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Editorial on the Research Topic

Machine Learning Methodologies to Study Molecular Interactions

The cell is a busy place with proteins, DNA, RNA, metabolites and other molecules interacting with
each other with orchestral precision. Disease states arise when this precision is lost for intracellular
interactions or when external entities, such as virus particles, interact with intracellular molecules
and disrupt this precision. As such, the study of molecular interactions is a huge area of focus for
experimental and computational biologists alike.

Recognising the ever increasing uptake of Machine Learning (ML) in biomedical research, in this
research topic, our focus was on the use of computational methodologies and ML approaches to
examine molecular interactions. While experimental approaches such as structure determination of
multimolecular complexes using X-ray crystallography or cryoEM are often the gold standard in
studying intermolecular interactions, computational approaches are advantageous both because they
are faster and less costly than experimental approaches and because some molecular interactions are
neither easy nor feasible to study experimentally. In this special issue, the questions that the authors
aimed to address ranged from understanding interactions at the residue or atomic level Karakulak
et al.; Wang et al. to the cellular level Kyrilis et al.

The authors used a multitude of data sources and their combinations highlighting the value of
multimodal analysis. Both sequence and structure-based predictors of specificity-determining
residues in protein complexes were evaluated in the study of Karakulak et al. The authors
proposed that the use of either approach by itself is not sufficient to accurately identify these
residues, and new methods combining the advantages of both sequence and structure centric
approaches are required. Protein interaction sites were identified by combining protein sequence and
structure based informationWang et al., a reduced representation of proteins was built by molecular
dynamics simulation data Errica et al., and genomic data was used to build an alternative splicing
gene signature for cancer prognosis Zhao et al. Additionally, Kutlay and Aydin Son combined
microRNA, mRNA, and DNA methylation data to build a metastasis model for melanoma cancer.

The articles in this issue have used ML methodologies ranging from shallow Support Vector
machines (SVM) to deep learning based Graph Neural Networks (GNN) with success in interaction
prediction, molecular representations and disease modeling. Two articles used graph neural networks
powered by GPU.Wang et al. proposed a GNN based docking decoy evaluation score to identify near-
native complex structures. By using an attention and gate-augmented mechanism, they captured the
interaction pattern at the interface. A deep graph network enhanced sampling approach was proposed
by Errica et al. to identify the coarse grained representation of proteins with minimal information loss.
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Themapping entropy provided information about the information
loss due to mapping to a lower dimensional space. The authors
used deep learning to accelerate mapping entropy calculation
followed by Wang-Landau sampling to explore the mapping
space of a molecule. This physics based coarse grained
description of the molecular structure allowed the calculation of
various properties by considering the dynamic nature of
biomolecules.

Predicting interactions or interaction sites is not sufficient to
predict the presence or absence of a potential disease state. Zhao
et al. used alternative splicing signature as a predictor of non-small
cell lung cancer prognosis using multivariate Cox regression.
Going beyond the prediction of host-pathogen interactions,
Karabulut et al. constructed an ML-based infection prediction
model that predicts whether adenoviral infection can happen in a
host, using multiple types of input features including host-
pathogen PPIs and taxonomic preferences. Kutlay and Aydin
Son built a prediction model for metastasis in melanoma. Arici
and Tuncbag assessed the performance of various network
reconstruction approaches over the use cases of reconstructing
the Notch signaling and the glioblastoma (GBM) disease pathways,
using different reference human interactome datasets, and showed
that the performance is highly dependent on the source data. This
study showed that the quality and coverage of the input data can be
at least as important as the utilised algorithm when studying
molecular interactions.

Perhaps one of the best ways to illustrate the versatility of ML
methodologies when applied to molecular interactions is to
demonstrate that such application may be performed both in a
bottom-up and a top-down fashion. Two examples of such
demonstrations in our research topic are the review article by
Zrimec et al. and a perspective article by Kyrilis et al. The former
explored the representation learning application to the central
molecular dogma, i.e. learning biological molecules and their
interactions from the genetic code (DNA to RNA to protein
sequences). The latter reviewed studies utilizing machine
learning approaches to analyze native cell extract as a source of
experimental data on higher order molecular interactions. While
the problem at hand of Zrimec and colleagues seems much more

well studied, they presented a convincing case of innovative
approaches in the field. For example, the authors reviewed a
body of literature demonstrating that deep neural networks can
automatically learn regulatory grammar through utilization of
convolutional or recurrent neural networks. While these
methods are widely applied in fields like Computer Vision and
Natural Language Processing, their application to the genetic code
gained popularity only recently. At the same time, Kyrilis and co-
authors discussed the top-down approaches, which look at
relatively noisy data sources to provide rich information about
the inner workings of the cell through techniques such as cryo-
electron microscopy and structural proteomics. In their
perspective article they made a convincing case for ML
methods being necessary and sufficient to tie together these
modalities. Authors noted that inspired by Computer Vision,
the tool-of-choice for cryo-electron microscopy is convolutional
neural networks. Hence, it is this family of algorithms that receives
the most attention from the researchers working on cell extracts to
devise higher order molecular interactions.

Altogether, these studies serve as a great demonstration of the
level of ML penetration into the study of Molecular Interactions.
With the significantly elevated performance of deep learning-based
single-chain protein structure predictors such as AlphaFold
(Jumper et al., 2021) and RosettaFold (Baek et al., 2021), the
focus has now been shifting to the accurate prediction of protein
complex structures (Evans et al., 2021). The advances in cryoEM
imaging, single cell imaging, proteomics (Piazza et al., 2020)
methodologies also open new avenues for analyzing interactions
in their native environments. It is clear that ML approaches to
study molecular interactions are rapidly gaining traction but we,
the Editors of this Research Topic, believe that the most exciting
applications of ML to this domain are yet to be published. We look
forward to reading the future research in this field.
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Perspective
Fotis L. Kyrilis1,2, Jaydeep Belapure1 and Panagiotis L. Kastritis1,2,3*

1 Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg,
Halle (Saale), Germany, 2 Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle
(Saale), Germany, 3 Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

Native cell extracts hold great promise for understanding the molecular structure of
ordered biological systems at high resolution. This is because higher-order biomolecular
interactions, dubbed as protein communities, may be retained in their (near-)native
state, in contrast to extensively purifying or artificially overexpressing the proteins of
interest. The distinct machine-learning approaches are applied to discover protein–
protein interactions within cell extracts, reconstruct dedicated biological networks, and
report on protein community members from various organisms. Their validation is
also important, e.g., by the cross-linking mass spectrometry or cell biology methods.
In addition, the cell extracts are amenable to structural analysis by cryo-electron
microscopy (cryo-EM), but due to their inherent complexity, sorting structural signatures
of protein communities derived by cryo-EM comprises a formidable task. The application
of image-processing workflows inspired by machine-learning techniques would provide
improvements in distinguishing structural signatures, correlating proteomic and network
data to structural signatures and subsequently reconstructed cryo-EM maps, and,
ultimately, characterizing unidentified protein communities at high resolution. In this
review article, we summarize recent literature in detecting protein communities from
native cell extracts and identify the remaining challenges and opportunities. We
argue that the progress in, and the integration of, machine learning, cryo-EM, and
complementary structural proteomics approaches would provide the basis for a
multi-scale molecular description of protein communities within native cell extracts.

Keywords: cellular homogenates, random forest, convolutional neural network, cryo-EM, mass spectrometry,
structural biology, protein–protein interactions, metabolons

INTRODUCTION

Since the dawn of biological research, humans are breaking-apart living systems to understand
their structure and function. For example, in Book VI of History of Animals, Aristotle systematically
addressed the processes of egg formation and chick embryo development by visual inspection.
Nowadays, with the rapid technological advances in biochemical, biophysical, structural, and
computational methods, cellular homogenates can be understood in great detail, providing network
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and structural information of the biomolecules within them.
Crude extracts made by the lysis of cellular material possess
operative aspects of cellular function, but in a context that
is easier to manipulate. They are biotechnologically exploited
for bioproduction (Karim and Jewett, 2016), cell-free gene
expression, transcription, translation (Silverman et al., 2020),
and, recently, molecular design (Hammerling et al., 2020).
Probing the intrinsic structure of cell extracts is of paramount
importance, so that their function is understood in detail. Until
recently, the study of cell extracts was limited to low-resolution
data (Han et al., 2009), but, with methodological advances, the
resolution of 4.7 Å for the biomolecular complexes within those
was reached (Kastritis et al., 2017).

Recent studies not only increased the achievable resolution
(Arimura et al., 2020; Ho et al., 2020; Su et al., 2021),
particularly in the membrane (Su et al., 2021) or nuclear
extracts (Arimura et al., 2020) but also determined the snapshots
of higher-order organization of in-extract flexible, functional
metabolons (Kyrilis et al., 2021). The importance and challenges
of integrative structural studies of native extracts and the
correlation between structural disorder and function for in-
extract metabolons were recently reviewed (Kyrilis et al., 2019;
McCafferty et al., 2020; Skalidis et al., 2020). Reaching the
milestone of near-atomic detail a few years ago proved that native
cell extracts are amenable to structural studies and considerably
broadened the structural proteomics field by expanding the
concept of “protein communities” (Kastritis et al., 2017),
primarily described by Gavin et al. (2006). Protein communities
describe the associated molecules of several macromolecular
complexes arranged in close proximity encoding functionally
synchronized biomolecular entities. For example, they may
efficiently transfer substrates along with enzymatic pathways
[dubbed metabolons, reviewed in (Kastritis and Gavin, 2018)],
effectively transduce signals, and regulate protein synthesis
on local cellular demand. However, their inherent complexity
limits probing their intrinsic structure to a few abundant
biomolecular complexes, e.g., functional pyruvate dehydrogenase
higher-order architecture (Kyrilis et al., 2021). The review
of machine-learning approaches that are already applied in
various intermediate analysis steps demonstrates an optimistic
perspective in addressing this issue, and thus allowing a deeper
understanding of protein communities in the future. In this
study, by machine learning, we refer to the un-/supervised
algorithms that are trained to learn the patterns in the scientific
data retrieved from -omics, cryo-electron microscopy (cryo-EM),
or any other method to predict the desired physically meaningful
feature without human intervention.

HIGHER-ORDER COMPLEXITY OF
PROTEIN COMMUNITIES: AN IDEAL
TEST BED FOR MACHINE LEARNING

Protein communities (or, in general, biomolecular communities)
are endogenously present in the cell and can be retrieved in native
cell extracts. They are composed of biomolecular assemblies of
varying compositional and chemical heterogeneity. A protein

community comprises a functional cellular assembly and encodes
localized functions (e.g., as in the case of metabolons). Protein
communities also include interconnected protein complexes in
variable stoichiometry and, therefore, represent a holistic view
of cellular function beyond the description of their individual
constituents. Due to their intricacy, communities must be
characterized with an array of methods: (a) -omics methods,
especially quantitative mass spectrometry (MS), to identify
constituent molecules; (b) activity assays to probe their function;
(c) cross-linking to find the interacting community biomolecules;
(d) large-scale molecular modeling or cryo-EM characterization
of community members to annotate complexes within the
protein communities; and (e) cryo-EM characterization to
visualize protein communities. This multi-scale, integrative
characterization of protein communities can only be performed
in native cell extracts and was previously discussed (Kyrilis
et al., 2019). This integrative, systematic analysis was performed
for eukaryotic communities involved in the synthesis of fatty
acids (Kastritis et al., 2017) and in the metabolism of oxoacids
(Kyrilis et al., 2021).

In this review, we outline the methods and challenges faced
in such integrative studies of protein communities. Furthermore,
we assess and discuss the state-of-the-art machine-learning
methods applied in adjoint problems that could better aid
investigations in this field. In the first two sections, we discuss the
molecular characterization of protein communities, first in crude
and then in simplified lysates. The next two sections describe
the structural characterization of protein community members,
since structural analysis of complete protein communities is a
formidable task. This is because cryo-EM of complete protein
communities can show ultrastructural features, but does not
provide high-resolution three-dimensional (3D) reconstructions
due to the highly complex and intricate structure of the
community. We finally surveyed published machine-learning
tools that are principally developed for diverse characterization
of the biomolecular complexes. In each subsequent section, we
discuss the applicability, promises, and limitations of machine-
learning methods for deciphering protein communities.

PREDICTING PROTEIN COMMUNITIES
IN CRUDE NATIVE CELL EXTRACTS

Cell extracts are amenable to biochemical treatment to probe the
biomolecular content (Figure 1A), and methods were applied
to study the retrieved homogenate directly (i.e., breaking the
cellular material and subjecting it to an array of characterization
tools). Proteins present in the cell extracts can be studied by
MS, providing identification for thousands of protein sequences
(Beck et al., 2011; Titeca et al., 2019). Unfortunately, this
information offers a list of proteins, and, optimally, a report
on their relative abundance, but not on their interactions. To
predict communities, network analysis must then be performed
by integrating the external interaction data for community
members or their close homologs as, e.g., initially performed
for the interconnected yeast complexes using tandem affinity
purification (TAP) and MS (Gavin et al., 2002). In recent studies,
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FIGURE 1 | Native cell extracts as a tool for discovering protein communities with the aid of machine learning. (A) Methods to experimentally extract identity,
structure, and dynamics information of protein communities. In short, the cell is lysed and the subsequent fractionation is applied to recover co-eluting protein
material. In a large-scale manner, mass spectrometric, kinetic, and cryo-EM analysis of the fractions leads to the characterization of protein communities in native cell
extracts. The example of the pyruvate dehydrogenase complex (PDHc) metabolon is shown. Molecular representations for PDHc are retrieved and further edited
from Protein Data Bank “Molecule of the Month” section [Source: Image from the RCSB PDB September 2012 Molecule of the Month feature by David S. Goodsell
(doi: 10.2210/rcsb_pdb/mom_2012_9)]. The cell representation on the top left was retrieved from Microsoft PowerPoint 2019 v16.47. (B) Combined data regarding
protein–protein interactions stemming from fractionation (co-elution), external database information (network data), and contact information prediction (e.g., from
co-evolution analysis, chemical cross-linking or mutagenesis experiments) among community members are used for machine learning, e.g., using a random forest.
Finally, a network with interconnected protein communities is derived and insights into community members can be retrieved. External data shown are extracted
from STRING (https://string-db.org/) and network shown from Kastritis et al. (2017). E1, E2, E3, and E3BP are the proteins structuring the 10-MDa complex of the
PDHc metabolon, all involved in the complex reaction of pyruvate oxidation.
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experimental and/or computational methods for characterizing
protein–protein interactions (PPI) are included, connecting
in vivo, in vitro, and in silico data (Rao et al., 2014). By meticulous
data integration, considering the strengths and limitations of
each approach that was applied to discover PPIs (Rao et al.,
2014), a network is then constructed using the machine-learning
(Havugimana et al., 2017) method. In particular, interesting
computational approaches for PPI prediction include, but are not
limited to, a combination of different machine-learning models
to take a majority vote for final prediction (Saha et al., 2014),
a game theory-based approach inspired by a non-cooperative
sequential game (Maulik et al., 2017), and deep neural networks
that either incorporate physical/chemical properties and graph
theory (Zhang and Kabuka, 2019) or combine with decision-tree
classifiers for the final PPI prediction (Wang et al., 2019).

Naturally, training sets are of vital importance for
reconstructing a biological network and are mostly extracted
from the PPI databases such as CORUM (Giurgiu et al., 2019),
IntAct (Hermjakob et al., 2004), and GO (Harris et al., 2004).
The availability of a high-confidence set of PPIs is often limited,
especially when it comes to organisms that lack genome,
transcriptome, and/or proteome data. Even in well-studied
organisms, the construction of a confusion matrix (error matrix)
for PPIs is not an easy task. Proteins dynamically interact,
change localization, and can even alter their function due to
moonlighting (Jeffery, 2014), and therefore, according to the
cellular state and environmental conditions, PPIs may differ.
Such discoveries revealed localized variations in interaction
networks of disease phenotypes (Vidal et al., 2011), and, recently,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
cellular interactors (Gordon et al., 2020). Protein networks
are, therefore, commonly employed in biotechnological and
medical applications because the cellular function is probed in
a holistic approach, complementing mechanistic investigations
into molecular recognition. Traditionally, reconstruction of
protein networks is not only essential for characterizing protein
complexes, but also for their higher-order interactions present in
their communities (Gavin et al., 2002, 2006).

SIMPLIFYING PROTEIN COMMUNITY
DETECTION WITHIN CELL EXTRACTS
BY INTEGRATING CO-ELUTION DATA
AND CHEMICAL CROSS-LINKING

The increased complexity of cellular homogenates brings various
limitations in the study of their biomolecular content, mainly
because of the well-known bias toward the identification of
high-abundant proteins and complexes (Fursch et al., 2020). An
idea to confidently annotate proteins in cell extracts, retrieve
more interactors, and optimize the robust identification of
protein communities is to subject the extracted homogenate to a
subsequent biochemical treatment that would coarsely separate
the biomolecular complexes on a certain biophysical property
(termed protein co-fractionation, e.g., using the hydrodynamic
radius as performed via size-exclusion chromatography (SEC)

of the native cell extract). Mapping fractionated extracts with
various proteomics methods was recently reviewed (Salas
et al., 2020). The application of co-fractionation to monitor
protein associations (Havugimana et al., 2012; Kristensen et al.,
2012) perhaps stems from previous works that measured the
enzymatic activities across retrieved cellular fractions, e.g., in
the fractionated extracts of Escherichia coli, where interactions
of Krebs cycle enzymes were probed (Barnes and Weitzman,
1986). Nowadays, the high-resolution separation of cell extracts
is mostly performed by using high-resolution SEC coupled
to MS (Salas et al., 2020). This method (a) simplifies the
cell extract according to an intrinsic physical property of the
contained biomolecules; (b) provides per-fraction quantitative
data regarding protein abundance and co-detection; and (c) offers
robust per-protein elution profiles across the studied fractions,
which may be used for subsequent integration into a PPI network.
Protein co-fractionation can be used to identify interactors within
protein communities (Kastritis et al., 2017) and compare PPI
networks across species, highlighting evolutionary implications
(Wan et al., 2015). An example of data integration to derive
a PPI network, highlighting protein communities, is shown
in Figure 1B.

As with the previously described PPI networks, the application
of machine-learning approaches is crucial, not only to integrate
the protein co-elution data but also to discriminate random co-
elution events from true (interacting) protein complexes. The
machine-learning-based tools to probe the complexes within
cell extracts of different organisms were developed (Kastritis
et al., 2017; Stacey et al., 2017; Hu et al., 2019; Fossati
et al., 2020). EPIC (Hu et al., 2019), an open-source software
tool, may specifically use co-elution data to predict protein
complexes found in cell extracts after training and validating
a random forest algorithm (Tin Kam, 1995) or a support
vector machine algorithm (Boser et al., 1992). The random
forest algorithm showed superior performance when applied
to predict co-eluting complexes and their communities after
cross-validation from Caenorhabditis elegans (Hu et al., 2019),
Chaetomium thermophilum (Kastritis et al., 2017), and HeLa
cells (Fossati et al., 2020). Recently, PCprophet incorporated
Bayesian inference to identify altered protein profiles across
experiments that probe phenotypic changes (Fossati et al.,
2020). Predicting protein communities from co-fractionation
data rely on complex inference from the resulting network after
reconstructing it with identified PPIs. Due to the density of
the network, partitioning methods to recover protein complexes
are limited, and often graph clustering algorithms that handle
weighted graphs to generate overlapping clusters are applied
[e.g., ClusterONE (Nepusz et al., 2012), or the more recent,
ONCQS (Zhao and Lei, 2019)]. High-density chemical cross-
linking can, therefore, offer complementary data to enrich and
validate true protein co-elution and protein complex/community
member data (Sinz, 2018). Cross-linking was applied to soluble
extracts (Liu et al., 2015; Gotze et al., 2019), membrane complexes
(Larance et al., 2016), large macromolecular complexes to dissect
conformational flexibility (Tuting et al., 2020), and, importantly,
directly within the SEC fractions where proteins are determined
to co-elute for the characterization of protein communities
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(Kastritis et al., 2017). Algorithms to detect co-eluting PPIs (Elias
and Gygi, 2007; Havugimana et al., 2012) or cross-links (Ji et al.,
2016; Huang et al., 2020) can include machine-learning tools to
probe the complexity of high data dimensionality.

PROCESSING (CRYO-)EM IMAGES
FROM NATIVE EXTRACTS WITH A
FOCUS ON MACHINE LEARNING

Using cryo-EM imaging of native cell extracts to structurally
analyze protein communities is essential. This is because
proteomics methods discover the sequences of the community
members or their interactions but do not provide information
on their higher-order structure within their communities. Even
if high-density cross-linking retrieves interacting proteins and
their relative interacting distances, the community structure is
unknown, including stoichiometry. It is noted that deriving
stoichiometry for protein communities is not trivial, and a
combination of cryo-EM, immunoblotting data, MS, and cross-
linking MS in fractionated extracts was recently performed to
derive approximate stoichiometry for the higher-order structure
of the endogenous pyruvate dehydrogenase complex (Kyrilis
et al., 2021). Direct methods, such as electron microscopy,
can, therefore, be applied to observe cell extracts and were
previously used in combination with MS at low resolution
to visualize protein complexes (Han et al., 2009). However,
recently, with advances in cryo-EM (Kuhlbrandt, 2014), native
cell extracts delivered high-resolution data (Kastritis et al., 2017)
and the first images of protein communities involving fatty
acid synthase (FAS) together with other megadalton complexes
(Kastritis et al., 2017). Recent results in the field also showed
that abundant complexes can be reconstructed de novo (Ho
et al., 2020), but not as members of protein communities.
We also recently communicated the structural and functional
characterization of communities involved in oxo acid metabolism
by integrative methods (Kyrilis et al., 2021). Despite these
advances, the high complexity of the imaged cell extract hinders
proper quantification and 3D reconstruction of the interacting
molecules within the extracts, and this is because of multiple
issues regarding the specimen complexity. Therefore, most of
the algorithms that were developed are applied to protein
complexes and not to their higher-order assemblies in their
native communities.

Cryo-EM micrographs contain two-dimensional (2D)
projections of the particles in different orientations but are
inherently of low contrast and often include contamination
or undesirable features (see, e.g., Figure 2A). The signal-to-
noise ratio in typical cryo-EM tomographs is ∼0.1, perhaps
comparable to imaging in astronomy. Except in cryo-EM,
multiple short exposures are recorded. The traditional methods,
such as bandpass, or Wiener filtering (Jain and Seung, 2008;
Sindelar and Grigorieff, 2011; Xie et al., 2012), to improve the
contrast are insensitive to the underlying noise properties. The
cryo-EM field recently witnessed a surge in machine-learning
models that are trained to learn the noise characteristics and offer
better denoising [(Bepler et al., 2020) and references. therein].

The traditional template-based approaches [e.g., (Huang and
Penczek, 2004)] pick particle candidates by estimating the
similarity of an image region to a reference, also known as a
template, through cross-correlation techniques. The template-
matching methods are prone to introduce template-based
bias and are known for a high rate of false positives. This
stems from the fact that, if matching is performed over
enough number of random regions (e.g., noise only), then
meaningless noise can be perceived as a pattern, a phenomenon
dubbed as “Einstein-from-noise” (Shatsky et al., 2009). For
the purpose of selecting desirable regions without a reference,
deep learning algorithms were developed (Wang et al., 2016;
Zhu et al., 2017; Punjani et al., 2017; Bepler et al., 2018;
Tegunov and Cramer, 2019; Wagner et al., 2019; Zhang et al.,
2019; Sanchez-Garcia et al., 2020b). Inspired by computer
vision applications, using convolutional neural networks (CNNs)
(Tegunov and Cramer, 2019; Sanchez-Garcia et al., 2020b),
per pixel-image segmentation of particle/non-particle regions
was demonstrated (Figure 2B). Many of these architectures are
explicitly designed to eliminate undesirable features or implicitly
learn to avoid them (Wang et al., 2016; Zhu et al., 2017;
Bepler et al., 2018; Wagner et al., 2019; Zhang et al., 2019).
Recent machine-learning and deep learning-based methods
demonstrated improved accuracy and low false-positive rates
(Wang et al., 2016; Punjani et al., 2017; Zhu et al., 2017;
Bepler et al., 2018; Tegunov and Cramer, 2019; Wagner et al.,
2019; Zhang et al., 2019; Sanchez-Garcia et al., 2020b). Since
templates can be essentially seen as filters, CNNs are the
most successful models for the task of image classification
and particle picking, as they are trained to learn thousands
of 2D filters (Rawat and Wang, 2017). We speculate that
these algorithms if trained in the heterogeneous mixtures of
cell extracts instead of single-particle datasets, are expected
to effectively detect particles of varying shapes and sizes
and separate them from the artifacts in the micrographs of
cellular extracts to systematically retrieve members of protein
communities. However, the learning algorithm would still need
to address the subsequent challenging step of segregating and
clustering the particles into correctly assigned classes and yet
incorporate rotational as well as contrast transfer function
(CTF) invariance. Another important aspect is how multiple
distinct 3D reconstructions stemming from heterogeneous 2D
projections can be achieved. This can be generally performed by
the conventional cryo-EM classification methods, but here we
refer to a more specific challenge of faithfully representing the
true variability in the data sufficiently well to be used for protein
community discovery. This is in contrast to current classification
methods that only aim to homogenize the data subset to yield
the highest possible resolution. This notion in the data analysis
would eventually lead to average densities of the particles that
may or may not participate in the same communities. Recently,
Verbeke et al. (2020) applied the projection-slice theorem
principles to group the particles into consistent subsets prior
to 3D classification and, therefore, avoid guessing the number
of underlying 3D shapes present in the data. Still, current
methods, during the reconstruction of cryo-EM data, assume
that sample heterogeneity originates from a small number of
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FIGURE 2 | Application of machine learning on cryo-EM images derived from native cell extracts. (A) A cryo-electron micrograph from C. thermophilum fractionated
cell extracts is shown. During machine learning, the algorithm is being trained to discriminate particles from contamination, vitreous ice, aggregation, and noise. At
the end, the algorithm optimally picks and selects learned features that were not previously recognized during learning. Red circles indicate contamination, and blue
and yellow circles indicate learned and predicted particles. Size of the circle does not match particle size but represents a correctly picked particle. Green highlighted
area signifies empty regions of vitreous ice recognized by the algorithm. (B) Structure of a convolutional neural network algorithm frequently used to detect signal in
cryo-EM micrographs. Input micrographs are used for feature learning during the convolution step of algorithm training. Optimal training would lead to efficient
classification of the single particles and/or their higher-order assemblies and discriminate those from noise, contamination, and aggregates. A final output is achieved
with metabolon members in their unbound and bound states as recognized by the convolutional neural networks in heterogeneous cryo-EM micrographs of native
cell extracts. (C) Conservative probabilities for particle detection based on abundance and dilution factor. In the left panel, an example of 10 distinct single-particle
species is shown with their relative abundance following an assumed T-squared distribution. In the middle panel, an illustration of relative particle abundance for three
distinct particles (blue, green, and red, representing high, medium, and low abundant species in a calculated 4K × 4K micrograph with a pixel size of 3.17 Å and
thickness of 200 nm) is shown. In the right panel, dependency of the number of images required to reach ∼5,000 single particles on the dilution factor is shown
(assuming no biochemical manipulation for particle enrichment).
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independent, distinct states; however, in reality, the number of
distinct states is (often) unknown. This issue becomes more
important when other specimens of increased complexity are
considered. A method that addresses this issue by approximating
the continuous 3D density function of a single particle is
CryoDRGN (Zhong et al., 2021), a deep neural network-based
algorithm. Recent machine-learning methods may improve the
protein density of experimental cryo-EM maps, while the use of
generative adversarial networks (GANs) trained on pairs of 3D
atomic models and their noise-free cryo-EM maps is shown to
generate a more realistic ground-truth 3D density map (Sanchez-
Garcia et al., 2020a). An excellent discussion by the Scheres
laboratory covers these aspects through the implementation
of neural networks for simulated cryo-EM 3D reconstructions
(Kimanius et al., 2021). Finally, for post-processing of cryo-
EM maps, new machine-learning algorithms were developed to
account for resolution anisotropy (Ramirez-Aportela et al., 2019;
Sanchez-Garcia et al., 2020a).

For machine-learning models to work in the context of data
stemming from cryo-EM micrographs of native cell extracts, it
is reasonable to assume that they may efficiently be trained to
pick and sort the community members by their heterogeneity.
However, to construct the corresponding de novo 3D cryo-
EM maps, novel ab initio algorithms should be developed to
tackle this complexity. Moreover, the proximity calculations
by accounting the Cartesian coordinates of the derived single
particles in the cryo-EM micrographs can aid in understanding
the protein complex interconnectivity within communities. It
would further aid the detection and structural analysis of protein
communities and their members.

MODEL BUILDING IN CRYO-EM MAPS
FROM NATIVE CELL EXTRACTS
COMBINED WITH STRUCTURE
PREDICTION

Traditionally, protein complexes from the high-resolution
cryo-EM reconstructions can be built because the purified
constructs are used. Such approaches are well-established
for cryo-EM, but, again, become a challenge for native cell
extracts, where the identity of the reconstructed protein
complexes and their interactors can be unknown. It is even
more difficult to reconstruct such complexes when they
are participating in higher-order assemblies, and therefore
additional heterogeneity is manifested. cryo-EM may be used
to visualize protein communities but, without complementary
data, it cannot characterize their structure at a reasonable
resolution. It is extremely challenging to determine the 3D
models of isolated flexible complexes, but not their native
interactions within protein communities. cryo-EM is unlikely
to provide discovery or evidence of protein communities by
itself without correlating the image information to proteomic,
literature, and other sources of data. Interestingly, abundant,
rigid complexes within communities can be retrieved at sub-
nanometer resolution from native cell extracts, as in the cases of

FAS (Kastritis et al., 2017) and pyruvate dehydrogenase complex
(PDHc) (Kyrilis et al., 2021).

If high resolution is achieved for a given protein complex,
and side-chain resolution is realistic, then multiple methods
can be used to model the density, including, for example,
cryoID (Ho et al., 2020), that may perform de novo model
building, assuming that the proteome of the organism is available.
However, if the resolution is more than ∼4.0 Å, then side-
chain resolution is unattainable, and modeling methods must
be ultimately employed [e.g., (Russel et al., 2012; van Zundert
et al., 2016)]. In this case, only orthogonal identification methods
may be applied to recover the map identity. This information
can then be used for subsequent model building. To resolve
this unknown density, the previously mentioned proteomic
methods for network construction and community detection are
of vital importance. Prior to the protein modeling methods, fold
recognition should be the primary consideration for structural
analysis and implementation of fast-fold search algorithm into
the cryo-EM map is important, as proposed by Saha and
Morais (2012). Of course, if complexes include other, non-protein
components, the identification is laborious. For such scenarios,
neural networks are developed to localize nucleotides as well
(Mostosi et al., 2020), but machine learning should be expected
to resolve cryo-EM densities stemming from multiple types of
biological (macro-) molecules. To localize different chemical
molecules in a cryo-EM map, a ground truth is required, i.e.,
the training set as pairs of cryo-EM maps and coordinates of
chemical molecules in it. The hydrogen bonding patterns could
then be recovered by calculating the geometrical properties of
the modeled biomolecule(s) which are used to correlate chemical
structure with portions of the cryo-EM maps and, ultimately,
serve as input for machine learning.

The abundance of protein complexes within sequential
fractions may be correlated to the corresponding structural
signatures that were recovered by negative staining or cryo-EM,
and therefore assign an identity to recovered structural
signatures, which are also members of their respective
communities (Kastritis et al., 2017). This was previously
performed for C. thermophilum complexes using simple cross-
correlation functions (Kastritis et al., 2017) but was limited
to assigning abundant species. Theoretically, if the abundance
of distinct single particles is expected to follow a T-squared
distribution (Figure 2C, left panel) within a particular thick
micrograph (1,300 nm × 1,300 nm × 200 nm, pixel size
of 3.17 Å), then their relative abundance can be estimated
(Figure 2C, middle panel). Without cell lysis (e.g., by cryo-
electron tomography of a cell), a surprisingly high number of
tilt series is required for less abundant particles to reach ∼5,000
single particles [e.g., enough for efficiently retrieving structural
signatures of FAS (Kastritis et al., 2017) or PDHc (Kyrilis et al.,
2021)]. After cell lysis and without biochemical enrichment,
this effect further magnifies due to dilution (Figure 2C). It is
important to note that, using cell extracts, protein complexes
can be selectively biochemically enriched, and their conservative
estimates are shown in Figure 2C. Nevertheless, rare species
will be difficult to capture, and an extremely high amount of
data will be required. In addition, capturing rare species will be

Frontiers in Molecular Biosciences | www.frontiersin.org 7 April 2021 | Volume 8 | Article 66054212

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-660542 April 11, 2021 Time: 10:43 # 8

Kyrilis et al. Machine Learning for Cell Extracts

algorithmically challenging. Therefore, we expect only abundant
complexes to be captured and the abundant community
members to be structurally characterized [as in the case of
communities involved in oxo acid metabolism (Kyrilis et al.,
2021)]. The availability of data for heterogeneous mixtures is still
highly scarce. A possible bottleneck is the availability of both MS
data and negative staining/cryo-EM data for sequential cellular
fractions, preferentially from the same experiment because
alterations in the organism biology can drastically alter recovered
profiles. Another idea is to generate all possible protein folds
from the sequences identified in the fraction using automated
3D structure prediction algorithms and, then, systematically fit
those 3D models in the reconstructed densities. Such work has
not been performed to date, mainly because current methods
are limited to the study of a few abundant protein complexes
present in the fractions (Kastritis et al., 2017; Verbeke et al., 2018;
Arimura et al., 2020; Ho et al., 2020; Kyrilis et al., 2021; Su et al.,
2021) and, sometimes, their communities (Kastritis et al., 2017;
Kyrilis et al., 2021).

Protein structure prediction, in particular, recently witnessed
advances, not only in traditional structure prediction methods
[e.g., ROSETTA (Leman et al., 2020), I-TASSER (Roy et al.,
2010)], but also in methods that are based on machine/deep
learning (Torrisi et al., 2020), such as basic feed-forward neural
network, CNN, recurrent neural network (RRN), and generative
adversarial networks (GAN) (Torrisi et al., 2020). A recent
example that excelled in the Critical Assessment of protein
Structure Prediction [CASP, (Moult et al., 1995)], which is a
blind protein structure prediction experiment, is AlphaFold2
developed by DeepMind. AlphaFold2 is based on an attention-
based neural network system (Jumper et al., 2020) and was
trained on all publicly available experimental 3D structures
in the Protein Data Bank (PDB). Even if a fold can be
recognized [and, currently thousands of those were predicted
via machine-learning-based ROSETTA functions (Yang et al.,
2020) and added in Pfam (Mistry et al., 2021)], it is still far
from explaining the higher-order interactions captured within
the cryo-EM map. For understanding the molecular recognition,
large protein complex assembly and community function are
still out of reach: only methods that include experimental data
to drive the modeling process with physics-based potentials
[e.g., HADDOCK (van Zundert et al., 2016), IMP (Russel
et al., 2012)] can provide physically realistic models. It is noted
that the Critical Assessment of PRotein–protein Interactions
(CAPRI) (Janin et al., 2003) is a blind experiment where
algorithms are tested in their ability to solve the biomolecular
recognition problem. To date, in CAPRI, the top-performing
algorithms are physics-based which integrate experimental data
from various targets.

DISCUSSION: ASPIRING DEEPER
STRUCTURAL CHARACTERIZATION OF
PROTEIN COMMUNITIES

Machine/deep learning is applied to a multitude of optimization
problems that are related with the recovery and characterization

of protein communities at high resolution. In each step
toward their multi-scale molecular characterization, distinct
approaches are applied, fitted to answer diverse questions
arising from experimentally measured multidimensional data.
Unambiguous and large training sets, avoiding overfitting
and careful cross-validation, true test sets, and, overall,
systematic benchmarking are all required to accurately
predict the desirable outcome. However, the complex
nature of native cell extracts has not yet been fully explored
systematically from a structural perspective, especially in
(a) deriving 3D reconstructions out of the cryo-EM data
in an un-/supervised manner, (b) model building in the
recovered 3D maps, and (c) interconnecting multi-scale
structural information from (a) and (b) to discover structural
data about protein communities. As of note, cryo-electron
tomography of complex specimen and associated image
processing methods for in-tomogram particle detection
and classification (Xu et al., 2011, 2019; Chen et al., 2013;
Zhou et al., 2020) may also inspire methods for chemically
heterogeneous single-particle datasets (and vice versa)
for future applications in the characterization of protein
communities. Structural biology of native cell extracts,
therefore, provides an ideal test bed for the development
and application of artificial intelligence. It is of paramount
importance to note that the studies of native cell extracts
and the structural characterization of protein communities
that reside within should not simply focus on retrieving
high resolution. The extreme flexibility and heterogeneity
of the participating biomolecules pose a practical limitation
on the resolution; even if high resolution is achieved, it
will be non-uniform and will be prohibitive for a deeper
understanding of function. Instead, the studies should
aim to characterize components, stoichiometry, and, via
cryo-EM, to utilize structural data in the discovery of
PPIs within communities. We expect that, in the years
to come, more datasets for heterogeneous specimen will
be available through dedicated databases [e.g., UNIPROT
(UniProt Consortium, 2019), PRIDE (Perez-Riverol et al.,
2019), CORUM (Giurgiu et al., 2019), EMDB (Lawson et al.,
2011), EMPIAR (Iudin et al., 2016), and PDB (Berman
et al., 2000)]. Given the exponential increase of open-
source data, and significant advancement in computational
hardware over the past decade, machine/deep learning
algorithms will become more efficient. The machine-
learning methods will be eventually able to tackle some of
the aforementioned limitations in the analysis of complex
mixtures and homogenates of soluble and/or membrane extracts
with success, aiming to provide answers to the, yet, elusive
conundrum of macromolecular recognition: How and why
biomolecules interact?
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A Deep Graph Network–Enhanced
Sampling Approach to Efficiently
Explore the Space of Reduced
Representations of Proteins
Federico Errica1†*, Marco Giulini 2,3†*, Davide Bacciu1†, Roberto Menichetti 2,3†,
Alessio Micheli 1† and Raffaello Potestio2,3†

1Department of Computer Science, University of Pisa, Pisa, Italy, 2Physics Department, University of Trento, Trento, Italy, 3INFN-
TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy

The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed
forward by the relentless development of computer architectures and algorithms. The
consequent explosion in the number and extent of MD trajectories induces the need for
automated methods to rationalize the raw data and make quantitative sense of them.
Recently, an algorithmic approach was introduced by some of us to identify the subset of a
protein’s atoms, or mapping, that enables the most informative description of the system.
This method relies on the computation, for a given reduced representation, of the
associated mapping entropy, that is, a measure of the information loss due to such
simplification; albeit relatively straightforward, this calculation can be time-consuming.
Here, we describe the implementation of a deep learning approach aimed at accelerating
the calculation of the mapping entropy. We rely on Deep Graph Networks, which provide
extreme flexibility in handling structured input data and whose predictions prove to be
accurate and-remarkably efficient. The trained network produces a speedup factor as
large as 105 with respect to the algorithmic computation of the mapping entropy, enabling
the reconstruction of its landscape by means of the Wang–Landau sampling scheme.
Applications of this method reach much further than this, as the proposed pipeline is easily
transferable to the computation of arbitrary properties of a molecular structure.

Keywords: molecular dynamics, coarse-grained methods, mapping entropy, deep learning, neural networks for
graphs, neural networks

INTRODUCTION

Molecular dynamics (MD) simulations (Alder andWainwright, 1959; Karplus, 2002) are an essential
and extremely powerful tool in the computer-aided investigation of matter. The usage of classical, all-
atom simulations has boosted our understanding of a boundless variety of different physical systems,
ranging from materials (metals, alloys, fluids, etc.) to biological macromolecules such as proteins. As
of today, the latest software and hardware developments have pushed the size of systems that MD
simulations can address to the millions of atoms (Singharoy et al., 2019), and the time scales covered
by a single run can approach the millisecond for relatively small molecules (Shaw et al., 2009).

In general, a traditional MD-based study proceeds in four steps, here schematically summarized
in Figure 1. First, the system of interest has to be identified; this apparently obvious problem can
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actually require a substantial effort per se, e.g., in the case of
dataset-wide investigations. Second, the simulation setup has to
be constructed, which is another rather nontrivial step (Kandt
et al., 2007). Then the simulation has to be run, typically on a high
performance computing infrastructure. Finally, the output has to
be analyzed and rationalized in order to extract information from
the data.

This last step is particularly delicate, and it is acquiring an ever
growing prominence as large and long MD simulations can be
more and more effortlessly performed. The necessity thus
emerges to devise a parameter-free, automated “filtering”
procedure to describe the examined system in simpler,
intelligible terms and make sense of the immense amount of
data we can produce—but not necessarily understand.

In the field of soft and biological matter, coarse-graining (CG)
methods represent a notable example of a systematic procedure
that aims at extracting, out of a detailed model of a given
macromolecular system, the relevant properties of the latter
(Marrink et al., 2007; Takada, 2012; Saunders and Voth, 2013;
Potestio et al., 2014). This is achieved through the construction of
simplified representations of the system that have fewer degrees
of freedom with respect to the reference model while retaining
key features and properties of interest. In biophysical applications,
this amounts to describing a biomolecule, such as a protein, using a
number of constituent units, called CG sites, lower than the
number of particles composing the original, atomistic system.

The coarse-graining process in soft matter requires two main
ingredients, separately addressing two entangled, however
conceptually very different, problems (Noid, 2013a). The first
ingredient consists of the definition of a mapping, that is, the
transformation M(r) � R that connects a high-resolution
representation r of the system’s configuration to a low-
resolution one R. The mapping thus pertains to the
description of the system’s behavior,“filtered” so as to retain
only a subset of the original degrees of freedom. The second
ingredient is the set of effective interactions introduced among
the CG sites; these CG potentials serve the purpose of
reproducing a posteriori the emergent properties of the system
directly from its simplified representation rather than from its
higher-resolution model. Both ingredients are highlighted in
Figure 2, where we display a visual comparison between a high-
resolution representation of a protein and one among its
possible simplified depictions, as defined by a particular
selection of the molecule’s retained atoms.

During the past few decades, substantial effort has been
invested in the correct parameterization of CG potentials
(Noid et al., 2008; Shell, 2008; Noid, 2013b): most of the
research focused on accurately reproducing the system’s
behavior that arises from a model relying on a specific choice
of the CG observational filter. Critically, the investigation of the
quality of the filter itself—that is, the definition of the CG
mapping—has received much less attention. Indeed, most
methods developed in the field of soft matter do not make use
of a system-specific, algorithmic procedure for the selection of the
effective sites but rather rely on general criteria, based on physical
and chemical intuition, to group together atoms in CG “beads”
irrespective of their local environment and global
thermodynamics (Kmiecik et al., 2016)—one notable example
being the representation of a protein in terms of its
α-carbon atoms.

While acceptable in most practical applications, this approach
entails substantial limitations: in fact, the CG process implies a
loss of information and, through the application of universal
mapping strategies, system-specific properties, albeit relevant,
might be “lost in translation” from a higher to a lower
resolution representation (Foley et al., 2015; Jin et al., 2019;
Foley et al., 2020). Hence, a method would be required that
enables the automated identification of which subset of retained
degrees of freedom of a given system preserves the majority of
important detail from the reference, while at the same time
reducing the complexity of the problem. In the literature, this
task has been addressed through several different techniques,
such as graph-theoretical analyses (Webb et al., 2019), geometric
criteria (Bereau and Kremer, 2015), and machine learning
algorithms (Murtola et al., 2007; Wang and Bombarelli, 2019;
Li et al., 2020). These efforts are rooted in the assumption that the
optimal CG representation of a system can be determined solely
by exploiting a subset of features of the latter. In contrast, taking
into account the full information content encoded in the system
requires statistical mechanics-based models, where the optimal
CG mapping is expected to emerge systematically from the
comparison between the CG model and its atomistic
counterpart. Within this framework, pioneering works rely on

FIGURE 1 | Schematic representation of the typical workflow of a
molecular dynamics study. On the right we report the average time scales
required for each step of the process.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6373962

Errica et al. Exploring Protein Representations Through DGNs

18

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


a simplified description of the system (Koehl et al., 2017; Diggins
et al., 2018), e.g., provided by analytically solvable, linearized
elastic network models, which cannot faithfully reproduce the
complexity of the true interaction network.

A recently developed statistical mechanics-based strategy that
aims at overcoming such limitations is the one relying on the
minimization of the mapping entropy (Giulini et al., 2020), which
performs, in an unsupervised manner, the identification of the
subset of a molecule’s atoms that retains the largest possible
amount of information about its behavior. This scheme relies on
the calculation of the mapping entropy Smap (Shell, 2008;
Rudzinski and Noid, 2011; Shell, 2012; Foley et al., 2015), a
quantity that provides a measure of the dissimilarity between the
probability density of the system configurations in the original,
high-resolution description and the one marginalized over the
discarded atoms. Smap is employed as a cost function and
minimized over the possible reduced representations so as to
systematically single out the most informative ones.

The method just outlined suffers from two main bottlenecks:
on the one hand, the determination of the mapping entropy is per
se computationally intensive; even though smart workarounds
can be conceived and implemented to speed up the calculation, its
relative complexity introduces a nontrivial slowdown in the
minimization process. On the other hand, the sheer size of the
space of possible CGmappings of a biomolecule is so ridiculously
large that it makes a random search practically useless and an
exhaustive enumeration simply impossible. Hence, an
optimization procedure is required to identify the simplified
descriptions that entail the largest amount of information
about the system. Unfortunately, this procedure nonetheless
implies the calculation of Smap over a very large number of
tentative mappings, making the optimization, albeit possible,
computationally intensive and time consuming.

In this work, we present a novel computational protocol that
suppresses the computing time of the optimization procedure by
several orders of magnitude, while at the same time boosting the
sampling accuracy. This strategy relies on the fruitful, and to the
best of our knowledge unprecedented combination of two very
different techniques: graph-based machine learning models

(Micheli, et al., 2009; Bronstein et al., 2017; Hamilton et al.,
2017; Battaglia et al., 2018; Zhang et al., 2018; Zhang et al., 2019;
Bacciu et al., 2020; Wu et al., 2021) and the Wang–Landau
enhanced sampling algorithm (Wang and Landau, 2001a;
Wang and Landau, 2001b; Shell et al., 2002; Barash et al.,
2017). The first serves the purpose of reducing the
computational cost associated with the estimation of the
mapping entropy; the second enables the efficient and
thorough exploration of the mapping space of a biomolecule.

An essential element of the proposed method is thus a graph-
based representation of our object of interest, namely a protein.With
their long and successful story both in the field of coarse-graining
(Gfeller and Rios, 2007; Webb et al., 2019; Li et al., 2020) and in the
prediction of protein properties (Borgwardt et al., 2005; Ralaivola
et al., 2005; Micheli et al., 2007; Fout et al., 2017; Gilmer et al., 2017;
Torng and Altman, 2019), graph-based learning models represent a
rather natural and common choice to encode the (static) features of a
molecular structure; here, we show that a graph-based machine
learning approach can reproduce the results of mapping entropy
estimate obtained by means of a much more time-consuming
algorithmic workflow. To this end, we rely on Deep Graph
Networks (DGNs) (Bacciu et al., 2020), a family of machine
learning models that learn from graph-structured data, where
the graph has a variable size and topology; by training the model
on a set of tuples (protein, CG mapping, and Smap), we can infer
the Smap values of unseen mappings associated with the same
protein making use of a tiny fraction of the extensive amount of
information employed in the original method, i.e., the molecular
structure viewed as a graph. Compared to the algorithmic
workflow presented in Giulini et al. (2020), the trained DGN
proves capable of accurately calculating the mapping entropy
arising from a particular selection of retained atoms throughout
the molecule in a negligible time.

This computational speedup can be leveraged to perform a
thorough, quasi-exhaustive characterization of the mapping
entropy landscape in the space of possible CG representations
of a system, a notable advancement with respect to the relatively
limited exploration performed in Giulini et al. (2020). Specifically,
by combining inference of the DGNs with the Wang–Landau

FIGURE 2 | Comparison between an all-atom, detailed description of a protein (left) and one of its possible coarse-grained representations (right). The purple
spheres on the right plot correspond to CG sites, while the edges connecting them represent the effective interactions.
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sampling technique, we here provide an estimate of the density of
states associated with the Smap, that is, the number of CG
representations in the biomolecule mapping space that
generate a specific amount of information loss with respect to
the all-atom reference. A comparison of the WL results on the
DGNs with the exact ones obtained from a random sampling of
mappings shows that the machine learning model is able to
capture the correct population of CG representations in the
Smap space. This analysis further highlights the accuracy of the
model in predicting a complex observable such as the mapping
entropy, which in principle depends on the whole configurational
space of the macromolecule, only starting from the sole
knowledge of the static structure of the latter.

MATERIALS AND METHODS

In this section, we outline the technical ingredients that lie at the
basis of the results obtained in this study. Specifically, inMapping
entropy we summarize the mapping entropy protocol for
optimizing CG representations presented in Giulini et al.
(2020); in Protein structures and data sets we briefly describe
the two proteins analyzed in this work as well as the data sets fed
to the machine learning architecture; in Data Representation and
Machine Learning model we illustrate our choice for the
representation of the input data, together with theoretical and
computational details about DGNs; finally, in Wang–Landau
Sampling we describe our implementation of the
Wang–Landau sampling algorithm as applied to the
reconstruction of the mapping entropy landscape of a system.

Mapping Entropy
The challenge of identifying maximally informative CG
representations for a biomolecular system has been recently
tackled by some of us (Giulini et al., 2020); specifically, we
developed an algorithmic procedure to find the mappings that
minimize the amount of information that is lost when the
number of degrees of freedom with which one observes the
system is decimated, that is, a subset of its atoms is retained
while the remainder is integrated out. The quantity that measures
this loss is called mapping entropy Smap (Shell, 2008; Rudzinski
and Noid, 2011; Shell, 2012; Foley et al., 2015), which in the case
of decimated CG representations can be expressed as a
Kullback–Leibler divergence DKL (Kullback and Leibler, 1951)
between two probability distributions (Rudzinski and Noid,
2011),

Smap � kB × DKL(pr(r)∣∣∣∣∣∣∣∣ pr(r)) � kB ∫ dr pr(r)ln[pr(r)pr(r)
]. (1)

Here, pr(r) is the probability of sampling a configuration r in the
high-resolution description, namely, the Boltzmann distribution
pr(r)∝ exp[−βu(r)], where u(r) is the atomistic potential and
β � 1/kBT is the inverse temperature. pr(r), on the other hand, is
the distribution obtained by observing the system through the
“coarse-graining grid,” i.e., in terms of the selected CG mapping.
pr(r) is defined as (Rudzinski and Noid, 2011)

pr(r) � pR[M(r)]/Ω1[M(r)], (2)

where

pR(R) � 1
Z

∫ dre−βu(r)δ[M(r) − R] (3)

is the probability of sampling the configuration R � M(r) in the
low-resolution description—Z being the canonical partition
function of the system—while

Ω1(R) � ∫ dr δ(M(r) − R) (4)

is the number of microstates r that map onto the CG
configuration R.

The mapping entropy quantifies the information loss one
experiences by replacing the original, microscopic distribution
pr(r) of the system by an effective one in which the probability
of a CG macrostate is equally redistributed to all microstates
that map onto it. It follows that different choices of the CG
mapping lead to different pr(r) and, consequently, to different
amounts of information losses arising from CG’ing.

The definition in Eq. 1 does not allow, given a CG
representation, to directly determine the associated mapping
entropy. It is however possible to perform a cumulant
expansion of Eq. 1; by doing so, Giulini et al. (2020) showed
that Smap can be approximately calculated as a weighted average
over all CG macrostates R of the variances of the atomistic
potential energies of all configurations r that map onto a
specific macrostate. This strategy enables one to measure Smap

only provided a set of all-atom configurations sampled from pr(r)
and a decimation mapping.

The following, natural step in the analysis is then to
identify the reduced representations of a system that are
able to preserve the maximum amount of information
from the all-atom reference—i.e., which minimize the
mapping entropy. However, for a molecule with n atoms,
the number of possible decimation mappings is 2n, an
astronomical amount even for the smallest proteins. This
number remains huge even narrowing down the exploration
to a fixed number of retained atoms N, so that n!/[N! (n − N)!]
mappings can be constructed. As a complete enumeration of
all possible CG representations of a system is unfeasible in
practice, Giulini et al. (2020) relied on a stochastic
minimization procedure to extract a pool of optimized
solutions out of this immense space, namely a simulated
annealing approach (Kirkpatrick et al., 1983; Černỳ, 1985)
employing Smap as cost function.

Remarkably, the CG mappings singled out by this
optimization workflow were discovered to more likely retain
atoms directly related to the biological function of the proteins
of interest, thus linking the described information-theoretical
approach to the properties of biological systems. It follows that
this protocol represents not only a practical way to select the
most informative mapping in a macromolecular structure, but
also a promising paradigm to employ CGing as a controllable
filtering procedure that can highlight relevant regions in a
system.
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The downside of the approach developed in Giulini et al.
(2020) is its non-negligible computational cost, which is due to
two factors:

1. The protocol requires in input a set of configurations of the
high-resolution system that are sampled through an MD
simulation, a computationally expensive task.

2. The stochastic exploration of the set of possible CG
mappings is limited and time consuming due to the
algorithmic complexity associated to Smap calculations.

The ultimate aim of this work is, thus, the development and
assessment of a protein-specific machine learning model able to
swiftly predict the mapping entropy arising from a reduction in
the number of degrees of freedom employed to describe the
system.

Protein Structures and Data Sets
The DGN-based mapping entropy prediction model developed in
this study is applied to two proteins extracted from the set
investigated in Giulini et al. (2020), namely (i) 6d93, a 31
residues long mutant of tamapin—a toxin of the Indian red
scorpion (Pedarzani et al., 2002)—whose outstanding selectivity
toward the calcium-activated potassium channels SK2 made it an
extremely interesting system in the field of pharmacology
(Mayorga-Flores et al., 2020); and (ii) 4ake, the open
conformation of adenylate kinase (Müller et al., 1996). This
214-residues enzyme is responsible for the interconversion
between adenosine triphosphate (ATP) and adenosine
diphosphate + adenosine monophosphate (ADP + AMP)
inside the cell.

Figure 3 shows a schematic representation of 6d93 and 4ake.
Both proteins were simulated in explicit solvent for 200 ns in the
canonical ensemble by relying on the GROMACS 2018 package
(Spoel et al., 2005). For a more detailed discussion of these two
molecules and the corresponding MD simulations, please refer to
Sec. II.B and II.D of Giulini et al. (2020).

We train the machine learning model of each protein on a data
set containing the molecular structure—the first snapshot of the
MD trajectory—and many CG representations, the latter being
selected with the constraint of having a number of retained sites
equal to the number of amino acids composing the molecule. The
data sets combine together randomly selected CG mappings
(respectively, 4,200 for 6d93 and 1,200 for 4ake) and
optimized ones (768 for both systems). The corresponding
mapping entropy values are calculated through the protocol
described in Giulini et al. (2020).

Optimized mappings are obtained from independent Simulated
Annealing (SA) Monte Carlo runs (Kirkpatrick et al., 1983; Černỳ,
1985): starting from a random selection of retained atoms, Smap is
minimized for a defined number of steps after which the current
mapping is saved and included in the data set. More specifically, at
each step of a SA run we randomly swap a retained and a non-
retained atom in the CG representation, compute Smap, and accept/
reject the move based on a Metropolis criterion. The SA effective
temperature T decays according to T(i) � T0e−i/v , where i is the SA
step and the parameters v and T0 are equal to those employed in
Giulini et al. (2020). The 768 SA runs of each protein are divided
into four groups of 192 elements depending on their length,
respectively, 2 × 104 (full optimization, as in Giulini et al.
(2020)), 1 × 104, 5 × 103, and 2.5 × 103 steps.

Figure 4 displays the distribution of Smap values in the data sets
separately for the two systems, discriminating between
random (blue) and optimized (red) CG mappings. In both
structures the two curves have a negligible overlap, meaning
that the set of values spanned by the optimized CG
representations cannot be reached by a random exploration
of the mapping space, i.e., this region possesses a very low
statistical weight. A comparison of the Smap distribution of the
two proteins, on the other hand, highlights that the mapping
entropy increases with the system’s size: while the range of
values covered has similar width in the two cases, the lower
bound in mapping entropy of 4ake differs of roughly one order
magnitude from that of 6d93.

For each analyzed protein, in Table 1 we report the
computational time required to perform the MD simulation
and a single Smap estimate. We note that the time associated
with the calculation of Smap for a single CG mapping through
the algorithm discussed in Giulini et al. (2020) grows from 2 to
8 minutes while moving from 6d93 to 4ake. It is worth
stressing that the proteins studied here are small, so that
this value would dramatically increase in the case of bigger
biomolecules.

