well as pharmacological lesions in rats
(Gerashchenko et al., 2001). Crucially, narcolepsy is characterised
by an unstable and fragmented sleep-wake cycle, and difficulty
in becoming awake (i.e., high sleep inertia) (Scammell, 2003).
Indeed, sleep inertia is often present in narcoleptic children
(Wise, 1998).

Thus, there is ample evidence, in both humans and other
animals, that orexin and orexinergic neurons play a crucial role
in sleep-wake regulation (Mieda, 2017). A recent computational
study indicates that the specific role of orexin may be to stabilise
the transitions between sleep and wake (Fulcher et al., 2014).
According to the model, a bistable region of state-space exists
when the inputs to the sleep-promoting and wake-promoting
systems are balanced, and state transitions are easy (Figure 5).
By increasing the activity of wake-promoting monoaminergic
nuclei upon awakening, orexin pushes the system out of the
bistable region, stabilising it. Indeed, simulating orexin loss in the
model lowered transition thresholds, resulting in frequent wake-
sleep transitions and sleep fragmentation, analogous to what is
observed in orexin-deficient narcoleptic patients.

Intriguingly, recent neuroimaging work using a variant
of functional MRI called MR encephalography, which has
high temporal resolution (100 ms), determined that human
narcoleptic patients have aberrant interactions between DMN
and FPN/DAN, characterised by delayed and monotonic

FIGURE 5 | Dynamics of orexin stabilisation of state transitions according to
the model of Fulcher et al. (2014). The axes represent the net drives to the
wake-promoting (DM ) and sleep-promoting (DV ) circuits. Regions are labelled,
with the bistable region shown in blue. The black arrow represents the waking
period, while the grey arrow represents sleep. The trajectory marked “no Orx”
represents the dynamics of the model in the absence of orexin input. Figure
adapted from Figure 3 of Fulcher et al. (2014), published under CC-BY licence.

interactions, which the authors interpreted as a compromised
ability of task-positive networks to suppress the DMN (Järvelä
et al., 2020); Once again, this observation is in line with our
proposed macroscale identification of sleep inertia with abnormal
anticorrelations between large-scale networks of the brain.

Thus, evidence suggests that low orexin levels lead to high
levels of sleep inertia, and its associated neural signatures.
According to the hypothesis developed here, such high sleep
inertia should be accompanied by high levels of neural inertia.
This is indeed the case: case reports suggest high neural inertia
in at least some narcoleptic human patients (Mesa et al., 2000;
Burrow et al., 2005), confirmed by the increased neural inertia
observed in rodents with narcolepsy arising from genetic ablation
of orexin neurons (Hara et al., 2001; Kelz et al., 2008). Moreover,
orexin is known to be involved in anaesthetic action: the
activity of orexin neurons is reduced by propofol, sevoflurane
and isoflurane, as indicated by a reduced number of c-Fos-
immuno-reactive orexinergic neurons in rodents (Kelz et al.,
2008; Zhang et al., 2012; Scharf and Kelz, 2013). Moreover, rodent
studies show that reduced activation of orexin neurons during
anaesthesia is exacerbated when the anaesthesia is administered
under conditions of sleep deprivation (Ran et al., 2015).
Conversely, intracerebroventricular administration of orexin-
A (though not orexin-B) causes emergence from propofol,
isoflurane and sevoflurane anaesthesia in rats (Dong et al., 2009;
Shirasaka et al., 2011; Zhang et al., 2012, 2016), and similar results
have also been obtained in mice, whereby activation of orexin
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neurons with DREADDs facilitated emergence from isoflurane
anaesthesia (Zhou et al., 2018). Thus, orexin appears to play
a major role in anaesthesia and the sleep-wake cycle, with its
absence increasing both sleep inertia and neural inertia.

Noradrenaline
The action of orexin neurons is believed to occur mainly through
excitation of monoaminergic wake-promoting nuclei, which they
innervate (Sakurai and Mieda, 2011). In particular, orexinergic
neurons may exert their effects on sleep-wake transitions through
the noradrenergic locus coeruleus (LC) (Carter et al., 2012).
Orexin neurons send strong excitatory projections to the LC, and
the wake-inducing effect of orexin infusion involves activation of
the LC (Hagan et al., 1999).

Indeed, the fragmented sleep-wake cycle of narcolepsy was
reconsolidated by restoring orexin receptors in the LC of
mice, and equivalent results were achieved by chemogenetically
activating these neurons with DREADDs (Hasegawa et al.,
2014). Furthermore, optogenetic inactivation of LC prevents
the arousal-promoting effect of optogenetically activating orexin
neurons; conversely, the latter is potentiated by concomitant
stimulation of LC neurons (Carter et al., 2012). Thus, there is
strong evidence that noradrenergic system activity is one of the
primary routes through which orexin neurons perform their
regulatory role (De Lecea, 2015).

Specifically supporting a role for noradrenaline in neural
inertia, previous work (Friedman et al., 2010) established that
genetic deletion of dopamine-ß-hydroxylase (DBH) in mice
to remove noradrenergic signalling resulted in hypersensitivity
to isoflurane anaesthesia, as well as increased neural inertia.
This could be reversed by pharmacologic CNS-specific rescue
of adrenergic signalling, achieved by providing the amino acid
L-DOPS so that it would be converted into noradrenaline by
L-amino acid decarboxylase (Friedman et al., 2010). In humans,
Kuizenga et al. (2018) reported evidence of neural inertia
when sevoflurane was supplemented with remifentanil, which is
believed to influence sleep-wake regulation through adrenergic
neurotransmission (McCormick and Bal, 1997; Samuels and
Szabadi, 2008).

Indeed, implication of orexin and noradrenaline in neural
inertia has been considered before (Sepúlveda et al., 2019;
Wasilczuk et al., 2020). Wasilczuk et al. (2020) observed
that halothane does not suppress hypothalamic orexinergic
neurons and LC noradrenergic neurons (Gompf et al., 2009),
whereas isoflurane does suppress them (Kelz et al., 2008).
Thus, these authors proposed that this difference may underlie
the increased neural inertia induced by halothane compared
with isoflurane (Friedman et al., 2010; Wasilczuk et al., 2020)
due to non-abolished orexinergic activity. As mentioned above,
our own explanation of the same phenomenon is in terms
of halothane failing to reduce sleep debt, unlike isoflurane
(Pick et al., 2011), thereby producing more sleep inertia (and
hence neural inertia, according to our account). These two
explanations are not in contrast: indeed, they suggest that a
fruitful avenue for future research may be to seek a connection
between persistent orexinergic activity and halothane’s failure to
discharge sleep debt.

On the other hand, studies providing a direct link between
noradrenaline and sleep inertia are presently lacking;
nevertheless, several indirect lines of evidence suggest that
low levels of noradrenaline may be related to sleep inertia.
Behaviourally, noradrenaline is implicated in cognitive functions
such as sustained attention and working memory (Chamberlain
and Robbins, 2013; Spencer et al., 2015), which are especially
vulnerable to sleep deprivation (Goel et al., 2009; Killgore,
2010)—of which sleep inertia is a post-awakening counterpart,
we have argued here. Noradrenaline is also increased following
consumption of coffee (Papadelis et al., 2003), and caffeine
consumption can reverse many of the cognitive adverse effects of
clonidine (Smith et al., 2003), which mimics the state of reduced
arousal observed as a result of sleep deprivation by reducing
turnover of central noradrenaline, by binding to autoreceptors
(Nutt and Glue, 1988).

Recently, Bellesi et al. (2016) used in vivo microdialysis
to demonstrate decreasing levels of prefrontal noradrenaline
in rodents undergoing sleep deprivation, correlating with an
increase in low EEG frequencies tracking the need to sleep.
Thus, low levels of prefrontal noradrenaline could contribute to
explain the cognitive deficits observed during sleepiness induced
by prolonged wakefulness. Crucially, noradrenaline restoration
to baseline levels post-awakening was slower in prefrontal cortex
than in other areas, such as M1—and in humans, prefrontal
regions are those that were found to have reduced cerebral blood
flow upon awakening in the PET study of Balkin et al. (2002).
Thus, evidence suggests that decreased prefrontal noradrenaline
could also explain the confusion and cognitive deficits observed
during sleep inertia—especially since this state is very similar to
sleepiness, as we have shown. This evidence also suggests that, if
our hypothesis is correct, then we should expect noradrenaline
to modulate the prevalence of anticorrelations between DMN
and FPN/DAN in the human brain, since anticorrelations are
also enhanced by caffeine and decreased by sleepiness (De Havas
et al., 2012), sleep (Sämann et al., 2011), sleep inertia (Vallat et al.,
2018), and anaesthesia (Boveroux et al., 2010; Golkowski et al.,
2019; Luppi et al., 2019; Huang et al., 2020). Interestingly, recent
studies indicate that caffeine infusion can accelerate emergence
from isoflurane anaesthesia in both rodents and humans (Fong
et al., 2018; Fox et al., 2020), and future research may seek
to determine whether this effect corresponds to faster recovery
of anticorrelations in the brain after anaesthesia (Nir et al.,
2020) and whether it is specifically attributable to caffeine’s
action on noradrenergic neuromodulation (Papadelis et al., 2003;
Smith et al., 2003).

Indeed, as major wake- and alertness-promoting
neurotransmitter, noradrenaline is modulated by both sleep
and anaesthesia—just as we should expect if noradrenaline
were involved in both sleep and neural inertia, as we propose
here. Noradrenaline levels are highest during wake and
drop during sleep (Léna et al., 2005) and stimulation of the
noradrenergic LC of mice induces waking (Carter et al.,
2010, 2013; Berridge et al., 2012); activity of the LC is
inhibited by GABA during sleep (Gervasoni et al., 1998), as
well as during propofol and isoflurane anaesthesia in mice
(Zecharia et al., 2009). Administration of noradrenaline
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by microinjection into the central medial nucleus of the
thalamus accelerates emergence from propofol anaesthesia
in rodents, and reverses the local physiological effects of
propofol (Fu et al., 2016). Likewise, pharmacogenetic activation
of noradrenergic neurons in the LC with virally delivered
DREADDs promotes EEG markers of neural arousal and
accelerates emergence from isoflurane anaesthesia in rats, an
effect that can be prevented by application of noradrenergic
antagonists (Vazey and Aston-Jones, 2014). The anaesthetic
dexmedetomidine also operates on noradrenergic transmission:
as an adrenergic α-2 receptor agonist, it decreases the
firing of LC neurons (Nelson et al., 2003), and indeed α-
2A receptor activation inhibits noradrenergic LC neurons
(Lakhlani et al., 1997).

Although it was originally thought that dexmedetomidine
would induce sedation by inhibiting the LC (Sanders and Maze,
2012) thereby removing the noradrenergic inhibition on the
sleep-promoting VLPO neurons (Nelson et al., 2003), recent
evidence suggests a more intricate picture: acute inhibition
of LC neurons does not induce strong sleep in mice (Carter
et al., 2010), and LC inhibition is not required for low
doses of dexmedetomidine to produce their sedative effects,
since knockdown of LC α2A adrenergic receptors in mice
does not prevent sedation, even though loss of the righting
reflex is still observed at high doses (Zhang et al., 2015).
Intriguingly, the same hypothalamic neurons in the mouse
are involved in inducing recovery sleep and dexmedetomidine-
induced sedation, by locally exciting neurons in the preoptic area
(Zhang et al., 2015).

Other studies also indicate a more complicated picture:
microdialysis of noradrenaline into rat prefrontal or parietal
cortex under constant levels of sevoflurane anaesthesia failed to
produce wake-like behaviour—although it did produce wake-
like EEG (Pal et al., 2018). Similar failure to awaken rats
from continuous sevoflurane anaesthesia was also reported after
pharmacological blockade of noradrenaline reuptake (Kenny
et al., 2015). Since cholinergic stimulation of prefrontal cortex
did induce wake-like behaviour in the rats studies by Pal
et al. (2018), this evidence suggests that a full picture
will likely need to also take additional neuromodulatory
systems into account. Dopamine in particular has been
implicated, largely in rodent studies. Lesions to the wake-
active dopaminergic ventral tegmental area in the brainstem
shorten the induction time of anaesthesia, and lengthen the
time taken for recovery—whereas both electrical and optogenetic
stimulation of the VTA can reverse the anaesthetic effects of
propofol in rats and mice (Solt et al., 2014; Taylor et al.,
2016). These contributions of dopaminergic signalling have
recently also been extended to a dopaminergic population
in the ventral periaqueductal grey (Li et al., 2018; Liu
et al., 2020). Given the shared pathways of dopaminergic
and noradrenergic transmitter production, it seems plausible
that these transmitters and their nuclei in the brainstem may
act in-concert to produce wakefulness, and to counter the
effects of sleep inertia and neural inertia, as evidenced by
their influences on recovery and induction times. Likewise,
the recent discovery that hypothalamic neuroendocrine cells

are involved in both slow-wave sleep and general anaesthesia
induced by multiple classes of anaesthetic drugs (Jiang-Xie et al.,
2019) suggests that a fuller understanding of the link between
sleep and neural inertia may benefit from taking into account
neuroendocrine involvement.

DISCUSSION

Overall, there is converging human and animal evidence that
neural inertia strongly resembles sleep inertia, in terms of
both behavioural manifestations and microscale and macroscale
neural markers. Both phenomena are influenced by orexin
neurons, which seem to perform a state-stabilising function
via noradrenergic transmission. Loss of orexin neurons in
narcolepsy, results in fragmented sleep-wake cycles and increases
in both sleep inertia and neural inertia. Therefore, we have argued
here that neural inertia may in fact be a manifestation of sleep
inertia, as it occurs after the artificial slow-wave sleep induced by
anaesthetics. Of note, this hypothesis can account for phenomena
as diverse as the higher inertia-inducing properties of halothane
vs. isoflurane (Friedman et al., 2010; Wasilczuk et al., 2020), and
the increased susceptibility to neural inertia in the elderly and in
narcoleptic patients.

If our hypothesis is correct, then it could have implications
for clinical practice: by assessing each patient’s individual
susceptibility to sleep inertia and current sleep debt, anaesthetists
may be able to estimate individual likelihood of their patient
experiencing neural inertia. In turn, this may better equip them
to counteract adverse effects such as post-anaesthetic delirium
(Warnaby et al., 2017; Sepúlveda et al., 2019).

Multiple sources of evidence—behavioural and
neurophysiological, in animals and humans—suggest that
orexin may play a stabilising effect between states of sleep
and wakefulness, possibly (though likely not exclusively)
through its effects on locus coeruleus noradrenergic neurons.
Together, these neuromodulatory systems may be key in
determining sleepiness, sleep inertia and what we have
argued is its post-anaesthetic counterpart: neural inertia.
Nevertheless, direct evidence explicitly linking all pieces of
this puzzle together is still lacking, and even evidence of a
link between noradrenergic modulation and sleep inertia is at
present only indirect. Further studies explicitly investigating
involvement of noradrenaline and other neuromodulators
in relation to sleep inertia remain necessary, as a test of the
hypothesis presented here.

Of course, the brain is a remarkably complex system. There
are other components of the sleep- and wake-promoting circuits
beyond orexin and noradrenaline, and they are likely to play
some direct or indirect role in the phenomena of sleep inertia
and neural inertia, and the stabilisation of arousal states more
broadly. All these circuits are intricately interconnected, and
changes in one are likely to have multiple repercussions.
Indeed, investigating such interactions will be required to further
elucidate the hypothesis proposed here. Nevertheless, here we
have provided a number of predictions that are testable with
current scientific techniques, and we hope that these predictions
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will stimulate fruitful avenues for further research—whether or
not they ultimately support our hypothesis.
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Narcolepsy is a sleep disorder caused by selective death of the orexin neurons that
often begins in childhood. Orexin neuron loss disinhibits REM sleep during the active
period and produces cataplexy, episodes of paralysis during wakefulness. Cataplexy is
often worse when narcolepsy develops in children compared to adults, but the reason
for this difference remains unknown. We used orexin-tTA; TetO DTA mice to model
narcolepsy at different ages. When doxycycline is removed from the diet, the orexin
neurons of these mice express diphtheria toxin A and die within 2–3 weeks. We removed
doxycycline at 4 weeks (young-onset) or 14 weeks (adult-onset) of age in male and
female mice. We implanted electroencephalography (EEG) and electromyography (EMG)
electrodes for sleep recordings two weeks later and then recorded EEG/EMG/video for
24 h at 3 and 13 weeks after removal of doxycycline. Age-matched controls had access
to doxycycline diet for the entire experiment. Three weeks after doxycycline removal,
both young-onset and adult-onset mice developed severe cataplexy and the sleep-
wake fragmentation characteristic of narcolepsy. Cataplexy and maintenance of wake
were no worse in young-onset compared to adult-onset mice, but female mice had
more bouts of cataplexy than males. Orexin neuron loss was similarly rapid in both
young- and adult-onset mice. As age of orexin neuron loss does not impact the severity
of narcolepsy symptoms in mice, the worse symptoms in children with narcolepsy may
be due to more rapid orexin neuron loss than in adults.

Keywords: orexin, narcolepsy, cataplexy, age, sex, mice, pediatric, childhood

INTRODUCTION

Orexins are wake-promoting neuropeptides necessary for the maintenance of long periods of
wakefulness and the regulation of REM sleep (Saper et al., 2001; Lu et al., 2006; Branch et al., 2016;
Chowdhury et al., 2019). Narcolepsy is caused by severe loss of the orexin-producing neurons in
the hypothalamus, and the resulting symptoms of narcolepsy include excessive daytime sleepiness,
the occurrence of REM sleep at any time of day, and cataplexy – episodes of muscle atonia during
wakefulness that are likely produced by some of the same neural mechanisms that produce atonia
during REM sleep (Mahoney et al., 2019). Most patients develop narcolepsy before the age of 25,

Abbreviations: DOX, doxycycline; DOX−, mice removed from doxycycline; DOX+, mice maintained on doxycycline.
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most commonly between age 10 and 20 (Yoss and
Daly, 1960; Dauvilliers et al., 2001; Ohayon et al., 2005;
Longstreth et al., 2009).

The symptoms of narcolepsy are usually more severe when
the disease begins in childhood compared to adults. Children
with narcolepsy are often sleepier than adults with narcolepsy,
as indicated by shorter sleep latencies on the Multiple Sleep
Latency Test (Young et al., 1988) and more total sleep over 24 h
(Pizza et al., 2013). In adults, cataplexy is usually triggered by
strong, positive emotions, but children can have spontaneous
cataplexy (Serra et al., 2008; Overeem et al., 2011; Plazzi et al.,
2011). Cataplexy typically lasts only 1–2 min in adults (Overeem
et al., 2011), but children with narcolepsy can have status
cataplecticus, periods of muscle weakness lasting hours which
is extremely rare in adults (Quinto et al., 2005; Simon et al.,
2004; Calabro et al., 2007; Ping et al., 2007; Panda, 2014; Antelmi
et al., 2017). Nearly half of young patients report that cataplexy
is their most disruptive symptom, yet even with treatment,
more than 40% have cataplexy every day (Maski et al., 2017).
Though longitudinal studies are sparse, it appears that this severe
sleepiness and cataplexy with childhood-onset narcolepsy lessens
over a few years, developing into the pattern typical of adults
(Plazzi et al., 2011; Pizza et al., 2013). Narcolepsy onset in younger
children is particularly disruptive because it is associated not only
with more severe symptoms but also with precocious puberty and
obesity, indicating multisystem disruption (Kotagal et al., 1990,
2004; Plazzi et al., 2006; Vendrame et al., 2008; Poli et al., 2013;
Ponziani et al., 2016).

It is currently unknown why symptoms of narcolepsy are so
severe with disease onset in childhood. To address this question,
we compared the effects of orexin neuron loss in young mice
vs. adult mice using orexin-tTA; TetO DTA mice, a novel mouse
model that enables control over of the timing of orexin neuron
loss (Tabuchi et al., 2014).

MATERIALS AND METHODS

Animals
All experiments were approved by the Institutional Animal Care
and Use Committee of Beth Israel Deaconess Medical Center and
Harvard Medical School and were performed in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

To induce orexin neuron death, we used male and female
orexin-tTA; TetO DTA mice (Tabuchi et al., 2014). These mice
express diphtheria toxin A (DTA) specifically in the orexin
neurons under a Tet-off system. When mice have access to chow
containing doxycycline (DOX), the orexin neurons are healthy
and sleep/wake behavior is normal. However, after DOX removal,
the orexin neurons express DTA and die within 2–3 weeks.
Cataplexy begins around 3 weeks after DOX removal and
increases until it plateaus 8–10 weeks later (Tabuchi et al., 2014).

All animals were housed in a temperature-controlled
(22 ± 1.4◦C) vivarium on a 12:12 h light:dark cycle with regular
mouse chow or DOX chow (100 mg/kg by weight, Envigo)
and water available ad libitum. DOX chow was stored at 4◦C

FIGURE 1 | Schematic of experimental design. We removed doxycycline
(DOX) from the chow of young-onset mice at 4 weeks of age and of
adult-onset mice at 14 weeks of age. We recorded EEG, EMG and video for
characterization of sleep/wake/cataplexy 3 and 13 weeks later. We also
recorded from age-matched control mice that were maintained on
doxycycline the entire experiment (DOX+).

and changed weekly (as per vendor instructions) to prevent
degradation of the DOX at room temperature. Genotyping was
performed using real-time PCR (Transnetyx).

Orexin Neuron Loss
Mating pairs of orexin-tTA; TetO DTA mice were fed DOX
chow so that litters would receive DOX in utero via maternal
circulation and postnatally via lactation. We removed DOX from
the diet (DOX−) of orexin-tTA; TetO DTA mice at age 4 weeks
(young-onset group) or 14 weeks (adult-onset group) (Figure 1).
These ages were chosen because a 4-week-old mouse is about
the same developmental age as an 11–12 years old child, and a
14-week old mouse is roughly equivalent to an early-20s human
(Flurkey et al., 2007).

Study Design
We implanted mice with EEG/EMG electrodes at 6 or 16 weeks
of age to record cataplexy and sleep/wake behavior. We recorded
brain activity using electroencephalography (EEG), muscle
activity using electromyography (EMG), and general behavior
using infrared video to aid in identification of sleep/wake
behavior and cataplexy detection.

In adult orexin-tTA; TetO DTA mice, cataplexy begins about
3 weeks after DOX removal and plateaus 11–13 weeks after
DOX removal (Tabuchi et al., 2014). Therefore, for young-
onset mice (DOX removed at 4 weeks of age), we recorded
sleep/wake behavior at 7 and 17 weeks of age. For adult-onset
mice (DOX removal at 14 weeks of age), we recorded behavior
at 17 and 27 weeks of age to control for time since DOX
removal. In addition, we recorded from age-matched orexin-
tTA; TetO DTA controls maintained on DOX chow for the
entire experiment (DOX+ with recordings at age 7, 17, and
27 weeks) to control for any age-related changes in sleep/wake
behavior. Each group contained male and female mice. Some
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longitudinal recordings were disrupted by the 2020 COVID-
19 lab shutdown, so this experiment includes both longitudinal
(repeated recordings in the same mouse) and cross-sectional
(only one recording from a mouse) data. The total numbers of
mice were: DOX+ 7 weeks (seven males, seven females); DOX+
17 weeks (seven males, including three longitudinal recordings;
nine females, including four longitudinal recordings); DOX+
27 weeks (five males, including four longitudinal recordings; 10
females including seven longitudinal recordings); young-onset
7 weeks (seven males, seven females); young-onset 17 weeks
(eight males, including four longitudinal recordings; six females
including two longitudinal recordings); adult-onset 17 weeks
(eight males, six females); adult-onset 27 weeks (10 males,
including five longitudinal recordings; nine females including
three longitudinal recordings).

Surgery
We anesthetized mice using ketamine/xylazine (100/10 mg/kg,
i.p.) and placed them into a stereotaxic frame. We soldered
leads made from multistranded stainless steel wire (Cooner Wire,
part number AS633) to two stainless steel screws which were
implanted into the skull (1 mm lateral and 1 mm rostral to
bregma, 1 mm lateral to bregma, and 1 mm rostral to lambda).
We implanted two EMG electrodes made from Cooner wire into
the neck extensor muscles. All leads were soldered to a 2 × 2 pin
microstrip connector which we secured to the skull using dental
cement. We treated each mouse with Meloxicam SR (4 mg/kg,
s.c.) immediately after surgery.

EEG/EMG/Video Recordings and
Analysis
After at least 1 week of recovery, we moved mice into the
recording chambers to allow at least 5 days of acclimation to
the recording cage and EEG/EMG cable. During recordings,
EEG/EMG signals were amplified, filtered (EEG: 0.3–35 Hz;
EMG: 100–300 Hz; Grass Amplifier 6SS, Grass Instruments),
and digitized at a sampling rate of 256 Hz (VitalRecorder,
Kissei Comtec) with simultaneous infrared video recordings. We
scored sleep/wake signals in 10 s epochs semiautomatically using
SleepSign (Kissei Comtec, band pass filter settings: EEG, 0.25–
64 Hz; EMG, 10–60 Hz, with a notch filter at 60 Hz for each) and
performed manual corrections as needed. We scored cataplexy
manually using EEG/EMG and video according to a consensus
definition (Scammell et al., 2009). Specifically, we scored an event
as cataplexy if four criteria were met: the episode was (1) an
event of nuchal atonia lasting at least 10 s, (2) the mouse was
not asleep during the 40 s preceding the episode, (3) the mouse
was immobile for the duration of the event, and (4) the EEG was
dominated by theta activity (Scammell et al., 2009).

Confirmation of Orexin Neuron Loss
After the recordings, we perfused all mice and immunostained
brains as outlined below to confirm orexin neuron loss in DOX−
mice and to confirm that the genetic construct of the orexin-tTA;
TetO DTA mice did not cause any unexpected orexin neuron
loss in the DOX + control mice. In addition, we immunostained

brains from young-onset and adult-onset mice perfused 0, 1,
2, and 3 weeks after DOX removal (n = 6–11 mice per group,
including males and females) to test whether any differences in
cataplexy could be due to different rates of orexin neuron loss.

Immunohistochemistry and Neuron
Counting
We anesthetized mice with ketamine/xylazine (150/15 mg/kg i.p.)
and transcardially perfused them with 30 mL phosphate-buffered
saline (PBS, pH = 7.4) and 30 mL of 10% buffered formalin
(pH = 7). We then harvested brains and post-fixed them in 10%
formalin for 24–48 h. After fixation, we transferred brains to a
30% sucrose solution in PBS-azide for 48–72 h.

The orexin field spans the lateral and posterior hypothalamus
(De Lecea et al., 1998; Sakurai et al., 1998), so we collected 30 µm
sections in a 1:3 series from bregma −0.94 mm to −2.80 mm to
capture the full orexin field across∼20 sections in each series.

We immunostained one series for orexin-A to compare
the number of orexin neurons at different time points across
groups. We first rinsed sections three times with PBS for 5 min
before incubating them for 30 min in 0.3% hydrogen peroxide
in PBS with Triton (0.25% Triton X-100 in PBS) to quench
endogenous peroxidases. Next, we rinsed sections again in PBS
three times for 5 min before blocking them with 3% normal
horse serum (NHS) for 2 h. We followed blocking with a primary
overnight incubation in goat anti-orexin-A antibody (1:5,000;
Santa Cruz SC-8070, Lot: C0512) in 0.02% sodium azide in PBT
and 3% NHS.

The next day, we began by rinsing sections six times for 5 min
in PBS and then incubated them in biotinylated donkey anti-
goat IgG secondary antiserum (1:500; Jackson ImmunoResearch
705-065-147, lots: 129472, 150417) in 3% NHS in PBT for
2 h. After secondary incubation, we again rinsed sections three
times for 10 min in PBS followed by a 1 h incubation in
avidin-biotin complex in PBS (Vector Laboratories PK-6100, lot:
ZF1218). To stain orexin-A brown, we then placed sections in
3,3′-diaminobenzidine (DAB) (Vector SK-4100, Lot: SLCD1660)
in tris-buffered saline (TBS) and 0.024% hydrogen peroxide
for 6 min. After the reaction, we again rinsed sections three
times for 5 min in PBS before mounting them on Superfrost
Plus slides and letting them dry overnight. All incubations and
washes were carried out at room temperature on a shaker. We
dehydrated the sections using graded ethanol for 3 min per
step, followed by clearing with xylenes, and then coverslipped
the slides using Cytoseal 68 mounting media (Thermo Fisher
Scientific, 23-244256).

We imaged sections using bright field microscopy under the
5× lens of an Axioplan2 microscope (Zeiss) and captured images
using AxioCam HRC (Zeiss). Finally, we analyzed the images and
counted orexin-A immunoreactive neurons using ImageJ’s Multi-
Point tool. All immunostaining and cell counting were performed
by AJ for consistency.

