About this Research Topic
The relative abundances of the stable isotopes in living organisms depend on the isotopic composition of their food sources and their internal fractionation processes. However, when an organism or simple system (plant-microorganism) is studied under controlled conditions, the natural nitrogen abundance in organs and tissues and/or the fractionation process in metabolic mechanisms can unravel some unexpected “secrets” about the bio-mechanisms of the nitrogen dynamics (movement and transformation) in living organisms and systems.
The aim of this research topic is to bring together the potential use of δ15N for the study of the (bio)transformations of nitrogen in living organisms and/or systems. It will endeavour to deepen and advance the development of tools based on this overall indicator of the nitrogen metabolism of plants (δ15N) for determining the nitrogen use efficiency in plant species of agricultural interest.
An integration of the different nitrogen fractionation mechanisms may clarify the processes involved in (plant) nitrogen uptake, transport, assimilation, emission etc. Thus the potential impact of this research topic is not only restricted to the plant sciences domain but it may also be relevant to a broad spectrum of scientific readers (marine ecologists, biologists, evolution scientists, even agronomists, biochemists and biophysicists).
We consider that a synthesis of a global view of fluxomic and bio-transformations of nitrogen through isotopic fractionation processes is currently lacking. We will provide a wide integrative perspective about nitrogen “movement” in bio-systems with peer-reviewed contributions selected from all submitted abstracts of experts in (bio)transformation of nitrogen in plants, soil microbes, atmosphere, microorganism-plant and plant-soil systems.
Finally, taking into account that nitrogen distribution patterns are currently changing and are a key factor in current concern about the increasing availability of nitrogen in a changing environment (Nr deposition, nitrogen load in aquatic systems, etc.), this topic will include rapid communications, reviews, methodology and original research articles, being timely and highly attractive to a wide community of science researchers and for the community at large.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.