Data Representation and Machine Learning
Model
We represent each investigated protein structure as a static graph,
see Figure 5. A graph g can be formally defined as a tuple (vg , Eg),
where vg is the set of vertices (i.e., the entities of interest) and
Eg � {{u, v}∣∣∣∣u, v ∈ vg} is the set of undirected edges (i.e., how
entities are related). We define the neighborhood of a vertex v as
the set of vertices connected to v by an edge, that is,
N v � {u ∈ vg

∣∣∣∣{u, v} ∈ Eg}. For the purpose of this work, each

FIGURE 3 | Protein structures employed in this work: the tamapin
mutant (PDB code: 6d93) and the open conformation of adenylate kinase
(PDB code: 4ake). The former, although small, possesses all the elements of
proteins’ secondary structures, while the latter is bigger in size and has a
much wider structural variability.
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heavy atom composing the molecule corresponds to a vertex, and
edges connect pairs of atoms that in the reference structure are
closer than a selected threshold—in our case, 1 nm. At odds with

other definitions of a CG site, the information about the
decimation mapping can be directly encoded in the vertices
of the protein graph by using a binary feature, with different
selections of CG sites—an example being provided in
Figure 5—corresponding to different values of Smap. In
addition, we enrich each vertex with 10 features,
summarized in Table 2, which describe the physicochemical
properties of the underlying atom; similarly, we consider the
inverse atomic distance euv between vertices u and v as an edge
feature.

FIGURE 4 | Distributions of target values for both data sets, 6d93 (left) and 4ake (right). For each protein, Smap data are displayed in two distinct, non-
overlapping histograms depending on their origin: blue curves are filled with random instances, while red histograms represent optimized CG mappings. All values of
Smap are in kJ/mol/K.

TABLE 1 | Computational cost of all-atom MD simulations and mapping entropy calculations for the two investigated proteins. Specifically,MD CPU time (respectively,MD
walltime) represents the core time (respectively, user time) necessary to simulate the system for 200 ns on the GROMACS 2018 package (Spoel et al., 2005). Both 6d93
and 4ake runs were performed on Intel Xeon-Gold 5118 processors, respectively, using 16 and 48 cores. Single measure is the amount of time that is required to compute,
on a single core of the same architecture, the Smap of a given CG mapping by relying on the algorithm introduced in Giulini et al. (2020).

Protein MD CPU time MD walltime Single measure

Tamapin (PDB code 6d93) 40.7 days 2.55 days x2.1mins
Adenylate kinase (PDB code 4ake) 153.9 days 3.20 days x8.0mins

FIGURE 5 | Two different mappingsM andMʹ associated with the same
(schematic) protein structure. To train our machine learning model, we treat
each protein as a graph where vertices are atoms and edges are placed
among atoms closer than a given threshold. The selected CG sites in
each of the two mappings are marked in red and encoded as a vertex feature.
Our goal is to automatically learn to associate both mappings to proper values
Smap and S ′

map of the mapping entropy.

TABLE 2 | Binary features (0/1) used to describe the physicochemical properties
of an atom in the protein, i.e., a vertex in the graph representation of the latter.
In this simple model, we only provide the DGNwith the chemical nature of the atom
and of its residue, together with the flag Bkb that specifies if the atom is part of the
backbone of the polypeptide chain.

Feature name Description

C Carbon atom
N Nitrogen atom
O Oxygen atom
S Sulfur atom
HPhob Part of a hydrophobic residue
Amph Part of a amphipathic residue
Pol Part of a polar residue
Ch Part of a charged residue
Bkb Part of the protein backbone
Site Atom selected as a CG site

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6373966

Errica et al. Exploring Protein Representations Through DGNs

22

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Once the protein structure and the CG mapping data sets are
converted into this graph-like format (statistics in Table 3), we
employ DGNs (Bacciu et al., 2020) with the aim of learning the
desired property, namely the mapping entropy Smap.

The main advantages of DGNs are their efficiency and the
ability to learn from graphs of different size and shape. This is
possible for two reasons: first, DGNs focus on a local processing
of vertex neighbors, so that calculations can be easily distributed;
secondly, in a way that is similar to Convolutional Neural
Networks for images (LeCun et al., 1995), DGNs stack
multiple layers of graph convolutions to let vertices efficiently
exchange information. The output of a DGN is a vector for each
vertex of the graph, as sketched in Figure 6, and these can be
aggregated to make predictions about a graph class or property.
Again, we remark that the efficiency of the DGN is especially
important in our context, where we want to approximate the
complex Smap computational process in a fraction of the time
originally required.

The main building block of a DGN is the “graph convolution”
mechanism. At each layer ℓ, the DGN calculates the new state of
each vertex v, i.e., a vector hℓ+1v ∈ RK , as a function of v’s
neighboring states hℓN v

� {hℓu ∈ RK
∣∣∣∣u ∈ N v}, where K ∈ N is an

hyperparameter of the model.
In general, a graph convolutional layer first applies a

permutation-invariant function to the neighbors of each
vertex, such as the sum or mean. The resulting aggregated
vector is then passed to a multi-layer perceptron (MLP) that
performs a nonlinear transformation of the input, thus producing
the new vertex state hℓ+1v .

In this study, we employ an extended version of the GIN
model (Xu et al., 2019) or, equivalently, a restricted version of the
Gated-GIN model (Errica et al., 2020) to consider edge attributes

while keeping the computational burden low. Our graph
convolutional layer can be formalized as follows:

hℓ+1
v � MLPℓ⎡⎢⎣(1 + ϵℓ) × hℓ

v + ∑
u∈N v

hℓ

u × euv⎤⎥⎦, (5)

where × denotes element-wise scalar multiplication, ϵℓ ∈ R is an
adaptive weight of the model, and euv is the scalar edge feature
holding the inverse atomic distance between two atoms u and v. A
pictorial representation of the transition between layer ℓ and layer
ℓ + 1 is presented in Figure 7.

A few remarks about Eq. 5 are in order. First, the initial layer is
implemented with a simple nonlinear transformation of the vertex
features, that is, h1v � MLP1(xv), where xv is the vector of 10 features
associated with each node (see Table 2); secondly, at each layer ℓ, we
apply the same nonlinear transformation MLPℓ to all the nodes
(i.e., a graph traversal), which allows us to treat variable-size graphs.
Finally, the MLP weights are not shared across different layers,
meaning that we train a different MLP for each layer. It is worth
noting that this weight-sharing scheme at each layer resembles the
one employed in Convolutional Neural Networks, where the same
adaptive filter is applied to all the pixels in an image.

When building a Deep Graph Network, we usually stack L
graph convolutional layers, with L ∈ N being another
hyperparameter, until the model produces a final state for
each vertex. We call this state hv; in addition, we compute a
global graph state hg by aggregating all vertex states (see
Figure 6). Being in vectorial form, hg can then be fed to
standard machine learning models to solve graph regression or
classification tasks.

To produce a prediction Ŝmap, we first need to process and
aggregate all node states into a single graph representation. In this
work, we take into account the importance of selected (respectively,
unselected V) CG sites vsg ⊂ vg (respectively, vng ) with a scalar
adaptive weight ws (respectively, wn). The resulting formula is

Ŝmap � wT
out

⎧⎪⎨⎪⎩ ∑
u∈Vs

g

[(h1
u, . . . , h

L
u) × ws] + ∑

u∈Vn
g

[(h1
u, . . . , h

L
u) × wn]⎫⎪⎬⎪⎭,

(6)

where wout ∈ RKpL is a set of parameters to be learned, while
square brackets denote concatenation of the different vertex states
computed at different layers.

TABLE 3 | Basic statistics of the data sets fed to the machine learning model. For
each protein, we report the number of vertices (i.e., heavy atoms) in its graph
representation, the total number of edges connecting them, and the average
number of edges per vertex (Avg. degree). We also report the total number of CG
representations of known mapping entropy provided in input to the protocol
(Samples), including random and optimized ones.

Protein Vertices Edges Avg. degree Samples

6d93 230 21,474 93 4,968
4ake 1,656 207,618 125 1,968

FIGURE 6 |High-level overview of typical deep learning methodologies for graphs. A graph g is given as input to a Deep Graph Network, which outputs one vector,
also called embedding or state, for each vertex v of the graph. In this study, we aggregate all vertex states via a (differentiable) permutation-invariant operator, i.e., the
mean, to obtain a single state that encodes the whole graph structure. Then, the graph embedding is fed into a machine learning regression model (in our case a linear
model) to output the Smap value associated with g.
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In particular, we use L � 5 layers and implement each
MLPℓ as a one-layer feed-forward network with K � 64 hidden
units followed by an element-wise rectifier linear unit (ReLU)
activation function (Glorot et al., 2011). As the number of
weights, without considering the bias, of MLPℓ is K2

(10 *K forMLP1), the total number of weights in our
architecture is 10 pK + K2 p(L − 1) + (L pK) + (L − 1) +
2 � 17350.

The loss objective used to train the DGN is the mean
absolute error. The optimization algorithm is Adam
(Kingma and Ba, 2015) with a learning rate of 0.001 and no
regularization. We trained for a maximum of 10,000 epochs
with early stopping patience of 1,000 epochs and mini-batch
size 8, accelerating the training using a Tesla V100 GPU with
16 GB of memory.

To assess the performance of the model on a single protein, we
first split the corresponding data set into training, validation, and
test realizations following an 80%/10%/10% hold-out strategy.
We trained and assessed the model on each data set separately.
We applied early stopping (Prechelt, 1998) to select the training
epoch with the best validation score, and the chosen model was
evaluated on the unseen test set. The evaluation metric for our
regression problem is the coefficient of determination (or R2

score).

Wang–Landau Sampling
Figure 4 highlights how an attempt of detecting the most
informative CG representations of a protein—i.e., those
minimizing Smap—through a completely unbiased exploration
of its mapping space would prove extremely inefficient, if not
practically pointless. Indeed, such optimized CG
representations live relatively far away in the left tails of the
Smap distributions obtained from random sampling, thus
constituting a region of exponentially vanishing size within
the broad mapping space. It would then be desirable to
design a sampling strategy in which no specific value of Smap

is preferred, but rather a uniform coverage of the spectra of
possible mapping entropies—or at least of a subset of it, vide
infra—is achieved.

To obtain this “flattening” of the Smap landscape we rely on the
algorithm proposed by Wang and Landau (WL) (Wang and
Landau, 2001a; Wang and Landau, 2001b; Shell et al., 2002;
Barash et al., 2017). In WL sampling, a Markov chain Monte
Carlo (MC) simulation is constructed in which a transition
between two states M and Mʹ —in our case, two mappings
containing N sites but differing in the retainment of one
atom—is accepted with probability

W(M→M′) � min{1, ΩN[Smap(M)]
ΩN[Smap(M′)]}. (7)

In Eq. 7, ΩN(Smap) is the number of CG representations with N
retained sites exhibiting a mapping entropy equal to Smap, that is,
the mapping entropy’s density of states,

ΩN(Smap) � ∑
M

δ[N(M),N]δ[Smap(M), Smap], (8)

where the sum is performed over all possible CG representations
of the system.

When compounded with a symmetric proposal probability T
for the attempted move, T(M→M′) � T(M′ →M), the Markov
chain defined in Eq. 7 generates, at convergence, CG
representations distributed according to
P(M)∝ 1/ΩN[Smap(M)] (Wang and Landau, 2001a; Wang
and Landau, 2001b). As the equilibrium probability of
visiting a mapping is proportional to the inverse of the Smap

density of states, the WL simulation results in a flat histogram
of sampled mapping entropies over the whole range of
possible ones.

Critically, the density of states ΩN(Smap) is a priori unknown
and is itself a byproduct of the WL scheme. ΩN(Smap) is self-
consistently constructed by means of a sequence k � 0,...K of
nonequilibrium simulations that provide increasingly accurate
approximations to the exact result, iterations being stopped when
a predefined precision is achieved.

Having divided the range of possible values of the
mapping entropy in bins of width δSmap, the WL self-
consistent protocol is based on three quantities: the
overall density of states ΩN(Smap), the histogram of
sampled mapping entropies at iteration k, Hk (Smap), and
the modification factor fk governing convergence–for k � 0,
one typically initializes ΩN(Smap) � 1 for each value of Smap

and f0 � e.
At the beginning of WL iteration k, the histogram Hk (Smap) is

reset. Subsequently, a sequence of MC moves among CG
mappings driven by the acceptance probability presented in
Eq. 7, is performed. If a transition between two CG
representations M and Mʹ— respectively with mapping
entropies Smap and Smap′ predicted by the trained DGNs—is
accepted, the entries of the histogram and density of states are
updated according to

Hk(S ′
map ) � Hk(S ′

map ) + 1, (9)

FIGURE 7 | A simplified representation of how a graph convolutional
layer works. First, neighboring states of each vertex v are aggregated by
means of a permutation-invariant function, to abstract from the ordering of
the nodes and to deal with variable-sized graphs. Then, the resulting
vector is fed into a multi-layer perceptron that outputs the new state for
node v.
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ΩN(S ′
map ) � fk ×ΩN(S ′

map ). (10)

In case the moveM→M′ is rejected, one has to replace S ′
map with

Smap in Eqs. 9, 10.
The sequence of MC moves is stopped—that is, iteration k

ends—when Hk (Smap) is “flat”, meaning that each of its entries
does not exceed a threshold distance from the average histogram
〈Hk〉: a typical requirement is pflat ×
〈Hk〉<Hk(Smap)< (2 − pflat) × 〈Hk〉 for every value of Smap,
pflat being the selected flatness parameter. At this stage, WL
iteration k + 1 begins with a reduced modification factor,
where we set fk+1 �

��
fk

√
.

Convergence of the self-consistent scheme is achieved when
fk ≈ 1 —more precisely, when ln(fk) becomes smaller than a
predefined value ln(fend). Up to a global multiplicative factor, the
resulting density of states ΩN(Smap) reproduces the exact result
with an accuracy of order ln(fend) (Landau et al., 2004).

In order to avoid numeric overflow ofΩN(Smap) along the WL
simulation, we consider its logarithm ΣN(Smap) � lnΩN(Smap).
Starting from Eq. 7, the acceptance probability W(M→M′)
expressed in terms of Σ reads

W(M→M′) � min{1, exp[ΣN(M) − ΣN(M′)]}, (11)

while within iteration k of the self-consistent scheme, the update
prescription of Σ after an (accepted) MC move—see Eq.
10—becomes

ΣN(S′map) � ΣN(S′map) + ln(fk). (12)

Finally, in a logarithmic setup, the modification factor ln(fk)
follows the simple reduction rule ln(fk+1) � ln(fk)/2, with
ln(f0) � 1.

The WL algorithm in principle enables the reconstruction
of the density of states of an observable over the whole range of
possible values of the latter; at the same time, knowledge of the
sampling boundaries proves extremely beneficial to the
accuracy and rate of convergence of the self-consistent
scheme (Wüst and Landau, 2008; Seaton et al., 2009). In
our case, for each analyzed protein, such boundaries would
correspond to the minimum and maximum achievable
mapping entropies Smin

map and Smax
map in the space of all CG

representations of the system obtained by retaining N of its
constituent atoms. As this information is a priori unknown, in
our implementation of the WL algorithm we limit the range of
explorable values of Smap by rejecting all MC moves M→M′

for which S′map < Smin
map or S

′
map > Smax

map, in each system setting Smin
map

and Smax
map as, respectively, the minimum and maximum values

of the mapping entropy in the corresponding data set. Note
that for each protein Smin

map is the outcome of a thorough
optimization procedure, and can thus be considered a
reasonable approximation of the system’s absolute
minimum of the mapping entropy. Imposing an upper
bound on Smap through Smax

map, on the other hand, simply
amounts at requiring the WL sampling algorithm not to
visit uninteresting regions of the mapping space of each
biomolecule, that is, CG representations characterized by a
huge amount of information loss with respect to the all-atom
reference. The values of Smin

map and Smax
map employed for the two

proteins investigated in this study are presented in Table 4,
together with the input parameters required by the WL
protocol—the bin size δSmap, the convergence modification
factor ln(fend), and the flatness parameter pflat.

RESULTS AND DISCUSSION

We first analyze the results achieved by DGNs in predicting
the mapping entropy associated to a choice of the CG
representation of the two investigated proteins;
specifically, we employ the R2 score as the main
evaluation metric and the mean average error (MAE) as
an additional measure to assess the quality of our model in
fitting Smap data. The R2 scores range from −∞ (worst
predictor) to 1 (best predictor).

Table 5 reports the R2 score and MAE in training, validation,
and test. We observe that the machine learning model can fit the
training set and has excellent performances on the test set. More
quantitatively, we achieve extremely low values of MAE for 6d93,
with an R2 score higher than 0.95 in all cases. Themodel performs
slightly worse in the case of 4ake: the result of R2 � 0.84 on the test
set is still acceptable, although the gap with the training set (R2 �
0.92) is non-negligible.

Figure 8 shows how predicted values for training and test
samples differ from the ground truth. Ideally, a perfect result
corresponds to the point being on the diagonal dotted line. We
can see how close to the true target are both training and test
predictions for 6d93. The deviation from the ideal case becomes

TABLE 4 | Set of parameters employed for the WL exploration of the mapping
entropy space for both analyzed proteins. ln(f0) and ln(fend) respectively
represent the modification factor at the beginning and at the end of the self-
consistent scheme in a logarithmic setup, see Sec.Wang–Landau Sampling. pflat
is the minimal histogram flatness required to halve themodification factor; with
pflat � 0.8, all bins in the histogram H (Smap) must have a population between
0.8 and 1.2 times its average 〈H〉. range is the interval of permitted values of
the mapping entropy in the WL scheme, while δSmap is the bin size employed
for its discretization. Both range and δSmap are expressed in kJ/mol/K.

Parameter 6d93 4ake

ln(f0) 1 1
ln(fend) 10−6 10−6

pflat 0.8 0.8
range [10−22.4] [89.4−108.6]
δSmap 0.2 0.2

TABLE 5 | Results of the machine learning model in predicting the mapping
entropy on the training (TR), validation (VL), and test (TE) sets for the two
analyzed proteins. We display both the R2 score and the mean average error
(MAE, kJ/mol/K).

Protein TR MAE TR R2 VL MAE VL R2 TE MAE TE R2

6d93 0.13 0.99 0.33 0.95 0.33 0.96
4ake 0.91 0.92 1.2 0.85 1.35 0.84
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wider for 4ake, but no significant outlier is present. A more
detailed inspection of the 4ake scatter plot in Figure 8, on the
other hand, reveals that the network tends to slightly overestimate
the value of Smap of optimized CG mappings for
Smap ( 100 kJ/mol, whereas the opposite is true for
Smap T 100 kJ/mol, where random CG mapping values are
mildly underestimated.

The dissimilarity in performance between the two data sets is
not surprising if one takes a closer look at their nature. In fact, as
highlighted in Figure 3, adenylate kinase is both larger and more
complex than the tamapin mutant, and the CG mapping data set
sizes are very different due to the heavy computational
requirements associated with the collection of annotated
samples for 4ake. As a consequence, training a model for 4ake
with excellent generalization performance becomes a harder task.
What is remarkable, though, is the ability of a completely adaptive
machine learning methodology to well approximate, in both
structures, the long and computationally intensive algorithm
for estimating Smap of Giulini et al. (2020). Critically, this is
achieved only by relying on a combination of static structural
information and few vertex attributes, that is, in absence of a
direct knowledge for the DGNs of the complex dynamical

behavior of the two systems as obtained by onerous MD
simulations.

The computational time required by the machine learning
model to perform a single Smap calculation is compared to the one
of the algorithm presented in Giulini et al. (2020) in Table 6. As
the protocol of Giulini et al. (2020) relied on a CPU machine, we
report results for both CPU and GPU times. Overall, we observe
that inference of the model can speed up mapping entropy
calculations by a factor of two to five orders of magnitude
depending on the hardware used. Noteworthy, these
improvements do not come at the cost of a significantly worse
performance of the machine learning model. In addition, this
methodology is easily applicable to other kinds of molecular
structures, as long as a sufficiently large training set is provided
as input.

By embedding the trained networks in a Wang–Landau
sampling scheme, see Wang–Landau sampling, we are able to
retrieve the density of states ΩN(Smap) defined in Eq. 8 for 6d93
and 4ake, that is, we can estimate the number of CG
representations throughout the mapping space of each protein
that exhibits a specific amount of information loss with respect to
the all-atom reference. We stress that reaching convergence of the

FIGURE 8 | Plot of Smap target values against predictions of all samples for 6d93 (left) and 4ake (right). Training samples are in blue, while test samples are in
orange. A perfect prediction is represented by points lying on the red dotted diagonal line (perfect fit). To show that in the case of 4ake, the model slightly overestimates
the Smap of optimized mappings and underestimates the rest, we include in the plot the green dashed line obtained by fitting a linear model on the data (data fit). All values
of Smap are in kJ/mol/K.

TABLE 6 |Comparison between the time required to compute the Smap of a single CGmapping through the algorithm presented in Giulini et al. (2020) and the inference time
of the model (CPU as well as GPU). For both proteins, CPU calculations were performed on a single core of a Intel Xeon-Gold 5118 processor, while GPU ones were run
on a Tesla P100 with 16 GB of memory. The machine learning model generates a drastic speedup, enabling a wider exploration of the Smap landscape of each system.

Protein Single measure Inference GPU (CPU) Time ratio GPU (CPU)

6d93 x2.1mins x0.9(98.7)ms x140000 × (1276×)
4ake x8.0mins x4.8(1103.2)ms x100000 × (435×)
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self-consistent WL protocol required to probe approximately
4.8 × 106 and 3 × 107 CG representations for 6d93 and 4ake,
respectively: such an extensive sampling is only made feasible by
the computational gain provided by the machine learning
model.

WL predictions for the logarithm of the density of states
ΣN(Smap) � lnΩN(Smap) of the two proteins are presented in
Figure 9. As for 6d93, we observe the presence of a steep
increase of Σ starting from low values of the mapping entropy,
followed by two main peaks respectively located at Smap ≈ 12.5
and 15 kJ/mol/K. After the second peak Σ decreases, exhibiting a
shoulder for high mapping entropies. On the other hand, the Σ of
4ake displays a relatively gradual growth toward its unique
maximum, the latter being located at Smap ≈ 105 kJ/mol/K,
before starting to decrease.

Given the WL ΩN(Smap)—or equivalently ΣN(Smap)—it is
possible to calculate the probability P(Smap) of observing a
particular mapping entropy by performing a completely
random exploration of the space of CG representations of a
system,

P(Smap) � ΩN(Smap)
∑Smap

ΩN(Smap). (13)

Results for the P(Smap) of 6d93 and 4ake are shown in Figure 9. In
the case of 6d93, we note that the WL sampling scheme produces
a probability density that is fully compatible with the
(normalized) histograms of Figure 4. In particular, the WL
graph resembles the histograms in Figure 4 if we remove the
nonrandom, optimized instances whose statistical weight is
negligible. This result is highly nontrivial, as it proves that the
trained DGN of 6d93 does not overfit the training set and is able
to predict the correct population of the true mapping entropy
landscape.

As regards 4ake, the agreement between the two curves
presented in Figure 9 is still remarkable, though not as precise

as in the case of 6d93. More quantitatively, the left tail of the
probability density predicted by the WL scheme is shifted of
roughly 1 kJ/mol/K toward lower values of Smap with respect to
the distribution obtained from random sampling. This mismatch
can be ascribed to the mild overfitting problem observed in
Figure 8: the network has the tendency to underestimate
(respectively, overestimate) the value of Smap associated with
random (respectively, optimized) CG representations, resulting
in an increase in the predicted population of mappings at the
intersection of the two sets.

CONCLUSION AND PERSPECTIVES

Molecular dynamics simulations constitute the core of the
majority of research studies in the field of computational
biophysics. From protein folding to free energy calculations,
an all-atom trajectory of a biomolecule gives access to a vast
amount of data, from which relevant information about the
system’s properties, behavior, and biological function is
extracted through an a posteriori analysis. This information
can be almost immediate to observe (even by naked eye) and
quantify in terms of few simple parameters–e.g., the process of
ligand binding can be seen in a graphical rendering of the
trajectory and made quantitative in terms of the distance
between ligand and protein; much more frequently, though, it
is a lengthy and nontrivial task, tackled through the introduction
of complex “filtering” strategies, the outcomes of which often
require additional human intervention to be translated in
intuitive terms (Tribello and Gasparotto, 2019; Noé et al., 2020).

A protocol aiming at the unsupervised detection of the
relevant features of a biomolecular system was recently
proposed (Giulini et al., 2020). The method relies on the
concept of mapping entropy Smap (Shell, 2008; Rudzinski and
Noid, 2011; Shell, 2012; Foley et al., 2015), that is, the information
that is lost when the system is observed in terms of a subset of its

FIGURE 9 | Comparison between the probability densities P(Smap) for the two systems estimated via the Wang–Landau algorithm enhanced by the DGNs (green
lines) and the distributions generated by a random sampling of mappings (blue areas). In inset, the logarithm of the WL density of states, Σ(Smap), is reported, after a
scaling that assigns to the Σ of the most scarcely populated bin the value of zero. All values of Smap are in kJ/mol/K.
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original degrees of freedom: in Giulini et al. (2020), a
minimization of this loss over the space of possible reduced
representations, or CG mappings, enabled to single out the most
informative ones. By performing a statistical analysis of the
properties of such optimized mappings, it was shown that
these are more likely to concentrate a finer level of detail—so
that more atoms survive the CG’ing procedure—in regions of the
system that are directly related to the biological function of the
latter. The mapping entropy protocol thus represents a promising
filtering tool in an attempt of distilling the relevant information of
an overwhelmingly complicated macromolecular structure;
furthermore, this information can be immediately visualized
and interpreted as it consists of specific subsets of atoms that
get singled out from the pool of the constituent ones.
Unfortunately, estimating the Smap associated with a specific
low-resolution representation is a lengthy and computationally
burdensome process, thus preventing a thorough exploration of
the mapping space to be achieved along the optimization process.

In this work, we have tackled the problem of speeding up the
Smap calculation procedure by means of deep machine learning
models for graphs. In particular, we have shown that Deep Graph
Networks are capable of inferring the value of the mapping
entropy when provided with a schematic, graph-based
representation of the protein and a tentative mapping. The
method’s accuracy is tested on two proteins of very different
size, a tamapin mutant (31 residues) and adenylate kinase (214
residues), with a R2 test score of 0.96 and 0.84, respectively. These
rather promising results have been obtained in a computing time
that is up to five orders of magnitude shorter than the algorithm
proposed in Giulini et al. (2020).

The presented strategy holds the key for an extensive
exploration of the space of possible CG mappings of a
biomolecule. In fact, the combination of trained networks and
Wang–Landau sampling allows one to characterize the mapping
entropy landscape of a system with impressive accuracy.

The natural following step would be to apply the knowledge
acquired by the model on different protein structures, so that the
network can predict values of Smap even in the absence of an MD
simulation. As of now, however, it is difficult to assess if the
information extracted from the training over a given protein
trajectory can be fruitfully employed to determine the mapping
entropy of another, by just feeding the structure of the latter as
input. More likely one would have to resort to database-wide
investigations, training the network over a large variety of
different molecular structures before attempting predictions

over new data points. In other words, obtaining a transfer
effect among different structures by the learning model may
not be straightforward, and additional information could be
needed to achieve it. Analyses on this topic are on the way
and will be the subject of future works.

In conclusion, we point out that the proposed approach is
completely general, in that the specific nature and properties of
the mapping entropy played no special role in the construction of
the deep learning scheme; furthermore, the DGN formalism
enables one to input graphs of variable size and shape,
relaxing the limitations present in other kinds of deep learning
architectures (Giulini and Potestio, 2019). This method can thus
be transferred to other problems where different selections of a
subset of the molecule’s atoms give rise to different values of a
given observable (see e.g., Diggins et al., 2018) and pave the way
for a drastic speedup in computer-aided computational studies in
the fields of molecular biology, soft matter, and material science.
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3Georgetown University Medical Center, Biochemistry and Molecular and Cellular Biology, Washington, DC, United States

Adenoviruses (AdVs) constitute a diverse family with many pathogenic types that infect a
broad range of hosts. Understanding the pathogenesis of adenoviral infections is not only
clinically relevant but also important to elucidate the potential use of AdVs as vectors in
therapeutic applications. For an adenoviral infection to occur, attachment of the viral ligand
to a cellular receptor on the host organism is a prerequisite and, in this sense, it is a criterion
to decide whether an adenoviral infection can potentially happen. The interaction between
any virus and its corresponding host organism is a specific kind of protein-protein
interaction (PPI) and several experimental techniques, including high-throughput
methods are being used in exploring such interactions. As a result, there has been
accumulating data on virus-host interactions including a significant portion reported at
publicly available bioinformatics resources. There is not, however, a computational model
to integrate and interpret the existing data to draw out concise decisions, such as whether
an infection happens or not. In this study, accepting the cellular entry of AdV as a decisive
parameter for infectivity, we have developed a machine learning, more precisely support
vector machine (SVM), based methodology to predict whether adenoviral infection can
take place in a given host. For this purpose, we used the sequence data of the known
receptors of AdVs, we identified sets of adenoviral ligands and their respective host
species, and eventually, we have constructed a comprehensive adenovirus–host
interaction dataset. Then, we committed interaction predictions through publicly
available virus-host PPI tools and constructed an AdV infection predictor model using
SVM with RBF kernel, with the overall sensitivity, specificity, and AUC of 0.88 ± 0.011,
0.83 ± 0.064, and 0.86 ± 0.030, respectively. ML-AdVInfect is the first of its kind as an
effective predictor to screen the infection capacity along with anticipating any cross-
species shifts. We anticipate our approach led to ML-AdVInfect can be adapted in making
predictions for other viral infections.

Keywords: adenovirus, host susceptibility, host-pathogen interaction, virus-host interaction, PPI prediction, viral
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INTRODUCTION

Adenoviruses (AdVs) are relatively large, nonenveloped,
icosahedral viruses composed of a complex protein capsid
surrounding the core proteins and the dsDNA genome. They
belong to a diverse family called Adenoviridae, with several
hundred recognized members capable of infecting a broad
variety of cell types across several organisms (Rowe et al.,
1953). As of the isolation of the first human AdV from
adenoid tissues in 1953, many other novel AdVs were
identified, such that, 103 human AdVs genotypes have been
classified, to date, into seven “species” named A to G (Author
Anonymous, 2020a). The pathogenic human AdVs (HAdV) may
lead to serious gastrointestinal, respiratory, urinary, and corneal
infections especially in immunosuppressed individuals (Gao
et al., 2020). Moreover, recombinant AdVs are the most
widely used viral vectors for gene therapy, accounting for
18.6% of vectors used in gene therapy clinical trials. AdVs
feature out with their current and potential usage in different
fields, including gene therapy, vaccine trials, and cancer
treatments as oncolytic viruses (Singh et al., 2019).

Before any further steps leading to the infection may take
place, viral pathogenesis requires the viral particle, the virion, to
enter into the host cell. For AdVs, the main mechanism of entry is
a two-step process, which starts with binding of a viral capsid
protein (i.e. hexon, penton base, or mostly the fiber) to a primary
receptor on the host cell to ensure attachment followed by
secondary interactions to enable penetration of virion by
clathrin- and dynamin-dependent endocytosis often involving
integrins, or by macropinocytosis (Zhang and Bergelson, 2005;
Lasswitz et al., 2018).

In explaining the pathogenesis of viral infections, therefore,
understanding the viral protein–host receptor interactions plays a
pivotal role. Expanding knowledge on AdV interactions, in
particular, is essential not only to enhance our understanding
of the life cycle, tissue tropism, host specificity/range, and cross-
species transmission of the AdVs but also to help researchers in
inhibiting adenoviral infections and in constructing efficient
adenoviral vectors. Thus, HAdVs serve as a good template to
elucidate virus–receptor interactions and as expectedly,
identification and characterization of AdV receptors have been
performed at varying levels of confirmation through different
experimental methodologies by several investigators.

Given their diversity, broad host range, and complex use of
receptors, the biological modeling of adenoviral infection poses a
challenge to decipher with gaps and controversies in the existing
literature. To this end, the use of computational methods on
publicly available data about PPIs and the application of machine
learning algorithms may accelerate and enrich our exploration of
virus–host interactions. The conventional definition of PPI,
however, refers to the physical contact with molecular docking
between proteins that occur in a cell or in a living organism in
vivo. As the definition implies, main databases and repositories
that include PPIs are not structured from a host–(viral) pathogen
point of view (De Las Rivas and Fontanillo, 2010). An exceptional
resource which provides interspecies protein interaction data is
the pathogen–host interaction search tool (PHISTO) (Durmus

Tekir et al., 2013) which has extracted and integrated all PPIs
between the human host and a non-human organism from
publicly available databases and then manually labeled the
respective organisms as pathogenic or not. For collected
interactions without a specified method of detection, PHISTO
includes a text mining module to predict the experimental
method of interaction detection and also houses a user
interface allowing visualization of protein networks. The
recently launched pathogen–host interactions database (PHI-
base), on the other hand, encompasses comprehensive expert-
curated molecular and biological information, but does not cover
viruses as a pathogen (Urban et al., 2020).

A similar concern also applies for the PPI prediction tools, yet
there are several tools developed to predict virus–host
interactions, and herein Section Background, we provide some
background information on the publicly available virus–host PPI
prediction tools DeNovo (Eid et al., 2016), HOPITOR (Basit et al.,
2018), VHPPI (Alguwaizani et al., 2018), and InterSPPI-HVPPI
(Yang et al., 2020) that we have used.

In the presented study, we have first curated the set of primary
protein receptors that are essential in the adenoviral entry into the
host cell based on the available evidence in the literature; herein
Section Adenoviral Receptors Background, we provide further
details regarding the included receptors. Then, using the public
bioinformatics resources, we have identified the host species of
adenoviruses, and also found the orthologs for our curated set of
protein receptors in identified hosts. Similarly, we also created the
set of adenoviral fiber proteins which stand for the ligands
occupied in the adenoviral attachment. Next, for each of the
fiber protein and adenoviral receptors, we had a dataset of pairs
composed of the corresponding host and pathogen pair. Thus,
altogether, we have compiled an extensive dataset on AdV–host
relations. Next, we calculated the predictions as to whether there
is an interaction between this particular virus fiber protein and
host receptor as generated by four different existing PPI tools.
Although these PPI tools are available individually, to this date,
there is no approach that brings predictions of these tools
together to make infection predictions. We recognize a virus-
host PPI is not sufficient to warrant infection, yet attachment of
the virus to a cellular receptor is a necessary condition and the
initial step of viral entry which has been used previously as a
decisive parameter for AdV infectivity by Hoffman et al.
(Hoffmann et al., 2007; Hoffmann et al., 2008). We cannot
accurately model, however, whether the viral interaction will
cause its internalization or any further viral pathogenesis
within the host cell. Taking these constraints into account, we
used PPI as a basis for infection prediction. To this end, we
applied a machine-learning, more specifically support vector
machine (SVM), based methodology to develop the ML-
AdVInfect predictor that uses virus-host PPI predictions from
several tools in addition to the taxonomy data. This predictor is
the first of its kind to carry the interaction prediction forward to
anticipate whether adenoviral infection may occur in a given host
species. The approach herein referred to yields a versatile and
promising method to predict the occurrence of infection,
investigate host-specificity, and anticipate cross-species
transmissions for viral infections.
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BACKGROUND

Adenoviral Receptors
The adenoviral receptors included in the present study contains
molecules that were characterized specifically as the primary,
proteinaceous, surface receptor for at least one HAdV type
according to the available literature, excluding glycan-based
interactions, interactions with secretory proteins, as well as
any other molecular interactions which are auxiliary in nature.
Based on the said criteria, we curated the set of receptors
composed of coxsackie and adenovirus receptor (CAR), cluster
of differentiation (CD) 46, CD80 and CD86, desmoglein-2
(DSG2), integrin subunit alpha-V (ITAV), macrophage
scavenger receptor 1 (MSR1), and lung macrophage scavenger
receptor SR-A6 (MARCO) and a brief overview on individual
receptors and experimental methodology of receptor
identification is given below (Lasswitz et al., 2018; Stasiak and
Stehle, 2020).

CAR is a member of the junction adhesion molecule (JAM)
family within the immunoglobulin (Ig) superfamily and is present
in specialized intracellular junctions. CAR functions as a receptor
for all HAdV species, except for the B species and interacts with
the knob domain of the viral fiber protein (Tomko et al., 1997).
CD46, also known as membrane cofactor protein (MCP), is
expressed on all nucleated cells and belongs to the family of
regulators of complement activation. For most species B HAdVs,
which do not bind CAR, CD46 was shown to function as a cellular
receptor (Gaggar et al., 2003). CD80 and CD86 are expressed on
the cell surface of human dendritic cells and mature B
lymphocytes (Caux et al., 1994). Species B AdVs use CD80
and CD86 as receptors and the fiber knob domain is required
for the interaction (Short et al., 2006). DSG2 is a protein that
belongs to the cadherin superfamily and was identified as the
main receptor for HAdV-3, -7, -11, and -14. Unlike CD46
interactions, high-affinity binding to DSG2 requires both
penton base and fiber protein (Wang et al., 2011). Integrins
are a family of transmembrane heterodimers combining into
24 proteins in vertebrates which are engaged in a plethora of
cellular functions. AdVs employ various integrins via their
penton protein to mainly act as co-receptors. However, in a
setting with little to no CAR expression, certain integrins from the
group of the αv integrins were shown to function as a primary
receptor. (Lyle and McCormick, 2010; Nestić et al., 2018).
Scavenger receptors constitute a large group of membrane-
bound receptors. The interaction with MSR1, also designated
as SR-A and CD204, was shown to be responsible for liver uptake
of HAdV5 (Haisma et al., 2009). Mutational analysis of AdV
capsid proteins and in vivo administration in mice revealed that
the SR-A interaction is mediated by the hypervariable regions of
the AdV hexon protein (Piccolo et al., 2013). Similarly, in murine
alveolar macrophage-like MPI cells MARCO was shown to be an
entry receptor for HAdV-C5 and hexon protein was suggested to
be relevant to the viral ligand (Stichling et al., 2018).

The most commonly used strategies to explore any protein-
protein interactions (PPIs) are yeast two-hybrid (Y2H) and
affinity-purification mass spectrometry (AP-MS), in addition
to other experimental modalities of array-based screening as

well as flow cytometry-based binding assays, immunoadhesin/
co-immunoprecipitation, luminescence, protease assays, surface
plasmon resonance (SPR) and Förster Resonance Energy
Transfer (FRET)-based techniques. In order to identify host
factors of viral infection, initially, virus overlay protein binding
assays (VOPBAs) were employed. For example, VOPBA
successfully identified the AdV receptor CD46, among others
(Gaggar et al., 2003) https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7094377/- bb0405. Likewise, DSG2 was confirmed as a
HAdV-3 receptor through binding assays including surface
plasmon resonance and gain and loss of function assay. For
follow-up analysis and validation of screening hits, genetic and
drug-based validation methods including CRISPR/Cas9 and
RNA interference are also being utilized. Syrian hamster
models have been developed as an animal model for oncolytic
species C HAdV vectors; however, AdV receptor studies are
otherwise based on cell culture models. From a structural
biological point of view, among the primary AdV receptors,
only CAR and CD46 have solved structures in complex with
their adenoviral ligands according to the entries in Protein Data
Bank (PDB) database (Kilcher and Mercer, 2014; Brito and
Pinney, 2017; Lasswitz et al., 2018; Hensen et al., 2020; Li
et al., 2020; Stasiak and Stehle, 2020).

Machine Learning-Based PPI Prediction
Tools
So far, several computational methods have been developed to
predict virus-host protein interactions. As the publicly available
virus-host PPI data increased, the emphasis on this subject has
recently been shifted to machine-learning-based computational
techniques to identify virus-host PPIs. PPI prediction tools have
been developed based on different machine-learning models such
as support vector machines (SVM) (Shen et al., 2007; Cui et al.,
2012; Eid et al., 2016), random forest (RF) (Yang et al., 2020) and
gradient boosting machine (XGBoost) (Basit et al., 2018; Chen
et al., 2020).

An algorithm for predicting PPIs mediated by mimicked short
linear motifs (SLiM) between HIV-1 and human has been
developed by Becerra and colleagues (Becerra et al., 2017).
Also, Eid and colleagues introduced an SVM-based virus-host
PPI prediction model, called DeNovo, which uses amino acid
sequence similarity-based features (Eid et al., 2016). Based on
three PPI sets, containing several bacterial and human protein
interactions, DeNovo achieved an average accuracy, sensitivity,
and specificity of 97%, 94.5%, and 97.5% respectively. The most
important feature that distinguishes DeNovo from other SVM-
based prediction tools is that it employs a sequence similarity-
based strategy for sampling the negative virus-host PPI data set
for SVM training. The DeNovo sampling strategy has inspired
other researchers to develop new virus-host PPI methods.
HOPITOR, an XGBoost classifier-based host-pathogen
predictor, is another method using the DeNovo sampling
strategy. However, the sequence similarity between the
different virus and host types is rather low. As a consequence,
sequence similarity-based prediction methods have some
limitations. To cope with this problem, Zhou and colleagues
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applied Naive Bayes, RF, and SVM models on feature vectors
derived from amino acid compositions of interacting host-virus
proteins and introduced another SVM-based tool called
VirusHostPPI (Zhou et al., 2018). VirusHostPPI has been
compared with two different methods, including DeNovo (Eid
et al., 2016) and Barman’s SVM (Barman et al., 2014), and it
achieved an accuracy of 84.47%–79.95%, the sensitivity of
80.00%–76.14% and specificity of 88.94%–83.77% against
DeNovo and Barman’s SVM, respectively. As a result of the
latest efforts in virus-host PPI prediction, Yang and colleagues
introduced a doc2vec embedding-based RF classifier called
InterSPPI-HVPPI. Using Barman et al.’s dataset, InterSPPI-
HVPPI achieved 79.17% accuracy, 81.85% sensitivity, and
76.45% specificity.

In a similar manner to the overall experience in other research
fields, the number of machine learning-based approaches to
virus-host interaction prediction has been increasing rapidly
over time, bringing a gradual decrease in the difference of
performances between the developed methods. Besides,
considering the host and pathogen diversity, it would be more
efficient to develop new PPI prediction methods using ensemble
learning techniques instead of highlighting a single method in the
literature. Ensemble learning-based approaches use multiple
learning algorithms to achieve greater predictive performance
than is possible from any single of the constituent learning
algorithms alone (Polikar, 2006; Rokach, 2010).

Here, we introduce a machine-learning-based methodology to
predict AdV infections based on the utilization of an ensemble of
available virus-host PPI prediction tools.

MATERIALS AND METHODS

Identification of Adenovirus Hosts
We constructed a library of AdV hosts using the UniProt
knowledgebase (UniProtKB Release 2020_02) (The UniProt,
2017), the Virus-Host DB (Mihara et al., 2016), and the
National Center for Biotechnology Information GenBank
(Clark et al., 2016). We initially created a list of host
organisms using the curated “Virus Hosts” information
available in UniProtKB for the “Adenoviridae” family, primary
hosts curated in Virus-Host DB, and hosts curated in GenBank
records for Adenoviridae complete genomes. Next, we parsed out
the hostnames out of the AdV species names (e.g. “Human” for
Human Adenovirus). The hostnames from both steps were
further curated to obtain a species (or subspecies) level host
organism nomenclature, reviewing the related literature and/or
sequence submission records (e.g. “Gallus gallus” for UniProt:
R4N0P7, rather than “fowl”). The list of infecting AdV species is
also curated for each host and AdV–host pairs are generated.

Creation of Adenovirus Host Receptor
Protein Sets
We identified orthologs of AdV receptors in the hosts using a
sequence similarity-based approach. We initially compiled the
human protein sequences for the list of receptors we have

manually curated, namely CAR/CXAR (UniProt Accession:
P78310), CD46 (UniProt Accession: P15529), CD80 (UniProt
Accession: P33681), CD86 (UniProt Accession: P42081), ITAV
(UniProt Accession: P06756), DSG2 (UniProt Accession:
Q14126), MSR1 (UniProt Accession: P21757), and MARCO
(UniProt Accession: Q9UEW3). Human receptors are selected
as a starting point, as human is the most well-studied AdV host.
We ran BLAST (Altschul et al., 1990) searches with human
receptor proteins (as query sequences) against locally
downloaded protein sequences from UniProtKB for all the
hosts with complete proteomes based on the UniProt
Proteomes database. Availability of complete proteome was
applied as a criterion to make sure that all orthologs are
potentially represented in the respective proteomes. We parsed
BLAST results to identify orthologs from various hosts using
e-value and overlap thresholds. As CAR is the first-identified and
most well-studied receptor in mammalian hosts, our aim was to
be able to catch all the CAR orthologs in 40 host organisms in the
study through BLAST searches. Moreover, we tried to avoid
partial CAR orthologs or fragments. Thus, we tried different
BLAST e-value and overlap thresholds, and the e-value (<1e-20)
and overlap (>66%) thresholds were chosen to maximize the
number of full-length orthologs of CAR receptors.

Creation of Adenovirus Fiber Protein Sets
In order to compile a comprehensive set of AdV fiber proteins, we
initially curated a fiber protein synonym list using UniProtKB
adenoviridae entries to cope with naming inconsistencies.
“Fiber,” “fibre,” “fiber protein,” “fiber homolog,” “protein
fiber,” “fibre protein” and “fibre homolog” were among the
few terms we identified as possible names assigned for the
fiber protein orthologs. We then used UniProt website REST
API and our terms to retrieve AdV fiber proteins. Furthermore, to
account for uncharacterized fiber proteins (i.e. uncharacterized
protein or hypothetical protein, or unknown), we BLAST’ed a
local database of AdV sequences using the curated fiber proteins
using the same e-value and overlap thresholds described in
Section Creation of Adenovirus Host Receptor Protein Sets.

Preparing Dataset for Adenovirus Infection
Prediction
To apply machine learning classification algorithms to predict
adenoviral infection, we created a dataset containing AdV–host
pairs. The dataset contained all possible host and AdV pairs,
where hosts are from the final list at Section Creation of
Adenovirus Host Receptor Protein Sets and AdVs are the ones
that have the fiber proteins as identified in Section Creation of
Adenovirus Fiber Protein Sets.

For each AdV and host species pair, we computed a feature
vector with two major components and a class label. The first
component is predictions of virus–host protein interaction for
AdV fiber protein and host receptors; the basic prerequisite for
adenoviral infection. The second component is which was
incorporated to account for a potential taxonomic preference
toward host receptors. Finally, the class label indicates whether
the AdV in question is known to infect the respective host based
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on the known AdV–host pairs generated in Section Identification
of Adenovirus Hosts.

To serve as the first component of the feature vector, we
utilized four virus–host PPI predictors with their respective
default parameters DeNovo (run locally, using a dissimilarity
threshold of 0.8), HOPITOR (run locally, with default
parameters), VHPPI (online version1 with default parameters),
and InterSPPI-HVPPI (run locally, using default specificity
threshold of 0.95 as per its web site2). In an attempt to factor
in the strengths and weaknesses of individual virus-host PPI
prediction tools, and their varying prediction performance for
different receptors, we applied a stacking-like ensemble technique
using DeNovo, HOPITOR, VirusHostPPI, and InterSPPI-HVPPI
models. For each one of 10,237 AdV–host pairs, 4 interaction
predictions were computed per receptor which resulted in 32
predictions (4 predictors; DeNovo, HOPITOR, VirusHostPPI,
and InterSPPI-HVPPI x 8 receptors; CAR, CD46, CD80, CD86,

ITAV, DSG2, MSR1, and MARCO). Each feature in this
component had a binary value; either 1 (interacting) or 0
(otherwise). For practical purposes, the lack of a specific host
receptor is treated as if there were no interaction between that
receptor and the fiber protein.

As the second component, we captured host taxa at four
taxonomic levels; genus, family, order, and class. National
Center for Biotechnology Information (NCBI) Taxonomy
Database was used to gather the taxon of each organism
(Federhen, 2012).

Finally, the infection class label, for each AdV–host pair, is
computed to constitute the ground truth as to whether that
particular AdV infects that respective host. For this purpose,
we looked at the host portion in the pair to see whether it is
identical to the known host of the AdV in that pair (e.g., the
known host for human AdV is “homo sapiens”). If these two are
identical, class label 1 is assigned as an indication of infection
under the assumption that there are no cross-species
transmission, while 0 is assigned as an indication of AdV
being not infectious for the host in question. Consequently,
the feature vectors with class label 1 (one) form the positives
(i.e., adenoviral infection happens) while those with class label 0
(zero) form the negatives of our dataset.

An illustration of the creation of a Dataset for Adenovirus
Infection Prediction is provided as part of Figure 1.

Creation of Adenovirus Infection Prediction
Models
We used machine learning classification algorithms RF, SVM,
and Multilayer Perceptron (MLP) on the dataset described in
Section Preparing Dataset for Adenovirus Infection Prediction.
The algorithms were chosen based on their use and reported
performance on similar problems in bioinformatics such as virus-
host protein interaction prediction (See Background). To cope
with the class imbalance problem between the number of
positives (i.e. adenoviral infection happens) and negatives, we
employed random oversampling of minority positives set during
the training of the infection prediction model. We experimented
using one level of host taxa (genus, family, order, or class) at a
time as part of feature vectors. For the classification algorithms
requiring numerical values, host taxa which is a categorical
feature are encoded using the label encoder in Scikit-Learn.
For each machine learning classification algorithm, we first
split our dataset into a training set (the 80% portion) to
conduct hyperparameter tuning and a test set (the 20%
portion) to assess respective performances. During
hyperparameter tuning, we used 10-fold cross-validation where
we first split the training set into 10 folds and then applied
random oversampling on 9 folds which were used for training the
classification model and then tested the model performance on
the remaining 1 fold. It has been documented that oversampling
and undersampling leads to similar performances, provided that
the sampling is correctly implemented on the training folds, as we
have done, during the cross-validation (Blagus and Lusa, 2015).
Following the hyperparameter tuning, the best models trained on
the training test (the 80% portion) are used to classify the test set

FIGURE 1 | Workflow for creation of adenoviral infection prediction
models from left to right: Creation of feature vector based on virus-host PPI
predictors, host taxa, and infection class; partitioning of the dataset according
to the class. Finally, creation of an infection predictor through various
machine-learning algorithms such as RF, SVM, and MLP.

1http://165.246.44.47/VirusHostPPI/Prediction
2http://zzdlab.com/hvppi/predict.php
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for assessment of the model performances. The following
performance metrics to compare our models where TP, FP,
TN and FN represent the number of true positives, false
positives, true negatives and false negatives, respectively.
True positives (TP) contain host proteins which are
predicted to correctly interact with a virus protein. True
negatives (TN) are non-interactive host proteins that are
correctly predicted to be non-interacting with a virus
protein. False Positive (FP) is a non-interactive host protein
that is wrongly predicted to interact with a virus protein. False
negatives (FNs) are host proteins that are wrongly predicted to
interact with a virus protein.

Precision measures the ability or quality of a measurement to
be consistently reproduced.

Precision � TP
TP + FP

Sensitivity measures the proportion of true positives that are
correctly identified.

Sensitivity � Recall � TPR � TP
TP + FN

Specificity measures the proportion of true negatives.

Specificity � TN
TN + FP

Accuracy is how close a measured value is to the actual (true)
value.

Accuracy � TP + TN
TP + TN + FP + FN

F-Score is a measure of a model’s accuracy on a dataset. It is
used to evaluate binary classification systems, which classify
examples into “positive” or “negative”.

F − Score � 2pPrecisionpRecall
Precision + Recall

Area Under Curve (AUC) refers to the area under the receiver
operating characteristics curve which is one of the most
important evaluation metrics for checking any classification
model’s performance. It tells how much the model is capable
of distinguishing between classes.

Area Under Curve � ∫
b

a

f (x)dx

Matthew’s Correlation Coefficient (MCC) is used in machine
learning. It is a measure of the quality of binary (two-class)
classifications.

MCC � TPpTN − FPpFN�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
All the machine learning models are implemented using

Scikit-Learn library (2020b) and random oversampling was
implemented using the imbalanced-learn toolbox (Lemâıtre
et al., 2017) for the Python programming language. Unless

otherwise is specified, the default parameters of respective
implementations of RF, SVM, and MLP were used.

An illustration of the flow of our work steps from the creation
of Dataset for Adenovirus Infection Prediction until the creation
of Adenovirus Infection Prediction Models is provided in
Figure 1.

RESULTS

Adenovirus Host/Receptor and Fiber
Protein Sets
The identification of AdV hosts resulted in 297 unique species as
potential host species. The majority of the hosts (n � 179) are
mammalians and primates predominate this class. Once these
hosts were sorted out based on the availability of the complete
proteomes in UniProt, the remaining 40 host species were
included in our final set of hosts. See Supplementary Table
S1 for a full list of identified hosts as well as the information as to
whether complete proteome data for the relevant host is available
or not. Our results further confirm that the AdVs infect a wide
variety of organisms including mammals, lizards, birds, turtles,
and frog and toads (See Figure 2).

Out of 40 host species, CAR is found in 32 organisms, CD46 in
25, CD80 in 23, CD86 in 33, ITAV in 36, DSG2 in 38, and the
scavenger receptors MSR1 andMARCO exist in 25 and 17 of these
host species, respectively. For each of the 40 host species, the
UniProt accession numbers for existing receptors are provided in
Supplementary Table S2. As a validation, we have compared the
identified receptors’ orthologs against the respective orthologs
recorded in the OrthoDB database (Kriventseva et al., 2019).
Our orthologs included all those recorded in OrthoDB, and
further included some additional uncharacterized orthologs (eg.
UniProtKB: M3Y0B3 as a CD86 ortholog in Mustela furo).

Our set of AdV fiber proteins is composed of 254 fiber proteins.
A full list of these proteins together with the adenoviruses they
belong to is provided in Supplementary Table S3.

Dataset for Adenovirus Infection Prediction
Our dataset contains a total of 10,237 AdV–host pairs, of which
220 are from the positive class and 10,017 are from the negative
class. For each AdV–host pair, each one of the 4 virus–host PPI
prediction tools was used separately to make predictions for 8 host
receptors. The prediction results where 1 indicates interaction and
0 indicates either no interaction or non-existence of the
corresponding receptor are provided in Supplementary Table S4.

We compared the prediction results for our dataset using the
correlation coefficients between individual virus–host PPI tools
which are provided in Table 1. The coefficient correlations
between the tools range between 0.13 and 0.79. InterSPPI-
HVPPI produced a rather low number of positive predictions
for the entire set of the receptors which is attributable to its
conservative nature. Therefore, it has been excluded from the
correlation with the other tools. The longer proteins, which are
DSG-2 and ITAV (ca. 1000 amino acids) had the poorest
correlation which suggests a size-dependency in the prediction
of these tools.
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The highest correlation, on average, is between DeNovo and
VHPPI followed by DeNovo and HOPITOR. The variance of
correlations between the tools per receptor reinforces the use of
an ensemble of virus-host PPI prediction tools rather than opting for
a single one. As none of these tools correlate 100%, we anticipate
each will complement each other and boost the overall performance
of virus–host PPI prediction. We also validated PPI predictions
against public databases. We checked PHISTO and identified that it
names only human adenoviral receptor CAR and its interactions

with human AdV2 and human AdV12 fiber proteins which we
checked against the results from 4 PPI prediction tools and
confirmed that all 4 predicted these interactions correctly.

Comparison of Adenovirus Infection
Prediction Models
We have used training set (the 80% portion) of our dataset which
was generated as described in Section Creation of Adenovirus

FIGURE 2 | The taxonomic distribution of identified host species by A) genus B) family C) order, and D) class.

TABLE 1 | Correlation coefficients of PPI predictors by adenoviral receptor.

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo

CAR VHPPI 1.00 CD46 VHPPI 1.00
HOPITOR 0.52 1.00 HOPITOR 0.41 1.00
DeNovo 0.79 0.51 1.00 DeNovo 0.55 0.54 1.00

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo
CD80 VHPPI 1.00 CD86 VHPPI 1.00

HOPITOR 0.14 1.00 HOPITOR 0.21 1.00
DeNovo 0.38 0.57 1.00 DeNovo 0.31 0.48 1.00

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo
ITAV VHPPI 1.00 DSG2 VHPPI 1.00

HOPITOR 0.13 1.00 HOPITOR 0.13 1.00
DeNovo 0.31 0.17 1.00 DeNovo 0.52 0.23 1.00

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo
MSR1 VHPPI 1.00 MARCO VHPPI 1.00

HOPITOR 0.35 1.00 HOPITOR 0.50 1.00
DeNovo 0.49 0.44 1.00 DeNovo 0.79 0.66 1.00
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Infection Prediction Models for hyperparameter tuning of SVM-,
RF-, and MLP-based models for adenoviral infection prediction.
SVM was tested with several kernels (polynomial, radial basis
function (RBF), and sigmoid) and gamma values (default � auto,
1, 10). For SVM, the highest sensitivity and AUC scores were
consistently achieved with the RBF and otherwise default
parameters. We experimented with MLP with activation
functions ReLU and tanh along with the different hidden layer
configurations. For MLP, tanh yielded the highest sensitivity and
AUC scores with a hidden layer configuration of [16, 4]. RF was also
experimented with several parameters including depth (50, default
� 100, 150), number of trees, and split metrics (gini and entropy)
where the best sensitivity and AUC scores were attained with the
depth � 16, number of trees � 50, and split metrics � entropy. The
results from hyperparameter tuning which were carried out without
the host taxa are available in Supplementary Table S5.