Statistical Analysis
We performed statistical analysis in R version 4.0.2 using
the following packages: nlme, sjPlot, sjmisc, ggplot2, and plyr
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FIGURE 2 | Cataplexy was unaffected by age of orexin neuron loss. (A) Average percent of time young-onset and adult-onset mice spent in cataplexy during the
12 h dark period, collapsed across age. (B) Average number of cataplexy bouts during the 12 h dark period in young-onset and adult-onset mice, collapsed across
age. (C) Average percent time spent in cataplexy bouts during the dark period in young-onset and adult-onset mice at 3 or 13 weeks after doxycycline removal.
(D) Average number of cataplexy bouts during the dark period in young-onset and adult-onset mice at 3 or 13 weeks after doxycycline removal. All data are
presented as mean ± SEM with individual data points overlaid.

(Wickham, 2011, 2016; Lüdecke, 2018, 2020; Pinheiro et al., 2020;
R Core Team, 2020). We performed separate linear mixed
multilevel regressions for each dependent variable of interest:
percent time in cataplexy (during the dark period, light period,
and over 24 h), number of cataplexy bouts (during the dark
period, light period, and over 24 h), duration of cataplexy bouts
(during the dark period), percent time awake (during the dark
period, light period, and over 24 h), number of wake bouts
(during the dark period), duration of wake bouts (during the dark
period), percent time in NREM sleep (during the dark period,
light period, and over 24 h), and percent time in REM sleep
(during the dark period, light period, and over 24 h). The DOX+
control group was excluded from the cataplexy regressions
because no control mice had cataplexy and including the group
would violate the homoscedasticity assumption of the regression.
Independent variables for the cataplexy regressions included:
group (young-onset and adult-onset), sex (female and male), time

since DOX removal, and all interaction terms (group × sex,
sex × time, group × time, group × sex × time). Independent
variables for the sleep/wake regressions included: group (young-
onset, adult-onset, and DOX+), sex (female and male), age, and
all interaction terms (group × sex, sex × age, group × age,
group × sex × age). There were two potential sources of
correlation in our data: mice within a litter and observations
within a mouse (we recorded from some mice multiple times). To
account for these, we included a litter-specific random intercept
and an observation-specific random intercept in each model.
We assumed a normal distribution and an unknown standard
error for these random intercepts and the residual error. We log-
transformed (base 10) bout durations of wake and cataplexy for
each mouse to prevent violation of the normality assumption of
the regressions.

For the orexin neuron loss confirmation experiment, we ran
a 2 × 2 × 4 analysis of variance (ANOVA) including orexin
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neuron count as the dependent variable and group (young-onset
and adult-onset), sex (male and female), time since DOX removal
(0, 1, 2, 3 week), and the relevant interaction terms (group× time,
sex× time, group× sex× time) as the independent variables.

RESULTS

Age of Orexin Neuron Loss Did Not
Impact Cataplexy
Young-onset and adult-onset mice had similar amounts of severe
cataplexy. The main effect of group (young-onset vs. adult-
onset) was not significant for either the percentage of time
spent in cataplexy or the number of cataplexy bouts during the
dark period (Figure 2). The group × sex, group × time since
DOX removal, and group × sex × time since DOX removal
interactions were all non-significant for the percentage of time
spent in cataplexy and for the number of cataplexy bouts. Still, the
number of bouts tended to increase over time since DOX removal
in young-onset mice but not in adult-onset mice, t(10) = −1.89,
p = 0.087 (Figure 2D). Cataplexy mainly occurs in the dark
period, so we present all analyses on cataplexy during the dark
period. Cataplexy was much less common in the light period, and
results were similar for cataplexy during the light period or across
the 24 h period. As cataplexy occurs only during wakefulness,
cataplexy amounts could differ due to differences in time spent
awake. For this reason, we also analyzed the amount of cataplexy
as a percent of time awake and the number of cataplexy bouts
per hour of wakefulness in all mice, but the conclusions were the
same, indicating that differences in cataplexy were unrelated to
differences in wake time were unrelated to differences in wake
time. For representative EEG/EMG traces and video during a
cataplexy bout in example young-onset and adult-onset mice, see
Supplementary Videos.

There were no group differences in the duration of cataplexy
bouts, but bouts of cataplexy tended to lengthen over time
since DOX removal, t(8) = 2.01, p = 0.079 (Figure 3). On
average, for every day since DOX removal, cataplexy bouts were
about 1 s longer.

Female Mice Had More Cataplexy Than
Male Mice
Female mice had more bouts of cataplexy during the dark period
than male mice. The main effect of sex was significant for the
number of cataplexy bouts in the dark period, t(21) = −2.20,
p = 0.039, indicating that male mice have fewer bouts of cataplexy
than female mice (Figure 4). The main effect of sex was not
significant for percent of time spent in cataplexy. No interaction
effects were significant for either percent time or number of
cataplexy bouts during the dark period.

Female mice also spent more time in cataplexy during the light
period and across the 24 h period than male mice. The main effect
of sex was significant for the percentage of time spent in cataplexy
during the light period, t(21) = −2.85, p = 0.0095, and across
the 24 h period, t(21) = −2.23, p = 0.037. The main effect of sex
was also significant for the number of cataplexy bouts during the
light period, t(21) =−2.63, p = 0.016, and across the 24 h period,

FIGURE 3 | Cataplexy duration increases across time since DOX removal.
Average duration of cataplexy bouts during the dark period in both
young-onset and adult-onset mice at 3 and 13 weeks after doxycycline
removal.

FIGURE 4 | Female mice had more cataplexy than males. Average number of
cataplexy bouts during the 12-h dark period in female and male mice,
collapsed across age. ∗p < 0.05.

t(21) = −2.59, p = 0.017. Interestingly, the age × sex interaction
for percent time spent in cataplexy during the light period was
nearly significant, t(10) = 2.199, p = 0.052. While female mice
spent more time in cataplexy during the light period at 3 weeks
after DOX removal, male and female mice had similar amounts
of cataplexy by 13 weeks after DOX removal. The same trend was
seen in the number of cataplexy bouts during the light period,
age× sex interaction, t(10) = 1.96, p = 0.078.
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FIGURE 5 | REM sleep was unaffected by age of orexin neuron loss.
(A) Average percent time spent in REM sleep during the 12-h dark period in
DOX+ controls, young-onset mice, and adult-onset mice, collapsed across
age. (B) Average percent time spent in REM sleep during the 12-h dark period
in female and male mice.

Age of Orexin Neuron Loss Did Not
Impact REM Sleep
There were no significant main or interaction effects on the
percentage of time spent in REM sleep during the dark period
(Figure 5). Still, young-onset mice tended to spend more time
in REM sleep during the dark period than DOX+ controls,
t(43) = 1.86, p = 0.07, and male mice tended to spend more time
in REM sleep than females, t(43) = 1.94, p = 0.059.

Young-onset female mice spent less time in REM during the
light period than DOX+ female mice, but DOX+ and young-
onset males spent similar amounts of time in REM. Group × sex
interaction, t(42) = 2.25, p = 0.029.

Orexin Neuron Loss Resulted in Poor
Maintenance of Wake
Young-onset and adult-onset mice had significantly shorter
wake bouts during the dark period than DOX+ controls,
t(43) = −3.90, p = 0.0003 and t(43) = −2.88, p = 0.0062,
respectively (Figure 6A). Wake durations were shorter in male
DOX+ controls than females but the same between adult-onset
males and females so the reduction in wake bout durations was
steeper in female adult-onset mice than males [group × sex
interaction, t(43) = 2.13, p = 0.039]. This interaction was not seen
in young-onset mice.

Young-onset and adult-onset mice also had more wake bouts
during the dark period than DOX+ controls [t(43) = 3.61,
p = 0.0008, and t(43) = 3.90, p = 0.0003, respectively] (Figure 6B).
DOX+ male mice had more bouts of wake than DOX+ female
mice, but adult-onset male and female mice had similar numbers
of wake bouts so the increase in number of wake bouts was
steeper in female adult-onset mice than males [group × sex
interaction, t(43) =−3.26, p = 0.0022].

Young-onset mice spent less time awake during the dark
period than DOX+ controls, t(43) =−2.53, p = 0.015, and tended
to spend more time in NREM sleep during the dark period than
DOX+ controls, t(43) = 1.96, p = 0.056, but this effect was not
significant (Table 1). Cataplexy in the dark period in young-
onset mice likely explains this difference in wake time. No such
differences were seen in the adult-onset mice.

Age of orexin neuron loss did not affect the percentage of
time spent awake, in NREM sleep, or in REM sleep across
the 24 h period.

Considered together, these results support the perspective
that orexin neuron loss results in poor maintenance of wake, a
common symptom of orexin deficiency in mouse models and
human narcolepsy (Hara et al., 2001; Mochizuki et al., 2004;
Tabuchi et al., 2014; Scammell, 2015).

Age of Orexin Neuron Loss Mildly
Affected NREM Sleep
Adult-onset mice spent less time in NREM sleep during the light
period than DOX+ controls, t(42) = −2.06, p = 0.045, but there
was no difference in percent time in NREM sleep during the light
period between young-onset mice and DOX+ controls (Table 1).

Orexin Neuron Numbers Declined
Similarly in Young and Adult Mice
After removal of DOX, the number of orexin neurons declined
rapidly over 3 weeks, F(1) = 341.21, p < 2× 1016, but this decline
was unaffected by age of DOX removal or sex (Figure 7). There
were no significant interaction effects (group× time, sex× time,
or group × sex × time), indicating that there were no group
differences in orexin count across time. Thus, any differences
in behavior cannot be explained by differences in the rate of
orexin neuron loss.

DISCUSSION

As cataplexy and sleepiness are often severe in children with
narcolepsy, we investigated whether the symptoms of narcolepsy
are worse when the orexin neurons are lost in young mice (onset
4 weeks) compared to adult mice (onset 14 weeks). We found that
age of orexin neuron loss did not affect cataplexy severity, but
female mice had more cataplexy than male mice and cataplexy
duration tended to increase over time. Young-onset mice also
tended to spend more time in REM sleep during the dark period
than DOX+ controls. With both young- and adult-onset orexin
neuron loss, wake bouts in the dark period were only about half
the duration seen in controls, but there was no reduction in the
total amount of wake over 24 h. Overall, this experiment did
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FIGURE 6 | Poor maintenance of wake with orexin neuron loss. (A) Average duration of wake bouts and (B) average number of wake bouts in DOX+ (control),
young-onset, and adult-onset mice. *p < 0.05.

TABLE 1 | Time spent in each sleep/wake state during the dark period and the light period.

DOX+
7 weeks
(n = 14)

Young-onset
7 weeks
(n = 14)

DOX+
17 weeks
(n = 16)

Young-onset
17 weeks
(n = 14)

Adult-onset
17 weeks
(n = 14)

DOX+
27 weeks
(n = 15)

Adult-onset
27 weeks
(n = 19)

Dark Period

Wake 74.1 (1.5) 66.0 (1.6) 71.7 (2.2) 68.8 (2.5) 67.4 (2.4) 71.4 (2.7) 63.7 (2.0)

NREM sleep 22.9 (1.4) 27.7 (1.4) 25.4 (2.0) 24.7 (2.4) 26.6 (2.4) 25.8 (2.5) 29.8 (2.0)

REM sleep 3.0 (0.2) 4.3 (0.4) 2.9 (0.4) 3.0 (0.4) 4.3 (0.3) 2.8 (0.4) 4.0 (0.3)

Cataplexy 0 (0) 2.0 (0.8) 0 (0) 3.5 (0.7) 1.7 (0.5) 0 (0) 2.5 (0.4)

Light period

Wake 37.7 (3.1) 39.4 (3.1) 37.5 (1.2) 40.4 (1.1) 42.2 (1.4) 37.1 (1.4) 38.7 (1.2)

NREM sleep 46.6 (3.8) 48.6 (0.9) 54.1 (1.0) 51.9 (1.0) 49.3 (1.2) 53.5 (1.4) 53.8 (1.2)

REM sleep 8.6 (0.8) 8.4 (0.5) 8.4 (0.3) 7.1 (0.3) 8.1 (0.4) 9.3 (0.3) 7.1 (0.3)

Cataplexy 0 (0) 0.4 (0.2) 0 (0) 0.4 (0.1) 0.2 (0.1) 0 (0) 0.4 (0.1)

Data are presented as mean percent time/12 h (SEM).
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FIGURE 7 | After DOX removal, orexin neurons are lost at similar rates in young- and adult-onset mice. (A) Average number of orexin-A positive neurons in
young-onset and adult-onset mice over time since doxycycline removal. (B) Average number of orexin-A positive neurons in female and male mice over time since
doxycycline removal.

not support the hypothesis that young-onset orexin neuron loss
would result in severe cataplexy, but it revealed an important
sex difference in murine cataplexy and further characterized
this important mouse model. These are the first experiments
modeling young-onset narcolepsy in mice and a helpful step
toward understanding the uniquely severe symptoms endured by
children with narcolepsy.

Effects of Age on Cataplexy
Young-onset and adult-onset mice spent a similar amount of
time in cataplexy and had a similar number of cataplexy bouts.
At 3 weeks after DOX removal, the adult-onset group spent
about 2% of the dark period (∼15 min) in cataplexy which is
similar to prior descriptions of adult orexin-tTA; TetO DTA mice
(Tabuchi et al., 2014; Williams et al., 2019). However, Tabuchi
et al. (2014) reported that at 13 weeks after DOX removal, adult-
onset mice spent about 8% (∼60 min) of the dark period in

cataplexy (Tabuchi et al., 2014). This amount is much higher
than our group averages, although some individual mice in our
experiments showed this large amount of spontaneous cataplexy.
This discrepancy could be due to differences in the recording
environment and equipment, inter-individual differences in
scoring cataplexy, or background mouse strain (C57/BL6 mice
vary slightly between Japan and the United States).

When narcolepsy begins in childhood, symptoms are often
more severe than when narcolepsy begins in adults. Children
tend to be sleepier than adults (Young et al., 1988; Pizza et al.,
2013), and cataplexy tends to be more severe, persistent, and
frequent (Serra et al., 2008; Plazzi et al., 2011; Antelmi et al.,
2017; Maski et al., 2017). Beyond typical narcolepsy symptoms,
childhood narcolepsy is also associated with precocious puberty
and obesity, indicating widespread disruption to multiple systems
(Kotagal et al., 1990, 2004; Plazzi et al., 2006; Vendrame et al.,
2008; Poli et al., 2013; Ponziani et al., 2016). Indeed, children
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with narcolepsy are more likely to develop comorbidities affecting
endocrine, metabolic, psychiatric, and nervous systems around
diagnosis than age-matched healthy controls (Jennum et al.,
2017). Our results suggest that this age-related difference may be
specific to humans or may be a consequence of the autoimmune
process hypothesized to kill the orexin neurons (Bonvalet et al.,
2017), which is not modeled in these mice. For example, an
especially aggressive autoimmune attack in children might kill
the orexin neurons rapidly, leading to severe symptoms, and
more disruption (Cogswell et al., 2019) whereas the neuron
loss may occur more slowly in adults who develop narcolepsy.
Alternatively, orexin neuron loss in adults may be less disruptive
because of redundancies stabilizing different systems that have
not yet developed in children.

Alternatively, some researchers maintain that narcolepsy
progression is similar in children and adults but that children are
typically studied closer to disease onset (Nevsimalova, 2009) or
that only the most severe cases are diagnosed in children (Young
et al., 1988). The first interpretation gains some preclinical
support from the fact that orexin-tTA; TetO DTA mice removed
from doxycycline at birth have far less cataplexy in adulthood
than mice removed from doxycycline later (Tabuchi et al., 2014).
Clinically, childhood cataplexy lessens over time and develops
into a more typical, adult-like form (Plazzi et al., 2011; Pizza et al.,
2013). The second hypothesis is possible as it usually takes years
longer for children to be diagnosed with narcolepsy compared
to adults (Guilleminault and Pelayo, 1998; Thorpy and Krieger,
2014; Maski et al., 2017), and milder cases may be overlooked.
Either of these hypotheses could be supported by the lack of
age effect shown here. However, because of the long diagnosis
delay, most clinical studies are retrospective in nature, relying
on patient and family recall of age and severity of symptoms at
onset. This major limitation to much of the clinical data further
emphasizes the importance of longitudinal studies in children
with narcolepsy and studying age of narcolepsy onset in animal
models, which provide better control than clinical research.

Sex Differences in Cataplexy
We found that female mice have more cataplexy than male mice,
yet researchers debate whether narcolepsy prevalence differs
between men and women. Some early epidemiological studies
indicate that narcolepsy is more common in men than in women
(Silber et al., 2002; Ohayon et al., 2005; Longstreth et al.,
2009). However, studies that separated narcolepsy type 1 (with
cataplexy) from narcolepsy type 2 (without cataplexy) found a
much smaller effect (Silber et al., 2002), no sex difference in
NT1 (Ohayon et al., 2002; Heier et al., 2009; Luca et al., 2013;
Khatami et al., 2016), or a higher incidence in women (Longstreth
et al., 2009). Given the significant diagnosis delay and frequent
misdiagnoses of patients with narcolepsy (Guilleminault and
Pelayo, 1998; Kryger et al., 2002; Macleod et al., 2005; Thorpy
and Krieger, 2014; Maski et al., 2017), it is likely that older
reports underestimated the prevalence of narcolepsy, especially
in women. Importantly, considering the typical finding of an
increased prevalence in men, the diagnostic delay is typically
longer in women than in men (Luca et al., 2013), and women
are less likely to be assessed in sleep laboratories, resulting in

less access to polysomnography and likely underdiagnosis of sleep
disorders (Auer et al., 2018). Overall, it seems unlikely that there
is a significant sex difference in the prevalence of narcolepsy
type 1 in humans.

Most studies do not assess gender differences in cataplexy
severity. Cataplexy may be more common in women than in
men (Ohayon et al., 2002), but there seems to be no difference in
severity between men and women (Luca et al., 2013). One study
found that a larger proportion of men with “high frequency”
cataplexy (more than one bout a month), but the number of
patients was relatively low (44) and there were few women in
the study (16) (Mattarozzi et al., 2008). Future clinical studies
should examine gender as a possible factor contributing to
cataplexy severity.

While we suspect that the sex difference in cataplexy reported
here is unlikely to parallel human narcolepsy, it may arise from
thermoregulatory influences. Cataplexy is a REM sleep-like state,
and REM sleep and cataplexy are likely regulated similarly.
Warmer ambient temperatures increase REM sleep, and cooler
temperatures decrease REM sleep in rodents (Schmidek et al.,
1972; Szymusiak and Satinoff, 1981; Kumar et al., 2009; Komagata
et al., 2019). Female mice prefer warmer temperatures than
males, suggesting that the thermoneutral zone for females may
be slightly warmer compared to males (Gaskill et al., 2009;
Kaikaew et al., 2017). While cooler temperatures inhibit REM
sleep, they may be more permissive to cataplexy. In the current
experiment, mice were housed at 22◦C, and this cool temperature
may have inhibited REM sleep more in females than in males,
yet persistent REM sleep pressure may have resulted in more
cataplexy in females.

In addition, the estrus cycle can influence orexin levels and
sleep/wake behavior. Hypothalamic orexin levels are higher
during proestrus than in other stages of the estrus cycle in rats
(Porkka-Heiskanen et al., 2004); however, we are not aware of
any studies examining cataplexy across the estrus cycle. While
the effects of the estrus cycle on sleep/wake architecture in female
mice are modest and strain-specific, REM sleep is significantly
reduced in the dark period during proestrus in female Sprague-
Dawley rats and C57/BL6 mice (Fang and Fishbein, 1996; Koehl
et al., 2003). Interesting, male rats spend more time in REM
sleep than female rats overall, a finding that our results support,
although a previous study in mice did not find this difference
(Fang and Fishbein, 1996; Paul et al., 2006). Despite the likelihood
that the sex difference shown here is a species-specific effect, this
aspect of murine cataplexy has implications for future research.
Cataplexy is an uncommon state, so including females may
help increase the overall number of cataplexy bouts seen across
groups, in addition to better modeling the patient population.

Effects of Orexin Neuron Loss on REM
Sleep
Young-onset mice tend to spend more time in REM sleep during
the dark period than DOX+ controls, although oddly, adult-onset
mice did not show the same pattern. An increase in dark period
REM sleep was expected as the orexin neurons are thought to
normally suppress REM sleep during the dark period (Kantor
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et al., 2009). Kantor et al. (2009) demonstrated this disinhibition
of REM sleep during the subjective night in mice housed in
constant darkness, and this effect has also been shown in orexin-
ataxin mice and orexin knockout mice maintained on a 12:12
light:dark cycle (Hara et al., 2001; Kantor et al., 2009; Roman
et al., 2018; Chowdhury et al., 2019).

Interestingly, this increase in REM sleep during the subjective
dark period was originally shown in orexin-ataxin-3 mice but not
orexin knockout mice, which was thought to indicate an effect of
the loss of orexin neurons as opposed to the loss of the orexin
peptides per se (Kantor et al., 2009). Our results are consistent
with this hypothesis, but it is also possible that this REM sleep
effect is seen soon after the loss of the orexin neurons but before
some compensation occurs. This hypothesis is supported by the
fact that orexin-tTA; TetO DTA mice that are removed from
DOX in adulthood have more REM sleep in the dark period
3 weeks after DOX−, but not 4–13 weeks after DOX removal,
and orexin-tTA; TetO DTA mice removed from DOX at birth
show no increase in dark period REM sleep (Tabuchi et al., 2014).
However, further research will be necessary to parse out the acute
and chronic effects of orexin neuron loss vs. orexin peptide loss
on REM sleep in the dark period.

Limitations
A few limitations in these experiments warrant discussion. We
removed DOX from the chow of 4-week-old mice as they are
roughly the same developmental stage as 11–12 years old children
(Flurkey et al., 2007), but it is difficult to accurately align human
ages onto mice. It is possible that orexin neuron loss prior
to 4 weeks of age would produce more severe cataplexy. It is
also important to consider that all cataplexy reported here is
spontaneous, but the addition of palatable food (Froot Loops or
chocolate) or a running wheel can dramatically increase cataplexy
in orexin knockout mice (Espana et al., 2007; Clark et al., 2009;
Burgess et al., 2013; Oishi et al., 2013; Mahoney et al., 2017),
and young-onset mice may be more vulnerable to reward-elicited
cataplexy. We did not control for estrus cycle in this experiment,
which likely accounts for some of the variability in cataplexy
and REM sleep in female mice; however, our data from females
are only slightly more variable than males. Thus, while it is best
practice to control for estrus cycle, we do not believe that this
should be a barrier to including females in experiments.

CONCLUSION

In contrast to our hypothesis, we did not find more cataplexy in
mice with orexin neuron loss at a young age. Instead, we found
that female mice have more cataplexy overall than male mice,
which is likely a species-specific effect that can aid narcolepsy
research. Still, the hypothesis is open, and future research
could determine whether DOX removal at birth or at weaning
results in severe cataplexy in mice; examine whether age of
orexin neuron loss affects reward-elicited cataplexy; characterize
cataplexy in female mice as a function of estrus cycle; further
parse out the acute and chronic effects of orexin neuron loss
vs. orexin peptide loss on dark period REM sleep; or investigate

compensatory mechanisms that develop in the weeks after orexin
neuron loss. Children are uniquely burdened by narcolepsy
symptoms, and research dedicated to this population is necessary
to address this problem.
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Supplementary Videos | Example videos of cataplexy bouts in SleepSign. EEG
(top) and EMG (bottom) signals are presented for two representative cataplexy
bouts. The three panels in the bottom left corner (from top to bottom) show: Delta
Power, EMG integral, and Theta Ratio. Epochs are labeled “W” for wake or “C” for

cataplexy. Asterisks indicate that the mouse transitioned between states within the
10-s epoch. In these cases, the epoch was scored as the state lasting for at least
50% of the epoch. In both mice, the EEG signal during cataplexy resembles REM
sleep, the mouse is immobile for the duration of the bout, and theta activity
dominates the EEG activity. Hypersynchronous theta activity is visible as brief
bursts of larger amplitude EEG signal. Video 1 Example cataplexy bout in a
young-onset mouse (age 17 weeks). The cataplexy bout begins about 8 s into
epoch 756 (blue numbers beneath EMG signal). The bout ends 6 s into epoch
771. Video 2 Example cataplexy bout in an adult-onset mouse (age 17 weeks).
The cataplexy bout begins 4 s into epoch 1262 (blue numbers beneath EMG
signal). The bout ends 5 s into epoch 1267.
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of Brain Circuit Connectivity
Mathilde C. C. Guillaumin and Denis Burdakov*
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Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting
beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-
scale interactions mediated by the classic fast transmitters, GABA and glutamate. In
contrast, neural circuit roles of the largest transmitter family in the brain–the slow-
acting peptide transmitters–remain relatively overlooked, or described as “modulatory.”
Neuropeptides may efficiently implement sustained neural circuit connectivity, since
they are not rapidly removed from the extracellular space, and their prolonged
action does not require continuous presynaptic firing. From this perspective, we
review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting
hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential
for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin
release inside and outside the hypothalamus evokes slow postsynaptic excitation. This
excitation does not arise from modulation of classic neurotransmission, but involves
direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to
ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may
not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent
with slow local microcircuits. The sustained actions of neuropeptides on neuronal
membrane potential may enable core brain functions, such as temporal integration
and the creation of lasting permissive signals that act as “eligibility traces” for context-
dependent information routing and plasticity. The slowness of neuropeptides has unique
advantages for efficient neuronal processing and feedback control of consciousness.

Keywords: hypothalamus, neuropeptides, orexin, hypocretin, arousal, neural circuit

FUNCTIONAL CIRCUIT CONNECTIVITY, FAST AND SLOW

In modern neuroscience textbooks, coverage of functional interactions between neurons and their
postsynaptic targets remains biased toward fast (millisecond-level on/off) interactions mediated
by small-molecule neurotransmitters such as ACh, GABA, and glutamate (Bear et al., 2015). This
is presumably due to the enduring influence of the insightful electrophysiological studies of fast
neurotransmission by giants of 20th century neuroscience, such as Bernard Katz and John Eccles,
which attracted a number of Nobel prizes.

While these fast interactions are undoubtedly one fundamental aspect of brain function,
most neurotransmitters in the brain do not operate on these rapid timescales. For example,
neuropeptides–which are the largest known class of neurotransmitters (>100)–alter postsynaptic
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neuronal activity at timescales more similar to typical behaviors
and important sensory associations, typically seconds to minutes
(Hokfelt et al., 2003; Burdakov, 2004; Salio et al., 2006; Burbach,
2011; Svensson et al., 2018).

These slower actions of neuropeptide transmitters are often
described as “modulatory.” This term is not clearly defined,
but implies a qualitative difference, or that the main role of
the peptides is to change the action of fast neurotransmitters
(van den Pol, 2012). However, at the level of neural circuit
functional connectivity and control of neuronal spiking, the
actions of at least some behaviorally-vital neuropeptides are
not conceptually different from fast transmitters: they are
simply slower.

The role of neuropeptides in behavioral control, and more
specifically, in sleep regulation and vigilance state switching, and
their impact on the sleep electroencephalogram has been long
known (Steiger and Holsboer, 1997). Instead of reviewing the
current knowledge of the role of those peptides in sleep and
sedation, we will focus on a few proof-of-concept examples to
illustrate their role in neural circuit connectivity–and therefore in
brain and behavioral states–beyond the merely modulatory roles
which they are often attributed.

As an illustration of this, consider the actions of the
prototypical fast transmitter glutamate vs. those of the
neuropeptide transmitter orexin/hypocretin (de Lecea et al.,
1998; Matsuki and Sakurai, 2008; Schöne et al., 2014). Both
are stored in vesicles located in presynaptic axonal terminals,
and released upon electrical stimulation of the axons (de Lecea
et al., 1998; Torrealba et al., 2003; Schöne and Burdakov,
2012; Schöne et al., 2014). Both bind to specific postsynaptic
receptors coupled, either directly or via cytosolic messengers,
to the opening of ion channels in the postsynaptic membrane
(Sakurai, 2007; Kukkonen and Leonard, 2014; Bear et al.,
2015). However, glutamate release is typically initiated very
rapidly, by one or a few presynaptic action potentials; its action
is also terminated similarly promptly by a combination of
extracellular diffusion and glutamate reuptake by neurons
and glia, resulting in a millisecond-level on/off dynamics for
ionotropic glutamate signals (Bear et al., 2015). In contrast,
orexin release seems to require more prolonged presynaptic
firing, and orexin-evoked postsynaptic depolarization can
persist for many seconds or even minutes, presumably due to
slow orexin diffusion and/or breakdown, no known reuptake
mechanisms, and the long half-lives of intracellular messengers
generated by orexin G-protein coupled receptors (GPCRs)
(Schöne et al., 2014).