The performance metrics were computed on the test split (the
20% portion) for the best SVM-, RF-, and MLP-based models
which are identified through hyperparameter tuning. The
80%–20% train-test split was repeated 100 times and the mean
values and standard deviation are reported in Table 2. For our
study, we favored higher sensitivity models since our main focus
was correctly predicting infection. The implementation of the
SVM algorithm yielded the best performance in terms of
sensitivity for infection prediction for our particular dataset
for all the experiments (bolded in Table 2) we conducted with
or without the inclusion of the host taxa levels.

According to our findings, the inclusion of the host taxa level
led to a slight performance improvement in terms of sensitivity,
specificity and MCC. Although it was informative to see the
potential benefit of inclusion of host taxa to overall predictor
performance, we wanted to avoid any bias introduced by our
dataset’s limited representation of the real taxonomic diversity of

AdV hosts. Hence, we decided to exclude host taxa level in
training models at the moment, while deferring the inclusion
of host taxa to a later iteration of ML-AdVInfect when more AdV
host complete proteomes become available.

For the reasons mentioned above, in this study, we chose SVM
with RBF kernel model over alternative models trained without
host taxa level. The analysis reported in Section Discussion is
based on this model. Supplementary Table S4 also includes the
infection predictions of this SVM with RBF kernel-based model.

In order to assess the infection prediction power of a single
receptor and a single PPI prediction tool, we used the same set of
machine-learning algorithms and parameters as in our
hyperparameter tuning experiments described above for the
overall AdV infection prediction model. The results for
hyperparameter tuning for single receptor/PPI prediction tool
experiments, which were carried out without the host taxa, are
available in Supplementary Table S6. In turn, the performance
metrics computed for the test set are available in Supplementary
Table S7. Based on their performance metrics, we conclude a
single-receptor-based or single-PPI-predictor-based infection
prediction model is not achievable.

DISCUSSION

AdVs are infectious microorganisms that are particularly harmful
to elderly and immunocompromised individuals. Along with
their clinical importance, AdVs have further implications as
they are promising vectors for gene and vaccine delivery.
Therefore, adenoviral interactions with their hosts have been
extensively searched. To the best of our knowledge, on the other
hand, there is no computational model to estimate whether AdV
can cause an infection or not in a given host. The model we

TABLE 2 | Performance metrics of adenoviral infection prediction models. RBF, Radial Basis Function; AUC, Area Under the Curve; MCC, Matthew’s Correlation Coefficient.

Host taxa
level

Classifier Sensitivity Specificity Accuracy F-score MCC AUC

Genus SVM (kernel = “rbf,” gamma = “auto”) 0.92 ± 0.009 0.86 ± 0.047 0.92 ± 0.009 0.96 ± 0.005 0.39 ± 0.035 0.89 ± 0.023
MLP (activation � “tanh,” hidden layer�(16,4)) 0.95 ± 0.009 0.73 ± 0.064 0.94 ± 0.009 0.97 ± 0.005 0.40 ± 0.045 0.84 ± 0.031
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.96 ± 0.006 0.70 ± 0.071 0.95 ± 0.006 0.98 ± 0.003 0.42 ± 0.043 0.83 ± 0.035

Family SVM (kernel = “rbf,” gamma = “auto”) 0.91 ± 0.009 0.84 ± 0.057 0.91 ± 0.008 0.95 ± 0.005 0.36 ± 0.031 0.88 ± 0.027
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.012 0.72 ± 0.064 0.94 ± 0.011 0.97 ± 0.006 0.37 ± 0.048 0.83 ± 0.031
Random forest (number of trees � 50, criterion �
“entropy”, max_depth � 16)

0.95 ± 0.007 0.66 ± 0.068 0.95 ± 0.007 0.97 ± 0.004 0.38 ± 0.043 0.81 ± 0.033

Order SVM (kernel = “rbf,” gamma = “auto”) 0.91 ± 0.009 0.82 ± 0.057 0.90 ± 0.009 0.95 ± 0.005 0.34 ± 0.028 0.86 ± 0.027
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.011 0.70 ± 0.075 0.94 ± 0.011 0.97 ± 0.006 0.37 ± 0.051 0.82 ± 0.038
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.95 ± 0.007 0.66 ± 0.070 0.95 ± 0.007 0.97 ± 0.004 0.37 ± 0.040 0.81 ± 0.034

Class SVM (kernel = “rbf,” gamma = “auto”) 0.88 ± 0.011 0.82 ± 0.061 0.88 ± 0.010 0.93 ± 0.006 0.30 ± 0.028 0.85 ± 0.029
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.010 0.68 ± 0.067 0.93 ± 0.010 0.97 ± 0.005 0.35 ± 0.043 0.81 ± 0.032
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.95 ± 0.007 0.63 ± 0.071 0.94 ± 0.007 0.97 ± 0.004 0.35 ± 0.043 0.79 ± 0.035

None SVM (kernel = “rbf,” gamma = “auto”) 0.88 ± 0.011 0.83 ± 0.064 0.88 ± 0.010 0.93 ± 0.006 0.30 ± 0.029 0.86 ± 0.030
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.009 0.68 ± 0.079 0.93 ± 0.008 0.96 ± 0.005 0.34 ± 0.043 0.81 ± 0.038
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.95 ± 0.007 0.63 ± 0.072 0.94 ± 0.007 0.97 ± 0.004 0.35 ± 0.041 0.79 ± 0.035

Bolded value indicates the implementation of the SVM algorithm yielded the best performance in terms of sensitivity for infection prediction for our particular dataset for all the experiments.
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propose here encompasses a machine learning-based approach to
predict the infection capacity of AdVs.

In our study, we favored models trained without host taxa level
as our dataset is not necessarily a representation of a wide
diversity of AdV hosts. The highest sensitivity predictor
among these models was based on SVM with RBF kernel with
performance metrics sensitivity, specificity, and AUC 0.88 ±
0.011, 0.83 ± 0.064, and 0.86 ± 0.030, respectively. Our
preference for favoring sensitivity rather than specificity is
tailored toward our main goal of correctly predicting infection,
but our approach does not preclude favoring higher specificity
models such as MLP and RF.

In our analysis, we also identified that a single-receptor-based
or single-PPI-predictor-based infection prediction model is not
achievable. Yet, the overall performance of ML-AdVInfect
demonstrates the utility of a stacking-like ensemble of PPI
predictors for infection prediction.

In bioinformatics, several machine learning problems have
to handle class-imbalanced data. Ours is not an exception to
this. Oversampling techniques to randomly add instances
from the minority class or undersampling techniques to
randomly drop instances from the majority class are widely
used on such imbalanced data (Radivojac et al., 2004; Taft
et al., 2009; Kim and Choi, 2014; Li et al., 2014). Yet, as long as
the cross-validation is implemented correctly, choice of
sampling results in similar model performances (Radivojac
et al., 2004). In the light of this, we have opted for
oversampling with a correct implementation in the cross-
validation process.

According to the documented results in the literature, the
available virus–host PPI prediction tools (see Background) have
varying performance. The level of agreement between the
individual tools was limited based on our correlation analysis
(coefficients at a range of 0.13–0.79). This was our main
motivation behind using an ensemble of these tools for
infection prediction. As our model strictly relies on the
performance and use of virus–host PPI prediction tools,
improvement in the performance of existing ones and/or the
introduction of newly developed ones may help to attain better
infection predictions.

We have addressed the main adenoviral entry mechanism into
the cells, namely, binding to the primary membrane receptor on
the host cell by the viral ligand (namely, CAR, CD46, CD80,
CD86, ITAV, DSG2, MSR1, and MARCO) yet it is worth to
emphasize that occurrence and spread of adenoviral infection
may also make use of interactions between non-proteinaceous
portions of molecules, viral binding to soluble host proteins,
secondary interactions between the virus and host, as well as the
internalization of the virion through caveolin- or clathrin-
dependent mechanisms. Similarly, ligand-wize, our dataset
comprises merely the AdV fiber proteins which are the most
common but indeed are not necessarily the only domain of viral
binding. Here, we pursued an approach to ensure the proven
determinants of infection are encompassed through manual
curation of a set of receptors. This approach can be expanded

from both virus and host side to accommodate other interacting
proteins if needed.

Although we tried to identify primary human adenoviral
receptors and their orthologs to our best effort, we cannot rule
out the possibility that there may still be uncharacterized
proteins in various hosts or partially sequenced host
genomes. Hence, we restricted our dataset to include 40
complete proteomes as curated by UniProt. As a future
insight, completed proteomes might be added to this dataset
as they become available.

Cross-species transmission of viruses corresponds to the
capacity of a virus species to infect other host organism(s) in
addition to its original host. In order to assess the capability
of our predictor in detecting a potential interspecies shift, we
further investigated the false positives of our best predictor,
namely the SVMmodel with RBF kernel, as they might as well
catch a cross-species transmission event. Of our false-
positive results, 15% accounts for the cases where a HAdV
infects another non-human primate which is a well-
established zoonotic shift of AdVs (Hoppe et al., 2015).
Furthermore, in 26% of the cases a primate AdV was
predicted to infect another primate which could
potentially be an indication of cross-species transmission.
For the primates, we did a literature review and inspected
Virus-Host DB. One of our false positive predictions refers to
the human infection caused by a titi monkey adenovirus
ECC-2011. We have identified that both Callicebus cupreus
and Homo sapiens were reported as host organisms infected
by this virus. According to the documented transmission
(Chen et al., 2011), a novel adenovirus (TMAdV, titi monkey
adenovirus) was identified in a colony of titi monkeys
confined in a research center who experienced fulminant
pneumonia and hepatitis leading to a devastating outcome;
23 out of 65 monkeys were infected, of whom 18 were lost.
Furthermore, the researcher who was in closest contact with
these monkeys also developed upper respiratory symptoms
and found to be seropositive, and more concerningly, also
had a clinically ill family member with no colony contact who
was as well tested seropositive. Most likely, this new world
monkey colony has acquired the pathogen from an unknown
natural reservoir, but this outbreak implies the offending
pathogen is capable of breaking the species barrier and may
even cause human-to-human transmission. Although
remained at a smaller scale on this particular occasion,
viruses that can cross the species barrier and infect a
broad primate host range may lead to larger epidemics and
therefore needs closer attention. Similarly, AdVs may also be
transmitted within domestic settings, across humans and
domestic animals (Pauly et al., 2015). Out of false
positives, 34 could be attributed to the shift of AdVs host
from human to domestic animals including dog, goat,
and pigs.

The work presented here, namely ML-AdVInfect, is the
first of its kind in terms of allowing adenoviral infection
prediction. As a step toward this predictor, we have also
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constructed a comprehensive dataset of AdV–host
interactions which may accommodate other studies on
AdVs. The proposed approach is an effective predictor to
screen the infection capacity along with anticipating any
cross-species shifts. It is also versatile as it allows
expansion by the addition of novel virus–host PPI
predictors, new host organisms, and newly identified AdV
species. We anticipate such expansions will make positive
contributions to the overall performance of the ML-AdVInfect.
Our approach that is composed of identifying hosts, host–virus
interacting protein pairs, and creating a machine-learning-based
model leveraging individual virus–host PPI prediction tools, can
be adapted for making predictions of infection by other viruses.
As a prospective work, based on our tool ML-AdVInfect together
with its further expansions and/or adaptations, a web platform
with a user interface will also be provided.
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Protein Docking Model Evaluation by
Graph Neural Networks
Xiao Wang1, Sean T. Flannery1 and Daisuke Kihara1,2*

1Department of Computer Science, Purdue University, West Lafayette, IN, United States, 2Department of Biological Sciences,
Purdue University, West Lafayette, IN, United States

Physical interactions of proteins play key functional roles in many important cellular
processes. To understand molecular mechanisms of such functions, it is crucial to
determine the structure of protein complexes. To complement experimental
approaches, which usually take a considerable amount of time and resources, various
computational methods have been developed for predicting the structures of protein
complexes. In computational modeling, one of the challenges is to identify near-native
structures from a large pool of generated models. Here, we developed a deep
learning–based approach named Graph Neural Network–based DOcking decoy
eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE
extracts the interface area and represents it as a graph. The chemical properties of
atoms and the inter-atom distances are used as features of nodes and edges in the graph,
respectively. GNN-DOVE was trained, validated, and tested on docking models in the
Dockground database and further tested on a combined dataset of Dockground and
ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better
than existing methods, including DOVE, which is our previous development that uses a
convolutional neural network on voxelized structure models.

Keywords: protein docking, docking model evaluation, graph neural networks, deep learning, protein structure
prediction

INTRODUCTION

Experimentally determined protein structures provide fundamental information about the
physicochemical nature of the biological function of protein complexes. With the recent
advances in cryo-electron microscopy, the number of experimentally determined protein
complex structures has been increasing rapidly. However, experimental methods are costly in
terms of money and time. To aid the experimental efforts, computational modeling approaches for
protein complex structures, often referred to as protein docking (Aderinwale et al., 2020), have been
extensively studied over the past two decades.

Protein docking methods aim to build the overall quaternary structure of a protein complex from
the tertiary structure information of individual chains. Similar to other protein structure modeling
methods, protein docking can also be divided into two main categories: template-based methods
(Tuncbag et al., 2011; Anishchenko et al., 2015), which use a known structure as a scaffold of
modeling, and ab initio methods, which assemble individual structures and score generated models
to choose most plausible ones. In ab initio methods, various approaches were used for molecular
structure representations (Venkatraman et al., 2009; Pierce et al., 2011). These include docking
conformational searches, such as fast Fourier transform (Katchalski-Katzir et al., 1992; Padhorny
et al., 2016), geometric hashing (Fischer et al., 1995; Venkatraman et al., 2009), and particle swarm
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optimization (Moal and Bates, 2010), as well as considering
protein flexibility (Gray et al., 2003; Oliwa and Shen, 2015).
The development of new methods aims to extend and surpass the
capabilities of simple pairwise docking, such as multichain
docking (Schneidman-Duhovny et al., 2005; Esquivel-
Rodríguez et al., 2012; Ritchie and Grudinin, 2016),
peptide–protein docking (Kurcinski et al., 2015; Alam et al.,
2017; Kurcinski et al., 2020), docking with disordered proteins
(Peterson et al., 2017), docking order prediction (Peterson et al.,
2018a; Peterson et al., 2018b), and docking for cryo-EM maps
(Esquivel-Rodríguez and Kihara, 2012; van Zundert et al., 2015).
Researchers have also applied recent advances in deep learning to
further boost docking performance (Akbal-Delibas et al., 2016;
Degiacomi, 2019; Gainza et al., 2020).

Although substantial improvements have been made in ab
initio protein docking, selecting near-native (i.e., correct) models
out of a large number of produced models, which are often called
decoys, is still challenging. The difficulty is partly due to a
substantial imbalance in the number of near-native models
and incorrect decoys in a generated decoy pool. The accuracy
of scoring decoys certainly determines the overall performance of
protein docking, and thus, there is active development of scoring
functions (Moal et al., 2013) for docking models. Recognizing the
importance of scoring, the Critical Assessment of PRediction of
Interactions (CAPRI) (Lensink et al., 2018), which is the
community-based protein docking prediction experiment, has
arranged a specific category of evaluating scoring methods, where
participants are asked to select 10 plausible decoys from
thousands of decoys provided by the organizers. Over the last
two decades, various approaches have been developed for scoring
decoys. The main categories include physics-based potentials
(Akbal-Delibas et al., 2016; Degiacomi, 2019; Gainza et al.,
2020), scoring based on interface shape (Akbal-Delibas et al.,
2016; Kingsley et al., 2016; Degiacomi, 2019; Gainza et al., 2020),
knowledge-based statistical potentials (Lu et al., 2003; Huang and
Zou, 2008), machine learning methods (Fink et al., 2011),
evolutionary profiles of interface residues (Nadaradjane et al.,
2018), and deep learning methods using interface structures
(Wang et al., 2019).

In our previous work, we developed a model selection method
for protein docking, that is, DOVE (Wang et al., 2019), which uses a
convolutional deep neural network (CNN) as the core of its
architecture. DOVE captures atoms and interaction energies of
atoms located at the interface of a dockingmodel using a cube of 203

or 403 Å3 and judges if themodel is correct or incorrect according to
the CAPRI criteria (Janin et al., 2003). We showed that DOVE
performed better than existing methods. However, DOVE has a
critical limitation—since it captures an interface with a fixed-size
cube, only a part of the interface is captured when the interface
region is too large. This often caused an erroneous prediction. In
addition, a 3D grid representation of an interface often includes
voxels of void space where no atoms exist inside, which is not
efficient inmemory usage andmay even be detrimental for accurate
prediction. In this work, we address this limitation of DOVE by
applying a graph neural network (GNN) (Scarselli et al., 2008; Wu
et al., 2020), which has previously been successful in representing
molecular properties (Duvenaud et al., 2015; Smith et al., 2017; Lim

et al., 2019; Zubatyuk et al., 2019). Using a GNN allows all atoms at
an interface of any size to be captured in a more flexible manner.
The GNN representation of the interface also is rotationally
invariant, meaning arbitrary rotations of a candidate model are
accounted for when training and predicting docking scores. To
the best of our knowledge, this is the first method that applies
GNNs to the protein docking problem. Compared to DOVE and
other existing methods, GNN-DOVE demonstrated substantial
improvement in a benchmark study.

MATERIALS AND METHODS

We first introduce the datasets used for training and testing
GNN-DOVE. Subsequently, we introduce the graph neural
network architecture and the training process of GNN-DOVE.

Docking Decoy Datasets
To train and test GNN-DOVE, we first used the Dockground
dataset 1.0 (available at http://dockground.compbio.ku.edu/
downloads/unbound/decoy/decoys1.0.zip) (Liu et al., 2008).
Docking decoys in this dataset were built by Gramm-X
(Tovchigrechko and Vakser, 2005). The dataset includes 58
target complexes, each with averages of 9.83 correct and 98.5
incorrect decoys. A decoy was considered as correct following the
CAPRI criteria (Lensink et al., 2018), which consider interface
root mean square deviation (iRMSD), ligand RMSD (lRMSD),
and the fraction of native contacts (fnat). The iRMSD is the Cα
RMSD of interface residues with respect to the native structure.
Interface residues in a complex are defined as all the residues
within 10.0 Å from any residues of the other subunit. lRMSD is
the Cα RMSD of ligands when receptors are superimposed, and
fnat is the fraction of contacting residue pairs, that is, residue
pairs with any heavy atom pairs within 5.0 Å, that exist in the
native structure.

To remove redundancy, we grouped the 58 complexes using
sequence alignment and TM-align (Zhang and Skolnick, 2004).
Two complexes were assigned to the same group if at least one pair
of proteins from the two complexes had a TM-score of over 0.5 and
sequence identity of 30% or higher. This resulted in 29 groups
(Table 1). In Table 1, complexes (PDB IDs) of the same group are
shown in lower case in a parenthesis followed by the PDB ID of the
representative. These groups were split into four subgroups to
perform four-fold cross-validation, where three subsets were used
for training, while one testing subset was used for testing the
accuracy of the model. Thus, by cross-validation, we have four
models tested on four independent testing sets. Among the training
set, we used 80% of the complexes (i.e., unique dimers) for training
a model and the remaining 20% of the complexes as a validation
set, which was used to determine the best hyper-parameter set for
training. In the results, the accuracy of targets when treated in the
testing set was reported. To have a fair comparison with DOVE
(Wang et al., 2019), DOVEwas also newly trained and tested using
this protocol.

Subsequently, we further trained and validated the GNN-
DOVE network with a combined dataset of Dockground (ver
1.0) and ZDOCK (ver 4.0) (Hwang et al., 2010), which includes 58
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target complexes from Dockground and 120 target complexes
from ZDOCK. ZDOCK has 110 more targets, but they were
discarded because either GOAP (Zhou and Skolnick, 2011) or
ITScore (Huang and Zou, 2008) failed to process them, or fnat
could not be computed due to inconsistency of the sequence in
the structures provided in the ZDOCK dataset from the native
complex structure in PDB. The same criteria mentioned above
were used to group the targets into 71 groups. Among them, we
used 45 groups for training, 11 groups for validation, and 15
groups (19 complexes) for testing. Since a decoy set for each
target in ZDOCK is much larger (around 54,000) than
Dockground, we reduced the number of ZDOCK decoys for a
target to 400. Up to 200 correct decoys (i.e., decoys with an
acceptable or higher CAPRI quality) were selected if available,
including at most 50 high-quality decoys, at most 50 medium-
quality decoys, and the rest were selected from acceptable quality
decoys. Then, the remaining 400 decoys were filled with negative
decoys. One-third of negative decoys were selected from those
with an iRMSD less than 7 Å, another third came from those with
an iRMSD between 7 and 10 Å, and the rest came from those with
ones with an iRMSD over 10 Å.

Finally, we tested GNN-DOVE on decoy sets of 13 targets in
the CAPRI Score_set (Lensink and Wodak, 2014), which consists
of 13 scoring targets from the CAPRI round 13 to round 26
(Janin, 2010; Janin, 2013). Each decoy set included 500 to 2,000
models generated using different methods by CAPRI
participants.

The GNN-DOVE Algorithm
In this section, we describe GNN-DOVE, which uses the graph
neural network. The GNN-DOVE algorithm is inspired by a
recent work in drug–target interactions (Lim et al., 2019), which
designed a two-graph representation for capturing
intermolecular interactions for protein–ligand interactions.
We will first explain how the 3D structural information of a
protein–complex interface is embedded as a graph. Then, we
describe how we used a graph attention mechanism to focus on
the intermolecular interaction between a receptor and a ligand
protein. The overall protocol is illustrated in Figure 1. For an
input protein docking decoy, the interface region is identified as
a set of residues located within 10.0 Å of any residues of the
other protein. A residue–residue distance is defined as the
shortest distance among any heavy atom pairs across the two
residues. Using the extracted interface region, two graphs are
built representing two types of interactions: the graph G1

describes heavy atoms at the interface region, which only
considers the covalent bonds between atoms of interface

residues within each subunit as edges. Another graph G2

connects both covalent (thus includes G1 ) and non-covalent
residue interaction as edges, where a non-covalent atom pair is
defined as those which are closer than 10.0 Å of each other.
Both graphs will be processed by a graph neural network
(GNN) to output a score, which is a probability that the
docking decoy has a CAPRI acceptable quality (thus making
higher scores better).

Building Graphs
A key feature of this work is the graph representation of an
interface region of a complex model. Graph G is defined by G �
(V, E, andA), whereV denotes the node set, E is a set of edges, and
A is the adjacency matrix, which numerically represents the
connectivity of the graph. For a graph G with N nodes, the
adjacency matrix A has a dimension ofN*N, where Aij > 0 if the i-
th node and the j-th node are connected, and Aij � 0 otherwise.
The adjacency matrix A1 for graphG1 describes covalent bonds at
the interface and thus defined as follows:

A1
ij � { 1 if atom i and atom j are connected by a covalent bond or if i � j

0 otherwise
.

(1)

The matrix A2 for G2 describes both covalent bonds and non-
covalent interactions between atoms within 10.0 Å to each other.
It is defined as follows:

A2
ij �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1
ij, if i, j ∈ receptor or i, j ∈ ligand

e
−(dij−μ)2

σ , if dij ≤ 10 Å and i ∈ receptor and j ∈ ligand;

or if dij ≤ 10 Å and j ∈ receptor and i ∈ ligand

0, otherwise

(2)

where dij denotes the distance between the i-th and the j-th atoms.
μ and σ are learnable parameters, whose initial values are 0.0 and
1.0, respectively. The formula e−(dij−μ)

2/σ decays as the distance
increases between atoms.

Compared to the previous voxel representation used in
DOVE, the graph representation encodes the distance
information more flexibly and naturally. Note that the
representation is rotationally invariant and any size of
interaction regions can be taken into analysis. Also, memory
usage is more efficient as void spaces are not represented as is
needed for the voxel representation.

TABLE 1 | Dockground dataset splits for training and testing GNN.

Fold PDB ID

1 1A2K, 1E96 (1he1, 1he8, 1wq1), 1F6M, 1MA9 (2btf), 1G20, 1KU6, 1T6G, 1UGH, 1YVB, 2CKH, 3PRO
2 1AKJ (1p7q, 2bnq), 1DFJ, 1NBF (1r4m, 1xd3, 2bkr), 1GPW, 1HXY, 1U7F, 1UEX, 1ZY8, 2GOO, 1EWY
3 1AVW (1bth, 1bui, 1cho, 1ezu, 1ook, 1oph, 1ppf, 1tx6, 1xx9, 2fi4, 2kai, 1r0r, 2sni, 3sic)
4 1BVN (1tmq), 1F51, 1FM9, 1A2Y (1g6v, 1gpq, 1jps, 1wej, 1l9b, 1s6v), 1W1I, 2A5T, 3FAP

There are in total 29 representative targets shown in the upper case; targets in the lower case in a parenthesis indicate that they belong to the same group.
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As for the node features in the graph, we considered the
physicochemical properties of atoms. We used the same features
as used in previous works (Lim et al., 2019; Torng and Altman,
2019) as shown in Table 2. Thus, the length of a feature vector of a
node from Table 2 was 23 (�5 + 6+5 + 6+1), which was embedded
by a one-layer fully connected (FC) network into 140 features.

Attention and Gate-Augmented Mechanism
The constructed graphs are used as the input to the GNN. More
formally, graphs are the adjacency matrix A1 and A2, and the
node features, xin � {xin1 , xin2 , /, xinN } with x ∈ RF , where F is the
dimension of the node feature.

We first explain the attention mechanism of our GNN. With
the input graph of xin, the pure graph attention coefficient is
defined in Eq. 3, which denotes the relative importance between
the i-th and the j-th node:

eij � x′Τi Ex
′
j + x′Τj Ex

′
i , (3)

where x′i and x′j are the transformed feature representations
defined by x′i � Wxini and x′j � Wxinj . W, E ∈ RF×F are learnable
matrices in the GNN. eij and eji become identical to satisfy the
symmetrical property of the graph by adding x′Τi Ex

′Τ
j and x′Τi Ex

′
i .

The coefficient will only be computed for i and j where Aij > 0.
Attention coefficients will also be computed for elements in

the adjacency matrices. They are formulated in the following
form for the element (i, j):

aij �
exp(eij)
∑
j∈Ni

exp(eij)Aij, (4)

where aij is the normalized attention coefficient for the i-th and
the j-th node pair, eij is the symmetrical graph attention
coefficient computed in Eq. 3, and Ni is the set of neighbors
of the i-th node that includes interacting nodes j where Aij > 0.
The purpose of Eq. 4 is to consider both the physical structure of
the interaction,Aij, and the normalized attention coefficient, eij, to
define the attention.

Based on the attention mechanism, the new node feature of
each node is updated by considering its neighboring nodes, which
is a linear combination of the neighboring node features with the
final attention coefficient aij:

FIGURE 1 | Framework of GNN-DOVE. GNN-DOVE extracts the interface region of protein complex and further reconstructs graph with/without intermolecular
interactions as input, then outputs the probability that indicates if the input structure is acceptable or not. (A) Overall logical steps of the pipeline. (B) Architecture of the
GNN network with the gated graph attention mechanism.

TABLE 2 | Atom features.

Features Representation

Atom type C, N, O, S, H (one hot)
The degree (connections) of atom 0, 1, 2, 3, 4, 5 (one hot)
The number of connected hydrogen atoms 0, 1, 2, 3, 4 (one hot)
The number of implicit valence electrons 0, 1, 2, 3, 4, 5 (one hot)
Aromatic 0 or 1
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xi″ � ∑
j∈Ni

aijx′j . (5)

Furthermore, the gate mechanism is further applied to update the
node feature since it is known to significantly boost the
performance of GNN (Zhang et al., 2018). The basic idea is
similar to that of ResNet (He et al., 2016), where the residual
connection from the input helps to avoid information loss,
alleviating the gradient collapse problem of the conventional
backpropagation. The gated graph attention can be viewed as
a linear combination of xi and xi″, as defined in Eq. 6:

xouti � cixi + (1 − ci)xi″, (6)

where ci � σ[D(xi||xi″) + b], D ∈ R2F is a weight vector that is
multiplied (dot product) with the vector xi||xi″, and b is a constant
value. Both D and b are learnable parameters and are shared
among different nodes. xi||xi″ denotes the concatenation vector of
xi and xi″.

We refer to attention and gate-augmented mechanism as the
gate-augmented graph attention layer (GAT). Then, we can
simply denote xouti � GAT(xini ,A). The node embedding can
be iteratively updated by GAT , which aggregates information
from neighboring nodes.

Graph Neural Network Architecture of
GNN-DOVE
Using the GAT mechanism described before, we adopted four
layers of GAT in GNN-DOVE to process the node embedding
information from neighbors and to output the updated node
embedding (Figure 1B). For the two adjacency matrices A1 and
A2, we used a shared GAT. The initial input of the network is
atom features. With two matrices, A1 and A2, we have x1 �
GAT(xin,A1) and x2 � GAT(xin,A2). To focus only on the
intermolecular interactions within an input protein complex
model, we subtracted the embedding of the two graphs as the
final node embedding. By subtracting the updated embedding x1
from x2, we can capture the aggregation information that only
comes from the intermolecular interactions with other nodes in
the protein complex model. Thus, the output node feature is
defined as

xout � x2 − x1. (7)

Then, the updated xout will become xin to iteratively augment the
information through the three following GAT layers. After the
node embeddings were updated by the four GAT layers, the node
embedding of the whole graph was summed up as the entire
graph representation, which is considered as the overall
intermolecular interaction representation of the protein
complex model:

xgraph � ∑
k∈G

xk. (8)

Finally, FC layers were applied to xgraph to classify whether the
protein complex model is correct or incorrect. In total, four FC
layers were applied. The first layer takes 140 feature values from

Eq. 8. The three subsequent layers have a dimension of 128.
RELU activation functions were used between the FC layers, and
a sigmoid function was applied for the last layer to output a
probability value.

The source code of GNN-DOVE is available at https://github.
com/kiharalab/GNN_DOVE.

Training Networks
Since the dataset was highly imbalanced with more incorrect
decoys than acceptable ones, we balanced the training data by
sampling the same number of acceptable and incorrect decoys in
each batch. We sampled the same number of correct and
incorrect decoys. To achieve this, a positive (i.e., correct)
decoy may be sampled multiple times in one epoch of training.

For training, cross-entropy loss (Goodfellow et al., 2016) was
used as the loss function, and the Adam optimizer (Kingma and
Ba, 2015) was used for parameter optimization. To avoid
overfitting, a dropout (Srivastava et al., 2014) of 0.3 was
applied for every layer, except the last FC layer. Models were
trained for 100 epochs with a batch size of 32. Weights of every
layer were initialized using the Glorot uniform (Glorot and
Bengio, 2010) to have a zero-centered Gaussian distribution,
and bias was initialized to 0 for all layers.

First, we performed four-fold cross-validation on the
Dockground dataset (Table 1). For fold 1, where we used the
fold 1 subset as testing and the other three subsets for training and
validation, 16 hyper-parameter combinations with learning rates
of 0.2, 0.02, 0.002, and 0.0002 and a weight decay in Adam of 0,
1e-1, 1e-2, 1e-3, 1e-4, and 1e-5 were tested. Among these
combinations, we found a learning rate of 0.002 with a weight
decay of 0 achieved the highest accuracy on the validation set. We
used this parameter combination throughout the other three folds
in the cross-validation. The training process generally converged
after approximately 30 epochs.

Next, we used the combined dataset of Dockground and
ZDOCK for further training. We adopted transfer learning on
this dataset by starting from the models pretrained on the
Dockground dataset. The training was performed in two
stages: In the first stage, nine hyper-parameter combinations
with learning rates of 0.002, 0.0002, and 0.00002 and weight
decay of 1e-4, 1e-5, and 0 were tested on the fold 1 model. We
found that a combination of a learning rate of 0.0002 and weight
decay of 0 performed the best when evaluated on its validation set.
We used this hyper-parameter combination to train the fold 2, 3,
and 4 models and selected the fold 1 model for further training
because it showed the highest accuracy on the validation set. In
the second stage, we used a smaller learning rate of 0.00002 and
weight decay 0 to further fine tune the fold 1 model for another 30
epochs. The resulting model was evaluated on the testing set of
the combined Dockground and ZDOCK dataset. Further, we
applied the model to the dataset of CAPRI scoring targets.

DOVE
We compared the performance of GNN-DOVE with its
predecessor, DOVE. Here, we briefly describe the DOVE
algorithm. DOVE is a CNN-based method for evaluating
protein docking models. It first extracts the interface region of

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6479155

Wang et al. Docking Model Assessment with GNNs

46

https://github.com/kiharalab/GNN_DOVE
https://github.com/kiharalab/GNN_DOVE
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


an input protein complex model, and the region is put into a
40*40*40 Å3 cube as input. A seven-layer CNN, which consists of
three convolutional layers, two pooling layers, and two fully
connected layers, was adopted to process the voxel input. The
output of DOVE is the probability that indicates whether the
input model is acceptable or not. For input features, DOVE took
atom types as well as atom-based interaction energy values from
GOAP (Zhou and Skolnick, 2011) and ITScore (Huang and Zou,
2008). Since voxelized structure input is not rotationally
invariant, DOVE needed to augment training data by rotations.

RESULTS

Performance on the Dockground Dataset
We evaluated the performance of GNN-DOVE on the
Dockground dataset. GNN-DOVE was compared with DOVE
and five other existing structure model scoring methods, such as
GOAP (Zhou and Skolnick, 2011), ITScore (Huang and Zou,
2008), ZRANK (Pierce and Weng, 2007), ZRANK2 (Pierce and
Weng, 2008), and IRAD (Vreven et al., 2011). The test set results
were reported for GNN-DOVE and DOVE. Both GOAP and
ITScore were run in two different ways. First, as originally
designed, the entire complex structure model was input. The
other way was to input only the interface residues that are within
10 Å of the interacting protein (denoted as GOAP-Interface and

ITScore-Interface). Thus, GNN-DOVE was compared with a
total of eight methods. As for DOVE, we used a cube size of
403 Å3 and heavy atom distributions as input feature because this
setting performed the best among other settings tested on the
Dockground dataset in the original paper (Wang et al., 2020)
(Figure 4 in the paper, the setting was named as DOVE-Atom
40). For this work, DOVE was newly retrained using the same
four-fold cross-validation as GNN-DOVE.

Figure 2 shows the hit rate of GNN-DOVE in comparison
with the other methods. A hit rate of a method is the fraction of
target complexes where the method ranked at least one acceptable
model based on the CAPRI criteria within each top rank. Targets
were evaluated when they were in the heldout testing set from the
four-fold cross-testing we performed. In Figure 2, we show three
panels. Panel A shows the fraction of targets where a method had
at least one hit among each rank cutoff. Panel B shows the hit
rates for a method were averaged first within each of the 29
groups, and then re-averaged over the groups. Panel C shows the
hit rate when targets with similar interface structures were
grouped.

Figure 2 shows that GNN-DOVE (dotted line in light green)
performed better than the other methods. GNN-DOVE was able
to rank correct models within earlier ranks in many target
complexes. Within the top 10 rank, GNN-DOVE achieved a
hit rate of 89.7%, while the next best method, DOVE, achieved
81.0%, and the third best method, GOAP, obtained 70.7%

FIGURE 2 | Performance on the Dockground dataset. GNN-DOVE was compared with DOVE and seven other scoring methods. (A) The panel shows the fraction
of target complexes among the 58 complexes in the benchmark set for which a method selected at least one acceptable model (within top x scored models). (B)
Considering the complexes are grouped into 29 groups, we also compared the hit rate of different methods based on the group classification. The hit rates for complexes
in each group were averaged and then re-averaged over the 29 groups. (C) Results when 46 complex groups were considered that were formed with interface
similarity. The hit rates for complexes in each group were averaged and then re-averaged over the 46 groups.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6479156

Wang et al. Docking Model Assessment with GNNs

47

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


(Figure 2A). When we further compared the hit rates
considering the target groups (Figure 2B), GNN-DOVE
consistently outperformed other methods. The gap between
GNN-DOVE and DOVE against the other existing methods
also increased. Among the other seven existing methods, GOAP
showed the highest hit rate at 5th rank, followed by ZRANK2 in
both panels, while ITScore-Interface had the lowest hit rates on
this dataset. In Figure 2C, we evaluated the methods’
performance when target complexes were grouped
considering their docking interface area similarity, which was
evaluated by TM-Score. For a complex, an interface was defined
as residues that are closer than 10 Å to any residue of the
docking partner. To run TM-align to obtain TM-Score for
two interfaces, we prepared two versions of PDB files for
each interface: one with residues from the receptor first
followed by residues from the ligand and the other with the
opposite order. Then, we computed TM-Score for four
combinations of the files from the two interfaces and
selected the largest TM-Score among them. A pair of
interfaces was grouped if one of the computed TM-score
values of the interface regions was 0.5 or higher. This
process formed 46 groups. The hit rate was computed for
each complex first, then averaged within each group, and
finally re-averaged across 46 groups. GNN-DOVE still
showed the highest hit rate among the methods compared
when considering top 10 ranks.

In Figure 3, we show results on each test set from the four-fold
cross validation. GNN-DOVE showed the highest hit rate in
early ranks.

In Figure 4, we compared iRMSD, lRMSD, and fnat values of
the methods. These metrics are used for defining the quality levels
in CAPRI. The best value among the top 10 ranked decoys was
plotted. For the majority of the cases (49 out of the 58 targets),
GNN-DOVE selected a decoy within an iRMSD of 4 Å (one of the
criteria for the acceptable quality level in CAPRI). This is in sharp
contrast to the other methods (Figure 4A), where the iRMSD of
many targets they selected were larger (worse) than GNN-DOVE.
In terms of iRMSD, the second best method was DOVE, where 44
targets were within an iRMSD of 4 Å. A similar situation was
observed for lRMSD. GNN-DOVE selected a decoy within an
lRMSD of 10 Å (one of the criteria for the acceptable quality level
in CAPRI) for 50 targets, while the second best method, DOVE,
selected 45 targets within 10 Å lRMSD. In terms of fnat (larger
being more accurate), GNN-DOVE only missed 5 targets in
selecting at least one model with an fnat over 0.1 (one of the
criteria for acceptable quality level in CAPRI). The plot shows
that GNN-DOVE had a larger fnat value than the other existing
methods for most of the targets, as indicated by many data points
below the diagonal line.

Figure 4B compares GNN-DOVE against DOVE. In terms of
iRMSD, lRMSD, and fnat, GNN-DOVE outperformed DOVE for
26 targets (22 ties), 27 targets (20 ties), and 27 targets (17 ties

FIGURE 3 | The hit rate is shown for each fold in the cross validation on the Dockground dataset. Protein complexes in the test set of each fold are listed in Table 1.
In the same way as Figure 2A, a hit rate was computed for individual complexes separately and averaged over the complexes. (A) The hit rate of the fold 1 test set. The
model was trained on the fold 2, 3, and 4 subsets. (B) The fold 2 test set. (C) The fold 3 test set. (D) The fold 4 test set.
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targets), respectively. Overall, GNN-DOVE outperformed the
eight existing methods for all three metrics.

T-SNE Analysis
To illustrate how GNN-DOVE classified decoys, we used t-SNE
(Maaten and Hinton, 2008) to visualize GNN-DOVE’s encoding
of decoys in Figure 5. t-SNE is a dimension-reduction method to
visualize similarities of high-dimensional data points. Since we
employed a four-fold cross-validation, a plot was provided for
each of the four testing sets. In all the plots, particularly in Fold 3
and Fold 4, most of the acceptable decoys (black circles) were
distinguished from incorrect ones (gray crosses), which indicates
a good representation and generalization ability of the graph
neural networks for this problem.

Examples of Decoys for Comparison With
DOVE
We mentioned above that a limitation of DOVE is its usage of a
fix-sized cube of 403 Å3, which cannot capture the entire interface
region if the interface is too large to fit in the cube. Here, we show
two examples of such cases, which led to misclassification by
DOVE but correct classification by GNN-DOVE. In Figure 6, the
interface region of a decoy is shown in blue and green, and the
atoms that did not fit in the cube are shown in a sphere
representation in red.

The first example (Figure 6A) shows a decoy of a protein
complex of plasminogen and staphylokinase (PDB ID: 1bui),

which has an acceptable quality by the CAPRI criteria. For this
decoy, 59 atoms (in red) out of 1,022 atoms at the interface were
not included in the cube. Because of this, it was ranked the 65th
out of 110 decoys by DOVE, while it was ranked 15th by GNN-
DOVE. For this target, GNN-DOVE ranked five hits within the
top 10 scoring decoys and eight hits within the top 20. In contrast,
DOVE could not rank any hit within the top 20. The first hit by
DOVE was found at the 35th rank.

The second example (Figure 6B) is an acceptable model for
the nitrogenase complex (PDB ID: 1g20). As shown, many
interface atoms, 497 out of 1,843, were outside the cube.
DOVE ranked this decoy 28th, while GNN-DOVE ranked this
decoy 10th. DOVE had 0 hits within the top 10 and had only one
hit within top 20. On the other hand, GNN-DOVE was very
successful for this target, where all the top 10 selections were
correct models.

Performance on the Combined Dockground
and ZDOCK Dataset
Next, we examined the performance of GNN-DOVE on the 19
complexes in the test set of the combined Dockground and
ZDOCK dataset. In Table 3, we showed the total number of
hits among top 10 ranks by GNN-DOVE and the same five other
methods, that is, GOAP, ITScore, ZRANK, ZRANK2, and IRAD,
as we used in Figures 2–4. GNN-DOVE achieved the highest hit
rate of 0.842, followed by ZRANK with 0.789. GNN-DOVE
ranked at the top among the methods consistently when the

FIGURE 4 | Comparison of iRMSD, lRMSD, and fnat. For each method, the best value among the top 10 scored decoys was plotted. (A) Comparison against all
eight methods. (B) Comparison against DOVE.
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group hit rate was considered. We note that some of the existing
methods performed perfectly for specific complexes, choosing 10
hits within the top 10. However, many methods failed to select
any top hits for other target complexes. In contrast, GNN-DOVE
showed the most stable performance across different complexes.

Performance on the CAPRI Scoring Dataset
Finally, we evaluate GNN-DOVE on another independent
dataset, the CAPRI Score_set. This dataset was chosen to be
able to compare GNN-DOVE on a larger number of existing
methods which participated in the corresponding CAPRI rounds.

FIGURE 5 | t-SNE plots of decoy selection. Decoys from all the testing target complexes in the four different folds in the cross-testing are plotted, which in total
include 580 correct decoys (black circles) and 5,591 incorrect decoys (gray stars). Encoded features of those decoys are taken from the output of the last fully connected
layer of GNN, which is a vector of 128 elements. To visualize the different embedding, we use t-SNE to project them into a 2D space. The four panels correspond to the
embedding of models on the four-fold testing sets.

FIGURE 6 | Examples of decoys with an acceptable quality but not selected within the top 10 by DOVE. Two subunits docked are shown in cyan and light brown,
and the interface regions of the two subunits are presented in the stick representation and in blue and green, respectively. To highlight the missed atoms from the input
cube of DOVE, they are shown in red spheres. (A) A medium-quality decoy for 1bui. iRMSD: 2.54 Å, lRMSD: 2.93 Å, fnat: 0.551. (B) A medium-quality decoy for 1g20.
iRMSD: 2.14 Å, lRMSD: 3.86 Å, fnat: 0.453.
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InTable 4, we show detailed results of GNN-DOVE and the other
five methods for each target. For each method, the number of
decoys within the quality categories of acceptable, medium, and
high (in this order) of the top 10 models are listed.

GNN-DOVE had hits for the largest number of targets, that
is, nine, when decoys of acceptable or higher quality were
considered. When decoys in a medium or higher quality

were considered, ITScore, ZRANK2, and IRAD had hits for
five targets, while GNN-DOVE had hits for three targets. It is
worth noting that GNN-DOVE successfully identified correct
models in two difficult targets, T30 and T35, which only
contained two and three acceptable models in the decoy sets,
while all the other methods failed to select any correct decoys
among the top 10.

TABLE 3 | Performance on the Dockground+ZDOCK testing dataset.

ID GNN-DOVE GOAP ITScore ZRANK ZRANK2 IRAD Total

1AK4 1 10 1 1 7 0 179
1AY7 8 0 3 9 8 8 176
1EER 0 0 0 0 3 0 41
1GLA 5 1 0 8 4 8 165
1HCF 9 0 8 3 3 7 183
1JIW 3 0 2 0 1 2 106
1JTG 8 0 10 10 0 10 177
1KAC 7 0 5 8 2 6 183
1KTZ 0 1 0 1 3 0 77
1MAH 9 0 8 9 0 9 179
2MTA 7 0 4 9 0 9 186
2VDB 9 1 9 7 2 6 173
3D5S 7 0 10 6 1 5 156
1BUH (1) 3 8 9 6 4 9 183
1FQ1 (1) 0 0 0 0 0 0 20
1JWH (1) 6 6 7 6 2 8 171
2OZA (1) 1 0 1 0 0 0 19
1EFN (2) 1 0 0 4 3 4 130
1GCQ (2) 2 9 0 1 8 4 142
Hit rate 0.842 0.368 0.684 0.789 0.737 0.737 —

Group HR 0.867 0.333 0.717 0.833 0.767 0.767

In the ID column, the number in a parentheses indicates which group the target belongs to. Thus, four complexes belong to the same similarity group, and the other two belong to another
group. The rest of the complexes are single entry groups. Group HR indicates the group hit rate. In Group HR, the fraction of complexes within each group that have at least one hit
(acceptable model) within the top 10 ranks was first computed, and then averaged across all the groups. The total column indicates the total number of acceptable docking models for a
given target.

TABLE 4 | Performance on the CAPRI scoring dataset.

ID GNN-DOVE GOAP ITScore ZRANK ZRANK2 IRAD Total

(T29) 2/0/0 1/0/0 0/0/0 0/0/0 2/2/0 1/1/0 167/78/2
(T30) 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 2/0/0
T32 0/0/0 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0 15/3/0
T35 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 3/0/0
(T37) 0/0/0 1/0/0 3/0/1 1/0/0 4/1/0 4/1/0 99/46/11
T39 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 4/3/0
(T40) 4/4/0 1/0/1 7/3/4 1/1/0 9/8/1 3/3/0 588/206/193
T41 5/0/0 4/2/2 1/1/0 4/0/0 2/0/0 3/0/0 371/120/2
T46 1/0/0 0/0/0 0/0/0 5/0/0 6/0/0 6/0/0 24/0/0
T47 9/4/5 10/0/10 2/1/0 9/5/4 9/3/5 10/2/7 611/307/278
T50 6/0/0 0/0/0 4/1/0 0/0/0 2/0/0 2/0/0 133/36/0
T53 2/2/0 7/6/0 3/0/0 1/0/0 7/3/0 4/2/0 130/17/0
(T54) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 19/1/0
Hit 9/3/1 7/2/3 6/4/2 6/2/1 8/5/2 8/5/1 13/10/5
Hit-NR 6/2/1 4/2/2 4/3/0 4/1/1 5/2/1 5/2/1 8/7/2

The IDs in parentheses are thosewhich have structure or sequence similarity to one of the complexes used in training. Results for a complex by amethod have three numbers separated by
/. The first number is the number of decoys selected within the top 10 ranked models, which has an acceptable or better quality. The second and third numbers are the number of models
with medium or higher quality, and the number of high-quality models. The numbers in the total column indicate the total number of decoys in the three quality classifications in the decoy
set of each target. The last two rows report the summary of the performance. Three numbers are the number of targets where the method identified at least one acceptable or higher-
quality models, at least one medium- or higher-quality models, or at least one high-quality model, respectively. The hit row lists the results when all 13 targets were considered. Hit-NR only
considers targets that are not in parentheses.
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In Table 5, we further compared GNN-DOVE with the top
groups who participated in the model scoring task for the 13
CAPRI scoring targets. The results were taken from Table 2 of the
article by Geng et al. (2020). In total, 37 scoring groups have
submitted their scores during this challenge and among them we
list here only groups with five or more submitted targets. In
addition to the CAPRI participants the table also includes the
latest protein docking evaluation approaches, iScore (Geng et al.,
2020) and GraphRank (Geng et al., 2020).

GNN-DOVE tied with iScore when decoys of acceptable or
higher quality were considered. Whenmedium- or higher-quality
decoys were considered, GNN-DOVE performed second to
iScore. In this list, except for GNN-DOVE, iScore, and
GraphRank, all the other groups were human groups, which
may have used manual intervention using expert knowledge.
Thus, the results show that GNN-DOVE is also highly
competitive against human experts.

DISCUSSION

In this work, we developed GNN-DOVE for protein docking decoy
selection, which used a graph neural network (GNN). We used the
gate-augmented attention mechanism to capture the atom
interaction pattern at the interface region of protein docking
models. The benchmark on the Dockground dataset
demonstrated that GNN-DOVE outperformed DOVE, along
with other existing scoring functions compared. We further
trained GNN-DOVE on a larger dataset and evaluated two more
datasets, including the CAPRI Score_set, which confirmed superior
performance of GNN-DOVE to existing methods.

To assess the quality of structure models, considering multi-
body (atom or residue) interactions (Gniewek et al., 2011; Kim

and Kihara, 2014; Kim and Kihara, 2016; Olechnovic and
Venclovas, 2017) have been proven to be an effective
approach. GNNs consider patterns of multiatom interactions
by representing the interactions as a graph structure. Since a
graph is a natural representation of molecular structures, GNNs
may be applied in various problems in structural bioinformatics
and cheminformatics.

The performance of GNN-DOVE likely would be improved by
considering other physicochemical properties of atoms such as
atom-wise binding energies, as well as sequence conservation of
residues that can be computed from a multiple sequence
alignment of homologous proteins. Application to multichain
complexes remains a potential path for future work.
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TABLE 5 | Ranking of GNN-DOVE among other scorer groups on the CAPRI
scoring dataset.

Group Performance # Submitted targets

All Nonredundant

iScore 9/6/2 6/5/1 13 (8)
GNN-DOVE 9/3/1 6/2/1 13 (8)
GraphRank 8/4/1 5/3/1 13 (8)
Bates 8/4/1 5/2/0 10 (5)
Bonvin 8/3/2 5/2/1 9 (5)
Weng 8/2/3 5/2/1 9 (6)
Zou 7/1/4 5/1/2 9 (6)
Wang 6/3/2 4/2/1 6 (4)
Fernandez-Recio 5/3/2 4/4/1 8 (7)
Elber 5/1/1 4/1/0 5 (4)
Wolfson 4/0/1 1/0/0 5 (2)
Camacho 3/1/2 1/1/1 5 (2)

Results of the existing methods were taken from Table 2 of the article by Geng et al.
(2020). The numbers in the nonredundant column only considered targets in Table 4 that
are not in the parentheses. The last column shows the number of targets that each group
has submitted their prediction among the 13 targets listed in Table 4. The numbers in
parentheses report the number of submitted targets among those which do not have
similarity to the training set we used (i.e., discarding the targets in parentheses in
Table 4).
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Data-driven machine learning is the method of choice for predicting molecular phenotypes
from nucleotide sequence, modeling gene expression events including protein-DNA
binding, chromatin states as well as mRNA and protein levels. Deep neural networks
automatically learn informative sequence representations and interpreting them enables us
to improve our understanding of the regulatory code governing gene expression. Here, we
review the latest developments that apply shallow or deep learning to quantify molecular
phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic
sequencing data. Our approach is to build from the ground up, first focusing on the
initiating protein-DNA interactions, then specific coding and non-coding regions, and finally
on advances that combine multiple parts of the gene and mRNA regulatory structures,
achieving unprecedented performance. We thus provide a quantitative view of gene
expression regulation from nucleotide sequence, concluding with an information-centric
overview of the central dogma of molecular biology.

Keywords: gene expression prediction, cis-regulatory grammar, gene regulatory structure, mRNA & protein
abundance, chromatin accessibility, regulatory genomics, machine learning, deep neural networks

INTRODUCTION

Genetic information is stored and encoded in genes that produce an organism’s phenotype by being
expressed through multiple biochemical processes into a variety of functional molecules. The central
dogma of molecular biology states that genetic information flows from DNA to the phenotypically
relevant proteins of an organism in a unidirectional, two-step process: the transcription of DNA into
messenger RNA (mRNA) is followed by translation of mRNA into protein (Watson et al., 2008).
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From these molecular phenotypes, further post-translational
processing and cellular metabolism shape and define the
observable phenotype of the organism (Nielsen, 2017). Some
of the most important processes involved in gene expression are
regulated at the nucleotide sequence level, spanning the coding
and non-coding regulatory regions adjacent to the gene (Watson
et al., 2008; Zrimec et al., 2020). For over a decade, a key trend in
the field has thus been to develop computational methods that
can process nucleotide sequences and interpret the regulatory
code within them, to better understand gene expression and
improve quantitative predictions (Segal and Widom, 2009;
Levo and Segal, 2014; Li et al., 2019a). These developments are
not only important for advancing molecular biology, but have
practical implications as well: they are crucial for solving
problems related to human disease (Lee and Young, 2013;
Zhou et al., 2018a) as well as biotechnology applications (de
Jongh et al., 2020).

The key interactions that govern gene expression occur among
proteins and nucleic acids. Proteins search for their active binding
sites by sliding and diffusion, recognizing a particular DNA site
via physicochemical interactions with the molecule (Tafvizi et al.,
2011; Hammar et al., 2012). Typical binding domains of DNA-
binding proteins (DBPs), such as transcription factors (TFs) and
polymerases, include helix-turn-helix and zinc finger domains
(Watson et al., 2008). However, besides direct protein-DNA
readout with the major groove of the DNA helix, which offers
base-specific hydrogen bond donors, acceptors, and nonpolar
groups that can be recognized by complementary groups on the
amino acid side chain, the specificities of protein-DNA
interactions are defined also by indirect readout (Rohs et al.,
2010; Marcovitz and Levy, 2013; Inukai et al., 2017). This
comprises “weak” protein-DNA interactions that depend on
base pairs that are not directly contacted by the protein and
are defined by conformational and physicochemical DNA
properties at the specific binding sites or in their vicinity
(Rohs et al., 2009; Yang et al., 2017; Zrimec and Lapanje,
2018). On the other hand, RNA is a single stranded molecule
with a softer backbone than DNA and thus has more extensive
secondary and tertiary structure. RNA-binding proteins (RBPs)
recognize single or double stranded RNA, three-dimensional
structural features of folded RNAs, or even bind RNA non-
specifically (Re et al., 2014). In regulating translation, however,
multiple conserved RNA sequence motifs have been uncovered
that play a key role typically via single strand or secondary
structure-recognition mechanisms (Watson et al., 2008;
Leppek et al., 2018). Therefore, despite the apparent
monomeric simplicity of nucleic acid sequences, the problem
of extracting information from them is quite complex, as they
encode a rich grammar of motif occurrences, combinations and
sequential properties that needs to be correctly interpreted
(Siggers and Gordân, 2014; Slattery et al., 2014; Li et al.,
2019a; Nagy and Nagy, 2020).

In this regard, machine learning (ML) comprises a set of
algorithms that are capable of mapping complex relationships
between input and target variables in a supervised fashion. The
resulting predictive/descriptive models can perform classification
of discrete target variables or regression of continuous ones.

Classical algorithms, which include (multiple) linear regression
(LR), support vector machines (SVMs), tree-based methods such
as random forests (RFs), and feedforward neural networks (NNs)
(Hastie et al., 2013; Géron, 2019), commonly referred to as
“shallow” methods, have in recent years been superseded by
deep neural networks (DNNs) (LeCun et al., 2015). DNNs
resolve many problems inherent to the shallow methods, such
as the reliance on feature engineering and selection, but come at
the cost of requiring orders of magnitude more training data and
computational resources (Angermueller et al., 2016; Eraslan et al.,
2019a). In the current big data era, however, this is a diminishing
problem. The result is that the information in nucleotide
sequences can now be deciphered at unprecedented scale and
quality, elucidating the regulatory grammar and greatly
expanding our understanding of the underlying processes and
capacity to accurately predict the outcomes of gene expression
(Zhou et al., 2018a; Eraslan et al., 2019a; Zrimec et al., 2020).

In the present review, we provide an overview of the latest
published developments that applyML to nucleotide sequence data
in order to understand gene expression in the most well studied
model organisms, including bacteria (Escherichia coli), unicellular
eukaryotes (yeast, Saccharomyces cerevisiae) and multicellular
eukaryotes (human, Homo sapiens). Since these organisms
represent the whole spectrum of genetic regulatory complexity,
with gene densities ranging from 892 (bacteria) to six (human)
genes per Mbp (Zrimec et al., 2020), the knowledge and principles
presented here are generally applicable to all other organisms
including insects and plants (Haberle and Stark, 2018; Wang H.
et al., 2020). We specifically focus on the latest developments with
deep learning and compare them to the state of the art solutions
with shallow methods. By reasoning from first principles, the
problem of predicting gene expression levels from nucleotide
sequence data is explained from the ground up by
deconstructing it into the basic regulatory processes and
grammatical elements. We first focus on modeling the protein-
DNA interactions important for initiating transcription, which
include TF binding and nucleosome positioning. We then detail
the current understanding of the regulatory grammar carried
within the specific coding and non-coding regulatory regions,
and its involvement in defining transcript and protein
abundance. Based on these principles, we review advanced
modeling approaches that use multiple different parts of the
gene regulatory structure or whole nucleotide sequences,
demonstrating how this increases their predictive power. Finally,
by considering all the results, we provide an information-centric
overview of the field, and discuss the applicative potential and
future outlook of the presented modeling approaches.

LEARNING THE PROTEIN-DNA
INTERACTIONS INITIATING GENE
EXPRESSION
One of the key regulation strategies of gene expression is at the level
of transcription initiation (Watson et al., 2008), which is also the
most studied and modeled regulatory mechanism (Segal and
Widom, 2009; Levo and Segal, 2014). Transcription initiation is
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a complex process involving many different interacting DNA and
protein components, including: 1) activating or repressing TFs that
bind 6–12 bp long TF binding sites (TFBS) in enhancer and
promoter regions (Watson et al., 2008) with different binding
affinities and specificities (Levo and Segal, 2014), 2) nucleosomes
that form around 147 bp long DNA stretches and define chromatin
accessibility, acting as general transcriptional repressors by
competing with TFs for DNA binding (Segal and Widom, 2009;
Struhl and Segal, 2013), 3) other components of the transcription
initiation enzymatic machinery including sigma factors (σ) in
prokaryotes and components (TFIID/SAGA, mediator) of the
preinitiation complex (PIC) in eukaryotes (Feklístov et al., 2014;
Haberle and Stark, 2018), and 4) physicochemical and

thermodynamic properties related to protein binding (Rohs
et al., 2010; Inukai et al., 2017) and transcription initiation
(Chen et al., 2010; Zrimec and Lapanje, 2015), such as strand
dissociation around the transcription start site (TSS), giving
enzymatic access to the DNA (Figure 1A). The DNA sequence
preferences of nucleosomes define nucleosome organization in vivo
and have been shown to account for the general depletion of
nucleosomes around the starts and ends of genes as well as
around TFBS, which might assist in directing TFs to their
appropriate genomic sites (Segal and Widom, 2009). Apart from
the DNA-guided nucleosome positioning, other epigenetic
mechanisms (where functionally relevant changes to the genome
do not involve a change in the nucleotide sequence), such as histone

FIGURE 1 | Principles of gene expression. (A) Protein-DNA interactions in prokaryotic nucleoid and eukaryotic chromosome structure, epigenetics and
transcription initiation. The basic repeating structural unit of chromatin is the nucleosome, which contains eight histone proteins. Bacterial nucleoid-associated proteins
are the main regulators of nucleoid structure, where the circular genome is supercoiled and uncoiled by these proteins. In cells, genes are switched on and off based on
the need for product in response to cellular and environmental signals. This is regulated predominantly at the level of transcription initiation, where chromatin and
nucleoid structure open and close, controlling the accessibility of DNA and defining areas with high amounts of transcription (factories) upon demand. (B) Depiction of
eukaryotic transcription across the gene regulatory structure that includes coding and non-coding regulatory regions. The open reading frame (ORF) carries the coding
sequence, constructed in the process of splicing by joining introns and removing exons. Each region carries specific regulatory signals, including transcription factor
binding sites (TFBS) in enhancers, core promoter elements in promoters, Kozak sequence in 5′ untranslated regions (UTRs), codon usage bias of coding regions and
multiple termination signals in 3′ UTRs and terminators, which are common predictive features in ML (highlighted bold). RNAP denotes RNA polymerase, mRNA
messenger RNA. (C) Depiction of eukaryotic translation across the mRNA regulatory structure, where initiation involves the 5′ cap, Kozak sequence and secondary
structures in the 5′ UTR. Codon usage bias affects elongation, whereas RNA-binding protein (RBP) sites, microRNA (miRNA) response elements and alternative
polyadenylation in the 3′ UTR affect post-translational processing and final expression levels. These regulatory elements are common predictive features in ML
(highlighted bold).

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6733633

Zrimec et al. Learning Gene Expression Regulation

57

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


modification and DNA methylation, also play a vital part in
transcriptional regulation (Gibney and Nolan, 2010; Miller and
Grant, 2013). Together, they control the accessibility of DNA for
protein binding and enzymatic processing (Watson et al., 2008)
(Figure 1A). The epigenome is established and maintained by the
site-specific recruitment of chromatin-modifying enzymes and their
cofactors. Identifying the cis elements that regulate transcription
initiation and epigenomic modification is critical for understanding
the regulatory mechanisms that control gene expression patterns.

Machine learning is used to predict the locations of TFBS and
their TF binding specificities, other cis-regulatory elements and
binding sites, larger DNA non-coding regions such as enhancers
and promoters, as well as nucleosome binding landscapes and
epigenetic states. The computational tasks for inferring TFBS from
DNA sequence or modeling TFBS specificity based on TF activity
measurements can be framed as binary/multiclass classification
and regression problems, respectively. TFBS can be predicted from
the genome de novo (Jayaram et al., 2016), or analyzed based on
separate measurements (Kim et al., 2007; Visel et al., 2009; Ghandi
et al., 2014) or massively parallel reporter assays using high-
throughput quantitative sequencing technologies (HTS), giving
peak calls for various regulatory (epigenetic and transcriptional)
activities across tissues and isolated cell types (Project Consortium,
2012; Roadmap Epigenomics Consortium et al., 2015). These
include: 1) ChIP-seq (Chromatin immunoprecipitation
sequencing) (Johnson et al., 2007) and ChIP-nexus (addition of
exonuclease digestion step) (He et al., 2015) to map TF binding
sites and histone modification presence, 2) DNase-seq (DNase I
hypersensitive sites sequencing) (Song and Crawford, 2010) and
ATAC-seq (Assay for Transposase Accessible Chromatin with
high-throughput sequencing) (Buenrostro et al., 2013) to
measure DNA chromatin accessibility, which typically mark
nucleosomes and TF-bound sites, and 3) other methods, such
as PBMs (protein bindingmicroarrays) (Berger et al., 2006), SELEX
(Systematic evolution of ligands by exponential enrichment)
(Blackwell and Weintraub, 1990) and BunDLE-seq [Binding to
Designed Library, Extracting, and sequencing) (Levo et al., 2015)
that can provide quantitative measurements of TF binding to
thousands sequences within a single experiment (further details
can be found in the following publication (Barshai et al., 2020)].

Common measures for evaluating the performance of ML
classifiers, typically on unseen data, include: 1) precision and
recall, 2) the area under the receiver operating characteristic curve
(AUC) that measures the tradeoff between the true positive rate
(recall) and false positive rate for different thresholds, as well as 3)
the area under the precision recall curve (AUPRC) that measures
the tradeoff between precision and recall for different thresholds
[for technical details we refer the reader to a recent review (Jiao
and Du, 2016)]. Regression models are frequently evaluated using
a correlation coefficient or the coefficient of variation (R2) (de
Boer et al., 2020; Zrimec et al., 2020).

Classical Machine Learning Relies on
Engineered Features
The goal of supervised ML is to learn a response function y (target
variable) from the set of features x (explanatory variables) present

in the training dataset, where y describes some property related to
gene expression, such as TF binding, ChIP-seq signal or mRNA
abundance. With shallow learning, the DNA sequence that
generally serves as the explanatory variable must be described
with numerical features, such as position weight matrices
(PWMs) (Stormo, 2000; Jayaram et al., 2016; Lu and Rogan,
2018), ungapped or gapped k-mer frequencies (Fletez-Brant et al.,
2013; Ghandi et al., 2014; Zrimec et al., 2020), pseudo k-tuple
nucleotide composition (Lin et al., 2014; Chen et al., 2015) or
physicochemical and conformational (structural) properties
(Rohs et al., 2009; Meysman et al., 2012; Zrimec, 2020a).
Shallow methods thus require some features and methods that
can describe or interpret the DNA regulatory motifs, and then use
these features or motifs to build predictors. Due to their
dependence on feature engineering, the shallow model training
and evaluation methodology also commonly includes feature
selection on all variables, retaining only the feature sets most
informative for predicting the target variable. Afterward, ML
models are trained on the engineered and selected feature subsets
and finally, validation is performed on a held out portion of the
data to assess the model performance (Ghandi et al., 2014;
Zelezniak et al., 2018; Zrimec and Lapanje, 2018) (Figure 2A).

Comparison of 26 different approaches to model and learn a
protein’s DNA-binding specificity based on PBMs for various
mouse TFs (Weirauch et al., 2013) showed that, for most TFs
examined, simple models based on mononucleotide PWMs can
perform similarly to more complex models, falling short only in
specific cases that represented less than 10% of the examined TFs.
The best-performing motifs typically have relatively low
information content, consistent with widespread degeneracy in
eukaryotic TF sequence preferences. Out of multiple de novo
motif discovery tools that can be used locally for creating PWMs
from HTS data and for scanning them against DNA, FIMO (Grant
et al., 2011) and MCast (Grant et al., 2016) were found to have the
best performance in their respective classes of methods that predict
individual TFBSs or identify clusters, respectively (Table 1)
(Jayaram et al., 2016). In an approach termed “Catchitt” for
predicting cell type-specific TFBS using ensemble classifiers
(Keilwagen et al., 2019), standard PWM motifs from databases
were expanded withmotifs learned by de novomotif discovery from
ChIP-seq and DNase-seq data using sparse local inhomogeneous
mixture (Slim) models (Keilwagen and Grau, 2015), which capture
short to mid-range intra-motif dependencies. Catchitt earned a
shared first rank in the 2017 ENCODE-DREAM in vivo TFBS
prediction challenge, achieving a median AUPRC of 0.41 on test
data. Despite the success of PWM-based methods, ML approaches
have been shown to achieve similar or even better results. For
instance, the method “QBiC-Pred” was developed to quantitatively
predict TF binding changes due to sequence variants (Martin et al.,
2019), using ordinary least squares (OLS) regression and HTS data
containing single nucleotide variants (SNVs). The OLS models of
TF binding specificity were accurate in predicting mutational effects
on TF binding in vitro and in vivo (R2 up to 0.95), outperforming
widely used PWM models as well as recently developed DNNs
(Alipanahi et al., 2015) on the tested data. The problem with any
ML approach using k-mers as features is that it becomes susceptible
to noisy training k-mer frequencies once k becomes large. This was
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solved with methods for robust estimation of k-mer frequencies
based on alternative feature sets, where gapped k-mers were
introduced as a followup to the initial k-mer method “kmer-
SVM” (Lee et al., 2011). The new classifier termed “gkm-SVM”
predicted functional genomic regulatory elements with significantly
improved accuracy compared to the original kmer-SVM, increasing
the precision by up to 2-fold and achieving anAUCof 0.97 for TFBS
prediction, compared to 0.91 with kmer-SVM (Ghandi et al.,
2014). In this case however, the PWM-based classifier still
outperformed both methods (AUC � 0.98).

In the case of epigenetic states that underlie DNA accessibility,
it was shown that histone modifications can be predicted with
remarkable accuracy from TF-binding profiles using LR
classifiers (avg. AUC ∼0.86 to 0.95 on different DNA regions
in H1 cells), recapitulating known interactions between TFs and
chromatin-modifying enzymes (Benveniste et al., 2014). This
demonstrated that associations between gene expression and
histone modifications do not necessarily imply a direct
regulatory role for these modifications, but can be explained
equally well as an indirect effect of interactions between TFs and
chromatin-modifying enzymes. Similarly, a pipeline termed
“Epigram” (Whitaker et al., 2015) was developed to predict
histone modification and DNA methylation patterns from

DNA motifs. The authors also cataloged novel cis elements by
de novo motif finding, showing that numerous motifs that have
location preference and represented interactions with the site-
specific DNA-binding factors that establish and maintain
epigenomic modifications. Using their method gkm-SVM
(Ghandi et al., 2014) to encode cell type–specific regulatory
sequence vocabularies, Lee and colleagues (Lee et al., 2015)
devised a sequence-based computational method to predict the
effect of regulatory variation. The effect of sequence variants was
quantified by the induced change in the gkm-SVM score,
“deltaSVM,” which accurately predicted the impact of SNVs
on DNase I hypersensitivity in their native genomes and could
identify risk-conferring functional variants in validated data
including autoimmune diseases, demonstrating the usefulness
of this approach.

Apart from the base DNA sequence properties, structural
properties have been found to improve model performance in
certain cases, such as when predicting: 1) TFBS and their
specificities (Abe et al., 2015; Tsai et al., 2015; Mathelier et al.,
2016; Yang et al., 2017), 2) promoters and TSS sites (Meysman
et al., 2012; Bansal et al., 2014; Kumar and Bansal, 2017), and 3) σ
factor binding sites (Zrimec, 2020a). These properties are directly
related to protein-DNA recognition and binding (Rohs et al.,

FIGURE 2 | Principles of machine learning from nucleotide sequence. (A) Flowcharts of a typical supervised shallow modeling approach (top) and a typical
supervised deep modeling approach (bottom), depicting a one-hot encoding that equals k-mer embedding with k � 1. (B) Overview of convolutional (CNN) and
recurrent neural networks (RNN) in interpreting DNA regulatory grammar. A CNN scans a set of motif detectors (kernels) of a specified size across an encoded input
sequence, learning motif properties such as specificity, orientation and co-association. An RNN scans the encoded sequence one nucleotide at a time, learning
sequential motif properties such as multiplicity, distance from e.g. transcription start site and the relative order of motifs. (C) Interpreting shallow models (top) by
evaluating their performance when trained on different feature sets can yield feature importance scores, motifs and motif interactions, as well as compositional and
structural properties. Similarly, interpreting the regulatory grammar learned by deep models (bottom), by e.g. perturbing the input, visualizing kernels or using gradient-
based methods, can yield feature importance scores spanning nucleotides up to whole regions, as well as motifs and motif interactions. (D) Example of a typical deep neural
network (DNN) comprising three separate convolutional layers (Conv) connected via pooling layers (Pool) and a final fully connected network (FC) producing the output gene
expression levels. Pool stages compute the maximum or average of each motif detector’s rectified response across the sequence, where maximizing helps to identify the
presence of longermotifs and averaging helps to identify cumulative effects of short motifs. The DNN learns distributedmotif representations in the initial Conv layers andmotif
associations that have a joint effect on predicting the target in the final Conv layer, representing DNA regulatory grammar that is mapped to gene expression levels.
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2009; Bishop et al., 2011; Zrimec, 2020b) and include DNA shape
(Mathelier et al., 2016), thermodynamic stability (SantaLucia,
1998) and propensity for duplex destabilization (Zrimec and
Lapanje, 2015), as well as flexibility and curvature related
properties (Brukner et al., 1995; Geggier and Vologodskii,
2010). For instance, the dependence of TF binding specificity
on the TFBS core and flanking sequence was studied using LR and
BunDLE-seq data on thousands of designed sequences with single
or multiple Gcn4 or Gal4 binding sites (Levo et al., 2015). By
supplanting k-mer frequencies at each position with DNA
structural properties, 15 bp flanking sequences (15 bp) of core
binding sites were shown to affect the binding of TFs, as models
based on combined core and flanking regions explained the

highest amount of variance in the measurements (R2 up to 0.9
for Gal4). The contribution of DNA shape readout and its
importance in core motif-flanking regions was further
demonstrated using LR and HT-SELEX data across a diverse
set of 215 mammalian TFs from 27 families (Yang et al., 2017), as
regression models that used k-mer and shape features generally
outperformed k-mer models by ∼10% (R2 up to 0.90). Using
feature selection techniques, positions in the TFBSs could be
pinpointed where DNA shape readout is most likely to occur, and
accordingly, novel DNA shape logos were proposed to visualize
the DNA shape preferences of TFs. Similarly, SVM regression
models of TF binding specificity based on PBM data for 68
mammalian TFs showed that shape-augmented models

TABLE 1 | Overview of studies modeling protein-DNA interactions that govern the initiation of gene expression from nucleotide sequence properties. Highest achieved or
average scores are reported, on test sets where applicable, and include precision (prec) and recall (rec), area under the receiver operating characteristic curve (AUC), area
under the precision recall curve (AUPRC), the coefficient of variation (R2), Pearson’s correlation coefficient (r), Spearman’s correlation coefficient (ρ) and Matthews correlation
coefficient (MCC).

Ref. Strategy Target var. Explan. vars. Method Score Organism

(Jayaram et al., 2016) Shallow TFBS prediction PWMs PWM alignment algorithms prec � 0.73, rec.
� 0.82

Human

(Keilwagen et al., 2019) Shallow TFBS prediction DNA motif and chromatin-
based features

Classifier ensembles AUPRC � 0.81 Human

(Ghandi et al., 2014) Shallow TFBS prediction PWMs, gapped k-mers SVM classification AUC � 0.98 Human
(Levo et al., 2015) Shallow TF binding specificity k-mers, DNA structural

variables
L1-regularized LR R2 � 0.90 Yeast

(Yang et al., 2017) Shallow TF binding specificity k-mers, DNA structural
variables

L2-regularized multiple LR R2 � 0.90 Human

(Martin et al., 2019) Shallow TF binding specificity k-mers OLS regression R2 � 0.95 Human
(Lin et al., 2014) Shallow σ54 promoter prediction Pseudo k-tuple nucleotide

composition
SVM classification MCC � 0.88 E. coli

(He et al., 2018) Shallow σ70 promoter prediction Trinucleotide-based features SVM classification MCC � 0.92 E. coli
(Benveniste et al., 2014) Shallow Histone modifications k-mers, TF CHIP-seq data LR classification AUC � 0.95 Human
(Whitaker et al., 2015) Shallow Histone modifications, DNA

methylation
DNA motifs RF classification AUC � 0.96 Human

(Lee et al., 2015) Shallow DNA chromatin accessibility PWMs, gapped k-mers SVM classification AUC � 0.75 Human
(Trabelsi et al., 2019) Deep TFBS prediction k-mers CNN + biLSTM classification AUC � 0.93 Human
(Zeng et al., 2016) Deep TFBS prediction DNA sequence CNN classification AUC � 0.88 Human
(Kelley, 2020) Deep TFBS prediction DNA sequence CNN classification AUC � 0.82 Human,

mouse
(Chen et al., 2021) Deep TFBS prediction DNA sequence CNN + biLSTM + attention

classification
AUC � 0.99 Human

(Alipanahi et al., 2015) Deep TF binding specificity DNA sequence CNN classification AUC � 0.90 Human
(Wang et al., 2018) Deep TF binding specificity DNA sequence CNN regression ρ � 0.81 Human
(Avsec et al., 2021) Deep TF binding specificity DNA sequence CNN regression ρ � 0.62 Human
(Van Brempt et al.,
2020)

Deep Transcription initiation
frequency

DNA sequence CNN ordinal regression R2 � 0.88 E. coli

(Zhou and Troyanskaya,
2015)

Deep Multitask chromatin profiling
data

DNA sequence CNN classification AUC � 0.96 Human

(Quang and Xie, 2016) Deep Multitask chromatin profiling
data

DNA sequence CNN + biLSTM classification AUC � 0.97 Human

(Park et al., 2020) Deep Multitask chromatin profiling
data

DNA sequence CNN + biLSTM + attention
classification

AUC � 0.95 Human

(Singh et al., 2016) Deep Histone modifications DNA sequence CNN classification AUC � 0.80 Human
(Singh et al., 2017) Deep Histone modifications DNA sequence LSTM + attention

classification
AUC � 0.81 Human

(Kelley et al., 2016) Deep DNA chromatin accessibility DNA sequence CNN classification AUC � 0.90 Human
(Kelley et al., 2018) Deep DNA chromatin accessibility DNA sequence CNN regression r � 0.86 Human
(Angus and Eyuboglu,
2018)

Deep DNA chromatin accessibility DNA sequence CNN + attention regression ρ � 0.59 Human

(Angermueller et al.,
2017)

Deep DNA methylation DNA sequence and features CNN classification AUC � 0.83 Human

(Tian et al., 2019) Deep DNA methylation DNA sequence CNN regression AUC � 0.97 Human
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compared favorably to sequence-based models (Zhou et al.,
2015), as DNA shape features reduced the dimensionality of
the feature space. The authors from Rohs lab also provide an
updated database of TFBS shape logos in 2020 (Chiu et al., 2020).
Moreover, derivatives of DNA structural properties, such as
pseudo k-tuple nucleotide compositions (Lin et al., 2014) and
trinucleotide features including position-specific propensity and
electron-ion potential (He et al., 2018), were applied to the
problem of predicting bacterial σ54 and σ70 promoters in
E. coli, which transcribe carbon and nitrogen-related genes or
regulate the transcription of most genes, respectively. The
respective ML classifiers termed “iPro54-PseKNC” (Lin et al.,
2014) and “70ProPred” (He et al., 2018) could accurately
distinguish the specific promoters from negative examples
(AUC � 0.98 and 0.99, respectively).

Deep Neural Networks can Learn
Regulatory Grammar Automatically
In contrast to shallow architectures that are limited in their
applications even when large datasets are available, deep
architectures are abstracted by multiple hidden layers between
x and y. Each layer learns a new representation of the data before
passing it on to the successive layers, finding hidden data
structures to make accurate predictions (Mhaskar et al., 2017).
The most common DNN architectures in genomics include
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), such as bidirectional long short-term
memory (biLSTM) networks. CNNs are regularized fully
connected networks that progressively scan a DNA molecule
within a receptive field, where they learn to recognize the
occurrence of DNA motifs (e.g. specificity, orientation and co-
association) (Eraslan et al., 2019a) (Figure 2B). Despite the
capability of RNNs to learn sequential information (e.g.
multiplicity, relative order), they are computationally
expensive to train and certain improvements to CNNs, such as
dilation (Yu and Koltun, 2015) and self-attention (Wang et al.,
2017; Bello et al., 2019; Repecka et al., 2021), enable them to
outperform RNNs (Gupta and Rush, 2017; Strubell et al., 2017;
Trabelsi et al., 2019). Dilated convolution uses kernels with gaps
to allow each kernel to capture information across a larger stretch
of the input sequence, without incurring the increased cost of
using RNNs (Gupta and Rush, 2017; Strubell et al., 2017).
Similarly, self-attention is a special case of attention
mechanism that allows kernels to focus on specific parts of the
input when producing the output, allowing positions across the
entire input sequence to interact and contribute to the result with
different attention weights (Vaswani et al., 2017).

Deep learning does not require feature engineering or selection,
since this is an inherent feature of the DNN learning process
(Webb, 2018). However, it does require representing the
categorical nucleotide sequence data numerically using an
encoding scheme, such as one-hot, which transforms the
sequence into a binary matrix with columns corresponding to
each category. DNNs have thus been applied mostly on one-hot
encoded nucleotide sequences as input (Eraslan et al., 2019a;
Alipanahi et al., 2015), with recent reports showing that the use

of k-mer embedding to represent the input sequences can improve
model performance compared to one-hot encoding (itself a special
case of k-mer embedding where k � 1) (Trabelsi et al., 2019). These
inputs are well suited for comprehending the base DNA motif
information as well as higher order interactions that describe the
DNA regulatory grammar of gene expression (Eraslan et al., 2019a;
Zrimec et al., 2020). Thus, DNNs achieve high predictive accuracies
often surpassing those of models based on engineered features and,
in our experience, using structural DNA properties does not lead to
improved predictive performance with DNNs (Zrimec et al., 2020).
Due to the large amount of model hyperparameters, such as
network structure (e.g. number and size of kernels, Figure 2B)
and training algorithm (e.g. learning rate), a special step termed
hyperparameter optimization (Bergstra et al., 2015) is required for
finding the best combinations of these hyperparameters and is an
integral part of DNN training. To train DNNs, the data is typically
split into training, validation, and testing datasets, where: 1) the
model is trained on the training set by minimizing a loss function
commonly MSE for regression and cross entropy for classification
(Géron, 2019), 2) hyperparameter tuning is performed on the
validation set and the best performing model on the validation set
is chosen, and 3) the performance of the final model is evaluated on
the testing set, also verifying if it overfits the data (Eraslan et al.,
2019a; Zrimec et al., 2020) (Figure 2A). With DNN testing, cross-
validation is rarely performed due to the large dataset sizes and
issues with algorithmic efficiency. Commonly, 10% test splits are
used for testing the models trained on 80% of the data, whereas
another 10% of the training data is used for the internal validation
of hyperparameter selection (Géron, 2019). For further technical
details we refer the reader to excellent recent reviews (Eraslan et al.,
2019a; Barshai et al., 2020).

Deep methods are frequently trained on HTS peak profiles,
either converted to binary scores or left continuous as a regression
problem, and the underlying TFBS and specificities are
interpreted by the network itself. The first such method to
showcase the efficiency of DNNs for analysis of TF binding
specificities was DeepBind (Alipanahi et al., 2015), where a
single CNN layer was trained on sequence specificities of
DNA and RNA-binding proteins as measured by several types
of HTS assays (including PBM, HT-SELEX, and ChIP-seq), in a
combined 12 terabases of mouse and human data. DeepBind
captured binding specificities from raw sequence data by jointly
discovering new motifs of hundreds of TFs along with the rules
for combining them into a predictive binding score. The resulting
DeepBind models could then be used to identify binding sites in
test sequences and to score the effects of novel mutations,
uncovering the regulatory role of disease-associated genetic
variants that can affect TF binding and gene expression.
Importantly, the method outperformed 14 other methods
(Weirauch et al., 2013) and achieved the highest score when
applied to the in vivo ChIP-seq data (avg. AUC � 0.90),
suggesting that it can generalize from HT-SELEX (Jolma et al.,
2013) to other data acquisition technologies despite being based
on a general-purpose ML framework.

The basic approach of DeepBind was further explored and
expanded upon in subsequent studies with different network
layers. For instance, Zeng and co. (Zeng et al., 2016). performed
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a systematic exploration of CNN architectures for predicting
DNA sequence binding using a similarly large set of TF data. To
control potentially confounding effects, like positional or motif
strength bias, they chose to explore two specific classification
tasks of motif discovery (bound vs. dinucleotide shuffles per TF
and cell type) and motif occupancy (bound vs. non-bound). In
both tasks, classification performance increased with the
number of convolution kernels (AUC up to 0.88), and the
use of local pooling or additional layers had little effect on
the performance. CNN architectures that took advantage of
these insights exceeded the classification performance of
DeepBind, emphasizing the need to use sufficient kernels to
capture motif variants. With deepRAM, a tool providing an
implementation of a wide selection of architectures (Trabelsi
et al., 2019), it was shown that deeper, more complex
architectures provide a clear advantage with sufficient
training data, with hybrid CNN + RNN architectures
outperforming other methods in terms of accuracy (AUC �
0.93 with 1xCNN + biLSTM). However, although RNNs
improve model accuracy, this comes at the expense of a loss
in the interpretability of the features learned by the model.
Kelley (Kelley, 2020) developed a strategy to train deep CNNs
simultaneously on human and mouse genomes, which
improved gene expression prediction accuracy on held out
and variant sequences. Applying mouse regulatory models to
analyze human genetic variants associated with molecular
phenotypes and disease improved model performance
(AUROC increased from 0.80 to 0.82), showing that the
thousands of available non-human transcriptional and
epigenetic profiles can be leveraged for more effective
investigation of how gene regulation affects human disease.
Moreover, the performance of assessing the functional impact of
non-coding variants (e.g. SNVs) was further improved with
DeFine (Wang et al., 2018), a regression model based on large-
scale TF ChIP-seq data and capable of accurately predicting
real-valued TF binding intensities (Spearman’s ρ up to 0.81).
Here, the predicted changes in the TF binding intensities
between the altered sequence and the reference sequence
reflected the degree of functional impact for the variant, and
could accurately identify the causal functional variants from
measured disease-associated variants. Similar networks have
also been used in bacteria, where the online promoter design
tool (ProD) (Van Brempt et al., 2020) is based on forward
engineering of promoter transcription initiation frequency
(TIF). By training a CNN with high-throughput DNA
sequencing data from fluorescence-activated cell sorted
promoter libraries of E. coli σ70 and Bacillus subtilis σB-,
σF- and σW-dependent promoters, prediction models were
capable of predicting both TIF and orthogonality of the
σ-specific promoters, which facilitated development of
tailored promoters, where predictions explained ∼88% of
the variance of experimental observations.

With prediction of epigenetic states, the “DeepSEA” method
(Zhou and Troyanskaya, 2015) was the first to utilize three CNN
layers trained for multi-task predictions of large-scale chromatin-
profiling data, including transcription factor (TF) binding, DNase I
hypersensitivity sites (DHSs) and histone-mark profiles across

multiple cell types. The method significantly outperformed
gkm-SVM (avg. AUC of 0.96 vs. 0.90) and enabled high-
performance sequence-based prediction of both DHSs (avg.
AUC � 0.92) and histone modifications (avg. AUC � 0.86). In
the “DanQ” model (Quang and Xie, 2016) trained on similar data
as DeepSEA, a hybrid CNN + RNN architecture was used in order
to enhance its perception of regulatory grammar, where the CNN
captured regulatory motifs and the RNN captured long-term
dependencies between the motifs. The model achieved
improved performance compared to DeepSEA (avg. AUC �
0.97) as well as compared to a LR baseline model, which
despite its simplicity was an effective predictor (AUROC >0.70).
Similarly, with histone modifications, the CNN “DeepChrome”
(Singh et al., 2016) was shown to consistently outperform both
SVM and RF classifiers (avg. AUC of 0.80 vs. 0.66 and 0.59,
respectively). Kelley and co. (Kelley et al., 2016) introduced the
open source package “Basset” that trains CNNs on a set of
accessible genomic sites mapped in 164 cell types by DNase-
seq, achieving improved predictive accuracy compared to
previous methods, such as gkm-SVM (avg. AUC � 0.90 vs.
0.78), and good overlap of SNV predictions with previous
observations. Furthermore, Kelley and co. (Kelley et al., 2018)
developed another CNN, “Basenji,” to predict mammalian cell-
type specific epigenetic and transcriptional profiles, where an
unprecedented input sequence size of 131 kbp around TSS was
used, spanning distal as well as proximal regulatory elements.
Indeed, model predictions regarding the influence of SNVs on gene
expression were shown to align well to known variants in human
populations related to disease loci (avg. Pearson’s r � 0.86).

To map associations between DNA sequence patterns and
methylation levels at CpG-site resolution, Angermuller and co.
developed “DeepCpG” (Angermueller et al., 2017). The method
was evaluated on single-cell methylation data across different cell
types and HTS protocols, and yielded more accurate predictions
than shallowmethods, such as RF (avg. AUC � 0.83 vs. 0.80). The
authors also showed that interpretation of the model parameters
could provide insights into how sequence composition affects
methylation variability. A more recent alternative approach
termed “MRCNN” (Tian et al., 2019) outperformed DeepCpG
(AUC up to 0.97), and de novo discovered motifs from the trained
CNN kernels were shown to match known motifs.

Finally, by expanding DNN architectures with attention
mechanisms to model complex dependencies among input
signals, favourable results can be achieved compared to the
non-attentive DNN counterparts. This was shown with multiple
prediction tasks, including: 1) TFBS prediction, where “DeepGRN”
(Chen et al., 2021) achieved higher unified scores in 6 of 13 targets
than any of the top four methods in the 2016 ENCODE-DREAM
challenge including Catchitt (Keilwagen et al., 2019), 2) histone
modification, where “AttentiveChrome” (Singh et al., 2017)
outperformed DeepChrome (Singh et al., 2016) in 50 out of 56
human cell types (avg. AUC of 0.81 vs. 0.80), 3) DNA chromatin
accessibility, where the attention-based model (Angus and
Eyuboglu, 2018) outperformed standard CNNs (ρ � 0.59 vs.
0.54) as well as dilated convolutions on specific experiments,
and 4) multitask chromatin profiling data, where “TBiNet”
(Park et al., 2020) outperformed DeepSea (Zhou and
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Troyanskaya, 2015) and DanQ (Quang and Xie, 2016) in the TF-
DNA binding prediction task (avg. AUC of 0.95 vs. 0.90 and 0.93,
respectively). This suggests that attention is an effective strategy to
incorporate long-range sequence context into local predictions and
particularly effective for gene-expression prediction.

Interpreting Models to Retrieve the Learned
Regulatory Grammar
With shallow models, the most informative feature sets are
interpreted by evaluating the performance of models trained on
different feature sets (Ghandi et al., 2014; Zrimec and Lapanje,
2018; de Boer et al., 2020) (Figure 2C). This can yield feature
importance scores, motifs (k-mers or PWMs, depending on the
provided input features, Figure 2A) and motif interactions
(Ghandi et al., 2014; Keilwagen and Grau, 2015), as well as
compositional and structural properties (Lin et al., 2014; Yang
et al., 2017), all of which comprise a compendium of regulatory
grammar, informative for understanding the regulation of gene
expression. Due to the inherent capability of DNNs to learn
predictive motif representations, rules for cooperative TF
binding interactions (Avsec et al., 2021) and higher-order
sequence features, such as secondary motifs and local sequence
context (Zeng et al., 2016), as well as genotypic variation effects
(Zhou and Troyanskaya, 2015), they represent a powerful
approach to uncover the detailed cis-regulatory grammar of
genomic sequences (Figure 2C) (Koo and Ploenzke, 2020a; He
et al., 2020). This is achieved by interpreting the models using
approaches that include: 1) CNN kernel visualization, where
typically motifs in the initial layers are visualized, 2) input
perturbation-based (sensitivity) analysis, which highlights the
parts of a given input sequence that are most influential for the
model prediction by occluding or mutating them (Alipanahi et al.,
2015; Ancona et al., 2017), 3) gradient-basedmethods that estimate
feature importance with iterative backward and forward
propagations through the network (Shrikumar et al., 2017;
Montavon et al., 2018; Shrikumar et al., 2018), yielding e.g.
saliency maps (Simonyan et al., 2013) and 4) higher-order
interactions among sequence elements, which can be assessed
e.g. by using association rule analysis (Naulaerts et al., 2015;
Zrimec et al., 2020), second-order perturbations (Koo et al.,
2018), self-attention networks (Ullah and Ben-Hur, 2020) or by
visualizing kernels in deeper layers (Maslova et al., 2020) [interested
readers are referred to (Eraslan et al., 2019a; Koo and Ploenzke,
2020a)]. Moreover, attentionmechanisms were recently shown to be
more effective in discovering knownTF-bindingmotifs compared to
non-attentive DNNs (Park et al., 2020), as the learned attention
weights correlate with informative inputs, such as DNase-Seq
coverage and DNA motifs (Chen et al., 2021), and they can
provide better interpretation than other established feature
visualization methods, such as saliency maps (Lanchantin et al.,
2016; Singh et al., 2017).

Since these are computational approaches, they extract
statistical patterns that may not immediately reflect physical
properties of the variables and should be treated as hypotheses
that need to be further examined (Koo and Eddy, 2019). For
instance, a method can point out certain motifs or associations

that are important for the model in predicting the target, but how
this reflects actual physicochemical interactions can be rather
hard to interpret from the model alone. Nevertheless, this is an
active area of research and new solutions are frequently developed
(Lundberg and Lee, 2017; Chen and Capra, 2020; Koo and
Ploenzke, 2020b), where rigorous testing as well as
experimentally verifying predictions will highlight the most
promising approaches (Ancona et al., 2017). On the other
hand, an alternative trend that is arguably more appropriate
than interpreting black box models is the development of
inherently interpretable models (Rudin, 2019), where prior
knowledge of gene expression can be built into the deep
network structure itself (Ma et al., 2018; Tareen and Kinney,
2019; Liu et al., 2020). We refer interested readers to the excellent
recent review by Azodi and co. (Azodi et al., 2020).

REGULATORY MECHANISMS IN SPECIFIC
CODING AND NON-CODING REGIONS

Both transcription and translation comprise multiple steps that
include initiation, elongation and termination (Watson et al.,
2008). Transcription of protein coding genes is controlled via the
gene regulatory structure, comprised of coding and cis-regulatory
regions that include promoters, untranslated regions (UTRs) and
terminators, and generally proceeds in the direction from the
upstream 5′ to downstream 3′ end (Figure 1B). Initiation is
regulated by enhancers, promoters and 5′ UTRs, where the
transcriptional machinery including RNA polymerase (RNAP)
is guided to the correct sites on the DNA. In the elongation phase,
mRNA is synthesized (transcribed) from the coding sequence,
and this process terminates toward the 3′ UTR and terminator
regions carrying termination signals. Afterward, the process of
mRNA decay is triggered, which occurs in eukaryotes after the
mRNA strand is matured by 5′ capping and 3′ poly(A) tail
extension, and precursor mRNA (pre-mRNA) transcripts are
processed by the spliceosome, removing introns (non-coding
regions) and joining exons (coding regions) together (Watson
et al., 2008; Wilkinson et al., 2020). The rates of mRNA synthesis
and decay define the actual mRNA levels in the cell that are
commonly measured with RNA-Seq (Wang et al., 2009). The
DNA regions involved in mRNA synthesis carry multiple
regulatory motifs, with codon usage in coding regions
detailing which nucleotide triplets encoding an amino acid
(AA) are used at each position, contributing to the base
regulatory grammar of transcription (Plotkin and Kudla, 2011;
Cheng et al., 2017). As described above, the general genomic
architecture, defined by binding of histones in eukaryotes (Struhl
and Segal, 2013) and nucleoid-associated proteins (NAPs) in
prokaryotes (Dillon and Dorman, 2010), acts as a master
regulator of transcription by controlling the accessibility of
DNA to proteins (Curran et al., 2014; Morse et al., 2017).

Translation also proceeds in the direction from the 5′ to the 3′
end of an mRNA (Figure 1C) and, in bacteria, occurs
simultaneously with transcription in the cytoplasm of the cell,
whereas in eukaryotes transcription occurs in the nucleus and
translation occurs in the cytoplasm (Watson et al., 2008).
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TABLE 2 | Overview of studies modeling gene expression-related properties from separate regulatory or coding regions. Highest achieved or average scores are reported,
on test sets where applicable, and include accuracy (acc), area under the receiver operating characteristic curve (AUC), area under the precision recall curve (AUPRC),
the coefficient of variation (R2) and Pearson’s correlation coefficient (r).

Ref. Strategy Region Target var. Explan. vars. Method Score Organism

(Leman et al.,
2018)

Shallow Coding Splice site prediction Sequence and
PWM features

Logistic regression acc � 0.96% Human

(Signal et al.,
2018)

Shallow Coding Branch point prediction Sequence features Gradient boosting
classification

AUC � 0.94 Human

(Zhang et al.,
2017a)

Shallow Coding Branch point prediction Sequence features Mixture models
classification

AUC � 0.82 Human

(Trösemeier et al.,
2019)

Shallow Coding Protein abundance Codon usage
features

COSEM mathematical
model

R2 � 0.45, 0.51,
0.37, respectively

E. coli, yeast, human

(Ferreira et al.,
2020)

Shallow Coding Protein abundance Codon usage AdaBoost regression R2 � 0.95 Yeast

(Tunney et al.,
2018)

Shallow Coding Ribosome density at
each codon

Codon usage NN regression r � 0.57 Yeast

(Zuallaert et al.,
2018)

Deep Coding Splice site prediction DNA sequence CNN classification AUPRC � 0.61 Human, A. thaliana

(Wang et al.,
2019)

Deep Coding Splice site prediction DNA sequence CNN classification AUC � 0.98 Human

(Jaganathan et al.,
2019)

Deep Coding Splice site prediction DNA sequence CNN classification AUPRC � 0.98 Human

(Paggi and
Bejerano, 2018)

Deep Coding Branch point prediction DNA sequence biLSTM classification AUC � 0.71 Human

(Nazari et al.,
2019)

Deep Coding Branch point prediction DNA sequence biLSTM + CNN
classification

AUC � 0.81 Human

(Xu et al., 2017) Deep Coding Alternative splicing
prediction

Sequence and
epigenetic features

Dense DNN
classification

AUPRC � 0.89 Human

(Lee et al., 2020) Deep Coding Alternative splicing
prediction

Sequence and
epigenetic features

RNN classification AUPRC � 0.8 Human

(Zhang et al.,
2019)

Deep Coding Alternative splicing
prediction

RNA-seq data Dense DNN + bayesian
hypothesis testing

AUC � 0.87 Human

(Fu et al., 2020) Deep Coding Protein abundance DNA sequence Multilayer biLSTM
regression

R2 � 0.52 E. coli

(Fujimoto et al.,
2017)

Deep Coding Optimal codon usage DNA sequence biLSTM encoder-
decoder

acc � 0.97 E. coli

(Yang et al., 2019) Deep Coding Transcript abundance DNA sequence biLSTM transducer acc � 0.67 E. coli, human
(Grossman et al.,
2017)

Shallow Enhancer Transcript abundance Motifs and pairwise
motif interactions

L1-regularized LR R2 � 0.38 (natural),
0.52 (synthetic)

Human

(Lee et al., 2011) Shallow Enhancer Enhancer prediction k-mers SVM classification AUC � 0.93 Human
(Min et al., 2017) Deep Enhancer Enhancer prediction DNA sequence CNN classification AUPRC � 0.92 Human
(Cohn et al., 2018) Deep Enhancer Enhancer prediction DNA sequence CNN classification AUC � 0.92 17 mammalian

species including
human

(Niu et al., 2019) Deep Enhancer Transcript abundance DNA sequence CNN regression AUC � 0.92 Human
(Chen and Capra,
2020)

Deep Enhancer Multitask regulatory
properties

DNA sequence Deep residual NN
classification

AUPRC � 0.98 Human

(Lubliner et al.,
2015)

Shallow Promoter Core promoter activity via
reporter fluorescence

k-mers LR R2 � 0.72 Yeast

(Urtecho et al.,
2019)

Shallow Promoter mRNA abundance σ factor binding sites NN regression R2 � 0.96 E. coli

(Einav and Phillips,
2019)

Shallow Promoter mRNA abundance σ factor binding sites Biophysical model R2 � 0.91 E. coli

(de Boer et al.,
2020)

Shallow Promoter Protein abundance TF binding and
sequence features

L2-regularized
multiple LR

R2 � 89 (natural),
94 (synthetic)

Yeast

(Hossain et al.,
2020)

Shallow Promoter mRNA abundance TF binding and
sequence features

L1-regularized
multiple LR

R2 � 0.49 E. coli, yeast

(Leiby et al., 2020) Deep Promoter Transcription initiation
rate

DNA sequence CNN regression R2 � 0.90 E. coli

(Kotopka and
Smolke, 2020)

Deep Promoter Protein abundance DNA sequence CNN regression R2 � 0.79 Yeast

(Dvir et al., 2013) Shallow 5′ UTR Protein levels DNA sequence
features + k-mers

LR R2 � 0.52 Yeast

(Bonde et al.,
2016)

Shallow 5′ UTR Protein abundance RBS features RF regression R2 � 0.89 E. coli

(Continued on following page)
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Prokaryotic mRNAs have a ribosome binding site (RBS) located in
the 5′ UTR that aids recruitment of the translation machinery
(Omotajo et al., 2015). In eukaryotes, mRNAs are modified at their
5′ and 3′ ends to facilitate translation by 5′ capping, which recruits
the ribosome to the mRNA, and addition of a 3′ poly(A) tail,
promoting higher translation by efficient recycling of ribosomes
(Mayr, 2017). The key factors for initiation are ribosome
recruitment to the mRNA and correct positioning over the start
codon, where the presence of a Kozak sequence in the 5′ UTR also
increases the efficiency of translation (Nakagawa et al., 2008;
Hinnebusch et al., 2016). Elongation is mostly driven by codon
usage, where ribosomes synthesize proteins by concatenating one
AA per codon according to the genetic code (Saier, 2019). In the
termination phase, release factors terminate translation in response
to stop codons and the ribosomes are recycled.

Open Reading Frame and Coding Region
Alternative splicing plays a crucial role for protein diversity in
eukaryotic cells and produces several mRNA molecules from a
single pre-mRNAmolecule with ∼95% of human genes (Wilkinson
et al., 2020). Conversely, in yeast, ∼6% of genes carry introns and
very few alternative splice forms exist. RNA splicing requires a
mandatory set of splicing signals including: 1) the splice donor site
(5’ss) and splice acceptor site (3’ss) that define the exon/intron
junction of each intron at the 5′ and 3′ ends, respectively, and are
characterized by highly conserved dinucleotides (mainly GT and
AG, respectively), and 2) the branch point site, a short and
degenerate motif usually located between 18 and 44 bp
upstream of 3’ss and as far as 400 bp upstream (Mercer et al.,
2015). Alterations of these signals were found to be the most
frequent cause of hereditary disease (Anna and Monika, 2018).
Since 5’ss and 3’ss sequences are well characterized, reliable tools
dedicated to splice site predictions have emerged, such as the logistic
regression-based “SPiCE” (Leman et al., 2018), trained on

395 splice-site variants of 11 human genes, which achieved an
accuracy of 95.6% and correctly predicted the impact on splicing for
98.8% of variants (Table 2). To predict the position of splice sites on
long genomic sequences, “SpliceRover” (Zuallaert et al., 2018) and
“SpliceFinder” (Wang et al., 2019) were developed using CNNs,
both outperforming existing splice site prediction tools. SpliceRover
achieved ∼10% improvement over an existing SVM-based model
(Sonnenburg et al., 2007) (AUPRC � 0.61 vs. 0.54) and SpliceFinder
compared favourably to both LSTM and SVM-based approaches
(AUC of 0.98 vs. 0.95 and 0.93, respectively). A deeper, 32-layer
CNN termed “SpliceAI” that accurately predicts splice junctions in
pre-mRNAs was developed by Jaganathan and co. (Jaganathan
et al., 2019), enabling precise prediction of noncoding genetic
variants that cause cryptic splicing and outperforming shallow
methods (AUPRC � 0.98 vs. 0.95). The study also found that
splice-altering mutations are significantly enriched in patients with
rare genetic disorders, causing an estimated 9–11% of pathogenic
mutations. For identification of relevant branch points, the method
“Branchpointer” (Signal et al., 2018) based on gradient boosting
machines showed the best performance to detect the branch points
upstream of constitutive and alternative 3’ss (accuracy of 99.48 and
65.84%, respectively). Alternatively, for variants occurring in a
branch point area, the mixture-model based “BPP” (Zhang et al.,
2017a) emerged as having the best performance to predict effects on
mRNA splicing, with an accuracy of 89.17%. Interestingly, two deep
learning methods based on bidirectional LSTMs, “LaBranchoR”
(Paggi and Bejerano, 2018) and “RNABPS” (Nazari et al., 2019),
both performed worse than the above shallow methods when
assessed on large scale datasets (AUC of 0.71 and 0.81,
respectively, vs. 0.82 with BPP using constitutive 3’ss) (Leman
et al., 2020).

Further deep learning studies on alternative splicing
prediction have shown that a comprehensive splicing code
should include not only genomic sequence features but also

TABLE 2 | (Continued) Overview of studies modeling gene expression-related properties from separate regulatory or coding regions. Highest achieved or average
scores are reported, on test sets where applicable, and include accuracy (acc), area under the receiver operating characteristic curve (AUC), area under the precision
recall curve (AUPRC), the coefficient of variation (R2) and Pearson’s correlation coefficient (r).

Ref. Strategy Region Target var. Explan. vars. Method Score Organism

(Salis et al., 2009;
Salis, 2011)

Shallow 5′ UTR Protein abundance RBS features Thermodynamic
model, LR

R2 � 0.54 (natural),
0.84 (synthetic)

E. coli

(Espah Borujeni
et al., 2017)

Shallow 5′ UTR Translation initiation rate N-terminal mRNA
structures

Biophysical model, LR R2 � 0.78 E. coli

(Ding et al., 2018) Shallow 5′ UTR Protein abundance DNA sequence
activity relationships

Partial least-squares
(PLS) regression

R2 � 0.60 (natural),
0.71 (synthetic)

Yeast

(Decoene et al.,
2018)

Shallow 5′ UTR Translation initiation rate DNA sequence
features

PLS regression R2 � 0.73 Yeast

(Cuperus et al.,
2017)

Deep 5′ UTR Protein abundance DNA sequence CNN regression R2 � 0.62 Yeast

(Sample et al.,
2019)

Deep 5′ UTR Mean ribosome load DNA sequence CNN regression R2 � 0.82 Human

(Morse et al.,
2017)

Shallow 3′ UTR,
terminator

Protein abundance Nucleosome
occupancy score

Weighted LR R2 � 0.84 Yeast

(Cambray et al.,
2013)

Shallow Terminator Termination efficiency DNA sequence
features (12)

Multiple LR r � 0.9 E. coli

(Vogel et al., 2010) Shallow 3′ UTR,
terminator

mRNA abundance k-mers L1-regularized logistic
regression

r � 0.41 Yeast

(Bogard et al.,
2019)

Deep 3′ UTR Alternative
polyadenylation signals

DNA sequence CNN regression R2 � 0.88 Human
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epigenetic properties. For instance, 16 histone modifications were
used with a multi-label DNN for human embryonic stem cell
differentiation in an approach termed “DeepCode” (Xu et al.,
2017), achieving an AUPRC up to 0.89. Lee and co. (Lee et al.,
2020) built an interpretable RNN that mimics the physical layout
of splicing regulation, where the chromatin context progressively
changes as the RNAP moves along the guide DNA, achieving an
AUPRC of over 0.8 and showing that adjacent epigenetic signals
carry useful information in addition to the actual nucleotide
sequence of the guide DNA strand. Finally, to enable the
characterization of differential alternative splicing between
biological samples based on RNA-seq datasets even with
modest coverage, the approach DARTS (Zhang et al., 2019)
was developed based on a DNN and a Bayesian statistical
framework used to determine the statistical significance of
differential splicing events in RNA-seq data across biological
conditions.

The genetic code is degenerate as most AAs are coded by
multiple codons, and these codons would appear in equal
frequencies if use of specific codons would not amount to any
change in cellular fitness. However, the unequal use of codons
that decode the same AA, termed codon usage bias (CUB), cannot
be explained by mutation bias alone and is generally believed to
arise from selection for improved translational efficiency (Plotkin
and Kudla, 2011). Due to variations in transfer RNA (tRNA)
abundances, favoring the usage of codons that correspond to
more abundant tRNA can lead to faster translation. Such codons
are preferred or “optimal” for translation speed up (termed codon
optimality) (Hershberg and Petrov, 2008). This is supported by
multiple findings in both prokaryotes and eukaryotes, showing
that CUB correlates with translation efficiency (protein numbers
per mRNA) (Tuller et al., 2010), certain protein structural motifs
and tRNA levels (Hanson and Coller, 2018), and affects mRNA
translation initiation rates and elongation rates. Furthermore,
CUB indices of genes, such as the codon adaptation index (CAI)
(Sharp and Li, 1987; Carbone et al., 2003), tend to correlate with
the genes’ expression (Ghaemmaghami et al., 2003). The role of
the coding region extends beyond codon usage, however. mRNA
structure was found to regulate translation (Yu et al., 2019) and
mRNA hairpins can obstruct translation and override the effect of
codon usage bias on translation (Cambray et al., 2018).

The strong association of mRNA levels with protein
expression in a variety of organisms (Schwanhäusser et al.,
2011; Csárdi et al., 2015; Liu et al., 2016) indicates a more
complex background process. The selection pressure for
increased protein expression can manifest in changes of DNA
that optimize both translation and transcription, improving
protein expression and mRNA levels, respectively. Multiple
lines of recent evidence corroborate this dual role of
synonymous codon changes in transcription and translation,
suggesting that selection is shaping codon usage not only to
optimize translational efficiency, but in response to conditions
imposed by the transcription machinery as well as the physical
properties of mRNA (Zhou et al., 2016; Zhou et al., 2018b). For
instance, in fungi, codon optimization was found to increase
mRNA and protein levels in a promoter-independent manner
(Zhou et al., 2016), with CUB shown to be predictive of mRNA

and protein levels, affect mRNA stability (Presnyak et al., 2015)
and toxicity (Mittal et al., 2018), coevolve with transcription
termination (Zhou et al., 2018b) as well as be influenced by
mRNA local secondary structure (Trotta, 2013). Similarly, in
E. coli, CUB was found to affect mRNA stability by defining
mRNA folding at the ribosomal site (Kudla et al., 2009).

Multiple modeling studies have been performed to analyze the
causes and effects of CUB as well as to find ways to optimize
codon usage in order to boost gene expression levels. Codon
optimization is a mature field with tools readily available on most
biotechnology and DNA synthesis companies’ websites (e.g.
www.thermofisher.com, www.genewiz.com, www.
twistbioscience.com) as well as in standalone solutions (Puigbò
et al., 2007; Gould et al., 2014; Rehbein et al., 2019). Most existing
optimization strategies are based on biological indices, such as
CAI (Sharp and Li, 1987; Puigbò et al., 2007), and use the host’s
preferred codons to replace less frequently occurring ones, while
also adjusting the new sequences to match the natural codon
distribution in order to preserve the slow translation regions that
are important for protein folding (Richardson et al., 2006; Angov
et al., 2008; Hershberg and Petrov, 2009; Gaspar et al., 2012).
Standard codon usage metrics were shown to be highly predictive
of protein abundance. For instance, an AdaBoost model trained
on a number of codon usage metrics in S. cerevisiae genes coding
for high-abundance proteins (top 10%) and low-abundance
proteins (lowest 10%) was highly predictive of these extremes
of protein abundance (R2 � 0.95) (Ferreira et al., 2020).

However, while explicitly modeling existing frequency-based
indices has helped to engineer high-yield proteins, it is unclear
what other biological features (e.g. RNA secondary structure)
should be considered during codon selection for protein synthesis
maximization. To address this issue, inspired by natural language
processing, deep learning was recently also applied to model
CUB. Fujimoto and co. (Fujimoto et al., 2017) showed that their
biLSTM-based deep language model that “translates” from DNA
to optimal codon sequences, is more robust than existing
frequency-based methods due to its reliance on contextual
information and long-range dependencies. Similarly, a
biLSTM-Transducer model of codon distribution in highly
expressed bacterial and human transcripts was able to predict
the next codon in a genetic sequence with improved accuracy and
lower perplexity on a held out set of transcripts, outperforming
previous state-of-the-art frequency-based approaches (accuracy
of 0.67 vs. 0.64) (Yang et al., 2019). Another deep learning-based
codon optimization approach introduced the concept of codon
boxes, enabling DNA sequences to be transformed into codon box
sequences, while ignoring the order of bases, and thus converting
the problem of codon optimization to sequence annotation of
corresponding AAs with codon boxes (Fu et al., 2020). Sequences
optimized by these biLSTM codon optimization models with
ones optimized by Genewiz and ThermoFisher were compared
using protein expression experiments in E. coli, demonstrating
that the method is efficient and competitive.

Alternatively, an algorithmic approach to replacing codons by
the target organism’s preferred codons was developed by
Trösemeier and co. (Trösemeier et al., 2019), termed
“COSEM,” which simulates ribosome dynamics during mRNA
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translation and informs about protein synthesis rates per mRNA
in an organism and context-dependent way. Protein synthesis
rates from COSEM were integrated with further relevant
covariates such as translation accuracy into a protein
expression score that was used for codon optimization, with
further algorithmic fine-tuning implemented in their software
“OCTOPOS.” The protein expression score produced
competitive predictions on proteomic data from prokaryotic
and eukaryotic expression systems and was shown to be
superior to standard methods, achieving 3-fold increases in
protein yield compared to wildtype and commercially
optimized sequences (Trösemeier et al., 2019). Moreover, since
ribosomes do not move uniformly along mRNAs, Tunney and co.
(Tunney et al., 2018) modeled the variation in translation
elongation by using a shallow NN to predict the ribosome
density at each codon as a function of its sequence
neighborhood. This enabled them to study sequence features
affecting translation elongation and to design synonymous
variants of a protein coding sequence in budding yeast that
closely tracked the predicted translation speeds across their
full range in vivo, demonstrating that control of translation
elongation alone is sufficient to produce large quantitative
differences in protein output.

Enhancer and Promoter
Transcriptional enhancers are located upstream of the
transcription start site (TSS) and regulate spatiotemporal
tissue-specific gene expression patterns over long genomic
distances, which is achieved through the binding of TFs to
cognate motifs (Shlyueva et al., 2014). They can typically be
found farther away from the TSS with increasing genomic
complexity of the organism (Mora et al., 2016; Clément et al.,
2018; Zicola et al., 2019), as far as a million bps in mammals
(Pennacchio et al., 2013). Enhancer function and TF binding are
influenced by various features, such as the chromatin state of the
genomic locus, binding site affinities, activity of bound TFs as well
as interactions among TFs (Shlyueva et al., 2014; Chen and Capra,
2020). The nature of how TF interactions influence enhancer
function was explored in a recent systematic analysis using in vivo
binding assays with 32,115 natural and synthetic enhancers
(Grossman et al., 2017). The activity of enhancers that contain
motifs for PPARγ, a TF that serves as a key regulator of
adipogenesis, were shown to depend on varying contributions
from dozens of TFs in their immediate vicinity. Importantly,
different pairs of motifs followed different interaction rules,
including subadditive, additive, and superadditive interactions
among specific classes of TFs, with both spatially constrained and
flexible grammars.