Thus, functional neural circuits in the brain can be created
either by slowly-acting neurotransmitters such as neuropeptides,
or by fast-acting classic neurotransmitters. In the rest of this
short review, specific examples of neuropeptidergic brain circuits
will be presented from the above-mentioned perspective. Our
focus will be narrow and somewhat subjective, concentrating
on recent insights from studies of lateral hypothalamic
neuropeptidergic neurons linked to control of arousal and
vigilance state switching. However, some general concepts will
be proposed and experiments for probing them further will
be outlined.

BRAIN-WIDE PROJECTING
PEPTIDERGIC NEURONS OF THE
NON-NEUROENDOCRINE
HYPOTHALAMUS

Functionally-speaking, the hypothalamus is usually thought of
as comprising two parts: the endocrine hypothalamus consisting
of neurons controlling pituitary hormone release, and the
non-neuroendocrine hypothalamus, which represents most of
the hypothalamus in terms of volume and contains large
and heterogeneous neurons that mono-synaptically innervate
much of the brain (Peyron et al., 1998; Bittencourt, 2011;
Bear et al., 2015).

It is the latter, non-neuroendocrine, hypothalamus that is the
focus of this review. It is a complex confederation of neuronal
clusters (nuclei). Most of the non-neuroendocrine hypothalamic
neurons examined so far appear to synthesize and/or use classic
neurotransmitters such as GABA and glutamate (Atasoy et al.,
2012; Dicken et al., 2012; Schöne and Burdakov, 2012; Jego
et al., 2013; Romanov et al., 2017; Mickelsen et al., 2019).
In addition, most (if not all) hypothalamic neurons express
a peptide neurotransmitter. Many of these neuropeptides are
generally thought to be made only in the hypothalamus, for
example orexin, discussed in our earlier example, is made
exclusively by neurons of the lateral hypothalamus (LH) (de
Lecea et al., 1998; Sakurai et al., 1998). This makes hypothalamic
neuropeptidergic-producing neurons a very attractive “model
system” for studying the role of neuropeptide transmission
in brain-wide neural computation, brain state control, and
behavior. This is because, in contrast to brain-wide synthesized
transmitters such as glutamate, the origin of hypothalamus-
unique neuropeptide signals is always known. This solves a
major problem of interpretation in systems neuroscience, by
allowing neuropeptidergic influences to be interpreted with
precise knowledge of their normal origin. For example, if changes
in neuronal firing in a particular brain area are observed upon
exogenous application of orexin neuropeptide in brain slices,
specific hypotheses can be formulated about LH interactions with
these areas (Burdakov et al., 2003; van den Top et al., 2004;
Sakurai, 2007; Burdakov and Gonzalez, 2009; Belle et al., 2014;
Hay et al., 2014; Burdakov, 2020).

INFORMATION REPRESENTED BY LH
NEUROPEPTIDERGIC NEURONS

Here we choose once more the LH neuropeptide orexin to
exemplify some emerging concepts in neuropeptide-mediated
function and neuronal connectivity, given that the LH has been
long-known to be crucial for normal behavioral and brain state
control. Orexin neurons play a key role in sleep/wake regulation
(Inutsuka and Yamanaka, 2013) and a rather large body of
evidence supports their critical role in stabilizing behavioral
states (Chemelli et al., 1999; Lin et al., 1999; Hara et al., 2001;
Mochizuki et al., 2004; Ma et al., 2018). Importantly, the role
of orexin neurons in sleep/wake and behavioral state regulation
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has been shown to be primarily linked to orexin peptide release–
rather than their “classic” co-transmitters (Ma et al., 2018).
The peptide orexin A is itself wake promoting (Hagan et al.,
1999), an effect possibly mediated via the histaminergic system
(Huang et al., 2001).

Lateral hypothalamus lesions, either at crude anatomical level
or more recently at cell-type-specific level, produce profound
motor, cognitive, and sleep-wake abnormalities [reviewed in
Saper et al. (2005)]. Changes in LH neuron firing are sufficient
to generate diverse and profound behavioral and brain state
alterations, from sleep-wake switching to specific goal-directed
behaviors (Bernardis and Bellinger, 1996; Adamantidis et al.,
2007; Jego et al., 2013; Mahler et al., 2014; Stuber and Wise, 2016;
Blomeley et al., 2018). The firing of orexin neurons is generally
higher during wake (especially active waking) and lower during
sleep (Lee et al., 2005). Their stimulation increases the probability
for mice to transition from sleep to wakefulness (Adamantidis
et al., 2007; Carter et al., 2009), while their inhibition during the
inactive (light) phase has the opposite effect in mice, promoting
NREM sleep (Tsunematsu et al., 2011). Specific lesions of LH
orexin neurons, such as orexin peptide knockout or orexin cell
ablation, can substantially alter normal timing of vigilance state
transitions in response to external context (narcolepsy) (Lin
et al., 1999; Ma et al., 2018), demonstrating the critical role of
orexin for moment-to-moment sensorimotor control (Chemelli
et al., 1999; Hara et al., 2001; Karnani et al., 2020). This crucial
role in vigilance state regulation is further supported by the
fact that orexin neurons send excitatory inputs to all known
wake-promoting brain regions (Scammell et al., 2017).

In vivo, the changes in LH orexin neuron firing rate can occur
both rapidly and slowly, and alter behaviors either quickly (sub-
second) or slowly (minutes to hours) (Adamantidis et al., 2007;
Karnani et al., 2019). The slow changes in activity of orexin
neurons are thought to represent changes in the internal body
state. The LH is historically known as a glucose-sensing brain
area (Oomura et al., 1969). LH glucose-sensing has more recently
been mapped onto neurochemical cell types, such as orexin and
melanin-concentrating hormone (MCH) neurons (Yamanaka
et al., 2003; Burdakov et al., 2005; Gonzalez et al., 2008; Karnani
et al., 2011; Venner et al., 2011). The LH also contains cellular
and molecular sensing pathways for numerous other indicators of
body state, including hormones such as leptin and ghrelin, as well
as dietary amino acids (Yamanaka et al., 2003; Leinninger et al.,
2009; Karnani et al., 2011; Lam et al., 2011; Burdakov et al., 2013).
In addition to nutrients and hormones, orexin neurons also sense
acid and CO2 levels, which may assist in respiratory control
(Williams et al., 2007; Williams and Burdakov, 2008; Sunanaga
et al., 2009). These inputs usually change LH neural firing on
slow timescales, from seconds to minutes (e.g., Yamanaka et al.,
2003; Williams et al., 2008). In contrast, external sensory inputs
such as sound and light can alter orexin cell firing on subsecond
timescales, presumably via direct synaptic inputs that orexin
neurons receive from the rest of the brain (Mileykovskiy et al.,
2005; Gonzalez et al., 2016; Karnani et al., 2020).

Lateral hypothalamus orexin cell firing may thus
communicate a combined representation of fast and slow
sensory variables. The consequent control of fast and slow

behaviors and brain state transitions by orexin neurons has been
recently reviewed elsewhere (Kosse et al., 2015; Herrera et al.,
2017; Burdakov, 2019, 2020; Adamantidis et al., 2020). Below,
we focus on circuit effects of endogenous orexin peptide release
that may lie between orexin cell firing and behaviors or brain
state transitions.

OREXINERGIC VS. GLUTAMATERGIC
REPRESENTATIONS OF OREXIN CELL
FIRING IN DOWNSTREAM NEURONS

Orexin neurons co-express several neurotransmitters in
addition to orexins, such as the fast transmitter glutamate
and the neuropeptide dynorphin (Chou et al., 2001; Schöne
and Burdakov, 2012). Upon selective optogenetic stimulation
of orexin neurons, the membrane potential responses of
postsynaptic neurons have been analyzed using brain slice
patch-clamp recordings in several brain regions.

Inside the hypothalamus, the neural circuit between LH orexin
and tuberomammillary histamine neurons has been examined.
During constant-frequency optogenetic stimulation of orexin
cells, histamine cell firing did not follow the temporal pattern
of orexin cell stimulation (i.e., a square wave), but responded
with a temporal dynamics reminiscent of the sum of a first order
derivative and an integral of the presynaptic orexin cell activity
(Schöne et al., 2014; Figure 1A). Pharmacological dissection
of these responses indicated that glutamate mediated only the
initial transient component of the postsynaptic response, with
glutamate transmission seemingly “running out of steam” after
a couple of seconds of sustained orexin cell firing. In turn,
the integrative sustained component of the responses, which
accounted for most downstream spikes in the orexin→histamine
circuit, was mediated by orexin neuropeptide transmission,
specifically by orexin type-2 GPCRs (Schöne et al., 2014).
Pharmacological blockade of glutamate-driven spiking did not
affect orexin-driven spiking and vice versa, suggesting that
each co-transmitter acts in an isolated manner, without orexin-
glutamate cross-modulation. This ability of orexin and glutamate
to translate distinct features of orexin cell firing activity into
sustained integrative, and transient derivative-like responses,
respectively, illustrates how neuropeptides can create functional
slow neural circuits that are operationally distinct from classic
fast neural circuits. The integral-like nature of orexin-induced
postsynaptic firing has been compared to integral feedback
control signals, which are likely to be essential for stable feedback
control of brain states (Kosse and Burdakov, 2014; Schone and
Burdakov, 2017).

In several other hypothalamic regions, orexin-induced
postsynaptic excitatory responses have also been reported,
although they were created by exogenous application of orexin to
brain slices rather than by endogenous orexin neurotransmission
as in the above-described study (Follwell and Ferguson, 2002;
Burdakov, 2004; van den Top et al., 2004; Sakurai, 2007).
Interestingly, in some cases, only weak or non-existent “classic”
(i.e., fast glutamatergic or GABAergic) orexin→target circuit
connectivity was found in targets that display robust responses
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FIGURE 1 | Optogenetic evidence for neuropeptide-mediated neural circuit connectivity. (A) Hypothalamic orexin neuron (OHN) → histamine neuron (HAN) circuit.
Top left, example of HAN firing response to optogenetic stimulation of OHNs (blue bar), in the presence and absence of orexin receptor blockers (TCS/SB = OX1 and
OX2 receptor antagonists SB334867 and TCS-OX2-29). Top right, the same data plotted across many trials, illustrating glutamate (green) and orexin (red) circuit
connectivity (AP/s = action potentials per second). Bottom, a conceptualization of the orexin and glutamate transmission as integral-like and derivative-like parallel
signals. Source: Schöne et al., 2014. (B) Circuit between hypothalamic orexin neurons and accumbal D2 neurons. Stimulation of orexin cell axons (blue bar) creates
orexin-receptor-blockade-sensitive excitation in the postsynaptic D2 neurons (left column, membrane potential recordings; right column, membrane current
recordings). Source: Blomeley et al., 2018. (C) Circuit between hypothalamic orexin neurons and LC noradrenaline neurons, in the presence and absence of
glutamate (CNQX = AMPA receptor blocker) and orexin (SB = SB334867 orexin receptor blocker) receptor transmission. Adapted from Sears et al., 2013.

to exogenous orexin. One of such targets is LH GAD65 neurons,
which are robustly excited by orexin and are required for
generating normal locomotion in mice (Kosse et al., 2017).
This example is interesting, because based on traditional
“gold standard” connectivity mapping–i.e., simultaneous pre-
and postsynaptic patch-clamp recordings or channelrhodopsin-
assisted circuit mapping which focus on fast connectivity
and ignore slow connectivity–it would be concluded that the
orexin→GAD65 LH microcircuit does not exist (Burdakov and
Karnani, 2020). Yet, when examined from a neuropeptidergic
perspective, the LH GAD65 neurons display robust machinery
for strong orexin→GAD65 neuropeptidergic coupling, which

appears important for activation of LH GAD65 neurons in vivo
(Kosse et al., 2017).

Outside the hypothalamus, there is also considerable evidence
that neuroexcitatory orexin transmission forms functional
peptidergic circuits. One example is the recently described circuit
between orexin neurons and dopamine-inhibited D2 receptor-
expressing medium spiny neurons of the nucleus accumbens
shell (Blomeley et al., 2018). Optogenetic excitation of orexin
neurons creates depolarization waves in these D2 neurons,
and these waves are blocked by orexin receptor antagonists
demonstrating a functional LHorexin→NAcD2 neuropeptidergic
circuit (Figure 1B). This circuit is proposed to control
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NAc-dependent action-selection, in particular risk taking, based
on orexin cell activity (Blomeley et al., 2018). In contrast to
the strong effects of endogenously-released orexin, glutamatergic
transmission in the same circuit appears rather weak (Blomeley
et al., 2018). Similar neuropeptide-mediated circuits, albeit with a
stronger glutamatergic component, have been reported between
orexin neurons and locus coeruleus neurons (Sears et al., 2013;
Figure 1C).

From such studies, it can be concluded that orexin
neuropeptide transmission is able to create functional intra- and
extra-hypothalamic neural circuits in its own right, beyond a
mere modulation of fast neurotransmitters.

HOW UNIQUE ARE NEUROPEPTIDES IN
THE SLOWNESS OF THEIR ACTIONS?

Describing transmitters as fast and slow is a concise way to
capture their important operational characteristics. Yet, the
dichotomy between fast and slow transmitters can also be viewed
as somewhat artificial. Canonical “fast” transmitters, such as
GABA/glutamate, also have “slow” receptors (typically GPCRs)
that exert well-characterized long-lasting effects on neuronal
function (Bormann, 2000; Niswender and Conn, 2010). Non-
neuropeptide, intermediate-sized transmitters such as amines
and acetylcholine also act on a plethora of neuronal GPCRs
coupled, among other effectors, to plasmalemmal ion channels
and thus to membrane excitability (Bear et al., 2015). Since non-
neuropeptide transmitters are capable of slow and lasting control
of neuronal excitability via such mechanisms, one may justifiably
ask: Why does the brain need neuropeptides? What is unique
about neuropeptides that other transmitters cannot achieve?

The resources invested by the brain into making
neuropeptides (transcription, translation, and trafficking)
are presumably not trivial. Thus, it is tempting to speculate
that the 100 + neuropeptides in the brain play some unique
functions, and did not evolve solely to serve as a “redundant
safeguard” should something go awry with the other transmitters
(or as convenient molecular markers for neuroscientists).
We speculate that their unique function does not arise at the
receptor level, since, as alluded above, other transmitters have
similar types of receptors, namely GPCRs linked to long-lasting
postsynaptic effects. It could, instead, stem from what happens to
neuropeptides in the extracellular space, during the time between
release and receptor binding. Unlike other neurotransmitters,
which are rapidly cleared from the extracellular space by uptake
into neurons and glia by specialized membrane transporters
(Bear et al., 2015), neuropeptides have no known specific
clearance mechanisms. Neuropeptide diffusion from their release
sites will also be slower than the other transmitters, due to
their larger size. While there is little quantitative information
yet about how far neuropeptides spread from their natural
release sites in different brain areas, and how long they stay
in the extracellular space following release, we speculate that
the spatiotemporal scales involved are likely to be longer
than for other neurotransmitters. This may contribute to the
unique reasons why neuropeptides have evolved among other

transmitters. Alternatively, or in addition, these unique reasons
could relate to certain advantages of neuropeptides for evolution
itself. The 1 gene/1 (prepro)peptide encoding relationship of
peptides vs. the enzymatic multistep synthetic pathways of other
neurotransmitters might offer the evolutionary advantage of
single gene duplication for generation of new neuronal identities.

EMERGING CONCEPTS AND FUTURE
DIRECTIONS

In order to gain a broader understanding of functional neural
circuits, we propose that neuropeptide-mediated postsynaptic
signals should be routinely analyzed alongside the classic small-
molecule neurotransmitters in circuit connectivity screens. While
such broader analysis is becoming commonplace in functional
dissections of hypothalamic circuits, it is still relatively unusual in
other neural circuits, e.g., in cerebral cortex where neuropeptides
such as NPY and somatostatin are also abundantly expressed
(Karnani et al., 2016). Thanks to the current genetic tools,
studies are able to focus on neuronal populations that express
a given neuropeptide. And yet, in most cases, the exact role
of the neuropeptidergic release vs. that of the co-released
classic neurotransmitter(s) is rarely unraveled. For example,
the role of galaninergic neurons in sleep regulation has been
rather extensively studied, in particular the sleep-promoting role
of galanin-expressing GABAergic neurons of the ventrolateral
preoptic area (Steiger and Holsboer, 1997; Sherin et al., 1998).
A more recent study also showed that galaninergic neurons of
the dorsomedial hypothalamus can be divided into two distinctly-
projecting subsets: one suppressed during REM sleep and whose
activation promotes NREM sleep and opposes REM sleep, the
other with exact opposite patterns and effects (Chen et al., 2018).
But these studies fail to clarify which of GABA or galanin–that
these neurons co-express–mediates the reported effect on sleep
regulation (Sherin et al., 1998; Chen et al., 2018). Thus, expanding
circuit connectivity screens to neuropeptides and their specific
actions may shed light on the mechanisms through which neural
circuits solve the challenging task of exerting stable control over
the brain and body in a rapidly changing world (Kosse and
Burdakov, 2014).

Several emerging features of peptidergic neurotransmission
should be kept in mind while probing neuropeptidergic
connectivity of a neural circuit. First, there may be a presynaptic
frequency threshold for neuropeptide release that is higher than
that for small transmitters such as GABA or glutamate (Verhage
et al., 1991; Schöne et al., 2014). It is therefore important to
screen a range of presynaptic frequencies. Second, neuropeptide
release and/or action seems to build-up slowly during steady
presynaptic stimulation, and also decays slowly, sometimes over
many seconds, rather than a few milliseconds as in the case
of glutamate or GABA fast transmission (Schöne et al., 2014;
Blomeley et al., 2018). It is therefore important to screen the
effects of prolonged presynaptic firing trains (especially where
prolonged firing is normally displayed by the presynaptic neurons
in vivo), and to allow sufficient time for the postsynaptic response
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to appear. Third, while the above-chosen example of orexin
illustrates how it directly creates postsynaptic excitation, this is
not the case of all neuropeptides. Even within the LH, the MCH
neuropeptide, which is made by neurons intermixed with (but
distinct from) orexin neurons, does not appear to have direct
effects on postsynaptic membrane potential but rather seems to
act by altering GABA or glutamate signaling, which could supply
a lasting permissive signal [akin to an eligibility trace (Gerstner
et al., 2018)] for creating or erasing certain kinds of memory
(Adamantidis and de Lecea, 2009; Izawa et al., 2019; Kosse and
Burdakov, 2019; Burdakov and Peleg-Raibstein, 2020; Concetti
et al., 2020). Thus, “modulatory” actions of neuropeptides should
continue to be examined, even though some neuropeptides such
as orexin do not require them to form functional neural circuits.

In summary, the ability of neuropeptidergic postsynaptic
effects to substantially outlast presynaptic firing may bind

together fast and slow brain functions in a way that cannot be
achieved by fast transmitters alone. Slow on/off neuropeptide
signals may thus enable core brain functions, such as creating
temporal eligibility traces for memory formation and information
routing. Neuropeptides that directly affect the firing of
postsynaptic neurons can, in addition, create functional neural
circuits able to perform control-relevant computations such as
signal integration. This gives peptidergic neural circuits unique
advantages for efficient neuronal processing and feedback control
of consciousness.
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Activation of the parabrachial nucleus (PB) in the brainstem induced wakefulness in
rats, suggesting which is an important nucleus that controls arousal. However, the
sub-regions of PB in regulating sleep-wake cycle is still unclear. Here, we employ
chemogenetics and optogenetics strategies and find that activation of the medial part
of PB (MPB), but not the lateral part, induces continuous wakefulness for 10 h without
sleep rebound in neither sleep amount nor the power spectra. Optogenetic activation
of glutamatergic MPB neurons in sleeping rats immediately wake rats mediated by the
basal forebrain (BF) and lateral hypothalamus (LH), but not the ventral medial thalamus.
Most importantly, chemogenetic inhibition of PB neurons decreases wakefulness for
10 h. Conclusively, these findings indicate that the glutamatergic MPB neurons are
essential in controlling wakefulness, and that MPB-BF and MPB-LH pathways are the
major neuronal circuits.

Keywords: chemogenetics, glutamatergic neurons, optogenetics, parabrachial nucleus, rat, wakefulness

INTRODUCTION

Wakefulness has been reported to be controlled by multiple neuronal systems, such as histamine
neurons in the tuberomammillary nucleus (TMN) (Huang et al., 2006), noradrenaline (NA)
neurons in the locus coeruleus (LC) (Hagan et al., 1999), orexinergic neurons in the lateral
hypothalamus (LH) (Chemelli et al., 1999), and GABAergic and cholinergic neurons in the basal
forebrain (BF) (Anaclet et al., 2015; Xu et al., 2015). However, lesions or inactivation of single
arousal system demonstrated that none of these arousal nuclei are key players in initiating or
maintaining wakefulness (Blanco-Centurion et al., 2007), which indicates that wakefulness may
be regulated by arousal promoting networks, or that more essential nuclei controlling wakefulness
remain unidentified.

In humans, brainstem stroke patients often experience coma symptoms when brain damage is
confined in the upper pontine tegmentum (Parvizi and Damasio, 2003). In rats, bilateral chemical
lesions of the parabrachial nucleus (PB) area, including the precoeruleus, induce a deep coma
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state with behavioral unresponsiveness (Fuller et al., 2011).
Recently, Qiu et al. (2016) showed that chemogenetic activation
of the PB induced long lasting arousal via the BF and LH
in rats; however, the wakefulness induced by activation of PB
may be secondary to other behavior or physiologic functions
(Scammell et al., 2017). The effect of reversible inhibition
of the PB on wakefulness regulation is needed. In addition,
specific lesions of glutamatergic neurons in the external and
crescent parts of lateral PB (LPB) but not the medial part of
PB (MPB) decreased hypercapnia-evoked arousal, while specific
deletion of glutamatergic MPB neurons increased non-rapid
eye movement (NREM) sleep in mice (Kaur et al., 2013).
Moreover, many of the LPB neurons that express calcitonin gene-
related peptide are responding to CO2, and activation of these
neurons in the LPB induced wakefulness, while inhibition of
these neurons prevented arousal to CO2 in mice (Kaur et al.,
2017). In addition, electrical activation of the LPB can induce
reanimation during continuous isoflurane anesthesia (Muindi
et al., 2016), and chemogenetic activation of glutamatergic
PB neurons shorten the anesthesia recovery time in mice
(Wang et al., 2019; Xu et al., 2020). These results indicated
that the PB may be a powerful candidate in sleep-wake
regulation, and the MPB and LPB may play different roles.
Moreover, the sub-regions of the PB that are involved in natural
wakefulness and the cellular types of the downstream targets
are still unclear.

In the current study, we employ a chemogenetic strategy to
activate PB neurons, and elucidate the role of MPB and LPB
in promoting wakefulness. In addition, optogenetic strategy is
employed to activate the glutamatergic MPB neurons and their
terminals in the BF, LH and ventral medial thalamus (VM),
to reveal which cell types of BF, LH, or VM neurons, are
responsible for PB in controlling arousal. Lastly, inhibition of PB
by genetically engineered ivermectin (IVM)-gated human glycine
receptor (IVMR) was employed to decrease wakefulness in rats.
These results will clearly reveal subregions of the PB and their
neural circuits in controlling wakefulness.

MATERIALS AND METHODS

Animals
Pathogen-free adult Sprague–Dawley rats (male, weighing 45–
55 g, 3 weeks old, or 200–220 g, 6 weeks old) were purchased
from the Sino-British SIPPR/BK Lab. Animal LTD., Shanghai,
China. The rats were housed at an ambient room (temperature,
23 ± 1◦C and relative humidity, 60 ± 5%) under automatically
controlled 12 h/12 h light/dark cycle condition (07:00/19:00). The
animals had access the water and food ad libitum during the
study (Zhang et al., 2017; Dong et al., 2019). All experiments
were carried out in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
and approved by the Animal Care and Use Committee of
Fudan University. No sample size calculation was performed.
The sample size used in present study is depended on the
expected variations between rats and is comparable to many
previous reports using similar techniques. Additionally, no

method of randomization or blinding of treatment was used
in present study.

Generation of Adeno-Associated Viral
(AAV) Vectors
The AAVs of serotype rh10 for AAV-hSyn- hM3Dq-mCherry,
AAV-hSyn-mCherry were generated by tripartite transfection
into 293A cells, separately, as we described previously (Lazarus
et al., 2011; Oishi et al., 2017). The AAV-hSyn-IVMR-eGFP
and AAV-hSyn-eGFP were purchased from Shanghai Taiting
biological Co. Ltd. (Shanghai, China). The AAV-CaMKIIα-
ChR2-mCherry and AAV-CaMKIIα-mCherry were purchased
from Obio Technology Co. Ltd. (Shanghai, China).

Stereotaxic AAV Injection and Electrode
Implants
The animals were anesthetized with chloral hydrate (10% in
saline, 350 mg/kg), using aseptic techniques, hM3Dq or mCherry
(200 nL/injection) was injected stereotaxically into the MPB
(AP = −8.0 mm, ML = ± 1.5 mm, DV = −5.8 mm), or LPB
(AP = −8.0 mm, ML = ± 2.2 mm, DV = −5.0 mm) according
to the rat brain atlas of Paxinos and Watson (2007) in 6-
week-old rats. Another batch of rats were microinjected with
IVMR or eGFP (200 nL/injection) into the PB (AP = −8.0 mm,
ML = ± 1.7 mm, DV = −5.8 mm) bilaterally. Then, the rats
were implanted the EEG and EMG electrodes as described before
(Zhang et al., 2013; Chen et al., 2019; Li et al., 2020; Shen et al.,
2020). For optogenetics, ChR2 or mCherry (200 nL/injection)
was stereotaxically injected into the MPB region, and 2 weeks
later, the EEG/EMG electrodes and guide cannula for optic fibers
were implanted. Following surgery, rats were housed individually
for 2 weeks (Wu et al., 2015; Oishi et al., 2017; Luo et al., 2018;
An et al., 2020).

EEG/EMG Recording and Sleep-Wake
Scoring
Rats were allowed 14 days recovery from surgery before the
EEG/EMG recording. Each rat was connected to an cable for
EEG/EMG recording in a chamber and habituated for 3 days
before the recording. The EEG/EMG signals (EEG: 0.5–30 Hz,
EMG: 20–200 Hz, sampling rate: 128 Hz) were recorded at
baseline and under chemogenetic or optogenetic manipulation
conditions using Vitalrecorder software (Kissei Comtec, Nagano,
Japan). Then the vigilance states were automatically scored offline
by 10 s epochs into three stages, including wake, REM or NREM
sleep, using Sleepsign (Kissei Comtec, Nagano, Japan), according
to previously established criteria (Xu et al., 2014; Li et al., 2020;
Shi et al., 2020). As a final step, defined sleep-wake stages were
checked visually, and corrected if necessary. The amount of time
spent in each vigilance stage was determined from the scored
data. The EEG power spectral density was converted into a
dataset in 10-s epochs for 0–25 Hz, 24 h in length of sleep-
wake behavior in the chemogenetics data or 3 h in length in the
optogenetics data. The bit map represents the EEG power spectra
generated by MATLAB (The MathWorks, Inc., Massachusetts)
(Litvak et al., 2011).
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Drug Treatments
Clozapine-N-Oxide (CNO) was purchased from LKT
Laboratories, Inc. (Saint Paul, MN, United States). The
CNO (0.03, 0.1, or 0.3 mg/kg) was dissolved in saline and
intraperitoneally injected in rats at 09:00 for hM3Dq rats. The
IVM were purchased from Sigma-Aldrich (Missouri), and
dissolved in isopropanol at the dosage of 10 mg/kg, The IVM and
isopropanol were administrated at 20:00 on a 2-day schedule.

Behavioral Analysis
The behaviors of the rats after saline or CNO injection were
analyzed using video recordings as we described previously
(Oishi et al., 2017). Briefly, behaviors during the first hour
and the third hour after saline or CNO treatment were scored
in 4 s epochs as attentive wake, characterized by non-specific
motor activity (for example, head bobbing and low neck muscle
activity.) or quiet wake, during which animals were quiet without
walking (Lepski et al., 2012), and grooming (including head
washing, body grooming, and paw or leg licking), exploring,
eating, drinking and sleep when the behavior accounted for more
than 50% of the epoch.