One of the key ML tasks shedding new light on DNA features
affecting enhancer function is identification of enhancer regions
in genomic sequences. For instance, a k-mer based SVM
framework was able to accurately identify specific types of
enhancers (EP300-bound) using only genomic sequence
features (Lee et al., 2011), outperforming PWM-based
classifiers (AUC � 0.93 vs. 0.87). The predictive sequence
features identified by the SVM classifier revealed both
enriched and depleted DNA sequence elements in the

enhancers, many of which were found to play a role in
specifying tissue-specific or developmental-stage-specific
enhancer activity, and others that operate in a general or
tissue-independent manner. The first deep learning approach
to facilitate the identification of enhancers, termed
“DeepEnhancer” (Min et al., 2017), relied purely on DNA
sequences to predict enhancers using CNNs and transfer
learning to fine-tune the model on cell line-specific enhancers.
The method was superior to gkm-SVM by ∼7% in both AUC and
AUPRC scores, and visualizing CNN kernels as sequence logos
identified motifs similar to those in the JASPAR database (Khan
et al., 2018). Similarly, Cohn and co. (Cohn et al., 2018). trained
deep CNNs to identify enhancer sequences in 17 mammalian
species using simulated sequences, in vivo binding data of single
TFs and genome-wide chromatin maps of active enhancers. High
classification accuracy was obtained by combining two training
strategies that identified both short (1–4 bp) low-complexity
motifs and TFBS motifs unique to enhancers. The
performance improved when combining positive data from all
species together, demonstrating how transfer of learned
parameters between networks trained on different species can
improve the overall performance and supporting the existence of
a shared mammalian regulatory architecture. Although
identification of enhancer locations across the whole genome
is necessary, it can be more important to predict in which specific
tissue types they will be activated and functional. The existing
DNNs, though achieving great successes in the former, cannot be
directly employed in tissue-specific enhancer predictions because
a specific cell or tissue type only has a limited number of available
enhancer samples for training. To solve this problem, Niu and co.
(Niu et al., 2019) employed a transfer learning strategy, where
models trained for general enhancer predictions were retrained
on tissue-specific enhancer data and achieved a significantly
higher performance (geometric mean of precision and recall,
GM � 0.81 vs. 0.70), also surpassing gkm-SVM (GM � 0.53).
Interestingly, a very small amount of retraining epochs (∼20)
were required to complete the retraining process, giving insight
into the tissue-specific regulatory rewiring and suggesting that
tissue specific responses are mediated by precise changes on a
small subset of binding features.

Promoters are adjacent regions directly upstream, as well as a
short distance downstream, of the TSS typically spanning from 50
to a couple of 100 bp (Sharon et al., 2012; Redden and Alper,
2015). Besides TFBS and enhancers, they contain core promoters
(Lubliner et al., 2015; Haberle and Stark, 2018) in eukaryotes and
σ factor binding sites (Feklístov et al., 2014) in prokaryotes, to
which the RNAP is recruited and where it acts to initiate
transcription. The core promoter contains several motifs with
fixed positioning relative to the TSS (Haberle and Stark, 2018),
including: 1) the TATA-box motif (consensus 5′-TATAWAW-
3′), located ∼30 bp upstream of TSS and conserved from yeast to
humans but found only in a minority of core promoters, 2) the
initiator (Inr) motif, which directly overlaps the TSS and is more
abundant than the TATA-box but not universal, with differing
consensus sequence among organisms, 3) the downstream
promoter element (DPE) that can accompany Inr in
promoters that lack a TATA-box and is positioned
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downstream of the TSS, and 4) other motifs with defined
positions relative to the TSS, including TFIIB recognition
elements (BREs) and downstream core elements (DCEs) in
humans (Watson et al., 2008; Haberle and Stark, 2018). A
comprehensive study of yeast core promoter activity and TSS
locations in thousands of native and designed sequences
(Lubliner et al., 2015) showed that core promoter activity is
highly correlated to that of the entire promoter and is in fact
predictable from the sequence variation in core promoters (R2 up
to 0.72). Interestingly, orthologous core promoters across yeast
species have conserved activities, with transcription initiation in
highly active core promoters focused within a narrow region and
location, orientation, and flanking bases critically affecting motif
function. De Boer and co. (de Boer et al., 2020) recently
transcended the limitations of using native and engineered
sequences with insufficient scale, instead measuring the
expression output of >100 million fully random synthetic
promoter sequences in yeast. Using shallow ML they built
interpretable models of transcriptional regulation that
predicted 94 and 89% of the expression driven from
independent test promoters and native yeast promoter
fragments, respectively, with a deep model mentioned to have
achieved 96%. These models allowed them to characterize each
TF’s specificity, activity and interactions with chromatin, showing
that expression level is influenced by weak regulatory
interactions, which confound designed-sequence studies,
further supporting that interactions between elements in
regulatory regions play an important role in orchestrating gene
expression. Moreover, based on promoter libraries comprising
>1,000,000 constitutive and inducible promoters and using deep
learning, Kotopka and Smolke (Kotopka and Smolke, 2020)
developed accurate predictors of promoter activity (R2 � 0.79)
that were used for model-guided design of large, sequence-diverse
promoter sets, confirmed to be highly active in vivo.

Prokaryotic promoters are marked by σ factor binding sites
with five distinct motifs controlling transcription initiation rates
by mediating RNAP recruitment: the −35, extended −10, −10,
and discriminator motifs recognized by σ; and the UP element
recognized by other RNAP domains (Browning and Busby, 2004;
Feklístov et al., 2014). The −35 (consensus 5′-TTGACA-3′) and
−10 motifs (consensus 5′-TATAAT-3′) are the most abundant,
though the extended −10 motif can supplant −35 for initiation,
both of which are recognized as dsDNA, with the remaining
motifs recognized as ssDNA (Feklístov et al., 2014). By building
and testing a library of 10,898 σ70 promoter variants consisting of
combinations of −35, −10 and UP elements, spacers, and
backgrounds in E. coli (Urtecho et al., 2019), the −35 and −10
sequence elements were shown to explain over 95% of the
variance in promoter strength using a shallow NN. This was
an improvement over using a simple log-linear statistical model,
which explained ∼74% of the variance, likely due to capturing
nonlinear interactions with the spacer, background, and UP
elements. Based on the same data from Urtecho and co.
(Urtecho et al., 2019), the central claim in energy matrix
models of gene expression, stating that each promoter element
contributes independently and additively to gene expression and
contradicting experimental measurements, was tested using

biophysical models (Einav and Phillips, 2019). A “multivalent”
modeling framework incorporated the effect of avidity between
the –35 and –10 RNAP binding sites and could successfully
characterize the full suite of gene expression data (R2 � 0.91),
suggesting that avidity represents a key physical principle
governing RNAP-promoter interaction, with overly tight
binding inhibiting gene expression. Another use of the data by
Urtecho and co. (Urtecho et al., 2019) was with deep learning,
where CNN models were trained to predict a promoter’s
transcription initiation rate directly from its DNA sequence
without requiring expert-labeled sequence elements (Leiby
et al., 2020). The model performed comparably to the above
shallow models (R2 � 0.90) and corroborated the consensus −35,
−10 and discriminator motifs as key contributors to σ70
promoter strength. Similarly, using a “Nonrepetitive Parts
Calculator” to rapidly generate and experimentally characterize
thousands of bacterial promoters with transcription rates that
varied across an almost 1e6-fold range, a ML model was built to
explain how specific interactions controlled the promoters’
transcription rates, supporting that the number of −35 and
−10 motif hexamer mismatches is a potent sequence
determinant (Hossain et al., 2020).

59 Untranslated Region
The key known sequence elements affecting gene expression in 5′
UTRs are the RBS, known as the Shine-Dalgarno sequence, in
prokaryotes (Omotajo et al., 2015) and the Kozak sequence in
eukaryotes (Nakagawa et al., 2008). The Shine-Dalgarno
sequence is a ∼6 bp highly conserved sequence (consensus 5′-
AGGAGG-3′) (Shine and Dalgarno, 1975) located 3–9 bp from
the start codon, which aids recruitment of the ribosome to the
mRNA and has a strong effect on the translation initiation rate,
thus being highly predictive of expression (Bonde et al., 2016). In
order to design synthetic RBS and enable rational control over
protein expression levels, the “RBS calculator” was developed a
decade ago (Salis et al., 2009; Salis, 2011). Experimental
validations in E. coli showed that the method is accurate to
within a factor of 2.3 over a range of 100,000-fold (R2 � 0.54
on natural sequences and 0.84 on synthetic ones), correctly
predicting the large effects of genetic context on identical RBS
sequences that result in different protein levels. The tool was
further expanded in a subsequent study (Espah Borujeni et al.,
2017), where the N-terminal mRNA structures that need to be
unfolded by the ribosome during translation initiation were
precisely determined by designing and measuring expression
levels of 27 mRNAs with N-terminal coding structures with
varying positioning and energetics. The folding energetics of
the N-terminal mRNA structures were determined to control
translation rates only when the N-terminal mRNA structure
overlaps with the ribosomal footprint, which extends 13
nucleotides past the start codon. By utilizing this improved
quantification of the ribosomal footprint length, their
biophysical model could more accurately predict the
translation rates of 495 characterized mRNAs with diverse
sequences and structures (R2 � 0.78). The contribution of the
Shine-Dalgarno sequence to protein expression was further
comprehensively assessed and used to develop the tool
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“EMOPEC,” which can modulate the expression level of any
E. coli gene by changing only a few bases (Bonde et al., 2016).
Measured protein levels for 91% of the designed sequences were
within twofold of the desired target levels, and predictions of
these levels with RF regressors wastly outperformed RBS
calculator with an R2 of 0.89 compared to 0.44.

In eukaryotes, the nucleotide composition of the 5′ UTR
changes across genes and species, with highly expressed genes
in S. cerevisiae preferring A-rich and G-poor 5′UTRs. The Kozak
sequence, which helps to initiate translation in most mRNAs and
occupies the first 6–9 nucleotides upstream of the START codon
AUG, thus has the consensus 5′-WAMAMAA-3′ in yeast (Li
et al., 2017a), whereas in humans this is 5′-GCCGCCRMC-3ʹ
(Nakagawa et al., 2008). Measurement of protein abundance in
2,041 5′-UTR sequence variants, differing only in positions −10
to −1, showed that in yeast, key regulatory elements, including
AUG sequence context, mRNA secondary structure, nucleosome
occupancy and out-of-frame upstream AUGs conjointly
modulate protein levels (Dvir et al., 2013). Based on these
features, a predictive model could be developed that explains
two-thirds of the expression variation. Recently, however, it was
shown that also nucleotides upstream of the Kozak sequence are
highly important (Li et al., 2017a). Ding and co. (Ding et al., 2018)
synthesized libraries of random 5′ UTRs of 24 nucleotides and
used a mathematical model accounting for strong epistatic
interactions among bases to predict protein abundance. Then,
by stepwise engineering the 5′ UTRs according to nucleotide
sequence activity relationships (NuSAR), through repeated cycles
of backbone design, directed screening, and model
reconstruction, the predictive accuracy of the model was
improved (R2 � 0.71 vs. initial 0.60), resulting in strong 5′
UTRs with 5-fold higher protein abundance than the initial
sequences. Similarly, a computational approach for predicting
translation initiation rates, termed “yUTR calculator,” was
developed using partial least-squares (PLS) regression and
multiple predictive features, including presence of upstream
AUGs (Decoene et al., 2018). This enabled the de novo design
of 5′UTRs with a diverse range of desired translation efficiencies,
which were confirmed in vivo. Moreover, the importance of
mRNA secondary structures in 5′ UTRs (Leppek et al., 2018)
was also confirmed by inserting hairpin RNA structures into
mRNA 5′ UTRs, which tuned expression levels by 100-fold by
inhibiting translation (Weenink et al., 2018). This enables
generating libraries with predicted expression outputs.

To facilitate deep learning of 5′ UTR function in yeast, a
library of half a million 50 bp random 5′ UTRs was constructed
and their activity assayed with growth selection experiments
(Cuperus et al., 2017). A CNN model was generated that
could accurately predict protein levels of both random and
native sequences (R2 � 0.62), and was used to evolve highly
active 5′ UTRs that were experimentally confirmed to lead to
higher protein expression rates than the starting sequences.
Similarly, in human cells, polysome profiling of a library of
280,000 randomized 5′ UTRs was used to develop a CNN,
termed “Optimus 5-Prime,” that could quantitatively capture
the relationship between 5′ UTR sequences and their
associated mean ribosome load (R2 � 0.93 vs. 0.66 with k-mer

based LR) (Sample et al., 2019). Combined with a genetic
algorithm, the model was used to engineer new 5′ UTRs that
accurately directed specified levels of ribosome loading, and also
enabled finding disease-associated SNVs that affect ribosome
loading and may represent a molecular basis for disease.

39 Untranslated Region and Terminator
Regulatory motifs within the 3′ UTR and terminator region
influence transcription termination, with 3′ UTR regulating
polyadenylation, localization and stability (decay) of mRNA as
well as translation efficiency (Barrett et al., 2012; Ren et al., 2017).
The 3′ UTR contains both binding sites for regulatory proteins
and microRNAs that can decrease gene expression by either
inhibiting translation or directly causing mRNA degradation.
It carries the A-rich ‘positioning’ element (consensus 5′-
AAWAAA-3′ in yeast and 5′-AATAAA-3′ in humans) that
directs addition of several hundred adenine residues called the
poly(A) tail to the end of the mRNA transcript - the poly(A) site
5′-Y(A)n-3′, the TA-rich ‘efficiency’ element (most frequently 5′-
TATWTA-3′) upstream of the positioning element and multiple
T-rich sites (Guo and Sherman, 1996; Zhao et al., 1999; Curran
et al., 2015). Based on these motifs, Curran and co. (Curran et al.,
2015) developed a panel of short 35–70 bp synthetic terminators
for modulating gene expression in yeast, the best of which
resulted in a 3.7-fold increase in protein expression compared
to that of the common CYC1 terminator. Further investigation of
the effects of 13,000 synthetic 3′ end sequences on constitutive
expression levels in yeast showed that the vast majority (∼90%) of
strongly affecting mutations localized to a single positive TA-rich
element, similar to the efficiency element (Vogel et al., 2010).
Based on the strength of this element, dependent also on the GC
content of the surrounding sequence, their classification model
could explain a significant amount of measured expression
variability in native 3′ end sequences (r � 0.41). Moreover,
similarly as with promoters (Curran et al., 2014), Morse and
co. (Morse et al., 2017) showed that terminator function can be
modulated on the basis of predictions of nucleosome occupancy,
with LR models highly predictive of protein output based on
nucleosome occupancy scores (R2 � 0.84). Designed terminators
depleted of nucleosomes achieved an almost 4-fold higher net
protein output than their original counterparts, with the main
mode of action through increased termination efficiency, rather
than half-life increases, suggesting a role in improved mRNA
maturation.

Most genes express mRNAs with alternative polyadenylation
sites at their 3′ ends (Tian and Manley, 2017), which were found
to be remarkably heterogeneous across different yeast species.
The polyadenylation pattern is determined by a broad degenerate
sequence as well as local sequence reliant on poly(A) residues that
can adopt secondary structures to recruit the polyadenylation
machinery (Moqtaderi et al., 2013). In humans, alternative
polyadenylation leads to multiple RNA isoforms derived from
a single gene, and a CNN termed ’APARENT’ was trained on
isoform expression data from over three million reporters to infer
alternative polyadenylation in synthetic and human 3′UTRs
(Bogard et al., 2019). APARENT was shown to recognize
known sequence motifs for polyadenylation, such as the
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positioning element, and also discover new ones, enabling the
authors to engineer precisely defined polyadenylation signals and
study disease-related genetic variants.

Bacterial transcription termination is known to occur via two
distinct mechanisms: factor-dependent or factor-independent
termination. The former relies on a regulatory protein Rho at
Rho-dependent terminator sequences and is responsible for
∼20% of termination events in E. coli (Peters et al., 2009),
whereas factor-independent termination accounts for the
remaining ∼80% of transcription termination events and
occurs at defined sequence regions known as “intrinsic
terminators” that contain GC-rich regions (Roberts, 2019).
Cambray and co. (Cambray et al., 2013) assembled a
collection of 61 natural and synthetic intrinsic terminators
that encode termination efficiencies across an 800-fold
dynamic range in E. coli and, by simulating RNA folding, they
found that secondary structures extending beyond the core
terminator stem are likely to increase terminator activity. They
developed linear sequence-function models that can accurately
predict termination efficiencies (r � 0.67), further improving their
performance by excluding terminators encoding the context-
confounding structural elements (r � 0.9).

PREDICTING TRANSCRIPT AND PROTEIN
LEVELS FROM MULTIPLE REGULATORY
PARTS
The whole nucleotide sequence is involved in gene expression.
When predicting the outcomes of transcription and translation,
e.g. transcript and protein abundance, it is important to consider
that many of the underlying steps in these processes are
dependent on the outcome of the previous steps and some can
occur in tandem (Watson et al., 2008) (Figures 1B,C). Each
region of the gene and mRNA regulatory structures carries
distinct regulatory signals that control the specific enzymatic
interactions and thus encodes a significant amount of
information related to mRNA (Shalem et al., 2015; Cheng
et al., 2017; Cuperus et al., 2017; Zrimec et al., 2020) and
protein levels (Vogel et al., 2010; Guimaraes et al., 2014;
Lahtvee et al., 2017). Moreover, multiple lines of evidence
support that the gene regulatory structure is a coevolving unit
in both multicellular (Castillo-Davis et al., 2004; Wittkopp et al.,
2004; Hahn, 2007;Wittkopp and Kalay, 2011; Arbiza et al., 2013;
Naidoo et al., 2018; Washburn et al., 2019) and unicellular
eukaryotes (Tirosh et al., 2009; Park et al., 2012; Chen et al.,
2016; Zrimec et al., 2020), as genes display a coupling of coding
and regulatory sequence evolution (Wittkopp et al., 2004;
Tirosh et al., 2009; Zrimec et al., 2020) with approximately
half of all functional variation found in non-coding regions
(Hahn, 2007). However, although data from multiple regions
was already used in prediction of mRNA and protein levels with
shallow models (Vogel et al., 2010; Guimaraes et al., 2014;
Lahtvee et al., 2017), predictions based on whole gene
regulatory structures spanning multiple kilobases have started
to emerge only recently, with the support of deep learning
(Washburn et al., 2019; Zrimec et al., 2020). Accounting for

multiple regions in ML models can lead to important
observations, such as differentiating and quantifying the
effects of separate vs. combined regions, and determining the
DNA variables across the regions as well as their interactions,
which affect predictions (Figure 3A).

DNNs are highly useful in learning the regulatory code of gene
expression across regulatory structures. Despite hybrid CNN +
RNN architectures outperforming them in terms of accuracy,
CNNs work sufficiently well for this task (Yu and Koltun, 2015;
Gupta and Rush, 2017; Strubell et al., 2017) and excel in learning
rich higher-order sequence features that define the cis-regulatory
grammar (Siggers and Gordân, 2014; Zeng et al., 2016).
Systematic analyses of network properties, such as CNN kernel
size, number of kernels and number of layers as well as pooling
designs (pooling layers between connected CNNs), have
exemplified how DNNs decode the regulatory grammar in
sequence-based learning tasks (Trabelsi et al., 2019; Zeng
et al., 2016; Koo and Eddy, 2019) (Figure 2D). In a multilayer
DNN, the initial one to two layers capture information on single
motif occurrence, with the first layer potentially learning partial
motif representations. This can be useful in complicated tasks,
such as learning DNA regulatory grammar, because a wider array
of representations can be combinatorially constructed from
partial representations to capture the rich array of biologically
important sequence patterns in vivo (Siggers and Gordân, 2014;
Zrimec et al., 2020). Successive layers (e.g. Third layer) then learn
to recognize motif interactions (i.e. associations in predicting the
target variable) across the regulatory structure (Zeng et al., 2016;
Zrimec et al., 2020). The extent to which sequence motif
representations are learned by first layer kernels is influenced
by kernel size and pooling, which enforce a spatial information
bottleneck either from the sequence to the CNN or between
successive CNN layers, respectively. For instance, large max-
pooling (≥10) was shown to force kernels to learn whole motifs,
whereas CNNs that employ a low max-pool size (≤4) capture
partial motifs (Koo and Eddy, 2019). Similarly, the size of
successive convolutional kernels can also affect the ability to
assemble whole motifs in deeper layers. Moreover, the number of
kernels in the first layer sets a hard constraint on the number of
different sequence patterns that can be detected (Koo and Eddy,
2019). Since the scope of initial characterized sequence features
limits the range and complexity of grammar representations that
can be built downstream, this parameter was generally found to
have the greatest impact on CNN performance (Zeng et al., 2016).
Therefore, in contrast to learning tasks where the main features
are simple, such as occurrence of a PWM-like motif in TFBS
prediction, using multiple parts of the regulatory structures
requires deeper and more complex architectures that learn
distributed motif representations to address the more complex
sequence patterns (Koo and Eddy, 2019; Trabelsi et al., 2019)
(Figure 2D).

Predicting messenger RNA Levels From
Nucleotide Sequence
Despite the importance of the whole gene regulatory structure in
gene expression, very few combinations of regulatory elements
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have been tested and their functional interactions remain poorly
explored. To estimate the contribution of individual regulatory
parts in gene expression, a combinatorial library of regulatory
elements including different enhancers, core promoters, 5′ UTRs
and transcription terminators was constructed in S. cerevisiae
(Dhillon et al., 2020). A strong interaction was found between
enhancers and promoters, showing that, while enhancers initiate
gene expression, core promoters modulate the levels of enhancer-
mediated expression and can positively or negatively affect
expression from even the strongest enhancers. Interestingly,
principal component analysis indicated that enhancer and
promoter function can be explained by a single principal
component. Espinar and co. (Espinar et al., 2018) tested if
promoters and coding regions can be understood in isolation,
or if they interact, by measuring mRNA levels for 10,000
constructs. The strength of cotranslational regulation on
mRNA levels from either inducible or constitutive promoter
architecture was explored using LR, where a novel mechanism
for co-regulation with inducible promoters was identified (RNA
helicase Dbp2), whereas with constitutive promoters, most of the
information on mRNA levels was found in the coding region and
not in the promoter (Table 3). Neymotin and co. (Neymotin
et al., 2016) analyzed both coding regions and their interactions
with other cis-regulatory variables in mRNA transcripts that

affect mRNA degradations rates (which in turn affect overall
mRNA abundance) using multiple LR. Multiple transcript
properties were significantly associated with variation in
mRNA degradation rates, including transcript length,
ribosome density, CUB and GC content at the third codon
position, and a model incorporating these properties explained
∼50% of the genome-wide variance. A similar quantitative model
based on functional mRNA sequence features explained 59% of
the half-life variation between genes, predicting half-life at a
median relative error of 30% (Cheng et al., 2017). mRNA
sequence features found to most strongly affect mRNA
stability included CUB (R2 � 0.55), destabilizing 3′ UTR
motifs, upstream AUG codons, UTR lengths and GC content.

Recently, deep learning was applied on over 20,000 mRNA
datasets in seven model organisms that included bacteria, yeast
and human, to examine how individual coding and non-coding
regions of the gene regulatory structure interact and contribute to
mRNA abundance (Zrimec et al., 2020). The CNN-based
approach, termed “DeepExpression,” could predict the
variation of transcript levels directly from DNA sequence in
all organisms, with up to 82 and 70% achieved in S. cerevisiae and
E. coli, respectively, outperforming shallowmethods by over 13%.
Apart from the DNA sequence, CUB and features associated with
mRNA stability, including lengths of UTRs and open reading

FIGURE 3 |Quantifying gene expression and interpreting its regulatory grammar with machine learning. (A) Recently identified DNA regulatory elements predictive
of mRNA abundance that expand the base knowledge depicted in Figure 1B. These include motif associations (Zrimec et al., 2020) (red), structural motifs (e.g. DNA
shape, blue) (Zhou et al., 2015; Yang et al., 2017), weak interactions (de Boer et al., 2020) (green), nucleotides upstream of the Kozak sequence (Li et al., 2017a) (yellow),
CpG dinucleotides (Agarwal and Shendure, 2020) (gray) and mRNA stability features (Neymotin et al., 2016; Cheng et al., 2017; Agarwal and Shendure, 2020;
Zrimec et al., 2020) (dashed line, see text for details) identified in specific regions or across the whole gene regulatory structure. The table specifies the variation of mRNA
abundance explained by DNA sequence and features using deep learning (Zrimec et al., 2020). Note that with alternative approaches, higher predictive values were
obtained for certain regions in Table 2. (B)mRNA regulatory elements recently found to be predictive of protein abundance apart from features depicted in Figure 1C.
These include specific motifs found across all regions (Li et al., 2019a; Eraslan et al., 2019b) (red), upstream ORFs (Vogel et al., 2010; Li et al., 2019a) and AUGs
(Neymotin et al., 2016; Li et al., 2019a) (blue), AA composition (Vogel et al., 2010; Guimaraes et al., 2014) and post-translational modifications (PTMs) (Eraslan et al.,
2019b) (gray) as well as lengths and GC content of all regions (Neymotin et al., 2016; Cheng et al., 2017; Li et al., 2019a) (dashed line). The table specifies the variation of
protein abundance explained bymRNA levels and translational elements, using comparable shallow approaches in E. coli (Guimaraes et al., 2014), S. cerevisiae (Lahtvee
et al., 2017) and H. sapiens (Vogel et al., 2010). Note that with alternative approaches, higher values were obtained for certain regions in Table 2. (C) Quantifying the
central dogma of molecular biology with variance explained by mapping DNA to mRNA levels (Agarwal and Shendure, 2020; Zrimec et al., 2020) and mRNA levels to
protein abundance (Vogel et al., 2010; Guimaraes et al., 2014; Lahtvee et al., 2017), using deep and shallow learning, respectively. Note that highly different modeling
approaches were used.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 67336317

Zrimec et al. Learning Gene Expression Regulation

71

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


frames (ORFs), UTR GC content and GC content at each codon
position (Neymotin et al., 2016; Cheng et al., 2017), were found to
increase the predictive power of the models. Compared to single
interpreted DNAmotifs, motif associations could explain a much
larger portion of the dynamic range of mRNA levels (84 vs. 57%),
suggesting that instead of single motifs and regions, the entire
gene regulatory structure with specific combinations of regulatory
elements defines gene expression levels (Figure 3A). This was
also supported by observations of co-evolution among coding
and non-coding regions across 14 related yeast species. With
similar objectives, Agarwal and Schendure (Agarwal and
Shendure, 2020) developed “Xpresso,” which could explain 59
and 71% of variation in steady-state mRNA levels in human and
mouse, respectively, based only on promoter sequences and
explanatory features associated with mRNA stability. They
showed that Xpresso more than doubles the accuracy of
alternative sequence-based models and model interpretation
revealed that promoter-proximal CpG dinucleotides strongly
predict transcriptional activity.

To predict the tissue-specific transcriptional effects of genome
variation, including rare or unseen mutations, Zhou and co.
(Zhou et al., 2018a) developed a DNN–based framework
termed “ExPecto.” Using ExPecto to profile over 140 million

promoter-proximal mutations, the authors characterized the
regulatory mutation space for human RNAP II–transcribed
genes, which enables probing of evolutionary constraints on
gene expression and ab initio prediction of mutation disease
effects. A similar model was constructed using residual networks
(ResNets), which are multilayer CNNs that utilize skip
connections to jump over some layers (He et al., 2016), termed
“ExpResNet” (Zhang et al., 2020). By utilizing almost 100 kb of
sequence around each gene”s TSS, ExpResNet outperformed
existing models, including ExPecto (ρ � 0.80 vs. 0.75), across
four tested tissues. Interestingly, by comparing the performance
achieved with different input sequence sizes, we can observe that
the majority of regulatory information in humans is constrained
to ∼10 kb of regulatory structure around the TSS (ρ � 0.77, 0.79,
0.80 with 10, 40 and 95 kb, respectively), likely since this is
sufficient for the majority of genes, whereas enhancers outside
of this region are gene-specific and positioned highly variably.

Predicting Protein Abundance From mRNA
Sequence
In multiple organisms, protein levels at steady state are primarily
determined bymRNA levels, where up to ∼85% of the variation of

TABLE 3 | Overview of studies modeling transcript and protein-abundance related properties from combined regulatory and coding regions. Highest achieved or average
scores are reported, on test sets where applicable, and include area under the receiver operating characteristic curve (AUC), area under the precision recall curve
(AUPRC), the coefficient of variation (R2) and Spearman’s correlation coefficient (ρ).

Ref. Strategy Region Target var. Explan. vars. Method Score Organism

(Espinar et al., 2018) Shallow Promoter, coding mRNA abundance DNA sequence
features

LR R2 � 0.64 Yeast

(Neymotin et al.,
2016)

Shallow mRNA transcript mRNA stability
(degradation rates)

mRNA features Multiple LR R2 � 0.50 Yeast

(Cheng et al., 2017) Shallow mRNA transcript mRNA stability (half-
life)

mRNA features Multivariate LR R2 � 0.59 Yeast

(Zhou et al., 2018a) Deep Whole gene
regulatory structure

mRNA abundance DNA sequence CNN + L2-
regularized LR

AUC � 0.82 Human

(Zrimec et al., 2020) Deep Whole gene
regulatory structure

mRNA abundance DNA sequence and
features

CNN regression R2 � 0.82, 0.70, 0.42,
respectively

Yeast, E. coli,
human

(Agarwal and
Shendure, 2020)

Deep Promoter, coding mRNA abundance DNA sequence and
features

CNN regression R2 � 0.59 Human

(Zhang et al., 2020) Deep Whole gene
regulatory structure

mRNA abundance DNA sequence ResNet regression ρ � 0.80 Human

(Guimaraes et al.,
2014)

Shallow mRNA transcript Protein abundance mRNA features PLS regression R2 � 0.66 E. coli

(Lahtvee et al.,
2017)

Shallow mRNA transcript Protein abundance mRNA features MARS nonlinear
regression

R2 � 0.81 Yeast

(Vogel et al., 2010) Shallow mRNA transcript Protein abundance mRNA features MARS nonlinear
regression

R2 � 0.67 Human

(Li et al., 2019a) Shallow mRNA transcript Translation rates mRNA features Multivariate LR R2 � 0.81, 0.42,
respectively

Yeast, human

(Terai and Asai,
2020)

Shallow mRNA transcript Protein abundance mRNA features of
translation initiation

RF regression ρ � 0.76 E. coli

(Li et al., 2017b) Shallow mRNA transcript Translation rates mRNA features Bayesian model R2 � 0.20 (TRmD,;
0.80 (TRmIND)

Yeast

(Eraslan et al.,
2019b)

Shallow mRNA transcript Protein-to-RNA ratio mRNA sequence and
features

Multivariate LR R2 � 0.62 Human

(Zhang et al.,
2017b)

Deep mRNA transcript Translation initiation
sites

mRNA sequence CNN + RNN
classification

AUPRC � 0.62 Human

(Zhang et al., 2017c) Deep mRNA transcript Translation elongation
dynamics

mRNA sequence CNN classification AUC � 0.88, 0.83,
respectively

Yeast, human
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protein expression can be attributed to mRNA transcription
rather than protein translation (Schwanhäusser et al., 2011;
Csárdi et al., 2015; Liu et al., 2016). Nevertheless, the spatial
and temporal variations of mRNAs and the local availability of
resources for protein biosynthesis strongly influence the
relationship between protein levels and their transcripts (Liu
et al., 2016). Thus, in many scenarios, transcript levels by
themselves are not sufficient to predict protein levels and
multiple other mRNA-related properties and processes affect
translation and define the final gene expression levels. It was
also shown that, due to translation rates per mRNA molecule
being positively correlated with mRNA abundance, protein levels
do not scale linearly with mRNA levels, but instead scale with the
abundance of mRNA raised to the power of an “amplification
exponent” (Csárdi et al., 2015). Li and co. (Li et al., 2017b)
proposed that, to quantify translational control, the translation
rate must be decomposed mathematically into two components:
one that is dependent on mRNA abundance (TRmD), defining
also the amplification exponent, and one that is not (TRmIND). In
yeast, TRmD represented ∼20% of the variance in translation,
whereas TRmIND constituted the remaining ∼80% of the variance
in translation. The components were also preferentially
determined by different mRNA sequence features: TRmIND by
the length of the ORF and TRmD by a ∼60 nt element spanining
the initiating AUG and by CUB, implying that these components
are under different evolutionary selective pressures.

Quantification of absolute protein and mRNA abundances for
over 1,025 genes from the human Daoy medulloblastoma cell line
showed that the combined contribution of mRNA levels and
sequence features can explain⅔ of protein abundance variation at
steady state (Vogel et al., 2010) (Figure 3B). Using multivariate
adaptive regression splines (MARS), a nonlinear regression
technique, the variation in protein abundance was primarily
explained by translation elongation factors (31%), with an
impact similar to that of mRNA abundance (29%). The
strongest individual correlates of protein levels were
translation and degradation-related features including mRNA
sequence length, AA properties, upstream ORFs and 5′ UTR
secondary structures. Interestingly, characteristics of the 3′ UTR
explained a larger proportion of protein abundance variation
(8%) than characteristics of the 5′ UTR (1%). A similar analysis
performed with 824 genes in E. coli, which used PLS regression
and over 100 mRNA sequence features, also derived a model that
explained ⅔ of the total variation of protein abundance
(Guimaraes et al., 2014). The model suggests that protein
abundance is primarily determined by the transcript level
(53%) and by effectors of translation elongation (12%), which
included both CUB and specific AA composition, whereas only a
small fraction of the variation is explained by translation
initiation (1%). Lahtvee and co. (Lahtvee et al., 2017).
measured absolute abundances of 5,354 mRNAs and 2,198
proteins in yeast under different environmental conditions,
showing that the overall correlation between mRNA and
protein abundances across all conditions is much higher for a
subset of 202 differentially expressed proteins than all of them
(avg. r � 0.88 vs. 046). On a subset of 1,117 proteins, for which
translation efficiencies were calculated, MARS detected that

mRNA abundance and translation elongation were the
dominant factors controlling protein synthesis, explaining 61
and 15% of its variance, with only a small fraction (4%)
explained by translation initiation (Figure 3B).

On the other hand, multiple recent studies show that general
mRNA features control a much larger fraction of the variance in
translation rates or protein abundance than previously realized.
For instance, Li and co. (Li et al., 2019a) quantified the
contributions of mRNA sequence features to predicting
translation rates using LR across multiple organisms, including
yeast and human, where they specified 81 and 42% of the variance
in translation rates, respectively. The identified informative
mRNA features included similar ones as found in previous
studies: 5′ UTR secondary structures, nucleotides flanking
AUG, upstream ORFs, ORF length and CUB (Vogel et al.,
2010; Neymotin et al., 2016; Cheng et al., 2017).

Eraslan and co. (Eraslan et al., 2019b) also showed that a large
fraction of protein abundance variation can be predicted from
mRNA sequence in humans, by analyzing 11,575 proteins across
29 human tissues using matched transcriptomes and proteomes.
Their initial LR model explained on average 22% of the variance
from sequence alone, and by including additional experimentally
characterized interactions and modifications, including mRNA
methylation (Zhao et al., 2017), miRNA and RBP binding sites
(Mayr, 2017) and post-translational modifications (Millar et al.,
2019), the explained variance increased to 62%. Their findings
support much of the previously identified mRNA regulatory
elements and also uncover new sequence motifs across the
whole transcript. Importantly, they also developed a new
metric of codon optimality, termed “Protein-to-mRNA
adaptation index” that captures the effects of codon frequency
on protein synthesis and degradation. Terai and Asai (Terai and
Asai, 2020) evaluated six types of structural features in E. coli,
including mRNA accessibility, which is the probability that a
given region around the start codon has no base-paired
nucleotides. When calculated by a log-linear model,
accessibility showed the highest correlation with protein
abundance. This was significantly higher than the widely used
minimum free energy (ρ � 0.71 vs. 0.55), and combining it with
activity of the Shine-Dalgarno sequence yielded a highly accurate
method for predicting protein abundance (ρ � 0.76). Moreover,
similarly as in eukaryotes, secondary structures in bacterial
mRNAs were shown to be highly important for protein
production and to generally limit translation initiation in a
large-scale assay involving 244,000 designed sequences with
varying features (Cambray et al., 2018).

Deep learning was recently applied to prediction of translation
initiation sites in a method termed “TITER” (Zhang et al., 2017b),
using HTS data quantitatively profiling initiating ribosomes
(QTI-seq) at single-nucleotide resolution (Gao et al., 2015).
Using a hybrid CNN + RNN approach, TITER integrates the
prior preference of TIS codon composition with translation
initiation features extracted from the surrounding sequence to
greatly outperform other state-of-the-art methods in predicting
the initiation sites. The method captures the sequence motifs of
different start codons, including a Kozak sequence-like motif for
AUG, and quantifies mutational effects on translation initiation.
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Another DNN framework, termed “ROSE” was used to analyze
translation elongation dynamics in both human and yeast via
ribosome stalling, which is manifested by the local
accumulation of ribosomes at specific codon positions of
mRNA (Zhang et al., 2017c). ROSE estimates the
probability of a ribosome stalling event occurring at each
genomic location, achieving higher prediction accuracy than
conventional prediction models such as gkm-SVM with AUC
increases by up to 18.4%.

DISCUSSION

As can be surmised from the presented ML results (Table1,
Table 2, and Table 3), deep methods frequently outperform
shallow ones, and we outline the main advantages, disadvantages
and challenges of these approaches in Table 4. The capability of
DNNs to more accurately recapitulate experimental data stems
mainly from their ability to extract information directly from the
raw input nucleotide sequences, automatically learning
regulatory grammar (Figures 2B,D), which boosts predictive
accuracy (Zrimec et al., 2020). However, although multiple
different methods exist for interpreting deep methods, many
are a work in progress and no explicit solutions currently exist

to benchmark these methods or to combine the findings into
more complete and coherent interpretations (Azodi et al., 2020).
Nevertheless, ML in general lowers the entry barrier to
development of new models and saves research time by
abstracting mathematical details (Eraslan et al., 2019a), though
this has also been used to criticize such approaches, as they rely on
data driven instead of hypothesis driven modeling (Barshai et al.,
2020). An important limitation of all ML methods is their
dependence on accurately labeled data, since they cannot
achieve higher accuracy than that allowed by the noise
inherent to the given target labels (Li et al., 2019b; Barshai
et al., 2020). For instance, in vivo measurements, such as those
produced by ChIP-seq, ATAC-seq and DNAse-seq, are prone to
experimental noise and technological artifacts and subject to the
complexity of the cellular environment, affected by chromatin
structure and nucleosome positioning, thus concealing the full
picture of DBP-DNA interactions. Alternatively, in vitro
methods, such as PBMs, HT-SELEX and BunDLE-seq, can
capture purely direct protein-nucleic acid interactions or
cooperative binding of specific factors and allow sampling of
the full spectrum of binding sites (Barshai et al., 2020).
Fortunately, novel computational methods allow researchers to
easily estimate the noise-constrained upper bound of ML
regression model performance (Li et al., 2019b).

TABLE 4 | The current advantages, disadvantages and further challenges of machine learning methods in genetics and genomics.

Deep methods Shallow methods

Advantages Lower entry barrier to develop new models and save research time by abstracting mathematical details (Eraslan et al., 2019a)
Scale effectively with data and support use of latest computational and
technological advances, including large genomic datasets and results of
HTS technologies (Barshai et al., 2020)

Classic statistical models are better characterized mathematically and some
ML algorithms are easier to understand and explain (Hastie et al., 2013)

Ability to automatically learn features from raw input data and unlock an
additional level of information from it (Barshai et al., 2020; Zrimec et al.,
2020)

Less computationally expensive and faster to train leading to more iterations
and testing of different techniques in a shorter period of time

Ability to learn and approximate complex functions without prior
assumptions, frequently achieving improved predictive power (Barshai et al.,
2020)

Possibility to train on much smaller datasets (e.g. hundreds of examples vs.
thousands or more with deep learning) (Playe and Stoven, 2020; Zrimec
et al., 2020)

Capability to integrate multiple pre-processing steps into a single end-to-
end model (Eraslan et al., 2019a)

Can be easier to interpret due to inherently interpretable structure and direct
feature engineering/selection (Figures 2A,C) (Azodi et al., 2020)

Ability to effectively model multimodal data (Eraslan et al., 2019a) Usually a small number of hyperparameters (Hastie et al., 2013)
Highly useful as experiment simulators due to the ability to generalize over an
experimental dataset (Barshai et al., 2020)

Useful for proof-of-principle and initial model or parameter testing using only
numerical variables

Easily adaptable to different domains and applications, with transfer learning
on pre-trained deep networks accelerating training and improving
performance

—

Disadvantages Dependence on accurately labeled data: cannot achieve higher accuracy than that allowed by the noise inherent to the given experimental target labels
(Li et al., 2019b; Barshai et al., 2020)

Data driven instead of hypothesis driven modeling (Barshai et al., 2020)
Dependence on large amounts of data (at least thousands of training
examples) and specialized computational resources (e.g. GPUs)

Dependence on feature engineering

Potential problems with generalizability, as can be overfit to the experiment
rather than biological function (Barshai et al., 2020)

Many different algorithms each with its own advantages and disadvantages
can be daunting and require extensive specialized study (Hastie et al., 2013)

Potential lack of model interpretability (Zou et al., 2019; Barshai et al., 2020) Cannot unlock information directly from nucleotide sequence (Azodi et al.,
2020; Zrimec et al., 2020)

Challenges Methods to interpret heterogeneous multi-omic and highly dimensional data (Azodi et al., 2020)
Methods and high quality datasets to benchmark existing and new interpretation strategies (Azodi et al., 2020)

Methods to join findings from multiple interpretation strategies into more complete and coherent interpretations of both models (Azodi et al., 2020) and the
studied molecular phenomena

Making interpretable ML more accessible to biologists by further lowering the entry barriers and requirements of computational knowledge
(Azodi et al., 2020)
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Despite the knowledge that whole regulatory structures are
involved in gene expression, the majority of approaches still focus
only on single regulatory or coding regions. For instance, with
mRNA abundance prediction, the contribution of the separate
parts of the gene regulatory structure has been quantified only in
yeast (Zrimec et al., 2020) (Figure 3A). The results across the
remaining studies are highly variable, likely due to using very
different methods and protocols (Table 2 and Table 3). The trend
of using whole regulatory structures is however more common
with protein abundance prediction, where, apart from mRNA
abundance, also the parts involved in translational processing
have been quantified across all three major model organisms
(Figure 3B). Nevertheless, both the fact that these studies were
performed using classical shallow models as well as results from
other studies suggest that there is potential for improvement. For
instance, results from multiple studies focusing on individual
regions show that a much higher amount of information can be
extracted from these regions [Table 2: e.g. 62% of protein
abundance variation explained from yeast 5′ UTRs with
DNNs (Decoene et al., 2018)] than was achieved with shallow
learning on whole mRNAs in Figure 3B. Based on other results,
we can also presume that it is possible to not only further boost
predictive performance but also uncover new mRNA regulatory
grammar.

Pooling the highest-scoring results across organisms in an
information-centric view of the central dogma of molecular
biology (Figure 3C) suggests that about ⅔ of the variation of
mRNA and protein levels can be explained from DNA sequence.
Unequal approaches were employed however, with deep learning
used only with mRNA abundance modeling. Here, the lower
results with H. sapiens might be a result of accounting for only
promoter regions and mRNA stability-associated features in the
model (Agarwal and Shendure, 2020), though our own analysis
had shown that these stability features alone can explain 38% of
the mRNA abundance variation in yeast (Zrimec et al., 2020).
Interestingly, by omitting the mRNA abundance component
from protein abundance predictions, we can observe the
possibility of an increasing trend of explained variance with
increasing organism complexity (Figure 3C: 13–40% from
bacteria to human). This would indicate that mRNAs of
multicellular eukaryotes carry more regulatory information
involved in translation than those of unicellular eukaryotes
and prokaryotes. It might also reflect the fact that gene
expression regulation is more intricate in multicellular
organisms due to the multiple additional regulatory processes
that control expression of a much more complex set of
biomolecules and phenotypes than in unicellular organisms
(Benelli et al., 2016).

Regulatory information seems to be localized around the
gene, as multiple studies show that the region spanning <10 kb
around the TSS has the largest measurable effect on gene
expression, likely as the majority of regulatory signals are
clustered in this region in most genes and organisms
(Agarwal and Shendure, 2020; Ansariola et al., 2020; Zrimec
et al., 2020). Enhancers on the other hand are highly variably
spaced and act in a gene-specific manner, which makes them
much harder to recognize, and also requires processing

enormous sizes of input sequences (e.g. >100 kb upstream of
genes in human data) that require more training resources.
Therefore, the true effect of such regions is still hard to decipher.
Procedures handling larger input sequence sizes or whole
genomes will likely lead to improved analysis and
quantification of the contributions of enhancers to gene
expression control, in relation to other parts of the
regulatory structure (Singh et al., 2019; Tang et al., 2020).
Another potential trend is building DNNs using biophysical
(Tareen and Kinney, 2019) or physicochemical properties (Yang
et al., 2017; Liu et al., 2020), as deep models trained on these
features might uncover novel patterns in data and lead to
improved understanding of the physicochemical principles of
protein-nucleic acid regulatory interactions, as well as aid model
interpretability. Other novel approaches include: 1) modifying
DNN properties to improve recovery of biologically meaningful
motif representations (Koo and Ploenzke, 2021), 2) transformer
networks (Devlin et al., 2018) and attention mechanisms
(Vaswani et al., 2017), widely used in protein sequence
modeling (Jurtz et al., 2017; Rao et al., 2019; Vig et al., 2020;
Repecka et al., 2021), 3) graph convolutional neural networks, a
class of DNNs that can work directly on graphs and take
advantage of their structural information, with the potential
to give us great insights if we can reframe genomics problems as
graphs (Cranmer et al., 2020; Strokach et al., 2020), and 4)
generative modeling (Foster, 2019), which may help exploit
current knowledge in designing synthetic sequences with
desired properties (Killoran et al., 2017; Wang Y. et al.,
2020). With the latter, unsupervized training is used with
approaches including: 1) autoencoders, which learn efficient
representations of the training data, typically for dimensionality
reduction (Way and Greene, 2018) or feature selection (Xie
et al., 2017), 2) generative adversarial networks, which learn to
generate new data with the same statistics as the training set
(Wang Y. et al., 2020; Repecka et al., 2021), and 3) deep belief
networks, which learn to probabilistically reconstruct their
inputs, acting as feature detectors, and can be further trained
with supervision to build efficient classifiers (Bu et al., 2017).
Moreover, the advent of single-cell HTS technologies such as
single-cell RNA-seq will offer many novel research
opportunities, including modeling of cell-type or cell-state
specific enhancer or TFBS activations and chromatin changes
(Angermueller et al., 2017; Gustafsson et al., 2020; Kawaguchi
et al., 2021).

To conclude, the application of ML in genomics has
augmented experimental methods and facilitated accumulating
a vast amount of knowledge on gene expression regulation.
DNNs, due to their ability to learn biologically relevant
information directly from sequence, while performing similarly
to or better than classical approaches, are themethod of choice for
quantifying gene expression and interpreting the predictive
features hidden in nucleotide sequence data. DNN-isolated
features can be as predictive as models relying on
experimental ChIP-seq data (Agarwal and Shendure, 2020),
suggesting that current computational approaches are
achieving a level of accuracy that might soon allow
substituting wet-lab HTS experiments with fully
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computational pipelines (Keilwagen et al., 2019). Such
pipelines can also become indispensable for analysis of
human disease-associated regulatory mutations, identifying
clinically relevant noncoding variants and expression
perturbations, grouping patients in drug treatment trials,
disease subtyping as well as personalized treatment (Zhou
et al., 2018a; Dagogo-Jack and Shaw, 2018). Since
controlling the expression of genes is also one of the key
challenges of synthetic biology, the computational models
represent excellent starting points in procedures to
predictably design regulatory sequences, control protein
expression and fine-tune biosynthetic pathways in both
prokaryotic and eukaryotic systems (Nielsen and Keasling,
2016; de Jongh et al., 2020; Wang H. et al., 2020).

For readers willing to learn and apply some of the discussed
ML approaches, many excellent resources exist, including: 1)
specialized packages for model development and interpretation,
such as “DragoNN” (https://kundajelab.github.io/dragonn/)
(Movva et al., 2019) “Janggu” (https://github.com/
BIMSBbioinfo/janggu) (Kopp et al., 2020) and “Pysster”
(https://github.com/budach/pysster) (Budach and Marsico,
2018), 2) repositories of trained models, such as “Kipoi”
(https://kipoi.org/) (Avsec et al., 2019), 3) other genomics
tutorials and code examples (https://github.com/vanessajurtz/
lasagne4bio) (Jurtz et al., 2017), as well as 4) resources with a
much broader scope than mere genomics, including online

courses (https://www.coursera.org/specializations/deep-
learning) and books (https://github.com/ageron/handson-ml2)
(Géron, 2019).
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Avsec, Ž., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., et al.
(2021). Base-resolution Models of Transcription-Factor Binding Reveal Soft
Motif Syntax. Nat. Genet. 53, 354–366. doi:10.1038/s41588-021-00782-6
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N6-Methyladenosine RNA Methylation
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(AS) Gene Signature Predicts
Non–Small Cell Lung Cancer
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Zhenyu Zhao1,2, Qidong Cai1,2, Pengfei Zhang1,2, Boxue He1,2, Xiong Peng1,2, Guangxu Tu1,2,
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Changsha, China

Aberrant N6-methyladenosine (m6A) RNA methylation regulatory genes and related gene
alternative splicing (AS) could be used to predict the prognosis of non–small cell lung
carcinoma. This study focused on 13 m6A regulatory genes (METTL3, METTL14, WTAP,
KIAA1429, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO,
and ALKBH5) and expression profiles in TCGA-LUAD (n � 504) and TCGA-LUSC (n � 479)
datasets from the Cancer Genome Atlas database. The data were downloaded and
bioinformatically and statistically analyzed, including the gene ontology and Kyoto
Encyclopedia of Genes and Genomes pathway enrichment analyses. There were
43,948 mRNA splicing events in lung adenocarcinoma (LUAD) and 46,020 in lung
squamous cell carcinoma (LUSC), and the data suggested that m6A regulators could
regulate mRNA splicing. Differential HNRNPC and RBM15 expression was associated
with overall survival (OS) of LUAD and HNRNPC and METTL3 expression with the OS of
LUSC patients. Furthermore, the non–small cell lung cancer prognosis-related AS events
signature was constructed and divided patients into high- vs. low-risk groups using seven
and 14 AS genes in LUAD and LUSC, respectively. The LUAD risk signature was
associated with gender and T, N, and TNM stages, but the LUSC risk signature was
not associated with any clinical features. In addition, the risk signature and TNM stage were
independent prognostic predictors in LUAD and the risk signature and T stage were
independent prognostic predictors in LUSC after the multivariate Cox regression and
receiver operating characteristic analyses. In conclusion, this study revealed the AS
prognostic signature in the prediction of LUAD and LUSC prognosis.
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INTRODUCTION

Lung cancer is still the most significant health burden in the
world, accounting for 14% of all newly diagnosed cancer cases as
the second most common cancer and 18% of all cancer-related
deaths as the leading cause of cancer death globally in 2018 and
2020 (de Martel et al., 2020; Sung et al., 2021). Lung cancer is also
prevalent and the leading cause of cancer death in men (Sung
et al., 2021). Histologically, lung cancer can be divided into small
cell lung cancer and non–small cell lung cancer (NSCLC), and the
latter accounts for 85% of all lung cancer cases, and the overall 5-
year survival rate of lung cancer remains to be approximately 15%
(Balata et al., 2019). NSCLC can be further classified as lung
squamous cell carcinoma (LUSC), lung adenocarcinoma
(LUAD), and larger cell carcinoma; however, LUAD and
LUSC are the main histological subtypes of NSCLC (Tanoue
et al., 2015) and major contributors to NSCLC morbidity and
mortality (Hirsch et al., 2017). The outcome data were from our
most recent advancement and improvement in early detection,
prevention, improved surgical procedures, neoadjuvant therapy,
immunotherapy, and targeted therapy. To date, treatment of
NSCLC is dependent on the stage of disease at diagnosis, and
early-staged NSCLC could be surgically cured, whereas the
advanced staged diseases can only be subjected to
chemotherapy, radiation therapy, immunotherapy, and/or
targeted therapy (Maconachie et al., 2019; Planchard et al.,
2018) and their prognosis is, therefore, still poor,
approximately less than 5–7% at the best according to the
American Cancer Society data (https://www.cancer.org/cancer/
lung-cancer/detection-diagnosis-staging/survival-rates.html) or
after advanced therapy (Zhang et al., 2021). Thus, the search
and development of biomarkers for early detection and
prediction of prognosis and treatment outcome are urgently
needed to effectively conquer this now deadly disease clinically.

Newly transcribed RNA could undergo different chemical
modifications and N6-methyladenosine (m6A) is the most
prevailing one in polyadenylated RNAs (Bokar et al., 1997).
Methylation of the adenosine is directed in cells by a large
m6A methyltransferase complex containing METTL3 as the
SAM-binding subunit (Bokar et al., 1997). The biological
functions of m6A are through a group of RNA-binding
proteins that can specifically recognize the methylated
adenosine on RNA molecules to regulate cell activities (Ji
et al., 2018), for example, N6-methyladenosine (m6A) RNA
modification could regulate RNA splicing, stability,
translocation, and translation and therefore, to influence gene
expression and functions in cells (Deng, et al., 2018). These
binding proteins to m6A are regarded as the m6A readers,
and m6A methyltransferases are considered as the writers,
whereas demethylases are considered as the erasers.
Altogether, these proteins form a complex mechanism of m6A
regulation in which writers and erasers determine the
distributions of m6A on RNA, whereas readers mediate m6A-
dependent functions (Liu et al., 2014; Wang et al., 2014).
Deregulation of the m6A on an RNA molecule has been
implicated in the development of various human cancers (Liu
et al., 2014; Wang et al., 2014). According to the recent studies,

there were 13 m6A regulator genes confirmed to affect cancer
progression, including the “writer” (KIAA1429, METTL3,
METTL14, RBM15, WTAP, and ZC3H13), the “readers”
(HNRNPC, YTHDC1, YTHDC2, YTHDF1, and YTHDF2),
and the “erasers” (ALKBH5 and FTO) (Zhang et al., 2020c;
Zhang et al., 2020b). Further studies of the m6A regulator
genes showed that the m6A regulator genes were also the
mRNA splicing factors for gene alternative splicing (GAS) and
the m6A regulator genes could interact with the AS events
(Kasowitz et al., 2018; Yoshimi et al., 2019). Human cancer
cells frequently showed the GAS events, which were regulated
by the m6A regulators (Dai et al., 2018). For example, METTL3
was able to regulate the mRNA alternative splicing by the p53
pathway (Alarcón et al., 2015). YTHDC1 could recruit SRSF10 to
its target mRNA regions and modulate their exon skipping (Xiao
et al., 2016). Abnormal splicing factor expression in normal cells
could lead to the formation of the specific pro-oncogenic splicing
subtypes and carcinogenesis (Kasowitz et al., 2018).

Indeed, gene alternative splicing (GAS), a posttranscriptional
process, subjects a single pre-mRNA molecule to splice into
different exons for coding and expression of various protein
isoforms (David and Manley, 2008). A molecular structure
called a spliceosome is assembled on the pre-mRNA to join
the exons together at the splicing site to form a particular
mRNA molecule, while the introns are discarded (Papasaikas
and Valcárcel, 2016). The assembly of spliceosomes on pre-
mRNA is usually affected by the SF and some exons
(alternative exons) are variably incorporated into mRNA; thus,
under different alternative splicing patterns (including exon skip,
retained intron, alternate donor site, alternate acceptor site,
alternate promoter, alternate terminator, and mutually
exclusive exons), the whole exons of a gene could be spliced
into mRNA or excluded (Hanahan and Weinberg, 2011). The
different GAS events could lead to the diversity of protein
functions and normal GAS will maintain normal cell
functions, which is mediated by the production of the diverse
and multifunctional proteome to ensure “normal” RNA
molecules to maintain normal cell functions; however,
abnormal GAS will promote tumorigenesis and cancer
development (Bonnal et al., 2020), which could be mainly due
to the up or downregulation of the related splicing factors, for
example, alterations in the upstream signaling pathways or
mutations in the splicing site sequences all lead to abnormal
mRNA splicing (Li et al., 2019). Accumulating evidence suggests
the contribution of abnormal GAS to cancer phenotypes, like
increases in cell proliferation, angiogenesis, but inhibition of
apoptosis and drug resistance, and the GAS events form a
novel and separate hallmark in cancer (Bonnal et al., 2020;
Urbanski et al., 2018). For example, in gastric cancer,
abnormal GAS could lead to activation of tumor cell invasion
and metastasis (Pio and Montuenga, 2009; Sun and Ma, 2019),
while in breast cancer, abnormal GAS results in drug resistance
(Yang et al., 2019). In lung cancer, the GAS events could be used
as biomarkers for tumor diagnosis (Sholl, 2017). Aberrant
BCL2L1, MDM2, MDM4, NUMB, and MET mRNA splicing
occurred in lung cancer and altered cell apoptosis,
proliferation, and cohesion (Coomer, Black). Thus, further
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investigation related to the abnormal GAS events to lung
tumorigenesis (Coomer et al., 2019) and novel strategy for
cancer targeting therapy (Frankiw et al., 2019) as well as
biomarkers for various human cancers, including NSCLC (Li
et al., 2017; Paschalis et al., 2018; Yang et al., 2019; Liu et al., 2020;
Zhang et al., 2020a).