In vivo Optogenetics
Fourteen days after the surgery for implanting the EEG/EMG
electrodes and optic guide cannula, the EEG/EMG recording
cables were connected to the amplifier and fiber optic cables
(1-m long, 200-µm diameter, Newdoon Inc., Hangzhou, China)
were placed inside the implanted cannula simultaneously, and
fiber-optic rotary joints (Doric Lenses, Québec, Canada) were
used for unrestricted in vivo illumination. Rats were acclimatized
for 2 days before the photostimulation sessions. Light pulse
trains were programmed using a pulse generator (Nihon Kohden,
Tokyo, Japan) that provided simultaneous input into 2 blue light
lasers (473 nm, 100 mW intensity; SLOC, Shanghai, China).
For acute optogenetic procedure, each stimulation train was
applied 60 s after a stable NREM or REM sleep event as
detected by real-time online polysomnographic recording. For
the chronic photostimulation experiments, blue light stimulation
(5-ms pulses, 50 trains of 20 Hz for MPB, 25 trains of 40 Hz
for BF, LH and VM, main interval 30 s) was applied for 1 h
during 9:00-10:00.

In vitro Electrophysiology
For in vitro electrophysiologic recording, 3-week-old rats were
injected with recombinant AAVs carrying ChR2 or mCherry
(200 nL/injection) for the optogenetics experiment into the MPB
(AP = −7.0 mm, ML = ± 1.6 mm, DV = −5.8 mm). After
3–4 weeks of postoperative recovery, rats were anesthetized
and perfused transcardially with ice-cold modified artificial
cerebrospinal fluid (aCSF) containing (in mM) 0.4 Vitamin C,
0.5 CaCl2, 1.2 NaH2PO4, 2 Na-pyruvate, 2.5 KCl, 3 MgSO4,
10 glucose, 23 NaHCO3, 252 sucrose, and saturated with 95%
O2 and 5% CO2 (pH 7.2–7.4, 301–305 Osm). Coronal slices
(250 mm thick) containing the PB were cut using a vibratome
(VT1200S, Leica, Germany) and incubated for 1 h at 32◦C in
a holding chamber in oxygenated aCSF containing (in mM)

1.25 NaH2PO4,1.3 MgSO4, 2 CaCl2, 3 KCl, 10 glucose, 26
NaHCO3, and 124 NaCl.

Whole-cell recordings were performed using patch electrodes
(4–6 M�) containing (in mM) 0.3 EGTA, 0.3 Na-GTP,
4 Mg-ATP, 10 KCl, 10 Na-phosphocreatine, 10 HEPES, 125
potassium gluconate, and 0.2% biocytin (PH 7.3; Osmolarity,
290 ∼ 300 mOsm). The slice was transferred to a recording
chamber which was continuously perfused with oxygenated aCSF
at a flow rate of 2–3 ml/min (32◦C). The PB was identified
by its localization relative to the superior cerebellar peduncle
and fourth ventricle under visual guidance using a fluorescence
microscope (Olympus, Tokyo, Japan). Recorded PB neurons were
further distinguished from other cells by positive fluorescence.
Coronal sections of the PB, BF, LH, or VM (300 µm) were
collected. ChR2 was stimulated by a 473 nm blue light laser
(SLOC, Shanghai, China). The tip of the optical fiber was placed
500 µm above the recording cell. Cells with series resistance
changed by > 20% were discarded.

Single-Cell Reverse Transcription
(RT-PCR)
After each recording, cytoplasm was aspirated into the patch
pipette by applying negative pressure, and expelled into a PCR
tube (Axygen, Massachusetts) as previously described (Xu et al.,
2015). The presence of mRNAs coding for ChAT, VGluT2,
and VGAT was detected by single cell RT-PCR, according to
the manufacturer’s instructions (Supplementary Table 1). Then,
PCR products were visualized by Safe Gel-stained 1.5% agarose
gel electrophoresis.

Immunohistochemistry
Animals were deeply anesthetized with chloral hydrate
(400 mg/kg, i.p.) and perfused transcardially with saline
followed by 4% paraformaldehyde. Brain samples were removed
and postfixed in 4% paraformaldehyde overnight at 4◦C, and
cryoprotected in 20% sucrose-phosphate buffer (4◦C) until sunk
to the bottom. The brain samples were then frozen and sectioned
in the coronal plane at 30 µm using a Leica freezing cryotome
(CM1520, Leica, Germany). The staining was performed on free-
floating sections as previously described (Zhang et al., 2013; Xu
et al., 2019). In brief, sections were incubated with the primary
antisera (rabbit anti c-Fos, 1:10000, Millipore, Massachusetts). at
room temperature overnight. Then the sections were rinsed by
PBS and incubated for 1.5 h in biotinylated anti-rabbit secondary
antiserum (1:1000, Jackson Immunoresearch Laboratories,
Pennsylvania). All tissue sections were manipulated with
avidin-biotin complex (1:1000, Vector Laboratories, California)
for 1 h, and immunopositive cells were visualized black by
reaction with 3,3-diaminobenzidine (DAB) with nickel (DAB
Substrate Kit, Vector Laboratories, California). After rinsing
with PBS, the sections were once more incubated with the
primary antibody for anti-Dsred (1:5000, Takara Bio Inc., Shiga,
Japan). Following this incubation with secondary antibody and
avidin-biotin complex, the sections were visualized brown by
reaction with DAB without nickel. Following additional washes
in PBS, sections were then mounted, dried, dehydrated, and
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cover slipped. The hM3Dq or ChR2 expression was identified
by the expression of mCherry positive neurons by either only
staining the DsRed/mCherry, or viewing the native fluorescence
of PB by microscope (Olympus, BX51, Tokyo, Japan) with a
boundary that encompassed >90% of all mCherry-containing
neurons. IVMR expression was identified by staining against
eGFP (1:1000, life technologies, California). The c-Fos positive
neurons were counted to evaluate the potential neuronal circuits
mediating the wake-promoting effect of MPB, including MPB,
CG, M1, S1, LS, BNST, CeA, BF, MDM, LPMR, PV, VM, LH,
PSTN, TMN, MGV, PAG, VTA, and LC. Cell counting was
performed on three adjacent sections (separated by 90 µm) from
four rats, the average counting per section per side was used to
represent the data.

According to the rat brain atlas in stereotaxic coordinates by
Paxinos and Watson (2007), the boundaries of PB was defined
along the superior cerebellar peduncle. For all the rats were
included in the analysis only if above 80% of the labeled neurons
were central in the target region (MPB or LPB, respectively)
bilaterally with a small transfection of adjacent area. Of the rats
for analysis from the optogenetic study, 7 cases of mCherry
expression missed the MPB bilaterally were excluded, and 3
missed the BF bilaterally and 2 missed the LH bilaterally were
excluded. In total, 12 cases of rats were excluded from the
optogenetic study in vivo.

Statistical Analysis
All results were expressed as the mean ± SEM. Statistical analysis
between 2 groups was performed using the paired or unpaired
two-sided Student’s t-test. In all cases, P < 0.05 were taken as the
level of significance.

RESULTS

MPB but Not LPB Neurons Were Involved
in Controlling Wakefulness in Rats
To determine the sub-regions of the PB neurons in controlling
wakefulness, the AAV vector containing the excitatory
mutant human M3 muscarinic receptors (hSyn-hM3Dq-
mCherry-AAV, hM3Dq) were expressed in bilateral parts
of either the MPB or LPB. As shown in Figures 1A,B, the
hM3Dq/mCherry fusion protein was successfully expressed
in the MPB (Figure 1A) or LPB (Figure 1B), as indicated by
superimposed mCherry expression areas in 8 AAV-injected rats,
respectively. Administration of CNO (0.3 mg/kg) promoted
long-lasting wakefulness in rats expressing hM3Dq in the MPB
(Figures 1C,E) without rebound in sleep or changes in the
power spectrum for NREM and REM sleep after long-lasting
wakefulness induced by CNO (Figure 2), similar to activation
of the entire PB (Qiu et al., 2016). In contrast, there was
no significant change in the sleep-wake profiles of rats after
activation of only the LPB (Figures 1D,F). In addition, the CNO
treated MPB-hM3Dq rats showed an increased theta EEG power
spectra of wakefulness compared with the saline-treatment
(Figure 1G), while the CNO-treatment did not change the
EEG power spectrum of wakefulness in the LPB-hM3Dq rats

(Figure 1H). These data clearly indicate that MPB neurons play
a crucial role in controlling wakefulness.

We analyzed the behaviors of rats during long-lasting arousal
induced by CNO. During 10 h after CNO administration (light
period), rats spent most of their time in “attentive wake”
characterized by head bobbing without moving around, while
these rats after saline treatment spent more time in “quiet
wake” and sleep during the first hour, followed by more sleep
during the subsequent periods (Figure 3 and Supplementary
Movies 1, 2). After saline treatment, the rats showed exploratory
behaviors, such as exploring, sniffing and rearing during the first
hour (Figure 3B and Supplementary Movie 2). The mCherry-
expressing control rats treated with CNO at 9:00 also exhibited
a similar behavior as the hM3Dq rats treated with saline. They
spent more time in sleep after an initial hour of “quiet wake” after
injection (Figure 3C).

To test whether CNO activates hM3Dq-expressing neurons
in vivo, colocalization of c-Fos, a marker for neuron activity, with
mCherry was examined after CNO or saline treatment. c-Fos was
robustly expressed in MPB neurons after CNO administration, as
compared to the saline control, indicating that hM3Dq effectively
activated MPB neurons in vivo (Supplementary Figure 1).
Moreover, c-Fos was highly expressed in many other nuclei such
as the cerebral cortex, BF, thalamus, LH, TMN, ventral tegmental
area (VTA), periaqueductal gray (PAG) and LC. This observation
suggests that activation of MPB neurons strongly increased the
activity of wake-promoting neurons.

Optogenetic Activation of Glutamatergic
MPB Neurons Immediately Initiated
Wakefulness
To clarify the role of the MPB neurons in initiating arousal,
we employed the optogenetic strategy to activate glutamatergic
MPB neurons using an AAV vector carrying an excitatory
channelrhodopsin-2 (ChR2) with a CaMKIIα promoter
[CaMKIIα-ChR2 (H134R)-mCherry-AAV, ChR2]. ChR2 was
bilaterally expressed in MPB neurons (Figure 4A) and the optical
fibers were placed within the MPB boundaries (Figure 4B). For
the whole-cell current clamp recording conditions, short pulses
of blue light (5–10 ms) elicited single spikes in MPB neurons
(red curve, Figures 4C,D), whereas pulses longer than 10 ms
induced two action potentials (light gray curve, Figure 4C).
The trains of short blue light pulses entrained the firing of
ChR2-expressing MPB neurons up to 50 Hz with high fidelity
(n = 13, Figure 4E). We subsequently used a pulse duration of
5 ms and frequency of 20 Hz to stimulate the MPB glutamatergic
neurons in the following optogenetic study in vivo. After patch
clamp recordings, the cell type of the ChR2-expressing neurons,
which can be elicited firing by light, was identified using single
cell reverse-transcription PCR. The presence of a 315 bp-band
specific for the vesicular glutamate transporter 2 (VGluT2,
Figure 4F) suggests that firing was evoked in ChR2-expressing
glutamatergic MPB neurons in vitro by blue-light stimulation.

Next, we implanted optic fibers and EEG electrodes on the
rat skull with dental cement and placed EMG wire electrodes
into the nuchal muscles. We then stimulated the glutamatergic
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FIGURE 1 | Chemogenetic activation of MPB (but not LPB) neurons induces wakefulness. (A,B) Schematic diagram indicating the position of hM3Dq-mCherry
protein was confined to the MPB (A) or LPB (B). Superimposed mCherry expression areas in the MPB (A) and LPB (B) of 8 AAV-injected rats in each group, are
shown in the right panels (Paxinos and Watson, 2007). Scale bars: 1 mm. (C,D) Typical examples of EEG power spectra, EEG, EMG, hypnogram, and relative
magnitude changes in delta and theta power over 24 h for a rat expressing hM3Dq at MPB (C) or LPB neurons (D) when given CNO (0.3 mg/kg). (E,F) Time
courses of wakefulness after administration of CNO (0.3 mg/kg) or saline in rats expressing hM3Dq in MPB (E) or LPB neurons (F). The arrow indicates the time
point of CNO or saline administration, and open and closed bars above the x-axis indicate light and dark periods, respectively. (G,H) EEG Power spectrum of
wakefulness during 10 h (9:00–19:00) after the CNO injection in MPB-hM3Dq (G) and LPB-hM3Dq rats (H). *P < 0.05, **P < 0.01, compared with saline (n = 8).
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FIGURE 2 | Time course of sleep and power spectra starting 22 h after CNO treatment. (A) No bouts of NREM and REM sleep after the CNO treatment. Each circle
represents the hourly mean amount of sleep. The horizontal open and closed bars on the x-axes indicate the 12-h light and 12-h dark periods, respectively. (B) EEG
power spectra of NREM and REM sleep during the following day in rats injected with AAV-hSyn-hM3Dq-mCherry in MPB (n = 8).

FIGURE 3 | Activation of glutamatergic PB neurons produces attentive wake in rats. After injection of CNO at 9:00, rats are mainly in attentive wake (do not move
but with head bobbing) with modest amounts of time spent exploring, grooming, or rearing for more than 10 h (A). After injection of saline, hM3Dq rats are mainly
asleep with a small amount of time in quiet wake and exploring behavior (B). Injections of CNO in mCherry control rats at 9:00 produced similar behavior to the
saline treated hM3Dq rats, mainly asleep with a small amount of time in quiet wake and exploring, grooming, and feeding (C) (n = 4).

MPB neurons in vivo with brief pulses (5 ms) of blue light
in the frequency range of 1–20 Hz when the rats were sleep.
Acute bilateral light stimulation produced immediate transitions
from sleep to wakefulness with an average latency of 2.75 s
in ChR2 rats at 20 Hz (Supplementary Movie 3). There was
no striking change of the waveforms in mCherry-expressing
control rats (n = 6, Figure 4G and Supplementary Movie 4).
The probability of a sleep-to-wake transition increased with
the stimulation frequency or bilateral stimulation in ChR2

rats (Figure 4J). Unilateral activation of MPB neurons also
promoted transition from sleep to wakefulness with a lower
probability than bilateral stimulation (Figure 4I), while there
was no change in mCherry-expressing control rats (Figure 4H).
Then chronic bilateral stimulation protocol (5 ms, 20 Hz, 50
trains, main interval 30 s) was applied to the MPB neurons
in vivo for 1 h. As a result, activation of MPB neurons induced
immediate transition from NREM sleep to wakefulness and the
wakefulness was maintained for 1 h. After stopping stimulation,

Frontiers in Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 64587770

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-645877 March 20, 2021 Time: 13:43 # 7

Xu et al. MPB Controls Wakefulness

FIGURE 4 | Photostimulation of MPB glutamatergic neurons induced a rapid wakefulness response. (A) Coronal brain section with native mCherry fluorescence
confirmed ChR2-mCherry was confined in the MPB. Scale bars: A = 200 µm, Ai = 100 µm, Aii = 20 µm. (B) The schematic diagram showing the cannula trace and
the optic fibers targeting the MPB. (C) A single action potential (red trace) evoked by 5 ms blue light pulses, and double action potentials (gray trace) evoked by
>10 ms blue light pulses from a ChR2-expressing neuron. (D) Firing traces from a ChR2-expressing MPB neuron evoked by 10 Hz (5 ms pulses) photostimulation.
(E) Neuronal firing showing an effective entrainment up to 20 Hz optogenetic stimulation of MPB neurons. (F) Single-cell RT-PCR analysis of ChR2-expressing
neurons in MPB indicates the band of 315 bp represents VGluT2. (G) EEG/EMG examples of the sleep to wakefulness transition following optogenetic stimulation in
a rat with bilateral ChR2 (top) or mCherry (bottom) expression in MPB glutamatergic neurons. (H–J) The probability of sleep to wakefulness transition in the
frequency range of 1–20 Hz in mCherry controls (H), stimulating the MPB unilaterally (I), and bilaterally (J). (K,L) Typical examples of EEG power spectra, EEG, EMG,
hypnogram, and relative magnitude changes in delta and theta power in a rat injected with AAV-CaMKIIα-ChR2-mCherry (K) or AAV-CaMKIIα-mCherry (L) bilaterally.
(M,N) The time course (M) and total amount (N) of wakefulness during optogenetic stimulation. **P < 0.01 compared with the mCherry groups (n = 6).
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the wakefulness level of animals quickly returned to the baseline
level (Figures 4K,M,N), while such effects were not observed
in the MPB mCherry-expressing control rats (Figures 4L,M,N).
These data show that the activation of glutamatergic MPB
neurons resulted in immediate transitions from stable sleep to a
continuous wakefulness.

Activation of Glutamatergic MPB
Neurons Controlled Wakefulness
Through BF or LH Connections
Although mapping of the c-Fos/mCherry expression may
indicate a possible neuronal pathway for the promotion of
wakefulness by the MPB, it is still unclear whether the robust
expression of c-Fos is a direct effect of MPB activation or a
secondary effect caused by consolidated arousal. Due to the
low temporal resolution of c-Fos mapping, it is impossible
to determine a causal link between nuclei activation and
wakefulness. To demonstrate the neuronal circuits mediating
the arousal promoting effect of the MPB, we expressed ChR2
in MPB (Supplementary Figure 2) and stimulated the ChR2-
expressing glutamatergic MPB axons in the BF (Figures 5A–C),
LH (Figures 5J–L), or VM (Figures 6A–C).

An increased firing frequency and excitatory post-synaptic
current (EPSC) were elicited by blue light pulses in BF
(Figure 5D), LH (Figure 5M), and VM neurons (Figure 6D).
The signals evoked by stimulation of MPB neuron terminals
were blocked by CNQX (6-cyano-7-nitroquinoxaline-2,3-dione,
a competitive AMPA/kainate receptor antagonist) and AP5
[(2R)-amino-5-phosphonovaleric acid, a selective NMDA
receptor antagonist], demonstrating that MPB-evoked signals
are glutamatergic (Figures 5D,M), which is consistent with
the single cell PCR results (Figure 4F). After patch clamp
recordings, single-cell RT-PCR analysis revealed that all BF
neurons that received excitatory afferent signals from MPB
neurons were positive for the vesicular GABA transporter
(VGAT, 250 bp) (6/6), but negative for ChAT (7/7) or VGluT2
(9/9) (Figure 5E). By contrast, glutamatergic signals from the
MPB excited VGAT (8/8) or VGluT2 (7/7) positive neurons in
the LH (Figure 5N). These results indicate that glutamatergic
MPB neurons projected onto BF GABAergic neurons and LH
GABAergic or glutamatergic neurons.

Next, EEG/EMG recordings together with optogenetic
stimulation MPB terminals in the BF, LH, or VM were performed
in vivo to reveal the neuronal circuits of the MPB in controlling
wakefulness. Sleep-to-wake transition were decreased after
blue light pulses at 5 ms in the frequency range of 20–40 Hz
were bilaterally applied in the BF (Figures 5F,G) and LH
(Figures 5O,P), but not in the VM (Figure 6E). To determine the
effects of chronic stimulation on the wake-promoting effect of
MPB axons, a long-term photostimulation protocol (5 ms, 40 Hz,
25 trains, main interval 30 s) for 1 h with sleep-wake recording
were performed from 9:00 to 10:00 (when the sleep pressure is
high in rats). Compared to control rats, bilateral optogenetic
stimulation of MPB axons in the BF (Figures 5H,I) or LH
(Figures 5Q,R) increased waking time by 2.59- and 2.87-fold,
respectively, whereas wakefulness was not affected by stimulation

of MPB axons in the VM (Figures 6F,G). These results provide
fundamental evidence that glutamatergic MPB neurons excited
BF GABAergic neurons or LH GABAergic and glutamatergic
neurons, but not the VM neurons to initiate wakefulness.

Chemogenetic Inhibition of PB Neurons
in Rats Decreased Arousal
To explore the effect of inhibition of PB neurons in sleep-wake
behavior, we employed an inhibitory chemogenetic tool, known
as IVMR. IVMR are based on inhibitory human α1 glycine
receptor with the mutations F207A and A288G to remove glycine
sensitivity while producing IVM sensitivity (Lynagh and Lynch,
2010; Hu et al., 2014), and able to reduce neuronal excitability
by mediating the influx of Cl− (Hu et al., 2014; Obenhaus et al.,
2016). AAV carrying IVMR (hSyn-IVMR-eGFP-AAV, IVMR) or
eGFP (hSyn-eGFP-AAV, eGFP) was bilaterally injected into the
PB. Immunohistochemistry against GFP revealed that IVMR
fused to eGFP was successfully expressed in PB neurons, as
indicated by superimposed eGFP expression areas in the PB
of 6 AAV-injected rats (Figure 7A). During the dark period
(when the rats are usually very active), i.p. administration of
IVM (10 mg/kg) into rats expressing inhibitory IVMR in the
PB neurons decreased the amount of wakefulness, as EEG delta
amplitude was increased while the EMG amplitude decreased
(Figure 7B). The vehicle treatment (isopropanol, IPA) did not
significantly alter the sleep-wake profiles (Figure 7C). The
inactivation of PB neurons bilaterally by IVM strongly decreased
wakefulness for 10 h during the active period, as compared to
the IPA control (Figure 7D). The total amount of wakefulness
during 10 h decreased to 58% of the wake amount after
IPA administration. By contrast, IVM did not change sleep-
wake behavior in the eGFP control rats (Figures 7D,E). These
data clearly indicated that PB neurons are essential for the
maintenance of wakefulness under baseline conditions in rats.

DISCUSSION

In the current study, we employed chemogenetics to manipulate
the activity of PB neurons, and found that activation of the MPB,
but not the LPB by hM3Dq promotes wakefulness for 10 h,
whereas inhibition of PB by IVMR resulted in a decrease in
wakefulness for 10 h, indicating that MPB neurons are essential
in controlling wakefulness in rats.

A pioneer clinical study used MRI scanning and postmortem
histological analysis showed that brainstem stroke patients
with coma have lesions or damage in the bilateral pontine
tegmentum including PB, DR, and LC (Parvizi and Damasio,
2003). Later, chemical lesion of the entire PB and adjacent nuclei
by orexin-saporin caused a behavioral unresponsiveness state
with low-frequency cortical EEG in rats (Fuller et al., 2011),
indicating the potential role of the pons in regulating wakeful
consciousness. Moreover, chemogenetic activation of the PB
induced long-lasting wakefulness during the light period when
rats are normally mostly asleep (Qiu et al., 2016). Here we
confirm and extend the findings that activation of the MPB is
sufficient to induce robust continuous wakefulness for up to 10 h
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FIGURE 5 | Photostimulation of ChR2-expressing MPB axonal terminals in the BF or LH evoked waking response in rats. (A,J) Diagram depicting the location of the
optic fiber in the BF (A) or LH (J) of a rat injected with AAV-CaMKIIα-ChR2-mCherry or AAV-CaMKIIα-mCherry in the MPB. (B,K) Coronal sections with native
mCherry fluorescence confirmed the expression of ChR2 protein in the BF (B) or LH region (K). Scale bars: B, K = 2 mm; Bi, Ki = 500 µm; Bii, Kii = 200 µm; Biii,
Kiii = 50 µm. (C,L) The schematic diagram showing the cannula traces and the optic fibers targeting the BF (C) or LH (L). (D,M) Photostimulation of
ChR2-expressing MPB axons increased firing frequency and evoked synchronized EPSCs in a BF (D) or LH neuron (M); the evoked EPSCs were blocked by CNQX
and AP5 (red trains). (E,N) Single-cell RT-PCR analysis of ChR2-expressing neurons in BF (E) and LH (N) indicates the bands represent VGluT2 or VGAT,
respectively. (F,O) EEG/EMG examples of sleep to wakefulness transition following optogenetic stimulation in the BF (F) or LH (O) of a rat with bilateral ChR2 (top) or
mCherry (bottom) expression in the MPB, respectively. (G,P) Latency of sleep to wakefulness after optogenetic stimulation in the frequency range of 10–40 Hz in BF
(G) or LH (P). (H,I,Q,R) The time course (H,Q) and total amount (I,R) of wakefulness during optogenetic stimulation in BF and LH, respectively. **P < 0.01
compared with mCherry groups (n = 6).

(Figure 1E). In addition, reversible chemogenetic inhibition of
PB neurons by IVMR decreases wakefulness for 10 h during
the dark period (Figure 7D), when rats are normally very active
showing foraging, feeding, or exploring behaviors.

PB can be divided along the superior cerebellar peduncle
into three main parts: MPB, LPB, and Kolliker-Fuse nucleus

(KF) (Fulwiler and Saper, 1984; Singh et al., 2019). Several
pioneer studies have revealed that LPB plays an important
role in transmitting viscero- and somatosensory information
to the forebrain, including pain, feeding and thermoregulation
(Morrison and Nakamura, 2011; Le May et al., 2021), and the KF
mainly involved in the respiration regulation (Chamberlin, 2004;
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FIGURE 6 | Photostimulation of MPB axonal terminals in the VM had no effect on wake response in rats. (A) Diagram depicting the location of the optic fiber in the
VM of a rat injected with AAV-CaMKIIα-ChR2-mCherry or AAV-CaMKIIα-mCherry in the MPB. (B) Coronal sections with native mCherry fluorescence confirmed the
expression of ChR2 protein in the VM. Scale bars: b = 2 mm; bi = 500 µm; bii = 200 µm; biii = 50 µm. (C) The schematic diagram showing the cannula traces and
the optic fibers targeting the VM. (D) Optogenetic stimulation of MPB axons increased firing frequency and evoked synchronized EPSCs in VM neurons. Evoked
EPSCs were blocked by CNQX and AP5 (red trains). (E) Latency of sleep to wakefulness after photostimulation in the frequency range of 10–40 Hz. (F,G) The time
course (F) and total amount (G) of wakefulness during optogenetic stimulation in the LH, compared with mCherry groups (n = 6).

Yang et al., 2020). To investigate the effect of MPB and LPB
in sleep-wake regulation, hM3Dq were delivered into the MPB
and LPB by stereotactic injection. We found that chemogenetic
activation of MPB neurons induced continuous wakefulness,
whereas activation of the LPB did not promote wakefulness in
rats under basal conditions. To avoid non-specific expression
of hM3Dq in the adjacent area of the targeted nucleus, the
injection volume of the AAV was adjusted and confirmed by the
immunostaining against the mCherry. The injection sites were
centered in the MPB or LPB. In some rats, a small number
of mCherry-containing neurons were observed in adjacent
regions, such as the precoeruleus area (Figures 1A,B), raising
the question of whether activation of the adjacent regions of
MPB may induce wakefulness? However, from the previous
lesion studies, lesions of the LC (Lu et al., 2006; Blanco-
Centurion et al., 2007), PPT and LDT (Lu et al., 2006) have
had no significant effect on wakefulness in rats. Only the lesion
involved in the MPB region resulted in the dramatic decrease
of wakefulness in rats (Fuller et al., 2011). Together with these
pioneer studies, our results indicated the MPB is an essential
nucleus in controlling wakefulness.

Kaur et al. (2013, 2017) reported that the specific lesion
of glutamatergic LPB neurons did not alter the normal
amounts of wakefulness or the EEG power spectrum. While
blocking LPB signals decreased EEG arousal in response to
hypercapnia, indicating that LPB neurons are important in
hypercapnia-induced wakefulness, but not in controlling natural
arousal (Kaur and Saper, 2019). Electrical activation of the
glutamatergic LPB also induced reanimation (active emergence)
during continuous isoflurane anesthesia, with a behavioral
arousal and a significant decrease in EEG delta power in mice
(Muindi et al., 2016). These results indicated that the LPB may
regulate wakefulness secondary to the processing of viscero- and
somatosensory information.