In this study, we focused on the m6a-related splicing factors
for aberrant expression and AS events to associate them with
NSCLC clinicopathological and prognostic data from patients
using the online The Cancer Genome Atlas (TCGA) data. We
then explored the role of the abnormally expressed m6a-related
splicing factors in the regulation of the GAS events and
constructed the risk signature of these factors to predict
NSCLC prognosis after the gene ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
This study could provide a novel insight into the discovery of
biomarkers in the prediction of NSCLC prognosis and possibly
the underlying molecular mechanisms of NSCLC oncogenesis
and development.

MATERIALS AND METHODS

Data Download and Analysis
In this study, we first searched and downloaded differential gene
expression profiles in LUAD and LUSC tissue specimens from
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/). The corresponding clinicopathological data were
subsequently downloaded from the University of California Santa
Cruz database (https://xena.ucsc.edu/), which included 514
LUAD and 488 LUSC tissue samples. However, patients with
incomplete clinical information and follow-up duration less than
30 days were excluded from our data analysis, resulting in 504
LUAD and 479 LUSC samples in this study. Moreover, the gene
alternative splicing (GAS) events in LUAD and LUSC were
download from TCGA Splice Seq (https://bioinformatics.
mdanderson.org/TCGASpliceSeq/PSIdownload) and then
calculated for the percent spliced in index (PSI) value, a
quantifiable GAS indicator after the comparison of single and
multiple samples between subgroups, that is, calculation of the
percentage of GAS value for each GAS event, which was typically
used to quantify GAS events according to a previous study (Lin
and Krainer, 2019). We downloaded the contents that included
seven main GAS types, that is, the exon skip (ES), retained intron
(RI), alternate donor site (AD), alternate acceptor site (AA),
alternate promoter (AP), alternate terminator (AT), and
mutually exclusive exons (ME).

Selection and Analysis of N6-
Methyladenosine RNA Methylation
Regulatory Genes
In this study, we selected 13 m6A RNA methylation regulatory
genes, that is, N6-adenosine-methyltransferase 70-kDa
subunit (METTL3), methyltransferase-like 14 (METTL14),
Wilms’ tumor-1 associated protein (WTAP), KIAA1429,
RNA-binding protein 15 (RBM15), zinc finger CCCH

domain-containing protein 13 (ZC3H13), YTH domain-
containing protein 1 (YTHDC1), YTHDC2, YTH domain
family, member 1 (YTHDF1), YTHDF2, heterogeneous
nuclear ribonucleoproteins C1/C2 (HNRNPC), fat mass and
obesity-associated protein (FTO), and m6A demethylase alkB
homolog 5 (ALKBH5). We assessed their role in diagnosis,
progression, and prognosis of LUAD and LUSC, that is, we
first imported data on these m6A regulators into Cytoscape
software [version 3.8.2 (Shannon et al., 2003)] and analyzed
the data using the ClueGO plugin. After that, we performed the
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and network analysis, and the GO
terms included the cellular component (CC), molecular
function (MF), biological process (BP), an adjusted p < 0.05
as a statistically significant value. Afterward, we utilized the
“LIMMA” package (Ritchie et al., 2015) to select and analyze
the differentially expressed m6A RNA methylation regulatory
genes in LUAD and LUSC tissue specimens using the cutoff
value of |log2 fold change (FC)| ≥ 1 and adjusted p-value <
0.05. The “euclidean” and “ward.D2” methods were utilized to
cluster the tumor samples, and the “p heat map” R package was
used to plot the differential expression analysis results and
cluster analysis results. Spearman’s correlation analysis was
performed to analyze the correlation between the clusters and
clinical traits. We also performed the univariate and
multivariate Cox regression analyses to predict the
association of these m6A RNA methylated regulatory genes
with the overall survival of patients using the “survival” R
package (Rizvi et al., 2019).

Association of Gene Alternative Splicing
Events With Overall Survival of Patients
We utilized the “WGCNA” (weighted gene co-expression
network analysis) package (Langfelder and Horvath, 2008) to
associate the GAS events with the overall survival of LUAD and
LUSC patients. The WGCNA package is able to analyze
thousands of the most varied genetic information to identify
the sets of genes to associate with tumor phenotypes (Meng
et al., 2019); thus, this tool allowed us to analyze the information
regarding the GAS event data in association with clinical traits
data and profile of m6A regulatory gene expressions, but
avoided any unnecessary procedures for multiple hypothesis
testing and corrections. In this analysis, we first estimated the
standard scale-free network according to formula A to generate
the adequate β value (appropriate soft threshold power). We
then constructed the weighted adjacency matrix using the
formula B and converted the data into a topological overlap
matrix (TOM). After that, we utilized the dynamic tree cutting
method according to the hierarchical clustering to identify the
modules that highly correlated with GAS events. The GAS event
then used 1-TOM as distance measurement with the depth (the
cutoff value of 2) and the minimum size (the cutoff value of 60).
After that, the highly similar modules were fused by clustering
and height truncation of 0.3 according to previous studies
(Niemira et al., 2019; Wan et al., 2018; Xie and Xie, 2019).
Last, we performed the Spearman’s correlation and module
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eigengenes analysis of m6A regulator genes expression for
association with the clinical traits and prognosis of 487
LUAD patients. Significant data on the association of this
m6A regulator genes expression with clinicopathological data
were further analyzed according to a previous study using the |
correlation coefficients| between m6A regulators and GAS
events module more than 0.4 and adjusted p < 0.05
(Langfelder and Horvath, 2008).

In the LUSC cohort of patient’s data, we selected and further
analyzed the modules of the most significant correlation between
clinical features and m6A regulator genes, that is, the |correlation
coefficients| between m6A regulators and GAS events module
more than 0.4 and adjusted p < 0.05. We then performed
univariate and multivariate Cox Regression analyses to screen
associate the GAS events with the overall survival of LUAD and
LUSC patients.

The formula A: Aij � power (Sij, β) � |Smn|β (i and j represent
the GAS event of i and j, respectively, while m and n were the
numbers of node connections, and β was the appropriate soft

threshold power). The formula B: TOMij � ∑u
AiuAju+Aij

min(Ki,Kj)+1−Aij
(i and j represent the GAS event of i and j, respectively,
while the letter u represents clinical traits and prognostic
information).

The Gene Ontology Term and Kyoto
Encyclopedia of Genes and Genomes
Pathway Analyses of Overall
Survival-Related Gene Alternative
Splicing Genes
After screening the m6A-related GAS events, we performed the
GO terms and KEGG pathways analysis of these overall survival-
related GAS genes. Specifically, we imported data on the m6A-
related GAS genes and m6A regulator genes into Cytoscape
software (3.8.2) and analyzed them using the ClueGO plugin.
After associating the overall survival of patients, we performed
the GO terms and KEGG pathway analyses of these GAS events-
related genes and the GO terms included the cellular component
(CC), molecular function (MF), and biological process (BP) using
an adjusted p < 0.05 as a statistically significant value according to
a previous study (Amado et al., 2014). After that, we constructed
the functional network of these corresponding genes using the
Cytoscape software.

Risk Model Construction
We constructed the risk model using the LASSO Cox regression
analysis that could prevent any overfitting of the overall survival-
related genes according to a previous study (Tang et al., 2017),
and then performed the multivariate Cox regression analysis to
predict the usefulness of these overall survival-related genes using
the following formula:

J � 1n∑ i � 1n(f (xi) − yi)2 + λ‖w‖1 (the greater the value of
J, the better the prediction value; the letter w indicates a globally
optimal value of lost J).

Risk score � ∑n
n�xcoef(X)pPSI(X) [Coef(X) is the coefficient

of each GAS gene and PSI(X) is the PSI value of the AS genes].

According to the hazard ratio (HR) values after the
multivariate Cox regression analysis, we classified the
m6A-related prognostic AS events into protective/risky AS
events (HR > 1 as a risk factor; HR < 1 as a protective
factor), and showed the Sankey diagram that plotted is by
“ggalluvial, dplyr, and ggplot2” R packages (Graedel, 2019;
Soh et al., 2019). According to the median value of the
risk score of the signature of each cohort, we divided the
LUAD and LUSC cohorts into two subgroups, that is, the
high- and low-risk groups. We then utilized the “survival”
and “survminer” package to calculate the survival significance
of the high-/low-risk group in these NSCLC patients.
We performed the Kaplan–Meier survival analysis and
receiver operating characteristic (ROC) curves to further
verify the predictive ability of the risk signature using
the “survivalROC” package and “Survival” package in R
(Park et al., 2004). The concordance index (C-index)
was used to validate and quantify the discrimination
ability of the risk signature. At last, we performed the
univariate and multivariate Cox regression analyses to assess
whether these risk models and clinicopathological features were
independent predictors for the survival of LUAD and LUSC
patients.

Predictive Nomogram Construction
After the univariate and multivariate Cox regression analyses,
we used the “RMS” package to construct the nomogram of the
independent risk factors (Zhang et al., 2019). We then
performed the Wilcoxon rank-sum test to verify the
association of the risk model with clinical characteristics
(using an adjusted p-value < 0.05 as the statistical
significance cutoff). For the construction of the predictive
nomogram, we utilized the calibration curves to evaluate
and validate the application ability of the nomogram
performance.

Statistical Analysis
The “Limma” R package was utilized to analyze the difference in
gene expression profiles, while the “WGCNA” package was used
to select m6A-related GAS events. Moreover, the univariate,
LASSO and multivariate Cox regression analyses were
performed to construct the risk signature, while the “Survival,”
“survivalROC,” and “survminer” packages were utilized to verify
the predictive efficacy of the risk signature in patients, while the
area under the curve (AUC) value (ranged between 0.5 and 0.9)
was used to assess the diagnostic ability of the risk signature
(larger AUC value, better diagnostic value) (Verbakel et al, 2020).
The Wilcoxon rank-sum and Spearman’s correlation tests were
used to analyze the subgroup differences, while the “RMS” R
package was utilized to plot the nomogram and calibrate the
analytic data. The GO terms and KEGG pathways enrichment
analysis were performed using Cytoscape software (3.8.2) and the
“ggplot” R package was to plot the resulting data. All statistical
analyses were performed using R software (version 3.6.1). A two-
sided p value < 0.05 was considered statistically significant, while
an adjusted p-value < 0.05 was applied as the threshold to avoid
missing any significant changes.
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RESULTS

Characteristics of Lung Adenocarcinoma
and Lung Squamous Cell Carcinoma Data
and mRNA Splicing Events in The Cancer
Genome Atlas Datasets
In this study, we searched and downloaded expression profiles of
TCGA-LUAD and TCGA-LUSC from TCGA database (https://
portal.gdc.cancer.gov/) and clinicopathological data from the
University of California Santa Cruz database (https://xena.ucsc.
edu/). We obtained 486 LUAD and 479 LUSC cases for our data
analysis (Figure 1). In LUAD samples, there were 224 men and 262
women with a median age of 64.94 years old (arranged between 33
and 88 years). The patients were at the TNM stage of I/II (n � 381)
and III/IV (n� 105) and 167 cases had lymph node tumormetastasis
(Table 1). In LUSC cases, there were 353men and 126womenwith a
median age of 64.294 years old (arranged between 39 and 90 years).

The patients were at the TNM stage of I/II (n � 391) and III/IV (n �
88) and 169 cases had lymph node tumor metastasis (Table 1). Our
data analyses identified a total of 43,948 mRNA splicing events in
LUAD tissue samples and 46,020 mRNA splicing events in LUSC
samples. The exon skip (ES) events were the most GAS events in
both LUAD and LUSC groups of samples (Supplementary
Figure S1).

Association of N6-Methyladenosine RNA
Methylation Regulatory Gene Expressions
With Lung Adenocarcinoma and Lung
Squamous Cell Carcinoma Prognosis
We focused on 13 m6A RNA methylation regulatory genes,
including METTL3, METTL14, WTAP, KIAA1429, RBM15,
ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC,
FTO, and ALKBH5. We performed the GO terms and KEGG
pathway analyses and found that these m6A regulators were

FIGURE 1 | Illustration of the workflow in this study.
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significantly enriched in the mRNA splicing spliceosome biology
process, RNAmethylation biology process, and RNA destabilization
biology process (Figure 2A, Supplementary Table S1). We then
performed theWilcoxon signed-rank test and found that KIAA1429,
HNRNPC, RBM15, METTL3, YTHDF1, YTHDF2, and YTHDC1
were differentially expressed between normal and LUAD tissues
(Figure 2B). YTHDF1, YTHDF2, WTAP, KIAA1429, RBM15,
METTL3, METTL14, FTO, HNRNPC, and ZC3H13 were
differentially expressed between normal tissues and LUSC tissues
(Figure 2D). Furthermore, KIAA1429, HNRNPC, RBM15,
METTL3, YTHDF1, and YTHDF2 were all highly expressed in
both LUAD and LUSC tissues (Figures 2B,D). The LUAD and
LUSC patients were clustered into four groups according to the
expression of m6A regulators in the heat map (Supplementary
Figure S2A,B). The correlation analysis suggested that the
differentially expressed m6A regulators were associated with
status, smoking, TNM stage, and N stage in LUAD samples, and
the differentially expressed m6A regulators were associated with
status and age in LUSC samples (Table 2). These results suggested
that m6A regulators play an important role in NSCLC development.
The univariate Cox regression data revealed that HNRNPC and
RBM15 expression were able to predict overall survival (OS) of
LUAD patients (Figure 2C), while HNRNPC and METTL3
expression were associated with the OS of LUSC patients
(Figure 2E); thus, these three m6A regulators genes were
subjected to the subsequent analysis for association with OS of
NSCLC patients as the splicing factors (Figures 2C,E).

Association of N6-Methyladenosine RNA
Methylation Regulatory Genes With Lung
Adenocarcinoma and Lung Squamous Cell
Carcinoma Clinical Features
After that, we correlated the GAS events with the weighted gene
co-expression network, and they were consistent with the scale-

free network (Supplementary Figure S3). The hierarchical
clustering analysis of the samples using the Euclidean distance
showed log10-transformed RNA-seq fractional counts
(Supplementary Figure S4), while the dynamic tree cutting
method identified the modules with a similar expression
spectrum and combine similar modules (Figures 3A,C,
Supplementary Figure S5). We then utilized the “WGCNA”
package to analyze the GAS events and Spearman’s correlation
test to associate the expression of m6A regulator genes with
clinical traits. The data showed that the MEbrown module was
significantly associated with expression of the m6A regulator
genes (RBM15, p � 3e-24, the |correlation coefficient| � −0.44),
gender (p � 0.03, the coefficient correlation � −0.1), and tobacco
smoking (p � 0.006, the coefficient correlation � −0.12) of LUAD
patients (Figure 3B, Supplementary Figure S6A). Furthermore,
the MEred, MEblue, and MEroyalblue modules were significantly
associated with expression of the m6A regulator genes (MEred,
HNRNPC with an adj p � 1e-24 and the coefficient correlation �
−0.44; MEblue, HNRNPC with an adj p � 2e-27 and the
coefficient correlation � −0.47; MEroyalblue, HNRNPC with
an adj p � 3e-33 and the coefficient correlation � −0.51).
These three modules were also associated with the age of
patients (MEred, adj p � 0.007 and the coefficient correlation
� 0.12), the TNM stage (MEred, adj p � 0.03 and the coefficient
correlation � −0.1), and the N stage (MEblue, adj p � 0.04 and the
coefficient correlation � −0.092; MEroyalblue, adj p � 0.03 and
the coefficient correlation � 0.098; in Figure 3D, Supplementary
Figure S6B). These results suggested that the m6A-related
AS events in the MEred, MEblue, and MEroyalblue modules
could predict NSCLC development and lymph node metastasis,
while the age of patients might also affect the m6A-related AS
events.

Furthermore, the MEbrown module included 1.102 GAS
events, and the MEred, MEblue, and MEroyalblue modules
included 1.5150 GAS events. The most significant enrichment

TABLE 1 | The univariate and multivariate cox regression analysis of clinicopathological data from TCGA-LUAD and LUSC.

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H Adj-p HR HR.95L HR.95H Adj-p

LUAD
Age (≥65/<65) 1.111 0.823 1.500 4.92E-01 1.204 0.884 1.640 2.38E-01
Gender (female/male) 1.111 0.826 1.494 4.86E-01 1.077 0.791 1.467 6.37E-01
Smoking (yes/no) 0.864 0.440 1.697 6.72E-01 1.863 0.878 3.955 1.05E-01
TNM stage (I + II/III + IV) 1.635 1.422 1.881 *** 1.564 1.187 2.062 ***
T 1.548 1.296 1.848 *** 1.066 0.865 1.315 5.48E-01
N 1.962 1.461 2.634 *** 1.108 0.722 1.701 6.39E-01
M 2.181 1.302 3.653 ** 0.740 0.355 1.543 4.21E-01
Risk score 1.441 1.346 1.543 *** 1.390 1.281 1.508 ***

LUSC
Age ( ≥ 65/<65) 1.017 0.999 1.035 6.40E-02 1.028 1.007 1.050 *
Gender (female/male) 1.095 0.782 1.534 5.97E-01 1.225 0.834 1.800 3.01E-01
TNM stage (I + II/III + IV) 1.283 1.079 1.526 ** 1.132 0.726 1.765 5.83E-01
T 1.352 1.121 1.630 ** 1.434 1.083 1.897 **
N 1.170 0.952 1.438 1.35E-01 1.092 0.735 1.622 6.62E-01
M 2.455 0.905 6.659 7.77E-02 1.111 0.279 4.420 8.82E-01
Risk score 1.054 1.040 1.069 *** 1.884 1.473 2.386 ***

LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; TNM: tumor-nodemetastasis; HR: hazard ratio.* represents p < 0.05; ** represents p < 0.05; *** represents p < 0.001.
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FIGURE 2 | Association of m6A RNA methylation regulatory genes with NSCLC prognosis. (A) The GO terms and KEGG enrichment pathway analysis of the m6A
regulator gene, the different colors represent the different pathways. (B) Differential expression of these 13 m6A RNA methylated regulator genes in LUAD (red: “writer”;
blue: “readers”; black: “erasers”). (C) Forest plot of the univariate Cox regression analytic data. The 13m6A RNAmethylation regulators in LUADwere analyzed using the
univariate Cox regression and the data are plotted using the forest plot. (D) Differential expression of these 13 m6A RNA methylated regulators in LUSC (red:
“writer”; blue: “readers”; black: “erasers”). (E) Forest plot of the univariate Cox regression analysis. The 13m6A RNAmethylation regulators in LUADwere analyzed using
the univariate Cox regression and the data are plotted using the forest plot. ***p < 0.001, **p < 0.01, and *p < 0.05. The KEGG, Kyoto Encyclopedia of Genes and
Genomes; GO, Gene Ontology; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; m6A, N6-methyladenosine; N, Normal; T, Tumor.
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of the GO terms and KEGG pathway analysis of LUAD cohort
revealed the m6A-related AS events were significantly
enriched in the GPCR signaling pathway, DNA metabolic
process, DNA repair, cellular response to DNA damage
stimulus, carbon–oxygen lyase activity, and cell adhesion
molecule binding pathways, while the m6A-related AS
events in LUSC cohort were significantly enriched in the
TGF-beta signaling pathway, peptidyl-serine
phosphorylation, peptidyl-serine modification, regulation of
actin cytoskeleton, intracellular signaling by second
messengers, and early endosome pathway (adj p < 0.001;
Figure 4, Supplementary Table S2).

Association of N6-Methyladenosine-
Related Alternative Splicing Events With
Lung Adenocarcinoma and Lung Squamous
Cell Carcinoma Prognosis
We first performed the univariate Cox regression analysis to
identify m6A-related AS events for association with LUAD and
LUSC prognosis. We found 292 prognostic AS events in LUAD
and 922 prognostics AS events in LUSC (p < 0.05; Figures 5A,D,
Supplementary Table S3). The LASSO Cox regression analysis
confirmed 13 of the prognostic AS events in LUAD (Figures
5B,C) and 15 in LUSC (Figures 5E,F), while the multivariate

TABLE 2 | The correlation analysis of clinical traits and m6A clusters from TCGA-LUAD and LUSC.

Overall Cluster 1 Cluster 3 Cluster 4 Cluster 4 p

LUAD
n 486 148 86 129 123
Status (%) Alive 366 (76.0) 123 (81.8) 61 (70.9) 76 (64.9) 106 (86.2) ***

Dead 120 (24.0) 25 (18.2) 25 (29.1) 53 (35.1) 17 (13.8)
Gender (%) Female 262 (53.7) 74 (50.0) 52 (60.5) 69 (52.0) 67 (54.5) 0.483

Male 224 (46.3) 74 (50.0) 34 (39.5) 60 (48.0) 56 (45.5)
Age (%) <65 215 (45.5) 49 (43.9) 40 (46.5) 65 (43.0) 61 (49.6) 0.71

≥65 271 (54.5) 99 (56.1) 46 (53.5) 64 (57.0) 62 (50.4)
Smoking (%) No 13 (2.6) 1 (0.7) 7 (8.1) 1 (0.7) 4 (3.3) **

Yes 495 (97.4) 147 (99.3) 79 (91.9) 150 (99.3) 119 (96.7)
Stage (%) Stage I 263 (55.7) 85 (56.1) 38 (44.2) 60 (54.3) 80 (65.0) *

Stage II 118 (23.4) 38 (26.4) 25 (29.1) 33 (21.9) 22 (17.9)
Stage III 80 (15.7) 14 (9.5) 20 (23.3) 30 (19.9) 16 (13.0)
Stage IV 25 (5.1) 11 (8.1) 3 (3.5) 6 (4.0) 5 (4.1)

T (%) T1 165 (34.1) 59 (30.4) 26 (30.2) 30 (34.4) 50 (40.7) 0.104
T2 256 (52.8) 74 (58.1) 47 (54.7) 73 (48.3) 62 (50.4)
T3 44 (9.1) 7 (5.4) 10 (11.6) 16 (10.6) 11 (8.9)
T4 21 (4.1) 8 (6.1) 3 (3.5) 10 (6.6) 0 (0.0)

N (%) N0 319 (67.3) 102 (69.6) 49 (57.0) 77 (65.6) 91 (74.0) *
N1 91 (17.7) 29 (18.9) 19 (22.1) 25 (16.6) 18 (14.6)
N2 70 (13.8) 12 (8.1) 18 (20.9) 26 (17.2) 14 (11.4)
N3 6 (1.2) 5 (3.4) 0 (0.0) 1 (0.7) 0 (0.0)

M (%) M0 460 (94.9) 136 (91.9) 83 (96.5) 123 (96.0) 118 (95.9) 0.274
M1 26 (5.1) 12 (8.1) 3 (3.5) 6 (4.0) 5 (4.1)

LUSC
n 479 84 169 125 101
Status (%) Alive 293 (61.3) 60 (71.4) 108 (64.1) 63 (50.4) 62 (61.4) *

Dead 186 (38.8) 24 (28.6) 61 (35.9) 62 (49.6) 39 (38.6)
Gender (%) FEMALE 126 (26.5) 24 (28.6) 37 (22.4) 36 (28.8) 29 (28.7) 0.516

MALE 353 (73.5) 60 (71.4) 132 (77.6) 89 (71.2) 72 (71.3)
Age (%) <65 166 (34.8) 37 (44.0) 61 (36.5) 30 (24.0) 38 (37.6) *

≥65 313 (65.2) 47 (56.0) 108 (63.5) 95 (76.0) 63 (62.4)
Stage (%) Stage I 235 (49.2) 35 (41.7) 83 (49.4) 60 (48.0) 57 (56.4) 0.176

Stage II 156 (32.5) 33 (39.3) 54 (31.8) 46 (36.8) 23 (22.8)
Stage III 81 (16.9) 14 (16.7) 32 (18.8) 16 (12.8) 19 (18.8)
Stage IV 7 (1.5) 2 (2.4) 0 (0.0) 3 (2.4) 2 (2.0)

T (%) T1 109 (22.9) 16 (19.0) 34 (20.6) 32 (25.6) 27 (26.7) 0.567
T2 281 (58.5) 51 (60.7) 103 (60.6) 67 (53.6) 60 (59.4)
T3 68 (14.2) 13 (15.5) 25 (14.7) 22 (17.6) 8 (7.9)
T4 21 (4.4) 4 (4.8) 7 (4.1) 4 (3.2) 6 (5.9)

N (%) N0 310 (64.8) 54 (64.3) 106 (62.9) 82 (65.6) 68 (67.3) 0.263
N1 125 (26.0) 23 (27.4) 49 (28.8) 35 (28.0) 18 (17.8)
N2 39 (8.1) 6 (7.1) 14 (8.2) 6 (4.8) 13 (12.9)
N3 5 (1.0) 1 (1.2) 0 (0.0) 2 (1.6) 2 (2.0)

M (%) M0 472 (98.5) 82 (97.6) 169 (100.0) 122 (97.6) 99 (98.0) 0.264
M1 7 (1.5) 2 (2.4) 0 (0.0) 3 (2.4) 2 (2.0)

LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; T: tumor; N: node; M: metastasis; * represents p < 0.05; ** represents p < 0.05; *** represents p < 0.001.
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Cox regression analysis further confirmed seven of the
prognostic AS events in LUAD and 14 in LUSC
(Supplementary Table S4).

Non–Small Cell Lung Cancer
Prognosis-Related Gene Alternative
Splicing Events Signature
We utilized these seven and 14 AS genes in LUAD and LUSC,
respectively, to further construct the LUAD and LUSC risk
signature (Supplementary Table S5). The Sankey diagram
shows that DGKZ|15540|AP and PMP22|39340|AP were the
risky m6A-related AS events in LUAD (HR > 1), whereas
ABCC6|34219|AT, KIAA0586|27718|ES, LDB1|12935|AP,
RPS25|19054|ES, and S100A14|7729|AP were the protective
m6A-related AS events in LUAD (HR < 1) (Figure 6A,
Supplementary Table S5). Furthermore, AKR1E2|10639|ES

and SSH1|24258|ES were the risky m6A-related AS events
in LUSC (HR > 1), whereas ALPK1|70369|ES, FAM63A|
7531|AP, CHMP1A|38102|ES, TSTD2|87013|AT, KIAA1598|
13239|AP, ASXL3|45046|AT, VPS37A|82796|ES, TOX2|
59455|ES, ZNF544|52429|ES, NOL8|86863|ES, FAM124B|
57772|AT, and PTCHD4|76446|AT were the m6A-related
protective AS events in LUSC (HR < 1; Figure 6D,
Supplementary Table S5). We then divided LUAD and
LUSC patients into high- and low-risk groups according to
their risk scores (high-risk LUAD group, n � 240; high-risk
LUSC group, n � 239; low-risk LUAD group, n � 246; and low-
risk LUSC group, n � 240; Supplementary Table S6). The
Kaplan–Meier curve analyses showed that the high-risk group
had a poorer OS than the low-risk group (p < 0.001; Figures
6B,E). The ROC analysis revealed that the AUC values were
0.868, 0.834, and 0.801 for 1-, 3-, and 5-year OS of LUAD,
respectively, while the AUC values were 0.893, 0.824, and 0.849

FIGURE 3 | Identification of the AS events that are associated with clinical traits and the expression of m6A regulators. (A) Hierarchical cluster tree of the AS events
in TCGA-LUAD samples. The tree indicates a unique TCGA-LUAD name and experiment identifier. (B) Association of the AS events with gender, age, LUAD lymphatic
infiltration, tumor status, and pathological stages. The number represents the Pearson correlation values between the module and the features. The number in
parenthesis is the p-value, while the numbers in the color column represent the intensity of the correlation in the table (red � 1, blue � − 1). (C)Hierarchical clustering
tree of the AS events in TCGA-LUSC samples. The tree indicates a unique name and experiment identifier marked TCGA-LUSC. (D) Association of the AS events with
gender, age, LUSC lymphatic vessel invasion, tumor status, and pathological stages. The number represents the Pearson correlation values between themodule and the
features The number in parenthesis is the p-value, while the numbers in the color column represent the intensity of the correlation in the table (red � 1, blue � 1). T, tumor
scope; N, degree of diffusion to lymph nodes; M, there is a transfer; m6A, N6-methyladenosine, LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; AS,
alternative splicing.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6570879

Zhao et al. m6A Genes Regulate AS Events

91

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


for 1-, 3-, and 5-year LUSC OS, respectively (Figures 6C,F).
The concordance index (C-index) of OS was 0.847 [95%
confidence interval (CI): 0.788–0.847] in LUAD and 0.832
in LUSC (95% CI: 0.788–0.877; Supplementary Table S7).

Furthermore, we found that the risk signature (univariate Cox
analysis, HR: 1.543, 95% CI: 1.441–1.346; p < 0.001; multivariate
Cox analysis, HR: 1.390, 95% CI: 1.281–1.508; p < 0.001) and the
TNM stage (univariate Cox analysis, HR: 1.635, and 95% CI:
1.422–1.881; p < 0.001; multivariate Cox analysis, HR: 1.564, 95%
CI: 1.187–2.062; p � 0.001) were independent prognostic factors

of LUAD, while the risk signature (univariate Cox analysis, HR:
1.054, 95% CI: 1.040–1.069; p < 0.001; multivariate Cox analysis,
HR: 1.884, 95% CI: 1.472–2.386; p < 0.001) and T stage
(univariate Cox analysis, HR: 1.352, 95% CI: 1.121–1.630;
p � 0.002; multivariate Cox analysis, HR: 1.434, 95% CI:
1.083–1.897; p � 0.012) were independent prognostic factors
in LUSC (Figures 7A,B, Table 2). The risk curve and
scatterplot of the risk score and survival of each NSCLC
sample and the heat map of these AS genes in NSCLC
samples are shown in Figures 7Aiii–v, iii–v.

FIGURE 4 | The GO terms and KEGG pathway analyses of genes fromm6A-related AS events in NCSLC. The different colors represent the different pathways (A,
B) in the regulation network. The GO terms (A) and KEGG pathways enrichment (B) analysis of the m6A-related prognostic AS genes in LUAD. (C, D) The regulation
network. The GO terms (C) and KEGG pathways enrichment (D) analysis of the m6A-related prognostic AS genes in LUSC. The KEGG, Kyoto Encyclopedia of Genes
and Genomes; GO, Gene Ontology; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; AS, alternative splicing.
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Association of These Prognostic Signatures
With Non–Small Cell Lung Cancer
Clinicopathologies
After that, we associated these prognostic signatures with
NSCLC clinicopathologies and found that the LUAD risk
signature was associated with the gender of patients and
tumor T, N, and TNM stages (adj p < 0.05; Figures 8A,C,
Table 3), although there was no association occurred between
the LUSC risk signature and clinical features (Table 3).
Furthermore, male (n � 224), TNM stage III–IV (n � 105),
N stage 1–3 (n � 167), and T stage 3–4 (n � 65) of LUAD
patients in had significantly higher risk scores than female
(n � 262), TNM stage I–II (n � 381), N stage 0 (n � 319),
and T stage 1–2 (n � 421; all adj p < 0.05; Figure 8, Table 3).
Older age (n � 271) andM1 stage (n � 26) of LUAD patients also
had the higher risk scores (all adj p > 0.05; Figure 8B, Table 3).
Notably, male (n � 353), TNM stage III–IV (n � 88), N stage 1–3
(n � 169), M1 stage (n � 7), older age (n � 313), and T stage 3–4
(n � 89) of LUSC patients also had higher risk scores than those
of the corresponding subgroups, but the differences did not
appear statistically significant (Figure 8D).

Usefulness of the Predictive Nomogram in
Non–Small Cell Lung Cancer
So far, we showed the risk signature and TNM stage as
independent prognostic predictors in LUAD and the risk
signature and T stage as independent prognostic predictors in
LUSC. We thus, constructed the nomogram using these
parameters to assess and apply this risk model for NSCLC
(Figures 9A,C) and verified the calibration curves of the
nomogram (Figures 9B,D). We were able to use the
numerous values of this risk model to predict the 1-, 3-, and
5-year survival of NSCLC patients.

DISCUSSION

In the current study, we analyzed the aberrant expression of 13
m6A regulatory genes and related GAS events to construct a risk
gene signature to predict the overall survival of NSCLC patients.
We found that a number of them were highly expressed in LUAD
or LUSC tissues vs. their normal ones, which could be used to
predict the survival of patients. Furthermore, we found 43,948

FIGURE 5 | Identification of NSCLC prognosis-related AS events. (A) The prognostic upset plot. The data exhibit the m6A-related prognostic AS events in LUAD.
(B, C) The LASSO Cox analysis. These 13 m6A-related AS events associated with LUAD prognostics and the optimal values of the penalty parameter were assessed
using the 10-round cross-validation. (D) The prognostic upset plot. The data exhibit the m6A-related prognostic AS events in LUSC. (E, F) The LASSO Cox analysis.
These 15 m6A-related AS events associated with LUSC prognostics and the optimal values of the penalty parameter were determined by the 10-round cross-
validation. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; m6A, N6-methyladenosine; OS, overall survival: AS, alternative splicing.
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mRNA splicing events in LUAD and 46,020 in LUSC and m6A
regulators could regulate mRNA splicing. We then constructed
the NSCLC prognosis-related AS events signature and divided the
patients into high- vs. low-risk groups using seven and 14 AS
genes in LUAD and LUSC, respectively. The data showed that
DGKZ|15540|AP and PMP22|39340|AP were the risky m6A-
related AS events in LUAD, whereas ABCC6|34219|AT,
KIAA0586|27718|ES, LDB1|12935|AP, RPS25|19054|ES, and
S100A14|7729|AP were the protective m6A-related AS events
in LUAD. Similarly, AKR1E2|10639|ES and SSH1|24258|ES were
the risky m6A-related AS events in LUSC, whereas ALPK1|
70369|ES, FAM63A|7531|AP, CHMP1A|38102|ES, TSTD2|
87013|AT, KIAA1598|13239|AP, ASXL3|45046|AT, VPS37A|
82796|ES, TOX2|59455|ES, ZNF544|52429|ES, NOL8|86863|ES,
FAM124B|57772|AT, and PTCHD4|76446|AT were the m6A-
related protective AS events in LUSC. Further analyses showed
that the LUAD risk signature was associated with the gender of
patients and tumor T, N, and TNM stages. In addition, the risk
signature and TNM stage were independent prognostic
predictors in LUAD and the risk signature and T stage were
independent prognostic predictors in LUSC. In conclusion, our
current study demonstrated the usefulness of this AS prognostic

signature in the prediction of LUAD and LUSC prognosis.
Further study will verify this AS signature in a prospective
dataset from NSCLC patients.

M6A modification and GAS occur most commonly in mRNA
transcripts and their alterations play an important role in the
development and progression of human cancers (Cherry and
Lynch, 2020; Sun et al., 2019). Accumulated evidence suggests
that m6A regulators-mediated gene methylation played a critical
role in NSCLC development (ref); however, the underlying
molecular mechanisms of m6A regulator actions in cancer
development remain to be fully elucidated. Recently, the m6A
regulators have been shown to act as an important splicing factor
during GAS events (Kasowitz et al., 2018; Yoshimi et al., 2019;
Geng et al., 2020), although research of the m6A regulator
regulating AS events is still in the early stage in the field of
cancer research, including lung cancer. Therefore, our current
study conducted the GO terms and KEGG pathway analyses of
these m6A and related GAS events in NSCLC and found that
m6A regulators were significantly enriched in the regulation
mRNA splicing spliceosome biology process. We also found
that the expression of some of them, including METTL3,
HNRNPC, and RBM15, could predict NSCLC prognosis,

FIGURE 6 | Construction of the prognosis-related AS events signature. (A) The Sankey diagram. The data show the potential prognostic value of the m6A-related
prognostic AS events in LUAD. (B) Kaplan–Meier curves stratified by high- and low-risk groups of LUAD. (C) The ROC curves in LUAD. (D) The Sankey diagram. The
data show the potential prognostic value of the m6A-related prognostic AS events in LUSC. (E) Kaplan–Meier curves stratified by high- and low-risk groups of LUSC. (F)
The ROC curves in LUSC. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; ROC, receiver operating characteristic curve.
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FIGURE 7 | Assessment of the independent prognostic value using the risk scores. The univariate and multivariate Cox regression analyses of the risk signature in
LUAD (A); i, univariate and ii, multivariate Cox regression analyses and in LUSC (B); i, univariate and ii, multivariate Cox regression analyses risk signature. The visualized
gene percent spliced index value in LUAD (A; iii) and LUSC (B; iii) and risk scores were associated with NSCLC survival [LUAD: (A): iv, v; LUSC: (A): iv, v; the red dot or line
represents the deceased, while the blue dot or line represents alive]. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PSI, percent spliced
in index.
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although the hazard ratios suggest that their prediction of NSCLC
survival might be marginal. A previous study from Sun et al.
(2020) showed the usefulness of the m6A regulators as the risk
signature in LUAD (AUC, 0.65–0.82). Our results also suggested
that m6A regulators play an important role in NSCLC
development. Other previous studies (Lee et al., 2010; Gruber
et al., 2016; Li et al., 2020) reported that HNRNPC was an RNA-
binding protein (the “reader”), which could regulate RNA
splicing, 3-terminal processing, and translation (Gruber et al.,
2016; Lee et al., 2010; Li et al., 2020). HNRNPC overexpression
was observed in a variety of human cancers, including lung cancer
(Park et al., 2012) HNRNPC, as a protein-coding gene, could also
interact with KHSRP to activate the IFN-α-JAK-p-STAT1
signaling pathway and promoted NSCLC cell proliferation,
migration, and invasion (Yan et al., 2019). It can also regulate

the GAS as an “m6A switcher” (Alarcón et al., 2015; Dai et al.,
2018; Li et al., 2017;Wang et al., 2020). Furthermore, RBM15, as a
“writer,” can bind to METTL3 and WTAP and direct them to
specific RNA sites for m6A modification (Wang et al., 2020),
although it does not possess any catalytic functions (Chen et al.,
2019). RBM15 was also shown to interact with the METTL3
complex and depletion of these adapters could also reduce the
m6A level (Pendleton et al., 2017). Further investigation of
RBM15 and GAS events revealed that RBM15 was able to
bind to specific intron regions to recruit the splicing factor
SF3B1AS (Zhang et al., 2015). In addition, METTL3,
containing highly conserved sequences, is the most important
component of the m6A methyltransferase complex and was
shown to be an S-adenosyl methionine (SAM)–binding
protein and catalyze m6A modification (Wang et al., 2016).

FIGURE 8 | Association of the risk signature with clinicopathological features from both LUAD and LUSC. (A) Heat map of different clinicopathological
characteristics from high- vs. low-risk LUADs stratified by percent spliced index (PSI) of the AS events. (B) Association of the risk scores with clinicopathological features
from LUAD. (C) Heat map of different clinicopathological features of from high- vs. low-risk stratified by the PSI of the AS events. (D) Association of the risk scores with
clinicopathological features from LUSC. ***p < 0.001, **p < 0.01, and *p < 0.05. AS, alternative splicing; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; PSI, percent spliced in index.
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METL3 expression was high in LUAD and promoted the
translation of the epidermal growth factor receptor (EGFR)
mRNA and hippo pathway effector TAZ mRNA in lung
cancer cells, for induction of cell growth, survival, and
invasion (Lin et al., 2016). METTL3 was also shown to
interact with GAS events of the skipped exons and alternative
first exon (Alarcón et al., 2015), and METTL3 dysregulation was
reported to indeed affect GAS events (Katz et al., 2015; Liu et al.,
2014). METTL3 silence significantly affected gene expression and
alternative splicing patterns, leading to modulation of the p53
pathway and cell apoptosis (Dominissini et al., 2012). Taken
altogether, these three m6A RNA methylation regulatory genes
were important in the regulation of GAS events in NSCLC.

Indeed, AS events is an important mRNA modification
process and produce a large number of mRNA and protein
isoforms with different regulatory functions (Bonnal et al.,
2020; Liu et al., 2020). The prognostic value of the AS events
in NSCLC has well been documented, for example, Zhao et al.
(2020) built a predictive model of aberrant AS events and
predicated NSCLC prognosis. Indeed, alternation in splicing
factor expression could alter many AS events in NSCLC
(Coomer et al., 2019). For instance, QKI was shown to one of
the most downregulated splicing factors in NSCLC, while QKI-5
was able to competitively bind to NUMB with SF1 protein to
induce the NUMB exon 11 skip and, therefore, inhibited the
Notch signaling (Zong et al., 2014; de Miguel et al., 2016). In lung

cancer, QKI expression was significantly reduced, increasing in
the abnormal splicing of num exon 11 to, in turn, activate the
Notch signaling pathway and tumor cell proliferation (Zong et al.,
2014; de Miguel et al., 2016). The AS events also influenced p53
expression in NSCLC and MDM2-B, an AS product of MDM2,
was able to promote p53-independent cell growth and inhibition
of apoptosis (Coomer et al., 2019). In this regard, the AS events
are important in NSCLC development and progression (Bonnal
et al., 2020; Sciarrillo et al., 2020).

Furthermore, the weighted gene co-expression network
analysis (WGCNA) is a widely used data mining method,
especially used for studying the biological networks based on
pairwise correlations between variables (Langfelder and Horvath,
2008). In the current study, we used WGCNA to select the AS
events that are highly correlated with the NSCLC survival-related
m6A RNA regulators. After that, we performed the GO and
KEGG pathways enrichment analysis to identify genes of m6A-
related AS events to significantly participate in gene pathways
that play an important role in NSCLC tumorigenesis,
progression, drug sensitivity, and metastasis. Indeed, some of
the abnormal AS events were associated with drug sensitivity and
resistance of NSCLC (Motegi et al., 2019; Pilié et al., 2019) as well
as cell adhesion molecule binding process (Song et al., 2013;
Hintermann and Christen, 2019). Our KEGG analysis showed
that the genes in the m6A-related AS events significantly
participated in the GPCR signaling in LUAD, and the latter is
mediated by three major G protein subclasses and each subclass
also has multiple proteins that are products due to the AS events
(Kang et al., 2015; Kallifatidis et al., 2020). Similarly, we found the
m6A-related AS events in the TGF-β signaling in LUSC. The
TGF-β signaling pathway was frequently downregulated in
human cancers (Syed, 2016), whereas this pathway activation
could also promote tumorigenesis, metastasis, and
chemoresistance (Colak and Ten Dijke, 2017; Zi, 2019). In this
regard, genes of the m6A-related AS event-led activation of the
TGF-β signaling could promote LUSC tumorigenesis. However,
further study is needed to confirm this speculation.

In addition, in our current study, we constructed the risk
signature using these altered genes in m6A and AS events to
associate with NSCLC prognosis, and the AUC of the ROC curves
showed the sensitivity and specificity of LUAD and LUSC,
respectively, which are better than other recent studies (Zhao
et al., 2020) (Liu et al., 2020). In these risk signatures, a previous
study showed that S100A14 overexpression was able to promote
LUAD cell migration and invasion (Ding et al., 2018). In all recent
studies of the AS events in NSCLC, Li et al. (2017) were the first to
construct an AS risk signature for the prediction of NSCLC
prognosis, while Zhao et al. (2020) constructed the AS risk
signature stratified by gender of patients. Liu et al. (2020)
formed an AS signature for LUSC. Our current study also
explored abnormal expression of the splicing factors in
NSCLC as well as the C-index (Supplementary Table S7).
However, our current study does have some limitations, for
example, the AS events database is relatively simple and lacks
all other relevant datasets for us to verify our data. In addition, the
relationship of m6A regulators with the AS events and the
mechanism by which they play a role in NSCLC development

TABLE 3 |Clinicopathological features from LUAD and LUSC subgroups stratified
by the AS events signature.

LUAD Adj-p LUSC Adj-p

Gender * 8.96E-01
Male 224 353
Female 262 126

Age 1.38E-01 9.50E-01
<65 215 166
≥65 271 313

TNM stage *** 5.04E-01
I 263 235
II 118 156
III 80 81
IV 25 7

Tumor (T) ** 7.25E-01
T1 165 110
T2 256 280
T3 44 68
T4 21 21

Lymph node (N) *** 6.30E-01
N0 319 310
N1 91 125
N2 70 39
N3 6 5

Metastasis (M) 5.17E-01 9.96E-01
M0 460 472
M1 26 7

Status *** **
Dead 120 293
Alive 366 186

Total case 486 479

LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; TNM: tumor-node
metastasis; *** represents p < 0.001; ** represents p < 0.01; * represents p < 0.05.
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remain; thus, more studies are needed to clarify the true biological
role of the AS events in NSCLC tumorigenesis.

CONCLUSIONS

Our current study assessed the role of m6A-related AS
events in NSCLC as a signature in the prediction of NSCLC
prognosis. The current study revealed the regulation of AS
events by some key m6A regulators may play an important role
in NSCLC development and progression. This study might
provide a novel insight into the mechanism of NSCLC
tumorigenesis, which may lead to novel strategies in future
control of NSCLC.
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FIGURE 9 | Nomogram prediction of overall survival (OS) of LUAD and LUSC patients. (A) Construction of AS clinicopathological nomograms using AS risk
signature and pathological stage. The nomogram was then used to predict the 1-, 3-, and 5-year OS of LUAD patients. (B) The nomogram AS clinicopathological
nomogram calibration plot in LUAD. It predicts 1-, 3-, and 5-year prognoses. (C)Construction of AS clinicopathological nomograms using AS risk signature and T stage.
The nomogramwas then used to predict 1-, 3-, and 5- OS of LUSC patients. (D) The AS clinicopathological nomogram calibration plot. It predicts the 1-, 3-, and 5-
year prognosis of LUSC. AS, alternative splicing; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OS, overall survival.
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SUPPLEMENTARY FIGURE S1 | The upstate diagrams of LUAD and LUSC. (A)
The upstate diagram of alternative splicing events in LUAD. (B) The upstate diagram
of alternative splicing events in LUSC. LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma.

SUPPLEMENTARY FIGURE S2 | (A) The cluster dendrogram of the LUAD patients.
(B) The cluster dendrogram of the LUSCpatients. LUAD, lung adenocarcinoma; LUSC,
lung squamous cell carcinoma.

SUPPLEMENTARY FIGURE S3 | Cluster analysis of samples in LUAD (A) and
LUSC (B) in the detection of the outliers. The white-to-red linear gradient color
indicates the association with the corresponding clinical variables, while the gray
indicates missing data. LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma.

SUPPLEMENTARY FIGURE S4 | Bioinformatical analysis of AS modules
Associated with m6A RNA methylation regulatory genes. (A) The eigengene
dendrogram and heat map. They identify groups of the correlated eigengenes
termed meta-modules in LUAD. (B)Module–trait association in LUAD. Each row
corresponds to a module eigengene, column to a trait. Each cell contains the
corresponding correlation and p-value. The table is color-coded by correlation
according to the legend. (C) The eigengene dendrogram and heat map. They
identify groups of the correlated eigengenes termed meta-modules in LUSC.
(D) Module–trait associations in LUSC. Each row corresponds to a module
eigengene, column to a trait. Each cell contains the corresponding correlation
and p-value. The table is color-coded by correlation according to the legend.
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

SUPPLEMENTARY FIGURE S5 | The parameter of the adjacency function in the
weighted gene correlation network analysis algorithm. (A) Analysis of the soft threshold
power and the average connectivity of various soft threshold powers in LUAD. (B)Analysis
of the soft threshold power and the average connectivity of the various soft threshold
powers in LUSC. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

SUPPLEMENTARY FIGURE S6 | Scatterplot of the gene or clinical traits
significance (the y-axis) vs. module membership (the x-axis) in the most significant
module of LUAD (A) and LUSC (B). In modules related to a trait of interest, genes
with high module membership often also have had high gene significance. LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma. ADDIN
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Owing to its clinical significance, modulation of functionally relevant amino acids in
protein-protein complexes has attracted a great deal of attention. To this end, many
approaches have been proposed to predict the partner-selecting amino acid positions
in evolutionarily close complexes. These approaches can be grouped into sequence-
based machine learning and structure-based energy-driven methods. In this work,
we assessed these methods’ ability to map the specificity-determining positions of
Axl, a receptor tyrosine kinase involved in cancer progression and immune system
diseases. For sequence-based predictions, we used SDPpred, Multi-RELIEF, and
Sequence Harmony. For structure-based predictions, we utilized HADDOCK refinement
and molecular dynamics simulations. As a result, we observed that (i) sequence-based
methods overpredict partner-selecting residues of Axl and that (ii) combining Multi-
RELIEF with HADDOCK-based predictions provides the key Axl residues, covered by the
extensive molecular dynamics simulations. Expanding on these results, we propose that
a sequence-structure-based approach is necessary to determine specificity-determining
positions of Axl, which can guide the development of therapeutic molecules to combat
Axl misregulation.

Keywords: protein selectivity, sequence analysis, molecular dynamics, Axl, HADDOCK

INTRODUCTION

The functional identification of proteins is essential to understand the grounds of innate cellular
processes. Several computational tools have been deployed to annotate protein function from ever-
accumulating protein sequences (Friedberg, 2006). These approaches aim to define functionally
important residues through comparative sequence analysis (Whisstock and Lesk, 2004). Resolving
the functionally key amino acids is particularly interesting, as modulation of these residues holds a
great potential to design protein-based therapeutics (Moll et al., 2016). Such key amino acids can
be identified upon searching for conserved positions across different species. Alternatively, within a
species, one could look for the differentially mutated amino acid positions of closely-related protein
families, i.e., paralogs (Gogarten and Olendzenski, 1999; Mirny and Gelfand, 2002; Chagoyen
et al., 2016). In paralogs, some mutations are evolved to act as specificity-determining positions
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(SDPs) for regulating selective protein interactions (Rausell et al.,
2010; Sloutsky and Naegle, 2016). Thus, SDPs are often ascribed
to the specialized functions of proteins (Capra and Singh,
2008; Chakraborty and Chakrabarti, 2015; Wong et al., 2015).
SDPs can either select a binding partner (partner-selecting) or
tune the affinity of a protein toward different ligands (affinity-
tuning) (Chagoyen et al., 2016; Sloutsky and Naegle, 2016;
Pitarch et al., 2020).

During the last three decades, several sequence-based SDP
predictors have been proposed (Pirovano et al., 2006; Chakrabarti
and Panchenko, 2008; Chakraborty and Chakrabarti, 2015;
Chagoyen et al., 2016). These methods rely on the application of
different machine learning techniques, which can be grouped into
entropy-, evolution-, and feature-based (Teppa et al., 2012). The
majority of these methods expand on the use of a precalculated
multiple sequence alignment (MSA) file. The entropy-based
methods compute the variability of specific amino acid positions
in an alignment of related protein sequences, allowing the
identification of highly varying positions (Kalinina et al., 2004; Ye
et al., 2006; Feenstra et al., 2007). As an example, SDPpred uses
mutual information entropy scores to predict SDPs (Kalinina
et al., 2004). The evolutionary-based methods, on the other
hand, use substitution matrices or phylogenetic trees to calculate
residue-based variability scores (del Sol Mesa et al., 2003; Pazos
et al., 2006; Capra and Singh, 2008). The evolutionary-based
method Xdet, for example, combines the substitution matrix with
GO or EC annotations, together with the available interactome
data (Pazos et al., 2006). Different than the other sequence-based
methods, Xdet can provide partner-specific SDPs, though, it only
works on large protein families (Pitarch et al., 2020). Finally,
the feature-based methods perform feature extraction of each
amino acid position. The extracted feature vectors are fed into
a classifier, such as random forest, support vector machine or
neural network (Ahmad and Sarai, 2005; Wong et al., 2015). For
instance, Ahmad and Sarai proposed a position-specific scoring
matrix-based SDP prediction of DNA binding proteins (Ahmad
and Sarai, 2005). Here, each residue is represented as a feature
vector by using its and its neighbors’ conservation scores. Then,
the feature vectors are processed by a neural network classifier
to categorize the input residues as SDP or non-SDP for DNA
binding. As the sequence-based SDP prediction methods do
not use heavy input data, they are computationally efficient.
However, the application of these methods is rather limited as
they are mostly trained with small sequence datasets with classical
machine learning algorithms.

The available structure-based SDP prediction methods make
use of the core-support-rim model, as proposed by Levy.
According to this model, the protein-protein interaction surface
can be dissected into three, as: (i) the core; the amino acids, which
get buried upon complexation, (ii) the support; the residues,
which are buried in the uncomplexed state and become more
buried upon complexation, (iii) the rim; the amino acids, which
stay solvent accessible both in free and complexed states (Levy,
2010). In a recent work of Ivanov et al., this definition was used
to discriminate SDPs of four paralog protein families (Ivanov
et al., 2017). Here, the authors structurally modeled and analyzed
all paralog interactions, for which the experimental affinities

were at hand. Their analysis showed that SDPs are located at
the rim, where they form strong electrostatic (charge-charge)
interactions (Chakrabarti and Janin, 2002; Ivanov et al., 2017).
Other groups utilized atomistic molecular dynamics simulations
to trace partner-selecting paralog interactions. For example, van
Wijk et al. demonstrated that a single salt bridge is the key
determinant for selective ubiquitin-conjugating enzyme (E2) and
ubiquitin ligase (E3) interactions (van Wijk et al., 2012). Being
at the rim of E2-E3 surface, the partner-selecting role of this
salt bridge was validated by mutagenesis and yeast two-hybrid
screening. Another recent example explored how protocadherins
specifically find their partners to polymerize, which is an essential
mechanism for neuronal development. For this, Nicoludis et al.
combined molecular dynamics simulations with evolutionary
coupling information (Nicoludis et al., 2019). Compared to the
sequence-based SDP prediction methods, the structure-based
approaches provide a refined and thus an experimentally testable
SDP set. However, these approaches generally require expertise in
computational structural biology tools and depending on the size
of the system, they could be computationally intensive.

As the sequence- and structure-based methods have different
advantages, we chose a model system to map the prediction
landscape of these approaches. For this, we concentrated on
a paralogous protein receptor tyrosine kinase family (TAM),
made by Tyro3, Axl, and Mer proteins. TAM receptors, like
the other receptor tyrosine kinases, are activated through
their interactions with extracellular proteins, triggering receptor
dimerization and autophosphorylation of their kinase domains
(Rothlin and Lemke, 2010). Earlier studies identified two
related proteins, the growth arrest-specific protein 6 (Gas6)
and vitamin K-dependent protein S (Pros1) as TAM ligands
(Hafizi and Dahlbäck, 2006). The binding of these ligands
to TAM leads to downstream activation of diverse signaling
pathways (Wium and Paccez, 2018). Besides Gas6/Pros1, three
other ligands (tubby, tubby-like protein and galactin-3) were
shown to bind to TAM proteins (Myers et al., 2019). These
structures are neither sequence- nor structure-wise related
to Gas6 and Pros1. This suggests that they bind to TAM
family by using a different mechanism compared to Gas6 and
Pros1. As there is little information on the binding profiles
of these new ligands, in this work, we focused only on
TAM:Gas6/Pros1 interactions.

TAM receptors share 52–57%, while Gas6/Pros1 share 40%
pairwise sequence similarity. Across TAM members, Pros1 binds
to Tyro3 and Mer, while it cannot bind to Axl. Gas6 binds to all
three receptors with the highest affinity toward Axl (Hafizi and
Dahlbäck, 2006; Yanagihashi et al., 2017). Among the different
combinations, the Axl:Gas6 interaction is particularly interesting
given its involvement in numerous types of signaling pathways
(e.g., tumor-cell growth, metastasis, epithelial to mesenchymal
transition, drug resistance, etc.) (Zhu et al., 2019). Relatedly, Axl
aberrant regulation was shown to lead to different types of cancer
and infectious diseases (Van Der Meer et al., 2014), as well as
to promote SARS-CoV-2 entry into cell (Wu et al., 2017; Wium
and Paccez, 2018; Wang et al., 2021). Although the structure
Axl:Gas6 complex is resolved, Axl’s ligand-selecting residues is
still unknown. To help to close this knowledge gap, we used three
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FIGURE 1 | (A) The domain organization of TAM family and its ligands, Gas6 and Pros1. TAM family consists of Ig1, Ig2, two FNIII, and tyrosine kinase domains
(Linger et al., 2008; Lemke, 2013). Gas6 and Pros1 are composed of GLA domain, loop region, EGF Repeat, and LG2, LG1 domains (Linger et al., 2008; Lemke,
2013). (B) Axl(Ig1-Ig2):Gas6(LG1-LG2) interaction involves two interfaces: The major interface is formed between Axl-Ig1:Gas6-LG1 and the minor one is established
among Axl-Ig2:Gas6-LG1 [PDB ID: 2C5D, Sasaki et al. (2006)]. The inset represents the charged frontal side of the major interface (Axl is depicted in pink cartoon,
whereas Gas6 is represented in purple cartoon). (C) Conservation scores of Axl residues predicted via ConSurf webserver (Glaser et al., 2003; Landau et al., 2005;
Ashkenazy et al., 2016). The most conserved sites are colored with deep purple and the least conserved ones with deep teal. (D) Electrostatic potential of Axl:Gas6
interacting site. The color scale ranges from -5 (red) to 5 (blue). One side of Axl’s Gas6 binding surface is heavily charged, while the other side is composed of neutral
amino acids.

sequence-based SDP predictors, SDPpred, Multi-RELIEF (both
feature-based), and Sequence Harmony (entropy-based) to map
Axl partner-selecting SDPs. In addition, we analyzed the selective
Axl:ligand interactions, by using simple refinement and extensive
molecular dynamics simulations.