In contrast, specific deletions of glutamatergic MPB neurons
decreased spontaneous wakefulness accompanied by an increase
in both amount and EEG delta power of NREM sleep in mice
(Kaur et al., 2013), and the population firing of MPB neurons
was inhibited during sevoflurane-induced loss of consciousness
(Xu et al., 2020), indicating the glutamatergic MPB neurons
play an important role in controlling wakefulness. Moreover,
chemogenetic inactivation of PB decreased wakefulness during
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FIGURE 7 | Chemogenetic inhibition of PB neurons decreased wakefulness in rats during the active period. (A) Brain section stained against eGFP to confirm IVMR
expression in the PB. Injection sites were mapped on coronal atlas drawings at three different levels containing the PB. Superimposed eGFP expression areas in the
PB of 6 AAV-injected rats are shown in the right panels. Scale bars: 1 mm. (B,C) Typical examples of EEG power spectra, EEG, EMG, hypnogram, and relative
magnitude changes in delta and theta power over 24 h for the same rat given IVM (B) or IPA (C). W, wakefulness; R, REM sleep; N, NREM sleep. (D) Time courses
of wakefulness in rats after the administration of IVM (10 mg/kg) or IPA in IVMR rats and eGFP controls, respectively. (E) Amount of wakefulness during 10 h after
IVM or IPA injection in IVMR and eGFP rats. *P < 0.05, **P < 0.01, compared with the IPA treatment (n = 6).
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the dark period (Figure 7), further indicating that the MPB
is essential for controlling natural wakefulness. As previous
reports have demonstrated that PB neurons are almost exclusively
glutamatergic neurons (Liu and Jones, 1996; Yokota et al., 2007;
Niu et al., 2010), some of which also express the calcitonin
gene-related peptide, mu opioid receptors, or the corticotropin-
releasing factor (Palmiter, 2018). The diversity of cell types in
the MPB and LPB may lead to varying physiological functions.
Although previous studies showed the projections of the MPB
in rats are similar to those of the LPB (Saper and Loewy,
1980), how PB neurons innervate particular cell types in the
targeted nuclei is still unclear. Further experiments are needed to
identify the specific neural circuits of MPB or LPB for a specific
behavior. Therefore, we consider that the MPB neurons are
important for spontaneous wakefulness, while a subpopulation
of LPB neurons may regulate arousal caused by visceral sensory
distress, such as pain, extreme temperatures or respiratory
insufficiency in rats.

Video analysis showed that the hM3Dq rats that received
CNO injections are alert but are minimally moving around.
The typical observed behavior, termed as attentive wake, is the
movement of the head up and down and sideways without
moving, accompanied by an increased theta EEG in the frequency
range of 5–6 Hz (Valle et al., 1992; Lepski et al., 2012). During
long-lasting wakefulness induced by MPB activation, rats may
wish to gain a sense of visual depth, because PB is involved in
visceral sensory regulation, such as taste, body temperature or
anxiety (Baird et al., 2001; Bourgeais et al., 2001). By contrast,
saline-treated hM3Dq rats or CNO-treated mCherry-expressing
control rats spent more time in quiet wake (without head
bobbing) with minimal grooming, exploring or feeding behavior
during the first hour after the i.p. injection. In conclusion, our
data provides fundamental evidence for the essential role of MPB
in controlling wakefulness.

Previous studies proposed that possible neuronal PB circuits
for promoting wakefulness are PB-BF/POA and the PB-LH
(Anaclet et al., 2014; Qiu et al., 2016). Double staining against
mCherry/c-Fos after activation of MPB neurons revealed that
the expression of c-Fos increased remarkably in many regions
including wake promoting nuclei such as the BF, thalamus,
LH, VTA, and LC. The c-Fos expression pattern may indicated
possible neuronal pathways mediating the wake promoting effect
of MPB; however, c-Fos expression does not provide evidence
for a causal relation between the observed neural activity and the
ability to induce wakefulness.

Qiu et al. (2016) combined a retrograde strategy by injection
of AAV6-Cre into the POA-BF, LH, or thalamic nucleus
and the injection of AAV-DIO-hM3Dq into the PB area to
activate specific neuronal circuits for sleep wake regulation. They
found that activation of PB-BF or PB-LH pathway increased
wakefulness for 4–5 h, which is much less than that induced
by direct activation of PB somata. The reason for the short
wakefulness duration may be due to the hM3Dq dense expressed
in the LPB and spare in the MPB, which is in line with our finding
that the LPB did not regulate the spontaneous wakefulness
(Figure 1F). In addition, due to the injection of AAV6-Cre into
huge areas of BF or PH, it is difficult to retrogradely label the exact

target and the cell types in the MPB areas. Moreover, retrograde
activation of the PB-LH/PH pathway may activate the PB-POA-
BF pathway, or vice versa. Optogenetic methods used here to
target the MPB terminals are much more accurate since they
target the fibers issued from MPB neurons and are therefore more
specific than retrograde-cre recombined floxed hM3Dq in which
they target neurons projecting to the structures which could have
collaterals to other structures.

To specific target the glutamatergic neurons in MPB, the
excitatory ChR2 with a CaMKIIα promoter was employed and
later confirmed by patch clamp recording and single cell PCR for
the mCherry positive neurons (Figures 4, 5). Here, manipulation
of the glutamatergic MPB neurons using optogenetics with
high timing precision enabled us to analyze causality between
neural activity and initiation and maintenance of wakefulness
(Zhang et al., 2007). We found that acute photostimulation
of glutamatergic MPB neurons expressing ChR2 immediately
initiated and maintained wakefulness for 1 h during stimulation.
Then optogenetic activation of MPB terminals revealed the
neuronal circuits for controlling wakefulness mediated by
GABAergic neurons in the BF and GABAergic and glutamatergic
neurons in the LH.

The BF has been reported to contain glutamatergic,
GABAergic and cholinergic neurons which regulate sleep-
wake behaviors (Anaclet et al., 2015; Xu et al., 2015; Chen
et al., 2016). The GABAergic neurons in the BF showed fast
firing during wakefulness and REM sleep, tested by in vivo
juxtacellular recordings (Hassani et al., 2009b). Furthermore, a
pioneer electron microscopy results revealed that the GABAergic
neurons in BF preferentially target cortical interneurons (Freund
and Meskenaite, 1992). Later, a study using transgenic mice
demonstrated that BF GABAergic projection neurons share
many similarities with cortical interneurons, such as the fast
firing, brief spikes and electrical coupling (McKenna et al., 2013).
In addition, the cholinergic and glutamatergic neurons in the
BF are also more active during wakefulness and REM sleep than
during NREM sleep. Furthermore, activation of cholinergic,
glutamatergic or parvalbumin-positive GABAergic neurons
rapidly induces wakefulness (Xu et al., 2015), while inhibition of
BF cholinergic neurons increased EEG delta power spectrum and
decreased wakefulness (Anaclet et al., 2015; Chen et al., 2016).
Here, we found that the glutamatergic MPB neurons excited the
GABAergic BF neurons to initiate and maintain wakefulness,
agreed with previous literature.

We demonstrated that the glutamatergic MPB neurons
excite the GABAergic and/or glutamatergic neurons in the
LH to control wakefulness. The LH contains several types
of neurons critically implicated in the wake-sleep regulation,
including glutamatergic, GABAergic, orexinergic and melanin-
concentrating hormone containing neurons (Lin, 2000; Hara
et al., 2001; Gerashchenko and Shiromani, 2004; Hassani et al.,
2009a). Alam and Mallick (2008) reported that activation of
glutamatergic neurons in and around the LH promoted arousal
and suppressed both NREM and REM sleep, indicating that
glutamatergic neurons of the LH play an important role in
maintaining wakefulness. Additionally, optogenetic activation of
LH GABAergic neurons exerts a strong wake-promoting effect
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in mice (Herrera et al., 2016), and similar effect was observed
with chemogenetic activation of GABAergic LH neurons
(Venner et al., 2016). In line with these findings, we postulate
that glutamatergic MPB neurons innervate GABAergic and/or
glutamatergic LH neurons to control wakefulness (Figure 5).
However, whether there are other cell types in the LH mediated
the wake promoting effect of glutamatergic MPB neurons still
remained to be answered.

The thalamus is a large mass of gray matter and can be
divided into many distinct portions, including the mediodorsal,
paracentral, ventral lateral, submedius, VM, and so on. The
thalamus participates in regulating many physiologic functions,
such as relay of sensory and motor signals to the cerebral
cortex, regulation of consciousness, and mediation of sleep and
alertness (Kinomura et al., 1996; Maquet et al., 1996). PB neurons
projected densely to midline and intralaminar thalamic nuclei
of the rat (Herkenham, 1979; Krout and Loewy, 2000). We
found that the increased c-Fos expression in the intralaminar,
mediodorsal, lateral posterior and VM thalamic nuclei, after
activation of glutamatergic MPB. However, a previous study
showed lesion of the thalamic nuclei (Fuller et al., 2011), or
activation of the PB-midline and intralaminar thalamus pathway
did not alter sleep-wake behaviors significantly (Qiu et al., 2016).
While the activities of matrix cells in the VM is high during
wakefulness and low in NREM sleep, optogenetic activation of
VM cells induced rapidly transitions from NREM sleep to arousal
and chemogenetic inhibition of VM matrix cells decreased
wakefulness (Honjoh et al., 2018), suggesting the VM plays a
role in promoting arousal. Here, we clarified the functional
connections between glutamatergic MPB and the VM by patch
clamp recording, and demonstrated that this neural circuit is
unexpected to be responsible for the wake-promoting effects
of the MPB (Figure 6), although there are studies showing
the VM participates in the catalepsy (Ossowska et al., 1986;
Wullner et al., 1987).

In conclusion, we demonstrated the glutamatergic MPB
neurons are essential in controlling wakefulness, and the wake-
promoting effect of MPB mediated by BF GABAergic neurons
and LH GABAergic or glutamatergic neurons in rats.
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Supplementary Figure 1 | Mapping of c-Fos expression in the rat brain after
chemogenetic activation of MPB neurons. (A–I) Representative photomicrographs
of c-Fos (black color) and mCherry (brown color) immunostaining in the rat brain.
(J) The number of c-Fos-immunoreactive neurons in the rat brain after CNO or
saline treatment. ∗∗P < 0.01 compared to Saline, assessed by student’s t-test
(n = 4). MPB, medial parabrachial nucleus; CG, cingulate cortex; M1, primary
motor cortex; S1, primary somatosensory cortex; LS, lateral septal nucleus;
BNST, bed nucleus of stria terminalis; CeA, central amygdaloid nucleus; BF, basal
forebrain; MDM, mediodorsal thalamic nucleus; LPMR, lateral posterior thalamic
nucleus; PV, paraventricular thalamic nucleus; VM, ventromedial thalamic nucleus;
LH, lateral hypothalamus; PSTN, parasubthalamic nucleus; TMN,
tuberomammillary nucleus; MGV, medial geniculate nucleus; PAG, periaqueductal
gray; VTA, ventral tegmental area; LC, locus coeruleus. Scale bars: CNO left
panel, Saline left panel = 500 µm; CNO right panel, Saline right panel = 100 µm.

Supplementary Figure 2 | Bilateral AAV injection sites in the rats MPB region. (A)
Typical coronal brain sections of native mCherry fluorescence confirmed that the
ChR2 protein was expressed in the MPB area at three brainstem levels. (B–D)
Superimposed mCherry expression areas in the MPB of 6 AAV-injected rats are
shown in each panel for the optogenetic stimulation of MPB axons in the BF (B),
LH (C), and VM (D). Scale bars: 1 mm.

Supplementary Table 1 | The primers for single-cell RT-PCR.

Supplementary Movie 1 | A MPB-hM3Dq rat whose behaviors were captured
after the CNO injection. EEG and EMG recordings, and a video show that the rat
spent most of its time in “attentive wake” characterized by head bobbing without
moving around during the activation of MPB neurons by hM3Dq.
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Supplementary Movie 2 | A MPB-hM3Dq rat whose behaviors were captured
after the saline injection. EEG and EMG recordings, and a video show that the rat
spent more time in quiet wake, and sleep, and little time in grooming, exploring,
eating and drinking during the first hour, followed by more sleep during the
subsequent hours after saline treatment.

Supplementary Movie 3 | A rat whose wakefulness was induced by blue light
illumination of glutamatergic MPB neurons expressing ChR2. EEG and EMG

recordings, and a video show that the rat was sleeping for at least 1 min before
1-min light illumination, which quickly produced wakefulness. The duration of the
behavioral states of wakefulness and sleep are indicated above the EEG trace.

Supplementary Movie 4 | A rat whose wakefulness was not induced by blue
light illumination of glutamatergic MPB neurons expressing only mCherry. EEG and
EMG recordings, and a video show that the rat was sleeping during the 4.5-min
recording period, including the 1-min illumination period.
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General anesthesia is a drug-induced reversible state comprised of altered states
of consciousness, amnesia, analgesia, and immobility. The medial frontal cortex
(mPFC) has been discovered to modulate the level of consciousness through
cholinergic and glutamatergic pathways. The optogenetic tools combined with in vivo
electrophysiological recording were used to study the neural oscillatory modulation
mechanisms in mPFC underlying the loss of consciousness (LOC) and emergence.
We found that optogenetic activation of both cholinergic and glutamatergic neurons
in the basal forebrain (BF) reversed the hypnotic effect of propofol and accelerated
the emergence from propofol-induced unconsciousness. The cholinergic light-activation
during propofol anesthesia increased the power in the β (12–20 Hz) and low γ (20–30 Hz)
bands. Conversely, glutamatergic activation increased the power at less specific broad
(1–150 Hz) bands. The cholinergic-induced alteration to specific power bands after LOC
had opposite effects to that of propofol. These results suggested that the cholinergic
system might act on more specific cortical neural circuits related to propofol anesthesia.

Keywords: optogenetic, basal forebrain, cholinergic, glutamatergic, general anesthesia, emergence

INTRODUCTION

General anesthesia is a reversible, anesthetic drug-induced state in which patients undergo an
amalgamation of altered states of consciousness, analgesia, amnesia, and immobility (Brown
et al., 2011). One of the biggest mysteries of modern medicine is how anesthetic drugs induce
unconsciousness and how patients subsequently recover from general anesthesia (Kennedy
and Norman, 2005). Neural oscillatory dynamics that are readily visible in the physiological
measurements (electroencephalogram, EEG, and local field potential, LFP) are used to empirically
characterize the anesthesia state (Ching and Brown, 2014). Different anesthetics induced altered
specific oscillation band changes during the loss of consciousness (LOC) because of the discrepant
molecular targets in the brain (Blain-Moraes et al., 2014, 2015). Propofol, one of the GABAA
receptor agonist anesthetics, exhibited specific activation of the delta band and theta-gamma
coupling during the LOC and emergence, and is commonly used in clinical trials (Breshears
et al., 2010). However, due to the lack of current literature on the formation of propofol-induced
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oscillation change in microcircuits, a detailed understanding of
the neural mechanism is warranted.

Recent studies suggest that both LOC and emergence from
general anesthesia is brought about by the modulation of
ascending arousal systems, such as glutamatergic and cholinergic
systems, in the central nervous system (Ren et al., 2018; Wang
et al., 2019). It is widely accepted that acetylcholine (Ach) in
the cortex is predominately derived from cells located in the
basal forebrain (BF) (Zant et al., 2016). Moreover, BF cholinergic
neurons have been shown to play an imperative role in the sleep-
wake cycle transition (Han et al., 2014). Selective modulation
of the BF cholinergic neurons has been found to change the
sedative potency of general anesthetics and the duration of
loss of the righting reflex (LORR) during anesthesia (Laalou
et al., 2008; Leung et al., 2011; Luo et al., 2020). Intriguingly,
systematic administration of physostigmine promoted arousal in
human patients during propofol anesthesia (Xie et al., 2011).
BF cholinergic neurons strongly innervate the medial prefrontal
cortex (mPFC) to partly exert the wake-promoting effect (Bloem
et al., 2014; Ahrlund-Richter et al., 2019). The BF cholinergic
activation in the prefrontal cortex has been also demonstrated to
contribute with paramount value in the depth of consciousness
(Pal et al., 2018). However, the characteristics and functions of the
pathways projecting from the BF to mPFC on the altered states of
consciousness induced by propofol remain to be elaborated.

The BF innervating the frontal cortex contains glutamatergic
neurons (∼55%), as well as cholinergic neurons (∼10%) (Gritti
et al., 2006). Previous studies have shown that glutamatergic
neurons in the BF regulate the sleep-wake cycle (Xu et al., 2015;
Peng et al., 2020). However, there is no evidence showing the
role of glutamatergic neurons in the BF on the altered states of
consciousness induced by general anesthesia.

To investigate these questions, we used optogenetic activation
of two different neurotransmitters, cholinergic and glutamatergic
in the BF, to underlie the mPFC oscillatory mechanisms of altered
states of consciousness induced by propofol general anesthesia.

MATERIALS AND METHODS

Animals
Adult wild-type (6–8 weeks old) C57BL/6 mice and ChAT-ChR2-
EYFP transgenic mice (ChAT-ChR2-EYFP mice as a generous
gift from Prof. Duan Shuming, Institute of Neuroscience,
School of Medicine, Zhejiang University) were used. During the
experiment procedures, all animals were given water and regular
mice chow ad libitum and housed individually under climate-
controlled conditions with a 12-h light/dark cycle, with lights
on at 7:00 AM. The temperature in the room was maintained
at 21–23◦C. All the procedures were conducted according to
guidelines approved by the Animal Care Committee of the
Zhejiang University (Hang Zhou, Zhejiang, China).

Virus Injection
Wild-type C57BL/6 mice were anesthetized with sodium
pentobarbital (1% wt/vol) and AAV-CaMKIIα-hChR2 (H134R)-
mCherry virus (Shumi Technology, Wuhan, China) was

bilaterally injected into the BF (AP = −0.6; ML = 0.8;
DV = −4.8). We injected 0.1–0.3 µl of the virus into each
location at 0.01–0.03 µl/min. The syringe was not removed until
15–20 min after the end of infusion to allow the diffusion of the
virus. After injection, mice were allowed 2–3 weeks for recovery
and virus expression.

LFP Recording
Mice were deeply anesthetized with sodium pentobarbital
(induction 1% wt/vol) and fixed in a stereotaxic device (RWD,
China). After exposing, cleaning, and disinfecting the skull
bone, four electrodes made by nickel chromium(California
Fine Wire,United States)were implanted. Targeting the mPFC
(AP = 1.5; ML = 1; DV = −1.5, Atlas of Paxinos and Watson),
two screw electrodes were fixed into the frontal (AP= 2; ML= 1)
and parietal (AP = −3; ML = 1.5) cranium for grounding. Mice
were allowed to recover for at least 7 days. Continuous LFP was
recorded at 1 KHz using Central Acquisition system (Cerebus
system, Blackrock Technology, United States). The LFP signals
were amplified and filtered (0.5–500 Hz) for further analysis.
The LFP recording was sustained for 15 min before and after
propofol delivery.

Light Stimulation
Optical fibers were implanted into the BF (AP=−0.6; ML= 0.8;
DV = −4.8) according to the Atlas of Paxinos and Watson of
previous work in the ChAT-ChR2-EYFP mice (Han et al., 2014).
For light stimulation, the optical fibers were bilaterally implanted
in BF. Laser light was generated using a fiber-coupled 473 nm
solid-state laser diode (473 nm, Lasercentury, Shanghai, China)
and was delivered via the ceramic ferrule. Laser light stimulation
was driven by software-generated TTL pulses (10 ms@20 Hz
for 5/30 s for 30 min post propofol) (Anilab, Ningbo, China)
(Han et al., 2014; Peng et al., 2020). Wild-type mice with optical
fibers implanted served as control mice. For electrophysiology
data analysis, the TTL pulse was also recorded by the Cerebus
recording system simultaneously.

Anesthetic Performance During Propofol
LORR was used as the behavioral time-point to investigate the
hypnotic properties of propofol (AstraZeneca, United Kingdom),
following previously described methods with slight modifications
(Leung et al., 2013). To determine the propofol dosage required
to induce LORR, an initial bolus of 50 mg/kg was given to the
mouse intraperitoneally. 15 min absorption time was set after
injection. LORR was considered if there were two failed attempts
to right itself (four paws grounded) within 30 s after being placed
supinely. Subsequently, recurring 25 mg/kg was administered
and retested until LORR was achieved. The percentage of mice
showing LORR at each dose of propofol was established in the
control and optical groups, and the ED50 (50% effective dose) and
ED95 (95% effective dose) values of propofol were estimated from
the dose-response equation described in Statistical Analysis. The
time to LORR and time for recovery of righting were investigated
with 200 mg/kg propofol (ED95), in order to assess propofol
induction and emergence time.
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Histology
To verify the validity of the fibers’ placement and virus
expression, the mice were perfused with saline and a 4%
paraformaldehyde in 0.1 M PBS. After perfusing, the brains
were removed, post-fixed overnight in 4% paraformaldehyde,
and then immersed in a 30% sucrose solution at 4◦C for
cryoprotection. 30 µm-thick coronal slices were collected and
stored in PBS at 4◦C. Finally, the sections were rinsed in
90% glycerol, cover slipped, and imaged by the fluorescence
microscope (Olympus VS 120, Japan).

Statistical Analysis
All values are shown as mean ± SEM. Statistical analyses
were performed using Graphpad Prism (version 5.01,
Graphpad Prism, Inc., San Diego, CA, United States).
LORR dose-response data were curve-fitted by non-linear
regression with Prism to give the half-maximal effective
concentration–dose values (ED50 ± SEM) with the equation
Y = Ymin + (Ymax − Ymin)/[1 + 10 log(ED50 − X) × m], where
Y is the percentage of the population showing LORR, Ymin and
Ymax are the minimal and maximal values of Y, respectively,
ED50 is the drug dose for a half (Ymax − Ymin), X is the
logarithmic drug dose, and m is the Hill slope constant. The
F-test for non-linear regressions was then used to determine
whether the calculated ED50 was significantly different between
groups. At the time of the onset of LORR, the recovery of
righting reflex (RORR) was compared using an unpaired
Student t-test.

For LFP data analyses, data were obtained from the mPFC
at 200 mg/kg propofol. The recorded signals were pre-filtered
with Matlab 2010 (Mathworks, United States) to exclude artifacts.
All the 15 min data were used to plot spectrogram using
FFT multi-taper function of the MATLAB chronux toolbox1.
For spectrogram analysis, the spectrogram data at the initial
100 s when the mice were awake were used as the baseline
reference to calculate the mean and standard deviation for
normalizing [Normalized Z = (the point value -mean)/Standard
deviation]. After spectrogram normalization, the laser-stimuli-
triggered spectrogram changes were averaged from all the stimuli
in 15 min recording period (n = 36). For comparisons of
spectrogram power 5 s before and after light stimulation, we used
one-way repeated-measures ANOVA, followed by Bonferroni
post hoc tests. P value less than 0.05 (two-tailed) is considered to
be statistically significant.

RESULTS

The Activation of BFAch → mPFC on
Propofol Anesthesia
To investigate the cholinergic function during the propofol-
induced anesthesia, we firstly performed an optogenetic
activation of the BF cholinergic neurons during propofol-
induced anesthesia in mice with graded propofol (Figure 1A).
The behavior response of the proportion of mice LORR,

1http://chronux.org/

FIGURE 1 | Experimental procedures (A) In vivo LFP recording and behavioral test timeline. (B) Schematic of optogenetic stimulation of ChR2-expressing BF
cholinergic neurons. (C) The parameter of light stimulation during the in vivo recording.

Frontiers in Neuroscience | www.frontiersin.org 3 May 2021 | Volume 15 | Article 66441083

http://chronux.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-664410 May 20, 2021 Time: 17:3 # 4

Wang et al. Mechanisms of Propofol General Anesthesia

induction time, and emergence time (LORR to RORR), were
recorded by synchronous video recording (Figure 1B). After
intraperitoneal injection (i.p.) of propofol, a 473 nm blue light
(10 ms@20 Hz, for 5/30 s) was continuously delivered to the BF
of a ChAT-ChR2-EGFP(ChAT) transgenic mouse for 15 min
(Figure 1C). The typical placement of the electrodes, fibers, and
the expression of ChAT were shown in the Figures 2A,B. The
sensitivity of ChAT mice to propofol was significantly reduced
by the stimulation of light, characterized by a rightward shift
to the dose-response curve (Figure 2C). The effective dose
instigating 50% (i.e., ED50) of the LORR in the wild-type mice
was 157.7 mg/kg (95% CI, 138.3–179.8 mg/kg, and n = 12),
and was significantly different (P = 0.0008) to ChAT mice
with 197.4 mg/kg (95% CI, 178.4–206.9 mg/kg, and n = 12)
(Figure 2C). Based on the ED95 value, we chose the 200 mg/kg
propofol dose to test LORR and the emergence time. The LORR
was significantly prolonged following the light activation of
BF cholinergic neurons in ChAT mice, compared with wild-
type mice (P < 0.05, n = 6 for WT, and ChAT, respectively)
(Figure 2D). The emergence time was significantly reduced
by light stimulation (P < 0.05, n = 6 for WT, and ChAT,
respectively) (Figure 2E). These results showed that selective
activation of cholinergic neurons in the BF not only delays the
time to unconsciousness but also promotes emergence from
propofol anesthesia.

Brain network oscillations are ubiquitous in mammals. They
are assumed to be an imperative signature for various cognitive
abilities, such as learning (Brickwedde et al., 2019), memory (Liu
et al., 2013), attention (ElShafei et al., 2019), and consciousness
(Mukamel et al., 2014). Understanding the mechanisms and
functions of these oscillations is necessary to understand how the
brain carries out complex functions. During general anesthesia,
the most practical technique for tracking the various states of
the brain is the EEG/LFP, which measures scalp/local electrical
potentials generated by cortical oscillations. The effects of
propofol anesthesia on macroscopic dynamics are noticeable
in EEG readings, which display several stereotypical oscillation
patterns, including increased delta (0.5–4 Hz) power, decreased
gamma (25–40 Hz) power, and an alpha (∼10 Hz) rhythm that
is coherent across the frontal cortex (Lewis et al., 2012). Here,
we placed the electrodes into the mPFC to acquire the LFP
oscillations during the awake-immobility state and 200 mg/kg
propofol administration (Figures 2F,G). During the immobility
state, low-voltage, high-frequency activity was recorded in the
mPFC, with high power over 30 Hz (Figure 2F). After exposure to
the propofol at a dosage of 200 mg/kg i.p., an apparent increase
in slow activity in the mPFC was observed, with comparatively
lower power over 30 Hz (Figure 2G). After an average of 300 s
LORR time, there was an increase in the delta (0–4 Hz) and theta
(5–12 Hz) range and a decrease in power at higher frequencies
(12–20, 20–30, 30–80, and 80–150 Hz) (n= 7, Figure 2H, left).

To understand the cortical neural oscillation dynamic
changes during the BF cholinergic stimuli, we also recorded
the LFP of the mPFC during light stimulation in the same
region. The power changes occurred in frequencies between
12 and 30 Hz in one typical mouse during the light stimuli
within propofol administration (Figure 2I). The averaged

normalized spectrograms during 5 s light stimulation under
propofol-induced anesthesia showed a 20–30 Hz power increase
(Figure 2J). The light stimulation effectively decreased power in
the delta (0–4 Hz) band and increased the power in the beta (12–
20 Hz) and low gamma (20–30 Hz) bands (P < 0.001, P < 0.001,
and P < 0.001, respectively) (Figure 2K). These alterations to
specific bands were inversely identical to propofol-induced power
changes after LOC in Figure 2H. The neural mechanism of
propofol-induced LOC is associated to the BF-mPFC cholinergic
ascending projection system.

The Activation of BFGlu → mPFC on
Propofol Anesthesia
To investigate the glutamate function in BF, we bilaterally injected
the virus AAV-CamKIIα-ChR2-mCherry into the BF of the
C57BL/6 mice (CamKIIα) 2–3 weeks before behavioral testing
(Figure 3A). The optical fibers were bilaterally implanted over
the injection sites (Figure 3B). A blue light was delivered with
the same parameters as previously used at a physiologically
relevant frequency of 20 Hz (Supplementary Figure 1) (Xu
et al., 2015; Peng et al., 2020). Compared with the control group,
light stimulation of CamKIIα mice reduced their sensitivity to
propofol anesthesia, characterized by a significant right shift of
the dose-response curve (Figure 3C). ED50 in the control group
was 148.3 mg/kg (95% CI, 138.9–158.3 mg/kg, and n = 10). In
contrast, in the CamKIIα group, the ED50 (182.8 mg/kg, 95%
CI, 147.2–227.2 mg/kg, and n = 10) was significantly increased
(Figure 3C). The ED95 of 200 mg/kg propofol i.p. was selected
to test LORR and the emergence time. The induction time
showed a significant increase between the CamKIIα and wild-
type groups (P < 0.05, n = 6 for WT and CamKIIα groups,
respectively) (Figure 3D). The emergence time of the CamKIIα
group in response showed a decrease, but this was not significant
compared with the control group (P > 0.05, n = 6 for WT and
CamKIIα, respectively) (Figure 3E). Taken together, these results
indicate that modulation of glutamatergic neurons in the BF can
also reverse propofol-induced unconsciousness.