RESULTS

Axl:Gas6 Interface
TAM receptors share two immunoglobulin (Ig)-like, two
fibronectin type III domains (FNIII), followed by a single-
pass transmembrane helix, and an intracellular kinase domain
(Figure 1A). TAM ligands, Gas6 and Pros1 contain an
N-terminal gamma-carboxyglutamic acid (GLA) domain, four
epidermal growth factor-like (EGF) repeats, and two laminin
G (LG)-like domains (Figure 1A). The crystal structure of
Axl:Gas6 interaction is the only available TAM:ligand structure
[PDB ID: 2C5D (Sasaki et al., 2006)]. In the Axl:Gas6 structure,
two Ig-like domains of Axl interact with two LG-like domains

of Gas6, without involving any receptor-receptor or ligand-
ligand interactions (Figure 1B). Axl and Gas6 interact through
two symmetric copies of major and minor interfaces, burying
2366 Å2 and 765 Å2 surface areas, respectively (Figures 1B,C).
While the minor interface is highly conserved across TAM,
the major interface is not. The major interface is spatially
segregated into a frontal site, involving a series of charged
residues, and a hydrophobic distal site (Figure 1D; Sasaki et al.,
2006). The segregated characteristics of the major interface
contribute to its ligand selection, as well as to Axl’s high affinity
toward Gas6 (Sasaki et al., 2006). Thus, for studying the ligand
selectivity of Axl, we focused on the major Axl:Gas6 interface
(Figure 1B-inset).

Sequence-Based Axl SDP Predictions
Agree in One Residue
Among the available sequence-based SDP predictors, we selected
three methods to probe Axl ligand selectivity (Supplementary
Table 1). These algorithms, i.e., SDPpred, Sequence Harmony,
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FIGURE 2 | (A) The mean van der Waals and electrostatics energetics of the top scoring Axl:Gas6 and Axl:Pros1 major interfaces calculated by HADDOCK. The
mean van der Waals energies of Axl:Gas6 (blue) and Axl:Pros1 (gray) are –69.8 ± 1.2 kcal/mol and –68.9 ± 2.2 kcal/mol, respectively. The mean electrostatics of
Axl:Gas6 and Axl:Pros1 are –635.8 ± 29.3 kcal/mol and –173.5 ± 21.4 kcal/mol, respectively. (B) Residue-based electrostatics contribution of Gas6-facing Axl
residues. Axl residues behaving differently than the rest of the population are R48, E59, E70, D73, E83 in the case of Axl:Gas6 (blue), and E48, E59 in the case of
Axl:Pros1 (gray). The whiskers were computed with a whisker length of 2xIQR. (C) The distribution of the salt bridges (SBs) across Axl:Gas6 interface. Axl is
represented in light pink and Gas6 in marine blue. Only SB1 is located on the back and rather neutral side of the complex. This and all the structural images were
generated with PyMOL molecular visualization software (Schrödinger, 2015). (D) The arrangement of the potential SB-making residues in the case of crystal (first
row, pdb id: 2C5D) and HADDOCK-refined (second row) Axl:Gas6 complex. The pairs forming SBs are encircled.

and Multi-RELIEF, were selected based on their widespread
use and their availability as a web service (Kalinina et al.,
2004; Feenstra et al., 2007; Ye et al., 2008). Initially, to analyze
the TAM sequences, the mammalian (human, mouse, rat, pig,
chimpanzee) TAM Ig1 sequences were retrieved from UniProtKB
(The UniProt Consortium, 2018). These sequences were grouped
into Axl and Tyro3 & Mer sequence groups. The MSA of each
group was constructed with Clustal Omega (Sievers and Higgins,
2017). For each approach, MSAs were formatted according to the
requirements of the webservers. As earlier studies showed that
partner-selecting SDPs are located at the rim of protein-protein
interfaces, we filtered out the sequence-based SDP predictions by
keeping the positions corresponding to the rim of the Axl:Gas6
complex (Ivanov et al., 2017). Within this framework, SDPpred
predicted 19 SDPs, five of which (T46, R48, Q50, D84, K96) were
at the rim of Axl:Gas6. The majority of the SDPpred predictions
corresponded to the non-interacting regions of the Axl:Gas6
complex (as calculated by the EPPIC web server, Duarte et al.,
2012). The same trend was observed for Multi-RELIEF, which
contained two rim Axl amino acids out of 15 SDP predictions
(R48, E70). In the case of Sequence Harmony, the minority of the
predictions (4/15) were located at the rim of Axl:Gas6 (T46, R48,
Q50, K96). As such, the combined Axl SDP list, predicted by these

TABLE 1 | Positional sequence comparison of R48, E56, E70, D73, E83. E56 and
D73 are conserved in both Axl and Tyro3 (shown in bold).

Axl Tyro3 Mer

R48 N63 N114

E56 E70 Q124

E70 Q85 L138

D73 D87 H141

E83 - D151

three webservers became T46, R48, Q50, E70, D84, K96, where
they only agreed on R48. The complete list of the SDP predictions
is provided under Supplementary Table 2.

Axl Selectivity Is Regulated by Salt
Bridges
To study partner-selecting Axl SDPs, we modeled the three-
dimensional structure of Axl:Pros1 (Ig1:LG1) complex, to use
it as the negative (non-binder) control. We refined the two
Axl:ligand complexes with HADDOCK 2.2 webserver (van
Zundert et al., 2016). We chose HADDOCK, since it provides a
user friendly web service to carry out the analysis proposed here.
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FIGURE 3 | (A) The distributions of hydrophobic contact (left), hydrogen bond (middle) and SB numbers (right) for Axl:Gas6 (marine blue) and Axl:Pros1 (light gray)
simulations. The distributions are interpreted with box-and-whisker statistics. The associations between two Axl:Gas6 and Axl:Pros1 distributions were reflected in r
values, according to which the SB distributions do not have anything in common. (B) Consistently and stably observed SBs formed in Axl:Gas6 and Axl:Pros1
simulations. Each row indicates the observation frequency of the indicated SB. The frequency data came from replica 1 simulations (Table 2). The SB numbering
follows the ones used in Figure 2C. SB1 is denoted with * as in this case R48 couples with a different Gas6 residue than observed in Figure 2C. (C) The positioning
of potential SDPs on Axl:Gas6 structure predicted by molecular dynamics analysis.

When used for refinement, HADDOCK skips docking stages
and performs several independent short molecular dynamics
simulations in explicit solvent. The top-scoring Axl complexes,
ranked by the HADDOCK score, differed mostly in interface
electrostatics: Axl:Gas6 has ∼3.6 times better electrostatics
energy than Axl:Pros1 (−635.8 ± 29 kcal/mol vs. −173.5 ± 21
kcal/mol) (Figure 2A). Other interface features and energy terms,
such as buried surface area and van der Waals energies, were
comparable between the complexes. These results underscore
that Axl selectivity is mainly driven by the electrostatics
interactions. We analyzed per-residue electrostatics of interfacial
Axl residues (31 for the Axl:Gas6 complex and 27 for Axl:Pros1)
(Figure 2B). In the case of Axl:Gas6, Axl R48, E56, E59,
E70, E73, E83 contributed to the interface electrostatics the
most (Figure 2B). Being at the rim of the Axl:Gas6 complex,
these residues formed six different salt bridges (Figure 2C and
Supplementary Table 2). As introduced earlier, previous studies
have shown that the ligand-selecting SDPs are rim amino acids,
capable of forming opposing charge interactions. This made these
salt bridge forming residues the perfect SDP candidates. Among
these six salt bridges (SBs), SB2-6 were located on the charged
frontal side of the complex (Figure 2C, left). Interestingly,
SB1 and SB3 (mediated by R48, E59) were also present at the
Axl:Pros1 interface. We, therefore, eliminated R48, E59 from the
initial Axl SDP list. This left E56, E70, D73, E83 Axl residues
as the strongest partner-selecting SDPs. Here, we should note
that SB3-SB6 were not present in the Axl:Gas6 crystal structure

(Figure 2D). The proper establishment of these salt bridges was
secured only after the HADDOCK refinement. Finally, if E56,
E70, D73, E83 were Gas6-selective, their positions should be
substituted with different amino acids in Tyro3 and Mer. This
turned out to be the case for E70 and E83, leaving those as the
final HADDOCK-based Axl SDP predictions (Table 1).

To explore the time-dependent interaction profiles of
Axl:Gas6 and Axl:Pros1, we carried out molecular dynamics
(MD) simulations of the HADDOCK-refined Axl complexes.
Even though running MD simulations requires expertise, we
used it to gain the highest resolution information on our
system. For each complex, we ran four independent (replica)
MD simulations, totaling 1.6 microseconds. The analysis of
these trajectories showed that the Axl:Gas6 complex is more
stable than Axl:Pros1, as reflected in the lower root mean
square deviation (RMSD) (0.15 ± 0.01 nm vs. 0.23 ± 0.03 nm)
(Supplementary Figure 1), and radius of gyration profiles
(Supplementary Figure 2). To perform a more in-depth analysis
of the interactions between Axl and its ligands, we calculated the
inter-molecular hydrophobic, hydrogen bonds and salt bridges
formed during the simulations by using the interfacea python
package (Figure 3A). When we pooled the interaction data
of each Axl complex, we observed that Axl:Pros1 contained
a fewer number of contacts in all interaction types. The
most significant difference between Axl:Gas6 and Axl:Pros1
interaction distributions was observed in the case of salt bridges.
Axl:Gas6 trajectories reflected, on average, four to five stable
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salt bridges, where this number dropped to two in the case
of Axl:Pros1 (Figure 3A, right panel). We then looked for
the salt bridges, which were seen in four different trajectories
consistently for more than 25% of the simulation time (Table 2).
Here, our assumption was that the SDP positions should form
stable salt bridges within a trajectory and should be observed
consistently across four trajectories. These criteria left us with
five salt bridges, four of which were the same as the ones
selected by the HADDOCK refinement: E70:R414Gas6 (SB4),
D73:R313Gas6 (SB5), E83:R467Gas6 (SB6), E59:R310Gas6 (SB3)
(listed in the decreasing observation frequency in Figure 2B).
E56-mediated SB2, coming from our HADDOCK refinement
analysis was observed only in one replica, indicating that it could
be coincidental (Table 2). As another surprising outcome, R48
of SB1 formed a stable and consistent salt bridge with D455Gas6,
instead of E460Gas6, which was suggested by the HADDOCK
refinement. Interestingly, E460Gas6 has also a glutamic acid
correspondence on Pros1, while in D455Gas6 matches with an
alanine in Pros1. In the case of Axl:Pros1, only E59:K314Pros1 was
observed in a statistically significant manner, which corresponds
to SB3 of Axl:Gas6 (Figure 3B and Table 2). These observations
left us with four possible selective salt bridges, three of which
were formed by the positions unique to Axl: R48, E70, E83
(Table 1). Our across-ortholog comparison revealed that R48,
E70, E83 are all conserved, supporting the SDP candidacy of these
positions (Supplementary Figure 3). The spatial distribution of
the final list of salt bridges formed by these residues is illustrated
in Figure 3C.

DISCUSSION

In this work, we used three sequence-based SDP predictors,
namely, SDPpred, Multi-RELIEF, and Sequence Harmony to
map Axl’s ligand-selecting SDPs. Next to these approaches, we
also carried simple refinement and extensive MD simulations
of Axl:ligand interactions. As the primary outcome of this
exercise, we found that the sequence-based SDP predictors
largely overpredict the potential SDP positions. Hence, we used
available literature data to filter out the structurally non-viable
ligand-selecting SDPs. As a result, the three methodologies in
combination proposed six SDPs, where they agreed only on
R48. Our HADDOCK-refinement-based approach suggested R48
as a strong electrostatic contributor to the Axl:Gas6 interface.
Though, by only following HADDOCK refined structures, we had
to eliminate R48 from the potential SDP list, as it significantly
contributed to the Axl:Pros1 interaction energetics too. Elaborate
MD simulations were necessary to rescue R48’s SDP candidacy.
During our MD simulations, R48 formed a new salt bridge,
which was neither observed in the crystal nor in the HADDOCK
refined complexes. In the end, HADDOCK refinement proposed
four selective SBs, three of which were supported by the MD
simulations. Checking the evolutionary variance of MD-deduced
SDP positions suggested R48, E70, and E83 as the strongest
Axl SDP candidates. Strikingly, Multi-RELIEF (plus the rim
information) could predict two of these (R48, E70) without
running extensive simulations.

TABLE 2 | SBs formed in parallel (A) Axl:Gas6 and (B) Axl:Pros1 simulations.

(A) Axl
Resi

Gas6
Resi

Axl:Gas6-
replica #1

(%)

Axl:Gas6-
replica #2

(%)

Axl:Gas6-
replica #3

(%)

Axl:Gas6-
replica #4

(%)

SB4 70 414 81.14 34.57 55.41 70.57

SB5 73 313 72.86 81.71 69.43 76.86

SB6 83 467 60.29 48.00 68.57 71.14

SB3 59 310 59.43 32.86 83.14 56.86

SB1* 48 455 43.71 44.00 53.43 30.57

SB2 56 308 – – – 25.14

(B) Axl Pros1 Axl-Pros1-
replica #1

(%)

Axl-Pros1-
replica #2

(%)

Axl-Pros1-
replica #3

(%)

Axl-Pros1-
replica #4

(%)

SB3 59 314 97.67 97.67 94.33 94.33

SB2 59 316 – – – 66.66

SB1 48 465 64.67 51.67 – 33.00

Each row indicates the observation frequency of the denoted salt bridge. The SB
numbering follows the ones used in Figure 2C. The consistent and stable SBs
are marked in bold. * corresponds to the SB1* presented in Figure 3B.

To validate R48, E70, and E83 as the ligand-selecting
Axl SDPs, we artificially mutated the SB1, SB4, and SB6
forming Gas6 residues their Pros1 counterparts, and vice
versa, by using EvoEF1 (Pearce et al., 2019; Figures 3, 4).
EvoEF1 is a machine learning approach, poised to calculate
the impact of point mutations across protein-protein
interfaces. According to EvoEF1, Axl:Gas6 interaction stability
was significantly reduced when individual and combined
Gas6-to-Pros1 and Gas6-to-alanine mutations were imposed.
On the other hand, individual and combined Pros1-to-Gas6
mutations led to a significant increase in the stability of
Axl:Pros1 complex (Figure 4). These findings underscore the
vitality of SB1, SB4, and SB6 to the formation of Axl:Gas6
complex (Figure 3C).

Future of the SDP Prediction Field
Given the importance of the knowledge of SDPs for protein
design, it is essential to use an economically feasible and
accurate predictor. To this end, using machine learning (ML)
methodologies in SDP prediction is very suitable, as ML
tools would allow calculating dozens of SDP predictions in
seconds. Though, the current ML-based approaches face many
challenges. As an example, the majority of the sequence-
based SDP prediction methods require a precalculated MSA
file, together with subfamilies or subgroups definition. Here,
caution should be taken as different MSA algorithms produce
different alignment results based on varying parameters, which
in the end will affect the final SDP list. Besides, dividing
protein families into subfamilies requires expert knowledge. As
another important limitation, the experimentally determined
SDP datasets are rather small, which, in turn, prevents creating
large-scale training of the feature-based methods. Construction
of such large-scale SDP training datasets will make it possible
to use deep learning algorithms, which have outperformed
state-of-the-art methods in similar problems (LeCun et al., 2015;
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FIGURE 4 | EvoEF1 44G predictions for the selective Gas6-to-Pros1 or
Pros1-to-Gas6 mutations. R414, R467, and D455 correspond to SB4, SB6,
and SB1* forming residues, as presented in Figure 3B. The significant
changes are marked with *. The stabilizing and destabilizing mutation color
scheme ranges from –4 (brown) to 4 (yellow). Gas6-to-Ala and Pros1-to-Ala
mutations were run as a control. Comb refers to combined mutations.

Zamora-Resendiz and Crivelli, 2019; Gao et al., 2020; Dai and
Bailey-Kellogg, 2021). The energy-based methods, as presented in
this work under the umbrella of HADDOCK refinement and MD
simulations, could offer a refined SDP list, which can be tested
experimentally. These approaches, however, take much longer
time as they explicitly use structures and calculate forces acting
on these structures. As an example, HADDOCK refinement
of complexes can take up to half an hour, depending on the
available computing resources. MD simulations, on the other
hand, can take up to days or weeks, based on the dedicated
number of computing cores used. Considering the pros and
cons of both approaches, it is evident that new SDP prediction
methods, which combine the advantages of both sequence- and
structure-based methodologies, should be developed. However,
until then, to predict SDPs, conservation-filtered HADDOCK
refinement can be used in combination with structurally-filtered
Multi-RELIEF predictions. Both of these approaches are easily
accessible through web services. Their combination covers all of
the conservation-filtered MD-based SDP predictions, without the
requirement of heavy calculations.

METHOD

Sequence-Based Methods
SDPpred is an entropy-based SDP prediction method which
utilizes mutual information to determine well-conserved residues
within the same groups but differ between them (Kalinina et al.,
2004). The equation to mutual information score for a column p
in the alignment is given below:

Ip =

N∑
i =1

20∑
a =1

fp(α, i)log(
fp(a, i)

fp(a)fp(i)
)

In this equation, N is the number of specificity groups, a is
the amino acid type, fp(i) ratio of protein sequences belonging
to group i. fp(a) is the number of occurrences of residue a
in the whole alignment at position p. fp(a, i) is the number
of occurrences of residue a in group i at position p. SDPpred
calculates column-wise scores for each position in the MSA and
outputs SDPs over the protein sequences. The server can be
reached at http://monkey.belozersky.msu.ru/~psn/query.htm.

Multi-RELIEF a machine-learning based SDP prediction
method which employs RELIEF algorithm to identify specificity
determining residues (Kononenko, 2005; Ye et al., 2008). Multi-
RELIEF algorithm requires predefined groups and their MSA as
input. The aim of this method is to calculate a weight vector
for each position in MSA. The weight vector is initialized with
zeros at the beginning. At each iteration, a random sequence
seq is selected and its nearest neighbors from the same class
(i.e., hit(seq)) and opposite class (i.e., miss(seq)) are determined
based on the Hamming distance. Subsequently, the weight of each
residue is calculated with the following equation:

w [i] = w [i]−
diff

(
seq [i] , miss

(
seq
)

[i]
)

m

+
diff

(
seq [i] , hit

(
seq
)

[i]
)

m

where

diff
(
a, b

)
=

{
0, a = b
1, a 6= b

In the above equation, i represents the ith position in the
weight vector or sequences and m represents the number of
sequences. The algorithm outputs a weight vector whose length
is the same as the number of positions in the alignment. Higher
weights indicates the higher probability of being SDP for the
corresponding position.

Sequence Harmony is another entropy-based SDP prediction
method (Feenstra et al., 2007). It takes MSA and two user-
specified groups as input and calculates relative entropy scores
for each residue that shows degree of conservations. Sequence
Harmony provides ranking of the entropy scores as outputs.
Sequence Harmony and Multi-RELIEF methods are merged
under the Multi-Harmony web server at https://www.ibi.vu.nl/
programs/shmrwww/ (Brandt et al., 2010).

Template-Based Modeling of Axl:ligand
Complexes
LG1 domain of Pros1 was modeled with i-TASSER (Roy
et al., 2010). Pros1-to-Gas6 structural alignment was carried
out with FATCAT web-tool (Ye and Godzik, 2003) (by using
the Gas6 coordinates of 2C5D). The final Axl:Pros1 coordinates
were visualized and saved in PyMOL (Schrödinger, 2015). All
Axl:ligand complexes were water refined with HADDOCK2.2
web server (van Zundert et al., 2016). The standard HADDOCK
refinement protocol samples 20 models. These models slightly
differ from each other as each one is refined with molecular
dynamics simulation starting with a different initial velocity.
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In the end, the generated models are ranked with the HADDOCK
score, which is a sum of electrostatics (E_Elec), van der Waals
(E_vdW) and desolvation terms (E_desolv): 1.0. E_vdW+ 0.2.
E_elec+ 1.0. E_desolv. The top ranking four models, i.e., the best
four models with the lowest HADDOCK scores, are offered as the
final complex states. We generated 200 refined structures for each
Axl:ligand complex. The top four ranking models were isolated as
the final solutions.

HADDOCK refinement outputs residue-based energy
scores of each complex (expressed in E_Elec, E_vdW and
E_elec+E_vdW), deposited in ene-residue.disp file (can be found
under HADDOCK output folder: structures/it1/water/analysis).
This file describes the contributions of each interface amino
acid to the intermolecular interaction. These residue-based
HADDOCK energies were analyzed by using R (R Core Team,
2013) and Rstudio (RStudio Team, 2020).

Molecular Dynamics Simulations
GROMACS 5.1.4 software and its tools were used to run
molecular dynamics simulations (MD) and quality controls (e.g.,
temperature, pressure, RMSD, Rg analyses) (Van Der Spoel
et al., 2005). The AMBER99SB-ILDN force field (Lindorff-Larsen
et al., 2010) was used to parameterize the protein molecules,
while the TIP3P water model was used to represent the solvent
(Jorgensen et al., 1983). The simulation was run in a rhombic
dodecahedron unit cell. The minimum periodic distance to the
simulation box was set to be 1.4 nm. The mdp simulation files
were adapted from https://github.com/haddocking/molmod-
data (Rodrigues et al., 2016).

Before the production run, each complex was minimized
in vacuum by using the steepest descent algorithm (Mandic,
2004). They were then solvated with the TIP3P water, together
with neutralizing ions (51 NA+ and 48 CL- ions were added
to neutralize Axl:Gas6, while 58 NA+ and 49 CL- ions were
added to neutralize Axl:Pros1). The relevant topology files were
edited according to the newly included NA+ and CL- ions.
The second cycle of energy minimization was performed on
the solvated systems. The solvent and hydrogen atoms were
relaxed with a 20 ps long molecular dynamics simulation under
constant volume where the temperature was equilibrated to
300 K (NVT). This was followed by 20 ps long molecular
dynamics simulation under constant pressure where the pressure
is equilibrated to 1 bar (NPT). As a last step before the
production run, position restraints were released upon reduction
of its force constant from 1,000 to 100, 100 to 10, and
10 to 0. To generate a parallel run of a given complex,
random seed was changed before running the NVT step. The
coordinates were written in every 10 ps. The integration time step
was set to 2 fs.

For each Axl complex, we ran four independent (replica)
MD simulations, totaling 1.6 microseconds. In each simulation,
upon reaching 200 ns, the periodic boundary conditions were
corrected. The system was stripped off solvent and ion atoms.
The Root Mean Square Deviations (RMSDs) were calculated by
using the average coordinates as a reference. After leaving the
equilibration periods out (25 ns for Axl:Gas6 and 50 ns for

Axl:Pros1), 350 snapshots for Axl:Gas6 and 300 snapshots from
Axl:Pros1 were extracted.

Interface Analysis
The interfacial hydrophobic contacts, hydrogen and salt
bridges were calculated with interfacea python library (https:
//github.com/JoaoRodrigues/interfacea) (Rodrigues et al.,
2019). interfacea classifies an inter-monomer interaction as
hydrophobic, if there are at least two non-polar atoms within
4.4 Å. It considers a pairwise contact as a hydrogen bond, if
a hydrogen donor (D) and acceptor (A) gets within 2.5 Å. It
then filters D-H-A triplets with a minimum angle threshold
(default 120 degrees). Finally, it classifies an interaction as a salt
bridge if there are oppositely charged groups within 4.0 Å. For
the interface classification as core and rim, EPPIC webserver
was used (Duarte et al., 2012). Core residues are the ones that
are buried at least in the protein structure (>95%). The rest of
interface residues were counted as rim residues.

For comparing different simulations, the box-and-whisker
statistics were generated with the standard boxplot function of
R. The salt bridges were classified as stable if they were observed
for >25% of a simulation time. They were classified as consistent
if they were observed to be stable in all simulations.
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Integrative Predictive Modeling of
Metastasis in Melanoma Cancer
Based on MicroRNA, mRNA, and DNA
Methylation Data
Ayşegül Kutlay and Yeşim Aydin Son*

Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey

Introduction: Despite the significant progress in understanding cancer biology, the
deduction of metastasis is still a challenge in the clinic. Transcriptional regulation is one
of the critical mechanisms underlying cancer development. Even though mRNA,
microRNA, and DNA methylation mechanisms have a crucial impact on the metastatic
outcome, there are no comprehensive data mining models that combine all transcriptional
regulation aspects for metastasis prediction. This study focused on identifying the
regulatory impact of genetic biomarkers for monitoring metastatic molecular signatures
of melanoma by investigating the consolidated effect of miRNA, mRNA, and DNA
methylation.

Method:We developed multiple machine learning models to distinguish the metastasis by
integrating miRNA, mRNA, and DNA methylation markers. We used the TCGA melanoma
dataset to differentiate between metastatic melanoma samples by assessing a set of
predictive models. For this purpose, machine learning models using a support vector
machine with different kernels, artificial neural networks, random forests, AdaBoost, and
Naïve Bayes are compared. An iterative combination of differentially expressed miRNA,
mRNA, and methylation signatures is used as a candidate marker to reveal each new
biomarker category’s impact. In each iteration, the performances of the combined models
are calculated. During all comparisons, the choice of the feature selection method and
under and oversampling approaches are analyzed. Selected biomarkers of the highest
performing models are further analyzed for the biological interpretation of functional
enrichment.

Results: In the initial model, miRNA biomarkers can identify metastatic melanoma with an
81% F-score. The addition of mRNA markers upon miRNA increased the F-score to 92%.
In the final integrated model, the addition of the methylation data resulted in a similar
F-score of 92% but produced a stable model with low variance across multiple trials.

Conclusion: Our results support the role of miRNA regulation in metastatic melanoma as
miRNA markers model metastasis outcomes with high accuracy. Moreover, the integrated
evaluation of miRNA with mRNA and methylation biomarkers increases the model’s
power. It populates selected biomarkers on the metastasis-associated pathways of
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melanoma, such as the “osteoclast”, “Rap1 signaling”, and “chemokine signaling”
pathways.

Source Code: https://github.com/aysegul-kt/MelonomaMetastasisPrediction/

Keywords: machine learning, melanoma, metastasis, metastatic molecular signatures, miRNA, mRNA, DNA
methylation

INTRODUCTION

Melanoma, a cancer with a rapid increase in incidence and high
mortality, is a malignant tumor of skin pigmentation cells with a
highmortality rate. Melanoma can develop anywhere on the body
but is most commonly observed in areas exposed to the sun, such
as the back, legs, arms, and face. With nearly 300,000 cases,
melanoma is one of the most common cancer types worldwide
(World Cancer Research Fun, 2021).

According to CDC statistics, 85,000 new cases are reported
in the United States on a yearly basis, where 8,000 people die
annually (United States Cancer Stat, 2021). In the European
Union, on the other hand, melanoma cancer incidence reaches
14,000 annual cases. It is considered one of the fastest rising
forms of cancer, albeit with hot spots in Europe, those being
Scandinavian countries, Switzerland, and Austria (American
Cancer Society, 2016). In addition, 16,000 new melanoma
cases have been reported in the United Kingdom, which
corresponds to 4% of all cancer types, and it has had a
rising incidence rate of 135% over 30 years (Cancer
Research UK, 2017).

Both distant and regional metastases are possible in
melanomas. The most common metastasis sites in melanoma
cases are bone, the brain, the liver, the lung, and skin. The
presence of skin metastasis may be the first outward sign of
lymphatic or hematogenous spreading. So in melanoma, rather
than diagnosis, the prognosis is a critical concern. It is possible to
detect at least suspicious cases via visual examination or short
screening. Early diagnosis leads to high cure rates, but there is still
no effective treatment in later stages, where metastasis is observed
frequently (Damsky et al., 2010).

Signatures for Metastasis
When the balance between cell growth and death is disrupted as a
result of either “uncontrolled cell growth” or “loss of apoptosis
(programmed cell death)”, tumorigenesis starts (Ma and
Weinberg, 2008; Oppenheimer, 2006). At the initial stage, a
malignant tumor presents at the site of the initial conversion
of a normal cell to a tumor cell, called a primary tumor. This
primary tumor may stay stable in this originated tissue (benign)
or spread to the other parts of the body (malignant) by invasion
or metastasis (Carter, 1974; Oppenheimer, 1982; Tonini et al.,
2003; Shen et al., 2013). Understanding the molecular basis of
carcinogenesis is essential in preventing, diagnosing, and treating
cancer and its metastasis (Harris, 1991).

Many different markers have been proposed to describe the
molecular foundation of metastasis. DNA methylation, gene
expression profiles, and microRNAs are frequent biomarkers
for predicting metastasis for most cancer types.

MicroRNAs are noncoding RNAs and regulate proliferation,
cell cycle control, apoptosis, differentiation, migration, and
metabolism (Kasinski and Slack, 2011; Jansson and Lund,
2020; Stahlhut and Slack, 2013). So, it is not surprising that
microRNAs play a crucial role as suppressors or promoters of
carcinogenesis or metastasis by controlling their target mRNA
(Shalaby et al., 2014). Based on this understanding, microRNAs
became the main focus in cancer biology and were proven to be
crucial components of the normal and pathologic states of cells
(Stahlhut and Slack, 2013; Hayes et al., 2014).

DNA methylation is a chemical process in which DNA binds
with a methyl group. This process modifies the functionality of
the DNA itself. It is an important regulator that plays a crucial
role in genomic imprinting, X-chromosome inactivation,
repression of repetitive elements, and aging. DNA methylation
associates with many types of cancer (Zhang et al., 2011). Global
hypomethylation also implicates cancer development and
progression through different mechanisms (Craig and Wong,
2011). Typically, there is hypermethylation of tumor suppressor
genes and hypomethylation of oncogenes (Gonzalo, 2020;
Melchers et al., 2015).

Predictive Models for Metastasis for Other
Cancer Types
Although predictive machine learning models for melanoma
metastasis are limited, many studies propose predictive
biomarkers for different metastatic cancers. While most of the
studies target specific markers such as microRNA or protein
expression, recent studies (Souza et al., 2017) investigate the
integrated usage of miRNA and mRNA signatures.

Binary logistic regression, which uses miRNA-331 and
miRNA-195 as markers, is able to distinguish between
metastasis and local breast cancer (sensitivity � 0.95 and
specificity � 0.76) (McAnena et al., 2019). A study conducted
by Souza et al. (2017) developed an integrated model using the
expression levels of 27 miRNAs and 81 target mRNAs to classify
prostate cancer patients from controls with 67% sensitivity and
75% specificity. Another study reports a statistical model with
71.4% accuracy for forecasting lymph node metastasis with
independent test cases (Moriya et al., 2009). Besides, the SVM
(support vector machine) classifier, which uses gene expression
profiling with microarrays, predicts metastasis with 78% accuracy
for breast cancer (Burton et al., 2012). To predict the lymph node
metastasis of primary lung cancer tumors, computerized
tomography (CT) and mRNA expression profiling are
combined via statistical analysis (Chang et al., 2008). This
method increased the accuracy from 55% (CT) to 86% (CT
and mRNA). A statistical model built with ANOVA and

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 6373552

Kutlay and Aydin Son Integrative Predictive Modeling of Metastasis

113

https://github.com/aysegul-kt/MelonomaMetastasisPrediction/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


hierarchical clustering predicts future metastasis in head and neck
squamous cell carcinoma (HNSCC) with an accuracy of 77%
(Rickman et al., 2008). The research conducted by Kan et al.
(2004) proposed a predictive model for “lymph node metastasis”
by using artificial neural networks based on gene expression
profiles of primary tumors with an accuracy of 77%.

Chen and colleagues (Chen et al., 2009) studied “cancer
metastasis networks”. In that study, a large set of patient data
and the prediction of progression patterns generated a system
network for the primary tumor and the sides of metastasis. By
using these networks (which are constructed by hierarchical
clustering), they have tried to predict the primary site of the
tumor after a sequence of metastasis multinomial logistic
regression with an overall accuracy of 51% (prostate, 84%;
colon, 80%; lung and bronchus, 69%; ovary, 64%; larynx, 61%;
and female breast, 56%).

Roessler et al. (2010) have generated a risk classifier tool to
predict hepatocellular tumors by using gene expression levels
with a combination of serumAFP levels or BCLC staging. Among
six different prediction algorithms—support vector machines
(SVMs), nearest centroid (NC), 3-nearest neighbor (3-NN), 1-
nearest neighbor (1-NN), linear discriminant analysis (LDA), or
compound covariate predictor (CCP)—CCP achieved the best
sensitivity and specificity (76 and 60%, respectively) on cases
from the “Liver Cancer Institute”. They also tested the model on
another case set from the “Laboratory of Experimental
Carcinogenesis”. The model predicts the risk with a sensitivity
of 84% and a specificity of 65%.

Another study (Watanabe et al., 2010) proposed a model to
predict liver metastasis with a primary colorectal tumor by using
gene expression profiles of DNA microarray samples with the
k-nearest neighbor (KNN) method and 10-fold cross-validation.
The model predicts metastasis with 86.2% accuracy. Zemmour
et al. (2015) developed three models (elastic net, LASSO, and
CoxBoost) to predict early breast cancer metastasis using DNA
microarray data. The study used a publicly available dataset as a
training set. Then they validated the results on two different
datasets (van de Vijver’s and Desmedt’s). The model predicts
metastasis with 66% accuracy on the previous and 59% accuracy
on the other dataset.

PredictiveModels forMelanomaMetastasis
Unlike other cancers, there are limited studies on modeling
melanoma metastasis. Recently, serum levels of the cytokines
IL-4, GM-CSF, and DCD and the Breslow thickness were
proposed as markers to predict melanoma metastasis, where a
linear regression achieved the best balance accuracy (80%) in the
test set (Mancuso et al., 2020). A deep convolutional neural
network (DCNN) study to predict BAP1 mutation also
identified decisive prognostic factors for predicting metastatic
risk via whole slide images with an area under the curve of 0.90
(Zhang et al., 2020). Additionally, mir-205-5p was found to be a
significant biomarker for metastatic melanoma by Valentini et al.
(2019). Also, Wei et al. (2019) indicated that TRIM44-tripartite
motif-containing protein-44, regulated by miR-26b-5p, was
identified as amplified on melanoma tissues. The same study
reported miR-26-5p as downregulated on melanoma. The study

conducted by Kinslechner et al. (2019) showed that scavenger
receptor class B type 1 (SR-BI) protein expression contributes to
metastatic melanoma. Wang et al. (2019) proposed long
noncoding RNA TUG1 as a prognostic biomarker of
metastatic melanoma. Besides, they have also indicated that
miR-29c-3p, which is the target for G-protein signaling 1
(RGS1), suppresses the expression of TUG1.

Overall, transcriptional regulation is one of the critical
mechanisms underlying cancer development. Even though
mRNA, microRNA, and DNA methylation mechanisms have a
critical impact on metastatic outcomes, there are no
comprehensive data mining models that combine all aspects of
transcriptional regulation for metastasis prediction. In this study,
we focused on identifying the regulatory impact of genetic
biomarkers for monitoring metastatic molecular signatures of
melanoma by investigating the consolidated effect of miRNA,
mRNA, and DNA methylation. We used differentially expressed
miRNA, mRNA, and methylation signatures on the TCGA
melanoma dataset to distinguish metastatic melanoma samples
by assessing a set of predictive models. The highest performing
model is selected, and its biomarkers are further analyzed for the
biological interpretation of functional enrichment and to
determine regulatory networks.

We used the TCGA Skin Cutaneous Melanoma (SKCM)
dataset, which has been analyzed in various studies on the
overall survival and identification of prognostic markers based
on genomics data. Xiong et al. (2019) used clinical data and
miRNA sequencing data to associate the observed survival rate.
Similarly, Chen et al. (2017), Yang et al. (2018), Ma et al. (2017),
and Xue et al. (2020) studied RNA sequencing data and proposed
noncoding RNAs for SKCM prognosis. Guo et al. (2015)
combined miRNA and mRNA sequencing data and proposed
15 miRNAs and 5 mRNAs for prognosis. Additionally, Jiang et al.
presented the integration of mutation, copy number variation,
methylation, and mRNA expression data for identifying
prognostic markers. Selitsky et al. (2019) used mRNA
sequencing data and applied machine learning models to
measure the relative similarity of gene expression profiles of
bulk tumor samples and different B cell phenotypes.

MATERIALS AND METHODS

In the study, opened data for Skin Melanoma (SKCM) (The
Cancer Genome Atlas N, 2015) of the TCGA (The Cancer
Genome Atlas) database are used, which is a part of the TCGA
dataset served on the Cancer Genomics Cloud (CGC). The
Cancer Genomics Cloud (CGC) (Institute, 2020) hosts a large
genomic dataset and provides tools for searching and
analyzing genomic data, serving as a computational
environment on the cloud. The data browser tool provided
by the CGC is used to search for TCGA cases and CCLE cell
lines. On TCGA, a melanoma dataset with 470 cases composed
of 352 metastatic and 97 primary tumor samples is used during
this study, with three experimental strategies in the dataset,
namely, miRNA expression, mRNA expression, and
methylation.
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We have collected the melanoma data for miRNA sequencing,
RNA sequencing, and methylation array for this study’s
systematical analysis. For 470 different cases with primary and
metastatic melanoma, tissue samples are compared to distinguish
the metastatic melanoma from the primary tumor. We finalized
the predictive model input preprocessing by applying data
cleaning, normalization, and scaling preprocessing steps for
the remaining 449 cases (Figure 1). Overall, 470 distinct cases
and 11,265 opened files have been found by using four filters:

1. Primary Site (Skin)
2. Project (TCGA-SKCM)
3. Experimental Strategy (miRNA-Seq; Methylation array;

RNA-Seq)
4. File Access (Open)

We generated a subset of cases, which contains all data for
“miRNA sequences”, “methylation array”, and “RNA sequences”.

In the current interface of the GDC Data Portal, the following
search query provides the data files in the repository:

Cases.primary_site in (“skin”) and
cases.project.program.name in (“TCGA”) and
cases.project.project_id in (“TCGA-SKCM”) and
files.access in (“open”) and files.experimental_strategy
in (“Methylation Array”, “RNA-Seq”, “miRNA-Seq”).

TCGA provides various attributes for “miRNA sequences”,
“methylation array”, and “RNA sequences”. For miRNA, we used
“miRNA Expression Quantification”, which are miRNA
expressions provided as a table that associate miRNA IDs with
a read count and a normalized count in reads per million miRNA
mapped. Raw read counts, the number of reads aligned to each
gene, calculated using the HT-Seq algorithm, are used for mRNA.
Ensemble gene ID represents these data and the number of read-
aligned mRNAs. For methylation analysis, TCGA provides beta-

FIGURE 1 | Experimental pool generation process: each method is evaluated using a sample experimental pool under the same circumstances. miRNA, mRNA,
and methylation data consumed through TCGA were processed separately and merged to generate the whole melanoma marker dataset. Then, through random
splinting, 10 individual sample datasets are constructed. Each random split is saved by applying both undersampling and oversampling (SMOTE) techniques.
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values, which approximate the percentage of methylation of the
gene (Figure 1).

The data analysis is started with data preprocessing and
variable selection. miRNA expression is used for the initial
cycle of the spiral analysis method. Then, 11,265 separate files
that contain miRNA and mRNA expressions for each case are
downloaded from TCGA with a manifest file that contains
metadata for the specific case. The manifest file is used to read
and combine case files to generate a data pool. The final data pool
contains 472 observations with 60,492 properties for mRNA, 450
observations with 1,904 properties for miRNA, and 483
observations with 34,014 variables for methylation. We only
chose the cases which have all three experiments, namely,
miRNA, mRNA, and methylation.

The sample type property is used for the class variable, which
is a categorical variable with four levels, namely, “Primary
Tumor”, “Solid Tissue Normal”, “Metastatic”, and “Additional
Metastatic”. Only the samples with “Primary Tumor” and
“Metastatic” are selected for further analysis.

There were variables for miRNA and mRNA expressions
with a constant (1 or 0) value for all samples. These attributes
have been removed from the dataset. The remaining samples
are subject to a significance test concerning class variables;
log normalization and Z-score normalization used for
relevant markers. Markers are scaled in the 0–1 range. The
t-test has been used as a significance test (p-value is defined as
0.001). As a result of the test, 425 miRNAs, 2061 mRNAs, and
8,698 methylation variables were significantly expressed
between the two groups (“Primary Tumor” and
“Metastatic”).

For a detailed analysis of the results, all possible miRNA
patterns and their target mRNA and gene methylation are
calculated. Then, depending on the significance level, different
patterns are defined via evaluation with each other.

Random selection is applied for each class with a 20% ratio to
separate unseen data for testing during the analysis. We repeated
this randomization process to create 10 different splits, which are
used as a separate trial. By generating more than one split, we aim
to decrease the bias due to random splitting and test the
repeatability. So, as an experiment environment, we created an
experiment pool constructed by 10 random partitions for the test
set and the training set generated by applying both
undersampling and oversampling (SMOTE) (Fernández et al.,
2018) techniques for addressing class imbalance issues. So, 80% of
the data are used for training and validation (Figure 2). In each
trial, both dimensional reduction and feature selection techniques
were applied separately to solve the curse of the dimensionality
problem for both undersampling and oversampling
methodologies, and different machine learning techniques
were evaluated with 10-fold cross-validation. Final models are
tested against the unseen data separated at the beginning. All
these processes were repeated 10 times for each data set in the
experimental pool. Finally, the mean values of prediction
parameters are calculated for the results reported in this study.

Each test/training subset listed in the experiment pool was
trained and tested for different models by adding miRNA
expressions, mRNA expressions, and methylation beta-values
iteratively. Besides, to address the curse of dimensionality, we
tried both dimensional reduction and feature selection
techniques. Seven methods, namely, SVMs with linear, radial,

FIGURE 2 | Training validation and unseen test data generation in each trial; for this purpose, the following steps are followed for both undersampling and
oversampling. 1) The significant variables listed in the given category are selected from the dataset. 2) A set selected randomly fromwhole data with an 80% ratio of each
class is kept for unseen data. 3) A technique is applied to solve the curse of the dimensionality problem (for dimensional reduction, principal component analysis is
applied, and for oversampling runs, the SMOTE algorithm is used with K � 3). 4) Steps 1–3 are repeated for each data split in the experiment pool.
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and polynomial kernels, neural networks, random forests,
AdaBoost, and Naive Bayes, have been applied to generate and
test the predictive model (Figure 3). Neural networks and

support vector machines are frequent models that have been
applied to similar classification models. But as we search the
literature, we did not see any research which applied bagging,

FIGURE 3 | Model training and testing process: experiment flow initiated by applying alternative dimensionality solutions, namely, PCA and feature selection.
Through each experiment flow, models are trained with seven (SVMs with linear, radial, and polynomial kernels, neural networks, random forests, AdaBoost, and Naive
Bayes) machine learning algorithms and tested with the same unseen data. Overall flow is repeated for each data subset in the experiment pool.

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 6373556

Kutlay and Aydin Son Integrative Predictive Modeling of Metastasis

117

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


boosting, and probabilistic methods. So, we chose at least one
representative of various classification algorithm categories,
namely, artificial neural networks, bagging methods, boosting
methods, and probabilistic models, one or more. Apart from
support vector machines and neural networks, we included
adaptive boosting, an ensemble method that composes a
robust classifier from various weak classifiers, and random
forest, which relies on bagging techniques to increase
classification performance more than one decision tree.
Apart from all these, Naïve Bayes also chooses an
alternative since it is a fundamental model based on
probabilistic techniques. The mean F-score and the mean
p-value are evaluated as performance indicators for
validation and test dataset classifications. Box plot
distribution of classification scores is investigated for each
dataset in the experimental pool. The best model for each
category is made by comparing mean F-scores and mean
p-values. If these results are the same for two or more best
model candidates, we have reviewed the box plot of
significance and sensitivity distributes.

This study follows the following codingmechanism tomap the
alternative scenarios of class imbalance and dimensionality
solution techniques for each category. This annotation is used
as the naming convention of the given result set in the following
sections:

• a1: miRNA biomarkers modeled with feature selection and
undersampling

• b1: miRNA biomarkers modeled with feature selection and
SMOTE

• c1: miRNA biomarkers modeled with PCA and
undersampling

• d1: miRNA biomarkers modeled with PCA and SMOTE
• a2: miRNA and mRNA biomarkers modeled with feature
selection and undersampling

• b2: miRNA and mRNA biomarkers modeled with feature
selection and SMOTE

• c2: miRNA and mRNA biomarkers modeled with PCA and
undersampling

• d2: miRNA and mRNA biomarkers modeled with PCA and
SMOTE

• a3: miRNA, mRNA, and methylation biomarkers modeled
with feature selection and undersampling

• b3: miRNA, mRNA, and methylation biomarkers modeled
with feature selection and SMOTE

• c3: miRNA, mRNA, and methylation biomarkers modeled
with PCA and undersampling

• d3: miRNA, mRNA, and methylation biomarkers modeled
with PCA and SMOTE

All preprocessing, training, validation, and testing are done
using R studio using various R packages.

• Neural Network (package: nnet) (Ripley, 2002; Ripley and
Venables, 2021)

• AdaBoost (package: adabag) (Alfaro et al., 2013; Alfaro
et al., 2018)

• Random Forest (package: ranger) (Wright and Ziegler,
2017; (Wright et al., 2021)

• Naïve Bayes (package: naivebayes) (Majka andMajka, 2020)
• Support Vector Machine (package: kernlab) (Karatzoglou
et al., 2004; Karatzoglou et al., 2016)

• Smote (smotefamily) (Siriseriwan, 2019a; Siriseriwan,
2019b)

During the collection and evaluation of the results, we
followed a systematic cross-comparison technique. First, we
collected the prediction scores for different classification
models to find the best algorithm. Evaluation of the successors
within each feature category identified the winner. Finally, model
progress and the contributions of adding new feature categories
are assessed based on these collected results. The illustration of
this process is summarized in Figure 4.

The experiment is repeated for each subset in the data pool to
find the prediction scores, and mean values were calculated. We
have assessed the predictive algorithm using seven different
machine learning models, including representatives of various
classification algorithm categories, namely, artificial neural
networks, bagging methods, boosting methods, and
probabilistic models. We applied 10-fold cross-validation for
each subset and calculated the mean F-score; the mean p-value
was used to evaluate each category’s best model. If the results are
the same for two or more model candidates, we have reviewed the
box plot of significance and sensitivity distributes to choose the
one with low variance.

F Score � 2p
(PrecisionpRecall)
Precision + Recall

(1)

As a final step, we performed functional and pathway
enrichment analysis by using DAVID (Huang et al., 2007;
Dennis et al., 2003). The KEGG, Reactome, EC Number, and
Biocarta Pathways of selected biomarkers are compared for sets of
“miRNA”, “miRNA and mRNA”, and “miRNA, mRNA, and
methylation” to better understand the contributing factors
behind the higher precision and consistency after including
methylation data in the models.

RESULTS

In this study, we have evaluated the potential genetic biomarkers
of melanoma metastasis. In addition, we developed multiple
predictive models to predict the metastatic outcome by
integrating miRNA, mRNA, and DNA methylation markers
by using the TCGA melanoma dataset. This study’s
experimental strategy is composed of a 3-cycle evaluation,
each of which targets different feature categories. In each
cycle, the evaluation of different techniques to solve
dimensionality and the class imbalance problem is applied.
Figure 5 summarizes the results of all evaluation techniques
for each cycle.

At the first step of the initial cycle, we have implemented a
predictive model (a1) with a microRNA biomarker model using
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feature selection through importance (the hybrid model) and
the class imbalance solution through undersampling. The
predictive model with adaptive boosting (AdaBoost)
demonstrates the best results among all the trials with the
highest F-score and accuracy. Besides, the variance of the
results for the different datasets in the experiment was also
low compared to other models. Similarly, the random forest has
the second-best results among all trials (an F-score of 80%). In
the second scenario (b1), when we replace the class imbalance
solution with SMOTE, the random forest demonstrates similar
results, with an F-score of 79%. In parallel, adaptive boosting
(AdaBoost) presents a comparable performance (an F-score of

80%) to that of the random forest model with a slightly higher
score. In the third trial (c1), we have used undersampling and
dimensional reduction with PCA. According to our results,
adaptive boosting (AdaBoost) showed better scores (an
F-score of 80%), but for this time, the SVM with the linear
kernel (an F-score of 78%) was better than the random forest (an
F-score of 72%), demonstrating the second-best results. Finally,
we applied SMOTE to address the class imbalance issues (d1).
The results were similar to those of the first trial; adaptive
boosting showed the best results (F-score: 80%), and the random
forest also had better results (F-score: 79%) than other models
(Figure 6).

FIGURE 4 | Illustration for category-based analysis with techniques applied: each evaluation criterion is represented with a code. For example, (a1) represents the
predictive models by using miRNA signatures with the hybrid method, that is, the random forest, to calculate feature importance undersampling for the class imbalance
solution. Similarly, (d3) represents the outcomes of models applied to predict metastasis using significant miRNA, mRNA, and methylation biomarkers using PCA as a
dimensional solution and SMOTE as a class imbalance solution.

FIGURE 5 | Illustration for results of category-based analysis with techniques applied to solve significant issues: as a result of the evaluation process, (c1) is selected
as the successor model for miRNA markers. When two markers, miRNA and mRNA, are combined, the winner is identified as (d2). In the final cycle, the merge of all
biomarkers resulted in (d3) as the successor. Among all, (d3) was the winner to predict the metastatic outcome.
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As a result of the initial cycle, microRNA biomarkers predict
the primary tumor’s metastatic outcome with an F-score of
almost 80%. In predictive models, by using miRNA markers,
all workflows showed similar classification power. We selected
(c1) the adaptive boosting with the PCA and undersampling as it
results in the highest F-score. Both the random forest and
adaptive boosting (AdaBoost) demonstrated better results in
each workflow (Figure 6).

In the second cycle, we utilized both miRNA and mRNA as
biomarkers. Like in the previous cycle, we first used (a2) feature
selection through importance (the hybrid model) and the class
imbalance solution through undersampling. When we compare
the predictive models, the results were quite similar, with varying
F-scores between 81% and 83%. However, the random forest
produces the best results with regard to the mean F-score (83%)
and the mean p-value (8.26 × 10−05). The SVMwith a polynomial
kernel was the second-best model to predict the metastatic
outcome, with the same F-score but a lower p-value (9.34 ×
10−05). As a second trial (b2), we have replaced the class
imbalance solution with SMOTE. The results for each model,
which vary in the range of 80–84% for the F-score, were quite
similar. The neural network showed the best F-score (84%) and
p-value (2.41 × 10−05). The SVM with linear and polynomial
kernels also had the same F-score (84%), and the neural network
showed a higher significance. Adaptive boosting and the random
forest demonstrate better results for the miRNA–mRNA cycle
and predict the metastatic outcome with equal mean F-scores of
81%. In the third trial (c2), undersampling for class imbalance
and dimensional reduction with PCA are applied. The SVM with
the linear kernel was the best model with the highest F-score
(90%). The neural network was the second-best model to predict

metastasis with an F-score of 89%. Nevertheless, this time,
adaptive boosting (F-score: 82%) and the random forest
(F-score: 75%) are left behind. As the final trial (d2), we have
applied SMOTE and dimensional reduction with PCA (d2). The
neural network and the SVM with the linear kernel produced the
best results compared to the rest with F-scores of 91 and 92%,
respectively. On the other hand, adaptive boosting and the
random forest showed high variance across different trials
(Figure 7).

At the end of the second cycle, we saw that models using
miRNA and mRNA marker winner models had F-scores ranging
between 83 and 92%. The prediction scores for both boosting and
bagging techniques were not as good as they were in the first
cycle. Since the F-score for (d2), the SVM using PCA and
SMOTE, has the highest scores, it is selected.

In the third cycle, we combined all miRNA, mRNA, and
methylation biomarkers. Similar to previous cycles, we applied
a combination of each class imbalance and dimensionality
solution techniques. We decided on neural networks since
model significance demonstrated improvement in our results.
Firstly, all Neural network, SVM with linear and polynomial
kernel predicts metastasis with an F-score of 83% by using under-
sampling and feature selection through importance techniques
(a3). Both SVMwith radial kernel and random forest predict with
similar F-scores (83%). So, the results of the prediction model
were close to each other for this trial. However, the lowest
variance across different trials was observed with SVM (linear
kernel). In the second trial (b3), we have replaced the class
imbalance solution technique with SMOTE. Both SVM with
linear kernel and the polynomial kernel were the two best
performing models with F-scores of 84% and 85%. In the

FIGURE 6 |Model comparison of techniques used for miRNA biomarkers (red, sensitivity; green, predictivity; blue, accuracy; purple, F-score): Category 1, which
uses a hybrid model of feature selection and an AdaBoost classifier, has the best results among all scenarios.
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third trial (b4), sampling and dimensional reduction with PCA
are applied. SVM was the best model regardless of the selected
kernel (F-score; 88%). Finally, when we applied SMOTE instead
of under-sampling (d3), SVM with linear kernel demonstrated
slightly higher scores (F-score 92%). In contrast, SVM with
polynomial kernel and Neural network had an F-score of 91%
and 90%. The best predictive model was SVM, trained by using
dimensional reduction with PCA and SMOTE (d3). Like the
second cycle, both SVM and Neural Network models resulted in
better results in all trials. In addition, both under-sampling and
oversampling techniques produced similar results (Figure 8).

As a result of all evaluations (see Supplementary Material),
we came up with successors for each biomarker category (Table 1;
Figure 9). First of all, the random forest with (a1) feature
selection and undersampling achieved best results for miRNA
markers (F-score � 81%, sensitivity � 75%, specificity � 90%,
accuracy � 82%, and p � 1.7 × 10−4). In addition, the SVM (d2)
with PCA and SMOTE was the most successful technique for a

combination of miRNA and mRNA markers (F-score � 92%,
sensitivity � 92%, specificity � 93.5%, accuracy � 93%, and p � 1.0
× 10−7). Finally, by using all miRNA, mRNA, and methylation
markers (d3), the SVM reached the same results as the previous
one, with higher consistency across different trials (F-score �
92%, sensitivity � 92%, specificity � 93%, accuracy � 92%, and p �
1.05 × 10−7) (Figure 9).

In the third model, 10 miRNA biomarkers, namely, hsa-mir-142,
hsa-mir-29c, hsa-mir-3124, hsa-mir-3130, hsa-mir-326, hsa-mir-
331, hsa-mir-4419b, hsa-mir-4444, hsa-mir-4474, hsa-mir-4491,
hsa-mir-4523, hsa-of mir-625, and hsa-mir-766, are found to be
upregulated and 1 miRNA, hsa-mir-203a, was found to be
downregulated. Hence, 11 miRNA markers have been used as a
biomarkers in our successormodel to predict metastasis. In addition,
163 methylation and 1770 mRNA markers are selected in the final
triple-biomarker model. All miRNA biomarkers and their target
miRNA and methylation information in their target genes are
presented in Supplementary Tables S2, S3.

FIGURE 7 | Model comparison of techniques used for miRNA and mRNA biomarkers (red, sensitivity; green, predictivity; blue, accuracy; purple, F-score): the
model listed in 4, which applies (d2), is selected as the successor model for the second cycle.

TABLE 1 | Summary for iterative progress on model precision scores.

Best method Tuning grid Best tune hyperparameters Validation Test

miRNA PCA and undersample Max depth: [2:8] Max depth: 6 Accuracy: 86% Accuracy: 81%
AdaBoost # of trees: [1:16] Number of trees: 12 F-score: 86% F-score: 82%

Co-efficiency of learning: Breiman
miRNA and mRNA PCA SMOTE Cost: 10(−4) × (20:150)) Cost: 0.0025 Accuracy: 81% Accuracy: 93%

SVM (linear kernel) F-score: 0.82% F-score: 92%
miRNA, mRNA, and methylation PCA SMOTE Cost: 10(−4) × (20:150)) Cost: 0.0027 Accuracy: 82% Accuracy: 93%

SVM (linear kernel) F-score: 83% F-score: 92%

The miRNA model applied by feature selection through importance (the hybrid model) and the class imbalance solution through undersampling is the method to be applied for prediction.
For both “miRNA–mRNA” and the “miRNA–mRNA–methylation” triple model, principal component analysis for dimensionality and SMOTE for the class imbalance solution was the best
method to increase predictive power and stability of the model.
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Evaluation of the overall results at the functional level is
completed with an enrichment analysis. We used DAVID
[(Huang et al., 2007; Dennis et al., 2003)] tools for biological
interpretation of selected features used in the selected “miRNA
and mRNA” classification and “miRNA, mRNA, and
methylation” classification.

Using the functional enrichment analysis, the KEGG,
Reactome, EC Number, and Biocarta Pathways of selected
biomarkers are compared for “miRNA and mRNA” with
“miRNA, mRNA, and methylation” to examine the reason for
higher precision and consistency of addition of methylation. In
the model with methylation markers, the significance of the
osteoclast, Rap1 signaling pathway, and chemokine signaling

pathways increased (Figure 10). Osteoclast differentiation also
appealed within the top 15 pathways when all 3 biomarker
categories are combined. In addition, the Rap1 signaling
pathway and chemokine signaling were listed in the top 3
among the most significant pathways (Table 2).