We also recorded the LFP in the mPFC during light
stimulation of BF glutamatergic neurons. The oscillation
characteristics in the awake immobility were found to be identical
to that in the ChAT mice (Figure 3F). Obvious power changes
could be seen during all the light stimulation across 15 min
recording under propofol anesthesia (Figure 3G, left). Selective
light activation of glutamatergic neurons in the BF induced a shift
from a low-frequency, high-amplitude slow oscillatory pattern
to an active high-frequency, low-amplitude pattern (Figure 3G,
right). The normalized averaged power showed a transient
increase in the 20–80 Hz bands during the light stimulation
(Figure 3H). A further post hoc Bonferroni test indicated that
the 5 s light stimulation induced a significant increase in all
bands during propofol anesthesia compared with that before
the light stimulation (Figure 3I). Compared with the previous
cholinergic activation-induced oscillation bands change, the
glutamate activation showed more broad band changes during
the propofol-induced general anesthesia, which suggested that
the underlying neural mechanism may be different.
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FIGURE 2 | Optogenetic activation of cholinergic neurons in the BF reversed propofol anesthesia with mPFC LFP change. (A) The location of electrodes embedded
in the mPFC. (B) Typical placement of optical fibers over the injection site and ChR2-expressing cholinergic neurons. (C) The dose-response curve plotted from the
proportion of mice losing the righting reflex under graded propofol (n = 12 in both groups). Induction (D) and emergence (E) time after stimulation of BF cholinergic
neurons when exposed to propofol at the dosage of 200 mg/kg (n = 6 both). ∗P < 0.05, compared with the control group. (F) Typical mouse spectrogram during
the awaking state (left), and an enlarged, 35 s spectrogram with raw LFP data (right). (G) 15-min spectrogram (left) and a 35 s enlarged time window with raw LFP
data (right) from a typical mouse during propofol anesthesia. (H) Normalized spectrogram averaged from six mice (left) and power differential at 0–4, 5–12, 12–20,
20–30, 30–80, and 80–150 Hz (right). (I) 15-min spectrogram (left) and an enlarged 35-s time window with raw LFP data from a typical mouse during propofol
anesthesia with light stimulation (right). White dashes (left) and blue line (right) represent light stimulation. (J) Normalized spectrogram computed from nine mice
under light stimulation during propofol at 200 mg/kg, trial = 52). (K) Post hoc analysis of the power at 0–4, 5–12, 12–20, 20–30, 30–80, and 80–150 Hz for 5 s
before and after light stimulation during propofol at 200 mg/kg. “0” means the onset of propofol administration in the Figures (G,H,I). ∗∗∗P < 0.001, compared with
the pre-sti group at every frequency range.
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FIGURE 3 | Selective activation of glutamatergic neurons in the BF reversed propofol anesthesia with mPFC LFP change. (A) Schematic of optogenetic activation of
BF glutamatergic neurons. (B) Selective expression of the AAV-CamKII-ChR2 virus in the BF glutamatergic neurons. (C) Dose-response curve from graded propofol
after light stimulation (10 mice in both groups). Induction (D) and emergence (E) time after stimulation of BF glutamatergic neurons when exposed to propofol at a
dose of 200 mg/kg (six mice in both). ∗∗P < 0.01, compared with the control group. (F) Typical mouse spectrogram during the quiet awaking state for 15 min (left)
and an enlarged 35 s time window with raw LFP data(right). (G) Typical mouse spectrogram during propofol anesthesia, accompanied by light stimulation for 15 min
(left) and 35 s time window with raw LFP data (right), white dashes (left) and the blue line (right) represent light stimulation. (H) Normalized spectrogram computed
from six mice under light stimulation during propofol at 200 mg/kg trial = 51). (I) Post hoc analyses at 0–4, 5–12, 12–20, 20–30, 30–80, and 80–150 Hz for 5 s
before and after light stimulation during propofol at 200 mg/kg. “0” means the onset of propofol administration in the Figures (F,G). ∗∗P < 0.001 and ∗∗∗P < 0.001,
compared with the pre-sti group at every frequency range.
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DISCUSSION

In summary, we demonstrated that the selective activation
of both cholinergic and glutamatergic neurons in the BF
could reverse the hypnotic effect of propofol. Additionally,
they promote emergence with activation of alternative mPFC
oscillation bands. Propofol induced specific power increases
at 12–20 Hz during the wake-LOC state transition. This
pattern appears similar to that observed in the human
scalp EEG, characterized by broad-band β oscillations
that coalesce into α oscillations after losing consciousness
(Vertes, 2002; Flores et al., 2017). Selective activation of
BF cholinergic neurons significantly decreased the delta
power, which is an index to the unconsciousness state
(Flores et al., 2017), but increased the power at 12–
20 and 20–30 Hz, which was thought to antagonize the
anesthesia-promoting effect of propofol in the mPFC.
However, promoting the glutamate system could induce a
systematic non-targeted change throughout all frequencies,
suggesting the complex brain networks involving in
the activation of the pathway projection may not have
specificity as a cholinergic system. Moreover, previous
work demonstrated that distinct consciousness patterns
could be induced by different neuropharmacological agents
(Kenny et al., 2016). The level of consciousness could
be dissociated from cholinergic, behavioral levels, and
neurophysiologic oscillations (Pal et al., 2020). These
findings might explain the difference in cortical activation
between cholinergic and glutamatergic neurons induced
in our study. Indeed, the glutamatergic and cholinergic
neurons in the BF project across the cortex, including
the mPFC, but there is no comparison with any other
cortical node (e.g., posterior parietal cortex) to understand
if there is anything unique about the oscillations, which
is a limitation of our study. Nevertheless, our findings
suggest that cholinergic and glutamatergic arousal projections
from the BF are sufficient to induce emergence in the
mPFC from general anesthesia. Activating the cholinergic
systems may modulate specific conscious related circuits,
can provide a novel approach to accelerating recovery from

general anesthesia, and treat or eliminate consciousness-
related disorders such as hypoxia, postoperative delirium, and
cognitive dysfunction.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Animal Care
Committee of the Zhejiang University.

AUTHOR CONTRIBUTIONS

LeW, MY, and WX conceived the project and wrote the
manuscript with input from all co-authors. WZ, YW, YG, and
NS provided computational support. HD, JR, LY, LaW, and FY
supported mouse work. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (91632105 and 81961128029), the Zhejiang
Provincial Natural Science Foundation of China (LY18H090006
and LY17C090005), and the Fundamental Research Funds for
the Central Universities (2015QN81005 and 2019QNA5001).
Zhejiang Lab (No. 2018EB0ZX01).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.664410/full#supplementary-material

REFERENCES
Ahrlund-Richter, S., Xuan, Y., Van Lunteren, J. A., Kim, H., Ortiz, C., Pollak

Dorocic, I., et al. (2019). A whole-brain atlas of monosynaptic input targeting
four different cell types in the medial prefrontal cortex of the mouse. Nat.
Neurosci. 22, 657–668. doi: 10.1038/s41593-019-0354-y

Blain-Moraes, S., Lee, U., Ku, S., Noh, G., and Mashour, G. A. (2014).
Electroencephalographic effects of ketamine on power, cross-frequency
coupling, and connectivity in the alpha bandwidth. Front. Syst. Neurosci. 8:114.
doi: 10.3389/fnsys.2014.00114

Blain-Moraes, S., Tarnal, V., Vanini, G., Alexander, A., Rosen, D., Shortal, B., et al.
(2015). Neurophysiological correlates of sevoflurane-induced unconsciousness.
Anesthesiology 122, 307–316. doi: 10.1097/aln.0000000000000482

Bloem, B., Schoppink, L., Rotaru, D. C., Faiz, A., Hendriks, P., Mansvelder,
H. D., et al. (2014). Topographic mapping between basal forebrain cholinergic
neurons and the medial prefrontal cortex in mice. J. Neurosci. 34, 16234–16246.
doi: 10.1523/jneurosci.3011-14.2014

Breshears, J. D., Roland, J. L., Sharma, M., Gaona, C. M., Freudenburg, Z. V.,
Tempelhoff, R., et al. (2010). Stable and dynamic cortical electrophysiology of
induction and emergence with propofol anesthesia. Proc. Natl. Acad. Sci. U.S.A.
107, 21170–21175. doi: 10.1073/pnas.1011949107

Brickwedde, M., Kruger, M. C., and Dinse, H. R. (2019). Somatosensory alpha
oscillations gate perceptual learning efficiency. Nat. Commun. 10:263.

Brown, E. N., Purdon, P. L., and Van Dort, C. J. (2011). General anesthesia and
altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci.
34, 601–628. doi: 10.1146/annurev-neuro-060909-153200

Ching, S., and Brown, E. N. (2014). Modeling the dynamical effects of anesthesia
on brain circuits. Curr. Opin. Neurobiol. 25, 116–122. doi: 10.1016/j.conb.2013.
12.011

ElShafei, H. A., Fornoni, L., Masson, R., Bertrand, O., and Bidet-Caulet, A. (2019).
What’s in your gamma? activation of the ventral fronto-parietal attentional
network in response to distracting sounds. Cereb. Cortex 30:696-707.

Flores, F. J., Hartnack, K. E., Fath, A. B., Kim, S. E., Wilson, M. A., Brown, E. N.,
et al. (2017). Thalamocortical synchronization during induction and emergence

Frontiers in Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 66441087

https://www.frontiersin.org/articles/10.3389/fnins.2021.664410/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.664410/full#supplementary-material
https://doi.org/10.1038/s41593-019-0354-y
https://doi.org/10.3389/fnsys.2014.00114
https://doi.org/10.1097/aln.0000000000000482
https://doi.org/10.1523/jneurosci.3011-14.2014
https://doi.org/10.1073/pnas.1011949107
https://doi.org/10.1146/annurev-neuro-060909-153200
https://doi.org/10.1016/j.conb.2013.12.011
https://doi.org/10.1016/j.conb.2013.12.011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-664410 May 20, 2021 Time: 17:3 # 8

Wang et al. Mechanisms of Propofol General Anesthesia

from propofol-induced unconsciousness. Proc. Natl. Acad. Sci. U.S.A. 114,
E6660–E6668.

Gritti, I., Henny, P., Galloni, F., Mainville, L., Mariotti, M., and Jones, B. E. (2006).
Stereological estimates of the basal forebrain cell population in the rat, including
neurons containing choline acetyltransferase, glutamic acid decarboxylase
or phosphate-activated glutaminase and colocalizing vesicular glutamate
transporters. Neuroscience 143, 1051–1064. doi: 10.1016/j.neuroscience.2006.
09.024

Han, Y., Shi, Y. F., Xi, W., Zhou, R., Tan, Z. B., Wang, H., et al. (2014). Selective
activation of cholinergic basal forebrain neurons induces immediate sleep-wake
transitions. Curr. Biol. 24, 693–698. doi: 10.1016/j.cub.2014.02.011

Kennedy, D., and Norman, C. (2005). What don’t we know? Science
309:75.

Kenny, J. D., Chemali, J. J., Cotten, J. F., Van Dort, C. J., Kim, S. E., Ba, D.,
et al. (2016). Physostigmine and methylphenidate induce distinct arousal states
during isoflurane general anesthesia in rats. Anesth. Analg. 123, 1210–1219.
doi: 10.1213/ane.0000000000001234

Laalou, F. Z., De Vasconcelos, A. P., Oberling, P., Jeltsch, H., Cassel, J. C., and Pain,
L. (2008). Involvement of the basal cholinergic forebrain in the mediation of
general (propofol) anesthesia. Anesthesiology 108, 888–896. doi: 10.1097/aln.
0b013e31816d919b

Leung, L. S., Ma, J., Shen, B., Nachim, I., and Luo, T. (2013). Medial septal lesion
enhances general anesthesia response. Exp. Neurol. 247, 419–428. doi: 10.1016/
j.expneurol.2013.01.010

Leung, L. S., Petropoulos, S., Shen, B., Luo, T., Herrick, I., Rajakumar, N., et al.
(2011). Lesion of cholinergic neurons in nucleus basalis enhances response to
general anesthetics. Exp. Neurol. 228, 259–269. doi: 10.1016/j.expneurol.2011.
01.019

Lewis, L. D., Weiner, V. S., Mukamel, E. A., Donoghue, J. A., Eskandar, E. N.,
Madsen, J. R., et al. (2012). Rapid fragmentation of neuronal networks at the
onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci. U.S.A. 109,
E3377–E3386.

Liu, X., Liu, T. T., Bai, W. W., Yi, H., Li, S. Y., and Tian, X. (2013). Encoding
of rat working memory by power of multi-channel local field potentials via
sparse non-negative matrix factorization. Neurosci. Bull. 29, 279–286. doi:
10.1007/s12264-013-1333-z

Luo, T. Y., Cai, S., Qin, Z. X., Yang, S. C., Shu, Y., Liu, C. X., et al.
(2020). Basal forebrain cholinergic activity modulates isoflurane and
propofol anesthesia. Front. Neurosci. 14:559077. doi: 10.3389/fnins.2020.
559077

Mukamel, E. A., Pirondini, E., Babadi, B., Wong, K. F., Pierce, E. T., Harrell,
P. G., et al. (2014). A transition in brain state during propofol-induced
unconsciousness. J. Neurosci. 34, 839–845. doi: 10.1523/jneurosci.5813-
12.2014

Pal, D., Dean, J. G., Liu, T., Li, D., Watson, C. J., Hudetz, A. G., et al. (2018).
Differential role of prefrontal and parietal cortices in controlling level of
consciousness. Curr Biol 28, 2145–2152.e2145.

Pal, D., Li, D., Dean, J. G., Brito, M. A., Liu, T. C., Fryzel, A. M., et al. (2020).
Level of consciousness is dissociable from electroencephalographic measures of
cortical connectivity, slow oscillations, and complexity. J. Neurosci. 40, 605–618.
doi: 10.1523/jneurosci.1910-19.2019

Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., and Xu, M. (2020). Regulation of sleep
homeostasis mediator adenosine by basal forebrain glutamatergic neurons.
Science 369:eabb0556. doi: 10.1126/science.abb0556

Ren, S., Wang, Y., Yue, F., Cheng, X., Dang, R., Qiao, Q., et al. (2018). The
paraventricular thalamus is a critical thalamic area for wakefulness. Science 362,
429–434. doi: 10.1126/science.aat2512

Vertes, R. P. (2002). Analysis of projections from the medial prefrontal cortex to
the thalamus in the rat, with emphasis on nucleus reuniens. J. Comp. Neurol.
442, 163–187. doi: 10.1002/cne.10083

Wang, T. X., Xiong, B., Xu, W., Wei, H. H., Qu, W. M., Hong, Z. Y., et al.
(2019). Activation of parabrachial nucleus glutamatergic neurons accelerates
reanimation from sevoflurane anesthesia in mice. Anesthesiology 130, 106–118.
doi: 10.1097/aln.0000000000002475

Xie, G., Deschamps, A., Backman, S. B., Fiset, P., Chartrand, D., Dagher, A., et al.
(2011). Critical involvement of the thalamus and precuneus during restoration
of consciousness with physostigmine in humans during propofol anaesthesia:
a positron emission tomography study. Br. J. Anaesth. 106, 548–557. doi:
10.1093/bja/aeq415

Xu, M., Chung, S., Zhang, S., Zhong, P., Ma, C., Chang, W. C., et al. (2015).
Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 1641–1647.
doi: 10.1038/nn.4143

Zant, J. C., Kim, T., Prokai, L., Szarka, S., Mcnally, J., Mckenna, J. T., et al. (2016).
Cholinergic neurons in the basal forebrain promote wakefulness by actions on
neighboring non-cholinergic neurons: an opto-dialysis study. J. Neurosci. 36,
2057–2067. doi: 10.1523/jneurosci.3318-15.2016

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wang, Zhang, Wu, Gao, Sun, Ding, Ren, Yu, Wang, Yang, Xi
and Yan. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 8 May 2021 | Volume 15 | Article 66441088

https://doi.org/10.1016/j.neuroscience.2006.09.024
https://doi.org/10.1016/j.neuroscience.2006.09.024
https://doi.org/10.1016/j.cub.2014.02.011
https://doi.org/10.1213/ane.0000000000001234
https://doi.org/10.1097/aln.0b013e31816d919b
https://doi.org/10.1097/aln.0b013e31816d919b
https://doi.org/10.1016/j.expneurol.2013.01.010
https://doi.org/10.1016/j.expneurol.2013.01.010
https://doi.org/10.1016/j.expneurol.2011.01.019
https://doi.org/10.1016/j.expneurol.2011.01.019
https://doi.org/10.1007/s12264-013-1333-z
https://doi.org/10.1007/s12264-013-1333-z
https://doi.org/10.3389/fnins.2020.559077
https://doi.org/10.3389/fnins.2020.559077
https://doi.org/10.1523/jneurosci.5813-12.2014
https://doi.org/10.1523/jneurosci.5813-12.2014
https://doi.org/10.1523/jneurosci.1910-19.2019
https://doi.org/10.1126/science.abb0556
https://doi.org/10.1126/science.aat2512
https://doi.org/10.1002/cne.10083
https://doi.org/10.1097/aln.0000000000002475
https://doi.org/10.1093/bja/aeq415
https://doi.org/10.1093/bja/aeq415
https://doi.org/10.1038/nn.4143
https://doi.org/10.1523/jneurosci.3318-15.2016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-665687 August 11, 2021 Time: 14:37 # 1

ORIGINAL RESEARCH
published: 17 August 2021

doi: 10.3389/fnins.2021.665687

Edited by:
Hailong Dong,

Fourth Military Medical University,
China

Reviewed by:
Jonathan P. Wisor,

Washington State University,
United States

Giacomo Della Marca,
Catholic University of the Sacred

Heart, Italy

*Correspondence:
Yongcong Shao

budeshao@aliyun.com
Weiwei Fu

fuww@sibet.ac.cn
Jianlin Qi

qjldln@163.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Sleep and Circadian Rhythms,
a section of the journal

Frontiers in Neuroscience

Received: 08 February 2021
Accepted: 26 July 2021

Published: 17 August 2021

Citation:
Wang H, Yu K, Yang T, Zeng L,

Li J, Dai C, Peng Z, Shao Y, Fu W and
Qi J (2021) Altered Functional

Connectivity in the Resting State
Neostriatum After Complete Sleep
Deprivation: Impairment of Motor
Control and Regulatory Network.

Front. Neurosci. 15:665687.
doi: 10.3389/fnins.2021.665687

Altered Functional Connectivity in
the Resting State Neostriatum After
Complete Sleep Deprivation:
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Sleep loss not only compromises individual physiological functions but also induces a
psychocognitive decline and even impairs the motor control and regulatory network. In
this study, we analyzed whole-brain functional connectivity changes in the putamen
and caudate nucleus as seed points in the neostriatum after 36 h of complete
sleep deprivation in 30 healthy adult men by resting state functional magnetic
resonance imaging to investigate the physiological mechanisms involved in impaired
motor control and regulatory network in individuals in the sleep-deprived state. The
functional connectivity between the putamen and the bilateral precentral, postcentral,
superior temporal, and middle temporal gyrus, and the left caudate nucleus and
the postcentral and inferior temporal gyrus were significantly reduced after 36 h of
total sleep deprivation. This may contribute to impaired motor perception, fine motor
control, and speech motor control in individuals. It may also provide some evidence for
neurophysiological changes in the brain in the sleep-deprived state and shed new light
on the study of the neostriatum in the basal ganglia.

Keywords: sleep deprivation, putamen, caudate, resting state-fMRI, functional connectivity, motor control
network

INTRODUCTION

Total sleep deprivation (TSD) refers to a physiological state of less than 4 h of continuous sleep for at
least 24 h. TSD has been shown to not only harm individual physiological functions and increase the
risk of developing cardiovascular disease and obesity (St-Onge and Zuraikat, 2019; Yu et al., 2020)
but also cause a psychocognitive decline including loss of mood, learning, and memory, which in
turn triggers individual behavioral disorders and can even cause operational accidents (Killgore,
2010; Tantawy et al., 2013; Goldstein and Walker, 2014; Xie et al., 2015; Lo et al., 2016; Krause et al.,
2017; Cunningham et al., 2018; Peng et al., 2020).

Accidents are associated not only with psychocognitive decline but also with impaired fine motor
control. Fine motor control is a high-level cognitive function of humans, which belongs to the
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category of voluntary movement, and occurs throughout the
whole process of human daily life and social activities, such as
reading, writing, speech, working, and some sports (Stippich
et al., 2007; Bracci et al., 2012; Hao et al., 2016). Because fine
movement is very important in daily life, much research has
been conducted in the field of cognitive neuroscience, applying
anatomical, physiological, and molecular biological methods to
study voluntary movement and the mechanisms that govern it.
The basic anatomical structures, physiological functions, and
interconnections among various structures involved in voluntary
motor control in animals and humans have now been established.
In recent years, with the rapid development of medical imaging,
functional magnetic resonance imaging (fMRI) techniques have
provided further insights into the in vivo study of neural
mechanisms, as well as into the imaging mechanism of fine
motor control (Lee et al., 2010; Plow et al., 2010). Resting-state
functional MRI (rs-fMRI) reflects spontaneous activity via the
blood oxygenation level dependent (BOLD) signal in the brain,
which is closer to the physiological state. Relative to the task
state, rs-fMRI is convenient to operate, provides repetitive, stable,
and reliable information, and can be analyzed in many ways.
Therefore, rs-fMRI has obvious advantages for studying brain
spontaneous activity, functional connectivity among various
brain regions, development and plasticity of brain function, and
neuropsychiatric disorders, and is a recent focus of research on
brain function (Friston, 2004; Zhu et al., 2020).

In general, voluntary motor signals emanate from the
area of the precentral gyrus of the cerebral cortex through
descending pyramidal system conduction pathways to the
anterior horn of the spinal cord and then through spinal
nerves to the corresponding motor neurons, causing skeletal
muscle contraction. The precentral gyrus plays an important
role in voluntary movement of the soma and is a somatomotor
high-level control center. Multiple precentral gyrus regions
are involved in composing the somatomotor cortex, including
the primary motor cortex (M1), premotor area (PM), and
supplementary motor area (SMA), which are located within and
lateral to the brain in the precentral gyrus. These different regions
of the precentral gyrus play different roles in the achievement
of motor function, acting in the form of network connections
(Mayka et al., 2006). However, the brain regions involved in
motor control function are extensive, and voluntary motor
information undergoes regulatory control by the extrapyramidal
system in addition to the pyramidal system. These include
the spinal cord, thalamus, secondary somatosensory cortex
(Supplementary Table 2), medial insular cortex (IC), anterior
cingulate cortex (ACC), PM, SMA, and M1. Furthermore, the
limbic system, basal ganglia (BG), thalamus, orbitofrontal cortex
(OFC), prefrontal cortex (PFC), ACC, PM, SMA, and M1
regions make up the locomotor modulatory excitatory pathway
(Tanaka and Watanabe, 2012).

However, because of limitations in research conditions, the
mechanisms of motor control involved in the basal ganglia
have not been thoroughly elucidated regarding the initiation,
programming of voluntary movement, and the execution of
movement in humans. The BG are important nuclei in
extrapyramidal transmission pathways that receive afferent

signals from the cortex to feed back to the cerebral cortex after
integration. From a functional point of view, the BG can be
divided into six functional nuclei, including the striatum (STR),
external globus pallidus (GPe), internal segment of the globus
pallidus, substantia nigra pars reticulata (GPi-SNr), substantia
nigra pars compacta (SNc), and subthalamic nucleus (STN)
(Rodriguez-Sabate et al., 2016).

In recent years, functional connectivity analyses have provided
invaluable approaches for studying the human brain on the brain-
network level. Using fMRI approaches, investigators have found
specific patterns of functional connectivity in the sensorimotor
network between the BG and the primary motor cortex and
cerebellum (Carlson, 2009; Sokolov et al., 2012), in which
the STR, together with the STN and substantia nigra, mainly
constitute the subcortical circuits regulating locomotion, in
concert with the cerebral cortex and cerebellum regulating
voluntary movements, muscle tone, and postural reflexes (Wall
et al., 2013). Therefore, the BG play a very important role
in the sensorimotor network and mainly participate in the
motion control and regulation network (Bostan et al., 2013;
Zhang et al., 2018) responsible for physiological functions such
as motor control, motor learning, functioning, and behavior
(Lanciego et al., 2012).

Among the anatomical structures of the BG, the STR
includes the caudate and lentiform nucleus, which are connected
anteriorly ventrally; the lentiform nucleus is further divided into
the putamen and the pallidus; the caudate nucleus and putamen
are phylogenetically more recent structures of the STR, together
called the neostriatum, and the pallidus is the oldest part of the
STR, called the old STR. All three are structurally and functionally
closely linked (Alexander et al., 1986), and because of the unique
anatomical properties of the STR, many studies have combined
the three nuclei as STR in the past to analyze motor control and
regulation functions. Few studies have separated the neostriatal
caudate nucleus and putamen for functional analysis.

Neuroanatomical studies have shown that the putamen has
direct anatomical connections with the M1 and SMA (Viñas-
Guasch and Wu, 2017). In addition, the putamen has been shown
to play an important role in motor control, with the putamen
receiving voluntary motor information from corticothalamic
projections for integrative processing and descending projections
through ganglion brainstem networks for their characteristic
motor control functions (Moustafa et al., 2018).

Moreover, fine motor control is critically involved in the
transmission integration of multisensory information and is
coupled with higher cognitive functions, such as learning and
memory (Grosbras et al., 2011; Wacker et al., 2011; Lechak
and Leber, 2012). Therefore, a thorough exploration of the
neurophysiological basis underlying individual changes in motor
control function after TSD is an important approach for
understanding the impact of human sleep and physiological
rhythms on cognitive behavior. We hypothesized that impaired
fine motor control after TSD is associated with altered patterns of
functional connectivity in the neostriatum, and thereby designed
a 36 h TSD experiment with functional imaging data acquisition
before and after sleep deprivation. The aim of this study was
to identify the neurofunctional mechanisms by which sleep
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deprivation affects fine motor control by analyzing changes in
the pattern of functional connectivity between the putamen and
caudate nucleus bilaterally after TSD using resting-state fMRI.

MATERIALS AND METHODS

Subjects
Thirty healthy adult males at university, aged 18–24 years
(21.94 ± 1.73), were enrolled according to the following criteria:
right handedness, normal uncorrected or corrected visual acuity,
no history of alcohol and drug abuse, and no history of mental
or neurological diseases. The Pittsburgh sleep quality index test
scores of all subjects were less than five points, which indicated
that all subjects had good sleep habits. Subjects had no history
of severe physical disease or traumatic brain injury. The subjects
were required not to consume alcohol, coffee, or other irritant
food and drink the week before and during the experiment. The
trial was approved by the Research Ethics Committee of Beihang
University. The trial process and precautions were explained
to the subjects before the trial. All participants voluntarily
participated in the trial and provided informed consent.

Research Methods
At the beginning of the experiment, the subjects registered their
information at 16:00 on the first day and were ready to rest
at 20:00. All participants underwent sleep monitoring from the
first night onward, and relevant index tests was performed at
06:00 on the second day before rs-fMRI scanning including a
series of emotional state scales and working memory tests. The
second relevant index tests and rs-fMRI scanning were conducted
at 20:00 on the third day after a 36-h sleep deprivation (SD).
The participants were only allowed to perform non-strenuous
activities during the 36-h period, such as conversing, reading,
gaming, and working on a computer. Moreover, participants
were not permitted to smoke, drink, or consume any stimulants
including coffee, chocolate, soft drinks, or alcohol. Our SD
laboratory used the medical sleep monitoring room in the PLA
Air Force General Hospital, with complete supporting medical
facilities. During the whole process of sleep deprivation, medical
staff took turns on duty to ensure the health status of the subjects,
and the researchers also took turns on duty to monitor the status
of the subjects.

MRI Data Acquisition
All MRI scans were conducted at the MRI Department of the
PLA Air Force General Hospital. Before the scanning, the subjects
were asked to take preparations (remove the magnetic items they
carried, wear shoe covers, wear earplugs, etc.). The subjects lay
flat on the MRI table, and their heads were fixed with sponges
and bandages. Ge 3.0T MR750 equipment and a special 8-channel
head coil were used to collect the MRI signals. During the scan,
the subjects were asked to close their eyes and keep their head
still and not think about anything and the whole procedure of the
subjects in the scanner was about 40 min.

The rs-fMRI images were collected using a plane-echo
imaging sequence. There were 190 images. The specific scanning

parameters were as follows: repetition time, 2,000 ms; echo time,
30 ms; scanning field, 240 mm× 240 mm; layer thickness, 3 mm;
layer spacing, 1 mm; turning angle, 90◦; and acquisition matrix,
64 × 64. The number of layers was 35 (the scan positioning
line was parallel to the anterior posterior commissural line).
High-resolution T1 images were acquired using the FSPGR-
BRAVO sequence. The parameters were as follows: repetition
time, 8.208 s; echo time, 3.22 ms; turning angle, 12◦; scanning
field, 240 mm× 240 mm; inversion time, 450 ms. It is important
to ensure that the subjects do not fall asleep during rs-fMRI
scanning. Therefore, before each scan, they communicated with
the subjects through a microphone to remind the subjects
to keep awake. After each scan, subjects were asked whether
they remained awake during the scan. In addition, the MRI
equipment we used had a camera inside, and throughout each
scan, the operator monitored the subject’s body movements
and other states through the camera. Combined with their
subjective reports, we can confirm that no subjects fell asleep
during the scan.

MRI Data Preprocessing
The raw MR data were analyzed using MATLAB 2015b and the
statistical parametric mapping (SPM12; Welcome Department
of imaging neuroscience, London, United Kingdom,1) software
package for processing. Before resting state data preprocessing,
the first 10 frames of each subject were manually removed
to eliminate the effect of magnetic saturation at the initial
scan stage. fMRI data preprocessing was performed next, and
the specific steps mainly included slice timing, alignment, co-
registration between functional and structural images, spatial
normalization to MNI space (3 mm × 3 mm resolution),
filtering of the waveforms of each brain voxel by band-pass
filters (0.008 Hz < f < 0.09 Hz) to accommodate low-frequency
drift and high-frequency noise effects, and Gaussian filter
(FWHM = 6 mm) to spatially smooth the filtered data. Subjects
with a head motion correction displacement of more than 2 mm
in the X-, Y-, and Z-axis directions and rotation of more than
1◦ were removed.

rs-fMRI Data Functional Connectivity
Analysis
rs-fMRI data functional connectivity (FC) analysis was
performed after preprocessing and was completed using
the CONN toolbox2; FC analysis was performed on 30 subjects.
To define the 116 regions of interest (ROIs) considered in this
study, the CONN toolbox automated anatomical labeling (AAL)
was used (Tzourio-Mazoyer et al., 2002), including 90 cerebral
ROIs and 26 cerebellar ROIs. Linear regression analysis was
performed to remove white matter, CSF, and six motor signals.
The CONN toolbox extracts various subsites, that is, the average
BOLD time series signals from all voxels included in the ROI
region, and then summing the time series of signals from that
subsite region and the correlation coefficient of the time series
from each voxel of the remaining whole brain (ROI-Voxel). To

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://web.mit.edu/swg/software.htm

Frontiers in Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 66568791

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://web.mit.edu/swg/software.htm
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-665687 August 11, 2021 Time: 14:37 # 4

Wang et al. TSD Impairs Motor Control

estimate the intensity of FC, the correlation coefficients were
converted to Z values using Fisher r-to-z transformation after
obtaining the correlation coefficient map, resulting in an FC
value for each ROI region. Paired sample t-tests were used to
compare the differences in voxel-wise FC values between the
putamen and caudate seed points to the whole brain before
and after SD, with statistical significance defined as uncorrected
p < 0.001 and cluster > 40 (Yu et al., 2020).

RESULTS

We performed the procedure described in sections “MRI Data
Preprocessing” and “rs-fMRI Data Functional Connectivity
Analysis” for each subject’s data, performing correlation analysis
between the BOLD signal from each ROI and whole brain voxels
with paired samples t-tests. Results of whole-brain FC patterns
in the bilateral putamen and caudate nucleus before and after
sleep deprivation are detailed in Figures 1–4 and Tables in
Supplementary Material.

FC Pattern Differences in Bilateral
Putamen Before and After 36 h TSD
It was found that, compared to subjects after TSD in the normal
wakefulness state, the left putamen had decreased FC within the
left precentral gyrus [t-value = −5.76, p < 0.001, t-test (GLM)],
decreased FC within the right precentral gyrus [t-value = −5.96,
p < 0.001, t-test (GLM)], and decreased FC within the left
postcentral gyrus [t-value = −5.56, p < 0.001, T-test (GLM)],
with decreased FC to the right postcentral gyrus [t-value =−5.50,
p < 0.001, t-test (GLM)], with decreased FC to the left superior
temporal gyrus [t-value = −6.81, p < 0.001, t-test (GLM)],
and with decreased FC to the left middle temporal gyrus [t-
value = −6.30, p < 0.001, t-test (GLM)]. However, a significant
enhancement was found in the FC in the right supramarginal
gyrus [t-value = 5.41, p < 0.001, t-test (GLM)].

The results found that the right putamen showed similar
results to the left putamen, with decreased FC between the right
putamen and the left precentral gyrus after TSD [t-value =−5.20,
p < 0.001, t-test (GLM)], decreased FC within the right precentral
gyrus [t-value = −7.47, p < 0.001, t-test (GLM)], decreased FC
within the left precentral gyrus [t-value =−5.73, p < 0.001, T-test
(GLM)], and decreased FC within the right postcentral gyrus [t-
value = −6.45, p < 0.001, t-test (GLM)]. However, no significant
enhancement of FC was found in the right putamen (Table 1 and
Figure 5).

FC Pattern Differences in the Bilateral
Caudate Before and After 36 h TSD
An analysis of the results only found changes in FC patterns
before and after TSD in the left caudate nucleus; no significant
results were found in the right caudate nucleus. Compared
to subjects after TSD in the normal wakefulness state, the
left caudate nucleus showed decreased FC within the left
postcentral gyrus [t-value = −4.56, p < 0.001, t-test (GLM)],
decreased FC within the right postcentral gyrus [t-value =−5.72,
p < 0.001, t-test (GLM)], and decreased FC within the left inferior

temporal gyrus [t-value = −6.03, p < 0.001, t-test (GLM)].
A significant enhancement was also found for FC within the right
supramarginal gyrus [t-value = 4.82, p < 0.001, t-test (GLM)]
(Table 2 and Figure 6).

DISCUSSION

In this study, we investigated the effects of 36 h TSD on whole-
brain FC in the putamen and caudate nucleus of the neostriatum
at resting state using fMRI. We observed a significant decrease
in connectivity between the putamen and the precentral gyrus,
postcentral gyrus, superior temporal gyrus, and middle temporal
gyrus in subjects after TSD, as well as a significant decrease
in connectivity between the left caudate and the postcentral
gyrus and inferior temporal gyrus of the cortex and significantly
enhanced connectivity between the left putamen and caudate
with the right supramarginal gyrus. Such results could represent
impaired somatic fine motor control and speech motor function
due to TSD caused by disrupted communication in the motor
control and regulatory network jointly involving the putamen
and caudate nucleus, which is an innovative addition to the
current association study of sleep loss.

By comparing putamen and caudate connectivity changes
induced by loss of sleep, we found significant reductions in
FC between the putamen and parts of the precentral gyrus,
caudate, and parts of the postcentral gyrus. According to
the cortical BG motor control loop proposed by Wall et al.,
the putamen and caudate nucleus receive excitatory motor
information from corticocortical projections and send post-
processing feedback projections back to the cortex via the
BG (Wall et al., 2013). Thus, the reduced FC between the
putamen and caudate with parietal regions after TSD compared
to normal wakefulness in subjects may have contributed to the
disrupted transmission of information between the neostriatum
and cortical motor and sensory areas after TSD. The current
study found that there is functional consolidation of motor
memory by the cerebral cortical spindles during sleep, with areas
of action including the hippocampus, putamen, thalamus, and
somatomotor cortex (Boutin et al., 2018). TSD not only impaired
this functional consolidation but also functionally separated
putamen from motor control and regulatory network, which
possibly causing somatic dystonia from impaired voluntary
muscle control with direct consequences for individual motor
control functions.

Meanwhile, the results also revealed decreased FC between the
bilateral putamen and left caudate nucleus with some areas of the
postcentral gyrus. This indicated that not only disturbed motor
information transmission but also somatosensory information
communication processes between the cerebral cortex and
the neostriatum are affected by TSD in the somatomotor
functions in which the BG participate. Somatosensory signals
generated by the skin and proprioceptive receptors play a
crucial role in the fine control of dexterous motor movements,
and individuals adjust motor commands using the acquired
sensory information to enable the motor system to correct
sensory errors in a timely manner; the anatomical basis of this
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FIGURE 1 | Whole-brain functional connectivity patterns of the putamen before 36 h TSD shown at panels (A,C), and after 36 h TSD shown at panels (B,D) (n = 30)
(Transverse view). Warm colors indicate positive correlations, and cold colors indicate negative correlations.

FIGURE 2 | Whole-brain functional connectivity patterns of the putamen before 36 h TSD shown at panels (A,C), and after 36 h TSD shown at panels (B,D) (n = 30)
(Surface view). Warm colors indicate positive correlations, and cold colors indicate negative correlations.
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FIGURE 3 | Whole-brain functional connectivity patterns of the caudate before 36 h TSD shown at panels (A,C), and after 36 h TSD shown at panels (B,D) (n = 30)
(Transverse view). Warm colors indicate positive correlations, and cold colors indicate negative correlations.

FIGURE 4 | Whole-brain functional connectivity patterns of the caudate before 36 h TSD shown at panels (A,C), and after 36 h TSD shown at panels (B,D) (n = 30)
(Surface view). Warm colors indicate positive correlations, and cold colors indicate negative correlations.
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mechanism is the direct anatomical connection between the
primary somatosensory cortex (Supplementary Table 1) and M1
(Mao et al., 2011; Feldmeyer, 2012). In addition, it is also a

TABLE 1 | Changes in whole brain FC in the bilaterally Putamen before and after
36 h TSD, size of relevant regions, coordinates of MNI and maximum statistical
t value (n = 30).

Brain regions Size Talairach coordinates T score

x y z

Seed: Left Putamen (after TSD > before TSD)

Left precentral gyrus 180 −51 −3 + 36 −5.76

Left postcentral gyrus 109 −51 −15 + 42 −5.56

Right precentral gyrus 213 +45 −15 + 54 −5.96

Right postcentral gyrus 120 +45 −18 + 51 −5.50

Left superior temporal gyrus 48 −57 −12 −3 −6.81

Left middle temporal gyrus 40 −48 −36 −3 −6.30

Right supramarginal gyrus 86 +51 −42 +57 5.41

Seed: Right Putamen (after TSD > before TSD)

Left precentral gyrus 108 −45 −15 +45 −5.20

Left postcentral gyrus 186 −42 −24 +57 −5.73

Right precentral gyrus 150 +45 −12 +54 −7.47

Right postcentral gyrus 106 +45 −18 +54 −6.45

complex somatosensory motor integration function that allows
quick and accurate movement (Johansson and Flanagan, 2009;
Masato et al., 2019). Therefore, the reduced connectivity between
the putamen, caudate, and postcentral gyrus may reflect a decline
in individual fine motor control after TSD, which is associated
with altered functional patterns in the sensorimotor network
including the neostriatum.

However, increased FC was found between the putamen
and caudate with the right supramarginal gyrus, which is
considered a key region of the higher-order sensorimotor
cortex and plays an important role in spatial processing and
motor control. Furthermore, an fMRI study found that the
right supramarginal gyrus is important for proprioception in
patients with stroke (Ben-Shabat et al., 2015). The increased
FC between the left putamen and left caudate with the
right supramarginal gyrus in the sleep-deprived state may
reflect a type of proprioceptive compensation, which, to
some extent, compensates for the impaired motor control
and regulatory network due to reduced connectivity in
Supplementary Table 1.

It has also been found that 24-h SD causes a reduction
in the density of short-distance FC in the posterior
cerebellar lobes, suggesting that SD maintains cognitive
performance by reducing higher-order cognition-, arousal-,
and sensorimotor-related regions (Kong et al., 2018). The

FIGURE 5 | Surface views shown at panels (A,B) and transverse views shown at panels (C,D) of brain areas that exhibited altered functional connectivity with
bilaterally putamen after 36 h TSD (n = 30). Warm colors indicate increased FC, and cold colors indicate decreased FC.
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TABLE 2 | Changes in whole brain FC in the left Caudate before and after 36 h
TSD, size of relevant regions, coordinates of MNI and maximum statistical t value
(n = 30).

Brain regions Cluster size MNI coordinates T score

x y z

Seed: Left Caudate (after TSD > before TSD)

Left postcentral gyrus 40 −45 −24 +54 −4.56

Right postcentral gyrus 53 +42 −30 +57 −5.72

Left inferior temporal gyrus 38 −60 −12 +03 −6.03

Right supramarginal gyrus 32 +63 −36 +33 4.82

conclusion of this study can be similarly explained by
the findings of Kong et al. that the post-TSD brain has
reduced fine motor control function to maintain cognitive
functional integrity by altering the neostriatal potency in
motor control and regulatory network. However, the 36-h
TSD paradigm used in this study, in which neuroimaging
data acquisition was not performed during the procedure,
only accounts for the impairment motor control and
regulatory network during prolonged sleep loss and does
not specifically confirm the corresponding time point of
connectivity decline.

Interestingly, the putamen was found to have reduced FC in
some areas of the superior and middle temporal gyrus, which
we speculate is related to motor control processes related to
individual speech production, simply to the movements involved
in speaking. Speaking is one of the most complex and precise
motor behaviors in humans; it coordinates the movements of
breathing, larynx, articulation, and facial muscles to produce
speech while speaking. The underlying neural mechanisms
of speech involve sensory-motor interactions that incorporate
feedback information for online monitoring and control of
produced speech sounds. The motor behavior of speech is
regulated by speech processing in areas of the auditory cortex, as
demonstrated by neurophysiological studies of this sensorimotor

mechanism (Flinker et al., 2010; Behroozmand and Larson, 2011;
Chang et al., 2013; Greenlee et al., 2013; Sitek et al., 2013;
Behroozmand et al., 2015).

An fMRI study identifying brain regions involved in
the motor control of speech showed that speech feedback
processing involves complex sensorimotor networks, including
the superior temporal gyrus (STG), precentral gyrus, postcentral
gyrus, SMA, inferior frontal gyrus (IFG), inferior parietal
lobule (IPL), and insula. It has also been shown that a more
complex sensory motor network involving the bilateral STG,
MTG, precentral gyrus, SMA, IFG, postcentral gyrus, IPL,
insula, and putamen is involved when humans use auditory
feedback for speech production and motor control (Parkinson
et al., 2012), which is highly consistent with our findings.
From this, we speculate that speech production motor
function is impaired after TSD and that this functional
impairment may result from diminished connectivity of
the temporal cortex speech area with the neostriatum
(Ludman et al., 2000; Xu et al., 2009; Bernstein et al., 2011;
Wu et al., 2017).

Our study has some limitations. First, we only assessed
male volunteers, so we cannot make generalizations to females.
Only male volunteers were recruited due to the experimental
conditions and the long time course of the study. This will
limit the clinical utility of the findings. In the future, it
would be interesting to investigate sex differences in functional
connectivity changes following TSD.

Second, circadian biorhythms affect behavioral performance,
and these effects differ across individuals (Montplaisir, 1981;
Lavie, 2001). However, considering that 48 h of sleep deprivation
may uncontrollably damage the health of the subjects and
24 h of sleep deprivation has relatively small effects, 36 h of
sleep deprivation is inevitably affected by circadian rhythm. In
previous similar studies, the data collected at 20:00 on the day
before sleep deprivation and 08:00 on the first day were used as
two baselines, but the results showed that there was no significant
difference between the two baselines (Shao et al., 2014; Lei et al.,
2015; Zhang et al., 2019; Peng et al., 2020; Li et al., 2021);

FIGURE 6 | Surface views shown at panel (A) and transverse views shown at panel (B) of brain areas that exhibited altered functional connectivity with left caudate
after 36 h TSD (n = 30). Warm colors indicate increased FC, and cold colors indicate decreased FC.
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therefore, only one baseline was collected in this study.
However, no circadian/time of day differences in other brain
functions does not mean that neostriatum connectivity is
unaffected by circadian/time of day effects. Thus, we could
not rule out effects of circadian rhythms on our results,
and in future experiments, we will consider measuring two
baseline data and using the Horne and Ostberg questionnaire to
determine the chronotype of the subject to exclude the influence
of circadian rhythm.

Third, although behavioral assessment was used to evaluate
sleep during MRI scanning, this method may not be completely
sufficient. Fluctuation in states of sleepiness, drowsiness, and
sudden (even if very short) sleep episodes of a few seconds,
cannot be 100% excluded, which is a major limitation of the
study. Polysomnography, which is the gold standard for sleep
evaluation, and other physiological monitoring methods lacking
here, such as long-term EEG or ECG, should be considered in
future research.

CONCLUSION

Overall, reduced connectivity between the putamen and the
precentral gyrus leads to a blockade of the cortico BG motor
control circuit and impaired motor control and regulatory
network in individuals. In addition, connectivity between
the putamen and caudate nucleus with the postcentral
gyrus leads to disrupted sensory information feedback in
the somatosensory motor integration system, which in turn
affects individual fine motor control function. Decreased
connectivity of the putamen with the STG and MTG and
the caudate with the ITG may lead to impaired speech
production and speech motor control in individuals due to the
separation of speech and sensorimotor information in the speech
sensory motor network.
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Nitric Oxide Synthase Neurons in the
Preoptic Hypothalamus Are NREM
and REM Sleep-Active and Lower
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Edward C. Harding1,2*†, Wei Ba1, Reesha Zahir1, Xiao Yu1, Raquel Yustos1, Bryan Hsieh3,
Leda Lignos1, Alexei L. Vyssotski4, Florian T. Merkle2, Timothy G. Constandinou3,5,
Nicholas P. Franks1,6,7*† and William Wisden1,6,7*†
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When mice are exposed to external warmth, nitric oxide synthase (NOS1) neurons
in the median and medial preoptic (MnPO/MPO) hypothalamus induce sleep and
concomitant body cooling. However, how these neurons regulate baseline sleep and
body temperature is unknown. Using calcium photometry, we show that NOS1 neurons
in MnPO/MPO are predominantly NREM and REM active, especially at the boundary
of wake to NREM transitions, and in the later parts of REM bouts, with lower activity
during wakefulness. In addition to releasing nitric oxide, NOS1 neurons in MnPO/MPO
can release GABA, glutamate and peptides. We expressed tetanus-toxin light-chain
in MnPO/MPO NOS1 cells to reduce vesicular release of transmitters. This induced
changes in sleep structure: over 24 h, mice had less NREM sleep in their dark (active)
phase, and more NREM sleep in their light (sleep) phase. REM sleep episodes in the dark
phase were longer, and there were fewer REM transitions between other vigilance states.
REM sleep had less theta power. Mice with synaptically blocked MnPO/MPO NOS1
neurons were also warmer than control mice at the dark-light transition (ZT0), as well as
during the dark phase siesta (ZT16-20), where there is usually a body temperature dip.
Also, at this siesta point of cooled body temperature, mice usually have more NREM,
but mice with synaptically blocked MnPO/MPO NOS1 cells showed reduced NREM
sleep at this time. Overall, MnPO/MPO NOS1 neurons promote both NREM and REM
sleep and contribute to chronically lowering body temperature, particularly at transitions
where the mice normally enter NREM sleep.

Keywords: preoptic hypothalamus, nitric oxide, sleep, calcium photometry, body temperature, tetanus-toxin
light-chain

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 709825100

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.709825
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5803-2780
http://orcid.org/0000-0003-4874-4212
http://orcid.org/0000-0003-4743-0334
https://doi.org/10.3389/fnins.2021.709825
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.709825&domain=pdf&date_stamp=2021-10-14
https://www.frontiersin.org/articles/10.3389/fnins.2021.709825/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-709825 October 9, 2021 Time: 16:13 # 2

Harding et al. Sleep-Active Nitric Oxide Synthase Neurons

INTRODUCTION

Numerous circuits dispersed throughout the brain induce NREM
sleep, but the preoptic (PO) hypothalamus, one of the first sleep-
promoting centers to be identified (Nauta, 1946), has a major
role (Sherin et al., 1996; Zhang et al., 2015; Weber and Dan,
2016; Chung et al., 2017; Kroeger et al., 2018; Ma et al., 2019;
Reichert et al., 2019; Reitz and Kelz, 2021). The PO area also
contains neurons that are required for REM sleep (Lu et al.,
2000), including REM-promoting cells in MPO (Suntsova and
Dergacheva, 2004; Gvilia et al., 2006). The PO area, which
contains a huge diversity of cells (Moffitt et al., 2018; Tsuneoka
and Funato, 2021), also contributes to regulating many other
functions, including nesting, thermoregulation, parenting, sexual
behavior, water consumption, blood osmolarity, and daily torpor
(Nakamura and Morrison, 2008, 2010; Morrison and Nakamura,
2011; Saper and Lowell, 2014; Abbott and Saper, 2017; Hrvatin
et al., 2020; Takahashi et al., 2020; Tsuneoka and Funato, 2021).

The medial (M) and median (Mn) PO hypothalamic areas
are enriched for neuronal nitric oxide (nos1) gene expression,
as seen by in situ hybridization in the Allen Brain Atlas
(Lein et al., 2007), and from our previous studies (Harding
et al., 2018). Previously we found that NOS1 neurons in the
MnPO and MPO area link NREM onset and the decrease
of body temperature that accompanies sleep (Harding et al.,
2018). We hypothesized that external warm sensing and NREM
sleep induction through these neurons may be part of an
energy conservation mechanism that optimizes sleep toward
thermoneutral temperatures (Harding et al., 2020).

In addition to presumably synthesizing NO in response to
excitation and calcium, MnPO/MPO NOS1 cells, depending
on subtype, likely release both GABA and glutamate and/or
various peptides (Moffitt et al., 2018). Here we show by calcium
photometry that NOS1 neurons in MnPO/MPO have their
highest activity during NREM sleep, becoming particularly active
at the boundary of wake to NREM transitions, and they are also
active during the latter parts of REM sleep episodes. Synaptic
silencing of MnPO/MPO NOS1 cells with tetanus toxin light-
chain (TeLC) expression induced bidirectional changes to NREM
sleep structure: over the 24-h cycle, mice had less NREM sleep
in the dark phase, and more in the light phase. Dark phase
REM sleep also consolidated to longer episodes, with a reduction
in REM transitions; however, both light- and dark-phase REM
sleep had more delta and less theta power than in controls,
possibly suggesting disrupted REM function. In addition, a shift
in the core body-temperature profile to warmer temperatures
and a disrupted siesta (ZT16-20) period were observed. Thus,
vesicular release of transmitters from MnPO/MPO hypothalamic
NOS1 neurons is needed for maintaining normal sleep and
temperature profiles.

MATERIALS AND METHODS

Mice
Experiments were performed under the Animals (Scientific
Procedures) Act (1986) and approved by the local ethics

committee. The mice used were Nos1-ires-CreTM1(crE)Mgmj/J
(JAX labs stock 017526), referred to here as Nos1-Cre mice,
donated by Martin G Myers (Leshan et al., 2012), and C57BL/6J
mice (supplied by Charles River United Kingdom). All mice
used in the experiments were male and congenic on a C57BL/6J
background. Mice were maintained on a reversed 12 h:12 h
light:dark cycle at constant temperature (22± 1◦C) and humidity
with ad libitum food and water.

AAV Transgenes and AAV Production
We used the following pAAV transgene plasmids: pAAV-
FLEX-GFP-TeLC (Murray et al., 2011), and pAAV-FLEX-GFP
(Addgene #28304, a gift from Edward Boyden). Plasmid
pAAV-FLEX-GCaMP6s was created by inserting the GCaMP6s
open reading frame from pCMV-GCaMP6s (Addgene plasmid
40753, gift of Douglas Kim) (Chen et al., 2013), into the
backbone of pAAV-flex-hM3Dq-mCHERRY (Krashes et al., 2011)
in place of the hM3Dq sequence, but retaining the loxP
sites. AAV transgenes were packaged in-house into capsids
with a 1:1 ratio of AAV1 and AAV2 capsid proteins. The
adenovirus helper plasmid pF16, the AAV helper plasmids pH21
(AAV1) and pRVI (AAV2), and the pAAV transgene plasmids
were co-transfected into HEK293 cells and AAVs harvested
on heparin columns, as described previously (Klugmann
et al., 2005; Yu et al., 2015). AAVs titers were determined
with an AAVpro Titration Kit (for real-time PCR) Ver. 2
(TakaRa Bio). The virus titers were as follows: AAV-FLEX-
GCaMP6s, 1.6 × 106 viral genomes/µl; AAV-FLEX-GFP-TeLC
5.1 × 105 viral genomes/µl; AAV-FLEX-GFP, 6.1 × 106

viral genomes/µl.

Surgeries and Stereotaxic Injections of
AAV
Mice underwent their first surgery at 10-weeks old. The mice
required two rounds of surgery including implantation of an
abdominal temperature logger, followed one week later by
stereotaxic injections of AAV virus and electrode placement
for electrocorticography (ECoG). For surgery, mice were
anesthetized with 2% isoflurane and given appropriate analgesia.
Viral infusions were performed using a steel injector (10 µl-
Hamilton #701) and the aid of an electronic pump. Injections
were optimized for the target with injection volumes of between
0.05 and 0.2 µl at 0.1 µl min−1. The injection coordinates
relative to Bregma were AP +0.34 mm, ML 0 mm, DV −4.8
and 5.2. A minimum of one week recovery was allowed before
recording the EEG.

EEG and EMG Recordings, Scoring of
Vigilance States and Power Spectrum
Analysis
EEG and EMG were recorded from non-tethered animals using
Neurologger 2A devices as described previously and electrodes
placed at the same positions as our previous work in mice
(Anisimov et al., 2014; Zhang et al., 2015). These positions were:
AP +1.5 mm, ML −1.5 mm relative to Bregma, 1st − AP
−1.5 mm, ML +1.5 relative to Bregma, 2nd Lambda −1.0 mm,
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ML 0.0 mm. EMG wires were also implanted in the neck muscles.
Data were recorded at a sampling rate of 200 Hz with four times
oversampling. The EEG data analyzed using Spike2 software 7.18
(Cambridge Electronic Design, Cambridge, United Kingdom) or
MATLAB (MathWorks, Cambridge, United Kingdom). Prior to
sleep scoring the ECoG was digitally filtered (high-pass, 0.5 Hz,
−3dB) and the EMG was band-pass filtered (5–45 Hz, −3dB).
Power in the delta (1–4 Hz) and theta (6–9 Hz) bands was
calculated, together with the RMS value of the EMG signal
(averaged over 5 s), and these were used to define the vigilance
states of wake, NREM and REM with an automatic script
OSD7 v7.2 (in Spike2). Each vigilance state was then rechecked
manually. We analyzed the sleep-state specific power spectrums
following normalization to wake power within each mouse, as
described previously (Ma et al., 2019).

Photometry Recordings
Photometry was performed using a 473-nm diode-pumped solid
state (DPSS) laser with fiber coupler (Shanghai Laser and Optics
century Co.) and adjustable power supply (Shanghai Laser and
Optics century Co.), controlled by a Grass SD9 stimulator.
A lock-in amplifier (SR810, Stanford Research Systems, CA,
United States) drove the laser using a TTL signal at 125 Hz
with an average power of 80 µW at the tip of the fiber.
Using an optical fiber patch cord (Ø 200 µm, 0.22 NA,
Doric Lenses) the light source passed through a fluorescence
cube (FMC_GFP_FC, Doric Lenses) and then via a second
optical patch cord (Ø 200 µm, 0.37 NA, Doric Lenses), was
connected to the brain-implanted fiber via a ceramic sleeves
(Thorlabs). The GCaMP6s output was then filtered at 500–
550 nm (using a fluorescence cube) and passed to a photodiode
(APD-FC, Doric Lenses) and amplified by the lock-in amplifier
(time constant, 30 ms). The signal was recorded on a CED
1401 Micro box (Cambridge Electronic Design, Cambridge,
United Kingdom) at 200 Hz using Spike2 software (Cambridge
Electronic Design, Cambridge, United Kingdom). The maximum
continuous recording length was 6 h. Photometry, EEG and
EMG data were aligned offline using Spike2 and analyzed
using this software or custom scripts in either MATLAB
(MathWorks) or R scripts (R Core Team, 2020). Peak counting
was performed using Spike2 (using peak mode), “Peaks” were
counted when immediately followed by a decrease of at least
the threshold amplitude (100 µV) and were outside the minimal
interval between detections of 10 ms. For each transition,
the photometry signal F was normalized to baseline using
the function 1F/F = (F−F0)/F0, where F0 is the baseline
fluorescence prior to the transition. Data are presented as
a percentage. Heatmaps are shown as Z-scores. Transitions
coinciding with recording artifacts or large shifts in baseline (DC
offset) were excluded.

Temperature Recordings
Core body temperatures were measured using an abdominally
implanted temperature loggers (DSTnano, Star-Oddi, Herfølge,
Denmark), sampling every 2 min, as described previously
(Harding et al., 2018).