DISCUSSIONS

Melanoma can be distinguished with visual assessment or
through a short screening. Although there is an opportunity
for a cure when detected in the early stages, treatment is
challenging in later stages. Likewise, metastasis is an undesired

FIGURE 8 | Model comparison of techniques used for miRNA, mRNA, and methylation biomarkers (red, sensitivity; green, predictivity; blue, accuracy; purple,
F-score). The model listed in 4, which applies (d3), is selected as the successor model for the final cycle.

FIGURE 9 | Comparison of best models for each biomarker set (red, sensitivity; green, predictivity; blue, accuracy; purple, F-score): 1) the performance of the
predictive model by using miRNA, 2) the performance of the predictive model by using miRNA and mRNA markers, and 3) the performance of the predictive model by
using miRNA, mRNA, and methylation markers.
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outcome in such cases, and differential diagnosis is crucial for the
treatment decision. So, the opportunity for the diagnosis of
metastatic melanomas in earlier stages may support

therapeutic decisions and advice for more frequent and in-
depth screening, providing a higher chance for cure or
prevention of further metastatic progress.

FIGURE 10 | Significant pathways functionally enriched in all three feature sets. As the new biomarker set is added, the significance of the pathways is evaluated.
Osteoclast, Rap1 signaling pathway, and chemokine signaling pathways showed a significant increase in the third model.

TABLE 2 | Comparison of the top 15 pathways of different biomarker sets.

p-value

miRNA miRNA–mRNA miRNA–mRNA–methylation

6.3.2.- — 1.60 × 10−02 —

cAMP signaling pathway 7.40 × 10−04 — —

Chemokine signaling pathway (*) — 2.40 × 10−07 1.60 10−10

Cytokine–cytokine receptor interaction — — 1.90 10−04

Endocytosis 4.30 × 10−04 6.30 × 10−11 1.40 10−04

Focal adhesion 6.10 × 10−09 1.40 10−06 2.80 10−07

Hepatitis B 4.40 × 10−09 — —

HTLV-I infection 5.10 × 10−07 3.60 × 10−13 2.00 × 10−09

MAPK signaling pathway 1.60 × 10−03 6.70 × 10−11 4.90 × 10−04

Osteoclast differentiation (*) — — 2.90 × 10−14

Pathways in cancer 4.60 × 10−13 3.10 × 10−16 1.20 × 10−12

PI3K-Akt signaling pathway 7.00 × 10−05 8.00 × 10−06 1.90 × 10−05

Proteoglycans in cancer 2.00 × 10−10 5.70 × 10−10 2.70 × 10−08

R-HSA-212436 3.40 × 10−05 6.00 × 10−03 —

R-HSA-983168 3.60 × 10−03 3.80 × 10−05 7.30 × 10−03

Rap1 signaling pathway (*) 4.80 × 10−07 4.30 × 10−06 3.70 × 10−10

Ras signaling pathway 3.80 × 10−06 1.50 × 10−07 3.00 × 10−08

Regulation of actin cytoskeleton 1.80 × 10−03 1.70 × 10−05 1.50 × 10−04

Viral carcinogenesis 9.70 × 10−06 5.10 × 10−04 3.80 × 10−04

*p-values of the osteoclast, Rap one signaling pathway, and chemokine signaling pathways gradually increased after adding a new biomarker set. In addition, the Rap1 signaling pathway
and chemokine signaling were listed among the top three pathways with increasing significance with osteoclast differentiation. Other pathways with increasing significance, such as
cytokine–cytokine receptor interaction and the Ras signaling pathway, are also observed.
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This study shows that miRNA plays an essential role in the
metastatic progression of primary melanoma and predicts
metastasis outcomes with high accuracy. miRNA biomarkers
anticipated metastatic results with an F-score of 82%.
Expansion of mRNA markers upon miRNA reached an
F-score of 92%. The ultimate model, which includes DNA
methylation, results in a comparative F-score of 92% but
delivered a steady model with low variation over different
trials. Moreover, the integrated evaluation of miRNA with
mRNA and methylation biomarkers increases the model’s
predictive power. Another remarkable finding in this study is
that the boosting and bagging model’s performance was better for
miRNA signatures. However, when we added new mRNA and
DNA methylation, we got higher prediction scores for neural
networks and support vector machine classifiers.

One limitation of the study was the data imbalance and small
sample size. We validated and tested our models in a restricted
data size since we could not access additional datasets on the GEO
or CGC, combining all three markers at the time of the study.
We utilized oversampling techniques and ran the overall
process multiple times to reduce the bias to address this
limitation. Additionally, we were able to compare various
machine learning models as they were appropriate for the
data size in the study. However, we realize that deep learning
methods would be competitive with these techniques.
Therefore, repetition of the study with a balanced or more
extensive dataset in the future can further validate the
biomarkers reported here.

In machine learning studies, undersampling techniques are
also used to deal with class imbalance issues. So we performed
oversampling and undersampling methods and evaluated their
outcomes. The SMOTE, a synthetic minority oversampling
method based on the k-nearest neighbors, has been tested with
different k values between 3 and 6, and the final k was chosen as 3.
We used the 1:2 ratio for oversampling of the minority class.
Under the given circumstances, we generated similar results for
both undersampling and oversampling. Overall, our results
present satisfactory evidence that the synthetic minority
oversampling technique can also be applicable for prediction
studies for genomics data.

As our model is based on the differences between primary and
metastatic melanomas, the markers identified here can be used
for differential diagnosis. We believe that it will become possible
to predict melanomas with metastatic potential (prediction of
prognosis). In those cases, several actions can be taken in the
clinic, such as intensive scanning for metastasis or frequent
follow-ups with patients. In the future, patients with higher
risk can be offered prevention from metastasis with gene
therapies based on emerging technologies like miRNA
therapies or gene editing.

In this study, we focused on identifying the regulatory impact
of genetic biomarkers for monitoring metastatic molecular
signatures of melanoma by investigating the consolidated
effect of miRNA, mRNA, and DNA methylation. We used the
TCGA melanoma dataset to predict metastatic melanoma
samples by assessing a set of predictive models. Differentially
expressed miRNA, mRNA, and methylation signatures are used

as biomarkers throughout the study. The highest performing
models’ selected biomarkers are further analyzed for the
biological interpretation of functional enrichment and
determining regulatory networks. So we focused on gradually
including new feature sets. To reveal our evaluation pattern for
including new biomarker sets, we performed functional
enrichment analysis. The functional enrichment of the KEGG,
Reactome, EC Number, and Biocarta Pathways of selected
biomarkers are compared for sets of “miRNA”, “miRNA and
mRNA”, and “miRNA, mRNA, and methylation”, and we tried to
search for the reason behind the higher precision and consistency
achieved after addition of methylation. The osteoclast, Rap1
signaling pathway, and chemokine signaling pathways
significantly increased and listed the top 15 pathways when all
3 biomarker sets are used for modeling. So the combined model
populates selected biomarkers on the metastasis-associated
pathways of melanoma.

Osteoclasts are multinucleated cells responsible for bone
resorption. Molecular pathways involved in osteoclast
proliferation, differentiation, and survival are essential players
in bone metastasis. Osteoclast differentiation is a systemic
pathway that controls bone renovation. Since the main
metastasis sites for melanoma cancer include bone, the liver,
the lung, and skin/muscle (Wright et al., 2021), functional
enrichment of osteoclast-related pathways within top-level
pathways is a supporting finding for our study design.

Ras-associated protein-1 (Rap1) is an important regulator for
basic cell functions such as cellular migration and polarization.
This pathway is an important factor for tumor metastasis, so such
an increase in the significance level is also critical for the
metastatic outcome (Zhang et al., 2017).

Chemokines are involved in controlling the migration of
cells during normal processes of tissue maintenance or
development. The chemokine-receptor system plays critical
roles in various physiological processes, including immune
homeostasis, inflammatory responses, and cancer
progression. Chemokines have essential roles in tumor
progression and are involved in the growth of many cancers
and metastasis (Sarvaiya et al., 2013).

Since the initial discovery of the relationship between cancer
and miRNA signatures, many studies have shown that miRNA
has a critical role in the regulation of genes, and thus, has a critical
role in tumorigenesis. Today, many techniques for the early
detection of and diagnosis of tumors are available. Still, when
invasive procedures are required for diagnosis or treatment, it is
vital to know the tumor’s metastatic potential to estimate the risks
vs. the benefits of the procedure. Also, in the later stages of tumor
development, any information about the metastatic status of late-
stage tumors is required for deciding between therapy choices.
Hence, the miRNAs reported in this study can be candidates for
therapeutic targets of melanoma metastasis.
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Beyond the list of molecules, there is a necessity to collectively consider multiple sets of
omic data and to reconstruct the connections between the molecules. Especially, pathway
reconstruction is crucial to understanding disease biology because abnormal cellular
signaling may be pathological. The main challenge is how to integrate the data together in
an accurate way. In this study, we aim to comparatively analyze the performance of a set of
network reconstruction algorithms on multiple reference interactomes. We first explored
several human protein interactomes, including PathwayCommons, OmniPath, HIPPIE,
iRefWeb, STRING, and ConsensusPathDB. The comparison is based on the coverage of
each interactome in terms of cancer driver proteins, structural information of protein
interactions, and the bias toward well-studied proteins. We next used these interactomes
to evaluate the performance of network reconstruction algorithms including all-pair
shortest path, heat diffusion with flux, personalized PageRank with flux, and prize-
collecting Steiner forest (PCSF) approaches. Each approach has its own merits and
weaknesses. Among them, PCSF had the most balanced performance in terms of
precision and recall scores when 28 pathways from NetPath were reconstructed using
the listed algorithms. Additionally, the reference interactome affects the performance of the
network reconstruction approaches. The coverage and disease- or tissue-specificity of
each interactome may vary, which may result in differences in the reconstructed networks.

Keywords: protein-protein interactions, interactome, network reconstruction, heat diffusion, personalized
PageRank, prize-collecting Steiner forest, pathway reconstruction

INTRODUCTION

Computational approaches improve our understanding about the mechanisms of perturbations,
effects of drugs, and functions of genes in the biological system by interpreting multiple “omic” data
and reducing their complexity (Liu et al., 2020; Paananen and Fortino, 2020). Integrative network
analysis approaches are used to interpret the complex interactions between “omic” entities as a whole
beyond the list of molecules. The impact of an alteration in any omic entity, for example, upregulated
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or downregulated genes or mutated or phosphorylated proteins,
may not be local; rather, it diffuses to the distant sites of the
interactome.

Many pathway databases cataloged the molecular interactions.
Each database explains interactions via different approaches.
KEGG (Kanehisa et al., 2017) provides annotated pathways,
while Reactome (Jassal et al., 2020) gives detailed information
on components and the reactions. Additionally, integrated
interactomes such as HIPPIE, ConsensusPathDB, and STRING
combine multiple resources to come up with a weighted
interactome. There are several scoring schemas to measure the
reliability of interactions such as MI-score and IntScore. These
methods combine different weights including the number of
publications, detection method, or network topology (Turinsky
et al., 2011; Kamburov et al., 2012; Kamburov et al., 2013; Alanis-
Lobato et al., 2017; Szklarczyk et al., 2019). Although the
combination of multiple resources improves the quality of the
interactomes, it still does not completely solve the bias toward
well-studied proteins or the artifacts from high-throughput
experiments (Žitnik et al., 2013; Caraus et al., 2015;
Skinniderid et al., 2018; Vitali et al., 2018). Besides the false
positives, interactomes are not complete and have false negatives
which are the undetected interactions. To complete the missing
parts in the interactome and to detect spurious interactions,
several prediction approaches have been employed using
network topology (Alkan and Erten, 2017), link prediction,
protein structures (Singh et al., 2006; Tuncbag et al., 2012;
Mosca et al., 2014; Segura et al., 2015; Yerneni et al., 2018;
Ietswaart et al., 2021), or additional data such as gene
expression (Cannistraci et al., 2013; Lei and Ruan, 2013;
Hulovatyy et al., 2014; Szklarczyk et al., 2021). For example,
Interactome3D uses the structural knowledge in PDB and
homology-based prediction to construct a highly accurate
interactome (Mosca et al., 2013). The main limitation of
proteome-wide structural interactome construction is the
number of structurally resolved protein complexes.

Network reconstruction approaches aim to transform the list
of seed genes/proteins into their interactome-wide impact based
on the topological proximity. Steiner trees/forests, statistical
models, and network propagation with random walk or heat
diffusion systems have been frequently used in omics data
integration with the molecular interactions (Leiserson et al.,
2015; Cowen et al., 2017; SeahSen et al., 2017) or identifying
disease-associated pathways, subnetworks, or modules (Paull
et al., 2013; Kim et al., 2015; Silverbush et al., 2019). These
approaches construct context-specific subnetworks under a
certain condition such as disease association or for revealing
the impact of an external stimulus such as drug treatment or
pathogen infection (Braunstein et al., 2019; Tabei et al., 2019).
Recently, DriveWays (Baali et al., 2020), MEXCOwalk (Ahmed
et al., 2020), iCell (Malod-Dognin et al., 2019), ModulOmics
(Silverbush et al., 2019), and Omics Integrator (Tuncbag et al.,
2016b) predicted the cancer driver modules. MEXCOwalk
implements a random walk on the reference interactome by
using mutation frequencies and their mutual exclusivity for
the identification of the cancer driver modules. ModulOmics
uses protein–protein, regulatory, and gene co-expression

networks together with mutual exclusivity of mutations to
identify highly functional driver modules. Omics Integrator
solves the prize-collecting Steiner forest problem to construct
optimal subnetworks from the single- or multi-omic datasets.
Omics Integrator was applied to several conditions from cancer
driver network construction (Dincer et al., 2019) and to viral
infection modules in the host organisms (Sychev et al., 2017).
iCell uses the matrix factorization to integrate multi-omics
datasets with tissue-specific interactomes. In this study, we
compared the performance of four network reconstruction
approaches, all-pairs shortest path (APSP), personalized
PageRank with flux (PRF), heat diffusion with flux (HDF),
and prize-collecting Steiner forest (PCSF), on six different
interactomes. A conceptual representation of these methods is
illustrated in Figure 1. We did not consider the methods in this
comparison that modify the underlying interactome or
reconstruct regulatory networks using gene expression, such as
ARACNe (Lachmann et al., 2016), GENIE (Fontaine et al., 2011),
and INFERELATOR (Madar et al., 2009). APSP merges the
shortest paths between pairs of nodes in the seed list. HDF
implements the heat diffusion process by transferring the
initial heat of the seed list to their neighbors. PRF applies a
random walk to find the nodes most relevant to the seed list. We
calculate the edge flux in both HDF and PRF based on the
resulting node weights. PCSF finds an optimal forest that
connects the seeds either directly or by adding intermediate
nodes. We evaluated the performance of these algorithms on a
gold standard dataset containing 32 curated pathways in the
NetPath database using different metrics such as precision, recall,
and MCC values. The performance of each network
reconstruction approach is highly dependent on the reference
interactomes. Additionally, each method has its own strengths
and limitations. We found that the interactomes have some
critical differences that can significantly affect the performance
of network reconstruction approaches, such as their edge weight
distributions, the bias toward some well-studied proteins, their
coverage of disease-associated proteins, and the structurally
resolved interactions. APSP has the highest recall and the
lowest precision, while PRF, HDF, and PCSF have more
balanced and comparable performance in precision and recall.
Among them, PCSF performed the best in terms of the F1 score,
which represents the balance between the precision and the recall.
Overall, our study presents an extensive comparison of the
selected network reconstruction approaches and shows the
impact of the input interactome in their performance. This
comparison presenting the strong and weak aspects of the
interactomes and reconstruction approaches has the potential
to be beneficial to the field.

METHODS

Reference Interactomes
We used PathwayCommons v12 (Rodchenkov et al., 2019),
iRefWeb v13 (Turinsky et al., 2011), HIPPIE v2.2 (Alanis-
Lobato et al., 2017), ConsensusPathDB (Kamburov et al.,
2013), STRING (Szklarczyk et al., 2019, 2021), and OmniPath
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(Ceccarelli et al., 2020) for the interactome comparison and the
assessment of subnetwork inference approaches. We mapped the
names of proteins in interactomes (nodes) to their reviewed
Uniprot identifiers (The UniProt Consortium, 2019). The
statistics of the interactomes are listed in Table 1. Some
interactomes have confidence scores, which represent how real
an interaction is. PathwayCommons and OmniPath do not have
confidence scores. iRefWeb uses the MI-scoring scheme, which
considers multiple parameters including experimental detection
methods. HIPPIE v2.2 and ConsensusPathDB (Release 34) have
confidence scores on edges calculated based on their own scheme
(Kamburov et al., 2012; Alanis-Lobato et al., 2017). We filtered the
STRING interactome by recalculating confidence scores
considering only the experiment and database scores (von
Mering et al., 2005).

Interactome Comparison Metrics
We compared the reference interactomes at both the node and
edge levels using different metrics, namely, the overlap
coefficient, correlation of edge confidence scores, inclusion of
disease-associated proteins, and overlap with the pathway edges.
The overlap coefficient is a similarity measure for two given
datasets, S1 and S2, which can be node sets or edge sets of graphs
or information coming from a database. The overlap coefficient
was calculated using Eq. 1 for pairwise comparison of
interactomes and coverage of varied knowledge (Simpson,
1966; Kuzmin et al., 2016) as follows:

overlap(S1, S2) � |S1∩S2|
min (|S1|, |S2|) (1)

We compared each pair of interactomes, G(VG, EG, c(eG))
and H(VH, EH, c(eH)), where V is the node set and E is the edge
set, and 0≤c(e)≤1, where c(e) is the confidence score of an edge.
The node-level similarity of the given interactomes were
calculated using the overlap coefficient by applying Eq.1
where VG is used as S1 and VH is S2. Likewise, the edge level
overlap coefficient in each pair of interactomes is determined
using Eq. 1 where EG and EH are assigned as S1 and S2,
respectively.

Next, we explored the structurally known protein-protein
interactions in each reference interactome using the overlap
coefficient. Interactome INSIDER has 4,150 interactions from
PDB and 2,901 interactions from Interactome3D (Meyer et al.,
2018). The edge level overlap coefficient between each reference
interactome (G) and each structural interactome (H) is calculated
using Eq. 1.

The interactomes and network reconstruction methods are
frequently used for revealing cancer driver modules. We
downloaded the 568 cancer driver genes (CDGs) from
intOGen (Martínez-Jiménez et al., 2020). The overlap
coefficient between CDGs (S1) and proteins in each reference
interactome (S2) is calculated using Eq. 1. Additionally, the
number of publications about each CDG and the degree
centrality of the CDGs are analyzed to find out the bias of the
interactomes toward well-studied or cancer-associated proteins.

FIGURE 1 | Conceptual representation of reconstruction algorithms: all-pair shortest paths (APSP), personalized PageRank with flux (PRF), heat diffusion with flux
(HDF), and prize-collecting Steiner forest (PCSF). In the APSP, the subnetwork is reconstructed with the union of all shortest paths between seed nodes. HDF diffuses the
heat that initially belongs to seed nodes. After limited steps of transfer, the heat of the nodes is used for flux score calculations for edges. PRF uses a personalized
PageRank algorithm to find the probability of nodes after randomly walking in the reference interactome and calculates flux scores. PCSF finds the optimum forest
to link seed nodes either directly or through intermediate nodes. The union of optimum forests reconstructs subnetworks.
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The overlap of each reference interactome (G) with the known
interactions in 171 pathways in KEGG (H) is calculated using
Eq. 1 (Kanehisa et al., 2017). Modeling a small-sized network
is a challenging task because a small number of molecular
interactions limit the overall dynamic range of the signals
(Tkačik et al., 2009; Azpeitia et al., 2020). Therefore, we
discarded KEGG pathways having less than 30 edges from the
interactome evaluations.

Among the selected interactomes, iRefWeb, HIPPIE,
ConsensusPathDB, and STRING have edge confidence scores
that are calculated with different scoring approaches. We applied
an all-pair comparison of the given interactomes (G, H) with the
Pearson correlation analysis on the confidence scores in the
intersection of edge sets in interactome pairs (EG∩EH)

Biological networks follow the scale-free power law
distribution, P(k) = k-ɣ, where k is the degree of a node, and ɣ
is the power coefficient (Barabási and Albert, 1995; Alm and
Mack, 2016). To linearize the representation of both degree
distribution and publication distribution, the logarithm of
distribution was used as log(P(k)) = −ɣlog(k). We collected
the number of publications about each protein from UniProt.
The correlation between the degree and the number of
publications of the nodes was evaluated using the Pearson
correlation test on a log scale.

Network Reconstruction Methods
We used four reconstruction approaches, the shortest path, heat
diffusion, PageRank, and PCSF. Selected interactomes are
separately employed as the reference network, G(V, E, c(e)),
where V is the node set, E is the undirected edge set, and c(e) is
the weight of an edge. These networks are weighted by
confidence scores in the interactions, 0≤c(e)≤1. Network
reconstruction algorithms infer the subnetwork, R(VR, ER),
where VR 4 V and ER 4 E, by connecting the seed node
set, VI4 V. The given node set is weighted with uniform 1/|VI|
where |VI| is the number of seed nodes, while the remaining
node set is weighted as 0, so that w(v) can be defined for
reconstruction algorithms.

All-Pairs Shortest Paths
We found out all shortest paths between each pair of nodes, u and
v ∈ VI, u≠v. When there are multiple shortest paths between u
and v, we included all of them. Finally, we merged all shortest
paths to obtain the final subnetwork. We did not put any edge
weight–based filtering or path length threshold.

Personalized PageRank
The PageRank algorithm was normally designed for propagation
in directed graphs. Personalized PageRank (PPR) is adapted to
undirected graphs by converting each edge into both directed
edges. The PageRank score of each node, p(v), in the reference
interactome,G, represents the probability of being at the node at a
certain time step (t) that is calculated using the following iterative
formula:

pt+1(y) � 1 − λ

N
+ λ ∑

xi → y

pt(xi)
deg(xi) (2)

where Eq. 2 includes the probability of node y ∈ V that is
calculated using the damping factor (λ) defining the
probability of walking from neighbor nodes (xi) to y, and N is
the number of nodes (Page et al., 1998; Langville and Meyer,
2005). Initial probabilities of nodes were taken from w(v). We
iterated Eq.2 100 times by default to obtain p(v).

Heat Diffusion
In the heat diffusion (HD), seed nodes having uniform heats
prioritize their related nodes via heat transfer, which is
formulated as follows:

p(v) � p0(I + −α
N

L)N

(3)

In Eq. 3, L = I –W, where I represents an identity matrix and
W = D−1A in which D and A are defined as the diagonal degree
matrix and the adjacency matrix, respectively. p0 is the initial
heat vector in which nodes were weighted from w(v). N and α
are, respectively, the number of iterations and the heat
diffusion rate. N = 3 is set as the default (Nitsch et al.,
2010). At the end of heat diffusion, nodes have the diffused
heat p(v) as the weight.

Edge Selection Over Flux Scores
Personalized PageRank with flux (PRF) and heat kernel
diffusion with flux (HDF) are calculated over deg(v), which
is defined as the number of interactions in G, and node scores
0≤p(v)≤1, which come from PPR or HD. In our study, unlike
TieDie and HotNet with heat diffusion algorithms and flux on a
random walk with restart, the threshold value is employed to
eliminate uncritical nodes (Vandin et al., 2011; Creighton et al.,
2013; Rubel and Ritz, 2020). The related nodes with p(vi)≥1/n
where n is the number of nodes in the interactome are

TABLE 1 | Reference interactomes and their statistics.

Interactome Number of proteins Number of interactions Confidence score

iRefWeb v13.0 11,295 80,351 Yes
PathwayCommons v12 18,536 1,126,072 No
HIPPIE v2.2 15,984 369,584 Yes
ConsensusPathDB 17,269 359,201 Yes
STRING v11 8,992 229,306 Yes
OmniPath 6,549 35,684 No
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considered for subnetwork reconstruction. We calculated the
directional flux scores fu→t using Eq. 4 where u, t ∈ V, p(u) is the
score that comes from PPR or HD, and deg(u) is the number of
neighbors of node u. Likewise, we calculated ft→u using Eq. 5.
We determined the final flux of the edge as the minimum of fu→t

and ft→u (Eq. 6).

fu→ t(u, t) � p(u) × c(e)
deg(u) (4)

ft→ u(t, u) � p(t) × c(e)
deg(t) (5)

f (e) � min(fu→ t(u, t), ft→ u(t, u)) (6)

Edges are ranked from the highest flux score to the lowest by
taking the negative logarithm of the flux. A total flux (F) is
calculated among the related nodes as follows:

F � ∑ f (e) (7)

0≤τ ≤ 1, where τ is a flux threshold value that is the selection
percentage of F. Edges are selected by summing flux scores from
the highest to the lowest until the targeted flux amount, τxF. The
edges having low flux scores are excluded from reconstructed
subnetworks (Rubel and Ritz, 2020).

Prize-Collecting Steiner Forest
We used the PCSF algorithm implemented in Omics
Integrator2. The seed nodes, vi ∈ VI, are weighted
uniformly, and the edge costs are calculated using the cost
function implemented in Omics Integrator 2 which combines
the edge confidence score, c(e), and a penalty calculated from
node degrees scaled with the c parameter. If the reference
interactome does not have confidence scores, c(e) = 1 is
uniformly defined. PCSF also penalizes the nodes based on
their degrees (Tuncbag et al., 2016a). The new version, Omics
Integrator 2, penalizes the edges based on the degrees of the
node pair. The following function finds an optimum forest,
F(V, E), by minimizing the objective function (Tuncbag et al.,
2013):

f ′(F) � ∑ β.p(v) +∑ cost(e) + ω.κ (8)

In Eq. 8, κ is the number of connected components, β controls
the relative weight of the node prizes, and ω controls the cost of
adding an additional tree to the solution network.

PCSF provides an optimum forest for each parameter set and
an augmented forest which includes all the edges in the
interactome that are present between the nodes in the optimal
forest. We obtained the final reconstructed networks with the
intersection of the optimal augmented forests that were generated
using multiple parameter sets.

Performance Analysis
NetPath is the curated human signaling pathway database that is
composed of immune signaling pathways and cancer signaling
pathways. In this study, 32 pathways in NetPath were used as a
plausible dataset (Kandasamy et al., 2010). Since the
computational cost of reconstruction was expensive for all

pathways in NetPath with all parameter sets, first, optimum
parameter sets were determined before performance analysis.

Parameter Tuning
Parameters of reconstruction algorithms were separately optimized
for each reference interactome. Thus, Wnt, TCR, TNFα, and TGFβ
pathways on NetPath were used for parameter selection. Nodes in
each pathway were independently shuffled and split into five-fold.
Each fold was, respectively, removed from the complete pathway
node list, and network reconstruction was executed with the
remaining folds. Parameters of reconstruction algorithms were
separately tuned for each reference interactome tomaximize the F1
score (Eq. 12). In the APSP, all identified shortest paths among
seed node sets were inserted into a reconstructed pathway without
any parameter tuning, so we do not adjust any parameter. We
tuned the parameters in the given interval inTable 2 for PRF,HDF,
and PCSF and for each reference interactome. Parameter sets of
PRF and HDF were tuned in a two-dimensional grid via the mean
of parameters that pooled the 10 highest F1 scores (Supplementary
Figures 1, 2). In the PCSF, the union of all parameters that achieve
the best coverage of the seed nodes, VI, for each pathway was used
as optimum parameter sets.

The Calculation of Performance Scores
After tuning the parameters on four pathways, the remaining 28
pathways in NetPath, listed in Supplementary Table 1, were used
for performance evaluation with five-fold cross-validation. We
evaluated each reconstruction algorithm separately on each
reference interactome by calculating the F1 score, Matthew’s
correlation coefficient (MCC), recall and precision values, and
false positive rate (FPR) in Eqs 9–13 as follows:

recall(TP,TN) � |TP|
(|TP| + |FN|) (9)

precision(TP, FN) � |TP|
(|TP| + |FP|) (10)

FPR(TP, FN) � |FP|
(|FP| + |TN|) (11)

F1score � 2 × precision x recall
precision + recall

(12)

MCC(TP,TN , FP, FN) �
(|TP| × |TN|) − (|FP| × |FN|)�������������������������������������������(|TP| + |FP|)(|TP| + |FN|)(|TN| + |FP|)(|TN| + |FN|)√

(13)

Seed nodes were not counted in the performance calculation.
However, all edges in the reconstructed network were used in the
performance evaluation since interactions were not used in the
initial input. For a given reference in interactome G(V, E) and an
seed node set (VI) from a pathway T(VT, ET), a network is
reconstructed, R(VR, ER), using the listed methods, where VT;, VR

and VI4 V, and ET and ER4 E. Node-level true positives (TPV)
and edge-level true positives (TPE) are obtained from |VR ∩ VT |
and |ER ∩ ET |, respectively. Node-level true negatives (TNv) and
edge-level true negatives (TNE) are obtained from |V \ (VR ∪ VT)|
and |E \ (ER ∪ ET)|, respectively. False positives FPV and FPE are
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equal to |VR \ VT | and |ER \ ET |, respectively. False negatives FNV

and FNE, are equal to |VT \ VR | and |ET \ ER |, respectively.
We performed principal component analysis (PCA) to figure

out critical scores that explain the highest variance across all
pathways. We statistically assessed overall performance data
including both edge- and node-based scores by individually
grouping reference interactomes and reconstruction methods.

Data Availability Statement
Codes and datasets used for this study are publicly available at the
online repository https://github.com/metunetlab/Interactome_
Network_Reconstruction_Assessment_2021. We downloaded
NetPath, http://netpath.org/browse, and PathwayCommons, https://
www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.
All.hgnc.txt.gz, iRefWeb, http://wodaklab.org/iRefWeb/search/index,
HIPPIE, http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/
download.php, STRING, https://string-db.org/cgi/download,
ConsensusPathDB, http://cpdb.molgen.mpg.de/, Reference
Human Proteome from UniProtDB, https://www.uniprot.org/,
using the query https://www.uniprot.org/uniprot/?query�proteome:
UP000005640%20reviewed:yes, INSIDER, http://interactomeinsider.
yulab.org/downloads.html, and KEGG, https://www.kegg.jp/kegg/
download/ and http://rest.kegg.jp/get/+’pathwayid’+’/kgml’.
OmniPath and the signaling pathways in Glioblastoma (WP2261)
were retrieved from WikiPathway using Cytoscape 3.8.0.

RESULTS

Systematic Evaluation of Reference Human
Interactomes
Network reconstruction algorithms are highly dependent on
the quality and coverage of the reference interactome.
Therefore, we systematically explored the properties of iRefWeb,
PathwayCommons, HIPPIE, ConsensusPathDB, OmniPath, and
STRING databases. Among them, iRefWeb, HIPPIE,
ConsensusPathDB, and STRING provide the measure of
confidence in interactions as scores. First, we compared the
pairs of interactomes to determine how similar they are in
terms of their node and edge sets. PathwayCommons is the
largest network in size, so it has the highest fraction of node
and edge overlap compared to all other interactomes. iRefWeb,
PathwayCommons, HIPPIE, and ConsensusPathDB are the most

similar interactomes to each other based on the node and edge
overlaps (Figure 2A). On the other hand, STRING and OmniPath
have fewer common nodes and edges with other interactomes. We
need to note that the raw data in STRING contain more than one
million interactions in human interactomes, and we used only the
experimental and database interactions which resulted in a
relatively small-sized interactome with medium or high
confidence edges. Before using the network reconstruction
algorithms, obtaining the reference interactome with
measurements of interaction confidence is fundamental to
decreasing the impact of the false positives. Because network
reconstruction algorithms leverage the edge confidence scores
and the topology of the reference interactomes during the
propagation or optimization, confidence scores may
substantially affect the accuracy of the resulting network. Even
two topologically equivalent interactomes may produce different
subnetworks as a result of network reconstruction if their
confidence score distributions are different from each other. In
Figure 2B, the number of edges in each reference interactome is
shown, which are categorized as low, medium, and high confidence
edges based on the interaction scores. ConsensusPathDB contains
predominantly high confidence interactions, while HIPPIE and
iRefWeb interactions are accumulated in medium and low
confidence intervals. HIPPIE and iRefWeb use MINT-inspired
(MI) confidence score calculation, while ConsensusPathDB uses
the IntScore tool (Braun et al., 2009; Turner et al., 2010; Kamburov
et al., 2011; Kamburov et al., 2012; Turinsky et al., 2011; Schaefer
et al., 2012; Alanis-Lobato et al., 2017). We recalculated the
confidence scores in STRING by considering only the
experiment and database scores. PathwayCommons and
OmniPath do not provide confidence scores. Edge confidence
scores can be computed in various ways. Different scoring
schemes lead to variation in the confidence score distributions
across the interactomes. As expected, the correlation of confidence
scores between HIPPIE and iRefWeb is the highest (r � 0.67, p <
0.01) because both use MI-Score. The correlation between
confidence scores in iRefWeb and ConsensusPathDB is very
low (r � 0.25, p < 0.01) (Figure 2C) because ConsensusPathDB
uses a different scoring scheme, IntScore. While MI-Score
considers homologous interactions, the detection method, and
the number of publications about the interactions, IntScore
includes topological properties, literature evidence, and
similarities in annotation of proteins.

Confidence scores do not completely solve the bias in the
interactomes despite being a powerful measurement to filter out
false positives. Therefore, we additionally analyzed the
interactomes based on the bias toward well-studied proteins
using different features, namely, the number of publications
about the proteins, coverage of the cancer driver genes, and
the number of interactions having structural details. Well-
studied proteins, such as TP53 and EGFR, have hundreds of
high confidence interactions in the interactomes (Schaefer et al.,
2015; Chen et al., 2018; Porras et al., 2020). Indeed, there is a
trade-off between the interaction confidence scores of certain
proteins and systematic study bias. We used the number of
publications and the degree centrality of proteins in each

TABLE 2 | Tuning ranges of parameter sets in PageRank flux (PRF), heat diffusion
flux (HDF), and prize-collecting Steiner forest.

Reconstruction algorithm Parameter Range Increment

PRF Damping factor (λ) 0–1 0.05
Flux threshold (τ) 0–1 0.05

HDF Heat diffusion rate(α) 0–1 0.05
Flux threshold (τ) 0–1 0.05

PCSF Dummy edge weight (ω) 0–5 0.5
Edge reliability (β) 0–5 0.5
Degree penalty (γ) 0–10 0.5
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reference interactome to explore if highly connected proteins are
also well-studied ones.

Each analyzed interactome is a scale-free network so that their
degree distributions follow the power law (Supplementary
Figure 3) (Barabási and Albert, 1995; Vidal et al., 2011). The
number of publications about proteins follows the power law
distribution as their degree distribution (Supplementary
Figure 4). Thus, the number of publications and degrees were
analyzed using log-based values to find out their correlation. The

number of publications and the degrees of proteins are positively
correlated in all interactomes (Figure 3A). We observed the
highest correlation in PathwayCommons (r � 0.62, p < 0.01)
and HIPPIE (r � 0.61, p < 0.01), which implies the bias toward
well-studied proteins in these interactomes. iRefWeb, STRING,
and OmniPath havemoderate correlation between the degree and
the number of publications, which implies relatively less biased
interactomes (Supplementary Table 2). We note that this
comparison is performed on the whole interactome without

FIGURE 2 | Comparison of the reference interactomes. (A) Node- and edge-level commonalities between different interactomes; the node overlap score is
displayed on a light-to-dark blue-color scale, while the edge similarity score is shown on a size scale where the higher similarity is represented with the larger circle.
(B) Scores are categorized as low confidence between 0.1 and 0.4, medium confidence between 0.4 and 0.7, and high confidence between 0.7 and 1.0 for each
interactome. PathwayCommons and OmniPath are not demonstrated here due to the lack of a confidence score for their edges. Edges with low confidence scores
are mostly seen in iRefWeb and small portions of edges in ConsensusPathDB have low confidence scores, while low confidence edges are not seen in the filtered
STRING and HIPPIE. (C) Different strategies on confidence score calculation are used in interactomes. Using their common edges, the correlation coefficients among
their confidence scores over interactomes are demonstrated in the heatmap. The highest correlation between HIPPIE and iRefWeb is seen with the darkest blue. The
same confidence score calculation strategy, MI scoring, is used in both interactomes.
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FIGURE 3 | Correlation between publication counts and degrees over interactomes. (A) Log–log scale joint graphs of publication distribution and degree
distribution for each interactome were drawn since both follow a power-law distribution. While all interactomes have a positive correlation between the degree and
publication number, PathwayCommons, HIPPIE, ConsensusPath, and iREF have well-studied hubs. On the other hand, hubs in iRefWeb and OmniPath are not
composed of relatively well-studied proteins (p-values <0.001 and rPathwayCommons � 0.622, rConsensusPathDB � 0.556, rHIPPIE � 0.614, riRefWeb � 0.508, rSTRING � 0.250
and rOmniPath � 0.400). (B) Distributions of the number of publications and cancer driver genes in the intOGen database are shown, respectively, in blue and orange.
The probability of well-studied cancer driver genes (CDGs) is higher than the probability of well-studied proteins. (C) Driver gene degrees in the interactomes are
demonstrated in the boxplot in which driver genes in PathwayCommons have more connection than other interactomes. OmniPath and iRefWeb do not have highly
connected driver genes as many as ConsensusPath, HIPPIE, STRING, and PathwayCommons.
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any confidence score–based filtering, except STRING. We expect
that if only the high or medium confidence interactions in other
interactomes would be considered, the correlations may be
dramatically reduced and the bias toward well-studied proteins
may be dumped. Reconstruction algorithms are also adapted to
overcome this inherent bias toward the nodes and edges in
interactomes. For example, heat diffusion and random walk,
together with the edge flux calculation, use node degrees for
normalization, while PCSF penalizes highly connected proteins
(Creixell et al., 2015; Tuncbag et al., 2016a; Rubel and Ritz, 2020).
In this way, false-positive edges belonging to hub nodes are
excluded from the final subnetwork.

One application area of network reconstruction algorithms is
the discovery of disease-associated pathways, especially in cancer,
by inferring the seed proteins/genes. The resulting networks are
used for patient stratification, biomarker discovery, or the
analysis of drug mechanisms of action (Mo et al., 2018; Huang
et al., 2019; Koh et al., 2019; Wang et al., 2021). Therefore, we
searched for the coverage of the cancer driver genes (CDGs) in
each interactome. CDGs provide growth advantage to the tumor
cells and alter signaling pathways. Additionally, CDGs are
important markers in tumor stratification, characterization,
and drug development (Waks et al., 2016; Bailey et al., 2018;
Zsákai et al., 2019). We obtained the list of CDGs from the
intOGen database (Martínez-Jiménez et al., 2020). We found that
significantly more publications are present for CDGs than for the
rest of the proteomes, as shown in Figure 3B (p < 0.01). The
presence of driver genes and their edges help in accurately
reconstructing the driver pathways in cancer. All analyzed
interactomes are highly inclusive of driver genes, especially
PathwayCommons, ConsensusPathDB, and HIPPIE
(Supplementary Figure 5). However, the degrees of CDGs in
the PathwayCommons interactome are significantly higher than
others (Figure 3C).

In terms of protein interactions, the most accurate and
confident interactions can be caught by their structural
identification. Structures of protein–protein complexes uncover
the binding sites, domain contacts, and many more (Schmidt et al.,
2014; Nero et al., 2018; Hicks et al., 2019). The only drawback is the
availability of limited structural data. Despite the exponential
increase in PDB with the help of the X-ray, CryoEM, and NMR
techniques, the number of protein complexes can still only cover
around 16% of the whole interactome (Berman et al., 2000; Mosca
et al., 2013; Venko et al., 2017). Many structure-based predictive
approaches are also employed to accurately identify
protein–protein interactions. Therefore, we further analyzed
each interactome based on the representation of structurally
annotated interactions. For this purpose, we used the complexes
in PDB and Interactome3D.We found that HIPPIE has the highest
coverage of structurally known protein–protein interactions
(Figure 4A). HIPPIE is followed by PathwayCommons and
ConsensusPathDB. iRefWeb, OmniPath, and the filtered
STRING interactome have the lowest coverages.

Another source of confident interactions is the curated
pathways, despite being incomplete. Generated subnetworks are
required to be biologically meaningful so that their downstream
analysis can sign proper biological functions (Vidal et al., 2011;

Sevimoglu and Arga, 2014). Therefore, we explored the coverage of
interactomes based on the curated pathways retrieved fromKEGG,
which is one of the most frequently used databases for pathway
annotations. We found that KEGG pathways are relatively less
represented in iRefWeb, while PathwayCommons and filtered
STRING highly covered them (Figure 4B). We need to note
that some individual pathways are better covered in some
interactomes although their overall coverage is relatively low
(Figure 5). For example, the MAPK and RAS signaling
pathways are better represented in OmniPath, although
OmniPath has a moderate coverage of all pathways. Individual
pathway coverage of each interactome is listed in Supplementary
Table.

Performance of Network Reconstruction
Algorithms
As evidenced in detail, each interactome has its own strengths and
weaknesses. These properties have a direct effect on the
performance of network reconstruction algorithms. Therefore,
we used each interactome as the reference for each network
reconstruction algorithm to monitor the variance in the
performance. We used four well-established network
reconstruction algorithms, the all-pair shortest paths (APSP),
personalized PageRank with flux (PRF), heat diffusion with flux
(HDF), and prize-collecting Steiner forest (PCSF) algorithms, to
evaluate their performance on the gold standard dataset of 32
curated pathways retrieved from NetPath. Four pathways are
used for parameter tuning, and the rest (28 pathways) is used for
performance evaluation.

We collected both node- and edge-level performance metrics
for each pair of interactomes and reconstructionmethods on each
pathway. We found that node-level performance is relatively
more robust to different interactomes or different pathways in
each approach than the edge-level performance. The largest
variation is in the edge-level F1 scores, in that the balance
between the recall and precision values is highly variable
across pathways and interactomes (Supplementary Figure 6).
The F1 scores (p < 0.001) and precision (p < 0.001) scores of the
reconstructed pathways that are inferred from
PathwayCommons are mostly lower than the scores of
HIPPIE, ConsensusPathDB, OmniPath, and iRefWeb
(Figure 6A). The second highest variation is in the edge-level
MCC, used for binary classification over imbalanced data
(Boughorbel et al., 2017; Magnano and Gitter, 2021). This
result implies that the algorithms do not perform well with a
relatively very large reference interactome because of the potential
dominance of false positives over the true-positive interactions.
Based on the F1 score and the precision value, we did not find a
significant difference in performance when HIPPIE,
ConsensusPathDB, OmniPath, or iRefWeb interactomes are
used. Therefore, we continued with HIPPIE as a reference
interactome for further assessments since it has the most
balanced features based on the comparison in the previous
part, including coverage of structurally known interactions.
The comparison of edge-based performance scores showed
that APSP significantly has the lowest precision values (p <
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0.001) and the highest recall values among all reconstruction
approaches when the performance across all pathways is
evaluated. There is no significant difference in precision values
between HDF, PRF, and PCSF (Figure 6B). The recall values of the
reconstructed pathways do not significantly differ between HDF
and PRF, while PCSF (p < 0.001) has significantly higher recall
scores (p < 0.001) than HDF and PRF (Figure 6C). The trade-off
between the precision and recall scores can be noticed in the results
of reconstruction methods. Insertion of all shortest paths between
the seed nodes in the APSP algorithm causes both the reduction in

precision values and the increase in recall values. The significantly
high FPR in APSP (p < 0.001) indicates that false-positive edges
dominate the true-positive edges (Supplementary Figure 7).
Therefore, F1 scores of the APSP-reconstructed pathways are
significantly lower than those of other methods (p < 0.001)
(Figure 6D). On the other hand, PCSF-reconstructed pathways
havemoderately high recall and precision scores and the highest F1
score by a considerable margin, optimizing the trade-off between
the precision and recall values. Interestingly, the interval of recall
scores in the reconstructed pathways in PCSF is not variable in a

FIGURE 4 |Coverage of structurally known interactions and pathway interactions in each interactome. (A) Structural information is demonstrated in two groups, as
known interactions in PDB in blue and predicted interactions in Interactome3D in orange. (B) Overlaps between the interactions in KEGG pathways and each
interactome are shown as a violin-plot.
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wide interval as in other methods; rather, it fluctuates around 0.65.
The PCSF approach gives an optimum forest as an output together
with an augmented forest which includes all the edges in the

interactome that are present between the nodes in the optimal
forest. We obtained the final network of PCSF by taking the
intersection of augmented forests from multiple parameters. In

FIGURE 5 |Overlap between each pathway in KEGG and each interactome. The sorted coverage of interactomes for 171 KEGG pathways is shown as a heatmap.
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FIGURE 6 | Performance evaluation of each interactome and method in pathway reconstruction. (A) Boxplot of edge-based precision and F1 scores, for each
interactome, shows that PathwayCommons and STRING are significantly lower than HIPPIE, ConsensusPathDB, OmniPath, and iRefWeb, while there is not any distinct
difference among HIPPIE, ConsensusPathDB, OmniPath, and iRefWeb. The performance values for each reconstructed network is represented with red points in the
boxplots. Brown lines connect the performance scores of the same pathway across the interactomes. (B) Edge-based precision, (C) edge-based recall, and
(D) edge-based F1 scores are separately demonstrated for reconstruction algorithms. (E) HDF, PRF, and PCSF were compared in terms of the reconstructed
pathways. The heatmap shows that the reconstructed pathways by PCSF are different, having %44 and %39 different edges, respectively, than the ones
reconstructed by PRF and HDF.
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this way, adding an edge to the final network was made very
stringent.We computed the Jaccard similarity matrix amongHDF,
PRF, and PCSF to demonstrate the variation on the edge-level
performance in the reconstructed pathways (Figure 6E; Ricotta
et al., 2016). PCSF penalizes highly connected nodes, which reduces
the dominance of well-studied or highly connected nodes in the
reconstructed networks. In this way, important but low-degree
nodes are also successfully included in the reconstructed pathways.
As a result, PCSF has balanced precision and recall values, and its
reconstructed pathways have the highest dissimilarity compared to
the reconstructed pathways from other methods. Overall, the
performance of the algorithms is highly affected by the
parameter selection along with the used background
interactome. To illustrate the reconstructed networks intuitively
and to distinguish their commonalities and differences for each
algorithm, we selected two case studies; one is selected from the
NetPath database and the other is selected from WikiPathways.

Case Studies: Reconstruction of the Notch
Pathway and Glioblastoma Disease
Pathway
Our first case study is the Notch signaling pathway to intuitively
illustrate the performance of each approach. The Notch signaling
pathway plays a critical role in cell fate determination by
regulating differentiation, apoptosis, proliferation, and
morphogenesis. Its signaling cascades are associated with
many human cancers (Sjölund et al., 2005; Bazzoni and
Bentivegna, 2019; Guo et al., 2019). The APSP method
recovers many true-positive edges, but it also introduces many
false positives in the Notch pathway (Supplementary Figure 7).
Therefore, only PRF, HDF, and PCSF results inferred from a set
of seeds selected from the Notch pathway are illustrated in
Figure 7. Notch receptors are single-pass transmembrane
proteins, receiving signals from transmembrane ligands such
as JAG1, JAG2, DLL1, and DLL4. The given protein list
includes Notch receptors and CNTN1, JAG2, and DLL4. All
reconstruction algorithms successfully identified JAG1 and the
interaction between Notch receptors and their ligands except for
DLL. True-positive nodes having a low degree in the reference
interactome were caught better by PCSF than by PRF and HDF.
Additionally, PCSF accurately included nodes such as CNTN1,
WDR12, LEF1, RBX1, SIN3A, and many other true positives in
the final reconstructed network. Although PCSF performs well in
recovering low-degree nodes, it could not include some other
nodes such as AKT1, SKP1, SPEN, and TCF3 in the pathway.
PCSF successfully found the interactions between Furin–Notch
receptors that regulate the Notch pathway in cancer progression
where Furin, a low-degree ligand, generates biologically active
heterodimer receptors (Qiu et al., 2015). On the other hand, PCSF
fails to construct the interactions including low-degree nodes
such as JAK2 and WDR12. HDF and PRF mostly reveal the
interaction between high-degree nodes such as MAML1 and
Notch receptors since the heat diffusion and the PageRank
algorithm tend to give high scores to these nodes.

The Notch pathway has cross talk with other critical pathways
in cancer such as the PI3K-AKT-mTOR and JAK-STAT signaling

pathways (Chan et al., 2007; Hillmann and Fabbro, 2019). The
cross talk is mediated by the nodes with low-degree and high
betweenness centrality in the reference interactome such as
PIK3R1, LCK, and JAK2. Although we could reveal these
intermediate nodes that are important in cross talk between
multiple pathways with PCSF, we could not achieve the same
performance in the added edges. Despite correctly identifying
PIK3R1 interaction with Notch1 and LCK, interactions with
PIK3R2 and AKT were not found. In the JAK-STAT and
Notch pathway cross talk (Rawlings et al., 2004; Liu et al.,
2010), we accurately found intermediate nodes such as JAK2,
HES1, and HES5, but we failed in recovering their interactions
with STAT3 in the PCSF-reconstructed pathway.

Our second case study is the glioblastoma (GBM) disease
pathway. Disease-related pathways are mostly composed of
multiple signaling pathways. GBM is the most aggressive
type of brain cancer. Multiple signaling pathways such as the
PI3K/AKT/mTOR, EGFR/RAS/MAPK, P53, and RB pathways
have abnormal activity in GBM tumors (Ohgaki and Kleihues,
2007). Disease-related pathways are mostly composed of
multiple signaling pathways. The presence of cross talk via
intermediate molecules is the reason why multiple pathways
are related to a disease. In this regard, signaling pathways in
GBM, retrieved from WikiPathways, were reconstructed by
multiple algorithms using HIPPIE as the reference
interactome. Multiple signaling pathways such as the PI3K/
AKT/mTOR, EGFR/RAS/MAPK, P53, and RB pathways are
associated with GBM. Alterations on these pathways may lead to
more aggressive and invasive phenotype by disturbing DNA
repair, apoptosis, and G1/S progression and enhancing cell cycle
progression and cell migration (Ohgaki and Kleihues, 2007).
Some nodes such as PIK3CG and CDK1NA and their
interactions, mediating the cross talk between multiple
pathways, were not efficiently revealed by reconstruction
algorithms. CDKN1A is responsible for the inhibition of the
RB signaling pathway by transducing signals coming from the
PI3K/AKT/mTOR pathway. Even though the reconstructed
subnetwork recovers the RB signaling pathway, all four
algorithms failed in reconstructing the edges connecting two
signaling pathways (Figure 8). Thus, these algorithms are good
at revealing the mediator nodes in cross talk between pathways, but
they fail in revealing the connection between them. The HDF and
PRF methods ranked some nodes as important, such as APOH,
FBLN5, AFP, andMMP12. Although these proteins are not present
in the studied pathway, their association with GBM was previously
discovered in transcriptomic or proteomic studies (Varma Polisetty
et al., 2012; Kros et al., 2015; Trojan et al., 2020).

DISCUSSION

In this study, we comprehensively explored the properties of
interactomes from seven sources and the performance of four
network reconstruction algorithms on known pathways. Our
comparison reveals that PathwayCommons, having the highest
number of nodes and edges, has the highest coverage of nodes and
edges across all interactomes, including CDGs, and known
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pathways. However, precision values of the reconstruction
methods are significantly lower than the others when
PathwayCommons is used as the reference interactome. We
did not observe a significant difference in recall values among
all interactomes. The significant correlation between the degree
and the number of publications of the nodes in
PathwayCommons shows a bias toward well-studied proteins.
Interestingly, although HIPPIE and ConsensusPathDB have a
similar bias, the precision of the algorithms on these interactomes
is better than that of PathwayCommons. These results imply that
HIPPIE and ConsensusPathDB have a good balance in down-

weighting the false positives and preserving high
confidence edges.

The results of the different network reconstruction algorithms
may include disjoint edges. The highest recall scores in APSP
come along with the highest FPR score because the APSP
algorithm adds many false-positive edges besides the true
positives. Some studies, such as PathLinker (Ritz et al., 2016),
use a distance threshold during shortest path calculation, a
limited number of shortest paths between the source and the
target, or additional data including orientation of the signal from
the receptors to the transcription factors so that the false positive

FIGURE 7 |Reconstructed Notch pathway. Nodes that are present in the pathway, but are not found by any algorithms are colored light blue. Nodes that are found
by PCSF, PRF, and HDF are colored red, yellow, and cyan, respectively. Green edges are present in Notch pathway in NetPath, while incorrectly included edges by any
algorithm are shown in brown.
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rate is controlled. We need to note that we did not apply any
distance-based threshold, additional data, or refinement in the
APSP algorithm. Thus, F1 scores and precision scores are
extremely low in APSP. On the other hand, PRF, HDF, and
PCSF have similar performances of false positive and true positive
edges. PCSF has the highest F1 score compared to PRF and HDF.
Interactomes are imbalanced datasets where true-negative edges
are significantly more than true-positive edges. Naturally, the
precision scores seem relatively low in the pathways formed by
our algorithms since the FPR gets higher in such imbalanced
datasets. The reconstructed Notch pathway shows that PCSF is

better at finding weakly connected nodes. However, PCSF does
not perform well in revealing the intermediate nodes and
their edges achieving the cross talk between the Notch
pathway and the PI3K-AKT-mTOR and JAK-STAT signaling
pathways. Moreover, the intermediate nodes that links signaling
pathways in GBM cannot construct completely true edges. In our
study, the nodes are proteins; however, pathways may include
small molecules and non-peptide nodes. Therefore, the
reconstruction algorithms probably add false edges to include
true terminals. The lack of some nodes in reference interactomes
may be one of the reasons for the low precision scores.

FIGURE 8 | Reconstructed signaling pathways in glioblastoma (WP2261) are predicted by PCSF are red, PRF are yellow, HDF are cyan, and nodes that are not
found by any algorithm are colored light blue. Additionally, red rings represent the nodes that are incorrectly propagated. Green edges are the correct ones that are
present in GBM pathway, while incorrect edges included by any algorithm are colored brown.
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Network reconstruction algorithms are highly dependent on
topological properties and edge weights of the reference
interactomes (Janjić and Pržulj, 2017; Liu et al., 2017). Among
the evaluated approaches, the highest recall values are achieved by
using the APSP algorithm together with the lowest precision
values. The APSP algorithm adds many false-positive edges,
besides the true positives. On the other hand, PRF, HDF, and
PCSF have similar performances, while PCSF has a higher F1
score than PRF and HDF. High recall scores together with low
precision scores are the result of the unbalanced data where the
number of edges in the target pathway is dramatically lower than
that in the rest of the interactome (Saito and Rehmsmeier, 2015).
The low precision score with the moderate recall score is common
among reconstruction algorithms of human signaling networks
(Atias and Sharan, 2011; Ritz et al., 2016; Grimes et al., 2019).
Additionally, edge-based performances of reconstruction
algorithms are not as good as their node-based performance.
We also observe a similar pattern of performances in our
evaluation.

In a recent study, the performance of flux algorithms was
shown to exceed the performance of PCSF with default
parameters (Rubel and Ritz, 2020). However, the selected set
of parameters significantly affects the performance of
reconstruction algorithms, especially in PCSF. Automating
parameter tuning that considers topological properties of
reconstructed subnetworks can improve the performance
(Magnano and Gitter, 2021). Therefore, in this study, we
reconstructed pathways by extensively tuning the parameter
set, followed by merging multiple optimal forests to reach the
best performance. Parameter sets of other reconstruction
algorithms were also tuned to find the optimum parameters.
We can explain the overperformance of PCSF compared to other
methods with detailed parameter tuning and considering
multiple optimal solutions.

Several methods use topological properties of reference
interactomes to predict new links and to filter out false-
positive interactions (Cannistraci et al., 2013; Lei and Ruan,
2013; Hulovatyy et al., 2014; Alkan and Erten, 2017).
Additionally, functional annotations, protein structures, and
domain–domain interactions were also used to identify
missing protein associations (Singh et al., 2006; Segura et al.,
2015; Yerneni et al., 2018; Ietswaart et al., 2021). We need to note
that we did not use the methods that modify the underlying
interactome (Alanis-Lobato et al., 2018) and the methods that
construct regulatory networks (Madar et al., 2009; Fontaine et al.,
2011; Lachmann et al., 2016) in our evaluation. The performance
of the APSP, HDF, PRF, and PCSF algorithms may change upon
any modification or refinement of the reference interactomes.
These reference interactomes are undirected graphs, but signaling

pathways are intrinsically directed graphs. Indeed, the
directionality of the edges can be incorporated either with the
known or with the predicted ones. Orientation of the
reconstructed networks can improve the mechanistic
understanding of biological pathways. Therefore, using a
directed reference interactome can boost the performance of
each algorithm. Finally, biomolecular interactions are
temporally and spatially diverse. Interactomes are incomplete
sets of interactions, and the time dimension is not considered in
our evaluation. Subnetwork reconstruction algorithms may be
improved in the future to include biological annotations and
temporal and spatial interactions of proteins.
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