Immunohistochemistry
Mice were given pentobarbital (100 mg/kg body weight; i.p.),
and transcardially perfused with 4% paraformaldehyde in
phosphate-buffered saline (PBS), pH 7.4. Brains were removed
and 40-µm-thick coronal sections cut using a Leica SM 2010R
microtome. Staining was performed on free-floating sections,
washed in PBS three times and permeabilized in PBS plus
0.4% Triton X-100 for 30 min, blocked by incubation in PBS
plus 10% normal goat serum (NGS), 0.2% Triton X-100 for
1 h (all at room temperature) and subsequently incubated
overnight with a 1:1000 dilution of anti-GFP polyclonal antibody
(A-6455, ThermoFisher). Sections were washed three times in
PBS before incubating with goat anti-Rabbit IgG (H + L)
Secondary, Alexa Fluor R© 488 conjugate (A-11034, ThermoFisher)
for 2 h. Samples were then washed six times before mounting
on Vectashield Antifade Mounting Medium with DAPI (H-1200,
Vector Laboratories).

Statistics
Data collection were either randomized or performed in
a counter-balanced manner. Data are represented as the
mean ± SEM, unless otherwise stated. OriginPro 2017 was used
for statistical analyses. For data that were not independent (where
ANOVA was not appropriate) we employed either two-tailed or
paired t-tests and then accounted for multiple comparisons using
the Benjamini-Hochberg procedure at a false discovery rate of
5%. Mice were excluded from the analysis if the histology did not
confirm AAV transgene expression in the MnPO/MPO area, or if
the expression had spread beyond the target region. Investigators
were not blinded to behavioral treatment groups.

RESULTS

Medial Preoptic Nitric Oxide Synthase 1
Neurons Are Most Active During NREM
Sleep
We used calcium photometry to assess the sleep-wake activity
of NOS1 neurons in the MPO area. AAV-FLEX-GCaMP6s was
injected into the MnPO/MPO area of Nos1-Cre mice to generate
Nos1-MnPO/MPO-GCaMP6s mice (Figures 1A,B). We then
recorded calcium photometry signals from mice over 6 h while
the mice behaved freely in their home cages. Many NOS1 neurons
in the MnPO/MPO region were NREM sleep-active, having
their highest calcium activity in NREM sleep with only sporadic
activity during wakefulness. An example over a 6-min period of
a transition to NREM sleep is shown in Figure 1C, alongside the
raw photometry signal, delta power (1–4 Hz), spectrogram from
0 to 20 Hz, EEG, EMG and scored sleep state. During wakefulness
only low-level calcium-induced fluorescence signal was seen
(labeled “F” on the axis of Figure 1C), and peaks in the signal
were rare. While occasional small peaks in the calcium signal
occurred during wake, a specific increase in peak frequency in the
calcium signal was associated with NREM sleep. This is shown as
a raster plot for ten transitions in Figure 1D over a 6-min period
and quantified in Figure 1E. Higher GCaMP6s signal levels and
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FIGURE 1 | MnPO/MPO hypothalamic NOS1 neurons are more active during sleep. Animals were recorded for 6 h across the light cycle from lights-off to lights-on
to facilitate a distribution of sleep states. Transitions are shown over 300 s. (A) Schematic for the photometry recording at a 5-mm depth and an example of the
GCaMP6 expression site in a Nos1-MnPO/MPO-GCaMP6s mouse. (B) Expression of GCaMP6s in neurons in the MnPO/MPO hypothalamus as detected by
immunocytochemistry with GFP antisera. (C) Example transition from wake to NREM over a 6-min interval. Also shown are scored sleep states (Wake, W; NREM, N;
REM, R), Filtered EEG and EMG, spectrogram of power in the frequency domain over time (Hz), Delta power (1–4 Hz) with a 5-s root mean square (RMS), raw
photometry signal (labeled F) and automated peak counting on the photometry signal (Peaks). (D) A raster plot of automated spike counting from calcium
photometry signals across wake to NREM transitions. (E) Area under the curve (1F/F) between wake and NREM for soft transitions in calcium signal (Paired t-test,
n = 5, p = 0.0001). (F) Raw photometry data with paired automated peak counting for four example transitions over 5 min, colored by sleep state. Wake is shown in
blue and NREM is shown in green. Peaks in calcium are marked above each trace. (G) The average 1F/F in calcium signal for soft-type transitions that increase
across wake-NREM transitions and ten example transitions represented as a heatmap. (H) 1F/F Area under the curve between wake and NREM for soft transitions
(Paired t-test, n = 5, p = 0.002). (I) The average 1F/F for sharp-type increases in calcium signal in wake-NREM transitions before returning to baseline, followed by
ten example transitions represented as a heatmap. (J) Mean 1F/F of the calcium signal between wake (baseline) and NREM (peak) for sharp transitions (Paired
t-test, n = 5, p = 0.004). (K) The z-score of 1F/F variance for mixed-type transitions in calcium signal that increase across wake-NREM transitions (F-test of all
pooled transitions, p = 3 × 10−7). Shown alongside ten example transitions in the calcium signal represented as a heatmap. (L) Quantification of variance in the
1F/F calcium signal in across mice (Paired t-test, n = 5, p = 0.021). (M) Proportion of each transition in calcium signal type (soft increase, sharp increase, mixed
increase) found in all wake to NREM transitions. Transitions in calcium signal that could not be classified are labeled NK. The Benjamini-Hochberg procedure was
used to account for multiple comparisons at a false discovery rate of 5%. *P < 0.05, **P < 0.01, ***P < 0.001.
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more frequent peaks occurred during NREM sleep. Four example
photometry traces are shown in Figure 1F and color coded by
sleep state. Peak counting is shown above each example.

On transitioning to NREM sleep the overall calcium levels in
MnPO/MPO NOS1 neurons increased, as did the frequency of
peaks in calcium signal. To quantify these changes in calcium
signals, we averaged across multiple wake-NREM transitions
from multiple mice. These averages contained several profiles:
a slower “soft” rising transition in calcium signal with more
peaks; and a faster “sharp” profile. Soft transitions from wake
to NREM sleep are shown in Figure 1G, plotted as 1F/F and
averaged across 5 min of recording, alongside a heat map of ten
example transitions. The 1F/F calcium signal started to rise from
the point of transition, and this continued for at least 150 s.
This is quantified as the area under the curve in Figure 1H.
On the other hand, sharp transitions in calcium-induced signals
in MnPO/MPO NOS1 were different and anticipated the next
NREM sleep transition. These sharp transitions are shown
in Figure 1I as 1F/F, alongside a heatmap of ten example
transitions. Here, the 1F/F signal started to rise up to 60 s
prior to the start transition and peaked within 30 s of entering
NREM sleep, before reducing again by 1 min post-transition.
The heatmap shows that these calcium events were time-locked
to the wake-NREM transitions. Within 100 s, the calcium signal
had almost returned to baseline, despite continuous NREM. This
was quantified as the mean amplitude between baseline and the
maximum value in Figure 1J. Both the soft and sharp transitions
in calcium signals had a slow time course that took more than
60 s to complete. The remainder of the calcium signals associated
with the transitions from wake to NREM sleep of MnPO/MPO
NOS1 neurons could not be classified into soft or sharp profiles.
However, when these remaining calcium signals at the wake to
NREM transitions were pooled and analyzed by variance, a clear
association with the wake to NREM transitions was seen. These
“mixed” transitions in calcium signals are shown in Figure 1K,
plotted as a Z score of the 1F/F variance, alongside a heatmap
of ten example transitions. Here, the variance in calcium signal
increased across the wake to NREM transitions in four of the
five animals measured (Figure 1L). Overall, on moving from
wake to NREM sleep, approximately 60% of changes in the
calcium signal of MnPO/MPO NOS1 were either soft or sharp
increases in signal, and 30% were mixed. Approximately 10% of
the recordings of calcium signals did not show changes in activity
during wake to NREM transitions (Figure 1M).

In addition to the increases in calcium signals of MnPO/MPO
NOS1 neurons on transition from wake to NREM, we also
looked at their calcium signals during transitions from NREM
to wake and from NREM to REM sleep (Figure 2). We found
that NREM sleep was sometimes interrupted with short bouts
of wake episodes lasting about one minute (micro-wakes). In
these short transitions, a small decrease in the calcium signal of
MnPO/MPO NOS1 neurons was seen on entry into wakefulness
that continued to decline until the next NREM episode and the
calcium signal increased once more (Figures 2A,B). In this case,
while we noted some clear examples, as shown in Figure 2C,
there were also large variations between animals and there was
insufficient statistical power to infer if these small decreases in

calcium signal were significant (Figure 2B). The calcium signals
in MnPO/MPO NOS1 neurons during the transitions from
NREM to REM are shown in Figure 2D and shown alongside a
heatmap of nine example transitions. As described above, once
NREM has commenced the calcium signal tends to decay to a
lower baseline (Figure 1I). At the transitions of NREM to REM,
the average 1F/F calcium signal remained at a low baseline
for at least 30 s into the REM bout (red bar in Figure 2D).
Following this there was an increase in the signal and plateau
that lasted approximately 60 s (Figures 2D,E), which continued
into micro-wake bouts before reentry into NREM (see examples
Figure 2F).

Medial Preoptic Nitric Oxide Synthase 1
Neurons Influence Sleep-Wake Structure
Having established that many NOS1 neurons in the MnPO/MPO
area are more active during NREM and REM sleep than they
are during wake, we next examined their contribution to sleep
structure. To do this we reduced synaptic transmission from these
cells, using Cre-dependent expression of tetanus-toxin light-
chain (GFP-TeLC) (Figure 3A). Tetanus-toxin light chain blocks
release of neurotransmitter vesicles by cleaving synaptobrevin, a
synaptic vesicle protein (Schiavo et al., 1992). AAV-FLEX-GFP-
TeLC or AAV-FLEX-GFP were injected into the MnPO/MPO
of Nos1-Cre mice to generate Nos1-MnPO/MPO-GFP-TeLC and
control Nos1-MnPO/MPO-GFP mice, respectively (Figure 3B).
Reducing synaptic transmission from NOS1 neurons produced
small but significant alterations to the structure of sleep
(Figure 3C). These data are quantified for each mouse. Average
wakefulness was reduced by almost 25% during the light phase,
with a corresponding increase in NREM of approximately 10%.
This was followed by an approx. 15–20% decrease in NREM
during lights OFF. No clear changes were seen in REM sleep time.

We assessed whether changes in sleep structure seen in Nos1-
MnPO/MPO-GFP-TeLC mice affected sleep episode dynamics
and/or transitions (Figure 3D). There were no changes in the
overall number of episodes in wake or NREM sleep for either
the light or dark phase of the cycle; however, there was an
approximately 45% reduction in REM episodes in the dark phase
(Figure 3D). Consistent with this result, the number of NREM-
REM and REM-wake transitions, but not transitions between
wake and NREM sleep, were reduced by approximately 40%. No
changes were seen in the light phase (Figures 3E,F). Although
this was not reflected in the REM sleep amount, it was consistent
with less NREM in the dark phase. In addition, we expected the
remaining REM sleep to be consequently more consolidated.

Because we did not observe an overall change in the number
of wake or NREM episodes during the light or dark phase, we
looked at the episode length and number of vigilance states
to see if this explained the differences seen in the time spent
sleeping (Figure 4). In Nos1-MnPO/MPO-GFP-TeLC mice we
observed reductions of approximately 50% in the frequency of the
longest wake episodes (>20 min) in the light phase (Figure 4A),
although no changes were seen in episode length and number
for NREM and REM sleep (Figures 4B,C). In the dark phase,
the average values for wake did not change, and the data had
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FIGURE 2 | MnPO/MPO hypothalamic NOS1 neurons are active during the later part of REM episodes. Animals were recorded for 6 h across the light cycle from
lights-off to lights-on to facilitate obtaining a distribution of sleep states. Transitions are shown over 180 s. (A) The average 1F/F in calcium signal when NREM is
interrupted by short bouts of wake. Wake length here is approximated and followed by ten example transitions, represented as a heatmap. (B) Mean change in 1F/F
calcium signal between brief wakefulness, prior-NREM and post-NREM for short transitions (Paired t-test, n = 4, prior-NREM vs. brief wakefulness, p = 0.063,
post-NREM vs. brief wakefulness p = 0.076). (C) Examples of NREM to wake transitions from raw photometry data colored by sleep-state (NREM, green; REM,
cyan and wake, blue). (D) The average 1F/F for NREM to REM transitions showing no clear changes in signal with a slower increase after approximately 30 s
alongside a heat map of nine transitions from NREM to REM sleep. (E) Mean change in 1F/F calcium signal between the end of a NREM period and the later part of
a REM episode (Paired t-test, n = 5, p = 0.066) and NREM and post-REM (Paired t-test, n = 5, p = 0.034). (F) Examples of calcium signals during NREM to REM
to microwake to NREM transitions, colored by sleep-state (NREM, green; REM, cyan; wake, blue). **P < 0.01, n.s, not significant.

larger variance (Figure 4D). However, while Nos1-MnPO/MPO-
GFP control mice had a reduced frequency of episodes, >20 min
in the dark phase compared with the light phase, the Nos1-
MnPO/MPO-GFP-TeLC mice instead had an increased frequency
of these episodes. From calculating the paired difference for each
mouse between the light and dark phase, it was clear that Nos1-
MnPO/MPO-GFP-TeLC mice were more affected by the light
change (Figure 4D, inset graph). No further alterations were seen
in episode length and number for NREM and REM sleep during
lights OFF (Figures 4E,F).

Medial Preoptic Nitric Oxide Synthase 1
Neurons Contribute to Theta Power
During REM Sleep
We analyzed the sleep-state specific power spectra of Nos1-
MnPO/MPO-GFP-TeLC mice compared with Nos1-MnPO/MPO-
GFP control mice, following normalization to WAKE power
within each mouse. During the lights-on phase, NREM sleep
was not associated with changes in power (Figures 5A,B);
however, REM sleep did show significant changes (Figure 5C).
Specifically, there was an increase in delta power, normally
associated with NREM sleep, of approximately 30%, as well
as a corresponding decrease in theta power (Figure 5D).
This difference was in the 2–4 Hz range of delta power
referred to as the δ2 band (Hubbard et al., 2020). Theta

(6–9 Hz) power was reduced by approximately 20% but no
changes in the higher frequencies (10–14 Hz) were seen.
During the dark phase (Figures 5E,F), NREM showed an
approximately 15% reduction in theta power. This contrasted
with no change in this band during the light phase. For
REM sleep in the dark phase (Figures 5G,H), differences
between Nos1-MnPO/MPO-GFP-TeLC and Nos1-MnPO/MPO-
GFP mice mirrored those seen in the light phase, with an
approximately 25% increase in δ2 power as well as a 20%
decrease in theta power.

Medial Preoptic Nitric Oxide Synthase 1
Neurons Reduce Body Temperature
Using implanted temperature loggers, we measured the core body
temperature at 2-min resolution in Nos1-MnPO/MPO-GFP-TeLC
and Nos1-MnPO/MPO-GFP mice (Figure 6). We produced a
typical 24-h period in temperature change by first averaging over
7 days for each mouse (5040 measurements) before comparing
distributions across groups. The temperature distribution
of Nos1-MnPO/MPO-GFP-TeLC mice shifted to warmer
temperatures compared with those of control mice (Figure 6A).
The cumulative distribution illustrated that the most significant
change was in the probability of observing core temperature
between 35.5 and 36◦C, but without a change in the minimum or
maximum temperatures (Figure 6B). Furthermore, during the
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FIGURE 3 | Reducing transmitter release from NOS1 neurons in MnPO/MPO hypothalamus alters sleep amounts and the number of sleep episodes in a manner
dependent on the light-dark cycle. (A) Schematic of the stereotaxic injection of AAV-flex-GFP-TeLC into the MnPO/MPO area of Nos1-CRE mice to generate
Nos1-MnPO/MPO-GFP-TeLC mice. (B) Example histology from MnPO/MPO showing expression of the GFP-TeLC protein as detected with a GFP antibody; left
picture, lower magnification view, scale bar is 200 µm, right picture, higher magnification view, scale bar 100 µm. (C) Quantification of sleep states for each mouse
in the 12-h light or dark periods shown as average time in vigilance state per hour. Wakefulness in the light phase (two-tailed t-test, n = 7 and n = 10, p = 0.003),
NREM in the light phase (two-tailed t-test, n = 7 and n = 10, p = 0.0006), NREM in the dark phase (two-tailed t-test, n = 7 and n = 10, p = 0.018). (D) The number
of episodes of wake, NREM and REM between light and dark. REM in the dark phase (two-tailed t-test, n = 7 and n = 10, p = 0.003). (E) Analysis of sleep
transitions between sleep states in the light phase. No differences were observed between groups. (F) The transitions between Nos1-MnPO/MPO-GFP-TeLC mice
and Nos1-MnPO/MPO-GFP mice in the dark phase. Transitions from NREM to REM (p = 0.025) and from REM to wake (p = 0.031), from two-tailed t-test, n = 7
and n = 10. Multiple comparisons were accounted for using the Benjamini-Hochberg procedure at a false discovery rate of 5%. *P < 0.05, **P < 0.01, N.S, not
significant.
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FIGURE 4 | Distribution of sleep episode lengths is reduced for Nos1-MnPO/MPO-GFP-TeLC mice during wakefulness in the light period but increased in
wakefulness in the dark period. (A) Wakefulness in the light period binned by episode length. No differences are seen in bins less than 20 min. Episodes greater than
20 min in Nos1-MnPO/MPO-GFP-TeLC mice (n = 7 TeLC and n = 10 GFP, p = 0.02). (B) NREM in the light period binned by episode length. No differences are
seen in bins less than 10 min (n = 7 TeLC and n = 10 GFP). (C) Light phase REM. No differences are seen in bins less than 4 min (n = 7 TeLC and n = 10 GFP).
(D) Dark phase wakefulness. No differences are seen between groups within each light cycle (n = 7 TeLC and n = 10 GFP). Inset graph, between the light periods
Nos1-MnPO/MPO-GFP and Nos1-MnPO/MPO-GFP-TeLC groups as a paired difference (d, inset graph, n = 7 TeLC and n = 10 GFP, p = 0.036). (E) Dark phase
NREM. No differences are seen in bins less than 10 min (n = 7 TeLC and n = 10 GFP). (F) Dark phase REM. No differences are seen in bins greater than 1 min.
Episodes of less than 1 min are significant between Nos1-MnPO/MPO-GFP-TeLC and Nos1-MnPO/MPO-GFP mice (n = 7 TeLC and n = 10 GFP, p = 0.008).
Multiple comparisons were accounted for using the Benjamini-Hochberg procedure at a false discovery rate of 5%. *P < 0.05, **P < 0.01, N.S, not significant.

dark phase, while Nos1-MnPO/MPO-GFP control mice dropped
their core temperature, Nos1-MnPO/MPO-GFP-TeLC control
mice did not, both during the middle of the dark phase and
prior to the next lights-on period (Figures 6C,D); furthermore,

during the siesta period Nos1-MnPO/MPO-GFP-TeLC mice
spent 36% less total time in NREM sleep compared with control
mice, although there were no significant changes in NREM sleep
episode count or mean length (Figure 6E).
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FIGURE 5 | NOS1 neurons in MnPO/MPO contribute to theta power during
REM sleep. (A) Normalized power for NREM during the light period shown as
a power spectrum. Different frequency bands are also illustrated. (B) For
NREM during the light period, data for individual mice are shown for relevant
frequency bands. (C) REM during the light period. (D) Quantification of
spectral differences during REM in the light period for individual mice show
more δ2 in the TeLC condition (t test, n = 6, TeLC; n = 10, GFP; p = 0.015)
alongside reduced theta (t test, n = 6, TeLC; n = 10, GFP; p = 0.017).
(E) Normalized power for NREM in the dark period shown as a power
spectrum. (F) Data for individual mice are shown for relevant frequency bands
(t test, n = 6, TeLC; n = 10, GFP; p = 0.048). (G) REM during the dark
period. (H) Quantification of spectral differences during REM in the light period
for individual mice (δ2 between groups, t test, n = 6, TeLC; n = 10, GFP;
p = 0.017). Theta between groups (t test, n = 6, TeLC; n = 10, GFP;
p = 0.013). Multiple comparisons were accounted for using the
Benjamini-Hochberg procedure at a false discovery rate of 5%. *P < 0.05, n.s,
not significant.

DISCUSSION

In this study we have discovered that many NOS1 cells in the
midline PO hypothalamus are naturally sleep-active, although

there seemed to be several different categories of responses and
probably several different types of cell. Based on their calcium
signals, the fast and transient “sharp” activations of these NOS1
cells from wake to NREM and the slower, prolonged “soft”
transitions from wake to NREM may represent two populations
of sleep-active NOS1 neurons. However, the cells are not active
throughout NREM sleep, but instead are most active at the
transitions from wake to NREM and the subsequent first part
of NREM. They also become active during the later parts of
REM sleep. The “sharp transition” subgroup is more likely to
play a role in sleep onset, whereas the other groups appear to
be following with their activity after NREM and REM sleep are
established. The cells are not silent during wake periods, but
their activity is intermittent. A minority (10%) of these NOS1
cells show no change in their calcium signals at the transitions
of the vigilance states, again suggesting subtypes of cells. We
used TeLC expression in NOS1 neurons to disrupt their synaptic
activity, which in turn disrupted the sleep-wake profile of the
mice in a manner that varied with the light or dark phases of
the 24-h cycle. In the dark phase, mice with TeLC expressed
in MnPO/MPO NOS1 neurons showed a reduction of time in
NREM sleep and a loss of the shortest REM episodes; NREM
to REM and REM to wake transitions were also reduced. REM
sleep was accompanied by increased delta power and decreased
theta power, possibly suggesting functional disruption of REM
sleep. In the lights-on phase, however, there was an increase in
NREM sleep, but REM sleep was unchanged. Overall, the mice
were chronically warmer.

Our new results are consistent with our previous work
on these cells. We have previously shown that a subset of
MnPO/MPO glutamate/NOS1 neurons, when activity-tagged
following an external warm-stimulus to the mice, could on
reactivation induce NREM sleep and concomitant body cooling
(Harding et al., 2018). Similarly, a GABAergic MnPO/MPO
population, tagged in the same manner, could only induce
sleep (Harding et al., 2018). As we did not observe overlap
in these populations by immunohistochemistry, we suggested a
model of external warmth-triggered sleep with a NOS1/glutamate
(MnPO/MPO) population signaling to a downstream GABAergic
population in MPO (Harding et al., 2020). Thus MnPO/MPO
NOS1 neurons can sense changes in temperature although we
do not know if this is direct sensing or through afferents from
the skin. In Nos1-MnPO/MPO-GFP-TeLC mice, contrary to the
expectation that NREM sleep would be unchanged or reduced
during the light phase, these mice had an increase in the light
phase, and a subsequent reduction in this state during the dark
phase. So, it is possible that these changes in sleep-wake states
result from the altered thermoregulation, or the effect is complex
because of the likely multiple subtypes of cell. The effects on
REM sleep (selective for the dark phase) were unanticipated,
but perhaps not surprising given that REM sleep is partly
controlled by unknown cell types in the MPO area (Suntsova and
Dergacheva, 2004; Gvilia et al., 2006), and we have presumably
influenced a NOS1 cell subtype involved in REM production.
Alternatively, the reduction in REM sleep when NOS1 neurons
are blocked might be linked to the reduction of NREM sleep,
which both happen in the dark phase, and not as a result of a
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FIGURE 6 | NOS1 neurons in MnPO/MPO hypothalamus act to reduce body temperature. (A) Aggregated temperature data from 7 days of recording for each
mouse averaged by ZT time at 2-min intervals to produce a ‘typical’ day histogram, averaged for each group (rmANOVA, n = 4, TeLC; n = 6, GFP;
temperature × group at 35.4–35.6◦C, p = 1.97 × 10−4). (B) Cumulative frequency of temperature distribution. (C) Temperature profile over 24 h. (D) Quantification
of 24-h temperature profile in the light and dark phase (two-tailed t test assuming unequal variance, n = 4, TeLC; n = 3, GFP; p = 0.041). (E) Percentage sleep and
episode count and episode length a ‘siesta’ period between ZT 16–20 (two tailed t-test, n = 7 and n = 10, p = 0.01). *P < 0.05, N.S, not significant.

REM-specific mechanism. This idea is consistent with a lower
theta power during REM, which may indicate reduced REM
sleep propensity.

Initially, given that nos1 gene expression in the
MPO hypothalamus has a highly restricted expression
pattern, as detected by both in situ hybridization and
immunohistochemistry (see e.g., Figure 4E in Harding
et al., 2018), we anticipated that nos1 expression would be
a pragmatic and useful marker for functional manipulation
of a unique subset of cells. Unfortunately, this has turned
out not to be the case. While many of the NOS1 neurons in
MPO studied by calcium photometry have clear sleep-active
patterns, it has become apparent since we started our work
that multiple subtypes of NOS1 neuron exist in the PO area,
including NOS1/VGLUT2, NOS1/VGAT, NOS1/galanin neurons

and others (Moffitt et al., 2018). The bidirectional changes in
sleep when TeLC is expressed in MnPO/MPO NOS1 neurons
likely reflect the reduced synaptic transmitter release from
multiple subtypes of NOS1 cell in MnPO/MPO. For example,
activation of glutamate (VGLUT2) neurons in the PO area
induces wakefulness (Vanini et al., 2020), so if this particular
subset were to express the nos1 gene, TeLC expression in
them might reduce wakefulness; on the other hand, we have
shown previously that nos1-expressing GABA cells induce
NREM sleep (Harding et al., 2018); thus TeLC expression in
NOS1 cells might promote wakefulness (Harding et al., 2018).
Further progress to dissect this circuitry requires intersectional
genetics. Nevertheless, it remains striking that the majority of
MnPO/MPO NOS1 cells have most of their activity during the
transitions from wake to NREM sleep, and during the later parts
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of REM sleep episodes. Targets for NOS1 neurons could include
GABAergic and galaninergic neurons in the LPO area that are
involved in NREM sleep induction and maintenance (Kroeger
et al., 2018; Ma et al., 2019), as well as uncharacterized long-
range targets. Although we always used the same coordinates,
we did not attempt to distinguish NOS1 cells in the small and
neighboring MnPO and MPO areas.

Expressing TeLC in MnPO/MPO NOS1 neurons raised the
average body temperature of the mice. This would be consistent
with effects on temperature mediated by BDNF/PACAP or
TRPM2 expressing neurons in the MPO area (Song et al., 2016;
Tan et al., 2016; Harding et al., 2018); these neurons could co-
express NOS1. There are also glutamatergic wake-promoting
neurons in the PO that are associated with mild body cooling
of approximately 1◦C that could also have a role (Vanini et al.,
2020), and may also express the nos1 gene. However, unlike the
effects on temperature produced by BDNF/PACAP or TRPM2
cells, the increases we see appear to be associated with the light
phase of the dark-light cycle, specifically in the siesta period
(ZT16-20) and the period before the dark-to-light transition.
Thus, MnPO/MPO NOS1 cells are driving down temperature at
the same time as NREM sleep is initiated, consistent with our
earlier work (Harding et al., 2018). Overall, this may support a
larger hypothesis on optimization of sleep for energy reallocation
(Harding et al., 2020).

In summary, we have found that the activity pattern of some
MnPO/MPO NOS1 cells is quite striking, being rather selective
at the boundary between wake to NREM transitions and the later
part of REM sleep, and that synaptic transmission from PO NOS1
neurons likely contributes to NREM and REM sleep organization,
as well as chronic body cooling. We write “likely” because we have
not formally shown that TeLC expression reduced transmitter
release in these neurons, and we have not identified post-synaptic
targets of MnPO/MPO NOS1 cells. We currently think that
MnPO/MPO NOS1 neurons probably have both short local
outputs and long-range connections where transmitters could be
released. A further caveat is that NO itself is likely to be part
of the signaling system from these cells. We did not address
this because NO release from cells is independent of vesicle
release. But as NOS1 synthase is calcium-dependent (Knowles
and Moncada, 1994), periods of elevated calcium seen in NOS1
neurons at the wake to NREM transitions and during NREM
sleep will result in NO release from these cells, and NO could well
be influencing sleep structure and temperature regulation. We
further speculate that NOS1 neurons, possibly using NO release,
may have a role in controlling vasodilation specifically in the
context of sleep. We should bear in mind that we have only looked
at male mice, and because the PO area is sexually dimorphic,
NOS neurons could differ in their effects between the sexes.
Given the rather precise calcium activity of some MnPO/MPO
NOS1 cells at the boundary of wake to NREM transitions, further

dissection will likely reveal part of a regulatory circuit controlling
sleep induction/maintenance and the simultaneous lowering of
body temperature.
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